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ABSTRACT 

Modern electromagnetic problems are becoming increasingly complex and 

their simulation must take into account geometrical features that are both large 

and small compared to the wavelength of interest. These multi-scale problems 

lead to a heavy computational burden in a discretised computational simulation 

approach since the small features require fine mesh to be used in the simulation, 

resulting in large run time and memory storage. To overcome such problems, 

this thesis presents an efficient and versatile method for embedding small 

features into an otherwise coarse mesh. The embedded model eliminates the 

need for discretising the small features and allows for a relative large mesh size 

to be used, thus saving the computational costs. 

The subject of the thesis is embedding a thin film as a small feature into the 

numerical Transmission Line Modelling (TLM) method, although any small 

feature with known analytical response can be implemented in practice. In the 

embedded model, the thin film is treated as a section of transmission line, 

whose admittance matrix is used to describe the frequency response of the thin 

film. The admittance matrix is manipulated by expanding the constituent 

cotangent and cosecant functions analytically, and then transforming them 

from the frequency domain to the time domain using the inverse Z transform 

and general digital filter theory. In this way the frequency responses of the thin 

film are successfully embedded into the TLM algorithm. The embedded thin 

film model can be applied to both single and multiple thin film layers.  

The embedded thin film model has been implemented in the one-dimensional 

(1D) and two-dimensional (2D) TLM method in the thesis. In the 1D TLM 

method, the embedded thin film model is used to investigate the reflection and 

transmission properties of lossy, anisotropic and lossless thin films, e.g. carbon 

fibre composite (CFC) panels, titanium panels, antireflection (AR) coatings 

and fibre Bragg gratings (FBG). The shielding performance of CFC panels is 

also discussed. In the 2D TLM method, the embedded thin film model is 

extended to model arbitrary excitations and curved thin films. The 

electromagnetic behaviour of infinitely long CFC panels with oblique 
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incidence and a CFC panel of finite length with a point source excitation are 

studied using the embedded thin film model. The resonant effects of CFC 

circular and elliptical resonators and the shielding performance of a CFC 

airfoil with the profile of NACA2415 are investigated using the embedded 

curved thin film model. In addition, the effects of small gaps in the airfoil 

structure on the shielding performance are also reported.  

All the examples discussed in the thesis have validated the accuracy, stability, 

convergence and efficiency of the embedded thin film model developed. At the 

same time, the embedded thin film model has been proven to have the 

advantage of significantly saving computational overheads. 
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1.Introduction 

1.1. Background 

Simple electromagnetic problems can be solved analytically using the Maxwell 

equations. However, it is difficult to get analytical solutions for the 

electromagnetic problems involved in modern complex systems. With 

improved computer performance and especially parallel computer architectures, 

computer simulations have come to dominate the analysis of electromagnetic 

wave propagation through complex geometries mixed material compositions. 

Over the years, a number of electromagnetic simulation techniques have been 

developed, such as the Finite Difference Time-Domain (FDTD) method [1.1], 

the Finite Element Method (FEM) [1.2], the Method of Moments (MOM) [1.3] 

and the Transmission Line Modelling (TLM) method [1.4].  

The FDTD and TLM methods are numerical full-wave techniques for the 

solutions of Maxwell equations in the time domain. At first sight, they offer 

significant advantages for dealing with complex geometries in a relatively 

straightforward manner. Moreover, as the trend towards wider bandwidth 

systems continues, the use of time domain algorithms that can obtain a 

response over a range of frequencies in one time domain simulation is very 

attractive. Furthermore, in the presence of complex materials, such as non-

linear [1.5] materials, time domain simulations are necessary. However, one 

major disadvantage of such numerical techniques is their computational 

intensity as they require that the full detail of the geometry of the problem at 

hand is explicitly discretised. 

The disadvantage of the time domain methods becomes more obvious in a 

multi-scale problem, which often exists in practice [1.6]. It is quite common to 

have very different physical scales (relative to the wavelength) in the same 

problem, especially in the study of Electromagnetic Compatibility (EMC). For 

example, carbon fibre composite (CFC) materials have been extensively used 

in the aircraft industries [1.7] due to their high strength-to-weight ratio and 

ease of fabrication [1.8], and one key area of research is in the reaction of the 
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CFC materials used in aircraft to lightning strikes [1.9 ~ 1.12]. The thickness 

of the CFC panel used in C-27J aircraft [1.9] is around 1 mm while the 

maximum length of the aircraft is around 22 m. The small thickness of the 

CFC panel thus needs to be dealt within a large problem space. If the 

conventional TLM or FDTD method is used to model such a system, the mesh 

size should be much smaller than the thickness of the panel in order to 

accurately consider its effects. For example, if the mesh size is chosen to be 0.1 

mm for the whole problem in the 1D TLM or FDTD model, there will be at 

least 220,010 nodes in the simulation. If 2D or 3D TLM or FDTD model is 

considered, the number of nodes will increase substantially, which results in 

huge computational costs, including both run time and memory storage. 

One possible method for handling multi-scale problems is to use a non-

uniform mesh [1.6], which allows that the very small mesh is only applied to 

areas where the fine features are present, thus maintaining the computational 

efficiency. As examples of this technique, the multi-grid or sub-grid technique 

has been reported for the FDTD method in [1.13 ~ 1.17] and the TLM method 

in [1.18 ~ 1.21]. A hybrid mesh for the TLM method, the hybrid symmetrical 

condensed node (HSCN), was also discussed in [1.4] and [1.22 ~ 1.24]. 

Futhermore, a multi-level Octree mesh has been reported in [1.25] and adopted 

in the CST microwave studio software [1.26]. Fig.1 (a) and (b) show the 

schematic of a multi-grid mesh and a multi-level Octree mesh, respectively. 

The commercial software FEKO adopts variable mesh densities in a single 

model to account for the multi-scale problems. Although these techniques 

maintain the computational efficiency to a certain extent, they have difficulties 

in dealing with power conservation at the interface between the fine and coarse 

mesh regions. Furthermore, the time step of the overall simulation is defined 

with respect to the smallest mesh size in the problem, still resulting in long run 

time. 

The alternative method is to use the local solutions embedded in a uniform 

mesh [1.6]. Since the electromagnetic response of particular canonical features 

within a larger computational environment is often highly localised, a 

specialised model for such features can be developed in isolation which can 
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then be coupled to the rest of the simulation through a standardised interface, 

thus avoiding the need to discretise within the feature. The specialised model 

can achieve a significant reduction in computational costs, not only by 

eliminating discretisation within the fine feature but also by permitting a larger 

mesh size in the exterior region. The challenges of this technique lie in 

obtaining the local solutions and devising appropriate interfaces [1.6].  

 

  

(a) (b) 

Fig.1 (a) A multi-grid mesh and (b) a multi-level Octree mesh from [1.25] 
 

The development of embedded models in both the FDTD and the TLM 

methods will be discussed in the next section. 

 

1.2. Embedded Models in Numerical Methods 

In this section, the development of embedded models in both the FDTD and 

the TLM methods is overviewed first. The major achievements of this thesis 

are then summarized. 

In the FDTD method, several techniques have been used to obtain the local 

solutions in a uniform mesh, such as the surface impedance boundary 

conditions (SIBCs) [1.27], impedance network boundary conditions (INBCs) 

[1.28] and effective boundary conditions [1.29].  
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Surface impedance boundary conditions were first proposed by Leontovich in 

the 1940’s [1.27] and were rigorously developed by Senior in 1960 [1.30]. 

This technique allows the replacement of lossy dielectric-coated objects or 

imperfect conductors with surface impedance boundary conditions, thus 

avoiding discretising the objects. It was firstly applied in a frequency domain 

analysis [1.31] and then adopted in the time domain method [1.29 ~ 1.38]. The 

SIBCs technique was introduced in the FDTD method in the 1990s. Maloney 

and Smith [1.32 ~ 1.33] deployed the SIBCs to replace lossy conductors for 

reducing the solution space and saving computational costs. It was efficiently 

implemented by using the recursive convolution of a series of exponential 

functions to obtain the time domain SIBCs. Beggs et al. [1.34] extended the 

constant SIBCs developed for a single frequency to a dispersive SIBCs 

applicable over a large frequency bandwidth. Kellaili et al. [1.35] implemented 

an oblique incident angle into the SIBCs for vertical or horizontal polarizations 

of locally plane waves. Oh et al. [1.36] presented an efficient implementation 

of SIBCs in the FDTD for a lossy dielectric half-space and a thin lossy 

dielectric medium. Higher order SIBCs [1.37 ~ 1.40] have also been developed 

for the FDTD method to account for 2D and 3D scattering problems involving 

a lossy medium. Recently, Santis et al. [1.41] approximated the surface 

impedance function of a lossy medium with a series of rational functions by 

using the vector fitting (VF) technique, which has the advantage of reducing 

the number of poles, thus reducing the order of the rational functions, for a 

limited frequency range while retaining the same order of accuracy. 

Since SIBCs are only valid when the skin depth of the panel is much smaller 

than its thickness [1.34], the impedance network boundary conditions (INBCs) 

were proposed as an extension of SIBCs to account for the case where the 

thickness of the panel is comparable to, or smaller than, its skin depth. The 

implementation of the INBCs is based on the equivalence of the conductive 

shield to a transmission line, represented by a two-port network in terms of an 

impedance matrix in the frequency domain. The time domain procedures of 

INBCs are developed by algorithms of recursive convolutions. INBCs were 

introduced into the FDTD method by Feliziani et.al. [1.28] to analyse the 

electromagnetic field around penetrable shield structures. This technique was 
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then extended to analyse complex shielded problems in the 3D domain [1.42]. 

It was proven to be more efficient than the sub-cell technique [1.43] in the 

FDTD method. INBCs have also been applied in the FDTD method to analyse 

the effects of the electrostatic discharge (ESD) on conductive panels [1.44], 

avoiding the large space discretisation required by the standard FDTD method. 

Recently, Feliziani et.al. [1.45 ~ 1.46] further developed the INBCs to analyse 

the electromagnetic fields around non-perfectly conductive shields. In this new 

approach, a simple linear time-invariant (LTI) circuit was used to represent the 

frequency-domain admittance matrix of the shield. Its major advantage is that 

this circuit is directly analysed in the time domain without using convolution 

equations. 

In order to model anisotropic carbon fibre composite materials, Sarto et al. 

[1.29, 1.47] introduced an effective boundary conditions technique into the 

FDTD method, excluding the material out of the discretisation region and thus 

saving the computational costs. Their approach was based on the transmission 

line formulation of the field propagation equations through the layer. The time 

domain formulations were computed from the frequency domain by using 

vector fitting procedures [1.48]. This technique is actually another extension of 

SIBCs. 

In the TLM method, digital filter techniques have been used to obtain local 

solutions for a fine feature in a large problem. This technique is now 

overviewed. 

In order to solve the multi-scale problems in the EMC area, Paul et al. [1.49 ~ 

1.51] proposed a digital filter technique for the incorporation of fine features 

into the TLM method. In this technique, the fine features are represented by 

frequency-dependent external or internal boundary conditions. The frequency 

domain scattering functions of the boundary can be extracted from a set of data 

containing its analytical or measured scattering coefficients by using the Prony 

method [1.52]. Its time domain functions are obtained using the bilinear Z-

transform and digital filter theory, which are then implemented in the TLM 

method. In the application of this technique, the implementation of the Prony 

method is a key part. Since the accuracy of the method depends on the number 
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of poles used for describing the transfer functions of the digital filters [1.51], 

the number of poles must be selected correctly to get an accurate 

approximation to a particular data set. The Prony method also involves the 

calculation of matrix inversion, which may increase the computation 

complexity and cause large computational overheads, especially for a large 

matrix [1.52]. 

Based on the above techniques, an embedded thin film model in the TLM 

method is presented in this thesis to address the multi-scale problems, e.g. thin 

films in a large problem space. In this technique, the thin film is excluded from 

the large problem and modelled locally without discretisation. It is equivalent 

to a section of transmission line, represented by a two-port network in terms of 

an admittance matrix. The frequency domain admittance matrix involves the 

calculation of cotangent and cosecant functions, which can be approximated by 

known analytical expansions in partial fractions. The time domain expressions 

are then obtained by using the bilinear Z transform and digital filter theory. 

The time domain TLM algorithm includes a scattering process and a 

connection process [1.4]. By modifying its connection process, the time 

domain expressions of the thin film are embedded into the TLM algorithm. 

Unlike other techniques discussed above, this technique does not involve the 

calculation of matrix inversion and the choice of the correct number of poles, 

which makes it more efficient. Furthermore, the frequency domain equations 

of the thin film come from the analytical equations based on the parameters of 

the film, not from an approximation based on known data sets, leading to 

accurate results. 

In this thesis, the embedded thin film model has been applied within one-

dimensional (1D) and two-dimensional (2D) TLM methods. In the 1D problem, 

the model is used to analyse the reflection and transmission properties of not 

only conductive panels, such as carbon fibre composite (CFC) panels and 

titanium panels, but also dielectric panels, such as antireflection coatings and 

fibre Bragg gratings. In the 2D problem, it is extended to analyse the shielding 

performance of CFC panels with finite length at arbitrary excitations. In 

addition, it is applied to investigate the resonant properties and shielding 
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performance of curved CFC structures. Its extension to three-dimensional (3D) 

problems is discussed in the future work. 

 

1.3. Outline of the Thesis 

The outline of the thesis is provided as follows. 

Chapter 2 reviews the fundamentals of the Transmission Line Modelling 

(TLM) method for one-dimensional (1D), two-dimensional (2D) and three-

dimensional (3D) problems. Stub technique and generalised condensed node 

are described as ways of modelling material parameters. 

Chapter 3 presents detailed derivation of the embedded thin film model in the 

TLM algorithm. The embedded model for single layer thin films is introduced 

first. Its implementation starts with the analytical expansions of the cotangent 

and cosecant functions in the admittance matrix of the thin film, which are then 

transformed from the frequency domain to the time domain, using the inverse 

Z transform and general digital filter theory. The thin film model is embedded 

between TLM nodes by modifying the TLM’s connection process. Based on 

the single layer thin films, an embedded model for multilayer thin films is 

derived. According to the admittance matrix of each layer, a linear matrix 

equation is formed to describe the scattering properties of the multilayer thin 

film, which is solved using a Gauss-Seidel method. Furthermore an anisotropic 

thin film model is introduced at the end of this chapter. 

Chapter 4 demonstrates the applications of the 1D TLM method with 

embedded thin film model. Both lossy and lossless thin films are considered. 

As examples of lossy thin films, the reflection and transmission coefficients of 

several different CFC panels and titanium panels are calculated using the 

embedded model and compared to analytical results. Furthermore, the model is 

applied to investigate the shielding performance of CFC panels. As examples 

of lossless thin films, the reflection coefficients of an antireflection (AR) 

coating and the transmission coefficients of a fibre Bragg grating (FBG) are 

also computed using the embedded model and compared to the analytical 
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results. These examples are used to investigate the accuracy, stability, 

convergence and efficiency of the embedded thin film model in the 1D TLM 

method. Furthermore, the advantages of the embedded model over the 

conventional TLM method are elaborated by comparing the computational 

resources used by both methods. 

Chapter 5 describes the embedded thin film model for arbitrary excitations in 

a 2D TLM method. The embedded model developed in Chapter 3 is first 

applied to model an infinitely long thin film at oblique incidence. Here the thin 

film is seen as 1D model embedded between 2D TLM nodes due to the 

introduction of a transverse impedance. The model is extended to include thin 

films with finite length at arbitrary excitations by using the plane wave 

decomposition theory. In order to simulate a plane wave propagating in an 

infinite space at oblique incidence, plane wave excitation methods for both TE- 

and TM- polarised waves are presented. After introducing the theory, the 

accuracy and convergence of the embedded model for arbitrary excitations are 

examined by calculating the reflection and transmission coefficients of 

infinitely long CFC panels with TE- and TM- polarised wave excitations at 

different angles of incidence over a wide frequency range. In the end, the 

embedded model is applied to model a CFC panel of finite length with a point 

source excitation. The effects of the finite dimensions of the CFC panel on the 

electromagnetic field propagation are discussed. 

Chapter 6 extends the embedded model to the case of curved thin films in a 

2D TLM method. Embedding of the curved thin films in the TLM algorithm is 

done firstly, by approximating the thin films using a piece-wise linearisation 

and secondly, embedding the linearised segments between adjacent nodes, 

where a three-layer stack is introduced to allow for arbitrary model placement 

between the nodes. The convergence and accuracy of the embedded curved 

thin film model are investigated by calculating the resonance frequencies of 

infinitely-long, hollow, CFC circular and elliptical resonators and comparing 

them with those of the equivalent metal circular and elliptical resonators. 

Furthermore, the model is applied to analyse the shielding performance of a 
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CFC airfoil with the profile of NACA2415 [1.53]. The impact of small gaps in 

the airfoil structure on its shielding performance is also investigated. 

Chapter 7 provides the main conclusions of the thesis and discusses its 

possible applications in three dimensional (3D) problems for future 

development of this work. 
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2.The Transmission Line Modelling 

(TLM) Method 

2.1. Overview 

This chapter presents the basis of the Transmission Line Modelling (TLM) 

method that is founded on the analogy between the propagation of the 

electromagnetic fields and circuit networks. The TLM method [2.1] is a time-

domain numerical method that solves the differential form of Maxwell’s 

equations. It has been widely used in microwave applications [2.1 ~ 2.4] and 

THz applications [2.5 ~ 2.6]. Its implementation for the one-dimensional (1D), 

two-dimensional (2D) and three-dimensional (3D) problems in free space is 

presented. This is followed by an overview of methods for modelling materials 

parameters different from free space by using (i) a stub technique and (ii) the 

condensed node model. These methods will be used in the thesis to model the 

background materials surrounding the thin films. 

 

2.2. Analogy between EM Fields and Circuit 

Networks 

All classical electromagnetic phenomena can be described by Maxwell’s 

equations [2.7]: 

ߘ ൈ ሬԦܧ ൌ െ ݐሬԦ߲ܤ߲ ǡ 
ߘ ൈ ሬሬԦܪ ൌ Ԧܬ ൅ ݐሬሬԦ߲ܦ߲ ǡ ߘ ή ሬሬԦܦ ൌ ߘ ǡߩ ή ሬԦܤ ൌ Ͳǡ 

(2-1) 
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where the symbols ܧሬԦǡ ሬሬԦǡܦ ሬሬԦǡܪ ሬԦǡܤ Ԧܬ  represent the vectors of the electric field 

intensity, the electric flux density, the magnetic field intensity, the magnetic 

flux density and the current density, respectively, and ߩ is the scalar electric 

charge density. 

The following constitutive relations [2.7] are assumed, ܦሬሬԦ ൌ ሬԦܤ ሬԦǡܧߝ ൌ  ǤሬሬሬሬԦܪߤ
(2-2) 

where ߤ and ߝ are the permeability and permittivity of the medium. 

In Cartesian coordinates, after expanding the vectors ܧሬԦ and ܪሬሬԦ using the above 

constitutive relations, the first two equations in (2-1) become:  ߲ܧ௭߲ݕ െ ݖ௬߲ܧ߲ ൌ െߤ ݐ௫߲ܪ߲ ǡ ߲ܧ௫߲ݖ െ ݔ௭߲ܧ߲ ൌ െߤ ݐ௬߲ܪ߲ ǡ ߲ܧ௬߲ݔ െ ݕ௫߲ܧ߲ ൌ െߤ ݐ௭߲ܪ߲ ǡ (2-3) 

ݕ௭߲ܪ߲ െ ݖ௬߲ܪ߲ ൌ ௫ܬ ൅ ߝ ݐ௫߲ܧ߲ ǡ ߲ܪ௫߲ݖ െ ݔ௭߲ܪ߲ ൌ ௬ܬ ൅ ߝ ݐ௬߲ܧ߲ ǡ ߲ܪ௬߲ݔ െ ݕ௫߲ܪ߲ ൌ ௭ܬ ൅ ߝ ݐ௭߲ܧ߲ Ǥ (2-4) 

If a one dimensional problem is considered (
డడ௫ ൌ Ͳǡ డడ௬ ൌ Ͳ), equations (2-3) 

and (2-4) reduce to, 

െ ݖ௬߲ܧ߲ ൌ െߤ ݐ௫߲ܪ߲ ǡ (2-5) ߲ܧ௫߲ݖ ൌ െߤ ݐ௬߲ܪ߲ ǡ (2-6) െ ݖ௬߲ܪ߲ ൌ ௫ܬ ൅ ߝ ݐ௫߲ܧ߲ ǡ (2-7) 
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ݖ௫߲ܪ߲ ൌ ௬ܬ ൅ ߝ ݐ௬߲ܧ߲ Ǥ (2-8) 

Equations (2-5) and (2-8) have the same form as equations (2-6) and (2-7). The 

two pairs of equations are independent of each other, so here the solutions of 

(2-6) and (2-7) are considered. 

Combining (2-6) and (2-7), the following equation is obtained, ߲ଶܧ௫߲ݖଶ ൌ ߝߤ ߲ଶܧ௫߲ݐଶ ൅ ߤ ݐ௫߲ܬ߲ Ǥ (2-9) 

Applying Ohm’s Law (ܬ௫ ൌ ௫ܧ௘ߪ ) [2.7] to equation (2-9), where ߪ௘  is the 

electrical conductivity of the medium, gives,  ߲ଶܧ௫߲ݖଶ ൌ ߝߤ ߲ଶܧ௫߲ݐଶ ൅ ௘ߪߤ ݐ௫߲ܧ߲ Ǥ (2-10) 

Equation (2-10) is the one-dimensional (1D) wave equation that describes the 

propagation of the electric field component ܧ௫ along one-dimension. 

At high frequencies, propagation of the electromagnetic signals along the 

transmission line can be described using a transmission line model. In a 

transmission line model, the short length of the transmission line, ݀ݖ , is 

developed using the circuit shown in Fig. 2-1, where R, G, L and C are the 

series resistance, shunt admittance, series inductance and shunt capacitance per 

section of length ݀ݖ, respectively. 

Applying Kirchhoff’s voltage and current laws [2.8] to the circuits shown in 

Fig. 2-1, two equations are obtained as follows,  

ݖ݀ ݖ߲ݒ߲ ൌ െܮ ݐ߲߲݅ െ ܴ݅ǡ (2-11) ݀ݖ ݖ߲߲݅ ൌ െܥ ݐ߲ݒ߲ െ  ǡ (2-12)ݒܩ

where both transient voltage (ݒ) and current (݅) are functions of ݖ.  
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Fig. 2-1 Section of a transmission line. 
 
When the current (݅) is eliminated between equations (2-11) and (2-12), the 

equation for the voltage (ݒ) is expressed as,  ߲ଶݖ߲ݒଶ ൌ ሻଶݖሺܴ݀ܩ ݒ ൅ ͳሺ݀ݖሻଶ ሺܮܩ ൅ ሻܥܴ ݐ߲ݒ߲ ൅ ሻଶݖሺ݀ܥܮ ߲ଶݐ߲ݒଶ Ǥ (2-13) 

Similarly, when the voltage (ݒ) is eliminated, the following equation for the 

current (݅) is obtained, ߲ଶ߲݅ݖଶ ൌ ሻଶݖሺܴ݀ܩ ݅ ൅ ͳሺ݀ݖሻଶ ሺܮܩ ൅ ሻܥܴ ݐ߲߲݅ ൅ ሻଶݖሺ݀ܥܮ ߲ଶ߲݅ݐଶǤ (2-14) 

Assuming ܴ ൌ Ͳ, equation (2-13) becomes, ߲ଶݖ߲ݒଶ ൌ ሻଶݖሺ݀ܮܩ ݐ߲ݒ߲ ൅ ሻଶݖሺ݀ܥܮ ߲ଶݐ߲ݒଶ Ǥ (2-15) 

Comparing equations (2-10) and (2-15), both of which are repeated below for 

convenience, it is found that they have the same form, ߲ଶܧ௫߲ݖଶ ൌ ߝߤ ߲ଶܧ௫߲ݐଶ ൅ ௘ߪߤ ݐ௫߲ܧ߲ ǡ 
߲ଶݖ߲ݒଶ ൌ ሻଶݖሺ݀ܥܮ ߲ଶݐ߲ݒଶ ൅ ሻଶݖሺ݀ܮܩ ݐ߲ݒ߲ ǡ 

so that the following equivalences can be made, 

ݒ ՞ ௫ܧ ǡ   ݀ݖܥ ՞ ݖܮ݀   ǡߝ ՞ ݖܩ݀   ǡߤ ՞ ௘ߪ Ǥ 
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Similarly, it is observed that the equations describing the behaviour of the 

magnetic field ܪ௬ and the current ݅ have the same form and so the following 

equivalence exists, ݅ ՞  ௬Ǥܪ
These equivalences show that the wave propagation can be modelled using 

transmission line equivalent circuits, providing that a suitable mapping 

between line parameters and the propagation medium is made. 

 

2.3. The Transmission Line Modelling (TLM) 

Method 

As discussed in the previous section, the Transmission Line Modelling (TLM) 

method is based on the analogy between the propagation of the 

electromagnetic fields and the behaviour of voltages and currents on a 

transmission line. Unlike the Finite Difference Time Domain (FDTD) method, 

which is an approximation of derivative terms using finite differences in 

Maxwell’s equations [2.9], the TLM method is a wave physical model, which 

propagates signals along a network of transmission lines. Another important 

difference is that the FDTD method has to satisfy the Courant condition for 

stability [2.10], whilst the TLM method is unconditionally stable. 

The TLM method discretises the modelling space using a mesh of transmission 

lines, connected at nodes. The field is represented using voltage wave pulses 

which propagate and scatter through the mesh at every time step. Its 

implementation can be algorithmically separated into several stages namely: 

initialization, calculation of the voltages at all nodes, scattering and connection 

processes, and boundary conditions setup [2.1]. Initialization defines the 

sources and initial wave values; the scattering process determines the reflected 

voltage waves at all nodes and the connection process obtains the new values 

for the incident voltage waves at all nodes by exchanging the voltage waves 
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between adjacent nodes. Boundary conditions define the modelling space, for 

example, by providing conditions representing outgoing waves. 

In the following sections, the implementations of the one-dimensional (1D), 

two-dimensional (2D) and three-dimensional (3D) TLM models are discussed 

separately in terms of the scattering and connection processes. 

 

2.3.1. 1D TLM Model 

Based on the equivalence between electromagnetic fields and electric circuits, 

as discussed in section 2.2, the parameters of free space are modelled by the 

inductance and capacitance of the transmission line as follows, 

ܮ ൌ ଴ߤ ή ǡݖ݀ ܥ ൌ ଴ߝ ή  ǡ (2-16)ݖ݀

where ߤ଴ and ߝ଴ are the permeability and permittivity of free space, ܮ and ܥ 

are the inductance and capacitance per length of the transmission line, 

respectively, and ݀ݖ is the mesh size. The modelling of material parameters 

different from free space is described in section 2.4. 

The transmission line is characterised by the characteristic impedance as [2.1] 

ܼ଴ ൌ ඥܮȀ(17-2) .ܥ 

The time step, οݐ , is the time the voltage takes to propagate through a section 

of transmission line of length ݀ݖ . It is also related to the inductance and 

capacitance as follows, 

οݐ ൌ ݖܿ݀ ൌ ξܥܮǡ (2-18) 

where ܿ is the velocity of the wave propagation in free space and is given by, 

ܿ ൌ ͳ ඥܮȀ݀ݖ ή ൘ݖȀ݀ܥ ൌ ݖ݀ ξܥܮൗ . (2-19) 
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Fig. 2-2 shows two sections of transmission line connected at node n. In Fig. 

2-2, ௡ܸ  is the total nodal voltage at node n, ܸܮ௡௜  and ܸܴ௡௜  are the incident 

voltages from the left and right side of node n, respectively, and ܸܮ௡௥  and ܸܴ௡௥  are the reflected voltages from the left and the right side of node n, 

respectively.  

 

 

Fig. 2-2 Two sections of lossless transmission line connected at node n. 
 

The total voltage at node n at the time step k is a sum of incident and reflected 

voltages calculated as, 

 ௞ ௡ܸ ൌ  ௞ܸܮ௡௜ ൅  ௞ܸܴ௡௜Ǥ (2-20) 

In the scattering process, the reflected voltages at node n at the time step k are 

obtained from the incident voltages as,  ௞ܸܮ௡௥ ൌ  ௞ ௡ܸ െ  ௞ܸܮ௡௜ǡ  ௞ܸܴ௡௥ ൌ  ௞ ௡ܸ െ  ௞ܸܴ௡௜Ǥ (2-21) 

In the connection process, the reflected voltages from node n become incident 

voltages on the adjacent nodes at the next time step, k+1, as, 

 ௞ାଵܸܴ௡௜ ൌ  ௞ܸܮ௡ାଵ௥ ǡ (2-22)  ௞ାଵܸܮ௡௜ ൌ  ௞ܸܴ௡ିଵ௥ Ǥ (2-23) 

Following an initial excitation and imposing proper boundary conditions [2.1], 

these three processes are repeated at each node for the desired number of time 

steps.  
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2.3.2. 2D TLM Model 

In the 2D TLM model, two different nodes are used to model free space [2.1]: 

the series node shown in Fig. 2-3 (a) and the shunt node shown in Fig. 2-3 (b). 

For the waves propagating in the ݖ direction, the series node is used to model 

the TE modes with the field components ܧ௫ǡ  ௭, while the shunt nodeܪ ௬ andܧ

is used to model the TM modes with the field components ܪ௫ǡ  .௭ܧ ௬ andܪ

 

 

Fig. 2-3 (a) The 2D series TLM node and (b) the 2D shunt TLM node. 

 

The 2D series TLM node 

As shown in Fig. 2-3 (a), four sections of transmission lines of characteristic 

impedance ்ܼ௅ are connected in series [2.1]. The characteristic impedance ்ܼ௅ 

is ்ܼ௅ ൌ ܼ଴Ȁξʹ, and the time step is ȟݐ ൌ ݈݀Ȁሺξʹܿሻ, where ݈݀ is the mesh 

size. 

The voltages and currents at node ሺ݊௫ǡ ݊௬ሻ, where ݊௫ ൌ Ȁ݈݀, ݊௬ݔ ൌ  Ȁ݈݀, atݕ

the time step k are calculated as, 

 ௞ܫ௭ ൌ  ௞ ଵܸ௜ ൅  ௞ ସܸ௜ െ  ௞ ଶܸ௜ െ  ௞ ଷܸ௜ʹ்ܼ௅ ǡ 
 ௞ ௫ܸ ൌ  ௞ ଵܸ௜ ൅  ௞ ଷܸ௜ʹ ǡ    ௞ ௬ܸ ൌ  ௞ ଶܸ௜ ൅  ௞ ସܸ௜ʹ ǡ (2-24) 
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where  ௞ܫ௭,  ௞ ௫ܸ and  ௞ ௬ܸ are the current in the ݖ direction and the voltages in 

the x and y directions, respectively. Voltages  ௞ ଵܸ௜ ǡ  ௞ ଶܸ௜ ǡ  ௞ ଷܸ௜ and  ௞ ସܸ௜  are the 

incident voltages at the ports 1, 2, 3 and 4 of node ሺ݊௫ǡ ݊௬ሻ, respectively.  

According to the voltages and currents at node ሺ݊௫ǡ ݊௬ሻ, the corresponding 

electric and magnetic field components can be obtained as follows, 

௭ܪ ൌ ௭݈݀ܫ ǡ ௫ܧ ൌ െ ௫݈ܸ݀ ǡ ௬ܧ  ൌ െ ௬݈ܸ݀Ǥ  (2-25) 

The scattering process calculates the reflected voltages at all nodes, which can 

be expressed in terms of a scattering matrix as,  ௞ܸ௥ ൌ ܵ ή  ௞ܸ௜ ǡ (2-26) 

where  

 ௞ܸ௜ ൌ ൣ ௞ ଵܸ௜   ௞ ଶܸ௜  ௞ ଷܸ௜   ௞ ସܸ௜൧் ǡ 
 ௞ܸ௥ ൌ ሾ ௞ ଵܸ௥   ௞ ଶܸ௥  ௞ ଷܸ௥  ௞ ସܸ௥ሿ் ǡ 
ܵ ൌ ͲǤͷ ή ቎ͳ ͳͳ ͳ     ͳ െͳെͳ ͳͳ െͳെͳ ͳ      ͳ ͳͳ ͳ቏ǡ (2-27) 

and the superscript T indicates the transpose operator. 

The connection process is an exchange of the voltages between the adjacent 

nodes, which is expressed as, 

 ௞ାଵ ଵܸ௜൫݊௫ǡ ݊௬൯ ൌ  ௞ ଷܸ௥൫݊௫ǡ ݊௬ െ ͳ൯ǡ (2-28)    ௞ାଵ ଷܸ௜൫݊௫ǡ ݊௬൯ ൌ  ௞ ଵܸ௥൫݊௫ǡ ݊௬ ൅ ͳ൯ǡ (2-29)  ௞ାଵ ଶܸ௜൫݊௫ǡ ݊௬൯ ൌ  ௞ ସܸ௥൫݊௫ െ ͳǡ ݊௬൯ǡ (2-30)    ௞ାଵ ସܸ௜൫݊௫ǡ ݊௬൯ ൌ  ௞ ଶܸ௥൫݊௫ ൅ ͳǡ ݊௬൯Ǥ (2-31) 
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The 2D shunt TLM node 

The shunt node is shown in Fig. 2-3 (b), where the characteristic impedance of 

each transmission line is expressed as ்ܼ௅ ൌ ξʹܼ଴  [2.1] and the time step ȟݐ ൌ ݈݀Ȁሺξʹܿሻ. 

In the shunt node, the voltages and currents at node ሺ݊௫ǡ ݊௬ሻ at the time step  k 

are calculated as, 

 ௞ ௭ܸ ൌ  ௞ ଵܸ௜ ൅  ௞ ଶܸ௜ ൅  ௞ ଷܸ௜ ൅  ௞ ସܸ௜ʹ ǡ 
 ௞ܫ௫ ൌ  ௞ ଶܸ௜ െ  ௞ ସܸ௜்ܼ௅ ǡ    ௞ܫ௬ ൌ  ௞ ଵܸ௜ െ  ௞ ଷܸ௜்ܼ௅ ǡ (2-32) 

where  ௞ ௭ܸ,  ௞ܫ௫, and  ௞ܫ௬, are the voltage in the ݖ direction, the currents in the x 

and y directions, respectively. 

According to the voltages and currents at node ሺ݊௫ǡ ݊௬ሻ, the corresponding 

electric and magnetic field components can be obtained as, 

௭ܧ ൌ െ ௭݈ܸ݀ ǡ ௫ܪ ൌ െ ௬݈݀ܫ ǡ ௬ܪ ൌ ௫݈݀ܫ Ǥ (2-33) 

The scattering process is similar to that for the series nodes as in equation 

(2-26), but with the scattering matrix ܵ of the form, 

ܵ ൌ ͲǤͷ ή ቎െͳ ͳͳ െͳ     ͳ ͳͳ ͳͳ ͳͳ ͳ     െͳ ͳͳ െͳ቏Ǥ (2-34) 

The connection process for the shunt nodes is the same as that for the series 

node as in equations (2-28)-(2-31). 

  



2 The Transmission Line Modelling (TLM) Method 

25 
 

2.3.3. 3D TLM Model 

The scheme of a 3D TLM node is shown in Fig. 2-4. The node is known as 

symmetrical condensed node (SCN), first described by Johns [2.11], and is a 

mixture of both series and shunt nodes representing both polarisations. The 

SCN node has 12 ports as shown in Fig. 2-4. 

The characteristic impedance of each transmission line in the node is ்ܼ௅ ൌ ܼ଴ 

and the time step is ȟݐ ൌ ݈݀Ȁʹܿ . 
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Fig. 2-4 A 3D symmetrical condensed node (SCN). 
 

There are a total of 12 incident voltages and 12 reflected voltages, so the 

scattering matrix ܵ is a ͳʹ ൈ ͳʹ matrix and is given by [2.1], 
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As in the 1D and 2D models, the connection process assures TLM continuity. 

