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ABSTRACT

Modern electromagnetic problems are becoming increasingly complex and
their simulation must take into account geometrical features that are both large
and small compared to the wavelength of interest. These multi-scale problems
lead to a heavy computational burden in a discretised computational simulation
approach since the small features require fine mesh to be used in the ssmulation,
resulting in large run time and memory storage. To overcome such problems,
this thesis presents an efficient and versatile method for embedding small
features into an otherwise coarse mesh. The embedded model eiminates the
need for discretising the small features and alows for arelative large mesh size

to be used, thus saving the computational costs.

The subject of the thesis is embedding a thin film as a small feature into the
numerical Transmission Line Modelling (TLM) method, although any small
feature with known analytical response can be implemented in practice. In the
embedded model, the thin film is treated as a section of transmission line,
whose admittance matrix is used to describe the frequency response of the thin
film. The admittance matrix is manipulated by expanding the constituent
cotangent and cosecant functions analytically, and then transforming them
from the frequency domain to the time domain using the inverse Z transform
and genera digital filter theory. In this way the frequency responses of the thin
film are successfully embedded into the TLM algorithm. The embedded thin
film model can be applied to both single and multiple thin film layers.

The embedded thin film model has been implemented in the one-dimensional
(1D) and two-dimensional (2D) TLM method in the thesis. In the 1D TLM
method, the embedded thin film model is used to investigate the reflection and
transmission properties of lossy, anisotropic and lossless thin films, e.g. carbon
fibre composite (CFC) panels, titanium panels, antireflection (AR) coatings
and fibre Bragg gratings (FBG). The shielding performance of CFC panels is
also discussed. In the 2D TLM method, the embedded thin film model is
extended to model arbitrary excitations and curved thin films. The

electromagnetic behaviour of infinitely long CFC panels with oblique



incidence and a CFC panel of finite length with a point source excitation are
studied using the embedded thin film model. The resonant effects of CFC
circular and élliptical resonators and the shielding performance of a CFC
airfoil with the profile of NACA2415 are investigated using the embedded
curved thin film model. In addition, the effects of small gaps in the airfoil

structure on the shielding performance are also reported.

All the examples discussed in the thesis have validated the accuracy, stability,
convergence and efficiency of the embedded thin film model developed. At the
same time, the embedded thin film model has been proven to have the

advantage of significantly saving computational overheads.
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1 Introduction

1.Introduction

1.1. Background

Simple electromagnetic problems can be solved analytically using the Maxwell
equations. However, it is difficult to get analytical solutions for the
electromagnetic problems involved in modern complex systems. With
improved computer performance and especially parallel computer architectures,
computer simulations have come to dominate the analysis of electromagnetic
wave propagation through complex geometries mixed material compositions.
Over the years, a number of electromagnetic simulation techniques have been
developed, such as the Finite Difference Time-Domain (FDTD) method [1.1],
the Finite Element Method (FEM) [1.2], the Method of Moments (MOM) [1.3]
and the Transmission Line Modelling (TLM) method [1.4].

The FDTD and TLM methods are numerical full-wave techniques for the
solutions of Maxwell equations in the time domain. At first sight, they offer
significant advantages for dealing with complex geometries in a relatively
straightforward manner. Moreover, as the trend towards wider bandwidth
systems continues, the use of time domain agorithms that can obtain a
response over a range of frequencies in one time domain simulation is very
attractive. Furthermore, in the presence of complex materials, such as non-
linear [1.5] materials, time domain simulations are necessary. However, one
major disadvantage of such numerical techniques is their computational
intensity as they require that the full detail of the geometry of the problem at
hand is explicitly discretised.

The disadvantage of the time domain methods becomes more obvious in a
multi-scale problem, which often exists in practice [1.6]. It is quite common to
have very different physica scales (relative to the wavelength) in the same
problem, especialy in the study of Electromagnetic Compatibility (EMC). For
example, carbon fibre composite (CFC) materials have been extensively used
in the aircraft industries [1.7] due to their high strength-to-weight ratio and

ease of fabrication [1.8], and one key area of research is in the reaction of the

1



1 Introduction

CFC materials used in aircraft to lightning strikes [1.9 ~ 1.12]. The thickness
of the CFC panel used in C-27J aircraft [1.9] is around 1 mm while the
maximum length of the aircraft is around 22 m. The small thickness of the
CFC panel thus needs to be deat within a large problem space. If the
conventional TLM or FDTD method is used to model such a system, the mesh
size should be much smaller than the thickness of the panel in order to
accurately consider its effects. For example, if the mesh sizeis chosen to be 0.1
mm for the whole problem in the 1D TLM or FDTD model, there will be at
least 220,010 nodes in the simulation. If 2D or 3D TLM or FDTD model is
considered, the number of nodes will increase substantially, which results in

huge computational costs, including both run time and memory storage.

One possible method for handling multi-scale problems is to use a non-
uniform mesh [1.6], which alows that the very small mesh is only applied to
areas where the fine features are present, thus maintaining the computational
efficiency. As examples of this technique, the multi-grid or sub-grid technique
has been reported for the FDTD method in [1.13 ~ 1.17] and the TLM method
in[1.18 ~ 1.21]. A hybrid mesh for the TLM method, the hybrid symmetrical
condensed node (HSCN), was also discussed in [1.4] and [1.22 ~ 1.24].
Futhermore, a multi-level Octree mesh has been reported in [1.25] and adopted
in the CST microwave studio software [1.26]. Fig.1 (&) and (b) show the
schematic of a multi-grid mesh and a multi-level Octree mesh, respectively.
The commercial software FEKO adopts variable mesh densities in a single
model to account for the multi-scale problems. Although these techniques
maintain the computational efficiency to a certain extent, they have difficulties
in dealing with power conservation at the interface between the fine and coarse
mesh regions. Furthermore, the time step of the overall simulation is defined
with respect to the smallest mesh size in the problem, still resulting in long run

time.

The aternative method is to use the local solutions embedded in a uniform
mesh [1.6]. Since the electromagnetic response of particular canonical features
within a larger computational environment is often highly locaised, a
specialised model for such features can be developed in isolation which can
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then be coupled to the rest of the simulation through a standardised interface,
thus avoiding the need to discretise within the feature. The specialised model
can achieve a significant reduction in computational costs, not only by
eliminating discretisation within the fine feature but also by permitting a larger
mesh size in the exterior region. The chalenges of this technique lie in

obtaining the local solutions and devising appropriate interfaces [1.6].

@ (b)
Fig.1 (a) A multi-grid mesh and (b) amulti-level Octree mesh from [1.25]

The development of embedded models in both the FDTD and the TLM
methods will be discussed in the next section.

1.2. Embedded Modelsin Numerical M ethods

In this section, the development of embedded models in both the FDTD and
the TLM methods is overviewed first. The magjor achievements of this thesis

are then summarized.

In the FDTD method, severa techniques have been used to obtain the loca
solutions in a uniform mesh, such as the surface impedance boundary
conditions (SIBCs) [1.27], impedance network boundary conditions (INBCs)
[1.28] and effective boundary conditions [1.29].
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Surface impedance boundary conditions were first proposed by Leontovich in
the 1940°s [1.27] and were rigorously developed by Senior in 1960 [1.30].
This technique allows the replacement of lossy dielectric-coated objects or
imperfect conductors with surface impedance boundary conditions, thus
avoiding discretising the objects. It was firstly applied in a frequency domain
analysis [1.31] and then adopted in the time domain method [1.29 ~ 1.38]. The
SIBCs technique was introduced in the FDTD method in the 1990s. Maloney
and Smith [1.32 ~ 1.33] deployed the SIBCs to replace lossy conductors for
reducing the solution space and saving computational costs. It was efficiently
implemented by using the recursive convolution of a series of exponentia
functions to obtain the time domain SIBCs. Beggs et al. [1.34] extended the
constant SIBCs developed for a single frequency to a dispersive SIBCs
applicable over alarge frequency bandwidth. Kellaili et al. [1.35] implemented
an obligue incident angle into the SIBCs for vertical or horizontal polarizations
of locally plane waves. Oh et al. [1.36] presented an efficient implementation
of SIBCs in the FDTD for a lossy dielectric half-space and a thin lossy
dielectric medium. Higher order SIBCs [1.37 ~ 1.40] have a so been devel oped
for the FDTD method to account for 2D and 3D scattering problems involving
a lossy medium. Recently, Santis et al. [1.41] approximated the surface
impedance function of a lossy medium with a series of rational functions by
using the vector fitting (VF) technique, which has the advantage of reducing
the number of poles, thus reducing the order of the rationa functions, for a

limited frequency range while retaining the same order of accuracy.

