
Automated test sequence generation for Finite State Machines

using Genetic Algorithms

A thesis submitted for the degree of
Doctor of Philosophy

Karnig Agop Derderian

School of Information Systems, Computing and Mathematics
Brunel University

Uxbridge, Middlesex
UB8 3PH

United Kingdom

29 September 2006

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/335690?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To my parents.

ii

Table of Contents

Table of Contents iii

List of Figures vi

Acknowledgements xii

Related publications xiii

Abstract xiv

1 Introduction 1

1.1 About Testing . 1

1.2 Testing as part of the system development process 2

1.2.1 Static verification . 2

1.2.2 Dynamic verification . 3

1.3 Formal specification languages . 5

1.3.1 Model oriented languages . 6

1.3.2 Algebraic specification languages 6

1.3.3 Process algebras . 7

1.4 Test generation . 8

1.4.1 Search-based testing . 10

1.4.2 Testing from finite state machines 11

1.5 The structure of this thesis . 11

2 Preliminaries 14

2.1 Introduction . 14

2.2 Finite state machines (FTPs) . 15

2.3 Conformance testing . 17

2.4 Extended finite state machines (EFSMs) 19

2.5 Testing EFSMs . 22

iii

2.6 Communicating finite state machines (CFSMs) 26

2.7 Genetic algorithms . 27

3 Unique input/output sequence generation for FSMs 31

3.1 Introduction . 31

3.2 UIO sequence generation . 33

3.2.1 Defining UIO generation as a search problem 34

3.2.2 Input sequence representation and GA 38

3.2.3 Generating UIOs using genetic algorithms 41

3.3 Experiments . 42

3.3.1 UIO generation process . 46

3.3.2 UIO Generation . 48

3.4 Summary . 53

4 Feasible Transition Path generation for EFSMs 56

4.1 Introduction . 56

4.2 Problem . 57

4.3 Generating feasible transition paths (FTPs) for EFSMs 59

4.3.1 Fitness function . 63

4.3.2 TP Representation . 65

4.4 Algorithms . 66

4.4.1 Preprocesses . 66

4.4.2 FTP search problem representations 72

4.4.3 Representation 1: Fitness function using PBs 74

4.4.4 FTP verification . 76

4.4.5 Representation 2: Fitness function using transition notation . 79

4.4.6 Generating FTPs using Dijkstra’s algorithm 82

4.4.7 Advantages of heuristic search over Dijkstra’s algorithm 85

4.5 Experiments . 87

4.5.1 Experiment strategy . 88

4.5.2 Fitness evaluation results . 91

4.5.3 FTP generation results . 106

4.6 Summary . 114

5 State Verification Transition Path generation for EFSMs 116

5.1 Introduction and motivation . 116

5.2 State verification transition paths (SVTPs) 117

5.2.1 Fitness function . 122

5.2.2 Representation . 124

iv

5.3 Algorithms . 124

5.3.1 Preprocesses . 125

5.3.2 Representation 1: Fitness function using PBs 126

5.3.3 Representation 2: Fitness function using transition notation . 130

5.3.4 SVTP verification . 133

5.4 Experiments . 135

5.4.1 Experiment strategy . 137

5.4.2 Fitness evaluation results . 139

5.4.3 Generating SVTPs using Genetic Algorithm 150

5.5 Summary . 157

6 Conclusions and future work 159

6.1 Future work . 161

6.2 Testing CFSMs . 162

6.3 Summary . 162

Bibliography 164

v

List of Figures

2.1 Transition diagram of a finite state machine M0 15
2.2 Inres protocol as an EFSM . 23
2.3 Flowchart for a basic GA . 28
2.4 Example of crossover . 29

3.1 UIO fitness algorithm . 37
3.2 Difference in effort between worst case BFS and current GA results in

attempt to find all UIOs of an FSM 45
3.3 Difference in effort between worst case BFS and current GA results in

attempt to find all UIOs of an FSM - 4 worst performing FSMs for
BFS removed from graph . 46

3.4 Fitness function value and DoD for a set of UIOs for FSM dk16 . . . 47
3.5 Positions in the GA population where the first valid UIO was found

for each state of FSM dk16 (the largest of the real FSMs) 48
3.6 Percentage state coverage in UIOs generated by GA compared to ran-

dom algorithm. Results for real FSMs 50
3.7 Percentage state coverage in UIOs generated by GA compared to ran-

dom algorithm. The two GAs produced identical results. Results for
Randomly generated FSMs . 52

3.8 Percentage difference in UIOs generated by GA compared to random
algorithm. Results for Randomly generated FSMs 52

3.9 Average UIO size found for the Randomly generated FSMs 53

4.1 Inres protocol as an EFSM M1 . 60
4.2 Partial transition table for transitions starting from Ss in EFSM M1

(Figure 4.1) . 61
4.3 Predicate dependency graph for the transitions on Figure 4.2 61
4.4 Penalties for each condition in a transition 64
4.5 Preprocesses used by the fitness and verification functions for FTP

generation using the PB notation and transition notation. |T | ≥ n
since we are looking at initially connected EFSMs 66

vi

4.6 Partial transition table for transitions starting from Ss in EFSM M
with PBs . 67

4.7 Variables for the φ function algorithm 68
4.8 φ function . 69
4.9 Adjacency list A specification algorithm 71
4.10 Generated adjacency list for the Inres protocol EFSM M1 4.1. States

are 0 indexed. 71
4.11 Generated shortest path lengths matrix (φ function)for the Inres pro-

tocol EFSM M1. States are 0 indexed. 72
4.12 Generated shortest path lengths matrix (φ function) for the Inres pro-

tocol EFSM M1. States are 0 indexed. 73
4.13 Representation outline of FTP generation representations 1 and 2 . . 73
4.14 Representation 1: PB notation - FTP fitness algorithm 75
4.15 FTP Verification Algorithm . 77
4.16 Variables for the FTP fitness and FTP verification algorithm using PB

notation . 78
4.17 Example transitions within a TP . 78
4.18 Representation 2: Transition notation - FTP fitness algorithm 80
4.19 Variables for the FTP fitness and FTP verification algorithm using

transition notation . 81
4.20 Dijkstra’s algorithm example - step 1 83
4.21 Dijkstra’s algorithm example - step 2 84
4.22 Dijkstra’s algorithm example - step 3 84
4.23 Dijkstra’s algorithm example - step 4 85
4.24 Adapted Dijkstra’s shortest (cheapest) path algorithm for an FSM . . 86
4.25 Variables for the adapted Dijkstra’s shortest (cheapest) path algorithm 86
4.26 Variables for the test strategy algorithm 89
4.27 Test strategy algorithm . 89
4.28 Class 2 transport protocol EFSM M2 92
4.29 Transition table for M2 excluding transition guards 92
4.30 Transition guards for M2 . 93
4.31 All TPs generated using BFS algorithm for M2 with 1-5 transitions

(correlation factor 0.72, when excluding the 0 quality factor TPs the
correlation factor is 0.76). Light shaded squares represent zero-quality
TPs. The dark diamonds represent FTPs. 94

4.32 Example TPs for the Class 2 transport protocol in transition notation. 95
4.33 All FTPs generated using BFS algorithm for M2 with 1-5 transitions

ending at s1 (correlation factor 0.83, when excluding the 0 quality fac-
tor TPs the correlation factor is 0.77). Light shaded squares represent
unfeasible TPs. The dark diamonds represent FTPs. 97

vii

4.34 All FTPs generated using BFS algorithm for M2 with 1-5 transitions
ending at s2 (correlation factor 0.95). The dark diamonds represent
FTPs. No zero-quality TPs were found. 97

4.35 All FTPs generated using BFS algorithm for M2 with 1-5 transitions
ending at s3 (correlation factor 0.69, when excluding the 0 quality fac-
tor TPs the correlation factor is 0.76). Light shaded squares represent
zero-quality TPs. The dark diamonds represent FTPs. 98

4.36 All FTPs generated using BFS algorithm for M2 with 1-5 transitions
ending at s4 (correlation factor 0.69, when excluding the 0 quality fac-
tor TPs the correlation factor is 0.75). Light shaded squares represent
zero-quality TPs. The dark diamonds represent FTPs. 98

4.37 All FTPs generated using BFS algorithm for M2 with 1-5 transitions
ending at s5 (correlation factor 0.71, when excluding the 0 quality fac-
tor TPs the correlation factor is 0.70). Light shaded squares represent
zero-quality TPs. The dark diamonds represent FTPs. 99

4.38 All FTPs generated using BFS algorithm for M2 with 1-5 transitions
ending at s6 (correlation factor 0.76, when excluding the 0 quality fac-
tor TPs the correlation factor is 0.78). Light shaded squares represent
zero-quality TPs. The dark diamonds represent FTPs. 99

4.39 Transition table for the Inres protocol on Figure 4.1. 101
4.40 All FTPs generated using BFS algorithm for M1 with 1-6 transitions

(correlation factor 0.62, when excluding the 0 quality factor TPs the
correlation factor is 0.60). Light shaded squares represent zero-quality
TPs. The dark diamonds represent FTPs. 101

4.41 Example TPs for the Inres protocol in transition notation. 102
4.42 All FTPs generated using BFS algorithm for M1 with 1-6 transitions

ending at sd (correlation factor 0.62, when excluding the 0 quality fac-
tor TPs the correlation factor is 0.61). Light shaded squares represent
zero-quality TPs. The dark diamonds represent FTPs. 104

4.43 All FTPs generated using BFS algorithm for M1 with 1-6 transitions
ending at sw (correlation factor 0.54, when excluding the 0 quality
factor TPs the correlation factor is 0.5). The dark diamonds represent
FTPs. No zero-quality TPs were found. 105

4.44 All FTPs generated using BFS algorithm for M1 with 1-6 transitions
ending at sc (correlation factor 0.85, when excluding the 0 quality fac-
tor TPs the correlation factor is 0.87). Light shaded squares represent
zero-quality TPs. The dark diamonds represent FTPs. 105

viii

4.45 All FTPs generated using BFS algorithm for M1 with 1-6 transitions
ending at ss (correlation factor 0.49, when excluding the 0 quality fac-
tor TPs the correlation factor is 0.54). Light shaded squares represent
zero-quality TPs. The dark diamonds represent FTPs. 106

4.46 GA and Random search result averages for the Class 2 and Inres pro-
tocols in PB notation and transition notation. 108

4.47 State coverage for PB notation FTPs generated using GA and Random
generation algorithms for M2 with 1-8 transitions 109

4.48 State coverage for transition notation FTPs generated using GA and
Random generation algorithms for M2 with 1-8 transitions 109

4.49 Success ratio for PB notation FTPs generated using GA and Random
generation algorithms for M2 with 1-8 transitions 110

4.50 Success ratio for transition notation FTPs generated using GA and
Random generation algorithms for M2 with 1-8 transitions 111

4.51 State coverage for PB notation FTPs generated using GA and Random
generation algorithms for M1 with 1-8 transitions 112

4.52 State coverage for transition notation FTPs generated using GA and
Random generation algorithms for M1 with 1-8 transitions 112

4.53 Success rate for PB notation FTPs generated using GA and Random
generation algorithms for M1 with 1-8 transitions 113

4.54 Success rate for transition notation FTPs generated using GA and
Random generation algorithms for M1 with 1-8 transitions 114

5.1 Equivalent observable output assumption 120
5.2 Preprocesses used by the fitness and verification functions for FTP

generation using the PB notation and transition notation. |T | ≥ n
since we are looking at initially connected EFSMs 125

5.3 Input/output ranking and feasibility ranking for all transitions in M1 126
5.4 Representation 1: PB notation - SVTP fitness algorithm 128
5.5 Variables for the SVTP fitness algorithm using PB notation 129
5.6 Representation 2: Transition notation - SVTP fitness algorithm . . . 131
5.7 Variables for the SVTP fitness and SVTP verification algorithm using

transition notation . 132
5.8 SVTP Verification Algorithm . 136
5.9 Variables for the test strategy algorithm 137
5.10 Test strategy algorithm . 138
5.11 M1 and M2 pre-amble FTPs . 139
5.12 Transition table for M2 excluding transition guards 141

ix

5.13 All SVTPs generated using BFS algorithm for M2 of size 1 (correlation
factor 0.91, when excluding the 0 quality factor TPs the correlation
factor is 0.57). Light shaded squares represent the 0 SVTP estimate
valued TPs. The dark diamonds represent SVTPs. 143

5.14 All SVTPs generated using BFS algorithm for M2 of size 2 (correlation
factor 0.88, when excluding the 0 quality factor TPs the correlation
factor is 0.55). Light shaded squares represent the 0 SVTP estimate
valued TPs. The dark diamonds represent SVTPs. 143

5.15 All SVTPs generated using BFS algorithm for M2 of size 3 (correlation
factor 0.88, when excluding the 0 quality factor TPs the correlation
factor is 0.55). Light shaded squares represent the 0 SVTP estimate
valued TPs. The dark diamonds represent SVTPs. 144

5.16 All SVTPs generated using BFS algorithm for M2 of size 4 (correlation
factor 0.9, when excluding the 0 quality factor TPs the correlation
factor is 0.58). Light shaded squares represent the 0 SVTP estimate
valued TPs. The dark diamonds represent SVTPs. 144

5.17 All SVTPs generated using BFS algorithm for M1 of size 1 (correlation
factor 0.62, when excluding the 0 quality factor TPs the correlation
factor is 0.95). Light shaded squares represent the 0 SVTP estimate
valued TPs. The dark diamonds represent SVTPs. 146

5.18 All SVTPs generated using BFS algorithm for M1 of size 2 (correlation
factor 0.59, when excluding the 0 quality factor TPs the correlation
factor is 0.61). Light shaded squares represent the 0 SVTP estimate
valued TPs. The dark diamonds represent SVTPs. 146

5.19 All SVTPs generated using BFS algorithm for M1 of size 3 (correlation
factor 0.58, when excluding the 0 quality factor TPs the correlation
factor is 0.58). Light shaded squares represent the 0 SVTP estimate
valued TPs. The dark diamonds represent SVTPs. 147

5.20 All SVTPs generated using BFS algorithm for M1 of size 4 (correlation
factor 0.55, when excluding the 0 quality factor TPs the correlation
factor is 0.51). Light shaded squares represent the 0 SVTP estimate
valued TPs. The dark diamonds represent SVTPs. 148

5.21 Summary of fitness and quality values correlation for SVTPs of sizes 1
to 3 for M1 and M2 using bias. All correlation values are negative and
rounded to two decimal places . 149

5.22 GA and Random search result averages for the Class 2 and Inres pro-
tocols in PB notation and transition notation. 152

5.23 State coverage for PB notation SVTPs generated using GA and Ran-
dom generation algorithms for M2 with 1-8 transitions 153

x

5.24 State coverage for transition notation SVTPs generated using GA and
Random generation algorithms for M2 with 1-8 transitions 153

5.25 Success ratio for PB notation SVTPs generated using GA and Random
generation algorithms for M2 with 1-8 transitions 154

5.26 Success ratio for transition notation SVTPs generated using GA and
Random generation algorithms for M2 with 1-8 transitions 154

5.27 State coverage for PB notation SVTPs generated using GA and Ran-
dom generation algorithms for M1 with 1-8 transitions 155

5.28 State coverage for transition notation SVTPs generated using GA and
Random generation algorithms for M1 with 1-8 transitions 156

5.29 Success rate for PB notation SVTPs generated using GA and Random
generation algorithms for M1 with 1-8 transitions 156

5.30 Success rate for transition notation SVTPs generated using GA and
Random generation algorithms for M1 with 1-8 transitions 157

xi

Acknowledgements

I would like to thank Professor Rob M. Hierons, my first supervisor, and Professor
Mark Harman, my second supervisor, for their help, suggestions and constant support
during this research.

I would also like to thank the Department of Information Systems and Comput-
ing in Brunel University for the exceptional support that they provide to research
students.

xii

Related publications

• Karnig Derderian, Robert M. Hierons, Mark Harman, and Qiang Guo. Input
sequence generation for testing of communicating finite state machines CFSMs.
In LNCS vol. 3103 - GECCO 04: Proceedings of the 2004 conference on Genetic
and evolutionary computation, pages 1429-1430. Springer, 2004.

• Karnig Derderian, Robert M. Hierons, Mark Harman, and Qiang Guo. Gen-
erating feasible input sequences for extended finite state machines (EFSMs)
using genetic algorithms. In GECCO 05: Proceedings of the 2005 conference on
Genetic and evolutionary computation, pages 1081-1082, New York, NY, USA,
2005. ACM Press.

• Karnig Derderian, Robert M. Hierons, Mark Harman, and Qiang Guo. Auto-
mated Unique Input Output Sequence Generation for Conformance Testing of
FSMs. The Computer Journal, 49(3) : 331-344, 2006.

xiii

Abstract

Testing software implementations, formally specified using finite state automata (FSA)
has been of interest. Such systems include communication protocols and control sec-
tions of safety critical systems. There is extensive literature regarding how to formally
validate an FSM based specification, but testing that an implementation conforms to
the specification is still an open problem.

Two aspects of FSA based testing, both NP-hard problems, are discussed in this
thesis and then combined. These are the generation of state verification sequences
(UIOs) and the generation of sequences of conditional transitions that are easy to
trigger.

In order to facilitate test sequence generation a novel representation of the transi-
tion conditions and a number of fitness function algorithms are defined. An empirical
study of the effectiveness on real FSA based systems and example FSAs provides
some interesting positive results. The use of genetic algorithms (GAs) makes these
problems scalable for large FSAs. The experiments used a software tool that was
developed in Java (14000 lines with comments).

xiv

Chapter 1

Introduction

1.1 About Testing

As computer technology advances, systems are getting larger and fulfil more tasks.

As a result the role of testing has become increasingly important as part of the system

design and implementation.

Software testing is an important but expensive process. Studies show that it can

form about fifty percent of the total development cost [Beiz 90]. It is time consuming

and error prone. Different testing techniques exist, but they all aim to increase the

quality and confidence of the end product.The two issues in testing that need to be

considered are test effectiveness and test efficiency. Increasing test effectiveness could

be accomplished by using test cases that have a high likelihood of discovering a fault

and increasing test efficiency could be achieved by reducing the number of test cases

that need to be executed without significantly compromising effectiveness.

Since one of the costliest aspects of testing is the human effort it would be logical

to improve the process by full or partial automation. Hence not only testing could be

cheaper and more efficient, but previously intractable problems could be tackled. A

lot of work has been done on software test automation and specifically automating test

1

2

data generation [Sabn 88, Shen 89, Jone 98, Jone 96, Lee 96, Li 94, Petr 04, Dual 04].

This chapter starts by outlining the use of software testing to increase the quality

and confidence in a software product. Formal methods that can capture the specifica-

tion of software unambiguously are discussed next. Then we discuss test generation

and how the problems addressed in this thesis relate to the software testing field.

Finally the structure of this thesis is briefly outlined.

1.2 Testing as part of the system development pro-

cess

Validation and verification are essential to the system life cycle. Validation is defined

by [Boeh 81] as Are we building the right system?, while verification is defined as Are

we building the system right?. Validation is necessary to ensure a level of confidence

that the specification addresses the customer’s requirements and verification checks

whether the implementation adheres (conforms) to that specification.

Software development has changed from a process of small tasks involving a few

people to enormous tasks involving many dedicated teams. This has evolved testing

from a small task performed by the software engineer himself to a process present

in every stage of the software development life cycle. Hence planning for validation

and verification throughout the life cycle has become a necessity. Validation and

verification are not mutually exclusive and are highly related to software quality.

1.2.1 Static verification

Static verification involves formal or informal analyses of the specifications, design

or the source code of a system. When a formal specification language is used formal

analyses can be applied to the specification, design and coding stages. This could

3

simply involve checking that certain essential properties hold, or could involve a formal

or informal proof of conformance. If a formal specification language is not used it

is not possible to prove conformance to a specification, since it will be ambiguous

(described using text and diagrams), however it is still possible to analyse the design

and source code.

Informal proofs use step-by-step reasoning to inspect a system, while formal proofs

use mathematical logic based on set axioms and inference rules. Formal proofs can

be checked automatically and an automatic theorem prover can be used to produce

such proofs. While informal proofs can be shorter and simpler for humans to produce,

formal proofs can be automatically generated or checked and hence could be less likely

to have human introduced errors.

However it can be difficult to prove conformance to the specification for large

systems. A process known as refinement can be used to alleviate this. A formal spec-

ification can be converted into an implementation using a series of simple refinements,

each of which can be proven separately [Derr 99].

1.2.2 Dynamic verification

Dynamic verification involves execution of the system implementation. A number of

inputs are chosen and by observing the corresponding outputs the gap between the

test model and the implementation is determined. This process is known as testing,

and the inputs are referred to as test cases.

Testing usually starts with unit or module testing, in which modules are tested

individually. In integration testing modules are grouped together according to their

functionality and tested as integrated subsystems. After this the system testing phase

tests the system as a whole.

Dynamic verification can be further divided into three categories - black-box test-

ing, white-box testing, and random testing.

4

Back-box testing

In back-box testing a system is tested against its requirements without having internal

knowledge of how the system was implemented. Test cases are generated from the

system specification. Only information about what inputs does the system expect

and what are the specified outputs is available, without knowledge of how the system

derives those results.

Since this no knowledge of the implementation of the system is required in black-

box testing, test cases can be designed as soon as the system specifications are com-

plete. They test not only individual system components but also the interaction

between them. The test cases are implementation independent.

White-box testing

White-box testing uses information from the internal structure of a system to devise

tests to check the operation of individual components or the system as a whole.

Black-box and white-box testing both choose test cases that investigate a particular

characteristic of the system, however in white-box testing test cases can be generated

to test some implementation specific aspects of the system.

Determining the adequacy of test cases is just as important as generating them.

There are many types of coverage criteria that guide the effort of test case generation.

Three examples of test coverage criteria are statement coverage, branch coverage and

path coverage. Statement coverage is achieved when a test set causes every reachable

statement of the code to be executed at least once. Branch coverage is achieved when

a test set causes every feasible branch of the code to be executed at least once and

path coverage is achieved when every feasible execution path of the implementation

is taken.

5

Random testing

In random testing test cases are chosen randomly from the test domain. When only

a small fraction of the test domain can effectively be explored some techniques can

be used to help. Operational profiles can be used to narrow the search domain and

to ensure some uniformity of the test cases. Operational profiles are quantitative

characterisation of how a system will be used.

Exhaustive testing where the test set consists of all possible test cases is a spe-

cial type of random testing. Although exhaustive testing guarantees complete fault

coverage, in practice it is usually impossible to accomplish [Andr 86].

1.3 Formal specification languages

Requirements can be captured using formal specification languages or informal specifi-

cation languages. Formal specification languages have a mathematical basis and have

a formal notation to model the system requirements [Andr 88]. Informal specification

languages on the other hand use a combination of semiformal textual grammars, free

text and graphical representations to represent the system requirements. The clarity

of such specifications captured using informal specification language can be affected

by factors such as experience of the developer, work or cultural background. Formal

specification languages can be used to remove the ambiguity usually associated with

informal specification languages.

Capturing the requirements of a system in formal specification languages can be a

difficult and expensive task for very large systems. Hence it is usually safety critical

systems, that require very high levels of reliability, that are specified using formal

specifications.

There are three main types of formal specification languages, these being:

6

1. Model oriented languages

2. Algebraic specification languages

3. Process algebras

1.3.1 Model oriented languages

Model oriented languages usually model the system by defining states of the system

with a number of operators over each states. An operation is a function that maps

a value of the state together with values of parameters to the operation onto a new

state value by defining the relationship between start (start state and input) and end

(end state and output).

The most widely known model oriented specification languages are VDM-SL, the

specification language associated with VDM [Jone 90], the Z specification language

[Spiv 88, Spiv 89] and the B specification language [Abri 96].

1.3.2 Algebraic specification languages

Algebraic specification languages use methods derived from abstract algebra to cap-

ture system requirements. They describe the behaviour of the system in terms of

axioms. These axioms are usually formulated as equations each of which can be

qualified by a condition. Examples of algebraic specification languages include OBJ3

[Gogu 88] and the Common Algebraic Specification Language (CASL) [Moss 04].

An important advantage of algebraic specification languages is that sections of the

system can be easily isolated and simulated for testing using a process known as term

rewriting. It involves re-writing the axioms (operations) [Berg 89] in such a way that

only part of the system’s behaviour is described and hence easier to generate tests

for.

7

1.3.3 Process algebras

Process algebras are often used to describe systems with high degree of concurrency or

non-determinism. Process algebras are frequently used to specify the control sections

of a protocol, communicating systems and concurrent systems. The best known

process algebra languages are CSP [Hoar 85], CCS [Miln 89] and LOTOS [Stan 88].

Process algebras are good at modelling situations where a number of entities

need to interact by providing means of defining a set of agents and the way they

communicate. These agents can perform internal actions as well as communicate

with other agents. Recursion is often used to express infinite behaviour. The ability

to express concurrency using process algebras is useful in analysing such specifications

in order to check that they cannot lead to deadlock. A system has a deadlock if the

system has a set of processes, each of which is blocked, waiting for requirements that

can never be satisfied [Coff 71].

Finite state machines (FSMs) [Koha 78] are a less general type of process algebra,

but they are well understood since they have been studied for many years. A dis-

advantage of finite state machines is that they are unable to express communication

and nondeterminism as well as some other process algebras. However FSMs have a

testing fault model, which allows a variety of test generation algorithms to be used.

Chapters 2 and 3 discuss testing of finite state machines.

Other finite state based languages like Statecharts [Hare 98], SDL [Beli 89] and X-

machines [Halc 98] allow the representation of additional internal data and are called

extended finite state machines [Holz 90]. Sets of communicating finite state machine

[Bran 83] are commonly used to model communicating protocols and nondeterminism

can be modelled using nondeterministic finite state machine [Hopc 79]. Testing of

extended finite state machines is discussed in Chapters 2, 4 and 5.

8

1.4 Test generation

To ensure (with a certain level of confidence) that an implementation conforms to its

specification sufficient testing has to be done. Two factors, test cost and fault coverage

are tightly related when evaluating a test case. Test cost usually reflects the amount

of test data that has to be used to test the implementation while fault coverage

reflects the number of potential faults in the implementation that can be detected

with a given test case. It is always desirable to maximise fault coverage and minimise

test costs. Since only exhaustive testing can guarantee that an implementation fully

reflects the functionality of its specification, a testing strategy has to be selected that

provides a compromise between fault coverage and test costs.

In terms of observing the internal behaviour of a system implementation, test-

ing can be categorised as black-box or white-box. In black-box testing the tester

does not have information on the structure of an implementation and constructs test

cases directly from the specification. The test cases are generated from the speci-

fication and the implementation is tested by observing its output. Test design can

start immediately after the specification is complete and faults introduced during the

implementation stage may be easier to find. However test cases with complete fault

coverage may be difficult to construct without observing the internal behaviour of

the implementation. White-box testing accesses the internal structure of the imple-

mentation and observes information about the execution step by step, which allows

more rigorous analysis of what a test case achieves. However it is sometimes difficult

to examine all the implementation code and this process often requires a very skilled

tester.

Control flow testing is a white-box testing approach that uses the knowledge

of the control structure of the program under test. The control structure of the

program can be represented by a control flow graph where a syntactic unit like a

9

predicate in a branch is represented by a node and edges represent the nodes that

are reachable through execution. A variety of test coverage criteria can be used like

statement coverage [Ntaf 88, Beiz 90], branch coverage [Ntaf 88], condition coverage

[Beiz 90, Chil 94] or path coverage. Each coverage criterion has its strengths and

weaknesses and is usually not used in isolation.

Data flow testing [Rapp 85] focuses on data dependencies within a program, how

values are associated with variables. Data flow testing aims to test some subset or

some subset of set of combination of these dependencies.

Partition analysis [Ostr 88] is a method that derives the input domain in subdo-

mains which should have equivalent behaviour according to the specification. Faults

can either lead to incorrect output (computational faults) or incorrect partitions (do-

main faults). Only a few inputs from each subdomain can be sufficient to produce

test cases with high fault coverage.

Mutation testing [DeMi 78] aims to distinguish a program from a set of delib-

erately faulty versions of the program (mutants). It introduces faults within the

program and measures the ability of test cases to distinguish between the original

program and those mutants. A particular problem for mutation testing is identifying

equivalent mutants and generating test cases for mutants that are hard to distinguish

from the original program.

Random testing is another testing method. Using operational profiles can help

guide test case generation using random testing. However it is often difficult to

produce a complete operational profile for a system, hence test case generation using

operational profile might not always provide the required confidence in the system.

One of the big problems with all testing is knowing when to stop. Also it is

hard to determine if the whole of the system has been tested and that there are no

faults. Statistical methods can be used to estimate the likelihood of undetected faults

remaining in a system under test. Such methods can be used to direct the scope of

10

test case generation. Due to the scale of systems toady it is often difficult to prove a

fault free implementation. However a level of confidence in the reliability of a system

can be estimated using some test case generation techniques. One advantage for using

state based testing, and a motivation for this research, is the existence of statistical

methods that guide the test case generation.

1.4.1 Search-based testing

Search based techniques like genetic algorithms (GAs) have recently been applied to

the generation of test cases. The problem of generating test cases is transformed to

a search problem with a vast search space. Traditional search algorithms would be

too costly to apply. Some problems in testing are NP-hard and metaheuristic search

based techniques have been proved to be efficient in providing good solutions to such

problems.

Test case generation using search based techniques is relatively simple. A method

for representing the test cases in the search space has to be defined, which determines

the size and shape of the search space. A method for estimating the cost or effective-

ness of test sets according to a particular criterion is also defined and used to guide

such algorithms in the search for test sets. One of the main challenges is defining

such estimation methods that are effective and efficient.

GAs are an evolutionary search based technique based on the Darwinian logic

of evolution. Although the efficiency of a search technique is related to the shape

of the search space, GAs have been shown to perform well in a variety of unknown

domains. This could explain the popularity of GAs in search based research even

beyond software testing and computer science. GAs are discussed in Chapter 2.

