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Abstract

This dissertation deals with frequency domain identification of linear systems in a determin-

istic set-up. A robustly convergent algorithm for identification of frequency response samples

of a linear shift invariant plant is proposed. An explicit bound on the identification error is

obtained based on suitable a priori assumptions about the plant and the measurement noise.

For a finite measurement duration, this algorithm yields (possibly) noisy point frequency

response samples of the plant and a worst case error bound. Given such noisy frequency

response samples, two different families of worst case identification algorithms are presented.

Each of these algorithms yields a model and a bound on the worst case infinity norm of error

between the plant and the model, based on a priori and (in some cases) a posteriori data.

One of the families of algorithms is robustly convergent and exhibits a certain optimality

for a fixed model order. Both the families of algorithms are shown to be implementable as

solutions to certain convex optimisation problems. The ideas and numerical techniques used

for implementing these algorithms are further used to propose a method for identification in

the ν−gap metric.
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Chapter 1

Introduction

1.1 Motivation and Background

The main reason to use feedback control is to reduce the effect of uncertainty in the plant

description and to reduce the effect of disturbances (e.g. sensor or actuator noise). Robust

control design aims at designing a controller which guarantees a certain level of the worst

case performance over a deterministic set of plants. The set of plants is usually defined

by a ball of uncertainty in a suitable function space centred at a nominal plant model. To

guarantee a level of performance over the entire uncertain plant set, the least we need is an

idea about the ‘size’ of uncertainty (or the radius of the above ball, measured in a suitable

metric). Further, we are more interested in modelling how the plant behaves when in closed

loop with a particular controller, or preferably, with any controller from a class of controllers.

Traditional identification methods (e.g. least squares based techniques) do not address these

requirements. ‘Control Relevant Identification’ refers to new identification techniques which

focus on obtaining a model of the plant such that

• A deterministic upper bound on the worst case error between the true plant and the

identified model is available, in terms of a priori information about the true plant

and about the measurement noise. The error may be simple additive error or may

be measured in more sophisticated, feedback oriented notions of measuring distance.

Equivalently, these algorithms give a set of models that a controller must stabilise.

• As the length of data goes to infinity and the noise goes to zero, the identified model

converges to the true plant in a suitable metric. If this convergence is independent of a

priori information, the algorithm to obtain the model is said to be robustly convergent.

1



1.2 Outline of the Dissertation 2

Most robustly convergent algorithms in literature depend on Fourier Transform based anal-

ysis, and hence assume uniformly spaced frequency response samples as a posteriori experi-

mental data. In a practical situation, one would like to concentrate on system dynamics in a

particular frequency range, and the ‘uniform spacing’ restriction would be viewed as rather

severe. Further, the user has no control of specifying a model set in most methods. Lastly, the

assumption on noise is usually simply that the noise is in a ball in l∞. This inevitably results

in rather conservative error bounds, and fails to use a possible a priori information that the

noise would not reach its infinity norm too often. A suitable framework for constraining the

noise further is needed.

In the light of above discussion, we list the prime objectives of this dissertation:

1. To establish a less conservative, rigorous deterministic framework for analysis of mea-

surement noise in frequency response identification;

2. to derive worst case identification algorithms for non-uniform frequency spacing, to

identify a model from a pre-defined model set;

3. using the machinery of the gap and the ν−gap metrics, to explore the possibility of

deriving feedback oriented identification techniques in a worst case setting.

1.2 Outline of the Dissertation

The dissertation is organised as follows.

Chapter 2: Here we collect together some mathematical preliminaries used in the disser-

tation. Various signal and system spaces are defined in section 2.1. Section 2.2 defines

state-space realisation of a linear system. Section 2.3 introduces some related notions for

continuous time systems. In section 2.4, we look at coprime factorisations and graph spaces.

Section 2.5 introduces some notions of uncertainty and their relationship with robust control

design. In section 2.6 optimisation under LMI constraints is briefly discussed.

Chapter 3: The prevalent methodology of prediction error identification is reviewed in this

chapter. Closed loop identification techniques other than direct input-output identification

are briefly explored. Methods to quantify uncertainty in identification are outlined.

Chapter 4: This chapter presents a robustly convergent algorithm for worst case identifi-

cation of point frequency response samples of a linear system. The convergence result does
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not require constructing exponential sinusoid inputs. A deterministic characterisation of the

allowable noise set is introduced. This characterisation asymptotically models white noise

in a particular probabilistic sense. An explicit bound on the identification error is obtained.

The method is extended to a robustly convergent algorithm for simultaneous identification

of multiple frequency response samples.

Chapter 5: The conventional method for worst case/deterministic identification in H∞ is

introduced in this chapter. The drawbacks of the conventional algorithms are outlined. A

new bounded error type algorithm is suggested. This algorithm is shown to be equivalent to

solving an LMI optimisation problem. Modifications are suggested to improve its convergence

properties. A simulation example is used to demonstrate an application of the proposed al-

gorithm.

Chapter 6: In this chapter, a stronger notion of robust convergence is introduced. An

algorithm for identification with Finite Impulse Response (FIR) models is suggested, which

is optimal in a certain sense for a finite model order. A priori worst case error bounds for

two different cases, corresponding to the plant belonging to two different, specific subsets of

H∞ are obtained. Various modifications are proposed for obtaining smoother Nyquist plot

for the approximation, or incorporating a priori knowledge about the poles of the plant.

The algorithm is extended to identification of coprime factors. The chapter concludes with a

simulation example.

Chapter 7: This chapter reviews the fundamentals of ν−gap metric and proposes a new

algorithm for identification in the ν−gap metric. Some of the numerical methods from the

previous chapter are used to set up a non-convex, but tractable optimisation problem. An

example illustrates the use of the proposed method.

Chapter 8: The last chapter summarises the main contributions of this dissertation and

identifies potential directions for future work.



Chapter 2

Preliminaries

In this chapter, we collect together some mathematical definitions useful for subsequent

analysis.

2.1 Function Spaces

2.1.1 Signal Spaces

Let R and C denote the sets of real and complex numbers respectively. Cm×n (Rm×n)

denotes the space of m × n complex (real) matrices. Z represents the set of integers, with

Z+ = {t ∈ Z, t ≥ 0}. ln2 represents the Hilbert space of square summable sequences over Z

or Z+, which take values in Cn or Rn. Inner product in ln2 is defined by

< u, v >=
∑
t∈Z

u∗(t)v(t)

For complex vector valued signals, u∗(t) represents the conjugate transpose.

For ρ ≥ 1, let Dρ := {z ∈ C : |z| < ρ }. Let ∂Dρ and Dρ denote the boundary and the

closure of Dρ respectively. D1, ∂D1 and D1 are represented as D, ∂D and D respectively.

ln2 (Z) is isomorphic to the space L2
n of square integrable functions on ∂D through Fourier

transform:

v̂(ejω) =
∑
t∈Z

v(t)ejωt

The l2 norm of a signal is computed by

‖v‖22 =
∑
t∈Z

v∗(t)v(t) =
1

2π

∫ 2π

0
v̂∗(ejω)v̂(ejω)dω

4



2.1 Function Spaces 5

ln2 may be decomposed into two signal spaces, ln2 [0,∞) and ln2 (−∞, 0). ln2 [0,∞) is the space of

signals defined for nonnegative time and ln2 (−∞, 0) is the space of signals defined for negative

time. The two spaces are clearly orthogonal. Correspondingly, L2
n in the frequency domain

may be decomposed into two spaces; Hn2 is the space of Fourier transforms of signals in

ln2 [0,∞), and Hn⊥2 is the space of Fourier transforms of signals in ln2 (−∞, 0).

Another signal space of interest is l∞, the space of bounded sequences over Z or Z+. l∞

norm of a signal is given by

‖v‖∞ = max
t∈Z
|v|

A closed ball in l∞ is defined by

Bl∞(ε) := { v : v ∈ l∞, ‖v‖∞ ≤ ε } (2.1)

2.1.2 System Spaces

A system is an operator mapping between signal spaces. The operators we will be dealing

with in this thesis are linear shift-invariant operators. A linear operator P : lm2 7→ ln2 has an

infinite matrix representation

P =


p00 p01 p02 · · ·

p10 p11 p12 · · ·

p20 p21 p22 · · ·
...

...
...

. . .


where each pij ∈ Cn×m is for a time index in Z+. (For Z, a doubly infinite matrix would be

used.)

An operator P is said to be linear shift invariant (LSI) if λP = Pλ where λ is a unit

delay operator, (λv)(k) = v(k − 1). Equivalently, the operator is described by a convolution

kernel

(Pv)(t) =
∞∑

τ=−∞
pτv(t− τ)

An LSI operator P : DP ⊆ lm2 [0,∞) 7→ ln2 [0,∞) has a matrix representation

P =


p0 0 0 0 · · ·

p1 p0 0 0 · · ·

p2 p1 p0 0 · · ·
...

...
...

...
. . .

 (2.2)
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where DP = {u ∈ lm2 [0,∞) : Pu ∈ ln2 [0,∞)} is called the domain of P . An LSI operator

P : DP ⊆ lm2 [0,∞) 7→ ln2 [0,∞) is said to be bounded on DP (or simply, bounded) if there

exists a finite γ such that ‖Pv‖2 ≤ γ‖v‖2 ∀ v ∈ DP .

A bounded LSI operator P : DP ⊆ lm2 [0,∞) 7→ ln2 [0,∞) is equivalent to a multiplication

operator P̂ : D̂P ⊆ Hm2 7→ Hn2 with a symbol in the Banach space of matrix transfer functions

L∞ :=
{
f : ∂D 7→ Cn×m, ‖f‖∞ = ess sup

z∈∂D
σ(f(ejω)) <∞

}
Here, D̂P = {u ∈ Hm2 : Pu ∈ Hn2}. If the domain DP of P equals lm2 [0,∞), the multiplication

operator corresponding to P in L∞ has an analytic continuation in D ([You95], chapter 13).

A bounded LSI operator P : lm2 [0,∞) 7→ ln2 [0,∞) is equivalent to a multiplication operator

P̂ : Hm2 7→ Hn2 with a symbol in Hardy space of matrix transfer functions

H∞ :=
{
f : D 7→ Cn×m, f analytic in D, ‖f‖∞ = sup

z∈D
σ(f(z)) <∞

}
For f ∈ H∞, ‖f‖∞ = supz∈D σ(f(z)) = ess sup∂D σ(f(ejω)) [You95]. Dynamical systems

represented by multiplication operators with symbols inH∞ give an output of bounded energy

(i.e. in l2) for any input of bounded energy, starting from any (finite) initial condition. A

system with transfer function in H∞ is said to be stable.

For a given λ ∈ D, the Taylor series expansion of P ∈ H∞ about the origin is given by1

P (λ) =
∞∑
t=0

ptλ
t

where pt are the impulse response matrices in (2.2) corresponding to P .

H∞,ρ denotes the normed space of functions analytic in Dρ and having norm ‖f‖∞,ρ :=

supz∈Dρ |f(z)| <∞. A ball in H∞,ρ is defined by

BH∞,ρ(γ) = { f : f analytic in Dρ and ‖f‖∞,ρ := sup
z∈Dρ

|f(z)| ≤ γ, ρ > 1} (2.3)

For a SISO plant P ∈ BH∞,ρ(γ), P (z) =
∑∞

i=0 pkz
k, it can be shown that the impulse

response parameters pk obey

|pk| ≤ γρ−k (2.4)

A proof may be found in ([Kre88], chapter 13).
1Where there is no risk of confusion, we will use same symbol for an LSI operatorP : lm2 7→ ln2 and its

multiplication operator symbol in L∞.
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R represents the space of all real rational matrix transfer functions. RL∞ (RH∞) repre-

sents the subspace of real rational matrix transfer functions in L∞ (H∞). A transfer function

in R corresponds to a finite dimensional dynamical system.

For P ∈ L∞, another operator of interest with symbol P is the Hankel operator HP ,

defined by

HP : H⊥2 7→ H2 HP (u) = ΠH2
Pu for u ∈ H⊥2

where ΠH2
represents the orthogonal projection onto H2. More on Hankel operators may be

found in [ZDG96].

2.2 State Space Realisation

Consider a discrete time system of equations

xk+1 = Axk +Buk

yk = Cxk +Duk (2.5)

where for any fixed k ∈ Z+, the state xk ∈ Rp, the input uk ∈ Rm, the output yk ∈ Rn and

A ∈ Rp×p, B ∈ Rp×m, C ∈ Rn×p, D ∈ Rn×m are bounded, constant matrices. With x0 = 0,

this difference equation characterises an LSI operator P : DP ⊆ lm2 [0,∞) 7→ ln2 [0,∞) which is

equivalent to a multiplication operator with symbol in R:

y(ejω) = P (ejω)u(ejω), P (ejω) := C(e−jωI −A)−1B +D

The system of equations (2.5) is called a state space realisation of P . The set of eigen

values of A, denoted by spec(A) characterises the stability of P . If spec(A) ⊂ D, then the

multiplication operator corresponding to P has a symbol in RH∞. If λi is an eigen value of

A repeated k times, 1
λi

is called a pole of order k of P . λi = 0 corresponds to a pole at ∞.

If λi ∈ D (λi ∈ C − D), the pole 1
λi

is said to be stable (unstable). We denote the number

of unstable poles of P (counting a pole of order k, k-times) by η(P ).

2.3 Continuous Time Systems

Mostly, the discrete time dynamical systems we will be dealing with are approximations of

continuous time systems. In continuous time, l2 is defined as the Hilbert space of square
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integrable signals with inner product

< u, v >=
∫ ∞
−∞

u∗(t)v(t)dt and norm ‖x‖2 =
√
< x, x >

For bounded, LSI operators in continuous time, the matrix transfer function spaces L∞ and

H∞ are respectively defined as

L∞ =

{
f : jR 7→ Cm×n, ‖f‖∞ := ess sup

ω∈ jR
σ(f(jω)) <∞

}

H∞ =

{
f : C 7→ Cm×n, f analytic in ORHP, ‖f‖∞ := sup

Re(s)>0
σ(f(s)) <∞

}
(2.6)

where s is a complex variable, jR is the imaginary axis and ORHP is the open right half

plane. For f ∈ H∞, ‖f‖∞ = limα↓0 supα>0 σ(f(α+jω)) = supω∈ jR σ(P (jω)) (e.g., [GL95],

chapter 3).

A continuous time system may be related to an equivalent discrete time system through

a bilinear transformation. Suppose, the input and the output of a continuous time system

Pc are sampled synchronously at a uniform sampling period T . Then an equivalent discrete

time system Pd may be obtained through a bilinear transformation as

Pd(z) = Pc

(
2
T

1− z
1 + z

)
This maps the imaginary axis in the complex plane to ∂D, and ORHP to D. The number of

unstable poles and zeroes (in ORHP or in D) is unchanged; as is the supremum of singular

value of the frequency response. This is important in the context of this thesis; a small

difference in the frequency response of a discrete system and its approximation results in

a small difference in the frequency responses of the corresponding continuous time systems

they represent.

2.4 Coprime Factorisation and Graphs of systems

Two functions M, N ∈ H∞ with same number of columns are said to be right coprime if

the matrix

N
M

 is left invertible in H∞, i.e. ∃Q ∈ H∞ s.t. Q

N
M

 = I. An ordered pair

{N,M} is called a right coprime factorisation (rcf) of P ∈ R (respectively, of P ∈ H∞)

if N , M are right coprime, P = NM−1 and M−1 ∈ R (respectively, M−1 ∈ H∞). rcf is

non-unique; if {N,M} is an rcf of P , so is {NQ,MQ} for any Q unimodular in H∞, i.e.

Q, Q−1 ∈ H∞. For P ∈ R, rcf always exists, and is unique within multiplication by a
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unimodular transfer matrix [Vid85]. For any P ∈ Hm×n∞ corresponding to a system with

possibly infinite dimensional state space but finite dimensional input-output spaces, an rcf is

given by {P, In×n}.

A particularly useful rcf is the normalised right coprime factorisation: An ordered pair

{N0,M0} is called a normalised rcf (nrcf) of P0 if it is an rcf of P0 and

N0

M0

 is inner; i.e.

N∗0N0 +M∗0M0 = I. G0 :=

N0

M0

 is called the normalised right graph symbol of P0.

The Graph of an operator is the set of all bounded output-input pairs:

GP0
=


P0u

u

 : u ∈ DP0


GP0

is related to G0 by

GP0
= G0H2

Analogous results hold for left coprime factorisation, which will be stated in brief.

• Two functions M̃, Ñ ∈ H∞ with same number of rows are said to be left coprime if

the matrix
[
−M̃ Ñ

]
is right invertible in H∞, i.e. ∃Q ∈ H∞ s.t.

[
−M̃ Ñ

]
Q = I.

• An ordered pair {Ñ , M̃} is called a left coprime factorisation (lcf) of P ∈ R (respec-

tively, of P ∈ H∞) if {Ñ , M̃} are left coprime, P = M̃−1Ñ and M̃−1 ∈ R (respectively,

M̃−1 ∈ H∞).

• An ordered pair {Ñ0, M̃0} is called a normalised lcf (nlcf) of P0 if it is an lcf of P0

and
[
−M̃0 Ñ0

]
is co-inner; i.e. Ñ0Ñ

∗
0 + M̃0M̃

∗
0 = I. G̃0 =

[
−M̃0 Ñ0

]
is called the

normalised left graph symbol of P0.

2.5 Uncertainty Representation

Given input-output data and possibly, some a priori information about a dynamical system

P , we would like to find a model of the system, P̂ , generally in R. Our model will never be

exact for various reasons:

• No physical system is exactly linear and finite dimensional,
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• The process of collecting input/output data from the system introduces its own uncer-

tainty (due to actuator/sensor noise, finite word-length of A/D-D/A converters etc),

• Even if the system were linear, a finite number of experiments, each involving a finite

data set may fail to characterise it uniquely.

All these causes introduce an error between P and P̂ . We assume that the true plant lies

in a set defined by the ‘nominal’ model and some quantitative description of uncertainty. In

the context of this thesis, we consider two methods for quantifying uncertainty:

• Additive Uncertainty: The true plant lies in a set defined by{
f : f ∈ RL∞, ‖P̂ − f‖∞ ≤ β, η(P̂ ) = η(f)

}
(2.7)

for a given uncertainty level, or error bound, β.

• nrcf Uncertainty: Given nrcf {N̂ , M̂} of the nominal model, the true plant P lies in a

set defined byf : f = (N̂ + ∆N)(M̂ + ∆M)−1,

∆N

∆M

 ∈ RH∞,
∥∥∥∥∥∥
∆N

∆M

∥∥∥∥∥∥
∞

≤ β

 (2.8)

As shown in [GS90], (2.8) is also equivalent to {f : −→δg (f, P̂ ) ≤ β}, where the directed gap
−→
δg (f, P̂ ) between the graph spaces of f and P̂ is defined by

−→
δg (f, P̂ ) = supy1

u1

∈Gf
infy2

u2

∈GP̂

∥∥∥∥∥∥
y1

u1

−
y2

u2

∥∥∥∥∥∥
2∥∥∥∥∥∥

y1

u1

∥∥∥∥∥∥
2

(2.9)

One of the main purposes of using feedback control is to reduce the effect of uncertainty

about the system dynamics. If a controller C stabilises P̂ , then it stabilises the plant set

described by (2.7) if and only if ‖C(I − P̂C)−1‖∞ < β−1. Similarly, a controller C stabilises

the plant set in (2.8) if and only if it stabilises P̂ and∥∥∥∥∥∥
P̂
I

 (I −CP̂ )−1
[
−C I

]∥∥∥∥∥∥
∞

< β−1 (2.10)

If P̂ is appropriately frequency weighted, then (2.10) may be linked to nominal performance

as well as robust stability [MG92].