It builds the following relations between the neighbouring nodes, 

 ௞ାଵ ଶܸ௜൫݊௫ǡ ݊௬ǡ ݊௭൯ ൌ  ௞ ଽܸ௥൫݊௫ǡ ݊௬ ǡ ݊௭ െ ͳ൯ǡ (2-36)  ௞ାଵ ଽܸ௜൫݊௫ǡ ݊௬ǡ ݊௭൯ ൌ  ௞ ଶܸ௥൫݊௫ǡ ݊௬ ǡ ݊௭ ൅ ͳ൯ǡ (2-37)  ௞ାଵ ସܸ௜൫݊௫ǡ ݊௬ǡ ݊௭൯ ൌ  ௞଼ܸ ௥൫݊௫ǡ ݊௬ǡ ݊௭ െ ͳ൯ǡ (2-38)  ௞ାଵ଼ܸ ௜൫݊௫ǡ ݊௬ǡ ݊௭൯ ൌ  ௞ ସܸ௥൫݊௫ǡ ݊௬ǡ ݊௭ ൅ ͳ൯ǡ (2-39)  ௞ାଵ ଵܸ௜൫݊௫ǡ ݊௬ǡ ݊௭൯ ൌ  ௞ ଵܸଶ௥൫݊௫ǡ ݊௬ െ ͳǡ ݊௭൯ǡ (2-40)  ௞ାଵ ଵܸଶ௜൫݊௫ǡ ݊௬ǡ ݊௭൯ ൌ  ௞ ଵܸ௥൫݊௫ǡ ݊௬ ൅ ͳǡ ݊௭൯ǡ (2-41)  ௞ାଵ ହܸ௜൫݊௫ǡ ݊௬ǡ ݊௭൯ ൌ  ௞ ଻ܸ௥൫݊௫ǡ ݊௬ െ ͳǡ ݊௭൯ǡ (2-42)  ௞ାଵ ଻ܸ௜൫݊௫ǡ ݊௬ǡ ݊௭൯ ൌ  ௞ ହܸ௥൫݊௫ǡ ݊௬ ൅ ͳǡ ݊௭൯ǡ (2-43)  ௞ାଵ ଷܸ௜൫݊௫ǡ ݊௬ǡ ݊௭൯ ൌ  ௞ ଵܸଵ௥൫݊௫ െ ͳǡ ݊௬ǡ ݊௭൯ǡ (2-44)  ௞ାଵ ଵܸଵ௜൫݊௫ǡ ݊௬ǡ ݊௭൯ ൌ  ௞ ଷܸ௥൫݊௫ ൅ ͳǡ ݊௬ǡ ݊௭൯ǡ (2-45)  ௞ାଵ ଺ܸ௜൫݊௫ǡ ݊௬ǡ ݊௭൯ ൌ  ௞ ଵܸ଴௥൫݊௫ െ ͳǡ ݊௬ǡ ݊௭൯ǡ (2-46)  ௞ାଵ ଵܸ଴௜൫݊௫ǡ ݊௬ǡ ݊௭൯ ൌ  ௞ ଺ܸ௥൫݊௫ ൅ ͳǡ ݊௬ǡ ݊௭൯Ǥ (2-47) 
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The 1D and 2D TLM models will be used to model free space surrounding the 

embedded models of thin films that are developed in the work described in this 

thesis. The 3D model is shown here for completeness. 

 

2.4. Modelling Material Properties in the TLM 

Method 

Since the velocity of wave propagation depends on the medium parameters, it 

is impossible to model change in medium parameters in the same problem by 

simply adjusting the circuit parameters locally [2.1]. This is because all 

incident voltages have to arrive at nodes at the same time irrespective of 

medium they propagate in. Therefore it is necessary to maintain the same 

discretisation and the same time step throughout the problem. For this purpose, 

the stub technique [2.1] and the condensed node [2.12] have been developed to 

model the media with different material constituent properties. 

In this section, the stub technique and the condensed node are introduced and 

their implementation in a 1D TLM method is described. 

 

2.4.1. The Stub Technique 

When modelling problems containing different media, extra inductance 

(representing permeability) and extra capacitance (representing permittivity) 

can be introduced in the form of a stub [2.1], in order to maintain both 

connectivity and synchronism. 

For example, the dielectric medium can be modelled by adding an extra 

capacitance in the TLM model. Fig. 2-5 shows the extra capacitance ܥ௦ as an 

open circuit stub that is connected at node n in a 1D TLM model. The 

characteristic impedance of the capacitance, ܼ௖, is given by [2.1], 

ܼ௖ ൌ οܥʹݐ௦Ǥ (2-48) 
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ܼ௖ can be expressed in terms of the characteristic impedance of free space, ܼ଴, 

as [2.6], 

ܼ௖ ൌ ܼ଴ʹ߯௘ ǡ  (2-49) 

where ߯௘ ൌ ௥ߝ െ ͳ is the electric susceptibility of the medium. 

 

 

Fig. 2-5 A capacitive stub connected at node n in a 1D TLM model. 
 

Due to the presence of the stub, the total nodal voltage of node n at the time 

step k is expressed as, 

 ௞ ௡ܸ ൌ  ௞ܸܮ௡௜ ൅  ௞ܸܴ௡௜ ൅ ʹ߯ ή  ௞ܸܥ௡௜ͳ ൅ ߯௘ ǡ (2-50) 

where  ௞ܸܥ௡௜ represents the incident voltage at the time step k to the capacitive 

stub. 

Then the scattering process is given by,  ௞ܸܮ௡௥ ൌ  ௞ ௡ܸ െ  ௞ܸܮ௡௜ǡ  ௞ܸܴ௡௥ ൌ  ௞ ௡ܸ െ  ௞ܸܴ௡௜ǡ  ௞ܸܥ௡௥ ൌ  ௞ ௡ܸ െ ௞ܸܥ௡௜ǡ (2-51) 

where  ௞ܸܥ௡௥  represents the reflected voltage at the time step k from the 

capacitive stub. 

The connection process for the node is the same as in equations (2-22) and 

(2-23), and the connection process for the stub is given as, 
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 ௞ାଵܸܥ௡௜ ൌ  ௞ܸܥ௡௥ ǡ (2-52) 

since the capacitive stub is an open circuit stub. 

This is the 1D implementation of the stub technique used to model the 

permittivity of the medium. A similar method can be used to model the 

permeability of the medium. This technique can also be extended to 2D and 3D 

TLM models. The details of the extensions can be found in [2.1]. 

Janyani [2.6] developed the stub technique to model instantaneous nonlinear 

materials by employing a Kerr model of nonlinearity for the 1D case. The stub 

technique was further developed to model the dispersive nonlinear dielectrics 

using a more physically based Duffing equation [2.6]. 

 

2.4.2. The Condensed Node 

Paul [2.11] developed his condensed node to model material parameters 

different from free space. This model employs discrete signal processing 

techniques to incorporate Maxwell’s curl equations and the constitutive 

relations into the TLM algorithm. This technique is intuitive, flexible and 

transparent [2.12]. 

Fig. 2-6 shows a 1D condensed node with two ports ( ସܸ and ହܸ) and two total 

field quantities (ܧ௬ and ܪ௭). Noted here that Paul’s port numbering system is 

adopted, which is different from that used in section 2.3. The space steps in the 

node are assumed to be the same οݔ ൌ οݕ ൌ οݖ ൌ ݈݀. Its implementation is 

based on the field-circuit equivalence and normalization process. 
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Fig. 2-6 A 1D condensed node describing propagation in x from [2.12]. 
 

The compact form of Maxwell equations described in [2.12] is as follows, 

൤ ׏ ൈ ׏ሬሬԦെܪ ൈ ሬԦ൨ܧ െ ൥ ௠௙ሬሬሬሬሬሬԦ൩ܬ௘௙ሬሬሬሬሬԦܬ ൌ ቈ ௘ߪ כ ௠ߪሬԦܧ כ ሬሬԦ቉ܪ ൅ ݐ߲߲ ቈ ሬԦܧ଴ߝ ൅ ଴߯௘ߝ כ ሬሬԦܪ଴ߤሬԦܧ ൅ ଴߯௠ߤ כ  ሬሬԦ቉ǡ (2-53)ܪ

where ܬ௘௙ሬሬሬሬሬԦ and ܬ௠௙ሬሬሬሬሬሬԦ are the free electric current density and magnetic voltage 

density, ߪ௠ is magnetic resistivity and ߯௠ is the magnetic susceptibility. 

Equation (2-53) can be simplified in 1D as [2.12] 

െ ݔ߲߲ ൤ܪ௭ܧ௬൨ െ ൤ܬ௘௙௬ܬ௠௙௭൨ ൌ ൤ ௘ߪ כ ௠ߪ௬ܧ כ ௭൨ܪ ൅ ݐ߲߲ ൤ ௬ܧ଴ߝ ൅ ଴߯௘ߝ כ ௭ܪ଴ߤ௬ܧ ൅ ଴߯௠ߤ כ  ௭൨ǡ (2-54)ܪ

where ܬ௘௙௬ and ܬ௠௙௭ are the free electric current and magnetic voltage densities 

in y and ݖ axis, respectively. 

The quantities in equation (2-54) are normalized as 

௬ܧ ൌ െ ௬݈ܸ݀ ǡ ௭ܪ  ൌ െ ௭݈݀ܫ ൌ െ ݅௭݈݀ ή ܼ଴ǡ 
௘௙௬ܬ ൌ െ ௙௬݈݀ଶܫ ൌ െ ݅௙௬݈݀ଶ ή ܼ଴ ǡ   ܬ௠௙௭ ൌ െ ௙ܸ௭݈݀ଶǡ 

௘ߪ ൌ ݃௘݈݀ ή ܼ଴ ǡ ௠ߪ ൌ ௠ݎ ή ܼ଴݈݀ Ǥ 
(2-55) 

By applying the field-circuit equivalence and the normalization process, the 

transmission line model of equation (2-54) is found as [2.12] 
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െ ҧݔ߲߲ ൤݅௭ܸ௬൨ െ ൤݅௙௬௙ܸ௭൨ ൌ ൤݃௘ ή ௬ܸݎ௠ ή ௭ܫ ൨ ൅ ҧݏ ൤ ௬ܸ ൅ ߯௘ ή ௬ܸ݅௭ ൅ ߯௠ ή ݅௭൨ǡ (2-56) 

where 
డడ௫ҧ ൌ డడ௫ ή ݈݀ and ݏҧ ൌ ݏ ή  .being the Laplace variable ݏ with ,ݐ݀

Stokes’ theorem is applied using the integration contours ܥ௬ and ܥ௭ indicated 

in Fig. 2-6, so equation (2-56) becomes, 

൤ ସܸ ൅ ହܸସܸ െ ହܸ൨ െ ൤݅௙௬௙ܸ௭൨ ൌ ൤݃௘ ή ௬ܸݎ௠ ή ௭ܫ ൨ ൅ ҧݏ ൤ ௬ܸ ൅ ߯௘ ή ௬ܸ݅௭ ൅ ߯௠ ή ݅௭൨ǡ (2-57) 

where ସܸ and ହܸ are the total voltages on both sides of the node. 

Equation (2-57) is further converted to the travelling wave format as 

ʹ ൤ ସܸ ൅ ହܸସܸ െ ହܸ൨௜ െ ൤݅௙௬௙ܸ௭൨ ൌ ʹ ൤ ௬ܸܫ௭ ൨ ൅ ൤݃௘ ή ௬ܸݎ௠ ή ௭ܫ ൨ ൅ ҧݏ ൤ ௬ܸ ൅ ߯௘ ή ௬ܸ݅௭ ൅ ߯௠ ή ݅௭൨ǡ (2-58) 

where ସܸ௜ and ହܸ௜ are the incident voltages on the both sides of the node. 

The left side of equation (2-58) is seen as the external excitation of the node, 

which is defined as the reflected fields [2.12], so equation (2-58) becomes 

ʹ ൤ ௬ܸܫ௭ ൨௥ ൌ ʹ ൤ ௬ܸܫ௭ ൨ ൅ ൤݃௘ ή ௬ܸݎ௠ ή ௭ܫ ൨ ൅ ҧݏ ൤ ௬ܸ ൅ ߯௘ ή ௬ܸ݅௭ ൅ ߯௠ ή ݅௭൨Ǥ (2-59) 

By defining transmission coefficients ݐ௘௬ ൌ ʹȀሺʹ ൅ ݃௘ ൅ ҧ߯௘ሻݏ  and ݐ௠௭ ൌʹȀሺʹ ൅ ௠ݎ ൅  ҧ߯௠ሻ, equation (2-59) becomesݏ

൤ ௬ܸ݅௭ ൨ ൌ ൤ݐ௘௬ ͲͲ ௠௭൨ݐ ൤ ௬ܸ௥െ݅௭௥൨Ǥ (2-60) 

If the material has constant parameters, equation (2-60) can be solved by 

introducing the Z-transform with ݏ replaced by 
ଶο௧ ή ሺͳ െ ଵሻିݖ ሺͳ ൅ ଵሻΤିݖ  as 

൤ ௬ܸ݅௭ ൨ ൌ ൤ ௘ܶ௬ ͲͲ ௠ܶ௭൨ ൬ʹ ൤ ௬ܸ௥െ݅௭௥൨ ൅ ଵିݖ ൤ܵ௘௬ܵ௠௭൨൰ǡ (2-61) 

൤ܵ௘௬ܵ௠௭൨ ൌ ʹ ൤ ௬ܸ௥െ݅௭௥൨ ൅ ൤ߢ௘௬ ͲͲ ௠௭൨ߢ ൤ ௬ܸ݅௭ ൨ǡ (2-62) 
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where  ௠ܶ௭ ൌ ሺʹ ൅ ௠ݎ ൅ ʹ߯௠ሻିଵǡ ௠௭ߢ ൌ െሺʹ ൅ ௠ݎ െ ʹ߯௠ሻǡ ௘ܶ ൌ ሺʹ ൅ ݃௘ ൅ ʹ߯௘ሻିଵǡ ௘௬ߢ ൌ െሺʹ ൅ ݃௘ െ ʹ߯௠ሻǤ 
Fig. 2-7 shows the equivalent circuit of a 1D condensed node. Its scattering 

process can be expressed in terms of the voltage ௬ܸ and the current ݅௭, 

൤ ସܸ௥ହܸ௥൨ ൌ ቈ ௬ܸ െ ݅௭ െ ହܸ௜௬ܸ ൅ ݅௭ െ ସܸ௜቉ǡ (2-63) 

where ସܸ௜ǡ௥ and ହܸ௜ǡ௥ are the incident and reflected voltages from both sides of 

the node, which are corresponding to ܸܮ௡௜ǡ௥ and ܸܴ௡௜ǡ௥ in equation (2-21). 

Its connection process is the same as in equations (2-22) and (2-23). 

 

 

Fig. 2-7 The equivalent circuit of a 1D condensed TLM node. 
 

The extensions of the condensed node in the 2D and 3D TLM can be found in 

[2.12]. Through modification of the transmission coefficients ݐ௘௬  and ݐ௠௭  in 

equation (2-60), the condensed node can be applied to model the frequency-

dependent, nonlinear and anisotropic materials. The details are discussed in 

[2.13 ~ 2.15]. 

Both the stub technique and the condensed node are used in this thesis to 

model materials different from free space, which are surrounding the thin films. 
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2.5. Conclusions 

This chapter introduced the Transmission Line Modelling (TLM) method. 

Based on the field-circuit equivalence, the procedures for modelling free space 

using the 1D, 2D and 3D TLM models were firstly described. Stub techniques 

and the condensed nodes were then overviewed as methods of modelling 

material parameters different from free space.  

In the next chapter, the methodology for embedding single and multiple layers 

of thin film within the coarse TLM mesh is described. 
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3. Time Domain Embedded Thin 

Film Model 

3.1. Overview 

Thin films can be made of layers of a wide variety of materials including 

metals, insulators and semiconductors. They may be electrically conductive or 

non-conducting, optically transparent or opaque. The thickness of thin films is 

often much smaller than the wavelength of interest, ranging from fractions of a 

micrometre to several millimetres. Thin films have a wide range of 

applications in the optics [3.1 ~ 3.2] and Electromagnetic Compatibility (EMC) 

[3.3 ~ 3.6], as they can manipulate polarisation, reflection, transmission and 

absorption of light.  

To successfully engineer and innovate products and technologies 

encompassing electromagnetic phenomena it is critical to deploy accurate and 

efficient simulation and design tools. As discussed in Chapter 2, the 

Transmission Line Modelling (TLM) [3.7] method, as a time domain 

simulation technique, provides a powerful and general technique upon which 

to base such design software. 

In the TLM method, generating a suitable mesh is by no means a trivial task in 

its own right. Moreover the use of very small computational nodes results in a 

very large memory and run time overhead [3.7]. Because the thickness of the 

thin film is usually the smallest feature in the problem and much smaller than 

the wavelength of interest, the TLM mesh size needs to be significantly small 

to allow for at least one node within the film (as shown in Fig. 3-1 (a)). That 

not only increases the total number of nodes required, but also sets the 

maximum time step for the time-stepping evolution to become prohibitively 

small, which result in increasing of the total number of time steps needed to 

achieve a particular frequency resolution. In summary, the presence of a thin 

film generally leads to very fine mesh that needs to be run for more time steps. 

The use of non-uniform meshing [3.8], for example by means of multi-
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gridding, alleviates this problem as it allows locally a fine mesh to be used 

only where they are truly needed, thus reducing the node count. However, the 

problem that the time step is determined by the smallest mesh size remains.  

To overcome this problem it is expedient to recognise that the electromagnetic 

response of the thin film within a larger computational environment is highly 

localised. This means that a specialised model for such features can be 

developed in isolation, which can then be coupled to the rest of the simulation 

through a standardised interface, which avoids the need to discretise within the 

thin film. 

One possible method for embedding thin films into the TLM algorithm is 

modifying its connection process. If, for example, a pair of nodes lies on 

opposite sides of a physical dielectric material boundary, the connection 

process is no longer a simple exchange of values, rather the reflection and 

transmission formulae for normal incidence on a dielectric interface come into 

play. It can be observed that the connection process described above in the 

case of a dielectric boundary is a simple illustration of how the known 

localised behaviour of a physical feature is embedded into the TLM algorithm. 

Indeed this inter-node connection behaves like a junction between two 1D 

transmission line circuit elements, each of whose parameters depends 

straightforwardly on the bulk material properties of the node from which it 

originates. This also provides a perfect opportunity to introduce thin film 

models: if the thin film is geometrically inserted between two layers of nodes it 

is only necessary to replace each one-dimensional (1D) transmission line 

junction, involving the dielectric interface reflection and transmission formulae, 

with those appropriate for the pair of lines joined through a circuit element 

whose response mimics the locally 1D behaviour of the thin layer. Thus the 

thin film need not be meshed as in Fig. 3-1 (b); it is now only defined by a 

section of transmission line. Its frequency dependent characteristics can be 

described by its admittance matrix, which connects the voltages and currents in 

both sides of the thin film. Since the TLM method operates in the time domain, 

the admittance matrix of the thin film should be transformed to the time 

domain in order to be embedded within the TLM algorithm. Therefore, an 
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inverse Z transform, general digital filter design and implementation 

techniques are adopted to transfer the frequency response of thin films to the 

time domain and then embed the time domain response within the mesh. 

Therefore the time step can be chosen according to the frequency of interest 

and not the restrictive fine features. 

 

  

(a) (b) 

Fig. 3-1 (a) Modelling a thin film using conventional TLM (b) The embedded 
time domain thin film model. 

 

In this chapter, the derivation of this specialised model for several thin film 

configurations, including a single-layer thin film model, a multilayer thin film 

model and an anisotropic thin film model, is demonstrated based on the inverse 

Z transform, general digital filter design and implementation techniques. The 

applications of these thin film models embedded between 1D and 2D TLM 

nodes will be discussed in the following chapters. 

 

3.2. Single-Layer Thin Film Model 

Consider a thin film which is assumed to be infinite in length and width, and of 

thickness of d. It can be viewed as a section of transmission line of length d. 

With the voltages and currents on the two sides of the film, it becomes a two-

port network, as shown in Fig. 3-2. 
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Fig. 3-2 Transmission Line Model of a thin film. 
 

According to network theory [3.9], the admittance matrix of the film is given 

by, 

൬ܫଵܫଶ൰ ൌ െ݆ ቀܻܿߠݐ݋   െ ߠݐ݋ܻܿ    ߠܿݏെܻܿߠܿݏܻܿ ቁ ൬ ଵܸܸଶ൰, (3-1) 

where ܻ  is the characteristic admittance of the film and ߠ  is the electrical 

length of the film which can be expressed as  

ߠ ൌ ߱݀ξܥܮ, ܻ ൌ ඥܥȀܮǡ (3-2) 

where ߱ is the angular frequency and ܥ and ܮ are  per unit length capacitance 

and inductance values of the thin film, respectively.  

For general materials, L and C can be expressed by [3.7] 

ܮ ൌ ߤ ൅ ௠݆߱ߪ ǡ ܥ ൌ ߝ ൅  ௘݆߱ǡ (3-3)ߪ

where ߤǡ ǡߝ ௘ߪ ௠ andߪ  are the permeability, the permittivity, the magnetic 

resistivity and the electric conductivity of the material.  

This two-port transmission line is initially considered to be embedded between 

two adjacent 1D TLM nodes, as shown in Fig. 3-3 (a).  

In Fig. 3-3 (a), ܸܴ௡௜  and ܸܴ௡௥  are the incident and reflected voltages of the right 

side of the TLM node n, while ܸܮ௡ାଵ௜  and ܸܮ௡ାଵ௥  are the incident and reflected 

voltages from the left side of the TLM node (n+1), respectively. ଵܸ௜ and ଵܸ௥ are 

the incident and reflected voltages at port 1, while ଶܸ௜ and ଶܸ௥ are the incident 

and reflected voltages at port 2, respectively. The voltages of both ports have 

the following relations with the TLM nodes’ incident and reflected voltages, 

ଵܸ௜ ൌ ܸܴ௡௥, ଵܸ௥ ൌ ܸܴ௡௜, ଶܸ௜ ൌ ௡ାଵ௥, ଶܸ௥ܮܸ ൌ  ௡ାଵ௜Ǥܮܸ
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(a) 

 

(b) 

Fig. 3-3 (a) A thin film embedded between two 1D TLM nodes and (b) its 
Thevenin equivalent circuit. 

 

From Fig. 3-3 (a), the reflection coefficient R and the transmission coefficient 

T of the thin film are defined in terms of the incident and reflected voltages as, 

ܴ ൌ ଵܸ௥ଵܸ௜ ǡ (3-4) 

ܶ ൌ ଶܸ௥ଵܸ௜ Ǥ (3-5) 

The embedding of the film requires that at each time step the reflected voltages 

on both ports need to be solved in terms of both the incident voltages from the 

adjacent TLM nodes and the film characteristics. 

Because of the embedding of the film into two adjacent TLM nodes n and 

(n+1), the equation (2-22) for the node n and the equation (2-23) for the node 

(n+1) in the connection process should be modified.  

Fig. 3-3 (b) shows the Thevenin equivalent circuits of the node n and (n+1) 

that are driving the thin film. Considering the admittance matrix of the film 

(equation (3-1)), the following relations are obtained, 



3 Time Domain Embedded Thin Film Model 

40 
 

ቆʹݕଵ ଵܸ௜ʹݕଶ ଶܸ௜ቇ ൌ ൬ݕଵ െ ଶݕ    ߠܿݏܻ݆ܿߠܿݏܻ݆ܿ    ߠݐ݋ܻ݆ܿ െ ൰ߠݐ݋ܻ݆ܿ ൬ ଵܸܸଶ൰ ൌ ሾܯሿ ൬ ଵܸܸଶ൰ǡ (3-6) 

where ݕଵ and ݕଶ are the characteristic admittance of the TLM nodes on the left 

and right sides of the thin film, respectively, and the matrix [M] is defined for 

future convenience. 

Multiplying the left and right sides of equation (3-6) with ሾܯሿିଵ , the total 

voltages can be expressed by 

ሺݕଵݕଶ ൅ ܻܻ െ ݆ܻሺݕଵ ൅ ሻߠݐ݋ଶሻܿݕ ൬ ଵܸܸଶ൰
ൌ ൬ݕଶ െ െ   ߠݐ݋ܻ݆ܿ ଵݕ    ߠܿݏെ݆ܻܿߠܿݏܻ݆ܿ െ ߠݐ݋ܻ݆ܿ ൰ ቆʹݕଵ ଵܸ௜ʹݕଶ ଶܸ௜ቇǤ (3-7) 

The aim is to solve ଵܸ and ଶܸ from equation (3-7). Then the reflected terms are 

given by 

൬ ଵܸ௥ଶܸ௥൰ ൌ ൬ ଵܸܸଶ൰ െ ቆ ଵܸ௜
ଶܸ௜ቇǤ (3-8) 

Equation (3-7) can be separated into two equations for ଵܸ and ଶܸ, respectively. ሺݕଵݕଶ ൅ ܻܻ െ ݆ܻሺݕଵ൅ݕଶሻܿߠݐ݋ሻ ή ଵܸൌ ሺʹݕଵݕଶ െ ሻߠݐ݋ଵ݆ܻܿݕʹ ή ଵܸ௜ െ ߠܿݏܻ݆ܿ ଶݕʹ ή ଶܸ௜ǡ (3-9) ሺݕଵݕଶ ൅ ܻܻ െ ݆ܻሺݕଵ൅ݕଶሻܿߠݐ݋ሻ ή ଶܸൌ െʹݕଵ ݆ܻܿߠܿݏ ή ଵܸ௜ ൅ ሺʹݕଵݕଶ െ ሻߠݐ݋ଶ݆ܻܿݕʹ ή ଶܸ௜Ǥ (3-10) 

In the above equations (3-9) and (3-10), all voltages are defined in the 

frequency domain whilst the TLM method is operating in the time domain. In 

order to connect the equations (3-9) and (3-10) with the TLM algorithm, they 

have to be transformed into the time domain. For this purpose an inverse Z-

transform [3.10] is used. 

It is noted that in equations (3-9) and (3-10), cotangent and cosecant functions 

are given in terms of frequency, which are difficult to be transformed directly 

to the time domain. Thus the expansions of the cotangent and cosecant 

functions in partial fractions are considered. 



3 Time Domain Embedded Thin Film Model 

41 
 

According to [3.11], the cotangent and cosecant functions can be expanded as 

infinite summations, so that the following equations are obtained, 

ߠݐ݋ܻ݆ܿ ൌ ݆ඨܮܥ ൭ͳߠ ൅ ߠʹ ෍ ͳߠଶ െ ݇ଶߨଶேୀஶ
௞ୀଵ ൱ǡ (3-11) 

ߠܿݏܻ݆ܿ ൌ ݆ඨܮܥ ൭ͳߠ ൅ ߠʹ ෍ ሺെͳሻ௞ߠଶ െ ݇ଶߨଶேୀஶ
௞ୀଵ ൱Ǥ (3-12) 

Since ߠ ൌ ߱݀ξܥܮ, the expansions (3-11) and (3-12) can be changed to the s-

domain first, using ݏ ൌ ݆߱, 

ߠݐ݋ܻ݆ܿ ൌ െ ͳ݀ܮݏ െ ݀ܥݏʹ ෍ ͳݏଶ݀ଶܥܮ ൅ ݇ଶߨଶேୀஶ
௞ୀଵ  ǡ (3-13) 

ߠܿݏܻ݆ܿ ൌ െ ͳ݀ܮݏ െ ݀ܥݏʹ ෍ ሺെͳሻ௞ݏଶ݀ଶܥܮ ൅ ݇ଶߨଶேୀஶ
௞ୀଵ  Ǥ (3-14) 

Next, by setting 

ݏ ൌ οʹݐ ή ͳ െ ଵͳିݖ ൅  ଵ ǡ (3-15)ିݖ

equations (3-13) and (3-14) are transferred to the Z-domain as required. 

After replacing the cotangent and cosecant functions with the expansion 

summations (3-11) and (3-12) and transferring them to Z-domain, equations 

(3-9) and (3-10) have the form  

෍ ௜ܲሺݖሻܳ௜ሺݖሻ ሻݖሺݕ ൌ ෍ ܴ௜ሺݖሻ௜ܵሺݖሻ ሻǡ௜௜ݖሺݔ  (3-16) 

where ௜ܲሺݖሻǡ ܳ௜ሺݖሻǡ ܴ௜ሺݖሻ and ௜ܵሺݖሻ  are first-order or multiple-order 

polynomials in ݖ, and ݔሺݖሻ and ݕሺݖሻ are the input and the output of the system, 

respectively. 

For the right side of equation (3-16), each term ܴ௜ሺݖሻȀܵ௜ሺݖሻ can be seen as the 

transfer function of a digital filter. Assuming its output is ݓ௜ሺݖሻ, the digital 

filter can be expressed as, 
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ሻݖ௜ሺݓ ൌ ܴ௜ሺݖሻ௜ܵሺݖሻ ή  ሻǤ (3-17)ݖሺݔ

The summation of all the terms in the right side of equation (3-16) can be 

viewed as the parallel combination of a number of first- or multiple-order 

digital filters as shown in Fig.3-4, in which ݓሺݖሻ is the overall output of the 

system.  

 

 

Fig.3-4 The parallel combination of a number of digital filters. 
 

According to digital filter theory [3.12], the overall output of the parallel 

combination of digital filters equals the summation of the output from each 

filter. It can be expressed as, 

ሻݖሺݓ ൌ ෍ ሻ௜ݖ௜ሺݓ ൌ ෍ ܴ௜ሺݖሻ௜ܵሺݖሻ ሻǤ௜ݖሺݔ  (3-18) 

Therefore, the output of the right side of the equation (3-16) can be obtained by 

calculating the output of each term first and then summing them together. For 

each term, an inverse Z transform is used to obtain the output in the time 

domain.  

For example, a transfer function of the second order (Biquad) digital filter has 

the following form, 



3 Time Domain Embedded Thin Film Model 

43 
 

ܴ௜ሺݖሻ௜ܵሺݖሻ ൌ ௜ଵܣ ൅ ଵିݖ௜ଶܣ ൅ ௜ଵܤଶିݖ௜ଷܣ ൅ ଵିݖ௜ଶܤ ൅  ଶ ǡ (3-19)ିݖ௜ଷܤ

where ܣ௜ଵǡ ௜ଶǡܣ ௜ଷǡܣ ௜ଵǡܤ  .௜ଷ are known coefficientsܤ ௜ଶ andܤ

The output ݓ௜ሺݖሻ of this filter in the Z domain is given by 

ሻݖ௜ሺݓ ൌ ௜ଵܣ ൅ ଵିݖ௜ଶܣ ൅ ௜ଵܤଶିݖ௜ଷܣ ൅ ଵିݖ௜ଶܤ ൅ ଶିݖ௜ଷܤ ή  ሻǤ (3-20)ݖሺݔ

Using an inverse Z transform and considering its time shift properties [3.10], 

the output in the time domain ݓ௜ሺ݊οݐሻ can be found as, ݓ௜ሺ݊οݐሻ ൌ ሾܣ௜ଵݔሺ݊οݐሻ ൅ ሺሺ݊ݔ௜ଶܣ െ ͳሻοݐሻ ൅ ሺሺ݊ݔ௜ଷܣ െ ʹሻοݐሻ െܤ௜ଶݓ௜൫ሺ݊ െ ͳሻοݐ൯ െ ௜ሺሺ݊ݓ௜ଷܤ െ ʹሻοݐሻሿȀܤ௜ଵǡ (3-21) 

where ݔሺ݊οݐሻ and ݓ௜ሺ݊οݐሻ are the input and output amplitudes at time ݊οݐ, 

respectively. 

The overall output of the right side of the equation (3-16), ݓሺ݊οݐሻ, can be 

obtained through summing the output of each filter together, 

ሻݐሺ݊οݓ ൌ ෍ ሻǤ௜ݐ௜ሺ݊οݓ  (3-22) 

Therefore, equation (3-16) becomes, 

෍ ௜ܲሺݖሻܳ௜ሺݖሻ ሻݖሺݕ ൌ ሻǤ௜ݖሺݓ  (3-23) 

In equation (3-23), ܳ௜ሺݖሻ ൌ ܳ௜଴ ൅ ଵܳ௜ଵିݖ ൅ ଶܳ௜ଶିݖ ൅ ڮ  where ܳ௜଴ǡ  ܳ௜ଵǡ ܳ௜ଶǡ  .ݖ ሻ is a general polynomial inݖare constant values, and ௜ܲሺ ڮ

The left side of equation (3-23) represents the sum of a number of rational 

polynomials. The denominator ܳ௜ሺݖሻ  is a polynomial in ݖ  which makes it 

difficult to solve for the output ݕሺݖሻ. In order to solve the output ݕሺݖሻ, a little 

mathematical trick is needed. 

Assuming 



3 Time Domain Embedded Thin Film Model 

44 
 

ሻݖ௜ሺݑ ൌ ௜ܲሺݖሻܳ௜ሺݖሻ  ሻǡ (3-24)ݖሺݕ

and multiplying both sides of equation (3-24) by ܳ௜ሺݖሻ and then dividing by ܳ௜଴, equation (3-24) becomes, ܳ௜ሺݖሻܳ௜଴ ή ሻݖ௜ሺݑ ൌ ௜ܲሺݖሻܳ௜଴ ή  ሻǤ (3-25)ݖሺݕ

After some transformation of equation (3-25) (adding and subtracting ݑ௜ሺݖሻ on 

the left side), ݑ௜ሺݖሻ is obtained as, 

ሻݖ௜ሺݑ ൌ ௜ܲሺݖሻܳ௜଴ ሻݖሺݕ െ ቆܳ௜ሺݖሻܳ௜଴ െ ͳቇ  ሻǤ (3-26)ݖ௜ሺݑ

Summing both sides of equation (3-26) yields, 

෍ ሻ௜ݖ௜ሺݑ ൌ ሻݖሺݕ ෍ ௜ܲሺݖሻܳ௜଴௜ െ ෍ ቆܳ௜ሺݖሻܳ௜଴ െ ͳቇ ሻ௜ݖ௜ሺݑ Ǥ (3-27) 

Considering (3-24) and (3-23), 

෍ ሻ௜ݖ௜ሺݑ ൌ  ሻǡݖሺݓ
and combining with (3-27), the final output in the Z-domain, ݕሺݖሻ, can be 

expressed by 

ሻݖሺݕ ෍ ௜ܲሺݖሻܳ௜଴௜ ൌ ෍ ቆܳ௜ሺݖሻܳ௜଴ െ ͳቇ ሻ௜ݖ௜ሺݑ ൅  ሻǤ (3-28)ݖሺݓ

In equation (3-28), since ܳ௜଴ is a constant value, both ௜ܲሺݖሻ ܳ௜଴Τ  and ܳ௜ሺݖሻ ܳ௜଴Τ  

are general polynomials in ݖ. After applying an inverse Z transform to both 

sides of (3-28), the final output in the time domain ݕሺ݊οݐሻ is easily obtained. 

 

In order to make the above derivations more easily understood, a signal flow 

graph may be used to explain the solutions of equations (3-9) and (3-10). As 
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shown in Fig.3-5, equations (3-9) and (3-10) can be seen as a digital filter 

system with two inputs and two outputs. 

 

 

Fig.3-5 Signal flow graph of equations (3-9) and (3-10). 
 

In this digital filter system, ଵܸ௜ and ଶܸ௜ are the input signals, while ଵܸ and ଶܸ are 

the output signals.  ݆ܻܿߠݐ݋ and ݆ܻܿߠܿݏ are parallel combinations of (N+1) first and second order 

digital filters, which can be written as  

ߠݐ݋ܻ݆ܿ ൌ െ ο݀ݐ ή ͳ ൅ ଶܣଵିݖ ൅ ଵିݖଶܤ െ ʹο݀ݐ ෍ ଵܣ ൅ ଵିݖଵܤ ൅ ௞ܣଶିݖଵܥ ൅ ଵିݖ௞ܤ ൅ ଶேୀஶିݖ௞ܥ
௞ୀଵ ǡ 

ߠܿݏܻ݆ܿ ൌ െ ο݀ݐ ή ͳ ൅ ଶܣଵିݖ ൅ ଵିݖଶܤ
െ ʹο݀ݐ ෍ ሺെͳሻ௞ሺܣଵ ൅ ଵିݖଵܤ ൅ ௞ܣଶሻିݖଵܥ ൅ ଵିݖ௞ܤ ൅ ଶேୀஶିݖ௞ܥ

௞ୀଵ ǡ 
(3-29) 
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where  ܣଵ ൌ ߝʹ ൅ ଵܤ  ,ݐ௘οߪ ൌ ଵܥ ,ݐ௘οߪʹ ൌ ݐ௘οߪ െ  ,ߝʹ

ଶܣ ൌ ߤʹ ൅ ଶܤ ,ݐ௠οߪ ൌ ݐ௠οߪ െ  ,ߤʹ

௞ܣ ൌ Ͷߝߤ ൅ ʹοݐሺߪߤ௘ ൅ ௠ሻߪߝ ൅ ሺߪ௠ߪ௘ ൅ ݇ଶߨଶȀ݀ଶሻοݐଶ
, 

௞ܤ ൌ െͺߝߤ ൅ ʹሺߪ௠ߪ௘ ൅ ݇ଶߨଶȀ݀ଶሻοݐଶ
, 

௞ܥ ൌ Ͷߝߤ െ ʹοݐሺߪߤ௘ ൅ ௠ሻߪߝ ൅ ሺߪ௠ߪ௘ ൅ ݇ଶߨଶȀ݀ଶሻοݐଶ
. 