Since SIBCs are only valid when the skin depth of the panel is much smaller
than its thickness [1.34], the impedance network boundary conditions (INBCs)
were proposed as an extension of SIBCs to account for the case where the
thickness of the panel is comparable to, or smaller than, its skin depth. The
implementation of the INBCs is based on the equivalence of the conductive
shield to a transmission line, represented by a two-port network in terms of an
impedance matrix in the frequency domain. The time domain procedures of
INBCs are developed by algorithms of recursive convolutions. INBCs were
introduced into the FDTD method by Feliziani et.al. [1.28] to analyse the
electromagnetic field around penetrable shield structures. This technique was

4
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then extended to analyse complex shielded problems in the 3D domain [1.42].
It was proven to be more efficient than the sub-cell technique [1.43] in the
FDTD method. INBCs have aso been applied in the FDTD method to analyse
the effects of the electrostatic discharge (ESD) on conductive panels [1.44],
avoiding the large space discretisation required by the standard FDTD method.
Recently, Feliziani et.al. [1.45 ~ 1.46] further developed the INBCs to analyse
the electromagnetic fields around non-perfectly conductive shields. In this new
approach, asimple linear time-invariant (LTI) circuit was used to represent the
frequency-domain admittance matrix of the shield. Its major advantage is that
this circuit is directly analysed in the time domain without using convolution

equations.

In order to model anisotropic carbon fibre composite materials, Sarto et al.
[1.29, 1.47] introduced an effective boundary conditions technique into the
FDTD method, excluding the material out of the discretisation region and thus
saving the computational costs. Their approach was based on the transmission
line formulation of the field propagation equations through the layer. The time
domain formulations were computed from the frequency domain by using
vector fitting procedures [1.48]. This technique is actually another extension of
SIBCs.

In the TLM method, digital filter techniques have been used to obtain local
solutions for a fine feature in a large problem. This technique is now

overviewed.

In order to solve the multi-scale problems in the EMC area, Paul et al. [1.49 ~
1.51] proposed a digital filter technique for the incorporation of fine features
into the TLM method. In this technique, the fine features are represented by
frequency-dependent external or internal boundary conditions. The frequency
domain scattering functions of the boundary can be extracted from a set of data
containing its analytical or measured scattering coefficients by using the Prony
method [1.52]. Its time domain functions are obtained using the bilinear Z-
transform and digital filter theory, which are then implemented in the TLM
method. In the application of this technique, the implementation of the Prony

method is akey part. Since the accuracy of the method depends on the number

5
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of poles used for describing the transfer functions of the digital filters [1.51],
the number of poles must be selected correctly to get an accurate
approximation to a particular data set. The Prony method also involves the
calculation of matrix inversion, which may increase the computation
complexity and cause large computational overheads, especialy for a large
matrix [1.52].

Based on the above techniques, an embedded thin film model in the TLM
method is presented in this thesis to address the multi-scale problems, e.g. thin
filmsin alarge problem space. In this technique, the thin film is excluded from
the large problem and modelled locally without discretisation. It is equivalent
to a section of transmission line, represented by a two-port network in terms of
an admittance matrix. The frequency domain admittance matrix involves the
calculation of cotangent and cosecant functions, which can be approximated by
known analytical expansions in partial fractions. The time domain expressions
are then obtained by using the bilinear Z transform and digital filter theory.
The time domain TLM algorithm includes a scattering process and a
connection process [1.4]. By modifying its connection process, the time
domain expressions of the thin film are embedded into the TLM algorithm.
Unlike other techniques discussed above, this technique does not involve the
calculation of matrix inversion and the choice of the correct number of poles,
which makes it more efficient. Furthermore, the frequency domain equations
of the thin film come from the analytical equations based on the parameters of
the film, not from an approximation based on known data sets, leading to

accurate results.

In this thesis, the embedded thin film model has been applied within one-
dimensional (1D) and two-dimensiona (2D) TLM methods. In the 1D problem,
the model is used to analyse the reflection and transmission properties of not
only conductive panels, such as carbon fibre composite (CFC) panels and
titanium panels, but also dielectric panels, such as antireflection coatings and
fibre Bragg gratings. In the 2D problem, it is extended to analyse the shielding
performance of CFC panels with finite length at arbitrary excitations. In
addition, it is applied to investigate the resonant properties and shielding
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performance of curved CFC structures. Its extension to three-dimensional (3D)

problemsis discussed in the future work.

1.3. Outline of the Thesis
The outline of the thesisis provided as follows.

Chapter 2 reviews the fundamentals of the Transmission Line Modelling
(TLM) method for one-dimensional (1D), two-dimensional (2D) and three-
dimensional (3D) problems. Stub technique and generalised condensed node

are described as ways of modelling material parameters.

Chapter 3 presents detailed derivation of the embedded thin film model in the
TLM agorithm. The embedded model for single layer thin films is introduced
first. Its implementation starts with the analytical expansions of the cotangent
and cosecant functions in the admittance matrix of the thin film, which are then
transformed from the frequency domain to the time domain, using the inverse
Z transform and general digital filter theory. The thin film model is embedded
between TLM nodes by modifying the TLM’s connection process. Based on
the single layer thin films, an embedded model for multilayer thin films is
derived. According to the admittance matrix of each layer, a linear matrix
equation is formed to describe the scattering properties of the multilayer thin
film, which is solved using a Gauss-Seidel method. Furthermore an anisotropic

thin film model isintroduced at the end of this chapter.

Chapter 4 demonstrates the applications of the 1D TLM method with
embedded thin film model. Both lossy and lossless thin films are considered.
As examples of lossy thin films, the reflection and transmission coefficients of
severd different CFC panels and titanium panels are calculated using the
embedded model and compared to analytical results. Furthermore, the model is
applied to investigate the shielding performance of CFC panels. As examples
of lossless thin films, the reflection coefficients of an antireflection (AR)
coating and the transmission coefficients of a fibre Bragg grating (FBG) are
also computed using the embedded model and compared to the analytical

7
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results. These examples are used to investigate the accuracy, stability,
convergence and efficiency of the embedded thin film model in the 1D TLM
method. Furthermore, the advantages of the embedded model over the
conventional TLM method are elaborated by comparing the computational
resources used by both methods.

Chapter 5 describes the embedded thin film model for arbitrary excitations in
a 2D TLM method. The embedded model developed in Chapter 3 is first
applied to model an infinitely long thin film at oblique incidence. Here the thin
film is seen as 1D model embedded between 2D TLM nodes due to the
introduction of a transverse impedance. The model is extended to include thin
films with finite length at arbitrary excitations by using the plane wave
decomposition theory. In order to simulate a plane wave propagating in an
infinite space at oblique incidence, plane wave excitation methods for both TE-
and TM- polarised waves are presented. After introducing the theory, the
accuracy and convergence of the embedded model for arbitrary excitations are
examined by calculating the reflection and transmission coefficients of
infinitely long CFC panels with TE- and TM- polarised wave excitations at
different angles of incidence over a wide frequency range. In the end, the
embedded model is applied to model a CFC panel of finite length with a point
source excitation. The effects of the finite dimensions of the CFC panel on the

electromagnetic field propagation are discussed.

Chapter 6 extends the embedded model to the case of curved thin filmsin a
2D TLM method. Embedding of the curved thin filmsin the TLM agorithm is
done firstly, by approximating the thin films using a piece-wise linearisation
and secondly, embedding the linearised segments between adjacent nodes,
where a three-layer stack is introduced to allow for arbitrary model placement
between the nodes. The convergence and accuracy of the embedded curved
thin film model are investigated by calculating the resonance frequencies of
infinitely-long, hollow, CFC circular and elliptical resonators and comparing
them with those of the equivalent metal circular and elliptical resonators.

Furthermore, the model is applied to analyse the shielding performance of a
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CFC airfoil with the profile of NACA2415 [1.53]. The impact of small gapsin
the airfoil structure on its shielding performance is also investigated.

Chapter 7 provides the main conclusions of the thesis and discusses its

possible applications in three dimensional (3D) problems for future

devel opment of this work.
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2 The Transmission Line Modelling (TLM) Method

2.The Transmission Line Modelling
(TLM) Method

2.1. Overview

This chapter presents the basis of the Transmission Line Modelling (TLM)
method that is founded on the analogy between the propagation of the
electromagnetic fields and circuit networks. The TLM method [2.1] is atime-
domain numerical method that solves the differential form of Maxwell’s
equations. It has been widely used in microwave applications [2.1 ~ 2.4] and
THz applications [2.5 ~ 2.6]. Its implementation for the one-dimensional (1D),
two-dimensional (2D) and three-dimensiona (3D) problems in free space is
presented. Thisisfollowed by an overview of methods for modelling materials
parameters different from free space by using (i) a stub technique and (ii) the
condensed node model. These methods will be used in the thesis to model the

background materials surrounding the thin films.

2.2. Analogy between EM Fields and Circuit
Networks

All classical electromagnetic phenomena can be described by Maxwell’s

equations[2.7]:
7B o B
ot
VxH=] 9D
X _]+E' (2-1)
V-sz,
V-B =0,

15



2 The Transmission Line Modelling (TLM) Method

where the symbols E,D,HB,J represent the vectors of the eectric field
intensity, the electric flux density, the magnetic field intensity, the magnetic
flux density and the current density, respectively, and p is the scalar electric
charge density.

The following constitutive relations [2.7] are assumed,

D = ¢E,
_ 2-2
T (2-2)

ool

where u and € are the permeability and permittivity of the medium.