Other uncertainty descriptions are described in standard robust control texts [ZDG96], [GL95].
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2.6 Linear Matrix Inequalities

Computational methods suggested in this dissertation rely heavily on convex optimisation

problems subject to Linear Matrix Inequality (LMI) constraints. LMI constraints have the

form

F (x) = F0 +
m∑
i=1

xiFi > 0 (or ≥ 0) (2.11)

where x ∈ Rm is variable and the symmetric matrices Fi are given. The inequality symbol

indicates positive definiteness (or semi-definiteness, in case of non-strict inequality). Two

different LMIs F 1(x) > 0, F 2(x) > 0 may be combined as a single LMI

diag
(
F 1(x), F 2(x)

)
> 0

(2.11) is a convex constraint in x, i.e. the feasible set {x |F (x) > 0} is a convex set. A large

variety of linear and quadratic constraints arising in control and identification may be written

as LMI constraints. A useful tool for converting quadratic constraints into affine constraints

is Schur inequality [BGFB94]:Q(x) S(x)

S(x)T R(x)

 > 0 ⇔ R(x) > 0, Q(x)− S(x)R(x)−1S(x)T > 0 (2.12)

where Q(x) = Q(x)T , R(x) = R(x)T and S(x) are affine functions of the variable x.

The LMI problems we encounter in chapters 5 - 7 are generalised eigen value (gevp)

problems. The general form of such problems is

minimise λ subject to λB(x)−A(x) > 0, B(x) > 0, C(x) > 0 .

Here A(x), B(x), C(x) are symmetric matrices that depend affinely on x. Efficient numerical

methods exist for solving gevp and related optimisation problems, and software packages

implementing such optimisation routines (such as LMI Control Toolbox from MATLAB) are

commercially available.



Chapter 3

Time Domain Identification

3.1 Introduction

Identification is the determination on the basis of input and output, of a model within a

specified set of models, which best approximates the input-output behaviour of the system

under test. The quality of approximation is defined in terms of a criterion which is a function

of measured inputs and outputs and predicted outputs (and possibly, predicted inputs). The

set of systems from which a model is chosen is usually defined by a model structure. From

a control point of view, model structures of choice are those representing finite order linear

difference equations with real coefficients (i.e. real rational transfer function or state space

models). Once the structure is chosen, an appropriate excitation is applied to the true plant

and input-output data is measured. ‘Appropriateness’ here refers to the ability to outweigh

the effect of disturbances and to excite the system dynamics we wish to model. This measured

input-output data is then mapped into a model which best explains this data, in a suitable

sense.

Typically, we will be interested in modelling the system accurately over a certain desired

bandwidth. There are two ways to carry out this process:

• Apply an excitation ‘rich’ in desired frequencies and directly identify a parametric model

from input-output data. This approach is reviewed in the present chapter.

• Find a non-parametric frequency response of plant by performing one or more exper-

iments with periodic inputs. Then find a parametric model based on this frequency

response samples. This approach is discussed in subsequent chapters.

12
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+
P(z)

C(z)

+

v(t)

y(t)u(t)r(t)

Figure 3.1: Closed Loop Identification

3.2 Prediction Error Identification

3.2.1 Basic Set-up

Consider a closed loop system as shown in fig.(3.1). The following assumptions are made

about the system:

1. The reference signal r(t) is quasi-stationary [Lju99], i.e. it is either a stationary stochas-

tic process or a bounded deterministic sequence such that the limits

Rr(τ) = lim
N→∞

1
N

N∑
t=1

r(t)rT (t− τ)

exist for all τ .

2. v(t) = L(q)e(t) where L is monic and inversely stable linear filter and e is a stationary

zero mean white process having bounded moments of order 4 + l, l > 0.

Eek e
T
s = Λδ(t− s)

where δ(·) is Dirac delta function.

3. The plant P is strictly proper, P (0) = 0.

4. The controller C is linear and the loop is asymptotically stable.

Note that open loop identification of a stable plant is simply a special case of the above

set-up, with C = 0.

Assumption 3 can be relaxed; it is sufficient that either C or P contains a delay. However,

physical systems do not react instantaneously when subjected to any excitation; hence P (0) =

0 is a reasonable assumption. Assumption 4 can also be relaxed so long as the loop is

stable; the exact condition the closed loop must satisfy if the controller is nonlinear are given

in ([FL98], section 3).
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3.2.2 The Method

An approach considered here disregards presence of feedback and identifies a model directly

from its input-output data.

We first need some formal definitions. Define a set of monic and inversely stable filters:

L = {L |L ∈ R, L−1 ∈ RH∞ , L(0) = I}

Next, define a set of ordered pairs (L,P ) of transfer matrices :

LP = { (L,P ) |L ∈ L, P ∈ R, P (0) = 0, L−1P ∈ RH∞}

Then a model structure is a differentiable mapping from a connected and open subset of n

dimensional parameter space Rn to a subset LPA of LP,

µ : Rn ⊇ Dµ → LPA ⊆ LP, µ(θ) = (L(q, θ), P (q, θ) )

such that the gradient ∂
∂θ

[
L(q, θ) P (q, θ)

]
is stable. This model structure is used to describe

the relationship between the measurable input u(t) and measured output y(t) as

y(t) = P (q, θ)u(t) + L(q, θ)e(t) (3.1)

where e(t) is a zero mean white process. q is a backward shift operator.

Define one-step ahead prediction error for a model structure µ at a parameter vector (θ∗)

and at sample time t by

ε(t, µ(θ∗)) = y(t)− ŷ(t|µ(θ∗)) (3.2)

where ŷ(t|µ(θ∗)) is a one-step ahead prediction of the output based on the data up to sample

time t− 1. To find an optimal one-step ahead prediction, (3.1) is rewritten as

y(t) = [I − L−1(q, θ∗)]y(t) + L−1(q, θ∗)P (q, θ∗)u(t) + e(t) (3.3)

For a sufficiently large t (i.e. barring the starting up of the IIR filters from zero initial

conditions), all the terms on the right hand side except the disturbance e(t) are determined

from the past data up to y(t − 1). It may be shown that the following choice of one-step

ahead prediction minimises the variance of the prediction error ε(t, µ(θ∗)) [Lju99] :

ŷ(t|µ(θ∗)) = [I − L−1(q, θ∗)] y(t) + L−1(q, θ∗)P (q, θ∗)u(t) (3.4)
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Restricting (L,P ) to LP ensures that the above one-step ahead predictor is stable. Let

ZN = [y(1) u(1) y(2) u(2) · · · y(N) u(N)] (3.5)

For this data set and a model structure µ(θ), the parameter estimate θ̂N is defined by

VN (µ(θ̂N ), ZN ) = min
θ∈Dµ

VN (µ(θ), ZN ) (3.6)

where

VN (µ(θ), ZN ) = l

(
1
N

N∑
t=1

ε(t, µ(θ))εT (t, µ(θ))

)
(3.7)

and l(·) is a scalar, positive valued, twice differentiable function such that l(Q+ ∆Q) ≥ l(Q)

whenever ∆Q ≥ 0, with equality achieved only at ∆Q = 0. A candidate cost function

considered here l(Q) := tr(Q). In ([SS89], chapter 7), it is shown that the choice l(Q) =

det(Q) corresponds to maximum likelihood estimation in the case of gaussian noise. Different

parameterisations of L and P are discussed in [Lju99]. The optimisation problem (3.6) is

usually solved by some modified variant of Gauss-Newton method [Fle87].

3.2.3 Convergence

In the discussion that follows, P(x > τ) is used to denote the probability of an event {x > τ}

for a random variable x. Let xN be an indexed sequence of random variables and x∗ be a

random variable. Then xN → x∗ with probability (w.p.) 1 as N → ∞ if limN→∞ P(xN →

x∗) = 1 ([Pap91], chapter 8, [Lju99], Appendix 1). Here, {xN → x∗} represents an event

consisting of all outcomes ζ such that the sequence xN(ζ) converges to x∗(ζ).

Define

V (µ(θ)) = lim
N→∞

1
N

N∑
t=1

E
(
ε(t, µ(θ))T ε(t, µ(θ))

)
where E denotes the expectation operator. Suppose the true system generating data is given

by

y(t) = P0 u(t) + L0 e(t)

where L0, P0, e and the reference r which generates the input u (possibly, along-with feedback)

satisfy the relevant assumptions in section 3.2.1. The following lemma summarises the main

results on the asymptotic behaviour of prediction error estimate:

Lemma 3.1 ([FL98])
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1. Suppose ∃ a unique minimiser θ̃ ∈ Dµ s.t. V (µ(θ̃)) = minθ∈Dµ V (µ(θ)).

Then θ̃ = arg min
θ∈Dµ

∫ π

−π
tr(φε) dω and

θ̂N → θ̃ w.p. 1 as N →∞ (3.8)

where φε = L−1
θ

[
(P0 − Pθ) (L0 − Lθ)

]
Q

(P0 − Pθ)∗

(L0 − Lθ)∗

L−∗θ , Q =

φu φue

φeu Λ

 and

φue is the cross-spectrum between u and e. Λ is as defined in section 3.2.1. For brevity,

P (ejω, θ) is written as Pθ, P0(ejω) as P0, and the same holds for L0, Lθ.

2. Define T (q, θ) :=

P (q, θ)

L(q, θ)

. Then, as model order n → ∞ and data length N → ∞

such that limn,N→∞
n2

N is finite 1,

Cov vec (T̂N (ω)) ≈ n

N

 φu(ω) φue(ω)

φeu(ω) Λ

−T ⊗ L0(ejω) ΛL0(ejω)∗ (3.9)

where ⊗ denotes Kroneker product.

We make a number of observations regarding these two convergence results-

• If the input is a summation of n periodic signals, then the matrix Q in the definition

of φε is positive definite at least at n frequencies. If the true plant P and the model Pθ

are both of order n− 1 or less and Q(ejωi) > 0∀ i ∈ [1, n] then

tr ((P − Pθ)φu(P − Pθ)∗) (ejωi) = 0∀ i ∈ [1, n] if and only if

P (ejωi) ≡ Pθ(ejωi)∀ i ∈ [1, n]

In other words, the error spectrum between the model and the plant is guaranteed to be

nonzero at some frequency ejωi so long as the model doesn’t converge to the true plant.

This condition is referred to as persistent excitation of order n ([Lju99], chapter 13). If

the matrix Q is positive definite at all frequencies, the input is said to be persistently

exciting.

• The input spectrum φu consists of contributions from noise and reference signal:

φu = Si φr (Si)∗ + SiCL0ΛL∗0(SiC)∗

1The exact technical conditions on n, N and on the data {y, u} under which (3.9) holds are somewhat

more involved; see ([FL98], Appendix A.2). However, only the implications of (3.9) are of interest here.
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and the cross-spectrum φue is given by

φue = SiCL0Λ

Here Si is the sensitivity function, Si = (I − CP )−1. Consider a SISO system for

simplicity, with Λ = λ0. From standard linear algebra ([ZDG96], chapter 2)

A B

C D

−1

=

A−1 +A−1B(D − CA−1B)−1CA−1 ×

× ×


Using this result, the upper left term in (3.9) is given by

cov(P̂N (q, θ)) =
n

N

1
φu

1 +
|φue|2
φu

1

λ0 − |φue|
2

φu

φv

=
n

N

φv
|Si|2φr

This shows that the asymptotic covariance of transfer matrix at any frequency depends

on spectral ratio of noise to the part of input signal injected from reference at that

frequency. For a given (or constrained) spectral distribution of input power φr, feedback

will improve asymptotic noise to signal ratio over frequency range where |Si| is large,

and will deteriorate it where |Si| is small.

• As [FL98] shows, φε may also be written as

φε = L−1
θ

[
(P0 +Bθ − Pθ) (L0 − Lθ)

]
Q̃

(P0 +Bθ − Pθ)∗

(L0 − Lθ)∗

L−∗θ
where Q̃ =

φu 0

0 Λ− φeuφ−1
u φue

 and Bθ = (L0 − Lθ)φeuφ−1
u . This ‘bias term’ Bθ is

small if the term φeuφ
−1
u is small and/or noise model is flexible enough. If φeu ≈ 0

(typically for an open loop system), we may choose not to parameterise L and use

instead a fixed data pre-filter, L̂. Then the expression (3.8) becomes

θ̂N → Dc := arg min
θ

∫ π

−π
tr(L̂−1(P0 − Pθ)φu(P0 − Pθ)∗L̂−∗)dω (3.10)

This is seen as a best 2− norm approximation of P0(ejω), weighted by φu and filtered

by L̂.
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3.2.4 Other Closed Loop Identification Methods

The direct method described so far is not the only method for closed loop identification. To

see an alternate scenario, consider a SISO plant P0 in closed loop with controller C as in

fig. (3.1). Suppose, our control objective is to minimise some norm of J(P,C) := P
1+PC .

One may choose a model structure,

y(t) =
Pθ

1 + PθC
r(t) + e(t) (3.11)

Crucially, the disturbance term and the ‘input’ term are such that φre = 0. As in (3.10), one

may now use a fixed noise filter to shape the bias error in identification and still get good

estimates. To pose a numerically more tractable problem, one may further approximate (3.11)

through iterations. ith iteration proceeds as:

Perform an identification experiment in closed loop with the controller Ci in place. Then

P̂i+1 = arg min
Pθ

∥∥∥∥J(P0, Ci)−
Pθ

1 + Pi−1Ci

∥∥∥∥ (3.12)

and Ci+1 = arg min
C
‖J(P̂i+1, C)‖ (3.13)

where minima are taken over appropriate sets of model/controllers. ‖J(P0, Ci)− J(P,Ci)‖ is

usually approximated by a least squares problem over a finite time or frequency domain data

using a suitable choice of fixed noise filter and a suitable excitation r. Iterative strategies such

as these are widely discussed in literature. [vdHS95] provides a comprehensive review. There

are a variety of iterative algorithms depending on the control objective J(P,C); there are iter-

ative identification and control design algorithms intended for use with LQ control [ZBG95],

with H∞ optimisation [BM98] and with model predictive control [RPG92]. The main advan-

tage of these methods over direct prediction error appears to be their ability to shape the bias

errors over the desired bandwidth. Their main weakness is a lack of performance guarantees -

the achieved performance ‖J(P0, Ci)‖ is not guaranteed to be non-increasing with successive

experiments.

3.2.5 Difference in Closed Loop Behaviour

The asymptotic value of cost function in (3.8) can be used to bound the mean squared

difference in closed loop performance of P0 in feedback with any controller C and Pθ in

feedback with the same controller C. Given a nominal controller C that stabilises the true
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plant P0, the closed loop transfer function H(P0, C) is defined by

H(P0, C) :=

 P0

I

 (I − CP0)−1
[
−C I

]
(3.14)

It is desired that the difference in the behaviour of closed loops H(P0, C) and H(Pθ, C) is

small in some sense. The pointwise difference in the closed loop performance of nominal plant

P0 and a model Pθ for the same controller C can be bounded from above as [Vin93]

σ(H(P0, C)−H(Pθ, C))(ejω) ≤ κ(P0, Pθ)(ejω)σ(H(P0, C))(ejω)σ(H(Pθ, C))(ejω) (3.15)

where κ(P0, Pθ) is the pointwise chordal distance,

κ(P0, Pθ)(ejω) := σ
(

(I + P0P
∗
0 )−

1
2 (P0 − Pθ)(I + P ∗θ Pθ)

− 1
2

)
(ejω)

The upper bound makes sense only if C stabilises both P0 and Pθ.

Consider prediction error identification as described in section 3.2.2 for a SISO system,

with φue ≈ 0 and a fixed noise filter L̂ = 1. From (3.10),

θ̂N → Dc := arg min
θ

∫ π

−π
φε dω

where φε = |P0 − Pθ|2φu. From the definition of κ(P0, Pθ), clearly

κ2(P0, Pθ)(ejω)φu(ejω) ≤ φε(ejω). Using this fact and (3.15), it follows that

σ2(H(P0, C)−H(Pθ, C))(ejω)φu(ejω) ≤ ‖H(P0, C)‖2∞ ‖H(Pθ, C)‖2∞ κ2(P0, Pθ)(ejω)φu(ejω)

≤ ‖H(P0, C)‖2∞ ‖H(Pθ, C)‖2∞ φε(ejω)

so that
1

2π

∫ π

−π
σ2(H(P0, C)−H(Pθ, C))(ejω)φu(ejω)dω

≤ ‖H(P0, C)‖2∞ ‖H(Pθ, C)‖2∞
1

2π

∫ π

−π
φε(ejω) dω

Suppose φu(ejω) = k2, i.e. u is a white process with intensity k2. For any controller C with

‖H(P0, C)‖∞, ‖H(Pθ, C)‖∞ not too large, the above result shows that a good asymptotic

prediction error fit ensures a small mean squared difference in closed loop behaviour. We will

re-visit (3.15) in chapter 7.

3.3 Quantifying Uncertainty

Besides finding a model of system, one is interested in knowing the extent of uncertainty in

the model that a controller designed for the model must cope with. This would require some a
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priori knowledge - or assumptions - about the system and the measurement noise. Depending

on the a priori knowledge, there are two ways of obtaining uncertainty information.

If the model P̂ is obtained from frequency domain data (i.e. using periodic inputs) using

a worst case identification algorithm ( [HJN91], [MP92], [GK92]), appropriate, deterministic

a priori assumptions about the noise and the true system give us worst case error bound

α of the form ‖P̂ − P0‖∞ ≤ α. Usually, the assumptions relate to a lower bound on the

rate of decay of impulse response of the true system and an upper bound on the maximum

amplitude of noise. More will be said about a priori assumptions in deterministic frequency

domain identification in later chapters.

On the other hand, with probabilistic assumptions, one gets a point-wise error bound of

the form

P(|P (ejωi)− P̂ (ejωi)| ≤ α) > βi (3.16)

In [dVvdH95], certain deterministic assumptions about the impulse response of the true

system and stochastic assumptions about the measurement noise are used to derive point-

wise error bounds (3.16) for a finite number of frequencies, using periodogram averaging

technique. The stochastic part of these bounds is valid only as the length of data tends

to infinity. In chapter 4, we obtain deterministic as well as non-asymptotic probabilistic

point-wise error bounds like (3.16) for bounded white measurement noise.

For n frequency response samples and βi = β, (3.16) gives

P
(

n
∪
i=1

{
|P (ejωi)− P̂ (ejωi)| ≤ α

})
> βn

Clearly, one needs a confidence level β very close to unity (typically, > 99%) for these results

to be of practical use.

If the error due to under-modelling is ignored, the prediction error method gives a mea-

sure of uncertainty in the form of a consistent estimate of covariance matrix Cov (θ̂N ) :=

Λθ. [BGS99] shows how to map this into a more tractable uncertainty description in frequency

domain. Asymptotically, the scalar (θ̂N − θ0)TΛ−1
θ (θ̂N − θ0) has a chi-squared distribution.

From χ2 tables and for a given confidence level η, one may obtain χ such that

P
(

(θ̂N − θ0)TΛ−1
θ (θ̂N − θ0) < χ2

)
> 1− η (3.17)

In [BGS99], the following problem is solved for transfer function models for a SISO plant:

Given a model P̂θ corresponding to a parameter vector θ̂N , a frequency ω and a confidence
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ellipsoid parameter χ2, minimise γ such that

(θ̂N − θ0)TΛ−1
θ (θ̂N − θ0) < χ2

and κ(P0, Pθ)(ejω) ≤ γ

[BGS99] shows that this may be formulated as an LMI optimisation. The worst case chordal

distances computed at different frequencies may be used, for example, to design a controller

using extended loop shaping procedure [Vin].

3.4 The Frequency Domain Approach

By ‘frequency domain identification’ we mean the following:

• identification of (possibly noisy) frequency response samples of the true plant and

• obtaining a transfer function that best describes these response samples in a suitable

sense.

The frequency response samples can also be obtained by non-parametric methods from time

domain data [Lju99] or by using periodic inputs. The later approach typically requires

multiple experiments to collect the frequency response samples; hence is more time consuming

and potentially expensive as compared to the prediction error approach. However, it has some

important advantages:

• Many systems have different small signal and large signal behaviour. If we are interested

in large signal behaviour, it is not possible to excite the system dynamics in large signal

mode over a band of frequencies, due to actuator constraints. It may be possible,

however, to concentrate all the allowable input energy at one frequency and identify

large signal response of the system at that frequency.

• Spectral noise to signal ratio is a fundamental limitation on the accuracy of time domain

identification. An extreme way to improve it is to apply a periodic input signal at a

particular frequency. If noise does not contain a periodic component, one expects a

very low noise to signal ratio and hence very good non-parametric frequency response

estimates.