ܷሺݖሻ is also the parallel combination of a number of first and second order 

digital filters, 

ܷሺݖሻ ൌ ଶܣଶܤ ሻݖଶሺݑଵିݖ ൅ ଶܣଶܤ ሻݖଷሺݑଵିݖ
൅ ෍ ൬ܤ௞ܣ௞ ଵିݖ ൅ ௞ܣ௞ܥ ଶ൰ேୀஶିݖ

௞ୀଵ  ሻǡ (3-30)ݖସ௞ሺݑ

where 

ሻݖଶሺݑ ൌ ଵܣ ൅ ଶܣଵିݖଵܥ ൅  ଵǡିݖଶܤ
ሻݖଷሺݑ ൌ ሺݕଵ൅ݕଶሻ ή ο݀ݐ ή ͳ ൅ ଶܣଵିݖ ൅  ଵǡିݖଶܤ
ሻݖସ௞ሺݑ ൌ ሺݕଵ൅ݕଶሻ ή ʹο݀ݐ ή ଵܣ ൅ ଵିݖଵܤ ൅ ௞ܣଶିݖଵܥ ൅ ଵିݖ௞ܤ ൅  ଶǤିݖ௞ܥ
ͳǡܯ  ,are constant gain and expressed as ͵ܯ and ʹܯ

ଵܯ ൌ ଶݕଵݕ ൅ ଶܣଵܣ ൅ ሺݕଵ൅ݕଶሻ ή ο݀ݐ ή ଶܣ ൅ ሺݕଵ൅ݕଶሻ ή ʹο݀ݐ ή ෍ ௞ܣଵܣ
ேୀஶ
௞ୀଵ ǡ 

ଶܯ ൌ ଶܣଵܥ ൅ ሺݕଵ൅ݕଶሻ ή ο݀ݐ ή ଶܣ ൅ ሺݕଵ൅ݕଶሻ ή ʹο݀ݐ ή ෍ ௞ܣଵܤ ǡேୀஶ
௞ୀଵ  
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ଷܯ ൌ ሺݕଵ൅ݕଶሻ ή ʹο݀ݐ ή ෍ ௞ܣଵܥ
ேୀஶ
௞ୀଵ Ǥ 

Therefore, the thin film embedded in the TLM algorithm behaves like a 

complex digital filter system with two inputs and two outputs. The accuracy of 

the model depends on the number of terms, N, used in the expansions of 

equations (3-11) and (3-12). This will be analysed in Chapter 4. Through 

modifying the connection process of the TLM algorithm, the model is 

embedded between two adjacent TLM nodes without discretisation. 

 

3.3. Multi-Layer Thin Film Model 

The model developed in section 3.2 can be extended to model a multilayer thin 

film stack. The stack, as a whole, is embedded between two adjacent TLM 

nodes as an interface. Through modifying the connection process, the 

multilayer thin film model connects with the TLM algorithm. 

In the single layer embedded model, its implementation starts with the 

admittance matrix of the layer. If using the same method of modelling the m-

layer (m >= 2) film as that of single layer film, the overall admittance matrix 

of the m-layer film should be found. The admittance matrix of each layer is 

easily obtained, but the overall admittance matrix of the m-layer film is hard to 

get. Since the layers are cascaded together, the straightforward thinking is 

multiplying all the matrixes, but it is not applicable for the admittance matrix. 

Only ABCD matrices [3.9] could be multiplied together. Thus one possible 

way forward is transferring the admittance matrix of each layer to an ABCD 

matrix first, then multiplying them to get the overall ABCD matrix and at the 

end transferring the overall ABCD matrix back to admittance matrix. Although 

the overall admittance matrix of the m-layer film could be found using such a 

method, it is not efficient and also hard to implement the digital filters 

especially for a large number of layers.  
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Therefore, an efficient and easy way to implement digital filters method is 

presented in this section, which avoids calculating the overall admittance 

matrix. It starts with the admittance matrix of each layer. In the admittance 

matrix of the adjacent layers there are some common quantities, which can be 

cancelled and then combined together. After combining together, a linear 

matrix equation can be formed. The unknown quantities of the reflected 

voltages from the stack can be solved for using a Gauss-Seidel method. This 

method will be explained in detail in the following sub-sections. 

Consider an m-layer (m >= 2) thin film, embedded between two TLM nodes as 

shown in Fig. 3-6. As in the single layer thin film model, each layer can be 

seen as a two-port transmission line with thickness ݀௜ሺ݅ ൌ  ͳǡʹǡ ǥ ǡ ݉ሻ. 

 

 

Fig. 3-6 An m-layer (m >= 2) thin film embedded between 1D TLM nodes. 
 

In the general case, the materials in each layer of the m-layer thin film may 

have different electric and magnetic properties. Therefore, the equivalent 

capacitance and inductance of each layer can be expressed in terms of their 

electric and magnetic properties as follows: 

௜ܥ ൌ ௜ߝ ൅ ௘௜݆߱ߪ ǡ ௜ܮ ൌ ௜ߤ ൅ ௠௜݆߱ߪ ǡ      
where the subscript i represents the particular layer (݅ ൌ ͳǡʹǡ ǥ ǡ ݉). 

The characteristic admittance of each layer is given by 

௜ܻ ൌ ඨܥ௜ܮ௜ ǡ     ݅ ൌ ͳǡʹǡ ǥ ǡ ݉Ǥ 
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In the following sections, a two-layer thin film model is presented first, and 

then a three-layer thin film model is derived. At the end, as a general case, a 

generalised thin film model is described. 

 

3.3.1. Two-Layer (m = 2) Thin Film Model  

Fig.3-7 (a) shows a two-layer thin film embedded between two adjacent 1D 

TLM nodes. Its transmission line model is shown in Fig.3-7 (b) with associated 

voltages and currents. There are two sections of transmission line. 

 

 

(a) 

 

(b) 

Fig.3-7 (a) A two-layer thin film embedded between 1D TLM nodes (b) the 
transmission line model of the two-layer thin film. 

 

As shown in Fig.3-7 (b) the admittance matrix of each layer can be written as, 

൬ܫଵܫଶ൰ ൌ ൬ݕଵ െ ݆ ଵܻܿߠݐ݋ଵ      ݆ ଵܻܿߠܿݏଵ ݆ ଵܻܿߠܿݏଵ        െ ݆ ଵܻܿߠݐ݋ଵ ൰ ή ൬ ଵܸܸଶ൰ǡ (3-31) ൬െܫଶܫଷ ൰ ൌ ൬ െ݆ ଶܻܿߠݐ݋ଶ       ݆ ଶܻܿߠܿݏଶ  ݆ ଶܻܿߠܿݏଶ    ݕଶ െ ݆ ଶܻܿߠݐ݋ଶ൰ ή ൬ ଶܸܸଷ൰Ǥ (3-32) 
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Each matrix in the above equations, (3-31)-(3-32), can be separated into two 

equations.  

From (3-31),  

ଵܫ ൌ ሺݕଵ െ ݆ ଵܻܿߠݐ݋ଵ ሻ ή ଵܸ ൅  ݆ ଵܻܿߠܿݏଵ ή ଶܸǡ (3-33) ܫଶ ൌ ݆ ଵܻܿߠܿݏଵ ή ଵܸ ൅ ሺെ݆ ଵܻܿߠݐ݋ଵሻ ή ଶܸǤ (3-34) 

From (3-32), 

െܫଶ ൌ െ݆ ଶܻܿߠݐ݋ଶ ή ଶܸ ൅  ݆ ଶܻܿߠܿݏଶ ή ଷܸǡ (3-35) ܫଷ ൌ  ݆ ଶܻܿߠܿݏଶ ή ଶܸ ൅ ሺݕଶ െ ݆ ଶܻܿߠݐ݋ଶሻ ή ଷܸǤ (3-36) 

Since equations (3-34) and (3-35) have common terms ܫଶ and ଶܸ, by summing 

these two equations, ܫଶ can be eliminated as follows, 

Ͳ ൌ ݆ ଵܻܿߠܿݏଵ ή ଵܸ ൅ ሺെ݆ ଵܻܿߠݐ݋ଵ െ ݆ ଶܻܿߠݐ݋ଶሻ ή ଶܸ ൅ ݆ ଶܻܿߠܿݏଶ ή ଷܸǤ (3-37) 

Considering equations (3-33), (3-37) and (3-36), the following linear matrix 

equation can be obtained, 

൭ܫଵͲܫଷ൱ ൌ ൭ ଵݕ െ ݆ ଵܻܿߠݐ݋ଵ               ݆ ଵܻܿߠܿݏଵ Ͳ݆ ଵܻܿߠܿݏଵ െ݆ ଵܻܿߠݐ݋ଵ െ ݆ ଶܻܿߠݐ݋ଶ ͲͲ              ݆ ଶܻܿߠܿݏଶ ଶݕ   െ ݆ ଶܻܿߠݐ݋ଶ ൱ ൭ ଵܸܸଶܸଷ൱Ǥ (3-38) 

When the thin film is embedded between two 1D TLM nodes, as in Fig.3-7 (b), 

the following relations exist, ܫଵ ൌ ଵݕʹ ή ଷܫ ଵ௜ǡܮܸ ൌ ଶݕʹ ή ܸܴଷ௜ǡ 
ଵܸ ൌ ଵ௜ܮܸ ൅ ଵ௥ܮܸ ǡ 
ଷܸ ൌ ܸܴଷ௜ ൅ ܸܴଷ௥ ǡ 

where ܸܮଵ௜ and ܸܮଵ௥ are the incident and reflected voltages on the left side of 

the two-layer film, and ܸܴଷ௜ and ܸܴଷ௥ are the incident and reflected voltages 

on the right side of the two-layer film. 
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Applying the above relations in equation (3-38), the following linear equations 

are obtained, 

ቌʹݕଵ ή ଶݕʹଵ௜Ͳܮܸ ή ܸܴଷ௜ቍ ൌ 

൭ݕଵ െ ݆ ଵܻܿߠݐ݋ଵ ݆ ଵܻܿߠܿݏଵ Ͳ݆ ଵܻܿߠܿݏଵ െ݆ ଵܻܿߠݐ݋ଵ െ ݆ ଶܻܿߠݐ݋ଶ ͲͲ ݆ ଶܻܿߠܿݏଶ ଶݕ െ ݆ ଶܻܿߠݐ݋ଶ ൱ ቌ ଵ௜ܮܸ ൅ ଵ௥ଶܸܸܴଷ௜ܮܸ ൅ ܸܴଷ௥ቍǤ (3-39) 

In equation (3-39), the incident voltages from the left side and the right side of 

the film are known, while the reflected voltages and intermediate voltages are 

unknowns. That means that equation (3-39) has the form ሾ࢈ሿ ൌ ሾ࡭ሿሾ࢞ሿ, where ሾ࡭ሿ is a square matrix. 

The straightforward method for solving equation with the from ሾ࢈ሿ ൌ ሾ࡭ሿሾ࢞ሿ is 

to multiply both sides of the equation with the inverse of matrix ሾ࡭ሿ, i.e. ሾ࡭ሿିଵ. 

However, the matrix ሾ࡭ሿ-1 in equation (3-39) is difficult to obtain considering 

that cotangent and cosecant functions exist in the matrix. In order to avoid 

calculating ሾ࡭ሿିଵ, the Gauss-Seidel method [3.13] based on an iterative matrix 

solver is used to solve equation (3-39). 

The initial values were chosen to be 0, 

ଵ௥ሺ଴ሻܮܸ ൌ Ͳ, ଶܸሺ଴ሻ ൌ Ͳ,  ܸܴଷ௥ሺ଴ሻ ൌ Ͳ. 

Then, the iteration process is as follows, 

ଵ௜ܮܸ ൅ ଵ௥ሺ௞ାଵሻܮܸ ൌ െ ͳݕଵ െ ݆ ଵܻܿߠݐ݋ଵ ή ൫݆ ଵܻܿߠܿݏଵ ή ଶܸሺ௞ሻ െ ݕʹ ή  ଵ௜൯ǡܮܸ
ଶܸሺ௞ାଵሻ ൌ െ ͳെ݆ ଵܻܿߠݐ݋ଵ െ ݆ ଶܻܿߠݐ݋ଶή ൫݆ ଵܻܿߠܿݏଵ ή ൫ܸܮଵ௜ ൅ ଵ௥ሺ௞ାଵሻ൯ܮܸ ൅  ݆ ଶܻܿߠܿݏଶ ή ܸܴଷ௥ሺ௞ሻ൯ǡ 

ܸܴଷ௜ ൅ ܸܴଷ௥ሺ௞ାଵሻ ൌ െ ͳݕ െ ݆ ଶܻܿߠݐ݋ଶ ή ൫݆ ଶܻܿߠܿݏଶ ή ଶܸሺ௞ାଵሻ െ ଶݕʹ ή ܸܴଷ௜൯Ǥ 
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Rearranging the above equations so that all the unknown values are on the left 

hand side, the iteration process turns into: 

ሺݕଵ െ ݆ ଵܻܿߠݐ݋ଵሻ ή ଵ௥ሺ௞ାଵሻܮܸ ൌ െ ݆ ଵܻܿߠܿݏଵ ή ଶܸሺ௞ሻ ൅ ሺݕଵ ൅ ݆ ଵܻܿߠݐ݋ଵሻ ή ଵ௜ǡ ሺെ݆ܮܸ ଵܻܿߠݐ݋ଵ െ ݆ ଶܻܿߠݐ݋ଶሻ ή ଶܸሺ௞ାଵሻ
 ൌ െ݆ ଵܻܿߠܿݏଵ ή ଵ௜ܮܸ െ ݆ ଵܻܿߠܿݏଵ ή ଵ௥ሺ௞ାଵሻܮܸ െ  ݆ ଶܻܿߠܿݏଶ ή ܸܴଷ௥ሺ௞ሻǡ 

ሺݕଶ െ ݆ ଶܻܿߠݐ݋ଶሻ ή ܸܴଷ௥ሺ௞ାଵሻ
 ൌ െ ݆ ଶܻܿߠܿݏଶ ή ଶܸሺ௞ାଵሻ ൅ ሺݕଶ ൅ ݆ ଶܻܿߠݐ݋ଶሻ ή ܸܴଷ௜Ǥ 

It is noted that the Gauss-Seidel method solves for unknown values in a 

sequential manner within one iteration, whereby voltage ܸܮଵ௥ሺ௞ାଵሻ
 is obtained 

first and then used to obtain voltage ଶܸሺ௞ାଵሻ . ଶܸሺ௞ାଵሻ  is used to obtain ܸܴଷ௥ሺ௞ାଵሻ
. 

Each equation in the above procedure has a similar form to equation (3-9) 

described in section 3.2. They can be solved through inverse Z transform and 

digital filter theory as demonstrated in section 3.2. When the required 

tolerances on all unknown values are achieved, the iteration procedure is 

“terminated”. 

 

3.3.2. Three-Layer (m = 3) Thin Film Model  

Fig.3-8 (a) shows a three-layer thin film embedded between two adjacent 1D 

TLM nodes. Its transmission line model is shown in Fig.3-8 (b). 

  



3 Time Domain Embedded Thin Film Model 

53 
 

 

(a) 

 

(b) 

Fig.3-8 (a) A three-layer thin film embedded between 1D TLM nodes (b) the 
transmission line model of the three-layer thin film. 

 

As shown in Fig.3-8 (b) the admittance matrix of each layer can be written as, 

൬ܫଵܫଶ൰ ൌ ൬ݕଵ െ ݆ ଵܻܿߠݐ݋ଵ      ݆ ଵܻܿߠܿݏଵ ݆ ଵܻܿߠܿݏଵ        െ ݆ ଵܻܿߠݐ݋ଵ ൰ ή ൬ ଵܸܸଶ൰ǡ (3-40) ൬െܫଶܫଷ ൰ ൌ ൬െ݆ ଶܻܿߠݐ݋ଶ       ݆ ଶܻܿߠܿݏଶ  ݆ ଶܻܿߠܿݏଶ     െ ݆ ଶܻܿߠݐ݋ଶ ൰ ή ൬ ଶܸܸଷ൰ǡ (3-41) ൬െܫଷܫସ ൰ ൌ ൬െ݆ ଷܻܿߠݐ݋ଷ        ݆ ଷܻܿߠܿݏଷ      ݆ ଷܻܿߠܿݏଷ    ݕଶ െ ݆ ଷܻܿߠݐ݋ଷ ൰ ή ൬ ଷܸܸସ൰Ǥ (3-42) 

Each matrix in the above equations (3-40)-(3-42) can be separated into two 

equations. After combination as in the two-layer thin film model, the following 

linear matrix equations can be obtained, 

൮ܫଵͲͲܫସ൲ ൌ ൮ ଵݕ െ ݆ ଵܻܿߠݐ݋ଵ                ݆ ଵܻܿߠܿݏଵ                 Ͳ                Ͳ݆ ଵܻܿߠܿݏଵ         െ ݆ ଵܻܿߠݐ݋ଵ െ ݆ ଶܻܿߠݐ݋ଶ     ݆ ଶܻܿߠܿݏଶ     ͲͲ          ݆ ଶܻܿߠܿݏଶ     െ ݆ ଶܻܿߠݐ݋ଶ െ ݆ ଷܻܿߠݐ݋ଷ    ݆ ଷܻܿߠܿݏଷ Ͳ              Ͳ                     ݆ ଷܻܿߠܿݏଷ              ݕଶ െ ݆ ଷܻܿߠݐ݋ଷ  ൲ ή ൮ ଵܸܸଶܸଷܸସ൲Ǥ (3-43) 

When the thin film is embedded between two 1D TLM nodes, as in Fig.3-8 (b), 

the following relations exist, ܫଵ ൌ ଵݕʹ ή ସܫ ଵ௜ǡܮܸ ൌ ଶݕʹ ή ܸܴସ௜ǡ 
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ଵܸ ൌ ଵ௜ܮܸ ൅ ଵ௥ܮܸ ǡ 
ସܸ ൌ ܸܴସ௜ ൅ ܸܴସ௥ ǡ 

where ܸܮଵ௜ and ܸܮଵ௥ are the incident and reflected voltages on the left side of 

the multi-layer film, and ܸܴସ௜ and ܸܴସ௥ are the incident and reflected voltages 

on the right side of the multi-layer film. 

Applying the above relations into equation (3-43), the following linear 

equations are obtained, 

ۇۉ
ଵݕʹ ή ଶݕʹଵ௜ͲͲܮܸ ή ܸܴସ௜ۊی ൌ ൮ ଵݕ െ ݆ ଵܻܿߠݐ݋ଵ                ݆ ଵܻܿߠܿݏଵ                 Ͳ                 Ͳ݆ ଵܻܿߠܿݏଵ         െ ݆ ଵܻܿߠݐ݋ଵ െ ݆ ଶܻܿߠݐ݋ଶ      ݆ ଶܻܿߠܿݏଶ     ͲͲ           ݆ ଶܻܿߠܿݏଶ     െ ݆ ଶܻܿߠݐ݋ଶ െ ݆ ଷܻܿߠݐ݋ଷ    ݆ ଷܻܿߠܿݏଷͲ              Ͳ                     ݆ ଷܻܿߠܿݏଷ             ݕଶ െ ݆ ଷܻܿߠݐ݋ଷ  ൲

ή ۈۉ
ۇ ଵ௜ܮܸ ൅ ଵ௥ଶܸܸଷܸܴସ௜ܮܸ ൅ ܸܴସ௥ۋی

 Ǥ (3-44)ۊ

Equation (3-44) can be solved using the Gauss-Seidel method [3.13]. 

The initial values were chosen to be 0, 

ଵ௥ሺ଴ሻܮܸ ൌ Ͳ, ଶܸሺ଴ሻ ൌ Ͳ, ଷܸሺ଴ሻ ൌ Ͳ, ܸܴସ௥ሺ଴ሻ ൌ Ͳ. 

Then, the iteration process is as follows, 

ሺݕଵ െ ݆ ଵܻܿߠݐ݋ଵሻ ή ଵ௥ሺ௞ାଵሻܮܸ ൌ െ ݆ ଵܻܿߠܿݏଵ ή ଶܸሺ௞ሻ ൅ ሺݕଵ ൅ ݆ ଵܻܿߠݐ݋ଵሻ ή ଵ௜ǡ ሺെ݆ܮܸ ଵܻܿߠݐ݋ଵ െ ݆ ଶܻܿߠݐ݋ଶሻ ή ଶܸሺ௞ାଵሻൌ െ݆ ଵܻܿߠܿݏଵ ή ଵ௜ܮܸ െ ݆ ଵܻܿߠܿݏଵ ή ଵ௥ሺ௞ାଵሻܮܸ െ  ݆ ଶܻܿߠܿݏଶ ή ଷܸሺ௞ሻǡ ሺെ݆ ଷܻܿߠݐ݋ଷ െ ݆ ଶܻܿߠݐ݋ଶሻ ή ଷܸሺ௞ାଵሻൌ െ݆ ଶܻܿߠܿݏଶ ή ଶܸሺ௞ାଵሻ െ ݆ ଷܻܿߠܿݏଷ ή ܸܴସ௜ െ ݆ ଷܻܿߠܿݏଷ ή ܸܴସ௥ሺ௞ሻǡ ሺݕଶ െ ݆ ଷܻܿߠݐ݋ଷሻ ή ܸܴସ௥ሺ௞ାଵሻ ൌ െ ݆ ଷܻܿߠܿݏଷ ή ସܸሺ௞ାଵሻ ൅ ሺݕଶ ൅ ݆ ଷܻܿߠݐ݋ଷሻ ή ܸܴସ௜Ǥ 
Each equation in the above procedure has a similar form to equation (3-9) 

described in section 3.2. They can be solved through inverse Z transform and 

digital filter theory as demonstrated in section 3.2. When the required 
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tolerances on all unknown values are achieved, the iteration process is 

complete. 

 

3.3.3. Generalised Multi-layer (m >= 4) Thin Film Model  

For thin films with m (m >= 4) layers, there are m admittance matrix equations 

like (3-40). After some mathematical manipulations, equations like (3-44) can 

be obtained, resulting in a square matrix of order (m+1) with (m+1) unknowns. 

For thin films with four or more layers (m >= 4), the linear matrix equation 

like (3-44) can be written as, 

ۈۉ
ۇۈۈ

ݕʹ ή ݕʹͲͲڭଵ௜ͲͲܮܸ ή ܸܴ௠ାଵ௜ۋی
ۊۋۋ ൌ 

ۈۉ
ۈۈۈ
ۇ ݕ െ ݆ ଵܻܿߠݐ݋ଵ    ݆ ଵܻܿߠܿݏଵ Ͳ݆ ଵܻܿߠܿݏଵ െ݆ ଵܻܿߠݐ݋ଵ െ ݆ ଶܻܿߠݐ݋ଶ ݆ ଶܻܿߠܿݏଶͲ  ݆ ଶܻܿߠܿݏଶ െ݆ ଶܻܿߠݐ݋ଶ െ ݆ ଷܻܿߠݐ݋ଷ     Ͳ     Ͳ      ͲͲ     Ͳ     Ͳ݆ ଶܻܿߠܿݏଶ     Ͳ      Ͳ               ڮ     Ͳ  ڮ     Ͳ      ڮ         Ͳ ڭͲ ڮ ͲͲ ڮ ͲͲ ڮ Ͳ     Ͳ ݆ ௠ܻିଶܿߠܿݏ௠ିଶ െ݆ ௠ܻିଶܿߠݐ݋௠ିଶ െ ݆ ௠ܻିଵܿߠݐ݋௠ିଵͲ Ͳ ݆ ௠ܻିଵܿߠܿݏ௠ିଵͲ Ͳ Ͳ       ݆ ௠ܻିଵܿߠܿݏ௠ିଵ Ͳെ݆ ௠ܻିଵܿߠݐ݋௠ିଵ െ ݆ ௠ܻܿߠݐ݋௠ ݆ ௠ܻܿߠܿݏ௠݆ ௠ܻܿߠܿݏ௠ ଶݕ െ ݆ ௠ܻܿߠݐ݋௠  ۋی

ۋۋۋ
ۊ

 

ή
ۈۉ
ۇۈۈۈ

ଵ௜ܮܸ ൅ ௠ܸିଵ௠ܸܸܴ௠ାଵ௜ڭଵ௥ଶܸܸଷܮܸ ൅ ܸܴ௠ାଵ௥ۋی
 .ۊۋۋۋ

(3-45) 

Its solution is given using Gauss-Seidel method by the following iteration 

process, 

ሺݕ െ ݆ ଵܻܿߠݐ݋ଵሻ ή ଵ௥ሺ௞ାଵሻܮܸ ൌ െ ݆ ଵܻܿߠܿݏଵ ή ଶܸሺ௞ሻ ൅ ሺݕ ൅ ݆ ଵܻܿߠݐ݋ଵሻ ή  ଵ௜ǡܮܸ
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ሺെ݆ ଵܻܿߠݐ݋ଵ െ ݆ ଶܻܿߠݐ݋ଶሻ ή ଶܸሺ௞ାଵሻൌ െ݆ ଵܻܿߠܿݏଵ ή ଵ௜ܮܸ െ ݆ ଵܻܿߠܿݏଵ ή ଵ௥ሺ௞ାଵሻܮܸ െ  ݆ ଶܻܿߠܿݏଶ ή ଷܸሺ௞ሻǡ 
ሺെ݆ ௜ܻିଵܿߠݐ݋௜ିଵ െ ݆ ௜ܻܿߠݐ݋௜ሻ ή ௜ܸሺ௞ାଵሻ

 

ൌ െ ݆ ௜ܻିଵܿߠܿݏ௜ିଵ ή ௜ܸିଵሺ௞ାଵሻ െ  ݆ ௜ܻܿߠܿݏ௜ ή ௜ܸାଵሺ௞ሻǡ   ሺ͵ ൑ ݅ ൑ ݉ െ ʹሻǡ ሺെ݆ ௠ܻିଵܿߠݐ݋௠ିଵ െ ݆ ௠ܻܿߠݐ݋௠ሻ ή ௠ܸሺ௞ାଵሻ
 ൌ െ݆ ௠ܻିଵܿߠܿݏ௠ିଵ ή ௠ܸିଵሺ௞ାଵሻ െ  ݆ ௠ܻܿߠܿݏ௠ ή ܸܴ௠ାଵ௜ െ ݆ ௠ܻܿߠܿݏ௠ή ܸܴ௠ାଵ௥ሺ௞ሻǡ 

ሺ ݕ െ ݆ ௠ܻܿߠݐ݋௠ ሻ ή ܸܴ௠ାଵ௥ሺ௞ାଵሻ
 ൌ െ  ݆ ௠ܻܿߠܿݏ௠ ή ௠ܸሺ௞ାଵሻ ൅ ሺݕ ൅  ݆ ௠ܻܿߠܿݏ௠ሻ ή ܸܴ௠ାଵ௜Ǥ 

When the required tolerances on all unknown values are achieved, the iteration 

process is “terminated”. 

Therefore, the model for the multilayer thin film is integrated into the TLM 

algorithm. After one run of the TLM, the reflected and transmitted voltages 

from the film are obtained in the time domain.  

 

3.4. Anisotropic Thin Film Model 

The electric and magnetic properties of anisotropic materials vary in different 

directions [3.14]. In this section, only non-magnetic materials with electric 

anisotropy are considered. The materials are assumed to be anisotropic in two-

dimensional (2D) so they can be modelled using two 1D models. 

Assume that an anisotropic thin film has the following electric properties: 

ߝ ൌ ൬ߝ௫ ͲͲ ௘ߪ ,௬൰ߝ ൌ ൬ߪ௘௫ ͲͲ  ௘௬൰Ǥ (3-46)ߪ
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Consider a plane electric field ܧሬԦ௜  propagating in the ݖ  direction. It has two 

components, ܧ௫ and ܧ௬. They satisfy the following relations: 

ሬԦ௜ܧ ൌ ෝ࢞௫ܧ ൅ ෝ࢟௬ܧ ൌ หܧ௜หܿ߮ݏ݋ ή ෝ࢞ ൅ หܧ௜ห߮݊݅ݏ ή  ෝǡ࢟
where ߮ is the angle between the electric field ܧሬԦ௜ and the x axis, and ࢞ෝ and ࢟ෝ 

are the unit vectors in the x and y direction, respectively. 

When the electric field ܧሬԦ௜ is normally incident upon the anisotropic thin film, 

the thin film will have different responses in the x and y directions, as shown in 

Fig. 3-9. 

 

 

Fig. 3-9 (a)The electric field ܧ௜ incident upon an anisotropic thin film can be 
decomposed into x and y field components (b) ܧ௬ field component incident on 

a thin film (c) ܧ௫ field component incident on a thin film. 
 

The ܧ௫ component of ܧሬԦ௜ has effects on the film in the x direction which has the 

properties of ߝ௫  and ߪ௘௫  for the permittivity and conductivity. The ܧ௬ 

component has effects on the film in the y direction which has the properties of ߝ௬ and ߪ௘௬.  

The responses of the film to the electric fields in the two directions are 

independent of each other. Therefore, they can be analysed by performing two 

separate simulations with incident fields shown in Fig. 3-9 (b, c). For each 
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direction, the thin film can be modelled using the embedded thin film TLM 

model.  

 
In the x direction, the reflected and transmitted electric fields from the thin film 

are obtained as ܧ௫௥ and ܧ௫௧ , respectively. In the y direction, the reflected and 

transmitted electric fields from the thin film are obtained as ܧ௬௥  and ܧ௬௧ , 

respectively. Therefore, the overall reflected and transmitted electric fields 

from the anisotropic thin film can be acquired as, ܧሬԦ௥ ൌ ߮ݏ݋௫௥ܿܧ ή ොݔ ൅ ߮݊݅ݏ௬௥ܧ ή ሬԦ௧ܧ ොǡݕ ൌ ߮ݏ݋௫௧ܿܧ ή ොݔ ൅ ௬௧ܧ ߮݊݅ݏ ή  ොǤ (3-47)ݕ

Examples will be given in the next chapter to test this model. 

 

3.5. Conclusions 

In this chapter, time domain thin film models, including single-layer and 

multilayer thin film models, have been developed for embedding in the TLM 

method. The case of a 1D anisotropic thin film is also discussed. In these 

models, the thin films are not discretised, but act as a kind of interface between 

the adjacent TLM nodes. Their frequency responses are transformed to the 

time domain using digital filter theory and the inverse Z transform, and then 

added to the TLM algorithm. Since these embedded models do not require 

discretisation, they have the potential to reduce the total simulation time and 

save memory usage. The only control parameter that affects the accuracy of the 

model is the number of terms in cotangent and cosecant expansions; this will 

be analysed in the next chapter. 

The applications of these models in 1D TLM algorithms are investigated in the 

following chapter, through which the accuracy, stability, convergence and 

efficiency of the time domain embedded thin film model are also discussed.  
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The further applications of these models in 2D TLM algorithms will be studied 

in Chapter 5 and 6. Some modifications to these models will be discussed there 

too. 
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4.Embedded Thin Film Model in the 

One-Dimensional TLM Method 

4.1. Overview 

The embedded thin film model described in Chapter 3 is a universal model and 

can be used to model thin films composed of either lossless or lossy materials. 

Depending on the thin film parameters, thin films can be transparent to 

electromagnetic (EM) waves at the desired frequency range, while others may 

present highly reflective properties. In this chapter, the frequency responses of 

both lossless and lossy thin films are explored using the proposed embedded 

model. According to the results, the accuracy, stability, convergence and 

efficiency of the embedded model are also examined. 

The accuracy of the embedded thin film model is compared against the results 

obtained from the analytical methods for calculating the thin film’s reflection 

and transmission coefficients. The analytical methods are overviewed in 

section 4.2. 

In section 4.3, the frequency responses of lossy thin films are investigated 

using the embedded model. As examples of lossy thin films, the reflection and 

transmission properties of several different carbon fibre composite (CFC) 

panels and titanium panels are studied. The results calculated using the 

conventional TLM approach are shown for comparison. In addition, 

anisotropic CFC panels are also investigated. 

In section 4.4, the frequency responses of lossless thin films are investigated 

using the embedded model developed. Examples of lossless thin films, 

including antireflection (AR) coatings and fibre Bragg gratings (FBG), are 

explored. The reflection coefficients of AR coatings are first calculated using 

the embedded model. To improve the efficiency, a modified thin film model is 

also presented to model single-layer AR coatings. Also, the transmission 
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properties of FBG are demonstrated using the embedded model and compared 

against the conventional TLM approach. 

 

4.2. Analytical Methods for Analysing Thin 

Films 

This section overviews two analytical approaches for analysing thin films 

mainly: the transfer matrix method [4.1] and the even/odd mode method [4.2]. 

 

4.2.1. Transfer Matrix Method 

The general case of a multi-layer thin film with arbitrary thicknesses is shown 

in Fig.4-1. Each layer is characterised with characteristic impedance ܼ௜ , 

thickness ݀௜ and wavenumber ݇௜. 
The incident and reflected fields are considered at the left of each interface. 

The overall reflection response, ܴଵ ൌ ଵିܧ ଵାΤܧ , can be obtained recursively by 

the propagation of the reflection responses. 

 

 

Fig.4-1 Multilayer thin film structure. 
 

The reflection coefficients ߩ௜  from the left of each interface are defined in 

terms of characteristic impedance as follows [4.1]: 
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௜ߩ ൌ ܼ௜ െ ܼ௜ିଵ ܼ௜ ൅ ܼ௜ିଵ ǡ ݅ ൌ ͳǡʹǡ ǥ ǥ ǡ ܯ ൅ ͳǤ (4-1) 

The conventions ܼ଴ ൌ ܼ௔ and ܼெାଵ ൌ ܼ௕ are used, so that  

ଵߩ ൌ ܼଵ െ ܼ௔ܼଵ ൅ ܼ௔ ǡ ெାଵߩ ൌ ܼ௕ െ ܼெܼ௕ ൅ ܼெ Ǥ (4-2) 

The forward/backward fields at the left of interface i are related to those at the 

left of interface i+1 by [4.1]: 

൤ܧ௜ାܧ௜ି൨ ൌ ͳ߬௜ ቈ ݁௝௞೔ௗ೔ ௜݁௝௞೔ௗ೔ߩ௜݁ି௝௞೔ௗ೔ߩ ݁ି௝௞೔ௗ೔ ቉ ൤ܧ௜ାଵǡାܧ௜ାଵǡି൨ ǡ ݅ ൌ ǡܯ ܯ െ ͳǡ ǥ ǥ ǡͳǤ (4-3) 

In equation (4-3), at the interface ߬௜ ൌ ͳ ൅  ௜ and ݇௜݀௜ is the electrical lengthߩ

of the ith layer, where ݇௜ ൌ  .଴ is the operating wavelengthߣ ଴ , andߣ௜Ȁ݊ߨʹ

Then, the reflection coefficients at interface i are expressed as, 

ܴ௜ ൌ ௜ାܧ௜ିܧ ൌ ௜ߩ ൅ ܴ௜ାଵ݁ିଶ௝௞೔ௗ೔ͳ ൅ ௜ܴ௜ାଵ݁ିଶ௝௞೔ௗ೔ߩ ǡ ݅ ൌ ǡܯ ܯ െ ͳǡ ǥ ǥ ǡͳ (4-4) 

and initialized by ܴெǤ 
Assuming no waves coming from the right-most medium, the recursions are 

initialized at the (M+1)th interface as follows: 

൤ܧெାଵǡାܧெାଵǡି൨ ൌ ͳ߬ெାଵ ൤ ͳ ெାଵߩெାଵߩ ͳ ൨ ൤ܧԢெାଵǡାͲ ൨ ൌ ͳ߬ெାଵ ൤ ͳߩெାଵ൨  ԢெାଵǡାǤ (4-5)ܧ

Thus, ܴெ ൌ  .ெାଵߩ

Therefore, the reflection responses of the multilayer thin film satisfy the 

recursions: 

ܴ௜ ൌ ௜ାܧ௜ିܧ ൌ ௜ߩ ൅ ܴ௜ାଵ݁ିଶ௝௞೔ௗ೔ͳ ൅ ௜ܴ௜ାଵ݁ିଶ௝௞೔ௗ೔ߩ ǡ ݅ ൌ ǡܯ ܯ െ ͳǡ ǥ ǥ ǡͳ (4-6) 

and initialized by ܴெ ൌ  .ெାଵߩ
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4.2.2. Even/Odd Mode Method 

The even/odd mode approach is only applicable to symmetric networks for S 

parameter analysis [4.2]. 