GAs have been of interest in structural coverage testing [Jone 98], mutation testing

[Bott 02], exception detection [Trac 00] and worst case and best case execution time

[Wegn 97]. A review of search based test data generation can be found in [McMi 04].

11

However in search based testing it is sometimes difficult to define the termination

criterion, a problem associated with searching unknown search spaces. Exploring

the entire search space is similar to exhaustive testing. Currently this problem is

addressed by specifying the execution time or execution cycles.

Chapters 3, 4 and 5 present work on using GAs to generate test cases for finite

state machines and extended finite state machines.

1.4.2 Testing from finite state machines

There has been much interest in the use of formal specifications because formal specifi-

cations, being mathematical structures, can be used to automate test case generation.

Finite state machines have been used to model systems in different areas like

sequential circuits [Henn 64], software development [Chow 78] and communication

protocols [Aho 91, Lee 94, Sidh 89, Shen 89, Yang 90, Mill 93, Shen 92, Tane 96].

When testing against a finite state machine we can only test that the specification has

been correctly implemented. This is usually done by observing the output behaviour

of the implementation and comparing that to the specified output behaviour. This

process is known as conformance testing and it is discussed in Chapter 2. Generating

test cases for finite state machines and extended finite state machines using GAs is

discussed in Chapters 3, 4 and 5.

1.5 The structure of this thesis

This thesis is divided in four connected sections. The next section (Chapter 2) further

clarifies the context of this work by introducing finite state machines and how they can

be tested for conformance. Chapter 2 also introduces some heuristic search techniques,

in particular genetic algorithms.

The automated generation of unique inpout/output sequences (UIOs) for finite

12

state machines using genetic algorithms is presented in Chapter 3. Some of work

in this chapter was published in a conference proceedings [Derd 05] and the findings

were presented in a journal publication [Derd 06].

Chapter 4 evaluates how to estimate the ease of execution of transition paths

in extended finite state machines. A search for such transition paths using genetic

algorithms is evaluated.

Chapter 5 examines how the work in Chapters 3 and 4 can be combined to gen-

erate transition paths in extended finite state machines that have state verification

properties and are easy to trigger. Genetic algorithms are used again as the search

heuristic.

Conclusions are drawn in Chapter 6. The relevance of these results in the context

of communicating finite state machines is discussed and the topics of future work are

outlined. Some of the work on communicating finite state machines was published in

a conference proceedings [Derd 04].

This thesis addresses problems associated with automating test case generation

for systems specified using finite state machines. It attempts to define easy to com-

pute test case adequacy estimations and use GAs in attempt to generate test cases

with specific properties. A set of algorithms, data abstractions and a software tool in

Java were developed to assist the experimental approach to validate the hypothesis.

The experiments compared test cases generated by the suggested test case adequacy

estimations using GAs and compared results with randomly generated test cases pro-

duced with equivalent computational effort. A set of real systems and a set of larger,

randomly generated systems were used. The results showed that in most cases signif-

icantly more adequate test cases were generated using GAs. The test case adequacy

estimations appeared to have a fair correlation to actual test adequacy estimated

using well known techniques in the field. The approach seemed to scale well as larger

test cases were considered. Overall the results indicated positive achievements in this

13

work and attention was drawn to some related topics for future work. The work in

this thesis can be beneficial when testing large systems that are formally specified

using finite state machines, like some systems in the telecommunications industry.

Chapter 2

Preliminaries

2.1 Introduction

Finite state machines (FSMs) have been used to model systems in different areas like

sequential circuits [Henn 64], software development [Chow 78] and communication

protocols [Aho 91, Lee 94, Sidh 89, Shen 89, Yang 90, Mill 93, Shen 92, Tane 96].

Often such systems are specified using extended finite state machines or (EFSMs) and

communicating finite state machines (CFSMs) which can be transformed to FSMs.

To ensure the reliability of these systems once implemented they must be tested for

conformance to their specification. Usually the implementation of a system specified

by an FSM is tested for conformance by applying a sequence of inputs and verifying

that the corresponding sequence of outputs is that which is expected.

The chapter begins with some preliminaries on finite state machines and confor-

mance testing. Extended finite state machines are introduced next as are some of the

issues that arise when testing them. Next communicating finite state machines are

briefly introduced. Finally the genetic algorithms used in this thesis are outlined.

14

15

2.2 Finite state machines (FTPs)

Finite state systems are generally modelled using Mealy machines (Moore machines

are also used in some domains and equivalence of Moor and Mealy machines is well

known [Hopc 79]) that produce an output for every transition triggered by an input.

A finite state machine M can be denoted M = (S, s1, δ, λ, X, Y) where S, X, Y are

finite nonempty sets of states, input symbols and output symbols respectively and

s1 ∈ S is the initial state. δ is the state transition function and λ is the output

function. A transition is represented as t = (si, x, y, sj) where si ∈ S is the start

state, sj ∈ S is the end state, x ∈ X is the input and y ∈ Y is the output. When a

machine M in state si ∈ S receives input x it moves to state δ(si, x) = sj and outputs

λ(si, x) = y. The functions δ and λ can be extended to take input sequences to give

functions δ* and λ* respectively. FSMs can be represented using state transition

diagrams where the vertices correspond to states and the edges to transitions which

are labelled with the associated input and output [Lee 96] (fig. 2.1).

Figure 2.1: Transition diagram of a finite state machine M0

An FSM is said to be deterministic if there is no pair of transitions that have the

same initial state and input i.e. upon an input a unique transition follows to the next

state. If for any state an input could trigger more than one transition the machine

is nondeterministic. FSMs for which a transition exists for every input a ∈ X and

16

state s ∈ S are known as completely (fully) specified. Given an FSM that is partially

specified it is possible to apply a completeness assumption and complete M by either

adding an error state or assuming that where the input was not specified originally

an empty output should be produced.

Those FSMs where every state can be reached from the initial state are known

as initially connected. Unreachable states can be removed from any FSM to make

it initially connected. An FSM M is strongly connected if for every pair of states

(si, sj) from M there is some input sequence that takes M from si to sj. A reset

operator takes the FSM to its initial state. The presence of a correctly implemented

reset operator is sometimes important for transition testing but cannot always be

guaranteed. If M is initially connected and has a reset operator then it must be

strongly connected.

Two states si and sj are said to be equivalent if for every input sequence x‘ we

have that λ*(si, x‘) = λ*(sj, x‘). Otherwise the two states are inequivalent and there

exists an input sequence x‘ where λ*(si, x‘) 6= λ*(sj, x‘) and that sequence is known

as a separating sequence. Comparing FSMs is similar. Two FSMs M and M ′ are

equivalent if for every state in M there is an equivalent state in M ′ and vice versa.

A minimal FSM is a machine M such that there is no equivalent FSM M ′ with fewer

states than M.

For example Figure 2.1 represents the deterministic FSM M0. M0 with an initial

state s1 is initially and strongly connected as every state in M0 is reachable from any

other state. M0 is also completely specified and minimal.

In this work we consider only deterministic FSMs. For non-deterministic FSM

conformance testing refer to [Petr 96, Hwan 01, Hier 04]. It is also safe to assume

that only minimal FSMs should be considered as any deterministic FSM can be min-

imised [Moor 56] and there are well known methods to automatically do so [Koha 78,

Moor 56]. Also for the reasons outlined before only strongly connected FSMs are

17

considered.

2.3 Conformance testing

When testing from an FSM model M it is assumed that the implementation under

test (IUT) can be modelled by an unknown FSM M ′ and thus that testing involves

comparing the behaviour of two FSMs. Verifying that M ′ is equivalent to M by only

observing the input/output behaviour of M ′ is known as conformance testing or fault

detection.

Often a fault can be categorised as either an output fault or a state transfer fault.

Output faults are those faults where the wrong output is produced by a transition

and state transfer faults are those faults where the state after a transition is wrong.

An output fault can be detected by executing a transition and observing its output.

A state transfer fault can be detected by checking if the final state is correct after

the transition is executed. Suppose we wish to check a transition t = (si, x, y, sj).

The test strategy would involve moving M ′ to si, applying the input x, verifying that

the output is y, and using a state verification technique to verify the transition’s end

state [Chow 78].

The first step is known as homing a machine to a desired initial state si. It can

be done by using a homing sequence which can be constructed in polynomial time

[Koha 78]. The second step, transition verification, is to check whether M ′ produces a

desired output sequence. The last step is to check whether M ′ is in the expected state

sj = δ(si, x). There are three main techniques that can be used in state verification:

• Distinguishing sequence (DS)

• Unique input/output sequence (UIO)

• Characterizing set (CS)

18

A distinguishing sequence is an input sequence that produces unique output for

each state. Not all FSMs have a DS.

A UIO for state s is an input/output sequence x/y such that λ*(s, x) = y and

∀s′ ∈ S.s′ 6= s, we have that λ*(s′, x) 6= y. A DS defines a UIO for every state. While

not every FSM has UIOs for all states, some FSMs without a DS have UIOs for all

states. Also in practice most FSMs have UIOs for all states [Yang 90].

A characterizing set is a set of input sequences W which can distinguish any pair

of states. If every sequence in W is executed from some state sj, the set of output

sequences verifies sj. However this technique requires a number of input sequences

to be executed for each state, and therefore could lead to long test sequences. For

some states not every element of W is required and some subset can be used (the Wp

method). This can reduce the effort involved in verifying a state. Some improvements

to the W-method are presented in [Luo 94b, Petr 96, Luo 94a].

A general method for constructing minimal length checking sequences described

in [Inan 99] utilises DSs, characterizing sets or UIOs depending on their existence.

In order to minimise test sequence length when testing using UIOs, usually min-

imal UIOs are used (the shortest UIO for a state). However it has been suggested

[Naik 95] that using non minimal UIOs can improve the chance of avoiding fault

masking (when two or more faults collectively mask their faulty behaviour leading to

false confidence in the implementation under test). Different UIOs for the same state

can be compared by using a metric known as degree of difference (DoD) [Son 98].

The DoD between two transition walks with identical input sequence is defined as

the number of output differences between them. A UIO with higher DoD is expected

to be more fault tolerant [Naik 95].

Some UIOs could be of exponential length. Generally if a UIO is longer than of

O(n2) it might not be worth considering since a characterizing set with upper bound

of O(n2) length would exist [Chow 78].

19

Not all FSMs are completely specified. There are two types of conformance testing,

strong and weak, depending on how unspecified transitions are treated. In strong

conformance testing a completeness assumption stating how missing transitions are

to be treated is necessary for partially specified FSMs. In weak conformance testing

the missing transitions are treated as ‘don’t care’ and the implementation is required

to have only the same ‘core behaviour’ as the specification.

UIOs have been popular [Sidh 89, Wang 87] since they help in state transition

fault detection and tend to yield shorter test sequences than the D and W methods

[Sidh 89, Wang 87]. UIOs do not necessarily need a reliable reset operator. The U-

method and the T-method have been used for weak conformance testing of partially

specified FSMs [Sidh 89]. However the T-method does not check for state transition

faults.

In order to test a transition of an FSM the machine has to be put in the initial

state of that transition. Then the input is applied and the output checked to verify

that it is as expected. After that the UIO sequence for that state is used to verify

that there is no state transfer fault. Several test sequence generation techniques based

on UIOs can be used [Sidh 89, Aho 91, Shen 89, Yang 90, Shen 91, Shen 92]. This

motivates an interest in automating the generation of UIOs.

2.4 Extended finite state machines (EFSMs)

FSMs are known to model appropriately sequential circuits and control portions of

communication protocols. However ordinary FSMs are not powerful enough for some

applications where EFSMs are used instead. EFSMs have been widely used in the

telecommunications field, and are also now being applied to a diverse number of other

areas ranging over aircraft, train control, medical and packaging systems. Examples

of languages based on EFSMs include SDL, Estelle and Statecharts.

20

As EFSMs we refer to those Mealy (finite state) machines with parameterised

input and output, internal variables, operations and predicates defined over internal

variables and input parameters. The form of EFSM used in this thesis is referred

to as Normal Form EFSM (NF-EFSMs). It is a general EFSM model that can be

obtained directly from SDL specifications [Hier 03].

A Normal Form extended finite state machine (NF-EFSM) M can be defined as

(S, s1, V, σ0, P, I, O, T) where

• S is the finite set of logical states

• s1 ∈ S is the initial state

• V is the finite set of internal variables

• σ0 denotes the mapping from the variables in V to their initial values

• P is the set of input and output parameters

• I is the set of input declarations

• O is the set of output declarations

• T is the finite set of transitions.

A transition t ∈ T is defined by (ss, gI , gD, op, sf) where

• ss is the start state of t;

• gI is the input guard expressed as (i, P i, gP i) where

– i ∈ I ∪NIL;

– P i ⊆ P ; and

– gP i is the input parameter guard that can either be nil or a logical expres-

sion in terms of variables in V ′ and P ′ where V ′ ⊆ V , ∅ 6= P ′ ⊆ P i;

21

• gD is the domain guard and can be either nil or represented as a logical expres-

sion in terms of variables in V ′ where V ′ ⊆ V ;

• op is the sequential operation which is made of simple output and assignment

statements; and

• sf is the final state of t.

The label of a transition in an NF-EFSM has two guards that decide the feasibility

of the transition: the input guard gI and the domain guard gD. In order for a

transition to be executed gI , the guard for inputs from the environment must be

satisfied. Some inputs may carry values or specific input parameters and M may guard

those values with the input parameter guard gP . The input guard (NIL, ∅, NIL)

represents no input being required, which makes the transition spontaneous. gD is

the guard, or precondition, on the values of the system variables (e.g. v > 4, where

v ∈ V). Note that in order to satisfy the domain guard gD of a transition t, it

might be necessary to have taken some specific path to the start state of t. op is a

set of sequential statements such as v := v + 1 and !o where v ∈ V , o ∈ O and !o

means ‘output o to the environment’. Literal outputs (output directly observable by

the user) are denoted with ! and output functions (an output functions may produce

different output depending on the parameters it receives) without it (e.g. !o and

u(v)). If a transition t has an output function, then the output value produced by t

is determined by the parameters passed to the output function (the parameters could

be internal variables or input parameters for that transition). The operation of a

transition in an NF-EFSM has only simple statements such as output statements and

assignment statements, no branching statements are allowed.

We assume that none of the spontaneous transitions in an NF-EFSM are without

any guards, gI = (NIL, ∅, NIL) and gD = NIL, because they will be uncontrol-

lable. When a transition in an NF-EFSM is executed, all the actions of the operation

22

specified in its label are performed consecutively and only once.

Definition 2.4.1. An NF-EFSM is deterministic if for every input sequence x with

associated input and domain guard predicate results there is no more than one output

sequence that may be produced by the NF-EFSM in response to x.

Upon an input, an NF-EFSM would trigger a given transition depending not only

on the input, but on the values of the internal variables. Hence NF-EFSM may be

called dynamically deterministic. In FSM there are no internal variables and guards

on the transitions. This makes triggering a transition in EFSMs more complex than

in FSMs.

Definition 2.4.2. An NF-EFSM is strongly connected if for every ordered pair of

states (s, s′) there is some feasible path from s to s′.

We assume that any NF-EFSM considered is deterministic and strongly connected.

As example consider the Initiator process of the Inres protocol [Hogr 91] repre-

sented as an NF-EFSM on Figure 4.1.

2.5 Testing EFSMs

A system specified by an FSM or an EFSM is tested for conformance by applying a

sequence of inputs and verifying that the corresponding sequence of outputs observed

is that expected. Typically the machines that arise are complex and brute force

exponential testing is infeasible [Lee 96].

In order to minimise manual testing and hence software production costs and

speed the process up, automation is necessary. The limitations of manual testing

have caused wide use of automation in testing and test data generation [Sabn 88,

Shen 89, Jone 98, Jone 96]. Automating the generation of test sequences for EFSMs

has been one of the interests [Lee 96, Li 94, Petr 04, Dual 04].

23

Figure 2.2: Inres protocol as an EFSM

24

In EFSMs test sequence generation is more complex than it is for FSMs. In FSMs

all of the paths of the directed graph are valid since there are no conditions on the

edges and actions do not affect the graph traversal [Dual 00]. With EFSMs however

the transition path depends on the result of the input parameter guard and the

domain guard. The result of these guards is determined dynamically depending on

the values of the internal variables and input declarations, which in turn can assume

different values after each transition. Hence some transition paths might have no

conditions associated, some might have conditions that are difficult to satisfy and

some transition paths will be infeasible. The existence of such infeasible transition

paths creates difficulties for automating the test generation process for EFSMs.

One way of approaching the problem is to abstract away the data part of the

EFSM and consider it as an FSM on its own. However a transition sequence for

the underlying FSM of an EFSM cannot be guaranteed to be feasible for the actual

EFSM. Another way is to expand an EFSM to an FSM and then use the techniques

used for FSMs. However this can lead to a combinatorial explosion.

Some recent work on generating feasible conformance test sequences for EFSMs

was presented in [Dual 04]. It describes how to remove variable interdependencies

between the actions and conditions of a certain class of EFSMs, those with linear

functions and conditions. The inconsistency removal problem, exponential in com-

plexity for the general software, used there takes advantage of localised inconsisten-

cies to reduce the algorithm complexity and bound it by the size of the subgraphs

involved. After the inconsistencies removal, FSM based methods are used for test

sequence generation. Our EFSM model is more general as we do not consider only

linear constraints. [Dual 04] gives a comprehensive summary of all the important

work in this field up to now. Test generation for EFSMs is still an open research

problem [Lee 94, Dual 04]

Hence generating a feasible transition path and a corresponding input sequence

25

for EFSMs can help with test sequence generation for EFSMs. The general problem

of finding a (an arbitrary) feasible transition sequence for an EFSM and generating

the necessary input sequence to trigger, depending on the variables and conditions

involved, is generally uncomputable. While a random algorithm could be used it does

not always produce acceptable results. In [Guo 04] and [Derd 06] (as well as Chapter

3) GAs are used to generate UIOs for FSMs more efficiently than a random algorithm

can. GAs are used to generate easy to trigger transition paths for EFSMs in [Derd 05]

(as well as Chapter 4). [Derd 04] (as well as Chapter 6) suggests how GAs can be

used to generate input sequences for testing communicating FSMs.

For the remaining of this thesis we will refer to NF-EFSMs simply as EFSMs.

The objective of Chapter 4 is to facilitate the generation of feasible transition

paths in EFSMs and the necessary input to trigger them. This can be helpful in test

data generation for EFSMs. In Chapter 4 we focus on generating transition paths

that are likely to be feasible. The overall approach to the problem is defining a fitness

function that can estimate how likely is that a transition path is feasible and how easy

is it to generate an input sequence to trigger it. Then a GA is used to generate such

transition paths. The results are compared to randomly generate transition paths

with the same characteristics.

After addressing the path feasibility issue in EFSMs (Chapter 4), FSM based

testing methods like UIOs can be used to test EFSMs. Having addressed the UIO

generation problem for FSMs (Chapter 3), next we discuss (Chapter 5) how to com-

bine the approaches in Chapters 3 and 4 in order to define UIO like state verification

sequences for EFSMs and use GAs to generate them.

26

2.6 Communicating finite state machines (CFSMs)

Some systems are more naturally modelled as a set of FSMs (or EFSM) that interact

by passing messages, and such FSMs (or EFSM) are known as communicating finite

state machines (CFSM). A CFSM is like an FSM (or EFSM) but with input queues.

If we consider M as a set of CFSMs M1, ...,Mn then Mi denotes a CFSM (Si, si1, λi,

δi, Xi, Yi) with an implicit input queue where Si = {si1, si2, ..., simi
}. Transitions of

a CFSM Mi are known as local transitions. When M receives an input x from the

environment or another CFSM, x enters the input queue of Mi. It is assumed that

M is deterministic. The output from one CFSM can trigger a transition in another

CFSM and only the final output to the environment can be observed.

A CFSM is minimal if the corresponding FSM is minimal. Each Mi will be

considered to be minimal, as there are standard algorithms for minimising FSMs.

Only completely specified CFSMs are considered. M is assumed to be deadlock and

livelock free as well and there are automated model checker tools that can verify this

for formally specified systems [Baya 05].

The global state of M is defined by the states and the contents of the queues of

Mi. A global state is said to be stable when all the queues of the Mi are empty. The

state of an individual CFSM is referred to as a local state.

When some value x is fed to M while M is in a stable global state σ, a sequence

of local transition will be executed. The final local transition will output some value

y to the environment and leave M in a stable global state σ′. This global transition

of M can be denoted as (σ, σ′, x/y).

Under certain conditions a set of CFSMs M1, ...,Mn can be converted into an

equivalent single FSM called the product machine. However if ni denotes the number

of states in Mi, the product machine has O(
∏

i ni) states and hence suffers from

combinatorial explosion. Chapter 6 briefly outlines how new alternatives to state and

27

transition testing of CFSMs using genetic algorithms can be used without the need

to convert them to an FSM.

For more background on CFSMs and testing CFSMs refer to [Bran 83, Lee 96].

2.7 Genetic algorithms

A Genetic algorithm (GA) [Gold 89, Srin 94] is a heuristic optimisation technique

which derives its behaviour from a metaphor of the processes of evolution in nature.

GAs have been widely used in search optimisation problems [Gold 89]. GAs and

other meta-heuristic algorithms have also been used to automate software testing

[Jone 98, Jone 96, Parg 99, Mich 01, Trac 00]. GAs are known to be particularly

useful when searching large, multimodal and unknown search spaces. One of the

benefits of GAs is their ability to escape local minima in the search for the global

minimum.

Generally a GA consists of a group of individuals (population of genomes), each

representing a potential solution to the problem in hand. An initial population with

such individuals is usually selected at random. Then a parent selection process is

used to pick a few of these individuals. New offspring individuals are produced using

crossover, which keeps some of their parent’s characteristics and mutation, which in-

troduces some new genetic material. The quality of each individual is measured by

a fitness function, defined for the particular search problem. Crossover exchanges in-

formation between two or more individuals. The mutation process randomly modifies

offspring individuals. The population is iteratively recombined and mutated to evolve

successive populations, known as generations. When the termination criterion speci-

fied is satisfied, the algorithm terminates. A flowchart for a simple GA is presented

in Figure 2.3.

There are many different types of GAs, but they all share the basic principle of

28

Figure 2.3: Flowchart for a basic GA

having a pool (population) of potential solutions (genomes) where some are picked

using a biased selection process and recombined by crossover and mutation operations.

An objective function, known as the fitness function, defines how close each individual

is to being a solution and hence guides the search.

When using a GA to solve a problem the first issue that needs to be addressed

is how to represent potential solutions in the GA population. A genotype is how a

potential solution is encoded in a GA, while the phenotype is the real representation

of that individual. There are different representation techniques, the most common

being binary and characters. Gray coding is a binary representation technique that

uses slightly different encoding to standard binary. It has been shown [Whit 99] that

Gray codes are generally superior to standard binary by helping to represent the

solutions more evenly in the search space.

The first step in a GA involves the initialisation of a population of usually ran-

domly generated individuals. The size of the population is specified at the start.

Every individual is evaluated using the fitness function. When ranking is used the

population is sorted according to the fitness value of the individuals. Then each in-

dividual is ranked irrespective of the size of its and its predecessors fitness. This is

29

known as linear ranking. It has been shown that using linear ranking helps reduce

the chance of a small number of very fit individuals dominating the search leading to

a premature convergence [Beas 93a].

An important part of the algorithm is parent selection. A commonly used tech-

nique is the roulette-wheel selection. Here the chance of an individual being selected

is directly proportional to its fitness or rank (if linear ranking is used). Hence the

selection is biased towards fitter individuals.

A genome is made up of one or more chromosomes, each representing a parameter

in the fitness function. In some of the literature the genome is referred to as a chro-

mosome and genes refer to what we call chromosomes, but here we use chromosome

as a part of a genome and gene as the building block of a chromosome.

The most common recombination technique used is crossover. During crossover

the genes of the two parents are selectively used to create one or more new offsprings.

The simplest crossover is known as single point crossover [Beas 93a]. For example Fig-

ure 2.4 shows how a single point crossover is applied to two parent chromosomes where

two new child chromosomes are produced. There is also multiple point crossovers

[Beas 93b]. In this thesis single point crossover is used with a randomly generated

crossover point as used in [Mich 96].

Figure 2.4: Example of crossover

Mutation is applied to each individual after crossover. It randomly alters one or

more genes known as single point and multiple point mutation respectively [Gold 89].

Not all individuals are mutated. A pre defined mutation rate (typically the reciprocal

of the chromosome length) is used to determine if mutation will be performed. A single

30

point mutation with randomly selected point is used in this thesis as in [Mich 96].

There can be different termination criteria for a GA depending on the fitness

function. If the fitness function is such that a solution would produce a specific

fitness value, which is known, then the GA can terminate when an individual with

such fitness is generated. However in many cases this is not known therefore the GA

must be given other termination criteria. Such a criterion can be the specification of

a maximum number of generations after which the GA will terminate irrespective of

whether a solution has been generated. Another commonly used termination criterion

is population saturation. After the fitness of all or some of the individuals in the GA

population has not increased for a number of generations, it is assumed that a peak

of the search space has been found that cannot be escaped. Usually a combination

of these termination criteria are used. In this thesis we use all three but keep the

criteria consistent throughout each set of experiments.

GAs are proven to perform well in unknown search domains. They have been

widely used to help in NP-hard problems. There has been some interest in generating

test case using GAs for a variety of systems and even some work on generating FSM

based test cases [Guo 04]. In this thesis we use the test case adequacy estimation

algorithms designed in attempt to guide GAs to generate the required test cases.

Chapter 3

Unique input/output sequence

generation for FSMs

3.1 Introduction

The primary contributions of this chapter are showing how UIO generation can be

formulated in terms of an automated search problem and describing an approach to

automate UIO generation using genetic algorithms. This chapter demonstrates that

UIO generation can be reduced to an automated search problem and presents results

from an empirical study of this approach.

As outlined in Chapter 2, conformance testing is of particular interest when testing

systems specified using FSMs. The generation of efficient and effective test sequences

is very important in conformance testing. Test sequences can be generated using

formal strategies like Unique Input Output Sequences (U-method), Distinguishing

Sequences (D-method) and Characterizing Sets (W-method). The U-method is used

in FSM testing for the following reasons [Sidh 89]. To implement the U-method

a machine does not need to be completely specified. The UIOs can detect state

transfer faults while coverage criteria like Transition Tours do not attempt this since

31

32

they do not verify the final state of a transition sequence. UIOs lead to shorter test

sequences than those produced using characterizing sets and the W-method also relies

on a reliable reset for the FSM. There exist FSMs with UIOs for every state but no

Distinguishing sequence. Practitioners report that in practice many FSMs have UIOs

[Aho 91] for all states.

Ideally complete test suites are produced that would distinguish any faulty im-

plementation given that it does not have more states than its specification. How-

ever, often this is not feasible because these methods rely on FSM with certain

characteristics that cannot always be guaranteed. Work on generating complete

test suits relies on either a distinguishing sequence (DS) being present in an FSM

[Gone 70, Henn 64, Ural 97, Hier 02], the existence of a reliable reset in the FSM

[Chow 78] or generation of test sequences of at least exponential (in terms of the

number of states) length [Reza 95]. These issues will be later discussed in this chap-

ter. Hence generating incomplete test suites has been of interest.

This chapter focuses on the U-method for test sequence generation [Sabn 88] where

unique input/output (UIO) sequences for each state have to be generated. The prob-

lem of generating such sequences is known to be NP-hard [Lee 96]. While a random

algorithm could be used it does not always produce acceptable results. Representing

test sequence generation as a search problem with a specified fitness function gives

the opportunity for algorithms known to be robust in searches of unknown domains,

such as genetic algorithms [Gold 89], to be used. Generating test sequences using

such algorithms could provide a computationally easy solution that produces good

results as shown by [Guo 04].

One of the primary contributions of this chapter is the proposal for a more com-

putationally efficient and yet effective method of generating UIO sequences. The

proposed method also does not suffer from the usual restriction of some test sequence

generation methods (D-method and W-method for example) where only fully specified

33

FSMs can be considered. The generated UIOs can be used for partially or completely

specified FSMs that in turn can be used in generating a test sequence using the U-

method. As a result weak conformance testing can be applied to partially specified

FSMs without having any completeness assumption.

In order to minimise manual testing and hence software production costs and

speed the process up, automation is necessary. Automation has been widely used in

testing and test data generation [Sabn 88, Shen 89, Jone 98, Jone 96]. Automating

the generation of UIO sequences can contribute to this.

3.2 UIO sequence generation

The problem of constructing UIO sequences is known to be NP-hard [Lee 96]. While

a random search algorithm would be cheap to implement, it does not always produce

acceptable results. Representing UIO sequence generation as a search problem with

a specified fitness function gives the opportunity for algorithms known to be robust

in searches of unknown domains, such as GAs, to be used.

A UIO for a given state s of an FSM is an input/output sequence that labels a

sequence of transitions from s, but does not label a sequence of transitions from any

other state. The UIOs considered in this work do not contain transitions unspecified in

the FSM specification. This allows for weak conformance testing of partially specified

machines. The proposed method uses GA search in an attempt to generate a UIO

sequence for each state of a given FSM. A fitness function directs the search. The

fitness function estimates how likely it is that a given transition sequence is a UIO

sequence without actually verifying that it is one. For an input sequence of size l for

a given state in an FSM with n states the fitness function used is of O(l) complexity

while a UIO verification algorithm would be of O(nl).

Previous work [Guo 04] has shown that a GA may be used in the generation of

34

UIOs using a state splitting tree. A state splitting tree is a rooted tree that is used

to construct adaptive distinguishing sequences or UIOs from an FSM. The fitness

function encourages candidates to split the set of all states (in the root) into more

discrete units (that share the same input and output characters). Hence the fitness

function guides the search to explore potential UIOs by rewarding the early occur-

rence of discrete partitions while penalising the length of the sequence. The previous

work differs from that described here in three important ways: (1) It used a more

computationally intensive fitness function (based on generating the state splitting

tree [Lee 96] and thus considering all states of the FSM); (2) It was evaluated only on

relatively small FSMs; (3) Only completely specified machines were considered. In

the work described in this chapter the fitness function is simpler and computationally

easy to compute, and it also generated UIOs for partially specified machines.

