
Improving Fault Coverage and
Minimising the Cost of Fault

Identification when Testing from
Finite State Machines

A thesis submitted in fulfilment of the requirement for
the degree of Doctorate of Philosophy

Qiang Guo

School of Information Systems, Computing and Mathematics

Brunel University
Uxbridge, Middlesex

UB8 3PH

United Kingdom

January 9, 2006

To my parents,

and to Yuyan ...

Acknowledgements

I would like to thank Professor Robert M. Hierons of Brunel Univer-

sity, who is my first supervisor, and Professor Mark Harman of King’s

College London, who is my second supervisor, for their excellent su-

pervision and support throughout this research.

My thank also goes to people from VASTT (Verification and Analysis

using Slicing, Testing and Transformation) and ATeSST (The Anal-

ysis, Testing, Slicing, Search and Transformation) research groups in

Brunel University, and the EPSRC funded FORTEST and SEMINAL

networks for their valuable comments and advice.

This work is funded by Brunel Research Initiative and Enterprise Fund

(BRIEF) Award from Brunel University for the first year, and then

departmental bursary from school of information systems, computing

and mathematics, Brunel University, for the second and third years.

Related publications

• Qiang Guo, Robert M. Hierons, Mark Harman and Karnig Derde-

rian, “Computing unique input/output sequences using genetic

algorithms”, Formal Approaches to Testing (FATES’03), in LNCS

2931:164-177, 2004.

• Qiang Guo, Robert M. Hierons, Mark Harman and Karnig Derde-

rian, “Constructing multiple unique input/output sequences us-

ing metaheuristic optimisation techniques”, IEE Proceedings -

Software, 152(3):127-130, 2005.

• Qiang Guo, Robert M. Hierons, Mark Harman and Karnig Derde-

rian, “Improving test quality using robust unique input/output

circuit sequences (UIOCs)”, Information and Software Technol-

ogy, accepted for publication, 2005.

• Qiang Guo, Robert M. Hierons, Mark Harman and Karnig Derde-

rian, “Heuristics for fault diagnosis when testing from finite state

machines”, Software Testing, Verification and Reliability, under

review, 2005.

Abstract

Software needs to be adequately tested in order to increase the con-

fidence that the system being developed is reliable. However, testing

is a complicated and expensive process. Formal specification based

models such as finite state machines have been widely used in system

modelling and testing. In this PhD thesis, we primarily investigate

fault detection and identification when testing from finite state ma-

chines.

The research in this thesis is mainly comprised of three topics - con-

struction of multiple Unique Input/Output (UIO) sequences using

Metaheuristic Optimisation Techniques (MOTs), the improved fault

coverage by using robust Unique Input/Output Circuit (UIOC) se-

quences, and fault diagnosis when testing from finite state machines.

In the studies of the construction of UIOs, a model is proposed where

a fitness function is defined to guide the search for input sequences

that are potentially UIOs. In the studies of the improved fault cov-

erage, a new type of UIOCs is defined. Based upon the Rural Chi-

nese Postman Algorithm (RCPA), a new approach is proposed for the

construction of more robust test sequences. In the studies of fault di-

agnosis, heuristics are defined that attempt to lead to failures being

observed in some shorter test sequences, which helps to reduce the

cost of fault isolation and identification. The proposed approaches

and techniques were evaluated with regard to a set of case studies,

which provides experimental evidence for their efficacy.

Contents

1 Introduction 1

1.1 About testing . 1

1.2 Validation and verification . 3

1.2.1 Validation . 3

1.2.2 Verification . 4

1.2.3 Validation vs. verification 7

1.3 Formal specification languages . 8

1.4 Test cost and fault coverage . 10

1.5 Fault observation and diagnosis 11

1.6 Testing with MOTs . 13

1.7 The structure of this thesis . 14

2 Preliminaries and notation 15

2.1 Graph theory . 15

2.1.1 Directed graph . 15

2.1.2 Flows in networks . 18

2.1.3 The maximum flow and minimum cost problems 20

2.1.4 The Chinese postman tour 22

2.2 Metaheuristic optimisation techniques 24

2.2.1 Genetic algorithms . 25

2.2.2 Simulated annealing . 30

2.2.3 Others . 32

i

CONTENTS

3 Test generation - a review 35

3.1 Introduction . 35

3.2 Adequacy criteria . 35

3.3 Black-box and white-box testing 37

3.4 Control flow based testing . 38

3.5 Data flow based testing . 42

3.6 Partition analysis . 47

3.6.1 Specification based input space partitioning 48

3.6.2 Program based input space partitioning 49

3.6.3 Boundary analysis . 50

3.7 Mutation testing . 51

3.8 Statistical testing . 54

3.9 Search-based testing . 55

4 Testing from finite state machines 59

4.1 Introduction . 59

4.2 Finite state machines . 60

4.3 Conformance testing . 63

4.4 Test sequence generation . 68

4.5 Optimisation on the length of test sequences 69

4.5.1 Single UIO based optimisation 69

4.5.2 Multiple UIOs based optimisation 76

4.5.3 Optimisation with overlap 80

4.6 Other finite state models . 82

5 Construction of UIOs 84

5.1 Introduction . 84

5.2 Constructing UIOs with MOTs 85

5.2.1 Solution representation . 85

5.2.2 Fitness definition . 86

5.2.3 Application of sharing techniques 88

5.2.4 Extending simple simulated annealing 90

5.3 Models for experiments . 90

ii

CONTENTS

5.4 Working with genetic algorithms 93

5.4.1 GA vs. random search . 93

5.4.2 Sharing vs. no sharing . 104

5.5 Working with simulated annealing 106

5.6 General evaluation . 112

5.7 Parameter settings . 118

5.8 Summary . 121

6 Fault coverage 122

6.1 Introduction . 122

6.2 Problems of the existing methods 124

6.2.1 Problems of UIO based methods 124

6.2.2 Problems of backward UIO method 125

6.3 Basic faulty types . 127

6.4 Overcoming fault masking using robust UIOCs 129

6.4.1 Overcoming type 1 . 129

6.4.2 Overcoming type 2 . 132

6.4.3 Construction of B-UIOs 134

6.4.4 Construction of UIOCs . 137

6.5 Simulations . 137

6.6 Summary . 143

7 Fault isolation and identification 146

7.1 Introduction . 146

7.2 Isolating single fault . 147

7.2.1 Detecting a single fault . 148

7.2.2 Generating conflict sets . 148

7.3 Minimising the size of a conflict set 148

7.3.1 Estimating a fault location 149

7.3.2 Reducing the size of a conflict set using transfer sequences 152

7.3.3 Reducing the size of a conflict set using repeated states . . 154

7.4 Identifying a faulty transition . 155

7.4.1 Isolating the faulty transition 155

iii

CONTENTS

7.4.2 Identifying the faulty final state 156

7.5 A case study . 157

7.6 Complexity . 162

7.6.1 Complexity of fault isolation 162

7.6.2 Complexity of fault identification 163

7.7 Summary . 164

8 Conclusions and future work 166

8.1 Contributions . 167

8.2 Finite state machine based testing 167

8.3 Construction of UIOs . 168

8.4 The improved fault coverage . 168

8.5 Fault diagnosis . 169

8.6 Future work . 170

References 188

iv

List of Figures

2.1 An example of labelled digraph. 15

2.2 The flow chart of simple GA. 26

2.3 Crossover operation in simple GA. 28

2.4 Mutation operation in simple GA. 29

2.5 The flow chart of simulated annealing algorithm. 33

2.6 The flow chart of tabu search algorithm. 34

3.1 An example of control flow graph. 39

3.2 An example of the statement coverage. 40

3.3 Partition of the input space of DISCOUNT INVOICE module.

α, β, γ: borders of the subdomains; a,b,...,h: vertices of the subdo-

mains; A,B,...,F: subdomains. 49

3.4 An example of mutation testing. 52

4.1 Finite state machine represented by digraph cited from ref. (ATLU91). 61

4.2 A pattern of state splitting tree from an FSM. 66

4.3 Test control digraph of the FSM shown in fig. 4.1 using single UIO

for each state. 72

4.4 The flow graph DF of the digraph D
′
with the maximum flow and

minimum cost. 74

4.5 Symmetric augmentation from fig. 4.3. Number in an edge indi-

cates the times this edge needs to be replicated. 75

4.6 Test control digraph of the FSM shown in fig. 4.1 using multiple

UIOs for each state. 77

v

LIST OF FIGURES

4.7 Flow network used for the selection of UIOs to generate optimal

test control digraph for the FSM shown in fig. 4.1. 78

4.8 Structure of UIO Overlap. 80

5.1 Two patterns of partitions. 87

5.2 Patterns of valid partition (A) and invalid partition (B). 89

5.3 The first finite state machine used for experiments: model I. . . . 91

5.4 The second finite state machine used for experiments: model II. . 91

5.5 The third finite state machine used for experiments: model III. . 92

5.6 Solution recombination. 96

5.7 Average fitness value - input space {a,b,c}. 97

5.8 Average fitness value - input space {a,b,c,]}. 98

5.9 UIO distribution using GA without sharing for model III; Legends

indicate the number of states that input sequences identify. 105

5.10 UIO distribution using GA with sharing for model III. 107

5.11 UIO distribution using GA with sharing for model II. 108

5.12 Average fitness values when constructing UIOs using GA for model

III. 109

5.13 Average fitness values when constructing UIOs using GA for model

II. 109

5.14 Simulated annealing temperature drop schema; A: normal expo-

nential temperature drop; B: rough exponential temperature drop. 110

5.15 UIO distribution using SA with normal temperature drop for model

III. 111

5.16 UIO distribution using SA with rough temperature drop for model

III. 113

5.17 UIO distribution using SA with exponential temperature drop for

model II. 114

5.18 UIO distribution using SA with rough temperature drop for model

II. 115

5.19 Average fitness values when constructing UIOs using SA (rough T

drop) for model III. 116

vi

LIST OF FIGURES

5.20 Average fitness values when constructing UIOs using SA (rough T

drop) for model II. 117

5.21 Two patterns of state splitting tree generated from model III. . . 119

6.1 A specification finite state machine and one faulty implementation

cited from ref. (CVI89). 125

6.2 ”dccd/yyyy”: Backward UIO sequence of S0 in the finite state

machine defined in table 6.1. 126

6.3 Problems of the B-method. 126

6.4 Types of faulty UIO implementation. 128

6.5 Construction of UIOC sequences using overlap scheme. 129

6.6 Construction of UIOC sequences using internal state sampling scheme.133

6.7 Rule on selection of a state. 135

6.8 The pattern of a state merging tree from an FSM 136

6.9 UIOC sequence for s4 in the FSM with 10 states and the faulty

implementation that causes the fault masking in the UIOC sequence.143

7.1 Fault Masked UIO Cycling . 151

7.2 Reducing the size of a conflict set by applying transfer sequence . 152

7.3 Reduce the size of a conflict set by considering the repeated states 154

7.4 Fault detection and identification in M
′
. 160

vii

List of Tables

3.1 Fitness function cited from (TCMM00). 57

4.1 Finite state machine represented by state table. 62

4.2 UIO sequences for the states of the FSM shown in fig.4.1. 71

4.3 Test control trails of transitions in the FSM shown in fig. 4.1. . . 73

4.4 An optimal test sequence for the FSM shown in fig. 4.1 by using

single UIO for each state. 75

4.5 Multiple UIO sequences for the states of the FSM shown in fig.4.1. 76

4.6 The optimal test sequence for the FSM shown in fig. 4.1 by using

multiple UIOs for state verification. 76

5.1 The minimum-length UIOs for model I. 93

5.2 UIOs for model II. 93

5.3 UIOs for model III. 94

5.4 Final sequences obtained from model I - input space {a,b,c}. . . . 98

5.5 Final sequences obtained from model I - input space {a,b,c,]}. . . 99

5.6 Solutions obtained from the historical record database. 99

5.7 Average result from 11 experiments. 100

5.8 Solutions obtained using by random search. 101

5.9 UIO sequences for model II found by random search. 102

5.10 UIO sequences for model II found by GA. 103

5.11 Missing UIOs when using model III; GA:simple GA without shar-

ing; SA:simple SA without sharing; GA/S:GA with sharing; SA/N:SA

with sharing using normal T drop; SA/R:SA with sharing using

rough T drop. 116

viii

LIST OF TABLES

5.12 Missing UIOs when using model II; GA:simple GA without shar-

ing; SA:simple SA without sharing; GA/S:GA with sharing; SA/N:SA

with sharing using normal T drop; SA/R:SA with sharing using

rough T drop. 117

6.1 Specification finite state machine with 25 states used for simulations.138

6.2 Examples of faulty implementations that F- and B-method fail to

detect. 139

6.3 Numbers of F-UIOs and UIOCs that lost the property of unique-

ness in the faulty implementations. 140

6.4 Mutants that pass the test. 142

6.5 Lengths of the test sequences. 144

7.1 Specification finite state machine used for experiments 158

7.2 Unique input/output circuit sequences for each state of the finite

state machine shown in Table 7.1. 159

7.3 Injected faults . 159

ix

Chapter 1

Introduction

1.1 About testing

Development of software systems is comprised of three stages. In the first stage,

developers of the system derive a set of requirements from their customers. These

requirements are normally represented in a requirements specification. Then, in

consultation with these requirements, a design is built. After that, Coding, or

implementing takes place where the design is translated into code using some

programming language. Errors might be introduced at this stage, but can be

discovered by verification and testing. Testing is an integral and important part

in the life cycle of software development. A testing process aims to check whether

the implementation under test is functionally equivalent to its specification.

“Testing is the process of executing a program or system with the intent of

finding errors, or, involves any activity aimed at evaluating an attribute or capa-

bility of a program or system and determining that it meets its required results”

(Het88; Mye79).

The process of testing begins with test design. A set of tests is normally

created through the analysis of the system under test. This set of tests is used

to check whether the system has been correctly implemented. In the phase of

test design, a test model is often required in order that the generation of tests

is formalised. This model describes the system behaviour with abstracted infor-

mation, aiming to reduce the complexity of the description of the system being

developed. The test model can be constructed by using either informal spec-

1

1.1 About testing

ification languages or formal specification languages. Due to the properties of

imprecision and ambiguity, informal specifications often lead to misunderstand-

ings and make testing difficult and unreliable. By contrast, formal specification

languages are based upon mathematics and have a formally defined semantics.

The mathematical nature of formal specification languages leads to precise and

unambiguous descriptions. Section 1.3 gives a brief review on the major formal

specification languages.

After a test model is built, a test strategy needs to be defined for the generation

of test cases. A test strategy is an algorithm or heuristic to create test cases. Two

measurements are applied for the evaluation of efficiency of a test. One of the

measurements is test cost while the other is fault coverage. A good test strategy

needs to embody the two measurements in two aspects: (1) test cases generated

with such a strategy should cover, as much as possible, all faults that the system

under test may have; (2) test cost associated with these test cases should be

relatively low.

When design is complete, a set of test cases is then applied to the system under

test to check its correctness. With the input set of a test case being applied to the

system, an output set will be received. The application of a test case is classified

as pass or fail by comparing the output set to that defined in the specification.

Failure caused by any test case suggests the existence of faults in the system

under test.

The procedure of testing is summarised as four major steps:

1. Identify, model, and analyse the responsibilities of the system under test.

2. Design test cases based on this external perspective.

3. Develop expected results for each test case or choose an approach to evaluate

the pass/fail status of each test case.

4. Apply test cases to the system under test.

Unfortunately, detecting all faults is generally infeasible. Howden (How76)

suggests that there is no algorithm to find consistent, reliable, valid, and complete

test criteria. Complete testing is in general a very difficult process. Instead,

2

1.2 Validation and verification

testing provides a level of confidence in the correctness of an implementation

with regard to the constraint of some test criteria. Exhaustive testing, where

the test cases consist of every possible set of input values, is the only way that

will guarantee complete fault coverage. This technique, however, is not practical.

The size of the input domain makes exhaustive testing infeasible (And86).

Regardless of the limitations, testing is an expensive process, typically con-

suming at least 50 % of the total costs involved in the development (Bei90) while

adding nothing to the functionality of the product. It has been suggested that

manually generating test cases could be very difficult even for moderately sized

systems (Mye79). Although, for some systems, it is possible to generate test cases

manually, the process tends to be costly and inefficient. Automation of the test-

ing process is thus required, which could be desirable both to reduce development

costs and to improve the quality of (or at least confidence in) software.

1.2 Validation and verification

Validation and verification are essential in the life cycle of system development.

Without rigorous validation, verification and testing that the specification meets

the customer’s requirements and that the implementation is consistent with its

specification, the development of a system is not complete.

1.2.1 Validation

Validation is defined as “the process of evaluating a system or component during

or at the end of the development process to determine whether it satisfies speci-

fied requirements” (IEE90). Validation checks that the system being developed

conforms to the user’s requirements. It generally answers the question, “Did we

build the right system?” (Boe81).

Early validation of the system specification is very important. Before being

translated into an implementation, a specification needs to be checked for validity,

consistency, competence, realism and verifiability.

The process of validation is classified into two stages - informal validation

and formal validation. In system development, once the writing of specification

and the coding of implementation are complete, a set of validation tests needs

3

1.2 Validation and verification

to be developed. The set of tests aims to report the majority of problems in the

system being developed. This activity is referred to as informal validation since

tests are run informally, and some system features are expected to be missing.

Informal validation provides early feedback to software engineers. This feedback

provide the system developers with foundations for system modifications, which

help to increase confidence that the system being developed complies with the

customer’s requirements.

After informal validation is complete, the process comes to formal validation.

A set of tests is designed and applied to the implementation under test with

the purpose of bug correction. At this stage, the specification used for system

coding is assumed to be valid and complete. The process of testing aims to check

whether the implementation under test conforms to the specification. A formal

test model is often defined. Formal approaches are applied for the derivation of

test cases.

Validation is usually accomplished by verifying each stage of the software de-

velopment life cycle. It should be noted that, in reality, specification validation

is normally unlikely to discover all requirements problems. Some flaws and defi-

ciencies in the specification can sometimes only be discovered when the system

implementation is complete.

1.2.2 Verification

Verification is defined as “the process of evaluating a system or component to

determine whether the products of a given development phase satisfy the condi-

tions imposed at the start of that phase” (IEE90). Verification involves checking

that the implementation produced conforms to the specification. It addresses the

question, “Did we build the system right?” (Boe81). Many techniques have been

proposed for the verification but they all basically fall into two major categories:

static verification and dynamic verification.

I. Static verification

Static verification is concerned with analysing the system being developed with-

out executing it. Properties of the system such as syntax, parameter matching

4

1.2 Validation and verification

between procedures, typing and specification translation have to be checked for

their correctness.

Software inspection (AFE84) is one of the static verification techniques that

has been widely used. “A software inspection is a group review process that is

used to detect and correct defects in a software work-product. It is a formal,

technical activity that is performed by the work-product author and a small peer

group on a limited amount of material. It produces a formal, quantified report on

the resources expended and the results achieved” (AFE84).

During inspection, either the code or the design of a work-product is com-

pared to a set of pre-established inspection rules. Inspection processes are mostly

performed along checklists which cover typical aspects of the software behaviour.

Another static verification technique is walk-through (Tha94). Walk-throughs

are similar peer review processes that involve the author of the program, the tester

and a moderator. The participants of a walk-through create a small number of

test cases by simulating the computer. Its objective is to question the logic and

basic assumptions behind the source code, particularly of program interfaces in

embedded systems (Tha94).

Proofs are usually used for the verification, either informally or formally. At

an informal level, proofs work on step-by-step reasoning involved in an inspection

of the system while, at a more formal level, mathematical logic is introduced. A

formal proof is based upon a set of axioms and inference rules. If the test model

is constructed with a formal language, a set of formal proofs can be derived to

prove the conformance of implementation to its specification. As formal proofs

can be checked automatically in a formal language, an automatic proof checker

can be used for the construction of proofs.

However, it is usually difficult to prove the conformance to the specification

for a large scale system. This can be alleviated through the use of refinement.

Specification, in some formal notation, can be converted into an implementation

using a series of simple refinements, each of which is capable of being proven. By

such an operation, no fault should be present in the implementation.

5

1.2 Validation and verification

II. Dynamic verification

Dynamic verification involves the execution of a system or component. A number

of test inputs are chosen. Corresponding test outputs are used to determine the

gap between the test model and the real implementation. These test inputs are

called test cases and the process is called testing.

Testing consists of three major stages, namely, unit or module testing, inte-

gration testing and system testing. In the stage of module testing, modules are

tested individually, aiming to find defects in logic, data, and algorithms. In the

stage of integration testing, modules are grouped with regard to their functionali-

ties, each group being tested as an integrated whole. Once integration testing has

finished, testing comes to the stage of system testing where the implementation is

thoroughly tested as a system, taking more comprehensive factors into account.

Testing can be further divided into three categories - functional testing, struc-

tural testing, and random testing.

A: Functional testing

Functional testing aims to identify and test all functions of the system defined in

the specification. Involving no knowledge of the implementation of the system,

functional testing is a type of black-box testing. Category partition (OB89) is

the most widely used technique in functional testing. It involves five steps:

1. Analyse the specification to identify individual functional units;

2. Identify parameters and environment variables of the functional unit;

3. Identify the categories for each parameter and environment variable;

4. Partition each category into a set of choices and possible values;

5. Specify the possible results and the changes to the environment.

Two advantages can be noticed in category partition method. First, the test

set is derived from the specification and therefore has a better chance of detecting

whether some functionalities are missed from the implementation. Second, the

6

1.2 Validation and verification

test phase can be started early in the development process and the test set can

be easily modified as the system evolves.

However, it is difficult to formally define categories and choices. This could

make it very hard to assess whether the criteria used for partition are adequate.

As a result, the generation of partitions relies heavily on the experience of testers.

B: Structural testing

Structural testing is a type of white-box testing. It uses the information from

the internal structure of the system to devise tests to check the operation of indi-

vidual components. Three scopes are addressed in structural testing - Statement

Coverage, Branch Coverage and Path Coverage. If, in a test, the test set causes

every statement of the code to be executed at least once, then statement coverage

is achieved, while, if the test set causes every branch to be executed at least once,

then branch coverage is achieved. In other words, for every branch statement,

each of the possibilities must be performed on at least one occasion. If the test set

causes every distinct execution path be taken at some point, then path coverage

is achieved.

C: Random testing

Random testing randomly chooses test cases from the test domain. It provides

a means to detect faults that remain undetected by the systematic methods.

Exhaustive testing where the test cases consist of every possible set of input values

is a form of random testing. Although exhaustive testing guarantees a complete

fault coverage for the system being developed, it is impossible to accomplish in

practice (And86).

1.2.3 Validation vs. verification

Validation and verification are highly related to software quality. With the in-

creasing complexity of systems, validation and verification become more and more

important. Without validation, an incomplete specification might be acquired,

leading to an inadequate design and an incorrect implementation; while, with-

out verification, no proof is exhibited that an implementation conforms to its

7

1.3 Formal specification languages

specification. Planning for validation and verification is often viewed as a very

important step from the beginning of the development.

Validation and verification can be conducted in parallel within a project as

they are not mutually exclusive.

1.3 Formal specification languages

Writing specification from customer requirements is a key activity in the develop-

ment of systems. A well-defined requirement specification language is considered

to be a prerequisite for efficient and effective communication between the users,

requirements engineer and the designer. Specification languages provide frames

where problems are defined and solved. They provide operators that are used in

analysing, manipulating and transforming the system description.

Requirements specification languages may be classified into two major classes:

informal specification languages and formal specification languages. Formal spec-

ification language have a mathematical (usually formal logic) basis and employ a

formal notation to model system requirements (AG88) while informal specifica-

tion languages use a combination of graphics and semiformal textual grammars

to describe and specify system requirements. Despite some ‘formalising’ efforts

at the specification and design, informal specifications tend to be ambiguous and

imprecise, which might lead to misunderstanding and makes it difficult to detect

inconsistencies and incompleteness in the specification.

By contrast, by using the formal notation, precision and conciseness of speci-

fications can be achieved. As a formal notation can be analysed and manipulated

using mathematical operators, mathematical proof procedures can be used to

test (and prove) the internal consistency and syntactic correctness of the specifi-

cations. In addition, by using formal notation, the completeness of the specifica-

tion can be checked in the sense that all enumerated options and elements have

been specified.

Three main types of formal specification languages have been proposed for

the system description, these being:

1. Model oriented specification languages

8

1.3 Formal specification languages

2. Algebraic specification languages

3. Process algebras

Model oriented specification languages

Model oriented specification languages are aimed to build up a mathematical

model for the system being developed. The specification is written with a model

oriented language where objects such as data structures and functions are mathe-

matically described in details. These mathematical objects are structurally simi-

lar to the system required. During the design and implementation, mathematical

objects are transformed in ways that preserve the essential features of the re-

quirements as initially specified.

It is characteristic of model oriented languages that the model of the system is

given by describing the state of the system, together with a number of operations

over that state. An operation is a function which maps a value of the state

together with values of parameters to the operation onto a new state value.

The most widely known model oriented specification languages are VDM-

SL, the specification language associated with VDM (Jon90), the Z specification

language (Spi88; Spi89) and the B specification language (Abr96).

Algebraic specification languages

Algebraic specification languages such as OBJ3 (GW88) specify information sys-

tems using methods derived from abstract algebra or category theory. Abstract

algebra is the mathematical study of certain kinds or aspects of structure ab-

stracted away from other features of the objects under study. Algebraic methods

are beneficial in permitting key features of information systems to be described

without prejudicing questions that are intended to be settled later in the devel-

opment process (implementation detail).

Process algebras

Process algebras are best described as a set of formalisms for modelling systems

that allow for mathematical reasoning with respect to a set of desired proper-

9

1.4 Test cost and fault coverage

ties, be it equivalence, absence of deadlocking or some safety properties. Process

algebras involve defining a set of agents and the manner in which these agents

interact, and thus are good at modelling situations in which there are a num-

ber of entities that interact by communicating with each other. By expressing

concurrency, process algebras allow the analysis of this concurrency.

It is usually the case that process algebras are used for model concurrent sys-

tems and communication systems. The best known process modelling languages

are CSP (Hoa85), CCS (Mil89) and LOTOS (fSI88).

Finite state machines (Koh78) are a less general type of process algebra. In

chapter 4, testing from finite state machines is discussed. However, the use of

finite state machines has disadvantages where they are not able to express non-

determinism and concurrency either as elegantly or as powerfully as the more

general process algebras.

The formal languages above look at systems in different ways and, conse-

quently, represent information in different forms. The selection of a type of

formal specification language for modelling a system depends upon the nature of

the system being developed.

It should be noted that the use of formal specification languages might also

lead to some disadvantages. One major issue is that requirements usually change

during a project, which makes the procedure of determining a final specification

expensive. It was suggested that it is very expensive to develop a formal specifi-

cation of a system, and it is even more expensive to show that a program meets

that specification (AG88).

1.4 Test cost and fault coverage

Two factors, test cost and fault coverage, are tightly coupled with the evaluation of

a test. Test cost involves the numbers of test data that are used for the verification

of the system under test while fault coverage considers the percentage of faults

that have been detected by such a test. It is always desirable that a test will

achieve complete fault coverage with the lowest test cost.

Test cost and fault coverage, however, sometimes counteract one another. On

one hand, a system needs to be tested with enough test data in order that the

10

1.5 Fault observation and diagnosis

complete fault coverage has been achieved. The more test data are applied, the

more deficiencies will be detected. Exhaustive testing guarantees the complete

fault coverage for the system under test. However, tests that guarantee com-

plete fault coverage are sometimes too long for practical applications, which will

consequently result in a higher test cost. Tests using less test data are always

preferred; on the other hand, too little test data might cause some deficiencies

to be missed by the test, leading to an incomplete test. The problem of test cost

leads to the study of test optimisation while the problem of fault coverage leads

to the study of test quality.

An effective test often requires a trade-off to be made between the test cost and

the fault coverage. A good test generation strategy needs to compromise between

the two factors in two aspects: (1) test cases generated with such a strategy should

cover, as much as possible, all faults that the system under test may have; (2)

the test cost associated with such test cases should be comparatively low.

Optimisation on test cost with regard to fault coverage has been thoroughly

studied when finite state machines are applied (ATLU91; Hie97; MP93; SLD92;

YU90). In chapter 4, testing from finite state machines is discussed. This PhD

work has investigated the problem of test quality when testing from finite state

machines. In the work, robust Unique Input/Output Circuit (UIOC) sequences

were defined for state verifications. Based on rural Chinese postman algorithm,

a new test generation algorithm is given. Experimental results suggest that the

proposed method leads to a more robust test sequence than those constructed

with the existing methods without significantly increasing the test length. The

work is discussed in chapter 6.

1.5 Fault observation and diagnosis

An important yet complicated issue associated with testing is fault diagnosis.

The process of testing aims to construct test cases that could be used to provide

confidence that the implementation under test conforms to its specification.

Usually, a system is modelled as a set of functional units (components), some

of which are connected with others through input and output coupling. Each

unit is assigned with two attributes: an I/O port and an internal state. I/O

11

1.5 Fault observation and diagnosis

port provides testers with an interface for the observation of outputs when inputs

are sent, while, the internal state is not visible and can only be inferred through

exhibited input/output behaviour. Once a test case is constructed, it is applied

to an implementation, all units being executed successively. I/O differences ex-

hibited between the implementation and the specification suggest the existence

of faults in the implementation. The first observed faulty I/O pair in an observed

I/O sequence is called a symptom. A symptom could have been caused by either

an incorrect output (an output fault) exhibited by the unit being tested, or an

earlier incorrect state transfer (a state transfer fault) that remains unexhibited

in the units that have already been executed by the checking data. It is therefore

important to define strategies to guide the construction of test data. These data

could be used to (effectively) isolate the faulty units in the implementation that

will explain the symptoms exhibited.

The process of isolating faults from the implementation with regard to the

symptoms observed is called fault diagnosis (LY96).

However, fault diagnosis is very difficult. Very little work has been done for

the diagnostic and the fault localisation problems (GB92; GBD93). Steinder and

Sethi (SS04) proposed a probabilistic even-driven fault propagation model where

a probabilistic symptom-fault map is used for the process of fault diagnosis. The

technique utilises a set of hypotheses that most probably explains the symptoms

observed at each stage of evaluation. The set of hypotheses is updated with

the process going further, maximising the probabilities of hypotheses for the

explanation of observed symptoms.

Ghedamsi and Bochmann (GB92; GBD93) modelled the process of fault di-

agnosis with finite state machines. A set of transitions is generated whose failure

could explain the behaviour exhibited. These transitions are called candidates.

They then produce tests (called distinguishing tests) in order to find the faulty

transitions within this set. However, in the approach, the cost of generating a

conflict set is not considered.

Hierons (Hie98) extended the approach to a special case where a state iden-

tification process is known to be correct. Test cost is then analysed by applying

statistical methods. Since the problem of optimising the cost of testing leads to

12

1.6 Testing with MOTs

NP-hard (Hie98), heuristic optimisation techniques such as Genetic Algorithms

and Simulated Annealing are suggested.

This PhD work studied the problem of fault diagnosis. In the work, heuristics

are defined for fault isolation and identification when testing from finite state

machines. The proposed approach attempts to lead to a symptom being observed

in some shorter test sequences, which helps to reduce the cost of fault isolation

and identification. The work is discussed in chapter 7.

1.6 Testing with MOTs

Metaheuristics Optimisation Techniques (MOTs) such as Genetic Algorithms

(GAs) (Gol89) and Simulated Annealing (SA) (KGJV83) are widely used in the

problems of search and optimisation. More recently, MOTs have been success-

fully applied in software engineering, including automating the generation of test

data. Examples of such applications can be found in structural coverage testing

(branch coverage testing) (JES98; MMS01), worst case and best case execution

time estimation (WSJE97), and exception detection (TCMM00).

MOTs are search techniques that simulate nature. When using MOTs, an

objective function is defined to guide the search of solutions for the problem

under investigation. The objective function is called the fitness function. The

search process could be aimed at either maximising or minimising the fitness

function. An iteration scale is defined to determine the computational times. At

each step of the computation, a new solution is provided. By evaluating its fitness

value, the solution will be either accepted or rejected. In chapter 2, some MOTs

are introduced.

Automating the generation of test data is of great value in reducing the devel-

opment cost and improving the quality in software development. MOTs provide

means to automate such a process. The reasons that MOTs are used in the gener-

ation of test cases are: (1) the problem of generating test cases is equivalent to a

search problem where good solutions need to be explored in the input space of the

system being developed. Usually, the input space is large. This could make the

search a costly and inefficient process when traditional algorithms are applied.

This problem, however, can be alleviated by heuristic search, such as MOTs;

13

1.7 The structure of this thesis

(2) some problems in testing such as the construction of unique input/output se-

quences are NP-hard problems and MOTs have proved to be efficient in providing

good solutions for NP-hard problems.

This PhD work investigated the construction of multiple Unique Input/Output

(UIO) sequences by using MOTs. In the work, a fitness function is defined to

guide the search of input sequences that constitute UIOs for some states. The

fitness function works by encouraging the early occurrence of discrete partitions

in the state splitting tree constructed by an input sequence while punishing the

length of this input sequence. The work and the experimental results are dis-

cussed in chapter 5.

1.7 The structure of this thesis

This thesis is comprised of eight chapters. It is organised as follows: chapter 1

briefly introduces the background of testing; chapter 2 defines the preliminar-

ies and notation used in this thesis; chapter 3 reviews the major test genera-

tion techniques; chapter 4 reviews the automated generation of test cases when

testing from finite state machines; chapter 5 studies the construction of Unique

Input/Output (UIO) sequences and proposes a model for the construction of

multiple UIOs using Metaheuristic Optimisation Techniques (MOTs); chapter 6

investigates the fault coverage in finite state machine based testing and proposes

a new type of Unique Input/Output Circuit (UIOC) sequence for state verifica-

tion. Based upon Rural Chinese Postman Algorithm (RCPA), a new approach

is proposed for the generation of test sequences from the finite state machine

under test; chapter 7 looks at fault diagnosis when testing from finite state ma-

chines, and proposes heuristics for fault isolation and identification; in chapter 8,

conclusions are drawn. Some future work is also suggested in chapter 8.

14

Chapter 2

Preliminaries and notation

2.1 Graph theory

The automated generation of test cases benefits from the applications of graph

theory when testing from finite state machines. In this section, preliminaries and

notation of graph theory are introduced. Terminologies, notation and algorithms

are mainly cited from ref. (BJG01).

2.1.1 Directed graph

Definition 2.1.1 A graph G is a pair (V,E) where V is a set of vertices, and

E is a set of edges between the vertices E ⊆ {{u, v}|u, v ∈ V }.

Figure 2.1: An example of labelled digraph.

15

2.1 Graph theory

Definition 2.1.2 A labelled digraph G = (V,E,Σ) is a directed graph with ver-

tex set V , label set Σ and edge function E: V × Σ → V , E(u, σ) = v where

u, v ∈ V and σ ∈ Σ.

An example of a labelled digraph is illustrated in Figure 2.1 where V (D)

= {u, v, w, x, y, z}, E(D) = {(u, v; a5), (u,w; a7), (w, u; a8), (z, u; a3), (x, z; a9),

(y, z; a4), (v, x; a1), (x, y; a2), (w, y; a6)} and Σ = {a1, a2, a3, a4, a5, a6, a7, a8}. A

labelled digraph is a special case of digraph where each edge is labelled with

characters, indicating the relation between two vertices of the edge.

The number of vertices in a digraph D is called the order or size. An edge

(u, v) ∈ E(D) leaves u and enters v. u is the head of the edge and v the tail.

The head and tail of an edge are its end-vertices ; the end-vertices are adjacent,

i.e. u is adjacent to v and v is adjacent to u. For a vertex vi ∈ V , the in-degree,

d+(vi), is the number of inward edges to vi; the out-degree, d−(vi), is the number

of outward edges from vi. The index of a vertex ξ(vi) is defined as the difference

between the out-degree and in-degree of this vertex, ξ(vi) = d−(vi) - d+(vi). For

example, the order of the labelled digraph shown in Figure 2.1 is 6; in the digraph,

edge (x, y) leaves vertex x and enters y; x is the head of (x, y) and y the tail;

d+(x) = 1 while d−(x) = 2; ξ(x) = 1.

Definition 2.1.3 A digraph D is symmetric if, for every vertex vi ∈ V , d+(vi)

= d−(vi).

Definition 2.1.4 A walk in D is an alternating sequence W = v1e1v2e2v3...

vk−1ek−1vk of vertices vi ∈ V (D) and edge ei ∈ E(D) such that the head of ei is

vi and the tail of ei is vi+1 for every i = 1, 2, ..., k − 1. The length of a walk is

the number of its edges.