Considering a two port network shown in Fig. 4-2, where both sides are 

excited using voltages ଵܸାǡ ଶܸା, respectively.  

 

 

Fig. 4-2 Two port network. 
 

This two port network has the following relations [4.3]: 

൤ ଵܸܸିଶି ൨ ൌ ൤ܵଵଵ ܵଵଶܵଶଵ ܵଶଶ൨ ൤ ଵܸାଶܸା൨Ǥ (4-7) 

The coefficients, ܵଵଵǡ ܵଵଶǡ ܵଶଵǡ and ܵଶଶ, are known as the scattering coefficients 

or scattering parameters. 

If the network is symmetric, the analysis can be simplified by analysing only 

half of the network and placing even and odd boundary conditions on the 

symmetric plane. 

For a symmetric network, ܵଵଵ ൌ ܵଶଶ, and ܵଵଶ ൌ ܵଶଵ. 

In the even mode, the following equations are satisfied, 

ଵܸା ൌ ଶܸା ൌ ܽ, ଵܸି ൌ ଶܸି ൌ ܾǤ (4-8) 

Replacing the voltages in equation (4-7) with equation (4-8), it is found that,  

ܾ ൌ ሺܵଵଵ ൅ ܵଵଶሻܽǤ (4-9) 

Therefore, the reflection coefficients ߁௘ for the even mode can be expressed as: 



4 Embedded Thin Film Model in the One-Dimensional TLM Method 

64 
 

௘߁ ൌ ܾܽ ൌ ܵଵଵ ൅ ܵଵଶǤ (4-10) 

In the odd mode, the following relations are satisfied, 

ଵܸା ൌ െ ଶܸା ൌ ܽ, ଵܸି ൌ െ ଶܸି ൌ ܾǤ (4-11) 

Then replacing the voltages in equation (4-7) with equation (4-11), it is found 

that, ܾ ൌ ሺܵଵଵ െ ܵଵଶሻܽǤ (4-12) 

Therefore, the reflection coefficients ߁௢ for the odd mode may be expressed as: 

௢߁ ൌ ܾܽ ൌ ܵଵଵ െ ܵଵଶǤ (4-13) 

Based on equations (4-10) and (4-13), the S parameters can be expressed as, ܵଵଵ ൌ ܵଶଶ ൌ ሺ߁௘ ൅ ௢ሻ߁ ʹǡΤ  ܵଵଶ ൌ ܵଶଵ ൌ ሺ߁௘ െ ௢ሻ߁ ʹǤΤ  
(4-14) 

 

For example, consider that the electric field is incident upon a uniform thin 

film from free space and then transmitted into free space. Its transmission line 

model is shown in Fig. 4-3.  

 

 

Fig. 4-3 The transmission line model of a thin film. 
 

Assume that the thin film has a thickness d and its characteristic impedance ܼ௖ ൌ ඥܮȀܥǤ 
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Since free space is on both sides of the thin layer, the whole structure can be 

seen as a symmetric two port network, whose plane of symmetry lies in the 

middle of the thin layer.  

The even mode is equivalent to having a magnetic wall, i.e. open circuit, in the 

symmetry plane, shown in Fig. 4-4. 

 

 

Fig. 4-4 The even mode network of the thin film. 
 

From Fig. 4-4, its input impedance is  

ܼ௜௡௘ ൌ ܼ஼ ܼ௅ ൅ ݆ܼ஼݊ܽݐ ሺ݇݀ʹሻܼ஼ ൅ ݆ܼ௅݊ܽݐ ሺ݇݀ʹሻ ൌ ܼ஼݆݊ܽݐ ሺ݇݀ʹሻǡ (4-15) 

where ܼ௅  is the load impedance (in this case equal to infinity) and ݇ is the 

wavenumber. 

Its reflection coefficient for the even mode is given by, 

௘߁ ൌ ܼ௜௡௘ െ ܼ଴ܼ௜௡௘ ൅ ܼ଴ǡ (4-16) 

where load impedance ܼ௅ ൌ λ and ܼ଴ is the characteristic impedance of free 

space. 

For the odd mode, it is like an electric wall in the symmetry plane, as shown in 

Fig. 4-5. 

 



4 Embedded Thin Film Model in the One-Dimensional TLM Method 

66 
 

 

Fig. 4-5 The odd mode network of the thin film. 
 

From Fig. 4-5, load impedance ܼ௅ ൌ Ͳ and the input impedance ܼ௜௡௢ is 

ܼ௜௡௢ ൌ ܼ஼ ܼ௅ ൅ ݆ܼ஼݊ܽݐ ሺ݇݀ʹሻܼ஼ ൅ ݆ܼ௅݊ܽݐ ሺ݇݀ʹሻ ൌ ݆ܼ஼ܽݐ ݊ ൬݇݀ʹ൰Ǥ (4-17) 

The reflection coefficient for the odd mode is given by 

௢߁ ൌ ܼ௜௡௢ െ ܼ଴ܼ௜௡௢ ൅ ܼ଴Ǥ (4-18) 

Therefore, the reflection and transmission coefficients of the thin film are 

calculated from equations (4-16) and (4-18) as 

ܴ ൌ ܵଵଵ ൌ ܵଶଶ ൌ ௘߁ ൅ ʹ௢߁ ǡ 
ܶ ൌ ܵଶଵ ൌ ܵଵଶ ൌ ௘߁ െ ʹ௢߁ Ǥ (4-19) 

 

4.3. Applications of Embedded Model to Lossy 

Films 

In this section lossy non-magnetic materials are considered. For lossy non-

magnetic materials, the permeability is a real number, but the permittivity is a 

frequency dependent complex number [4.1]. The equivalent inductance and 

capacitance, ܮ and ܥ, can be expressed by 
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ܮ ൌ ߤ ൌ ௥ߤ଴ߤ ǡ ܥ ൌ ߝ ൅ ௘݆߱ߪ ൌ ௥ߝ଴ߝ ൅  ௘݆߱ǡ (4-20)ߪ

where ߤ଴ ൌ ͳǤʹ͸ ൈ ͳͲି଺  Hmିଵ is the permeability of free space, ߝ଴ ൌ ͺǤͺͷ ൈͳͲିଵଶ Fmିଵ  is the permittivity of free space, ߤ௥  and ߝ௥  are the relative 

permeability and permittivity of the material, ߪ௘  is the conductivity of the 

material, and ߱ is the angular frequency.  

In this section, carbon fibre composite (CFC) panels and titanium panels are 

used as examples of lossy materials and investigated to test the embedded time 

domain thin film model in 1D TLM method.  

Results obtained using the numerical method (ܴே) will be compared against 

with those of the analytical method (ܴ஺ ). For that purpose, the following 

percentage error is used, 

ݎ݋ݎݎ݁ ݁݃ܽݐ݊݁ܿݎ݁݌ ൌ  ȁܴே െ ܴ஺ȁȁܴ஺ȁ ή ͳͲͲΨǤ (4-21) 

It is noted that in the following examples, when the percentage errors are 

within 2%, it is assumed that the required accuracy of the numerical results is 

achieved, although in reality bigger percentage errors may be allowed. 

 

4.3.1. Carbon Fibre Composite (CFC) Panels 

Carbon fibre composite (CFC) materials have received considerable attention 

[4.4 ~ 4.7] due to their high strength-to-weight ratio and ease of fabrication. As 

replacement of metals, they have been used in many areas, such as spacecraft 

and aircraft structures [4.4], avionics systems [4.8], and Radio-Frequency 

Identification (RFID) [4.9]. However, due to their lower conductivity, CFC 

materials have lower shielding effectiveness compared to that of metals. In 

order to analyse and improve their shielding effectiveness, a variety of CFC 

materials have been studied using either numerical or analytical methods [4.4 ~ 

4.7]. 
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In this section, the CFC panels are considered as a one dimensional (1D) 

problem and analysed using the embedded model in the 1D TLM method. The 

reflection and transmission coefficients of single and multiple layer CFC 

panels are calculated to test the accuracy, stability, convergence and efficiency 

of the embedded model. For comparison purposes, the conventional TLM 

method is also used to model these panels. The embedded model is then 

applied to analyse the shielding effectiveness of CFC panels. Anisotropic CFC 

panels are also investigated.  

Carbon fibre composite materials are inhomogeneous materials which consist 

of continuous carbon fibres embedded in an epoxy matrix [4.10]. In this 

section the CFC panels are modelled as a homogeneous medium using the 

equivalent-layer model [4.5]. As this equivalent-layer model is valid up to 

several GHz [4.5], the highest frequency discussed in this section was chosen 

to be 1GHz. 

 

4.3.1.1. Single Layer CFC Panels 

Fig.4-6 shows the normally incident electric fields ܧ௜, reflected fields ܧ௥ and 

transmitted fields ܧ௧  from a CFC panel. The CFC panel is assumed to be 

surrounded by free space.  

 

 

Fig.4-6 Incident electric fields ܧ௜, reflected fields ܧ௥ and transmitted fields ܧ௧ 
from a CFC panel. 

 

The reflection and transmission coefficients are defined as ܴ ൌ ௜ܧ௥ܧ ǡ ܶ ൌ ௜ܧ௧ܧ Ǥ (4-22) 
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The shielding effectiveness (SE) is defined as the ratio of the amplitude of the 

incident field to that of the transmitted field. It is typically described in 

decibels (dB) as follows, 

ܧܵ ൌ ʹͲ ή ଵ଴݃݋݈ ቆܧ௜ܧ௧ቇ ሺ݀ܤሻǤ (4-23) 

The parameters of the CFC panel used in this section were chosen as: thickness 

of 1 mm, effective permittivity ߝ௥ ൌ ʹ and conductivity ߪ௘ ൌ ͳͲସ Smିଵ as in 

[4.4].  

In the 1D TLM model, the length of free space on each side of the panel was 

chosen to be 0.1 m, and matched boundaries [4.11] were set at the ends of free 

space regions to simulate the infinite free space. Free space on each side of the 

panel was discretised using 1D TLM nodes. The CFC panel was modelled 

using the time domain thin film model proposed in Chapter 3 and embedded 

between two adjacent 1D TLM nodes. A delta pulse was used to excite the 

TLM nodes. The reflected and transmitted fields were calculated in the time 

domain first and then a Fast Fourier Transform (FFT) was used to transfer 

them to the frequency domain to obtain the reflection and transmission 

coefficients. 

The TLM mesh size is typically set as less than one tenth of the smallest 

wavelength [4.11]. In order to obtain the discretisation errors, the reflection 

and transmission coefficients of the CFC panel were calculated at 1 GHz using 

the embedded model for N = 100 with different mesh size, ݀ݖ. The results 

obtained were compared to the analytical results calculated using the even/odd 

mode method described in section 4.2. The percentage errors (calculated using 

equation (4-21)) in the reflection and transmission coefficients at 1 GHz are 

shown in Fig.4-7 against the mesh size, represented by ߣ Τݖ݀ . Fig.4-7 shows 

that as the mesh size decreases, the percentage errors in both reflection and 

transmission coefficients decrease. Although the CFC panel is not discretised, 

the discretisation errors come from the modelling of the fields outside the 

panel using the TLM method. In the following calculations, the mesh size was 

chosen to be 0.01 m (ߣ Τݖ݀ ൌ ͵Ͳ), in order to minimize discretisation errors. 
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Fig.4-7 Percentage errors in the reflection and transmission coefficients of the 
CFC panel at 1 GHz calculated using the embedded model for N =100, with 

different mesh size, ݀ݖ. 
 

Using a mesh size of 0.01 m, the stability of the embedded model is discussed. 

A number of digital filters were used in the time domain model for the CFC 

panel, as described in section 3.2. From Fig. 3-5, the transfer functions of these 

digital filters are derived from the expansions of cotangent and cosecant 

functions. Since the stability of digital filters is dependent on the poles of their 

transfer functions [4.12], the poles of the expansions of cotangent and cosecant 

functions are investigated. 

In equation (3-29), there are (N+1) transfer functions for each expansion. The 

poles of these transfer functions are the values of ݖ at which their denominator 

equals to zero. They are the roots of the following denominator polynomials, ܣଶ ൅ ଵିݖଶܤ ൌ Ͳǡ ܣ௞ ൅ ଵିݖ௞ܤ ൅ ଶିݖ௞ܥ ൌ ͲǤ (4-24) 

For the CFC panel, the above coefficients of equations (3-29) are calculated as 

follows, ܣଶ ൌ ߤʹ ൅ ݐ௠οߪ ൌ ʹǤͷͳ ൈ ͳͲି଺ ሺHmିଵሻ,  ܤଶ ൌ ݐ௠οߪ െ ߤʹ ൌ െʹǤͷͳ ൈ ͳͲି଺ ሺHmିଵሻ, 
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௞ܣ ൌ Ͷߝߤ ൅ ʹοݐሺߪߤ௘ ൅ ௠ሻߪߝ ൅ ሺߪ௠ߪ௘ ൅ ݇ଶߨଶȀ݀ଶሻοݐଶ      ൌ ͺǤ͵ͺ ൈ ͳͲିଵଷ ൅ ͳǤͳͲ ൈ ͳͲିଵସ ή ݇ଶ ሺSଶmିଶሻ,       ݇ ൌ ͳǡʹǡ ڮ ǡ ܰ 

௞ܤ ൌ െͺߝߤ ൅ ʹ ቆߪ௠ߪ௘ ൅ ݇ଶߨଶ݀ଶ ቇ οݐଶ      ൌ െͳǤ͹ͺ ൈ ͳͲିଵ଺ ൅ ͳǤͳͲ ൈ ͳͲିଵସ ή ݇ଶ ሺSଶmିଶሻ,         ݇ ൌ ͳǡʹǡ ڮ ǡ ܰ 

௞ܥ ൌ Ͷߝߤ െ ʹοݐሺߪߤ௘ ൅ ௠ሻߪߝ ൅ ቆߪ௠ߪ௘ ൅ ݇ଶߨଶ݀ଶ ቇ οݐଶ        ൌ െͺǤ͵ͺ ൈ ͳͲିଵଷ ൅ ͳǤͳͲ ൈ ͳͲିଵସ ή ݇ଶ ሺSଶmିଶሻ.           ݇ ൌ ͳǡʹǡ ڮ ǡ ܰ 

According to these values, the values for ݖ in equation (4-24) can be obtained, 

which are the poles of the transfer functions in the expansions. All these poles 

are within the unit circle indicating that the time domain CFC model is stable. 

To date, it has been found that only when the materials are with gain, the 

embedded model becomes unstable. 

Since the expansions used in equations (3-11) and (3-12) include infinite terms, 

they must be truncated for computational purposes. In order to investigate the 

errors from truncating the expansions, the percentage errors (calculated using 

equation (4-21)) in the reflection and transmission coefficients of the CFC 

panel at 1 GHz were calculated using the embedded model for different 

number of terms, N, shown in Fig.4-8. It can be seen that the percentage errors 

in the transmission coefficients decrease as the number of expansion terms 

increases. Fig.4-8 also shows the percentage errors in the reflection 

coefficients decrease until N = 20 and then converge to some point as the 

number of terms, N, increases.  
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Fig.4-8 Percentage errors in the reflection and transmission coefficients of the 
CFC panel at 1 GHz calculated using the embedded model for ݀0.01 = ݖ m, 

with different number of expansion terms, N. 
 

After investigating the errors from discretisation and truncation in the 

expansion terms, the reflection and transmission coefficients of the CFC panel 

were calculated in the frequency range from 0 to 1 GHz using the embedded 

model with a mesh size of 0.01 m. Fig.4-9 shows the reflection and 

transmission coefficients of the single layer CFC panel in the frequency range 

from 0 to 1 GHz for different number of expansion terms, N, and compares 

them with the analytical ones obtained using the even/odd mode method 

described in section 4.2. It can be seen that the agreement between numerical 

and analytical results for the reflection coefficients is excellent regardless of 

the number of expansion terms. The calculated transmission coefficients 

decrease with the number of expansion terms especially in the high frequency 

region. When N = 100, the numerical results of both reflection and 

transmission coefficients are virtually indistinguishable from the analytical 

ones over a wide frequency span.  
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Fig.4-9 Reflection and transmission coefficients of a single layer CFC panel 
with 1 mm thickness and ɂ୰ ൌ ʹǡ ɐୣ ൌ ͳͲସ Smିଵ, calculated using the 

embedded model for different number of expansion terms N (N = 10, 20 and 
100) and analytical method. 

 

Fig.4-10 (a, b) shows the percentage errors (defined in equation (4-21)) in the 

reflection and transmission coefficients calculated using the embedded model 

compared to the analytical ones. From Fig.4-10 (a, b), it can be seen that the 

errors in both reflection and transmission coefficients become very small with 

the increase of the expansion order, N. When N = 100, the reflection 

coefficients errors are less than 0.0006% and the transmission coefficients 

errors are less than 0.8% in the frequency range from 0 to 1 GHz.  

In reality, the high accuracy (0.0006% error in the reflection coefficients) may 

not be needed. Here in order to make sure the percentage errors in the 

transmission coefficients are less than 2%, the percentage errors in the 

reflection coefficients are very small. In the following examples, similar high 

accuracy in the reflection coefficients exists, due to the same reason. 
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(a) 

 

(b) 

Fig.4-10 Percentage errors in the (a) reflection coefficients and (b) 
transmission coefficients calculated using the embedded model with different 

number of terms, N (N = 10, 20, and 100). 
 

In the conventional TLM method, both free space and the CFC panel need to 

be discretised. Since the thickness of this CFC panel is 1 mm, the mesh size ݀ݖ 

must be smaller than 1 mm in order to have at least one node for the panel in 

the mesh. For a conductive panel, the mesh size inside it is generally chosen as 

less than its skin depth Ɂ [4.13] in order to analyse the field penetrating the 

panel accurately, 
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ݔ݀ ا ߜ ൌ ͳ ඥߨ ௠݂௔௫ߪߤΤ  (4-25) 

where ௠݂௔௫ is the maximum frequency of interest. For this CFC panel, since 

the maximum frequency of interest is 1 GHz, the skin depth of the panel is 

0.16 mm. Therefore, the mesh sizes for the conventional TLM method should 

be chosen as less than 0.16 mm. 

In order to investigate the discretisation errors of the conventional TLM 

method, the reflection and transmission coefficients of the CFC panel were 

calculated at 1 GHz using the conventional TLM method for different mesh 

size, ݀ݖǤ  Results obtained were compared with the analytical results. The 

percentage errors in the reflection and transmission coefficients at 1 GHz are 

shown in Fig.4-11 against the mesh size, represented by ݀Ȁ݀ݖ, where ݀ is the 

thickness of the panel. It can be seen that when the panel is discretised using 

40 nodes ( ݖ݀ ൌ ͲǤͲʹͷ ݉݉ ), the percentage errors in the transmission 

coefficients are around 1.02% and the percentage errors in the reflection 

coefficients are around 0.002%. 

 

 

Fig.4-11 Percentage errors in the reflection and transmission coefficients of a 
single layer CFC panel at 1 GHz using the conventional TLM method for 

different mesh size, ݀ݖ. 
 

For comparison purposes, the reflection and transmission coefficients of the 

CFC panel in the frequency range from 0 to 1 GHz were calculated using the 
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conventional TLM method with the mesh size of 0.025 mm. Fig.4-12 shows 

the percentage errors (defined in equation (4-21)) in the reflection and 

transmission coefficients calculated using the conventional TLM method 

compared to the analytical ones. It can be seen that when the mesh size ݀ݖ ൌͲǤͲʹͷ mm, the errors in the reflection coefficients are less than 0.001% and the 

errors in the transmission coefficients are less than 1% in the frequency range 

from 0 to 1 GHz, which is comparable to the corresponding errors calculated 

using the embedded model with a mesh size of 0.01 m. 

 

 
Fig.4-12 Percentage errors in the reflection coefficients and transmission 

coefficients calculated using the conventional TLM method with a mesh size 
of 0.025 mm. 

 

Therefore, to get the results of the same accuracy as the embedded model, the 

conventional TLM method should use a mesh size of 0.025 mm (approximate 

one sixth of its skin depth at the highest frequency of interest). The free space 

on each side of the CFC panel is discretised into 4000 nodes. The CFC panel is 

discretised into 40 nodes. In total there are 8040 nodes using the conventional 

TLM method. Compared to the embedded model, there are only 20 nodes with 

a mesh size of 0.01 m since the CFC panel is not discretised. Furthermore, to 

get the same frequency resolution as that in the embedded model, the number 

of time steps needed in the conventional TLM is Ͷ ൈ ͳͲହ, while the number of 

time steps needed in the embedded model is 1000. In other words, the smaller 

mesh size in the conventional TLM results in 420 times bigger memory storage 
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for the nodes and 400 times the number of iterations compared to those in the 

embedded model, as shown in Table 4-1. 

 
Table 4-1 Comparison between the conventional TLM model and the 

embedded model for the single layer CFC panel 

Model 
Mesh size 

(mm) 
Number of 

nodes 
Number of 
time steps 

Run time (s) 
* 

Conventional 
TLM 

0.025 8040 Ͷ ൈ ͳͲହ 82 

Embedded 
model 

10 20 1000 0.188 

(* the run time is based on a PC with an Intel Core 2 Duo CPU 3GHz 
processor and 4GB memory) 

 
In summary, the mesh size in the conventional TLM is dependent on the 

thickness of the CFC panel, while the mesh size in the embedded model is 

determined by the highest frequency of interest since the embedded model 

eliminates the need for discretisation of the panel. The condition determined by 

the thickness of thin films is generally much more restrictive than that 

determined by the highest frequency for the choice of mesh size. Thus, 

compared to the conventional TLM method, the embedded model can achieve 

the same or better accuracy using a larger mesh size. Therefore, the embedded 

model has the advantages of saving memory storage and reducing 

computational requirements for simulation.  

 

As an application of the verified embedded model, four kinds of single layer 

CFC panels with different conductivities and thicknesses were studied to 

analyse their shielding effectiveness. 

The parameters of these four CFC panels are as follows, 

Panel 1: ߝ௥ ൌ ʹǡ ௘ߪ ൌ ͳͲସ Smିଵǡ ݀ ൌ ͳ mmǡ 
Panel 2: ߝ௥ ൌ ʹǡ ௘ߪ ൌ ͳͲସ Smିଵǡ ݀ ൌ ͳǤʹ mmǡ 
Panel 3: ߝ௥ ൌ ʹǡ ௘ߪ ൌ ͺͲͲͲ Smିଵǡ ݀ ൌ ͳ mmǡ 
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Panel 4: ߝ௥ ൌ ʹǡ ௘ߪ ൌ ͺͲͲͲ Smିଵǡ ݀ ൌ ͳǤʹ mmǤ 
Panel 1 has the same parameters as the previous example. To analyse the 

effects of the conductivity and thickness on the shielding effectiveness, these 

four panels have the same permittivity but different conductivities and 

thicknesses. Panel 2 has the same conductivity as panel 1, but it is thicker than 

panel1. Panel 3 has the same thickness as panel 1, but its conductivity is lower. 

Panel 4 has the same conductivity as panel 3, but it is thicker than panel 3. 

Fig.4-13 shows the shielding effectiveness of these four single layer CFC 

panels. It can be seen that they all show good shielding properties, especially 

in the high frequency range. Panel 2 shows better shielding effectiveness than 

panel 1 because of its greater thickness. It also presents better shielding 

effectiveness than panel 4 due to its higher conductivity. Overall panel 2 with 

its greater thickness and higher conductivity provides best shielding 

effectiveness. These results show that thicker panels with higher conductivity 

provide better shielding effectiveness. 

 

 

Fig.4-13 The shielding effectiveness of four different single layer CFC panels 
calculated using the embedded model. 
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4.3.1.2. Anisotropic Panel 

For the anisotropic CFC panel, the electrical properties are considered for 

electric field components in the x and y directions. In the x direction they are 

given by ߝ௥௫ ൌ ʹ and ߪ௘௫ ൌ ͳͲସ Smିଵ from [4.4], and it is assumed that in the 

y direction they are given by ߝ௥௬ ൌ ͵ and ߪ௘௬ ൌ ͳͲଷ Smିଵ. The thickness of 

the panel is 1 mm. 

As shown in Fig. 3-9, the electric field ܧሬԦ௜ is normally incident to the panel 

along the ݖ axis. It can be decomposed into ܧ௫ and ܧ௬ components as 

ሬԦ௜ܧ ൌ ෝ࢞௫ܧ ൅ ෝ࢟௬ܧ ൌ หܧ௜หܿ߮ݏ݋ ή ෝ࢞ ൅ หܧ௜ห߮݊݅ݏ ή  ,ෝ࢟

where ߮ is the angle between the electric field and the x axis, and ࢞ෝ and ࢟ෝ are 

the unit vectors in the x and y direction, respectively. 

As demonstrated in section 3.4, the anisotropic thin film has different 

independent responses for the two x and y directions components. Two models 

were built for the x and y directions using the embedded single layer thin film 

model. For each one, the reflected and transmitted electric fields were obtained 

through the model. Then combining these two components as in the equation 

(3-47), the overall reflected and transmitted electric fields were acquired. 

The mesh size was chosen to be 0.01 m as in section 4.3.1.1. 

Fig.4-14 shows the (a) reflection and (b) transmission coefficients of this 

anisotropic CFC panel as a function of the angle between the electric field and 

the x axis at 1 GHz. The order of the expansions, N, is 100, which was found to 

be sufficient to produce results virtually indistinguishable with the analytical 

ones on the figure.  

It should be noted that when the electric field ܧሬԦ௜ is parallel to the x axis, i.e. the 

angle ߮ ൌ Ͳι or ߮ ൌ ͳͺͲι, it only has effects on the thin film along the x axis. 

Thus the thin film presents itself as an isotropic film with the parameters of ߝ௥௫ ൌ ʹ and ߪ௘௫ ൌ ͳͲସ Smିଵ . Its reflection and transmission coefficients 

should be the same as those shown in Fig.4-9 when N = 100 at 1 GHz. 
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Similarly, when the angle ߮ equals ͻͲι, the electric field ܧሬԦ௜ is parallel to the y 

axis so that only the thin film along the y axis has response to the field. Its 

reflection and transmission coefficients come from the thin film with the 

parameters of ߝ௥௬ ൌ ͵ and ߪ௘௬ ൌ ͳͲଷ Smିଵ. When the angle ߮ is between Ͳι 

and ͻͲι or between ͻͲι and ͳͺͲι, the thin film along both x and y directions 

has responses to the electric field. That is why the shapes of its reflection and 

transmission coefficients against the angle are the ones shown in Fig.4-14. 

 

 

(a) 

 

(b) 

Fig.4-14 (a) Reflection coefficients and (b) transmission coefficients of an 
anisotropic CFC panel against the angle between the incident field with x axis 

at 1 GHz. 
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4.3.1.3. Multi-Layer CFC Panels 

The first example to test the accuracy of the multilayer CFC model was chosen 

to be a symmetric three-layer CFC panel. The material in the middle layer was 

chosen to have the same parameters as in the example for single layer CFC 

panel, with ɂ୰ ൌ ʹǡ ɐୣ ൌ ͳ ൈ ͳͲସ Smିଵ [4.4] .The first and third layers of this 

panel were assumed to have the same electric properties as  ɂ୰ ൌ Ͷǡ ɐୣ ൌ ͷ ൈͳͲଷ Smିଵ. All layers have the same thickness of 0.6 mm. 

As before, free space on each side of this panel was discretised using 1D TLM 

nodes. The three-layer CFC panel, as a whole, was modelled using the 

multilayer time domain model proposed in section 3.3.2 and then embedded 

between two adjacent 1D TLM nodes. A delta pulse was chosen to be the 

excitation of the simulation. The reflected and transmitted electric fields were 

firstly obtained in the time domain and then a FFT was used to transform them 

into the frequency domain in order to get the reflection and transmission 

coefficients. 

In order to investigate the discretisation errors of the embedded model, the 

reflection and transmission coefficients of the three-layer CFC panel at 1 GHz 

were calculated using the embedded model for N = 100 with different mesh 

size, ݀ݖ . Results obtained were compared to the analytical ones calculated 

using the even/odd mode method described in section 4.2.2. Fig.4-15 shows 

the percentage errors in the reflection and transmission coefficients at 1 GHz 

against the mesh size, represented by ߣ Τݖ݀ . Fig.4-15 shows that the 

discretisation errors decrease as the mesh size decreases. Therefore, in the 

following calculations, the mesh size was chosen to be 0.01 m (ߣ ݖ݀ ൌ ͵ͲΤ ), in 

order to minimise the discretisation errors. 

The errors from the truncation of the cotangent and cosecant function 

expansions are also investigated. Fig.4-16 shows the percentage errors in the 

reflection and transmission coefficients of the three-layer CFC panel at 1 GHz 

calculated using the embedded model for different number of terms, N, 

compared with the analytical ones. It can be seen that as the number of terms 
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increases, the percentage errors in the transmission coefficients decrease, while 

the percentage errors in the reflection coefficients converge much faster. 

 

 
Fig.4-15 Percentage errors in the reflection and transmission coefficients of a 

symmetric three-layer CFC panel at 1 GHz calculated using the embedded 
model for N = 100, with different mesh size, ݀ݖ. 

 

 
Fig.4-16 Percentage errors in the reflection and transmission coefficients of a 

symmetric three-layer CFC panel at 1 GHz calculated using the embedded 
model for ݀0.01 = ݖ m, with different number of terms, N. 

 

After investigating the discretisation errors and truncation errors, the reflection 

and transmission coefficients of the three-layer CFC panel were calculated in 

the frequency range from 0 to 1 GHz, using the embedded model with a mesh 
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size of 0.01 m. Fig.4-17 shows the reflection and transmission coefficients of 

the three-layer CFC panel as a function of frequency. The numerical results 

obtained using different expansion terms N (N = 10, 20 and 100) are compared 

with the analytical ones obtained from the even/odd mode method mentioned 

in section 4.2. It can be seen that all the numerical results show good 

agreement with the analytical ones, with the agreement becoming closer when 

more terms are used to approximate the infinite series in equations (3-11) and 

(3-12).  

 

 

Fig.4-17  Reflection and transmission coefficients of a symmetric three-layer 
CFC panel calculated using the embedded model for N = 10, 20 and 100 and 

the analytical method. 
 

Fig.4-18 (a, b) show the percentage errors (defined in equation (4-21)) in the 

reflection and transmission coefficients calculated using the embedded model 

compared to the analytical ones. It can be seen that the errors decrease with an 

increase in the number of expansion terms, N. When N = 100, the errors for the 

reflection coefficients are less than 0.001% and the errors for the transmission 

coefficients are less than 1.5%.  
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(a) 

 

(b) 

Fig.4-18 Percentage errors in the (a) reflection coefficients and (b) 
transmission coefficients calculated using the embedded model with different 

number of terms, N (N = 10, 20 and 100). 
 

The three-layer CFC panel was also modelled using the conventional TLM 

method for comparison. Since the CFC panel needs to be discretised, the mesh 

size must be smaller than its skin depth at the highest frequency of interest. 

The discretisation errors of the conventional TLM method were first 

investigated. Fig.4-19 shows the percentage errors in the reflection and 

transmission coefficients of the three-layer CFC panel at 1 GHz calculated 

using the conventional TLM method with different mesh size, represented by 
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݀ Τݖ݀ , where ݀ is the thickness of the three-layer panel (1.8 mm), compared to 

the analytical ones. It can be seen that when the mesh size ݀ݖ ൌ ͲǤͲʹͷ ݉݉ 

(݀ ݖ݀ ൌ ͹ʹΤ ), the percentage errors in the reflection coefficients are around 

0.002% and the percentage errors in the transmission coefficients are around 

1%. 

 

 

Fig.4-19 Percentage errors in the reflection and transmission coefficients of a 
symmetric three-layer CFC panel at 1 GHz calculated using the conventional 

TLM method for different mesh size, ݀ݖ. 
 

For comparison purposes, the reflection and transmission coefficients of the 

three-layer CFC panel in the frequency range from 0 to 1 GHz were calculated 

using the conventional TLM method with a mesh size of 0.025 mm. Fig.4-20 

shows the percentage errors in the reflection and transmission coefficients 

calculated using the conventional TLM method compared to the analytical 

results. It can be seen that in the frequency range from 0 to 1 GHz, the errors in 

reflection coefficients are less than 0.002% and the errors in transmission 

coefficients are less than 1%, which is comparable to the corresponding errors 

calculated using the embedded model with a mesh size of 0.01 m. 
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Fig.4-20 Percentage errors in the reflection coefficients and transmission 
coefficients calculated using the conventional TLM method with a mesh size 

of 0.025 mm. 
 

With a mesh size of 0.025 mm in the conventional TLM model, there are 4000 

nodes for free space (0.1 m) on each side of the three-layer CFC panel and 72 

nodes for the three-layer CFC panel. In total, there are 8072 nodes in the mesh. 

Compared to the embedded model, there are only 20 nodes with the mesh size 

of 10 mm since the three-layer CFC panel is not discretised. Furthermore, the 

number of time steps needed in the conventional TLM model and the 

embedded model is Ͷ ൈ ͳͲହ and 1000, respectively. Therefore, the embedded 

model saves 403.6 times memory storage for nodes and 400 times the number 

of iterations than those of the conventional TLM model, as shown in Table 4-2. 

 

Table 4-2 Comparison between the conventional TLM model and the 
embedded model for the three layer CFC panel 

Model 
Mesh size 

(mm) 
Number of 

nodes 
Number of 
time steps 

Run time (s) 
* 

Conventional 
TLM 

0.025 8072 Ͷ ൈ ͳͲହ 83 

Embedded 
model 

10 20 1000 0.28 

(* the run time is based on a PC with an Intel Core 2 Duo CPU 3GHz 
processor and 4GB memory) 
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In summary, the multi-layer embedded model can achieve the same accuracy 

as the conventional TLM model by using a larger mesh size, thus saving 

memory storage and reducing the number of time steps. 

 

As a further application, the multilayer CFC model was used to calculate the 

shielding effectiveness (SE) of four CFC panels with different layers, which 

were originally studied in [4.4].  

The properties of four CFC panels studied are given in Table 4-3 [4.4]. 

 
Table 4-3 Composition of multi-layer panels: number of layers, layer 

conductivity, relative permittivity and thickness 

Panel 
No. of 
layers 

Layer 
conductivity(Smିଵ) 

Layer relative 
permittivity 

Layer 
thickness(mm) 

A 1 ɐଵ ൌ ͳͲସ ߝ௥ଵ ൌ ʹ ݀ଵ ൌ ͳ 

B 3 
ɐଵ ൌ ͳͲସ ɐଶ ൌ ͷͲ ɐଷ ൌ ͳͲଷ 

௥ଵߝ ൌ ௥ଶߝ ʹ ൌ Ͷ ߝ௥ଷ ൌ ͵ 

݀ଵ ൌ ͲǤ͸ ݀ଶ ൌ ͲǤ͸ ݀ଷ ൌ ͲǤ͸ 

C 5 
ɐଵ ൌ ɐଷ ൌ ͳͲସ ɐଶ ൌ ɐସ ൌ ͷͲ ɐହ ൌ ͳͲଷ 

௥ଵߝ ൌ ௥ଷߝ ൌ ௥ଶߝ ʹ ൌ ௥ସߝ ൌ Ͷ ߝ௥ହ ൌ ͵ 

݀ଵ ൌ ݀ଷ ൌ ͲǤʹ ݀ଶ ൌ ݀ସ ൌ ͲǤʹ ݀ହ ൌ ͲǤʹ 

D 9 

ɐଵ ൌ ɐଷ ൌ ɐ଼ൌ ͳͲସ ɐଶ ൌ ɐସ ൌ ɐ଺ൌ ͷͲ ɐହ ൌ ɐ଻ ൌ ɐଽൌ ͳͲଷ 

௥ଵߝ ൌ ௥ଷൌߝ ௥଼ߝ ൌ ௥ଶߝ ʹ ൌ ௥ସൌߝ ௥଺ߝ ൌ Ͷ ߝ௥ହ ൌ ௥଻ൌߝ ௥ଽߝ ൌ ͵ 

݀ଵ ൌ ݀ଷ ൌ ଼݀ൌ ͲǤʹ ݀ଶ ൌ ݀ସ ൌ ݀଺ൌ ͲǤʹ ݀ହ ൌ ݀଻ ൌ ݀ଽൌ ͲǤʹ 
 

Panel A is modelled using a single layer time domain embedded model 

developed in section 3.2. Panel B is modelled using the three-layer time 

domain embedded model as demonstrated in section 3.3.2. Panels C and D are 

modelled using the generalised multi-layer thin film model introduced in 

section 3.3.3. 