In Cartesian coordinates, after expanding the vectors E and H usi ng the above

constitutive relations, the first two equations in|(2-1) {become:

0E, OE, 9H,
ay oz Hac’
dE, OE, 0H,
9z ox . Mot (2-3)
0E, OE, 0H,

ox 0y BT

0H, 0H, OE,
oy oz P tEg
oH, 0H, dE,
9z  0Ox =Jy +€?’ (2-4)
OH, 0H, _ OE,

ax oy e

If a one dimensional problem is considered (aa_x = O,% = 0), equations|(2-3)

and|(2-4)|reduce to,

dE, oH,
"oz T Mar 9)
OE, 0H,
7z =—Uu 7’ (2'6)
oH, OE,
T e @D

16



2 The Transmission Line Modelling (TLM) Method

OH, OE,
AT @8

Equations|(2-5)|and|(2-8) |have the same form as equations|(2-6)|and|(2-7)| The

two pairs of equations are independent of each other, so here the solutions of

(2-6)|and|(2-7)|are considered.

Combining|(2-6)|and|(2-7)| the following equation is obtained,

P, _ 0 s
022 Moz TH G

(2-9)

Applying Ohm’s Law (J, = 0,E,) [2.7] to equation |(2-9)| where g, is the

electrical conductivity of the medium, gives,

0%, _ 0%, OE 10
922 Moz THIe G (2-10)

Equation|(2-10)|is the one-dimensiona (1D) wave equation that describes the

propagation of the electric field component E, along one-dimension.

At high frequencies, propagation of the electromagnetic signals along the
transmission line can be described using a transmission line model. In a

transmission line model, the short length of the transmission line, dz, is

developed using the circuit shown in|Fig. 2-1| where R, G, L and C are the

series resistance, shunt admittance, series inductance and shunt capacitance per

section of length dz, respectively.

Applying Kirchhoff’s voltage and current laws [2.8] to the circuits shown in

Fig. 2-1{ two eguations are obtained as follows,

dZ& = —La - lR, (2-11)
p di _ Cav G
Zaz = 9t v, (2-12)

where both transient voltage (v) and current (i) are functions of z.
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i(z,t) L i(z+dz,t)
O] 0
R C
j— G
V(z,1) v(z+dz,t)
% g
dz

Fig. 2-1 Section of atransmission line.

When the current (i) is eliminated between equations|(2-11)|and((2-12)| the

equation for the voltage (v) is expressed as,

0%v GR 1 v LC 0%v

0
022 (dz)? vt (dz)? (GL+RC) at * (dz)? 9t (213)

Similarly, when the voltage (v) is eliminated, the following equation for the

current (i) is obtained,

L GR L1 ey, LC O
922 (d2)?' T ([d2)? 3t " (d2)? ot (2-14)
Assuming R = 0, equation((2-13)|becomes,
0%v _ GL 6v+ LC 0%v
922 (d2)20t | d2)? ot2 (2-15)

Comparing equations|(2-10)|and|(2-15)| both of which are repeated below for

convenience, it is found that they have the same form,

92E, 92E, dE,

= + —_,
9z2 Moz THIeT;

azv_ LC 62v+ GL 0v
0z2  (dz)?dt2  (dz)?at’

so that the following equivalences can be made,

C L G

UHEX,EHS, o 0,

dz M az T 0%
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Similarly, it is observed that the equations describing the behaviour of the

magnetic field H,, and the current i have the same form and so the following

equivalence exists,

l<—>Hy.

These equivalences show that the wave propagation can be modelled using
transmission line equivalent circuits, providing that a suitable mapping

between line parameters and the propagation medium is made.

2.3. The Transmission Line Modeling (TLM)
Method

As discussed in the previous section, the Transmission Line Modelling (TLM)
method is based on the analogy between the propagation of the
electromagnetic fields and the behaviour of voltages and currents on a
transmission line. Unlike the Finite Difference Time Domain (FDTD) method,
which is an approximation of derivative terms using finite differences in
Maxwell’s equations [2.9], the TLM method is a wave physical model, which
propagates signals along a network of transmission lines. Another important
difference is that the FDTD method has to satisfy the Courant condition for
stability [2.10], whilst the TLM method is unconditionally stable.

The TLM method discretises the modelling space using a mesh of transmission
lines, connected at nodes. The field is represented using voltage wave pulses
which propagate and scatter through the mesh a every time step. Its
implementation can be algorithmically separated into several stages namely:
initialization, calculation of the voltages at al nodes, scattering and connection
processes, and boundary conditions setup [2.1]. Initidlization defines the
sources and initial wave values; the scattering process determines the reflected
voltage waves at al nodes and the connection process obtains the new values
for the incident voltage waves at all nodes by exchanging the voltage waves
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between adjacent nodes. Boundary conditions define the modelling space, for

example, by providing conditions representing outgoing waves.

In the following sections, the implementations of the one-dimensional (1D),
two-dimensional (2D) and three-dimensional (3D) TLM models are discussed
separately in terms of the scattering and connection processes.

2.31. 1D TLM Mod€

Based on the equivalence between electromagnetic fields and electric circuits,
as discussed in section 2.2, the parameters of free space are modelled by the

inductance and capacitance of the transmission line as follows,
L= Ho - dZ, C = & dZ' (2'16)

where u, and g, are the permeability and permittivity of free space, L and C
are the inductance and capacitance per length of the transmission line,
respectively, and dz is the mesh size. The modelling of material parameters

different from free space is described in section 2.4.

The transmission line is characterised by the characteristic impedance as [2.1]

Zy=+L/C. (2-17)

The time step, At , is the time the voltage takes to propagate through a section
of transmission line of length dz. It is aso related to the inductance and

capacitance as follows,

dz
At = —=VIC, (2-18)

where c isthe velocity of the wave propagation in free space and is given by,

(2-19)

c=1 — dZ/ _
JL/dz-C/dz VLC
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Fig. 2-2|shows two sections of transmission line connected at node n. In|Fig.

2-2| V., is the total nodal voltage a node n, VL, and VR, are the incident

voltages from the left and right side of node n, respectively, and VL,,” and
VR, are the reflected voltages from the left and the right side of node n,

respectively.
] i i i
P R,y Koy —% | VR, VL, ----> A
A A \
V., Z, v, Z, V..,
- — o — . <:> _____ — — o — -
n-1 = VR n-1 VL n n VR n VL ntl n+1
dz dz

Fig. 2-2 Two sections of |ossless transmission line connected at node n.

The total voltage at node n at the time step k is a sum of incident and reflected
voltages calculated as,

WV = VL' + VR, (2-20)

In the scattering process, the reflected voltages at node n at the time step k are

obtained from the incident voltages as,

WV = Vi — (VL

) (2-21)
kVRnr = Vo — kVRnl-

In the connection process, the reflected voltages from node n become incident

voltages on the adjacent nodes at the next time step, k+1, as,

k+1VRn' = Viget”, (2-22)

k+1Vin' = kVRy1". (2-23)

Following an initial excitation and imposing proper boundary conditions [2.1],
these three processes are repeated at each node for the desired number of time

steps.
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2.3.2. 2D TLM Model

In the 2D TLM model, two different nodes are used to model free space [2.1]:
the series node shown in|Fig. 2-3|(a) and the shunt node shown in|Fig. 2-3|(b).

For the waves propagating in the z direction, the series node is used to model
the TE modes with the field components E, E,, and H,, while the shunt node

is used to model the TM modes with the field components H,,, H,, and E,,.

s ez / oz

lr/v " X
Z : Z

“ 4 ! @ ! }4 / Z, V Zs /

— @) / (b)

Fig. 2-3 (a) The 2D series TLM node and (b) the 2D shunt TLM node.

The 2D series TLM node

As shown in|Fig. 2-3|(a), four sections of transmission lines of characteristic

impedance Z;; are connected in series [2.1]. The characteristic impedance Z;
is Zy, = Zo/N2, and the time step is At = dl/(v2¢), where dl is the mesh

size.

The voltages and currents at node (n,, n,), wheren, = x/dl,n, = y/dl, a

the time step k are calculated as,

[ = Vi V= WVs = Vs

Vit Vi Vi+ Vi (2-24)
ki + kY3 k2 + KV,

ka= 2 ’ kllyz 2 ’
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where I, V, and V, are the current in the z direction and the voltages in
the x and y directions, respectively. Voltages V¢, V4, V4 and V) are the
incident voltages at the ports 1, 2, 3 and 4 of node (n,, n, ), respectively.

According to the voltages and currents at node (n,,n,), the corresponding

electric and magnetic field components can be obtained as follows,

I; Ve Yy (2-25)
Hy=2E,=-2E,=-2
2TAUTET AU Y T dl

The scattering process calculates the reflected voltages at all nodes, which can

be expressed in terms of a scattering matrix as,
W' =S8V (2-26)

where

. . , , T
W=V RV VE W VE]

kKr = [kV1r szr kV3r kV4r]T'

(2-27)
11 1 -1
O PR |
S=05-1% " 171 1)
1 1 11

and the superscript T indicates the transpose operator.

The connection process is an exchange of the voltages between the adjacent

nodes, which is expressed as,

eVl (nony) = Vi (ng,my = 1), (2-28)
eV (nemny) = V1 (g my + 1), (2-29)
kaVs(nwmny) = WV (ne — 1,my), (2-30)
kVi (o ny) = V3 (nye + 1,ny). (2-31)
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The 2D shunt TLM node

The shunt node is shown in|Fig. 2-3|(b), where the characteristic impedance of

each transmission line is expressed as Z;, = V2Z, [2.1] and the time step
At = dl/(N2c¢).