The set of vertices {v1, v2, ..., vk} in a walk W is denoted by V (W) and the set

of edges {e1, e2, ..., ek−1} is denoted by E(W). W is a walk from v1 to vk or an

(v1, vk)-walk. A walk W is closed if v1 = vk and open otherwise. If v1 6= vk, then

the vertex v1 is the initial vertex of W , the vertex vk is the terminal vertex of

W , and v1 and vk are end-vertices of W . A walk W is a trail if all edges in W are

distinct; a vertex vi is reachable from a vertex vj if D has an (vi, vj)-walk. W1 =

16

2.1 Graph theory

v(v, x)x(x, y)y(y, z)z(z, u)u(u,w)w and W2 = v(v, x)x(x, y)y(y, z)z(z, u)u(u, v)v

are two walks in Figure 2.1 where W1 is open while W2 closed. Edges in both

walks are distinct and, therefore, both walks are trails; vertex w is reachable from

vertex v. v is the initial vertex of W1 while w is the terminal.

Definition 2.1.5 A walk W is a path if the vertices of W are distinct; W is a

cycle if the vertices v1, v2, ..., vk−1 are distinct, k ≥ 3 and v1 = vk.

W1 shown above is a path while W2 is a cycle. A path P is an [vi, vj]-path if

P is a path between vi and vj, e.g. P is either an (vi, vj)-path or an (vj, vi)-

path. An (vi, vj)-path P = v1v2...vn is minimal if, for every (vi, vj)-path Q, either

V (P) = V (Q) or Q has a vertex not in V (P).

Definition 2.1.6 A tour is a walk that starts and ends at the same vertex. An

Euler tour in a digraph D is a tour that contains every edge of E(D) exactly

once. A postman tour of a digraph D is a tour that contains every edge of E(D)

at least once. A Chinese postman tour is a postman tour where the number of

edges contained in the tour is minimal.

It is easy to see that an Euler tour is also a Chinese postman tour.

Definition 2.1.7 A digraph D is strongly connected (or, simply, strong) if, for

every pair vi, vj of distinct vertices in D, there exists a (vi, vj)-walk and a (vj, vi)-

walk. In other words, D is strongly connected if every vertex of D is reachable

from every other vertex of D. A digraph D is weakly connected if the underlying

undirected graph is connected.

Definition 2.1.8 A digraph H is a subdigraph of a digraph D if V (H) ⊆ V (D),

E(H) ⊆ E(D) and every edge in E(H) has both end-vertices in V (H). H is said

to be a spanning subdigraph (or a factor) of D if V (H) = V (D).

Definition 2.1.9 The edge-induced subgraph D = (V
′
, E

′
) of a digraph D for

some set E
′ ⊆ E is the subgraph of D whose vertex set is the set of ends of

edges in E
′
and whose edge set is E

′
. D = (V

′
, E

′
) is an edge-induced spanning

subgraph of D if V
′
= V .

17

2.1 Graph theory

Lemma 2.1.1 (Kua62) A digraph D contains an Euler tour if and only if D is

strongly connected and symmetric.

Lemma 2.1.2 (EJ73) An Euler tour of a symmetric and strongly connected di-

graph D can be computed in linear time O(n) where n is the number of edges in

D.

2.1.2 Flows in networks

Definition 2.1.10 A network N = (V,E, l, u, b, c) is a directed graph D = (V,E)

associated with the following functions on V × V : a lower bound lij ≥ 0, a

capacity uij ≥ lij, a cost cij for each (i, j) ∈ V × V and a balance vector

b : V → R that associates a real number with each vertex of D. These parameters

satisfy the condition that for every (i, j) ∈ V ×V , if (i, j) /∈ E, then lij = uij = 0.

Definition 2.1.11 A flow x in a network N is a function x : E → R on the edge

set of N; the value of x on the edge (i, j) is denoted as xij. An integer flow in N

is a flow x such that xij ∈ Z for every edge (i, j).

For a given flow x in N the balance vector of x is the following function bx on

the vertices:

bx =
∑

vw∈E

xvw −
∑
uv∈E

xuv ∀v ∈ V. (2.1)

A vertex v is a source if bx(v) > 0, a sink if bx(v) < 0, and otherwise v is

balanced (bx(v) = 0). A flow x in N = (V,E, l, u, b, c) is feasible if lij ≤ xij ≤ uij

for all (i, j) ∈ E and bx(v) = b(v) for all v ∈ V . A circulation is a flow x with

bx(v) = 0 for all v ∈ V .

The cost of a flow x in N = (V,E, l, u, c) is given by

cTx =
∑
ij∈E

cijxij. (2.2)

where cij is the cost of edge xij.

The notation of (s, t)-paths in a digraph D can be generalised as that of

flows. If P is an (s, t)-path in a digraph D = (V,E), then an (s, t)-flow x can be

18

2.1 Graph theory

described in the network N(V,E, l ≡ 0, u, c) by taking xij = k, k ∈ Z+ if (i, j) is

an edge of P and xij = 0 otherwise. This flow has balance vector:

bx(v) =


k, if v = s
−k, if v = t
0, otherwise

The value of an (s, t)-flow x is defined by

|x| = bx(s) (2.3)

A path flow f(P) along a path P in N is a flow with the property that there is

some number k ∈ Z+ such that f(P)ij = k if (i, j) is an edge of P and otherwise

f(P)ij = 0; a cycle flow is defined as flow f(C) for any cycle C in D. The edge

sum of two flows x, x
′
, denoted x, x

′
, is simply the flow obtained by adding the

two edge flows edge-wise. Two path flow x, x
′
of the same trail can be merged

into a new flow x
′′

= x⊕ x′ as long as the edge sum of each edge does not exceed

its capacity. ⊕ indicates that x and x
′
are decompositions of x

′′
.

Theorem 2.1.1 (BJG01) Every flow x in N can be represented as the edge sum

of some path and cycle flows f(P1), f(P2),..., f(Pα), f(C1), f(C2), ..., f(Cβ)

with the following two properties:

1. Every directed path Pi, 1 ≤ i ≤ α with positive flow connects a source vertex

to a sink vertex.

2. α+ β ≤ n+m and β < m.

n is the number of vertices and m the number of edges in the network.

Lemma 2.1.3 (BJG01) Given an arbitrary flow x in N, one can find a decom-

position of x into at most n + m path and cycle flows, at most m of which are

cycle flows, in time O(nm).

Theorem 2.1.1 and Lemma 2.1.3 indicate that a flow x in a network N can

be decomposed into a number of path flows in polynomial time. This provides

foundation for maximising the flow in N. If a flow in N can be decomposed into

two sets of path flows where one is maximised (some edges in the path flow are

19

2.1 Graph theory

saturated) and the other, in terms of capacities, has allowances, one can then

augment flows along unsaturated paths. Once no augmentation flow is found

in N, the flow obtained is maximal. The problem of the maximum of flows is

discussed in the next section.

Definition 2.1.12 For a given flow x in network N = (V,E, l, u, b, c), the resid-

ual capacity rij from vi to vj is defined as:

rij = (uij − xij). (2.4)

The residual network with respect to flow x is defined as Nr = (V,E(x), l ≡ 0, r, c)

where E(x) = {(i, j) : rij > 0}. A residual edge is an edge with positive capacity.

A residual path (cycle) is a path (cycle) consisting entirely of residual edges.

2.1.3 The maximum flow and minimum cost problems

Two issues that are highly coupled with flows in a network are the maximum

flow problem and the minimum cost problem. In this section, these two issues

are introduced separately.

A. The maximum flow problem

The study of (s, t)-flows in a network N considers a special type of network

N = (V,E, l ≡ 0, u) where s, t ∈ V are special vertices that satisfy bx(s) = −bx(t)
and bx(v) = 0 for all other vertices. s is called the source and t the sink of N.

An edge (i, j) ∈ N is called saturated if xij = uij. As theorem 2.1.1 states, every

(s, t)-flow x can be decomposed into a number of path flows along (s, t)-paths

and some cycle flows1, each flow of such paths being a path flow. x is also said

to be a flow from s to t. Its value |x| is denoted by |x| = bx(s). An (s, t)-flow of

value k in a network N is called a maximum flow if k is of the maximum value.

The problem of finding a maximum flow from s to t is known as maximum flow

problem. It is easy to see that an (s, t)-flow in a network N is maximal if every

(s, t)-path in N uses at least one saturated edge (i, j) ∈ N.

1It should be noted that the values of these cycle flows do not affect the value of the flow x.

20

2.1 Graph theory

Let x be an (s, t)-flow in N and P be an (s, t)-path such that rij ≥ ε > 0

for each edge (i, j) on P . Let x
′′

be an (s, t)-path flow of value ε in N(x) that is

obtained by sending ε units of flow along the path P . Let x
′
be a new flow that

is obtained by x
′
= x⊕ x

′′
. x

′
is of value |x|+ ε. P is called an augmenting path

with respect to x. The capacity δ(P) of P is given by:

δ(P) = min{rij : (i, j) ∈ N}. (2.5)

An edge (i, j) of P is a forward edge if xij < uij; (i, j) and a backward edge

if xji > 0. It is obvious that an (s,t)-flow x is not maximal, if there exists an

augmenting path for x.

Theorem 2.1.2 (CCPS98) A flow x in N is a maximum flow if and only if N

has no augmenting paths.

Theorem 2.1.3 (CCPS98) If all of the edge capacities in N are integral, then

the there exists an integer maximum flow.

The minimum cut problem is closely related to computing the maximum flow

from a network. In the minimum cut problem, the input is the same as that of

the maximum flow problem. The goal is to find a partition of the nodes that

separates the source and sink so that the capacity of edges going from the source

side to the sink side is minimum.

Definition 2.1.13 An (s, t)-cut is a set of edges of the form (S, S̄) where S,S̄

form a partition of V such that s ∈ S, t ∈ S̄. The capacity of an (s, t)-cut (S,S̄)

is the number u(S,S̄), that is, the sum of the capacities of edges with tail in S and

head in S̄.

Definition 2.1.14 A minimum (s,t)-cut is an (s, t)-cut (S, S̄) with u(S, S̄) =

min{u(S ′
, S̄ ′):(S

′
, S̄ ′) is an (s, t)-cut in N}.

It can be noted that the value of any flow is less than or equal to the capacity

of any (s, t)-cut. Any flow sent from s to tmust pass through every (s, t) cut, since

the cut disconnects s from t. As flow is conserved, the value of the flow is limited

by the capacity of the cut. This leads to Ford and Fulkerson’s max-flow/min-cut

theorem (FFF62).

21

2.1 Graph theory

Theorem 2.1.4 (FFF62) The maximum value of any flow from the source s to

the sink t in a capacitated network is equal to the minimum capacity among all

(s, t)-cuts.

It is easy to prove that Theorem 2.1.2 and Theorem 2.1.4 are equivalent.

Theorem 2.1.2 and 2.1.4 motivate the augmenting path algorithm of Ford and

Fulkerson’s (FFF62) where flow is repeatedly sent along augmenting paths. This

process terminates when no such paths remain. If the original capacities in the

network are integral, then the algorithm always augments integral amounts of

flow. This operation is initiated by Theorem 2.1.3. Ford and Fulkerson’s aug-

menting path algorithm was modified by Edmonds and Karp (EK72) where the

shortest paths (by considering the number of edges) are always preferred for aug-

mentation. Edmonds and Karp proved that the algorithm has complexity O(nm2)

where n is the number of vertices and m the number of edges.

B. The minimum cost flow problem

Given a network N = (V,E, l, u, b, c), a problem is to find a feasible flow x whose

value of the cost is minimal. This problem is known as the minimum cost flow

problem. As stated before, the cost of a flow x is given by C(x) =
∑

ij∈E xijcij.

The goal of the problem is thus to find a feasible flow x where C(x) is minimised.

Residual network can be used to check if a given flow x in N has minimum

cost among all flows with the same balance vector. Let W be a cycle in N and

it has the cost c(W) < 0. Let δ be the minimum residual capacity of an edge on

W . Let x
′
be the cycle flow in N that sends δ units around W . If such a cycle

flow exists in N, a new flow x
′′

can then be constructed by x ⊗ x
′
. The cost of

x
′′

is cTx+ cTx
′
= cT + δc(W) < cT (since c(W) < 0). The cost of x is therefore

not minimal.

Theorem 2.1.5 (BJG01) A flow x in N is a minimum cost flow if and only if

N contains no negative cost residual cycles.

22

2.1 Graph theory

2.1.4 The Chinese postman tour

A problem in digraph theory intends to find a postman tour T in a directed and

strongly connected digraph D where the sum of numbers of edges contained in

T is minimal. This problem is known as the Chinese postman problem (Kua62),

and such a tour is called a Chinese postman tour.

As one can see that, if a digraph D is strongly connected and symmetric, it

contains an Euler tour (see Lemma 2.1.1). Since an Euler tour contains each

edge in D only once, it is therefore a Chinese postman tour as well. Thus, when

D is strongly connected and symmetric, the Chinese postman problem can be

reduced to that of finding Euler tour. However, if D is strongly connected but

not symmetric, then a Chinese postman tour contains every edge in E at least

once, but perhaps more than once. Given a postman tour T of D, let ψ(vi, uj) ≥ 1

be the number of times edge (i, j) is contained in T . If, by replicating edge (i, j)

ψ(vi, uj) times, a symmetric digraph D
′
is obtained, and D

′
is called a symmetric

augmentation of D. According to Theorem 2.1.1, an Euler tour exists in D
′
. It

is easy to prove that an Euler tour in D
′
is a Chinese postman tour in D if and

only if the sum of the cost of replicated edges from the corresponding symmetric

augmentation of D is minimal. Finding a Chinese postman tour in a digraph D

is thus reduced to two steps:

1. augment D to derive a minimal symmetric digraph D
′
;

2. find an Euler tour in D
′
.

Construction of minimal symmetric augmentation can be accomplished by using

a flow network. This has been discussed by Kuan (Kua62). Here, we describe

the algorithm in overview.

Given a digraph D = (V,E), the index of a vertex vi ∈ V is ξ(vi) = d−vi
− d+

vi

where d+
vi

is the in-degree of vi and d−vi
the out-degree. Let {s, t} be a set of

vertices where s is the source and t the sink. Let E+ and E− be two sets of edges

where E+ = {(s, vi) : ∀vi ∈ V, bvi
> 0} and E− = {(vi, t) : ∀vi ∈ V, bvi

< 0}. A

flow graph Df = (Vf , Ef) is constructed from D as follows: Vf = V ∪ {s, t} and

Ef = E ∪ E+ ∪ E−.

23

2.2 Metaheuristic optimisation techniques

Let each edge in E+ and E− has the cost of zero and capacity1 c(s, vi) ≡
bvi

, c(vj, t) ≡ bvj
. The remaining edges in Ef have the same costs with their

corresponding edges defined in D. For convenience, each edge in D is assigned a

cost of 1. Each of the remaining edges has infinite capacity. A flow x on Df is

then a function x : Ef → Z+ that satisfies the following conditions:

1. ∀vi ∈ Vf − {s, t},
∑

(vi,vj∈Ef) x(vi, vj) =
∑

(vj ,vi∈Ef) x(vj, vi).

2. ∀(vi, vj) ∈ Ef , x(vi, vj) ≤ c(vi, vj) where c(vi, vj) is the capacity of (vi, vj).

The cost of the flow x is given by

C(x) =
∑

(vi,vj)∈Ef

C(vi, vj)x(vi, vj). (2.6)

The problem is then converted to find a maximum-flow/minimum-cost flow

x in Df . Since x is a maximum flow and all edges in D has infinite capacity, all

edges (vi, vj) ∈ E(D), by replicating ψ(vi, vj) times, saturate to s or t, namely,

x(s, vi) = bvi
,∀vi, b(vi > 0) and x(vi, t) = bvi

,∀vi, b(vi < 0). The final augmented

digraph D
′
is symmetric and, consequently, contains an Euler tour. Since the flow

is also a minimum-cost flow, the number for replicating edges in D is minimal.

Thus, the Euler tour in D
′
is a Chinese postman tour in D.

Lemma 2.1.4 (ATLU91) An Euler tour P of a rural symmetric augmentation

D
′
of D corresponds to a rural Chinese postman tour of D.

Finding Chinese postman tour in a directed graph is of great value in the

automated generation of test sequences in finite state machine based testing.

This is discussed in Chapter 4.

2.2 Metaheuristic optimisation techniques

Optimisation has been attracting the interests of researchers for many years. In

general, the problem is described as follows. Suppose f(X) is a function with a

set of parameters, X = {x1, ..., xm}, the problem is to find the set of X such that,

1It should be noted that edges in E− have negative capacities since bvi
< 0.

24

2.2 Metaheuristic optimisation techniques

after applying X to the function, f(X) is either maximised or minimised. Many

algorithms have been proposed for solving the problem, among which Metaheuris-

tic Optimisation Techniques (MOTs) such as Genetic Algorithms (GAs) (Gol89)

and Simulated Annealing (SA) (MRR+53) are used to find optimal solutions in

the problems with a large search space.

Recently, MOTs have been introduced in software engineering for the gen-

eration of test data. Applications can be found in structural coverage testing

(branch coverage testing) (JES98; MMS01), worst case and best case execution

time estimating (WSJE97), and exception detecting (TCM98; TCMM00). In this

section, some major MOTs are introduced. Testing with MOTs is reviewed in

Chapter 3.

2.2.1 Genetic algorithms

Genetic Algorithms (GAs) (Gol89) work on the simulation of natural processes,

utilising selection, crossover and mutation. Since Holland’s seminal work (1975)

(Hol75), they have been applied to a variety of learning and optimisation prob-

lems. Many versions of GAs have been proposed and they are all based on the

simple GA.

I. Simple GA

A simple GA starts with a randomly generated population, each element (chro-

mosome) being a sequence of variables/parameters for the optimisation problem.

The set of chromosomes represents the search space: the set of potential solutions.

The representation format of variable values is determined by the system under

evaluation. It can be represented in binary, by real–numbers, by characters, etc.

The search proceeds through a number of iterations. Each iteration is treated as

a generation. At each iteration, the current set of candidates (the population) is

used to produce a new population. The quality of each chromosome is determined

by a fitness function that depends upon the problem considered. Those of high

fitness have a greater probability of contributing to the new population.

Selection is applied to choose chromosomes from the current population and

pairs them up as parents. Crossover and mutation are applied to produce new

25

2.2 Metaheuristic optimisation techniques

Figure 2.2: The flow chart of simple GA.

26

2.2 Metaheuristic optimisation techniques

chromosomes. A new population is formed from new chromosomes produced on

the basis of crossover and mutation and may also contain chromosomes from the

previous population.

Figure 2.2 shows a flow chart for a simple GA. The following sections give a

detailed explanation on Selection, Crossover and Mutation. All experiments in

this work used roulette wheel selection and uniform crossover.

II. Encoding

In order to apply GAs, a potential solution to a problem should be represented

as a set of parameters. These parameters are joined together to form a string of

values (often referred to as a chromosome). Parameter values can be represented

in various forms such as binary, real-numbers, characters, etc.

Obviously, the encoding strategy is central to the successful application of

GAs. However, at present, there is no theory that enables a rigorous approach

to the selection of the best encoding method for a particular problem. One

principal that an encoding strategy needs to stick to is that the representation

format should make the computation effective and convenient.

III. Reproduction

During the reproductive phase of a GA, individuals are selected from the popu-

lation and recombined, producing children. Parents are selected randomly from

the population using a scheme which favours the more fit individuals. Roulette

Wheel Selection (RWS) and Tournament Selection (TS) are the two most popular

selection regimes that are used for reproduction. RWS involves selecting individ-

uals randomly but weighted as if they were chosen using a roulette wheel, where

the amount of space allocated on the wheel to each individual is proportional to

its fitness, while TS selects the fittest individual from a randomly chosen group

of individuals.

Having selected two parents, their chromosomes are recombined, typically us-

ing the mechanisms of crossover and mutation. Crossover exchanges information

between parent chromosomes by exchanging parameter values to form children.

It takes two individuals, and cuts their chromosome strings at some randomly

27

2.2 Metaheuristic optimisation techniques

Figure 2.3: Crossover operation in simple GA.

28

2.2 Metaheuristic optimisation techniques

Figure 2.4: Mutation operation in simple GA.

chosen position, to produce two “head” segments, and two “tail” segments. The

tail segments are then swapped over to produce two new full length chromosomes

(see Figure 2.3 – A). Two offspring inherit some genes from each parent. This is

known as single point crossover. In uniform crossover, each gene in the offspring

is created by copying the corresponding gene from one or other parent, chosen

according to a randomly generated crossover mask. Where there is a 1 in the

crossover mask, the gene is copied from the first parent, and where there is a 0

in the mask, the gene is copied from the second parent (see Figure 2.3 – B). The

process is repeated with the parents exchanged to produce the second offspring.

Crossover is not usually applied to all pairs of individuals selected for mating.

A random choice is made, where the likelihood of crossover being applied is

typically between 0.6 and 1.0 (Gol89). If crossover is not applied, offspring are

produced simply by duplicating the parents. This gives each individual a chance

of appearing in the next generation.

Mutation is applied to each child individually after crossover, randomly alter-

ing each gene with a small probability. Figure 2.4 shows the fourth gene of the

chromosome being mutated. Mutation prevents the genetic pool from premature

convergence, namely, getting stuck in local maxima/minima. However, too high

a mutation rate prevents the genetic pool from convergence. A probability value

between 0.01 and 0.1 for mutation is suggested (Gol89).

Elitism might be applied during the evolutionary computation. Elitism in-

29

2.2 Metaheuristic optimisation techniques

volves taking a number of the best individuals through to the next generation

without subjecting them to selection, crossover and mutation. The number of

individuals used for elitism is determined by n(1−G) where n is the population

size and G is the generation gap1.

The use of elitism can significantly improve the performance of a GA for some

problems. However, it should be noted that inappropriate settings for elitism

might lead to premature convergence in the genetic pool.

IV. Sharing Scheme

A simple GA is likely to converge to a single peak, even in domains characterised

by multiple peaks of equivalent fitness. Moreover, in dealing with multimodal

functions with peaks of unequal value, the population of a GA is likely to crowd

to the peak of the highest value. To identify multiple optima in the domain, some

mechanisms should be used to force a GA to maintain a diverse population of

members throughout its search. Sharing is such a mechanism that is proposed

to overcome the above limitations. Sharing, proposed by Holland (Hol75) and

expanded by Goldberg and Richardson (GR87), aims to reduce the fitness of in-

dividuals that have highly similar members within the population. This rewards

individuals that uniquely exploit areas of the domain while discouraging redun-

dant (highly similar) individuals in a domain. This causes population diversity

pressure, which helps maintain population members at local optima.

The shared fitness of an individual i is given by f(sh,i) =
f(i)

m(i)
, where f(i) is

the raw fitness of the individual and m(i) is the peak count. The peak count

is calculated by summing a sharing function over all members of the population

m(i) =
∑N

j=i sh(d(i,j)). The distance d(i,j) represents the distance between individ-

ual i and individual j in the population, determined by a similarity measurement.

If the sharing function determines that the distance is within a fixed radius σsh,

it returns a value determined by sh(d(i,j)) = 1− (
d(i,j)

σsh
)αsh ; otherwise it returns 0.

αsh is a constant that regulates the shape of the sharing function.

1Generation gap is the fraction of individuals replaced in evolving the next generation.

30

2.2 Metaheuristic optimisation techniques

2.2.2 Simulated annealing

Simulated Annealing (SA) was first proposed by Metropolis et al. in 1953. It

was originally proposed as a means of finding the equilibrium configuration of a

collection of atoms at a given temperature. It was Kirkpatrick et al. (KGJV83)

who suggested that a form of simulated annealing could be used for optimisation

problems. The objective for the cooling of a material using a heat bath (a physical

process known as annealing) is to cool the material slowly so that a near perfect

lattice crystal structure (i.e. a state with minimum energy) is obtained. Through

simulating such a process, the aim of simulated annealing is to iteratively improve

a given solution by performing local changes. Changes that improve the solution

are automatically accepted, whereas those changes that make the solution worse

are accepted with a probability that depends on the temperature. Figure 2.5

shows the flow chart of simulated annealing algorithm.

Principally, the process of simulated annealing attempts to avoid local optima

by allowing up-hill (or inferior) solutions in a controlled manner. The idea behind

this is that “it is better to accept a short-term penalty in the hope of finding

significant rewards longer-term” (KGJV83). In accepting an inferior solution,

the search aims to escape from locally optimal solutions in order to find a better

approximation to the global optimum. The control parameter (or temperature) is

used to control the acceptance of inferior solutions. Acceptance of worse solutions

depends upon the degree of inferiority and the current temperature. This degree

is determined by a probability value calculated as e−
∆E
T where ∆E is the absolute

value of the difference in the objective function values between two solutions and

T is a parameter analogous to the temperature.

The cooling schedule is crucial to the success of the search process. The

selection of the values of iterations and temperatures is considered as using either

a large number of iterations with a small number of temperatures or a small

number of iterations with a larger number of temperatures. Generally, two cooling

schemes are considered (Dow93). In the first case, a geometric reduction of the

temperature by multiplication by a constant α is used. A value between 0.8 and

0.99 is usually suggested for α (KGJV83).

31

2.2 Metaheuristic optimisation techniques

The number of iterations at each temperature in this scheme is usually in-

creased geometrically or arithmetically. This allows intensive search at lower

temperatures to ensure that local optima have been fully explored. An alterna-

tive to geometric increases in iterations is to use feedback from the annealing

process. In this way, the time spent at high temperatures will be small and

the time spent at low temperatures will be large. It is desirable to accept at

least some solutions at each temperature. This aims to ensure that the neigh-

bourhoods have been searched sufficiently. Once the temperature becomes lower,

the number of accepted solutions may become so small that an infeasible num-

ber of iterations are required to accept the desired number of solutions, hence

a maximum limit is normally also imposed. In the second cooling schedule, one

iteration is performed at each temperature. However, the temperature is reduced

extremely slowly in order that the exploration is sufficient. Selection of cooling

schedule with reference to theoretical results of convergence to optimal solutions

has been thoroughly studied by Dowsland (Dow93).

2.2.3 Others

Other MOTs, including hill climbing (RN95) and tabu search, have also been used

for the problems of optimisation. Hill-climbing is essentially an iterative search

where the value of the solution can only increase or stay the same at each step.

In hill climbing, a randomly chosen point and its neighbours are considered for

the search. Once a fitter neighbour is found, it becomes the ‘current point’ in

the search space and the process is repeated; otherwise, if no fitter neighbour is

found, then the search terminates and an optima has been found.

The seminal work on tabu search appears in (Glo89). It is a heuristic search

technique based on the premise that problem solving, in order to qualify as in-

telligent, must incorporate adaptive memory and responsive exploration (Glo89).

Thus, the algorithm of tabu search is based on that of the next k neighbours,

while maintaining a tabu list (memory) that avoids repeating the search in the

same area of the solution space. This is done by means of a tabu list of visited

neighbours that are forbidden. Figure 2.6 illustrates the flow chart of tabu search

algorithm.

32

2.2 Metaheuristic optimisation techniques

Figure 2.5: The flow chart of simulated annealing algorithm.

33

2.2 Metaheuristic optimisation techniques

Figure 2.6: The flow chart of tabu search algorithm.

34

Chapter 3

Test generation - a review

3.1 Introduction

Software needs to be adequately tested in order to ensure (at least to provide con-

fidence) that the implementation under test conforms to its specification. Gener-

ation of test cases is thus required for the purpose of conformance testing. When

testing a system, efficient test cases are always preferred. An efficient test case

should cover all faults that the implementation may have and be relatively short.

Many approaches have been proposed for the generation of test cases. These

approaches are either based upon looking at the program (code) being developed

or rely on examining the specification that the implementation refers to. When

an approach is selected for the generation of test cases, it is often supplemented

by others since no approach guarantees to generate a complete test set. In this

chapter, some of the main test generation techniques are reviewed. Finite state

model based testing techniques are reviewed in chapter 4 separately.

3.2 Adequacy criteria

An adequacy criterion is a criterion that defines what constitutes an adequate

test set. Adequacy criteria are essential to any testing methods as they provide

measurements to justify a test set. Definitions of adequacy criteria might vary

according to different test emphases. Criterion C1 is said to subsume C2 if and

only if whenever a test set satisfies C1, it satisfies C2 as well.

35

3.2 Adequacy criteria

Goodenough et al. (GG75) first studied test criteria and suggested that an

adequacy criterion should be a predicate that defines “what properties of a pro-

gram must be exercised to constitute a ‘thorough’ test, i.e., one whose successful

execution implies no errors in a tested programs”. In order that the correctness

of a program is adequately tested, Goodenough et al. proposed reliability and

validity as properties to justify a test set TS. Reliability requires that a test

criterion always produces consistent test results, while, validity requires that the

test always produces meaningful results, namely, for every error in a program,

there exists a test set that is capable of detecting this error.

Weyuker et al. (WO80) further studied test criteria and pointed out that

these two properties are not independent. Since a criterion must either be valid

or reliable, properties proposed by Goodenough et al. are mutually related.

When measuring a test set, an adequacy criterion can be defined in two ways.

Firstly, an adequacy criterion can be used as a stopping rule to indicate whether

more testing is needed. Secondly, instead of simply stating that a test set is good

or bad, an adequacy criterion can be used to measure test quality by associating

a degree of adequacy with each test set, namely, it not only directs the selection

of test-data, but also decides the sufficiency of a given test set. Currently, two

adequacy uses have been proposed for the evaluation of a test and they are defined

as follows.

Definition 3.2.1 (Test data adequacy criteria as stopping rules) (GG75). A

test data adequacy criterion C is a function C : P × S × T → {true, false}.
C(p, s, t) = true means that t is adequate for testing program p against specifica-

tion s according to the criterion C, otherwise t is inadequate.

Definition 3.2.2 (Test data adequacy criteria as measurements) (GG75). A test

data adequacy criterion is a function C, C : P × S × T → [0, 1]. C(p, s, t) = r

means that the adequacy of testing the program p by the test set t with respect to

the specification s is of degree r according to the criterion C. The greater the real

number r, the more adequate the testing.

It can be noted that these two uses are highly related. On one hand, the

stopping rule can be described by the set {false, true} where true suggests that

36

3.3 Black-box and white-box testing

the current test set is adequate enough, while, false implies more testing is re-

quired. The stopping rule can thus be viewed as a special case of measurement;

on the other hand, given an adequacy measurement M and an adequacy degree

d, it is always possible to define a stopping rule Mstop (determined by the test

emphases) such that the adequacy degree dt of a test set is no less than d, dt ≥ d.

In terms of the value of dt, measurement of a test set can be described by the set

{false, true}. In many cases, these two uses are often mutually transformed from

one to the other. By considering the two uses together, the adequacy criterion as

a generator is then defined.

Definition 3.2.3 (Test data adequacy criteria as generator) (BA82). A test data

adequacy criterion C is a function C : P × S → 2T where D is the set of inputs

of the program P and 2T denotes the set of subsets of T . A test set t ∈ C(p, s)

means that t satisfies C with respect to p and s, and it is said that t is adequate

for (p, s) according to C.

3.3 Black-box and white-box testing

Two techniques are widely used in the generation of test cases, these being white-

box testing and black-box testing. In black-box testing, the internal workings of

the item being tested are not known by the tester, while, in white-box testing,

explicit knowledge of the internal workings of the item being tested are used to

select the test data.

It has been suggested that, due to some psychological facts, in the system

development, the designer and the tester should be independent of each other

(Bei90; Boe81). When testing a system, the tester receives very little knowledge

of the internal implementation details of code and often views the system under

test as a ‘black box’. Tests are carried out by using the specification as a reference.

Test cases are generated wholly from the specification, each of which aims to test

some predefined functionalities. That is, given a set of inputs to the system under

test, the only way to justify the correctness of outputs is to compare them to those

defined in the specification. If differences are observed, faults in the system are

then detected. The derivation of test cases in this testing is known as black-box

testing. It is also referred to by some testers as functional testing.

37

3.4 Control flow based testing

One of the advantages of black-box testing is that the test is less likely to be

biased since the designer and the tester are independent of each other. A tester

can conduct the testing from the point of view of the user, not the designer. Test

case design can therefore proceed once the specification is complete.

However, the disadvantages of black box testing can also be noted. If the

tester derives a test case that has already been run by the designer, the test is

redundant. In addition, the test cases are difficult to design. Since it is generally

unrealistic to exhaustively test every possible input stream, some program units

might go untested.

By contrast, it might be possible to look in detail at how test cases actually

exercise particular elements of the implementation, namely, the code. For a given

set of inputs, a program must execute some sequences of small execution steps in

order to calculate the final outputs. Access to information about these steps and

their effects allows more rigorous analysis of what the tests are going to achieve

when the code is executed. This is referred to as white-box testing.

Some of the advantages on white-box testing can be noted. As the knowledge

of internal coding structure is provided, it is easy to find out which type of

input/data can help in testing the application effectively. Meanwhile, by looking

at the internal structure of a program unit, white-box testing may help to optimise

the code.

However, the use of white-box testing may also lead to some disadvantages.

As knowledge of code and internal structure is a prerequisite, a skilled tester is

needed to carry out this type of testing, which increases the cost of testing. At the

same time, it is nearly impossible to look into every bit of code to find out hidden

errors, which might results in the failure of fault detection in an application.

3.4 Control flow based testing

Control-flow based testing is based on the knowledge of the control structure of

the program under test. It is a kind of white box based testing approach. The

control structure of the program is usually represented by a control flow graph

where a syntactic unit such as a predicate in a branch is represented by a node

38

3.4 Control flow based testing

with edges that link this node to the nodes that are reachable through execution.

Figure 3.1 illustrates an example of control flow graph.

Figure 3.1: An example of control flow graph.

In the control flow graph, node nj is called a post-conditioner of ni if, when ni

is executed by an input inputl, nj is reached; ni is called the pre-conditioner of nj.

Two nodes ni and nj in the control flow graph can be merged as one node if and

only if the following condition is satisfied: whenever ni is executed, nj is always a

39

3.4 Control flow based testing

post-conditioner of ni and whenever nj is reached, ni is always a pre-conditioner

of nj. After the control flow graph is accomplished, a path that starts at the first

node (entrance of the program), traverses a sequence of edges and ends up at the

terminal node (end of the program) can then be tested. Such a path is called a

computation path, or an execution path. In order to achieve full testing coverage,

all computation paths in the control flow graph need to be tested.

A variety of coverage criteria can be defined. Here, some major criteria are

described.

Statement coverage

Statement coverage (Nta88; Bei90) reports whether all executable statements in

the program have been encountered. Statement coverage selects a set of test

cases TS such that, by executing a program P with each test case tsi ∈ TS, all

statements of P (nodes in the control graph) have been executed at least once.

The advantage of this measure is that it can be directly applied to object

code and does not require processing source code. However, statement coverage

is subject to a disadvantage where the measurement is insensitive to some control

structures. For example, in the C/C++ code shown in Figure 3.2, without a test

case that causes condition to evaluate false, statement coverage rates this code

fully covered. In fact, if condition ever evaluates false, this code fails.

Figure 3.2: An example of the statement coverage.

Branch coverage

Branch coverage (Nta88) measures the coverage of all blocks and statements that

affect the control flow. In a statement, boolean expressions are evaluated for both

40

3.4 Control flow based testing

true and false conditions. Branch coverage criterion selects a set of test cases TS

such that, by executing a program P with each test case tsi ∈ TS, all edges in

the control graph have been traversed at least once.

It can be noted that branch coverage subsumes statement coverage because

if all edges in a control flow graph are covered, all nodes (statements) are corre-

spondingly covered. Therefore, if a test set satisfies the branch coverage, it also

satisfies the statement coverage.

However, the use of branch coverage may lead to some conditions within

boolean expressions, or relevant combinations of conditions being ignored, which

leads to an incomplete test.

Condition coverage

Condition coverage (Bei90) measures the sub-expressions independently of each

other, which allows for a better analysis of the control flow. Condition coverage

criterion selects a set of test cases TS such that, by executing a program P with

each test case tsi ∈ TS, all edges in the control graph have been traversed at least

once and all possible values of the constituents of compound conditions have been

exercised at least once.

There are two strong versions of condition coverage, these being multiple con-

dition coverage (WHH80) and modified condition/decision coverage (MC/DC)

(CM94). Multiple condition coverage reports whether every possible combina-

tion of boolean sub-expressions has been examined, while, MC/DC requires that

every condition that can affect the result of its encompassing decision needs to

be verified at least once.

With condition coverage, the sub-expressions are combined by logic operator

“AND” and “OR” respectively. Test cases required for full multiple condition

coverage of a condition are given by the logical operator truth table for the

condition. This is how multiple condition coverage works for the generation of

test cases. An advantage of multiple condition coverage is that it requires very

thorough testing, which, in theory, makes it the most desirable structural coverage

measure. However, it may be noted that it is difficult to determine the minimum

set of test cases required to achieve the test goal, especially for those boolean

expressions with high complexity. It has been suggested that, for a decision with

41

3.5 Data flow based testing

n conditions, multiple condition coverage requires 2n tests (WHH80). This makes

the multiple condition an impractical coverage criterion. In addition, the number

of test cases required could vary substantially among conditions that have similar

complexity.