3.2.1 Defining UIO generation as a search problem

When searching for a solution using genetic algorithms an efficient way must be

defined to distinguish between potentially good and potentially bad solutions. A

fitness function has been defined in order to represent the UIO sequence generation

as a search problem. The fitness function determines how suitable a given transition

sequence is to be a UIO sequence.

In order to verify if an input sequence would produce a UIO an algorithm with

complexity of O(nl) has to be executed where n is the number of states of the FSM

and l is the length of the input sequence. Instead the proposed fitness function has

complexity of O(l), and this fitness function aims to reward sequences that are likely

to be UIOs. Picking a less computationally complex algorithm for the fitness function

is important since the algorithm can be executed several times for each state.

A transition ranking process is completed first before the fitness function is ready

to be used. This process ranks each input/output pair of the specification machine

35

Start state Input / Output End state Rank
1 a / 0 1 1
1 b / 1 2 1
2 a / 1 2 0
2 b / 1 3 1
3 a / 0 2 1
3 b / 0 1 0

Table 3.1: Transition table for the FSM from Figure 1 with I/O rankings

according to how many times it reoccurs in the transition table (a table with all the

transitions of a machine) of the machine. A pair that occurs only once gets the lowest

rank, a pair that occurs twice is ranked next etc. Pairs that have the same number

of occurrences in the transition table get the same rank. For example Table 1 shows

a ranked transition table for the FSM from Figure 2.1 (M0).

It is important to note that execution costs for different transitions are assumed

to be equal. Also equally ranked pairs are assumed to have similar ability to con-

struct valid UIOs. Where this does not hold it would be straightforward to introduce

extra information into the fitness function without increasing the complexity of the

algorithm.

The fitness algorithm used in this chapter rewards a potential solution according to

the ranks of the input/output pairs the sequence contains. The fitness function reflects

the belief that the more low ranked transitions a sequence contains, the more likely it

is to define a UIO. Some reported experiments in Section 3.3 investigate this claim.

In fact if there is an input/output pair that is unique, then it automatically becomes

a UIO, identifying the state from which the transition initiates. This fitness function

however does not account for infeasible test sequences if partially specified FSMs are

considered. Input characters testing unspecified transitions could result in unexpected

behaviour of the IUT. Hence this fitness function works only for fully specified machine

and in order for a partially specified machine to be used a completeness assumption

36

has to be made. Below we explain how the fitness function can be adapted for partially

specified machines.

Now consider the FSM M0 in Figure 2.1. Using the fitness function defined above

the fitness of an input/output sequence would be the sum of the ranks assigned to

the input/output pairs it is composed of. If we consider the sequence a/0, b/1 as a

potential UIO for s1 of M0 and use the ranking provided on Table 1, a fitness value of

2 will be derived. This sequence is not a UIO as the same sequence could be executed

and the same output observed from s3 of M0. On the other hand while the sequence

b/1, a/1 is considered from s1 a fitness value of 1 could be derived. This sequence is

a UIO and its fitness value reflects the higher chance of it being a UIO compared to

the sequence before that.

Not all FSMs are completely specified and protocols systems are typically partially

specified [Lee 96]. In strong conformance testing assumptions on how the non core

transitions are to be treated are made hence converting the machine into a completely

specified FSM. For example one scenario is to add a transition with null output that

stays in the same state. An alternative completeness assumption may be that if a

transition is not in the core, then the machine makes a transition to an error state

and outputs an error symbol. The missing transitions are treated as being ‘do not

cares’ in weak conformance testing. The implementation is only required to have the

same core behaviour, and can be arbitrary or undefined for the missing transitions.

Further refinements to the fitness function allow it to work for partially specified

machines. This could facilitate weak conformance testing without a completeness

assumption. For the purpose a simulator of the specification FSM was constructed.

The FSM simulator (λ* and δ*) is a lightweight version of the IUT that only deter-

mines if a test sequence is feasible from a given start state and if not it indicates how

close it came of being feasible. If an input character from a sequence represents an

infeasible transition from a given state the input is ignored by leaving the FSM in the

37

validV alue := 0
strengthV alue := 0
Sk := SUIO

If (l = 0) then return ø
For(i := 1 to l) //for all the inputs/characters

Sm := Sk

yi := λ(Sk, xi)
Sk := δ(Sk, xi)
If (Sk 6= ø)

//There is a transition with this input
validV alue := validV alue + 1
strengthV alue := strengthV alue + rSk,xi

EndIf
Else

strengthV alue := strengthV alue + penaltyV alue
Sk := Sm

EndElse
EndFor
return l − validV alue + strengthV alue

Figure 3.1: UIO fitness algorithm

38

same state and then the next input character in the sequence is considered. Hence

the whole input sequence under consideration can be evaluated by the fitness function

even when an infeasible character has been reached. The fitness of infeasible input

sequences is penalised according to how close the sequence came to be valid, while

valid sequences are not penalised at all. The algorithm for the fitness function pro-

posed is presented in Figure 3.1. The parameters involved are as follows: SUIO is the

test state; x is a single input character; y is single output character; l represents the

length of the input sequence; r is the set of transition rankings where rs,x represents

the rank for the transition initiating from state s with input x; and penaltyV alue is a

penalty constant or function that penalises the fitness when an unspecified transition

is triggered.

The test sequence generated like this would enable strong conformance testing with

a less restrictive completeness assumption and weak conformance testing without any

completeness assumption for a partially specified machine.

The whole process of searching for a UIO for each state of a given FSM can be

easily automated as only the transition table of the FSM is required.

A GA using this fitness function is directed towards generating input sequences

that contain mostly input/output pairs with lower frequency in the transition table

corresponding to feasible transitions (in the specification). The fitness function rep-

resents the search for a UIO sequence as a function minimisation problem so an input

sequence with a lower fitness value is considered to be more likely to form a UIO

sequence since it is made up of more low ranked transitions.

3.2.2 Input sequence representation and GA

Generating a UIO sequence for a given state of an FSM would involve finding an

appropriate input sequence that generates a unique output sequence. A specification

simulator of the FSM can be used to simulate a transition path and generate the

39

corresponding output. Hence a genotype representing a potential solution for a given

state will only need to encode an input sequence.

A phenotype representing a sequence of characters can easily be represented as

a genotype made of chromosomes for each character. Then each character can be

represented as it is or encoded in binary notation. As described in Chapter 2 the

classic GA approach would be to encode the characters in binary, but both methods

could be applied to this problem. The GA tool used for UIO generation [Derd 02]

supported only binary, hence that was the method of choice. Also in an attempt

to reduce premature convergence in the population Gray coding was used instead of

standard binary encoding [Whit 99].

A type checking process could be used to discard genotypes that do not represent

valid phenotypes. When using binary representation the information that it translates

to should ideally be in increments of the power of 2. Hence an input for an FSM

with binary alphabet can be presented with a single digit in binary, an input with

input alphabet of size 4, with 2 binary digits, etc. However there is a problem if

the FSM considered has an input alphabet of size that is not a power of 2. In

such cases a special type checking must be performed on all chromosomes within a

genotype considered for fitness evaluation. The essence of this type checking is to

ignore those binary combinations that do not translate to input characters from the

input alphabet of the FSM considered. In the cases where a genotype is produced

with invalid chromosome(s), the gene recombination, or generation in the case of the

initial population generation, is repeated until a genotype where all the chromosomes

are valid is produced.

This could potentially affect the speed of the algorithm as the input alphabet of the

FSMs considered increases. However this was not evident in the experiments reported

in Section 3.3. Sometimes the size of the input alphabet for an FSM is slightly bigger

than its optimal binary representation (e.g. input alphabet of 17 will necessitate

40

the use of a binary string of length 5 just because of one extra input character and

introduces 15 redundant binary combinations). In such cases alternative binary to

character translation techniques can be used [Mich 96] that distribute the number

of valid characters and reduce the number of redundant binary combinations, but

optimising this part of the generation algorithm is not the focus of this chapter.

The fitness function is designed so that it can compare only input sequences of

the same length. For testing efficiency shorter sequences are more desirable, however

we chose to separately consider the problem of having a fitness function and data

representation that effectively addresses both the problem of UIO sequence generation

and the length of such a sequence generated simultaneously.

Sequences of various lengths can be represented in binary for the GA in two

ways. The first way is to simply have genotypes of different lengths encoding input

sequence of different lengths. In this case the problem of how to apply the genetic

recombination techniques has to be considered. Some work has been done on variable

length genotype recombination, however these methods are very domain specific and

no generic form is available [Gold 93]. A different approach is to encode different

length input sequences by using the same length genotypes. This could be done by

introducing a reset or sequence termination character to the sequence input alphabet.

When such a character is reached in a sequence, the remaining characters encoded

in the genotype will be ignored. In both situations the fitness function will favour

shorter sequences to longer ones as they are likely to get a lower fitness value because

of the fewer transitions involved. Initial experiments found that such a fitness function

would always favour a single character sequence with just a reset character. Hence

in order to generate a minimal UIO a set of generation attempts were made with

gradually increasing sequence size.

41

3.2.3 Generating UIOs using genetic algorithms

After a fitness function and a phenotype representation technique are defined a GA

can be used to find UIOs for all the states of an FSM. Verifying whether an input

sequence is a valid UIO for a given state of an FSM is computation intense - O(nl)

for sequences of length l and n state FSM. So after a GA search stops, instead of

checking if all the population individuals of the GA are UIOs only the sequence with

the best fitness is considered. The result need not be a UIO sequence since not all

FSMs have UIOs for all states or the GA might have converged prematurely i.e. the

search might have converged to a local minimum. To increase the confidence that

the input/output sequence found is the minimal length UIO for any given state i.e.

a global minimum in the search space has been reached, the GA should be executed

a number of times and only the best result kept.

For every GA execution the initial population is a set of randomly generated

input sequences (genotypes). The corresponding output can be obtained from the

FSM simulator generated from the FSM specifications (transition table). Each gen-

erated input sequence is type checked to see whether it represents a specified sequence

of input of characters for the FSM under test. If not a new sequence is randomly

generated until the initial population consists entirely of specified input sequences.

The fitness is evaluated only for valid sequences. Hence any repeated attempts to

generate sequences are not counted as fitness evaluations. The crossover and muta-

tion operators recombine the selected genotypes in such a way that input sequences

representing specified transitions with lower ranked input/output pairs are rewarded.

Input sequences that represent some unspecified transitions, specified transitions with

higher ranked input/output pairs or a combination of both would be rewarded less

and penalised.

An example of how the GA recombination operators can help in this search fol-

lows. Lets consider an FSM M ′ for which the sequence a/1, b/0, c/1 is a UIO for

42

s1. Assuming that abc is the only minimal UIO for s1 lets take aab and cbc as two

potential solutions in the population of the GA searching to find that UIO. Recom-

bining these two sequences using a crossover at the first point would generate the

necessary solution abc. Alternatively a crossover at the second point would generate

the sequence aac that after a mutation at the second point can again produce the

required abc.

The GA for every search terminates either after a set number of recombinations

or if the population gets saturated with the same solution and does not improve for

a number of generations. The lowest possible value for the fitness function cannot be

negative but otherwise is unknown. Hence the GA cannot be set to terminate after

an optimal solution is found. The only exception is when a single input character

represents a UIO, then the fitness value evaluates to 0 and the GA terminates. Hence

the GA currently used might have generated a solution much earlier than it actually

terminates, but we have not yet attempted to optimise this aspect of the GA. Further

work will aim to improve the fitness function and the generation algorithm so that

fewer GA cycles are necessary before a solution is found.

3.3 Experiments

Most FSM examples available in the literature are not very large. A set of relatively

small real FSM systems exists that is used for benchmarking purposes [LGSy 91].

This set can be used to examine the effects of the UIO generation algorithm on small

but real FSMs and in order to examine how it performs on larger FSMs a set of larger

randomly generated FSMs was used.

The first set of experiments considers a set of 11 real FSMs (Table 3.2). The

FSMs ranged in size from 4 to 27 states and 10 to 108 transitions. The second set

of experiment was conducted on a set of 23 randomly generated FSMs (Table 3.3).

43

FSM States Transitions Inputs Outputs
dk15 4 32 8 11
mc 4 32 8 8

bbtas 6 24 4 4
beecount 7 51 8 4

dk14 7 56 8 15
dk27 7 14 2 3

shiftreg 8 16 2 2
dk17 8 32 4 5
lion9 9 25 4 2
dk512 15 30 2 4
dk16 27 108 4 5

Table 3.2: List of the 11 real FSM examples used

These FSMs ranged from 5 to 360 states and 14 to 901 transitions in size 1. Both sets

consisted only of deterministic, strongly connected, and minimal but not necessarily

completely specified finite state machines.

A breadth first search (BFS) algorithm can be used to enumerate through all

possible input sequence combinations. By verifying each combination we can exhaus-

tively (up to a fixed input sequence limit) find all the minimal length UIOs (within

that limit). This approach would require each input sequence to be verified using a

UIO verification algorithm (O(nl)). On the other hand the GA approach presented

in this chapter verifies only one input sequence at the end of a GA execution. For

that reason it is difficult to present a precise comparison of effort between the GA

and a BFS algorithm but a rough figure, biased towards the BFS is presented.

The minimal UIOs found for all the states of an FSM by the two GAs and random

algorithm were considered. The shortest UIO for each state was listed. The longest

UIO in this list was used as an indicator of what maximum length input sequence a

BFS algorithm would be expected to generate for a given FSM in a worst case scenario.

1The experiments were carried out on FSMs with at most 360 states due to the prototype tool
being limited to FSMs with no more than 1000 transitions. This restriction was due to a combination
of Java features and the tool design.

44

FSM States Transitions Inputs Outputs
1 5 14 4 2
2 10 33 4 2
3 20 51 4 2
4 39 87 4 2
5 50 136 4 2
6 73 177 4 2
7 90 218 4 2
8 98 250 4 2
9 113 296 4 2
10 132 316 4 2
11 158 393 4 2
12 180 450 4 2
13 203 498 4 2
14 209 553 4 2
15 227 568 4 2
16 244 611 4 2
17 264 658 4 2
18 291 765 4 2
19 305 771 4 2
20 311 765 4 2
21 323 809 4 2
22 347 856 4 2
23 360 901 4 2

Table 3.3: List of the 23 randomly generated FSM examples used

45

This figure is compared to the number of fitness evaluations (including unsuccessful

UIO generation attempts) by the GAs and random UIO generation (the 2 GAs and

random were given the same effort in terms of fitness evaluations). Figure 3.2 shows

the difference between these two figures for all 23 randomly generated FSMs. As

some of the BFS input sequence variations go into billions Figure 3.3 shows the same

information but filtering the 4 worst estimated BFS effort FSMs. From the graph

it is clear that for many FSMs the BFS algorithm could have been more efficient to

use. This is because of the mainly short UIOs found for many of the FSMs. However

the graphs also indicate that the BFS is much worse in some cases, where the GA

performed well.

Figure 3.2: Difference in effort between worst case BFS and current GA results in
attempt to find all UIOs of an FSM

It was expected that when small FSMs are considered the real advantage of the

new method cannot always be observed over the random test sequence generation

method. However as the size of the FSMs considered increases the proposed method

is expected to outperform the random method. Since BFS is not feasible for those

FSMs where the benefits of using GA are likely to be observed, BFS was not included

in the experiments.

Some results justifying the UIO generation algorithm choice are presented first.

46

Figure 3.3: Difference in effort between worst case BFS and current GA results in
attempt to find all UIOs of an FSM - 4 worst performing FSMs for BFS removed
from graph

Then the actual performance of the algorithm is compared with the random gen-

eration algorithm. The reason for using two different GA types was to determine

whether the slightly different heuristics generate different results. The first GA used

a single point crossover and mutation while the second used a complex multiple point

crossover and mutation. In general the second GA tended to find a solution slightly

faster than the first GA, but they produced the same results. Hence for most FSMs

the two GAs show identical performance.

3.3.1 UIO generation process

For any successful heuristic search it is imperative that a fitness function is selected

that guides the search correctly towards a solution. In the search for UIOs the de-

gree of difference (DoD) metric can be used [Naik 95]. A DoD compares the output

sequence β generated by an input sequence α from state si with the corresponding

output sequence from state sj. We can extend this notion and instead of comparing

the output sequence of si only to that of sj, where sj is just another state, we can

compare it to all states apart from si. We sum all the individual DoD values into one

cumulative DoD for a given UIO. This process is of the same complexity as the UIO

47

verification algorithm - O(ln). In this chapter we refer to this cumulative DoD value.

Figure 3.4: Fitness function value and DoD for a set of UIOs for FSM dk16

Figure 3.4 has two graphs representing the DoD and fitness values of 19 input

sequences for the dk16 FSM, the largest from the set of real FSM examples. These

19 input sequences represented 19 UIOs for different states of that FSM. The vertical

scale of the graph represents the fitness and DoD values while the horizontal represents

the state of the UIO. It can be seen how the shape of the fitness function closely follows

the shape of the DoD, except for the extent of the actual rises and falls of the DoD.

This indicates that the fitness function, although not calculating the DoD for a given

input sequence, can serve as a rough estimate of which input sequences are likely to

have higher DoD and hence are likely to be UIOs (and more robust UIOs). Therefore

the fitness function is likely to be directing the search in a positive direction without

the full expense of calculating the DoD.

As mentioned before the UIO generation process used involved verifying whether

a given input sequence is a UIO for a given state. After a GA has terminated only the

highest ranked element in the final population is verified to see whether it represents

a UIO because of the computational complexity involved with this checking process.

Verifying an input sequence as a UIO is the most expensive part of the algorithm but

it would not make sense to verify only the top ranked individual of a population if

48

Figure 3.5: Positions in the GA population where the first valid UIO was found for
each state of FSM dk16 (the largest of the real FSMs)

such individuals do not tend to be UIOs. Figure 3.5 represents the rank of the first

element within the 20 terminated GA populations which generated UIOs for the dk16

FSM (the largest of the real FSMs). Half of the UIOs were found at the top, 0-th

position of their corresponding GA population. The next highest ratio represented

only 10% of the results. The rest of the real FSMs had even higher ratio of UIOs

found at the top, 0-th position of their corresponding GA populations. This suggests

that we lose little by verifying only the top ranked individual but we reduce the

complexity of the whole UIO generation process since we repeat the search if a UIO

is not found. It is simple to adapt the algorithm so that it checks all elements of the

final population or some fixed proportion of this.

3.3.2 UIO Generation

A set of experiments involving UIO generation were run using the two sets of FSMs.

Two slightly different GAs and a random search algorithm were used for every FSM.

After each UIO generation attempt a simple algorithm was used to determine whether

the sequence is indeed a valid UIO and does not contain unspecified transitions. The

GAs used a single, ranked population where fitter genotypes are added by removing

49

the genotypes with the lowest rank. The genotype selection was done using roulette

wheel selection [Srin 94]. Gray coding [Mich 96] was used as the chromosome repre-

sentation technique. The recombination operators used were uniform crossover and

uniform binary mutation with mutation rate of 0.05. The first GA used the clas-

sic genotype recombination while the second GA used a chromosome recombination

where each input character for a transition sequence is represented as a separate chro-

mosome. The second GA performs recombination independently on each character

of the input sequence. The termination criteria were population saturation or up to

10,000 fitness evaluations. A UIO generation attempt for a given state in the FSM

involved no more than 3 GA executions, for each of the sequence sizes (number of

chromosomes) considered with up to 25 inputs. The fittest phenotype after each GA

termination was considered as a potential UIO sequence. As soon as a valid UIO

was found for a given state in the FSM the search moved to the next state. For the

randomly generated FSMs no more than 15 GA executions were considered for each

sequence size up to 45 inputs because these FSMs are larger and we expected that

more effort would be required to generate UIOs.

After sequences were generated with the two GAs, random sequence generation

was applied. After a number of random input sequence generations, within the FSM

input alphabet constraints, the sequences were ranked and the fittest one was checked

to determine whether it was a UIO. The number of random generation attempts (to

generate a UIO) for a state of the FSM used was equal to the average number of

attempts it took the GAs to generate a UIO for that particular state. Every attempt

to generate a sequence for a given state was repeated for sequence sizes ranging from

the shortest to the longest UIO sequence found for this state by the GAs. The random

search was given at least the same computational power in terms of number of fitness

evaluations and UIO verification attempts.

50

Figure 3.6 and Table 3.4 show the results of the UIO generation algorithm con-

ducted on the set of 11 real FSMs. For each FSM two different types of GA algorithms

and a random generation algorithm were executed in an attempt to generate UIOs

for each state.

Figure 3.6: Percentage state coverage in UIOs generated by GA compared to random
algorithm. Results for real FSMs

Some of the FSMs considered have a very small number of states. For such FSMs

a single input character might represent a UIO. In such cases it is obvious that the

random algorithm will be effective. For example all the UIOs in the mc FSM were

of length 1. It is also important to note that not all FSMs have UIOs for all states.

For example the lion9 and becount FSMs have UIOs for only 2 of their states, and

they were found by the UIO generation algorithms. The number of UIOs generated

were compared to results reported in [Sun 98, Sun 01]. FSMs dk14 − 17 and dk512

were reported to have the same UIO state coverage as we found. In [Sun 98] the dk16

FSM was reported to have UIOs for 21 of its 27 states, however [Sun 01] reported

that it only has UIOs for 20 states and we manually verified that. The GA produced

UIOs for these 20 states. FSMs mc, bbtas and shiftreg had UIOs generated for all

their states. This shows that for each FSM the GA UIO generation managed to find

at least one UIO for all the states that had one. Also for most of the FSMs the GA

based UIO generation outperformed the random generation generating up to 33%

51

FSM States GA % GA Alt % Ran. % Diff.%
dk15 4 75 75 50 25
mc 4 100 100 100 0

bbtas 6 100 100 67 33
beecount 7 28 28 28 0

dk14 7 43 43 43 0
dk27 7 57 57 43 14

shiftreg 8 100 100 100 0
dk17 8 88 88 63 25
lion9 9 22 22 22 0
dk512 15 73 73 40 33
dk16 27 74 74 63 11

Table 3.4: Percentage state coverage in UIOs generated by GA compared to random
algorithm. Results for real FSMs

better results. As expected not all the UIOs generated were minimal.

Now consider the experiments with (larger) randomly generated FSMs. Both

GA search based UIO generation techniques performed better for all 23 randomly

generated FSMs, sometimes generating UIOs for up to 62% more states than the

random search. The two GAs produced identical UIO state coverage results. Figure

3.7 shows the number of states for which a UIO has been generated as a percentage

of the total number of states of the FSM using the three methods. Figure 3.8 shows

the same data but plots the difference in the percentage between the random search

and the two GA methods. Here it appears that the difference between the GA and

random algorithm increases as the size of the FSMs increases. Both graphs clearly

illustrate the potential advantage of using GA search against random search for UIOs,

when using the fitness function considered. It is important to remember that different

FSMs have different properties. For example not all FSMs have UIO sequences for

all their states. Hence the graphs are not very smooth. Again, not all the UIOs

generated were minimal.

Another interesting result was that the average UIO sequence size was much

52

Figure 3.7: Percentage state coverage in UIOs generated by GA compared to random
algorithm. The two GAs produced identical results. Results for Randomly generated
FSMs

Figure 3.8: Percentage difference in UIOs generated by GA compared to random
algorithm. Results for Randomly generated FSMs

53

shorter than expected as in the worst case the length of a UIO is exponential in

terms of the number of states of the FSM [Lee 94]. In fact, most of the UIO se-

quences seem to be very short, even for larger FSMs. In comparison, a separating

sequence is expected to be of size n − 1 at most, but it has been observed that its

expected size is of O(log(n)) [Trak 73]. Figure 3.9 shows the average UIO sequence

length for each of the 23 FSMs using the GA methods and the random search. The

graph does not seem to increase exponentially, but it actually seems to increase at a

rate less than linear. Since most of the larger FSMs on the graph have state coverage

as high as 95%, indicating that there is a small number of UIOs left to be found to

achieve full state coverage, it seems that most of the UIOs tend to be very short.

Figure 3.9: Average UIO size found for the Randomly generated FSMs

3.4 Summary

State verification is an important part of conformance testing for FSMs. UIO se-

quences are commonly used for state verification because of their advantages over the

other methods. The problem of generating such sequences however is known to be

NP-hard [Lee 96]. While a random algorithm could be used it does not always pro-

duce acceptable results. GAs have previously been used to generate UIOs for relative

54

small and completely specified FSMs [Guo 04].

In this chapter we define the problem of finding UIO sequences as a search problem.

We define a computationally efficient fitness function of O(l) complexity for an input

sequence of size l that is used to guide a GA. UIOs for both completely and partially

specified FSMs were generated. This approach considers partially specified FSMs

and generates UIOs that can also be used for weak conformance testing without

completing the FSM.

We investigate the performance of a GA search for UIOs for an FSM using this

fitness algorithm on a number of real and some larger randomly generated FSMs and

report the results.

UIOs were computed using GA and random search. The experiment includes

two groups of FSMs: a set of 11 real FSM specifications of small size; and a set of

21 randomly generated FSMs with up to 360 states. The fitness function appears

to direct the search towards generating UIOs. The experiments show that the GA

outperforms (up to 62% better) or is at least as good as a random search for UIO

sequences. As the size of the FSMs increased the difference between the performance

of the GA and random UIO generation also increased.

The results also show that the average UIO size tends to be small even for larger

FSMs. Most of the UIOs found were no longer than 10 input/output pairs. Searching

for UIOs using a breadth first search algorithm for some of the larger FSMs considered

could run into billions of input sequence generations in a worst case scenario (judging

from the minimal UIOs we have found for those FSMs). However breadth first search

could be more efficient than GA for very short UIOs. This could suggest that breadth

first search or even random search can be very useful for generating most of the

UIOs, which are very short. GA search can subsequently be used to search for longer

UIOs which are otherwise computationally difficult to identify using breadth-first

search. This work can also be extended to help in test sequence generation for EFSMs

55

(Chapter 5) and CFSMs (Chapter 6) where the problem becomes much harder due

to the complexities associated to internal variables and communication.

Chapter 4

Feasible Transition Path
generation for EFSMs

4.1 Introduction

This chapter addresses the issue of finding feasible transition paths (FTPs) between

two states for systems based on the EFSM model. A novel way of abstracting parts

of the data in the EFSM in order to facilitate the generation of feasible transition

paths using GAs is presented and evaluated.

Definition 4.1.1. A transition path (TP) represents a sequence of transitions in M

where every transition starts from the state where the previous transition finished.

The chapter begins by outlining the problem. The approach used to search for

FTPs is described next. A number of preprocesses that need to be executed once

for every EFSM before it is analysed are then discussed. Then in Sections 4.4.3 and

4.4.5 the fitness functions for two different FTP search problem representation are

described as well as the algorithms used to verify potential solutions. A description

of the experimental strategy to collect the empirical evidence follows. An overview

of the empirical evidence that examines the effectiveness of the feasibility estimating

fitness function is followed by the FTP generation results. Finally, conclusions are

56

57

drawn.

4.2 Problem

A system specified by an FSM or an EFSM is tested for conformance by applying a

sequence of inputs and verifying that the corresponding sequence of outputs observed

is that expected. Typically the machines that arise are complex and brute force

testing is infeasible [Lee 96].

In EFSMs test sequence generation is more complex than it is for FSMs. In FSMs

all of the paths of the directed graph are valid since there are no conditions on the

edges and actions do not affect the graph traversal [Dual 00]. With EFSMs, however,

the transition path depends on the result of the input parameter guard and the domain

guard (as defined in Chapter 2). The result of the guard depends on the values of the

internal variables and input declarations, which in turn can assume different values

after each transition. Some transition paths might have no conditions, some might

have conditions that are rarely satisfied and some transition paths will be infeasible.

The existence of infeasible transition paths creates difficulties for automating the test

generation process for EFSMs.

One way of approaching the test sequence generation problem is to abstract away

the data part of the EFSM and consider it as an FSM on its own. However a transition

sequence for the underlying FSM of an EFSM is not guaranteed to be feasible for the

actual EFSM. Another way is to expand an EFSM to an FSM and then use the

techniques used for FSMs. However this can lead to a combinatorial explosion.

Some recent work on generating feasible conformance test sequences for EFSMs

was presented in [Dual 04]. It describes how to remove variable interdependencies

between the actions and conditions of a certain class of EFSMs. The inconsistency

removal problem, exponential in complexity, used there takes advantage of localised

58

inconsistencies to reduce the algorithm complexity and bound it by the size of the

subgraphs involved. After the inconsistencies removal, FSM based methods are used

for test sequence generation. Our EFSM model is more general as we do not consider

only linear constraints. [Dual 04] gives a comprehensive summary of all the important

work in this field up to now. Test generation for EFSMs is still an open research

problem [Lee 94, Dual 04]

The general problem of finding a (an arbitrary) feasible transition sequence for

an EFSM is uncomputable, as is generating the necessary input sequence to trigger

such a transition sequence. While a random algorithm could be used it does not

always produce acceptable results. GAs have been used in related problems like

generating UIOs for FSMs [Guo 04, Derd 06] and generating test input sequences for

communicating FSMs [Derd 04]. Heuristic search techniques can be also applied to

the FTP generation problem if a robust fitness function can be defined.

The form of EFSM used in this chapter is the Normal Form EFSM (NF-EFSMs)

defined in Chapter 2. It is a general EFSM model that can often be obtained directly

from SDL specifications [Hier 03]. For the remaining of this chapter we will refer to

NF-EFSMs simply as EFSMs.

The objective of this work is to facilitate the generation of feasible transition

paths in EFSMs and the necessary input to trigger them. This can be helpful in test

data generation for EFSMs. In this chapter we focus on generating transition paths

that are likely to be feasible. The overall approach to the problem is based around

defining a fitness function that can estimate how likely it is that a transition path

is feasible and how easy is it to generate an input sequence to trigger it. Empirical

data is used to evaluate the effectiveness of this fitness function. Then a GA is used

to generate such transition paths. The results are compared to randomly generate

transition paths with the same characteristics.