In the rest of the dissertation, we will be concerned solely with frequency domain identifica-

tion.



Chapter 4

Point frequency Response

Identification

4.1 Introduction

This work suggests a robustly convergent algorithm for worst case identification of point

frequency response samples of LSI, stable, discrete time system. A deterministic characteri-

sation of the allowable noise set is introduced, which captures the ‘low correlation’ property

of a white noise realisation.

In what follows, given a real vector v = [v0 v1 . . . vN−1]T , the circular autocorrelation of

v is given by

Rv(τ) =
N−1∑
t=0

vt+τ v
∗
t (4.1)

where the index t+ τ is taken as a modulo-N summation.

4.2 Point Frequency Response Identification

4.2.1 Problem Formulation

Assumptions :

• The plant P , for which frequency response point samples are to be estimated is a stable,

LSI SISO plant. Further, P ∈ BH∞,ρ(γ).

22
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• Let 0 < η ≤ 1 and 0 < σN < ∞ be known constants. The additive noise v corrupting

the output measurement belongs to either of the following two sets,

VσN ,η,N =
{
v ∈ RN :

1
N
Rv(0) ≤ σ2

N , max
τ∈[1,N−1]

1
N
|Rv(τ)| ≤ η σ2

N

}
(4.2)

V ω
σN ,η,N

=

{
v ∈ RN :

1
N
Rv(0) ≤ σ2

N , sup
ω∈[0,π)

1
N

∣∣∣∣∣
N−1∑
k=0

vk e
jωk

∣∣∣∣∣ ≤ η σN
}

(4.3)

Here N ∈ Z+ is the experiment duration in number of samples and Rv(τ) is circular

correlation defined as in (4.1).

A posteriori information :

A vector of noisy output of the plant for a sinusoid input:

Y =
[
y0 y1 . . . yN−1

]T
where yk =

∑k
m=0 pmuk−m + vk. pm are the impulse response parameters of P and the

sinusoid input {uk} is given by

uk = α cosω0k, α ∈ R, ω0 ∈ [0, π), k ≥ 0 (4.4)

The frequency ω0 satisfies

ω0 =
mπ

n
for some integers m ≥ 0, n > 0 (4.5)

Find :

An algorithm AN : RN × [0, π) × R 7→ C which maps the experimental data into a point

frequency response estimate Pω0 such that the worst case errors defined by

e1(AN : ω0, γ, ρ, η, σN , α,N) = sup
P∈BH∞,ρ(γ)

v ∈VσN ,η,N

|Pω0 − P (ejω0)|

e2(AN : ω0, γ, ρ, η, σN , α,N) = sup
P∈BH∞,ρ(γ)

v ∈V ωσN ,η,N

|Pω0 − P (ejω0)|

converge as

lim
σN→0

lim
N→∞

ei(AN : ω0, γ, ρ, η, σN , α,N) = 0 i = 1, 2

lim
η→0

lim
N→∞

ei(AN : ω0, γ, ρ, η, σN , α,N) = 0 i = 1, 2 (4.6)

Here, Pω0 = AN(Y, ω0, α). Further, find an upper bound on ei(AN : ω0, γ, ρ, η, σN , α,N) as

a function of ω0, γ, ρ, η, σN , α and N .
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4.2.2 The Noise Sets

Based on the definition of the noise sets, we list some significant properties of the two noise

sets.

• In both the noise sets, η may be interpreted as a bound on a particular, deterministic

correlation coefficient. To see this, let v =
[
v0 v1 . . . vN−1

]T
∈ RN be a vector

such that

1
N
Rv(0) ≤ σ2

N (4.7)

Let λτ represent a circular τ− shift on vector v,

(λτ )(v) =
[
vτ vτ+1 . . . vτ+N−1

]T
where τ + k for any k is a modulo-N summation. Note that < v, v >=< λτv, λτv >=

Rv(0) ≤ Nσ2
N , where < x, y >:= y∗x is the scalar product. Then v ∈ RN satisfy-

ing (4.7) is in VσN ,η,N if

sup
τ∈[0,N−1]

| < v, λτv > |√
< v, v >< λτv, λτv >

≤ η

Next, define a complex frequency vector

Sω :=
[
1 ejω e2jω . . . e(N−1)jω

]T
Note that < Sω, Sω >= N . Any v ∈ RN satisfying (4.7) is in V ω

σN ,η,N
if

sup
ω∈[0,π)

| < v, Sω > |√
< v, v >< Sω, Sω >

≤ η

• A vector v ∈ RN may be considered as an l2 signal, allowed to be non-zero only

on [0, N − 1]. From the definition of Rv(0), clearly Rv(0) = ‖v‖22. Let v̂(ejω) =∑
t∈Z v(t)ejωt. Using the frequency domain definition of 2− norm,

‖v‖22 =
1

2π

∫ 2π

0
v̂∗(ejω)v̂(ejω)dω ≤ sup

ω∈[0,π)
|v̂(ejω)|2 (4.8)

If sup
ω∈[0,π)

|v̂(ejω)|2 = sup
ω∈[0,π)

∣∣∣∣∣
N−1∑
k=0

vke
jωk

∣∣∣∣∣
2

≤ N2η2σ2
N , (4.9)

(4.8) implies that

Rv(0) = ‖v‖22 ≤ (Nη2)Nσ2
N (4.10)
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By definition (4.3), any v ∈ RN is in V ω
σN ,η,N

if and only if it satisfies (4.9) and (4.7). If

η ≤ 1√
N

, (4.9) ⇒ (4.7). The interesting case for us is 1√
N
≤ η ≤ 1, when r.m.s. value of

noise vector v and the magnitude of its largest periodic component are independently

constrained.

• A ball in l∞ of size σN also includes all stochastic noise signals bounded by σN . However,

it also includes pathological noise signals which would hardly occur, e.g. a periodic

signal of amplitude σN . By choosing an appropriate η < 1, we can exclude these signals

from our noise set. Both VσN ,η,N and V ω
σN ,η,N

asymptotically include a ‘typical’ bounded

white noise sequence, as the next result shows.

Theorem 4.1 For each N , let v = [ v0 v1 . . . vN−1 ]T be a vector of independent, zero mean

random variables vi bounded in [−K,K] and having an identical, finite central moment

E|vi|2 = λ2. Let 0 < η ≤ 1 be a constant and let σ : Z+ 7→ R be any bounded, positive

valued function such that, for some N0 ∈ Z+,

σ2
N > λ2 ∀N > N0 (4.11)

1. Let VσN,η,N be as defined in (4.2). Then

P(v ∈ VσN,η,N) N→∞−→ 1

2. Let V ω
σN,η,N

be as defined in (4.3). Then

P(v ∈ V ω
σN,η,N

) N→∞−→ 1

Proof: See Appendix A.

Certain physical processes (e.g. thermal noise) can be adequately modelled as white

noise. Many others, however, are best modelled as either band limited or filtered white noise

(e.g. random temperature variations in a chemical reactor may be better modelled as a low

frequency disturbance than as a ‘white’ disturbance). To see how well the proposed noise

sets deal with filtered white noise, a simple simulation experiment is performed. Consider a

vector of independent, normally distributed random variables, each with zero mean and unit

variance,

v =
[
v0 v1 . . . vN

]T
with N = 2000 and let

Fα(z) =
(1− α)z
1− αz
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Figure 4.1: Variation of allowable η for filtered white noise

where z is a unit delay. Define

vα = Fαv

η1(α) = max
τ∈[1,N ]

|Rvα(τ)|
Rvα(0)

η2(α) =
supω∈[0,π)

1
N

∣∣∣∑N−1
k=0 (vα)k ejωk

∣∣∣√
1
NRvα(0)

Then η1(α), η2(α) indicate the minimum permissible values of η for vα ∈ VσN ,η,N and for

vα ∈ V ω
σN ,η,N

respectively (with σ2
N = 1

NRvα(0)). Fig. (4.1) shows plots of η1(α) (solid) and

η2(α) (dashed) as α is varied from 0 to 0.9, for a typical zero mean, unit variance random

vector v generated by randn command in MATLAB. It is seen that V ω
σN ,η,N

still includes vα for

a small value of η, but VσN ,η,N requires rather large values of η even for a modest ‘colouring’

of white noise.

Noise sets with low correlation properties are also investigated in relation to robust

H2 analysis in [Pag95] and in relation to affinely parameterised approximation problems

in [VD], [VD97], [TL95] and [FS99].
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4.2.3 Identification Algorithm

The estimate Pω0 is given by

Pω0 =
1
αN

N−1∑
k=0

Yk if ω0 = 0

=
2
αN

N−1∑
k=0

Yk e
jω0k otherwise (4.12)

Remark 4.1 The implementation of this algorithm suggested is actually identical to the

‘classical’ method available in literature ([Lju99], ch. 6). The difference is that, here the

algorithm is justified purely from a worst case perspective, rather than from a statistical per-

spective.

4.2.4 Upper Bounds on Identification Errors

Theorem 4.2 For the algorithm stated above,

e1(AN : ω0, γ, ρ, η, σN , α,N) ≤ L(γ, ρ,N, ω0) + β
σN
α

√
η +

1− η
N

+
(

1− 1
N

) ∣∣∣∣sin ω0N

2

∣∣∣∣
(4.13)

e2(AN : ω0, γ, ρ, η, σN , α,N) ≤ L(γ, ρ,N, ω0) + β η
σN
α

(4.14)

where

L(γ, ρ,N, ω0) =
γρ(1− ρ−N )
N(ρ− 1)2

if ω0 = 0 (4.15)

=
γρ(1− ρ−N )
N(ρ− 1)

(
1

ρ− 1
+

1
sinω0

)
otherwise (4.16)

(4.17)

and β = 1 if ω0 = 0

= 2 otherwise

Proof : See Appendix A.

Remark 4.2 For a priori information v ∈ V ω
σN,η,N

, robust convergence follows since γ, ρ, η,

σN , α are arbitrary. For a priori information v ∈ VσN,η,N , robust convergence with respect to

η requires an additional condition on N :

N =
2π
ω0
m, for some integer m (4.18)
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that is, the data consists of an integer number of cycles of input. This is always possible due

to condition (4.5) on ω0.

The factor (N sinω0) in L(γ, ρ,N, ω0) may appear surprising at first. We show here that this

factor basically relates to the integer number of sinusoid input cycles completed by data. Let

0 < ω0 = 2π
r < π

2 where r is rational. Let N = mr + q, where q < r and m is an integer.

Using standard trigonometric inequalities, it can be seen that

N(ω0 − ω3
0

6 ) ≤ N sinω0 ≤ Nω0

⇔ 2π(m + q
r )(1 − 2π2

3r2 ) ≤ N sinω0 ≤ 2π(m + q
r )

Since q
r < 1, N sinω0 →∞⇐⇒ m→∞

Remark 4.3 If the input were u(k) = α sin ω0k, k ≥ 0, it can be shown that

Pω0 =
1
αN

N−1∑
k=0

Yk if ω0 = 0

=
−2j
αN

N−1∑
k=0

Yk e
jω0k otherwise (4.19)

is a robustly convergent algorithm under additional condition (4.18). The development is

identical to the one above.

4.3 Identification of Multiple Frequency Response Samples

Instead of applying one sinusoid at a time, a single experiment may be performed by applying

the sum of sinusoids of different frequencies and correlating the output with each frequency.

Under the same a priori assumptions as before, such an experiment also leads to a robustly

convergent algorithm.

4.3.1 Problem Formulation

Assumptions : Same as in section 4.2.1. For notational convenience, define a set of m−

vectors bounded element-wise in [0, π) as:

[0, π)m := {x : x ∈ Rm, xi ∈ [0, π)∀ i ∈ [1,m]} (4.20)

A posteriori information :

A vector of noisy output of plant for a multiple sinusoid input:

Y =
[
y0 y1 . . . yN−1

]T
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where yk =
∑k

q=0 pquk−q +vk. pq are impulse response parameters of P . The input u is given

by a sum of sinusoids,

uk =
m∑
i=1

αi cosωik, αi ∈ R, ωi ∈ [0, π), k ≥ 0 (4.21)

Define a corresponding vector of (angular) frequencies

W := [ω1 ω2 . . . ωm]T

and a vector of corresponding amplitudes

α := [α1 α2 . . . αm]T

Here each ωi satisfies ωi = 2π li
ri

with ri > 0 and li ≥ 0.

Find :

An algorithm AmN : RN × [0, π)m × Rm 7→ Cm which maps the experimental data into a

m−vector of point frequency response estimates

Pω = [Pω1 , Pω2 , . . . , Pωm ]T , Pωi := (AmN (Y,W,α)) (i)

such that the worst case errors defined by

e1(AmN : W,γ, ρ, η, σN , α,N) = sup
i∈[1,m]

sup
P∈BH∞,ρ(γ)

v ∈VσN ,η,N

|Pωi − P (ejωi)|

e2(AmN : W,γ, ρ, η, σN , α,N) = sup
i∈[1,m]

sup
P∈BH∞,ρ(γ)

v ∈V ωσN ,η,N

|Pωi − P (ejωi)|

converge as

lim
σN→0

lim
N→∞

ep(AmN : W,γ, ρ, η, σN , α,N) = 0 p = 1, 2

lim
η→0

lim
N→∞

ep(AmN : W,γ, ρ, η, σN , α,N) = 0 p = 1, 2 (4.22)

Further, find an upper bound on ep(AmN : W,γ, ρ, η, σN , α,N) as a function of γ, ρ, η, σN , α,

N and W .

4.3.2 Identification Algorithm

The estimates Pωi are given by

Pωi =
1

αiN

N−1∑
0

Yk if ωi = 0

=
2

αiN

N−1∑
0

Yke
jωik otherwise (4.23)
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4.3.3 Bound on Worst Case Error

Theorem 4.3 For the algorithm stated above,

e1(AmN : W,γ, ρ, η, σN , α,N) ≤L(γ, ρ,N, α,W ) +

2σN
αmin

√
η +

1− η
N

+
(

1− 1
N

)
max
i∈[1,m]

∣∣∣∣sin ωiN2
∣∣∣∣ (4.24)

e2(AmN : W,γ, ρ, η, σN , α,N) ≤ L(γ, ρ,N, α,W ) + 2
ησN
αmin

(4.25)

Here L(γ, ρ,N, α,W ) =
γρ(1 − ρ−N )
N(ρ− 1)

(
1

ρ− 1
+ (m− 1)ψαφW

)
where αmin = mini∈[1,m] αi and ψ : Rm 7→ R, φ : Rm(π) 7→ R are functions defined by

ψα := max
i,j∈[1,m]

αi
αj

(4.26)

φW := max
i,j∈[1,m]

ωi≥ωj

 1

sin
(
ωi+ωj

2

) +
1

sin
(
ωi−ωj

2

)
 (4.27)

Proof : See Appendix A.

Intuitively, the task of separating information about the system response at different

frequencies from a single experiment seems a difficult task if the frequencies are closely spaced.

The definition of φW captures this fact; the error bound deteriorates as the difference max{ωi−

ωj, (π − ωi)− ωj} becomes smaller.

4.4 Probabilistic Bounds in Bounded White noise

Instead of using deterministic noise sets, one may also use probabilistic noise description,

along-with deterministic assumptions on the true plant. This leads to probabilistic bounds,

or confidence intervals. The following result gives one such confidence interval:

Lemma 4.1 Suppose the true plant P ∈ BH∞,ρ(γ) and let the measurement noise be zero

mean, white stochastic process bounded in [−K,K]. Given the same a posteriori information

as in section 4.2.1 and given any confidence level 0 < ζ < 1, the estimate Pω0 as defined

in (4.12) satisfies

P
(
|Pω0 − P (ejω0)| ≤ L(γ, ρ,N, ω0) +

4K
α
√
N

{
log
(

4
1− ζ

)} 1
2

)
> ζ (4.28)

Here L(γ, ρ,N, ω0) is as defined in the equation (4.15).



4.4 Probabilistic Bounds in Bounded White noise 31

Proof : See Appendix A.

If Pω0 := AN(Y, ω0, α) is considered as a sequence of random variables indexed by N , it

follows from the proof of (4.28) and from the definition of L(γ, ρ,N, ω0) that

P
(
|Pω0 − P (ejω0)| > ε

) N→∞−→ 0, ∀ ε

In other words, Pω0 tends to P (ejω0) in probability ([Pap91], chapter 8). Besides this nice

convergence result and its non-asymptotic nature, (4.28) is still somewhat pessimistic from a

practical point of view. To see this, suppose, we want a confidence level ζ = 0.99 and want

to restrict noise term in the error bound to 0.1. Further, suppose K
α = 1. The constraint

4√
N

{
log
(

4
1−0.99

)} 1
2 ≤ 0.1 yields N ≥ 9587 as a lower bound on the number of samples

required to achieve this. Experiment durations as long as this may be unacceptable in many

practical cases.



Chapter 5

New Untuned Algorithms for

Worst Case Identification

5.1 Introduction

Worst case identification has attracted a lot of attention since its definitive formulation

in [HJN91]. There are two objectives in this problem formulation -

• To map the experimental frequency response data into a stable plant transfer function

via a ‘convergent’ algorithm. An algorithm is said to be convergent if the worst case

identification error (with respect to noise and the unknown system) tends to zero as

the number of data points tends to infinity and the (deterministic) noise tends to zero.

• To provide bounds on the worst case identification error.

This problem can be approached in two different ways, leading to untuned and tuned algo-

rithms. Both approaches assume that the true, unknown plant belongs to a certain subset Ψ

of the set of stable systems and that the additive noise corrupting the measurement belongs

to a certain norm bounded set Ξ. Suitable choices of Ψ and Ξ enable us to derive bounds on

the worst case identification error.

The identification algorithm is said to be untuned if it is independent of the definitions of

Ψ and Ξ; and is said to be tuned otherwise. Examples of algorithms of the the former type

may be found in [HJN91], [GK92], [M9̈1] and [MP92]; while the later type is investigated

in [CNF95], [GLZ96]. An extension of the tuned algorithms to the multivariable case is

studied in [CFN96]. Tuned algorithms may give a better result if the plant and the noise

32
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conform to the assumptions about them, but may fail to give any sensible result at all if the

assumptions are wrong.

Conventionally, the worst case identification problem is formulated as follows.

Assumptions :

• The plant P (z) whose transfer function is to be identified is a stable, LSI, SISO discrete

time system. Further, P (z) ∈ BH∞,ρ1(γ1).

• Noise corrupting measurement belongs to Bl∞(ε).

Here, the noise bound ε ∈ [0,∞), the lower bound on stability margin ρ1 ∈ (1,∞) and the

upper bound on gain γ1 ∈ [0,∞) are assumed to be known constants.

A posteriori Information : A vector of uniformly spaced noisy frequency response samples

Pω =
[
Pω1 Pω2 . . . Pωm

]T
, Pωi = P (ejωi) + vi

where ωi = 2π(i−1)
m , i = 1, 2, . . . ,m.

Find : An algorithm Am : Cm 7→ H∞ such that the worst case error defined by

e(Am : ρ1, γ1, ε,m) = sup
P ∈BH∞,ρ1(γ1)

v∈Bl∞(ε)

‖Am(Pω)− P‖∞

converges as

lim
m→∞,ε→0

e(Am : ρ1, γ1, ε,m) = 0 (5.1)

In addition, derive explicit bounds on the above error. 1

Existing untuned algorithms rely on a two step procedure:

• Let

P̃m(k) =
1
m

m−1∑
i=0

Pωie
−jk( 2iπ

m
) k = 1, 2, . . . ,m

be the inverse Discrete Fourier Transform Coefficients. Define an L∞ approximation

by

P̂1 =
m∑

k=−m
wm,kP̃m(k)zk

Here wm,k is a smoothing function.
1Note that Am(Pω) depends on the true plant P and noise v through the relation Pωi = P (ejωi) + vi.
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• Solve Nehari’s problem to determine a stable plant nearest to P̂1:

P̂ = arg min
f∈H∞

‖f − P̂1‖∞

Different untuned algorithms differ in the smoothing or window functions wm,k used in the

first step. An example of smoothing function is the triangular window

wm,k =
1− |k|m −m ≤ k ≤ m

0 otherwise

The Nehari approximation step makes the overall scheme nonlinear in a posteriori data.