In the shunt node, the voltages and currents at node (n,, n,) at the time step k

are calculated as,

Wi+ Vi G VE+ Vi

2 )
L Wi — Vi L Wi — (Vi
kix ZTL »  kly ZTL )

(2-32)

where ,V;, (I, and I, arethe voltagein the z direction, the currentsin the x

and y directions, respectively.

According to the voltages and currents at node (n,,n,), the corresponding

electric and magnetic field components can be obtained as,

Ve Iy I (2-33)
E, =~ Hy=——Hy=—.

The scattering process is similar to that for the series nodes as in equation

(2-26)| but with the scattering matrix S of the form,

-1 1 1 1
1 1

1 -1 1] (2-34)

1 1 -1

The connection process for the shunt nodes is the same as that for the series
node as in equations|(2-28)1(2-31)
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2.3.3. 3D TLM Model

The scheme of a 3D TLM node is shown in|Fig. 2-4 The node is known as
symmetrical condensed node (SCN), first described by Johns [2.11], and is a
mixture of both series and shunt nodes representing both polarisations. The
SCN node has 12 ports as shown in[Fig. 2-4

The characteristic impedance of each transmission linein the nodeis Z;;, = Z,
and thetimestepisAt = dl/2c .

v7
V12

e

A A
/}/

V10

Vil

V8 X

V5

Fig. 2-4 A 3D symmetrical condensed node (SCN).

There are a total of 12 incident voltages and 12 reflected voltages, so the
scattering matrix S isa 12 x 12 matrix and is given by [2.1],
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0O 1 1 0 0 0 0 0 1 0 -1 0
1 00 0 0 1 0 0 0 -10 1
100 1 00 0 1 0 0 0 -1
00 1 01 0-10200 1 0
0O 00 1 01 0-101 0 0
¢ 10 1 00101 0-100 0
2"2l0 0 0 -1 0 1 0 1 0 1 0 O (2-35)
001 0-10100 0 1 0
1 000 0-100 0 1 0 1
010 0 1 0 1 0 1 0 0 O
10 0 1 00 0 1 0 0 0 1
01 -10 0 0 0 0 1 0 1 0

Asin the 1D and 2D models, the connection process assures TLM continuity.

It builds the following rel ations between the neighbouring nodes,

K1V (o ny,m) = Vo" (e, my,my, — 1), (2-36)
ke1Vo' (M ny,ng) = Vo' (e my,my, + 1), (2-37)
kraVa' (o ny,n,) = (Vo' (e my, m, — 1), (2-38)
ke1Ve' (o ny ) = Va7 (g my,my + 1), (2-39)
kiVi (nuny,n,) = Vi (neny, — Lny), (2-40)
ke1Viz (nonyn,) = (47 (neny + 1,my), (2-41)
ke1Vs' (e ny,n) = V5" (e my — 1,my), (2-42)
kiVs (e ny,ny) = 1 Vs (e ny, + 1,1n,), (2-43)
ki1Vs (e ny,n,) = (Vi "(ny — 1,ny,my), (2-44)
k¥ (g, n,) = (Vs (ny + 1,ny, 1), (2-45)
ke1Vs (Mmny,m,) = (Vi (ny — 1,my,my), (2-46)
kr1Vio' (o ny,ng) = Ve (e + 1y, 1), (2-47)
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2 The Transmission Line Modelling (TLM) Method

The 1D and 2D TLM models will be used to model free space surrounding the
embedded models of thin films that are developed in the work described in this

thesis. The 3D mode is shown here for completeness.

2.4, Modelling Material Properties in the TLM
Method

Since the velocity of wave propagation depends on the medium parameters, it
is impossible to model change in medium parameters in the same problem by
simply adjusting the circuit parameters locally [2.1]. This is because al
incident voltages have to arrive at nodes at the same time irrespective of
medium they propagate in. Therefore it is necessary to maintain the same
discretisation and the same time step throughout the problem. For this purpose,
the stub technique [2.1] and the condensed node [2.12] have been developed to

model the media with different material constituent properties.

In this section, the stub technique and the condensed node are introduced and
their implementation in a 1D TLM method is described.

2.4.1. The Stub Technique

When modelling problems containing different media, extra inductance
(representing permeability) and extra capacitance (representing permittivity)
can be introduced in the form of a stub [2.1], in order to maintain both

connectivity and synchronism.

For example, the dielectric medium can be modelled by adding an extra

capacitance in the TLM model.|Fig. 2-5|shows the extra capacitance C, as an

open circuit stub that is connected a node n in a 1D TLM model. The
characteristic impedance of the capacitance, Z.., isgiven by [2.1],

At
Zc = Z_CS (2-48)
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Z . can be expressed in terms of the characteristic impedance of free space, Z,,
as[2.6],

2xe’
where y, = &, — 1 isthe electric susceptibility of the medium.

Cc

(2-49)

Z
" o/c stub
e - A /O o L
W/ \J A
ZO ZO
I’l—] n I/H-]

Fig. 2-5 A capacitive stub connected at nodenin alD TLM model.

Due to the presence of the stub, the total nodal voltage of node n at the time
step kis expressed as,

WL+ VR + 2y W VC,E
1+ yx,

k Vn = ) (2' 50)

where ,VC,' represents the incident voltage at the time step k to the capacitive
stub.

Then the scattering processis given by,
Win' = (Vo= VL',
WVRy = Vo — VR, (2-51)

VG = 1V — VG,

where .V, represents the reflected voltage at the time step k from the

capacitive stub.

The connection process for the node is the same as in equations|(2-22)| and

(2-23)| and the connection process for the stub is given as,
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k1 VG = VG, (2-52)
since the capacitive stub is an open circuit stub.

This is the 1D implementation of the stub technique used to model the
permittivity of the medium. A similar method can be used to model the
permeability of the medium. This technique can also be extended to 2D and 3D
TLM models. The details of the extensions can be found in [2.1].

Janyani [2.6] developed the stub technique to model instantaneous nonlinear
materials by employing a Kerr model of nonlinearity for the 1D case. The stub
technique was further developed to model the dispersive nonlinear dielectrics

using a more physically based Duffing equation [2.6].

2.4.2. The Condensed Node

Paul [2.11] developed his condensed node to model material parameters
different from free space. This model employs discrete signal processing
techniques to incorporate Maxwell’s curl equations and the constitutive
relations into the TLM algorithm. This technique is intuitive, flexible and
transparent [2.12].

Fig. 2-6|shows a 1D condensed node with two ports (V, and V5) and two total

field quantities (E, and H,). Noted here that Paul’s port numbering system is
adopted, which is different from that used in section 2.3. The space stepsin the
node are assumed to be the same Ax = Ay = Az = dl. Its implementation is

based on the field-circuit equivalence and normalization process.
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z

y C
L, | y

Ax

Fig. 2-6 A 1D condensed node describing propagation in x from [2.12].

The compact form of Maxwell equations described in [2.12] is asfollows,

VxH

~VXE (2-53)

poH + poxm * H

]ef] lae*E sOE+eo)(e*El
Jms ot

Where];: and]:f) are the free éectric current density and magnetic voltage

density, a,, is magnetic resistivity and y,,, isthe magnetic susceptibility.

Equation|(2-53)|can be ssmplified in 1D as[2.12]

d [HZ] ]efy] [ae*E [eoE + EoXe * ]
X Ey mfz om * H, at woH, + poxm * HyI’ (2-54)

where /., and J,, ¢, are the free electric current and magnetic voltage densities

iny and z axis, respectively.

The quantities in equation|(2-54)|are normalized as

W I [
E =—2 H =—2_—-__%2
YT T Tdl dlzy
I i %
Sy _ fy _ fz
]efy dlz dlz 'Zo’ ]mfz - = diz’ (2-55)
_ Ye _Tm'ZO
O, = :

dl-Z," "™ = Tl

By applying the field-circuit equivalence and the normalization process, the

transmission line model of equation|(2-54)|is found as[2.12]
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el el
-— V] [sz i B Ny (2-56)

Where% = aa—x -dl and § = s - dt, with s being the Laplace variable.

Stokes’ theorem is applied using the integration contours C,, and C, indicated

in|Fig. 2-6{ so equation|(2-56)|becomes,

R T e P
rm Z

Vrz iy + Xm iy (2-57)
where V, and V5 are the total voltages on both sides of the node.
Equation|(2-57)|is further converted to the travelling wave format as

Va+Vs]' [y V21 [9e V1. _[Vy+xe Vi
it I 7 B P R !
sz I, Tm " 1, Iz + Xm 1z (2 58)

where V} and V¢ are the incident voltages on the both sides of the node.