59

4.3 Generating feasible transition paths (FTPs)

for EFSMs

In this section we define a feasible transition path (FTP) and describe a fitness func-

tion that is intended to estimate how likely a transition path is to be feasible (Section

4.3.1).

Consider the problem of finding an input sequence that triggers a feasible transi-

tion path (FTP) from state si to state sj of an EFSM M .

Definition 4.3.1. A forward feasible transition path (F-FTP) for state si of an

EFSM M is a sequence of transitions initiating from si that is feasible for at least

one combination of values of the finite set of internal variables V of M .

State identification and state verification sequences for an EFSM must trigger an

F-FTP. Hence generating an F-FTP and an input sequence that triggers it for state

si of EFSM M can help in finding a state identification or state verification sequence

for si.

Definition 4.3.2. A backward feasible transition path (B-FTP) for state sj of an

EFSM M is a sequence of transitions ending at sj that is feasible for at least one

combination of values of the finite set of internal variables V of M .

A BF-FTP is a feasible transition path with specified both start state si and end

state sj. When we use FTP we refer to all three types.

In a transition path for FSMs each transition can be identified and thus represented

by its start state and input (ss, i). However with EFSMs this information is not

sufficient because there can be more than one transitions sharing the same start state

and input. Instead a transition t in an EFSM M can be identified from its start state,

input declaration, input parameter, the input parameter guard and the domain guard

60

Figure 4.1: Inres protocol as an EFSM M1

(ss, i, P
i, gP i , gD) (as defined in Chapter 2). gP i and gD for a transition t in M can both

be logical expressions and their results may depend on input parameter P i of t and the

values of some of the internal variables of M . Transitions sharing the same start state

and input declaration can be classified according to their input guard predicate and

domain guard predicate. To identify these for every set of transitions sharing the same

start state s and input declaration i, the number of possible combinations of input

parameter guard logical expression (input predicate branches) and the domain guard

logical expression (domain predicate branches) is counted and a predicate dependency

graph for state s and input declaration i can be constructed.

Consider the Sending state (Ss) in the EFSM M1 on Figure 4.1. There are four

transitions initiating from this state that share the same input declaration AK and

input parameter num. A partial transition table for this state (Figure 4.2) represents

61

all the outgoing transitions from state Ss of M1 with the same input that differ only

in their input parameter guards and domain guards. From the information in the

table we can construct a predicate dependency graph for state Ss of M1 with input

declaration AK. The four leaves of the graph in Figure 4.3 represent the four different

transitions sharing the same start state and input.

i P i gP i gD

AK num num = number number = 0
AK num num = number number = 1
AK num num 6= number countr ≥ 4
AK num num 6= number countr < 4

Figure 4.2: Partial transition table for transitions starting from Ss in EFSM M1

(Figure 4.1)

Definition 4.3.3. A predicate dependency graph classifies all transitions from state

s that share the same input, according to the input predicate guard (gP i) and domain

guard (gD) for each of these transitions.

Hence a transition in a transition path of an EFSM can be identified by its start

state, input, gP i and gD (ss, i, gP i , gD). The input parameter P i is not required in

order to be able to uniquely identify a transition in M . Note how in this case some

transitions with different domain guards share a common input predicate guard.

Figure 4.3: Predicate dependency graph for the transitions on Figure 4.2

62

Not all transitions in EFSMs have input parameter guards and domain guards

and so transitions in an EFSM M can be categorised in the following way:

• simple transitions are those transitions that have no input parameter guard

and no domain guard, gP i = NIL and gD = NIL.

• gP i transitions are those transitions that have input parameter guard but not

a domain guard, gP i 6= NIL and gD = NIL.

• gD transitions are those transitions that have a domain guard but not an

input parameter guard, gD 6= NIL and gP i = NIL.

• gP i-gD transitions are those transitions that have both an input parameter

guard and a domain guard, gP i 6= NIL and gD 6= NIL.

The sequential operations op for a given transition t can consist of simple assign-

ments and output statement. However in EFSMs besides output declarations there

are also output functions that take a number of parameters and generate an output

based on these parameters. An assignment statement in the op part of a transition

would not generate any observable output. However such assignment statements in

the op part of a transition can still contribute to the value of the output generated

in a later transition if the assignment changes the value of one of the output func-

tion parameters. It can also affect the feasibility of the remaining transitions in the

transition path and should also be considered.

Definition 4.3.4. An input sequence (IS) is a sequence of input declarations i ∈ I

with associated input parameters P i ⊆ P of an EFSM M .

Instead of using gP i and gD notations together in order to identify a transition we

can simply index all the leaves of the predicate dependency graph and use a single

value.

63

Definition 4.3.5. A predicate branch (PB) is a label that represents a pair of gP i

and gD for a given state s and input declaration i. A PB identifies a transition within

a set of transitions with the same start state and input declaration.

PBs can label conditional transitions and be used to help simulate the behaviour

of a potential input sequence for an EFSM without the feasibility restrictions.

Definition 4.3.6. An abstract input sequence (AIS) for M represents an input dec-

laration sequence with associated PBs that triggers a TP in the abstracted version of

M .

In order for a sequence of input parameters to represent an abstract transition

path that is feasible the conditions on each PB must be satisfied. This can lead to

conditions on the values of some of the internal variables of the EFSM.

4.3.1 Fitness function

In order to achieve our objectives we require an easy to compute fitness function to

guide the search for FTPs. Computing the actual feasibility of a transition path is

too computationally expensive, so we need a method to estimate this.

Some transition paths consist of transitions with difficult to satisfy guards. The

presence of simple transitions in a transition path makes this TP likely to be an

FTP since there are no guards to be satisfied. The presence of gP i transitions could

render a transition path infeasible because of its input predicate guard. However the

conditions of this guard are more likely to be satisfiable than domain guards because

the values of the input parameters P i ⊆ P can be chosen. When these conditions

depend also on some internal variables V ′ ⊆ V then such gP i transitions might not be

easier to trigger than gD transitions. In some cases the execution of a gD transitions

could require reaching its start state through a specific transition path. The feasibility

64

of gP i-gD transitions depends on both issues outlined above for gP i transitions and

gD transitions.

Hence the presence of gD transitions and gP i-gD transitions seem to increase the

chance of a transition path being infeasible. Avoiding such transitions and encour-

aging simple transitions could increase the chance of generating FTPs. A fitness

function that favours transition paths that start from si with less constrained tran-

sitions can be used to direct a search for F-FTPs from si. A fitness function that

rewards transition paths according to how many states away from sj they end and

favours less constrained transitions can be used to direct a search for B-FTPs for sj.

One important issue to consider is how to weight the fitness of transitions of dif-

ferent types. A table with the associated penalties for every transition in a transition

path is presented in Figure 4.4. The penalty values shown are by no means definitive,

but they aim to direct the search according to the transition type preference argu-

ment presented above. It has been assumed that 6= is the easiest type of comparison

operator to be satisfied while = is the most difficult. Naturally, for some EFSMs

exactly the opposite might be true in certain cases. More detailed analysis of the

EFSM might lead to better guidance.

Operator simple gP i gD gP i-gD

6= 0 1 2 4
≥ or ≤ 0 3 4 8
> or < 0 4 5 10

= 0 6 7 14

Figure 4.4: Penalties for each condition in a transition

When there is more than one condition in a guard the penalty value associated

with the guard depends on the logical operator between these conditions. With AND

operator the sum of the penalties is used. For OR operator only the lowest penalty

is used.

A transition ranking process is completed first. This process ranks each transition

65

of the EFSM according to how many penalty points are assigned to the transition

guards. A simple transition gets the highest rank, an gP i transition with one condition

is ranked next etc. Transitions that have the same number of penalty points get the

same rank.

The fitness algorithm used in this work rewards a potential solution according to

the ranks of the transitions in the sequence. The fitness function reflects the belief

that the fewer constraints a sequence contains, the more likely it is to define an AIS

for FTP. When there is an AIS that triggers a transition sequence of only simple

transitions, then it automatically becomes an FTP.

4.3.2 TP Representation

The two different FTP search problem representations in this chapter are based on

different TP representation notation.

The first approach, called Transition notation, represents a TP using transition

labels from the transition table. This representation is simple but does not guarantee

that a list of transition labels represent sequential transitions. This notation repre-

sents an exact TP. The IS that might potentially trigger such a TP can be generated

from the transition table.

The second approach, called PB notation, uses input declarations and PBs to

define an AIS. The AIS represents one TPs, but the actual TP followed is determined

at run-time.

The quality of all TPs generated using both representations is evaluated using an

FTP verification process outlined in Section 4.4.4.

Each notation defines a search space with different shape and size. The size of

the search space for transition notation and PB notation depends on the number of

transitions and on the combined number of input declarations and PBs respectively.

For large EFSMs with many transitions, the search space with PB representation is

66

likely to be smaller. However for small EFSMs where the combined number of input

declarations and PBs exceeds the number of transitions, the transition notation might

present a smaller search space.

The work in this chapter does not focus on the shape of the search spaces of the

example EFSMs we discuss, however the results of the experiments in Section 4.5.3

provide an indication of how GAs perform when searching such a space.

The fitness functions for the two different FTP search problem representations are

discussed in detail in the next section.

4.4 Algorithms

4.4.1 Preprocesses

A number of process must be completed before the fitness function and FTP verifi-

cation algorithm can be used for an EFSM. The four processes are shown on Figure

4.5, where |T | is the number of transitions and n is the number of states of the EFSM

(as defined in Chapter 2). The table lists the complexity of each process and which of

the two FTP representations that process facilitates. The input enumeration and PB

count processes are specific for the PB notation, while performing transition ranking

and counting transition distances between all state pairs (φ matrix) is used for both

PB notation and transition notation.

Process complexity Used for PB Used for transition not.
1 Transition ranking O(|T |.log|T |) X X
2 Input enumeration O(|T |) X x
3 PB count O(|T |) X x
4 Calculating φ matrix O(n.|T |) X X

Figure 4.5: Preprocesses used by the fitness and verification functions for FTP gen-
eration using the PB notation and transition notation. |T | ≥ n since we are looking
at initially connected EFSMs

67

A transition ranking process is completed first before the fitness function can be

used. This process ranks each transition of the EFSM according to how many penalty

points are assigned to the transition guards. A simple transition gets the highest

rank (i.e. lowest amount of penalty points), an gP i transition with one condition

(6=) is ranked next etc. Transitions that have the same number of penalty points

get the same rank. This algorithm in essence sorts |T | elements and has complexity

O(|T |.log|T |) where |T | is the number of transitions in M .

A simple input declarations enumeration process is also necessary before a GA

search can be started. This process enumerates all the unique input declarations

i ∈ I used in M and assigns numbers that in turn are used to represent each input

declaration i in the GA phenotype. Here input predicates Pi are not considered as

part of any input declaration i. This algorithm has complexity of O(|T |) and can be

executed in conjunction with the transition ranking process.

A PB counting algorithm is also used to assist in the GA phenotype representa-

tion. All the transitions that share the same start state and input declaration are

enumerated and each assigned a PB index. For example, in Figure 4.6 four transitions

share the same start state and input declaration and are identified with the help of

the PB index. Any transition in M can be identified by the tuple (si, x, PB) where si

is the start state of the transition, x is the input declaration and PB is the predicate

branch taken. This algorithm also has complexity of O(|T |) and can be included with

the transition ranking and input declaration enumeration processes.

i P i gP i gD PB
AK num num = number number = 0 1
AK num num = number number = 1 2
AK num num 6= number countr ≥ 4 3
AK num num 6= number countr < 4 4

Figure 4.6: Partial transition table for transitions starting from Ss in EFSM M with
PBs

68

queue - a first-in, first-out (FIFO) data structure
Ask

- adjacency list that stores the information of which states in M are one transition
away from state sk. A is built by the algorithm on Figure 4.9.
Ask,r - the r-th transition initiating from state sk

|Ask
| - the number of states in M that are one transition away from state sk

Lsm,sv - a matrix representing the length of the shortest path from state sm to sv

n - the number of states in M

Figure 4.7: Variables for the φ function algorithm

Incorrect representation of the PB in the GA phenotype can create undesirable

bias towards some transitions. Since there can be different number of transitions

sharing the same start state and input declaration for each state in M the lowest

common multiple (LCM) of the number of PB values in all the states can be used as

a common PB index range. This value can be divided as appropriate for each state

to evenly distribute all the possible transitions sharing the same start state and input

declaration. For example consider an FSM where transitions that share the same

input declaration and start state have 1 to 4 PBs. In order to represent the PB as

a number in the genotype the LCM value of 12 can be used and divided as necessary

for the start state and input declaration considered (i.e. r/12 for 1 PB, r/6 for 2,

r/4 for 3 and r/3 for 4 PBs). If instead of using the LCM value we used a simple 1

to 4 representation then the cases where there are only 3 PBs will have to be treated

as special cases that might create unwanted bias in the gene representation towards

some values (i.e. 1 represents 1 PB, 2 represents 2, 3 represents 3 and 4 represents

either 1,2 or 3 PBs).

The function φ is used in the FTP fitness function and the FTP verification

algorithms. φ(si, sj) returns the number of transitions state si is away from state

sj, which can be useful in guiding the search for an FTP. The complexity of this

algorithm is of O(n.max(n, |T |)) and it generates an n × n path length matrix (φ

matrix). Since we are considering initially connected EFSMs, n ≤ |T | the algorithm’s

69

01 for(m := 1 to n) //for all the states in M
02 for(k := 1 to n) //initialise shortest path matrix
03 Lsm,sk

:= 0
04 endFor
05 queue := null //initialise empty queue
06 i := 0 //initialise path length counter
07 Lsm,sm := 0 //self loop
08 add sm to queue //add initial state of paths to queue
09 while(|queue| > 0) //while queue not empty
10 sk := get from queue //get state from queue
11 //enumerate all the outgoing states from sk

12 for(sv := Ask,1 to Ask,|Ask
|)

13 //sv not the initial state AND path to it not yet assigned
14 if(sv 6= sm AND Lsm,sv = 0)
15 //reset path length counter if shorter path is available
16 if(Lsm,sk

< i) then i := Lsm,sk

17 Lsm,sv := i + 1
18 add sv to queue
19 endIf
20 endFor
21 i := i + 1 //increment path length counter
22 endWhile
23 endFor
24 return L

Figure 4.8: φ function

70

complexity is O(n.|T |). It would be useful to execute it once and store the results for

subsequent use.

The algorithm for producing the function φ, adapted from [Gibb 85] is shown

on Figure 4.8. The parameters involved are as follows: queue is a first-in, first-out

(FIFO) data structure; Ask
is the adjacency list that stores the information of which

states in M are one transition away from a given state sk of M ; Ask,r denotes the

ending state of the r-th transition initiating from state sk; |Ask
| is the number of

states in M that are one transition away from state sk where adjacency list A is

built by the algorithm in Figure 4.9; Lsm,sv is a matrix representing the length of

the shortest path from state sm to sv; and n is the number of states in M . The

parameters involved are also shown in Figure 4.7.

The adjacency list is stored once and then reused. An algorithm for generating

A is shown on Figure 4.9 and has a complexity of O(n.|T |) [Gibb 85]. For example

consider the Inres EFSM M1 shown on Figure 4.1. The adjacency algorithm on Figure

4.9 was used to produce an adjacency table presented on Figure 4.10.

φ is based on a breath-first search algorithm, that finds the lengths of the shortest

paths from a given state sm to all other states in M with complexity of O(max(n, |T |))

[Gibb 85]. It uses the queue to trace through all the reachable states from a given

state sm and constructs a shortest path length matrix. The queue ensures a breadth-

first search of all transitions. When executed for all n states in M its complexity

becomes of O(n.|T |).

This adjacency list is in turn used to generate results using the function φ. A

worked example of the φ function for M1 is shown on Figure 4.11. The values of the

variables used in the φ function are traced at two points in the algorithm. The first

is just after line 8 of the algorithm on Figure 4.8 and the second is just after line 14.

Every time the algorithm exits the while loop after line 22 this is illustrated on Figure

4.11 by a line. When the variables are traced after line 8 of the algorithm sk and sv

71

for(k := 1 to n) //for all the states in M
c := 1
for(j := 1 to |T |) //for all the transitions in M

tj ∈ T
ss := Π1(tj) //get start state of transition tj
if(sk = ss) //if tj starts from sk

sf := Π5(tj) //get end state of transition tj
add sf to ordered list Ask,c

c := c + 1
endIf

endFor
endFor
return A

Figure 4.9: Adjacency list A specification algorithm

start state end state transitions
0 0 t11
0 1 t1
0 2 none
0 3 none
1 0 t12, t4
1 1 t3
1 2 t2
1 3 none
2 0 t13
2 1 none
2 2 none
2 3 t5
3 0 t8, t10, t14
3 1 none
3 2 t61, t62
3 3 t7, t9

Figure 4.10: Generated adjacency list for the Inres protocol EFSM M1 4.1. States
are 0 indexed.

72

are not yet initialised for that execution of the loop, hence no values are shown on

the table for those variable.

algorithm line queue top sm i sk sv Ask,sv Lsm,sv Lsm,sk

8 0 0 0
14 null 0 0 0 1 1 0 0
14 null 0 1 1 2 1 0 1
14 null 0 2 2 3 1 0 2
8 1 1 0
14 null 1 0 1 0 2 0 0
14 0 1 0 1 2 1 0 0
14 null 1 2 2 3 1 0 1
8 2 2 0
14 null 2 0 2 0 1 0 0
14 0 2 0 2 3 1 0 0
14 3 2 1 0 1 1 0 1
8 3 3 0
14 null 3 0 3 0 3 0 0
14 0 3 0 3 2 2 0 0
14 2 3 1 0 1 1 0 1

Figure 4.11: Generated shortest path lengths matrix (φ function)for the Inres protocol
EFSM M1. States are 0 indexed.

The resulting shortest path length matrix is presented on Figure 4.12. These

algorithm execution results are shown in order to illustrate how the algorithms work.

4.4.2 FTP search problem representations

Two FTP search problem representations are presented. In order to compare them

each one is used with all four FTP generation techniques. The search techniques

include two slightly different GAs, a random generation algorithm and Dijkstra’s

shortest (cheapest) path algorithm. Breadth first search algorithm is also used to

evaluate the effectiveness of the fitness function. Figure 4.13 gives an example for

one particular TP from M1 (t2 followed by t12). The example illustrates how the two

73

start state end state distance
0 0 0
0 1 1
0 2 2
0 3 3
1 0 1
1 1 0
1 2 1
1 3 2
2 0 1
2 1 2
2 2 0
2 3 1
3 0 1
3 1 2
3 2 1
3 3 0

Figure 4.12: Generated shortest path lengths matrix (φ function) for the Inres pro-
tocol EFSM M1. States are 0 indexed.

FTP search problem representations compare. Representation 1 uses all 4 prepro-

cesses while representation 2 needs only two of those preprocesses listed in Figure

4.5. A phenotype representing a potential FTP is simply a list of transition refer-

ences. However representation 1 uses an abstracted representation that identifies a

potential FTP by a sequence of input character and PB tuples.

Representation 1:PBs 2:transitions
Preprocesses 1,2,3 and 4 1 and 4
Phenotype 2;12; 2;12;

EFSM representation input 1 + PB 2 transition 2
input 3 + PB 4 transition 12

IS/AIS input indexed 1 in declarations list + PB 2 input for transition 2
input indexed 3 in declarations list + PB 4 input for transition 12

Figure 4.13: Representation outline of FTP generation representations 1 and 2

As the two different representations of the FTP generation problem make the

74

approaches slightly different we also refer to them as different FTP methods.

4.4.3 Representation 1: Fitness function using PBs

The first FTP search problem representation represents a transition using input char-

acters and PBs. An FTP is considered invalid when M is in state s and there is no

corresponding transition from s that can be triggered by the next input character

in the generated input sequence. If a transition from the TP triggered by an AIS is

invalid the EFSM stays in the same state and the next transition in the sequence is

considered. Hence the whole AIS under consideration can be evaluated by the fitness

function even when invalid transitions have been attempted.

This FTP search problem representation has the following characteristics:

• It uses a fitness function that rewards transition sequences with higher ranked

transitions and penalises invalid transitions.

• It produces a numerical value potentially showing how close an input sequence

is to defining a valid FTP.

• The fitness function penalises AISs that do not end at the desired final state.

• The fitness value of the sequence incurs a penalty for each invalid transition.

• The GA is directed towards generating input sequences that contain mostly

easy to execute transitions and hence more likely to be feasible transitions.

• The fitness function represents the search for an FTP sequence as a function

minimisation problem so an AIS with a lower fitness value is considered to be

more likely to form an FTP since it is made up of more highly ranked transitions.

75

faults := 0
strengthV alue := 0
Sk := SFTP

if (l = 0) then return -1 //error code for empty FTP
for(i := 1 to l) //for all the transitions in the sequence

Sm := Sk

Sk := δ′(Sm, xi, PBi)
if (Sk 6= ø)

//There is such a transition
strengthV alue := strengthV alue + rSm,xi,PBi

endIf
else

Sk := Sm //No such transition
faults := faults + 1

endElse
endFor
return strengthV alue + faults.penaltyV alue1 + φ(Sk, SFTP ′).penaltyV alue2

Figure 4.14: Representation 1: PB notation - FTP fitness algorithm

The fitness does not check if a particular transition path has been followed. It

makes sure that the end state is as near as possible to the target end state and that as

many inputs as possible from the AIS are valid and trigger transitions in the EFSM.

The algorithm for the fitness function proposed is presented in Figure 4.14. The

parameters for this function and the FTP verification algorithm presented in Figure

4.15 are as follows: SFTP is the start state of the TP; SFTP ′ is the intended end state of

the TP; min and max are the value range for randomly generated input parameters;

parList is the array of input parameters; CV represents the current values of all

the variables in the internal variable set V of M ; x is a single input declaration;

l is the length of the input sequence; r is the set of transition rankings; rs,x,PB

represents the rank of the transition initiating from state s with input declaration

x and predicate branch PB; penaltyV alue1 is the penalty constant or function that

penalises the fitness when an unspecified transition is triggered; penaltyV alue2 is the

penalty constant or function that penalises the fitness when the TP does not end

76

at the desired state; δ(si, x, parList, CV) = sj is the EFSM state transfer function;

δ′(si, x, PB) = sj is the EFSM abstracted state transfer function; and φ(si, sj) = n is

the function that returns the number of transitions si is away from sj. The parameters

involved are also shown on Figure 4.16.

4.4.4 FTP verification

In order to evaluate the results of the experiment it is useful be able to estimate the

quality of a TP. Such a quality measure can estimated how easy is it to trigger a TP

or generate an IS that would trigger it.

In PB notation an AIS is used to represent a potential FTP. After an AIS has been

generated it has to be checked to determine whether it represents a valid TP since the

GA fitness need not indicate this. The FTP verification algorithm estimates how easy

it is to produce an IS that corresponds to this AIS. The algorithm will dynamically

verify how easy it is to trigger the transitions that the fitness function estimated as

easily triggered.

We wish to estimate how easy is it to produce an IS for a TP in order to estimate

the quality of TPs produced. This is done by making 1000 attempts at randomly

generating an IS for a TP and calculating the success ratio. The FTP verification

algorithm is presented in Figure 4.15 and the parameters involved summarised in

Figure 4.16. The AIS for every TP is transformed into an IS and the algorithm gen-

erates random input parameters for each input declaration in the IS and compares the

transition triggered with that of the AIS, indexed by start state si, input declaration

x and PB. If for all the transitions in the sequence the end state of the transitions

triggered is the same as in the AIS then the TP is considered to be feasible for that

instant and that particular IS. For each TP the algorithm returns a value of 0 when

no valid IS have been found to trigger that TP (such TPs cannot be guaranteed to

be feasible) and a value of up to 1000 shows that some or all attempts succeeded.

77

01 if (n = 0) then return −888 //Empty sequence
02 success := 0
03 for (repeats := 1 to 1000)
04 failed := false
05 Sm := SFTP

06 for (i := 1 to l)
07 parList := randomGeneration(min, max)
08 Sk := δ(Sm, xi, parList)
09 Sj := δ′(Sm, xi, PBi)
10 Sk := Si

11 if (Sk 6= Sj) //incorrect transition
12 failed := true
13 endIf
14 Sm := Sk //move to next transition
15 endFor
16 if (failed = false) //If no incorrect transitions
17 success := success + 1
18 endIf
19 endFor
20 return success

Figure 4.15: FTP Verification Algorithm

For example a TP with quality factor 900/1000 is considered better than one with

quality factor 450/1000.

The FTP verification algorithm in Figure 4.15 only checks if the correct states

of a TP are followed. Alternatively instead of just comparing the end states of the

TP generated using an IS and AIS the actual transitions that are executed can be

compared. The above FTP verification algorithm can easily be modified to do this by

changing the condition on line 11. This type of strict verification may be useful when

we require a particular sequence of transitions to be executed. Consider the example

in Figure 4.17. The two transitions t1 and t2 both share the same input declaration,

start and end states. Imagine we have selected t1 for our TP because it has a gD

v′ > 0, v ∈ V whilst t2 has a gD v′ = 0. As discussed previously a predicate with > is

considered to be more easily satisfiable than one with =. However for this particular

78

SFTP - start state of TP
SFTP ′ - intended end state of TP
min, max value range for randomly generated input parameters
parList - array of input parameters
CV - the current values of all the variables in the internal variable set V of the EFSM
x - single input declaration
l - length of the input sequence
r - set of transition rankings
rs,x,PB - The rank of the transition initiating from state s with input declaration x
and predicate branch PB
penaltyV alue1 - penalty constant or function that penalises the fitness when an un-
specified transition is triggered
penaltyV alue2 - penalty constant or function that penalises the fitness when the TP
does not end at the desired state
δ(si, x, parList, CV) = sj - EFSM state transfer function
δ′(si, x, PB) = sj - EFSM abstracted state transfer function
φ(si, sj) = n - function that returns the number of transitions si is away from sj

Figure 4.16: Variables for the FTP fitness and FTP verification algorithm using PB
notation

EFSM v′ > 0 can be the more difficult to satisfy condition. If we only care about

the end states of the TP, this fact may not affect the result. Although it is because

of t1 that the particular TP through si and sj has been selected, the fact that t2 is

actually executed instead does not affect the end state of the TP.

Figure 4.17: Example transitions within a TP

A TP could have properties other than just being feasible. It could for example

identify or verify a state in the EFSM by generating a unique set of outputs. In this

case it would be necessary to produce an IS that follows the exact TP of the AIS

79

otherwise the unique properties of this path will be lost.

Section 4.5.2 describes the results of an empirical study of how FTP verification

results compares to strict verification.

4.4.5 Representation 2: Fitness function using transition no-

tation

An alternative and simpler representation of the search problem for FTP can be

defined. Instead of representing a TP by means of AIS using PBs, a TP can be

represented by the actual transitions that form it. All the transitions of an EFSM

can be indexed and a genotype can represent a potential FTP by encoding a sequence

of transition labels.

The algorithm for evaluating the fitness function used with this alternative FTP

representation is presented on Figure 4.18. The parameters involved are as follows:

SFTP is the start state of the TP; SFTP ′ is the end state of the TP; T is the finite

set of all transitions in M ; T ′ is the transition sequence whose fitness is being deter-

mined; l is the length of the input sequence; r is the set of transition rankings; rt

is the rank for transition t; penaltyV alue1 is the penalty constant or function that

penalises the fitness when an unspecified transition is triggered or the transitions are

not consecutive (i.e. not following each other); penaltyV alue2 is the penalty constant

or function that penalises the fitness when the TP does not end at the desired state;

and φ(si, sj) = n is the function that returns the number of transitions si is away

from sj. The parameters involved are also shown on Figure 4.19.

Before this fitness algorithm can be used a number of processes must be completed.

These include two of the processes used by the FTP fitness algorithm for PB notation

- transition ranking and φ. The general aim of the fitness is to correctly sequence

transition labels so that they form a TP that is likely to be an FTP. Transitions are

80

faults := 0
strengthV alue := 0
Sk := SFTP

if (l = 0) then return -1 //error code for empty FTP
for(i := 1 to l) //for all the transitions in T ′

Sm := Sk

Sk := Π1(ti) //Start state of transition i
//if the transition initiates from the last reached state
if(Sk = Sm)

strengthV alue := strengthV alue + rti

endIf
//Ignore this transition since it does not initiate from Sm

else
Sk := Sm

faults := faults + 1
endElse

endFor
return strengthV alue + faults.penaltyV alue1 + φ(Sk, SFTP ′).penaltyV alue2

Figure 4.18: Representation 2: Transition notation - FTP fitness algorithm

ranked according the criteria described in Section 4.4.3. The function rewards higher

ranked transitions and introduces a penalty when transitions are not sequential.

A transition from the transition sequence is considered invalid if it does not start

from the state where the previous transition ended. If a transition is invalid the fitness

value incurs a penalty and the next transition in the sequence is considered in turn by

the algorithm. Hence the whole sequence of transitions under consideration can be

evaluated by the fitness function even when invalid transitions have been attempted.

The fitness function penalises TPs that do not end in the desired final state.

The fitness value of the sequence incurs a penalty for each invalid transition. Hence

the GA is directed towards generating a sequence of transitions that contain mostly

easy to execute transitions and hence more likely to be feasible transitions. The

fitness function represents the search for an FTP sequence as a function minimisation

problem so a sequence of transitions with a lower fitness value is considered to be

81

SFTP - start state of TP
SFTP ′ - end state of TP
T - finite set of all transitions in M
T ′ - is the transition sequence where fitness is being determined
l - length of the input sequence
r - set of transition rankings
rt - The rank for transition t
penaltyV alue1 - penalty constant or function that penalises the fitness when an un-
specified transition is triggered or the transitions are not consecutive (i.e. not follow-
ing each other)
penaltyV alue2 - penalty constant or function that penalises the fitness when the TP
does not end at the desired state
φ(si, sj) = n - function that returns the number of transitions si is away from sj

Figure 4.19: Variables for the FTP fitness and FTP verification algorithm using
transition notation

more likely to form an FTP since it is made up of more highly ranked transitions.