For panel C with 5 layers, equations like (3-45) are obtained, in which there is 

a square matrix of the order 6 and 6 unknowns.  
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For panel D with 9 layers, equations like (3-45) are obtained, in which there is 

a square matrix of the order 10 and 10 unknowns. 

Fig. 4-21 shows the shielding performances of these four panels as a function 

of frequency calculated using the embedded TLM model compared to those 

calculated using the FDTD method from [4.4]. It can be concluded that the 

results show excellent agreements with those from [4.4]. 

 

 

Fig.4-21 Shielding performances of the panels in Table I calculated using the 
embedded TLM model compared to those calculated using the FDTD method 

from [4.4]. 
 

From Fig. 4-21, it can be seen that panel A provides the best SE performance, 

which is composed of only one layer of CFC with thickness of 1 mm and 

conductivity of ͳͲସ Smିଵ. With the same total thickness as panel A, panel C 

has the lower SE since only two layers of the whole panel is made of the 

materials with conductivity ͳͲସ Smିଵ . Panels B and D have the same 

thickness and volume composition so they have the same SE performance in 

the lower frequency up to 10 MHz, where the reflection phenomenon 

dominates. At higher frequencies, due to the lamination effect, the SE of panel 

D increases dramatically and becomes much better than panel B, which is 

nearly equal to the one of panel A. 
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4.3.2. Titanium Panels 

Titanium materials are excellent candidates for applications in aerospace 

industries because of their high strength-to-weight ratio, high operating 

temperature and excellent corrosion resistance [4.14]. 

To further prove the embedded model, the reflection and transmission 

properties of a titanium panel are studied in this section. The frequency range 

is chosen to be up to the highest lightning frequency (0 ~ 10 MHz) [4.6]. For 

comparison, the conventional TLM method is also used to model titanium 

panels.  

A titanium panel used in C-27J aircraft [4.6] is taken as an example with 

parameters  ߝ௥ ൌ ͳǡ ௘ߪ ൌ ͷǤͺͺ ൈ ͳͲହ Smିଵ and thickness of 1.2 mm. 

The electric field is normally incident to the panel. The length of free space in 

each side of the titanium panel was chosen to be 10 m and the matched 

boundaries were used at the both ends to simulate the infinite space. Free space 

was discretised using 1D TLM nodes and the titanium panel was modelled 

using the embedded model. A delta pulse was used as the excitation of the 

simulation. 

Since the highest frequency was chosen to be 10 MHz, the corresponding 

smallest wavelength is 30 m. The discretisation errors were firstly investigated. 

The reflection and transmission coefficients of the titanium panel at 10 MHz 

were calculated using the embedded model for N = 100 with different mesh 

size, ݀ݖ. Results obtained were compared with the analytical ones calculated 

using the even/odd mode method described in section 4.2.2. Fig.4-22 shows 

the percentage errors in the reflection and transmission coefficients at 10 MHz 

against the mesh size, represented by ߣ Τݖ݀ . It can be seen that the 

discretisation errors decrease with a decrease in the mesh size. In order to 

minimize the discretisation errors, the mesh size was chosen to be 1 m 

ߣ) Τݖ݀ ൌ ͵Ͳ) in the following calculations.  
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Fig.4-22 Percentage errors in the reflection and transmission coefficients of the 
titanium panel at 10 MHz calculated using the embedded model for N =100, 

with different mesh size, ݀ݖ. 
 

Using a mesh size of 1 m, the stability of the embedded model is investigated. 

In the embedded titanium model, the stability coefficients used in equation 

(4-24) are calculated as follows, ܣଶ ൌ ߤʹ ൅ ݐ௠οߪ ൌ ʹǤͷͳ ൈ ͳͲି଺ ሺHmିଵሻ,  ܤଶ ൌ ݐ௠οߪ െ ߤʹ ൌ െʹǤͷͳ ൈ ͳͲି଺ ሺHmିଵሻ, ܣ௞ ൌ Ͷߝߤ ൅ ʹοݐሺߪߤ௘ ൅ ௠ሻߪߝ ൅ ሺߪ௠ߪ௘ ൅ ݇ଶߨଶȀ݀ଶሻοݐଶ      ൌ ͶǤͻ͵ ൈ ͳͲିଽ ൅ ͹Ǥ͸ʹ ൈ ͳͲିଵଵ ή ݇ଶ ሺSଶmିଶሻ,       ݇ ൌ ͳǡʹǡ ڮ ǡ ܰ 

௞ܤ ൌ െͺߝߤ ൅ ʹ ቆߪ௠ߪ௘ ൅ ݇ଶߨଶ݀ଶ ቇ οݐଶ      ൌ െͺǤͺͻ ൈ ͳͲିଵ଻ ൅ ͹Ǥ͸ʹ ൈ ͳͲିଵଵ ή ݇ଶ ሺSଶmିଶሻ,         ݇ ൌ ͳǡʹǡ ڮ ǡ ܰ 

௞ܥ ൌ Ͷߝߤ െ ʹοݐሺߪߤ௘ ൅ ௠ሻߪߝ ൅ ቆߪ௠ߪ௘ ൅ ݇ଶߨଶ݀ଶ ቇ οݐଶ        ൌ െͶǤͻ͵ ൈ ͳͲିଽ ൅ ͹Ǥ͸ʹ ൈ ͳͲିଵଵ ή ݇ଶ ሺSଶmିଶሻǤ           ݇ ൌ ͳǡʹǡ ڮ ǡ ܰ 

According to these values, the poles of the transfer functions of all the digital 

filters used in this titanium model are within the unit circle indicating that the 

model is stable. 
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The truncation errors from the approximation of the cotangent and cosecant 

functions using the expansions (equations (3-11) and (3-12)) are also 

investigated as before. Fig.4-23 shows the percentage errors in the reflection 

and transmission coefficients of the titanium panel at 10 MHz calculated using 

the embedded model for different number of terms, N, compared to the 

analytical ones. It can be seen that when N = 100, the percentage errors in the 

transmission coefficients are less than 1% while the percentage errors in the 

reflection coefficients are less than 0.0001%. 

 

 

Fig.4-23 Percentage errors in the reflection and transmission coefficients of the 
titanium panel at 10 MHz calculating using the embedded model for ݀1 = ݖ m, 

with different number of expansion terms, N. 
 

In order to maintain minimum discretisation errors, the reflection and 

transmission coefficients of the titanium panel were calculated in the frequency 

range from 0 to 10 MHz, using the embedded model with a mesh size of 1 m. 

Fig.4-24 shows the reflection and transmission coefficients of the titanium 

panel in the frequency range from 0 to 10 MHz, for different number of 

expansion terms, N, compared to the analytical results obtained using the 

even/odd mode method introduced in section 4.2.2. As expected, with an 

increase in the order of expansions, N, the numerical results in the frequency 

range from 0 to 10 MHz converge to the analytical ones. The reflection and 

transmission coefficients show that almost all the waves from 0 to 10 MHz 
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(larger than 99.99%) incident upon the titanium panel are reflected, indicating 

a very good shielding performance. 

 

 

Fig.4-24 Reflection and transmission coefficients of a 1.2 mm titanium panel 
with ɂ୰ ൌ ͳǡ ɐୣ ൌ ͷǤͺͺ ൈ ͳͲହ Smିଵ calculated using the embedded model for 

different number of terms, N, and analytical method. 
 

Fig.4-25 (a, b) show the percentage errors (defined in equation (4-21)) in the 

reflection and transmission coefficients of the titanium panel compared to the 

analytical results. It can be seen that when N = 100, the errors for the reflection 

coefficients are less than 0.00003% and the errors for the transmission 

coefficients are less than 0.4% in the frequency range from 0 to 10 MHz. 

For comparison purposes, the titanium panel was also modelled using the 

conventional TLM method. Since in the conventional TLM method the 

titanium panel needs to be discretised, the mesh size should be less than the 

skin depth of the panel at 10 MHz, which is 0.2 mm. Fig.4-26 shows the 

percentage errors in the reflection and transmission coefficients of the titanium 

panel at 10 MHz calculated using the conventional TLM method for different 

mesh size, represented by ݀ Τݖ݀ , where ݀  is the thickness of the panel, 

compared to the analytical ones. It can be seen that when the mesh size is 

0.025 mm (݀ ݖ݀ ൌ ͶͺΤ ), the errors in the reflection coefficients are less than 

0.0002% while the errors in the transmission coefficients are less than 0.5%. 
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(a) 

 

(b) 

Fig.4-25 Percentage errors in the (a) reflection coefficients and (b) 
transmission coefficients calculated using the embedded model with different 

number of terms, N ( N =10, 20 and 100). 
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Fig.4-26 Percentage errors in the reflection and transmission coefficients of the 
titanium panel at 10 MHz calculated using the conventional TLM method for 

different mesh size, ݀ݖ. 
 

For comparison purposes, the reflection and transmission coefficients of the 

titanium panel were calculated in the frequency range from 0 to 10 MHz, using 

the conventional TLM method with a mesh size of 0.025 mm. Fig. 4-27 shows 

the percentage errors in the reflection and transmission coefficients calculating 

using the conventional TLM method compared to the analytical results. It is 

shown that in the frequency range from 0 to 10 MHz, the errors in the 

reflection coefficients are less than 0.00002% and the errors in the 

transmission coefficients are less than 0.5%, comparable to the corresponding 

errors calculated using the embedded model with a mesh size of 1 m. 
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Fig. 4-27 Percentage errors in the reflection coefficients and transmission 
coefficients calculated using the conventional TLM method with a mesh size 

of 0.025 mm. 
 

However, the number of nodes and the number of time steps needed in the 

conventional TLM model are huge, as shown in Table 4-4.  

 

Table 4-4 Comparison between the conventional TLM model and the 
embedded model for the single layer titanium panel 

Model Mesh size  
Number of 

nodes 
Number of 
time steps 

Run time * 

Conventional 
TLM 

0.025 mm 400048 Ͷ ൈ ͳͲ଻ >4hours 

Embedded 
model 

1 m 20 1000 0.39s 

(* the run time is based on a PC with an Intel Core 2 Duo CPU 3GHz 
processor and 4GB memory) 

 
In the conventional TLM method, the mesh size was chosen to be 0.025 mm in 

order to include more details of the panel into the mesh so that accurate results 

were obtained. In the embedded model, the mesh size depends on the smallest 

wavelength regardless of the thickness of the panel. Therefore, the mesh size 

used in the embedded model is 40000 times bigger than that used in the 

conventional TLM method. 
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In conclusion, the titanium embedded model once again shows that the 

embedded model can achieve the same accuracy as the conventional TLM 

method using a larger mesh size, resulting in saving memory storage and 

reducing the number of time steps thus saving the computational overheads. 

 

4.4. Applications of Embedded Model to 

Dielectric Films 

As examples of dielectric films, anti-reflection (AR) coatings and fibre Bragg 

gratings (FBG) are utilized to examine the embedded model proposed in 

Chapter 3.  

For the isotropic and lossless dielectric materials, the equivalent inductance 

and capacitance, ܮ and ܥ, can be expressed by ܮ ൌ ߤ ൌ ௥ߤ଴ߤ ǡ ܥ ൌ ߝ ൌ ௥ߝ଴ߝ Ǥ (4-26) 

A modified embedded thin film model is also presented to model single layer 

dielectric thin films. 

 

4.4.1. Antireflection (AR) Coatings 

AR coatings are used in optical amplifiers, couplers and switches [4.15] to 

reduce the reflection and enhance transmission. 

In this section, the reflection coefficients of one quarter-wavelength AR 

coating are calculated using the embedded model proposed in Chapter 3. For 

comparison, the conventional TLM method is also used to model the AR 

coating. 

The AR coating is assumed to be infinite in length and width, but only have 

finite thickness. As shown in Fig.4-28, the electric field is normally incident 
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from free space with refractive index ݊௔ on to the film with refractive index ݊ଵ 

and then emerges into a substrate with refractive index ݊௕.  

 

 

Fig.4-28 The electric field is normally incident to a quarter-wavelength film on 
a substrate. 

 

The AR coating studied is taken from [4.1]. It has a refractive index ݊ଵ ൌ ͳǤʹʹ 

and a quarter-wavelength thickness ݀ଵ ൌ ఒబସ௡భ ൌ ͳͳʹǤ͹ nm  at ଴ߣ  ൌ ͷͷͲ nmǤ 
The glass substrate has refractive index ݊௕ ൌ ͳǤͷ. 

When analysing the reflection coefficients of the AR coating, the background 

materials (free space and glass substrate) were assumed to be infinite. In the 

simulation, the lengths of free space and glass substrate regions were chosen to 

be the same as 100 nm, and at both ends matched boundaries [4.11] were used 

to simulate the infinite space. The background materials were discretised using 

1D TLM nodes, while the coating was modelled by the embedded model 

proposed in Chapter 3. The excitation was placed in the first node using a delta 

pulse. The incident field to and the reflected field from the AR coating were 

calculated in the time domain and then a Fast Fourier Transform (FFT) was 

taken to get the reflection coefficients of the AR coating. 

In order to choose an appropriate mesh size, the discretisation errors were 

investigated first. The reflection coefficients of the AR coating at 550 nm were 

calculated using the embedded model with different mesh size, ݀ݖ. Results 

obtained were compared with the analytical ones calculated using the transfer 

matrix method described in section 4.2.1. Fig.4-29 shows the percentage errors 

in the reflection coefficients of the AR coating at 550 nm calculated using the 

embedded model with different mesh size, represented by ߣ ሺ݊௕ ή ሻΤݖ݀ , 
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compared to the analytical ones. It can be seen that when the mesh size ݀ݖ ൌͳ nm (ߣ ሺ݊௕ ή ሻΤݖ݀ ൌ ͵͸͸Ǥ͹), the errors in the reflection coefficients are less 

than 1%. In the following calculations, the mesh size was chosen to be 1 nm to 

minimize the discretisation errors.  

 

 

Fig.4-29 Percentage errors in the reflection coefficients of the AR coating at 
550 nm calculated using the embedded model with different mesh size, ݀ݖ. 

 

Using a mesh size of 1 nm, the stability of the embedded model is investigated. 

For the time domain model of this AR coating connecting with the TLM 

algorithm, the key is to solve equations (3-9) and (3-10). According to section 

3.2, these two equations can be seen as a complex digital filter system. The 

stability of the system depends on the poles of the transfer functions of all the 

digital filters. 

According to the parameters of the AR coating, the stability coefficients used 

in equation (4-24) are calculated as follows (ɐୣ ൌ Ͳ and ߪ௠ ൌ Ͳ), ܣଶ ൌ ߤʹ ൌ ʹǤͷͳ ൈ ͳͲି଺ ሺHmିଵሻ,  ܤଶ ൌ െʹߤ ൌ െʹǤͷͳ ൈ ͳͲି଺ ሺHmିଵሻ, ܣ௞ ൌ Ͷߝߤ ൅ ݇ଶߨଶȀ݀ଶοݐଶ      ൌ ͸Ǥ͸ͳͷ ൈ ͳͲିଵ଻ ൅ ͺǤ͸͵Ͷ ൈ ͳͲିଶଵ ή ݇ଶ ሺSଶmିଶሻ,       ݇ ൌ ͳǡʹǡ ڮ ǡ ܰ 
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௞ܤ ൌ െͺߝߤ ൅ ʹ ݇ଶߨଶ݀ଶ οݐଶ      ൌ െͳ͵Ǥʹ͵ ൈ ͳͲିଵ଻ ൅ ͺǤ͸͵Ͷ ൈ ͳͲିଶଵ ή ݇ଶ ሺSଶmିଶሻ,         ݇ ൌ ͳǡʹǡ ڮ ǡ ܰ 

௞ܥ ൌ Ͷߝߤ ൅ ݇ଶߨଶ݀ଶ οݐଶ        ൌ ͸Ǥ͸ͳͷ ൈ ͳͲିଵ଻ ൅ ͺǤ͸͵Ͷ ൈ ͳͲିଶଵ ή ݇ଶ ሺSଶmିଶሻ,           ݇ ൌ ͳǡʹǡ ڮ ǡ ܰ 

From these values, it can be seen that for all the digital filters used in this 

system, the poles of their transfer functions are within the unit circle indicating 

that the AR model is stable [4.12]. 

Using the stable embedded model, the reflection coefficients of the AR coating 

were calculated in the wavelength range from 450 nm to 550 nm. Fig.4-30 

shows the reflection coefficients of the AR coating as a function of wavelength 

for different number of terms, N (used in equations (3-11) and (3-12)), together 

with the analytical ones calculated using the transfer matrix method described 

in section 4.2. It shows that with an increase in the number of terms, N, the 

numerical results converge to the analytical ones. The convergence is best at 

the operating wavelength ɉ଴ ൌ ͷͷͲ nm.  

Fig.4-31 shows the percentage errors (defined in equation (4-21)) in the 

reflection coefficients calculated using the embedded model and the analytical 

results. When N = 400, the errors are less than 2% in the wavelength range 

from 450 nm to 650 nm.  

The runtime for N = 400 was 45s using a PC with an Intel Core 2 Duo CPU 

3GHz processor and 4GB memory. 

It is noticed that the results for the AR coating with ݊ଵ ൌ ͳǤʹʹ show the slow 

convergence with the number of terms, N. 400 terms are needed to get results 

with errors less than 2%, which increases the computational costs. Thus it is 

desirable to obtain a more efficient implementation. The development of a 

modified embedded model is the subject of the following section. 
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Fig.4-30 Reflection coefficients of the AR coating with ݊ଵ ൌ ͳǤʹʹ calculated 
using the embedded model for different number of terms, N. 

 

 

Fig.4-31 The percentage errors in the reflection coefficients calculated using 
the embedded model for different number of terms, N (N = 50, 200 and 400). 

 

 



4 Embedded Thin Film Model in the One-Dimensional TLM Method 

101 
 

4.4.2. Modified Embedded Model for Single-layer 

Dielectric Films 

From the previous examples, it can be seen that for single-layer AR coatings, 

400 or more expansion terms are needed in cotangent and cosecant function 

expansions (equations (3-11) and (3-12)) to get good convergence to analytical 

results. This increases the computational costs. In this section, a modified 

embedded model for single-layer dielectric films is presented, which can 

reduce the number of expansion terms for convergence. This model is tested 

using the AR coating example studied in section 4.4.1. 

The expansions for the cotangent and cosecant functions given in equations (3-

11) and (3-12), are repeated here for convenience. 

ߠݐ݋ܻ݆ܿ ൌ ݆ඨܮܥ ൭ͳߠ ൅ ߠʹ ෍ ͳߠଶ െ ݇ଶߨଶேୀஶ
௞ୀଵ ൱ǡ 

ߠܿݏܻ݆ܿ ൌ ݆ඨܮܥ ൭ͳߠ ൅ ߠʹ ෍ ሺെͳሻ௞ߠଶ െ ݇ଶߨଶேୀஶ
௞ୀଵ ൱Ǥ 

The above two equations converge rapidly when ߠ ൌ Ͳ , that is at zero 

frequency for any thin thickness film. This means that accurate results for low 

frequencies could be obtained even using only a few terms. However, for very 

high frequencies, such as in the visible part of the electromagnetic spectrum, to 

get the accurate results, many more terms are needed to approximate the 

infinite series. 

The above equations can be manipulated so that they converge faster at the 

specific frequency ଴݂. 

For the cotangent function, the specific electrical length ߠ଴ is introduced as 

ߠݐ݋ܿ ൌ ߠሺݐ݋ܿ െ ଴ߠ ൅ ଴ሻߠ ൌ ߠሺݏ݋ܿ െ ଴ߠ ൅ ߠሺ݊݅ݏ଴ሻߠ െ ଴ߠ ൅  ଴ሻߠ

          ൌ ߠሺݏ݋ܿ െ ଴ሻߠ ଴ߠݏ݋ܿ െ ߠሺ݊݅ݏ െ ଴ሻߠ ߠሺ݊݅ݏ଴ߠ݊݅ݏ െ ଴ሻߠ ଴ߠݏ݋ܿ ൅ ߠሺݏ݋ܿ െ ଴ሻߠ  ଴Ǥߠ݊݅ݏ
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By dividing both the numerator and the denominator by ݊݅ݏሺߠ െ ଴ሻߠ ଴ߠ݊݅ݏ , 

one can obtain, 

ߠݐ݋ܿ ൌ ߠሺݐ݋ܿ െ ଴ሻߠ െ ଴ͳߠ݊ܽݐ ൅ ߠሺݐ݋ܿ െ ଴ሻߠ  ଴ǡ (4-27)ߠ݊ܽݐ

where ܿߠݐ݋ is replaced by ܿݐ݋ ሺߠ െ  .଴ሻߠ

Similarly, ܿߠܿݏ can be expressed by ܿߠܿݏ ൌ ߠሺܿݏܿ െ ଴ሻߠ Ȁܿߠݏ݋଴ͳ ൅ ߠሺݐ݋ܿ െ ଴ሻߠ  ଴Ǥ (4-28)ߠ݊ܽݐ

After replacing ܿߠݐ݋ and ܿߠܿݏ in equations (3-11) and (3-12) with equations 

(4-27) and (4-28), they become ൫ሺݕଵݕଶ ൅ ܻܻ ൅ ݆ܻሺݕଵ൅ݕଶሻߠ݊ܽݐ଴ሻ ൅ ሺݕଵݕଶ ൅ ܻܻሻߠ݊ܽݐ଴ ߠሺݐ݋ܿ െ ଴ሻെߠ ܻሺݕଵ൅ݕଶሻ ߠሺݐ݋݆ܿ െ ଴ሻ൯ߠ ή ଵܸ ൌ ൫ሺʹݕଵݕଶ ൅ ଴ሻߠ݊ܽݐଵ݆ܻݕʹ ൅ ଴ߠ݊ܽݐଶݕଵݕʹ ߠሺݐ݋ܿ െ ଴ሻߠ െ ଵܻήݕʹ ߠሺݐ݋݆ܿ െ ଴ሻ൯ߠ ή ଵܸ௜ െ ܻ ଶݕʹ ݆ ߠሺܿݏܿ െ ଴ߠݏ݋଴ሻܿߠ ή ଶܸ௜ǡ 
(4-29) ൫ሺݕଵݕଶ ൅ ܻܻ ൅ ݆ܻሺݕଵ൅ݕଶሻߠ݊ܽݐ଴ሻ ൅ ሺݕଵݕଶ ൅ ܻܻሻߠ݊ܽݐ଴ ߠሺݐ݋ܿ െ ଴ሻെߠ ܻሺݕଵ൅ݕଶሻ ߠሺݐ݋݆ܿ െ ଴ሻ൯ߠ ή ଶܸ 

ൌ െʹݕଵ ܻ ݆ ߠሺܿݏܿ െ ଴ߠݏ݋଴ሻܿߠ ή ଵܸ௜൅ ൫ሺʹݕଵݕଶ ൅ ଴ሻߠ݊ܽݐଵ݆ܻݕʹ ൅ ଴ߠ݊ܽݐଶݕଵݕʹ ߠሺݐ݋ܿ െ ଴ሻߠ െ ଶܻήݕʹ ߠሺݐ݋݆ܿ െ ଴ሻ൯ߠ ή ଶܸ௜ Ǥ 
(4-30) 

Equations (4-29) and (4-30) now involve ܿݐ݋ ሺߠ െ ߠሺ ܿݏܿ ଴ሻ andߠ െ  ଴ሻ whichߠ

converge faster at ߠ଴, which corresponds to the frequency ଴݂ defined as ߠ଴ ൌʹߨ ଴݂݀ξܥܮ. 
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In equations (4-27) and (4-28), ߠ݊ܽݐ଴ is a known value given a specific ଴݂, and ܿݐ݋ሺߠ െ ଴ሻߠ  and ܿܿݏሺߠ െ ଴ሻߠ  are expanded using the same expansion 

technique as in equation (3-11) and (3-12), as follows, 

ߠሺݐ݋ܿ െ Ͳሻߠ ൌ ͳߠ െ Ͳߠ ൅ ʹሺߠ െ Ͳሻߠ ෍ ͳሺߠ െ Ͳሻଶߠ െ ݇ଶߨଶேୀஶ
௞ୀଵ ǡ 

ߠሺܿݏܿ െ Ͳሻߠ ൌ ͳߠ െ Ͳߠ ൅ ʹሺߠ െ Ͳሻߠ ෍ ሺെͳሻ௞ሺߠ െ Ͳሻଶߠ െ ݇ଶߨଶேୀஶ
௞ୀଵ Ǥ (4-31) 

Equation (4-31) converges rapidly when ߠ ൌ  ଴, which means that fewer termsߠ

are needed to get accurate results at the given frequency ଴݂. 

After substituting equation (4-31) in equations (4-29) and (4-30) and then 

transferring them into Z domain, the solutions are obtained using the same 

method as described in section 3.2. 

Since  ߠ ൌ ߱݀ξܥܮǡ ଴ߠ                 ൌ ߱଴݀ξܥܮ ൌ ߨʹ ଴݂ξܥܮǡ 
then equation (4-31) in the Z domain becomes 

ߠሺݐ݋ܿ െ Ͳሻߠ ൌ െ݉ଵ ͳ ൅ ଶܣܣଵିݖ ൅ ଵିݖଶܥܥ
െ ʹ݉ଵ ෍ ଶܣܣ ൅ ଵିݖଶܤܤ ൅ ௞ܣܣଶିݖଶܥܥ ൅ ଵିݖ௞ܤܤ ൅  ଶǡିݖ௞ܥܥ

ߠሺܿݏܿ െ Ͳሻߠ ൌ െ݉ଵ ͳ ൅ ଶܣܣଵିݖ ൅ ଵିݖଶܥܥ
െ ʹ݉ଵሺെͳሻ௞ ෍ ଶܣܣ ൅ ଵିݖଶܤܤ ൅ ௞ܣܣଶିݖଶܥܥ ൅ ଵିݖ௞ܤܤ ൅  ଶǤିݖ௞ܥܥ

(4-32) 

Parameters in equation (4-32) are given by: ܣܣଶ ൌ ߱଴οݐ ൅ ʹ݆ǡ ܤܤଶ ൌ ʹ߱଴οݐǡ ܥܥଶ ൌ ߱଴οݐ െ ʹ݆ǡ 
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݉ଵ ൌ ο݀ݐξߝߤǡ 
௞ܣܣ ൌ െͶ ൅ Ͷ݆߱଴οݐ ൅ οݐଶ ቆ߱଴ଶ െ ݇ଶߨଶ݀ଶߝߤቇǡ 
௞ܤܤ ൌ ͺ ൅ ʹοݐଶ ቆ߱଴ଶ െ ݇ଶߨଶ݀ଶߝߤቇǡ 
௞ܥܥ ൌ െͶ െ Ͷ݆߱଴οݐ ൅ οݐଶ ቆ߱଴ଶ െ ݇ଶߨଶ݀ଶߝߤቇǤ 
This modified embedded model can only work well for single layer dielectric 

films since this model involves an electrical length shifting procedure. For 

multilayer films, there are two or more electrical lengths which was found to 

result in not only no savings in computational resource but also stability 

problems in practice. 

In order to test the modified embedded model, the AR coating studied in 

section 4.4.1 is used as an example. 

The AR coating studied in [4.1] has a refractive ݊ଵ ൌ ͳǤʹʹ and has a quarter-

wavelength thickness ݀ଵ ൌ ఒబସ௡భ ൌ ͳͳʹǤ͹ nm  at ଴ߣ  ൌ ͷͷͲ nmǤ  The glass 

substrate has refractive index ݊௕ ൌ ͳǤͷ. 

Since the centre wavelength is ߣ଴ ൌ ͷͷͲ nm , the frequency at which the 

operating of the coating is optimized is ଴݂ ൌ ܿ ଴ߣ ൌ ͷͶͷ THzΤ . According to 

the described model the cotangent and cosecant functions are now shifted to 

frequency ଴݂ for which they converge faster. 

The TLM mesh size was chosen to be 1 nm as before. 

Fig.4-32 (a) shows the reflection coefficients of the AR coating calculated 

using the modified embedded model for different number of terms N (N = 5, 

10 and 20), together with the analytical results. It can be seen that numerical 

results indistinguishable from the analytical ones are obtained using only 20 

terms. This is in contrast to Fig.4-30 where 400 terms are used and 

convergence is only achieved at resonant wavelength.  
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Fig.4-32 (b) shows the percentage errors (defined in equation (4-21)) in the 

reflection coefficients calculated using the modified embedded model for 

different number of terms, N, and compared to the analytical ones. It can be 

seen that when N = 20, the errors in the wavelength range from 450 nm to 650 

nm are less than 3%. Compared to the embedded model proposed in Chapter 3, 

the modified model achieves similar accuracy in the desired wavelength range, 

even using only 20 terms. 

 

 

(a) 

 

(b) 

Fig.4-32 (a) Reflection coefficients of the AR coating with ݊ଵ ൌ ͳǤʹʹ (b) 
percentage errors in the reflection coefficients, calculated using the modified 

model for different number of terms N (N = 5, 10 and 20). 
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Therefore, the number of terms used in the modified model is reduced by 

twenty times over that in the embedded model proposed in Chapter 3, and this 

improves the efficiency of the simulation.  

For comparison purposes, the conventional TLM method is also used to model 

the AR coating. The discretisation errors were firstly investigated, in order to 

choose an appropriate mesh size. Fig.4-33 shows the percentage errors in the 

reflection coefficients of the AR coating at 550 nm calculated using the 

conventional TLM method for different mesh size, ݀ݖ, represented by ݀Ȁ݀ݖ, 

where ݀ is the thickness of the coating, compared to the analytical ones. It can 

be seen that when ݀ݖ ൌ ͲǤʹ ݊݉ (݀ ݖ݀ ൌ ͷ͸͵ǤͷΤ ), the errors in the reflection 

coefficients are around 0.2%. 

 

 

Fig.4-33 Percentage errors in the reflection coefficients of the AR coating with ݊ ൌ ͳǤʹʹ calculated using the conventional TLM method with different mesh 
size, ݀ݖ. 

 

For comparison purposes, the reflection coefficients of the AR coating were 

calculated in the wavelength range from 450 nm to 650 nm using the 

conventional TLM method with the mesh size of 1 nm and 0.2 nm. Fig. 4-34 

shows the percentage errors in the reflection coefficients calculated using the 

conventional TLM method with different discretisations ݀ݖ ൌ ͳ nm and 0.2 

nm. It can be seen that when the mesh size is 1 nm, the errors in the reflection 

coefficients are less than 10% in the wavelength range from 450 nm to 650 nm; 
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when the mesh size is 0.2 nm, the errors are below 4% in the wavelength range 

from 450 nm to 650 nm, comparable with the results from the embedded 

model with a mesh size of 1 nm. 

 

 

Fig. 4-34 The percentage errors in the reflection coefficients calculated using 
the conventional TLM method compared with the analytical ones for two 

different discretisation ݀ݖ ൌ ͳ nm and 0.2 nm. 
 

Table 4-5 shows the comparison in the compuational consumptions for the 

conventional TLM model and the modified embedded model. It can be seen 

that for the conventional TLM method, smaller mesh size is needed to capture 

the details of the AR coating, which leads to bigger memory storage for the 

nodes and a larger number of time steps in the simulation. 

 
Table 4-5 Comparison between the conventional TLM model and the modified 

embedded model for the AR coating with ݊ଵ ൌ ͳǤʹʹ 

Model 
Mesh size 

(nm) 
Number of 

nodes 
Number of 
time steps 

Run time(s) 
* 

Conventional 
TLM 

0.2 1564 ʹǤͷ ൈ ͳͲ଺ 137 

Modified 
Embedded 

model 
1 200 ͷ ൈ ͳͲହ 25 

(* the run time is based on a PC with an Intel Core 2 Duo CPU 3GHz 
processor and 4GB memory) 
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4.4.3. Fibre Bragg Gratings (FBG) 

Fibre Bragg gratings (FBG) have been the subject of intense investigation in 

recent years, driven by applications such as filters, fibre lasers, dispersion 

compensators and wavelength converters [4.17 ~ 4.18]. They operate through 

reflecting light over a narrow frequency range and transmitting at all other 

frequencies [4.19]. 

In this section, the filter property of a linear Bragg grating structure [4.20] is 

tested using the embedded model. The structure shown in Fig.4-35 consists of 

68 alternating layers of refractive indices ݊ଵ ൌ ʹǤͲͷ and ݊ଶ ൌ ͳǤͻͷ . The 

thickness of each layer is chosen to be a quarter wavelength at the Bragg 

(centre) wavelength of ɉ଴ ൌ ͳɊm. Thus the thicknesses of each layer are ݀ଵ ൌఒబସ௡భ ൌ ͳͳʹǤͻͷ nm and ݀ଶ ൌ ఒబସ௡మ ൌ ͳʹͺǤʹͲ nm , respectively. The length of the 

free space region on each side of the grating in the model is chosen to be 1000 

nm and matched boundaries [4.11] were used at both ends to simulate the 

infinite space. 

 

 

Fig.4-35 Fibre Bragg grating structure having 68 alternating layers of 
refractive indices ݊ଵ ൌ ʹǤͲͷ and ݊ଶ ൌ ͳǤͻͷ. The thicknesses at the centre 

wavelength of ͳ Ɋm are: dଵ ൌ ͳͳʹǤͻͷ nm and dଶ ൌ ͳʹͺǤʹͲ nmǤ 
 

To calculate the transmission coefficients of this FBG structure, free space on 

both sides of this structure was discretised using 1D TLM nodes. The FBG 

structure was embedded between two adjacent 1D TLM nodes using the time 

domain embedded multilayer thin film model introduced in Chapter 3.  

The FBG structure has two different dielectric materials. Therefore, their 

capacitance and inductance are expressed as, 
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ͳܮ ൌ ௥ߤ଴ߤ ൌ ͳܥ ,଴ߤ ൌ ௥ߝ଴ߝ ൌ ͶǤʹͲʹͷߝ଴ǡ ܮʹ ൌ ௥ߤ଴ߤ ൌ ʹܥ ,଴ߤ ൌ ௥ߝ଴ߝ ൌ ͵ǤͺͲʹͷߝ଴ǡ 
and their characteristic admittances are given by 

ܻͳ ൌ ඨܥͳܮͳ ൌ ͲǤͲͲͷͶ Sǡ 
ܻʹ ൌ ඨܥͳܮͳ ൌ ͲǤͲͲͷʹ SǤ 

The 68-layer FBG embedded between two adjacent TLM nodes is shown in 

Fig. 4-36.  

 

 

Fig. 4-36 68 layer fibre Bragg grating embedded between two adjacent 1D 
TLM nodes. 

 

Since the FBG structure has 68 layers, there are 68 admittance matrix 

equations with the form given in equation (3-31). Equations like (3-45) can be 

obtained, in which there is a square matrix of the order 69 and 69 unknowns. 

Its solution is obtained by the Gauss-Seidel method described in section 3.3.3. 

The discretisation errors were firstly investigated in order to choose an 

appropriate mesh size. Fig.4-37 shows the percentage errors in the 

transmission coefficients of the FBG structure at 1 ݉ߤ calculated using the 

embedded model for different mesh size, represented by ߣ Τݖ݀ , compared to 

the analytical ones. It can be seen that when the mesh size is 10 nm (ߣ Τݖ݀ ൌͳͲͲ), the errors are around 0.01%. In the following calculation, the mesh size 

was chosen to be 10 nm in order to minimize the discretisation errors in the 

frequency range from 280 THz to 320 THz. 
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Fig.4-37 Percentage errors in the transmission coefficients of the FBG 
structure at 1 ݉ߤ calculated using the embedded model for different mesh size, ݀ݖ. 
 

Fig.4-38 (a) shows the transmission coefficients of the FBG structure with 

different expansion terms N, namely N = 50, 100 and 200, compared to the 

analytical one calculated using a transfer matrix method as described in section 

4.2.2. When N = 200, the numerical results are virtually indistinguishable from 

the analytical ones. The percentage errors (defined in equation (4-21)) in the 

transmission coefficients of the FBG compared with the analytical results are 

shown in Fig.4-38 (b). It can be seen that when N = 200, the errors are below 

0.2% from 280 THz to 320 THz.  
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(a) 

 

(b) 

Fig.4-38 (a) The transmission coefficients of the FBG and (b) the percentage 
errors in transmission coefficients obtained using the embedded model for 

different number of terms N (N = 50, 100 and 200). 
 

For comparison purposes, the FBG structure was also modelled using the 

conventional TLM method with a discretisation ݀ݖ ൌ ͳͲ nm and ݀ݖ ൌ ͳ nm. 

Fig.4-39 shows the percentage errors in the transmission coefficients obtained 

from the conventional TLM method in comparison to the analytical results. It 

can be seen that when the mesh size is 10 nm the errors are below 20%, while 

for a mesh size of 1 nm, the errors are below 0.8%, comparable with the ones 

calculated using the embedded model with a mesh size of 10 nm. 
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Fig.4-39 The percentage errors in transmission coefficients obtained using the 
conventional TLM method for mesh size 1 nm and 10 nm. 