The left side of equation|(2-58)|is seen as the external excitation of the node,
which is defined as the reflected fields [2.12], so equation|(2-58)|becomes

2] =[] [ F) s e (259)

By defining transmission coefficients t,, = 2/(2 + g. + Sx.) and tp, =

2/(2 + 1y, + Sxm), equation|(2-59) |becomes

=[5 o5 (2-60)

If the material has constant parameters, equation |(2-60)| can be solved by

introducing the Z-transform with s replaced by Ait 1-zYH/1+zYHas

[E]Z[Tgy T:Z] (2 [sz’rr]”_l [g,iy]) (2-61)
=22+ e [F) (2-62
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where
Tz = 2+ Tm + ZXm)_1' Kmz = _(2 + T — ZXm)'
T, = (2 + ge t ZXe)_1' Key = _(2 + ge — ZXm)-

Fig. 2-7|shows the equivalent circuit of a 1D condensed node. Its scattering

process can be expressed in terms of the voltage V,, and the current i,
VI] Wi Vs
vl T v, + i, - Vi) (2-63)

where V" and V" are the incident and reflected voltages from both sides of

the node, which are corresponding to VLY and VR in equation((2-21)

Its connection process is the same as in equations|(2-22)|and|(2-23)

v, ( 2V

Fig. 2-7 The equivaent circuit of a 1D condensed TLM node.

The extensions of the condensed node in the 2D and 3D TLM can be found in

[2.12]. Through modification of the transmission coefficients t,, and t,,, in

equation|(2-60)| the condensed node can be applied to model the frequency-

dependent, nonlinear and anisotropic materials. The details are discussed in
[2.13~2.15].

Both the stub technique and the condensed node are used in this thesis to

model materials different from free space, which are surrounding the thin films.
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2.5. Conclusions

This chapter introduced the Transmission Line Modelling (TLM) method.

Based on the field-circuit equivalence, the procedures for modelling free space
using the 1D, 2D and 3D TLM models were firstly described. Stub techniques

and the condensed nodes were then overviewed as methods of modelling

material parameters different from free space.

In the next chapter, the methodology for embedding single and multiple layers
of thin film within the coarse TLM mesh is described.
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3. Time Doman Embedded Thin
Film Modd

3.1. Overview

Thin films can be made of layers of a wide variety of materias including
metals, insulators and semiconductors. They may be electrically conductive or
non-conducting, optically transparent or opague. The thickness of thin filmsis
often much smaller than the wavelength of interest, ranging from fractions of a
micrometre to several millimetres. Thin films have a wide range of
applications in the optics [3.1 ~ 3.2] and Electromagnetic Compatibility (EMC)
[3.3 ~ 3.6], as they can manipulate polarisation, reflection, transmission and

absorption of light.

To successfully engineer and innovate products and technologies
encompassing electromagnetic phenomenad it is critica to deploy accurate and
efficient simulation and design tools. As discussed in Chapter 2, the
Transmission Line Moddling (TLM) [3.7] method, as a time domain
simulation technique, provides a powerful and general technique upon which
to base such design software.

In the TLM method, generating a suitable mesh is by no means atrivial task in
its own right. Moreover the use of very small computational nodes resultsin a
very large memory and run time overhead [3.7]. Because the thickness of the
thin film is usualy the smallest feature in the problem and much smaller than
the wavelength of interest, the TLM mesh size needs to be significantly small
to allow for at least one node within the film (as shown in|Fig. 3-1((a)). That

not only increases the total number of nodes required, but aso sets the
maximum time step for the time-stepping evolution to become prohibitively
small, which result in increasing of the total number of time steps needed to
achieve a particular frequency resolution. In summary, the presence of a thin
film generaly leads to very fine mesh that needs to be run for more time steps.
The use of non-uniform meshing [3.8], for example by means of multi-
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3 Time Domain Embedded Thin Film Modél

gridding, alleviates this problem as it allows locally a fine mesh to be used
only where they are truly needed, thus reducing the node count. However, the

problem that the time step is determined by the smallest mesh size remains.

To overcome this problem it is expedient to recognise that the electromagnetic
response of the thin film within a larger computational environment is highly
localised. This means that a specialised model for such features can be
developed in isolation, which can then be coupled to the rest of the smulation
through a standardised interface, which avoids the need to discretise within the
thin film.

One possible method for embedding thin films into the TLM agorithm is
modifying its connection process. If, for example, a pair of nodes lies on
opposite sides of a physical dielectric material boundary, the connection
process is no longer a simple exchange of values, rather the reflection and
transmission formulae for normal incidence on a dielectric interface come into
play. It can be observed that the connection process described above in the
case of a dielectric boundary is a simple illustration of how the known
localised behaviour of a physical feature is embedded into the TLM a gorithm.
Indeed this inter-node connection behaves like a junction between two 1D
transmission line circuit elements, each of whose parameters depends
straightforwardly on the bulk material properties of the node from which it
originates. This also provides a perfect opportunity to introduce thin film
models: if the thin film is geometrically inserted between two layers of nodes it
is only necessary to replace each one-dimensional (1D) transmission line
junction, involving the dielectric interface reflection and transmission formul ae,
with those appropriate for the pair of lines joined through a circuit element
whose response mimics the locally 1D behaviour of the thin layer. Thus the
thin film need not be meshed as in|Fig. 3-1|(b); it is now only defined by a
section of transmission line. Its frequency dependent characteristics can be

described by its admittance matrix, which connects the voltages and currentsin
both sides of the thin film. Since the TLM method operates in the time domain,
the admittance matrix of the thin film should be transformed to the time
domain in order to be embedded within the TLM agorithm. Therefore, an
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inverse Z transform, general digital filter design and implementation
techniques are adopted to transfer the frequency response of thin films to the
time domain and then embed the time domain response within the mesh.
Therefore the time step can be chosen according to the frequency of interest

and not the restrictive fine features.

THIN FILM THIN FILM
Without
Miesh Meish Miesh Mesh Mesh Mesh
€ (b)

Fig. 3-1 (a) Modelling athin film using conventional TLM (b) The embedded
time domain thin film model.

In this chapter, the derivation of this specialised model for severa thin film
configurations, including a single-layer thin film model, a multilayer thin film
model and an anisotropic thin film model, is demonstrated based on the inverse
Z transform, general digital filter design and implementation techniques. The
applications of these thin film models embedded between 1D and 2D TLM

nodes will be discussed in the following chapters.

3.2 Single-Layer Thin Film Model

Consider athin film which is assumed to be infinite in length and width, and of
thickness of d. It can be viewed as a section of transmission line of length d.

With the voltages and currents on the two sides of the film, it becomes a two-

port network, as shown in[Fig. 3-2
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I Thin Film I

Fig. 3-2 Transmission Line Model of athin film.

According to network theory [3.9], the admittance matrix of the film is given
by,

(11) _ (Ycot@ — chc@) <V1>
I, I\ _veseo veoto)\V,) (3-1)

where Y is the characteristic admittance of the film and 8 is the electrica

length of the film which can be expressed as
6 = wdVLC,Y =.,/C/L, (3-2)

where w is the angular frequency and C and L are per unit length capacitance

and inductance values of the thin film, respectively.
For general materials, L and C can be expressed by [3.7]

_ 2 9m o O
L—ﬂ+jw,C—€+jw, (3-3)

where y, €, 0,, and o, are the permeability, the permittivity, the magnetic
resistivity and the electric conductivity of the material.

This two-port transmission lineisinitially considered to be embedded between
two adjacent 1D TLM nodes, as shown in|Fig. 3-3|(a).

In|Fig. 3-3|(a), VR, and VR, are the incident and reflected voltages of the right

side of the TLM node n, while VL! ., and VL., are the incident and reflected
voltages from the |eft side of the TLM node (n+1), respectively. Vi and V; are
the incident and reflected voltages at port 1, while V} and VJ are the incident
and reflected voltages at port 2, respectively. The voltages of both ports have
the following relations with the TLM nodes’ incident and reflected voltages,

Vi = VR, , Vi" = VR, Vo' = Vigs", Vo' = Vinys'

38



3 Time Domain Embedded Thin Film Modél

1 ' i
TLM VR,'! V, Vo' VL, TLM
P e o el o —> 5 T
1
< I
YI VR Vi | THINFILM | vy typ ¢ ¥2
— > ! - ) - —
° Pqrt 1 Port 2 °
rt nt
node n SN °1” node (n+1)
(a)
Yi e oo - h

2V, TC) ; THIN FILM E C) Tzvzi

noden .- - node (n+1)

Fig. 3-3 (a) A thin film embedded between two 1D TLM nodes and (b) its
Thevenin equivalent circuit.

From|Fig. 3-3|(a), the reflection coefficient R and the transmission coefficient

T of the thin film are defined in terms of the incident and reflected voltages as,

4

R= 7% (3-4)
VT'

T=5 (3-5)
Vl

The embedding of the film requires that at each time step the reflected voltages
on both ports need to be solved in terms of both the incident voltages from the

adjacent TLM nodes and the film characteristics.

Because of the embedding of the film into two adjacent TLM nodes n and
(n+1), the equation (2-22) for the node n and the equation (2-23) for the node

(n+1) in the connection process should be modified.

Fig. 3-3|(b) shows the Thevenin equivaent circuits of the node n and (n+1)

that are driving the thin film. Considering the admittance matrix of the film

(equation((3-1)), the following relations are obtained,
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<2ylvﬁ> = (lreo MM _pn()) e

2y,V,t)  \jYcsc  y, —jYcotd) \V,
where y; and y, are the characteristic admittance of the TLM nodes on the left
and right sides of the thin film, respectively, and the matrix [M] is defined for

future convenience.