Once a transition sequence is generated it needs to be evaluated. An IS can be

easily extracted from a sequence of transitions. In order to verify whether the IS

can trigger an FTP it is possible to use a verification algorithm similar to the one

described in Section 4.4.4. The verification algorithm for this FTP search problem

representation is analogous to the verification algorithm on Figure 4.15. It returns

an estimation of TP quality (representing feasibility) identical to the one defined in

Section 4.4.4. The only slight difference is that the abstract state transfer function δ′

is no longer necessary since we already know each transition in the sequence.

The verification function can generate a measurement value that represents the

quality of a TP (as discussed in section 4.4.4) that can be used as a common feasi-

bility measure. Hence results generated using the two different FTP search problem

representations can be compared.

82

4.4.6 Generating FTPs using Dijkstra’s algorithm

Dijkstra’s algorithm is known to be an efficient algorithm to find the shortest path

between vertices in weighted connected graphs [Dijk 59]. This algorithm can be ap-

plied to the problem of finding the shortest FTP between two states sj and sk. As

discussed earlier, the feasibility of a TP cannot be guaranteed hence favouring certain

transitions could guide the search towards finding a TP for which input sequence can

easily be generated. The ranking methods explained earlier can be used here as well.

Each transition in a TP can be given a weight corresponding to its rank. Then the

algorithm will simply find the cheapest, in terms of weights, TP from sj to sk.

Once a TP is generated it needs to be evaluated in order to measure its quality

(feasibility) and compare that value to the fitness function measure. The TP is

verified and the quality factor calculated using the FTP verification algorithm shown

in Figure 4.15.

Dijkstra’s algorithm determines the distances (costs) between a given state sj and

all other states in an FSM. The algorithm begins at a specific state and extends

outward within the FSM, until all states have been reached. Dijkstra’s algorithm

stores a summation of minimum cost transitions from sj to all other states. We have

extended the algorithm so it not only stores the cost of the cheapest path but also

stores the actual path.

Dijkstra’s algorithm creates labels associated with states. These labels represent

the distance (cost) of sj to a particular state sk. Two kinds of labels are used,

temporary and permanent. The temporary labels are given to states that have not

been reached. The value given to these temporary labels can vary. Permanent labels

are given to states that have been reached and their distance (cost) from sj is known.

The value given to these labels is the distance (cost) of sj to that state. For any given

state, there must be a permanent label or a temporary label, but not both.

Lets consider an example FSM M1 on Figure 4.20. The algorithm begins by

83

Figure 4.20: Dijkstra’s algorithm example - step 1

initialising any state in the graph (s1, for example) a permanent label (in square)

with the value of 0, and all other states a temporary label (in circle) with the value

of 0.

The algorithm then proceeds to select the least cost transition connecting a state

with a permanent label (currently s1) to a state with a temporary label (s2, for

example). The label of s2 is then updated from a temporary to a permanent label.

The value of the label for s2 is then determined by the addition of the cost of the

transition from s1. Where there are multiple transitions between two states the least

cost transition is selected (Figure 4.21).

The next step is to find the next least cost transition extending to a state with

a temporary label from either s1 or s2 (s3, for example), change the label of s3 to

permanent, and determine its distance from s1 (Figure 4.22).

This process is repeated until the labels of all states in the FSM are permanent

(Figure 4.23).

84

Figure 4.21: Dijkstra’s algorithm example - step 2

Figure 4.22: Dijkstra’s algorithm example - step 3

85

Figure 4.23: Dijkstra’s algorithm example - step 4

The adapted Dijkstra’s algorithm we used is outlined in Figure 4.24. The param-

eters involved are as follows: S is the finite set of states in the FSM M ; S ′ is the

set of all states with permanent labels; s1 is the source state; T is the finite set of

transitions in M ; n is the number of states in M ; D is the set of distances (costs) from

s1; and P is the set of paths from s1. The variables for this algorithm are summarised

on Figure 4.25.

4.4.7 Advantages of heuristic search over Dijkstra’s algo-

rithm

The GA fitness algorithms uses static analysis of the EFSM M under consideration

to rank transitions according to how easily they can be triggered. Some of the char-

acteristics of these transitions however cannot be measured in this way.

For example consider two transitions t and t′ in a sequence of a TP where the

update function of t changes the value of internal variable v := f(x) and one of the

86

S ′ ={s1}
For (i := 2 to n)

Di := Ts1,si

EndFor
For (i := 2 to n)

choose a state sw ∈ (S − S ′) such that Dw is minimum
add sw to S ′

For each state sv ∈ (S − S ′)
Dv := min(Dv, Dw + Tsw,sv)
save minimal cost path to Pv

EndFor
EndFor

Figure 4.24: Adapted Dijkstra’s shortest (cheapest) path algorithm for an FSM

S - finite set of states in M
S ′ - finite set of all states with permanent labels
s1 - initial state
T - finite set of transitions in M
n - number of states in M
D - set of distances from s1

P - set of paths from s1

Figure 4.25: Variables for the adapted Dijkstra’s shortest (cheapest) path algorithm

87

guards in t′ uses the value of v. We might desire the fitness function to avoid such

transition pairs as they could lead to the generation of TPs such that generating input

sequences to trigger them is more difficult. Other similar analysis of the TP can be

added to the fitness functions in an attempt to direct the search better.

Dijkstra’s shortest path algorithm can efficiently be used in path search problems

where all the weighting (ranking) of the transitions are fixed. It is not applicable

when the weighting of a transition depends on the rest of the path. When it comes

to the dynamic (run-time) analysis the problem changes. Using a fitness algorithm

and a heuristic search allows for much more flexible search that can incorporate not

only static but also dynamic analysis.

This work on generating FTPs has application beyond EFSM IS generation. It

is the first step in an attempt to resolve problems related to generating test ISs for

EFSMs. The reason for using heuristic search for a problem that can be solved using

an efficient shortest-path algorithm is that we are developing the heuristic search

that can be used for related IS generation problems for which Dijkstra’s shortest-

path algorithm is not appropriate (Chapter 5).

4.5 Experiments

In this section we outline a set of experiments and present the results. A breadth first

search (BFS) algorithm is first used to generate a set of FTPs for two EFSMs. The

effectiveness of the fitness function to estimate feasibility is evaluated using these

results. Next the fitness function is used to guide heuristic search for FTPs using

the two different FTP search problem representations previously described in this

chapter.

88

4.5.1 Experiment strategy

The aim of the experiments is to evaluate the effectiveness of the fitness function

defined and compare different approaches for generating FTPs. First BFS algorithm

is used to generate all FTPs within a set range for a set of EFSMs. The two different

FTP search problem representations are then used with the GA and Random gener-

ation algorithms and compared. We propose two slightly different search techniques

for generating FTPs using GAs. For comparison the amount of effort used by the GAs

is given to a random generation algorithm and this uses the same FTP verification

method as the GAs. The BFS algorithm results are used to evaluate the effectiveness

of the fitness function to estimate feasibility.

The aim is to find an FTP between two states (BF-FTP) of an EFSM such that

it is easy to generate an input sequence that triggers it. Hence every potential FTP

produced has its quality factor estimated (as explained in Section 4.4.4). The four

FTP generation techniques were discussed in Section 4.4.

FTP generation using Dijkstra’s algorithm is straightforward. Dijkstra’s algorithm

finds the shortest paths using weighted edges and these paths can be used as potential

FTPs. If the EFSM edges are weighted using the same criteria used by the GA fitness

algorithms then Dijkstra’s algorithm will always generate the optimal results.

BFS algorithm is used to generate all possible TPs within a specified length. The

fitness and FTP quality is calculated for each TP. These results will include both the

optimal TPs that Dijkstra’s algorithm can find and TPs that cannot be guaranteed

to be FTPs. Hence these results could be an indication of how successful the fitness

function is in directing the search for FTPs. Comparing the results of the GAs with

that of the random generation algorithm on the other hand could indicate whether

using the chosen fitness function and representation of the search problem give an

advantage to heuristics like GAs over random generation.

Although Dijkstra’s shortest path algorithm might seem the obvious choice we

89

n - The number of states in the given EFSM
att - The number of attempts to generate an FTP sequence with a specified length
for each pair of states in the EFSM
min - The shortest FTP to be generated
max - The longest FTP to be generated
l - FTP length being generated
i - the attempt number
s1 - the initial state of an EFSM

Figure 4.26: Variables for the test strategy algorithm

for(s′ := 1 to n) //for all states in M
for(l := min to max) //for all the TP lengths

for(i := 1 to att) //for all the repeated attempts
FTPs1,s′ := attempt to generate FTP with length l
//Optional exit after the shortest FTP is found
if(FTPs,s′ valid FTP from s to s′)

i := att //exit loop and move to next length
endIf

endFor
endFor

endFor

Figure 4.27: Test strategy algorithm

have to remember that the problem of generating an FTP is just the first part of the

more difficult problem of generating actual test sequences that do not always represent

the shortest path between two states. Also there are some other computationally

inexpensive analysis of a potential FTP that can be added to the existing GA fitness

functions to make it direct the search for FTPs more accurately (Section 4.4.7). Such

information cannot always be represented using a fixed weight for each edge, and

hence Dijkstra’s algorithm will not always be appropriate.

A set of experiments was conducted on a set of EFSMs. For each EFSM M a

strategy is used that attempts to generate FTPs between the initial state of the EFSM

and all other states.

By using M ’s initial state for all FTPs M would be in the same initial configuration

90

(start state and values of the internal variables) with a simple reset. The problem of

placing M in a given configuration before input sequence execution, other than its

initial configuration, is not a focus of this work. A reset is not a necessary condition

for the FTP generation but we assume a reliable reset for this test strategy in order

to do multiple executions of M without considering the problems associated with

placing M in a given configuration.

A test strategy attempting to generate the lowest cost FTP between the initial

state of M and all states in M is shown on Figure 4.27. The parameters involved

are as follows: n is the number of states in the given EFSM; att is the number of

attempts to generate an FTP sequence with a specified length for each pair of states

in the EFSM; min is the shortest FTP to be generated; max is the longest FTP to

be generated; l is the FTP length being generated; i is the attempt number; and s1 is

the initial state of the EFSM. The parameters involved are also shown on Figure 4.26.

The algorithm attempts to generate an FTP between the initial state s1 of M and

every state in M (including s1). No more than att number of attempts are made for

every FTP length ranging from min to max. In order to generate comparable results,

given an EFSM the att, min and max attributes are kept the same for the different

heuristic FTP generation technique - GAs and Random. For each different FTP

generation technique the same test strategy is used but the appropriate FTP search

problem representation used (GA with PB notation, GA with transition notation and

random generation). FTP generation using Dijkstra’s algorithm does not use the test

strategy in Figure 4.27 as the algorithm finds the shortest path between a given state

s and all states in M . The BFS algorithm also does not use the test strategy. It finds

all paths of specified length between a given state s and all states in M .

91

4.5.2 Fitness evaluation results

This section describes results of a limited empirical study of how effective the proposed

fitness algorithm is in estimating the feasibility of a TP in an EFSM. The study is

limited to two EFSMs (Inres protocol M1 and a Class 2 transport protocol M2). TPs

of length 1 to l, initiating from the initial state of M1 and the initial state of M2 were

generated using BFS algorithm. The TPs were generated using a BFS algorithm.

The TP generation was irrespective of notation since transition and predicate branch

notations represent the same TPs. For ease of presentation the TP examples are

shown in transition notation.

The fitness function attempts to estimate how easily a TP can be executed (hence

how easily can the input to trigger this TP be generated). The evaluation of the qual-

ity factor of an FTP involved 1000 attempts to execute that TP with random input

parameters. A negative statistical correlation is expected between the fitness values

and the TP quality factor values. Correlation factor below 0.4 generally indicates

lack of correlation while correlation factor of 0.6 and above indicates fair correlation

between two sets of values considered [Pear 79]. Correlation factor between 0.4 and

0.6 is considered as some correlation. These limits vary for applications in different

fields.

Class 2 Transport Protocol

The Class 2 transport protocol M2 is presented in Figure 4.28 and the corresponding

transition table is shown in Table 4.29 and Table 4.30. M2 has more states, transitions

and is more complex than M1. M2 is a major module (based on the AP-module

[Boch 90]) of a simplified version of a class 2 transport protocol [Rama 03]. M2

represents only the core transitions of that EFSM, as used in [Rama 03].

1083 TPs were generated and plotted in Figure 4.31 that represent all possible

92

Figure 4.28: Class 2 transport protocol EFSM M2

t sstart send i Output Ranking
t0 s1 s2 U?TCONreq N!TrCR 0
t1 s1 s3 N?TrCR U!TCONind 0
t2 s2 s4 N?TrCC U!TCONconf 3
t3 s2 s5 N?TrCC U!TDISind N!TrDR 4
t4 s2 s1 N?TrDR U!TDISind N!terminated 0
t5 s3 s4 U?TCONresp N!TrCC 1
t6 s3 s6 U?TDISreq N!TrDR 0
t7 s4 s4 U?TDATAreq N!TrDT 2
t8 s4 s4 N?TrDT U!DATAind N!TrAK 3
t9 s4 s4 N?TrDT U!error N!error 3
t10 s4 s4 U?U READY N!TrAK 0
t11 s4 s4 N?TrAK 6
t12 s4 s4 N?TrAK U!error N!error 4
t13 s4 s4 N?TrAK 7
t14 s4 s4 N?TrAK U!error N!error 5
t15 s4 s4 N?Ready U!Ready 2
t16 s4 s5 U?TDISreq N!TrDR 0
t17 s4 s6 N?TrDR U!TDISind N!TrDC 0
t18 s6 s0 N?terminated U!TDISconf 0
t19 s5 s0 N?TrDC N!terminated U!TDISconf 0
t20 s5 s0 N?TrDR N!terminated 0

Figure 4.29: Transition table for M2 excluding transition guards

93

t gPi
and gD Ranking

t0 0
t1 0
t2 opt ind ≤ opt 3
t3 opt ind > opt 4
t4 0
t5 accpt ind ≤ opt 1
t6 0
t7 S credit > 0 2
t8 R credit 6= 0 ∧ Send sq = TRsq 3
t9 R credit = 0 ∧ Send sq 6= TRsq 3
t10 0
t11 TSsq ≥ XpSsq∧ 6

cr + XpSsq − TSsq ≥ 0 ∧ cr + XpSsq − TSsq ≤ 15
t12 TSsq ≥ XpSsq∧ 4

(cr + XpSsq − TSsq < 0 ∨ cr + XpSsq − TSsq > 15)
t13 TSsq < XpSsq∧ 7

cr + XpSsq − TSsq − 128 ≥ 0 ∧ cr + XpSsq − TSsq − 128 ≤ 15
t14 TSsq < XpSsq∧ 5

(cr + XpSsq − TSsq − 128 < 0 ∨ cr + XpSsq − TSsq − 128 > 15)
t15 S credit > 0 2
t16 0
t17 0
t18 0
t19 0
t20 0

Figure 4.30: Transition guards for M2

94

Figure 4.31: All TPs generated using BFS algorithm for M2 with 1-5 transitions (cor-
relation factor 0.72, when excluding the 0 quality factor TPs the correlation factor is
0.76). Light shaded squares represent zero-quality TPs. The dark diamonds represent
FTPs.

TPs with length of up to 5 transitions. 479 of these TPs have positive FTP quality

factor (i.e. every TP was successfully triggered at least once in 1000 attempts).

All the 604 TPs with 0 quality factor are drawn in Figure 4.31 using lightly shaded

squares. As explained in Section 4.4.4 TPs with 0 quality factor cannot be guaranteed

to be feasible (according to our feasibility estimation). Although the fitness aims to

estimate feasibility a high proportion of TPs did not seem feasible for this EFSM.

However all such TPs with 0 quality factor have a comparatively high fitness value.

This high proportion of TPs with 0 quality factor indicates that some initial TP

conflict resolution could be used to improve the results. Conflict resolution for EFSM

test sequences has been addressed in [Dual 04] and the use of such methods remains

a topic for future work.

Some interesting FTPs from Figure 4.31 and their respective fitness values and

quality factors are listed in Table 4.32.

The minimising fitness function function correctly identified all TPs that were

made of only simple transitions. Such TP had a fitness value of 0 and a quality factor

95

TP fitness quality factor (feasibility)
1 1;6;18;0;4; 0 1000/1000
2 1;5;16;20;1; 1 603/1000
3 0;2;7; 3 481/1000
4 0;2;11;11;11; 19 2/1000
5 1;5;14;11;11; 18 5/1000
6 1;5;15;14;11; 14 50/1000
7 0;2;10;11;10; 7 73/1000
8 0;4;0;2;11; 7 83/1000
9 1;5;10;15;11; 9 65/1000
10 0;2;10;14;16; 6 473/1000
11 0;2;10;11;16; 7 69/1000
12 0;2;14;14;14; 16 337/1000
13 0;2;7;14;14; 13 240/1000
14 1;5;14;14;10; 11 436/1000

Figure 4.32: Example TPs for the Class 2 transport protocol in transition notation.

1000/1000 (e.g. TP 1 in Table 4.32). TPs that contain mostly simple transitions but

also a few conditional transitions have fitness value slightly above 0 and corresponding

quality factor of about 500/1000 (e.g. TP 2 and 3 in Table 4.32). A disproportionate

drop in the TP quality factor as soon as conditional transitions are considered is

observed on Figure 4.31. The introduction of a single conditional transition to a TP

can generally be expected in theory (all other things being equal) to halve the quality

factor. Every additional condition in theory should further reduce the remaining

quality factor. This could explain the two clusters of points between the 0-200/1000

and 400-600/1000 quality factor values.

Most TPs with quality factor below 200/1000 have high fitness values. In those

cases the fitness algorithms has correctly estimated these TPs as not easy to execute.

TPs 4,5 and 6 in Table 4.32 are such examples.

There are some paths that the fitness algorithm estimated as not too hard to

execute (i.e. with relatively low fitness value) that have surprisingly low quality

factor values (e.g. TPs 7,8 and 9 in Table 4.32). When all of the transitions involved

96

in those TPs are examined in more detail t11 of M2 appears to be in all those TPs.

To illustrate the effect of this transition in a TP path consider TPs 10 and 11 in Table

4.32. The only difference between them is that the fourth transition of TP 11 is t11.

Their fitness values differs only by one point, indicating that t11 is estimated to be

more difficult to execute than t14 (used in TP 10 instead of t11). However the sharp

contrast in the quality factor values indicates that t11 is harder to execute than the

fitness function has estimated for this transition sequence. A more detailed analysis

of the predicates before they are ranked, as previously discussed in this chapter, could

help prevent this. This development remains future work.

There were some TPs with high fitness values (i.e. estimated to be hard to execute)

that have relatively high feasibility ratio. Such examples included TPs 12, 13 and 14

in Table 4.32. All TPs with such characteristics seem to contain t14. Here the fitness

function has not discovered that even though t14 has a number of complex conditions,

they are easy to satisfy for this transition sequence. Similar to the analogous example

above a more complex analysis of the transitions could consider such factors in the

transition ranking and fitness generation and attempt to more accurately estimate

the feasibility of TPs that include transitions like t11 and t14.

The fitness function seems to correctly estimate the feasibility of most of the 1083

TPs. There is a negative correlation factor of 0.72 between the fitness function and

the quality factor illustrated on Figure 4.31. If we only consider the 479 FTPs the

correlation factor is 0.76. The FTP results (including unsuccessful TPs) are classified

in six sets according to the end state of the FTPs. The results for s1, s2, s3, s4, s5

and s6 are presented in Figures 4.33, 4.34, 4.35, 4.36, 4.37 and 4.38 accordingly. The

cumulative results have negative correlation factors of 0.83, 0.95, 0.95, 0.69, 0.71 and

0.76 for TPs of s1, s2, s3, s4, s5 and s6 accordingly and negative correlation factors

of 0.77, 0.87, 0.87, 0.75, 0.70 and 0.78 for the 479 FTPs accordingly.

This relatively strong correlation shows that even though the fitness function

97

Figure 4.33: All FTPs generated using BFS algorithm for M2 with 1-5 transitions
ending at s1 (correlation factor 0.83, when excluding the 0 quality factor TPs the
correlation factor is 0.77). Light shaded squares represent unfeasible TPs. The dark
diamonds represent FTPs.

Figure 4.34: All FTPs generated using BFS algorithm for M2 with 1-5 transitions
ending at s2 (correlation factor 0.95). The dark diamonds represent FTPs. No zero-
quality TPs were found.

98

Figure 4.35: All FTPs generated using BFS algorithm for M2 with 1-5 transitions
ending at s3 (correlation factor 0.69, when excluding the 0 quality factor TPs the
correlation factor is 0.76). Light shaded squares represent zero-quality TPs. The
dark diamonds represent FTPs.

Figure 4.36: All FTPs generated using BFS algorithm for M2 with 1-5 transitions
ending at s4 (correlation factor 0.69, when excluding the 0 quality factor TPs the
correlation factor is 0.75). Light shaded squares represent zero-quality TPs. The
dark diamonds represent FTPs.

99

Figure 4.37: All FTPs generated using BFS algorithm for M2 with 1-5 transitions
ending at s5 (correlation factor 0.71, when excluding the 0 quality factor TPs the
correlation factor is 0.70). Light shaded squares represent zero-quality TPs. The
dark diamonds represent FTPs.

Figure 4.38: All FTPs generated using BFS algorithm for M2 with 1-5 transitions
ending at s6 (correlation factor 0.76, when excluding the 0 quality factor TPs the
correlation factor is 0.78). Light shaded squares represent zero-quality TPs. The
dark diamonds represent FTPs.

100

underestimated TPs with t11 and overestimated TPs with t14, it can reasonably

estimate the feasibility of a TP without executing it.

The results presented use strict FTP verification (the exact TP has to be followed).

When the same experiment was done using the relaxed FTP verification where only

the start and end states of the TP are of importance (Figure 4.15) the results gen-

erated a negative correlation factor of only 0.13 and when only considering FTPs -

0.22. This suggests that the reasons for using the relaxed FTP verification outlined

in Section 4.4.4 might be EFSM dependant. It shows that the fitness is better at

assessing feasibility of a given path than whether the corresponding IS can take us

to a particular state. Although the relaxed FTP verification might be useful in cases

like the one shown on Figure 4.17, strict FTP verification seems to perform much

better (at least for this EFSM).

Inres Protocol

The EFSM M1 in Figure 4.1 representing the Inres protocol that is simpler than the

Class 2 transport protocol M2 previously examined. The transition table for M1 is

presented in Figure 4.39.

The BFS algorithms was used to generate 257 TPs for M1 where only 7 were

not FTPs. Figure 4.40 illustrates those TPs that represent all possible TPs with

length of up to 6 transitions with positive quality factor (i.e. every TP was successful

triggered successfully at least once in 1000 attempts). Again TPs with quality factor

of 0 cannot be guaranteed to be feasible and drawn with a lighter shaded squares.

Here however there are considerably less TPs with 0 quality factor for M1. This could

indicate that the FTPs are easier to generate.

Some interesting FTPs from Figure 4.40 and their respective fitness values and

quality factors are listed in Figure 4.41.

The minimising fitness function correctly identified all TPs that were made of

101

t sstart send i Output gPi
and gD Ranking

t0 sd sw ICONreq !CR 0
t1 sw sc CC !ICONconf 0
t2 sw sw T expired !CR counter < 4 2
t3 sw sd T expired !IDISind counter ≥ 4 1
t4 sc ss IDATreq DT 0
t5 ss sc AK num = number ∧ number = 0 6
t6 ss sc AK num = number ∧ number = 1 6
t7 ss ss AK DT num 6= number ∧ couter < 4 5
t8 ss sd AK !IDSind num 6= number ∧ couter ≥ 4 4
t9 ss ss T expired DT counter < 4 3
t10 ss sd T expired !IDSind counter ≥ 4 2
t11 sd sd DR !IDSind 0
t12 sw sd DR !IDSind 0
t13 sc sd DR !IDSind 0
t14 ss sd DR !IDSind 0

Figure 4.39: Transition table for the Inres protocol on Figure 4.1.

Figure 4.40: All FTPs generated using BFS algorithm for M1 with 1-6 transitions
(correlation factor 0.62, when excluding the 0 quality factor TPs the correlation fac-
tor is 0.60). Light shaded squares represent zero-quality TPs. The dark diamonds
represent FTPs.

102

TP fitness quality factor (feasibility)
1 0;1;4;14; 0 1000/1000
2 20;20;0;4;12; 0 1000/1000
3 0;1;4;7;7;6; 16 101/1000
4 0;2;1;4;7;6; 13 134/1000
5 0;1;4;9;7;6; 12 144/1000
6 11;11;0;1;4;6; 6 127/1000
7 0;1;4;6;4;14; 6 142/1000
8 11;11;0;4;7; 5 860/1000
9 11;11;0;4;14; 0 1000/1000
10 0;1;4;6;4; 6 149/1000
11 0;1;4;6;4;5; 12 16/1000
12 0;1;4;9;9;9; 9 1000/1000
13 0;2;2;2;2;3; 9 1000/1000
14 0;2;1;4;9;7; 10 860/1000
15 0;1;4;7;7; 10 745/1000

Figure 4.41: Example TPs for the Inres protocol in transition notation.

only simple transitions just as it did for M2. Such TPs had a fitness value of 0 and a

quality factor 1000/1000 (e.g. TP 1,2 and 9 in Figure 4.41). TPs containing mostly

simple transitions tend to have a high quality factor and low fitness value (e.g. TP

8 in Figure 4.41 has quality factor 860/1000 and fitness value of 5). Different to

the results for M2 the introduction of guarded transitions in the TPs generated for

M1 does not result in a halving of the quality factor. Even though a condition was

introduced in the TP, the TP quality factor seem to remain high. This could indicate

that the introduced condition is easy to satisfy. Here the fitness function seems to be

penalising t7, the only conditional transition in TP 8 slightly more than necessary.

To illustrate the effect of this transition in a TP path consider TPs 8 and 9 in Figure

4.41. The only difference between them is that the sixth transition of TP 8 is t7.

Their fitness values differ by 5 points but they both have high quality factors. This

indicates that t7 is estimated to be much more difficult to execute than t14 (used

in TP 9 instead of t7). However the sharp contrast in the fitness values indicates

103

that t7 is slightly easier to execute than the fitness function has estimated for this

transition sequence. A more detailed analysis of the predicates before they are ranked,

as previously discussed in this chapter, could help prevent this.

A large number of TPs with quality factor below 200/1000 have high fitness values.

In those cases the fitness algorithms has correctly estimated these TPs as not easy to

execute. TPs 3, 4 and 11 in Figure 4.41 are such examples.

There as some paths that the fitness algorithm estimated as not too hard to

execute (i.e. with relatively low fitness value) that have surprisingly low quality

factor values (e.g. TPs 6 and 7 in Figure 4.41). When all of the transitions involved

in those TPs are examined in more detail t6 of M1 appears to be in all those TPs. To

illustrate the effect of this and a similar transition t5 in a TP path consider TPs 10

and 11 in Figure 4.41. The only difference between them is that the sixth transition

of TP 11 is t5. t6 is the only conditional transition in TP 10 but the fitness value

is only 6. This suggests that executing t6 is more difficult than the fitness function

estimated. Similarly t5 seems to have similar properties as TP 11 has a quality factor

of only 16/1000. A more detailed analysis of the predicates before they are ranked

could be useful in this example as well.

There were some TPs with high fitness values (i.e. estimated to be hard to execute)

that have considerably high quality factor. Such examples included TPs 12, 13, 14

and 15 in Figure 4.41. All TPs with such characteristics seem to contain t2, t7 or t9.

We already discussed that t7 seems to be penalised too harshly. Consider t2 and t3 in

Figure 4.39. t3 is estimated to be easier to execute than t2 due to the difference in the

comparison operators of their gD. However when the EFSM is closely examined t2

appears to always be feasible for four consecutive executions and only then t3 becomes

feasible for a single execution. t2 represents a counter loop and t3 is the loop exit.

After four consecutive executions of t2, it becomes infeasible and the counter exit t3 is

executed. Similarly t9 represents a counter loop and t10 is the loop exit. The dynamic

104

behaviour of these transitions is difficult to estimate using a simple ranking process.

So, identification of such loops could be beneficial. Detailed analysis of the predicates

involved in this example could have strongly benefited the fitness function.

The fitness function seems to correctly estimate the feasibility of most of the 257

TPs. There is a negative correlation factor of 0.62 between the fitness function and

the quality factor illustrated in Figure 4.40. If we only consider the 479 FTPs the

correlation factor is 0.6. The FTP results are classified in four sets according to the

end state of the FTPs. The results for sd, sw, sc and ss are presented in Figures 4.42,

4.43, 4.44 and 4.45 accordingly. The cumulative results have negative correlation

factors of 0.62, 0.54, 0.85 and 0.49 for FTPs of sd, sw, sc and ss accordingly. The

correlation factor seems to be lowest for the two states sw and ss, target states for t2

and t9 accordingly and negative correlation factors of 0.61, 0.5, 0.87 and 0.54 for the

479 FTPs accordingly.

Figure 4.42: All FTPs generated using BFS algorithm for M1 with 1-6 transitions
ending at sd (correlation factor 0.62, when excluding the 0 quality factor TPs the
correlation factor is 0.61). Light shaded squares represent zero-quality TPs. The
dark diamonds represent FTPs.

The correlation between the fitness function and the TP quality factor is not

as strong as that for M2 however it still seems to correctly estimate the feasibility

for much more than half the FTPs. The small size of the EFSM and the complex

105

Figure 4.43: All FTPs generated using BFS algorithm for M1 with 1-6 transitions
ending at sw (correlation factor 0.54, when excluding the 0 quality factor TPs the
correlation factor is 0.5). The dark diamonds represent FTPs. No zero-quality TPs
were found.