MC/DC was first created at Boeing for the use of testing aviation software.

MC/DC requires that each condition be shown to independently affect the out-

come of the decision. The independence requirement ensures that the effect of

each condition is tested relative to the other conditions. MC/DC is a strong cov-

erage criterion since a thorough execution of the code is required. It subsumes

the branch and statement coverage criteria. However, achieving MC/DC requires

more thoughtful selection of the test cases, and, in general, for a decision with n

conditions, a minimum of n+1 test cases is required (CM94). MC/DC is actually

a mandatory criterion for software developed for critical applications in the civil

aerospace industry (CM94).

Path coverage

Path coverage measures the percentage of all possible paths through the program

being tested. It selects a set of test cases TS such that, by executing a program

P with each test case tsi ∈ TS, all paths starting from the initial node of the

control flow graph of P have been traversed at least once.

It can be noted that, although the path coverage criterion cannot guarantee

program correctness, it is a strong criterion as very thorough testing is required.

The main drawback of the path coverage criterion is that the number of paths

is exponential in the number of branches. Moreover, the number of pathes can

be infinite if a path is a loop. It is also nearly unrealistic to test all possible paths

if the program under test has a large size.

3.5 Data flow based testing

Data-flow based testing (RW85) mainly focuses on the investigation of how values

are associated with variables in a program P and how these associations affect the

execution of the program. In a program, a variable that appears in a statement

42

3.5 Data flow based testing

can be classified as either a definition occurrence or a use occurrence. The defini-

tion occurrence of a variable determines that a value is required to be assigned to

the variable, while, the occurrence of use indicates that the value of the variable

is referred.

A use occurrence of a variable can be classified as two uses - the computational

use and the predicate use. If the value of a variable is used to produce true or false

for a predicate, the occurrence of the variable is called predicate use; otherwise, if

it is used to compute a value for other variables or as an output value, it is called

a computational use. For example, statement y = x1 + x2 requires the values of

x1 and x2 to produce the outcome (definition) of y. In contrast, statement “if

x1 < x2 then goto L endif” contains a predicate that uses the values of x1 and x2

as references.

Three families of adequacy criteria have been proposed for data-flow based

testing. Before introducing these test criteria, some definitions are introduced.

Definition 3.5.1 A variable x is defined if it is declared or assigned to or con-

tained in an input statement.

Definition 3.5.2 A variable x is computation-used if it forms part of the right

hand side of an assignment statement or is used as an index of an array or

contained in an output statement.

Definition 3.5.3 A variable x is predicate-used if it forms part of a predicate in

a conditional-branch statement.

Definition 3.5.4 A definition free path with respect to variable x is a path where

for all nodes in the path there is no definition occurrence of x.

Definition 3.5.5 A path is cycle-free if all visited nodes are distinct.

Lemma 3.5.1 (RW85) A definition occurrence of a variable x at a node u reaches

a computational use occurrence of the variable at node v if and only if there is

a path p from u to v such that p = (u,w1, w2, ..., wn, v), and (w1, w2, ..., wn) is

definition free with respect to x and the occurrence of x at v is a computational

use.

43

3.5 Data flow based testing

Three adequacy criteria

C1: The Rapps-Weyuker-Frankl criteria

Based upon data-flow information, Rapps et al. (RW85) proposed a class of

testing adequacy criteria that mainly focus on the analysis of the simplest type

of data-flow paths that start with a definition of a variable and terminate with a

use of the same variable.

Frankl et al. (FW88) reexamined the criteria and found that the original

definitions of the criteria did not satisfy the applicability property1. They then

modified the definitions and proposed the so-called all-definitions criterion.

Definition 3.5.6 (All-definitions criterion) A set P of execution paths satisfies

the all-definitions criterion if and only if for all definition occurrences of a variable

x such that there is a use of x which is feasibly reachable from the definition,

there is at least one path p in P such that p includes a subpath through which the

definition of x reaches some use occurrence of x.

The all-definition criterion requires that an adequate test set should cover

all definition occurrences in the sense that, for each definition occurrence, the

testing paths should contain a path through which the definition reaches a use of

the definition.

Herman (Her76) studied the data flow information and proposed the all-uses

criterion (also called reach-coverage criterion).

Definition 3.5.7 (All uses criterion) A set P of execution paths satisfies the all-

uses criterion if and only if for all definition occurrences of a variable x and all

uses occurrences of x that the definition feasibly reaches, there is at least one path

p in P such that p includes a subpath through which that definition reaches the

use.

Since one definition occurrence of a variable may reach more than one use oc-

currence, the all-uses criterion requires that all of the uses should be exercised by

testing. This makes the all-uses criterion stronger than the all-definition criterion.

1An adequacy criterion C satisfies the applicability property if and only if for every program
P there exists some test set which is C-adequate for P (FW88).

44

3.5 Data flow based testing

A weakness of the above criteria was noticed by Frankl et al. (FW88) and

Clarke et al. (CPR89). Given a definition occurrence of a variable x and a use

of x that is reachable from this definition, there may exist more than one path

through which the definition reaches the use. However, the criteria proposed

above require only one of such paths to be exercised by testing. If all paths are

to be exercised, the testing might be infinite since there may exist infinite such

paths in the flow graph. To overcome this problem, Frankl et al. and Clarke et

al. restricted the paths to be cycle-free or only the end node of the path to be the

same as the start node, and then proposed the all-definition-use-paths criterion.

Definition 3.5.8 (All definition-use-paths criterion) A set P of execution paths

satisfies the all definition-use-paths criterion if and only if for all definitions of a

variable x and all paths q through which that definition reaches a use of x, there is

at least one path p in P such that q is subpath of p, and q is cycle-free or contains

only simple cycles.

C2: The Ntafos required k-tuples criteria

Ntafos (Nta84) studied the interactions among variables from data flow and pro-

posed a class of adequacy criteria called required k-tuples where k > 1 is a nat-

ural number. In the data flow graph, chains of alternating definitions and uses

are called definition-reference interactions (abbreviated as k − dr interactions).

Ntafos’ criteria require a path set that covers the k − dr interactions.

Definition 3.5.9 (Nta88) For k > 1, a k − dr interaction is a sequence K =

[d1(x1), u1(x1), d2(x2), u2(x2), ..., dk(xk), uk(xk)] where

1. di(xi), 1 ≤ i ≤ k, is a definition occurrence of the variable xi;

2. ui(xi), 1 ≤ i ≤ k, is a use occurrence of the variable xi;

3. the use ui(xi) and the definition di+1(xi) are associated with the same node

ni+1;

4. for all i, 1 ≤ i ≤ k. the ith definition di(xi) reaches the ith use ui(xi).

45

3.5 Data flow based testing

Definition 3.5.10 An interaction path for a k − dr interaction is a path p =

((n1) ∗ p1 ∗ (n2) ∗ ... ∗ (nk−1) ∗ pk−1 ∗ (nk)) such that for all i = 1, 2, ..., k− 1, di(xi)

reaches ui(xi) through pi. ni is the node that associates the use ui(xi) with the

definition di+1(xi); pi is a definition-clear path from ni to ni+1.

Clark et al. (CPR89) noted that variables and nodes used in definition 3.5.9

need not be distinct. They then proposed a more useful definition where distinc-

tion of variables and nodes is required.

Definition 3.5.11 (Required k-tuples criteria) A set P of execution paths satis-

fies the required k-tuples criterion, k > 1, if and only if for all j−dr interactions

L, 1 < j ≤ k, there is at least one path p in P such that p includes a subpath

which is an interaction path for L.

C3: The Laski-Korel criteria

Laski and Korel (LK83) studied the data flow and observed that a given node

may contain uses of several different variables, each of which may be reached

by some definitions occurring at different nodes. Such definitions constitute the

computational context of that node. Each node in the flow graph can then be

tested with contexts explored by selecting paths along which the various combi-

nations of definitions that reach the current node. Based upon this observation,

Laski and Korel proposed context coverage criterion.

Definition 3.5.12 (Ordered-context) Let n be a node in the flow graph. Suppose

that there are uses of the variables x1, x2, ..., xm at the node n. Let [n1, n2, ..., nm]

be a sequence of nodes such that for all i = 1, 2, ...,m, there is a definition of xi

on node ni and the definition of xi reaches the node n with respect to xi. A path

p = p1 ∗ (n1)∗p2 ∗ (n2)∗ ...∗pm ∗ (nm)∗pm+1 ∗ (n) is called an ordered context path

for the node n with respect to the sequence [n1, n2, ..., nm] if and only if for all

i = 2, 3, ...,m, the subpath pi ∗ (ni) ∗ pi+1 ∗ (ni+1) ∗ ... ∗ pm+1 is definition free with

respect to xi−1. In this case, the sequence [n1, n2, ..., nm] of nodes is an ordered

context for n.

46

3.6 Partition analysis

Definition 3.5.13 (Ordered-context coverage criterion) A set P of execution

paths satisfies the ordered-context coverage criterion if and only if for all nodes

n and all ordered contexts c for n, there is at least one path p in P such that p

contains a subpath which is an ordered context path for n with respect to c.

Definition 3.5.14 (Context coverage criterion) A set P of execution paths satis-

fies the context coverage criterion if and only if for all nodes n and for all contexts

for n, there is at least one path p in P such that p contains a subpath that is a

definition context path for n with respect to the context.

3.6 Partition analysis

Partition analysis method (OB89) aims to generate a test set that checks pro-

grams on certain error-prone points.

Generally speaking, program errors may fall in two types: computation errors

and domain errors. A computation error is reflected by an incorrect function

in the program. Such an error may be caused, for example, by the execution

of an inappropriate assignment statement that affects the computation outcome

of the function within a path in the program. Domain errors are faults caused

by the incorrect selection of boundaries for a sub-domain. A domain error may

occur, for instance, if a branch predicate is incorrectly expressed, or an assignment

statement that affects a branch predicate is wrong, which will affect the conditions

under which the path is selected.

The partition analysis method works on partitioning the input space into

subdomains and then select a small number of test (usually one) from each of

these subdomains, aiming to find any computation errors in the subdomains.

Each subdomain is defined so that the inputs it contains are treated similarly by

the program, in some sense. It is assumed that this similarity makes it likely that

if the program fails on one input in a subdomain, it also fails on a significant

portion of the others. When testing with partition analysis, in order that the test

effort is reduced, only a few representatives are selected from each subdomain for

testing.

Three strategies have been proposed for the partitions of the input space.

They are discussed in the following.

47

3.6 Partition analysis

3.6.1 Specification based input space partitioning

Specification based input space partitioning considers the use of a subset of data

as a subdomain if the specification requires the same function on the data. An

example of specification based input space partitioning is illustrated in (HH91)

where the function of a module called DISCOUNT INVOICE is described as

follows: Two products, X and Y , are under sales with the single price of $5 for

X and $10 for Y . A discount of 5% will be approved if the total purchasing is

greater than $200. If the total purchasing is greater than $1,000, a discount of

20% is given. Produce X is encouraged for sales where if more than 30 Xs are

purchased, a further discount of 10% is given. In the final calculation, non-integer

costs are rounded down to give an integer value.

DISCOUNT INVOICE module has properties of X ≤ 30 and 5∗X+10∗Y ≤
200, and the output is calculated as 5∗X+10∗Y . That is ∀(X, Y) ∈ {(X, Y)|x ≤
30, 5 ∗ X + 10 ∗ Y }, output ≡ 5 ∗ X + 10 ∗ Y . Subset {(X,Y)|x ≤ 30, 5 ∗ X +

10 ∗ Y } should then be treated as one subdomain. In figure 3.3, partition of the

input space of DISCOUNT INVOICE module is illustrated. Six subdomains are

defined.

The above specification is written informally. In most cases, it is hard to

derive partitions from an informal specification. However, if a specification is

written with formal specification languages and the specification is in certain

normal forms, it is always possible to derive partitions.

Hierons (Hie93) proposed a set of transformation rules where specifications

written in pre/postconditions are transformed into the following normal form.

P1(x1, x2, ..., xn) ∧Q1(x1, x2, ..., xn, y1, y2, ..., ym)∨

P2(x1, x2, ..., xn) ∧Q2(x1, x2, ..., xn, y1, y2, ..., ym)∨

...

PK(x1, x2, ..., xn) ∧QK(x1, x2, ..., xn, y1, y2, ..., ym)

where Pi(x1, x2, ..., xn), i = 1, 2, ..., K, are preconditions that give the condition

on the valid input data and the state before the operation, and Qi(x1, x2, ..., xn,

y1, y2, ..., ym), i = 1, 2, ..., K, are post-conditions that specify the relationship

48

3.6 Partition analysis

Figure 3.3: Partition of the input space of DISCOUNT INVOICE module. α, β, γ:
borders of the subdomains; a,b,...,h: vertices of the subdomains; A,B,...,F: sub-
domains.

between the input data, output data, and the state before and after the operation.

Variables xi are input variables and yi are output variables.

3.6.2 Program based input space partitioning

The input space can be partitioned according to the program structure. In this

type of partitioning, two input data in a subdomain usually execute the same path

in the program. In the program, a path often requires some inputs to trigger the

condition for the execution. The condition is called path condition (How76). A

path condition can be derived by symbolic execution (How76).

For example, in the DISCOUNT INVOICE module, there are six paths in

the program, each of which requires an input to trigger the condition for the

execution of this path. The partitions of input space are therefore determined by

path conditions. Each path in the program is defined as a subdomain.

49

3.6 Partition analysis

Testing with program based partitioning shows some similarities to path cov-

erage based testing. If only one test case is required and the position of the

subdomain is not considered, then testing with program based partitioning is

equivalent to path coverage based testing. However, usually, partitioning test-

ing requires test cases selected not only within the subdomains, but also on the

boundaries, at vertices etc as these points are thought to be error-prone. A test

case in the subdomain is called an on test point; otherwise, an off test point.

3.6.3 Boundary analysis

White et al. (WC80) proposed a test method called N×1 domain-testing strategy

where N test cases need to be selected on the borders in an N−dimensional space

and one case is just off the border. Clarke et al. (CHR82) extended the method

to N × N criterion where, instead of one test case, N test cases are required to

be off the border. Moreover, the N test cases should be linearly independent.

Definition 3.6.1 (N × 1 domain adequacy) (WC80) Let {D1, D2, ..., Dn} be the

set of subdomains of software S that has N input variables. A set T of test cases

is said to be N ×1 domain-test adequate if, for each subdomain Di, i = 1, 2, ..., n,

and each border B of Di, there are at least N test cases on the border B and at

least one test case that is just off B. If the border is in the domain Di, the test

case off the border should be an off test point; otherwise, the test case should be

an on test point.

Definition 3.6.2 (N × N domain adequacy) (CHR82) Let {D1, D2, ..., Dn} be

the set of subdomains of software S that has N input variables. A set T of

test cases is said to be N × N domain-test adequate if, for each subdomain Di,

i = 1, 2, ..., n, and each border B of Di, there are at least N test cases on the

border B and at least N linearly independent test case that is just off B. If the

border is in the domain Di, the N test case off the border should be an off test

point; otherwise, the test case should be an on test point.

It can be seen that boundary analysis focuses on testing the borders of a

subdomain. The N×1 domain-testing strategy aims to check whether there exist

50

3.7 Mutation testing

parallel shift errors in a border, while, N ×N domain-testing strategy checks not

only parallel shift but also rotation of linear borders.

A special case can be noted in boundary analysis, this being vertex testing.

Vertices are intersection points of borders. Clarke et al. (CHR82) suggested

that vertices need to be used as test cases to improve the efficiency of boundary

analysis. She also proposed the adequacy criterion for vertex testing defined as

follows.

Definition 3.6.3 (V × V domain adequacy) (CHR82) Let {D1, D2, ..., Dn} be

the set of subdomains of software S. A set T of test cases is said to be V × V

domain-test adequate if, for each subdomain Di, i = 1, 2, ..., n, T contains the

vertices of Di and for each vertex v of Di, there is a test case just off v. If a

vertex v of Di is in the subdomain Di, then the test case just off v should be an

off test point; otherwise, it should be an on point.

3.7 Mutation testing

Mutation testing (DLS78) is a fault-based testing technique that mainly focuses

on measuring the quality of a test set according to the ability to detect specific

faults. In mutation testing, a number of simple faults, such as simply altered

operators, constant values and variables, are artifactually injected into the pro-

gram under test one at a time. These modified programs are called mutants. A

set of test cases is then designed, aiming to distinguish each mutant from the

original program by the program outputs. If a mutant can be distinguished from

the original program by at least one test case in the test set, the mutant is killed ;

otherwise the mutant is alive.

An example is illustrated in Figure 3.4 where the original code is z = x+y and

two mutants are generated by altering the arithmetic operator “+” to “-” and

“*” respectively. Test case (x = 0, y = 0) kills none of the mutants as the output

z will be the same for the original and mutant programs. Test case (x = 2, y = 2)

kills mutant 1 but fails to kill mutant 2 as, when applying the input, mutant 1

produces an output that is different from that produced by the original program,

while, mutant 2 produces the same output as the original program does. Mutant

1 is then killed while mutant 2 is still alive.

51

3.7 Mutation testing

Figure 3.4: An example of mutation testing.

Mutation testing is based on two assumptions, namely, the competent pro-

grammer hypothesis and the coupling effect (DLS78). The competent program-

mer hypothesis assumes that programmers create programs that are close to being

correct, namely, programmers only make small errors in the programs. This is

the reason why a mutant is generated by deviating the original program slightly

rather then considerably. The coupling effect assumes that a set of test cases that

is capable of finding all simple faults in a program is also able to detect more

complex faults. This assumption assures that the ability of the test set is not

limited to recognising only simple faults.

Sometimes, however, a mutant cannot be killed due to the equivalence of the

mutant and the original program. This leads to the studies of the adequacy of a

test set. The adequacy of a test set is assessed by equation 3.1 where M is the

total number of mutants, D is the number of mutants that has been killed and

E is the number of equivalent mutants.

Adequacy =
D

M − E
. (3.1)

The problem of deciding whether a mutant is equivalent to the original pro-

gram (determining E in equation 3.1) is generally undecidable. The equivalence

of a mutant is mostly determined manually. More recently, metaheuristic optimi-

sation techniques have been suggested for the elimination of equivalent mutants.

The related work can be found in ref. (AHH04).

One advantage of mutation testing is that it allows a great degree of automa-

tion. Once a set of mutation operators is carefully defined, the generation of

52

3.7 Mutation testing

mutants can be automated. Since the execution of the original program and the

set of generated mutants can be automated, the comparison of the results can be

automated.

However, mutation testing may lead to a high computational cost. It has

been estimated that the number of mutants that can be generated is of the order

of N2 for an N -line program (How82). It might also require expensive human

effort to identify equivalent mutants. Meanwhile, mutation testing relies on two

hypotheses and this might require substantial empirical studies to validate the

correctness of the hypotheses. In addition, mutation testing is still a technique

that largely works on unit test. Instead of being independently used in testing

applications, mutation testing remains a supplement that provides a means to

evaluate the effectiveness of other testing techniques.

Based upon the same idea of mutation analysis, several variants are proposed.

Howden (How82) proposed weak mutation testing to improve the test efficiency.

In the original mutation testing (referred to as strong mutation testing), a change

to a program is made before the execution, and the change is not reversed before

the executions are complete. The outcomes of the original program and the

mutant are compared only when the executions are finished, and the comparison

is made upon the outputs of the two; in weak mutation testing, a component in a

program is mutated. A test set that passes through this component is generated.

If, when applying the test set, the mutated component produces a different value

for a variable than the original one, then this mutant is killed.

The main advantage of weak mutation testing is that it is easier to generate

test cases to kill mutants, which can improve the test efficiency. However, weak

mutation testing only examines the mutated component. This may lead to a

lower level of confidence. Compared to strong mutation testing, weak mutation

testing is inferior.

Woodward et al. (WH88) proposed firm mutation testing. Firm mutation

testing makes a compromise between strong mutation testing and weak mutation

testing. In firm mutation testing, a tester is allowed to make a decision on when

to compare the values between a component and its mutant. It can be set to be

immediately after each single execution of the component, or at some execution

53

3.8 Statistical testing

points in the program. A tester is also allowed to decide how to compare the

outcomes, for example, the output values, or the execution traces, and so on.

Zeil (Zei83) proposed perturbation testing where an “error” space is considered

for the analysis of test effectiveness. Perturbation testing is quite similar to

mutation testing. It is mainly concerned with faults in arithmetic expressions

with program statements. Perturbation testing can be viewed as a special version

of mutation testing.

3.8 Statistical testing

So far, all testing methods discussed are aimed at fault detection, with the goal

of correctness. This, however, is not the only motivation for testing. Given an

extensively tested implementation, if no failure is revealed, it suggests that there

is a higher level of confidence in the system than before the testing is carried

out; otherwise, faults are detected in the system under test. Faults might be

categorised into several types, each of which has some features. If the probability

of a type of fault can be estimated, it would be of great value in improving the

process of testing. Statistical testing is thus proposed to achieve such a goal.

Statistical testing generates test cases using random number generating pro-

cess. When devising a statistical testing strategy, an input space is defined for

test data sampling. The input space defines the set of all possible inputs where

an input defines the set of all variables needed for the calculation of an output.

Test cases must be statistically independent. That is, the next test case chosen

must not be influenced by the history of previously executed tests (Ehr89).

One widely used statistical approach is random testing. It is a form of func-

tional testing. In random testing, test cases are selected randomly from the entire

input domain of the program. When generating a test case, a weight value may

be used to control the distribution of the selected data, for example, uniform

distribution.

The effectiveness of random testing has been studied by several investigators.

However, conclusions drawn from the studies varied significantly. Duran et al.

(DN84) compared random testing with domain partitioning testing and found

that, under the condition where the failure rates in the subdomains were either

54

3.9 Search-based testing

close to 0 or close to 1 and the subdomans are of equal size, the adequacies

of random testing and partitioning testing are close. Miller et al. (MMN+92)

further studied random testing and described circumstances where random testing

can increase confidence. Hamlet et al. (HT90) compared the random testing

with partitioning testing by considering boundary cases where there exist hidden

subdomains, subdomains that random testing is less likely to hit, and found that

partitioning testing is far better than random testing. This study suggests that

the effectiveness of partitioning testing and random testing is heavily affected by

the expected failure rates of boundary cases.

The principal advantage of random testing is that it is comparatively simple

and involves little effort in the generation of test cases. When automating the

process of random testing, the use of a test oracle is usually not a requirement.

In addition, random testing provides supplements for other testing techniques.

As introduced in the previous chapters, testing is a complicated process and no

testing technique guarantees to generate a complete test. Random testing can be

used to further measure the adequacy of other techniques.

One of the big problems of random testing is when to stop testing. The other

problem of random testing is to know when a test fails (DN84). It is hard to

determine if the test cases generated with random testing has completely tested

the system under test. To overcome these drawbacks, it is advisable to use some

other techniques to check the adequacy of these test sets.

3.9 Search-based testing

Search based optimisation techniques such as Genetic Algorithms (GAs) and

Simulated Annealing (SA) (see chapter 2) have recently been applied in the gen-

eration of test cases. In order that search based techniques can be applied, an

objective fobj function is required to evaluate the quality of a test case. A set of

test cases is iteratively updated to explore the test cases that maximise/minimise

fobj.

The reasons that search based techniques are used in the generation of test

cases are: (1) the problem of generating test cases is equivalent to a search

problem where good solutions need to be explored in the input space of the

55

3.9 Search-based testing

system being developed. Usually, the input space has a large size. This could

make the search a costly and inefficient process when traditional algorithms are

applied. This problem, however, can be alleviated by heuristic search; (2) some

problems in testing are NP-hard and search based techniques have proved efficient

in providing good solutions for NP-problems.

Jones et al. (JES98) applied GAs for structural coverage testing (branch

coverage testing). In the work, the control flow of the program is created. A

fitness function is defined to guide the search of test data. This fitness function is

based on the predicate associated with each branch, and a value for fitness derived

from either a Hamming distance or a simple numerical reciprocal function. The

simulation results suggested the test data generated are of high quality. Michael

et al. (MMS01) studied the automated generation of dynamic test data by using

GAs. A tool called GADGET (the Genetic Algorithm Data GEneration Tool)

was devised for exploring test data. This tool allows the test generator to slightly

modify the input parameters of the program, attempting to lead them to the

values that satisfy the test requirement.

Tracey et al. (TCM98; TCMM00) investigated exception detection using GAs

and SA respectively. Exception is a sub-class of failures. It might be caused by

incorrect inputs, hardware faults or logical errors in the software code. In the

work, a fitness function (see table 3.1) is defined to justify the test data that

might raise exceptions. This fitness function provides a measure of how close a

test case is to execute a desired raise statement. The process of the generation of

such test data is further optimised by using GAs. The experimental results show

the effectiveness of the proposed method.

Wegner et al. (WSJE97) investigated worst case and best case execution

time estimation by using GAs. In the work, based upon the execution time

measured in processor cycles, a fitness function is defined. A number of programs

are used for experiments. By checking the experimental results, Wegner et al.

claimed that GAs are able to check large programs. At the same time, they show

considerable promise in establishing the validity of the temporal behaviour of

real-time software.

However, the use of search based techniques for the generation of test cases has

some limitations as well. Usually, in search based testing, inputs of the program

56

3.9 Search-based testing

Element Value
Boolean if TRUE then 0 else K
a = b if abs(a− b) = 0 then 0

else abs(a− b) +K
a 6= b if abs(a− b) 6= 0 then 0

else K
a < b if a− b < 0 then 0

else (a− b) +K
a ≤ b if a− b ≤ 0 then 0

else (a− b) +K
a > b if b− a < 0 then 0

else (b− a) +K
a ≥ b if b− a ≤ 0 then 0

else (b− 1) +K
a ∨ b min(fit(a), fit(b))
a ∧ b fit(a) + fit(b)
−a Negation is moved inwards and propagated over a

Table 3.1: Fitness function cited from (TCMM00).

constitute the search space. Search based techniques iteratively construct a set

of test cases from such a space, attempting to maximise/minimise a predefined

objective function. In most cases, the landscape of the input space is not known.

This makes it very difficult to determine when to stop the search for the test

data.

Currently, two rules are applied for terminating the computation. In the

first case, a comparatively large number of iterations is defined, which leads to

a saturated computation. However, if the computation converges at a very early

stage, this termination rule will result in redundant computation. For example,

if a predefined number of iterations is 1000 and the computation converges in

100 iterations, the rest of the computation contributes no effort in improving the

quality of test data and becomes redundant. The other rule is to define a time pe-

riod. If the performance of the exploration has no significant improvement within

such a period, it is assumed that the maximum/minimum value is reached and

the computation is terminated. This, however, can also lead to some problems.

If the computation gets stuck in a local optimal within such a period, the process

57

3.9 Search-based testing

of search is terminated and the final result obtained is not globally optimal.

58

Chapter 4

Testing from finite state machines

4.1 Introduction

Finite state machines are formal specification languages. Since being developed,

finite state machines have been used for modelling systems in various areas such as

sequential circuits (Moo56; Hen64; KK68; Hsi71), software engineering (Cho78)

and communication protocols (ATLU91; MP93; Hie96; SLD92; YU90).

In system development, a system is often modelled as a set of functional

units or components. Some of these units are connected with others through

input/output coupling. Each unit in the system is assigned with two attributes:

an I/O port and an internal state. I/O port provides developers with an interface

for the output observation when an input is sent while the internal state is not

observable and can only be inferred from exhibited I/O behaviour.

Finite state machines, which involve a finite number of states and transi-

tions between these states, are suitable for describing and implementing the con-

trol logic for applications. Compared to the other specification languages, finite

state machines have several advantages: (1) they are comparatively simple, which

makes it easy for inexperienced developers to implement; (2) in deterministic fi-

nite state machines, given a set of inputs and a known current state, the terminal

state is predictable. The predicability of finite state machines helps to reduce

the complexity of testing; (3) as a finite state machine can be represented by a

directed graph, techniques involving directed graph theory can be applied with

little modification; and (4) finite state machines have been studied for many years

59

4.2 Finite state machines

and become mature techniques for system modelling and testing.

Finite state machines have been considered as a useful way for automating

the process of test generation from the system being developed. In finite state

machine based testing, a test design is usually accomplished in two steps:

1. define a test strategy for the test objects;

2. automate the process of generating test sequences.

Test objects refer to all transitions contained in the finite state machine un-

der test. A standard test strategy usually tests a transition in two parts: I/O

behaviour check and the final state verification. Details about the standard test

strategy are discussed in section 4.3. A complete testing sequence guarantees

that all transitions contained in the finite state machine have been adequately

tested. In the test process, it is usually preferred that a test sequence will con-

tinuously test all transitions without being mandatorily halted (say, manually

reset). In section 4.4, the process that controls the generation of test sequences

is introduced and in section 4.5, minimisation on the length of a test sequence is

discussed.

4.2 Finite state machines

Definition 4.2.1 A finite state machine (FSM) M is defined as a 5-tuple

M = (I, O, S, δ, λ, s0)

where I, O, and S are finite and nonempty sets of input symbols, output symbols,

and states, respectively; δ : S × I → S is the state transition function; and

λ : S × I → O is the output function. s0 is the initial state of the machine.

In an FSM, if the machine receives an input a ∈ I when in state si ∈ S,

it moves to the state si+1 = δ(si, a) and produces output λ(si, a). Functions

δ and λ can be extended to take input sequences in the usual way. An input

sequence x = a1a2...ak takes the machine from a start state sl successively to

state si+1 = δ(si, ai), i = l, ..., k, with the final state sk+1 = δ(sl, x), and produces

an output sequence b1, ..., bk = λ(sl, x) where bi = λ(si, ai), i = l, ..., k.

60

4.2 Finite state machines

Figure 4.1: Finite state machine represented by digraph cited from ref.
(ATLU91).

61

4.2 Finite state machines

a b c
s1 s1, x s2, x s4, y
s2 s5, x s3, y None
s3 None s5, x s5, y
s4 s5, x s3, x None
s5 s4, z None s1,z

Table 4.1: Finite state machine represented by state table.

An FSM M can be represented by a labelled directed graph D = (V,E),

where the set of vertices V represents the state set S of M and the set of edges

E represents the transitions. An edge has label a/o where a ∈ I and o ∈ O

are the corresponding transition’s input and output. Figure 4.1 (copied from ref.

(ATLU91)) illustrates an FSM represented by its corresponding directed graph.

Alternatively, an FSM can be represented by a state table where one row lists

each state and one column is used for each input. Table 4.1 shows the state table

of the above FSM.

An FSM is deterministic if and only if for any state si ∈ S and an input a ∈ I
there is at most one transition involving si and a. Two states si and sj of M are

said to be equivalent if and only if for every input sequence α ∈ I the machine

produces the same output sequence, λ(si, α) = λ(sj, α). Machines M1 and M2

are equivalent if and only if for every state in M1 there is an equivalent state in

M2, and vice versa. A machine M is minimal (reduced) if and only if no FSM

with fewer states than M is equivalent to M .

It is assumed that any FSM being considered is minimal since any (deter-

ministic) FSM can be converted into an equivalent (deterministic) minimal FSM

(LY96). An FSM is completely specified if and only if for each state si and input a,

there is a specified next state si+1 = δ(si, a), and a specified output oi = λ(si, a);

otherwise, the machine is partially specified.

A partially specified FSM can be converted to a completely specified one in

two ways (LY96). One way is to define an error state. When a machine is in

state s and receives an input a such that there is no transition from s with input

a, it moves to the error state with a given (error) output. The other way is to

add a loop transition. When receiving an undefined input, the state of a machine

62

4.3 Conformance testing

remains unchanged. At the same time, the machine produces no output. An

FSM is strongly connected if the underlying directed graph is strongly connected.

It is assumed throughout this thesis that finite state machines under test are

deterministic, minimal, completely specified and strongly connected.

4.3 Conformance testing

Given a specification FSM M , for which we have its complete transition diagram,

and an implementation M ′, for which we can only observe its I/O behaviour

(“black box testing”), we want to test to determine whether the I/O behaviour

of M ′ conforms to that of M . This is called conformance testing. A test sequence

that solves this problem is called a checking sequence.

An I/O difference between the specification and implementation can be caused

by either an incorrect output (an output fault) or an earlier incorrect state transfer

(a state transfer fault). Hennie (Hen64) suggests that the latter can be detected

by adding a final state check after a transition check is finished. In Hennie’s

work, a test procedure is split into two parts, namely, I/O check and tail state

verification. This contributes to the current standard test strategy. A standard

test strategy is:

1. Homing: Move M ′ to an initial state s;

2. Output Check: Apply an input sequence α and compare the output se-

quences generated by M and M ′ separately;

3. Tail State Verification: Using state verification techniques to check the final

state.

It is assumed throughout this thesis that all test sequences are generated using

the standard test strategy.

The first step in the test is known as homing a machine to a desired initial

state. This can be accomplished by using a homing sequence or a synchronizing

sequence.

Definition 4.3.1 A homing sequence H is an input sequence such that the output

sequence on H uniquely determines the state reached after applying H.

63

4.3 Conformance testing

Definition 4.3.2 A synchronizing sequence SN is an input sequence that moves

the FSM to some fixed state irrespective of the initial state.

Moore (Moo56) proved that all FSMs have homing sequences. However, not

all FSMs have a synchronizing sequence. Kohavi (Koh78) proved that, if an

FSM has a synchronizing sequence, the length of the sequence does not exceed

n(n−1)(n+1)/6 where n is the number of states in the FSM. However, in his work,

no algorithm is proposed for the construction of a synchronizing sequence. In case

there exists no synchronizing sequence, an adaptive synchronizing experiment can

be considered to move the FSM to a desired state.

Definition 4.3.3 An adaptive synchronizing experiment is a strategy that will

place the FSM in a particular state but with the input values used depending upon

the previous output.

Obviously, an adaptive synchronizing experiment is feasible in every strongly

connected finite state machine as it is sufficient to execute a homing sequence to

move the machine to a known state and then apply a transfer sequence to move

the FSM to the desired state.

The second step in the test checks whether M ′ produces the desired output

sequence. A fault detected at this stage is called an output fault. The last step

checks whether M ′ is in the expected state s′ = δ(s, α) after the transition. A

fault detected at this stage is called a state transfer fault. There are three main

techniques used for state verification:

• Distinguishing Sequence (DS)

• Unique Input/Output (UIO)

• Characterizing Set (CS)

Definition 4.3.4 A distinguishing sequence is an input sequence that produces a

different output for each state.

Execution of a DS provides evidence of the state an FSM is in when the DS

is input. However, not every FSM has a DS (LY94).

64

4.3 Conformance testing

Definition 4.3.5 A UIO sequence of state si is an input/output sequence x/y,

that may be observed from si, such that the output sequence produced by the ma-

chine in response to x from any other state is different from y, i.e. λ(si, x) = y

and λ(si, x) 6= λ(sj, x) for any i 6= j.

A DS defines a UIO sequence for every state. While not every FSM has a

UIO for each state, some FSMs without a DS have a UIO for each state.

Definition 4.3.6 A characterizing set W is a set of input sequences with the

property that, for every pair of state (si, sj), j 6= i, there is some w ∈ W such

that λ(si, w) 6= λ(sj, w). Thus, the output sequences produced by executing each

w ∈ W from sj verifies sj.

The uses of DS, CS and UIO for state verification are proposed by Hennie

(1964) (Hen64), Chow (1978) (Cho78) and Chen et al. (1989) (CVI89) separately.

Compared to the other two techniques, the use of UIOs has several advantages:

(1) Not all FSMs have a Distinguishing Sequence (DS), but nearly all FSMs have

UIOs for each state (LY94); (2) The length of a UIO is no longer than that of

a DS; (3) While UIOs may be longer than a characterizing set, in practice UIOs

often lead to shorter test sequences.

However, computing a DS or UIOs from an FSM is NP-complete (LY94).

Lee et al. (LY94) note that adaptive distinguishing sequences and UIOs may be

produced by constructing a state splitting tree from the FSM being investigated.

A State Splitting Tree (SST) is a rooted tree T that is used to construct

adaptive distinguishing sequences or UIOs from an FSM. Each node in the tree

has a predecessor (parent) and successors (children). A tree starts from a root

node and terminates at discrete partitions: sets that contain one state only. The

predecessor of the root node, which contains the set of all states, is null. The

nodes corresponding to a single state have empty successor. These nodes are

also known as terminals. A child node is connected to its parent node through

an edge labelled with characters. The edge implies that the set of states in the

child node is partitioned from that in the parent node upon receiving the labelled

characters. The splitting tree is complete if the partition is a discrete partition.