Multiplying the left and right sides of equation |(3-6)| with [M]~?, the total

voltages can be expressed by

. V.
(1y2 +YY = jY (y1 + y2)cotd) (V;)

(yz — jYcotO —chscG) 2y1V1i
—jYescO  y, —jYcotb )\ 2y,v,t )

(37)

The aim isto solve V; and V, from equation|(3-7)| Then the reflected terms are

given by

(1) = () - Gﬁ) 39)

Equation|(3-7)[can be separated into two equations for /; and V,, respectively.

(y1y2 +YY = jY(y1+y;)cot0) -V,
= (2y1y; — 2y1jYcotb) - Vi — 2y, jYcsch - V3,
(y1y2 +YY = jY(y1+y2)cotf) - V;
= —2y, jYcsc - Vi + 2y vy, — 2y,jYcotB) - V..

(3-9)

(3-10)

In the above equations [(3-9)| and |(3-10)| al voltages are defined in the

frequency domain whilst the TLM method is operating in the time domain. In
order to connect the equations|(3-9)|and|(3-10)|with the TLM algorithm, they

have to be transformed into the time domain. For this purpose an inverse Z-
transform [3.10] is used.

It is noted that in equations|(3-9)|and|(3-10)| cotangent and cosecant functions

are given in terms of frequency, which are difficult to be transformed directly
to the time domain. Thus the expansions of the cotangent and cosecant

functionsin partial fractions are considered.
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According to [3.11], the cotangent and cosecant functions can be expanded as

infinite summations, so that the following equations are obtained,

jYcotd _]f< +20 Z e k2n2>' (3-11)
k
Yescl = j f ( 426 2 92( 2%2) (3-12)

Since & = wd+/LC, the expansions|(3-11)|and|(3-12)|can be changed to the s-

domain first, using s = jw,

N=oo
_ 1 1
JYeoth = =g — st Z S?d2LC + k2’ (3-13)
. (-1)*
jYcsc = —— — 2sCd 2 TALC + k2l (3-14)
Next, by setting
2 1—-2z71
“At 14zt (3-15)

equationg|(3-13)|and|(3-14)|are transferred to the Z-domain as required.

After replacing the cotangent and cosecant functions with the expansion

summations|(3-11)(and|(3-12)|and transferring them to Z-domain, equations
(3-9)[and|(3-10)|have the form

Pi(z) _ i
L 0:(2)” @)= _ S:(2) x(2), (3-16)

where P;(2),Q;(z),R;(z) and S;(z) ae first-order or multiple-order
polynomialsin z, and x(z) and y(z) are the input and the output of the system,

respectively.

For the right side of equation|(3-16)| each term R;(z) /S;(z) can be seen as the

transfer function of a digital filter. Assuming its output isw;(z), the digital

filter can be expressed as,
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Ri(2)
5. x(z). (3-17)

w;i(z) =

The summation of al the terms in the right side of equation|(3-16)|can be

viewed as the parallel combination of a number of first- or multiple-order

digital filters as shown in|Fig.3-4{ in which w(z) is the overal output of the

system.
Digital Filters
wi(2)
> R,(2)/S,(2) >
w(2)
"y > Ra(2)/S:(2) >— (@)
Ha @
o
[ J
[ J
> R(2)/S,(2) 2

Fig.3-4 The paralel combination of a number of digital filters.

According to digita filter theory [3.12], the overal output of the parallel
combination of digital filters equals the summation of the output from each
filter. It can be expressed as,

R;
w(z)=Zwi(Z)= . %x(z)- (3-18)

Therefore, the output of the right side of the equation|(3-16)|can be obtained by
calculating the output of each term first and then summing them together. For

each term, an inverse Z transform is used to obtain the output in the time
domain.

For example, a transfer function of the second order (Biquad) digita filter has

the following form,
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Ri(Z) _ Ail + Al'ZZ_l + Ai3Z_2

5:2) " Byt Buz + Bz’ (319
where A;4, A2, Ais, Bi1, Biz and B;3 are known coefficients,
The output w; (z) of thisfilter in the Z domain is given by
A + Azt + Az™?
wi(z) = - x(2). (3-20)

Bil + BiZZ_l + Bi3Z_2

Using an inverse Z transform and considering its time shift properties [3.10],

the output in the time domain w; (nAt) can be found as,

w;(nAt) = [Aj1x(nAt) + Ajpx((n — 1)AL) + Ajzx((n — 2)At)

—Bipwi((n — DAt) = Bizw;((n — 2)AD)] /By, (3-21)

where x(nAt) and w;(nAt) are the input and output amplitudes at time nAt,

respectively.

The overall output of the right side of the equation|(3-16)| w(nAt), can be

obtained through summing the output of each filter together,

w(nAt) = Z w; (nAt). (3-22)

Therefore, equation|(3-16)| becomes,

P;(z)
L0 T (329
In a:]uation (3‘23) Qi(Z) = QiO + Z_lQil + Z_ZQL'Z + - where

Qio» Qi1,Qjy, -+ are constant values, and P;(z) isagenera polynomia in z.

The left side of equation [(3-23)| represents the sum of a number of rational

polynomials. The denominator Q;(z) is a polynomia in z which makes it
difficult to solve for the output y(z). In order to solve the output y(z), alittle
mathematical trick is needed.

Assuming
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Pi(2)
0.@ y(2), (3-24)

u;(z) =

and multiplying both sides of equation|(3-24)|by Q;(z) and then dividing by

Q;0, equation|(3-24)|becomes,

0D oy PO,
0 T 0

y(2). (3-25)

After some transformation of equation|(3-25)|(adding and subtracting u;(z) on
the left side), u;(z) is obtained as,

u;(2) =

P(z) Qi(2)
O y(2) —< On 1> u;(2). (3-26)

Summing both sides of equation|(3-26)|yields,

P@ N (U@
Zui(z)=y<z)zi o —2( o —1>ul-<z). (3-27)

i

Considering|(3-24)|and|(3-23)

D u@ =w,

l

and combining with|(3-27)| the fina output in the Z-domain, y(z), can be
expressed by

P;(z) Qi(2)
y(z) Z On Z < On 1) ui(z) + w(z). (3-28)

In equation|(3-28)| since Q;, is a constant value, both P;(z)/Q;, and Q;(z)/Q;o

are genera polynomials in z. After applying an inverse Z transform to both

sides of |(3-28)| the final output in the time domain y(nAt) is easily obtained.

In order to make the above derivations more easily understood, a signal flow

graph may be used to explain the solutions of equations|(3-9)|and|(3-10)| As
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shown in|[Fig.3-5| equations|(3-9)|and |(3-10)|can be seen as a digital filter

system with two inputs and two outputs.

Digital Filters
e S R R e
| |
! I

vl |
T I
1 I
: 2y,jYcotd i
1
| O i
1
E — :
! 2y,jYeseO E
1
' |
i Equation(3-9) ]
1 1
1 I
Input i g E Output
1 |
i 2y,iYeotd |:z] i
1 1D |
| T |
i 7] |
Vi : -2y,jYcsco ‘C) | :
— @—> e
1 Ml I V2
: |
1
! L U@ |
' |
1

Equation(3-10)

Fig.3-5 Signal flow graph of equationg(3-9)|and|(3-10)

In this digital filter system, V{ and Vi are the input signals, while V; and V, are
the output signals.

jYcotB and jYcscO are parale combinations of (N+1) first and second order

digital filters, which can be written as

N=oo
At 1+2z71 2At Ay +Byz71 + Cz7?

Ycoth = —— - - ,
Jreo d A+ Bz d L At Bz + Cua

Vesch — At 1+2z71

jYescd = —— A, + Bz (3-29)

20 (—1)*(A, + Byz™ + C,z72)

d o~ Ak + BkZ_1 + CkZ_Z

)
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where

Ay =2+ 0,At, By = 20,At, C; = 0, At — 2¢,

A, = 2u + o, At, B, = o, At — 24,

Ay = 4due + 2At(uo, + £0,) + (00, + k2m? /d?)At?,
By = —8ue + 2(0,0, + k*m?/d?)At?,

Cy = 4ue — 20t(uo, + €0,) + (00, + k212 /d?)At?.

U(z) is dso the paralel combination of a number of first and second order

digital filters,

B, _ B, _
U(z) =7 1u2(Z)+A—Z Luz(2)

i (Bk _1+—Z 2) Ugr (2),
k=1

(3-30)

where
( ) _ A1 + Clz_l
A = Byt
At 1+2z71

uz(z) = (y1+y2) - T W

20t Ay + Bz '+ Ciz7?
d Ak+BkZ_1+CkZ_2

Uy (2) = (1 +y2) -
M1, M2 and M3 are constant gain and expressed as,

Ay At 20t o~ A,
M, =y,y, +A_2+(}’1+J’2) 1A 4, + (1ty2) a4 ZA_

C At 20t N
M, =A—+(y1+yz) +(y1+yz) — ZA—
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20t =~ ¢,
Mz = (y1+y2) Y ZA_

Therefore, the thin film embedded in the TLM agorithm behaves like a
complex digital filter system with two inputs and two outputs. The accuracy of
the model depends on the number of terms, N, used in the expansions of
equations |(3-11)| and |(3-12)| This will be analysed in Chapter 4. Through
modifying the connection process of the TLM algorithm, the mode is
embedded between two adjacent TLM nodes without discretisation.