Figure 4.44: All FTPs generated using BFS algorithm for M1 with 1-6 transitions
ending at sc (correlation factor 0.85, when excluding the 0 quality factor TPs the
correlation factor is 0.87). Light shaded squares represent zero-quality TPs. The
dark diamonds represent FTPs.

106

Figure 4.45: All FTPs generated using BFS algorithm for M1 with 1-6 transitions
ending at ss (correlation factor 0.49, when excluding the 0 quality factor TPs the
correlation factor is 0.54). Light shaded squares represent zero-quality TPs. The
dark diamonds represent FTPs.

dynamic behaviour of some of the transitions (loops of fixed number of iterations)

seem to contribute towards this result.

The results presented use strict FTP verification (the TP has to be obeyed).

Initially similar results were generated using the relaxed FTP verification where only

the start and end states of the FTP are of importance. Those results generated a

negative correlation factors of 0.62 for all TPs and 0.61 for FTPs. Again the small

size of the EFSM is the likely cause for similar correlation ratio values.

4.5.3 FTP generation results

Following the positive results in evaluating the fitness function, the test strategy in

Figure 4.27 is used to generate FTPs. Both FTP search problem representations

are employed to generate FTPs using the two GA and a random generation search

techniques outlined earlier. The results are compared and conclusions drawn. The

test strategy in Figure 4.27 is used for each FTP search problem representation in

order to ensure that GA and random search techniques are given equivalent generation

attempts in terms of fitness evaluations and FTP verification executions.

107

Two metrics are used to compare the results. The commonly used state coverage

metric measures the number of states in M that have at least one FTP generated for

every FTP size attempted. The success rate metric measures how many FTPs were

generated compared to the total number of attempts it took to generate this results.

This metric includes all the unsuccessful attempts to generate an FTP for the given

search. It is important to note that both metrics include attempts to generate FTPs

where a transition path exists in the abstracted FSM, but the transition guards lead

to it having quality 0.

All the results exclude any attempts to generate unspecified transition paths i.e.

paths that do not exist in the abstracted FSM (e.g. attempts to generate a TP of

size 2 for a state reachable in at least 3 transitions are discarded).

Figure 4.46 represents a summary of the result averages. In general the results

show that PB notation seems to perform the same or better than transition notation

according to both metrics. In two instances the averaged FTP search results in Figure

4.46 show identical performance of the PB notation and transition notation methods,

the transition notation attempt rate for the Inres protocol performs slightly better

than the PB notation equivalent, but in the nine other instances the PB notation

is the clear winner. This performance gap between the two notations is likely to

increase as larger EFSMs are considered. This is due to the fact that the search space

is geometrically related to the number of transitions in an EFSM. The search space

for PB notation search is bound by the EFSM abstraction defined in the beginning

of this chapter (based on number of input declarations and PBs).

For both metrics the two GA search algorithms clearly perform better than the

random generation algorithm. This suggests that the fitness function helps guide a

heuristic search for FTPs. As larger EFSMs and longer FTPs are considered, the

heuristics seem to perform increasingly better than the random generation algorithm

108

when given equal processing effort in terms of fitness evaluations and FTP verifica-

tions.

The state coverage metric is the easier one to satisfy. Not surprisingly the GAs

found at least one FTP for every state in M1 and M2. This measure however discards

all the unsuccessful attempts to generate a given FTP. Hence the success rate metric

considers those unsuccessful attempts as well. The success rates generated were better

than expected (75% for M1 and 54% for M2).

notation PB transition PB transition
EFSM Inres Inres Class 2 Class 2

State Coverage GA1 100% 100% 98% 98%
GA2 100% 78% 100% 94%

Random 44% 17% 32% 27%
Success rate GA1 75% 73% 54% 43%

GA2 83% 45% 43% 40%
Random 41% 19% 26% 27%

Figure 4.46: GA and Random search result averages for the Class 2 and Inres protocols
in PB notation and transition notation.

The results for each of the EFSMs are discussed in more detail in the following

two subsections. The results for both EFSMs show similar trends according to both

metrics. The state coverage and success rate metrics seem to slightly differ between

the two EFSMs. The state coverage and success rate results for M1 and M2 are similar

for most of the GA generated results but the random algorithm generated results for

the two EFSMs are slightly different. It is important to note that for Figures 4.47 to

4.53 the points represent result data and the connecting curved line are drawn just

to illustrate the trend.

Class 2 Transport Protocol

The Class 2 Transport Protocol (M2) is the larger of the two EFSMs we discuss.

Figure 4.47 represents the state coverage for FTPs generated using PB notation.

109

GA1 has performs well and GA2 fails to find one FTP of size 4, while the random

generation algorithm performance peaks when generating FTPs of size 2 and 3 and

gradually declines as the FTP size increases.

Figure 4.47: State coverage for PB notation FTPs generated using GA and Random
generation algorithms for M2 with 1-8 transitions

Figure 4.48: State coverage for transition notation FTPs generated using GA and
Random generation algorithms for M2 with 1-8 transitions

Figure 4.48 represents the state coverage for FTPs generated using transition

notation. GA1 performs well and only misses one FTP of size 6 while GA2 finds that

110

FTP but fails to find an FTP of size 7 and two of size 8. The random generation

algorithm performance equals that of the GAs for FTPs of size 1 and 2 but as the size

increases its performance sharply declines. There are no FTPs found by the random

generation algorithm of length 4 to 8.

Figure 4.49: Success ratio for PB notation FTPs generated using GA and Random
generation algorithms for M2 with 1-8 transitions

Figure 4.49 represents the success rate for FTPs generated using PB notation.

The higher fluctuation rate here can be explained by the different degree of difficulty

in generating FTPs of different sizes for some states. This relates to the future

work on the fitness function discussed earlier in Section 4.5.2. GA1 shows the best

performance with a peak performance of 100% and worst performance of 26%. GA2

performs mostly better than the random generation algorithm, except for FTPs of

size 2. For FTPs of size 3 and 4 it even performs slightly better than GA1. The

random generation algorithm performs slightly better than GA2 for FTPs of size 2,

but the performance rapidly drops to towards 0% as the size of the FTPs increases.

Figure 4.50 represents the success rate for FTPs generated using transition nota-

tion. A similar effect between the GA1 and GA2 values can be observe here as with

the PB notation attempt rate. However here the random generation algorithm starts

111

Figure 4.50: Success ratio for transition notation FTPs generated using GA and
Random generation algorithms for M2 with 1-8 transitions

at a 100% for FTP sizes 1 and 2, but quickly drops to 0%. This excellent start for

the random generation algorithm can be linked to the ease of generating very short

FTPs since most valid transition paths of such length (initiating form the start state

s1) are likely to be feasible.

Inres Protocol

The Inres protocol EFSM (M1) is smaller than M2, but as the fitness evaluation

results in Section 4.5.2 indicated not necessarily easier to generate FTPs for.

Figure 4.51 represents the state coverage for FTPs generated using PB notation.

The two GAs have performed equally well, while the random generation algorithm

performance equals the GAs FTPs of size 1 and 2 but declines as the FTP size

increases. No FTPs with sizes 5, 7 or 8 were generated by the random generation

algorithm.

Figure 4.52 represents the state coverage for FTPs generated using transition

notation. GA1 performs well and GA2 fails to find some FTPs with sizes 4 and 7

and all FTPs of size 8. The random generation algorithm succeeds for only half of

112

Figure 4.51: State coverage for PB notation FTPs generated using GA and Random
generation algorithms for M1 with 1-8 transitions

Figure 4.52: State coverage for transition notation FTPs generated using GA and
Random generation algorithms for M1 with 1-8 transitions

113

the states for FTP size 1 and declines with some partial success for FTPs of size 4

and 6 but fails to generate FTPs with sizes 3, 5, 7 and 8.

Figure 4.53: Success rate for PB notation FTPs generated using GA and Random
generation algorithms for M1 with 1-8 transitions

Figure 4.53 represents the success rate for FTPs generated using PB notation.

A similar effect between the GA1 and GA2 values can be observe here as with the

attempt rate for M2. When generating FTPs with size 2 GA1 takes one attempt more

than it takes the random generation algorithm but GA1 generates FTPs with larger

sizes with better efficiency than the random generation algorithm. When generating

FTPs with size 2 GA2 took 3 attempts more than it took the random generation

algorithm. The GA1 attempt rate is the same as the random generation algorithm

for FTPs of size 3. GA2 seems to generate the best results overall. GA1 however

generates FTPs of size 8 with better efficiency than GA1 and the random generation

algorithm. The random generation algorithm starts at at a high 100% for FTPs of

size 1 and 2 but steady decline to 0% for FTPs with sizes 5,7 and 8.

Figure 4.54 represents the success rate for FTPs generated using transition nota-

tion. GA1 seems to perform best although the attempt rate steadily declines from

100% for FTPs with size 1 and 2 until it picks up for FTPs with size 7 and 8. GA2

114

Figure 4.54: Success rate for transition notation FTPs generated using GA and Ran-
dom generation algorithms for M1 with 1-8 transitions

also starts at 100% for FTPs with size 1 and 2 but declines to 0% for FTPs with

size 8, but is slightly better than GA1 for FTPs of size 6. The random generation

algorithm starts at 100% attempt rate for generation FTPs with sizes 1 but sharply

drops to no FTPs generated for sizes 3, 5, 7 and 8.

4.6 Summary

The fitness evaluation results suggest that the principles used in the fitness function

estimate the feasibility of a given transition path (TP) with reasonable accuracy.

The 0.72 and 0.62 correlation factors suggest a good correlation between the fitness

algorithm and estimated feasibility for the TPs for the two EFSMs tested.

The heuristic search results suggest that the novel EFSM abstraction using pred-

icate branches (PBs) could help in the search for feasible transition paths (FTPs).

Compared with the transition notation results, the PB notation searches generated

better results for both EFSMs. It was also found that a GA that used the fitness

function was more effective in FTP generation than a random algorithm.

115

Although the path could be generated using Dijkstra’s shortest path algorithm it

is important to remember that generating FTPs is the first stage of an attempt to

generate feasible test transition paths for EFSMs and the input sequences to trigger

them. Search for such test sequences may require information about an EFSM that

could not be presented in appropriate form for Dijkstra’s shortest path algorithm.

A particular focus for future work on FTPs is to improved fitness estimation for

loops. Some more experimental work could further help increase the accuracy of the

fitness algorithm.

Chapter 5

State Verification Transition Path

generation for EFSMs

5.1 Introduction and motivation

As discussed in the motivation for Chapter 4 conformance testing for EFSMs is not

simple. Typically the machines that arise are complex and exhaustive testing is

infeasible [Lee 96]. Automating the generation of test sequences for EFSMs has thus

been of a topic great interest [Lee 96, Li 94, Petr 04, Dual 04].

A system specified by an FSM or an EFSM is tested for conformance by applying a

sequence of inputs and verifying that the corresponding sequence of outputs observed

is that expected. Once a given transition is tested a state verification sequence can

verify that the transition ended in the intended state. Unique input/output (UIO)

sequences have been extensively used to solve this problem in FSMs. In Chapter 3 we

explored the generation of UIOs. In Chapter 4 we discussed how feasible transition

paths (FTPs) can be generated for EFSMs. Here we combine these two methods in

an attempt to generate state verification transition paths (SVTPs) - transition paths

116

117

(TPs) that are easy to trigger and define state verification sequences for a given state

of an EFSMs.

The objective of this work is to facilitate the generation of FTPs that can be used

as state verification sequences. This can help in test data generation for EFSMs.

In this chapter we focus on generating TPs that are likely to be feasible and whose

observable behaviour can verify an end state. The overall approach to the problem is

based on defining a fitness function that can estimate how likely it is that a transition

path has both these properties. Then we can attempt to generate input sequences to

trigger these transition paths.

Empirical data is used to evaluate the effectiveness of this fitness function. GAs

are used to generate TPs and the results are evaluated by comparing the results to

those produced using a random generation algorithm.

The chapter begins by outlining the problem. The approach used to search for

SVTPs is described next. Then the fitness functions for the two different search prob-

lem representations for generating SVTPs are described as well as the algorithms used

to verify potential solutions. The experimental strategy to collect the empirical evi-

dence follows. Section 5.4 reports on the results of the experiment. Finally conclusions

are drawn.

5.2 State verification transition paths (SVTPs)

In this section we define a state verification transition path (SVTP) and describe a

fitness function that attempts to estimate how likely it is that a transition path is

feasible (previously discussed in Section 4.3.1) and how likely it is that it represents

a state verification sequence for a given state s in an EFSM M .

The ability to observe the internal behaviour of M is important at run time in

order to verify that a TP is followed. For some EFSM based system implementations

118

the values of the internal variables can be monitored at run time. We will refer to

such systems as monitored systems. White box testing can be used to test such

systems for conformance. For other EFSM based system implementations the values

of the internal variables can not be monitored at run time. Such systems we refer to

as non-monitored systems. Black box testing can be used to test such systems for

conformance.

This work can be applied to both monitored and non-monitored system imple-

mentations when testing the implementation (MI) of an EFSM based system M . For

our experiment we simulate and monitor the execution of M (the specifications) in

order to evaluate the effectiveness of our approach.

A transition t in an EFSM M is defined as (ss, gI , gD, op, sf) in Chapter 2. The

observable behaviour of t is defined by gI and op. The input declaration i and input

parameter(s) Pi of the tuple gI (i, Pi, gP i) are clearly observable since they are supplied

by the user. The sequential operations op for t can consist of simple assignments

and output statements. In FSMs the output generated by a transition is an output

declaration from the known output alphabet or null (no observable output). However

in EFSMs besides output declarations there are also output functions that take a

number of parameters and generate an output based on these parameters.

There are two types of output functions in terms of observable behaviour. The

output functions in communication protocols specified as EFSMs often represent an

observable output parameter (output header) followed by the parameters that rep-

resent the transported data. In such cases the assignment statements in the op part

of a transition will not generate any observable output and any two output functions

will produce different headers and so different outputs.

Hence different output declarations are assumed to be distinguishable: this is

similar to the ‘output distinguishable’ assumption used in the X-machines literature

[Halc 98]. Two output functions f1(a1) and f2(a2) generate distinguishable output as

119

they have different labels.

Definition 5.2.1. Two output function f1 and f2 are said to be output equivalent if

there exists a1 and a2 such that f1(a1) = f2(a2). Two output functions f1 and f2 are

said to be output-distinguishable if for all a1, a2 we have that f1(a1) 6= f2(a2).

Hence in order to establish output distinguishability for transitions with common

output functions (e.g. f1(a1) and f1(a2)) the values of the output parameters (a1

and a2) and the computation logic the function (f1) must be known. When such

information is unavailable f1(a1) and f1(a2) are assumed to be equivalent. In order

to simplify the analysis this information is assumed unavailable.

Cases where two different output function f1 6= f2 could be output equiva-

lent f1(a1) = f2(a2) for some values of a1 and a2 are not considered. Output-

distinguishability cannot be guaranteed for such output functions. This topic remains

one for future work.

Definition 5.2.2. A transition t initiating from state s is observable if there is no

other transition t′ initiating from s with the same input and equivalent output as t.

Definition 5.2.3. An EFSM M is observable if all of its transitions are observable.

Consider the Sending state (Ss) in the EFSM M1 on Figure 4.1. There are two

transitions initiating from that state that share the same input declaration AK, the

same input parameter num and even the same input guard num = number, but have

different domain guards. If M1 is observable then these two transitions would generate

different observable outputs. However they both do not generate any output. In order

to generate test sequences for such EFSM examples in our work we have relaxed the

observability constrain that is commonly used in similar work [Petr 04], by considering

EFSMs that are not necessarily observable.

For example consider transitions t4, t7 and t9 in M on Figure 4.1 that have output

functions. t7 and t9 both start from the same state and have the same output function,

120

therefore are assumed to be output equivalent. However t4 is output distinguishable

from the other transition leaving the same state - t13.

Definition 5.2.4. Each output-distinguishable output function and output declara-

tion can be represented by a unique symbol ω.

After defining output-distinguishability for output functions we can define a repre-

sentation for each output function and each output declaration. In transitions where

no output declaration or output function is present we can assume a null output.

t out channel 1 out channel 2
ta ω1 ω2

tb ω2 ω1

tc ω1

td ω2

te ω1

tf ω2

Figure 5.1: Equivalent observable output assumption

Some EFSMs have a number of input and output channels (ports). Some transi-

tions send output to more than one channel at a time. In some EFSM systems such

output channels are not individually observable. For example consider the transitions

in Figure 5.1. The listed transitions output to two channels and the observable output

for tc and te can be distinguished from that of td and tf . By contrast the output of

tc and te in Figure 5.1 cannot be distinguished for such EFSM systems.

In this work we assume that each channel is separately observable, hence all of ta,

tb, tc, td, te and tf can be distinguished from each other.

In FSMs verifying the end state of a transition is often considered a sufficient

measure to identify potential transfer faults in the implementation. In EFSMs it is

necessary to verify the configuration of the EFSM after a transition. An EFSM starts

in its initial configuration and there is a configuration for every combination of state

s and values of the set internal variables V .

121

Definition 5.2.5. A configuration for an EFSM M is a combination of state and

values of the internal variables V of M . It is also a state in the unfolded machine of

M represented as an FSM.

In their recent work [Petr 04] Petrenko et al. explored the idea of generating

configuration confirming sequences. Such an input sequence for an EFSM in a given

configuration would produce an output sequence different from a defined subset of

other configurations for that machine. Hence the tail configuration can be verified

after a transition. The potential problem of combinatorial complexity associated

with exploring all the configuration of an EFSM has been addressed by deriving a

confirming test sequence for a designated reference configuration and a given black

list of typical faulty configuration, supplied by the tester.

The work in this chapter is different from the work on confirming configuration

sequences in a number of ways. We use a slightly different EFSM model with weaker

assumptions concerning input completeness and transition observability. In this work

we attempt to solve the problem of finding a TP in an EFSM initiating from a

state s that would produce an output sequence that uniquely identifies s as the start

state for that TP. The problem of finding input to trigger this TP is also briefly

addressed. The issue of verifying the values of the internal variables is not explicitly

considered. However a certain level of internal variable checking occurs in cases when

some guarded transitions are triggered and their feasibility is verified.

It is possible to extend the notion of a UIO that can verify a given state of an FSM,

to a TP from state s (triggered by a parameterised input sequence) that generates a

unique distinguishable output sequence that will distinguish s in an EFSMs M from

all other states. Such a sequence is a state verification transition path (SVTP) for

the state s of M .

Definition 5.2.6. A state verification transition path (SVTP) for the state s of M

122

is a transition path, triggered by a parameterised input sequence x, which produces

a distinguishable output sequence y such that y cannot be produced in response to x

from any state s′ 6= s.

An SVTP can be used to verify whether the correct tail state has been reached

after a transition.

5.2.1 Fitness function

It is useful to have an easy to execute fitness function that guides the search for TPs

that are easy to execute and at the same time have observable behaviour (in terms

of input and output) that can uniquely identify a state.

The problem of generating FTPs was discussed in Chapter 4. The method used

there to estimate the feasibility of a TP is replicated here. Transitions are classi-

fied into four types simple, gP i , gD and gP i-gD. TPs with simple transitions are

encouraged while the other types of transitions are penalised according to their guard

conditions. Hence the search is directed towards generating a FTP.

An SVTP can represent TPs that involve simple, gP i , gD and gP i-gD transitions.

If an SVTP consists of only simple transitions then it is guaranteed to be feasible.

In that case there would be no need to consider input parameters and the values of

the internal variables V of the EFSM. In the same way the feasibility of a transition

path that does not consist of only simple transitions cannot be guaranteed.

Transitions can also be classified according to the characteristics of their observ-

able input /output behaviour. Similar to the ranking of input /output pairs in Chap-

ter 3 all input declarations, output declarations and output functions can be labelled

in such a way that every unique observable input /output behaviour is listed only

once. Hence output functions with equivalent observability, as defined earlier, are

only paired with an input once. The frequency of each input and output label pairs

123

is enumerated. Similar to the fitness function used in Chapter 3 to direct a search

for UIOs, here we can penalise a TP according to frequency of the input /output

label pairs involved. The summation of the frequency values of the input and output

label pairs involved in the TP can be used to estimate the likelihood of that TP

representing a state verification sequence.

All transitions are ranked according to the combined feasibility and uniqueness

values. Both frequency values are scaled to give them equal weight in the ranking. A

bias for one of the frequency values can be used in an attempt to fine tune the fitness

algorithm. This is briefly examined in Section 5.4.2.

Shorter test sequences are usually used where possible to minimise test effort.

Similar to the UIO generation problem with FSMs [Lee 96] assuming all transitions

take approximately the same time, shorter SVTP are likely to minimise test efforts.

However some transitions in EFSMs might take longer to execute than others (con-

sider a simple transition and a gP i-gD transitions with an output function). Even if

the execution time difference is not significant some SVTP would require more effort

to generate and apply than others. SVTP with conditional transitions are harder to

generate than SVTP with only simple transitions and might involve difficult to sat-

isfy conditions. Hence a slightly longer SVTP with only simple transitions could still

be more useful than a short SVTP with conditional transitions, which are difficult to

satisfy. Therefore the most efficient SVTP in terms of how easily they are generated

and applied can be considered an SVTP with only simple transitions. Such an SVTP

represents a UIO sequence for the abstracted FSM of the EFSM.

SVTPs with gP i transitions that do not depend on internal variables would be

the next best choice, followed by those with gP i transitions that depend on internal

variables and those with gD transitions. SVTPs with gP i-gD transitions would be the

hardest to generate and apply because both input guard and domain guard predicates

have to be satisfied for each gP i-gD transitions in the TP.

124

Finding UIO sequences for FSMs is known to be NP-hard, without the added

complexity of guards. UIO generation is a special case of the SVTP generation

problem hence the SVTP generation problem must also be NP-hard.

In Chapter 3 the search for UIOs was represented as a GA search problem using an

easy to execute fitness function. In Chapter 4 a scalable fitness function was defined

that estimated the ease of execution of a TP in an EFSM. Combining the two fitness

functions in a multiple objective optimisation problem and searching for TPs with

both properties could benefit test data generation for EFSMs.

5.2.2 Representation

Two types of TP representation for EFSMs were defined in Chapter 4: PB notation

and transition notation. An SVTP is a TP that has both the characteristics of an

FTP and UIO for an EFSM. Hence the same two notations can be used here.

Similarly to the FTP generation problem in Chapter 4 the two different TP rep-

resentations (transition notation and PB notation) require slightly different fitness

functions and verification algorithms. Hence the two representations define two dif-

ferent SVTP search problem representations.

5.3 Algorithms

As with the FTP generation problem two SVTP search problem representations are

presented. In order to compare them each one is used with all four SVTP generation

techniques. The search techniques include two slightly different GAs, a random gen-

eration algorithm and BFS algorithm using the notation used in Chapter 4 for FTP

search.

125

5.3.1 Preprocesses

A number of process must be completed before the fitness function and SVTP veri-

fication algorithm can be used for an EFSM. The five processes are shown on Figure

5.2. The table lists the complexity of each process and which of the two FTP rep-

resentations that process facilitates. Similar to the work on FTPs in Chapter 4 the

input enumeration and PB count processes are specific to the PB notation, while

Input/Output ranking and feasibility ranking are used for both PB notation and

transition notation.

Process complexity Used for PB transition not.
1 input/output ranking O(|T |.log|T |) X X
2 feasibility ranking O(|T |.log|T |) X X
3 Input enumeration O(|T |) X x
4 Distinguishable Output enumeration O(|T |.log|T |) X X
5 PB count O(|T |) X x

Figure 5.2: Preprocesses used by the fitness and verification functions for FTP gen-
eration using the PB notation and transition notation. |T | ≥ n since we are looking
at initially connected EFSMs

Input enumeration and PB count processes are the same as those in Chapter 4.

Feasibility ranking is equivalent to the transition ranking process in Chapter 4.

The distinguishable output enumeration process is a simple enumeration of all

the transitions of M , giving the same label to all output equivalent transitions. The

results of this process is the ω column in Figure 5.3.

The only other process that is different from those used for FTP generation is

the input/output ranking. This process is similar to the transition ranking process

in Chapter 3 used for UIOs. This process ranks each input/output pair of the EFSM

M according to how many times it reoccurs in the transition table of M . A pair that

occurs only once gets the lowest rank, a pair that occurs twice is ranked next etc.

Pairs that have the same number of occurrences in the transition table get the same

126

rank.

Figure 5.3 shows the ranked transition table for the EFSM from Figure 4.1 (M1).

For example t3 and t10 share the same input and ω3 output pair and therefore are

ranked lower than some other transitions. However t11,t12,t13 and t14 all share the

same input and ω3 output pair and are ranked even lower.

t input output ω feasibility rank i/o rank
t0 ICONreq !CR ω1 0 0
t1 CC !ICONconf ω2 0 0
t2 T expired !CR ω1 2 0
t3 T expired !IDISind ω3 1 1
t4 IDATreq DT ω4 0 0
t5 AK ω5 6 1
t6 AK ω5 6 1
t7 AK DT ω6 5 0
t8 AK !IDISind ω3 4 0
t9 T expired DT ω6 3 0
t10 T expired !IDISind ω3 2 1
t11 DR !IDISind ω3 0 2
t12 DR !IDISind ω3 0 2
t13 DR !IDISind ω3 0 2
t14 DR !IDISind ω3 0 2

Figure 5.3: Input/output ranking and feasibility ranking for all transitions in M1

5.3.2 Representation 1: Fitness function using PBs

The first SVTP search problem representation represents a transition using input

characters and PBs. It has all the characteristics of the FTP search problem repre-

sentation using PBs, but also considers the input/output ranking of the transitions

involved.

An SVTP is considered invalid when M is in state s and there is no corresponding

transition from s that can be triggered by the next input character in the generated

input sequence. If a transition from the TP triggered by an AIS is invalid the EFSM

127

stays in the same state and the next transition in the sequence is considered. Hence

the whole AIS under consideration can be evaluated by the fitness function even when

invalid transitions have been attempted.

This SVTP search problem representation has the following characteristics:

• The fitness function rewards highly ranked transition with less frequently used

input and observable output (ω) pairs.

• It produces a numeric value potentially showing how close an input sequence is

to defining a valid SVTP.

• The fitness value of the sequence incurs a penalty for each invalid transition.

• The GA is directed towards generating input sequences that contain mostly

easy to execute transitions with unique input output behaviour and hence more

likely to be feasible transitions that can verify a state.

• The fitness function represents the search for an SVTP sequence as a function

minimisation problem so an AIS with a lower fitness value is considered to

be more likely to form an SVTP since it is made up of more highly ranked

transitions.

The fitness does not guarantee that a particular transition path can be triggered.

It makes sure that it is constructed using consecutive transitions that are highly

ranked. The verification process then checks if an IS can be generated to trigger such

a TP.

The algorithm for the fitness function proposed is presented in Figure 5.4. The

parameters involved for this function presented in Figure 5.5 are as follows: SSV TP is

the start state of the TP; min and max are the value range for randomly generated

input parameters; parList is the array of input parameters; l is the length of the input

128

faults := 0
strengthV alue := 0
Sk := SSV TP

if (l = 0) then return -1 //error code for empty SVTP
for(i := 1 to l) //for all the transitions in the sequence

Sm := Sk

Sk := δ′(Sm, xi, PBi)
if (Sk 6= ø)

//There is such a transition

weight := bias2.Rf
Sm,xi,PBi

.LCM(|Rf |,|Ri/o|)
|Rf | + bias1.R

i/o
Sm,xi,PBi

.LCM(|Rf |,|Ri/o|)
|Ri/o|

strengthV alue := strengthV alue + weight
//Equalising scale for both rankings and combining value

endIf
else

Sk := Sm //No such transition
faults := faults + 1

endElse
endFor
return strengthV alue + faults.penaltyV alue1

Figure 5.4: Representation 1: PB notation - SVTP fitness algorithm

129

SSV TP - start state of TP
min, max value range for randomly generated input parameters
parList - array of input parameters
CV - the current values of all the variables in the internal variables set V of the EFSM
x - single input declaration
l - length of the input sequence
Rf - set of feasibility rankings
|Rf | - set size
Rf

s,x,PB - The feasibility rank for the transition initiating from state s with input
declaration x and predicate branch PB
Ri/o - set of input/output rankings

R
i/o
s,x,PB - The input/output rank for the transition initiating from state s with input

declaration x and predicate branch PB
bias1 - bias rate for the feasibility ranking
bias2 - bias rate for the input/output ranking
penaltyV alue1 - penalty constant or function that penalises the fitness when an un-
specified transition is triggered
δ′(si, x, PB) = sj - EFSM abstracted state transfer function

Figure 5.5: Variables for the SVTP fitness algorithm using PB notation

sequence; Rf is the set of feasibility rankings; Rf
s,x,PB represents the feasibility rank for

the transition initiating from state s with input declaration x and predicate branch

PB; Ri/o is the set of input/output rankings; R
i/o
s,x,PB represents the input/output

rank for the transition initiating from state s with input declaration x and predicate

branch PB; bias1 is the bias rate for the feasibility ranking; bias2 is the bias rate

for the input/output ranking; penaltyV alue1 is the penalty constant or function that

penalises the fitness when an unspecified transition is triggered and δ′(si, x, PB) = sj

is the EFSM abstracted state transfer function. The parameters involved are also

shown on Figure 5.5.

The SVTP verification algorithm for TPs generated in PB notation is analogous

to the SVTP verification algorithm for transition notation described in Section 5.3.3.

130

5.3.3 Representation 2: Fitness function using transition no-

tation

The alternative and simpler representation of the search problem for SVTP is tran-

sition notation. The algorithm for evaluating the fitness function used with this

alternative TP representation is presented on Figure 5.6. The parameters involved

are as follows: SSV TP is the start state of the TP; T is the finite set of all transi-

tions in M ; T ′ is the transition sequence whose fitness is being determined; l is the

length of the input sequence; Rf is the set of feasibility rankings; Rf
ti represents the

feasibility rank transition ti; Ri/o is the set of input/output rankings; R
i/o
ti represents

the input/output rank for transition ti; δ(si, x, parList, CV) = sj is the EFSM state

transfer function; bias1 is the bias rate for the feasibility ranking; LCM(x, y) is the

lowest common multiple of x and y; bias2 is the bias rate for the input/output rank-

ing and penaltyV alue1 is the penalty constant or function that penalises the fitness

when an unspecified transition is triggered or the transitions are not consecutive (i.e.

not following each other). The parameters involved are also shown on Figure 5.7.