65

4.3 Conformance testing

Figure 4.2: A pattern of state splitting tree from an FSM.

66

4.3 Conformance testing

An example is illustrated in Figure 4.2 where an FSM (different from the

one shown in Figure 4.1) has six states, namely, S = {s1, s2, s3, s4, s5, s6}. The

input set is I = {a, b} while the output set is O = {x, y}. The root node is

indicated by N(0, 0)1, containing the set of all states. Suppose states {s1, s3, s5}
produce x when responding to a, while {s2, s4, s6} produce y. Then {s1, s3, s5}
and {s2, s4, s6} are distinguished by a. Two new nodes rooted from N(0, 0) are

then generated, indicated by N(1, 1) and N(1, 2). If we then apply b, the state

reached from {s1} by a produces x while the states reached from {s3, s5} by a

produce y. Thus ab distinguish {s1} from {s3, s5}. Two new nodes rooted from

N(1, 1) are generated, denoted byN(2, 1) andN(2, 2). The same operation can be

applied to {s2, s4, s6}. Repeating this process, we can get all discrete partitions

as shown in Figure 2. Note that for some FSMs this process might terminate

without producing a complete set of discrete partitions since there need not exist

such a tree (LY96). A path from a discrete partition node to the root node forms

a UIO for the state related to this node. When the splitting tree is complete, we

can construct UIOs for each state.

Unfortunately, the problem of finding data to build up the state splitting tree

is NP-hard. This provides the motivation for this PhD work, which investigates

the use of MOTs for the construction of UIOs. The problem is discussed in

chapter 5.

Shen et al. (SST91) shows that using a backward UIO (B-UIO) in a transition

test helps to improve test quality. By applying a B-UIO, the initial state of the

transition is also verified. All states in B-UIO method are verified twice. The

test quality is therefore improved.

Definition 4.3.7 A Backward UIO (B-UIO) sequence of state si is an input/output

sequence x/y, that can be observed only if the final state of transitions is si, i.e.

∀sj (sj ∈ S), λ(sj, x) = y ⇒ δ(sj, x) = si.

When both UIOs (forward) and B-UIOs are considered, the method is called

the B-UIO method, or simply B-method. The test strategy is then:

1N(i, j): i indicates that the node is in the ith layer from the tree. j refers to the jth node
in the ith layer.

67

4.4 Test sequence generation

1. Homing: Move M ′ to the initial state of the B-UIO;

2. Initial state verification: Apply the B-UIO sequence to move M ′ to the

initial state of a transition;

3. Output check: Apply an input α and compare the outputs generated by M

and M ′ separately;

4. Tail state verification: Apply UIO (forward) to check the final state.

The UIO (forward) is used to provide confidence that the tested transition arrives

at a correct state while the Backward UIO is used to increase the confidence that

an assigned transition has been tested.

4.4 Test sequence generation

When testing from FSMs, it is always desirable that a test sequence will detect

all faults from the Implementation Under Test (IUT) with the shortest length.

In finite state machine based testing, testing is performed in “black-box” man-

ner. Thus, the number of states in the IUT is not known. This requires some

assumptions before testing starts.

It has been shown that, if the number of states in the IUT exceeds the num-

ber of states in its specification, the process of conformance testing is NP-hard

(Moo56). Moore (Moo56) proved that, given a minimal FSM M and a faulty

implementation M
′
, it is always possible to generate an input sequence that will

distinguish M
′
from M as long as M

′
has no more states than M . Based upon

Moore’s work, four test methods are proposed for the generation of test sequences

from the FSM under test. They are T-method (NT81), D-method (Hen64), W-

method (Cho78) and U-method (CVI89). T-, D- and U-methods assume that

the number of states in the IUT does not exceed that in the specification FSM.

W-method allows more states in the IUT but assumes that the maximum number

of states that the correct design might have is known.

In the T-method, a test sequence (called a transition-tour sequence) is gen-

erated simply by applying inputs to the specification FSM until all transitions

in the FSM have been traversed at least once. In the D-, W-, and U-methods,

68

4.5 Optimisation on the length of test sequences

as well as each transition being executed, tail state of the transition needs to be

verified by DS, CS, and UIO correspondingly. D-, W-, and U-methods are called

formal methods. In terms of fault coverage, D-, W-, and U-methods outperform

T-method (SL89).

A method for generating a complete test sequence is described as follows: an

untested transition is selected from the specification FSM first. The FSM is then

moved to the initial state of the selected transition by using a transfer sequence.

This transfer sequence is also called a linking sequence in the final test sequence.

Normally, the test process starts with a transition whose starting state is the

initial state of the FSM where no transferring operation is required. The selected

transition is then tested by checking its I/O plus verifying the tail state. An

input sequence that will test the selected transition is called the test sequence for

this transition.

After a test is complete, another transition is selected. The FSM is then

moved to the initial state of the selected transition by a transfer sequence. The

process of transition testing starts and the selected transition is tested by its test

sequence. The process repeats until all transitions have been adequately tested.

However, test sequence generated by such a process might result in a long

sequence, which consequently increases the cost in the forthcoming implementa-

tion test. A short test sequence is thus preferred. This leads to the problem of

minimisation on the length of a test sequence.

Clearly, the increment of a test sequence’s length is caused by the uses of

linking sequences. If, when generating a test sequence, a set of linking sequences

is applied such that the sum of the length of all linking sequences is minimal,

the test sequence is of the minimal length. In the next section, techniques for

generating an optimal test sequence from an FSM are discussed.

4.5 Optimisation on the length of test sequences

4.5.1 Single UIO based optimisation

Aho et al. (ATLU91) noted that an optimal test sequence may be produced when

UIOs are used for state verification. In their work, Aho et al. proved that, if an

69

4.5 Optimisation on the length of test sequences

FSM M is strongly connected or weakly connected with all states having reset

functions, there exists a Chinese postman tour T in the test control digraph of M .

Inputs derived from T constitute an optimal test sequence for M . Based upon

rural Chinese postman tour algorithm, an optimal technique for the generation of

a test sequence from the FSM under test is proposed. This technique is described

as follows.

Let us suppose that we have a specification FSM M with the input set I

and the output set O respectively. The FSM is represented by a digraph D =

(V,E) where V represents the set of states and E the set of transitions. Let

(vi, vj, am/on) ∈ E be a transition under test where vi is the initial state and vj

the final state. am/on is the I/O pair of this transition, am ∈ I, on ∈ O. Let UIOj

be the UIO sequence for vj. When in vj and receiving the input part of UIOj,

M produces the output part of UIOj and arrives at vk. The final state of UIOsj

is denoted as vk = Tail(UIOj). The test sequence for a transition (vi, vj, am/on)

is constructed by concatenating am with the input part of UIOj. After the test

of (vi, vj, am/on) is complete, a test control trail1 for the transition is produced,

denoted as 2(vi, vk; (am/on) · UIOj), Tail(UIOj) = vk. If all transitions in M

have been tested by their test sequences, we can finally get a complete set of test

control trails. This set is denoted as:

EC = {(vi, vk; (am/on) · UIOj) : (vi, vj; am/on) ∈ E ∧ Tail(UIOj) = vk}.

A digraph D
′

= (V
′
, E

′
) is then constructed such that V

′ ≡ V and E
′

=

EC ∪E. Digraph D
′
is called the test control digraph of D. It is easy to see that

if an input sequence traverses all edges in D
′
at least once, then all transitions

in D (or more precisely M) are tested at least once. The problem of generating

an optimal test sequence from D is now converted to that of finding the Chinese

postman tour in D
′
. As introduced in chapter 2, if D

′
is symmetric, there exists

an Euler tour in D
′
and the Euler tour is also a Chinese postman tour; otherwise,

1A test control trail implies the sequence of transitions that the machine will traverse when
a transition is tested by its test sequence. Here, only the initial state of the first transition and
the final state of the last transition are drawn.

2The notation ‘·’ indicates the concatenation of two sequences.

70

4.5 Optimisation on the length of test sequences

State UIO Final State
v1 ba/xx v5

v2 b/y v3

v3 bc/xz v1

v4 bc/xy v5

v5 c/z v1

Table 4.2: UIO sequences for the states of the FSM shown in fig.4.1.

D
′

needs to be augmented to derive its symmetric augmentation digraph D∗.

Once D∗ is complete, the Euler tour in D∗ is equivalent to the Chinese postman

tour in D
′
. When augmenting D

′
, the cost of an edge in D

′
is calculated as:

C(vi, vk; (am/on) · UIOj) = C(vi, vj; (am/on)) + C(UIOj).

A flow network is thus required for calculating the replication times ψ(vi, vj; am/on)

for a transition (vi, vj; am/on) ∈ E.

To further explain the control scheme, an example is illustrated where the

FSM shown in Figure 4.1 is utilised. The UIOs for states are listed in table

4.2. We also allow the FSM to have a reset function ri. When receiving ri, the

machine returns to v1 and produces null, regardless of the current state.

In order to generate the test control digraph D
′
for the FSM, each transition’s

test control trail needs to be derived. For example, the test control trail for

transition (s1, s1; a/x) is constructed by (v1, v5; (a/x) · (ba/xx)), Tail(UIO1) =

Tail(ba/xx) = v5. An edge starting with v1, ending with v5 and labelled with

aba/xxx is added to digraph D
′
. The test cost for this edge is calculated as

C(v1, v5; (a/x) · (ba/xx)) = C(v1, v1; a/x) + C(v1, v5; ba/xx).

Let the cost of an edge in the FSM be 1. Test cost of edge (v1, v5; (a/x) ·
(ba/xx)), Tail(UIO1) = Tail(ba/xx) = v5 is then 3. There are 11 transitions

in the FSM. All transition’s test control trails need to be added to D
′
. Test

control trails of all transitions are listed in table 4.3. Five additional test control

trails that are related to reset function are also included in the final test control

digraph. The final test control digraph generated from table 4.3 and Figure 4.1

is shown in Figure 4.3.

71

4.5 Optimisation on the length of test sequences

Figure 4.3: Test control digraph of the FSM shown in fig. 4.1 using single UIO
for each state.

72

4.5 Optimisation on the length of test sequences

No Transition Tail state verification Test control trail
1 (v1, v1; a/x) (v1, v5; ba/xx) (v1, v5; aba/xxx)
2 (v1, v4; c/y) (v4, v5; bc/xy) (v1, v5; cbc/yxy)
3 (v1, v2; b/x) (v2, v3; b/y) (v1, v3; bb/xy)
4 (v2, v3; b/y) (v3, vs1; bc/xz) (v2, v1; bbc/yxz)
5 (v2, v5; a/x) (v5, v1; c/z) (v2, v1; ac/xz)
6 (v3, v5; b/x) (v5, v1; c/z) (v3, v1; bc/xz)
7 (v3, v5; c/y) (v5, v1; c/z) (v3, v1; cc/yz)
8 (v4, v3; b/x) (v3, v1; bc/xz) (v4, v1; bbc/xxz)
9 (v4, v5; a/x) (v5, v1; c/z) (v4, v1; ac/xz)
10 (v5, v1; c/z) (v1, v5; ba/xx) (v5, v5; cba/zxx)
11 (v5, v4; a/z) (v4, v5; bc/xy) (v5, v5; abc/zxy)
12 (v1, v1; ri/null) (v1, v5; ba/xx) (v1, v5; (ri/null)(ba/xx))
13 (v2, v1; ri/null) (v1, v5; ba/xx) (v2, v5; (ri/null)(ba/xx))
14 (v3, v1; ri/null) (v1, v5; ba/xx) (v3, v5; (ri/null)(ba/xx))
15 (v4, v1; ri/null) (v1, v5; ba/xx) (v4, v5; (ri/null)(ba/xx))
16 (v5, v1; ri/null) (v1, v5; ba/xx) (v5, v5; (ri/null)(ba/xx))

Table 4.3: Test control trails of transitions in the FSM shown in fig. 4.1.

The problem now comes to finding the Chinese postman tour in D
′
. As

one can see D
′
is not symmetric and therefore does not contain an Euler tour.

The symmetric augmentation of D
′

is thus required. In order to construct the

symmetric augmentation digraph D∗ of D
′
, a flow network DF = (VF , EF) needs

to be constructed. DF is defined as VF = V (D
′
)∪{s, t} where s is the source and

t the sink, and EF = E(D) ∪E+ ∪E− where E+ = {(s, v1), (s, v5)}, u(s, v1) = 2,
1u(s, v5) = 6; E− = {(v2, t), (v3, t), (v4, t)}, u(v2, t) = 3, u(v3, t) = 2, u(v4, t) = 3.

E+ and E− are derived through calculating the index of each vertex (state),

ξ(vi) = d−vi
− d+

vi
. Edges in E+ and E− have zero test cost. The capacity of these

edges are defined as u(vi, s) = ξ(vi), u(t, vj) = −ξ(vj). The rest of the edges in

E
′
have the same cost as those edges in E and have infinite capacities (for more

details, see chapter 2).

Thus, in terms of a max flow F , a function ψ(vi, vj; am/on) is required to

determine the times of replication for the edge (vi, vj) ∈ E in D∗. The function

1u(s, vi) defines the capacity of edge (s, vi).

73

4.5 Optimisation on the length of test sequences

Figure 4.4: The flow graph DF of the digraph D
′
with the maximum flow and

minimum cost.

is defined as:

ψ(vi, vj; am/on) =

{
1, if (vi, vj; am/on) ∈ EC

F (vi, vj; am/on), if (vi, vj; am/on) ∈ E

Finding a maximum-flow/minimum-cost flow F on DF over ψ leads to a sym-

metric augmentation D∗ of D
′
(ATLU91). F gives us ψ which defines the times

of replication of edge (vi, vj) in D∗. The final flow in the network is shown in

Figure 4.4. The number on each edge indicates the times that this edge needs to

be replicated.

Having replicated edges in D
′

by the times given in DF , a symmetric aug-

mentation digraph D∗ is generated shown in Figure 4.5. An Euler tour can then

be constructed from D∗ by using the algorithm proposed by (Kua62). This Euler

tour is also a Chinese postman tour in D
′
. Test sequence derived from this tour

is an optimal test sequence for the FSM shown in Figure 4.1. The result is shown

in table 4.4. There are total 55 input/output pairs.

74

4.5 Optimisation on the length of test sequences

Figure 4.5: Symmetric augmentation from fig. 4.3. Number in an edge indicates
the times this edge needs to be replicated.

ri/null bb/xy cc/yz aba/xxx
abc/zxy cba/zxx (ri/null) · (ba/xx) a/x
ac/xz cbc/yxy a/z b/x
bc/cz b/x bbc/yxz b/x
ac/xz b/x (ri/null) · (ba/xx) a/z
b/x (ri/null) · (ba/xx) a/z bbc/xxz

(ri/null) · (ba/xx) a/z (ri/null) · (ba/xx) c/z

Table 4.4: An optimal test sequence for the FSM shown in fig. 4.1 by using single
UIO for each state.

75

4.5 Optimisation on the length of test sequences

Index State UIO Final State
UIO1

1 aa/xx v1

UIO2
1 ab/xx v2

UIO3
1 v1 cb/yx v3

UIO4
1 ac/xy v4

UIO5
1 ba/xx v5

UIO1
2 v2 b/y v3

UIO1
3 v3 bc/xz v1

UIO2
3 ba/xz v4

UIO1
4 v4 bc/xy v5

UIO1
5 v5 c/z v1

UIO2
5 a/z v4

Table 4.5: Multiple UIO sequences for the states of the FSM shown in fig.4.1.

ri/null aaa/xxx bb/xy bc/xz ri/null ab/xx
ri/null ab/xx ac/xz cb/yx c/y abc/zxy
ri/null ba/xx ccb/zyx (ri/null) · (ab/xx)

b/y ba/xz aa/xz bba/xxx (ri/null) · (cb/yx)
cc/yz

Table 4.6: The optimal test sequence for the FSM shown in fig. 4.1 by using
multiple UIOs for state verification.

4.5.2 Multiple UIOs based optimisation

Shen et al. (SLD92) note that the length of a test sequence can be further reduced

if multiple UIOs are applied for each state. In the example shown in Figure 4.1,

there exits more than one UIOs for each state. These UIOs are listed in table 4.5.

A test control digraph, generated by using different UIOs for a state verification,

is shown in Figure 4.6. From the graph it can be seen that ξ(v1) = ξ(v2) = ξ(v3)

= ξ(v4) = ξ(v5) = 0. The digraph is symmetric and needs no augmentation. The

corresponding test sequence constructed from the test control digraph is shown

in table 4.6. There are 44 input/output pairs, ll shorter than the one constructed

using single UIO for each state.

Shen et al.’s method is motivated from the observation that the number of

times for replicating edges in an FSM M is determined by the indexes of all

76

4.5 Optimisation on the length of test sequences

Figure 4.6: Test control digraph of the FSM shown in fig. 4.1 using multiple
UIOs for each state.

77

4.5 Optimisation on the length of test sequences

Figure 4.7: Flow network used for the selection of UIOs to generate optimal test
control digraph for the FSM shown in fig. 4.1.

78

4.5 Optimisation on the length of test sequences

vertices (states) in the test control digraph D
′
. If, for all vertices in D

′
, there

exist ξ(vi) = 0, i = 1, ..., n, then the test control digraph is symmetric and no

replication is required. The cost of the test sequence is simply the cost of the

edges in EC . In Aho et al.’s method, only one UIO is applied for each state.

The index ξ(vi), i = 1, ..., n, is thus fixed and is usually not equal to zero. This

requires the symmetric augmentation by replicating some edges for a number of

times, which consequently increases the length of the test sequence. It shall be

noted that for a vertex vi, its out-degree d−(vi) in the test control digraph D
′
is

always the same as that in D, but its in-degree d+(vi) may vary if different UIOs

are selected for a state when generating the test control digraph. Appropriate

selection of a UIO for a transition test will lead to a minimal value of
∑n

i=1 |ξ(vi)|
in D

′
, which determines that the times for replicating edges in D is minimal. The

problem is defined as follows:

Given an FSM M represented by digraph D and a set of UIOs, MUIOj =

{UIO1
j , ..., UIO

r
j}, for each state sj ∈ S, find an element UIOα

j ∈ MUIOj for

transition (vi, vj; am/on) such that, in the final test control digraphD
′
,
∑n

i=1 |ξ(vi)|
is minimal. Selection of a UIO for a transition test can be determined by con-

structing a network DM and then finding a maximum-flow/minimum-cost flow F

on DM . The technique is described as follows:

Given M represented by D, DM is defined as VM = X × Y × {s, t} where

X = {x1, ..., xn}, Y = {y1, ..., yn} and X ≡ Y ≡ V (D)1; s is the source and

t the sink; EM = ES ∪ E+
T ∪ E−

T ∪ E∗ where ES = {(s, xi),∀xi ∈ X}, E−
T =

{(yj, t),∀yj ∈ Y }, E+
T = {(yk, t),∀yk ∈ Y } and E∗ = {(xi, yj;UIOi), ∀ UIOi ∈

MUIOi, Tail(UIOi) = sj}; each edge (s, xi) ∈ ES has zero cost and capacity

u(s, xi)=d
+(vi); for each yj ∈ Y , two edges are used to link yj with t, one of which

has a positive cost, while, the other has a negative cost; each edge (yj, t) ∈ E−
T

has cost -1 and capacity u(yj, t)=d
−(vj); each edge (yj, t) ∈ E+

T has +1 cost and

infinite capacity; each edge (xi, yi) ∈ E∗ has zero cost and infinite capacity. A

flow FM on DM is defined as a function F : EM → Z+ such that:

1. ∀xi ∈ X, F (s, xi) =
∑

(xi,yj)∈E∗ F (xi, yj);

2. ∀yj ∈ Y , F (yj, t)
+ + F (yj, t)

−=
∑

(xi,yj)∈E∗ F (xi, yj);

1X and Y are two complete sets of states denoted with different notations.

79

4.5 Optimisation on the length of test sequences

3. ∀(s, xi) ∈ ES, F (s, xi) ≤ u(s, xi);

4. ∀(yj, t) ∈ E−
T , F (yj, t) ≤ u(yj, t).

The cost of the flow is defined as: C(F) =
∑

(yj ,t)∈E+
T
F (yj, t) -

∑
(yj ,t)∈E−

T
F (yj, t).

Given a maximum-flow/minimum-cost flow F on GM , the flow number on an

edge (xi, yj;UIOi) indicates the times that UIOi needs to be included in the test

control digraph D
′
.

Theorem 4.5.1 (SLD92) If a flow F on DM is a maximum-flow/minimum-cost

flow, then the corresponding assignment of UIO sequences to the edges of D is

such that
∑n

i=1 |ξ(vi)| is minimal.

DM for the FSM shown in Figure 4.1 is illustrated in Figure 4.7.

4.5.3 Optimisation with overlap

Figure 4.8: Structure of UIO Overlap.

In the methods proposed by Aho et al. and Shen et al., a test control trail is

generated simply for the use of one transition test. In order that all transitions

are adequately tested, a complete set of test control trails for all transitions in

E is required, each element in the set being independent from others. However,

a test sequence for a transition test might contain a subsequence that is part of

80

4.5 Optimisation on the length of test sequences

a test sequence for another transition test. The structure of two test sequences

overlap.

Figure 4.8 illustrates an example. In the figure, a transition (sa, sb; a1/o1) is

tested by test sequence TS1 = (a1/o1) · (a2/o2) · (a3/o3). It can be noted that se-

quence (a2/o2)·(a3/o3) is also a part of test sequence TS2, TS2 = (a2/o2)·(a3/o3)·
(a4/o4), that tests transition (sb, sc; a2/o2). Sequence (a2/o2) · (a3/o3) is the over-

lapped segment between TS1 and TS2. Test sequence TS3 = (a1/o1) · (a2/o2) ·
(a3/o3) contains overlapped segments with TS1, (a3/o3), and TS2, (a3/o3)·(a4/o4)·
(a5/o5) as well; if being applied to the FSM, test sequence (a1/o1)·(a2/o2)·(a3/o3)·
(a4/o4)·(a5/o5) will test transitions (sa, sb; a1/o1) (sb, sc; a2/o2) and (sb, sc; a3/o3)

successively.

Clearly, a test sequence generated by considering overlap among test sequences

for a set of ordered and distinct transitions is shorter than that generated by

concatenating test sequences that individually test each transition in the set. If,

in a test sequence for the FSM under test, the overall overlap among test sequences

for all transitions in E is maximised, the test sequence is of the minimal length.

This leads to the problem of finding a set of ordered transitions such that overlap

formed among the corresponding test sequences are maximised.

Yang et al. (YU90) and Miller (MP93) show that overlap can be used in con-

junction with multiple UIOs to further reduce the test sequence length. Hierons

(Hie96; Hie97) represents overlap by invertible sequence. All of their work aims

to generate a set of fully overlapped transition sequences, each of which is used

to generate a test control trail in the test control digraph. The test sequence

derived from such a test control digraph is of the minimal length.

Definition 4.5.1 A fully overlapped transition sequence (FOTS) is a sequence of

distinct transitions such that if it is followed by a state identification sequence for

the end state of the last transition in the sequence (so this transition is verified),

then all other transitions in the sequence are also verified.

Definition 4.5.2 A transition (si, sj; am/on) ∈ E is an invertible transition if

and only if it is the only transition entering state sj that involves input am and

output on.

81

4.6 Other finite state models

Definition 4.5.3 A sequence of transitions t = t1...tn, with ti = (si, sj; ami
/oni

),

ami
∈ I, oni

∈ O, is an Invertible Sequence (IS) if si is the only state that produces

output sequence on1 ...onn and moves to state sj when input am1 ...amn is applied.

4.6 Other finite state models

Except for ordinary finite state machines, some other finite state models have

been proposed for system modelling and testing, including Extended Finite State

Machines (EFSMs), Communicating Finite State Machines (CFSMs) and Prob-

abilistic Finite State Machines (PFSMs).

Definition 4.6.1 An extended finite state machine (EFSM) EM is a quintuple

EM = (I, O, S,−→x , T)

where I, O, S, −→x and T are finite sets of input symbols, output symbols, states,

variables, and transitions, respectively. Each transition t in the set T is a six-tuple

t = (st, qt, at, Pt, At)

where st, qt and at are the start (current) state, end (next) state, input, and

output, respectively. Pt(
−→x) is a predicate on the current variable values and

At(
−→x) gives an action on variable values.

Definition 4.6.2 A communicating finite state machine (CFSM) CM is a 7-

tuple

CM = (I, O, Si, Ai, δi,Mi, s0i
)

where I and O are the input set and output set respectively. Si is the set of local

states of machine Mi, s0i
∈ Si is the initial state of machine Mi; Ai = ∪1≤j≤nAi,j⋃

∪1≤j≤nAj,i where Ai,j, 1 ≤ j ≤ n is the alphabet of messages that Mi can send

to Mj, and Aj,i, 1 ≤ j ≤ n is the alphabet of messages that Mi can receive from

Mj. δi : Si × Ai × I → Si is the transition function. δi(p,−m, j) is the set of

states that process Mi could move to from state p after sending a message m to

process Mj. δi(p,+m, j) is the set of states that process Mi could move to from

state p after receiving a message m sent by process Mj.

82

4.6 Other finite state models

Obviously, a CFSM is equivalent to an EFSM. One can simply add a variable

to encode the component machines and represent the CFSM by an EFSM. An

EFSM with finite variable domains is a compact representation of an FSM (LY96).

Therefore, the process of testing an EFSMs can be reduced to that of testing

an ordinary FSMs by expanding the EFSM into an equivalent FSM. Once the

conversion is complete, an optimal test sequence can be generated using the

methods discussed above.

Definition 4.6.3 A probabilistic finite state machine (PFSM) PM is a quintuple

PM = (I, O, S, T, P)

where I, O, S, T are the input set, output set, state set, and transition set,

respectively. Each transition t ∈ T is a tuple t = (si, sj, a, o) consisting of the start

(current) state si ∈ S, next state sj ∈ S, input symbol a ∈ I and output symbol

o ∈ O. P is a function that assigns a number P (t) ∈ [0, 1] to each transition t (its

probability), so that for every state s and input symbol a,
∑

sj ,o P (s, sj, a, o) = 1.

A PFSM can be represented by a transition graph with n nodes corresponding

to the n states and directed edges between states corresponding to the transition

with nonzero probability. Specifically, if P (si, sj; a/o) > 0, then there is an edge

from si to sj with an associated input a and output o; otherwise, there is no

corresponding edge.

Conformance testing for PFSM is to check whether an implementation PFSM

confirms to a specification PFSM where the term of “conformance” can be defined

in different ways (LY96). Conformance test for PFSM has not been extensively

studied and the study of PFSM remains an open research topic (LY96).

83

Chapter 5

Construction of UIOs

5.1 Introduction

Unique Input/Output (UIO) sequences are often applied for state verification in

finite state machine based testing. A UIO sequence for state si in a finite state

machine M is an input/output sequence x/y, that may be observed from si, such

that the output sequence produced by the machine in response to x from any

other state is different from y. A prerequisite for UIO-based techniques is that

there exists at least one UIO sequence for each state in the finite state machine

under test. Thus, finding ways to (effectively) construct UIOs from a finite state

machine is very important.

Unfortunately, computing UIOs is NP-hard (LY94). Lee and Yannakakis

(LY94) note that adaptive distinguishing sequences and UIOs may be produced

by constructing a state splitting tree1. However, no rule is explicitly defined to

guide the construction of an input sequence. Naik (Nai97) proposes an approach

to construct UIOs by introducing a set of inference rules. Some minimal length

UIOs are found. These are used to deduce some other states’ UIOs. A state’s

UIO is produced by concatenating a sequence to another state, whose UIO has

been found, with this state’s UIO sequence. Although it may reduce the time

taken to find some UIOs, the inference rule inevitably increases a UIO’s length,

which consequently leads to longer test sequences.

1For more about state splitting tree, see chapter 4.

84

5.2 Constructing UIOs with MOTs

Metaheuristic Optimisation Techniques (MOTs) such as Genetic Algorithms

(GAs) (Gol89) and Simulated Annealing (SA) (KGJV83; MRR+53) have proven

efficient in search and optimisation and have shown their effectiveness in provid-

ing good solutions to some NP–hard problems such as the Travelling Salesman

Problem (CCPS98). When searching for optimal solutions in multi-modal func-

tions, the use of sharing techniques is likely to lead to a population that contains

several sub-populations that cover local optima (GR87). This result is useful

since in some search problems we wish to locate not only global optima, but also

local optima.

In this chapter, a model is proposed for the construction of UIOs by using

MOTs. A fitness function is defined to guide the search of input sequences that

constitute UIOs for some states. The fitness function works by encouraging the

early occurrence of discrete partitions in the state splitting tree constructed by

an input sequence while punishing the length of this input sequence.

The study of the proposed model consists of two stages. In the first stage, the

performance of GA on the construction of UIOs was initially investigated. Two

simple FSMs were used for the experiments. The experiments were designed

only to compare the performance between GAs and random search; in the sec-

ond stage, a more thorough study was carried on where sharing techniques are

applied. The use of a sharing technique forces the population of the genetic pool

to form sub-populations, each of which aims to explore UIOs that are calculated

as local optima. This helps to maintain the diversity of the genetic pool. A set of

experiments is designed to study the performance of GAs, GAs with sharing, SA

and SA with sharing respectively. The related work is discussed in the following

sections.

5.2 Constructing UIOs with MOTs

5.2.1 Solution representation

When applying MOTs to a finite state machine, the first question that has to be

considered is what representation is suitable. In this work, the potential solutions

in a genetic pool are defined as strings of characters from the input set I. A DO

85

5.2 Constructing UIOs with MOTs

NOT CARE character ′]′ is also used to further maintain diversity (this is

explained in section 5.4). When receiving this input, the state of a finite state

machine remains unchanged and no output is produced. When a solution is

about to be perturbed to generate a new one in its neighbourhood, some of the

characters in this solution are replaced with characters randomly selected from

the rest of the input set, including ′]′.

5.2.2 Fitness definition

A key issue is to define a fitness function to (efficiently) evaluate the quality of

solutions. This function should embody two aspects: (1) solutions should create

as many discrete units as possible; (2) the solution should be as short as possible.

The function needs to make a trade–off between these two points.

This work uses a function that rewards the early occurrence of discrete parti-

tions and punishes the chromosome’s length. An alternative would be to model

the number of state partitions and the length of a solution as two objectives

and then treat them as multi–objective optimisation problems (for more infor-

mation on multi–objective optimisation problems with GA see, for example, ref.

(Gol89)).

A fitness function is defined to evaluate the quality of an input sequence.

While applying an input sequence to a finite state machine, at each stage of a

single input, the state splitting tree constructed is evaluated by equation 5.1,

f(i) =
xie

(δxi)

lγi
+ α

(yi + δyi)

li
. (5.1)

where i refers to the ith input character. xi denotes the number of existing discrete

partitions while δxi is the number of new discrete partitions caused by the ith

input. yi is the number of existing separated groups while δyi is the number of

new groups. li is the length of the input sequence up to the ith element (Do Not

Care characters are excluded). α and γ are constants. It can be noted that a

partition that finds a new discrete unit creates new separated groups as well.

Equation 5.1 consists of two parts: exponential part, fe(i) = xie
(δxi)

lγi
, and

linear part, fl(i) = α (yi+δyi)
li

. It can be seen that the occurrence of discrete parti-

tions makes xi and δxi increase. Consequently, xie
(δxi) is increased exponentially.

86

5.2 Constructing UIOs with MOTs

Figure 5.1: Two patterns of partitions.

Meanwhile, with the input sequence’s length li increasing, lγi is increased expo-

nentially (γ should be greater than 1). Suppose xi and li change approximately

at the same rate, that is δxi ≈ δli, as long as e(δxi) has faster dynamics than lγi ,

fe(i) increases exponentially, causing fi to be increased exponentially. However,

if, with the length of the input sequence increasing, no discrete partition is found,

fe(i) decreases exponentially, causing fi to be decreased exponentially. fe(i) thus

performs two actions: encouraging the early occurrence of discrete partitions and

punishing the increment of an input sequence’s length.

fl(i) also affects f(i) in a linear way. Compared to fe(i), it plays a less impor-

tant role. This term rewards partitioning even when discrete classes have not

been produced. Figure 5.1 shows two patterns with no discrete partition. We

believe pattern B is better than A since B might find more discrete units in the

forthcoming partitions.

Individuals that find discrete partitions at the first several inputs but fail

to find more in the following steps may obtain higher fitness values than others.

They are likely to dominate the population and cause the genetic pool to converge

prematurely. To balance the evaluation, after all input characters have been

examined, the final fitness value for an input candidate is defined as the average

of equation 5.1

F =
1

N

N∑
i=1

f(i). (5.2)

87

5.2 Constructing UIOs with MOTs

where N is the sequence’s length.

5.2.3 Application of sharing techniques

When constructing multiple UIOs using MOTs, solutions of all UIOs might form

multi-modals (local optima) in the search space – a search might find only a few

of these local optima and thus miss some UIOs. In order to find more UIOs, it is

necessary to use some techniques to effectively detect local optima.

In this work, a sharing technique is applied. The fitness computation for

candidates that are highly similar to others is guided for reduction. Degraded

individuals are less likely to be selected for the reproduction. By using such an

operation, the population in the genetic pool should be forced to form several

sub-populations, each being used to identify a local optima.

A: Similarity Measurement

Before reducing a candidate’s fitness, a mechanism should be used to evaluate

the similarities between two solutions. There are two standard techniques that

are proposed to measure the distance between two individuals, namely Euclidian

distance and Hamming distance. However, both methods are not suitable in this

work since inputs for a finite state machine are ordered sequences. The order

of characters plays a very important role in evaluating the similarity. This work

defines a Similarity Degree (SD) to guide the degradation of a candidate’s fitness

value.

Definition 5.2.1 A valid partition (VP) is defined as a partition that gives rise

to at least one new separated group when responding to an input character.

Figure 5.2 illustrates two patterns of partition. In the figure, A is valid since

the parent group is split into two new groups, while B is invalid since the current

group is identical to its parent group and no new group is created. A UIO can

be formed by a mixture of valid and invalid partitions.

Definition 5.2.2 The maximum length of valid partition (MLVP) is the length

up to an input that gives rise to the occurrence of the last valid partition.

88

5.2 Constructing UIOs with MOTs

Figure 5.2: Patterns of valid partition (A) and invalid partition (B).

Definition 5.2.3 The maximum discrete length (MDL) is the length up to an

input character that gives rise to the occurrence of the last discrete partition.

Since a discrete partition defines a valid partition, MDL can never be greater

than MLVP in a state splitting tree.

Definition 5.2.4 The Similarity Degree (SD) between two ordered sequences is

defined as the length of a maximum length prefix sequence of these two sequences.

If elements in two ordered sequences are the same before the N th character

and different at the N th, the SD is N − 1 (] is excluded from the calculation).

For example, the SD between a#b#aaca##a and ab#a#bc#a#a is 3.

B: Fitness Degrade

In order to prevent the population from converging at one or several global optima

in the search space, at each iteration of computation, some candidates (that are

not marked as degraded) that have high SD value should have the fitness value

reduced by the mechanism as follows:

1. if a candidate’s SD is greater than or equal to its MDL, its fitness value

should be degraded to a very small value; else

89

5.2 Constructing UIOs with MOTs

2. if SD/MLV P passes a threshold value Θ, its fitness value is reduced to

(1− SD/MLV P) ∗ VOrg, where VOrg is its original value.

If a candidate’s SD is greater than or equal to its MDL, it implies that,

in terms of finding discrete partitions, this solution has been significantly rep-

resented by others and becomes redundant. Generally, the fitness value of a

redundant candidate needs to be zero to keep it from reproduction. However,

in the experiments, we set the value to 1% of its original value, allowing it to

be selected with a low probability. If not, (1 − SD/MLV P) ∗ VOrg controls the

degree of decrement. The more information in a candidate that is represented in

others, the more it is reduced. After a candidate’s fitness value is reduced, it is

marked as “Degraded”.

Since a discrete partition defines a valid partition, MDL can never be greater

than MLVP (MDL ≤ MLV P). (1 − SD/MLV P) ∗ VOrg is applied only when

SD < MDL. Since SD < MDL ≤MLV P , (1− SD/MLV P) ∗ VOrg is positive.

When SD is greater than or equal to MDL, a fitness is reduced to a small value

but still positive. So, the fitness value of an individual is always positive.

Threshold value Θ might vary between different systems. Since it is enabled

only when SD is less than MDL, a value between 0 and 1 can be applied. In

model III, we used 2/3, while, in model II, we used 1/2.

5.2.4 Extending simple simulated annealing

A simple Simulated Annealing (SA) works on a single solution. In order to find

all possible UIOs, multi-run based SA needs to be applied. Several researchers

have studied the multi-run based SA (Atk92; MMSL96).