The convergence property of an untuned algorithm is said to be robust if (5.1) holds for

every triplet (ρ1, γ1, ε) ∈ [1,∞) × [0,∞) × [0,∞). Partington [Par92] has shown that it is

impossible to construct a linear, robustly convergent algorithm. Since ‖P̂ − P‖∞ ≤ ‖P̂1 −

P‖∞ + ‖P̂ − P̂1‖∞ ≤ 2‖P̂1 − P‖∞, robust convergence can be ensured by a proper choice of

window function in the first step. [GK92] gives sufficient conditions on a window function for

the algorithm to be robustly convergent.

Existing untuned, convergent algorithms seem to suffer from following disadvantages -

• The class of transfer function models to which the identified model will belong can not

be selected a priori.

• Uniform frequency spacing is necessary. If nonuniform spacing is used, it needs to be

interpolated into uniformly spaced samples to use existing results [AGK92].

• It is not clear how to obtain the a priori information (γ, ρ) necessary to compute the

worst case error bound. Moreover, this bound may be conservative, and may not give a

true indication of how good - or how poor - the model is. Provided the Nyquist plot of

the model is sufficiently smooth and under reasonable (qualitative) assumptions that

– the Nyquist plot of the true plant is also smooth and

– the measurement noise during point frequency response identification does not

have a periodic component,

the worst case fit maxi |Pωi −Am(Pω)(i)| over a sufficiently dense grid of measurement

frequencies {ωi} is, at least, a good indication of the ‘true’ distance between the plant

and the model, rather than the bound on the worst case error. However, most of the

existing algorithms do not offer any direct control over the worst case fit maxi |Pωi −

Am(Pω)(i)|.
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A notable exception which overcomes most of the above anomalies is the finite impulse

response approximation algorithm by Mäkilä and Partington [MP92]. More will be said

about the algorithm in [MP92] in chapter 6. Here, an alternative untuned algorithm to

obtain rational models from a specific subset of H∞ is suggested. It will be motivated by

illustrating the shortcomings of direct interpolation of the given frequency response samples

using Pick’s theorem.

5.2 Identification using Pick interpolation

First we state Pick’s interpolation theorem [KT85].

Pick’s Theorem : Let ai ∈ D and bi ∈ D, i = 1, 2, . . . , n be two sets of complex numbers.

∃ an analytic function

f̂ ∈ H∞, f̂ : D 7→ D (5.2)

such that

f̂(ai) = bi, i = 1, 2, . . . ,m (5.3)

if and only if the Pick matrix defined by

P =

[
1− bib∗j
1− aia∗j

]
, i, j = 1, 2, . . . ,m

is nonnegative definite. Further, if the Pick matrix is nonnegative definite, ∃ a rational

function f̂ of degree at most m which satisfies conditions (5.2) and (5.3).

To apply Pick’s theorem to our present problem, the following corollary is used:

Corollary 5.1 Let Pωi and ωi i = 1, 2, . . . ,m be two sets of complex numbers with ωi ∈ ∂D.

Let ρ2 ∈ R, ρ2 > 1 be a given constant. Then there exists a function P̂ (z) analytic and

bounded in Dρ2 such that P̂ (ejωi) = Pωi.

Proof : If Pωi = 0 ∀ i ∈ [1,m], then P̂ (z) = 0 is the required function. Suppose instead, at

least one Pωi is nonzero. Let zi = ejωi
ρ2

. Consider matrix

Q̂ = E − α2F, α ∈ C (5.4)

where

E =

[
1

1− ziz∗j

]
, F =

[
PωiP

∗
ωj

1− ziz∗j

]
i, j = 1, 2, . . . ,m



5.3 Alternate Problem Formulation 36

Let λmax be the largest eigen value of E−1F . As shown in [KT85], for any α ≤ αmax = 1√
λmax

,

there exists a rational analytic function P̂α : D 7→ D such that P̂α(zi) = αPωi . A solution to

the original interpolation problem is then given by

P̂ (z) =
1
α
P̂α(

z

ρ2
) ∈ H∞ (5.5)

Implementation details of Pick interpolation procedure may be found in ([DFT92], chapter

9). As m → ∞, however, αmax may become arbitrarily small, making ‖P̂‖∞,ρ2 arbitrarily

large. It seems a better way is to find points qi ∈ C such that

• |qi − Pωi | is ‘small’;

• An analytic function belonging to a norm bounded subset of H∞ interpolates the q′is.

This idea motivates an alternate problem formulation for worst case identification.

5.3 Alternate Problem Formulation

Assumptions : Identical to those in section 5.1.

A posteriori Information : A vector of (not necessarily uniformly spaced) noisy frequency

response samples

Pω = [Pω1 Pω2 . . . Pωm ]T , Pωi = P (ejωi) + vi (5.6)

where ωi ∈ [0, π), i = 1, 2, . . . , m.

Also given is a corresponding vector of (angular) frequencies

W = [ω1 ω2 . . . ωm]T (5.7)

δ = maxi |ωi+1 − ωi| is the maximum separation between adjacent angular frequencies. Let

[0, π)m be as defined in (4.20).

Given user chosen parameters ρ2 > 1, γ2 > 0,

Find an algorithm Aδ1 : Cm × [0, π)m 7→ BH∞,ρ2(γ2) such that

max
i
|P̂ (ejωi)− Pωi |

is minimised, where P̂ (z) = Aδ1(Pω,W ). Further, find an upper bound on the worst case

error defined by

e (Aδ1 : ρ1, γ1, ρ2, γ2, ε, δ) := sup
P ∈BH∞,ρ1 (γ1), v ∈Bl∞(ε)

‖Aδ1(Pω,W ) − P ‖∞ (5.8)



5.3 Alternate Problem Formulation 37

Remark 5.1 Actually, it is possible - and indeed, more meaningful - to use noise sets defined

in chapter 4 in place of Bl∞(ε). This will complicate notation, however, as the error definition

and convergence will involve both the length of each experiment and the number of experiments

(i.e. the number of frequency response samples). Hence we keep using Bl∞(ε) as the noise

set; keeping in mind that ε may actually be replaced by (4.13) or (4.14).

5.3.1 New Identification Algorithm

As stated above, our aim is to solve

min
f∈BH∞,ρ2(γ2)

max
i
|f(ejωi)− Pωi | (5.9)

The steps to solve the above problem are enumerated below.

1. Find x̂, ŵ1, ŵ2, . . . , ŵn which solve the following minimisation problem

min
x∈R, w1,w2,... ,wm∈C

λ (5.10)

subject to LMI constraints

diag

 λx w∗i

wi λx

 ≥ 0 (5.11)

diag

 1 xP ∗ωi + w∗i

xPωi + wi 1

 ≥ 0 (5.12)

 E−1 diag (xP ∗ωi + w∗i )

diag(xPωi + wi) E

 ≥ 0 (5.13)

and

x ≥ γ−1
2 (5.14)

Here

E =

 1

1− ej(ωi−ωj)

ρ2
2

 i, j = 1, 2, . . . , n

and diag (xi) denotes a diagonal matrix with xi, i = 1, 2, . . . ,m along its diagonal.
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2. Find a rational analytic function f : D 7→ D of degree ≤ 2m such that

f

(
ejωi

ρ2

)
= x̂Pωi + ŵi, f

(
e−jωi

ρ2

)
= x̂P ∗ωi + ŵ∗i , i = 1, 2, . . . ,m (5.15)

As will be seen in the proof of theorem 5.1, the existence of the interpolant f is ensured

by (5.11) - (5.14). Complex conjugate interpolation data is required to obtain a real

rational transfer function. If f(z) which satisfies (5.15) is such that f(z) = f1(z)+jf2(z)

where f1, f2 are real rational functions, f1(z) also obeys f1

(
ejωi
ρ2

)
= x̂Pωi + ŵi, i =

1, 2, . . . ,m [DFT92].

3. The identified transfer function model is then given by

P̂ (z) = x̂−1f1(
z

ρ2
) (5.16)

Note that solving the above problem requires no assumptions as to how (ρ1, γ1) and (ρ2, γ2)

are related, i. e. the a priori information is not in-built in the algorithm. The user is free to

choose (ρ2, γ2) so as to obtain a desired compromise between a good worst case error fit and

an acceptable smoothness for P̂ (z) (since ‖P̂ ′‖∞ ≤ γ2

ρ2−1).

We now prove that the above procedure indeed gives the required transfer function.

Theorem 5.1 When P̂ (z) is obtained as outlined above,

max
i∈[1,m]

|P̂ (ejωi)− Pωi | = min
f∈BH∞,ρ2(γ2)

max
i∈[1,m]

|f(ejωi)− Pωi | (5.17)

Proof : Let P̃ ∈ BH∞,ρ2(γ2) such that

sup
z ∈Dρ2

|P̃ (z)| ≤ x−1 (5.18)

for some x ∈ R .

Let P̃ (ejωi) = Pωi + w̃i, i = 1, 2, . . . , m (5.19)

Then we seek to minimise maxi |w̃i|.

Define f̂(z) = xP̃ (ρ2z) (5.20)

and wi = x w̃i. Then equations (5.20), (5.18)⇔ supz∈D |f̂(z)| ≤ 1. Also, P̃ analytic in Dρ2 ⇔

f̂(z) is analytic in D.

Multiplying both sides of (5.19) by x and using (5.18),

xPωi + wi ∈ D (5.21)
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Also, using definition of f̂(z),

f̂

(
ejωi

ρ2

)
= xPωi + wi (5.22)

It follows that the Pick matrix corresponding to the interpolation pairs
(
ejωi
ρ2
, xPωi + wi

)
must be nonnegative definite, i. e.

Q = E − diag(xPωi + wi) E diag(xP ∗ωi + w∗i ) ≥ 0 (5.23)

Inequality (5.12) is equivalent to (5.21), which can be verified using (2.12). Inequality (5.13)

is equivalent to (5.23). Inequality (5.14) follows from (5.18) and from the fact that P̃ ∈

BH∞,ρ2(γ2). Finally,

max
i∈[1,m]

|w̃i| = max
i∈[1,m]

x−1|wi|

Since x > 0, the right hand side can be minimised by solving

minλ subject to max
i∈[1,m]

(x2λ2 − |wi|2) ≥ 0 (5.24)

This is achieved by minimising λ subject to (5.11), the equivalence again follows from (2.12).

Thus we have formulated our identification problem as a convex optimisation problem.

For any allowable choice of (γ2, ρ2), consider a choice of decision variables x = γ−1
2 + q, q ∈

(0,∞), wi = −xPωi ∀ i ∈ [1,m]. This corresponds to a solution P̂ (z) = 0.

We deduce two important properties of our problem formulation from this solution:

• The above solution is feasible for any choice of pair (ρ2, γ2) such that ρ2 ∈ (1, ∞), γ2 ∈

(0, ∞). Thus the optimisation problem has a nonempty feasible solution set for all

allowable γ2, ρ2.

• This solution remains feasible if the inequalities in (5.11) - (5.14) are replaced by strict

inequalities, i.e. the problem is strictly feasible [BGFB94].2 For a strictly feasible

problem, the infimum obtained by solving the problem with non-strict inequalities is

same as the one obtained by solving the problem with strict inequalities [BGFB94].

The strict inequalities problem is tractable by easily available and efficient commercial

software, without the added complexity of reducing non-strict LMIs to strict LMIs.

2The only nontrivial step in proving this is to prove that E is positive definite. This is proved using Pick’s

theorem in [CNF95].
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5.3.2 Worst Case Error Bound

We use a result from [HJN91] which gives a bound on infinity norm on the worst case slope

of an exponentially stable system:

Fact 5.1 Let f ∈ BH∞,ρ(γ). Then

‖ f (k)‖∞ ≤
γk!

(ρ− 1)k

where f (k) = dkf(z)
dzk

.

Theorem 5.2 Let P̂ (z) = Aδ1(Pω,W ). Then

e(Aδ1 : ρ1, γ1, ρ2, γ2, ε, δ) ≤
(

γ1

ρ1 − 1
+

γ2

ρ2 − 1

)
δ

2
+ λ+ε (5.25)

where λ = max
i∈[1,m]

|P̂ (ejωi)− Pωi |

Proof : Consider any point ω∗ ∈ [ωi, ωi+1). Applying triangle inequality to the error at this

frequency

|P̂ (ejω
∗
)− P (ejω

∗
)| ≤ |P̂ (ejω

∗
)− P̂ (ejωi)| + |P̂ (ejωi)− Pωi |

+ |Pωi − P (ejωi)|+ |P (ejωi)− P (ejω
∗
)|

≤ ‖P̂ ′‖∞
δ

2
+ λ + ε + ‖P ′‖∞

δ

2
(5.26)

where f ′(z) := df
dz . From fact 5.1,

‖P ′‖∞ ≤
‖P‖∞,ρ1

ρ1 − 1
≤ γ1

ρ1 − 1

Similarly, ‖P̂ ′‖∞ ≤ γ2

ρ2−1 . Substituting these values in (5.26) gives the result.

5.3.3 Asymptotic Behaviour of Worst Case Error

Let δ = mini |wi+1 − wi| be the minimum angular frequency separation. Define einf1 :=

limδ→0 limε→0 e(Aδ1 : ρ1, γ1, ρ2, γ2, ε, δ) where limδ→0 is taken such that the ratio δ
δ is always

bounded.

Lemma 5.1

einf1 ≤ γ1 always (5.27)

= 0 if BH∞,ρ1(γ1) ⊆ BH∞,ρ2(γ2) (5.28)
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Proof : First, let BH∞,ρ1(γ1) ⊆ BH∞,ρ2(γ2). Since P ∈ BH∞,ρ1(γ1) ⊆ BH∞,ρ2(γ2),

λ = min
F ∈BH∞,ρ2(γ2)

max
i
|F (ejωi)− Pωi | ≤ max

i
|P (ejωi)− Pωi | ≤ ε (5.29)

Substituting in (5.25) and taking appropriate limits leads to (5.28). If BH∞,ρ1(γ1) 6⊆

BH∞,ρ2(γ2), then the trivial solution P̂ (z) = 0 gives

einf1 ≤ lim
δ→0

lim
ε→0

max
i
|Pωi | ≤ γ1

Suppose BH∞,ρ2(γ2) reflects our knowledge about the true plant set BH∞,ρ1(γ1). Then

the algorithm converges if our a priori information is correct. This resembles convergence

of tuned algorithms. Even if the a priori information is incorrect, however, the proposed

algorithm retains its bounded error property.

5.4 Achieving Robust Convergence

A part of the bound on the worst case error is fixed by a priori information, γ1, ρ1 and ε.

The remaining part depending on a posteriori information is

er(Aδ1 : ρ2, γ2, δ) = ‖P̂ ′‖∞,ρ2

δ

2
+ λ (5.30)

where λ = maxi |P̂ (ejωi)−Pωi|, P̂ (z) = Aδ1(Pω,W ) and ‖P̂ ′‖∞ ≤
(
‖P̂‖∞,ρ2
ρ2−1

)
from [HJN91].

Instead of minimising worst case absolute distance, consider the following problem:

Given the same a priori and a posteriori information as before and a user chosen lower bound

on stability margin ρ2,

Find an algorithm Aδ2 : Cm × [0, π)m 7→ H∞,ρ2 such that(
‖P̂‖∞,ρ2
ρ2 − 1

δ

2
+ max

i
|P̂ (ejωi)− Pωi |

)
(5.31)

is minimised, where P̂ (z) = Aδ2(Pω,W ). The procedure to solve the above problem is given

below.

1. Solve

min
x∈R, w1,w2,... ,wn∈C

λ (5.32)

subject to LMI constraints

diag

 λx− k w∗i

wi λx− k

 ≥ 0 (5.33)

and constraints given by (5.12), (5.13). Here k =
(

1
ρ2−1

)
δ
2 .
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Steps 2 and 3 are identical to those in in section 5.3.1.

By using arguments nearly identical to those used in case of Aδ1, it can be shown that

the above procedure solves (5.31). Further, define the worst case error as before

e2 (Aδ2 : ρ1, γ1, ρ2, ε, δ) := sup
P∈BH∞,ρ1(γ1), v∈Bl∞(ε)

‖Aδ2(Pω,W ) − P ‖∞ (5.34)

with the asymptotic value defined as einf2 := limδ→0 limε→0 e(Aδ2 : ρ1, γ1, ρ2, ε, δ). We have

the following result:

Lemma 5.2

einf2 ≤ γ1 always (5.35)

= 0 if ρ2 ≤ ρ1 (5.36)

Proof: similar to the proof of lemma 5.1.

Since ‖P̂‖∞,ρ2ρ2−1 is an upper bound on ‖P̂ ′‖∞, the above lemma introduces the idea of trade-

off between the worst case fit achieved and the worst case slope of approximation (which

controls the behaviour of the model in-between the measurement samples). This idea will be

one of the central themes in chapters 6 and 7.

Note that lemma 5.2 is a stronger statement of convergence than lemma 5.1. A natural

extension is to go a step further and pose a problem:

Given the same a priori and a posteriori information as before,

Find an algorithm Aδ3 : Cm × [0, π)m 7→ H∞ such that Aδ3 solves

min
ρ∈(1,∞)

min
P̂∈H∞,ρ

(
‖P̂‖∞,ρ
ρ− 1

δ

2
+ max

i
|P̂ (ejωi)− Pωi |

)
(5.37)

where P̂ (z) = Aδ3(Pω,W ).

Lemma 5.3 Aδ3 is robustly convergent algorithm.

Proof: Defining the worst case error and its asymptotic value as before, the above result

follows from lemma 5.2.

The outermost minimisation is non-convex in ρ. An approximate solution may be sought

for finite data size by solving (5.31) for different values of ρ.



5.5 Simulation Example 43

5.5 Simulation Example

We illustrate the use of the first algorithm proposed here by identifying a discrete transfer

function P (z) = N(z)
D(z) , with N(z), D(z) given by

N(z) = 2(0.141z6 + 0.2618z5 + 0.5229z4 + 0.1691z3 + 0.2736z2 + 0.2674z + 0.042)

D(z) = 0.2897z7 + 0.1111z6 + 0.0776z5 + 0.3671z4 + 0.4575z3 + 0.2973z2 + 0.3557z + 1

This transfer function is the same as that used in [GXZ93] to demonstrate a tuned algorithm.

It is scaled up by 2 to avoid (5.12) from becoming trivially true. 32 uniformly spaced noisy

point frequency response samples were identified by the algorithm described in chapter 4. For

each frequency, length of data used for (4.12) is N = 500. Gaussian white noise of variance

approximately 10% of 2-norm of ‘clean’ output data is added. Matlab’s LMI control toolbox

was used for solving the optimisation problem (5.9) for these frequency response samples.

First, the parameters for BH∞,ρ2(γ2) were γ2 = 10 maxi |Pωi |, ρ2 = 1.05. In figures (5.1),

the solid line represents the true transfer function and the dashed line represents the frequency

response of the identified model. ‘∗’ denotes the frequency response samples Pωi . The effect

of spurious poles and zeroes is clearly evident in the model plots. Changing the value of γ2

to upto γ2 = 1.1 maxi |Pωi | does not yield any significant improvement in the ‘smoothness’

of Nyquist plot (or worst case slope).
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Chapter 6

Worst Case Identification using

FIR Models

6.1 Introduction

In section 5.4, the idea of obtaining a model that gives the best worst case fit subject to a

constraint on its slope (in terms of γ2, ρ2) is introduced. The algorithms in chapter 5 still

share one major disadvantage with other worst case methods - the model order is a function

of length of data. This restriction is removed in this chapter, obtaining a robustly convergent

algorithm which is optimal, in a certain sense, for a finite model order. Further motivation

of this work comes from the analysis of the optimal achievable worst case error by Zames et

al in [ZLW94] and from a subsequent tuned FIR approximation scheme suggested by Glaum,

Lin and Zames [GLZ96].