3.3. Multi-Layer Thin Film M odel

The model developed in section 3.2 can be extended to model a multilayer thin
film stack. The stack, as a whole, is embedded between two adjacent TLM
nodes as an interface. Through modifying the connection process, the

multilayer thin film model connects with the TLM algorithm.

In the single layer embedded model, its implementation starts with the
admittance matrix of the layer. If using the same method of modelling the m-
layer (m>= 2) film as that of single layer film, the overall admittance matrix
of the m-layer film should be found. The admittance matrix of each layer is
easily obtained, but the overall admittance matrix of the m-layer film is hard to
get. Since the layers are cascaded together, the straightforward thinking is
multiplying all the matrixes, but it is not applicable for the admittance matrix.
Only ABCD matrices [3.9] could be multiplied together. Thus one possible
way forward is transferring the admittance matrix of each layer to an ABCD
matrix first, then multiplying them to get the overal ABCD matrix and at the
end transferring the overall ABCD matrix back to admittance matrix. Although
the overall admittance matrix of the m-layer film could be found using such a
method, it is not efficient and also hard to implement the digital filters

especialy for alarge number of layers.
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Therefore, an efficient and easy way to implement digital filters method is
presented in this section, which avoids calculating the overall admittance
matrix. It starts with the admittance matrix of each layer. In the admittance
matrix of the adjacent layers there are some common quantities, which can be
cancelled and then combined together. After combining together, a linear
matrix equation can be formed. The unknown quantities of the reflected
voltages from the stack can be solved for using a Gauss-Seidel method. This
method will be explained in detail in the following sub-sections.

Consider an m-layer (m>= 2) thin film, embedded between two TLM nodes as

shown infFig. 3-6| As in the single layer thin film model, each layer can be

seen as atwo-port transmission line with thickness d; (i = 1,2,...,m).

Yy Y2

~ A
SR~
SEECICEEN o

node n node n+1
dl di dm

Fig. 3-6 An m-layer (m>= 2) thin film embedded between 1D TLM nodes.

In the generd case, the materias in each layer of the m-layer thin film may
have different electric and magnetic properties. Therefore, the equivalent
capacitance and inductance of each layer can be expressed in terms of their

electric and magnetic properties as follows:

where the subscript i represents the particular layer (i = 1,2, ..., m).

The characteristic admittance of each layer is given by
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In the following sections, a two-layer thin film model is presented first, and
then a three-layer thin film model is derived. At the end, as a genera case, a
generaised thin film model is described.

3.3.1. Two-Layer (m=2) Thin Film Model

Fig.3-7((a) shows a two-layer thin film embedded between two adjacent 1D
TLM nodes. Its transmission line model is shown in|Fig.3-7|(b) with associated

voltages and currents. There are two sections of transmission line.

_ — _ 2 7 S
A A
Y Y
R R
s ] 2 - — —
node n < SE— node n+1
d1 d2
@
VL, VR,
- —

TLM Layerl Layer2 7 TLM
— A t<—A  t~t—T }—
Yi VIT TVz TV3 Ys
—l:I—T—: —{ 1]  }

node n i 1 -12 node n+1
VL, VR,
(b)

Fig.3-7 (a) A two-layer thin film embedded between 1D TLM nodes (b) the
transmission line model of the two-layer thin film.

As shown in|Fig.3-7|(b) the admittance matrix of each layer can be written as,

L\ _ (y1—jYicotf; jYicscH, ) _ (Vl)

(12) B ( jYicsch,  —jYicotb, v,) (3-31)
_12 _ _jYZCOtHZ jYZCSCHZ ) . (V2>

( 13 ) a (jYZCSCHZ yz _jYZCOtGZ V3 ) (3-32)
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Each matrix in the above equations, |(3-31)}(3-32)| can be separated into two

equations.
From|(3-31)
Iy = (yy — jYicotf; ) - Vi + jYicscby - Vs, (3-33)
I, = jYicscOy - Vi + (—jY,cotBy) - V. (3-34)
From|(3-32)
—I, = —jY,cotf, -V, + jY,cscO, - V3, (3-35)
I; = jYycsc6, -V, + (y, — jY,cotB,) - V. (3-36)

Since equations|(3-34)|and|(3-35)|have common terms I, and V,, by summing

these two equations, I, can be eliminated as follows,

0 = jYicscO, -V, + (—jYicotO; — jY,cotB,) -V, + jY,csc6, - Vs, (3-37)

Considering equations|(3-33)|((3-37)[and|(3-36)| the following linear matrix

equation can be obtained,

I v, — jYicotOy jYiesc6, 0N /1]
(0) = (jY165691 —jYicotf, — jY,cotO, 0) (Vz). (3-39)

I3 0 jY,cscO,  y, —jY,cotf,/ \V3

When the thin film is embedded between two 1D TLM nodes, as in|Fig.3-7|(b),

the following relations exit,

I =2y, VLY,
I3 =2y," VR3i'
V, =VL,'+ VL,
Vs =VR;' + VRS,

where VL' and VL," are the incident and reflected voltages on the |eft side of

the two-layer film, and VR," and VR, are the incident and reflected voltages

on the right side of the two-layer film.
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Applying the above relations in equati

are obtained,
2y, - VL,
0 |=
2y, - VRs'
y1 — jYicotf, JjYicschy
( jYicsch; —jY,cotf; — jY,cotb,
0 jY>csc6,

on|(3-38)| the following linear equations

y, — jY,cotl,

(3-39)

0 V,

0 ) VL' + VL,
VR;' + VR,

In equation|(3-39)] the incident voltages from the left side and the right side of

the film are known, while the reflected voltages and intermediate voltages are

unknowns. That means that equation

(3-39)

[A] isasquare matrix.

has the form [b] = [A][x], where

The straightforward method for solving equation with the from [b] = [A][x] is

to multiply both sides of the equation with the inverse of matrix [4], i.e. [A]7?.

However, the matrix [4]™? in equation

(3-39)[is difficult to obtain considering

that cotangent and cosecant functions exist in the matrix. In order to avoid
calculating [A]71, the Gauss-Seidel method [3.13] based on an iterative matrix

solver is used to solve equation|(3-39)

Theinitial values were chosen to be 0,

vL,"@ =0,1,@ =0, VR,"® = 0.

Then, the iteration processis as follows,

1

VL v, 6 =
1 1 yl —]Y1€Ot91

1

v, (k1) _
z —jYicotf, — jY,cotl,

. (lecscé?l . Vz(k) -2y - VLli),

- (jYiescy - (VL + VLT* D) + jY,csch, - VR™®),

1

VRy' + VR = - — —
3 3 y — jY5cotf,

" (jYzCSCQZ " Vz(k+1) - 2y2 " VR3i).
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Rearranging the above equations so that all the unknown values are on the left

hand side, the iteration process turns into:

(y; —jYicoth,) - VLlr(kH) = —jYicsch, - Vz(k) + (v, + jY,coth,) - VLli,

(—jY1C0t91 _jYZCOtgz) ) Vz(k+1)

r(k+1) r(k)

= —jY1CSC91 ) VLli —jY1CSC91 - VL1 - jYZCSCHZ - VR3 ,

(y2 — jYzco0t6,) - VR3r(k+1)

- —jYZCSCHZ - Vz(k+1) + (yz +jY2C0t02) " VR3i.

It is noted that the Gauss-Seidel method solves for unknown vaues in a

rk+1)

sequential manner within one iteration, whereby voltage VL, is obtained

first and then used to obtain voltage V, ¥tV . 1,®*D is used to obtain

VR3r(k+1)_

Each equation in the above procedure has a similar form to equation [(3-9)

described in section|3.2[ They can be solved through inverse Z transform and
digital filter theory as demonstrated in section [3.2] When the required

tolerances on al unknown vaues are achieved, the iteration procedure is

“terminated”.

3.3.2. Three-Layer (m=3) Thin Film Model

Fig.3-8|(a) shows a three-layer thin film embedded between two adjacent 1D

TLM nodes. Its transmission line model is shown in|Fig.3-8|(b).
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B8 58 g L L L — = —
A A A
Y ¥ Y
YI E E E y2
R R R
AP 1 2 3 = i =
node n node n+1
di* dy” dy
@
VL, VR,
TLM Layerl | Layer2 Layer3 TLM
N I i Sy B
Yi V]T TVZ TV} TV4 Y
— T+ > +——1 1] L1
node n_)] I -1, =l _n)ode n+1
VL, VR,
(b)

Fig.3-8 (a) A three-layer thin film embedded between 1D TLM nodes (b) the
transmission line model of the three-layer thin film.