In this work, population based simulated annealing (PBSA) is used. Each

individual in the genetic pool refers to a solution and is perturbed according to

the simple SA scheme. All individuals in a population follow the same temper-

ature drop control. During the computation, individuals in the genetic pool are

compared with others. Those individuals that have been significantly represented

by others have the fitness value reduced according to the sharing scheme.

90

5.3 Models for experiments

Figure 5.3: The first finite state machine used for experiments: model I.

5.3 Models for experiments

The study of the proposed model consists of two stages. In the first stage, the

construction of UIOs using GAs was initially investigated. The performance of

GAs was simply compared with that of random search. In the second stage,

we investigated the impact of the sharing technique when constructing multiple

UIOs using GAs and SA, and reported the experimental results.

Three models are used for experiments. These models are minimal and

strongly connected. They are shown in Figure 5.3 (model I), Figure 5.4 (model

II) and Figure 5.5 (model III), respectively.

The first model has 5 states. The input set is I = {a, b, c} and the output set

is O = {x, y}; the second model has 10 states and the third model has 9 states.

Both the second and the third machines use the same input and output sets. They

are: I = {a, b, c, d} and O = {x, y, z}. The complete set of the minimum-length

UIOs for model I is listed in Table 5.1.

When investigating the impact of the sharing techniques, in order to compare

91

5.3 Models for experiments

Figure 5.4: The second finite state machine used for experiments: model II.

Figure 5.5: The third finite state machine used for experiments: model III.

92

5.4 Working with genetic algorithms

State UIOs
aa/xx, ab/xx, ac/xy, ba/xx

s1 bb/xy, ca/yx, cb/yx
s2 b/y
s3 ba/xz, bc/xz, ca/yz, cc/yz
s4 bb/xx, bc/xy
s5 a/z, c/z

Table 5.1: The minimum-length UIOs for model I.

SQ NS SQ NS SQ NS SQ NS
cbb 7 cbca 6 bca 5 cacc 4
bcb 7 bcc 6 ccb 4 caca 4
bb 7 cacb 5 cbc 4 caa 4

cbcc 6 vab 5 cba 4 acb 4
ab 4 ca 3 aa 3 a 2
ccc 3 bcbc 3 cc 2 bc 1
cca 3 acc 3 bcba 2 - -
cb 3 aca 3 ba 2 - -

Table 5.2: UIOs for model II.

the set of UIOs produced with a known complete set, the search is restricted to

UIOs of length 4 or less. With such a restriction, for model II and model III,

44 = 256 input sequences can be constructed. There are 30 UIOs for model II,

listed in Table 5.2 and 86 UIOs for model III, listed in Table 5.3. In the tables,

SQ stands for the input from a UIO sequence and NS refers to the number of

states this sequence can identify.

5.4 Working with genetic algorithms

5.4.1 GA vs. random search

In this section, a set of experiments was devised to investigate the performance

of a simple GA on the construction of UIOs. The experiments were designed by

using model I first, and then model II. The performance of a simple GA was

experimentally compared with that of random search.

93

5.4 Working with genetic algorithms

SQ NS SQ NS SQ NS SQ NS
aaaa 8 aaa 5 bcca 5 accd 4
aaab 7 aabc 5 bccb 5 bab 4
cca 7 aacc 5 cbcd 5 baca 4
ccb 7 abca 5 ccc 5 bacb 4
aaad 6 acaa 5 aabb 4 bbc 4
aaca 6 acad 5 aabd 4 bca 4
acca 6 baa 5 abcc 4 bcba 4
accb 6 bba 5 abcd 4 bcbc 4
accc 6 bbb 5 aca 4 bcbd 4
cbca 6 bcad 5 acba 4 bccc 4
cbcc 6 bcbb 5 acbb 4 caaa 4
caab 4 bcc 3 aadc 2 ca 1
cbaa 4 bcd 3 abd 2 aad 1
cbaa 4 bcd 3 abd 2 aad 1
cbb 4 caac 3 acbd 2 acb 1
cbcb 4 cabc 3 ba 2 ada 1
aab 3 cacc 3 caa 2 adba 1
aba 3 cbab 3 cabb 2 adbc 1
abb 3 cbd 3 cabd 2 adbd 1
abc 3 aacb 2 caca 2 adc 1
bacc 3 ccb 2 cacb 2 cd 1
bad 3 aacd 2 cad 2 bb 3
aada 2 cb 2 - - - -

Table 5.3: UIOs for model III.

94

5.4 Working with genetic algorithms

A: Tracking historical records

When implementing GAs, mutation prevents the computation from getting stuck

in a local maxima/minima but might also force it to jump out of the global

maxima/minima when it happens to be there. Solutions provided at the end of

evolutionary computation could be good, but need not be the best found during

the process. It is therefore useful to keep track of those candidates that have

produced good or partially good solutions, and store them for the purpose to

further optimise the final solutions.

Consider an example shown in Figure 5.6. Suppose that a GA produces a

UIO sequence Ut for state st, forming a path shown in thin solid arrow lines.

During the computation, another solution U ′
t for st has been found, forming a

path shown in dotted arrows. The two lines visit a common node at N4. Ut has

a shorter path than U ′
t before N4 while has a longer path after N4. The solution

recombined from Ut and U ′
t (indicated in figure by thick arrow lines), taking their

shorter parts, is better than either of them.

In the study of computing UIOs using a simple GA, a database is used to track

candidates that result in the occurrence of discrete partitions. This database is

then used to further optimise the final solutions through recombination. Solutions

for a state, which are of the same length, are multi-UIOs for this state which can

be used in test generation proposed in refs. (SLD92; YU90).

B: Experiments with model I

Goldberg (Gol89) has studied the effects of different choices of crossover and

mutation rates. In this work, we simply follow his suggestions. The parameters

are set to: 1ChrLen = 10, XRate = 0.75, MRate = 0.05, PSize = 30, MGen =

50, α = 15, and γ = 1.5. The settings of crossover rate and mutation rate remain

unchanged throughout all GA experiments.

Model I is first used for the experiments. All minimum-length UIOs for all

states are presented in Table 5.1. Roulette Wheel Selection (RWS) and Uniform

Crossover (UC) are implemented.

1ChrLen:Chromosome Length; XRate:Crossover Rate; MRate:Mutate Rate; PSize: Popu-
lation Size; MGen:The Maximum Number of Generations.

95

5.4 Working with genetic algorithms

Figure 5.6: Solution recombination.

96

5.4 Working with genetic algorithms

Figure 5.7: Average fitness value - input space {a,b,c}.

At the end of computation, by looking at the average fitness values (Figure

5.7), we found that the genetic pool converges quite quickly. The curve is com-

paratively smooth. However, by examining all individuals (Table 5.4), we found

that the whole population tends to move to the individuals that start with bb or

bc. The population loses its diversity and converges prematurely. Consequently,

only a few UIOs have been found {b, bb, bc}.
This is not what we expected. To keep the genetic pool diverse, we introduced

a DO NOT CARE character ′]′. When receiving this character, the state of an

FSM remains unchanged. The input space is then {a, b, c,]}. We keep the same

values for all other parameters. The average fitness chart is presented in Figure

5.8. It can be seen that Figure 5.8 is not as smooth as Figure 5.7, but still shows

a general tendency to increase. After examining the genetic pool, we found that

eleven UIOs, {a, b, c, ab, ac, ba, bb, bc, ca, cb, cc}, were found (1Table 5.5).

By retrieving the historical records, we also found {aa} (Table 5.6). The GA

thus performs well in this experiment.

The reason that crossover can be used to explore information is that it forces

genes to move among chromosomes. Through recombination of genes, unknown

1Sequence: candidate sequence. V S: minimum-length UIO.

97

5.4 Working with genetic algorithms

ID Sequence ID Sequence
1 bccaabcacc 16 bbcaabcacc
2 bbbaabaacc 17 bbbaabaaca
3 bbbaabcacc 18 bbcaababcc
4 bcccabaacb 19 bbbcabbacc
5 bbcbabcacb 20 bbcaabaacc
6 bbbaabcacc 21 bccaabaacc
7 bbcbabcacb 22 bbbaabaacc
8 bbccabcacb 23 bbbcabbacc
9 bbcbabaacb 24 bbcbabcacb
10 bcbbabaacb 25 bbbcabcacc
11 bbcbabcabb 26 bbcaabcacb
12 bbcaabaacc 27 bbbbababcc
13 bccaabaacb 28 bbcaabcacb
14 bbbbabcacc 29 bbccabbacc
15 bbcbabcacb 30 bbbaabbacb

Table 5.4: Final sequences obtained from model I - input space {a,b,c}.

Figure 5.8: Average fitness value - input space {a,b,c,]}.

98

5.4 Working with genetic algorithms

ID Sequence VS ID Sequence VS
1 bbbbcccb]c bb 16]bcbabcabb bc
2 ab]bbc]bbc ab 17]]cba]cbcb cb
3]bc]caaaba bc 18]bb]]bbaca bb
4]]bcacbc]c bc 19 bc]bb]cbb] bc
5 b]bcaca]cb bb 20 cbcbbc]]ca cb
6 bb]bca]]bb bb 21]bc]aabc]c bc
7 cbacc]ac]b cb 22 c]a]cacc]c ca
8 acabaaaacc ac 23 c]accac]]a ca
9 ba]a]aaa]b ba 24]b]bcabbc] bb
10]ccaab]acc cc 25 bb]bba]]a] bb
11]cbc]aa]ab cb 26 bacb]c]b]b ba
12]bbcca]aaa bb 27 bb]bb]]]c] bb
13 cccb]]]]]c cc 28 cb]babc]b] cb
14 aca]bbaa]b ac 29 cccc]cc]bb cc
15 cbb]c]cb]c cb 30 b]cca]]b]c bc

Table 5.5: Final sequences obtained from model I - input space {a,b,c,]}.

ID Sequence VS Fitness
1 aa]caab]c aa 6.2784
2 a]aba]bc]c aa 4.2605

Table 5.6: Solutions obtained from the historical record database.

99

5.4 Working with genetic algorithms

Exp. UIOs Found Total Percent(%)
1 8 12 66.7
2 8 12 66.7
3 11 12 91.7
4 11 12 91.7
5 10 12 83.3
6 11 12 91.7
7 11 12 91.7
8 11 12 91.7
9 10 12 83.3
10 12 12 100
11 11 12 91.7

Avg 10.36 12 86.4

Table 5.7: Average result from 11 experiments.

information can be uncovered by new chromosomes. However, the gene move-

ment exerted by crossover can only happen among different chromosomes. We

call it vertical movement. By using a DO NOT CARE character, some spaces

can be added in a chromosome, which makes it possible for genes to move hori-

zontally. Therefore, DO NOT CARE makes the exploration more flexible, and,

consequently, can help to keep the genetic pool diverse.

We organised eleven experiments with the same parameters. By examining

the solutions obtained in the final genetic pool (historical records are excluded),

we evaluated the average performance. Table 5.7 shows that, in the worst case,

8 out of 12 UIOs are found, which accounts for 66.7%. The best case is 100%.

The average is 86.4%.

After examining the solutions from different experiments, we found that aa is

the hardest UIO to be found while bb and bc are most frequent ones that occur

in the final solutions. By checking Table 5.1, we found a very interesting fact: a

majority of UIOs initially start with b or c. If individuals happen to be initialised

with ba××××××××, they will distinguish s1, s2 and s5 in the first two steps,

and so achieve high fitness. These individuals are likely to be selected for the

next generation. Individuals initialised with aa×××××××× can distinguish

only s1 and s5 in the first two steps, and achieve lower fitness values. They are

100

5.4 Working with genetic algorithms

ID Sequence VS ID Sequence VS
1 cabbbcbcac ca 16 cacacacccc ca
2 ccbcbbbcbc cc 17 bcbbabcbca bc
3 bcccaaabcb bc 18 ccccbbcccb cc
4 cccccbcbac cc 19 accbbccacb ac
5 ccbbacbccc cc 20 cbccaccccb cb
6 bccccabcac bc 21 acbbcbbbbb ac
7 bccbcbbcbc bc 22 cbccccbccb cb
8 ccbbccaabc cc 23 ccabacbcca cc
9 bbacccccba bb 24 accacbabcc ac
10 cbbbbacccb cb 25 aabcbacbbb aa
11 bcaacccccb bc 26 cabbacacbc ca
12 cccbcbbcbc cc 27 bcbccccaac bc
13 abcbbcccab ab 28 aabcbccbca aa
14 bcccccbccc bc 29 bccccaabbb bc
15 bbccbccbba bb 30 acaccbaaba ac

Table 5.8: Solutions obtained using by random search.

less likely to be selected for reproduction. This fact seems to imply that there

exist multiple modals in the search space. Most individuals are likely to crowd

on the highest peak. Only a very few individuals switch to the lower modals. To

overcome this problem, sharing techniques might help. The application of such

approaches is studied in the following subsections.

We then turn to compare the performance between GA and random search.

Random search is defined as randomly perturbing one bit in an input sequence.

30 input sequences of ten input characters were randomly generated. We repeated

this experiment 10 times. The results shown in Table 5.8 are the best ones. From

the table it can be seen that 11 out of 12 UIOs (a, b, c, aa, ab, ac, bb, bc, ca, cb,

cc) are found over these experiments. Only one is missed (ba).

B: Experiments with model II

Since model I is comparatively simple, and the UIOs are short, it is not difficult

to find all UIOs through random search. Thus, the GA does not show signifi-

cant advantages over random search. A more complicated system, model II, is

therefore used to further test GA’s performance.

101

5.4 Working with genetic algorithms

State UIOs
s1 ca/xx, cb/xx
s2 aa/xz, ab/xy, acc/xxx, bb/xy

bcc/xxx, bcba/xxzy
s3 a/z, bb/yz, ca/xz, cb/xy,

ccb/xxy, ccc/xxx
s4 bc/yx, cba/xzy, ccb/xxz

cbca/xzzx, cbcc/xzzz
s5 ab/xz, acb/xxz, bb/yx

bcc/yzx, cacc/zxxx, cb/zx
s6 bb/zx, bcc/zzx
s7 a/y, bb/yy, bcc/yzz,

bcbc/yzyz, cbc/zyz, cc/zz
s8 bb/zy, bcc/zzz, bcbc/zzyz,

cbca/xzzz, cbcc/xzzx
s9 bb/xz, ca/zz, cc/zx

Table 5.9: UIO sequences for model II found by random search.

However, no existing UIOs are available for model II, which means that we

can never be sure that a complete set of UIOs has been found. Hence, we will

compare the numbers of UIOs found by using random search and GA separately.

A total of 50 candidates were used in the experiment. All UIOs found, whether

minimum-length or not, are listed to make a comparison. Experiments on both

random search and GA were repeated 10 times. The solutions presented in Table

5.9 and Table 5.10 are the best. Table 5.9 lists the UIOs obtained through random

search while Table 5.10 shows the solutions found by GA. After comparing these

two tables, we found that GA finds many more UIOs than random search does.

Both random search and GA easily find the short UIOs. However, for other UIOs

the performance of GA appears to be much better than that of random search.

For example, GA finds bcbcc/xxzzz and cbcbb/xzzyz while random search does

not.

We also measured the frequency of hitting UIOs. Random search is redefined

by initialising population routinely. Experimental result show that both methods

hit UIOs with the length of 3 or less frequently. However, on hitting those with

the length of 4, random search is roughly the half times of GA, while, for those

102

5.4 Working with genetic algorithms

State UIOs
s1 ca/xx, cb/xx
s2 aa/xz, ab/xy, aca/xxz,acb/xxy

acc/xxx, bb/xy, bcc/xxx, bcbcc/xxzzz
s3 a/z, bb/yz, ca/xz, cb/xy,

ccb/xxy, ccc/xxx
bc/yx, cba/xzy,cbcbb/xzzyx

s4 cbb/xzy, ccb/xxz, cbca/xzzx,
cbcc/xzzz, cbcbc/xzzyz

s5 ab/xz, acb/xxz, bb/yx, bca/yzz
bcc/yzx, cab/zxy, cb/zx

s6 bb/zx, bca/zzz, bcc/zzx
a/y, ba/yy, bb/yy, bca/yzx

s7 bcc/yzz, cab/zxz, cbb/zyx, cc/zz
cbc/zyz, cc/zz, bcbc/yzyz

ba/zy, bb/zy, bca/zzx,
s8 bcc/zzz, cbb/xzx, cbca/xzzz,

cbcc/xzzx, cbcbb/xzzyz
s9 bb/xz, ca/zz, cbb/zyz, cc/zx

Table 5.10: UIO sequences for model II found by GA.

103

5.4 Working with genetic algorithms

with the length of 5, in the first 30 iterations, random search hits 10 times while

GA 27.

All these results suggest that, in simple systems, it is possible to obtain good

solutions through random search. However, in more complicated systems, espe-

cially in those with large input and state spaces, finding UIOs with random search

is likely to be infeasible. By contrast, GA seems to be more flexible.

C: summary

In this subsection, the performance on computing UIOs using simple GAs was

investigated. It is shown that the fitness function can guide the candidates to

explore potential UIOs by encouraging the early occurrence of discrete partitions

while punishing length.

It is also demonstrated that using a DO NOT CARE character can help to

improve the diversity in GAs. Consequently, more UIOs can be explored. The

simulation results in a small system showed that, in the worst case, 67% of the

minimum-length UIOs have been found while, in the best case, 100%. On the

average, more than 85% minimum-length UIOs were found from the model under

the test. In a more complicated system, GA found many more UIOs than random

search. GA was much better than random search at finding the longer UIOs.

These experiments and figures suggest that GAs can provide good solutions on

computing UIOs.

However, it was also noted that some UIOs were missed with high probability.

This may be caused by their lower probability distribution in the search space.

The problem was further studied in the next subsection.

5.4.2 Sharing vs. no sharing

Experiments in this subsection investigate the impact of the sharing techniques

that aim to overcome the problem discussed in section 5.4.1. Maximum generation

is set to MGen = 300. The population size is set to PSize = 600. The value of

MGen and PSize remain unchanged throughout all following experiments.

104

5.4 Working with genetic algorithms

The experiments used model III first, and then model II. Threshold value θ

is set to 2/3 for model III and 1/2 for model II. α and γ are set to 20 and 1.2

respectively (section 5.7 explains the reason for choosing such values).

The first experiment studied the UIO distribution when using GA without

sharing. The experiment was repeated 10 times. Figure 5.9 shows the UIO

distribution of the best result. It can be seen that a majority of individuals move

to a sub–population that can identify 7 states. The rest scatter among some

other sub–populations that can identify 8, 6, 5, 4, 3, 2, 1 states. Due to such an

uneven distribution, some sequences that define UIOs of 6, 5, 4, 3, 2, 1 states are

likely to be missed. Only 59 are found and so 27 were missed.

An experiment was then designed to investigate the use of the sharing tech-

nique. This experiment was repeated 10 times. The best result is shown in Figure

5.10 (in B–H, sequences of legends indicate input sequences that define UIOs).

It can be seen that, after applying sharing, the population is generally spread

out, forming 9 sub–populations. Each sub–population contains UIO sequences

that identify 0, 1, 2, 3, 4, 5, 6, 7, 8 states correspondingly. Only 4 UIOs were

missed – the performance of the search had improved dramatically. However, the

distributions in sub–populations do not form a good shape. Each sub–population

is dominated by one or several UIOs.

The impact of sharing techniques was further investigated by using model II.

Figure 5.11 shows the best result from the 5 experiments. It can be seen that

the distribution of input sequences is similar to that of GA with sharing in model

III. Generally, the population is spread out, forming several sub–populations.

However, each sub–population is dominated by several individuals. We found

that 2 UIOs were missed.

The experimental results above suggest that, when constructing UIOs using

a GA, without the sharing technique, the population is likely to converge at

several individuals that have high fitness values. The distribution of such a pop-

ulation causes some UIOs to be missed with high probability. This is consistent

with the results of section 5.4.1. After applying the sharing technique, the pop-

ulation is encouraged to spread out and forms several sub–populations. These

sub–populations are intended to cover all optima in the search space. The search

quality was significantly improved and more UIOs were found.

105

5.4 Working with genetic algorithms

Figure 5.9: UIO distribution using GA without sharing for model III; Legends
indicate the number of states that input sequences identify.

106

5.4 Working with genetic algorithms

Figure 5.10: UIO distribution using GA with sharing for model III.

107

5.4 Working with genetic algorithms

Figure 5.11: UIO distribution using GA with sharing for model II.

108

5.5 Working with simulated annealing

Figure 5.12: Average fitness values when constructing UIOs using GA for model
III.

Convergence rates have also been studied when constructing UIOs for both

models. Figure 5.12 and Figure 5.13 show the average fitness values when con-

structing UIOs for model III and model II respectively. From figures it can be

seen that, in model III, the genetic pool begins to converge after 200 generations

while, in model II, genetic pool converges after 60 generations.

5.5 Working with simulated annealing

Experiments described in this section aim to study the performance of SA. As

described in section 5.2.4, a population based SA (PBSA) was used. Each in-

dividual in the genetic pool referred to a solution and was updated according

to a simple SA’s scheme. Individuals in the genetic pool were compared with

others according to the sharing scheme. All individuals in a population followed

the same temperature drop control. We also made a further restriction on the

creation of a new solution. When an individual was required to generate a new

solution, it was continuously perturbed in its neighbourhood until the new solu-

109

5.5 Working with simulated annealing

Figure 5.13: Average fitness values when constructing UIOs using GA for model
II.

tion found at least one discrete partition. In order to make a comparison with

GA, the maximum number of generations is always set to 300.

Model III was first applied for the experiments. Two temperature drop control

schema were considered. In the first experiment, the temperature was reduced

by a normal exponential function nT (i + 1) = 0.99 ∗ nT (i) (Figure 5.14-A), and

a sharing technique was applied. The experiment was repeated 10 times and the

best result is shown in Figure 5.15.

From the figure it can be seen that the general distribution and sub–population

distributions are quite similar to that of GA with sharing. The population was

formed with several sub–populations. Each sub–population was dominated by

several individuals. A total of 8 UIOs were missed. Compared to the experiments

studied in section 5.4, this figure is quite high. In order to improve the search

quality, the temperature drop scheme was changed to nT (i+ 1) = 0.99 ∗ nT (i) +

nS(i+1)∗sin(10∗π∗i), where nS(i+1) = 0.95∗nS(i). The curve of the function

is shown in Figure 5.14-B. Generally, the tendency of temperature control is

still exponentially decreasing, but local bumps occur. The best result from 10

110

5.5 Working with simulated annealing

Figure 5.14: Simulated annealing temperature drop schema; A: normal exponen-
tial temperature drop; B: rough exponential temperature drop.

experiments is shown in Figure 5.16. We find that the distribution of population

and sub–population have no significant changes. However, only 2 UIOs were

missed. The performance is much better than the previous one.

The two SA methods were further studied by using model II. Figure 5.17

shows the best result using the normal temperature drop control while Figure 5.18

shows the best result for the rough temperature drop control. From these figures

it can be seen that, compared to the experiments using model III, the distribution

of input sequences have no significant changes. Both temperature control schemes

achieve a good performance. In normal temperature drop experiment, 3 UIOs

are missed while 2 UIO are missed in rough temperature drop experiment.

Figure 5.19 and Figure 5.20 present the average fitness values when construct-

ing UIOs for model III and model II using rough temperature drop control scheme

respectively. The figures show that, when using model III, the genetic pool be-

gins to converge after 250 generations while, when using model II, the genetic

pool converges after 200 generations. Comparing to Figure 5.12 and Figure 5.13,

it can be seen that SA converges slower than GA.

111

5.5 Working with simulated annealing

Figure 5.15: UIO distribution using SA with normal temperature drop for model
III.

112

5.5 Working with simulated annealing

Figure 5.16: UIO distribution using SA with rough temperature drop for model
III.

113

5.5 Working with simulated annealing

Figure 5.17: UIO distribution using SA with exponential temperature drop for
model II.

114

5.5 Working with simulated annealing

Figure 5.18: UIO distribution using SA with rough temperature drop for model
II.

115

5.6 General evaluation

Figure 5.19: Average fitness values when constructing UIOs using SA (rough T
drop) for model III.

5.6 General evaluation

The experimental results reported in the previous sections suggest that, when

constructing UIOs using GA and SA, without sharing technique, the population

is likely to converge at several individuals that have high fitness values. The

distribution of such a population causes some UIOs to be missed with high prob-

ability. After applying sharing technique, the population is encouraged to spread

out and forms several sub–populations. These sub–populations are intended to

cover all optima in the search space. The search quality significantly improved

and more UIOs were found. Tables 5.11 and 5.12 give the number of UIOs that

are missed for each experiment using GA, SA, GA with sharing and SA with

sharing. From these tables it can be seen that sharing techniques are effective in

finding multiple UIOs. It can also be noted that the performance of the search is

comparatively stable.

It has also been shown that, with the sharing technique, there is no significant

difference between GA and SA on the search for UIOs. Both techniques force their

116

5.6 General evaluation

Figure 5.20: Average fitness values when constructing UIOs using SA (rough T
drop) for model II.

GA SA GA/S SA/N SA/R
1 27 56 4 14 2
2 29 49 6 18 4
3 30 62 6 15 4
4 31 37 7 11 3
5 29 55 5 9 6
6 28 48 8 13 5
7 30 44 7 10 2
8 27 51 8 13 6
9 29 39 4 15 4
10 32 46 7 10 3

Avg 29.2 48.7 6.2 12.8 4.1

Table 5.11: Missing UIOs when using model III; GA:simple GA without sharing;
SA:simple SA without sharing; GA/S:GA with sharing; SA/N:SA with sharing
using normal T drop; SA/R:SA with sharing using rough T drop.

117

5.7 Parameter settings

GA SA GA/S SA/N SA/R
1 7 15 2 3 2
2 7 17 4 4 2
3 9 21 4 3 2
4 7 19 2 3 3
5 7 20 3 3 2

Avg 7.2 18.4 3 3.2 2

Table 5.12: Missing UIOs when using model II; GA:simple GA without sharing;
SA:simple SA without sharing; GA/S:GA with sharing; SA/N:SA with sharing
using normal T drop; SA/R:SA with sharing using rough T drop.

populations to maintain diversity by forming sub–populations. In the two models

under test, with the sharing technique, both GA and SA are effective.

When applying the SA, rough exponential temperature drop seems to be bet-

ter than the normal exponential temperature drop. Since the sharing technique

reduces some individuals’ fitness values, some information might be lost during

the computation. Local bumping in the rough exponential temperature drop

gives the experiments a second chance for amendments, which might help to pre-

vent such information from being lost. This could explain why the performance

of the rough SA was consistently better than that of a simple SA.

The results on convergence rates imply that, when constructing UIOs, the

GA converges faster than the SA. A simple GA works on population based ex-

ploration. New solutions (children) inherit information from previous solutions

(parents) through crossover while a SA generates a new solution based on the

search in the neighbourhood of an existing solution. A simple GA is more ex-

ploitative than a SA. That might explain why GA converges faster than SA in

our experiments.

5.7 Parameter settings

Parameter settings on crossover and mutation rates follow the suggestions from

ref. (Gol89); When investigating the impact of a sharing technique, the pop-

ulation size used in all experiments is fixed to 600. Using a larger size for a

population may increase the chance on finding more UIOs, but it increases the

118

5.7 Parameter settings

computational cost as well. This work did not investigate the effects on varying

crossover rate, mutation rate and the population size. Future work will address

these issues.

Parameter settings for α and γ affect the performance of computation signif-

icantly. γ is defined to control the dynamic behaviour of the exponential part in

the fitness function while α adjusts the weight of the linear part. To counteract

the effect of xie
δxi , γ must be set to a value that is greater than 1. However,

it can also be noted that too big a value of γ causes the calculation of an indi-

vidual’s fitness a continuous decrement even when some discrete partitions are

found. Therefore, a comparative small value that is greater than 1 should be

considered. In this work, we found that setting γ between 1.2 and 1.5 achieves

better performance than other values.

α is defined to reward the partitions when no discrete class has been found.

Normally, at the beginning of computation, when no discrete class is found, the

linear part plays the major role in the calculation of the fitness value. However,

with the computation going further and some discrete classes being found, the

exponential part takes over the role and becomes the major factor. Individuals

that switch the role too slowly might obtain low fitness values and become unlikely

to be selected for reproduction. This effect might cause some patterns (some

UIOs) to be missed.

For example, Figure 5.21 shows two patterns of state splitting trees in model

III. In pattern A (corresponding to aaaa), there are 5 discrete units in the fourth

layer (corresponding to the first three inputs) and 3 units in the fifth layer (cor-

responding to the first four inputs). In pattern B (corresponding to ccac), there

is 1 discrete unit in the third layer (corresponding to the first two inputs) and 6

units in the fourth layer (corresponding to the first three inputs). ccac acquires a

much higher fitness value than that of aaaa. aaaa is therefore likely to be missed

during the computation. To compensate for this effect, a comparatively high α

value might be helpful since it enhances the effect of the linear action. In this

work, we set α to 20. We have also tested values that are below 15 and found

that no experiment discovered the pattern A (aaaa).

Threshold value θ decides whether the fitness value of a candidate can be

reduced. A value between 0 and 1 can be applied. The setting of θ should be

119

5.7 Parameter settings

Figure 5.21: Two patterns of state splitting tree generated from model III.

120

5.8 Summary

suitable and may vary in different systems. If θ is set too low, candidates that

are not fully represented by others may be degraded, causing some UIOs to be

missed. For instance, abcab and abaac are two candidates. If θ is set less than

0.4, compared with abcab, the fitness value of abaac can be degraded. However, it

can be seen that abaac is not fully represented by abcab. abaac might be missed

in the computation due to inappropriate operations; at the same time, too high

a value of θ might make the operation of fitness degrade ineffective. If θ is set to

1, no degrade action occurs.

In our experiments, 2/3 was used in model III while 1/2 was selected for

model II; these values were chosen after some initial experiments.

5.8 Summary

State verification using Unique Input/Output (UIO) sequences has been playing

a very important role in the automated generation of test sequences when testing

from finite state machines. Finding ways to effectively construct UIO sequences

for each state from the finite state machine being investigated is extremely im-

portant. However, computing UIO sequences is NP-hard.

In this chapter, we investigated the use of Metaheuristic Optimisation Tech-

niques (MOTs), with sharing, in the generation of (multiple) unique input output

sequences (UIOs) from a finite state machine (FSM). A fitness function, based

on properties of a state splitting tree, guides the search for UIOs.

The performance of a simple Genetic Algorithm (GA) was experimentally

compared to that of random search by using two finite state machines. The

experimental results suggested that the GA outperforms random search.

A sharing technique was introduced to maintain the diversity in a population

by defining a mechanism that measures the similarity of two sequences. Two

finite state machines were used to evaluate the effectiveness of a GA, GA with

sharing, and a Simulated Annealing (SA) with sharing. The experimental results

showed that, in terms of UIO distributions, there was no significant difference

between the GA with sharing and the SA with sharing. Both outperforms the

version of the GA without sharing. With the sharing technique, both GA and

SA can force a population to form several sub-populations and these are likely

121

5.8 Summary

to cover many local optima. By finding more local optima, the search identifies

more UIOs.

However, a problem is also noted. All sub-populations are dominated by one

or several individuals. This remains a research topic for the future work.

122

Chapter 6

Fault coverage

6.1 Introduction

Testing is an expensive process. Finding effective strategies to automate the

generation of efficient tests, which can help to reduce development costs and to

improve the quality of (or at least confidence in) a system, is of great value in

reducing the cost of system development and testing.

When testing from a finite state machine (FSM) M , an efficient test sequence

should cover, as much as possible, all faults which any implementation may have

and should be relatively short. Ideally we use a complete test suite: a test

suite that is guaranteed to determine correctness if the number of states of the

Implementation Under Test (IUT) does not exceed some predetermined bound.

However, all approaches to generating a complete test suite either rely on the

existence of a distinguishing sequence for M (Gon70; Hen64; UWZ97), assume

that the IUT has a reliable reset (Cho78), or produce a test suite whose size is

exponential in terms of the number of states of M (RU95). However, a finite

state machine need not have a distinguishing sequence and often the IUT does

not have a reliable reset and there has thus been much interest in alternative test

techniques, often based on UIOs.

Sidhu et al. (SL89) concluded that the U-, D-, and W-methods (for more

information about these methods, see chapter 4) produce identical fault coverage

and ensure the detection of all faults. However, this conclusion was challenged

by Chan, arguing that the problems of fault masking in UIOs may degrade the

123

6.1 Introduction

performance of UIO based methods. In their paper (CVI89), Chan et al. showed

that U-, D- and W-methods produce identical fault coverage only when the UIOs

selected from the specification are UIOs in the IUT as well1. A UIO may lose its

property of uniqueness in some faulty implementations, which leads to the failure

of corresponding state verification. To overcome these problems, Chan proposed

the UIOv method where all UIOs are checked first for their uniqueness in the IUT

before being selected for test case generation. Although this operation helps to

improve the test quality, it might significantly increase the test cost. Meanwhile,

in a system without a reset function, it might also make the procedure of testing

discontinuous.

Naik (Nai95) further studied the problem and pointed out that a fault in a UIO

can be masked either by some erroneous outputs or by an incorrect state transfer.

In order to enhance the ability of UIOs to resist fault masking, he suggested that,

when generating a test sequence those UIOs with maximal strength should be

considered first. He also proposed an algorithm to construct UIOs with high

strength. This method can effectively reduce the chance that faults are masked

by error outputs, but might lack the ability to handle the situation that faults

are masked by incorrect state transitions.

Shen et al. (SST91) showed that using a backward UIO (B-UIO) in a transi-

tion test helps to improve test quality. By applying a B-UIO, the initial state of

the transition is also verified. All states in the B-UIO method are verified twice.

The test quality is therefore improved. However, the use of B-UIOs can also lead

to some problems. These are discussed in section 6.2. In ref. (SL92), Shen and

Li extended the work by using Unique Input/Output Circuit (UIOC) sequences

for state verification. A UIOC is constructed by using a F-UIO2 and a B-UIO

for a state. If the F-UIO and the B-UIO do not naturally form a circuit (the tail

state of the F-UIO is not the initial state of the B-UIO), a transfer sequence will

be added to complete it. This operation may give rise to some problems. If the

gap between the tail state of the F-UIO and the initial state of the B-UIO is too

1Problems described in U-method is suitable for W-method as well where UIO is replaced
with CS.

2An ordinary UIO is denoted as F-UIO in order to distinguish it from the backward UIO.

124

6.2 Problems of the existing methods

long (needs a long transfer sequence), the operation may reduce the robustness

of the UIOC for verification.

In this chapter, we investigate the problem of fault masking in UIOs and

proposed the use of a new type of UIOC sequence for state verification to overcome

the problem. UIOCs themselves are particular types of UIOs where the ending

states are the same as their initial states. When constructing a UIOC, by further

checking the tail state and by using overlap or internal state observation scheme,

the fault types of UIOs discussed in section 6.2 can be avoided, which makes the

UIO more robust. Based on rural Chinese postman algorithm and UIOCs for

state verification, a new approach is proposed for generating a more robust test

sequence.

An approach was also suggested for the construction of B-UIOs. Test perfor-

mance among F-UIO, B-UIO and UIOC based methods was compared through

a set of experiments. The robustness of the UIOCs constructed by the algorithm

given in this work and those constructed by the algorithm given in ref. (SL92)

were also experimentally compared.

6.2 Problems of the existing methods

6.2.1 Problems of UIO based methods

Unique input/output sequences uniquely identify states in the specification FSM.

The UIO based methods are based on the assumption that UIOs in a specification

FSM are also UIOs in the IUT. This assumption is however not always true. A

faulty example cited from ref. (CVI89) is shown in Figure 6.1. In the specification

FSM, sequence (b/1)(a/1) is a UIO for s3. However, in the faulty implementation,

s1 and s3 produce the same output (11) when responding to ba. The UIO loses

its property of uniqueness in the IUT and fails to identify s3.

The problem is called fault masking in UIOs. The capability of a UIO to resist

this problem is called its strength (Nai95). In UIO based test methods, the use

of UIOs with low strength may lead to a test sequence that is not robust.

125

6.2 Problems of the existing methods

Figure 6.1: A specification finite state machine and one faulty implementation
cited from ref. (CVI89).

6.2.2 Problems of backward UIO method

A B-UIO provides evidence that an FSM is currently in a known state, but does

not show from which state it initially came. A B-UIO may have several valid

initial states that satisfy the definition of this B-UIO. An example is shown in

Figure 6.2 where the FSM (table 6.1) is defined in section 6.5. Sequence dccd

is a B-UIO for s0. It can be seen that the B-UIO sequence has 4 initial states

(s1, s4, s6, s9) that satisfy the definition. If a B-UIO has more than one valid

initial state and is chosen for a transition test, it is possible that a fault that

occurred in the previous transition test is masked by this B-UIO.