The Kolmogorov n-width of a subset P ⊂ H∞, in H∞ is defined by [Pin85]

dn(P) = inf
Xn

sup
x∈P

inf
y ∈Xn

‖x− y‖∞ (6.1)

where the left-most infimum is taken over all n-dimensional subspaces of H∞. Thus dn(P)

represents the optimal worst case error one can achieve by approximating a system in P by a

linear combination of n basis functions in H∞. A subspace which actually achieves this error

is called an optimal subspace for P. We are interested in two plant sets:

P1(γ, ρ) = BH∞,ρ(γ) and

P2(M) = {f : f ∈ H∞, ‖ f ′‖∞ ≤M} (6.2)

45
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where f ′(z) := df
dz . For both P1(γ, ρ) and P2(M), an optimal subspace is

Sn = span{1, z, . . . , zn−1} (6.3)

where span is over the real field. Further, the exact values of n-widths in these cases

are [Pin85]

dn(P1(γ, ρ)) = γρ−n, dn(P2(M)) =
M

n
(6.4)

Clearly, dn(Pi)
n→∞−→ 0, i = 1, 2. Contrary to intuition however, an optimal approximation is

not always given by the first n impulse response parameters.

6.2 Problem Formulation

Assumption : The plant transfer function P (z) to be identified is a stable, linear, shift

invariant, SISO discrete time system.

A priori Information :

• P (z) belongs to either of the plant sets Pi, i = 1, 2.

• Noise v corrupting measurement belongs to Bl∞(ε).

Here, ε ∈ [0,∞), either M ∈ [0,∞) or ρ ∈ (1,∞) and γ ∈ [ 0,∞) are assumed to be known

constants.

A posteriori Information : A vector of (not necessarily uniformly spaced) noisy frequency

response samples

Pω = [Pω1 Pω2 . . . Pωm ]T , Pωi = P (ejωi) + vi (6.5)

where ωi ∈ (0, π), i = 1, 2, . . . , m.

Also given is a corresponding vector of (angular) frequencies

W = [ω1 ω2 . . . ωm]T (6.6)

δ = maxi |ωi+1 − ωi| and δ = mini |ωi+1 − ωi| are the maximum and the minimum sepa-

ration between adjacent angular frequencies respectively. Let [0, π)m be as defined in (4.20).

Find : An algorithm Aδ : Cm × [0, π)m 7→ Sn such that the worst case errors defined by

ei(Aδ : xi, ε, n, δ) = sup
P ∈Pi(xi),v∈Bl∞(ε)

‖Aδ(Pω,W )− P ‖∞ (6.7)
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converge as follows

lim
δ→0

ei(Aδ : xi, ε, n, δ) ≤ dn(Pi) + βε

lim
n→∞

ei(Aδ : xi, ε, n, δ) ≤ gi(xi, δ, ε) (6.8)

where i = 1, 2, x1 = (γ, ρ), x2 = M , and δ → 0 in such a way that δ
δ remains bounded. gi

are some functions bounded for fixed xi, monotonically increasing in both δ and ε such that

limε→0 limδ→0 g(α, δ, ε) = 0. In addition, derive explicit bounds on the above error.

An important feature of this formulation is the separation of the error convergence with

respect to the increasing model order and that with respect to the increasing number of data

points. Existing robustly convergent algorithms rely on model order being some increasing

function of the number of data points for the error to go to zero. The proposed algorithm

removes this constraint, giving a significantly stronger convergence property.

6.3 Identification Algorithm

Aδ(Pω,W ) ∈ Sn is a solution of the following optimisation problem:

minimise λ subject to f ∈ Sn and

max
{

max
i∈[1,m]

| f(ejωi)− Pωi |, k̃1‖ f ′‖∞
}
< λ (6.9)

where k̃1 = k1

(
δ
)r, 0 < k1 < ∞ and 0 < r < 1 are constants. For finite data, user only

needs to specify a single constant k̃1; the decomposition of k̃1 into a constant and δ-dependent

part will be used later in section 6.4 to prove robust convergence.

Recalling the definition of Sn in (6.3), Aδ(Pω,W ) must be of the form

Aδ(Pω,W ) =
n−1∑
k=0

akz
k, ak ∈ R

The steps to implement (6.9) are enumerated below.

• Define

A =

 01×n−3 0

In−3 0

 , B =

 1

0n−3×1

 (6.10)

C =
[

2a2 3a3 . . . (n− 1)an−1

]
, D = a1 (6.11)
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φi =
[

1 ejωi · · · e(n−1)jωi

]
, i = 1, 2, . . . , m

θ =
[
a0 a1 · · · an−1

]T

L1 =


0n−2×n−2 0n−2×1 CT

01×n−2 0 D

C D 0


L2 = diag

 0 θTφ∗i − P ∗ωi
φiθ − Pωi 0

 (6.12)

R1 = −


ATXA−X ATXB 0n−2×1

BTXA BTXB − 1 0

01×n−2 0 −1


R2 = k̃1 I2m (6.13)

where X ∈ Rn−2×n−2 is an arbitrary symmetric matrix.

•

Solve inf
a0,a1,... ,an−1

λ (6.14)

subject to X > 0 (6.15)

and Li < λRi, i = 1, 2 (6.16)

• Let âk, k = 0, 1, . . . , n− 1 be the values of decision variables which minimise λ. Then

Aδ(Pω,W ) =
n−1∑
k=0

âkz
k

It remains to be shown that the procedure outlined above actually amounts to solving (6.9).

Theorem 6.1 Let P̂ (z) =
∑n−1

k=0 âkz
k, with âk obtained as above. Then

max
{

max
i
|P̂ (ejωi)− Pωi |, k̃1‖P̂ ′‖∞

}
= inf

f ∈Sn
max

{
max
i
| f(ejωi)− Pωi |, k̃1‖ f ′‖∞

}
(6.17)
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Proof : Let f(z) =
∑n−1

k=0 akz
k. Note that minimising max {| f(ejωi) − Pωi |, k̃1‖ f ′‖∞}

is same as minimising max {k̃−1
1 | f(ejωi) − Pωi |, ‖ f ′‖∞}. From [GA94] and from defini-

tions (6.10), (6.11), the conditions
ATXA−X ATXB λ−1CT

BTXA BTXB − 1 λ−1D

λ−1C λ−1D −1

 < 0 (6.18)

and X > 0 correspond to ‖f ′‖∞ < λ. Also, k̃−1
1 | f(ejωi)− Pωi | < λ is enforced by

diag

 k̃1 λ P ∗ωi − θTφ∗i
Pωi − φiθ k̃1 λ

 > 0 (6.19)

Rearranging these LMIs gives (6.16).

Remark 6.1 In [MP92], a closely related problem is solved :

minimise λ subject to f ∈ Sn and

max
{

max
i∈[1,m]

| f(ejωi)− Pωi |, k1‖ f ′‖1
}
< λ (6.20)

where ‖ f ′‖1 =
∑n−1

i=0 k|fk|, fk being parameters of f . Solution to this problem also yields

a robustly convergent algorithm. The algorithm presented here has a significantly stronger

convergence property. It also generalises nicely to the coprime factor identification case, as

will be seen in section 6.6.

6.4 Convergence and a priori Error Bounds

Let ω∗ ∈ [0, π). For convenience of notation, denote P̂ (z) =
(
Aδ(Pω,W )

)
(z). Then by

triangle inequality,

|P̂ (ejω
∗
)− P (ejω

∗
)| ≤ |P̂ (ejω

∗
)− P̂ (ejωi)|+

|P̂ (ejωi)− Pωi |+ |Pωi − P (ejωi)|+ |P (ejωi)− P (ejω
∗
)|

≤ ‖P̂ ′‖∞ δ
2 + λ + ε + ‖P ′‖∞ δ

2

(6.21)

where λ = |Pωi − P̂ (ejωi)| and f ′(z) = df
dz . For any P in P1 or in P2, P ′ ∈ H∞ and

‖P ′‖∞ δ
2
δ→0−→ 0. Hence the convergence result (6.8) holds for Aδ if, for P ∈ Pk, k = 1, 2, the
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FIR approximation P̂ satisfies the following properties:

lim
n→∞

max
(
‖P̂ ′‖∞

δ

2
, max

i
| P̂ (ejωi)− Pωi |

)
≤ g(xi, δ, ε) <∞ (6.22)

lim
δ→0

max
(
‖P̂ ′‖∞

δ

2
, max

i
| P̂ (ejωi)− Pωi |

)
≤ β ε+ dn(P1) ∀ i ∈ [1, m] (6.23)

where limδ→0 limε→0 g(xi, δ, ε) −→ 0 for fixed xi and β is independent of both data and

a priori information. The error bound is derived and the convergence of the algorithm is

proved by demonstrating the existence of feasible solution to the optimisation problem (6.9)

which have the required convergence properties (6.22) and (6.23).

For P ∈ P2, a feasible solution with the required properties is given by the following

result of Glaum et al ( [GLZ96, lemma 3.1]):

Lemma 6.1 ([GLZ96]) For a priori information v ∈ Bl∞(ε), P ∈ P1 and a posteriori in-

formation as in section 6.2, there exists a P̂ (z) ∈ Sn which satisfies the following constraints:

|P̂ (ejωi)− Pωi | ≤ ε+
M

n
+
Mδ

4
(6.24)

‖P̂ ′‖∞ < M +
2M
nδ

(6.25)

where δ > 0 is arbitrary.

Using an argument identical to that used for proving the above lemma in [GLZ96] and

employing fact 5.1, one can prove the following result for P ∈ P1 :

Lemma 6.2 For a priori information v ∈ Bl∞(ε), P ∈ P1 and a posteriori information as

in section 6.2, there exists a P̂ (z) ∈ Sn which satisfies the following constraints :

|P̂ (ejωi)− Pωi | ≤ ε+ γρ−n +
γ

ρ− 1
δ

4
(6.26)

‖P̂ ′‖∞ <
γ

ρ− 1
+

2γρ−n

δ
(6.27)

where δ > 0 is arbitrary.

Theorem 6.2

lim
n→∞

ei(Aδ : xi, ε, n, δ) ≤ g(xi, δ, ε)

lim
δ→0

ei(Aδ : xi, ε, n, δ) ≤ 2 ε+ dn(Pi) (6.28)

where i = 1, 2, x1 = {γ, ρ}, x2 = M and g(·) is such that limδ→0 limε→0 g(xi, δ, ε) = 0 for

fixed xi.
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Proof: Let k̃1 = k1

(
δ
)r where 0 < k1 < ∞ and 0 < r < 1 are constants. For P ∈ P2, it is

clear from lemma 6.1 that

min
f∈Sn

max
{

max
i∈[1,m]

| f(ejωi)− Pωi |, k1‖ f ′‖∞
(
δ
)r }

< max
(
ε+

M

n
+
Mδ

4
, k1

{
M +

2M
nδ

} (
δ
)r ) (6.29)

for an arbitrary δ > 0. Choose δ =
(
δ
n

)ζ
for an arbitrary ζ, 0 < ζ < r and let

λopt := max
(
ε+

M

n
+
Mδ

4
, k1

{
M +

2M
nδ

} (
δ
)r )

= max

(
ε+

M

n
+
M

4

(
δ

n

)ζ
,

{
k1M

(
δ
)r +

2k1M
(
δ
)r−ζ

n1−ζ

})
(6.30)

Using (6.21), (6.29) and (6.30),

e(Aδ : M, ε, n, δ) ≤
(

1
k1

(
δ
)1−r
2

+ 1

)
λopt +M

δ

2
+ ε (6.31)

Also, lim
n→∞

λopt = max
(
ε, k1M

(
δ
)r)

and lim
δ→0

λopt = ε+
M

n
(6.32)

The result follows from (6.31) and (6.32). Proof for P ∈ P1 follows similarly using lemma 6.2.

6.5 Modifications and Extensions

6.5.1 Obtaining Smooth Approximations

For a fixed n and Pω, k̃1 in (6.9) serves as a trade off between smoothness of the approximation

(in terms of ‖P̂ ′‖∞) and the achieved fit to the data. A tighter control over the smoothness

of P̂ (z) may be obtained by using ‖P̂ ′‖2 or ‖P̂ ′′‖∞. The following result lends justification

to the use of ‖P̂ ′′‖∞:

Lemma 6.3 Let P̂ ∈ H∞. Let ωi and ω∗ be two angular frequencies such that |ωi−ω∗| ≤ δ
2 .

Then

|P̂ (ejωi)− P̂ (ejω
∗
)| ≤ |P̂ ′(ejωi)|δ

2
+ ‖P̂ ′′‖∞

δ
2

4
(6.33)
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Proof : Define f : [0, π] 7→ C, such that

f(ω) := P̂ (ejω)

From ([Rud76], chapter 5),

| f(ωi)− f(ω∗)| ≤ sup
ω∈ [ωi,ω∗]

| f ′(ω)||ωi − ω∗| (6.34)

where f ′(ω) = df
dω . Let the supremum of f ′(ω) be attained at a frequency ω̃. Then us-

ing (6.34),

| f(ωi)− f(ω∗)| ≤ | f ′(ω̃)||ωi − ω∗|

= | f ′(ω̃) + f ′(ωi)− f ′(ωi)||ωi − ω∗|

≤ | f ′(ω̃)− f ′(ωi)||ωi − ω∗|+ | f ′(ωi)||ωi − ω∗| (6.35)

≤
(

sup
ω∈ [ωi,ω̃]

| f ′′(ω)||ωi − ω̃|
)
δ

2
+ | f ′(ωi)|

δ

2
(6.36)

≤ sup
ω∈ [0, π]

| f ′′(ω)| δ
2

4
+ | f ′(ωi)|

δ

2
(6.37)

Note that (6.36) follows from (6.35) by employing (6.34) for f ′(ω). Now, using chain rule for

differentiation gives

∣∣ f ′(ω)
∣∣ =

∣∣∣∣ dfdω
∣∣∣∣ =

∣∣∣∣∣ dP̂

d(ejω)

∣∣∣∣∣
∣∣∣∣d(ejω)
dω

∣∣∣∣ =

∣∣∣∣∣ dP̂

d(ejω)

∣∣∣∣∣ (6.38)

Similarly, | f ′′(ω)| =
∣∣∣ d2P̂
d(ejω)2

∣∣∣. As P̂ (z) ∈ H∞, P̂ ′(z) ∈ H∞, P̂ ′′(z) ∈ H∞. Therefore

| f ′(ωi)| = |P̂ ′(ejωi)| and sup[0,π] | f ′′(ω)| = sup[0,π] |P̂ ′′(ejω)| = ‖P̂ ′′‖∞. This completes

the proof.

Let P̂ (z) = Aδ(Pω,W ) =
∑n−1

k=0 âkz
k. Then the condition

‖P̂ ′′‖∞ < λ

is affine in the parameters âk of P̂ (z). It is hence possible to modify (6.9) and pose an LMI

problem

minimise λ subject to

max
(

max
i
|P̂ (ejωi)− P (ejωi)|, k̃1 ‖P̂ ′‖∞, k̃2 ‖P̂ ′′‖∞

)
< λ (6.39)
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where k̃1, k̃2 are user chosen nonzero weights. One may choose to replace k̃1 ‖P̂ ′‖∞ by

maxi k̃1 |P̂ ′(ejωi)| . As k̃1 is a free parameter, both representations are equally good. The

former leads to a higher number of decision variables, the latter, in general, to a higher

number of LMI constraints.

Lemma 6.4 For a priori information v ∈ Bl∞(ε), P ∈ P1(γ, ρ) and a posteriori informa-

tion as in section 6.2, there exists P̂ (z) ∈ Sn such that

max
(
|P̂ (ejωi)− Pωi |, k̃1‖P̂ ′‖∞, k̃2‖P̂ ′′‖∞

)
≤ max

(
ε+ αdn(P1), k̃1

γ

(ρ− 1)
, k̃2

2γ
(ρ− 1)2

)
where α = ρ

ρ−1 .

Proof : Let P (z) =
∑∞

i=0 pkz
k and choose P̂ (z) =

∑n−1
i=0 pkz

k. The result follows using

fact 5.1 and using

|P̂ (ejωi)− Pωi | ≤ ε+ |P̂ (ejωi)− P (ejωi)| (6.40)

Using (6.22)- (6.23) and the above lemma, it is seen that (6.39) only slightly weakens the

convergence properties (6.8) for P ∈ P1 (i.e. the worst case error is within a constant factor

α).

Similarly, ‖P̂ ′‖2 may also be incorporated in the min-max problem (6.39) as an additional

smoothness constraint. With P̂ (z) =
∑n−1

k=0 akz
k and C, D as defined in (6.11),

λ 0 CT

0 λ D

C D λ

 > 0⇔ ‖P̂ ′‖2 < λ

6.5.2 Using fixed pole structures

Let S(z) =
∑l−1

k=0 skz
k be a user chosen polynomial of degree r − 1 such that S−1 ∈ H∞.

S(z) may represent the user’s knowledge about pole locations, based on elementary tests like

step response. Define a function d̂n by

d̂n = dn(P1) n > 0

= γ n ≤ 0 (6.41)

Consider the following problem :

Given a priori information v ∈ Bl∞(ε), P ∈ P1(γ, ρ), the same a posteriori information as in
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section 6.2 and additionally a user chosen polynomial S(z) of degree l − 1,

Find : An algorithm Aδ : Cm × [0, π)m 7→ Sn such that, for IIR transfer function P̂ (z) =
Aδ(Pω ,W )

S(z) , the worst case error defined by

e1(Aδ : γ, ρ, ε, n, δ) = sup
P∈P1(γ, ρ),v∈Bl∞(ε)

‖P̂ − P‖∞, (6.42)

converges as

lim
δ→0

e1(Aδ : γ, ρ, ε, n, δ) ≤ αd̂n−l + β ε (6.43)

for some constants α, β independent of n and δ.

Solution : Let Q(z) =
∑n−1

k=0(Aδ(Pω,W ))(k)zk. Then

P̂ ′(z) =
(
SQ′ −QS′

S2

)
(z) (6.44)

The above expression is affine in the parameters of Q(z). Consequently, the following problem

may be written as an affine problem in the parameters of Q(z),

minimise λ subject to

max
{

max
i
|P̂ (ejωi)− Pωi |, k̃1‖P̂ ′‖∞

}
< λ (6.45)

(6.45) can be solved by a procedure identical to the one in section 6.3, with suitable re-

definitions of matrices. The following lemma ensures convergence property.

Lemma 6.5 Let S(z) =
∑l−1

k=0 skz
k. For a priori information v ∈ Bl∞(ε), P ∈ P1(γ, ρ)

and a posteriori information as in section 6.2, there exists Q(z) ∈ Sn such that∥∥∥∥(QS
)′

(z)
∥∥∥∥
∞
≤ γ

(ρ− 1)

and ∣∣∣∣(QS
)

(ejωi)− Pωi
∣∣∣∣ ≤ ε+

1
ρ− 1

d̂n−l

Proof : If n < l, d̂n−l = γ and Q(z) = 0 conforms to the requirements. For n ≥ l, let

P (z) =
∑∞

i=0 pkz
k and let f(z) =

∑n−l
i=0 pkz

k, Q(z) = f(z)S(z). Clearly, Q(z) ∈ Sn and

P̂ (z) =
Q(z)
S(z)

= f(z) ∈ P1(γ, ρ)

The result then follows using fact 5.1 to bound ‖P̂ ′‖∞ and using (6.40). Convergence prop-

erty (6.43) follow by using (6.22)- (6.23) and taking appropriate limits.

Using a fixed pole structure weakens the asymptotic property; in the worst case, the assumed

fixed poles will only worsen our approximation. However, a good starting estimate of fixed

poles may reduce the number of FIR parameters needed for a good approximation.
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Numerical Implementation

Implementing ‖{QS }′‖∞ < λ where Q depends on the decision variables and S is fixed is

possible, but rather cumbersome. Alternatively, since∥∥∥∥QS
∥∥∥∥′
∞
≤
∥∥∥[Q′ Q

]∥∥∥
∞

∥∥∥∥∥∥
 1

S

−S′
S2

∥∥∥∥∥∥
∞∥∥∥[Q′ Q

]∥∥∥
∞

may be used in place of ‖P̂ ′‖∞ in (6.45). This gives a much simpler implemen-

tation.