Before this fitness algorithm can be used a number of processes must be completed.

These include three of the processes used by the FTP fitness algorithm for PB notation

- feasibility ranking, input /output ranking and distinguishable output enumeration.

The general aim of the fitness function is to correctly sequence transition labels so

that they form a TP that is likely to be an SVTP. Transitions are ranked according to

the criteria described in Section 5.3.2. The function rewards higher ranked transitions

and introduces a penalty when transitions are not sequential.

A transition from the transition sequence is considered invalid if it does not start

from the state where the previous transition ended. If a transition is invalid the fitness

value incurs a penalty and the next transition in the sequence is considered in turn by

the algorithm. Hence the whole sequence of transitions under consideration can be

131

faults := 0
strengthV alue := 0
Sk := SSV TP

if (l = 0) then return -1 //error code for empty FTP
for(i := 1 to l) //for all the transitions in T ′

Sm := Sk

Sk := Π1(ti) //Start state of transition i
//if the transition initiates from the last reached state
if(Sk = Sm)

weight := bias2.Rf
ti .

LCM(|Rf |,|Ri/o|)
|Rf | + bias1.R

i/o
ti .LCM(|Rf |,|Ri/o|)

|Ri/o|
strengthV alue := strengthV alue + weight
//Equlising scale for both rankings and combining value

endIf
//Ignore this transition since it does not initiate from Sm

else
Sk := Sm

faults := faults + 1
endElse

endFor
return strengthV alue + faults.penaltyV alue1

Figure 5.6: Representation 2: Transition notation - SVTP fitness algorithm

132

SSV TP - start state of SVTP
T - finite set of all transitions in M
T ′ - is the transition sequence whose fitness is being determined
l - length of the input sequence
δ(si, x, parList, CV) = sj - EFSM state transfer function
τ(si, x, parList, CV) = tj - EFSM transition identification function
LCM(x, y) - lowest common multiple of x and y
Rf - set of feasibility rankings
|Rf | - set size
Rf

ti - The feasibility rank for transition ti
Ri/o - set of input/output rankings

R
i/o
ti - The input/output rank for transition ti

DoDmax
l - highest possible value of DoD for SVTPs of size l

execmax
l - highest possible value of exec for SVTPs of size l

bias1 - bias rate for the feasibility ranking
bias2 - bias rate for the input/output ranking
penaltyV alue1 - penalty constant or function that penalises the fitness when an un-
specified transition is triggered or the transitions are not consecutive (i.e. not follow-
ing each other)

Figure 5.7: Variables for the SVTP fitness and SVTP verification algorithm using
transition notation

133

evaluated by the fitness function even when invalid transitions have been attempted.

Similar to the transition notation algorithm in Chapter 4 the fitness function

represents search for an SVTP sequence as a function minimisation problem so a

sequence of transitions with a lower fitness value is considered to be more likely to

form an SVTP since it is made up of more highly ranked transitions.

SVTP verification is described in the next section.

5.3.4 SVTP verification

Similar to the FTP generation in Chapter 4, in order to evaluate the results of the

experiment it is useful be able to estimate the quality of a TP. Such a quality measure

can estimated how easy is it to trigger a TP or generate an IS that would trigger it.

When estimating a quality measure for FTPs in Chapter 4 we generated FTPs

from the initial configuration for M1 and M2. Now we are interested in TPs initiating

from all the states of M1 and M2. The ability to trigger some TPs is dependant on

the configuration of MI , which we cannot always monitor. A preamble is a short

(often the shortest) path from the initial state to the transition to be tested. In order

to attempt generation of SVTPs for all states in M1 and M2 we have chosen a set of

the shortest simple (non conditional) TPs generated in Chapter 4 as our preambles

to all TP generation attempts. This allows us to estimate the potential quality of

TPs to represent SVTPs for only a limited number of configurations of M1 and M2,

but the results should be enough to estimate the performance of this approach. An

alternative way of overcoming this problem is to attempt to generate a pre-amble TP

(or FTP) of arbitrary length for every SVTP generation attempt. Such alternative

verification techniques and the measurement of their effectiveness remain future work.

We wish to estimate how easy is it to produce an IS for a TP in order to estimate

the quality of TPs produced. This is done again by making 1000 attempts at randomly

generating an IS for a TP from state s and calculating the success ratio. In addition

134

to that the degree of difference (DoD) of the unique input /output behaviour, similar

to the DoD defined in Chapter 3 and used to measure the quality of UIOs, of a

TP for s is also calculated. This verification is stricter than the UIO verification

used in Chapter 3. In EFSMs we have to compare the input /output behaviour of

a TP to all other TPs from all states of the EFSM in order to ensure that it can

be unique identify. This can lead to a worst case exponential problem due to there

being multiple paths leaving each state. Instead we compare each transition of the

TP individually with all other transitions in the EFSM and make sure that a TP has

at least one transition with unique input /output behaviour in order to be an SVTP.

The DoD is used in order to measure the ability of a TP to uniquely verify a state.

A positive value means there is at least one input /output pair that uniquely identifies

the TP initiating from s. A TP with 0 DoD for s cannot unique identify s and hence

cannot be an SVTP for s. Higher DoD value suggests higher fault tolerance for the

SVTP (as discussed for UIO fault tolerance in Chapter 3). The more unique input

/output pairs a TP contains, the lower the risk that a fault in the IUT MI can mask

all of them and render the SVTP unable to identify s for MI .

The FTP verification algorithm is presented in Figure 5.8. The parameters in-

volved are those used in Section 5.3.3 for the fitness algorithm with the following

additional parameters: CV represents the current values of all the variables in the

internal variable set V of M ; τ(si, x, parList, CV) = sj is the EFSM transition identi-

fication function; execmax
l is the highest possible value of exec for SVTPs of size l and

DoDmax
l is the highest possible value of DoD for SVTPs of size l. The parameters are

summarised in Figure 5.7. The TP triggered in M is compared to the TP produced

in SVTP generation. If the two TPs match the TP is considered to be feasible for

that instant and that particular IS. For each TP the algorithm returns a value of 0

when no valid IS have been found to trigger that TP and a value of up to 1000 shows

that some or all attempts succeeded. The maximum feasibility quality and maximum

135

DoD are scaled to match and these scaling factors are used to give equal weight to

both quality measures when they are combined to produce the SVTP quality esti-

mate. For example consider that the maximum quality factor for a TP with size l is

1000 and its maximum DoD can be 300. A TP with quality factor of 1000 and DoD

of 150 would produce an SVTP quality estimate of 4500/6000 (1000 .3000/1000 +

150 .3000/300). The maximum SVTP quality estimate can be different for TPs with

different lengths.

The FTP verification algorithm on Figure 5.8 checks if the correct TP is triggered

(lines 1-20). Then the DoD for the TP is calculated for state sSV TP (lines 21-43).

When both values are positive a valid SVTP is found and the values are scaled to give

equal weight to the SVTP quality estimate (line 44). If not explicitly mentioned the

bias values are considered to be 1. Invalid SVTPs generate result 0 so that a valid

SVTP can be easily identified by its value (lines 45-47). An SVTP value 0 would

result from TP that produced 0 feasibility estimate or 0 DoD.

Section 5.4.2 describes the results of an empirical study on how SVTP verification

results differ when the bias is altered.

5.4 Experiments

This section presents some empirical results on generating SVTPs for EFSMs M1 and

M2. BFS algorithm is first used to generate a set of SVTPs for M1 and M2. The effec-

tiveness of the fitness function to estimate the quality of an SVTP is evaluated using

these results. Next the fitness function is used to guide heuristic search for SVTPs

using the two different SVTPs search problem representations previously described.

The strategy for generating these results is outlined in Section 5.4.1.

136

01 exec := 0 //feasibility estimate
02 DoD := 0 //degree of difference estimate
04 for (repeats := 1 to 1000)
05 failed := false
06 Sj := SSV TP

07 for (i := 1 to l) //for all the transitions in T ′

08 parList := randomGeneration(min,max)
09 tj := τ(Sj , xi, parList)
10 Sj := δ(Sj , xi, parList)
11 Stemp := Sj

12 if (t′
i 6= tj) //incorrect transition

13 failed := true
14 endIf
15 Sj := Stemp //move to next transition
16 endFor
17 if (failed = false) //If no incorrect transitions
18 exec := exec + 1
19 endIf
20 endFor
21 hasDifference := false
22 for(k := 1 to l)
23 unique := true
24 ink := Π2(tk) //Input declaration of transition tk
25 outk := Π4(tk) //Distinguuishable output declaration of transition tk
26 for (m := 1 to |T |)
27 if (tk 6= tm)
28 inm := Π2(tm) //Input declaration of transition tk
29 outm := Π4(tm) //Distinguuishable output declaration of transition tm
30 if (ink = inm AND outk = outm)
31 unique := false
32 else
33 DoD := DoD + 1
34 endElse
35 endIf
36 endFor
37 if(unique = true)
38 hasDifference := true
39 endIf
40 endFor
41 if (hasDifference = false) //No unique input /output behaviour
42 DoD := 0
43 endIf
44 success := bias1.exec.

LCM(execmax
l ,DoDmax

l)
execmax

l
+ bias2.DoD.

LCM(execmax
l ,DoDmax

l)
DoDmax

l

45 if(exec = 0 OR DoD = 0) //Not a valid SVTP
46 success := 0
47 endIf
48 return success

Figure 5.8: SVTP Verification Algorithm

137

n - The number of states in the given EFSM
att - The number of attempts to generate an SVTP sequence with a specified length,
start and end states to verify each state in the EFSM
min - The shortest SVTP to be generated
max - The longest SVTP to be generated
l - SVTP length being generated
i - the attempt number
s′ - the initial state for each SVTP

Figure 5.9: Variables for the test strategy algorithm

5.4.1 Experiment strategy

Similar to the experiments in Chapter 4 the objective of the experiments is to evaluate

the effectiveness of the fitness function defined and to attempt to generate SVTPs

using heuristics.

When searching for a state verification TP one approach (used in Chapter 3 for

UIOs) is to start from every state si in M and attempt to generate SVTPs of different

lengths. Although this approach seems to work for FSMs (as used in Chapter 3) for

EFSMs we have to consider all different configurations of an EFSM. Therefore we

have used the same approach as for FTPs in Chapter 4. We attempt to generate an

SVTP for every state in M for any given TP size. This approach is different to the

one in Chapter 4 since we do not specify the end state of a TP.

The strategy for generating SVTPs using heuristic search is shown on Figure 5.10

and involves the following parameters: n is the number of states in the given EFSM;

att is the number of attempts to generate an SVTP sequence with a specified length

l and start state s′ to be verified; min is the shortest SVTP to be attempted and

max is the longest SVTP to be attempted. The parameters involved are also shown

on Figure 5.9.

In contrast to the experimental work in Chapter 4, here we attempt to generate

SVTPs from every state of M . Following the discussion in Section 5.3.4 we will use

138

for(s′ := 1 to n) //for all states in M
for(l := min to max) //for all the SVTP lengths

for(i := 1 to att) //for all the repeated attempts
SV TPs′,l := attempt to generate SVTP with length l
//Optional exit from additional attempts after an SVTP is found
if(SV TPs′,l valid SVTP from s′ to verify state s′)

i := att //exit loop and move to next length
endIf

endFor
endFor

endFor

Figure 5.10: Test strategy algorithm

the shortest FTPs from the initial configuration of M1 and M2 to all their states.

The selected FTPs are listed in Figure 5.11. This is just one way of approaching

this problem and required the least amount of additional work on the software tool

used to generate the results. Using this method of exploring all states (but not all

configurations) of M1 and M2 also enables us to use BFS algorithm and use the

generated results to evaluate the effectiveness of the fitness function. In contrast to

the work in Chapter 4 Dijkstra’s shortest path algorithm could be used to generate

only the shortest SVTP for a state s. If we select an alternative approach to explore

all the states of M1 and M2, like generating a random pre-amble TP, Dijkstra’s

algorithm will no longer be useful for SVTP generation. The use of alternative state

or configuration selection approaches remain future work.

By using M ’s initial state for all FTPs M would be in the same initial configuration

(start state and values of the internal variables) with a simple reset. The problem of

placing M in a given configuration before input sequence execution, other than its

initial configuration, is not a focus of this work. A reset is not a necessary condition

for the FTP generation but we assume a reliable reset for this test strategy in order

to do multiple executions of M without considering the problems associated with

placing M in a given configuration.

139

M End State TP
M1 sw reset
M1 sw t0
M1 sc t0, t1
M1 ss t0, t1, t4
M2 s1 reset
M2 s2 t0
M2 s3 t1
M2 s4 t0, t2
M2 s5 t0, t3
M2 s6 t0, t2, t17

Figure 5.11: M1 and M2 pre-amble FTPs

The algorithm attempts to generate an SVTP from state s′ in M for length ranging

from min to max. No more than att number of attempts are made for every SVTP

length. In order to generate comparable results, given an EFSM the att, min and max

attributes are kept the same for the different heuristic SVTP generation techniques

- GAs and Random. For each different SVTP generation technique the same test

strategy is used but the appropriate FTP search problem representation used (GA

with PB notation, GA with transition notation and random generation). SVTP

generation using the BFS algorithm does not use the test strategy in Figure 5.10 as

the algorithm finds all paths of a specified length between a given state s and all

states in M .

5.4.2 Fitness evaluation results

This section describes results of a limited empirical study on the effectiveness of

the proposed fitness algorithm. This is done by measuring the effectiveness of the

proposed fitness algorithm in estimating the quality of a TP in an EFSM of being

an SVTP for a given state s. Similar to Chapter 4 the study is limited to two

140

EFSMs (Inres protocol M1 and a Class 2 transport protocol M2). TPs of length 1

to l, initiating from each state in M1 and M2 were generated using BFS algorithm.

The TP generation was irrespective of notation since transition and predicate branch

notations represent the same TPs. For ease of presentation the TP examples are

shown in transition notation.

The fitness function attempts to estimate how easily a TP can be executed and how

effective it is at verifying state s (hence how easily can the input to trigger this TP be

generated). The evaluation of the quality factor of an SVTP is a combination of the

feasibility estimate (1000 attempts to execute that TP with random input parameters)

and the DoD estimate (how unique is the input /output behaviour produced). A

negative statistical correlation is expected between the fitness values and the TP

quality factor values. Since the DoD element of the SVTP estimate is different for

every SVTP size we have summarised the results by SVTP size.

Class 2 Transport Protocol

The Class 2 transport protocol M2 is presented in Figure 4.28 and the corresponding

transition table is shown in Table 5.12 (the guards were shown in Chapter 4 in Table

4.30). M2 has more states, transitions and is more complex than M1. M2 is a

major module (based on the AP-module [Boch 90]) of a simplified version of a class 2

transport protocol [Rama 03]. M2 represents only the core transitions of that EFSM,

as used in [Rama 03].

1116 TPs were generated and plotted in Figures 5.13, 5.14, 5.15 and 5.16 that

represent all possible TPs with length of up to 4 transitions. 735 of these TPs have

positive SVTP quality factor (i.e. every TP was successfully triggered at least once

in 1000 attempts and it has DoD > 0). All the 381 TPs with 0 SVTP estimate are

drawn in Figures 5.13, 5.14, 5.15 and 5.16 using lightly shaded squares. As explained

141

t sstart send i Output feasibility rank i/o rank
t0 s1 s2 U?TCONreq N!TrCR 0 0
t1 s1 s3 N?TrCR U!TCONind 0 0
t2 s2 s4 N?TrCC U!TCONconf 3 0
t3 s2 s5 N?TrCC U!TDISind N!TrDR 4 0
t4 s2 s1 N?TrDR U!TDISind N!terminated 0 0
t5 s3 s4 U?TCONresp N!TrCC 1 0
t6 s3 s6 U?TDISreq N!TrDR 0 1
t7 s4 s4 U?TDATAreq N!TrDT 2 0
t8 s4 s4 N?TrDT U!DATAind N!TrAK 3 0
t9 s4 s4 N?TrDT U!error N!error 3 0
t10 s4 s4 U?U READY N!TrAK 0 0
t11 s4 s4 N?TrAK 6 1
t12 s4 s4 N?TrAK U!error N!error 4 1
t13 s4 s4 N?TrAK 7 1
t14 s4 s4 N?TrAK U!error N!error 5 1
t15 s4 s4 N?Ready U!Ready 2 0
t16 s4 s5 U?TDISreq N!TrDR 0 1
t17 s4 s6 N?TrDR U!TDISind N!TrDC 0 0
t18 s6 s0 N?terminated U!TDISconf 0 0
t19 s5 s0 N?TrDC N!terminated U!TDISconf 0 0
t20 s5 s0 N?TrDR N!terminated 0 0

Figure 5.12: Transition table for M2 excluding transition guards

142

in Section 5.3.4 TPs with 0 SVTP estimate cannot be guaranteed to be feasible (ac-

cording to our feasibility estimation) or do not possess unique input /output qualities.

Although the fitness aims to estimate feasibility and unique input /output behaviour,

a high proportion of TPs failed this verification for this EFSM. However all such TPs

with 0 quality factor have comparatively high fitness values.

This high proportion of TPs that cannot be guaranteed to be feasible was already

observed in the results in Section 4.5.2 and will not be further addressed in this

Chapter.

The fitness function seems to correctly estimate the SVTP quality of most of the

1116 TPs. There is an averaged (of the TPs for lengths 1 to 4) negative correlation

factor of 0.89 between the fitness function and the quality factor illustrated. If we

only consider the 735 SVTPs the averaged correlation factor is 0.56.

The FTP results (including unsuccessful TPs) are classified in four sets according

to the size of the SVTPs. Figure 5.13 shows the results for all SVTPs of size 1. Since

each SVTP consists of only a single transition, the data is quite concentrated. A

correlation factor of 0.91 was observed and a factor of 0.56 when only SVTPs are

considered.

Figure 5.14 shows the results for all SVTPs of size 2. The SVTPs found here seem

to be scattered in and above mid-range values for the SVTP estimate. A correlation

factor of 0.88 was observed and a factor of 0.55 when only SVTPs are considered.

Figure 5.15 shows the results for all SVTPs of size 3. The SVTPs found here also

seem to be scattered in and above mid-range values for the SVTP estimate but seem

to concentrate slightly more around the mid-point of 3000. A correlation factor of

0.88 was observed and a factor of 0.55 when only SVTPs are considered.

Figure 5.16 shows the results for all SVTPs of size 4. The SVTPs found here

seem to be scattered in and above mid-range values for the SVTP estimate again but

here they seem to concentrate even more around the mid-point of 2000 (for this size).

143

Figure 5.13: All SVTPs generated using BFS algorithm for M2 of size 1 (correlation
factor 0.91, when excluding the 0 quality factor TPs the correlation factor is 0.57).
Light shaded squares represent the 0 SVTP estimate valued TPs. The dark diamonds
represent SVTPs.

Figure 5.14: All SVTPs generated using BFS algorithm for M2 of size 2 (correlation
factor 0.88, when excluding the 0 quality factor TPs the correlation factor is 0.55).
Light shaded squares represent the 0 SVTP estimate valued TPs. The dark diamonds
represent SVTPs.

144

Figure 5.15: All SVTPs generated using BFS algorithm for M2 of size 3 (correlation
factor 0.88, when excluding the 0 quality factor TPs the correlation factor is 0.55).
Light shaded squares represent the 0 SVTP estimate valued TPs. The dark diamonds
represent SVTPs.

A correlation factor of 0.9 was observed and a factor of 0.58 when only SVTPs are

considered.

Figure 5.16: All SVTPs generated using BFS algorithm for M2 of size 4 (correlation
factor 0.9, when excluding the 0 quality factor TPs the correlation factor is 0.58).
Light shaded squares represent the 0 SVTP estimate valued TPs. The dark diamonds
represent SVTPs.

There is at least reasonable correlation between the SVTP estimate and the fitness

values. When all TPs generated were considered the correlation is even stronger. This

suggests that the fitness function can reasonably estimate the SVTP quality for a TP

145

without actually executing it.

Inres Protocol

The EFSM M1 in Figure 4.1 representing the Inres protocol that is simpler than M2.

The transition table for M1 is presented in Figure 4.39.

BFS algorithms was used to generate 314 TPs for M1 where only 12 were not

SVTPs. Figures 5.17, 5.18, 5.19 and 5.20 illustrate those TPs that represent all

possible TPs with length of up to 4 transitions with positive quality factor (i.e. every

TP was successfully triggered at least once in 1000 attempts and it has DoD > 0).

Again TPs with quality factor of 0 that cannot be guaranteed to be feasible (according

to our feasibility estimation) or do not possess unique input /output qualities are

drawn with lighter shaded squares. Here however there are considerably fewer TPs

with 0 quality factor for M1. This could indicate that the SVTPs, as it was for FTPs,

are easier to generate for M1.

The fitness function seems to correctly estimate the SVTP quality of most of the

314 TPs. There is an averaged (of the TPs for lengths 1 to 4) negative correlation

factor of 0.59 between the fitness function and the quality factor illustrated. If we

only consider the 314 SVTPs the averaged correlation factor is 0.66.

The SVTP results (including unsuccessful TPs) are classified in four sets according

to the size of the SVTPs. Figure 5.17 shows the results for all SVTPs of size 1. Since

each SVTP consists of only a single transition, the data is again quite concentrated.

A correlation factor of 0.62 was observed and a factor of 0.95 when only SVTPs are

considered. This sharp contrast in the correlation factors is caused by the 3 TPs with

high fitness and 0 SVTP value out of 9 TPs of size 1 generated in total.

Figure 5.18 shows the results for all SVTPs of size 2. The SVTPs found here seem

to be concentrated around the high end values for the SVTP estimate. A correlation

factor of 0.59 was observed and a factor of 0.61 when only SVTPs are considered.

146

Figure 5.17: All SVTPs generated using BFS algorithm for M1 of size 1 (correlation
factor 0.62, when excluding the 0 quality factor TPs the correlation factor is 0.95).
Light shaded squares represent the 0 SVTP estimate valued TPs. The dark diamonds
represent SVTPs.

Figure 5.18: All SVTPs generated using BFS algorithm for M1 of size 2 (correlation
factor 0.59, when excluding the 0 quality factor TPs the correlation factor is 0.61).
Light shaded squares represent the 0 SVTP estimate valued TPs. The dark diamonds
represent SVTPs.

147

Figure 5.19 shows the results for all SVTPs of size 3. The SVTPs found here also

seem to be concentrated in the mid-range and high end values for the SVTP estimate.

A correlation factor of 0.58 was observed and a factor of 0.58 when only SVTPs are

considered.

Figure 5.19: All SVTPs generated using BFS algorithm for M1 of size 3 (correlation
factor 0.58, when excluding the 0 quality factor TPs the correlation factor is 0.58).
Light shaded squares represent the 0 SVTP estimate valued TPs. The dark diamonds
represent SVTPs.

Figure 5.20 shows the results for all SVTPs of size 4. The SVTPs found here seem

to be scattered in and above mid-range values for the SVTP estimate again but here

they seem to concentrate around the mid-range SVTP estimate values. A correlation

factor of 0.55 was observed and a factor of 0.51 when only SVTPs are considered.

There seems to be a reasonable correlation between the SVTP estimate and the

fitness values here as well. When all TPs generated were considered the correlation

is very similar due to the low number of 0 quality factor TPs. This suggests that the

fitness function can reasonably estimate the SVTP quality for a TP without actually

executing it for M1 too.

148

Figure 5.20: All SVTPs generated using BFS algorithm for M1 of size 4 (correlation
factor 0.55, when excluding the 0 quality factor TPs the correlation factor is 0.51).
Light shaded squares represent the 0 SVTP estimate valued TPs. The dark diamonds
represent SVTPs.

Introducing bias in fitness and verification algorithms

The fitness evaluation results presented so far have not used any bias (i.e. bias1 =

1 and bias2 = 1 in Figures 5.4, 5.6 and 5.8). In order to examine the effects of

biasing the fitness algorithm and the verification algorithm additional results with

bias towards the feasibility estimate or the uniqueness estimate were generated and

presented on Figure 5.21.

The results in Figure 5.21 represent the fitness and quality estimate correlation

for two bias scenarios. The first scenario presents a summary of the results for M1

and M2 where bias1 := 2, which doubles the weight of the feasibility value of a TP

in the fitness ranking and feasibility estimate for SVTPs. The second scenario looks

at the same correlation values but when bias2 := 2, which doubles the weight of the

uniqueness value of a TP in the fitness ranking and feasibility estimate for SVTPs.

Similar to the results presented so far, we have considered the correlation for all

TPs generated (including those with 0 SVTP quality) and the correlation for only

the SVTPs.

When the results for M1 are biased towards the feasibility estimate of a TP the

149

Inres - M1 Inres Class 2 - M2 Class 2
bias SVTP size incl. 0 (TPs) excl. 0 incl. 0 (TPs) excl. 0
none 1 0.62 0.95 0.91 0.57

2 0.59 0.61 0.88 0.55
3 0.58 0.58 0.88 0.55

feasibility - bias1 := 2 1 0.89 0.87 0.87 0.57
2 0.75 0.58 0.85 0.19
3 0.59 0.48 0.84 0.9

uniqueness - bias2 := 2 1 0.5 0.85 0.92 0.57
2 0.34 0.6 0.9 0.65
3 0.39 0.6 0.89 0.9

Figure 5.21: Summary of fitness and quality values correlation for SVTPs of sizes 1
to 3 for M1 and M2 using bias. All correlation values are negative and rounded to
two decimal places

correlation for all the TPs generated is better than the original non biased results.

However the correlation for all the SVTPs is worse when the bias is used.

When the results for M2 are biased towards feasibility estimate of a TP the cor-

relation for the TPs and SVTPs is worst than the original non biased results. The

only two exceptions are the correlation for the SVTPs of size 1, when the correlation

is the same and SVTPs of size 3 when the biased results have shown a considerably

better correlation.

When the results for M1 are biased towards the uniqueness measure of a TP, the

results are slightly different. The biased results show worse correlation except for the

SVTP generated of size 3, when the biased correlation is better.

When considering the results for M2 where the uniqueness measure bias is used,

all the correlations are better than those of the original non biased results.

Although it appears that biasing the fitness and quality measure towards the

uniqueness measure or the feasibility measure of a TP can produce better correlation

in some cases, it is important to note that as longer TPs are considered the ease of

execution is likely to become more difficult to accomplish. This is also shown in the

150

results where the feasibility biased correlations come close to or surpass those of the

original non biased results as the size of the TPs considered grows. Therefore using a

common bias for TPs of different lengths might not be the optimal solution. Instead

a variable bias could be used that is related to the size of the TP considered.

Overall the non biased results performed well for both EFSMs. Hence unbiased

results were used in an attempt to balance the influence of both factors. The effects

of variable bias remains a topic for future work.

5.4.3 Generating SVTPs using Genetic Algorithm

Some positive results were generated while evaluating the fitness function hence we

can use the test strategy in Figure 5.10 to attempt to generate SVTPs. Both SVTP

search problem representations are used to generate SVTPs using the two GA and

a random generation search techniques outlined earlier and also used in Chapter 4.

The results are compared and conclusions drawn. The test strategy in Figure 5.10 is

used for each SVTP search problem representation in order to ensure that GA and

random search techniques are given equivalent generation attempts in terms of fitness

evaluations and SVTP verification executions.

The same two metrics used in Chapter 4, state coverage (number of cases where

at least one SVTP was generated for every SVTP size attempted from each state in

M) and success rate (number of SVTPs that were generated compared to the total

number of attempts it took to generate the results), are used to compare the results.

All the results exclude any attempts to generate unspecified transition paths i.e.

paths that do not exist in the abstracted FSM (e.g. attempts to generate a TP of

size 2 for a state reachable in at least 3 transitions are discarded).

Figure 5.22 represents a summary of the result averages. In general the results

show that PB notation seems to perform better than transition notation according to

both metrics. In only one instance in Figure 5.22 does the transition notation show

151

slightly better performance than the PB notation, while the PB notation seems to

perform up to 25% better. Similar to the results in Chapter 4 we expect this per-

formance gap between the two notations to increase as larger EFSMs are considered.

The reason for this is that the search space is geometrically related to the number

of transitions in an EFSM. The search space for PB notation search is bound by the

EFSM abstraction defined in the beginning of this chapter (based on number of input

declarations and PBs).

For both metrics the two GA search algorithms clearly perform better than the

random generation algorithm. Again like the results in Chapter 4 for FTP search

this suggests that the fitness function here helps guide a heuristic search for SVTPs.

As larger EFSMs and longer SVTPs are considered, the heuristics seem to perform

increasingly better than the random generation algorithm when given equal processing

effort in terms of fitness evaluations and SVTP verifications.

The state coverage metric is the easier one to satisfy. Not surprisingly the GAs

found at least one SVTP for every state in M1 and M2. This measure however

discards all the unsuccessful attempts to generate a given SVTP. Hence the success

rate metric considers those unsuccessful attempts as well. The success rates generated

were slightly lower than the ones in Chapter 4, but are still higher than expected

considering the search problem is more challenging than FTP generation (48% for

M1 and 56% for M2).

The results for both EFSMs show similar trends according to both metrics. The

state coverage and success rate metrics seem to slightly differ between the two EFSMs.

The state coverage and success rate results for M1 and M2 are similar for most of the

GA generated results but the random algorithm generated results for the two EFSMs

are slightly different. It is important to note that for Figures 5.23 to 5.29 the points

represent result data and the connecting curved line are drawn just to illustrate the

trend.