An example is illustrated in Figure 6.3 where the test segment for transition

si → sj is formed by concatenating the input part of the B-UIO for si with the

input of this transition and the input part of the F-UIO for sj. Suppose the

B-UIO sequence chosen for si has more than one valid initial state while sm and

s
′
m are both valid ones and, according to the specification FSM, the previous

transition test should end up with sm. If, in a faulty implementation, the tail

state of the previous transition test happens to be s
′
m, the selected B-UIO for si

126

6.2 Problems of the existing methods

Figure 6.2: ”dccd/yyyy”: Backward UIO sequence of S0 in the finite state ma-
chine defined in table 6.1.

Figure 6.3: Problems of the B-method.

127

6.3 Basic faulty types

will automatically mask this fault. This makes the test sequence less likely to

detect this faulty implementation.

It can be noted that the fault masking problems described in the F-method

may happen in the B-method as well since, in the B-method, a transition test

consists of a part that uses the F-UIO for the tail state verification. However,

since the B-method not only verifies the tail state of a transition, but also checks

the initial state, the robustness of a test sequence can be enhanced.

6.3 Basic faulty types

Lombardi et al. (LS92) formalise the faulty implementations of UIOs into two

basic types shown in Figure 6.4. In this section, we discussed the problems defined

by Lombardi et al. and proposed solutions to overcome them.

In type 1, the tail state of the UIO in the implementation is different from that

in the specification while in type 2 the UIO and its faulty implementation have an

identical ending state. The following explains how the faults are masked. Suppose

i1i2i3i4 is the input sequence from a UIO for si. When the FSM is in si and receives

i1i2i3i4, it produces o1o2o3o4, visiting sj, sk, sm and sn correspondingly. In type

1, a fault is caused by an erroneous state transfer si → s
′
j that has the same I/O

as si → sj. Instead of being in sj, the FSM arrives at s
′
j. If the following outputs

are o2o3o4, these outputs are then masking the state transfer fault. Suppose the

following transition test is for a transition T : sn → sx. If there exists another

transition T
′
: s

′
n → sx that has the same I/O behaviour as T , and, rather than

T , the transition T
′
is tested, the test sequence will therefore be unable to detect

the fault in T .

In type 2, an erroneous transition si → s
′
j that has the same I/O as si → sj

occurs. This fault is masked first by an output o2 and then by another erroneous

transition s
′

k → sm that has the same I/O behaviour as sk → sm.

It can also be noted that the faulty implementations described in F-UIOs can

be extended to B-UIOs by considering the tail states as initial states.

128

6.3 Basic faulty types

Figure 6.4: Types of faulty UIO implementation.

129

6.4 Overcoming fault masking using robust UIOCs

Figure 6.5: Construction of UIOC sequences using overlap scheme.

6.4 Overcoming fault masking using robust UIOCs

6.4.1 Overcoming type 1

In type 1, the final state of a faulty UIO is different from that of its specification,

and so one way to detect this error is to further verify it. This is illustrated in

Figure 6.5. Suppose, according to its specification, an FSM should be in sm after

applying a UIO sequence Usi
for si. To check whether the FSM is in sm, a UIO

sequence Usm for sm is then applied, moving the FSM to sq. If the input/output

behaviour is identical to that described in the specification, it then provides

evidence that the final state of Usi
(sm) is correct. A question then arises: how

can we be sure that the FSM is in sq? A UIO sequence for sq can be used to

130

6.4 Overcoming fault masking using robust UIOCs

further check it. The procedure of repeating the verification for the final state

of a UIO gives evidence that all previous UIO sequences make the FSM arrive

at correct final states. However, the procedure of verifying the final states of

UIO sequences should terminate. UIOs should construct a Unique Input/Output

Circuit (UIOC) to terminate the verification. The following will give a detailed

explanation of the control scheme (Figure 6.5).

Suppose Usi
is a F-UIO for si and its final state is sm. By applying a F-

UIO Usm for sm, evidence is given, indicating that the FSM was previously in

sm. Continuing to apply F-UIO Usq for sq, the I/O behaviour therefore provides

evidence that the FSM arrived at sq. Suppose that there exists a F-UIO Usq for sq

with tail state si, the application of Usq provides evidence for the correct arrival

at sq. The structure of the UIOC shows that, if the input sequence is executed

more than once, the I/O behaviour of Usi
will repeat, which provides evidence

for the correct arrival of si. Thus, by constructing a UIOC, each UIO provides

evidence of the correct arrival of its previous UIO’s tail state.

The control scheme shown in Figure 6.5 is an ideal situation. In some ap-

plications, the complete UIOC may not be constructed. For example, instead

of terminating at si, the last UIO sequence in the UIOC may make the FSM

arrive at sc, forming a gap between the tail state and si. When dealing with this

situation, a shortest sequence can be considered since the extended sequence of

a UIO for a state is still a UIO. Meanwhile, when constructing a UIOC, UIOs

that result in a minimal gap between the tail state of the last UIO and si need

to be considered. For instance, if there are two sets of UIOs where the first set

moves the FSM to sc while the other moves the FSM to sb, the first set of UIOs

is better than the other if the gap between sc and si is shorter than that between

sb and si.

The UIOC can be constructed by using B-UIOs as well. Suppose, in Figure

6.5, Usi
, Usm and Usq are B-UIOs for sm, sq and si correspondingly, then Usq

provides evidence that the FSM is in si (Usi
starts from si), Usm provides evidence

that the FSM is in sq (Usq starts from sq) and Usi
provides evidence that the FSM

is in sm (Usm starts from sm). Therefore, in a UIOC constructed by B-UIOs, each

B-UIO provides evidence for the next B-UIO’s initial state.

131

6.4 Overcoming fault masking using robust UIOCs

The advantages of using B-UIOs are that: 1. In a deterministic FSM, each

state has at least one B-UIO; 2. A minimal FSM with n states has a homing

sequence of length O(n2) that can be constructed in time O(n3)(Koh78), and

B-UIOs can be derived from homing sequences by concatenating the input part

of the homing sequence with a transfer sequence that moves the FSM from the

tail state of a homing sequence to the target state.

Proposition 6.4.1 Given a deterministic, reduced and strongly connected finite

state machine M , there exists at least one B-UIO sequence for each state of M .

Proof: In a minimal deterministic FSM, there exists at least one homing sequence

H (Koh78). Suppose, when responding to H in some state s, the FSM ends up

at state si and produces H(o), H/H(o) is a B-UIO for si. Given a state sj, si 6= sj,

there exists an I/O sequence L/L(o) that moves the FSM from si to sj since the

FSM is strongly connected. I/O sequence HL/H(o)L(o) is a B-UIO for sj. �

Proposition 6.4.2 In a deterministic finite state machine, if an I/O sequence

Li/Lo is a F-UIO for si such that sj = δ(si, Li) and Lo = λ(si, Li), then Li/Lo

is also a B-UIO for sj with one valid initial state.

Proof: Suppose Li/Lo is a F-UIO for si and, when responding to Li, the FSM

arrives at sj. Since the FSM is deterministic, sj is the only state reachable by

Li/Lo from si. Since Li/Lo is the F-UIO for si, Li/Lo is a B-UIO for sj with one

valid initial state. �

However, the UIOCs constructed by a complete set of B-UIOs may not be

UIOs (F-). Therefore, before choosing the UIOCs for state verification, the

uniqueness of the I/O sequences need to be checked. Only input/output se-

quences that form F-UIOs are used.

A UIOC can be constructed by using both F-UIOs and B-UIOs. It can be

seen that the sequence formed by concatenating a F-UIO (head state is sF) with

a B-UIO (tail state is sB) is a F-UIO for sF and a B-UIO for sB. In ref. (SL92)

a UIOC was also used for state verification. A UIOC was constructed by using

a F-UIO and B-UIO for a state. If the F-UIO and B-UIO do not naturally form

a circuit (the tail state of the F-UIO is not the initial state of the B-UIO), a

132

6.4 Overcoming fault masking using robust UIOCs

short sequence is applied to complete it. It can be noted that, if the F-UIO and

B-UIO form a circuit, the UIOC in (SL92) is identical to that in this work. The

construction of UIOCs in (SL92) can be viewed as a special case of this work.

However, if there exists a gap between the tail state of the F-UIO and the initial

state of the B-UIO, a short sequence has to be applied to complete the circuit.

This may degrade the robustness of the UIOC.

This work proposed a new method for generating UIOCs where the F-UIO

and the B-UIO do not form a circuit. In section 6.5, we reported the result of an

experiment devised to compare the relative robustness of UIOCs that were con-

structed by the methods given in this work and in ref. (SL92). The experimental

results showed that the UIOCs constructed according to the algorithm given in

this work are more robust than those constructed by the algorithm given in ref.

(SL92).

The use of UIOCs for state verification will increase the length of a test

sequence. When constructing a UIOC, if there exists more than one set of F-

UIOs or B-UIOs that can form UIOCs, the set with the least number of elements

should be used to get a UIOC with the minimal length. Meanwhile, overlap

among UIOs needs to be considered as well to further reduce the length.

6.4.2 Overcoming type 2

A: Overlap scheme

In type 2, a transfer fault may be masked by another transfer error. When

constructing a UIOC, the consideration of overlap among UIOs for internal states

can help to overcome this problem. For example, in Figure 6.5, Usi
, Usm and Usq

form a UIOC for si. If there exists Usj
in the circuit that is a UIO for sj, the

chance that the UIOC fails to find type 2 fault can be reduced. If F-UIOs for

all internal state’s UIOs, say sj, sk and sm, are included in the UIOC, then the

chance to fail to detect type 2 will be reduced.

B: Internal state sampling scheme

When constructing a UIOC for a state, internal states may not be verified by

their UIOs in the UIOC sequence. An alternative way to overcome type 2 is

133

6.4 Overcoming fault masking using robust UIOCs

Figure 6.6: Construction of UIOC sequences using internal state sampling scheme.

134

6.4 Overcoming fault masking using robust UIOCs

then to check internal states by adding additional observers that are self-loops.

Figure 6.6 shows the scheme where sj is checked. In a faulty implementation, an

observer may either make the FSM produce an erroneous output or arrive at an

erroneous state that may be detected by the following verification. This helps to

increase confidence that UIOCs constructed from the specification FSM remains

UIO (F-) in the IUT. Ideally, the observers are F-UIOs that are naturally loops.

But if the F-UIO is too long, a shortest loop sequence could be substituted for

the function.

Definition 6.4.1 A loop sequence LSi/LSo for si is an I/O sequence such that

si = δ(si, LSi) and LSo = λ(si, LSi).

It would make the verification more robust if all internal states are checked

by their observers. However, this will make the test sequence very long. Thus,

instead of checking all, one state is selected for verification by the scheme shown

in Figure 6.7. Suppose input sequence Usi
is a F-UIO for state si. When re-

sponding to Usi
, the FSM produces an output sequence Osi

and gives a trace of

sj, sk, sl, s
′
i. Putting Usi

to all other states, we get output sequences and traces

correspondingly. Suppose, by comparing the output sequences, a common I/O

area is found shown between two dotted lines. The area is said to be a highly

dangerous area. A state transfer error is likely to be masked in such an area. For

example, si → sj might be replaced by si → sp. This mistake might be masked

later by sx → s
′
i or by sq → sl. A state between sj and sl needs to be further

checked by its observer. The middle state, namely sk, is considered.

6.4.3 Construction of B-UIOs

B-UIOs might be considered for the construction of UIOCs. However, there is

no complete algorithm to construct B-UIOs in the literature. Although homing

sequences can be used as the basis for the construction, the B-UIOs obtained

might be long, which will increase the cost in the forthcoming test. Based on

the studies of state splitting tree (see chapter 4), we proposed the State Merging

Tree (SMT) for the construction of B-UIOs.

135

6.4 Overcoming fault masking using robust UIOCs

Figure 6.7: Rule on selection of a state.

Similar to a SST, a SMT is a rooted tree. Each node in a SMT contains

a set of states where the root node contains the complete set of states and the

discrete nodes (terminals) contain one state. A node is connected to its parent

by an edge labelled with characters, indicating the situation of state merging.

However, differences exist between SST and SMT where at each single input

stage, the SST only cares about the initial state from which the current state

came while the SMT takes not only the initial state, but also the current state

into account.

To give a further explanation, an example is shown in Figure 6.8 where the

FSM has 6 states, the input set is {a, b}, and the output set is {x, y}. Suppose,

when responding to a, {s1, s3, s5} produce x and arrives at {s2, s2, s3}1, while

1Both s1 and s3 arrives at s2. The set of final states is actually {s2, s3}. However, to make

136

6.4 Overcoming fault masking using robust UIOCs

Figure 6.8: The pattern of a state merging tree from an FSM .

{s2, s4, s6} produce y and arrive at {s3, s3, s1}. a is said to merge s1 and s3 at

s2 by producing x and to merge s2 and s4 at s3 by producing y. Two nodes are

generated from the root node indicated by N(1, 1) and N(1, 2). Continuing to

input the FSM with b, if states reached from {s1, s3, s5} by a arrive at {s3, s3, s3}
producing x or arrive at {s4, s4, s4} producing y, ab is said to merge {s1, s3, s5} at

s3 by producing xx or {s1, s3, s5} at s4 by producing xy. Two nodes rooted from

N(1, 1) are then generated indicated by N(2, 1) and N(2, 2). Once a discrete node

such as N(2, 1) occurs, the path from the root node to N(2, 1) forms a B-UIO for

the corresponding state (in this case, s3). By the nature of the tree, s3 is the only

state that can be reached by this input/output sequence. If all of the terminal

nodes are discrete nodes and all the input sequences defined by paths from the

root node to terminal nodes are the same input sequence x then x is a homing

sequence.

It can be seen that one SMT may not contain B-UIOs for the complete set of

states. It may be necessary to generate several SMTs to provide the B-UIOs for

every state. Once the SMTs are defined, the model for the construction of UIOs

proposed in chapter 5 can be extended for the construction of B-UIOs.

the explanation clearer, all final states remain listed.

137

6.5 Simulations

6.4.4 Construction of UIOCs

The construction of UIOCs in this work follows three schema: 1. A complete

set of F-UIOs was used; 2. A mixed set of F-UIOs and B-UIOs was used. 3. A

complete set of B-UIOs was used. When constructing a UIOC, the first scheme

is considered. If a UIOC cannot be constructed by a complete set of F-UIOs, the

second scheme will be considered. Only when the first and the second schema

fail to construct a UIOC, will the third scheme be considered. All three schema

should take the overlap or the internal state observation scheme into account.

When the internal state observation scheme is used, a self-loop F-UIO (if the

observed state has one) is first considered. However, if the F-UIO is too long,

a loop sequence is substituted for the function. In this work, if the length of a

self-loop F-UIO of a state is greater than 4, a shorter loop sequence is then used

for the observation of this state.

When the B-UIOs are used for the construction of a UIOC, those B-UIOs with

fewer number of valid initial states should be used to avoid the fault masking

problem caused by B-UIOs. When a UIOC is constructed by a complete set of

B-UIOs, the UIOC may not be a UIO (F-).

Before a UIOC is selected for state verification, its uniqueness needs to be

checked to make sure that it is a F-UIO.

6.5 Simulations

A set of experiments was devised to compare the test performance among F-, B-,

and C-Method. In all our experiments, we used FSMs where the size of the state

set and the input set are much higher than that of the output set. The structure

of the FSMs could make testing harder. We believe that, in these kinds of FSMs,

the UIOs for each state tend to be long and the problems of fault masking are

likely to happen.

A randomly generated FSM is first defined in 1Table 6.1.

The system has 25 states while the input set is {a, b, c, d} and the output set

is {x, y}. The FSM is reduced, deterministic and completely specified. There

1Contents in the first row are inputs. si: sj/y means that, when the FSM is in si and
receives an input shown in the first row, it moves to sj and produces y.

138

6.5 Simulations

a b c d
S0 S3/y S12/y S10/x S24/x
S1 S4/x S11/x S23/y S15/y
S2 S17/x S9/x S14/y S0/y
S3 S5/x S0/y S13/x S23/y
S4 S20/x S18/x S15/y S16/y
S5 S3/y S1/x S12/x S20/y
S6 S1/y S7/x S19/x S16/y
S7 S21/x S24/y S9/y S6/x
S8 S14/y S12/y S18/x S5/x
S9 S15/x S2/y S6/y S22/x
S10 S11/x S19/y S23/y S8/x
S11 S17/x S12/x S0/y S6/y
S12 S9/x S13/y S20/x S1/y
S13 S7/x S4/y S10/x S22/y
S14 S8/x S3/y S19/y S11/x
S15 S6/x S17/x S21/y S2/y
S16 S7/y S20/y S24/x S4/x
S17 S15/y S13/x S2/x S8/y
S18 S16/x S5/y S20/x S10/y
S19 S23/x S11/y S9/y S18/x
S20 S14/y S21/x S17/y S7/x
S21 S4/x S16/x S22/y S1/y
S22 S10/x S2/x S24/y S0/y
S23 S18/y S21/x S13/x S3/y
S24 S14/y S5/y S22/x S8/x

Table 6.1: Specification finite state machine with 25 states used for simulations.

139

6.5 Simulations

Methods Specification Mutants
s4 − (a/x) → s20 s4 − (a/x) → s7

F-Method s5 − (a/y) → s3 s5 − (a/y) → s23

s24 − (d/x) → s8 s24 − (d/x) → s0

s18 − (c/x) → s20 s18 − (c/x) → s8

B-Method s18 − (c/x) → s20 s18 − (c/x) → s24

s23 − (d/y) → s3 s23 − (d/y) → s23

Table 6.2: Examples of faulty implementations that F- and B-method fail to
detect.

are 4× 25 = 100 transitions. A mutant (faulty implementation) is generated by

modifying a transition. The selected transition is changed either on its output

or the final state. There are 100 × 24 + 100 = 2, 500 mutants. Test sequences

are generated with the F-, the B- and the (new) C-method separately and then

used to check all these mutants. To make the explanation clear, the test sequences

generated with the F-, the B- and the C-method are called F-, B- and C- sequence

correspondingly. In the experiment, we found that 199 mutants passed the F-

sequence, 3 passed the B-sequence and none of them passed the C-sequence.

This result suggests that the B-method is better than the F-method, which is

consistent with the work of (SST91).

However, there are still 3 mutants that passed the B-sequence but were found

by the C-sequence. Six examples of faulty implementations where 3 passed the

F-sequence and 3 passed the B-sequence are shown in Table 6.2. This result

suggests that the test sequences generated with the C-method are more robust

than that produced using the B-method. We also compared the lengths of the test

sequences. They are 506 (F-sequence), 915 (B-sequence) and 1015 (C-sequence).

Compared to the F-method, the B-method increases the length roughly by 45%

while the C-sequence is approximately 10% longer than the B-sequence. We then

increased the length of the F-sequence and the B-sequence to 1015 by adding

input characters that were randomly selected from the input set. The experiment

was repeated 10 times and the best result was selected. The final result showed

that 89 mutants passed the extended F-sequence, and both the extend F- and B-

sequences failed to find the three mutants that passed the test in the previous

140

6.5 Simulations

FSM F-Num C-Num
s18 − (c/x) → s20/s8 3 0
s18 − (c/x) → s20/s24 3 0
s24 − (d/x) → s8/s0 5 0
s5 − (a/y) → s3/s23 5 0
s5 − (c/x) → s12/s18 5 0

Table 6.3: Numbers of F-UIOs and UIOCs that lost the property of uniqueness
in the faulty implementations.

experiment. This experiment suggested that, although extending the F-sequence

to a certain length may help to improve its ability to find more errors, it is still

less robust than the B-sequence and the C-sequence.

The numbers of F-UIOs and UIOCs that lost the property of UIOs in the faulty

implementations was also studied. Five mutants were chosen for the experiment.

Test results are shown in Table 6.3 where s18 − (c/x) → s20/s8 indicates that

a mutant was generated by changing the final state s20 to s8 while F-Num and

C-Num show the numbers of F-UIOs and UIOCs that are no longer UIOs in the

faulty implementations. From the table it can be seen that no UIOCs lost the

property of UIOs but some F-UIOs did. These results suggest that the UIOCs

provided by the algorithm given in this work are more robust than F-UIOs.

An experiment was designed to compare the UIOC (constructed by the algo-

rithm in this work) with the F-UIO that are constructed by two shortest F-UIOs

where one is used to verify the state under test while the other to verify the tail

state of the previous F-UIO. Experimental result showed that 47 mutants passed

the sequence generated with the latter scheme. Comparing to the F-sequence and

the randomly extended F-sequence, the test sequence generated by using two F-

UIOs finds more faults, but is still less robust than the test sequence generated

with the C-method.

Next, the robustness of UIOCs that were constructed with different schema

was compared. Four sets of UIOCs were used. One set was constructed by F-UIOs

or B-UIOs, taking the overlap scheme or the internal state observation scheme into

account. When only B-UIOs were used to construct a UIOC, the uniqueness of the

UIOC was checked to make sure that it is a UIO (F-); one set was constructed by a

141

6.5 Simulations

complete set of F-UIOs, without using the overlap or the internal state observation

scheme; one set was constructed by using F-UIOs and B-UIOs that can naturally

form circuits; the last was constructed by using F-UIOs and B-UIOs that cannot

form circuits. A set of transfer sequences was added to complete the circuits. The

experimental showed that 4 mutants passed the UIOC sequence generated using

F-UIOs, B-UIOs and transfer sequences; 1 passed the UIOC sequences generated

using a complete set of F-UIOs without using overlap or internal observation

scheme; 1 passed the UIOC using F-UIOs and B-UIOs without using overlap or

internal state observation scheme. The latter two sequences failed to find the

same mutant. It can be seen that test sequences generated using F-UIOs, B-

UIOs and a set of transfer sequences showed even worse test performance than

those generated with B-method. The experimental results suggest that UIOCs

constructed by the algorithm given in ref. (SL92) (using a transfer sequence to

complete the circuit) are less robust than those that were constructed by the

algorithm given in this work. Compared to the test results of the corresponding

test sequences, it can be suggested that the use of the overlap or the internal

state observation scheme is likely to make the UIOCs more robust.

We also investigated the test performance of the F-UIO, B-UIO and UIOC

methods when applied to FSMs with different numbers of states. All FSMs are

randomly generated. They are completely specified, deterministic and strongly

connected. The input set and the output set for all FSMs are {a, b, c, d} and

{x, y}. All UIOCs constructed by a complete set of B-UIOs are verified to be

F-UIOs. The result of the experiment is shown in Table 6.4. The table shows no

significant relationship between the number of states and the number of mutants

that passed the test, which indicates that the quality of testing is not only de-

termined by the test method, but also determined by the structure of systems.

But it can still be seen that, for all FSMs tested, the test sequence generated

with the C-method is better than or equal to others. In the experiments, there

are 20× 4 + 20 = 100, 400, 900, 1600, 2500, 3600, 4900 and 6400 mutants in the

FSMs with 5, 10, 15, 20, 25, 30, 35 and 40 states respectively. Therefore, the

total number of mutants in the experiments is 30390. Three mutants passed the

C-sequences, which implies that C-method achieves 99.99% fault coverage in the

experiments.

142

6.5 Simulations

States F-method B-method C-method
5 0 0 0
10 1 1 1
15 1 1 0
20 17 8 0
25 199 3 0
30 0 0 0
35 156 8 1
40 9 2 1

Table 6.4: Mutants that pass the test.

The mutant that passed the C-sequence in the FSM with 10 states was studied.

In the implementation, transition tr14=s3 − (c/y) → s4 is mutated by changing

s4 to s3. All UIOC sequences generated from the specification FSM were then

checked for the uniqueness in the IUT. When applying the input part of the UIOC

sequence for s4, we found that both s3 and s4 produced the same output. Thus,

UIOC sequence for s4 loses the uniqueness in the IUT and fails to identify s4.

Figure 6.9 shows the sequences of transitions traversed by this UIOC sequence in

the specification FSM and the faulty implementation respectively. By examining

the structures of all UIOC sequences, we found that none of the UIOC sequence

traverses transition tr14. This determines that the faulty implementation of tr14 is

less likely to be detected in the stages of internal state verification, which reduces

the chance on finding this error. From figure 6.9 it can also be noted that the

faulty implementation of tr14 ends up at the state that is exactly the first state,

s3, that the UIOC sequence traverses when it is applied to verify s4. If the faulty

implementation of tr14 ends up at another internal state of the UIOC sequence,

the fault may be detected by the internal state verification. However, the fault

occurs before the process of internal state verification starts. Since tr14 holds the

same I/O behaviour as that of transition s4− (c/y) → s3, the fault is likely to be

masked in the C-sequence. This work did not provide solutions to overcome the

problem. Future work will address this issue.

The lengths of test sequences generated with F-, B- and C-methods were also

compared. Table 6.5 shows the lengths of test sequences for different systems. It

143

6.6 Summary

Figure 6.9: UIOC sequence for s4 in the FSM with 10 states and the faulty
implementation that causes the fault masking in the UIOC sequence.

can be seen that the sequences generated with the F-method are always shorter

than that with the B- and the C-method. However, the test sequences gener-

ated with the C-method are not always longer than those produced using the

B-method. In the majority of studies, the C-sequences were slightly longer than

the B-sequence while in some cases such as the FSM with 20 states the C-sequence

was shorter than the B-sequence.

6.6 Summary

In this chapter, we investigated the problem of fault masking in UIOs. Based

on the work of (LS92), two basic types of fault masking involving UIOs were

formalised. A new type of UIOC was proposed to overcome the two fault types.

When constructing a UIOC sequence, by further checking the tail state of a UIO,

type 1 in the faulty implementation may be avoided while by introducing the

overlap scheme and internal state observation scheme, type 2 may be avoided.

The procedure of verifying the final states of UIOs was terminated by the con-

144

6.6 Summary

States F-method B-method C-method
5 88 160 98
10 198 338 351
15 290 484 502
20 398 687 670
25 506 915 1015
30 684 1137 1123
35 740 1315 1339
40 857 1521 1568

Table 6.5: Lengths of the test sequences.

struction of circuits where every UIO provides evidence for the correctness of the

previous UIO’s tail state.

A set of experiments was designed to study the test performance. Experimen-

tal results showed that many more faulty implementations passed the F-sequence

than the B-sequence. This suggested that the B-method was more robust than the

F-method, which is consistent with the work in ref. (SST91); meanwhile, in the

experiment, no faulty implementation passed the C-sequence, which suggested

that the C-method is more robust than the F-method and the B-method.

Performance of UIOCs constructed by the algorithm given in this paper and

in ref. (SL92) was also compared. Experimental results showed that UIOCs

constructed by the algorithm given in ref. (SL92)(using a transfer sequence to

complete a circuit) were less robust than those constructed by the algorithm given

in this paper. The experimental results also suggested that the use of the overlap

or internal state observation scheme is likely to make the UIOCs more robust.

In this work, internal state observation scheme considered the sampling of one

internal state of a UIO sequence. If a UIO sequence is comparatively long, in

order to increase the test confidence, more than one state might be considered

for observation. In future work, more studies will be proceeded to investigate the

effectiveness of internal sampling schemes.

A set of FSMs was devised to compare the test performance among different

methods. Experimental results showed that the (new) C-method was consistently

better than or equal to the F-method and the B-method. In the devised exper-

145

6.6 Summary

iments, the (new) C-method achieved more than 99.99% fault coverage. It also

showed that the C-sequences were not always longer than the B-sequences. In

the majority of studies, the C-sequences were slightly longer than the B-sequence

while in some cases, the C-sequences were shorter than the B-sequences.

However, it has also been noted that a few of the faulty implementations

passed the C-sequences in the experiments. More work needs to be carried on to

study the factors that caused the failure of C-sequences.

146

Chapter 7

Fault isolation and identification

7.1 Introduction

The process of testing aims to check whether the system being developed con-

firms to its specification. When testing from finite state machines, a set of test

sequences is usually required for conformance testing. These test sequences are

applied to the Implementation Under Test (IUT) for fault detection. I/O dif-

ferences exhibited between the IUT and its specification suggest the existence of

faults in the implementation. The first observed faulty I/O pair in an observed

input/output sequence is called a symptom. A symptom could have been caused

by either an incorrect output (an output fault) or an earlier incorrect state trans-

fer (a state transfer fault). Applying strategies to determine the location of faults

is therefore important.

Ghedamsi and Bochmann (GB92; GBD93) generate a set of transitions whose

failure could explain the behaviour exhibited. These transitions are called candi-

dates. They then produce tests (called distinguishing tests) in order to find the

faulty transitions within this set. However, in their approach, the cost of gener-

ating a conflict set is not considered. Hierons (Hie98) extended the approach to a

special case where a state identification process is known to be correct. Test cost

is then analysed by applying statistical methods. As the problem of optimising

the cost of testing is NP-hard (Hie98), heuristic optimisation techniques such as

Tabu Search (TS) and Hill Climbing (HC) are therefore suggested (Hie98).

This chapter studies fault diagnosis when testing from finite state machines.

147

7.2 Isolating single fault

The work is motivated by an interesting question described as follows. Let ts be

a test sequence of length L and let the ith input of ts, 1 ≤ i ≤ L , execute a

faulty transition trf in the IUT. The question is whether it is possible to define

the maximum number of inputs that is needed to reveal the failure (a symptom is

exhibited) after trf being executed. In other words, given a symptom exhibited

at the jth input of ts, is it possible to define an interval with a maximum range

dmax, dmax ≥ 0, such that inputs between (j− dmax)
th and the jth of ts execute a

sequence of transitions that must contain trf? If such an interval can be defined,

the process of fault isolation is then reduced to that of fault identification in a

shorter test sequence.

Obviously, the smaller dmax is, the less number of transitions will be considered

when isolating the faulty transition. It is always preferred that a symptom is

observed immediately after a faulty transition is executed. However, it may

require more inputs to exhibit the fault.

Clearly, the sequence of transitions executed up to the symptom contains the

faulty transition that causes the occurrence of the symptom. However, diagnosing

within such a set of candidates might result in a high cost of fault isolation.

Finding ways to define the maximum number of inputs that is required to exhibit

an executed fault is therefore of great value for minimising the cost of fault

isolation and identification.

In this work, heuristics are proposed for fault diagnosis, which helps to reduce

the cost of fault isolation and identification. In the proposed method, a set of

transitions with minimum size is constructed to isolate the faulty transition that

could explain an observed symptom. The erroneous final state of the isolated

faulty transition is further identified by applying the proposed heuristics. The

heuristics defined in this work consider the use of the U-method (ATLU91). One

can easily extend the approach to other formal methods such as the W-method

(Cho78) and the Wp-method (FBK+91).

7.2 Isolating single fault

This section introduces an approach for detecting a single fault in the IUT and

the construction of a conflict set for fault diagnosis.

148

7.3 Minimising the size of a conflict set

7.2.1 Detecting a single fault

When testing an IUT, a set of tests TC = {tc1, tc2, ..., tcl} needs to be developed.

A test tci consists of a sequence of expected transitions 〈ti,1, ti,2, ..., ti,ni
〉, starting

at s0, with input 〈xi,1, xi,2, ..., xi,ni
〉 and the expected output 〈yi,1, yi,2, ..., yi,ni

〉
where yi,ni

is the expected output after input xi,ni
. When executed, tci produces

the observed output 〈zi,1, zi,2, ..., zi,ni
〉. If differences between yi = 〈yi,1, yi,2, ..., yi,ni

〉
and zi = 〈zi,1, zi,2, ..., zi,ni

〉 appear, there must exist at least one faulty transition

in the implementation. The first difference exhibited between yi and zi is called a

symptom. Additional tests are necessary in order to isolate the faulty transitions

that cause the observed symptom.

7.2.2 Generating conflict sets

A conflict set is a set of transitions, each of which could be used to explain a

symptom exhibited. Here, the work focuses on identifying the faulty transition

that is responsible for the first exhibited symptom. The transitions after the

symptom are ignored.

Suppose, for a test tci, the sequence of expected transitions is 〈ti,1, ti,2, ..., ti,ni
〉

where ni is the number of transitions. When executed with 〈xi,1, xi,2, ..., xi,ni
〉,

a symptom occurs at the input xi,l, the conflict set of the maximum size is

{ti,1, ti,2, ..., ti,l} where 1 ≤ l ≤ ni.

7.3 Minimising the size of a conflict set

If the number of transitions in a conflict set is large, the effort required for isolating

the fault could be high. It is therefore useful to reduce the size of a conflict set.

Two abstract schema are applied in this work, these being:

1. Transition removals using transfer sequences.

2. Transition removals using repeated states.

In the first scheme, a short transfer sequence is used to remove a segment

of inputs from the original test sequence. This may lead to a symptom being

observed in a shorter test sequence; while, in the second scheme, a segment of

149

7.3 Minimising the size of a conflict set

inputs is further removed from the original test sequence. These inputs execute

a sequence of transitions where the initial state of the first transition is the final

state of the last transition. By such an operation, a symptom might be observed

in a shorter test sequence, which helps to reduce the cost of fault isolation. Two

removal schema are discussed in the following subsections.

7.3.1 Estimating a fault location

Once a symptom is observed, the set of transitions executed up to the symptom

constitutes a conflict set Sconflict with the maximum size. A subset of transitions

Sr ⊂ Sconflict might be removed to reduce the size of Sconflict by applying some

transfer sequences. Before explaining this in detail, some concepts are defined.

Definition 7.3.1 A UIO sequence generated from the specification FSM is a

strong UIO if it can identify the corresponding state in the IUT; otherwise, it

is a weak UIO.

Due to the problem of fault masking in UIOs, a UIO sequence generated from

the specification FSM might lose its property of uniqueness and fail to identify

its corresponding state in the IUT (CVI89; Nai95).

Definition 7.3.2 When testing an IUT, if the UIOs used for the generation of

a test sequence are all strong UIOs, the test is a strong test and the test sequence

is a strong test sequence; otherwise, the test is a weak test and the test sequence

is a weak test sequence.

Definition 7.3.3 In a UIO-based test, if there are k weak UIOs in the test se-

quence, the test is called a k−degree weak test and the test sequence is a k−degree
weak test sequence.

It can be seen that a strong test is a 0− degree weak test.

Definition 7.3.4 Let [a,b] be the interval of transitions between the ath and the

bth inputs from an input sequence α. A transition tr is said to be within [a,b] of

α if the cth input executes tr when α is applied to the FSM for some a ≤ c ≤ b.

150

7.3 Minimising the size of a conflict set

In FSM-based testing, a complete test sequence should test all transitions in

the FSM M . A transition is tested by checking its I/O behaviour plus the tail

state verification. Once a transition test is finished, M arrives at a state s. If s is

not the initial state s
′
of the transition selected for the following test, a transfer

sequence is required to move the M to s
′
. This transfer sequence constitutes a

linking sequence in the final test sequence.

Definition 7.3.5 A linking sequence in a test sequence for an FSM M is a trans-

fer sequence that moves M to the initial state of a transition under test after the

previous transition test is finished.

Proposition 7.3.1 In a UIO-based test, if the test is a strong test and a symptom

is observed at the ath input, then the faulty transition that causes the occurrence

of the symptom must be within [(a-LUIO(max)-LLink(max)), a] of the inputs where

LUIO(max) is the max length of UIOs and LLink(max) the max length of linking

sequences.

Proof: The standard strategy of a transition test in UIO-based test is formed by

a transition I/O test and the tail state verification. Since the test is a strong

test, no problem of fault masking exists in the test sequence. Suppose a faulty

transition is executed at the bth input and the fault is unveiled with an observable

symptom at the ath input. If the transition has an I/O error, the fault is detected

by the bth input (a = b); otherwise, if the transition is one under test, the faulty

final state is detected by the following state verification with maximum length

LUIO(max) (b ≤ a ≤ b + LUIO(max)), or, if the faulty transition is an element of a

linking sequence, the following inputs move the machine to the initial state of the

next transition under test with the max steps of LLink(max). After executing the

transition with one input, the faulty final state can be detected by the forthcoming

state verification with the max steps of LUIO(max) (b ≤ a ≤ b + LLink(max) + 1 +

LUIO(max)). Therefore, if a symptom is observed by a strong test sequence at the

ath input, the faulty transition that caused the occurrence of the symptom must

be within [(a− LUIO(max) − LLink(max)), a] of the inputs. �

151

7.3 Minimising the size of a conflict set

Definition 7.3.6 In a weak test, if a UIO sequence fails to identify the corre-

sponding state in the IUT more than once, the problem is called fault masked UIO

cycling.

Figure 7.1: Fault Masked UIO Cycling

An example of fault masked UIO cycling is illustrated in Figure 7.1 where a

state transfer error occurs in t1(si → sj) first, leading to an erroneous final state

sx. Due to fault masking, the UIO of sj fails to find the error, moving the FSM

to sz. Suppose, according to the test order, t2(sk → sj) is tested after t1. When

responding to the input, the IUT produces the same output as defined in the

specification and arrives at sx. When applying the UIO of sj, it again fails to

find the fault. The UIO of sj appears in the test twice, in both cases, failing to

exhibit an incorrect final state in the observed input/output sequence.