 

Table 4-6 shows the comparison in the computational costs for the 

conventional TLM model and the embedded model for the FBG structure. It 

can be seen that since the mesh size for the embedded model is bigger, a 

smaller number of nodes and time steps are needed, leading to a saving in 

memory storage for the nodes and a saving in the number of time steps. The 

total run time is longer for the embedded model because there are 68 layers of 

films, for each of which at least 200 digital filters are used. The large number 

of digital filters used may also take up large memory storage. 

 

Table 4-6 Comparison between the conventional TLM model and the 
embedded model for the FBG structure 

Model 
Mesh size 

(nm) 
Number of 

nodes 
Number of 
time steps 

Run time 
(s) * 

Conventional 
TLM 

1 14500 ͳ ൈ ͳͲ଺ 180 

Embedded 
model 

10 300 ͳ ൈ ͳͲହ 450 

(* the run time is based on a PC with an Intel Core 2 Duo CPU 3GHz 
processor and 4GB memory) 
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In this example, there is no saving in the run time and total memory storage for 

the embedded model due to the large number of layers, but a relative large 

mesh size is used, resulting in a saving in the number of time steps.  

 

4.5. Conclusions 

In this chapter, the frequency responses of lossy, anisotropic and lossless thin 

films were investigated using the embedded thin film model proposed in 

Chapter 3. A variety of applications was studied, such as CFC panels and a 

titanium panel for EMC, and AR coatings and FBG for photonics. 

For lossy materials, CFC panels and titanium panel were used as examples. 

Both single and multiple layer CFC panels were studied using the embedded 

model. For a single layer CFC panel, the errors in reflection coefficients are 

less than ͲǤͲͲͲ͸Ψ while the errors in transmission coefficients are less than ͲǤͺΨ. For multilayer CFC panel the errors in the reflection coefficients are less 

than ͲǤͲͲͳΨ while the errors in the transmission coefficients are less than 

1.5%. As further applications, the shielding effectiveness of CFC panels was 

also discussed. It was shown that thicker panels with higher conductivity 

provide better shielding effectiveness. For titanium panels, the errors in the 

reflection coefficients are less than ͲǤͲͲͲͲ͵Ψ  while the errors in its 

transmission coefficients are less than ͲǤͶΨ . The high accuracy in the 

reflection coefficients is due to the requirement that the percentage errors in 

the transmission coefficients are less than 2%. 

For lossless materials, antireflection coatings and fibre Bragg gratings were 

taken as examples to test the embedded thin film model. For a single layer AR 

coating in the visible spectrum, the errors in reflection coefficients compared 

with the analytical ones are less than 2% when N = 400. It was shown that the 

embedded thin film model has slow convergence in the case of lossless thin 

films with large electrical length. To alleviate this, the cotangent and cosecant 

expansions used were manipulated so that they converged faster at a desired 

frequency. By doing this, the number of terms needed to approximate the 
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infinite expansions is reduced by 20 times at a given frequency. However, the 

downside of this modified model is that it works well only for single layer 

films. For the fibre Bragg gratings, the transmission coefficients were 

calculated using the embedded model. The errors in FBG transmission 

coefficients are less than 0.2% in the desired wavelength range. 

All examples considered proved the accuracy, stability and convergence of the 

embedded thin film model.  

All models were compared against the conventional TLM method that requires 

discretisation of the panel. The embedded model shows great advantages over 

the conventional TLM method for lossy materials operating at microwave 

frequencies. Since a larger mesh size is used in the embedded model, 

considerable memory storage is saved and the number of time steps is reduced. 

However, in the case of a multi-layer stack with a large number of layers 

working in the optical frequency, the embedded model does not show much 

advantage over the conventional TLM method due to the fact that a large 

number of digital filters is needed. 

The next two chapters will consider the embedded model in the two-

dimensional (2D) TLM method, in which its applications in arbitrary 

excitations and curve structures will be elaborated. 
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5.Embedded Thin Film Model for 

Arbitrary Excitations in the Two-

Dimensional TLM method 

5.1. Overview 

In this chapter, the embedded model developed in Chapter 3 is first applied to 

model the reflection and transmission from a thin film of infinite length at 

oblique incidence, in which the thin film is represented by a one-dimensional 

(1D) model embedded between two-dimensional (2D) TLM nodes. It is then 

extended to model a thin film of finite length subject to arbitrary excitations by 

using the plane wave decomposition theory. Its accuracy and convergence are 

verified using examples of infinitely long CFC panels excited at oblique 

incidence. Finally it is applied to model CFC panels of finite length with a 

point source excitation. 

 

5.2. Analytical Method for Analysing Oblique 

Incidence onto a Thin Film 

At oblique incidence, the reflection and transmission coefficients of the thin 

film can be calculated using the transfer matrix method or the even/odd mode 

method derived in section 4.2. However, the impedances in these methods 

should be replaced by transverse impedances [5.1] in the case of oblique 

incidence. Thus, the concept of transverse impedance at oblique incidence is 

introduced first.  

When a plane wave is incident onto a thin film at an arbitrary angle, the 

discussion can be separated into two cases [5.1]: polarisation with the electric 

field normal to the plane of incidence, referred to as the transverse electric (TE) 

polarisation and polarisation with the electric field in the plane of incidence, 
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referred to as the transverse magnetic (TM) polarisation. Other cases may be 

considered as a superposition of these two.  

Fig. 5-1 depicts a plane wave incident from free space onto a thin film at an 

angle of ߮, and the subsequent reflection and transmission into free space, for 

(a) the TE and (b) the TM polarisations. 

 

 

(a) 

 

(b) 

Fig. 5-1 Oblique incidence onto a thin film for (a) TE-polarised and (b) TM-
polarised waves. 
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As in Fig. 5-1 (a), the existing field components in the TE-polarised wave are ܪ௫ǡ ௫ǡܧ ௭, while the components in the TM-polarised wave areܧ ௬ andܪ  ௭ as in Fig. 5-1 (b). The transverse impedance [5.1] is defined as the ratio ofܪ ௬ andܧ

the electric to magnetic field components in the plane parallel to the boundary. 

For TE-polarised wave, the transverse impedance is calculated as ܧ௭Ȁܪ௬; for 

TM-polarised wave, the transverse impedance is calculated as ܧ௬Ȁܪ௭. 

Considering that ܪ௬ ൌ ௬ܧ for the TE polarisation and ߮ݏ݋ܿܪ ൌ  for the ߮ݏ݋ܿܧ

TM polarisation, the transverse impedances in free space for both polarisations, ்ܼா for TE-polarised wave and ்ܼெ for TM-polarised wave, are given in terms 

of the incident angle as [5.1], 

்ܼா ൌ ܼ଴ܿ߮ݏ݋ǡ ்ܼெ ൌ ܼ଴ܿ߮ݏ݋ǡ (5-1) 

where ܼ଴ is the characteristic impedance of free space and ߮ is the incident 

angle with respect to the x-axis in free space. 

The transverse impedance in a thin film can also be expressed in terms of the 

refraction angle with the same form as equation (5-1). However, if the thin film 

is composed of lossy materials, the wavenumber in the thin film is complex-

valued and so the angle of refraction may also become complex-valued. In 

equation (5-1), the calculation of the transverse impedance needs to deal with 

the cosine of the angle, which is difficult to calculate for a complex-valued 

angle. To avoid the need for such a calculation, it is convenient to express the 

transverse impedance in terms of the wavenumber in the medium as follows 

[5.2]. 

In the case of oblique incidence, the wavenumber in the given medium ݇௜ has 

two components ݇௫௜ and ݇௬௜, whose relations are ݇௫௜ ൌ ݇௜ܿ߮ݏ݋௜ with ܿ߮ݏ݋௜ ൌ݇௫௜Ȁ݇௜ and ݇௬௜ ൌ ݇௜߮݊݅ݏ௜.  
Since ݇௜ ൌ ߱ඥߤ௜ߝ௜ and ܼ௜ ൌ ඥߤ௜Ȁߝ௜, then ݇௜ܼ௜ ൌ ௜ and ݇௜ߤ߱ ܼ௜Τ ൌ  .௜ߝ߱
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Therefore, the transverse impedance for both polarisations may be re-

expressed in terms of the wavenumber in the medium as [5.2]: 

ܼ௜்ா ൌ ܼ௜ܿ߮ݏ݋௜ ൌ ܼ௜ ή ݇௜݇௫௜ ൌ ௜݇௫௜ߤ߱  ǡ 
ܼ௜்ெ ൌ ܼ௜ܿ߮ݏ݋௜ ൌ ܼ௜ ή ݇௫௜݇௜ ൌ ݇௫௜߱ߝ௜ ǡ (5-2) 

where ܼ௜  is the characteristic impedance of the medium and ߮௜  is the 

propagation angle with respect to the x-axis in the medium. 

After introducing the transverse impedance, the reflection and transmission 

coefficients of thin films are calculated using the transfer matrix method as 

follows. 

As discussed in section 4.2, the panel is assumed to consist of M layers. At 

oblique incidence, the characteristic impedance of each layer in equation (4-1) 

is replaced by its transverse impedance given by equation (5-1) or (5-2). The 

reflection coefficients of each interface for both polarisations are, 

௜்ߩ ா ൌ ்ܼா௜ െ ்ܼா௜ିଵ்ܼா௜ ൅ ்ܼா௜ିଵ ǡ   
௜்ߩ ெ ൌ ்ܼெ௜ െ ்ܼெ௜ିଵ்ܼெ௜ ൅ ்ܼெ௜ିଵ ǡ   (5-3) 

where ݅ ൌ ͳǡʹǡ ڮ ǡ ܯ ൅ ͳǤ 
Therefore as in equation (4-6), the reflection coefficients of the thin film are 

given by, 

ܴ௜ ൌ ௜ାܧ௜ିܧ ൌ ௜ߩ ൅ ܴ௜ାଵ݁ିଶ௝௞೔ௗ೔௖௢௦ఝ೔ͳ ൅ ௜ܴ௜ାଵ݁ିଶ௝௞೔ௗ೔௖௢௦ఝ೔ߩ ǡ ݅ ൌ ǡܯ ܯ െ ͳǡ ǥ ǥ ǡͳ 

and initialized by ܴெ ൌ  .ெାଵߩ
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5.3. Embedded Model for Thin Films at 

Arbitrary Excitations 

In this section, the simple two-dimensional (2D) case of an infinitely long thin 

film with a plane wave impinging at oblique incidence is studied. Based on this 

simple case, a more complicated situation of a thin film of finite length subject 

to arbitrary excitations is also studied.  

 

5.3.1. Infinitely Long Thin Film at Oblique Incidence 

Consider a plane wave obliquely incident upon an infinitely long thin film at 

an angle ߮, as shown in Fig. 5-2.  

 

 

Fig. 5-2 A plane wave is incident upon a one-dimensional (1D) thin film 
model, embedded between 2D series nodes in the TLM, at oblique incidence. 

 

In Fig. 5-2, the thin film is considered to be 1D and embedded in a 2D TLM 

mesh. As discussed in the previous section, at oblique incidence, the study of 

the reflection and transmission properties of the thin film is reduced to a 1D 

problem due to the introduction of the transverse impedance. Thus, the thin 

film can be seen as a section of 1D transmission line with the appropriate 

transverse impedance and then embedded between the adjacent 2D TLM nodes.  
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In order to embed the frequency responses of the thin film at oblique incidence 

into the time domain 2D TLM algorithm, the same technique can be used as 

was discussed for the normal incidence case in Chapter 3. Assume the 

infinitely long thin film is placed between the nodes ሺ݊௫ ǡ ݊௬ሻ and ሺ݊௫ ൅ ͳǡ ݊௬ሻ, 

where ݊௫  and ݊௬  are the indices of the TLM node along the x and y axis, 

respectively. For each pair of nodes ሺ݊௫ǡ ݊௬ሻ and ሺ݊௫ ൅ ͳǡ ݊௬ሻ in the modelling 

space, the equation (2-31) for the node ሺ݊௫ǡ ݊௬ሻ and the equation (2-30) for the 

node ሺ݊௫ ൅ ͳǡ ݊௬ሻ  in the connection process are modified because of the 

embedding of the thin film; in Chapter 3, they were replaced by equations (3-9) 

and (3-10) for the normal incidence case. In the case of oblique incidence, the 

impedances in equations (3-9) and (3-10) should be changed to the 

corresponding transverse impedances. The details of the modification are now 

discussed for both TE and TM polarisations. 

As shown in Fig. 5-1 (a), the field components for the TE polarised wave are ܪ௫ǡ  ௭. Therefore, the background material is modelled using the 2Dܧ ௬ andܪ

shunt TLM nodes, as shown in Chapter 2. 

In the case of oblique incidence, ݕଵ and ݕଶ in equations (3-9) and (3-10) are 

corresponding to the characteristic admittances of the 2D shunt nodes on both 

sides of the film, which are given by, 

ଵݕ ൌ ଶݕ ൌ ͳ்ܼ௅ ൌ ͳξʹܼ଴Ǥ (5-4) 

The admittance of the thin film is replaced by its transverse admittance ்ܻ ா for 

the case of oblique incidence, which can be expressed in terms of the 

wavenumber as, 

்ܻ ா ൌ ͳ்ܼா ൌ ݇௫௠߱ߤ௠Ǥ (5-5) 

where ݇௫௠ is the x component of the wavenumber in the thin film, given by ݇௫௠ଶ ൌ ݇௠ଶ െ ݇௬௠ଶ . 

According to the Snell’s law, 
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݇௬௠ ൌ ݇௬௕ ൌ ݇௕߮݊݅ݏǡ (5-6) 

where ݇௕  is the wavenumber in the background material and ݇௬௕  is the y 

component of the ݇௕, and ߮ is the incident angle with respect to the x axis. 

Thus,  ݇௫௠ଶ ൌ ݇௠ଶ െ ݇௬௠ଶ ൌ ݇௠ଶ െ ሺ݇௕߮݊݅ݏሻଶǤ (5-7) 

Therefore, the square of the admittance of the thin film in equations (3-9) and 

(3-10) is written as, 

்ܻ ா்ܻ ா ൌ ݇௫௠ଶ߱ଶߤ௠ଶ ൌ ݇௠ଶ െ ሺ݇௕߮݊݅ݏሻଶ߱ଶߤ௠ଶ Ǥ (5-8) 

Furthermore, the electrical length of the thin film, ்ߠா , is replaced by, 

ா்ߠ ൌ ݇௫௠݀ ൌ ݀ඥ݇௠ଶ െ ሺ݇௕߮݊݅ݏሻଶǤ (5-9) 

Finally, ݆ܻܿߠݐ݋ and ݆ܻܿߠܿݏ in equations (3-9) and (3-10) are expanded for the 

case of oblique incidence as 

்݆ܻ ா்ܿߠݐ݋ா ൌ ்݆ܻ ா ൭ ͳ்ߠா ൅ ா்ߠʹ ෍ ͳ்ߠாଶ െ ݇ଶߨଶேୀஶ
௞ୀଵ ൱ǡ 

்݆ܻ ா்ܿߠܿݏா ൌ ்݆ܻ ா ൭ ͳ்ߠா ൅ ா்ߠʹ ෍ ሺെͳሻ௞்ߠாଶ െ ݇ଶߨଶேୀஶ
௞ୀଵ ൱Ǥ (5-10) 

 

For the TM polarised wave, Fig. 5-1 (b) shows that the field components are ܧ௫ǡ ௬ܧ  and ܪ௭ , so the background material is modelled using the 2D series 

nodes as shown in Chapter 2. 

In order to embed the thin film into 2D TLM nodes for TM-polarised wave at 

oblique incidence, the modification of the equations (3-9) and (3-10) for the 

normal incidence is similar to that just described for the TE polarisation; the 

only difference is that the transverse admittance of the thin film is now 

replaced by, 
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்ܻ ெ ൌ ͳ்ܼெ ൌ ௠݇௫௠ߝ߱ Ǥ (5-11) 

After these modifications, similar procedures to those described for the normal 

incidence case in section 3.2 are followed in order to embed the thin film 

model into the TLM algorithm for the case of oblique incidence. 

 

5.3.2. Thin Film of Finite Length with Arbitrary 

Excitations 

Consider a thin film of finite length in the 2D space. An arbitrary source, for 

example a point source, excites the nodes in the space as shown in Fig. 5-3. 

When the waves hit the thin film, they are incident onto the thin film at many 

different angles. In such a case, the above embedded model for a fixed angle of 

incidence needs extending.  

In this section, an embedded model for a thin film of finite length with 

arbitrary excitations is introduced, based on the plane wave decomposition 

theory [5.3]. 

 

 

Fig. 5-3 The excitation from a point source hits a thin film of finite length. 
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The plane wave decomposition theory is introduced first. 

The plane wave decomposition theory, also known as the angular spectrum 

representation of fields [5.3], says that an arbitrary field can be expanded as a 

series of plane waves and evanescent waves, which are physically solutions of 

Maxwell equations. In the following, the TE polarisation is considered to 

demonstrate the theory. The TM polarisation can be treated in a similar manner. 

Assume that the electric field at x=0 is expressed as ܧ௭ሺͲǡ ሻݕ , which 

propagates towards the +x direction.  

It is well known that a function in the time domain can be decomposed into a 

series of oscillations with different frequencies, different amplitudes and 

different phases using the Fourier transform [5.4]. Based on the same principle, 

the field ܧ௭ሺͲǡ  ሻ can be decomposed into a number of parts using a Fourierݕ

transform. 

The Fourier transform of ܧ௭ሺͲǡ  ,ሻ can be expressed asݕ

௭ሺͲǡܧ ሻݕ ൌ ͳʹߨ න ஶݏሻ݁௝௦௬݀ݏ෨ሺܧ
ିஶ ǡ (5-12) 

where ܧ෨ሺݏሻ is the Fourier transform of ܧ௭ሺͲǡ  ሻ, which is given byݕ

ሻݏ෨ሺܧ ൌ න ௭ሺͲǡܧ ǡஶݕሻ݁ି௝௦௬݀ݕ
ିஶ  (5-13) 

where ݏ is the Fourier transform variable. 

If the field propagates in an infinite homogeneous space, the total field must 

satisfy the wave equation [5.1], 

ቆ ݀ଶ݀ݔଶ ൅ ݀ଶ݀ݕଶ ൅ ݇ଶቇ ǡݔ௭ሺܧ ሻݕ ൌ ͲǤ (5-14) 

Therefore, it can be predicted that 

ǡݔ௭ሺܧ ሻݕ ൌ ͳʹߨ න ஶݏሻ݁௝௦௬݁ି௝ξ௞మି௦మ௫݀ݏ෨ሺܧ
ିஶ ǡ (5-15) 
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since, if x=0, equation (5-15) becomes equation (5-12) and for each value of ݏ, ݁ି௝ξ௞మି௦మ௫ is the only x dependent term. 

In order to gain some understanding, equation (5-15) can be written as 

ǡݔ௭ሺܧ ሻݕ ൌ ͳʹߨ න Ǣݏሻܲሺݏ෨ሺܧ ǡݔ ǡஶݏሻ݀ݕ
ିஶ  (5-16) 

where ܲሺݏǢ ǡݔ ሻݕ ൌ ݁௝௦௬݁ି௝ξ௞మି௦మ௫. 

If ܲሺݏǢ ǡݔ  ,ሻ is the field of a plane wave propagating at an arbitrary directionݕ

equation (5-15) expresses a general arbitrary field ܧ௭ሺݔǡ  ሻ as a superpositionݕ

of the simpler fields ܲሺݏǢ ǡݔ  ሻݏ෨ሺܧ ሻ, each of which has a weighting amplitudeݕ

and can propagate independently as each ܲሺݏǢ ǡݔ  ሻ satisfies the wave equationݕ

on its own. 

In the following, it will be shown that ܲሺݏǢ ǡݔ  ሻ can represent a plane waveݕ

propagating in an arbitrary direction. 

The definition of a plane wave heading along the ݔ axis (Fig.5-4 (a)) is  

ሻ݁ݒܽݓ ݈݁݊ܽ݌௭ሺܧ ൌ ܲሺݏ ൌ ͲǢ ǡݔ ሻݕ ൌ ݁ି௝௞௫ Ǥ (5-17) 

If a plane wave propagates at an angle ߮ to the x axis as shown in Fig.5-4 (b), 

the coordinate rotation principle is applied 

൬ݔᇱݕᇱ൰ ൌ ൬ܿ߮ݏ݋ െ߮݊݅ݏ߮݊݅ݏ ߮ݏ݋ܿ ൰ ቀݕݔቁǡ (5-18) 

so that 

ܲሺݏ ൌ ͲǢ ᇱǡݔ ᇱሻݕ ൌ ݁ି௝௞ሺ௫௖௢௦ఝି௬௦௜௡ఝሻ ൌ ݁ି௝௞௫௖௢௦ఝ݁௝௞௬௦௜௡ఝǤ (5-19) 

In equation (5-17), if ݏ ൌ ߮݊݅ݏ݇  is chosen, then ܲሺݏ ൌ Ǣ߮݊݅ݏ݇ ǡݔ ሻݕ ൌ݁௝௦௬݁ି௝ξ௞మି௦మ௫, which is the same as equation (5-19). 

In other words, a plane wave propagating at an angle ߮ to the x axis has a field ܲሺݏ ൌ Ǣ߮݊݅ݏ݇ ǡݔ ሻݕ . Reversing the logic, a field ܲሺݏ ൌ Ǣ߮݊݅ݏ݇ ǡݔ ሻݕ  can be 
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interpreted as that of a plane wave heading at an angle ߮ ൌ sinିଵሺݏȀ݇ሻ to the x 

axis. 

 

  

(a) (b) 

Fig.5-4 (a) A plane wave propagates in the x direction (b) a plane wave 
propagates at an angle ߮ to the x axis. 

 

However, it should be noted that if ݇ଶ ൏ ଶݏ , ܲሺݏ ൌ Ǣ߮݊݅ݏ݇ ǡݔ ሻݕ ൌ݁௝௦௬݁ξ௦మି௞మ௫ , which is an exponentially decaying function representing 

evanescent waves, where the angle ߮ is a complex number. 

Therefore, equation (5-15) shows that a general field ܧ௭ሺݔǡ  ሻ can be expressedݕ

as a superposition of plane waves, each of which has a different angle of 

propagation ߮  and a different amplitude ܧ෨ሺݏሻ , and evanescent waves with 

decaying factors. 

Based on the idea of the plane wave decomposition theory, an embedded 

model for a thin film of finite length with arbitrary excitations is developed. 

According to the plane wave decomposition theory, the field incident from 

TLM nodes onto the film can be decomposed into a series of plane waves with 

different incident angles and evanescent waves with decaying factors. Each 

wave in the decomposition is independently incident upon the film at its own 

angle or decaying factor. At the excitation of each wave, the previous 

embedded model for the fixed incident angle can be applied to solve the 

reflection and transmission of the film. In the end, these fields are combined 

together and reflect back to the TLM nodes.  
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This is the first time that the plane wave decomposition theory is adopted for 

use in the TLM algorithm. Its implementation is given below for further 

clarification. 

Assume the thin film, with length ݈, is placed between the nodes ሺ݊௫ǡ ݊௬ሻ and ሺ݊௫ ൅ ͳǡ ݊௬ሻ. 

In the model, the voltages incident onto the thin film from both sides, 

௅ܸ௜ሺ݊௫ǡ ݊௬ሻ and ோܸ௜ሺ݊௫ ൅ ͳǡ ݊௬ሻ, can be obtained through the TLM algorithm. 

According to the plane wave decomposition theory, the incident voltages can 

be decomposed by using a Fourier transform into a superposition of waves, 

௅ܸ௜ሺ߮ሻ and ோܸ௜ሺ߮ሻ as shown in Fig. 5-5, each of which is incident onto the thin 

film at a fixed angle ߮௜  (complex values represent evanescent waves). The 

response of the thin film to each of the waves can be obtained using the 

embedded model for the fixed angle of incidence. Thus the reflected voltages 

from the thin film, ௅ܸ௥ሺ߮ሻ and ோܸ௥ሺ߮ሻ, are obtained for each incidence angle. In 

the end, an inverse Fourier transform is used to transform the reflected voltages 

from the angle domain, ௅ܸ௥ሺ߮ሻ and ோܸ௥ሺ߮ሻ, to the space domain, ௅ܸ௥ሺ݊௫ǡ ݊௬ሻ 

and ோܸ௥ሺ݊௫ ൅ ͳǡ ݊௬ሻ. 

 

Fig. 5-5 The flow chart of the embedded thin film model for arbitrary 
excitations. 

 

5.4. Plane Wave Excitations 

At normal incidence, as discussed in Chapter 3, the periodic and matched 

boundary conditions were used to yield suitable problem boundary conditions 
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at the edge of the computational window in order to simulate a plane wave 

propagating in infinite space using the TLM method. However, those boundary 

conditions are not applicable for oblique incidence. In this section, the plane 

wave excitations are introduced within the TLM method to model a plane 

wave propagating in the infinite space at an arbitrary incident angle, ߮ . 

Furthermore, excitations for an infinitely long thin film are also described. 

 

5.4.1. Excitations for Infinite Free Space 

Consider a finite 2D TLM space in the x-y plane, Ͳ ൑ ݔ ൑ ܽ and Ͳ ൑ ݕ ൑ ܾ 

where ܽ and ܾ are dimensions in metres. In order to simulate a plane wave 

propagating in the infinite space, the excitations and boundaries should be 

properly set.  

When a plane wave propagates in infinite free space, the electric and magnetic 

fields at each point can be evaluated using the plane wave propagation theory 

[5.1]. Thus, the fields at the boundaries of the finite region can be obtained and 

then converted to the voltages and currents in the TLM nodes, acting as 

excitations of the finite region. 

In the following sub-sections, the plane wave excitations with TE polarisation 

and TM polarisation are elaborated separately. 

 

5.4.1.1. TE-Polarised Wave Excitations 

Consider a TE-polarised plane wave propagating in free space at an angle ߮ to 

the x axis, as shown in Fig. 5-6. The four nodes in Fig. 5-6 represent arbitrary 

shunt nodes on each of the four boundaries.  

In Fig. 5-6, ܫ௫ǡ ǡݔ௬ and ௭ܸ are the currents and voltage at the given boundaries ሺܫ Ͳሻǡ ሺݔǡ ܾሻǡ ሺͲǡ ሻ and ሺܽǡݕ  .ሻ, respectively. They can be calculated as followsݕ

Based on the plane wave propagation theory, it is assumed that  
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௭ܧ ൌ െ݊݅ݏ ሺ߱଴ݐ െ ሺ݇ܿ߮ݏ݋ ή ݔ ൅ ߮݊݅ݏ݇ ή ௫ܪ ሻሻǡݕ ൌ ߮݊݅ݏܪ ൌ െݕ଴߮݊݅ݏ ή ݐሺ߱଴ ݊݅ݏ െ ሺ݇ܿ߮ݏ݋ ή ݔ ൅ ߮݊݅ݏ݇ ή ௬ܪ ሻሻǡݕ ൌ ߮ݏ݋ܿܪ ൌ ߮ݏ݋଴ܿݕ ή ݐሺ߱଴ ݊݅ݏ െ ሺ݇ܿ߮ݏ݋ ή ݔ ൅ ߮݊݅ݏ݇ ή  ሻሻǡ (5-20)ݕ

where ߱଴ is the angular frequency of the plane wave, ݕ଴ is the admittance of 

free space and ݇ is the wavenumber. 

 

 

Fig. 5-6 A TE polarised plane wave propagates in the x-y plane at an angle ߮ 
to the x axis. 

 

The corresponding voltage and currents at the boundaries of the 2D TLM 

space are given by [5.5] 

௭ܸ ൌ െܧ௭ ή ݈݀ ǡ ܫ௫ ൌ ௬ܪ ή ݈݀ ǡ ௬ܫ ൌ െܪ௫ ή ݈݀ ǡ (5-21) 

where ݈݀ is the mesh size.  

According to network theory [5.6], the incident and reflected voltages of the 

nodes at the boundaries can be calculated from the known currents and 

voltages, i.e. ܫ௫ǡ  .௬ and ௭ܸܫ

For the boundary ݕ ൌ Ͳ, the following relations exist, 
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ቊ ଵܸ௜ ൅ ଵܸ௥ ൌ ௭்ܸݕ௅൫ ଵܸ௜ െ ଵܸ௥൯ ൌ  ௬Ǥ (5-22)ܫ

Substituting equation (5-21) into equation (5-22), the incident and reflected 

voltages at the boundary ݕ ൌ Ͳ are calculated as, 

۔ە
ۓ ଵܸ௜ ൌ ͳʹ்ݕ௅ ሺ்ݕ௅ ൅ ሻ߮݊݅ݏ଴ݕ ௭ܸ

ଵܸ௥ ൌ ͳʹ்ݕ௅ ሺ்ݕ௅ െ ሻ߮݊݅ݏ଴ݕ ௭ܸǤ (5-23) 

Similarly, for the boundary ݔ ൌ Ͳ, 

۔ە
ۓ ଶܸ௜ ൌ ͳʹ்ݕ௅ ሺ்ݕ௅ ൅ ሻ߮ݏ݋଴ܿݕ ௭ܸ

ଶܸ௥ ൌ ͳʹ்ݕ௅ ሺ்ݕ௅ െ ሻ߮ݏ݋଴ܿݕ ௭ܸǤ (5-24) 

For the boundary ݕ ൌ ܾ, 

۔ە
ۓ ଷܸ௜ ൌ ͳʹ்ݕ௅ ሺ்ݕ௅ െ ሻ߮݊݅ݏ଴ݕ ௭ܸ

ଷܸ௥ ൌ ͳʹ்ݕ௅ ሺ்ݕ௅ ൅ ሻ߮݊݅ݏ଴ݕ ௭ܸǤ (5-25) 

For the boundary ݔ ൌ ܽ, 

۔ە
ۓ ସܸ௜ ൌ ͳʹ்ݕ௅ ሺ்ݕ௅ െ ሻ߮ݏ݋଴ܿݕ ௭ܸ

ସܸ௥ ൌ ͳʹ்ݕ௅ ሺ்ݕ௅ ൅ ሻ߮ݏ݋଴ܿݕ ௭ܸǤ (5-26) 

Therefore, the incident and reflected voltages at the four boundaries of the 2D 

TLM region are calculated, which are the excitations of the whole region.  

 

After the derivation of the excitations of the finite region, the boundary 

conditions are discussed as follows. 

The voltages in a shunt node at the boundary may be expressed as in Fig. 5-7, 

where ்ܸ௅ெ௜  and ்ܸ ௅ெ௥  are the incident and reflected voltages from TLM nodes, 
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respectively, and ܸ௜ and ܸ௥ are the plane wave excitations obtained from the 

above derivations. 

From Fig. 5-7, it can be seen that, except for the excitation, matched 

boundaries [5.5] should also be set at the four boundaries in order to simulate 

the infinite space. 

 

 

Fig. 5-7 The excitations in a node at the boundary. 
 

From equation (5-1), the load impedance ܼ௅ ൌ ܼ଴Ȁܿ߮ݏ݋ , so the reflection 

coefficient from the boundary is expressed as, 

ܴ ൌ ܼ௅ െ ்ܼ௅ܼ௅ ൅ ்ܼ௅ Ǥ (5-27) 

Therefore, the incident voltage for the TLM nodes can be obtained as 

்ܸ ௅ெ௜ ൌ ܸ௜ ൅ ܴ ή ሺ்ܸ ௅ெ௥ െ ܸ௥ሻǤ (5-28) 

 

5.4.1.2. TM-Polarised Wave Excitations 

Consider a TM-polarised plane wave propagating in the x-y plane at an angle ߮ 

to the x axis as shown in Fig. 5-8. 

As shown in Fig. 5-8, the voltages, ௫ܸ  and ௬ܸ , and the current ܫ௭  on the 

boundaries are the excitations of the region. They are calculated as follows. 

According to the plane wave propagation theory, it is assumed that 
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ܧ ൌ ݐሺ߱݊݅ݏ െ ߮ݏ݋ܿݔ݇ െ  ሻǡ (5-29)߮݊݅ݏݕ݇

then ܧ௫ ൌ െ߮݊݅ݏܧǡ ௬ܧ ൌ ǡ߮ݏ݋ܿܧ ௭ܪ ൌ  Ǥ (5-30)ܧ଴ݕ

 

 

Fig. 5-8 A plane wave with TM polarisation propagates in the x-y plane at an 
angle ߮ to the x axis. 

 

According to these fields, the voltages and currents at the boundaries are given 

as follows [5.5], 

௫ܸ ൌ െܧ௫ ή ݈݀ǡ ௬ܸ ൌ െܧ௬ ή ݈݀ǡ ௭ܫ ൌ ௭ܪ ή ݈݀Ǥ (5-31) 

Therefore, the incident and reflected voltages at the boundaries can be 

calculated based on the network theory as in the TE polarisation case. 

For the boundary ݕ ൌ Ͳ,  

ቊ ଵܸ௜ ൅ ଵܸ௥ ൌ ௫்ܸݕ௅൫ ଵܸ௜ െ ଵܸ௥൯ ൌ  ௭   ǡ (5-32)ܫ

then 
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۔ە
ۓ ଵܸ௜ ൌ ௅்ݕʹ݈݀ ሺ்ݕ௅߮݊݅ݏ ൅ ܧ଴ሻݕ

ଵܸ௥ ൌ ௅்ݕʹ݈݀ ሺ்ݕ௅߮݊݅ݏ െ  Ǥ (5-33)    ܧ଴ሻݕ

For the boundary ݔ ൌ Ͳ, 

۔ە
ۓ ଶܸ௜ ൌ ௅்ݕʹ݈݀ ሺെ்ݕ௅ܿ߮ݏ݋ െ ܧ଴ሻݕ

ଶܸ௥ ൌ ௅்ݕʹ݈݀ ሺെ்ݕ௅ܿ߮ݏ݋ ൅  Ǥ (5-34)  ܧ଴ሻݕ

For the boundary ݕ ൌ ܾ, 

۔ە
ۓ ଷܸ௜ ൌ ௅்ݕʹ݈݀ ሺ்ݕ௅߮݊݅ݏ െ ܧ଴ሻݕ

ଷܸ௥ ൌ ௅்ݕʹ݈݀ ሺ்ݕ௅߮݊݅ݏ ൅  Ǥ (5-35)   ܧ଴ሻݕ

For the boundary ݔ ൌ ܽ, 

۔ە
ۓ ସܸ௜ ൌ ௅்ݕʹ݈݀ ሺെ்ݕ௅ܿ߮ݏ݋ ൅ ܧ଴ሻݕ

ସܸ௥ ൌ ௅்ݕʹ݈݀ ሺെ்ݕ௅ܿ߮ݏ݋ െ  Ǥ (5-36)  ܧ଴ሻݕ

Finally, the incident and reflected voltages at the boundary nodes are obtained, 

which are the excitations of the region. 

The matched boundary conditions should also be used to simulate the infinite 

space, which can be expressed as equation (5-28). The difference from the TE 

case is that the load impedance ܼ௅ ൌ ܼ଴ ή  .߮ݏ݋ܿ

 

5.4.2.  Excitations for Infinitely Long Thin Film 

When an infinitely long thin film is placed in free space, the distribution of the 

electromagnetic fields in the space is changed. In this section, the field 

distribution in the space is shown for TE- and TM- polarised wave excitations. 
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The same procedure as that introduced in section 5.4.1 for the infinite free 

space can be used to set the excitations of the TLM space. 

As shown in Fig.5-9 for the case of the TE polarised wave, a thin film is 

positioned at ݔ ൌ ܽȀʹ , which separates the space into the left and right parts. 

The plane wave is incident onto the film from the left at an angle ߮ to the x 

axis. 

 

 

Fig.5-9 A plane wave with TE polarisation is obliquely incident onto a thin 
film at an angle ߮ in a 2D TLM space. 

 

For the left part, the fields are composed of the incident wave and the reflected 

wave; for the right part, the fields are composed of the transmitted wave only. 

According to plane wave propagation theory, it is assumed that ܧ௜ ൌ െ ݐሺ߱଴݊݅ݏ െ ݇ ή ߮ݏ݋ܿݔ െ ݇ ή ௜ܪ ሻǡ߮݊݅ݏݕ ൌ ଴ݕ ή ௜ܧ Ǥ (5-37) 

The reflected fields and the transmitted fields are then expressed as ܧ௥ ൌ ܴ ή ௜ܧ ǡ         ܪ௥ ൌ ଴ݕ ή ௥ܧ ǡ ܧ௧ ൌ ܶ ή ௜ܧ ǡ ௧ܪ ൌ ଴ݕ ή  ௧ǡ (5-38)ܧ
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where R and T are the reflection and transmission coefficients of the thin film 

at the angular frequency ߱଴, respectively. 