6.5.3 Use of Other Norms

Define an error vector e :=
[
f(ejω1)− Pω1 f(ejω2)− Pω2 . . . f(ejωm)− Pωm

]T
. Then

(6.9) can be re-written as

minimise λ subject to f ∈ Sn and

max
{
|e|∞, k̃1‖f ′‖∞

}
< λ (6.46)

where | · |∞ denotes the infinity norm of m− vector. ∞−norm is very sensitive to effect of

outliers i.e. measurements for which the corresponding disturbance is exceptionally high.

The effect of outliers may be reduced by choosing other norms for the error vector e. One

obvious alternative would be

minimise λ subject to f ∈ Sn and

max
{
|e|2, k̃1‖f ′‖2

}
< λ (6.47)

This is a much simpler optimisation problem; with only two constraints in n variables as

opposed to m+ 1 constraints in O(n2) variables in (6.9). There is no guarantee of worst case

convergence, however.

For a cost of increase in computation, a further refinement in the problem formulation is

possible. For v ∈ Cm and 1 ≤ K ≤ m, define the K−norm :

|v|K = K−1 sup
S⊂{1,2,... ,m},|S|=K

∑
i∈S
|vi|

Here |S| is the cardinality of set S. The cases K = 1, K = m respectively represent l∞

norm and normalised l1 norm. In general, it represents an average of magnitude of K largest

elements of the vector. Consider a problem:
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minimise λ subject to f ∈ Sn and

max
{
|e|K, k̃1‖f ′‖∞

}
< λ (6.48)

For a fixed K, this clearly gives a robustly convergent algorithm, which may be proven using

the same feasible solutions as in lemma 6.1 and lemma 6.2. Use of K-norms and other

measures for rejection of outliers are discussed in details in [PM99].

6.6 Identification of Coprime Factors

To address the problem of identification of coprime factors of a plant using an FIR based

model set, define the following sets,

Pg1 = {G : G = [N D]T ; N,D ∈ P1(γ, ρ)}

Pg2 = {G : G = [N D]T ; N,D ∈ P2(M)}

As a candidate model set, define a set of functions

S1,2 = {f : f = [f1 f2]T , f1 ∈ Sn1 , f2 ∈ Sn2} (6.49)

Suppose point frequency response samples of coprime factors of a plant are given. The plant

coprime factor samples may be estimated by using closed loop measurements for a known

stabilising, and stable controller. The problem is to map these samples into a model in S1,2

via a robustly convergent algorithm.

6.6.1 Problem Formulation

A priori Information :

• The (not necessarily normalised) right graph G = [N D]T of the SISO plant P belongs

to either of the sets Pgi , i = 1, 2.

• Noise v corrupting measurement is in Bl∞(ε).

A posteriori Information :

A matrix of (not necessarily uniformly spaced) noisy frequency response samples

Gω = [Gω1 Gω2 . . . Gωm ]

Gωi = G(ejωi) + vi

= [N(ejωi)D(ejωi)]T + [v1(i) v2(i)]T (6.50)
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where ωi ∈ [0, π), i = 1, 2, . . . , m and v1(i), v2(i) ∈ Bl∞(ε).

W , δ, and δ are as defined in section 6.2.

Find :

An algorithm Aδ : C2×m × [0, π)m 7→ S1,2 such that the worst case errors defined by

ei(Aδ : xi, ε, n1, n2, δ, ε) = sup
G∈Pg

i
,v∈Bl∞(ε)

‖Aδ(Gω,W )−G ‖∞ (6.51)

converge as follows

lim
δ→0

ei(Aδ : xi, n1, n2, δ, ε) ≤ dn1(Pi) + dn2(Pi) + βε

lim
n1,n2→∞

ei(Aδ : xi, ε, n1, n2, δ, ε) ≤ gi(xi, δ, ε) (6.52)

where i = 1, 2, x1 = (γ, ρ), x2 = M , and δ → 0 in such a way that δ
δ remains bounded. gi are

functions monotonically non-decreasing in both δ and ε such thatlimε→0 limδ→0 gi(xi, δ, ε) =

0. β is a constant independent of both data and a priori information. In addition, derive

explicit bounds on the above error.

6.6.2 Identification Algorithm and Error Bounds

Aδ(Gω ,W ) is a solution to the following optimisation problem :

minimise λ subject to f ∈ S1,2 and

max
{

max
i∈[1,m]

‖f(ejωi)−Gωi‖2, k̃1‖f ′‖∞
}
< λ (6.53)

where k̃1 is a user specified weight and S1,2 is as defined in (6.49). This may be written as

an LMI optimisation using (6.18), in a form similar to (6.14)- (6.16).

Theorem 6.3

lim
n→∞

ei(Aδ : xi, ε, n, δ) ≤ g(xi, δ, ε)

lim
δ→0

ei(Aδ : xi, ε, n, δ) ≤ (2 +
√

2 )ε+ dn1(Pi) + dn2(Pi) (6.54)

where i = 1, 2, x1 = {γ, ρ}, x2 = M and g(·) is such that limδ→0 limε→0 g(xi, δ, ε) = 0 for

fixed xi.
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Proof : Using the facts ∥∥∥∥∥∥
 f1

f2

∥∥∥∥∥∥
∞

≤ ‖f1‖∞ + ‖f2‖∞

∥∥∥∥∥∥
 f1

f2

∥∥∥∥∥∥
∞

≤
√

2 max{‖f1‖∞, ‖f2‖∞}

for any SISO f1, f2 ∈ RH∞, and∥∥∥∥∥∥
a
b

∥∥∥∥∥∥
2

≤ |a|+ |b|

∥∥∥∥∥∥
a
b

∥∥∥∥∥∥
2

≤
√

2 max{|a|, |b|}

for any complex scalars a, b, the above bounds can be easily derived from the equations (6.21)

and (6.24) - (6.27).

The convergence property (6.52) follows by taking appropriate limits and using (6.4).

6.7 Simulation Example

To illustrate the use of these algorithms, a discrete transfer function N(z)
D(z) is considered, with

N(z), D(z) given by

N(z) = 2(0.141z6 + 0.2618z5 + 0.5229z4 + 0.1691z3 + 0.2736z2 + 0.2674z + 0.042)

D(z) = 0.2897z7 + 0.1111z6 + 0.0776z5 + 0.3671z4 + 0.4575z3 + 0.2973z2 + 0.3557z + 1

The same a posteriori data as used for the simulation example in section 5.5 is used here.

With n = 23, the optimisation (6.39) was carried out for two different combinations of k̃1, k̃2

using Matlab’s LMI control toolbox [Mat95]. In fig. (6.1), the solid line and the dashed line

respectively indicate the true and the estimated frequency responses for k̃1 = 0.0050, k̃2 = 0.

The achieved value of λ is 0.0644. For the same data, using k̃1 = 0.0050, k̃2 = 0.0008 gives a

smoother FIR approximation, with only a small increase in the achieved cost (λ = 0.0907).

The response of this second model is compared with that of the plant in fig. (6.2). Both FIR

approximations are seen to be significantly smoother than the approximation in fig. (5.2).
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Figure 6.1: Nyquist Plots: k̃1 = .005, k̃2 = 0
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Figure 6.2: Nyquist Plots: k̃1 = .005, k̃2 = .0008



Chapter 7

Identification in the ν−gap metric

7.1 The ν−gap metric

For a plant Pi, let Gi and G̃i represent normalised right and normalised left graph symbols

respectively. The ν−gap between two plants P0 and P1 is defined as [Vin93]

δν(P0, P1) = inf
Q,Q−1∈L∞

‖G0 −G1Q ‖∞ if I(P0, P1) = 0

= 1 otherwise (7.1)

where I(P0, P1) := wno det (G∗1G0) = wno det (G̃0G̃
∗
1) and wno (g) denotes the winding

number of g(z) evaluated on the standard Nyquist contour indented around any poles on

∂D. For a real rational transfer matrix X such that X,X−1 ∈ RL∞, the winding number

wno det (X) is the excess of zeros of X in D over the poles of X in D. Using the fact thatG∗1
G̃1

 is unitary, we have

σ(G0 −G1Q)(ejω) = σ

G∗1
G̃1

 (G0 −G1Q)

 (ejω) (7.2)

= σ

G∗1G0 −Q

G̃1G0

 (ejω) (7.3)

since G̃1G1 = M̃1(P1 − P1)M1 = 0. Setting Q = G∗1G0 whenever det(G∗1G0) 6= 0 gives an

alternate definition for the ν−gap metric

δν(P0, P1) := ‖G̃1G0‖∞ if I(P0, P1) = 0

= 1 otherwise (7.4)

60
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When the winding number condition is satisfied, δν(P0, P1) equals the L2 -gap, defined by

δL2(P0, P1) := ‖G̃1G0‖∞ = sup
ω
κ(P0, P1)(ejω) (7.5)

where κ(P0, P1)(ejω) is the pointwise chordal distance defined as in section 3.2.5,

κ(P0, P1)(ejω) := σ
(

(I + P1P
∗
1 )−

1
2 (P0 − P1)(I + P ∗0P0)−

1
2

)
(ejω)

The equivalence follows as G̃1G0 = M̃1(P1 − P0)M0 and M̃∗1 M̃1 = (I + P1P
∗
1 )−1, M0M

∗
0 =

(I + P ∗0P0)−1.

δν(P0, P1) is a measure of difference in closed loop performance of P0 in feedback with

a controller C and P1 in feedback with the same controller C. Given a nominal controller

C that stabilises a (possibly frequency weighted) plant P0, a useful closed loop performance

measure is

bP0,C = ‖H(P0, C)‖−1
∞ (7.6)

where the closed loop transfer function H(P0, C) is defined as in (3.14),

H(P0, C) =

 P0

I

 (I − CP0)−1
[
−C I

]
It is known that [Vin93] any controller stabilising P0 and achieving bP0,C > α stabilises the

plant set

{P1 : δν(P0, P1) ≤ α}

More importantly, the pointwise difference in the closed loop performance of nominal plant

P0 and a perturbed plant P1 for the same controller C can be quantified in terms of κ(P0, P1)

as [Vin93]:

κ(P0, P1)(ejω) ≤ σ(H(P0, C)−H(P1, C))(ejω)

≤ κ(P0, P1)(ejω)σ(H(P0, C))(ejω)σ(H(P1, C))(ejω) (7.7)

The upper bound has been mentioned previously in section 3.2.5. Clearly, the upper bound

in (7.7) makes sense only if C stabilises both P0 and P1.

Let η (H(P,C)) represent the number of closed loop unstable poles of H(P,C) and let

bL2(P,C) = ‖H(P,C)‖−1
L∞ , regardless of stability of H(P,C). bL2(P,C) = 0 if H(P,C) has a

pole on ∂D. Suppose a controller C is designed to stabilise a model P0 of the true plant P1.

Then from ([Vin], section 3.8), a ‘good’ model (small δL2(P0, P1)) and a ‘good’ controller C
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(with large bL2(P0, C)) ensures that C stabilises P1, provided the winding number condition

is satisfied:

Lemma 7.1 ([Vin]) Given P0, P1, C satisfying bL2(P0, C) > δL2(P0, P1),

η (H(P1, C)) = η (H(P0, C)) + I(P1, P0) (7.8)

From (7.4), (7.7) and (7.8), it follows that any controller C that stabilises P0 with a good bP0,C

also stabilises P1, without any significant deterioration in performance, provided δν(P0, P1)

is small.

To emphasise the difference between measuring the size of identification error by ν−gap

and by any other standard metrics, consider a pair of continuous time plants,

Pε+ =
1

s+ ε
, Pε− =

1
s− ε , 0 < ε� 1

The difference between Pε+ and Pε− is unbounded in H2 or H∞ norms. However, for a simple

controller C = −δ, δ > 1, a little algebra reveals that

H(Pε+ , C)−H(Pε− , C) =
2ε

(s+ δ + ε)(s+ δ − ε)

−δ −1

δ2 δ

 (7.9)

and ‖H(Pε+ , C)−H(Pε− , C)‖∞ =
2ε(1 + δ2)

(δ + ε)(δ − ε)

so that, from a feedback point of view, the two systems Pε+ and Pε+ should be judged close

for a small ε. The ν−gap metric captures this fact correctly, as

G∗ε−Gε+ =
(s+ ε+ 1)(s + ε− 1)

(s+
√

1 + ε2)(s−
√

1 + ε2)

so that wno det (G∗ε−Gε+) = 0 and δν(Pε+ , Pε−) may be shown to be 2ε
1+ε2 .

The ν−gap metric is closely related to gap metric [GS90] defined by

δg(P0, P1) := max
{−→
δg (P0, P1),−→δg (P1, P0)

}
(7.10)

= inf
Q,Q−1∈H∞

‖G0 −G1Q‖∞ (7.11)

where −→δg (P0, P1) is the directed gap as defined in (2.9). The equivalence of (7.10) and(7.11)

is proved in ([Vin], chapter 7). Comparing (7.1) and (7.10), it follows that δg(P0, P1) bounds

δν(P0, P1) from above. Also important is the fact that gap metric is just a number, whereas

ν−gap metric is a supremum over frequency of a pointwise distance function; the value of
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this function at all frequencies provides useful information about the difference between the

two plants.

From the above discussion, a logical aim for control oriented identification is to minimise

ν−gap between the true plant and the model. This would, however, require infinite data. To

facilitate the formulation of an identification problem formally on a finite set of frequencies,

some relevant quantities are now defined. As a posteriori information in the identification pro-

cess, suppose that a vector of (not necessarily uniformly spaced) frequency response samples

of the normalised right graph symbol of the true plant P0(z) is given:

Gω := [G0(ejω1) G0(ejω2) . . . G0(ejωm)]T (7.12)

where ωi ∈ (0, π), i = 1, 2, . . . , m.

Define a function δW : R×R× [0, π)m → [0, 1], such that

δW (P0, P1) := inf
Q,Q−1∈L∞

sup
i∈[1,m]

σ(G0 −G1Q)(ejωi) if I(P0, P1) = 0

= 1 otherwise (7.13)

Next, given any controller C, define a performance measure over finite frequency set as

bwP0,C :=

{
sup
i∈[1,m]

σ (H(P0, C)) (ejωi)

}−1

(7.14)

Let

∆H01 := sup
i∈[1,m]

{
σ(H(P0, C)−H(P1, C))(ejωi)

}
be the performance degradation measure. Then

δW (P0, P1) ≤ ∆H01 ≤
δW (P0, P1)
bwP0,C

bwP1,C

(7.15)

follows immediately from (7.7).

7.2 An ‘ideal’ Algorithm

In view of the discussion above, a reasonable problem for control oriented identification with

a finite data would be

A1: min
P1∈S

δW (P0, P1)
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for given frequency response samples G0(ejωi), where S is a model set yet to be determined.

A possible choice would be an affinely parameterised set S1,2, defined in (6.49). For f =f1

f2

 , f1 ∈ Sn1, f2 ∈ Sn2, let

Fac(f) := f1f
−1
2

In addition to minimising δW (P0, P1), we may wish to control the rate of change of pointwise

graph of model between two measurement frequencies on ∂D. An appropriate measure for

this purpose is Vi = ‖G̃iG′i‖∞. As shown in [Vin96], κ(Pi(ejω1), Pi(ejω2)) < Vi|ω1 − ω2|. In

this case A1 may be modified to

A2: min
f∈S1,2

max(δW (P0, P1), kV1)

where k is a user chosen weight and P1 = Fac(f). Note that this problem is similar to (6.9);

both problems give a model that trades off worst case fit achieved and the complexity of

model. The measures of both the worst case fit and complexity differ, however, which makes

A2 more control relevant than (6.9) and also numerically more demanding.

If the true plant belongs to a set Sα := {P0 : V0 < α}, then the worst case error bound

sup
P0 ∈Sα

δν(P0, P1) ≤ (α+ V1)
δ

2
+ δW (P0, P1)

follows by triangle inequality. Here δ is the maximum separation between adjacent angular

frequencies, as before. Additionally, if the plant P0 ∈ R, one may guarantee convergence of

the worst case error in A2 as the length of data goes to infinity and the model order goes to

infinity (since P1 = P0, V1 = α is a feasible solution).

Having set out what we would like to do, let us see what we can do. Even with finite data,

minimising δW (P0, P1) is a very difficult problem, since κ(P0, P1) is non-convex in parameters

of P1 and implementing I(P0, P1) = 0 would require more information about P0. Here, a

three-step, approximate procedure is used to obtain a model.

• Given P0(ejωi), obtain G0(ejωi) within multiplication by a unitary matrix.

• Solve

min
f∈S1,2

max
{

max
i
κ(P0, Fac(f))(ejωi), k‖f ′‖∞

}
where k is a user chosen constant. Note that ‖f ′‖∞ is used as an approximation to

VFac(f). Let P1 be a solution.
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• Given P1, P0(ejωi) and a controller stabilising P0, solve

min
P∈R, I(P,P0)=0

δL2(P1, P )

Let P2 be the solution. Then by triangle inequality, δW (P1, P2) ≤ maxi κ(P0, P )(ejωi)+

δL2(P1, P2).

These three steps are discussed in detail in sections 7.3, 7.4 and 7.5 respectively. 1

7.3 Finding Frequency Response of Normalised Right Graph

Symbol

Consider a multivariable plant P0. The point frequency response samples (possibly matrices)

P0(ejω) may be obtained by sinusoidal testing in open loop for a stable plant, or in closed

loop with a linear, shift-invariant controller for an unstable plant. From P0(ejω), we want

to find G0(ejω) where G0 is a normalised right graph of P0. An equivalent approximation

problem may be formulated.

Lemma 7.2 Given P0, P1 ∈RL∞, Q,Q−1∈ L∞, ∃ Q̂, F such that Q̂, Q̂−1, F ∈ L∞,

σ (G0 −G1Q) (ejω) = σ
(
F −G1Q̂

)
(ejω) ∀ω

and at any ω, the complex matrix F (ejω) can be written as a function of the point frequency

response matrix P0(ejω).

Proof : At any point ejω on ∂D, let P0(ejω) = (UΣV ∗) be the singular value decomposition

of P0(ejω), with Σ = diag{σ1, σ2, . . . , σn}. Define

Y :=
(
V (I + ΣTΣ)

1
2V ∗

)
(7.16)

Then (I + P ∗0 P0)(ejω) = V (I + ΣTΣ)V ∗ = Y ∗Y . Let X be the outer spectral factor of

(I + P ∗0P0), i.e. X∗X = (I + P ∗0P0), X,X−1 ∈ H∞. Then G0 :=

P0X
−1

X−1

 represents

the normalised right graph symbol of P0, within multiplication by a constant unitary matrix.

Since X(ejω)∗X(ejω) = Y ∗Y , and both X(ejω) and Y are square complex matrices, X(ejω) =

φωY where φω is a square matrix such that φ∗ωφω = I ([ZDG96], lemma 2.14). As φω at any
1The last two steps in this procedure for identification in the ν−gap metric are analogous to the two-step

procedure used in untuned worst case methods for identification in H∞ norm [HJN91].
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point ejω on ∂D is bounded, there exists a function ψ ∈ L∞ such that ψ(ejω) = φω. Further,

since φ∗ωφω = I, ψ must be such that ψ−1 ∈ L∞. For a given Q,Q−1 ∈ L∞, define Q̂ := Qψ

and F :=

P0X
−1ψ

X−1ψ

. Then F, Q̂, Q̂−1 ∈ L∞ and

F (ejω) = [(P0(ejω)Y −1 Y −1]T (7.17)

is determined solely from P0(ejω), with Y (ejω) as in (7.16). Also,

σ (F −G1Q̂)(ejω) = σ ((G0 −G1Q)ψ)(ejω)

= σ (G0 −G1Q)(ejω)

Given plant frequency response samples P0(ejωi), F (ejωi) defined as above may be used to

find a model P1 and a Q̂ which minimise maxi σ(F −G1Q̂)(ejωi) subject to some smoothness

constraint on G1. For a stable SISO plant P0, note that F (ejωi) =[
P0(ejωi )√

1+|P0(ejωi )|2
1√

1+|P0(ejωi )|2

]T
. Further, G1 need not be normalised, as the normalising

transfer function can be absorbed into Q̂. To see this, let f ∈ S1,2, P1 = Fac(f) and

f∗f > 0. Let X be an outer spectral factor of f∗f . Then fX−1 is a normalised right graph

symbol of Fac(f), unique within multiplication by a unitary matrix. For Q̂, Q̂−1 ∈ L∞ and

F as above, σ(F −G1Q̂)(ejωi) = σ(F −fX−1Q̂)(ejωi) = σ(F −fQ̃)(ejωi), with Q̃ = X−1Q̂,

Q̃, Q̃−1 ∈ L∞.