152

notation PB transition PB transition
EFSM Inres Inres Class 2 Class 2

State Coverage GA1 97% 91% 100% 98%
GA2 100% 75% 96% 77%

Random 56% 28% 35% 29%
Success rate GA1 54% 56% 48% 46%

GA2 65% 40% 47% 31%
Random 51% 26% 28% 23%

Figure 5.22: GA and Random search result averages for the Class 2 and Inres protocols
in PB notation and transition notation.

The results for each of the EFSMs is discussed in more detail in the following two

subsections.

Class 2 Transport Protocol

The Class 2 Transport Protocol (M2) is the larger of the two EFSMs. Figure 5.23

represents the state coverage for SVTPs generated using PB notation. GA1 performs

well and GA2 fails to find one SVTP of size 4 and one of size 8, while the random

generation algorithm performance peaks when generating FTPs of size 4 and declines

as the FTP size increases.

Figure 5.24 represents the state coverage for SVTPs generated using transition

notation. GA1 performs well and only misses one FTP of size 6 while GA2 fails to

find several SVTPs of sizes 2,5,6,7 and 8 but still performs better than the random

generation algorithm. The random generation algorithm performance equals that

of the GAs for SVTPs of size 1 but as the size increases the performance sharply

declines. There are no SVTPs found by the random generation algorithm of length 6

to 8.

Figure 5.25 represents the success rate for SVTPs generated using PB notation.

The higher fluctuation rate here can be explained by the different degree of difficulty

in generating SVTPs of different sizes for some states. This relates to the future work

153

Figure 5.23: State coverage for PB notation SVTPs generated using GA and Random
generation algorithms for M2 with 1-8 transitions

Figure 5.24: State coverage for transition notation SVTPs generated using GA and
Random generation algorithms for M2 with 1-8 transitions

154

Figure 5.25: Success ratio for PB notation SVTPs generated using GA and Random
generation algorithms for M2 with 1-8 transitions

on the SVTP fitness function discussed earlier in Section 4.5.2. GA2 shows the best

performance with an average performance of 65%. GA1 performs mostly better than

the random generation algorithm, except for FTPs of size 4 (average performance of

54%). For SVTPs of size 4 the random algorithm performs slightly better than GA1

and GA2.

Figure 5.26: Success ratio for transition notation SVTPs generated using GA and
Random generation algorithms for M2 with 1-8 transitions

155

Figure 5.26 represents the success rate for SVTPs generated using transition no-

tation. A similar effect between the GA1 and GA2 values can be observe here as

with the PB notation attempt rate. However here the random generation algorithm

starts at 100% for SVTP sizes 1, but quickly drops to 0%. This excellent start for

the random generation algorithm can be linked to the ease of generating very short

FTPs since most valid transition paths of such length (initiating form the start state

s1) are likely to be feasible. The GAs both averaged nearly twice the performance of

the random generation algorithm.

Inres Protocol

The Inres protocol EFSM (M1) is smaller than M2, but as the fitness evaluation

results in Section 5.4.3 indicated not necessarily easier to generate SVTPs for.

Figure 5.27: State coverage for PB notation SVTPs generated using GA and Random
generation algorithms for M1 with 1-8 transitions

Figure 5.27 represents the state coverage for SVTPs generated using PB notation.

GA1 performed well and GA2 failed to find one SVTP of size 3, while the random

generation algorithm performance equals the GAs SVTPs of size 1 but declines as

the SVTP size increases.

156

Figure 5.28: State coverage for transition notation SVTPs generated using GA and
Random generation algorithms for M1 with 1-8 transitions

Figure 5.28 represents the state coverage for SVTPs generated using transition

notation. GA1 performs well but fails to generate a small number of SVTPs of sizes

5 and 6. GA2 performs well for SVTPs of sizes 1 to 3 but fails to find some of the

SVTPs of other sizes. The random generation algorithm generates SVTPs for 75%

of the states of sizes 1 and 2, but as size increases it gradually fails to generate any

SVTP of sizes 6, 7 and 8.

Figure 5.29: Success rate for PB notation SVTPs generated using GA and Random
generation algorithms for M1 with 1-8 transitions

157

Figure 5.29 represents the success rate for SVTPs generated using PB notation.

The GAs and the random generation algorithm have very similar success rate for

SVTPs of sizes 1 to 5, where the random generation algorithm seems to have a slight

lead. However for SVTPs of sizes 6, 7 and 8 both GAs perform considerably better

than the random generation algorithm, especially GA2.

Figure 5.30: Success rate for transition notation SVTPs generated using GA and
Random generation algorithms for M1 with 1-8 transitions

Figure 5.30 represents the success rate for SVTPs generated using transition no-

tation. The three methods follow the same shape of the success graph for SVTPs

of sizes 1 to 5, but this time the GAs perform marginally or considerably better for

those sizes. For SVTPs of size 6,7 and 8 the GAs clearly perform better while the

random generation algorithm fails to find any SVTP.

5.5 Summary

The fitness evaluation results suggest that the principles used in the fitness function

estimate the combination of feasibility and unique observable behaviour of a given

transition path (TP) with reasonable accuracy. The 0.89 and 0.59 correlation factors

158

suggest a good correlation between the fitness algorithm and estimated SVTP quality

for the TPs for the two EFSMs tested.

The heuristic search results suggest that combining the search for feasible transi-

tion paths (FTPs), examined in Chapter 4, and the search for unique input /output

sequences (UIOs), in Chapter 3, could help in the search for state verification transi-

tion paths (SVTPs). Compared with the transition notation results, the PB notation

searches generated better results for both EFSMs. It was found that a GA that used

the fitness function was more effective in SVTP generation than a random algorithm.

Although the shortest path could be generated using Dijkstra’s shortest path al-

gorithm it is important to remember that we used a simple EFSM configuration

technique that allowed us to use our existing tool and estimate the correlation of

the overall approach. An important advantage of using heuristic search to generate

SVTPs, guided by a fitness function, is that the flexibility exists to add additional fea-

tures to the fitness function. Future work on generating SVTPs and similar TPs seeks

to use such features that could not be presented in appropriate form for Dijkstra’s

shortest path algorithm.

A particular focus for future work on SVTPs is, as it was for FTPs, to improved

fitness estimation for loops. Some more experimental work could further help increase

the accuracy of the fitness algorithm.

Chapter 6

Conclusions and future work

This thesis outlines the significance of automating the generation of test cases for

FSMs. It evaluates the hypothesis that some test case adequacy criteria in FSM

based systems can be estimated fairly accurately with efficient algorithms and GAs

can use these estimations to generate such test cases that are otherwise NP-hard

problems.

The thesis addresses three problems that are highly relevant to test data gener-

ation for FSMs and EFSMs, these being the efficient generation of UIOs for FSMs,

estimating the feasibility of transition paths in EFSMs and the generation of state

verification transition paths for EFSMs.

State verification is an important part of conformance testing of FSMs. UIO

sequences are commonly used for state verification because of their advantages over

other methods, but the problem of generating UIOs is NP-hard. GAs are known to

perform well for some NP-hard problems.

Chapter 3 defines a fitness function of O(l) complexity for an input sequence of

size l that is used to guide a GA search to generate UIOs. The fitness function appears

to direct the search towards generating UIOs. An empirical study using a set of real

and randomly generates FSMs shows that the GA outperforms (up to 62% better)

159

160

or is at least as good as a random search for UIO sequences. The results also report

that most UIO sequences are very short. This suggests focusing effort in generating

very short UIOs using exhaustive search techniques and relying on GA to search for

the remaining UIOs.

Estimating the ease of execution for transition paths in EFSMs is one of the main

problems when using FSM test case generation techniques for EFSMs. Chapter 4

defines a new method of representation for the conditions of transitions in EFSMs

(PB notation). This enables the use of a fitness function of O(l) complexity for

a transition path of size l that is used to guide a GA search to generate FTPs.

A number of pre-processes are used by the fitness function of complexity no worse

than O(|T |.log|T |), where |T | is the number of transitions in an EFSM. The ease of

execution for a TP is measured using an quality estimation algorithm, that attempts

to trigger that TP a set number of times.

The fitness evaluation results suggest that the principles used in the fitness func-

tion estimate the feasibility of a given transition path (TP) with reasonable accuracy.

The 0.72 and 0.62 correlation factors suggest a good correlation between the fitness

algorithm and estimated feasibility for the TPs for the two EFSMs tested.

The GA search results suggest that the novel EFSM abstraction using predi-

cate branches (PBs) could help in the search for feasible transition paths (FTPs).

Compared with the alternative transition notation results, the PB notation searches

generated better results for both EFSMs. It was also found that a GA that used the

fitness function was more effective in FTP generation than a random algorithm.

Chapter 5 combined the approaches for generating FTPs (Chapter 4) and generat-

ing UIOs (Chapter 3) in an attempt to generate easy to trigger state verification test

sequences in EFSMs. A fitness function analogous to the fitness function for gener-

ating FTPs is defined that guides a search for SVTPs. The SVTP quality estimation

algorithm is also similar to the algorithm used for FTPs.

161

The fitness evaluation results suggest that the principles used in the fitness func-

tion estimate the combination of ease of execution and unique observable behaviour

of a given TP with reasonable accuracy. Correlation factors of 0.89 and 0.56 suggest

a good correlation between the fitness algorithm and estimated SVTP quality for the

TPs for the two EFSMs tested.

The heuristic search results suggest that combining the search for FTPs, examined

in Chapter 4, and the search for UIOs, in Chapter 3, could help in the search for

SVTPs. Compared with the transition notation results, the PB notation searches

generate better results for both EFSMs. GAs that used the fitness function appear

to be considerably more effective in SVTP generation than a random algorithm.

Ultimately these test case generation approaches can be integrated in existing

test automation and model checking tools for FSMs and EFSMs to provide a fully

or partially automated methods for generating test cases with specific characteristics

for large systems.

6.1 Future work

There are many topics of interest related to this work that can be explored. The

principles used in this work may be applied to other NP-hard problems in FSM based

testing where a robust (effective and efficient) fitness function can be defined.

In addition a specific focus for future work on FTPs and SVTPs is to improve

fitness estimation for loops. The results showed that performance was negatively

affected by loops in EFSMs. Some more experimental work could further help increase

the accuracy of the fitness algorithms or transformations in attempt to remove or

reduce the problem.

Another topic of future work is the application of heuristics to nondeterministic

FSM and EFSM models. Ease or probability of execution of TPs in nondeterministic

162

models can help in test case generation.

Another focus of future work is looking at the state verification problem in CFSMs,

which is outlined in the next section.

By addressing the ease of execution problem in EFSMs, a range of additional test

case generation issues besides state verification can be addressed such as test case

fault resilience and configuration verification.

6.2 Testing CFSMs

A particular focus of future work is the input sequence generation for CFSMs using

heuristics search like GAs. The problem of observing local transitions (of individual

CFSMs) within a global transition (a combination of interlinked transitions within the

set of CFSMs) is outlined in [Derd 04]. It is based on a notion of generating transition

sequences with such observable properties that can identify internal transitions, given

a number of conditions on the global state (the combination of states of all the CFSMs)

are met. Such transition sequences, known as a Constrained Identification Sequences

(CIS) were introduced by Hierons in [Hier 01]. This future work can extend this

idea regarding local transitions and their corresponding final states and use genetic

algorithms to automatically find test sets.

6.3 Summary

The work in this thesis presents evidence that search based techniques can be useful

in automating the test case generation for FSM based specifications (including EF-

SMs). Although such techniques are not guaranteed to find the optimal test cases,

in terms of effectiveness and cost, they are computationally easy and require little or

no human intervention. The studies in this thesis also suggest that many FSM based

163

test sequences are very short. Hence using exhaustive generation of very short test

sequences may cover much of the test effectiveness criteria. Heuristic search can be

used for the remaining, more difficult to generate test cases. These techniques can be

easily integrated in existing automated software testing tools and contribute to the

automation of testing finite state machine based systems.

Bibliography

[Abri 96] J. Abrial. The B Book - Assigning Programs to Meaning. Cambridge
University Press, 1996.

[Aho 91] A. Aho, A. Dahbura, D. Lee, and M. U. Uyar. “An optimization technique
for protocol conformance test generation based on UIO sequences and
rural Chinese postman tour”. IEEE Transactions on Communications,
Vol. 39, pp. 1604–1615, 1991.

[Andr 86] S. J. Andriole. Software Validation, Verification, Testing and Documen-
tation. Princeton, NJ: Petrocelli Books, 1986.

[Andr 88] D. Andres and P. Gibbins. An introduction to Formal Methods of Software
Development. Milton Keyness, UK: The Open University, 1988.

[Baya 05] A. A. Bayazit and S. Malik. “Complementary use of runtime val-
idation and model checking”. In: ICCAD ’05: Proceedings of the
2005 IEEE/ACM International conference on Computer-aided design,
pp. 1052–1059, IEEE Computer Society, Washington, DC, USA, 2005.

[Beas 93a] D. Beasley, D. R. Bull, and R. R. Martin. “An Overview of Genetic Algo-
rithms Part 1: Fundamentals”. University Computing, Vol. 15, pp. 58–69,
1993.

[Beas 93b] D. Beasley, D. R. Bull, and R. R. Martin. “An Overview of Genetic
Algorithms Part 2: Research Topics”. University Computing, Vol. 15,
pp. 170–181, 1993.

[Beiz 90] B. Beizer. Software testing techniques. Van Nostard Reinhold, New York,
1990. 2nd edition.

[Beli 89] F. Belina and D. Hogrefe. “The CCITT Specification and Description
Language SDL”. Computer Networks and ISDN Systems, Vol. 16, pp. 311–
341, 1989.

164

165

[Berg 89] J. A. Bergstra. Algebraic specification. ACM Press, New York, NY, USA,
1989.

[Boch 90] G. V. Bochmann. “Specifications of a simplified transport protocol us-
ing different formal description techniques”. Comput. Netw. ISDN Syst.,
Vol. 18, No. 5, pp. 335–377, 1990.

[Boeh 81] B. W. Boehm. Software Engineering Economics. Prentice Hall, 1981.

[Bott 02] L. Bottaci. “Instrumenting Programs With Flag Variables For Test Data
Search By Genetic Algorithms.”. In: GECCO, pp. 1337–1342, 2002.

[Bran 83] D. Brand and P. Zafiropulo. “On Communicating Finite-State Machines”.
J. ACM, Vol. 30, No. 2, pp. 323–342, 1983.

[Chil 94] J. Chilenski and S. Miller. “Applicability of Modified Condition/Decision
Coverage to Software Testing”. Software Engineering Journal, Vol. 9,
p. 193200, 1994.

[Chow 78] T. S. Chow. “Testing software design modelled by Finite State Machines”.
IEEE Transactions on Software Engineering, Vol. 4, pp. 178–187, 1978.

[Coff 71] E. G. Coffman, M. Elphick, and A. Shoshani. “System Deadlocks”. ACM
Comput. Surv., Vol. 3, No. 2, pp. 67–78, 1971.

[DeMi 78] R. DeMillo, R. Lipton, and F. Sayward. “Hints on test data selection:
Help for the practicing programmer”. IEEE Transactions on Computers,
Vol. 12, pp. 34–41, 1978.

[Derd 02] K. Derderian. “General Genetic Algorithm Tool”. Tech. Rep.,
www.karnig.co.uk/ga/ggat.html, 2002.

[Derd 04] K. Derderian, R. M. Hierons, M. Harman, and Q. Guo. “Input Se-
quence Generation for Testing of Communicating Finite State Machines
CFSMs.”. In: LNCS vol. 3103, pp. 1429–1430, Springer, 2004.

[Derd 05] K. Derderian, R. M. Hierons, M. Harman, and Q. Guo. “Generating
feasible input sequences for extended finite state machines (EFSMs) using
genetic algorithms”. In: GECCO ’05: Proceedings of the 2005 conference
on Genetic and evolutionary computation, pp. 1081–1082, ACM Press,
New York, NY, USA, 2005.

[Derd 06] K. Derderian, R. M. Hierons, M. Harman, and Q. Guo. “Automated
Unique Input Output Sequence Generation for Conformance Testing of
FSMs”. The Computer Journal, Vol. 49, No. 3, pp. 331–344, 2006.

166

[Derr 99] J. Derrick and E. Boiten. “Testing Refinements of State-based Formal
Specifications”. Software Testing, Verification and Reliability, No. 9,
pp. 27–50, July 1999.

[Dijk 59] E. W. Dijkstra. “A note on two problems in connexion with graphs.”.
Numerische Mathematik, Vol. 1, pp. 269–271, 1959.

[Dual 00] A. Y. Duale and M. Ü. Uyar. “Generation of Feasible Test Sequences for
EFSM Models”. In: TestCom ’00: Proceedings of the IFIP TC6/WG6.1
13th International Conference on Testing Communicating Systems, p. 91,
Kluwer, B.V., Deventer, The Netherlands, The Netherlands, 2000.

[Dual 04] A. Y. Duale and M. Ü. Uyar. “A Method Enabling Feasible Conformance
Test Sequence Generation for EFSM Models.”. IEEE Transactions Com-
puters, Vol. 53, No. 5, pp. 614–627, 2004.

[Gibb 85] A. Gibbons. Algorithmic Graph Theory. Cambridge University Press,
1985.

[Gogu 88] J. Goguen and T. Walker. Introducing OBJ3. Computer Science Labora-
tory SRI Internationl Report SRI-CSL-88-9, 1988.

[Gold 89] D. E. Goldberg. Genetic Algorithms in search, optimisation and machine
learning. Addison-Wesley Publishing Company, Reading, Mass. USA,
1989.

[Gold 93] D. Goldberg, K. Deb, and D. Theirens. “Toward a better understand-
ing of mixing in genetic algorithms”. Society of Instrument and Control
Engineers Journal, Vol. 32, pp. 10–16, 1993.

[Gone 70] G. Gonenc. “A method for the design of fault detection experiments”.
IEEE Transactions on Computers, Vol. 19, pp. 551–558, 1970.

[Guo 04] Q. Guo, R. M. Hierons, M. Harman, and K. Derderian. “Computing
Unique Input/Output Sequences using Genetic Algorithms”. In: Formal
Approaches to Software Testing: Third International Workshop, FATES
2003, LNCS vol. 2931, pp. 169–184, Springer, New York, 2004.

[Halc 98] M. Halcombe and F. Ipate. Correct Systems: Building a Business Process
Solution. Springer, 1998.

[Hare 98] D. Harel and M. Politi. Modeling reactive systems with statecharts: the
STATEMATE approach. McGraw-Hill, 1998.

167

[Henn 64] F. C. Hennie. “Fault–detecting experiments for sequential circuits”. In:
Proceedings of Fifth Annual Symposium on Switching Circuit Theory and
Logical Design, pp. 95–110, Princeton, New Jersey, November 1964.

[Hier 01] R. M. Hierons. “Checking states and transitions of a set of communicating
finite state machines”. Microprocessors and Microsystems,Special Issue on
Testing and testing techniques for real-time embedded software systems,
Vol. 24, pp. 443–452, 2001.

[Hier 02] R. M. Hierons and H. Ural. “Reduced Length Checking Sequences”. IEEE
Transactions on Computers, Vol. 51, No. 9, pp. 1111–1117, 2002.

[Hier 03] R. M. Hierons, T. H. Kim, and H. Ural. “On The Testability of SDL
Specifications”. Computer Networks, Vol. 44, pp. 681–700, 2003.

[Hier 04] R. M. Hierons. “Testing from a Non–Deterministic Finite State Ma-
chine Using Adaptive State Counting”. IEEE Transactions on Computers,
Vol. 53, No. 10, pp. 1330–1342, 2004.

[Hoar 85] A. Hoare. Communicating Sequential Processes. Prentice Hall Interna-
tional, 1985.

[Hogr 91] D. Hogrefe. “OSI formal specification case study: the Inres protocol and
service.”. Tech. Rep. 5, University of Bern, IAM-91-012 1991.

[Holz 90] G. J. Holzmann. Design and Validation of Protocols. Prentice-Hall, 1990.

[Hopc 79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, 1979.

[Hwan 01] I. Hwang, T. Kim, S. Hong, and J. Lee. “Test selection for a nondetermin-
istic FSM”. Computer Communications, Vol. 24, No. 12, pp. 1213–1223,
2001.

[Inan 99] K. Inan and H. Ural. “Efficient checking sequences for testing finite state
machines”. Information and Software Technology, Vol. 41, pp. 799–812,
1999.

[Jone 90] C. Jones. Systematic Software Development Using VDM. Prentice Hall,
1990.

[Jone 96] B. F. Jones, H.-H. Sthamer, and D. E. Eyres. “Automatic structural test-
ing using genetic algorithms”. The Software Engineering Journal, Vol. 11,
No. 5, pp. 299–306, 1996.

168

[Jone 98] B. F. Jones, D. E. Eyres, and H.-H. Sthamer. “A strategy for using genetic
algorithms to automate branch and fault-based testing”. The Computer
Journal, Vol. 41, No. 2, pp. 98–107, 1998.

[Koha 78] Z. Kohavi. Switching and finite automata theory. McGraw-Hill, New York,
1978.

[Lee 94] D. Lee and M. Yannakakis. “Testing Finite State Machines: State Iden-
tification and Verification”. IEEE Transactions on Computers, Vol. 43,
pp. 306–320, 1994.

[Lee 96] D. Lee and M. Yannakakis. “Principles and methods of testing finite state
machines - a survey”. Proceedings of the IEEE, Vol. 84, pp. 1090–1123,
1996.

[LGSy 91] LGSynth91. “Logic synthesis and optimization bench-
marks”. Tech. Rep. 3, University of California, 1991.
www.ece.pdx.edu/polo/function/LGSynth91.

[Li 94] X. Li, T. Higashino, M. Higuchi, and K. Taniguchi. “Automatic Genera-
tion of Extended UIO Sequences for Communication Protocols in EFSM
Model”. In: Distributed Processing System No.066, pp. 225–240, IPSJ
SIGNotes, Japan, November 1994.

[Luo 94a] G. Luo, G. von Bochmann, and A. Petrenko. “Test Selection Based on
Communicating Nondeterministic Finite-State Machines Using a General-
ized WP-Method”. IEEE Transactions on Software Engineering, Vol. 20,
No. 2, pp. 149–162, Feb. 1994.

[Luo 94b] G. Luo, G. von Bochmann, and A. Petrenko. “Test Selection Based on
Communicating Nondeterministic Finite-State Machines Using a General-
ized Wp-Method”. IEEE Transactions on Software Engineering, Vol. 20,
No. 2, pp. 149–162, 1994.

[McMi 04] P. McMinn. “Search-based software test data generation: a survey.”.
Softw. Test., Verif. Reliab., Vol. 14, No. 2, pp. 105–156, 2004.

[Mich 01] C. C. Michael, G. McGraw, and M. A. Schatz. “Generating Software Test
Data by Evolution”. IEEE Transactions on Software Engineering, Vol. 27,
No. 12, pp. 1085–1110, 2001.

[Mich 96] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Pro-
grams. Springer-Verlag Berlinn Heidelberg New York, 1996. Third, Re-
vised and Extended Edition.

169

[Mill 93] R. E. Miller and S. Paul. “On the generation of minimal-length confor-
mance tests for communication protocols”. IEEE/ACM Trans. Netw.,
Vol. 1, No. 1, pp. 116–129, 1993.

[Miln 89] R. Milner. Communication and Concurency. Prentice Hall, 1989.

[Moor 56] E. Moore. “Gedanken-experiments on sequential machines”. Automata
studies, Vol. 34, pp. 129–153, 1956.

[Moss 04] P. D. Mosses. CASL Reference Manual, The Complete Documentation of
the Common Algebraic Specification Language. Vol. 2960 of Lecture Notes
in Computer Science, Springer, 2004.

[Naik 95] K. Naik. “Fault-tolerant UIO sequences in finite state machines”. In:
8th IFIP International Workshop on Protocol Test Systems, pp. 201–214,
Evry, France, September 1995.

[Ntaf 88] S. Ntafos. “A Comparison of Some Structural Testing Strategies”. IEEE
Transactions on Software Engineering, Vol. 14, No. 6, pp. 868–874, 1988.

[Ostr 88] T. J. Ostrand and M. J. Balcer. “The category-partition method for
specifying and generating fuctional tests”. Commun. ACM, Vol. 31, No. 6,
pp. 676–686, 1988.

[Parg 99] R. P. Pargas, M. J. Harrold, and R. R. Peck. “Test–data generation
using genetic algorithms”. Journal of Software Testing Verification and
Reliability, Vol. 9, No. 4, pp. 263–282, 1999.

[Pear 79] S. W. Pearson and J. E. Bailey. “Measurement of Computer User Satis-
faction.”. In: Int. CMG Conference, pp. 49–58, 1979.

[Petr 04] A. Petrenko, S. Boroday, and R. Gorz. “Confirming Configurations in
EFSMs”. IEEE Transactions on Software Engineering, Vol. 30, pp. 29–
42, January 2004.

[Petr 96] A. Petrenko, N. Yevtushenko, and G. v. Bochmann. “Testing determinis-
tic implementations from nondeterministic FSM specifications”. In: IFIP
TC6 9th International Workshop on Testing of Communicating Systems,
pp. 125–140, Chapman & Hall, Ltd., Darmstadt, Germany, 9–11 Septem-
ber 1996.

[Rama 03] T. Ramalingom, K. Thulasiraman, and A. Das. “Context independent
unique state identification sequences for testing communication protocols
modelled as extended finite state machines.”. Computer Communications,
Vol. 26, No. 14, pp. 1622–1633, 2003.

170

[Rapp 85] S. Rapps and E. J. Weyuker. “Selecting software test data using data
flow information”. IEEE Trans. Softw. Eng., Vol. 11, No. 4, pp. 367–375,
1985.

[Reza 95] A. Rezaki and H. Ural. “Construction of checking sequences based on char-
acterization sets”. Computer Communications, Vol. 18, No. 12, pp. 911–
920, 1995.

[Sabn 88] K. K. Sabnani and A. T. Dahbura. “A protocol test generation procedure”.
Computer Networks and ISDN Systems, Vol. 15, pp. 285–297, 1988.

[Shen 89] Y. Shen, F. Lombardi, and T. Dahbura. “Protocol conformance testing us-
ing multiple UIO sequences”. In: IFIP WG6.1 9th Int. Symp. on Protocol
Specification Testing and Verification, pp. 131–144, Amsterdam, Holland,
1989.

[Shen 91] X. Shen, S. Scoggins, and A. Tang. “An improved RCP-method for proto-
col test generation using backward UIO sequences”. In: ACM Symposium
on Applied Computing (SAC 1991), pp. 284–293, ACM Press New York,
Kansas City, MO, USA, April 1991.

[Shen 92] X. Shen and G. Li. “A new protocol conformance test generation
method and experimental results”. In: SAC ’92: Proceedings of the 1992
ACM/SIGAPP Symposium on Applied computing, pp. 75–84, ACM Press,
1992.

[Sidh 89] D. P. Sidhu and T. K. Leung. “Formal Methods for Protocol Testing: A
Detailed Study”. IEEE Transactions on Software Engineering, Vol. 15,
pp. 413–426, 1989.

[Son 98] H. Son, D. Nyang, S. Lim, J. Park, Y.-H. Choe, B. Chin, and J. Song.
“An Optimized Test Sequence Satisfying the Completeness Criteria”. In:
12th International Conference on Information Networking (ICOIN-12),
pp. 621 – 625, IEEE, Tokyo, Japan, January 1998.

[Spiv 88] J. Spivey. Understanding Z: A specification language and its formal sman-
tics. Cambridge University Press, 1988.

[Spiv 89] J. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 1989.

[Srin 94] M. Srinivas and L. M. Patnaik. “Genetic Algorithms: A Survey”. IEEE
Computer, Vol. 27, pp. 17–27, 1994.

171

[Stan 88] I. O. for Standartization (ISO). “Information processing systems - Open
systems interconnections - LOTOS - A formal description technique based
on the temporal ordering of observable behaviour”. ISO8807, Vol. , p. ,
1988.

[Sun 01] H. Sun, M. Gao, and A. Liang. “Study on UIO sequence generation for
sequential machine’s functional test”. In: 4th International Conference on
ASIC,OCT 23-25, 2001, pp. 628–632, IEEE, Shanghai, China, October
2001.

[Sun 98] D. Sun, B. Vinnakota, and W. Jiang. “Fast state verification”. In: Pro-
ceedings of the 35th annual conference on Design automation, pp. 619 –
624, ACM Press New York, San Francisco, California, United States, June
1998.

[Tane 96] A. S. Tanenbaum. Computer Networks. Prentice Hall, Upper Saddle
River, NJ, USA, 1996. 3rd edition.

[Trac 00] N. Tracey, J. Clark, K. Mander, and J. McDermid. “Automated test-data
generation for exception conditions”. Software Practice and Experience,
Vol. 30, No. 1, pp. 61–79, 2000.

[Trak 73] B. A. Trakhtenbrot and Y. M. Barzdin. Finite Automata: Behavior and
Synthesis. North-Holland, Amsterdam, 1973.

[Ural 97] H. Ural, X. Wu, and F. Zhang. “On Minimizing the Lengths of Checking
Sequences”. IEEE Transactions on Computers, Vol. 46, No. 1, pp. 93–99,
1997.

[Wang 87] B. Wang and D. Huthinson. “Protocol testing techniques”. Computer
communications, Vol. 10, pp. 79–87, 1987.

[Wegn 97] J. Wegner, H. Sthamber, B. Jones, and D. Eyres. “Testing Real-time
systems using Genetic Algorithms”. Software Quality, Vol. 6, pp. 127–
135, 1997.

[Whit 99] D. Whitley. “A Free Lunch Proof for Gray versus Binary Encodings”.
In: Proceedings of the Genetic and Evolutionary Computation Conference,
pp. 726–733, Morgan Kaufmann, CA, USA, Orlando, Florida, USA, July
1999.

[Yang 90] B. Yang and H. Ural. “Protocol conformance test generation using mul-
tiple UIO sequences with overlapping”. In: SIGCOMM ’90: Proceedings

172

of the ACM symposium on Communications architectures & protocols,
pp. 118–125, 1990.