Proposition 7.3.2 In a k − degree weak test, if the problem of fault masked

UIO cycling does not exist and a symptom is observed at the ath input, then the

faulty transition that causes the occurrence of the symptom must be within [(a+1-

(k+ 1) ∗ (LUIO(max)+LLink(max)+1)), a] of the inputs where LUIO(max) is the max

length of UIOs and LLink(max) the max length of linking sequences.

Proof: Similar to Proposition 7.3.1, proof can be obtained by considering the test

structure. Since no problem of fault masked UIO cycling exists in the test, if

there are k weak UIOs in the test, the faulty final state of a faulty transition can

be detected with the maximum steps of (k + 1) ∗ (LUIO(max) + LLinking(max) + 1).

�

152

7.3 Minimising the size of a conflict set

Test can be simplified if UIOC sequences are applied for state verification.

When UIOCs are used, no linking sequence is required, namely, LLink(max)=0.

7.3.2 Reducing the size of a conflict set using transfer
sequences

A: Making a hypothesis

Once a conflict set Sconflict is defined, it can be refined. A subset of transitions Sr

in Sconflict can be removed according to Propositions 7.3.1 and 7.3.2. Figure 7.2

demonstrates a paradigm. Let LUIO(max) = 2. Suppose a symptom is observed

at the ith input where it executes the transition t7 (sf → sg). The conflict set

with the max size is then Sconflict = {t1, t2, t3, t4, t5, t6, t7}. If the test is a strong

test, the faulty transition must be within [(i-3), i] of the inputs, namely, it must

be in the subset of transitions Sf = {t5, t6, t7} where Sconflict = Sf ∪ Sr and

Sr = {t1, t2, t3, t4}.

Figure 7.2: Reducing the size of a conflict set by applying transfer sequence

B: Verifying the hypothesis

To verify the hypothesis, a new test sequence is constructed by concatenating

a shortest transfer sequence with the inputs that execute t5, t6 and t7 from the

original test. The transfer sequence moves the FSM from s0 to sd, removing Sr

from Sconflict. In order to increase the confidence that the IUT arrives at an

expected final state, the final state is verified by its UIOC sequence.

153

7.3 Minimising the size of a conflict set

When the new test sequence is applied to the system, two observations need to

be made: 1. have any failures been observed from applying the transfer sequence

in the new test sequence? 2. if no failure is exhibited by the transfer sequence,

the input/output pairs observed afterwards in the new test sequence need to be

compared to those observed after sd in the original test to check if there exist any

differences. If a failure is observed by applying the transfer sequence, transitions

executed by the transfer sequence constitutes a new conflict set S
′

conflict and

additional tests need to be developed to isolate the fault. Since the transfer

sequence traverses the shortest path from s0 to sd, |S
′

conflict| ≤ |Sconflict|.
Let tr

′

f be the faulty transition that is identified in S
′

conflict. If tr
′

f ∈ Sconflict,

tr
′

f is defined as the principal faulty transition that causes the occurrence of

the observed symptom in the original test. The process of isolating the faulty

transition for the observed symptom is then complete. More faults might exist

in Sconflict, these faults can be isolated by constructing some new test sequences

where tr
′

f is not executed or is executed as late as possible; otherwise, if tr
′

f /∈
Sconflict, one more fault is detected. tr

′

f needs to be further processed as described

in Section 7.4.2. Meanwhile, a new transfer sequence needs to be constructed until

no failure is exhibited by this sequence.

Suppose, after applying the transfer sequence, no I/O change is found when

the sequence of transitions in Sf is executed, it provides evidence that both the

transfer sequence and the input sequence that executes Sr in the original test

make the FSM arrive at the same state scom. Since the final state of the transfer

sequence is verified by its UIOC sequence, evidence that scom = sd is provided as

well. This further suggests that Sf contains the faulty transition that causes the

symptom. Additional tests need to be developed to identify the faulty transition.

Having tested all transitions in Sconflict, if no faulty transition is defined, it

implies that at least one UIO fails to identify the corresponding state. The test

is a weak test. Proposition 2 can be applied to estimate the input interval that

the faulty transition might fall in. The process starts by considering [(i+1− (k+

1) ∗ (LUIO(max) + LLink(max) + 1)), i]|k=1 first. By removing a set of transitions, if

the faulty transition is still not isolated, k is increased by 1. The process repeats

until the faulty transition is isolated.

154

7.3 Minimising the size of a conflict set

The above considers the situation that no problem of fault masked UIO cycling

exists in a test sequence. The existence of such a problem in a test makes the

estimation of fault location harder. Fault maskings can be caused either by two

different faulty UIOs or a cycled faulty UIO as shown in Figure 7.1. To simplify

the estimation, here, a cycled faulty UIO is treated as two or more independent

faulty UIOs depending on the number of times this UIO reoccurs. For example, in

Figure 7.1, two faulty UIOs are counted for the computation (UIO of sj appears

twice). By such an operation, a k weak test becomes a k + c weak test where c

is the sum of times that the cycled faulty UIOs reoccur.

7.3.3 Reducing the size of a conflict set using repeated
states

In a conflict set Sconflict, a state that is the initial state of a transition tra ∈ Sconflict

may also be the final state of another transition trb ∈ Sconflict where trb is executed

after tra. This leads to the repetition of a state when the sequence of transitions

in Sconflict is executed successively. Transitions between repeated states can be

removed to check whether they are responsible for the symptom. Figure 7.3

illustrates the removal scheme.

Figure 7.3: Reduce the size of a conflict set by considering the repeated states

In the figure, Sconflict={t1, t2, t3, t4, t5, t6, t7}. It can be noted that s2 appears

twice. A subset of transitions between the repeated state is defined as Scycle =

{t3, t4, t5}. Sconflict is then split into two subset Sconflict=Scycle ∪ Sremain where

Sremain = {t1, t2, t6, t7}. Based on the original test sequence, a new test sequence

is constructed removing the inputs that execute Scycle.

155

7.4 Identifying a faulty transition

Applying the new test sequence to the system, if, when compared to the

original test, the rest of the I/O behaviour remains unchanged, the symptom is

then observed in a shorter sequence. The conflict set is consequently reduced to

Sremain. Additional tests can then be devised to verify the hypothesis.

If, compared to the corresponding I/O segment in the original test sequence,

the new test sequence behaves differently, no conclusion can be drawn and, in

this situation, the removal scheme of using repeated states does not reduce the

size of Sconflict.

7.4 Identifying a faulty transition

Having reduced the size of a conflict set, further tests need to be devised to identify

the fault. Here, the process intends not only to locate the faulty transition, but

also to determine its faulty final state.

7.4.1 Isolating the faulty transition

After a conflict set Sconflict has been minimised, in order to locate the faulty

transition, transitions in Sconflict need to be tested individually. Each transition

tri ∈ Sconflict is tested by moving the FSM to the head state of tri, executing tri

and then verifying tri’s tail state. In order to increase the reliability, this process

should avoid using other untested candidates in Sconflict.

If, when testing a transition tri ∈ Sconflict, the use of another untested candi-

date trj ∈ Sconflict is inevitable, one might verify trj’s tail state as well when it

is executed and then apply a transfer sequence to move the IUT back to the tail

state of trj. If there exists a UIOC sequence for the tail state of trj, the UIOC

sequence can be applied. Through such an operation, two transitions are tested

simultaneously.

The test process described above assumes that UIOs or UIOCs used for state

verification are strong UIOs. This, however, might not be true. In order to

increase test confidence, one might use a set of test sequences to test a transition

tri ∈ Sconflict, each of which uses a different UIO sequence to verify the final state

of tri. This, however, requires more test efforts.

156

7.4 Identifying a faulty transition

7.4.2 Identifying the faulty final state

Once a faulty transition has been located, the faulty final state needs to be

identified. This helps to reduce the fault correction effort. A set of estimated

erroneous final states SEndState is then constructed.

Let n be the number of states in the FSM. Suppose transition trf : si → sj is

identified as being faulty. It can be noted that, in terms of the alternative final

states for trf , there are n−1 possible mutants. Therefore, SEndState with the max

size is SEndState = {s1, ..., sj−1, sj+1, ..., sn} and |SEndState| = n− 1.

The size of SEndState might be reduced by comparing the I/O behaviour ex-

hibited after the faulty transition in the IUT to that defined in the specification.

Definition 7.4.1 Let MS = (I, O, S, δ, λ, s0) be a specification FSM and MI =

(I, O, S, δ
′
, λ

′
, s0) be an implementation FSM of MS. Let xv ∈ I be an input

that executes a transition tr from sa to sb in MI and zv be the observed output,

zv = λ
′
(sa, xv). SV DIS ⊆ S is called the valid defined initial state (VDIS) set of

xv/zv if zv ∈ O, ∀sv ∈ SV DIS, λ(sv, xv) = zv and ∀sv /∈ SV DIS, λ(sv, xv) 6= zv.

Let xv be the input that executes the transition following the isolated faulty

transition trf in the IUT and zv be the observed output. The set SV DIS of xv/zv is

constructed by applying xv to each state in the specification FSM and comparing

the corresponding output with zv. Let yv(i) be the response from the specification

FSM when the machine is in si ∈ S and receives xv. By comparing yv(i) to

zv, S can be divided into two subsets SV DIS and SV DIS where ∀sj ∈ SV DIS,

λ(sj, xv) = yv(j)
= zv and ∀sk ∈ SV DIS, λ(sk, xv) = yv(k)

6= zv. If SV DIS 6= ∅, it

indicates there exists a non-empty set of states SV DIS such that ∀sk ∈ SV DIS,

λ(sk, xv) 6= zv, which suggests that the erroneous final state of trf is less likely to

be in SV DIS. SEndState is then reduced to SV DIS.

The size of the estimated faulty final state set might be further reduced by

using a set of faulty final state identification test sequences.

Definition 7.4.2 Let I = {a1, ..., ak} be the input set of a specification FSM MS

and MI be an IUT of MS. Let an isolated faulty transition trf of MI be executed

by a test sequence tv = x1, ..., xv at the vth input xv. TS = {ts1, ..., tsk} is called

157

7.5 A case study

the set of faulty final state identification test sequences (FFSITSs) of trf where
1tsl = tv · al, al ∈ I.

For each tsj ∈ TS, a set SV DIS can be constructed when aj is applied to the

IUT, denoted by Sj
V DIS. The final estimated faulty final state set SEndState can

then be reduced to SEndState = S1
V DIS ∩ ... ∩ Sk

V DIS.

The complexity of faulty final state identification is determined by the number

of states in SEndState. This is discussed in Section 7.6.2. If the size of SEndState is

reduced, the effort involved in identifying the faulty final state is thus reduced.

Once the size of SEndState is reduced, each state si ∈ SEndState needs to be

tested to identify the faulty final state. si is checked by moving the IUT from s0

to si with a transfer sequence Seq(transfer), and then applying UIOsi
for si. In

order to increase test confidence, a set of test sequences, TV = {tv1, tv2, ..., tvr},
can be applied where tvi ∈ TV is constructed by concatenating Seq(transfer) with

a different UIO sequence for si.

7.5 A case study

A case study is designed to evaluate the effectiveness of the proposed method.

A reduced, completely specified and strongly connected specification FSM M is

defined in Table 7.1 where the machine has five states. The input set is I =

{a, b, c, d} and output set O = {x, y}. In order to simplify the analysis, a set

of UIOCs (shown in Table 7.2) is used for state verification. For each state, the

first UIOC sequence is used for the generation of the test sequence. The rest of

the UIOCs are used to verify hypotheses when diagnosing faults. The 2maximum

length of UIOCs, LUIO(max), is 4. In the implementation M
′
, two faults are

injected. They are listed in Table 7.3.

Based upon rural Chinese postman algorithm and UIOCs for state verifica-

tion, a test sequence ts is generated from M . ts is then applied to M
′
for fault

detection.

1Notation “·” implies the concatenation of two sequences
2Here, LUIO(max) refers to the maximum length of UIOCs that are used for the test gener-

ation.

158

7.5 A case study

No Transition No Transition

t1 s0
a/x−−−→ s1 t11 s2

c/x−−−→ s3

t2 s0
d/y−−−→ s2 t12 s2

b/y−−−→ s4

t3 s0
c/x−−−→ s3 t13 s3

a/x−−−→ s0

t4 s0
b/y−−−→ s4 t14 s3

b/y−−−→ s1

t5 s1
d/y−−−→ s0 t15 s3

c/x−−−→ s2

t6 s1
a/y−−−→ s2 t16 s3

d/y−−−→ s4

t7 s1
c/x−−−→ s3 t17 s4

b/x−−−→ s0

t8 s1
b/x−−−→ s4 t18 s4

d/y−−−→ s1

t9 s2
d/x−−−→ s0 t19 s4

c/x−−−→ s2

t10 s2
a/y−−−→ s1 t20 s4

a/y−−−→ s3

Table 7.1: Specification finite state machine used for experiments

After ts is applied to M
′
, a symptom is observed at the 17th input where,

according to M , t8 : s1
b/x−−−→ s4 should have been executed (shown in Figure

7.4). The sequence of transitions, 〈t1, t8, t19, t10, t6, t9, t1, t6, t11, t14, t8, t20, t16, t17,
t2, t10, t8〉, executed by the first 17 inputs constitutes the conflict set of the max-

imum size, this being Sconflict = {t1, t8, t19, t10, t6, t9, t11, t14, t20, t16, t17, t2}.
The size of Sconflict is then reduced by applying the proposed heuristics. At

first it is assumed that ts is a strong test sequence. The removal scheme is then

determined by Proposition 7.3.1. As LLink(max) = 0 and LUIO(max) = 4, according

to Proposition 7.3.1, the faulty transition that causes this symptom must be

within [13,17] of the inputs. This hypothesis reduces Sconflict to {t16, t17, t2, t10, t8}.
To verify the hypothesis, a shortest transfer sequence, c/x, is applied to move

M
′

from s0 to s3, removing the inputs in the original test sequence that suc-

cessively execute 〈t1, t8, t19, t10, t6, t9, t1, t6, t11, t14, t8, t20〉. The final state of the

transfer sequence s3 is afterwards verified by its UIOC sequence. In order to

increase test confidence, two UIOC sequences dada/yyyy and bba/yxy for s3 are

applied. After applying cbba and cdada to M
′
, xyxy and xyyyx (xyyyx 6= xyyyy)

are received respectively. These results imply that (1) t3 is faulty. It is detected

by dada/yyyy but masked by bba/yxy; or, (2) t3 is correctly implemented but

159

7.5 A case study

State UIOC sequence
s0 dd/yx

daad/yyyx
s1 bca/xxy

baca/xyxy
s2 daa/xxy

dadd/xxyy
s3 bba/yxy

dada/yyyy
s4 bdab/xyyx

aaab/yxxx

Table 7.2: Unique input/output circuit sequences for each state of the finite state
machine shown in Table 7.1.

No Transition Mutant

t3 s0
c/x−−−→ s3 s0

c/x−−−→ s0

t17 s4
b/x−−−→ s0 s4

b/x−−−→ s4

Table 7.3: Injected faults

dada/yyyy traverses a faulty transition, leading to a failure being observed.

To further check the hypothesis, two additional tests tv1 = (c/x)·(aaba/xxxy)
and tv2 = (c/x) · (abdba/xyyxy) are devised where aaba/xxxy and abdba/xyyxy

are two different UIOC sequences for s3. After applying caaba and cabdba to M
′
,

xxyyy and xxxyxy are received, xxyyy 6= xxxxy and xxxyxy 6= xxyyxy, which

suggests t3 is faulty and bba/yxy is a weak UIO for s3.

The erroneous final state of t3 is further identified as described in Section 7.4.

A set of estimated faulty final states for t3 is constructed by applying a set of

faulty final state identification test sequences to M
′
, each test sequence in the set

being used to construct the corresponding SV DIS.

Let S
g/h
V DIS be the SV DIS of g/h where g/h indicates that, when applying g to

M
′
, h is observed. After all elements in the input set have been applied, a set

of SV DIS can then be obtained. The elements in the set are S
a/x
V DIS = {s0, s3},

S
b/y
V DIS = {s0, s2, s3}, Sc/x

V DIS = {s0, s1, s2, s3, s4} and S
d/y
V DIS = {s0, s1, s3, s4}. The

160

7.5 A case study

Figure 7.4: Fault detection and identification in M
′

final estimated faulty final state set is SEndState = S
a/x
V DIS∩S

b/y
V DIS∩S

c/x
V DIS∩S

d/y
V DIS

= {s0, s3}. Additional tests can now be added to verify the hypothesis.

In order to increase test confidence, two test sets tvs0 = {(c/x) · (dd/yx),

(c/x) · (daad/yyyx)} and tvs3 = {(c/x) · (aaba/xxxy),(c/x) · (dada/yyyy)} are

devised where s0 and s3 are tested respectively. In both tests, two different

UIOC sequences are used to verify the corresponding final state. The test results

suggest that the erroneous final state of t3 is s0.

Since t3 /∈ Sconflict, a new transfer sequence needs to be constructed to isolate

the fault that causes the failure observed in the original test. Still, the Sconfilict

is assumed to be {t16, t17, t7, t10, t8}. Transfer sequence dc/yx is applied, moving

M
′

from s0 to s3. In order to increase test confidence, two UIOC sequences,

aaba/xxxy and dada/yyyy, are used to verify s3.

After dcaaba and dcdada are applied to M
′
, yxxxxy and yxyyyy are received

respectively. This provides evidence that the current state is s3. Continue to ap-

ply those inputs in the original test sequence after the 17th input. By comparing

the behaviour to the original test, it is found that the outputs remain unchanged.

This increases confidence that the conflict set Sconflict = {t16, t17, t7, t10, t8} con-

tains the faulty transition that cause the observed symptom. Additional tests are

required to check each transition in Sconflict.

161

7.5 A case study

When constructing a test sequence, the traversing of t3 needs to be avoided

since it has been found to be faulty.

A set of tests, V T = {vtt16 , vtt17 , vtt2 , vtt10 , vtt8} is devised where vtt16 , vtt17 ,

vtt2 , vtt10 and vtt8 check t16, t17, t2, t10 and t8 respectively. In order to increase

test confidence, each test in V T is comprised of two test sequences where two

different UIOCs are used to verify the corresponding tail state. These tests are

Transition Test Set
t16 vtt16 = {(ac/xx) · (d/y) · (bdab/xyyx), (ac/xx) · (d/y) · (aaab/yxxx)}
t17 vtt17 = {(b/y) · (b/x) · (dd/yx), (b/y) · (b/x) · (daad/yyyx)}
t2 vtt2 = {(a/x) · (c/x) · (daa/xxy), (a/x) · (c/x) · (dadd/xxyy)}
t10 vtt10 = {(d/y) · (a/x) · (bca/xxy), (d/y) · (a/x) · (baca/xyxy)}
t8 vtt8 = {(a/x) · (b/x) · (bdab/xyyx), (a/x) · (b/x) · (aaab/yxxx)}

When applying vtt2 and vtt10 to M
′
no failure is observed, which suggests t2

and t10 are correctly implemented. When applying vtt17 toM
′
both test sequences

exhibit a failure which suggests t17 is faulty.

When applying vtt16 and vtt8 to M
′
, in both tests, one test sequence exhibits

a failure while the other shows no error. The test results are {(ac/xx) · (d/y) ·
(bdab/xyyy), (ac/xx) ·(d/y) ·(aaab/yxxx)} and {(a/x) ·(b/x) ·(bdab/xyyy), (a/x) ·
(b/x) · (aaab/yxxx)}. Through these observations, two hypotheses can be made:

(1) t8 and t16 are faulty, and aaab/yxxx is a weak UIO sequence for s4. A fault

is exhibited by bdab/xyyx but masked by aaab/yxxx; (2) t8 and t16 are correctly

implemented, but bdab/xyyx traverses at least one faulty transition, leading to a

failure being observed.

By examining the structure of bdab/xyyx, it is found that bdab/xyyx tra-

verses t17 that is found to be faulty. It is likely that the second hypothesis is

true. To verify the hypothesis, vtt16 and vtt8 are replaced with {(ac/xx) · (d/y) ·
(abdb/yyyy), (ac/xx) ·(d/y) ·(acab/yxyy)} and {(a/x) ·(b/x) ·(abdb/yyyy), (a/x) ·
(b/x)·(acab/yxyy)}. In the tests, (abdb/yyyy) and (acab/yxyy) are two UIOC se-

quences for s4 where, according toM , t17 is not traversed. After applying acdabdb,

acdacab, ababdb and abacab to M
′
, xxyyyyy, xxyyxyy, xxyyyy and xxyxyy are

received respectively. These results suggest that t8 and t16 have been correctly

implemented.

162

7.6 Complexity

The faulty final state of t17 is then identified. After all elements in the input

set being applied, a set of SV DIS is obtained, this being: S
a/y
V DIS = {s1, s2, s4},

S
b/x
V DIS = {s1, s4}, Sc/x

V DIS = {s0, s1, s2, s3, s4} and S
d/y
V DIS = {s0, s1, s3, s4}. The

final estimated faulty final state set is SEndState = S0
V DIS∩S1

V DIS∩S2
V DIS∩S3

V DIS

= {s1, s4}. Additional tests are then devised to verify the hypothesis.

Two test sequences ts1 = (a/x) · (baca/xyxy) and ts2 = (b/y) · (aaab/yxxx)
are devised where ts1 tests s1 while ts2 checks s4. It is concluded that the faulty

final state of t17 is s4.

7.6 Complexity

In this section, the complexity of the proposed approach is analysed. The analysis

is comprised of two parts - the complexity of fault isolation and the complexity

of fault identification. It is shown that the proposed approach can isolate and

identify a single fault in low order polynomial time.

7.6.1 Complexity of fault isolation

The complexity of fault isolation is determined by the strength of the UIOs used

for the generation of test sequences. The strength of a UIO is its capability to

resist fault maskings when required for state verification in the IUT (Nai95). If

a symptom is exhibited by a strong test sequence, the conflict set Sconflict is of

the maximum number |Sconflict|max = LUIO(max) + LLinking(max) + 1; otherwise, if

the test is a k weak test, |Sconflict|max = (k+ 1)× (LUIO(max) +LLinking(max) + 1),
1k ≥ 0. If there exists the problem of faulty masked UIO cycling, the test is

treated as a k + c weak test as discussed in the previous sections.

After the conflict set Sconflict is constructed, in order to isolate the faulty

transitions, each transition tri ∈ Sconflict needs to be tested. Let TrS be a set

of transfer sequences where trsi ∈ TrS is used to move the IUT from s0 to the

initial state of tri ∈ Sconflict. Let LTrS(max) be the maximum length of the transfer

sequences in TrS. The maximum number of steps required for isolating a faulty

transition is of O(|Sconflict| × (LTrS(max) + LUIO(max) + 1)).

1k = 0 is equivalent to the case where the test is a strong test.

163

7.6 Complexity

The process of fault isolation from Sconflict considers the use of one UIO se-

quence for state verification when testing a transition tri ∈ Sconflict and assumes

this UIO sequence is a strong UIO. However, this might not be true. In order to

increase test confidence, a set of test sequences TSi might be used for the test of

a transition tri in Sconflict, each of which uses a different UIO sequence to verify

the final state of tri.

Let |TSi|max = m, m ≥ 1. The maximum number of steps required for

isolating a faulty transition is then of O(|Sconflict|×m× (LTrS(max) +LUIO(max) +

1)). Therefore, the maximum number of steps required for isolating a single fault

is of O((k+c+1)×(LUIO(max)+LLinking(max)+1)×m×(LTrS(max)+LUIO(max)+1))

where k is the number of faulty UIOs in the test sequence and c is the sum of

times that the cycled faulty UIOs reoccur.

7.6.2 Complexity of fault identification

A: Construction of SEndState

When identifying the faulty final state of an isolated faulty transition (if the tran-

sition holds a state transfer error), a set of estimated faulty final states SEndState

needs to be constructed by applying a set of faulty final state identification test

sequences. Suppose, in the original test, the faulty transition and the sequence

of transitions before this transition are executed by a test segment of length Lsg.

The number of steps required to construct SEndState is of O((|I| − 1)(Lsg + 1))

where I is the input set of the FSM. In order that the faulty final state is identi-

fied, each state in SEndState needs to be tested.

B: Determining the faulty final state

Let trsshortest with length Ltrs be the shortest transfer sequence that moves the

IUT from s0 to the initial state of trf . Let |SEndState| = q, 1 ≤ q ≤ |S| − 1. si ∈
SEndState is checked by applying trsshortest, executing trf with the corresponding

input and applying UIOsi
. The length of UIOsi

is less than or equal to LUIO(max).

The maximum number of steps required to test si ∈ SEndState is of O(Ltrs +

LUIO(max) +1). All states in SEndState need to be tested. Therefore, the maximum

164

7.7 Summary

number of steps required to identify the faulty final state in SEndState is of O(q×
(Ltrs + LUIO(max) + 1)).

Again, the process of faulty final state estimation considers the use of one UIO

sequence to verify the corresponding state and assumes this UIO sequence is a

strong UIO. In order to increase test confidence, a set of distinct UIOs, MUIOi,

may be used to verify state si in SEndState. Let |MUIOi|max = p, p ≥ 1. The

maximum number of steps required to identify the faulty final state in SEndState

is then of O(q × p× (Ltrs + LUIO(max) + 1)).

By considering the process of the construction of SEndState together, the max-

imum number of steps required to identify the faulty final state is of O((|I| −
1)(Lsg + 1) + q× p× (Ltrs +LUIO(max) + 1)). In the worst case where q = |S| − 1,

the maximum number of steps is of O((|I| − 1)(Lsg + 1) + p× (|S| − 1)× (Ltrs +

LUIO(max) + 1)), while, in the best case where q = 1, the maximum number of

steps is of O((|I| − 1)(Lsg + 1) + p× (Ltrs + LUIO(max) + 1)).

7.7 Summary

This chapter investigated fault diagnosis when testing from finite state machines

and proposed heuristics to optimise the process of fault isolation and identifi-

cation. In the proposed approach, a test sequence is first constructed for fault

detection. Once a symptom is observed, additional tests are designed to identify

the faults that are responsible for the occurrence of the observed symptom.

Based upon the original test, the proposed heuristics are applied to lead to a

detected symptom being observed in some shorter test sequences. These shorter

test sequences are then used for the construction of a set of diagnosing candidates

that is of the minimal size. The minimal set of candidates helps to reduce the

cost of fault isolation and identification.

The complexity of the proposed approach was described. A case study was

used to demonstrate the application of the approach. In the case study, two state

transfer faults were injected into the implementation. These faults were isolated

and identified after applying the proposed heuristics.

The case study used in this work considered the use of a comparatively simple

example for fault isolation and identification. It is shown how more complicated

165

7.7 Summary

testing problems such as k degree weak test and fault masked UIO cycling can

be catered for. However, more work is required to evaluate these approaches

experimentally. This remains a topic for future work.

166

Chapter 8

Conclusions and future work

Finite State Machines (FSMs) have been considered as powerful means in system

modelling and testing. The reviewed literature shows that, once a system is

modelled as a finite state machine, it is easy to automate the process of test

generation.

This thesis studies the automated generation of test sequences when testing

from finite state machines. Three research issues that are highly related to fi-

nite state machine based testing were investigated, these being construction of

Unique Input/Output (UIO) sequences using Metaheuristic Optmisation Tech-

niques (MOTs), fault coverage in finite state machine based testing, and fault

diagnosis when testing from finite state machines.

In the studies of the construction of UIOs, a model is proposed where a fitness

function is defined to guide the search for input sequences that are potentially

UIOs. In the studies of the improved fault coverage, a new type of Unique

Input/Output Circuit (UIOC) sequence is defined. Based upon Rural Chinese

Postman Algorithm (RCPA), a new approach is proposed for the construction of

more robust test sequences. In the studies of fault diagnosis, heuristics are defined

that attempt to lead failures to be observed in some shorter test sequences, which

helps to reduce the cost of fault isolation and identification.

The proposed approaches and techniques were evaluated with regard to a set

of case studies, which provides experimental evidence for their efficacy.

167

8.1 Contributions

8.1 Contributions

The declared contributions of this PhD work are summarised as follows:

• proposed a model for the construction of (multiple) UIOs using MOTs (see

chapter 5);

• investigated fault coverage when testing from finite state machines and pro-

posed a new method for the generation of more robust test cases (see chapter

6);

• proposed an algorithm for the construction of backward unique input/output

sequences (see chapter 6);

• studied fault diagnosis when testing from finite state machines and proposed

a set of heuristic rules for fault isolation and identification (see chapter 7).

8.2 Finite state machine based testing

Testing from finite state machines has been discussed in this thesis. It has been

demonstrated that finite state machines can be used, not only in the generation

of test sequences, but also in the control of the testing process.

Some reviewed work shows how an efficient test sequence can be generated

from the finite state machine specification. Based upon rural Chinese postman

algorithm, Aho et al. (ATLU91) showed that an efficient test sequence may be

produced using UIOs for state verification. Shen et al. (SLD92) extended the

method by using multiple UIOs for each state and showed that this leads to a

shorter test sequence. These works, however, do not consider the overlap effect

in a test sequence.

Yang et al. (YU90) and Miller (MP93) showed that overlap can be used

in conjunction with (multiple) UIOs to further reduce the test sequence length.

Hierons (Hie96; Hie97) represented overlap by invertible sequences. All of the

algorithms guarantee the construction of a test sequence in polynomial time,

which makes the finite state machines practical models for testing.

168

8.3 Construction of UIOs

8.3 Construction of UIOs

A very important issue in finite state machine based testing is the construction

of Unique Input/Output (UIO) sequences. In finite state machine based testing,

the standard test strategy defines that the tail state of a transition needs to be

verified once the I/O check is finished. UIOs are often used for state verification.

A prerequisite for UIO based testing is that we have at least one UIO sequence for

each state of the machine under test. Finding ways to construct UIOs is therefore

important.

However, computing UIOs is NP-hard (LY94). Some approaches have been

proposed for the construction of UIOs, but they all have some drawbacks. In

this work, a model is proposed for the construction of multiple UIOs using Meta-

heuristic Optimisation Techniques (MOTs), with the sharing techniques. A fit-

ness function, based on properties of a state splitting tree, guides the search for

UIOs. A sharing technique is introduced to maintain the diversity in a population

by defining a mechanism that measures the similarity of two sequences.

Two finite state machines are used to evaluate the effectiveness of a Genetic

Algorithm (GA), GA with sharing, and Simulated Annealing (SA) with sharing.

Experimental results show that, when sharing techniques are applied, both GA

and SA can find the majority of UIOs from the models under test. This result

suggests that it is possible to construct UIOs using MOTs.

8.4 The improved fault coverage

In finite state machine based testing, the problem of fault masking in unique

input/output sequences may degrade the test performance of UIO based testing.

Two basic types of fault masking are defined in (LS92). Based upon this study,

in this work, a new type of Unique Input/Output Circuit (UIOC) sequence is

proposed for state verification, which may help to overcome the drawbacks that

exist in the UIO based techniques.

UIOCs themselves are particular types of UIOs where the ending states are the

same as their initial states. When constructing a UIOC, by further checking the

tail state and by using overlap or internal state observation scheme, the abilities

169

8.5 Fault diagnosis

of UIOs to resist the problem of fault masking is enhanced. Based upon rural

Chinese postman algorithm (RCPA), a new approach for the generation of test

sequence from finite state machines is proposed.

The proposed approach was compared with the existing approaches such as

F-method and B-method by devising a set of experiments. Experimental results

suggest that the proposed approach outperforms or is equal to the existing meth-

ods.

It has also been shown that the length of the test sequence generated by

using the proposed methods is not always longer than those generated by using

the existing methods. In the majority of studies, the test sequences generated by

using the proposed method were slightly longer than those generated by using

the existing methods. However, in some cases, the proposed method results in

some shorter test sequences.

8.5 Fault diagnosis

When testing from finite state machines, a failure observed in the Implementation

Under Test (IUT) is called a symptom. A symptom could have been caused by an

earlier state transfer failure. Transitions that may be used to explain the observed

symptoms are called diagnosing candidates. Finding strategies to generate an

optimal set of diagnosing candidates that could effectively identify faults in the

IUT is of great value in reducing the cost of system development and testing.

In this work, we investigated fault diagnosis when testing from finite state

machines and propose heuristics for fault isolation and identification. The pro-

posed heuristics attempt to lead a symptom to be observed in some shorter test

sequences, which helps to reduce the cost of fault isolation and identification.

A case study was designed to investigate the effectiveness of the proposed

method. In the example, two faults were injected to the implementation under

test. These faults were identified after applying the proposed heuristics.

170

8.6 Future work

8.6 Future work

Three research issues have been investigated. In each case, we have noted some

problems. In the studies of the construction of UIOs with MOTs, by applying

sharing techniques, a genetic population is forced to form several sub-populations,

each of which aims to explore UIOs that are determined as local optima. However,

a problem was noted where the distribution of UIOs in a sub-population did

not form a good shape. The distribution of the sub-population was dominated

by several individuals. In the future work, a new encoding approach might be

considered to overcome such a problem.

In the studies of UIOC based testing, overlap and internal state sampling

schema were proposed to overcome the problem that a fault is masked by some

internal state of a UIO sequence. The study of internal state sampling scheme

considered the sampling of one state. The effectiveness of the internal sampling

scheme may be further investigated in the future work by considering the use of

more than one internal state. Meanwhile, in the experiments, test sequences gen-

erated by using the proposed method failed to detect a small number of mutants

in some devised finite state machines. The failure of fault detection in UIOC

based testing needs to be further studied.

In the studies of fault diagnosis in finite state machine based testing, heuristics

were defined that attempt to lead failures to be observed in some shorter test

sequences, which helps to reduce the cost of fault isolation and identification.

However, the example studied in the work are comparatively simple. Some more

complicated testing problems such as k degree weak test and fault masked UIO

cycling were only analytically explained but have not been studied by using some

examples. These issues need to be investigated in the future work.

171

References

[AAD04] I. Ahmad, F.M. Ali, and A.S. Das. “LANG - algorithm for con-

structing unique input/output sequences in finite-state machines”.

IEE Proceedings - Computers and Digitital Techniques, 151:131–140,

2004.

[ABC82] W.R. Adrion, M.A. Branstad, and J.C Cherniavsky. “Validation,

Verification, and Testing of Computer Software”. Computing Sur-

veys, pages 159–192, 1982.

[Abr96] J.R. Abrial. The B Book - Assigning Programs to Meanings. Cam-

bridge University Press, 1996.

[AC96] Arlat J. Laprie J-C Avresky, D.R. and Y. Crouzet. “Fault Injec-

tion for Formal Testing of Fault Tolerance”. IEEE Transactions on

Reliability, 45(3):443–455, 1996.

[AFE84] A. Ackerman, P. Fowler, and R. Ebenau. “Software inspection and

the industrial production of software, Software Validation”. Proceed-

ings of the Symposium on Software Validation, pages 13–14, 1984.

[AG88] D. Andres and P. Gibbins. An Introduction to Formal Methods of

Software Development. Milton Keyness, UK: The Open University

Press, 1988.

[AHH04] K. Adamopoulos, M. Harman, and R.M. Hierons. “How to overcome

the equivalent mutant problem and achieve tailored selective muta-

tion using co-evolution”. AAAI Genetic and Evolutionary Compu-

tation COnference (GECCO 2004), in LNCS 3103:1338–1349, 2004.

172

REFERENCES

[Ake78] S.B. Akers. “Binary decision diagrams”. IEEE Transactions on

Computers, C-27(6):509–516, 1978.

[AL91] Crouzet Y. Arlat, J. and J-C Laprie. “Fault injection for the ex-

perimental validation of fault tolerance”. Proceedings in Ann.Esprit

Conf. (Esprit’91), pages 791–805, 1991.

[And86] S.J. Andriole. Software Validation, Verification, Testing, and Doc-

umentation. Princeton, NJ: Petrocelli Books, 1986.

[Atk92] A.C. Atkinson. “A segmented algorithm for simulated annealing”.

Statistics and Computing, (2):221–230, 1992.

[ATLU91] A.V. Aho, A.T. Tahbura, D. Lee, and M.U. Uyar. “An Optimization

Technique for Prototol Conformance Test Generation Based on UIO

Sequences and Rural Chinese Postman Tours”. IEEE Transactions

on Communications, 39(3):1604–1615, 1991.

[Avr99] D.R. Avresky. “Formal Verification and Testing of Protocol”. Com-

puter Communications, 22:681–690, 1999.

[BA82] T.A. Budd and D. Angluin. “Two notations of correctness and their

relaton to testing”. Acta Inf., 18:31–45, 1982.