Therefore, the fields in the left part are expressed as ܧ௭௅ ൌ ௜ܧ ൅ ௥ܧ ǡ ܪ௫௅ ൌ ߮݊݅ݏ௜ܪ ൅ ǡ߮݊݅ݏ௥ܪ ௬௅ܪ ൌ െܪ௜ܿ߮ݏ݋ ൅  Ǥ (5-39)߮ݏ݋௥ܿܪ

The fields in the right part are expressed as ܧ௭ோ ൌ ௧ܧ ǡ ௫ோܪ ൌ ௧ܪ ݊݅ݏ ߮ ǡ ௬ோܪ ൌ െܪ௧ܿ߮ݏ݋Ǥ (5-40) 

 

For the TM-polarised wave, the field distribution can be calculated similarly. 

Fig.5-10 shows a thin film positioned at ݔ ൌ ܽȀʹ. The TM polarised wave is 

obliquely incident onto the thin film from the left at an angle ߮. 

 

 

Fig.5-10 A TM polarised plane wave is obliquely incident to a thin film at an 
angle ߮ in a 2D TLM space. 

 

According to the plane wave propagation theory, it is assumed that 
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௜ܧ ൌ ݐሺ߱଴݊݅ݏ െ ߮ݏ݋ܿݔ݇ െ ௜ܪ ሻǡ߮݊݅ݏݕ݇ ൌ ଴ݕ ή ௜ܧ Ǥ (5-41) 

The reflected and transmitted fields are expressed as in equation (5-38). 

Therefore, the fields in the left part are obtained as ܧ௫௅ ൌ െܧ௜ ή ߮݊݅ݏ െ ௥ܧ ή ǡ߮݊݅ݏ ௬௅ܧ ൌ ௜ܧ ή ߮ݏ݋ܿ െ ௥ܧ ή ௭௅ܪ ǡ߮ݏ݋ܿ ൌ ௜ܪ ൅ ௥ܪ Ǥ (5-42) 

The fields in the right part are obtained as 

௫ோܧ ൌ െܧ௧ ή ǡ߮݊݅ݏ ௬ோܧ ൌ ௧ܧ ή ǡ߮ݏ݋ܿ ௭ோܪ ൌ  ௧Ǥ (5-43)ܪ

 

According to the calculated distribution of the fields in the space, the 

excitations of the TLM space can be evaluated using the procedure described 

in section 5.4.1 for the infinite free space.  

 

5.5. Validations 

In this section, the embedded model for arbitrary excitations is validated using 

infinitely long CFC panels. A TE- or TM- polarised plane wave is obliquely 

incident onto the panel and its reflection and transmission coefficients are 

calculated using the embedded model and compared to the analytical results. 

In order to examine its convergence and accuracy over a wide frequency range 

and for various incident angles, the reflection and transmission coefficients of 

the infinitely long CFC at ͵Ͳι incidence are first calculated over the frequency 

range from 0 to 1 GHz. Reflection and transmission coefficients are then 

calculated at 1 GHz for several angles of incidence. 

The parameters of the CFC panel were chosen as in section 4.3.1: effective 

permittivity ɂ୰ ൌ ʹ, conductivity ɐୣ ൌ ͳͲସ SȀm and thickness ݀ ൌ ͳ mm. 
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Plane wave excitations and matched boundaries were used to represent the 

infinite space.  

Percentage errors are used in this section for comparison purposes, which are 

defined using equation (4-21). The size of the whole 2D problem space was 

assumed to be ͲǤ͵ m ൈ ͲǤ͵ͻͶ m. 

 

5.5.1. TE-Polarised Wave 

The embedded model for an arbitrary excitation is firstly used to model the 

TE-polarised plane wave obliquely incident onto an infinitely long CFC panel 

at an angle of ͵Ͳι.  

In this example, 2D shunt nodes were used to model free space. The CFC 

panel was placed in the middle of the computational space, at ݔ ൌ ͲǤͳͷ m.  

In order to calculate the reflection and transmission coefficients of the CFC 

panel, two models were built. First, the plane wave propagating into free space 

at ͵Ͳι to the x-axis was modelled in the 2D TLM space. The voltages at the 

nodal line ݊௫ ൌ ͲǤͳͷȀ݈݀ , where ݈݀  is the mesh size, were calculated as 

incident voltages ௜ܸ௡. The infinite CFC panel in free space was then modelled 

using the TE-polarised wave excitation, as described in section 5.4.2. The 

voltages at the nodal lines ݊௫ ൌ ͲǤͳͷȀ݈݀ and ݊௫ ൌ ଴Ǥଵହௗ௟ ൅ ͳ were calculated as 

ோܸ  and ்ܸ , respectively. Finally, the reflection and transmission coefficients 

were obtained as ܴ ൌ ሺ ோܸ െ ௜ܸ௡ሻȀ ௜ܸ௡ and ܶ ൌ ்ܸ Ȁ ௜ܸ௡, respectively. 

In order to evaluate the appropriate mesh size ݈݀ , the reflection and 

transmission coefficients of the CFC panel were calculated using different 

mesh sizes and compared to the analytical results. The TE-polarised wave has 

an assumed frequency of 1 GHz and is obliquely incident upon the panel at ͵Ͳ° to the x axis. Fig. 5-11 shows the percentage errors in the reflection and 

transmission coefficients of the CFC panel, calculated using the embedded 

model, against the mesh size, represented by ߣȀ݈݀ . The comparisons were 

made against results from the analytical method. It can be seen that as the mesh 
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size decreases, the percentage errors for both reflection and transmission 

coefficients become very small for sufficiently small ݈݀, i.e. large ߣȀ݈݀. It is 

noticed that when the mesh size ݈݀ ൌ ͸ mm  (
ఒௗ௟ ൌ ͷͲ ), the errors in the 

reflection and transmission coefficients are below 1%.  

 

 

Fig. 5-11 Percentage errors in the reflection coefficients and transmission 
coefficients of the CFC panels calculated using the embedded model and the 

analytical method against ߣȀ݈݀ when the TE-polarised wave at 1 GHz is 
obliquely incident onto the panel at ͵Ͳι. 

 

In order to get good accuracy, the embedded model with a mesh size of 6 mm 

was used to calculate the reflection and transmission coefficients of the CFC 

panel in the frequency range from 0 to 1 GHz. Fig. 5-12 (a) shows the 

reflection coefficients of the CFC panel calculated using the embedded model 

for N = 10, 20 and 100 and the analytical method, when the TE-polarised wave 

is obliquely incident onto the panel at ͵Ͳι. It can be seen that the reflection 

coefficients calculated using the embedded model have a small difference 

(around 0.02 dB) with those calculated using the analytical method in the 

frequency range from 0 to 1 GHz, although a gap between the numerical 

results and analytical results is observed in the figure. To clarify this, Fig. 5-12 

(b) shows the percentage errors in the reflection coefficients calculated using 

the embedded model and the analytical method. Fig. 5-12 (b) indicates that the 

errors are very small and within 0.258% in the frequency range from 0 to 1 

GHz. 
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(a) 

 

(b) 

Fig. 5-12 (a) The reflection coefficients of the CFC panel when the TE- 
polarised plane wave is obliquely incident onto the panel at ͵Ͳι and (b) the 

percentage errors in the reflection coefficients calculated using the embedded 
model with different N (N = 10, 20 and 100) compared to the analytical results. 

The TLM mesh size ݈݀ ൌ ͸ mm. 
 

Fig. 5-13 (a) shows the transmission coefficients of the CFC panel calculated 

using the embedded model for N = 10, 20 and 100 and the analytical method, 

when the TE polarised wave is obliquely incident onto the panel at ͵Ͳι. When 

N = 100, the numerical results are very close to the analytical ones in the 

frequency range from 0 to 1 GHz. The percentage errors in the transmission 
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coefficients are shown in Fig. 5-13(b), from which it can be seen that when N 

= 100 the errors are within 1% in the frequency range from 0 to 1 GHz.  

 

 

(a) 

 

(b) 

Fig. 5-13 (a) The transmission coefficients of the CFC panel when the TE-
polarised plane wave is obliquely incident onto the panel at ͵Ͳι(b) the 
percentage errors in the transmission coefficients calculated using the 

embedded model with different N (N = 10, 20 and 100) compared to the 
analytical results. The TLM mesh size ݈݀ ൌ ͸ mm. 

 

From these results, it can be concluded that very good agreement between the 

results from the embedded model and the analytical method is achieved over a 

wide frequency range at one fixed angle of incidence. 
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If a conventional TLM method is used to simulate the CFC panel at oblique 

incidence, a much smaller mesh size should be used. According to the results 

from Chapter 4, the mesh size should be chosen as 0.025 mm to account for 

the existence of the 1 mm CFC panel. In such case, the number of nodes used 

in the simulation would be ͳʹͲͲͲ ൈ ͳͷ͵͸Ͳ to model the space with the size 

of ͲǤ͵ m ൈ ͲǤ͵ͺͶ m, i.e. 120 times higher in each direction than used in the 

embedded model (ͳͲͲ ൈ ͳʹͺ). To store these nodes, the memory required 

would be very large. At the same time, the run time needed for the 

conventional TLM method would be much longer. From this point of view, the 

use of the proposed embedded model in the 2D TLM method reduces the 

usage of memory and run time significantly. 

To further validate the accuracy of the embedded model, the reflection and 

transmission coefficients of the CFC panel at different angles of incidence are 

calculated at 1 GHz. Several angles of incident were selected from Ͳι (normal 

incidence) to approaching ͻͲι (grazing incidence) as examples. The mesh size 

here was chosen to be 3 mm in order to get good accuracy for all the angles. 

Fig. 5-14 (a) shows the reflection coefficients of the CFC panel at 1 GHz 

calculated using the embedded model for N = 10, 20 and 100 and the analytical 

method against the incident angle. It is seen that the numerical results have 

small differences with the analytical ones and they oscillate on both sides of 

the analytical results for different angles. In order to observe the differences, 

Fig. 5-14 (b) shows the percentage errors in the reflection coefficients 

calculated using the embedded model when compared to those from the 

analytical method. The errors are within 0.22% for the incident angles from Ͳι 

to ͺͷι. 

It is noticed that at ͺͶι of incidence, the reflection coefficient is larger than 1. 

Although the error is small (around 0.2%), it is not practical. This can be 

improved by using a smaller mesh size. Fig.5-15 shows the reflection 

coefficients of the CFC panel against the incident angle calculated using the 

embedded model for different discretisations. It can be seen that as the mesh 

size decreases, the errors in the reflection coefficients for different angles of 
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incidence become smaller. For the large angle of incidence and for fine 

discretisation the reflection coefficient is less than 1. 

 

 

 

(a) 

 

(b) 

Fig. 5-14 (a) The reflection coefficients of the thin CFC panel against the 
incident angle ߮ at the frequency ଴݂ ൌ ͳ GHz for TE polarisation (b) the 

percentage errors in the reflection coefficients calculated using the embedded 
model for N = 10, 20 and 100 compared to the analytical results against the 

angle of  incident. The TLM mesh size ݈݀ ൌ ͵ mm. 
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Fig.5-15 The reflection coefficients of the CFC panel against the angle of 
incidence at the frequency ଴݂ ൌ ͳ GHz for TE polarisation obtained using the 

embedded model and different discretisation dl. 
 

Fig. 5-16 (a) shows the transmission coefficients of the CFC panel at 1GHz 

using the embedded model for N = 10, 20 and 100 and the analytical method 

against the incident angle. When N = 100, the numerical results converge to 

the analytical results. Fig. 5-16 (b) shows the percentage errors in the 

transmission coefficients calculating using the embedded model as a function 

of the incident angle. When N = 100 the errors are within 2% for the incident 

angles less than 40ι and within 10% from ͶͲι to ͺͷι. Considering that the 

transmission coefficients at larger angles are very small, i.e. less than -95 dB, 

10% error is deemed an acceptable error. 

Fig. 5-14 (a) and Fig. 5-16 (a) show that, for the TE-polarised wave, as the 

angle of incident increases the reflection coefficients of the panel become 

bigger, while its transmission coefficients become smaller. 

In summary, the results calculated using the embedded model show very good 

agreement with the analytical results. Thus the convergence and accuracy of 

the embedded model for the TE-polarised wave with arbitrary excitations is 

verified over a wide frequency range and for various angles of incidence.  
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(a) 

 

(b) 
Fig. 5-16 (a) The transmission coefficients of the thin CFC panel against the 

incident angle ߮ at the frequency ଴݂ ൌ ͳ GHz for TE polarisation (b) the 
percentage errors in the transmission coefficients calculated using the 

embedded model for N = 10, 20 and 100 compared to the analytical results 
against the incident angle. The TLM mesh size ݈݀ ൌ ͵ mm. 
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5.5.2. TM-Polarised Wave 

As in the case of the TE-polarised wave, the embedded model for arbitrary 

excitations is firstly used to model the reflection and transmission of TM-

polarised waves obliquely incident upon an infinitely long CFC panel at an 

angle of ͵Ͳι. 

In this example, 2D series nodes were used to model free space. The CFC 

panel was placed in the middle of the computational space, at ݔ ൌ ͲǤͳͷ m. The 

reflection and transmission coefficients of the CFC panel were calculated using 

the same method as that for the TE polarised wave case. The mesh size was 

chosen to be 6 mm as in the TE-polarised case. 

Fig. 5-17 (a) shows the reflection coefficients of the CFC panel calculated 

using the embedded model for N = 10, 20 and 100 and the analytical method, 

when the TM polarised wave is obliquely incident onto the panel at ͵Ͳι. It can 

be seen that the numerical results converge to the analytical ones in the 

frequency range from 0 to 1 GHz. Fig. 5-17 (b) shows the percentage errors in 

the reflection coefficients calculated using the embedded model when 

compared to those from the analytical method. The errors are within 0.002%, 

indicating the accuracy of the model. 

Fig. 5-18(a) shows the transmission coefficients of the CFC panel calculated 

using the embedded model for N = 10, 20 and 100 and the analytical method, 

when the TM polarised wave is obliquely incident upon the panel at ͵Ͳι. It can 

be seen that the numerical results become closer and closer to the analytical 

ones as the number of terms N increases. The percentage errors in the 

transmission coefficients of the CFC panel are shown in Fig. 5-18 (b), from 

which it can be seen that the errors are within 3% in the frequency range from 

0 to 1 GHz. 
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(a) 

 

(b) 
Fig. 5-17 (a) The reflection coefficients of the CFC panel when the TM-
polarised plane wave is obliquely incident onto the panel at ͵Ͳι (b) the 

percentage errors in the reflection coefficients calculated using the embedded 
model with different N (N = 10, 20 and 100) compared to the analytical results. 

The TLM mesh size ݈݀ ൌ ͸ mm. 
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(a) 

 

(b) 
Fig. 5-18 (a) The transmission coefficients of the CFC panel when the TM-

polarised plane wave is obliquely incident onto the panel at ͵Ͳι (b) the 
percentage errors in the transmission coefficients calculated using the 

embedded model with different N (N = 10, 20 and 100) compared to the 
analytical results. The TLM mesh size ݈݀ ൌ ͸ mm 

 

  



5 Embedded Thin Film Model for Arbitrary Excitations in the 2D TLM Method 

149 
 

In summary, the accuracy and convergence of the embedded model for 

arbitrary excitations is verified over a wide frequency range by calculating the 

reflection and transmission coefficients of the CFC panel when the TM-

polarised wave is obliquely incident onto the panel at ͵Ͳι. 

As was done for the TE case in section 5.4.1, to further validate the accuracy 

of the embedded model for arbitrary excitations, the reflection and 

transmission coefficients of the CFC panel at different angles of incidence 

were calculated at 1 GHz. Several angles of incidence were selected from Ͳι to 

approaching ͻͲι as examples. The mesh size here was chosen to be 3 mm in 

order to get good accuracy for all the angles. 

Fig. 5-19 (a) shows the reflection coefficients of the CFC panel at 1 GHz 

calculated using the embedded model for N = 10, 20 and 100 and the analytical 

method when the incident angles vary for the TM polarisation. Fig. 5-19(b) 

shows the percentage errors in the reflection coefficients calculated using the 

embedded model in comparison to those from the analytical method. It is seen 

that the numerical results converge as the number of terms, N, increases. The 

numerical results have excellent agreement with the analytical ones when the 

angle is less than ͸Ͳι. The errors are within 0.3% for the incident angles from Ͳι to ͸Ͳι. When the angle is larger than ͸Ͳι, the error becomes big, i.e. the 

error is around 10% at ͺͶι of incidence.  

The accuracy for the large incident angle can be improved by using a smaller 

mesh size. Fig. 5-20 shows the reflection coefficients of the CFC panel against 

the angle of incidence calculated using the embedded model for different mesh 

size, dl. It is shown that as the mesh size decreases, the numerical results 

become closer to the analytical ones. Especially at large angle of incidence, the 

differences between the numerical results and the analytical ones are very 

small for a fine mesh size. 
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(a) 

 

(b) 
Fig. 5-19 (a) The reflection coefficients of the thin CFC panel against the 
incident angle ߮ at the frequency ଴݂ ൌ ͳ GHz for TM polarisation; (b) the 

percentage errors in the reflection coefficients calculated using the embedded 
model for N = 10, 20 and 100 compared to the analytical results against the 

incident angle. The TLM mesh size ݈݀ ൌ ͵ mm. 
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Fig.5-20 The reflection coefficients of the CFC panel against the incident angle 
at 1 GHz for the TM polarisation, obtained using the embedded model with 

different discretisation, dl. 
 

Fig. 5-21 (a) shows the transmission coefficients of the CFC panel at 1 GHz 

using the embedded model for N = 10, 20 and 100 and the analytical method 

against the incident angle for the TM polarisation. When N = 100, the 

numerical results are very close to the analytical results. Fig. 5-21 (b) shows 

the percentage errors in the transmission coefficients against the incident angle. 

When N = 100, the errors are within 2% for the incident angle from Ͳι to ͸Ͳι 

and the error for ͺͶι is around 10%. 

Fig. 5-19 (a) and Fig. 5-21 (a) exhibit that as the angle of incident increases for 

the TM-polarised wave, the reflection coefficients of the panel decrease and its 

transmission coefficients increase. This behaviour of the panel in the TM-

polarised wave excitations differs from that observed for the TE-polarised 

wave excitations. 

In summary, the convergence and accuracy of the embedded model for the TM 

polarised wave with arbitrary excitations are verified over a wide frequency 

range and for different angles of incidence.  
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(a) 

 

(b) 
Fig. 5-21 (a) The transmission coefficients of the thin CFC panel against the 

incident angle ߮ at the frequency ଴݂ ൌ ͳ GHz for TM polarisation; (b) the 
percentage errors in the transmission coefficients calculated using the 

embedded model for N = 10, 20 and 100 compared to the analytical results 
against the incident angle. The TLM mesh size ݈݀ ൌ ͵ mm. 
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5.6. Applications 

In the previous section, the embedded model has been verified for plane waves 

obliquely incident upon infinitely long CFC panels at fixed angles. In this 

section, it is applied to investigate the effects of a CFC panel having finite 

dimensions on the TE- and TM- polarised fields. 

Consider a CFC panel with finite thickness in the x direction, finite length in 

the y direction, and infinite in the േݖ directions. The parameters of the CFC 

panel were chosen as in section 4.3.1: effective permittivity ߝ௥ ൌ ʹ , 

conductivity ߪ௘ ൌ ͳͲସ Smିଵ, and thickness ݀ ൌ ͳ mm.  

As shown in Fig. 5-3, the CFC panel was placed in a 2D space, which was 

excited by a point source. As a demonstration, the 2D space was chosen to be 

1.2 m ൈ 0.9 m and matched boundaries [5] were used at the four problem-

space boundaries. The dimension of the panel in the y direction was chosen to 

be 0.384 m. It was assumed that the panel was parallel to the y axis and located 

at ݔ ൌ ͲǤ͸ m. A point source was chosen to be the input signal. It was placed 

at the point (0, 0.45 m), and was taken to have the form of a sine wave with a 

frequency of 1 GHz.  

The 2D shunt and series nodes were used to model the TE-polarised and the 

TM-polarised waves, respectively. In both cases, the fields from the TLM 

nodes near the panel are decomposed into a series of plane waves and 

evanescent waves, each of which is incident upon the panel independently at 

its own angle. As shown in Fig. 5-5, a Fourier transform was used to transfer 

the voltages in the space domain to the angle domain. If the indices of the 

voltage in the space domain are Ͳǡ ݈݀ǡ ʹ ή ݈݀ǡ ǥ ǡ ݅ ή ݈݀ǡ ǥ ǡ and ܰܰ ή ݈݀ , where 

NN is a real positive number, the s indices of the voltages in the angle domain 

are Ͳǡ ଵேேήௗ௟ ǡ ଶேேήௗ௟ ǡ ǥ ǡ ௜ேேήௗ௟ ǡ ǥ ǡ ଵௗ௟ . Since ݏ ൌ ߮݊݅ݏ݇  (equation (5-19)), the 

angle ߮௜ corresponding to a certain s index i is 

߮௜ ൌ arcsin ሺ݅Ȁሺʹ ή ݅݌ ή ݈Ȁߣ଴ሻሻ, (5-44) 
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where ݈ is the length of the thin film and ߣ଴ is the operating wavelength. From 

the equation (5-44), it can be seen that the angles of incidence depend on the 

ratio of the film’s length to the operating wavelength.  

For this example, the mesh size was chosen to be ͵ mm as discussed before. 

Since the length of the thin film was 38.4 cm, the total number of nodes ܰܰ ൌଷ଼Ǥସ ௖௠଴Ǥଷ ௖௠ ൌ ͳʹͺ. According to the equation (5-44), there are 9 real angles of 

incidence, Ͳιǡ ͹ǤͳͶιǡ ͳͶǤͶιǡ ʹͳǤͻͲιǡ ʹͻǤͺ͵ιǡ ͵ͺǤͶͶιǡ ͶͺǤʹͷιǡ ͸ͲǤͷι and ͺͶǤͳͳι , 

contributing to plane waves, and 119 complex angles, contributing to the 

evanescent waves. 

Fig.5-22 shows the field intensity distribution of (a) the electric field 

component ܧ௭ and the magnetic field components (b) ܪ௫ and (c) ܪ௬ of the TE-

polarised wave at ͷͲǡͲͲͲ time steps. Fig.5-23 shows the field intensity of (a) 

the magnetic field component ܪ௭ and the electric field components (b) ܧ௫ and 

(c) ܧ௬  of the TM-polarised wave at ͷͲǡͲͲͲ  time steps. From Fig.5-22 and 

Fig.5-23, it can be seen that the field intensities of all the components exhibit 

symmetry about y =  0.45 m. Because of the point source, the field is locally 

propagating in a radial direction until it hits the CFC panel. When the fields hit 

the CFC panel, their direct propagation is blocked by the panel, but a part of 

the fields reaches the right side around the top and bottom of the panel. 

In summary, for both TE and TM polarisations, the presence of the panel 

disturbs the electromagnetic field distributions in the 2D space. Due to the 

finite length of the panel, it cannot block all the fields, some of which reaches 

the side of the panel remote from the source, around its top and bottom. As the 

distance from the panel increases, more waves reach the right side over the 

panel and thus the shielding performance of the panel decreases rapidly. 

It should also be noted that in contrast to the infinitely long panel case, the 

electric field shielding effectiveness is no longer equal to the magnetic field 

shielding effectiveness at each point on the side of the panel remote from the 

source. This is because of the different influence the finite dimension of the 

panel has on the electric and magnetic fields.  
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(c) 

Fig.5-22 The field intensity distribution of (a) ܧ௭ (b) ܪ௫ and (c) ܪ௬ 
components in the 2D space when the TE-polarised wave is incident onto a 

0.384 m long CFC panel. 
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(c) 

Fig.5-23 The field intensity distribution of (a) ܪ௭, (b) ܧ௫ and (c) ܧ௬ 
components in the 2D space when the TM-polarised wave is incident onto a 

0.384 m long CFC panel. 
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If the conventional TLM method is used to simulate the effects of the finite 

length CFC panel on the TE- and TM- polarised fields, the mesh size should be 

chosen as 0.025 mm as discussed in Chapter 4. The number of nodes needed to 

represent the ͳǤʹ m ൈ ͲǤͻ m  region would be ͶͺǡͲͲͲ ൈ ͵͸ǡ ͲͲͲ  and the 

number of nodes needed to represent the CFC panel would be ͶͲ ൈ ͳͷ͵͸Ͳ. In 

total, there would be Ͷͺǡ ͲͶͲ ൈ ͵͸ǡ ͲͲͲ  nodes needed in the conventional 

TLM method, compared to ͶͲͲ ൈ ͵ͲͲ nodes needed in the embedded model. 

From this point of view, the embedded model can save the memory storage 

significantly. Besides, since the mesh size needed in the conventional TLM 

method is 120 times bigger than that needed in the embedded model, the 

number of time steps needed in the conventional TLM method is 120 times 

bigger than that needed in the embedded model, in order to achieve the same 

frequency accuracy. Therefore, the embedded model for arbitrary excitations 

can save the memory storage and number of time steps significantly compared 

to the conventional TLM method. 

In order to prove the results shown in Fig.5-22 and Fig.5-23, the 

straightforward thinking would be doing the same simulation using the 

conventional TLM method. However, considering the large memory storage 

and the number of time steps needed to simulate the finite length CFC panel, a 

simulation of the finite length zero thickness PEC boundary using the 

conventional TLM method is considered. Since the CFC materials have very 

high conductivity, the finite CFC panel should have similar responses to the 

fields as the PEC boundary. 

In the simulation, the finite length CFC panel was replaced by the same length 

zero thickness PEC boundary, which has reflection coefficients of -1 and 

transmission coefficients of 0. Fig.5-24 shows the field intensity distribution of 

(a) the electric field component ܧ௭ and the magnetic field components (b) ܪ௫ 

and (c) ܪ௬ of the TE-polarised wave in the presence of the finite length zero 

thickness PEC boundary at ͷͲǡͲͲͲ  time steps. Fig.5-25 shows the field 

intensity of (a) the magnetic field component ܪ௭  and the electric field 

components (b) ܧ௫ and (c) ܧ௬ of the TM-polarised wave in the presence of the 

finite length zero thickness PEC boundary at ͷͲǡͲͲͲ time steps.  
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(c) 

Fig.5-24 The field intensity distribution of (a) ܧ௭ (b) ܪ௫ and (c) ܪ௬ 
components in the 2D space when the TE-polarised wave is incident onto the 

0.384m long zero thickness PEC. 
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(c) 

Fig.5-25 The field intensity distribution of (a) ܪ௭, (b) ܧ௫ and (c) ܧ௬ 
components in the 2D space when the TM-polarised wave is incident onto the 

0.384 m long zero thickness PEC. 
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Comparing Fig.5-22 and Fig.5-23 with Fig.5-24 and Fig.5-25, it can be seen 

that the filed intensity distributions in the presence of the finite length CFC 

panel are similar to those in the presence of the finite zero thickness PEC 

boundary. There is evidence of more penetration for the CFC panel with 

respect to the PEC boundary. The comparison validates the results shown in 

Fig.5-22 and Fig.5-23. 

 

5.7. Conclusions 

In this chapter, the thin film model developed in Chapter 3 has been embedded 

in the 2D TLM codes to account for arbitrary excitations. A simple case of a 

plane wave incident at a fixed angle was first presented and then the theory for 

arbitrary excitations was presented using the plane wave decomposition theory. 

Both TE and TM polarisations were considered. 

The accuracy and convergence of the embedded model were verified using 

examples of plane waves obliquely incident onto infinitely long CFC panels at 

various fixed angles and over a wide frequency range. The embedded model 

was then applied to demonstrate the effects of the finite length of the CFC 

panel on the shielding performance for both polarisations. 

The embedded model for arbitrary excitations was also proved to have the 

advantage of saving the computational overheads significantly, compared to 

the conventional TLM method.  

In the next chapter, an embedded model for the curved thin film in the 2D 

TLM is presented. The model is used to analyse curved structures, such as 

circular and elliptical waveguides and an airfoil structure. 
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6.Embedded Curved Thin Film 

Model in the Two-Dimensional 

TLM Method 

6.1. Overview 

In previous chapters, the embedded models were used to model planar thin 

films. However, there are a number of instances where the thin films are 

curved, such as cylinder-shaped structures used in aircraft fuselages [6.1 ~ 6.2] 

and airfoil structures [6.3]. In this chapter, the embedded model developed in 

Chapter 3 is extended to model curved thin films. This is done by first 

linearising the curved thin films and then embedding the equivalent model 

between the adjacent two-dimensional (2D) TLM nodes allowing for arbitrary 

positioning between adjacent node centres. The accuracy and convergence of 

the embedded model are examined by comparing the resonant frequencies of 

the infinitely long, hollow, CFC circular and elliptical cylinders with those of 

the equivalent metal circular and elliptical cylinders. Furthermore, the 

embedded model is applied to analyse the shielding performance of a CFC 

airfoil with the profile of NACA2415. In addition, the impact of small gaps in 

the airfoil NACA2415 structure on its shielding performance is also presented. 

 

6.2. Embedded Curved Thin Film Model 

In this section, the approach for embedding a curved thin film within TLM is 

described. 

Fig. 6-1 (a) shows the schematic of a curved thin film, represented by the solid 

curve (green), positioned within a coarse mesh of size dl, represented by 

dashed lines (black). The solid cross lines (red) represent the transmission link 
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lines along which the voltages travel, and the point of their intersection is 

defined as the TLM node centre. 

 

 

Fig. 6-1 (a) A curve thin film embedded between 2D TLM nodes (b) the 
enlarged TLM node ሺ݊௫ǡ ݊௬ሻ. 

 

The curved thin film is firstly approximated by linear piece-wise segments, 

represented by dash-dot lines (blue), each of which can be viewed as a planar 

thin film. The linearisation is done by connecting the crossing points of the arc 

and the link lines of the nodes. The crossing point can be either exactly 

between two nodes as for point A on Fig. 6-1 (b) or can split the transmission 

line of a node at an arbitrary position as for point B in Fig. 6-1 (b). The curved 

panel thus needs to be embedded at each crossing point. If the arc is defined by 

a function ݕ ൌ ݂ሺݔሻ , then the position of points A and B in an arbitrary node ሺ݊௫ǡ ݊௬ሻ  can be expressed as ሺ݊௫ ή ݈݀ǡ ݂ሺ݊௫ ή ݈݀ሻሻ  and ሺ݂ିଵሺ݊௬ ή ݈݀ሻǡ ݊௬ ή݈݀ሻ , respectively. 

At the crossing point A, the curved panel is modelled and embedded as a 

transmission line positioned centrally between the two adjacent nodes with 

coordinates ሺ݊௫ǡ ݊௬ሻ  and ሺ݊௫ǡ ݊௬ െ ͳሻ , which is done by modifying the 

TLM’s connection process as discussed in section 3.2. However, at the 

crossing point B, the curved panel splits the transmission link line at the right 

side of the node ሺ݊௫ǡ ݊௬ሻ into two segments of lengths ݈ଵ and ݈ଶ. In this case, 
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the whole section of transmission line together with the section of the curved 

panel is modelled and embedded as a three-layer stack whereby the curved 

panel is sandwiched between two sections of transmission lines of lengths ݈ଵ 

and ݈ଶ as shown in Fig. 6-2.  

 

 

Fig. 6-2 Two layers of air together with the planar thin film are composed of a 
three-layer stack embedded between two adjacent 2D series nodes. 

 

Fig. 6-2 shows the three-layer stack embedded between two 2D series nodes ሺ݊௫ǡ ݊௬ሻ  and ሺ݊௫ ൅ ͳǡ ݊௬ሻǡ  where the two shaded layers represent the 

transmission lines of the node and the middle layer (blue) represents the curved 

panel. In the figure,  ௫ ସܸ௜  and  ௫ ସܸ௥  are the incident and reflected voltages at 

port 4 of the node ሺ݊௫ǡ ݊௬ሻ , while  ௫ାଵ ଶܸ௜  and  ௫ାଵ ଶܸ௥  are the incident and 

reflected voltages at port 2 of the node ሺ݊௫ ൅ ͳǡ ݊௬ሻ. 

The transmission line model of this three-layer stack embedded between two 

TLM nodes is shown in Fig. 6-3. Transmission lines of lengths ݈ଵ and ݈ଶ are, in 

this case, made of air but in general can represent any material parameters. 
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Fig. 6-3 Transmission line model of the three-layer stack embedded between 
two TLM nodes. 

 

Since the transmission line model in Fig. 6-3 is similar to that depicted in Fig. 

3-8 (b), the reflected voltages from the three-layer stack, i.e.  ௫ାଵ ଶܸ௜ǡ  ௫ ସܸ௜ as in 

Fig. 6-3, can be solved in terms of the incident voltages to the stack, i.e.  ௫ାଵ ଶܸ௥ ǡ  ௫ ସܸ௥, using the three-layer thin film model described in section 3.3.2.  

As discussed in section 3.3.2, the admittance matrix of each layer in the three-

layer stack can be expressed as  

൬ܫସܫ௔൰ ൌ ൬்ݕ௅ െ ݆ ଴ܻܿߠݐ݋ଵ ݆ ଴ܻܿߠܿݏଵ݆ ଴ܻܿߠܿݏଵ െ݆ ଴ܻܿߠݐ݋ଵ൰ ൬ ௫ ସܸ௔ܸ ൰ǡ  (6-1) ൬െܫ௔ܫ௕ ൰ ൌ ൬െ݆ ௧ܻܿߠݐ݋௧ ݆ ௧ܻܿߠܿݏ௧݆ ௧ܻܿߠܿݏ௧ െ݆ ௧ܻܿߠݐ݋௧൰ ൬ ௔ܸܸ௕൰ǡ  (6-2) ൬െܫ௕ܫଶ ൰ ൌ ൬െ݆ ଴ܻܿߠݐ݋ଶ ݆ ଴ܻܿߠܿݏଶ݆ ଴ܻܿߠܿݏଶ ௅்ݕ െ ݆ ଴ܻܿߠݐ݋ଶ൰ ൬ ௕ܸ ሺ௫ାଵሻ ଶܸ൰ǡ (6-3) 

where ଴ܻ is the characteristic admittance of the air layer given by ଴ܻ ൌ ඥߝ଴ ଴Τߤ ଶߠ ଵ andߠ ,  are the electrical lengths of the layers with length ݈ଵ  and ݈ଶ 

expressed as ߠଵ ൌ ݈߱ଵඥߤ଴ߝ଴ and ߠଶ ൌ ݈߱ଶඥߤ଴ߝ଴, respectively. 

The electrical length of the thin film that represents the curved panel is ߠ௧ ൌ߱݀ξܥܮ, where ݀ is the thickness of the film and ௧ܻ ൌ ඥܥ Τܮ  is the admittance 

of the thin film where L and C can be expressed as in [6.4] 

ܮ ൌ ߤ ൅ ௠݆߱ߪ ǡ ܥ ൌ ߝ ൅  ௘݆߱Ǥ (6-4)ߪ

Combining equations (6-1), (6-2) and (6-3), the linear matrix equations (6-5) 

can be obtained,  
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൮ܫସͲͲܫଶ൲ ൌ ൮ ௅்ݕ െ ݆ ଴ܻܿߠݐ݋ଵ                ݆ ଴ܻܿߠܿݏଵ                 Ͳ                Ͳ݆ ଴ܻܿߠܿݏଵ         െ ݆ ଴ܻܿߠݐ݋ଵ െ ݆ ௧ܻܿߠݐ݋௧      ݆ ௧ܻܿߠܿݏ௧      ͲͲ          ݆ ௧ܻܿߠܿݏ௧     െ ݆ ௧ܻܿߠݐ݋௧ െ ݆ ଴ܻܿߠݐ݋ଶ    ݆ ଴ܻܿߠܿݏଶ Ͳ              Ͳ                     ݆ ଴ܻܿߠܿݏଶ             ்ݕ௅ െ ݆ ଴ܻܿߠݐ݋ଶ  ൲ ۇۉ
 Ǥ (6-5)ۊیʹ൅ͳሻܸݔͶ௔ܸܸ௕ ሺܸݔ 

The terms on the left hand side of equation (6-5) are known and are ܫସ ൌ ௅்ݕʹ ή  ௫ ସܸ௥ ǡ ଶܫ ൌ ௅்ݕʹ ή  ሺ௫ାଵሻ ଶܸ௥ Ǥ (6-6) 

The unknown voltages on its right side,  ௫ ସܸǡ ௔ܸǡ ௕ܸ and  ሺ௫ାଵሻ ଶܸ, can be solved 

using an iterative matrix solver based on the Gauss-Seidel method [6.5] as 

described in section 3.3.2. The solutions are given in the frequency domain and 

need to be transferred into the time domain to enable time-stepping of the 

TLM code. This is done by using an inverse Z-transform and digital filter 

theory.  