If f∗f(ejω) = 0 at some ejω, one can perturb the solution to f + δf ∈ S1,2, such that

(f + δf)∗(f + δf)(ejω) > 0, ∀ejω ∈ ∂D. Since the cost function is continuous in f , a small

δf will cause only a small increase in cost.

7.4 Approximation in the L2 -gap

An iterative procedure for approximation in the L2 -gap is given below. SISO case is discussed

here for ease of notation. Let Sn and S1,2 be defined as in (6.3) and (6.49) respectively.

Given : A vector of frequency response samples Pω defined as in (7.12).

Initialisation : Set k = 1, Q̂0 = 1.

Step A : Solve

min
fk∈S1,2

(
max
i
σ (F − fkQ̂k−1)(ejωi), α‖f ′k‖∞

)
(7.18)

where α is a user chosen constant, F (ejωi) is obtained from P0(ejωi) using (7.17) and f ′k =
dfk
dz . This problem is similar to (6.53). Both the constraints σ (F − fkQ̂k−1)(ejωi) ≤ λ
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and α‖f ′k‖∞ < λ may be written as affine constraints in the parameters of fk, the latter

using (6.18) and suitable definitions of matrices A,B,C,D. Thus, (7.18) may be written as

an LMI optimisation problem. Let f̂k be the solution to (7.18).

Step B : Solve

min
Qk(ejωi )

max
i∈[1,m]

σ (F − f̂kQk)(ejωi) (7.19)

This step is an unconstrained linear least squares problem, and has a closed form solution:

Q̂k(ejωi) =
f̂∗k (ejωi)F (ejωi)

f̂∗k (ejωi)f̂k(ejωi)
(7.20)

If maxi σ(F − f̂kQ̂k)(ejωi) is less than a specified tolerance, stop; otherwise set k := k + 1

and go back to step A.

If f̂∗k f̂k(e
jωi) = 0 for some i ∈ [1,m], we can replace f̂ in (7.20) by f̂k + δf̂k for a small

perturbation δf̂k, such that (f̂k + δf̂k)∗(f̂k + δf̂k) 6= 0. As the cost function is continuous

in f̂k, a small perturbation in f̂k results in a small increase in cost. This, of course, is of

theoretical interest; yielding f̂∗k f̂k(e
jωi) = 0 exactly is a situation rather unlikely to occur in

practice.

Suppose, α is sufficiently small so that the solution of (7.18) is the same as the solution

of minfk∈S1,2 maxi σ (F − fkQ̂k−1)(ejωi). 2 Define vk,l := maxi(F − f̂kQ̂l)(ejωi). Thus vk,k−1

and vk,k give the achieved cost at steps A and B respectively at kth iteration. A particularly

attractive property of the above procedure is that the achieved cost in our approximation

improves with each iteration.

Lemma 7.3 For k ≥ 1,

vk,k ≤ vk,k−1 ≤ vk−1,k−1

Proof : Consider step A of kth iteration. Since f̂k−1 is a feasible solution for (7.18), we have

vk,k−1 ≤ vk−1,k−1. Similarly, as Q̂k−1 is a feasible solution for (7.19), vk,k ≤ vk,k−1.

Further, a local optimality-like property may be proven for this procedure. Define wk,j :=

(F − f̂kQ̂j)(ejωi). Let f̂k = f̂k−1 +λ∆, where λ ∈ R and ∆ ∈ S1,2, ‖∆‖∞ = 1. The following

result is based on a similar result in [VM97].

Lemma 7.4 At any point ejωi,

d

dλ
{w∗k,kwk,k}

∣∣∣∣
λ=0

=
d

dλ
{w∗k,k−1wk,k−1}

∣∣∣∣
λ=0

(7.21)

2In a number of simulation experiments, this assumption is seen to hold for any α < 1, with a sensible

choice of n1 and n2..
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Proof : From (7.20), w∗k,kf̂k = 0. This gives

d

dλ
{w∗k,kwk,k} = w∗k,k(−∆Q̂k) + (−∆Q̂k)∗wk,k (7.22)

d

dλ
{w∗k,k−1wk,k−1} = w∗k,k−1(−∆Q̂k−1) + (−∆Q̂k−1)∗wk,k−1 (7.23)

The right hand sides of (7.22), (7.23) are equal at λ = 0.

This means that if there is a descent direction for minimising σ(F − fkQk) simultaneously

over (fk, Qk) at a point (f̂k−1, Q̂k−1), then usually, there also exists a descent direction at

(f̂k−1, Q̂k−1) for minimising σ(F − fkQ̂k−1) over fk alone.

7.5 Satisfying the Winding Number Constraint

Let P0 represent the true plant. Let P1 = f1,kf
−1
2,k , where f̂k = [f1,k f2,k]T is a solution

to (7.18) at kth iteration. Then the above procedure ensures that maxi κ(P1, P0)(ejωi) < vk,k,

but it doesn’t guarantee that I(P1, P0) = 0. This means that P1 may not be stabilised by a

controller C, given that C stabilises P0.

Suppose, a controller C which stabilises the true plant P0 results in η (H(P1, C)) = k and

bL2(P1, C) = α for a model P1. From lemma 7.1, if another model P2 satisfies I(P2, P1) ≤ −k

and δL2(P1, P2) < α, then η (H(P2, C)) = 0. A method for finding P2 which guarantees

I(P2, P1) ≤ −k is outlined in the next theorem.

Theorem 7.1 Given P1 and γ < 1, the following are equivalent.

(i). ∃ P2 : I(P2, P1) ≤ −k and δL2(P1, P2) < γ

(ii). γ >
√

1− σ2
k(HG1

)

where σk(HG) is the kth largest singular value of Hankel operator HG.

When the condition (ii) is satisfied, such a P2 may be constructed as P2 = {Fac(X)}∗ where

X = [x1 x2]T satisfies x−1
2 ∈ R, X ∈ H∞(−),n−k and ‖G3 − X ‖∞ < γ. Here G3 is the

normalised right graph symbol for P3 := P ∗1 , deg(P1) = n and H∞(−),n−k denotes the space

of functions analytic outside the unit disk except for at most n− k stable poles.

Proof : See Appendix B.

As illustrated in the proof of this result, one can construct a P2 which solves

inf
P2∈R

I(P2,P1)≤−k

δL2(P1, P2) (7.24)
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Then by triangle inequality,

max
i

κ(P0, P2)(ejωi) ≤ vk,k + δL2(P1, P2) (7.25)

Also, from (7.8), η (H(P2, C)) = 0 provided bL2(P1, C) > δL2(P1, P2). Since C stabilises P0,

again applying (7.8) for P2, P0, C gives

I(P2, P0) = 0 (7.26)

provided bL2(P2, C) > δL2(P0, P2). δL2(P0, P2), in turn, may be approximated by

maxi κ(P0, P2)(ejωi). If a ‘good’ chordal distance fit is obtained over a sensible grid of frequen-

cies, this condition is easy to satisfy; as the simulation example in section 7.6 demonstrates.

Finally (7.25), (7.26) combine to give

δW (P0, P2) ≤ vk,k + δL2(P1, P2)

If both P0 and P1 are stable (i.e. stabilised by C = 0), I(P1, P0) = 0 provided bL2(P1, 0) >

δL2(P1, P0). This is a very simple condition to check approximately, and does not require

knowledge of any other controller. If the plant is unstable, a stabilising controller is needed

to build a model P2. This is a reasonable requirement; a controller would be needed to collect

any operational data anyway.

A new, related algorithm for identification of normalised coprime factors appears in [Gu99].

This algorithm is based on discrete Fourier Analysis and is robustly convergent. On the other

hand, it relies on uniform frequency spacing and does not cater for the important winding

number correction.

7.6 Simulation Example

Consider a continuous time plant

P (s) =
1.875s2 + 18.75s + 48.75

s4 + 6.1s3 + 16.4845s2 + 38.431s + 60.197

This plant has two pairs of lightly damped resonant poles and a pair of resonant zeroes. It was

mapped to z-plane by Tustin transformation, with a sampling period 0.5 sec. 20 frequency

response samples are used; 16 uniformly spaced between 0 and π
2 and 4 uniformly spaced

between {π2 ,
7π
8 }.

This data is used for L2 -gap approximation, with n1 = 5, n2 = 5 and α = 0.001

in (7.18). After 12 iterations, the approximation P1 obtained gives bL2(P1, 0) = 0.58,
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Figure 7.1: Magnitude Plots: True plant and ν−gap Approximation

maxi κ(P1, P0)(ejωi) = 0.0031 and P1 is stable. Hence the Hankel norm approximation step as

in theorem 7.1 is deemed unnecessary and δW (P1, P0) ≈ 0.0031. True δν(P1, P0) in this case

is 0.008. In fig. (7.1), the solid line shows the true plant response, ‘?’ indicating the frequency

response samples. The dashed line indicates the response of the ν−gap approximation.

As another example, the same data is used for ν−gap approximation with a lower order

plant, with n1 = 3, n2 = 3 and α = 0.001. After 12 iterations, the worst case chordal

distance obtained is 0.0606; with true ν−gap distance 0.0607. The magnitude of true plant

(solid) and the model (dashed) frequency response is shown in fig. (7.2). This very good result

for a lower order model is not entirely unexpected. Using the results for optimal ν−gap ap-

proximation from ([Vin], chapter 8), it may be shown that 0.0603 ≤ inf P̂ :deg(P̂ )≤2 δν(P, P̂ ) ≤

0.0616. Our simulation results based on finite data conform to these bounds.
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Figure 7.2: Magnitude Plots: True plant and lower order ν−gap Approximation



Chapter 8

Concluding Remarks

8.1 Main Contributions

Here we summarise the main contributions of this dissertation.

• A new robustly convergent algorithm is suggested for point frequency response identifi-

cation in chapter 4. A deterministic characterisation of white noise is introduced, which

is potentially less conservative than a ‘ball-in-l∞’ type description and is shown to cap-

ture rigorously the notion of uncorrelated nature of noise in a deterministic sense. The

identification algorithm is also extended to identification of multiple point frequency

response samples.

• In chapter 5, a family of new worst case identification algorithms is proposed which

maps a given set of (possibly noisy) point frequency response samples into a rational

model from a user specified model set. These algorithms introduce the idea of a trade-off

between the worst case fit obtained and the worst case slope of the frequency response

of the model.

• The idea of this trade-off is further developed in chapter 6 to introduce a robustly

convergent algorithm for identification with FIR models. This algorithm is shown to be

optimal, in a particular sense, for a finite model order. Various further modifications

are suggested to improve the quality of the obtained model (in terms of its slope) and

to incorporate the knowledge of poles of the plant.

• A small ν−gap between the plant and the model guarantees that a controller achieving

a high robustness margin bP,C for the model will stabilise the true plant without a signif-
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icant degradation in performance. Chapter 7 uses the numerical techniques developed

in the previous chapter to formulate and solve an important problem for identification

in the ν−gap metric. A rational model is obtained along-with an approximate bound

on the ν−gap error.

8.2 Recommendations for Future Research

• The algorithm for identification in the ν−gap metric proposed in chapter 7 is not

robustly convergent. As seen in section 7.2, it is better to constrain Vi rather than

constraining ‖f ′‖∞ to control the worst case rate of change of chordal distance. The

problem of constraining the complexity measure Vi as defined in section 7.2 is still open.

• Chapter 3 reviewed classical time domain identification approach. Classical methods

obtain a model that closely approximates the output of plant for the same input. In

the light of the definition (2.9) of directed gap and its relation to the ν−gap metric,

such a model may not be the best model from a feedback perspective. The problem of

rigorous assessment (and possibly, of a modification) of classical time domain methods

from a deterministic, feedback point of view yet remains to be addressed.

• Another useful direction for research will be to develop a deterministic characterisation

of noise, similar to the one introduced in chapter 4, for identification in the ν−gap

metric. Such deterministic characterisations may also be useful to study finite sample

properties in time domain identification.



Appendix A

Appendix to chapter 4

To prove theorem 4.1, two technical results are needed. The first is used to bound the sample

mean of bounded independent random variables [Hoe63]:

Theorem A.1 (Hoeffding’s theorem) Let z0, z1, . . . , zN−1 be independent random vari-

ables bounded by a ≤ zi ≤ b and having finite first and second central moments. Define

z = 1
N

∑N−1
N=0 zN and µ = E(z). Then for δ > 0,

P (z − µ > δ) ≤ e
−2Nδ2

(b−a)2

To apply Hoeffding’s inequality to Rv(τ), we need to separate Rv(τ) into sums of independent

random variables. The following result, by Paganini [Pag95], allows us to do this:

Lemma A.1 (Paganini) Let N ≥ 3, and v0, v1, . . . , vN−1 be independent random vari-

ables. Fix 1 ≤ τ < N . Then Rv(τ) may be expressed as Rv(τ) = Σ1 + Σ2 + Σ3, where each

Σi is a sum of Ni independent random variables, and Ni ≥ N
5 .

To illustrate what this result means, let N = 6 and let v0, v1, . . . , v5 be independent random

variables. Consider Rv(τ) for τ = 1:

Rv(1) = v0v1 + v1v2 + v2v3 + v3v4 + v4v5 + v5v1

= (v0v1 + v2v3 + v4v5) + (v1v2 + v3v4) + (v1v5)

The term in each bracket is a sum of independent random variables. The above lemma says

that such a grouping of Rv(τ) into three summations of independent random variables is

possible for any τ ∈ [1, N − 1] and for any N . Further, the number of terms in each of the

three summations is no smaller than N
5 .
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A.1 Proof of theorem 4.1

(i). Argument in this proof is along the lines of the proof of theorem 4.3 in [Pag95]. The

basic idea is as follows:

• Given a function σN satisfying (4.11), express the complement of VσN ,η,N as a subset

of a specific, countable union of sets.

• Show that the probability of a random vector v belonging to this union of sets

goes to zero, as N →∞.

The complement of VσN ,η,N can be written as

V c
σN ,η,N

= {v ∈ RN :
1
N
Rv(0) > σ2

N} ∪ {v ∈ RN : max
1≤τ≤N−1

1
N
|Rv(τ)| > η σ2

N} (A.1)

Now we show that the probability of each of the two sets (whose union includes V c
σN ,η,N

)

goes to zero as N →∞.

For N > N0, let σ2
N = λ2 + α2

N , αN > 0 from assumption (4.11). Now |vi|2 are

independent random variables with identical mean λ2 and bounded in [ 0,K2]. Hence

P
(

1
N
Rv(0) > σ2

N

)
= P

(
1
N

N−1∑
i=0

|vi|2 > σ2
N

)

= P
(

1
N

N−1∑
i=0

|vi|2 − λ2 > α2
N

)
(A.2)

This probability may be bounded using Hoeffding’s inequality, so that

P
(

1
N
Rv(0) > σ2

N

)
≤ e

(
−2Nα4

N
K4

)
N→∞−→ 0 (A.3)

Next, using Paganini’s lemma, Rv(τ) = Σ1 + Σ2 + Σ3 where each Σi is a sum of Ni

independent random variables bounded in [−K2,K2] and having mean 0 (As vi, vk are

independent and therefore uncorrelated, E ( vivk ) = E ( vi) E (vk ) ). Hence

P
(
Rv(τ)
N

> η σ2
N

)
≤

3∑
i=1

P
(

Σi

Ni
> η σ2

N

)
(A.4)

Again using Hoeffding’s inequality for N > N0 and using Ni ≥ N
5 ,

P
(
Rv(τ)
N

> η σ2
N

)
≤

3∑
i=0

e
−Niη

2σ4
N

2K4 ≤ 3e
−Nη2σ4

N
10K4 (A.5)
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Now −Rv(τ) can also be split into three summations of zero mean, independent random

variables bounded in [−K2,K2] in a similar fashion. Hence,

P
(
−Rv(τ)

N > η σ2
N

)
≤ 3e

−Nη2σ4
N

10K4 also holds. Since

P
(
|Rv(τ)|
N

> η σ2
N

)
= P

(
Rv(τ)
N

> η σ2
N

)
+ P

(
−Rv(τ)

N
> η σ2

N

)
it follows that

P
(
|Rv(τ)|
N

> η σ2
N

)
≤ 6e

−Nη2σ4
N

10K4 (A.6)

Bounding each P
(
|Rv(τ)|
N > η σ2

N

)
in this fashion and using the fact that{

v ∈ RN : max
1≤τ≤N−1

1
N
|Rv(τ)| > ησ2

N

}
⊆

N−1⋃
τ=1

{
v ∈ RN :

1
N
|Rv(τ)| > η σ2

N

}
we get

P
(

max
1≤τ≤N−1

|Rv(τ)|
N

> η σ2
N

)
≤ 6Ne

−Nη2σ4
N

10K4 = 6e

(
logN−Nη

2σ4
N

10K4

)
N→∞−→ 0 (A.7)

From (A.1), (A.3) and (A.7), it follows that P(vN ∈ V c
σN ,η,N

) N→∞−→ 0.

(ii). The proof of this part proceeds in two steps. Let r = Nα where α > 1 is an arbitrary

integer. For a given r, define a set of uniformly spaced angular frequencies

Ω =
{

0,
π

r
,
2π
r
, . . . ,

(r − 1)π
r

}
Next, define a set Ṽ ω

σN ,η,N
by

Ṽ ω
σN ,η,N

:=

{
v ∈ RN :

1
N
Rv(0) ≤ σ2

N , sup
ω∈Ω

1
N

∣∣∣∣∣
N−1∑
k=0

vk e
jωk

∣∣∣∣∣ ≤ η σN
}

(A.8)

First, we establish a bound on P
(
v ∈ V ω

σN ,η,N

)
in terms of P

(
v ∈ Ṽ ω

σN ,η,N

)
. Then

P
(
v ∈

{
Ṽ ω
σN ,η,N

}c)
is bounded using Hoeffding’s inequality.