[Bei90] B. Beizer. Software Testing Techniques. Thomson Computer Press,

2nd edition, 1990.

[BGM91] G. Bernot, M.-C. Gaudel, and B. Marre. “Software testing based

on formal specifications: a theory and a tool”. IEE/BCS Software

Engineering Journal, 6:387–405, 1991.

[BJG01] J. Bang-Jensen and G. Gutin. Digraphs: Theory Algorithms and

Applications. Springer-Verlag, London, 2001.

[BM76] J.A. Bondy and U.S.R. Murty. Graph Theroy with Applications.

Elsevier North Holland, Inc., New York, 1976.

173

REFERENCES

[Boe81] B.W. Boehm. Software Engineering Economics. Prentice-Hall,

1981.

[BP94] G. von Bochmann and A. Petrenko. “Protocol testing: Review of

methods and relevance for software testing”. In Proceedings of the

ACM 1994 International Symposium on Software Testing and Anal-

ysis, pages 109–124, 1994.

[BPBM97] G. von Bochmann, A. Petrenko, O. Bellal, and S. Maguiraga. “Au-

tomating the process of test derivation from SDL specifications”. in

SDL Forum’97, 1997.

[BPY94] G. von Bochmann, A. Petrenko, and M.Y. Yao. “Fault coverage

of tests based on finite state models”. In IFIP 7th International

Workshop on Protocol Test Systems, pages 91–106, 1994.

[BRM02] M. Brodie, I. Rish, and S. Ma. “Intelligent probing: a cost-efficient

approach to fault diagnosis in computer network”. IBM Systems

Journal, 41(3):372–385, 2002.

[BS83] G. von Bochmann and C.A. Sunshine. “A Survey of Formal Meth-

ods”. Computer Networks and Protocols, P.E.Green, Ed. New York:

Plenum, pages 561–578, 1983.

[BU91] S.C. Boyd and H. Ural. “On the complexity of generating opti-

mal test sequences”. IEEE Transactions on Software Engineering,

17:976–978, 1991.

[Bur93] C. J. Burgess. “Software testing using an automatic generator of test

data”. in Proceedings of SQM’93 - Software Quality Management,

pages 541–556, 1993.

[CA92] W. Chun and P.D. Amer. “Improvements on UIO sequence genera-

tion and partial UIO sequences”. Proceedings IFIP WG6.1 12th In-

ternational Symposium on Protocol Specification, Testing, and Ver-

ification, pages 245–260, 1992.

174

REFERENCES

[CC92] U. Celikkan and R. Cleaveland. “Computing diagnostic tests for

incorrect processes”. Proceedings of IFIP WG6.1 12th Interna-

tional Symposium on Protocol Specification, Testing, and Verifica-

tion, pages 263–278, 1992.

[CCK90] M.-S. Chen, Y. Choi, and A. Kershenbaum. “Approaches utiliz-

ing segement overlap to minimize test sequences”. Proceedings of

IFIP WG6.1 10th International Symposium on Protocol Specifica-

tion, Testing, and Verification, pages 85–98, 1990.

[CCPS98] W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, and A. Schrijver.

Combinatiorial Optimization. Wiley-Interscience, New York, 1998.

[CDH+03] J. Clark, J. J. Dolado, M. Harman, R. M. Hierons, B. Jones,

M. Lumkin, B. Mitchell, S. Mancoridis, K. Rees, Roper M., and

M. Shepperd. “Reformulating Software Engineering as a Search

Problem”. IEE Proceedings - Software, 150(3):161–175, 2003.

[CHC76] Ramamoorthy CV, S.F. Ho, and W.T. Chen. “On the automated

generation of program test data”. IEEE Transactions on Software

Engineering, 2(4):293–300, 1976.

[Cho78] T.S. Chow. “Testing Software Design Modelled by Finite State Ma-

chines”. IEEE Transactions On Software Engineering, 4(3):178–187,

1978.

[CHR82] L.A. Clarke, J. Hassell, and D.J. Richardson. “A close look at

domain testing”. IEEE Transactions on Software Engineering,

8(4):380–390, 1982.

[CK92] A.R. Cavalli and S.U. Kim. “Automated protocol conformance test

generation based on formal methods for LOTOS specifications”.

IFIP 5th International Workshop on Protocol Test Systems, pages

212–220, 1992.

175

REFERENCES

[CK02] M. Chyzy and W. Kosinski. “Evolutionary algorithm for state as-

signment of finite state machines”. Proceedings of the Euromicro

Symposium on Digital System Design, pages 359–362, 2002.

[CLBW90] W.H. Chen, C.S. Lu, E.R. Brozovsky, and J.T. Wang. “An opti-

mization technique for protocol conformance testing using multiple

UIO sequences”. Inform. Process. Lett., 26:7–11, 1990.

[CM94] J.J. Chilenski and S.P. Miller. “Applicability of Modified Condi-

tion/Decision Coverage to Software Testing”. Software Engineering

Journal, 9(5):193–200, 1994.

[CPR89] L.A. Clarke, A. Podgurski, and D.J. Richardson. “A formal eval-

uation of data flow path selection critria”. IEEE Transactions on

Software Engineering, 15(11):1318–1332, 1989.

[CS94] D.A. Carrignton and P.A. Stocks. “A tale of two paradigms: Formal

methods and software testing”. Z User Workshop, Cambridge 1994,

Workshops in Computing, pages 51–68, 1994.

[CSE96] J. Callahan, F. Schneider, and S. Easterbrook. “Automated software

testing using model-checking”. in SPIN’96, pages 118–127, 1996.

[CTCC98] H.Y. Chen, T.H. Tse, F.T. Chan, and T.Y. Chen. “In black

and white: an integrated approach to class-level testing of object-

oriented programs”. ACM Transactions on Software Engineering

and Methodology, 7:250–295, 1998.

[CU95] W.H. Chen and H. Ural. “Synchronizable Test Sequences Based on

Multiple UIO Sequences”. IEEE/ACM Transactions on Networking,

3(2):152–157, 1995.

[CVI89] W.Y.L. Chan, S.T. Vuong, and M.R Ito. “An improved protocol test

generation procedure based on UIOs”. ACM SIGCOMM89, pages

178–187, 1989.

176

REFERENCES

[CW96] E.M. Clarke and J.M. Wing. “Formal methods: state of the art and

future directions”. ACM Computing Surveys, 28:626–643, 1996.

[CYL01] S.S. Chao, D.L. Yang, and A.C. Liu. “An automated fault diagnosis

system using hierarchical reasoning and alarm correlation”. Journal

of Network and Systems Management, 9(2):183–202, 2001.

[CZ93] S.T. Chanson and J. Zhu. “A unified approach to protocol test

sequence generation”. Proceedings of INFOCOM, pages 106–114,

1993.

[DB99] J. Derrick and E. Boiten. “Testing refinements of state-based formal

specifications”. Software testing, Verification and Reliability, 9:27–

50, 1999.

[DGM93] P. Dauchy, M.-C. Gaudel, and B. Marre. “Using algebraic specifica-

tions in software testing: a case study on the software of an auto-

matic subway”. The Journal of Systems and Software, 21:229–244,

1993.

[DHHG04] K. Derderian, R.M. Hierons, M. Harman, and Q. Guo. “Input

Sequence Generation for Testing of Communicating Finite State

Machines (CFSMs) Using Genetic Algorithms”. AAAI Genetic

and Evolutionary Computation Conference 2004 (GECCO 2004),

in LNCS 3103:1429–1430, 2004.

[DHHG05] K. Derderian, R.M. Hierons, M. Harman, and Q. Guo. “Generating

feasible input sequences for extended finite state machines (EFSMs)

suing Genetic Algorithms”. AAAI Genetic and Evolutionary Com-

putation Conference 2005 (GECCO 2005), pages 1081–1082, 2005.

[Dij72] E.W. Dijkstra. “Notes on structured programming”. Structured

Programming, 1972.

[DLS78] R.A. DeMillo, R. Lipton, and F.G. Sayward. “Hints on test data

selection: help for the practicing programmer”. IEEE Computer,

11:34–41, 1978.

177

REFERENCES

[DN84] J.W. Duran and S.C. Ntafos. ‘An evaluation of random testing”.

IEEE Transactions on Software Engineering, 10(4):438–444, 1984.

[DO93] R.A. DeMillo and A.J. Offut. “Experimental results from an auto-

matic test case generator”. ACM Transactions on Software Engi-

neering Methodology, 2(2):109–127, 1993.

[Dow93] K.A Dowsland. Modern Heuristic Techniques for Combinatorial

Problems. McGraw Hill, 1993.

[DSU90] A.T. Dahbura, K. Sabnani, and M.U. Uyar. “Formal methods for

generating protocol conformance test sequences”. Proceedings of

IEEE, 78(8):1317–1325, 1990.

[EFM97] A. Engels, L.M.G. Feijs, and S. Mauw. “Test generation for intel-

ligent networks using model checking”. TACAS’97, in LNCS 1217,

1997.

[Ehr89] W.D. Ehrenberger. “Probabilistic techniques for software verifica-

tion”. IAEA Technical Committee Meeting on Safety Implications

of Computerised Process Control in Nuclear Power Plants, 1989.

[EJ73] J. Edmonds and E.L. Johnson. “Matchings, Euler Tours, and the

Chinese Postman Problem”. Mathematical Programming, 5:118–125,

1973.

[EK72] J. Edmonds and R.M. Karp. “Theoretical Improvements in Algorith-

mic Efficiency for Network Flow Problems”. Journal of the ACM,

19(2):248–264, 1972.

[FBK+91] S. Fujiwara, G. von Bochmann, F. Khende, M. Amalou, and

A. Ghedamsi. “Test Selection Based on Finite State Models”. IEEE

Transactions on Software Engineering, 17(6):591–603, 1991.

[FFF62] L.R. Fr. Ford and D.R. Fulkerson. Flows in networks. Princeton

University Press, Princeton, N.J., 1962.

178

REFERENCES

[FK96] R. Ferguson and B. Korel. “The chaining approach for software test

data generation”. ACM Transactions on Software Engineering and

Methodology (TOSEM), 5(1):63–86, 1996.

[FS96] R. Fletcher and A.S.M. Sajeev. “A framework for testing object-

oriented software using formal specifications”. Ada-Europe’96, In-

ternational Conference on Reliable Software Technologies, 1996.

[fSI88] International Organization for Standardization (ISO). “Information

processing systems - Open systems interconnections - LOTOS - A

formal description technique based on the temporal ordering of ob-

servational behaviour”. ISO8807, 1988.

[fSI89] International Organization for Standardization (ISO). “Information

processing systems - Open systems interconnections - Estelle - A

formal description technique based on an extended state transition

model”. ISO9074, 1989.

[FW88] P.G. Frankl and J.E. Weyuker. “An applicable family of data

flow testing criteria”. IEEE Transactions on Software Engineering,

14(10):1483–1498, 1988.

[Gau95] M.C. Gaudel. “Testing can be formal too”. In TAPSOFT’95, pages

82–96, 1995.

[GB92] A. Ghedamsi and G. von Bochmann. “Test Result Analysis and

Diagnosis for Finite State Machines”. Proceedings of the 12th Inter-

national Workshop on Protocol Test Systems, pages 244–251, 1992.

[GBD93] A. Ghedamsi, G. von Bochmann, and R. Dssouli. “Multiple Fault

Diagnosis for Finite State Machines”. Proceedings of IEEE INFO-

COM’93, pages 782–791, 1993.

[GCG90] C.P. Gerrard, D. Coleman, and R.M. Gallimore. “Formal specifi-

cation and design time testing”. IEEE Transactions on Software

Engineering, 16:1–12, 1990.

179

REFERENCES

[GG75] J.B. Goodenough and S.L. Gerhart. “Towards a theory of test data

selection”. IEEE Transactions on Software Engineering, 1(2):156–

173, 1975.

[GH99] A. Gargantini and C. Heitmeyer. “Using model checking to gener-

ate tests from requirements specifications”. in ESEC’99, in LNCS

1687:146–162, 1999.

[GHHD04] Q. Guo, R.M. Hierons, M. Harman, and K. Derderian. “Comput-

ing Unique Input/Output Sequences Using Genetic Algorithms”.

Formal Approaches to Testing (FATES’03), in LNCS 2931:164–177,

2004.

[GHHD05a] Q. Guo, R.M. Hierons, M. Harman, and K. Derderian. “Construct-

ing Multiple Unique Input/Output Sequences Using Metaheuristic

Optimisation Techniques”. IEE Proceedings - Software, 152(3):127–

140, 2005.

[GHHD05b] Q. Guo, R.M. Hierons, M. Harman, and K. Derderian. “Improving

Test Quality Using Robust Unique Input/Output Circuit Sequences

(UIOCs)”. Information and Software Technology, accepted for pub-

lication, 2005.

[GHHD05c] Q Guo, R.M. Hierons, M. Harman, and K. Derderian. “Heuristics for

fault diagnosing when testing from finite state machines”. Software

testing, verification and reliability, under review, 2005.

[Gil61] A. Gill. “State-identification experiments in finite automata”. In-

formation and Control, 4:132–154, 1961.

[Gil62] A. Gill. Introduction to The Theory of Finite State Machines.

McGraw-Hill, 1962.

[Glo89] F. Glover. “Future paths for integer programming and links to arti-

ficial intelligence”. Computers and Operations Research, 5:533–549,

1989.

180

REFERENCES

[Gol89] D.E. Goldberg. Genetic Algorithms in Search, Optimization, and

Machine Learning. Addison-Wesley, 1989.

[Gon70] G. Gonenc. “A method for the design of fault detection experi-

ments”. IEEE Transactions on Computers, C-19:551–558, 1970.

[GR87] D.E. Goldberg and J. Richardson. “Genetic Algorithms with Sharing

for Multimodal Function Optimization”. In J.J.Grefenstette (Ed.)

Proceedings of the Second International Conference on Genetic Al-

gorithms, pages 41–49, 1987.

[GW88] J.A. Goguen and T. Walker. “Introducing OBJ3”. Computer Science

Laboratory SRI International Report SRI-CSL-88-9, 1988.

[GY98] J. Gross and J. Yellen. Graph Theory and Its Applications. The

CRC Press, New York, 1998.

[Had01] C.N. Hadjicostis. “Stochastic Testing of Finite State Machines”.

Proceedings of the American Control Conference, pages 4568–4573,

2001.

[Hal88] P.A.V. Hall. “Towards testing with respect to formal specification”.

Proceedings of the 2nd IEE/BSC Conference on Software Engineer-

ing ’88, pages 159–163, 1988.

[HCJ98] C.M. Huang, M.S. Chiang, and M.Y. Jiang. “UIO: a protocol test

sequence generation method using the transition executability anal-

ysis (TEA)”. Computer Communications, 21:1462–1475, 1998.

[Hen64] F.C. Hennie. “Fault Detecting Experiments for Sequential Circuits”.

Proceedings of the Fifth Annual Switching Theory and Logical Design

Symposium, pages 95–110, 1964.

[Her76] P. Herman. “A data flow analysis approach to program testing”.

Aust. Comput. J., 8(3):92–96, 1976.

[Het88] W.C. Hetzel. The Complete Guide to Software Testing. Wellesley,

2nd edition, 1988.

181

REFERENCES

[HH91] P.A.V. Hall and R.M. Hierons. “Formal methods and testing”. Tech.

Rep. 91/16, Dept. of Computing, the Open University, 1991.

[Hie93] R.M. Hierons. Using Formal Specifications to Enhance The Software

Testing Process. Ph.D. Thesis, Brunel University, United Kingdom,

1993.

[Hie96] R.M. Hierons. “Extending Test Sequence Overlap by Invertibility”.

The Computer Journal, 39(4):325–330, 1996.

[Hie97] R.M. Hierons. “Testing From a Finite-State Machine: Extending

Invertibility to Sequences”. The Computer Journal, 40(4):220–230,

1997.

[Hie98] R.M. Hierons. “Minimizing the cost of fault location when testing

from a finite state machine”. Computer Cmmunications, 22(2):120–

127, 1998.

[HJ01] M. Harman and B. Jones. “Search-based software engineering”. In-

formation and Software Technology, 43(14):833–839, 2001.

[Hoa85] A.R. Hoare. Communicating Sequential Processes. Prentice-Hall

International,, 1985.

[Hol75] J.H. Holland. Adaptation in Natural and Artificial Systems. Ann

Arbor, MI, University of Michigan Press, 1975.

[How76] W.E. Howden. “Reliability of the path analysis testing strat-

egy”. IEEE Transactions on Software Engineering, SE-2(3):208–215,

1976.

[How82] W.E. Howden. “Weak mutation testing and completeness of test

sets”. IEEE Transactions on Software Engineering, 8(1):208–215,

1982.

[Hsi71] E.P. Hsieh. “Checking experiments for sequential machines”. IEEE

Transactions on Computers, 20:1152–1166, 1971.

182

REFERENCES

[HT90] R. Hamlet and R. Taylor. “Partition testing does not inspire confi-

dence”. IEEE Transactions on Software Engineering, 16(12):1402–

1411, 1990.

[HU02] R.M. Hierons and H. Ural. “Reduced Length Checking Sequences”.

IEEE Transactions on Computers, 51(9):1111–1117, 2002.

[HU03] R.M. Hierons and H. Ural. “ UIO sequence based checking sequences

for distributed test architectures”. Information and Software Tech-

nology, 45:793–803, 2003.

[IEE90] IEEE. IEEE Standard Glossary of Software Engineering Terminol-

ogy. IEEE Standard 610.12-1990, 1990.

[IT97] ITU-T. Recommendation Z.500 Framework on Formal Methods

in Conformance Testing. International Telecommunication Union,

Geneva, Switzerland, 1997.

[JES98] B.F. Jones, D.E. Eyres, and H.H. Sthamer. “A Strategy for Using

Genetic Algorithms to Automate Branch and Fault-based Testing”.

The Computer Journal, 41(2):98–107, 1998.

[Jon90] C.B. Jones. Systematic Software Development Using VDM. Prentice

Hall, 1990.

[JSE96] B.F. Jones, H.-H. Sthamer, and D.E. Eyres. “Automatic Structural

Testing Using Genetic Algorithms”. Software Engineering Journal,

11(5):299–306, 1996.

[KGJV83] S. Kirkpatrick, C.D. Gelatt, Jr., and M.P. Vecchi. “Optimization by

Simulated Annealing”. Science, 220(4598):671–680, 1983.

[Kho02] A. Khoumsi. “A Temporal Approach for Testing Distributed Sys-

tems”. IEEE Transactions on Software Engineering, 28(11):1085–

1103, 2002.

183

REFERENCES

[KK68] I. Kohavi and Z. Kohavi. “Variable-length distinguishing sequences

and their application to the design of fault-detection experiments”.

IEEE Transactions on Computers, C(17):792–795, 1968.

[KMM91] S.M. Kim, R. McNaughton, and R. McCloskey. “A polynomial time

algorithm for the local testability problem of deterministic finite

automata”. IEEE Transactions on Computers, 40:1087–1093, 1991.

[Koh78] Z. Kohavi. Switching And Finite Automata Theory. McGraw-Hill,

New York, 1978.

[KS95] I. Katzela and M. Schwartz. “Schemes for Fault Identification in

Communication Networks”. IEEE/ACM Transactions on Network-

ing, 3(6):753–764, 1995.

[Kua62] M.-K. Kuan. “Graphic programming using odd or even points”.

Chinese Math, 1:273–277, 1962.

[LBP94a] G. Luo, G. von Bochmann, and A. Petrenko. “Test selection based

on communicating nondeterministic finite-state machines”. in The

7th IFIP Workshop on Protocol Test Systems, pages 95–110, 1994.

[LBP94b] G. Luo, G. von Bochmann, and A. Petrenko. “Test selection based

on communicating nondeterministic finite-state machines using a

generalized Wp-method”. IEEE Transactions of Software Engineer-

ing, 20:149–161, 1994.

[LK83] J Laski and B. Korel. “A data flow oriented program testing strat-

egy”. IEEE Transactions on Computers, 9:33–43, 1983.

[Low93] S. Low. “Probabilistic conformance testing of protocols with unob-

servable transitions”. Proceedings of the 1st International Confer-

ence on Network Protocols, pages 368–375, 1993.

[LS92] F. Lombardi and Y.-N. Shen. “Evaluation and Improvement of Fault

Coverage of Comformance Testing by UIO Sequences”. IEEE Trans-

actions on Communications, 40(8):1288–1293, 1992.

184

REFERENCES

[LW02] J.J. Li and W.E. Wong. “Automatic test generation from com-

municating extended finite state machine (CEFSM)-based models”.

Proceedings of the Fifth IEEE International Symposium on Object-

Oriented Real-Time Distributed Computing, pages 181–185, 2002.

[LY94] D. Lee and M. Yannakakis. “Testing Finite State Machines: State

Identification and Verification”. IEEE Transactions on Computers,

43(3):306–320, 1994.

[LY96] D. Lee and M. Yannakakis. “Principles and Methods of Testing

Finite State Machines - A Survey”. Proceedings of IEEE, 84(8):1090–

1122, 1996.

[MA00] B. Marre and A. Arnould. “Test sequences generation from LUSTRE

descriptions: GATEL”. in 15th IEEE International Conference on

Automated Software Engineering (ASE 2000), Grenoble, 2000.

[MC98] I. MacColl and D. Carrington. “Testing MATIS: A case study on

spefication-based testing of interactive systems”. in FAHCI98: For-

mal Aspects of Human Computer Interaction Workshop, pages 57–

69, 1998.

[McM04] P. McMinn. “Search-based software test data generation : a survey”.

Software Testing, Verification and Reliability, 14:105–156, 2004.

[MG83] P.R. McMullin and J.D. Gannon. “Combining testing with formal

specifications: a case study”. IEEE Transactions on Software Engi-

neering, 9:328–335, 1983.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[MK] D. Marinov and S. Khurshid. “Testera: A novel framework for auto-

mated testing of Java programs”. in Proceedings of IEEE 16th ASE,

page 2001.

[ML90] R.E. Miller and G.M. Lundy. “Testing protocol implementations

based on a formal specification”. Protocol Test Systems III, pages

289–304, 1990.

185

REFERENCES

[MMN+92] K.W. Miller, L.J. Morell, R.E. Noonan, S.K. Park, D.M. Nicol, B.W.

Murrill, and J.M Voas. “Estimating the probability of failure when

testing reveals no failures”. IEEE Transactions on Software Engi-

neering, 18(1):33–43, 1992.

[MMS01] C.C. Michael, G. McGraw, and M.A. Schatz. “Generating Software

Test Data by Evolution”. IEEE Transactions on Software Engineer-

ing, 27(12):1085–1110, 2001.

[MMSL96] E.W. McGookin, D.J. Murray-Smith, and Y. Li. “Segmented Sim-

ulated Annealing applied to Sliding Mode Controller Design”. Pro-

ceedings of the 13th World Congress of IFA, San Francisco, USA,

Vol D:333–338, 1996.

[Moo56] E.F. Moore. “Gedanken-experiments on sequential machines”. Au-

tomata Studies, 34:129–153, 1956.

[MP93] R.E. Miller and S. Paul. “On the Generation of Minimal-Length

Conformance Tests for Communication Protocols”. IEEE/ACM

Transactions on Networking, 1(1):116–129, 1993.

[MP94] R.E. Miller and S. Paul. “Structural Analysis of Protocol Specifica-

tions and Generation of Maximal Fault Coverage Conformance Test

Sequences”. IEEE/ACM Transactions on Networking, 2(5):457–470,

1994.

[MRR+53] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and

E. Teller. “Equations of State Calculations by Fast Computing Ma-

chines”. Journal of Chemical and Physics, 21:1087–1092, 1953.

[Mye79] G.J. Myers. The art of software testing. John Wiley & Sons, New

York, 1979.

[Nai95] K. Naik. “Fault-tolerant UIO Sequences in Finite State Machines”.

Proceedings of the IFIP WG6.1 TC6 Eight International Workshop

on Protocol Test Systems, pages 201–214, 1995.

186

REFERENCES

[Nai97] K. Naik. “Efficient Computation of Unique Input/Output Sequences

in Finite-State Machines”. IEEE/ACM Transactions on Network-

ing, 5(4):585–599, 1997.

[NC02] N. Niparnan and P. Chongstitvatana. “An improved genetic algo-

rithm for the inference of finite state machine”. Proceedings of the

IEEE International Conference on Systems, Man and Cybernetics,

pages 189–192, 2002.

[NT81] S. Naito and M. Tsunoyama. “Fault detection for sequential ma-

chines by transitions tours”. Proceedings of IEEE Fault Tolerant

Comput. Symp., IEEE Computer Soc. Press, pages 238–243, 1981.

[Nta84] S.C. Ntafos. “On required element testing”. IEEE Transactions on

Software Engineering, 10(6):795–803, 1984.

[Nta88] S.C. Ntafos. “A Comparison of Some Structural Testing Strategies”.

IEEE Transactions on Software Engineering, 14(6):868–874, 1988.

[OB89] T.J. Ostrand and M.J. Balcer. “The category-Partition Method for

Specifying and Generating Functional Tests”. Communication of the

ACM, 31(6):667–686, 1989.

[Oul91] M. Ould. “Testing - a challenge to method and tool developers”.

Software Engineering Journal, 6(2):59–64, 1991.

[PB96] A. Petrenko and G. von Bochmann. “On Fault Coverage of Tests for

Finite State Specifications”. Computer Networks and ISDN Systems,

29(1):81–106, 1996.

[Pet01] A. Petrenko. “Fault Model-Driven Test Derivation from Finite State

Models: Annotated Bibliography”. MOVEP, in LNCS 2067:196–

205, 2001.

[PHP99] R.P. Pargas, M.J. Harrold, and R.R. Peck. “Test-data generation

using genetic algorithms”. The Journal of Software Testing, Verifi-

cation and Reliability, 9:263–282, 1999.

187

REFERENCES

[PR97] I. Pomeranz and S.M. Reddy. “Test generation for multiple state-

table faults in finite-state machines”. IEEE Transactions on Com-

puters, 46(7):782–794, 1997.

[PR00] I. Pomeranz and S.M. Reddy. “Functional test generation for full

scan circuits”. Proceedings of the conference on Design, Automation

and Test in Europe, pages 396–403, 2000.

[RN95] S. Russell and P. Norvig. Artificial Intelligence, A Modern Approach.

Prentice Hall, 1995.

[Rop94] M. Roper. Software Testing. McGraw-Hill Book Company, London,

1994.

[RU95] A. Rezaki and H. Ural. “Construction of Checking Sequences Based

On Characterization Sets”. Computer Communications, 18:911–920,

1995.

[RW85] S. Rapps and E. Weyuker. “Selecting software test data using data

flow information”. IEEE Transactions on Software Engineering,

11(4):367–375, 1985.

[Sad97] S. Sadeghipour. “Test case generation on the basis of formal speci-

fications”. Workshop on Formal Design of Safety Critical Embedded

Systems, Munich, Gemany, 1997.

[SGL01] H. Sun, M. Gao, and A. Liang. “Study on UIO sequence generation

for sequential machine’s functional test”. Proceedings of the 4th

International Conference on ASIC, pages 628–632, 2001.

[SL89] D.P. Sidhu and T.K. Leung. “Formal Methods for Protocol Testing:

A Detailed Study”. IEEE Transactions on Software Engineering,

15(4):413–426, 1989.

[SL92] X.J. Shen and G.G. Li. “A new protocol conformance test gener-

ation method and experimental results”. Proceedings of the 1992

ACM/SIGAPP Symposium on Applied computing: technological

challenges of the 1990’s, pages 75–84, 1992.

188

REFERENCES

[SLD92] Y.N. Shen, F. Lombardi, and A.T. Dahbura. “Protocol Confor-

mance Testing Using Multiple UIO Sequences”. IEEE Transactions

on Communications, 40(8):1282–1287, 1992.

[SMV93] D.P. Sidhu, H. Motteler, and R. Vallurupalli. “On Testing Hier-

archies for Protocols”. IEEE/ACM Transactions on Networking,

1(5):590–599, 1993.

[Spi88] J.M. Spivey. Understanding Z: A Specification languages and its

formal semantics. Cambridge University Press, 1988.

[Spi89] J.M. Spivey. The Z Notation: A Reference Manual. Prentice Hall,

1989.

[SS04] M. Steinder and A.S. Sethi. “Probabilistic Fault Diagnosis in Com-

munication Systems Through Incremental Hypothesis Updating”.

Computer Networks, 45:537–562, 2004.

[SSLS91] X. Sun, Y.-N. Shen, F. Lombardi, and D. Sciuto. “Prototocl con-

formance testing by discriminating UIO sequences”. Proceedings of

IFIP WG6.1 11th International Symposium on Protocol Specifica-

tion, Testing, and Verification, (349-364), 1991.

[SST91] X.J. Shen, S. Scoggins, and A. Tang. “An Improved RCP-method for

Protocol Test Generation Using Backward UIO sequences”. Proceed-

ings of ACM Symposium on Applied Computing (SAC 1991), pages

284–293, 1991.

[SVJ98] D.C. Sun, B. Vinnakota, and W.L. Jiang. “Fast State Verification”.

35th Design Automation Conference, pages 619–624, 1998.

[TCM98] N. Tracey, J. Clark, and K. Mander. “Automated Program Flaw

Finding using Simulated Annealing”. Proceedings of the ACM SIG-

SOFT international symposium on Software testing and analysis,

pages 83–81, 1998.

189

REFERENCES

[TCMM00] N. Tracey, J. Clark, K. Mander, and J. McDermid. “Automated

Test-data Generation for Exception Conditions”. Software Practice

and Experience, 30(1):61–79, 2000.

[Tha94] G. Thaller. Software Tests for Students and Practisers. Somepub-

lisher, Wiesbaden, 1994.

[TPB95] Q.M. Tan, A. Petrenko, and G. von Bochmann. “Modelling basic

LOTOS by FSMs for conformance testing”. in IFIP Protocol Spec-

ification, Testing, and Verification XV, pages 137–152, 1995.

[TPB97] Q.M. Tan, A. Petrenko, and G. von Bochmann. “Checking experi-

ments with labeled transition systems for trace equivalence”. in The

10th International Workshop on Testing of Communicating Systems,

pages 167–182, 1997.

[Tre96] J. Tretmans. “Conformance testing with labelled transition sys-

tems:Implementation relations and test generation”. Computer Net-

works and ISDN Systems, 29:49–79, 1996.

[TY98] K.C. Tai and Y.C. Young. “Synchronizable test sequences of finite

state machines”. Computer Networks and ISDN Systems, 30:1111–

1134, 1998.

[UD86] M.U. Uyar and A.T. Dahbura. “Optimal test sequence generation

for protocols: the Chinese postman algorithm applied to Q.931”. in

Proceedings of IEEE Global Telecommunications Conference, pages

68–72, 1986.

[UWZ97] H. Ural, X.L. Wu, and F. Zhang. “On Minimizing the Lengths of

Checking Sequences”. IEEE Transactions on Computers, 46(1):93–

99, 1997.

[VCI89] S.T. Vuong, W.W.L. Chan, and M.R. Ito. “The UIOv-method for

protocol test sequence generation”. in The 2nd International Work-

shop on Protocol Test Systems, 1989.

190

REFERENCES

[vdBKP92] S.P. van de Burgt, J. Kroon, and A.M. Peeters. “Testability of formal

specifications”. Proceedings of IFIP WG6.1 12th International Sym-

posium on Protocol Specification, Testing, and Verification, pages

177–188, 1992.

[WC80] L.J. White and E.I. Cohen. “A domain strategy for computer

program testing”. IEEE Transactions on Software Engineering,

6(3):247–257, 1980.

[WH88] M.R. Woodward and K. Halewood. “From weak to strong - dead

or alive? An analysis of some mutation testing issues”. In Proceed-

ings of the Second Workshop on Software Testing, Verification and

Analysis, pages 152–158, 1988.

[WHH80] M.R. Woodward, D. Hedley, and M.A. Hennel. “Experience with

path analysis and testing of programs”. IEEE Transactions on Soft-

ware Engineering, 6(5):278–286, 1980.

[Whi94] D. Whitley. “A genetic algorithm tutorial”. Statistics and Comput-

ing, 4:65–85, 1994.

[WO80] E.J. Weyuker and T.J. Ostrand. “Theories of program testing and

the application of revealing subdomains”. IEEE Transactions on

Software Engineering, 6(3):236–246, 1980.

[WS93] C. Wang and M. Schwartz. “Fault Detection With Multiple Ob-

servers”. IEEE/ACM Transactions on Networking, 1(1):48–55,

1993.

[WSJE97] J. Wegener, H. Sthamer, B.F. Jones, and D.E. Eyres. “Testing

Real-time Systems Using Genetic Algorithms”. Software Quality,

6(2):127–135, 1997.

[YPB93] M. Yao, A. Petrenko, and G. von Bochmann. “Conformance test-

ing of protocol machines without reset”. in Protocol Specification,

Testing and Verification, XIII(C-16), pages 241–256, 1993.

191

REFERENCES

[YU90] B. Yang and H. Ural. “Protocol Conformance Test Generation Us-

ing Multiple UIO Sequences with Overlapping”. ACM SIGCOMM

90: Communications, Architectures, and Protocols, pages 118–125,

1990.

[Zei83] S.J. Zeil. “Testing for perturbations of program statements”. IEEE

Transactions on Software Engineering, 9(3):335–346, 1983.

[ZHM97] H. Zhu, P.A.V. Hall, and J.H.R. May. “Software unit test coverage

and adequacy”. ACM Computing Surveys, 29(4):366–427, 1997.

192

	1 Introduction
	1.1 About testing
	1.2 Validation and verification
	1.2.1 Validation
	1.2.2 Verification
	1.2.3 Validation vs. verification

	1.3 Formal specification languages
	1.4 Test cost and fault coverage
	1.5 Fault observation and diagnosis
	1.6 Testing with MOTs
	1.7 The structure of this thesis

	2 Preliminaries and notation
	2.1 Graph theory
	2.1.1 Directed graph
	2.1.2 Flows in networks
	2.1.3 The maximum flow and minimum cost problems
	2.1.4 The Chinese postman tour

	2.2 Metaheuristic optimisation techniques
	2.2.1 Genetic algorithms
	2.2.2 Simulated annealing
	2.2.3 Others

	3 Test generation - a review
	3.1 Introduction
	3.2 Adequacy criteria
	3.3 Black-box and white-box testing
	3.4 Control flow based testing
	3.5 Data flow based testing
	3.6 Partition analysis
	3.6.1 Specification based input space partitioning
	3.6.2 Program based input space partitioning
	3.6.3 Boundary analysis

	3.7 Mutation testing
	3.8 Statistical testing
	3.9 Search-based testing

	4 Testing from finite state machines
	4.1 Introduction
	4.2 Finite state machines
	4.3 Conformance testing
	4.4 Test sequence generation
	4.5 Optimisation on the length of test sequences
	4.5.1 Single UIO based optimisation
	4.5.2 Multiple UIOs based optimisation
	4.5.3 Optimisation with overlap

	4.6 Other finite state models

	5 Construction of UIOs
	5.1 Introduction
	5.2 Constructing UIOs with MOTs
	5.2.1 Solution representation
	5.2.2 Fitness definition
	5.2.3 Application of sharing techniques
	5.2.4 Extending simple simulated annealing

	5.3 Models for experiments
	5.4 Working with genetic algorithms
	5.4.1 GA vs. random search
	5.4.2 Sharing vs. no sharing

	5.5 Working with simulated annealing
	5.6 General evaluation
	5.7 Parameter settings
	5.8 Summary

	6 Fault coverage
	6.1 Introduction
	6.2 Problems of the existing methods
	6.2.1 Problems of UIO based methods
	6.2.2 Problems of backward UIO method

	6.3 Basic faulty types
	6.4 Overcoming fault masking using robust UIOCs
	6.4.1 Overcoming type 1
	6.4.2 Overcoming type 2
	6.4.3 Construction of B-UIOs
	6.4.4 Construction of UIOCs

	6.5 Simulations
	6.6 Summary

	7 Fault isolation and identification
	7.1 Introduction
	7.2 Isolating single fault
	7.2.1 Detecting a single fault
	7.2.2 Generating conflict sets

	7.3 Minimising the size of a conflict set
	7.3.1 Estimating a fault location
	7.3.2 Reducing the size of a conflict set using transfer sequences
	7.3.3 Reducing the size of a conflict set using repeated states

	7.4 Identifying a faulty transition
	7.4.1 Isolating the faulty transition
	7.4.2 Identifying the faulty final state

	7.5 A case study
	7.6 Complexity
	7.6.1 Complexity of fault isolation
	7.6.2 Complexity of fault identification

	7.7 Summary

	8 Conclusions and future work
	8.1 Contributions
	8.2 Finite state machine based testing
	8.3 Construction of UIOs
	8.4 The improved fault coverage
	8.5 Fault diagnosis
	8.6 Future work

	References