In order to do that, the cotangent and cosecant functions in equation (6-5) are 

expanded as an infinite summation in the form of [6.6] 

ߠݐ݋ܻ݆ܿ ൌ ݆ඨܮܥ ൭ͳߠ ൅ ߠʹ ෍ ͳߠଶ െ ݇ଶߨଶேୀஶ
௞ୀଵ ൱ǡ 

ߠܿݏܻ݆ܿ ൌ ݆ඨܮܥ ൭ͳߠ ൅ ߠʹ ෍ ሺെͳሻ௞ߠଶ െ ݇ଶߨଶேୀஶ
௞ୀଵ ൱ǡ (6-7) 

 

where N denotes the number of terms in the expansion and determines the 

accuracy of the expansion.  

With this expansion in place, the solutions of equation (6-5), i.e.  ௫ ସܸǡ ௔ܸǡ ௕ܸ 

and  ሺ௫ାଵሻ ଶܸ are first transferred to the s-domain using the transformation s=j 

and then to the Z-domain using the transformation  

ݏ ൌ ȟʹݐ ή ͳ െ ଵͳିݖ ൅  ଵ Ǥ (6-8)ିݖ

The final solutions are expressed in the time domain using the inverse Z 

transform and general digital filter theory as in section 3.2. 



6 Embedded Curved Thin Film Model in the Two-Dimensional TLM Method 

171 
 

The embedded curved thin film model can be simplified to simulate the curved 

perfect electric conductor (PEC) boundaries, for example, modelling a curved 

metal structure. 

The same linearisation as in Fig. 6-1 is firstly used to model the curved PEC 

boundaries. As in Fig. 6-1 (b), the cross points may be exactly between two 

nodes as for point A in Fig. 6-1 (b) or split the transmission line of a node at an 

arbitrary position as for point B in Fig. 6-1 (b). At point A, the incident voltage 

to the transmission line equals the negative value of the reflected voltage from 

the transmission line due to the short circuit effects of the PEC boundaries. At 

point B, the three layer stack shown in Fig. 6-2 is reduced to only one layer 

transmission line since there is no transmission outside the PEC boundaries. 

Fig. 6-4 (a) shows the one layer model of the PEC boundaries when the point 

B is placed at distance ݈ଵ away from the ሺ݊௫ǡ ݊௬ሻ node. Fig. 6-4 (b) shows the 

equivalent transmission line model with the air layer represented by a 

transmission line of length ݈ଵ and a metal layer represented by a short circuit 

(S/C) boundary. 

 

 

Fig. 6-4 (a) The one layer model of the PEC boundaries and (b) the equivalent 
transmission line model. 

 

In Fig. 6-4 (b), ܸ௜ and ܸ௥ are the incident and reflected voltages along the right 

transmission line of a node ሺ݊௫ǡ ݊௬ሻ, respectively. The relation between ܸ௜ and ܸ௥ can be expressed as, 

ܸ௜ ൌ ܴ ή ܸ௥ ǡ (6-9) 
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where ܴ is the reflection coefficient, given by [6.7] 

ܴ ൌ ܼ௜௡ െ ்ܼ௅ܼ௜௡ ൅ ்ܼ௅ ൌ ݆ܼ଴ߠ݊ܽݐ௔௜௥ െ ்ܼ௅݆ܼ଴ߠ݊ܽݐ௔௜௥ ൅ ்ܼ௅ ൌ ܼ଴ ൅ ்ܼ௅ ή ௔௜௥ܼ଴ߠݐ݋݆ܿ െ ்ܼ௅ ή ௔௜௥ߠݐ݋݆ܿ ǡ (6-10) 

where ܼ௜௡  is the input impedance and ߠ௔௜௥  is the electrical length of the air 

layer. 

Thus,  

ሺܼ଴ െ ்ܼ௅ ή ሻߠݐ݋݆ܿ ή ܸ௜ ൌ ሺܼ଴ ൅ ்ܼ௅ ή ሻߠݐ݋݆ܿ ή ܸ௥ Ǥ (6-11) 

The incident voltage ܸ௜ in equation (6-11) can be solved using the Z transform 

and digital filter technique as described in the section 3.2. 

 

6.3. Validations 

Since modelling curved thin films involves linearisation and embedding the 

structure into the TLM algorithm, the accuracy of the linearisation of the 

embedded curved thin film model is firstly tested by extracting the resonant 

frequencies of infinitely long, hollow, circular and elliptical PEC cylinders 

using the model for the curved PEC boundaries. Furthermore, the convergence 

and accuracy of the embedded curved thin film model are investigated by 

comparing the resonant frequencies of the infinitely long, hollow, circular and 

elliptical cylinders formed using CFC materials with those analytical values of 

the equivalent metal cylinders. 

In the following examples, 2D series nodes and 2D shunts nodes, as discussed 

in Chapter 2, were used to model free space for TE and TM modes, 

respectively. A delta pulse was used as an excitation. Matched boundaries [6.4] 

were used to terminate the computational space. 
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6.3.1. Accuracy of Linearisation of Curved Structures 

To verify the accuracy of the linearisation of the curved structures, the resonant 

frequencies of the infinitely long, hollow, circular and elliptical metal cylinder 

were calculated using the model for PEC boundaries. Results obtained are 

compared to those analytical values. 

The resonant frequencies of a metal circular cylinder with a radius of r = 3 cm 

are calculated first. An input signal in the form of a delta pulse was launched 

from a point (3 cm, 3 cm). The TLM simulation was run for ʹ ή ͳͲହ time steps.  

The analytical resonant frequencies of a metal cylinder for TE and TM modes, ௠݂௡்ா and ௠݂௡்ெ, are calculated using the following equations from [6.8], 

௠݂௡்ா ൌ ߯௠௡ᇱʹݎߨξߝߤ ǡ ݉ ൌ Ͳǡͳǡʹǡ ǥ      ݊ ൌ ͳǡʹǡ ǥ 

௠݂௡்ெ ൌ ߯௠௡ʹݎߨξߝߤ ǡ ݉ ൌ Ͳǡͳǡʹǡ ǥ      ݊ ൌ ͳǡʹǡ ǥ 
(6-12) 

where ߯௠௡ᇱ  are the zeroes of the derivative of the Bessel function ܬ௠ሺݔሻ, i.e. ܬ௠ᇱ ሺ߯௠௡ᇱ ሻ ൌ Ͳ, ߯௠௡ are the zeroes of the Bessel function ܬ௠ሺݔሻ, i.e. ܬ௠ሺ߯௠௡ሻ ൌͲ, and ݎ is the radius of the circle. 

Fig. 6-5 shows the percentage errors in resonant frequencies for the first six TE 

and TM modes calculated using the analytical method and the embedded TLM 

method for different discretisations, represented by the ratio ݎȀ݈݀, where the 

percentage errors are defined as  

Percentage Errorsൌ ȁ௙ೌ೙ೌ೗೤೟೔೎ೌ೗ି௙೅ಽಾȁ௙ೌ೙ೌ೗೤೟೔೎ೌ೗ ή ͳͲͲΨǡ (6-13) 

where ௔݂௡௔௟௬௧௜௖௔௟ and ்݂ ௅ெ represent the resonant frequencies calculated using 

the analytical method and the embedded TLM method. Usually 2% error is 

deemed to be a very good accuracy [6.9] in numerical calculations. 

Fig. 6-5 shows that as the mesh size decreases (the ratio ݎȀ݈݀ increases), the 

percentage errors in the resonant frequencies for the first six TE and TM 

modes also decrease. When the mesh size is 0.3 mm, i.e. 
௥ௗ௟ ൌ ͳͲͲ, the errors 



6 Embedded Curved Thin Film Model in the Two-Dimensional TLM Method 

174 
 

are very small, within 0.8%. It validates the accuracy and convergence of the 

linearisation of the curved thin film model.  

 

 

Fig. 6-5 The percentage errors in the resonant frequencies for TE and TM 
modes of metal circular cylinder. 

 

To further validate the accuracy of the linearisation of the curved structures, 

the resonant frequencies of a metal elliptical cylinder with a major axis a = 10 

cm and minor axis b = 6.614 cm [6.10] were calculated using the model for the 

PEC boundaries. An input signal in the form of a delta pulse was launched 

from a point located at the point (0.1 m, 0.06 m). The TLM simulation was run 

for ʹ ή ͳͲହ time steps.  

Fig. 6-6 shows the percentage errors (defined in equation (6-13)) in resonant 

frequencies for the first six TE and TM modes calculated using the analytical 

method and the embedded TLM method for different discretisations, 

represented as the ratio 
௕ௗ௟. In the figure, ݁ and ݋ represent even and odd modes, 

respectively. The analytical values of the metal elliptical cylinder are taken 

from [6.10]. Fig. 6-6 shows that when the mesh size is 0.8 mm (
௕ௗ௟ ൌ ͺʹǤͷ), the 

percentage errors in all resonant frequencies are very small, within 1.6%. The 

accuracy of the linearisation is further validated. 
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Fig. 6-6 The percentage errors in the resonant frequencies for TE and TM 
modes of metal elliptical cylinder. 

 

6.3.2. CFC Circular Cylinder 

In this section, the embedded curved thin film model is used to calculate the 

resonant frequencies of an infinitely long, hollow, circular CFC cylinder with 

the radius of r = 3 cm. Results obtained are compared against the analytical 

values for the equivalent metal circular cylinder. 

The parameters of the CFC materials used in this section were chosen as in 

[6.11]: thickness ݀ ൌ ͳ mm , effective permittivity ߝ௥ ൌ ʹ  and conductivity ߪ௘ ൌ ͳͲସ Smିଵ . The 2D computation window was chosen to be ͳͺ cm ൈͳͺ cm and terminated with matched boundaries. The number of time steps 

used in the calculation is ʹ ή ͳͲହ. 

Fig. 6-7 shows the relative differences in the resonant frequencies for the first 

six TE and TM modes of the CFC and metal circular cylinder for different 

mesh sizes represented by ݎȀ݈݀ . The relative differences in the resonant 

frequencies are defined as  

Relative differences = ȁ ௠݂௘௧௔௟ െ ஼݂ி஼ȁȀ ௠݂௘௧௔௟  ൈ ͳͲͲΨ (6-14) 

where ௠݂௘௧௔௟  and ஼݂ி஼  are the resonant frequencies of the metal and CFC 

cylinder, respectively. 
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Fig. 6-7 shows that the relative differences in the resonant frequencies of TE21 

and TE11 mode converge to around 1% and the relative differences in the TE01 

mode resonant frequencies converge to around 0.4%, as the mesh size 

decreases. The relative differences in the TM01, TM11 and TM21 mode resonant 

frequencies converge to around 0.3%, 0.2% and 0.18%, respectively, as the 

mesh size decreases. Fig. 6-7 confirms the resonant frequencies of CFC 

cylinder are similar to those of the metal cylinder, confirming the metal-like 

properties of the CFC materials. 

 

 

Fig. 6-7 The relative differences in the resonant frequencies for TE and TM 
modes of the CFC circular cylinder and the metal circular cylinder. 

 

Table 6-1 further compares the resonant frequencies of the first six TE and TM 

modes of the CFC and metal circular cylinder when the mesh size ݈݀ ൌͲǤͲ͵ cm ሺ ௥ௗ௟ ൌ ͳͲͲሻ. It can be seen that the relative differences in the resonant 

frequencies of the CFC and metal cylinder are very small and within 1.02%. 
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Table 6-1 The resonant frequencies and relative percentage differences 
between the first three TE and TM modes of the CFC and metal circular 

cylinder. 

Modes 
Resonant Frequency (GHz) Relative 

Differences (%) Metal Circular Cylinder CFC Circular Cylinder 

TE11 2.9283 2.899 1.00 

TE21 4.8575 4.808 1.02 

TE01 6.0943 6.067 0.45 

TM01 3.8249 3.814 0.28 

TM11 6.0943 6.081 0.22 

TM21 8.1668 8.153 0.17 

 

6.3.3. CFC Elliptical Cylinder 

In this section the embedded curved thin film model is used to extract the 

resonant frequencies of CFC elliptical cylinders. Results obtained are 

compared against the known analytical values for the equivalent metal 

elliptical cylinder.  

The CFC elliptical cylinder has the same dimensions as that of the metal 

elliptical cylinder described in section 6.3.1. The parameters of the CFC 

materials used were chosen as in [6.11]: thickness ݀ ൌ ͳ mm , effective 

permittivity ߝ௥ ൌ ʹ  and conductivity ߪ௘ ൌ ͳͲସ Smିଵ . The 2D computation 

window was set to ͶͲ cm ൈ ʹ͸ cm, and terminated with matched boundaries 

[6.4]. The number of time steps used in the calculation is ʹ ή ͳͲହ. 

 Fig. 6-8 shows the relative differences (defined in equation (6-14)) in the 

resonant frequencies of the first six TE and TM modes of the CFC and metal 

elliptical cylinder for different mesh sizes represented by the 
௕ௗ௟ parameter. It 

can be seen that the relative differences in the even (e) and odd (o) TE11 mode 

resonant frequencies converge to around 0.7% and the relative differences in 

the even TE01 mode resonant frequencies converge to around 0.5% as the mesh 

size decreases. Fig. 6-8 also indicates that the relative differences in the even 

TM11 mode resonant frequencies converge to around 1.56% and the relative 

differences in the odd TM11 and even TM01 mode resonant frequencies 
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converge to around 0.2% as the mesh size decreases. Fig. 6-8 confirms that the 

resonant frequencies of the CFC resonator are close to those of the metal 

resonator, once more confirming the metal-like properties of the CFC material. 

 

 

Fig. 6-8 The relative differences of the resonant frequencies for TE and TM 
modes in the CFC elliptical cylinder and metal elliptical cylinder. 

 

Table 2 further compares the resonant frequencies of the metallic and CFC 

elliptical cylinder for the first six modes when the mesh size ݈݀ ൌͲǤͺ mm ሺ ௕ௗ௟ ൌ ͺʹǤ͹ሻ. It can be seen that the relative differences in the resonant 

frequencies of the CFC cylinder and metal cylinder are very small and within 

1.56%.  

 

Table 2 The resonant frequencies for the six lowest modes of an elliptical CFC 
cylinder compared to those of an elliptical metal cylinder 

Modes 
Resonant Frequency (GHz) 

Relative 
Difference (%) Metal elliptical 

cylinder 
CFC elliptical 

cylinder 
Even TE11 0.889 0.883 0.67 
Odd TE11 1.30 1.291 0.69 

Even TM01 1.467 1.465 0.14 
Even TM11 2.124 2.091 1.56 
Even TE01 2.50 2.487 0.52 
Odd TM11 2.554 2.549 0.20 
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In summary, the convergence and accuracy of the embedded curved thin film 

model are verified by comparing the resonance frequencies of the circular and 

elliptical CFC cylinders with those analytical values of the equivalent circular 

and elliptical metal cylinders. 

 

6.4. Applications 

In this section, the embedded model for curved thin films is applied to analyse 

the shielding performance of a CFC airfoil with the profile NACA2415. 

Furthermore, the effect of small gaps in the airfoil structure on the shielding 

performance is also discussed. 

In the following examples, 2D shunt nodes were used to model free space. The 

excitation was chosen to be in the form of a TE-polarised plane wave as 

described in section 5.4. The wave propagates from the bottom of the space to 

the top of the space. Matched boundaries [6.4] were set in the four boundaries 

to simulate the infinite space. 

The parameters of the CFC materials used in this section were chosen as in 

[6.10]: thickness ݀ ൌ ͳ mm , effective permittivity ߝ௥ ൌ ʹ  and conductivity ߪ௘ ൌ ͳͲସ Smିଵ. 

 

6.4.1. Shielding Performance of a CFC Airfoil Structure 

The profile of an airfoil structure is taken from the National Advisory 

Committee for Aeronautics (NACA) report [6.3]. An airfoil with the profile 

NACA2415 from the NACA four-digit series is taken as an example. 

In the NACA four-digit series, the first digit specifies the maximum camber 

(݉) in percentage of the chord (airfoil length ݄ܿ); the second digit indicates the 

position of the maximum camber along the chord (݌) in tenths of chord; the 

last two digits provide the maximum airfoil thickness (ݐ) in percentage of 

chord. These terminologies in the airfoil are shown in Fig. 6-9. 
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Fig. 6-9 Airfoil terminology 
 

In the example of the airfoil NACA2415, the airfoil length ݄ܿ was chosen as 1 

m. It has a maximum thickness t = 0.15 m with a camber m = 0.02 m located 

0.4 m back from the airfoil leading edge. Based on these values, the 

coordinates for the entire airfoil can be computed using the analytical 

equations reported in [6.3]. Fig. 6-10 shows the profile of the airfoil 

NACA2415 modelled using the TLM method, with a computational window 

size of ͳǤʹ m ൈ ͲǤ͵ m terminated with matched boundary conditions.  

 

 

Fig. 6-10 The CFC airfoil NACA2415 modelled by TLM 
 

The electric field shielding effectiveness ܵܧா in dB is defined as in [6.12], ܵܧா ൌ ʹͲ ή logଵ଴ሺȁܧ௪௜௧௛௢௨௧Ȁܧ௪௜௧௛ȁሻ   (6-15) 

where ܧ௪௜௧௛௢௨௧ and ܧ௪௜௧௛ are the magnitudes of the electric field component at 

the same point without and with the shield. 

The magnitude of the electric field component ܧ௭ is observed at four points 

along the chord, i.e. P1 (0.3 m, 0.15 m), P2 (0.5 m, 0.15 m), P3 (0.7 m, 0.15 m), 

and P4 (0.9 m, 0.15 m) as shown in Fig. 6-10, with and without the CFC airfoil. 

The electric shielding effectiveness (SE) is computed at these four specific 

points along the chord using equation (6-15).  
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Fig. 6-11 shows the electric field shielding effectiveness of the CFC airfoil 

NACA2415 at the points P1, P2, P3 and P4 in the frequency range from 1 GHz 

to 2 GHz. The TLM mesh size used was ݈݀ ൌ ʹ mm. It can be seen that the SE 

of the airfoil becomes much smaller at certain frequencies due to resonance 

effects [6.13]. Fig. 6-11 also indicates that the SE at the points P1 and P2 are 

similar in the frequency range from 1 GHz to 2 GHz, while the SE at the point 

P3 is higher than that at the points P1 and P2 at the frequencies below 1.2 GHz 

and the SE at the point P4 is much higher than that at the points P1 and P2 at 

the frequencies below 1.7 GHz. At higher frequencies, the SE is very similar 

for all the four points because the existence of the higher modes contributes to 

an even distribution of the electric field in the structure. 

 

 

Fig. 6-11 The electric field shielding effectiveness of the CFC airfoil 
NACA2415. 

 

To explain the lower SE at the points P1 and P2 at lower frequencies, 

compared to that at the points P3 and P4, the scattering of the CFC airfoil 

NACA2415 when illuminated by the TE wave at ଵ݂ ൌ ͳǤͲ͸͵ GHz is shown in 

Fig. 6-12. The electric field intensity in the 2D space at the ͳͲସ݄ݐ time step is 

plotted in dB. As shown in the figure, due to the non-metallic properties of the 

CFC panel, the electric field penetrates the airfoil and excites the first resonant 

mode. The centre of the resonant mode is near the points P1 and P2, leading to 

the lower shielding effectiveness at these points at 1.063 GHz. The resonance 
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has little effect on the electric field at the point P4 so the SE at the point P4 is 

high.  

It is emphasised that the field is shown on a logarithmic scale and that the 

intensity of the field inside the CFC airfoil is small compared to that of the 

excitation wave, as can be seen in Fig. 6-12. 

 

 

Fig. 6-12 The scattering of the CFC airfoil NACA2415 upon the 1.063 GHz 
TE wave illumination. The plot shows electric field intensity on a dB scale. 

 

In order to show the convergence of the proposed model, the first four resonant 

frequencies of the CFC airfoil (labelled as f1, f2, f3 and f4 in Fig. 6-10) were 

calculated using different mesh sizes and are shown in Fig. 6-13 as a function 

of ݐȀ݈݀. The figure indicates that as the mesh size decreases, all four resonant 

frequencies converge.  

 

 

Fig. 6-13 The first four resonant frequencies of the CFC airfoil NACA2415 
against t/dl. 
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If the conventional TLM method is used to model the CFC airfoil, the mesh 

size should be chosen as 0.025 mm as discussed in Chapter 4. Based on a mesh 

size of 0.025 mm, there would be ͶͺǡͲͲͲ ൈ ͳʹǡ ͲͲͲ nodes only for the finite 

region of ͳǤʹ m ൈ ͲǤ͵ m, excluding the CFC panel. In addition, the number of 

time steps needed in the conventional TLM method is 80 times bigger than that 

needed in the embedded model in order to get the same frequency resolution. 

Therefore, the embedded model has the advantage of saving the computational 

costs significantly in terms of memory storage and the number of time steps, 

compared to the conventional TLM method. 

 

6.4.2. Shielding Performance of CFC Airfoil Structure 

with Gaps 

Imperfections on the airfoil, such as gaps, even if very small, can affect the SE 

of the structure [6.14]. This section investigates the impact of the gaps on the 

SE of the CFC airfoil.  

The same CFC airfoil NACA2415 is used and the gap is positioned in the 

downside of the structure at ݔ ൌ ͲǤͻ m. Two examples were chosen, one with 

a gap of 2 mm and the other with a gap of 6 mm. The excitation of the problem 

is the same as that for Fig. 6-11. The shielding effectiveness at the points P1 

and P4 along the chord of the CFC airfoil is computed and shown in Fig. 6-14 

(a) and (b), respectively, for two different size gaps in the airfoils and 

compared to the case of no gaps in the frequency range from 1 GHz to 2 GHz.  

Fig. 6-14 (a) shows when the frequency is below 1.1 GHz, the gaps in the 

airfoil do not affect the SE at the point P1. However, as the frequency 

increases, the SE at the point P1 decreases rapidly for both airfoils with 2 mm 

and 6 mm gaps compared to the case of no gaps in the airfoil. For example, at 

the seventh resonant frequency (1.883 GHz), the shielding effectiveness of the 

airfoils with 2 mm and 6 mm gaps is around 25 dB and 14 dB, respectively, 

compared to 45 dB with the case of no gaps. This can be explained by the fact 

that at higher frequencies, the shorter wavelength of the signal results in an 
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increased penetration of fields through the gap, which change the field 

distribution in the airfoil. 

Unlike the SE at the point P1, the SE at the point P4 is greatly influenced by 

the gaps in the airfoil as shown in Fig. 6-14 (b). The SE at the point P4 is 

drastically reduced in the frequency range from 1 GHz to 2 GHz, for both 

airfoils with 2 mm and 6 mm gaps compared to the case of no gaps in the 

airfoil. The reduction of the SE at the point P4 is more prominent at the lower 

frequency. For example, at 1.063 GHz, the SE at the point P4 of the airfoil 

with 2 mm and 6 mm gaps is reduced by around 40 dB and 50 dB, respectively, 

compared to that of the airfoil without gaps. 

To explain the prominent reduction of the SE at the point P4 at lower 

frequencies, the scattering of the CFC airfoil NACA2415 with a 2 mm hole 

under illumination from a TE wave at ଵ݂ ൌ ͳǤͲ͸͵ GHz is shown in Fig. 6-15. 

The electric field intensity in the 2D space at the ͳͲସ݄ݐ time step is plotted in 

dB. It can be seen that the small gap allows the incident field to more readily 

couple with the inside of the airfoil. Compared to Fig. 6-12, the field intensity 

is increased at the tail of the airfoil, resulting in reduced shielding performance 

of the airfoil at the point P4. Comparison of Fig. 6-12 and Fig. 6-15 indicates 

that the field penetrating through the gap does not greatly perturb the resonant 

field at point P1 at 1.063 GHz, so the SE at that point is not significantly 

affected by the gap, as seen in Fig. 6-14 (a). 
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(a) 

 

(b) 

Fig. 6-14 The shielding effectiveness of the CFC airfoil NACA2415 with no 
gap, a 2 mm gap and 6 mm gap (a) at the point P1 and (b) at the point P4. 

 

 

Fig. 6-15 The scattering of the CFC airfoil NACA2415 with 2 mm gap in the 
1.063 GHz TE wave illumination. The plot shows electric field intensity on a 

dB scale. 
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6.5. Conclusions 

In this chapter, an embedded TLM model for curved thin films is described. Its 

implementation in the 2D TLM algorithm is done by firstly, linearising the 

curvature of the panel and secondly, representing the panels as three-layer 

transmission lines to allow for arbitrary positioning of the panel within the 

mesh. 

The embedded model is validated by firstly comparing the resonant 

frequencies of metallic 2D circular and elliptical resonators with analytical 

values to verify the accuracy of the linearisation. The differences between the 

CFC and metallic circular and elliptical resonators have also been obtained, 

confirming good metallic properties of the CFC material. Finally, the 

embedded model is applied to analyse the shielding performance of a CFC 

airfoil NACA2415 structure. The impact of small gaps in the CFC airfoil on 

the SE is also reported, showing considerable worsening in the SE 

performance. 

The embedded model for curved structures was also proved to have the 

advantage of saving the computational overheads significantly since a relative 

large mesh size can be used, thus saving the memory storage and number of 

time steps. 
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7. Conclusions 

7.1. Overview of the Work Presented 

Modern circuits and numerical problems are becoming increasingly multi-scale 

in their appearance in that they contain both large and small features. High 

operating frequencies in many applications mean that small features can no 

longer be ignored and need to be sampled with a suitable mesh size, which 

consequently requires large run time and memory storage. To solve such 

problems, an efficient and versatile approach for embedding small features in 

an otherwise coarse mesh has been presented in this thesis. The embedded 

model removes the need for discretisation within itself and allows for the 

relatively coarse mesh to be used, thus saving the computational overheads. 

The thesis focuses on thin film panels as small features although any small 

feature for which an analytical response is known can in practice be 

implemented. In this thesis the implementation of thin films in the one-

dimensional (1D) and two-dimensional (2D) Transmission Line Modelling 

(TLM) methods has been presented. The accuracy, stability, convergence and 

efficiency have been verified using examples of lossy and lossless thin films, 

in particular, single and multiple CFC panels, AR coatings and Fibre Bragg 

gratings.  

In Chapter 2, the Transmission Line Modelling (TLM) method was introduced. 

Based on the field-circuit equivalence, the procedures for modelling free space 

using the 1D, 2D and 3D TLM models were firstly presented. Furthermore, the 

stub techniques and the condensed nodes were briefly overviewed as methods 

of modelling material parameters different from free space. These models were 

used to model the background materials surrounding the thin films. 

In Chapter 3, time domain embedded thin film models, including a single layer 

thin film model, a multi-layer thin film model and an anisotropic thin film 

model, were derived in the TLM method. The single layer thin film model was 

firstly introduced. In the model, the single layer thin film was seen as a section 

of transmission line, whose admittance matrix was used to describe the 
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frequency responses of the thin film. The admittance matrix was manipulated 

by expanding the constituent cotangent and cosecant functions using their 

analytical expansion equations, which were then transformed to the time 

domain from the frequency domain using the inverse Z transform and general 

digital filter theory. In this way, the frequency responses of the thin film were 

sucessfully embedded into the TLM algorithm by modifying its connection 

process. Based on the single layer thin film model, the multi-layer thin film 

model was derived by solving a linear matrix equation describing the 

scattering properties of the multi-layer thin film using a Gauss-Seidel method. 

In the end, an anisotropic thin film model was introduced by using two single 

layer thin film models. 

In Chapter 4, the accuracy, stability, convergence and efficiency of the 

embedded thin film models were validated in the one-dimensional (1D) TLM 

method using examples of lossy, anisotropic and lossless thin films. 

As examples of lossy thin films, the frequency responses of carbon fibre 

composite (CFC) panels and a titanium panel were investigated using the 

embedded thin film model. The reflection and transmission coefficients of both 

single (layer thickness of 1 mm) and multiple layer CFC panels (layer 

thickness of 1.8 mm) were calculated using the embedded thin film model with 

a mesh size of 10 mm. The accuracy was verified by comparing the numerical 

results with the analytical results. For a single layer CFC panel, the errors in 

the reflection coefficients are less than 0.0006% while the errors in the 

transmission coefficients are less than 0.8% in the frequency range from 0 to 1 

GHz. For a multi-layer CFC panel, the errors in the reflection coefficients are 

less than 0.001% while the errors in the transmission coefficients are less than 

1.5% in the frequency range from 0 to 1 GHz. The reflection and transmission 

coefficients of a titanium panel (thickness 1.2 mm) were also calculated using 

the embedded thin film model with a mesh size of 1000 mm. The errors in the 

reflection coefficients are less than 0.00003% while the errors in the 

transmission coefficients are less than 0.4% in the frequency range from 0 to 

10 MHz. The high accuracy in the reflection coefficients is due to the 

requirement that the percentage errors in the transmission coefficients are less 
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than 2%. To examine the efficiency of the embedded thin film model, the 

conventional TLM method was also used to model the CFC panels and 

titanium panel. In order to achieve the same accuracy as that of the embedded 

thin film model, the mesh size of the conventional TLM method was chosen to 

be 0.025 mm (ͳȀͶͲ of the thickness of the single layer thin film or ͳȀ͹ʹ of the 

thickness of the multi-layer thin film or ͳȀͶͺ of the thickness of the titanium 

panel). Since the mesh size of the conventional TLM method is restrictive to 

the thickness of the thin film, while the mesh size of the embedded thin film 

model is determined by the smallest wavelength of interest, the mesh size used 

in the embedded thin film model is much larger than that in the conventional 

TLM method. Therefore, the embedded thin film model is proven to have the 

advantage of saving computational resources significantly, including the 

memory usage and run time. 

As examples of lossless thin films, the frequency responses of an antireflection 

(AR) coating and a fibre Bragg grating (FBG) were investigated using the 

embedded thin film model. For a single layer AR coating in the visible 

frequency spectrum, the errors in the reflection coefficients compared to the 

analytical results are less than 2% when the number of expansion terms is very 

large, i.e. N = 400. It was shown that the embedded thin film model has slow 

convergence in the case of lossless thin films with large electrical length. To 

alleviate this, the cotangent and cosecant expansions used were manipulated so 

that they are centred at desired frequency at which they converge faster. By 

doing so, the number of terms needed to approximate the infinite expansions 

was reduced by 20 times at a desired frequency. However, the downside of this 

modified model is that it works well only for single layer films. The 

transmission coefficients of a FBG structure were also calculated using the 

embedded thin film model. The errors in the transmission coefficients are less 

than 0.2% in the desired wavelength range. The conventional TLM method 

was also used to model the AR coating and FBG structure in order to examine 

the efficiency of the embedded thin film model. In order to achieve the same 

accuracy as that in the embedded thin film model, the mesh size used in the 

conventional TLM method was chosen to be 0.2 nm for the AR coating (5 

times smaller than that used in the embedded thin film model) and 1 nm for the 
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FBG structure (10 times smaller than that used in the embedded thin film 

model). Therefore, the efficiency of the embedded model is validated by using 

a larger mesh size compared to the conventional TLM method. 

In Chapter 5, the thin film model developed in Chapter 3 was extended to the 

two-dimensional (2D) TLM method to account for arbitrary excitations. It was 

firstly used to model the infinitely long thin films at oblique incidence. Here 

thin films were viewed as a 1D model embedded into the TLM algorithm due 

to the introduction of a transverse impedance. The model was then extended to 

include thin films with finite length at arbitrary excitations by using the plane 

wave decomposition theory. It was the first time that the plane wave 

decomposition theory has been combined with the TLM method. In order to 

simulate a plane wave propagating in an infinite space at oblique incidence, 

plane wave excitation methods for both TE- and TM- polarised waves were 

presented.  

After introducing the theory, the accuracy and convergence of the embedded 

thin film model for arbitrary excitations were verified by calculating the 

reflection and transmission coefficients of an infinitely long CFC panels with 

TE- and TM- polarised waves at different angles of incidence over a wide 

frequency range. In the end, the embedded thin film model for arbitrary 

excitations was applied to simulate a CFC panel with finite length with a point 

source excitation. The field propagation in the space with a CFC panel inside 

was shown at a certain time step for each field component. It was shown that 

the shielding performance of the CFC panel with finite length decreases 

rapidly as the distance from the panel increases because the finite length of the 

CFC panel allows the fields to propagate over the panel ends to the other side 

of the panel. In addition, the embedded model for arbitrary excitations was 

proved to have the advantage of saving the computational costs significantly, 

compared to the conventional TLM method. 

In Chapter 6, the embedded thin film model developed in Chapter 3 was 

extended to model curved thin films in the 2D TLM method. Curved thin films 

were firstly linearised using piece-wise segments and then embedded into the 

TLM algorithm. The linear segment may split the link line of one TLM node 
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into two parts, so a three-layer stack was introduced to account for the arbitrary 

position of the linear segment within the TLM mesh.  

The accuracy of the linearisation in the curved structure was firstly validated 

by comparing the resonant frequencies of 2D metallic circular and elliptical 

resonators calculated using the embedded thin film model and analytical 

method. The accuracy and convergence of the embedded thin film model was 

then verified by comparing the resonant frequencies of 2D CFC circular and 

elliptical resonators calculated using the embedded model with those of 

equivalent 2D metallic circular and elliptical resonators calculated using an 

analytical method. Furthermore, the embedded thin film model was applied to 

analyse the shielding performance of a CFC airfoil with the profile of 

NACA2415. It was shown that the shielding effectiveness inside the airfoil 

varies with the position of observation points. It was also noticed that the 

shielding performance of the airfoil become poor at certain frequencies 

because of the resonance effects. In addition, the worsening of the shielding 

effectiveness in the presence of small gaps in the airfoil was also reported.  In 

addition, the embedded model for curved structures was proved to have the 

advantage of saving the computational costs significantly, compared to the 

conventional TLM method. 

In conclusion, an embedded thin film model was developed in the 

Transmission Line Modelling method to solve a particular multi-scale problem, 

i.e. the presence of flat and curved thin film panels in a large space. In the 

presented model, thin films are not discretised so a relative large mesh size can 

be used in the simulation, thus saving the computational resources significantly. 

The accuracy, stability, convergence and efficiency have been validated in the 

one-dimensional TLM method using examples of lossy and lossless thin films. 

The embedded thin film model was also extended to two-dimensional TLM 

method to account for arbitrary excitations and curved thin film structures. The 

accuracy, efficiency and applicability of the embedded model in these two 

cases were validated using several examples. 

It is noted that in the thesis, a significant reduction in the computational costs 

needed in the embedded model is based on the comparison with those needed 
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in the conventional TLM method. It is here emphasised graded and multi-grid 

techniques also reduce the computational costs; however, in these techniques, 

the problem that the time step is determined by the smallest of the mesh size 

still exists. In contrast to this, the embedded model developed in the thesis 

eliminates the need of discretising small features and thus keeps large mesh 

size and hence large number of time steps. 

 

7.2. Future Work 

Throughout the thesis, the embedded thin film model is discussed in the one-

dimensional and two-dimensional Transmission Line Modelling (TLM) 

method. Whilst real three-dimensional (3D) problems can in some cases be 

approximated with equivalent 2D models, the full 3D model may be more 

useful in reality. The embedding of the thin film model in the 3D TLM method 

can be implemented by modifying its connection process as described in 

equations (2-36) – (2-47). The stability graph of the embedded model for all 

kinds of materials is another problem worth exploring. 

To date small features such as thin panels and wires [7.1 ~ 7.2] have been 

embedded in the TLM method. However, this can be extended to include other 

electrically small objects such as bundles of wires, metal tracks on boards or 

small antennas. 

Furthermore, recently a TLM algorithm based on unstructured TLM meshes 

[7.3 ~ 7.4] has been presented. An exciting area would be embedding the thin 

film model into the unstructured TLM method. The difficulty here is in dealing 

with the not-aligned position of the two node centres on both sides of the thin 

film that is imposed by the meshing algorithm. 

In addition, another possible area of future work is the combination of the 

embedded model with a stochastic analysis. The uncertainty in the excitation 

or in material parameters caused by material in-homogeneities or fabrication 

and placement tolerance [7.5], makes the electromagnetic behaviour of the 

material difficult to predict. The perfect example is the placement of a bundle 
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of wires along the fuselage of an airplane for which it is necessary to include 

the stochastic analysis in the simulation [7.6]. Combining the stochastic 

analysis with an embedded model of the airframe may be another interesting 

subject of future work. 
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