• The first step in this part is along the lines of a similar proof in [VD]. Note that

sup
ω∈[0,π)

∣∣∣∣∣ ddω
N−1∑
k=0

vk e
jωk

∣∣∣∣∣ ≤ N sup
ω∈[0,π)

∣∣∣∣∣
N−1∑
k=0

vk e
jωk

∣∣∣∣∣ (A.9)

A proof may be found in ([Pin85], chapter 8). Suppose, supω∈[0,π)

∣∣∣∑N−1
k=0 vk e

jωk
∣∣∣

is achieved at ω = ω0. Using mean value theorem ([Rud76], chapter 5) , we get∣∣∣∣∣
N−1∑
k=0

vk e
jω0k

∣∣∣∣∣ ≤
∣∣∣∣∣
N−1∑
k=0

vk e
jωk

∣∣∣∣∣+ |ω − ω0|N
∣∣∣∣∣
N−1∑
k=0

vk e
jω0k

∣∣∣∣∣ ∀ω ∈ [0, π) (A.10)
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Choose ω ∈ Ω, |ω − ω0| ≤ π
r and note that

sup
ω∈[0,π)

∣∣∣∣∣
N−1∑
k=0

vk e
jω0k

∣∣∣∣∣ ≤ sup
ω∈Ω

∣∣∣∣∣
N−1∑
k=0

wk e
jωk

∣∣∣∣∣ (A.11)

where w is defined by

w =
1

1− Nπ
r

v (A.12)

Now wk are independent, zero mean random variables bounded in[
− K

1−Nπ
r

, K
1−Nπ

r

]
and having a variance E(|wk|2) = λ2

(1−Nπ
r

)2
. To avoid defining yet

another symbol, suppose for some N0 ∈ Z+,

σ2
N > E(|wk|2) ∀N > N0 (A.13)

Using the definitions of Ṽ ω
σN ,η,N

and V ω
σN ,η,N

, it follows from (A.11) that

P
(
v ∈ V ω

σN ,η,N

)
≥ P

(
w ∈ Ṽ ω

σN ,η,N

)
(A.14)

• This step follows on similar lines as in part (i) of the proof. The aim is to show

that

P
(
w ∈ {Ṽ ω

σN ,η,N
}c
)
N→∞−→ 0

with w defined as in (A.12). The complement of Ṽ ω
σN ,η,N

can be written as

{Ṽ ω
σN ,η,N

}c ={v ∈ RN :
1
N
Rv(0) > σ2

N} ∪
{
v ∈ RN : sup

ω∈Ω

1
N

∣∣∣∣∣
N−1∑
k=0

vk e
jωk

∣∣∣∣∣ > η σN

}
(A.15)

For convenience of notation, let

Xcos =

{
v ∈ RN : sup

ω∈Ω

(
1
N
|
N−1∑
k=0

vk cosωk | > η σN√
2

)}

Xsin =

{
v ∈ RN : sup

ω∈Ω

(
1
N
|
N−1∑
k=0

vk sinωk | > η σN√
2

)}
(A.16)

Then clearly,

{Ṽ ω
σN ,η,N

}c ⊆{v ∈ RN :
1
N
Rv(0) > σ2

N} ∪Xcos ∪Xsin (A.17)

In a manner similar to (A.3), the probability P
(
w ∈ {v ∈ RN : 1

NRv(0) > σ2
N}
)

in (A.17) can be bounded using (A.13) and can be shown to go to 0 asymptotically



A.2 Proof of theorem 4.2 78

as N → ∞. To bound the probability P (w ∈ Xcos) note that wkcos ωik are

independent random variables and E
(

1
N

∑N−1
k=0 wk cosωik

)
= 0 due to linearity

of expectation operator. Now

P
(

1
N

∣∣∣∣∣
N−1∑
k=0

wk cosωik

∣∣∣∣∣ > ησN√
2

)
= P

(
1
N

N−1∑
k=0

wk cosωik >
ησN√

2

)

+ P
(
− 1
N

N−1∑
k=0

wk cosωik >
ησN√

2

)

≤ 2e−
Nη2σ2

N
4K2 (1−Nπ

r
)2

(A.18)

where the last step follows from Hoeffding’s theorem. The probability

P
(

1
N

∣∣∣∑N−1
k=0 wk sinωik

∣∣∣ > ησN√
2

)
can be similarly bounded. Adding up these prob-

abilities over r frequencies, we have

P (w ∈ Xcos ∪Xsin) ≤ 4re−
Nη2σ2

N
4K2 (1−Nπ

r
)2

≤ e
−
(
Nη2 σ2

N
4K2 (1−Nπ

r
)2−log(4r)

)
(A.19)

Since r = Nα, it follows that

P (w ∈ Xcos ∪Xsin) N→∞−→ 0 (A.20)

From (A.14), (A.17), (A.3) and (A.20), the result

P
(
v ∈

{
V ω
σN ,η,N

}c) N→∞−→ 0

follows.

A.2 Proof of theorem 4.2

Suppose ω0 6= 0. The output at time k may be written as

yk = α

k∑
q=0

pq cosω0(k − q) + vk (A.21)

Thus

Pω0 =
2
N

N−1∑
k=0

 k∑
q=0

pq cosω0(k − q)

 ejω0k +
2
αN

N−1∑
k=0

vke
jω0k

=
1
N

N−1∑
k=0

 k∑
q=0

pqe
jω0q

+
1
N

N−1∑
k=0

 k∑
q=0

pqe
j(2ω0k−ω0q)

+
2
αN

N−1∑
k=0

vke
jω0k
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(using standard trigonometric identities to expand cosω0(k − q)ejω0k)

=
N−1∑
k=0

pke
jω0k − 1

N

N−1∑
k=0

kpke
jω0k +

1
N

N−1∑
k=0

 k∑
q=0

pqe
j(2ω0k−ω0q)


+

2
αN

N−1∑
k=0

vke
jω0k

= P (ejω0)−
∞∑
k=N

pke
jω0k − 1

N

N−1∑
k=0

kpke
jω0k

+
1
N

N−1∑
k=0

 k∑
q=0

pqe
j(2ω0k−ω0q)

+
2
αN

N−1∑
k=0

vke
jω0k

which gives

|Pω0 − P (ejω0)| ≤
∞∑
k=N

|pk|+
1
N

N−1∑
k=0

k|pk|+
1
N

N−1∑
k=0

∣∣∣∣∣∣
 k∑
q=0

pqe
j(2ω0k−ω0q)

∣∣∣∣∣∣
+

2
αN

∣∣∣∣∣
N−1∑
k=0

vke
jω0k

∣∣∣∣∣ (A.22)

Using (2.4), the first term may be bounded as

∞∑
k=N

|pk| ≤
∞∑
k=N

γρ−k = γ
ρ−N

1− ρ−1
(A.23)

To bound the second term, note that for |x| < 1,

N−1∑
k=0

kxk = x

N−1∑
k=0

kxk−1 = x

N−1∑
k=0

d

dx
xk = x

d

dx

N−1∑
k=0

xk

= x
d

dx

(
1− xN
1− x

)
=

(1− xN)x− (1− x)NxN

(1− x)2
(A.24)

Substituting x = ρ−1 gives

1
N

N−1∑
k=0

k|pk| ≤
γ(1 − ρ−N)ρ−1

N(1− ρ−1)2
− γρ−N

1− ρ−1
(A.25)

Next, rewrite the third term as

1
N

∣∣∣∣∣∣
N−1∑
k=0

ej2ω0k

 k∑
q=0

pqe
jω0q

∣∣∣∣∣∣ =
1
N

∣∣∣∣∣∣
N−1∑
k=0

pke
jω0k

N−1∑
q=k

ej(2ω0q)

∣∣∣∣∣∣ (A.26)

The following identity is useful to bound the trigonometric summation [Jef94]:
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Fact A.1 For x 6= 2qπ,

N∑
k=1

cos(kx) =
sin Nx

2

sin x
2

cos
(
N + 1

2
x

)
N∑
k=1

sin(kx) =
sin Nx

2

sin x
2

sin
(
N + 1

2
x

)
(A.27)

Here,

1
N

∣∣∣∣∣∣
N−1∑
k=0

pke
jω0k

N−1∑
q=k

ej(2ω0q)

∣∣∣∣∣∣ =
1
N

∣∣∣∣∣∣
N−1∑
k=0

pke
jω0k

N−k∑
q=1

ej2ω0(q+k−1)

∣∣∣∣∣∣
=

1
N

∣∣∣∣∣∣
N−1∑
k=0

pke
jω0kej2ω0(k−1)

N−k∑
q=1

ej2ω0q

∣∣∣∣∣∣
=

1
N

∣∣∣∣∣
N−1∑
k=0

pke
jω0(3k−2)

(
sin (N−k)ω0

sinω0
ejω0(N−k+1)

)∣∣∣∣∣ (A.28)

≤ 1
N sinω0

N−1∑
k=0

|pk| ≤
γ

N sinω0

1− ρ−N
1− ρ−1

(A.29)

To bound the fourth term when v ∈ VσN ,η,N ,

∣∣∣∣∣
N−1∑
k=0

vke
jω0k

∣∣∣∣∣ =

(
N−1∑
k=0

N−1∑
t=0

vk vt e
jω0(k−t)

) 1
2

(A.30)

Now

N−1∑
k=0

N−1∑
t=0

vk vt e
jω0(k−t) =

N−1∑
k=0

v2
k +

N−2∑
k=0

ejω0 vk vk+1 +
N−3∑
k=0

e2jω0 vk vk+2 + · · ·+

ejω0(N−1) v0 vN−1 +
N−2∑
k=0

e−jω0 vk vk+1 +
N−3∑
k=0

e−2jω0 vk vk+2 +

· · · + e−jω0(N−1) v0 vN−1

=Rv(0) +
N−1∑
p=1

ejω0p


N−1−p∑
k=0

vkvk+p + e−jω0N
N−1∑

k=N−p
vkvk+p


=
N−1∑
p=0

ejω0pRv(p) + (e−jω0N − 1)
N−1∑
p=1

ejω0p
N−1∑

k=N−p
vkvk+p (A.31)

where k + p is a modulo-N summation. Using (A.31) and the fact that

N−1∑
k=N−p

vk vk+p ≤
N−1∑

k=N−p

v2
k + v2

k+p

2
we get
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1
N

∣∣∣∣∣
N−1∑
k=0

vke
jω0k

∣∣∣∣∣ ≤ 1
N


N−1∑
p=0

|Rv(p)|+
|e−jω0N − 1|

2

N−1∑
p=1

Rv(0)


1
2

(A.32)

≤ 1
N

{
Nσ2

N + (N − 1)ηNσ2
N +

∣∣∣∣sin ω0N

2

∣∣∣∣ (N − 1)Nσ2
N

} 1
2

≤ σN

√
η +

1− η
N

+
(

1− 1
N

) ∣∣∣∣sin ω0N

2

∣∣∣∣ (A.33)

When v ∈ V ω
σN ,η,N

, the fourth term in (A.22) is bounded directly from the definition of

V ω
σN ,η,N

as

2
αN

∣∣∣∣∣
N−1∑
k=0

vke
jω0k

∣∣∣∣∣ ≤ 2
η σN
α

(A.34)

Substituting from (A.23), (A.25), (A.29), (A.33) and (A.34) in (A.22) yields (4.13) - (4.14).

For ω0 = 0, we have

Pω0 =
1
N

N−1∑
k=0

 k∑
q=0

pq

+
1
αN

N−1∑
k=0

vk

=
N−1∑
k=0

pk −
1
N

N−1∑
k=0

kpk +
1
αN

N−1∑
k=0

vk

= P (ejω0)−
∞∑
k=N

pk −
1
N

N−1∑
k=0

kpk +
1
αN

N−1∑
k=0

vk

which gives |Pω0 − P (ejω0)| ≤
∞∑
k=N

|pk|+
1
N

N−1∑
k=0

k|pk|+
1
αN

∣∣∣∣∣
N−1∑
k=0

vk

∣∣∣∣∣
Bounding the three terms individually as before yields the necessary error bound.

A.3 Proof of theorem 4.3

The output at time k may be written as

yk = αi

k∑
q=0

pq cosωi(k − q) +
m∑
r=1
r 6=i

 k∑
q=0

αrpq cosωr(k − q)

+ vk (A.35)

Following the same analysis as in the proof of theorem 4.2 results in

|Pωi − P (ejωi)| ≤
∞∑
k=N

|pk|+
1
N

N−1∑
k=0

k|pk|+
1
N

N−1∑
k=0

∣∣∣∣∣∣
 k∑
q=0

pqe
j(2ωik−ωiq)

∣∣∣∣∣∣
+

2
αiN

∣∣∣∣∣
N−1∑
k=0

vke
jωik

∣∣∣∣∣+
2

αiN

∣∣∣∣∣∣∣
m∑
r=1
r 6=i

N−1∑
k=0

 k∑
q=0

αrpq cosωr(k − q)

 ejωik

∣∣∣∣∣∣∣ (A.36)
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The first four terms are bounded in a similar fashion as in the earlier case. To bound the last

term, consider any ωs, s 6= i.

2
αiN

N−1∑
k=0

 k∑
q=0

αspq cosωs(k − q)

 ejωik =
1

αiN

N−1∑
k=0

ej(ωi+ωs)k

 k∑
q=0

αspqe
−jωsq


+

1
αiN

N−1∑
k=0

ej(ωi−ωs)k

 k∑
q=0

αspqe
jωsq


=

1
αiN

N−1∑
k=0

αspke
−jωsk

N−k∑
q=1

ej(ωi+ωs)(q+k−1)


+

1
αiN

N−1∑
k=0

αspke
jωsk

N−k∑
q=1

ej(ωi−ωs)(q+k−1)

 (A.37)

Bounding this expression using (A.27) and the definitions (4.26), (4.27) of ψα, φW and adding

over the remaining (m− 1) frequencies gives the result.

A.4 Proof of lemma 4.1

From the proof of theorem 4.2,

|Pω0 − P (ejω0)| ≤ L(γ, ρ,N, ω0) +
2
αN

∣∣∣∣∣
N−1∑
k=0

vke
jω0k

∣∣∣∣∣ (A.38)

For a given δ ≤ K, it follows that

P
(
|Pω0 − P (ejω0)| ≤ L(γ, ρ,N, ω0) + δ

)
> P

(
2
αN

∣∣∣∣∣
N−1∑
k=0

vke
jω0k

∣∣∣∣∣ ≤ δ
)

(A.39)

For a given ω0, define sets

X̂cos =

{
v ∈ RN :

(
2
αN
|
N−1∑
k=0

vk cosωk | > δ√
2

)}

X̂sin =

{
v ∈ RN :

(
2
αN
|
N−1∑
k=0

vk sinωk | > δ√
2

)}
(A.40)

Then {
v ∈ RN :

1
N

∣∣∣∣∣
N−1∑
k=0

vke
jω0k

∣∣∣∣∣ > δ

}
⊆ X̂cos ∪ X̂sin (A.41)

Since E(vk) = 0, E
(

2
αN

∑N−1
k=0 vk cos(ω0k)

)
= 0, E

(
2
αN

∑N−1
k=0 vk sin(ω0k)

)
= 0, due to lin-

earity of expectation operator; and 2
αvk cos(ω0k) are independent random variables bounded
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in [−2K
α ,

2K
α ]. Now

P
(

2
αN

∣∣∣∣∣
N−1∑
k=0

vk cos(ω0k)

∣∣∣∣∣ > δ√
2

)
=

P
(

2
αN

N−1∑
k=0

vk cos(ω0k) >
δ√
2

)
+ P

(
− 2
αN

N−1∑
k=0

vk cos(ω0k) >
δ√
2

)

≤ 2e−
Nδ2α2

16K2 (A.42)

where the last inequality follows from Hoeffding’s theorem. Bounding the probability of

P
(

1
N

∣∣∣∑N−1
k=0 vk sin(ω0k)

∣∣∣ > δ√
2

)
in a similar fashion and then using (A.41),

P
(

1
N

∣∣∣∣∣
N−1∑
k=0

vke
jω0k

∣∣∣∣∣ > δ

)
≤ 4e−

Nδ2α2

16K2 (A.43)

Combining (A.39) and (A.43) gives

P
(
|Pω0 − P (ejω0)| ≤ L(γ, ρ,N, ω0) + δ

)
> 1− 4e−

Nδ2α2

16K2 (A.44)

Equating the right hand side with ζ and then solving for δ in terms of ζ gives the required

result.



Appendix B

Appendix to chapter 7

In the two proofs that follow, some properties of the winding number of determinant of a

square transfer matrix will be used repeatedly:

wno det (AB) = wno det (A) + wno det (B)

wno det (A∗) = wno det (A−1) = −wno det (A) and

X ∈ L∞, ‖X‖∞ < 1⇒ wno det (I +X) = 0

Proofs can be found in ([Vin], chapter 1).

Now, a technical result critical to the proof of theorem 7.1 is given.

Lemma B.1

I(P1, P2) = I(P ∗2 , P
∗
1 ) + deg(P1)− deg(P2)

Proof : The proof is based on the following result from ([Vin], chapter 8):

Lemma B.2 ([Vin]) Given {N,M} a normalised right coprime factorisation of P , there

exists an Ω with the following properties

(i). Ω ∈ H∞

(ii). wno det Ω = deg(P )

(iii). Ω∗Ω = I

(iv). {ΩN∗,ΩM∗} is a normalised left coprime factorisation of P ∗.

84



B.1 Proof of theorem 7.1 85

Here, deg(P) represents the Mcmillan degree of P . Let Ω1, Ω2 be such transfer functions

corresponding to G1 and G2 respectively, defined as in the above lemma. Then

I(P1, P2) = wno det (G∗2G1)

= wno det {(Ω∗2Ω2)(G∗2G1)(Ω∗1Ω1)}

= wno det (Ω∗2) + I(P ∗2 , P
∗
1 ) + wno det (Ω1)

= I(P ∗2 , P
∗
1 ) + deg(P1)− deg(P2) (B.1)

B.1 Proof of theorem 7.1

(ii)⇒ (i):

Let P3 = P ∗1 and note that
√

1− σ2
k(HG1

) = σn−k+1(HG3
) ([Vin], chapter 8). From

([ZDG96], theorem 8.7),

inf
X∈H∞(−),n−k

‖G3 −X‖∞ = σn−k+1(HG3
) (B.2)

and the infimum is achieved. Hence for γ > σn−k+1(G3), ∃ X1 ∈ H∞(−),n−k such that

‖G3 − X1‖∞ < γ. For such an X1, η(X1) ≥ deg(X1) − (n − k), from the definition of

H∞(−),n−k.

Let X1 = FQ−1 be a right coprime factorisation of X1. Then wno det (Q) = η(X1).

Put F = [F1 F2]T . If F−1
2 exists and if F1, F2 are right coprime, put H = F . Otherwise

put H = [F1 F2 + εI]T where ε is sufficiently small so that (F2 + εI)−1 exists, F1, F2 + εI are

right coprime and

‖G3 −HQ−1‖∞ < γ (B.3)

is satisfied. Let P2 = {Fac(H)}∗. Now

‖G3 −X1‖∞ =

∥∥∥∥∥∥
G∗3
G̃3

 (G3 −X1)

∥∥∥∥∥∥
∞

(B.4)

(since

G∗3
G̃3

 is inner and doesn’t affect the norm.)

=

∥∥∥∥∥∥
I −G∗3X1

−G̃3X1

∥∥∥∥∥∥
∞

= σn−k+1(HG3
) < 1 (B.5)
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Hence we have

wno det (G∗3X1) = wno det (G∗3HQ
−1) = 0

⇒ wno det (G∗3H) = wno det (Q)

⇒ I(P ∗2 , P
∗
1 ) = η(X1) ≥ deg(X1)− (n− k)

⇒ I(P ∗1 , P
∗
2 ) < (n − k)− deg(X1) (B.6)

⇒ I(P2, P1) < (n − k)− deg(X1)

+ deg(P2)− deg(P1) (B.7)

where (B.7) follows from (B.6) using lemma B.1. Since deg(P1) = n and deg(P2) ≤ deg(H) ≤

deg(X1), (B.7) gives

I(P2, P1) < −k

as desired. Further, using (7.5) and (B.3), it follows that δL2(P1, P2) = δL2(P ∗1 , P
∗
2 ) < γ.

(i)⇒ (ii):

The proof is along the same lines as the proof of Theorem 8.6 in [Vin]. Let P2 be such that

I(P2, P1) ≤ −k and δL2(P2, P1) = ε < γ. Then we need to show that ε ≥ σn−k+1(HG3
),

where P3 = P ∗1 as before.

Let P4 = P ∗2 and define X := G4(G∗3G4)−1(1− ε2). Note that

X∗

1− ε2 = (G∗4G3)−1G∗4 = (Ω4G
∗
4G3)−1Ω4G

∗
4

where Ω4 is as defined in lemma B.2. (Ω4G
∗
4G3) and Ω4G

∗
4 are RH∞ functions, and

wno det (Ω4G
∗
4G3) = deg(P2) + I(P ∗1 , P

∗
2 )

= deg(P2) + I(P2, P1)

+ deg(P1)− deg(P2)

≤ n− k (B.8)

so that X∗ has no more than n − k unstable poles, which implies X ∈ H∞(−),n−k. SinceG∗3
G̃3

 is inner,

‖G3 −X‖∞ =

∥∥∥∥∥∥
G∗3
G̃3

 (G3 −X)

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥
 ε2I

(G̃3G4)(G∗3G4)−1(1− ε2)

∥∥∥∥∥∥
∞

(B.9)
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From ( [Vin], lemma 2.2), ‖G̃3G4‖∞ = ε and (G̃3G4)∗(G̃3G4) + (G∗3G4)∗(G∗3G4) = I imply

that ‖(G̃3G4)(G∗3G4)−1‖∞ = ε√
1−ε2 . From (B.9),

‖G3 −X‖∞ =

√
ε4 + (1− ε2)2

ε2

1− ε2 = ε (B.10)

The proof is completed by noting that ε < σn−k+1 contradicts (B.2).
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