As shown in|Fig.3-8|(b) the admittance matrix of each layer can be written as,

(11) _ (yl —jYicotl; jYicscO, ) _ <V1>

I, jYicsc8;  —jYicotB, v, (3-40)
_12 _ —jY2C0t92 jY2C5C92 ) . <V2>
( I ) B ( jYycscl, —jYycotl,) \Vs) (3-41)
_13 _ _jY3C0t93 jY3CSC03 > . (V3>
( Iy ) - ( jYscscOs  y, — jYscotls ) \V,) (3-42)

Each matrix in the above equations|(3-40){(3-42)| can be separated into two
equations. After combination as in the two-layer thin film model, the following

linear matrix equations can be obtained,

I y, — jYicoth, jYicsch, 0 0 Vi
0 jYicsch, —jYicot8, — jY,cotl, jY,csc8, O v,
0 0 jYocscO, — jYscotl, — jYscotOs  jYacscOs Vs | (3-43)
Iy 0 0 JjYscscOs vy, — jYscotbs v,

When the thin film is embedded between two 1D TLM nodes, as in|Fig.3-8|(b),
the following relations exist,

I, = 2y, -VL,},
I, =2y, VR,
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V, =VL'+ VL,
Vo =VR,'+VR,",

whereVL," and VL, are the incident and reflected voltages on the left side of

the multi-layer film, and VR,' and VR," are the incident and reflected voltages

on the right side of the multi-layer film.

Applying the above relations into equation [(3-43)| the following linear

equations are obtained,

2y, VL, y1 — jYicotfy jYicschy 0 0
0 _ jYicsch, — jYicotl; — jYscotl, jY,cscH, O
\ 0 / 0 jYocscO, —jY,cotO, — jYscotO; jYzcscOs
2y, - VR, 0 0 jY;cscO3 vy, — jYacotO;
VL' +VL," (349
£
Vs
VR,' +VR,"

Equation|(3-44)|can be solved using the Gauss-Seidel method [3.13].

Theinitial values were chosen to be 0,

Then, the iteration processis as follows,

r(k+1)

(y; —jYicoth,) - VL, = —jY,csch, - Vz(k) + (y; + jYycoth,) - VLli,

(—jY1C0t91 _jYZCOtez) " Vz(k+1)

r(k+1)

= —jY,cscBy - VL' — jYycscby - VL, — jY,cscB, - Vs,

(_jY3C0t93 _jYZCOtez) " Vg(k+1)

= —jY,cscly - Vo, 8D — jY,csc6; - VR, — jYseschs - VR,

r(k+1) _

(y, — jYscotB3) - VR, — jYscschs - V4(k+1) + (y, + jY5cot0s) - VR4i.

Each equation in the above procedure has a similar form to equation |(3-9)

described in section|3.2[ They can be solved through inverse Z transform and

digital filter theory as demonstrated in section [3.2| When the required
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tolerances on all unknown values are achieved, the iteration process is

complete.

3.3.3. Generalised Multi-layer (m >=4) Thin Film Model

For thin films with m (m >= 4) layers, there are m admittance matrix equations

like[(3-40)| After some mathematical manipulations, equations like|(3-44)|can

be obtained, resulting in a square matrix of order (m+1) with (n+ 1) unknowns.

For thin films with four or more layers (m >= 4), the linear matrix equation

like{(3-44)|can be written as,

/Zy VL, \}
| =
|

| o0
|
|0
\Zy VRmH/
y — jYicotb; jY;cscb, 0 0 0 0 0
/ ]chsce1 —jY;cotf; — jY,cot0, jYcsch, 0 0 0 0
jYesch, —jYycotf, — jYscotfy jYrescd, 0 0 0
0 0 0 jY 05Oy —j¥m_pC0tBo_5 — jYp_qcOt0,_4 J¥m-165¢8pn-1 0
0 00 0 Y1650, _1 —j¥m-1€0t0n_1 — jYncotly  j¥Yycscly
0 0 0 0 0 jYmescly, ¥y — jYncotl,,

Vm—l

[
e

Risr + VRps1"

(3-45)

Its solution is given using Gauss-Seidel method by the following iteration

process,

r(k+1)

(y —jYicotO,) - VL, = —jY,csch, - Vz(k) + (y + jYycot;) - VL',
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(—jYicotB, — jY,coth,) - IACE

r(k+1)

= —jYycsc0, - VL' — jYycscBy - VL, — jYycscy, - V™,

(—jYieqcott;_y — jYicotd;) - ;&P

= —jY;_1csc0;_4 - Vi_l(k“) — JjYcsch; - Vi+1(k), B<is<sm-2),

(_ij—1C0t0m—1 _ijCOth) ) Vm(k+1)

(k+1) _

= —jYn_1¢5¢0_1 * Vina JjYmcsch,, - VRm+1i — jYcscO,,

VRt

(y — jYmcotOp, ) - VRm+1r(k+1)

= — jYnescOm - Vi KD + (y + jY,nescO,)  VRyper

When the required tolerances on all unknown values are achieved, the iteration

processis “terminated”.

Therefore, the model for the multilayer thin film is integrated into the TLM
algorithm. After one run of the TLM, the reflected and transmitted voltages

from the film are obtained in the time domain.

3.4. Anisotropic Thin Film M odel

The electric and magnetic properties of anisotropic materials vary in different
directions [3.14]. In this section, only non-magnetic materials with electric
anisotropy are considered. The materias are assumed to be anisotropic in two-

dimensional (2D) so they can be modelled using two 1D models.

Assume that an anisotropic thin film has the following el ectric properties:

(& O _(Oex O
5—(0 ey>’“e—(0 aey)- (3-46)
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Consider a plane eectric field E! propagating in the z direction. It has two
components, E, and E,,. They satisfy the following relations:

E' = E,X + E,y = |E'|cosp - X + |E'|sing - 3,

where ¢ is the angle between the electric field E' and the x axis, and % and y

are the unit vectorsin the x and y direction, respectively.

When the electric field E is normally incident upon the anisotropic thin film,

the thin film will have different responsesin the x and y directions, as shown in

Fig. 3.9

Thin Film
— (b)
E,Z px E,
/‘ z Thin Film

(a)

Thin Film
(c)
Fig. 3-9 (@) The electric field E* incident upon an anisotropic thin film can be
decomposed into x and y field components (b) E,, field component incident on
athin film (c) E, field component incident on athin film.

The E,, component of E' has effects on the film in the x direction which has the
properties of & and o, for the permittivity and conductivity. The E,
component has effects on the film in the y direction which has the properties of

&y and g,y

The responses of the film to the electric fields in the two directions are
independent of each other. Therefore, they can be analysed by performing two

separate simulations with incident fields shown in|Fig. 3-9| (b, c). For each
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direction, the thin film can be modelled using the embedded thin film TLM
model.

In the x direction, the reflected and transmitted el ectric fields from the thin film
are obtained as ET and EL, respectively. In the y direction, the reflected and
transmitted electric fields from the thin film are obtained as Ej and E§
respectively. Therefore, the overal reflected and transmitted electric fields
from the anisotropic thin film can be acquired as,

E" = Excosg - X + Ejsing - 9,
Et = Etcosg - % + Elsing - 9. (3-47)

Examples will be given in the next chapter to test this model.

3.5. Conclusions

In this chapter, time domain thin film models, including single-layer and
multilayer thin film models, have been developed for embedding in the TLM
method. The case of a 1D anisotropic thin film is also discussed. In these
models, the thin films are not discretised, but act as akind of interface between
the adjacent TLM nodes. Their frequency responses are transformed to the
time domain using digital filter theory and the inverse Z transform, and then
added to the TLM algorithm. Since these embedded models do not require
discretisation, they have the potential to reduce the total smulation time and
save memory usage. The only control parameter that affects the accuracy of the
model is the number of terms in cotangent and cosecant expansions; this will

be analysed in the next chapter.

The applications of these modelsin 1D TLM algorithms are investigated in the
following chapter, through which the accuracy, stability, convergence and
efficiency of the time domain embedded thin film model are also discussed.
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The further applications of these modelsin 2D TLM algorithms will be studied
in Chapter 5 and 6. Some modifications to these models will be discussed there

too.
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4.Embedded Thin Film Modd in the
One-Dimensional TLM Method

4.1. Overview

The embedded thin film model described in Chapter 3 is a universal model and
can be used to model thin films composed of either lossless or lossy materials.
Depending on the thin film parameters, thin films can be transparent to
electromagnetic (EM) waves at the desired frequency range, while others may
present highly reflective properties. In this chapter, the frequency responses of
both lossless and lossy thin films are explored using the proposed embedded
model. According to the results, the accuracy, stability, convergence and

efficiency of the embedded model are aso examined.

The accuracy of the embedded thin film model is compared against the results
obtained from the analytical methods for calculating the thin film’s reflection

and transmission coefficients. The analytica methods are overviewed in

section|4.2

In section |4.3] the frequency responses of lossy thin films are investigated

using the embedded model. As examples of lossy thin films, the reflection and
transmission properties of several different carbon fibre composite (CFC)
panels and titanium panels are studied. The results calculated using the
conventional TLM approach are shown for comparison. In addition,

anisotropic CFC panels are also investigated.

In section|4.4| the frequency responses of lossless thin films are investigated

using the embedded model developed. Examples of lossless thin films,
including antireflection (AR) coatings and fibre Bragg gratings (FBG), are
explored. The reflection coefficients of AR coatings are first calculated using
the embedded model. To improve the efficiency, a modified thin film model is
also presented to model single-layer AR coatings. Also, the transmission
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properties of FBG are demonstrated using the embedded model and compared
against the conventional TLM approach.

4.2. Analytical Methods for Analysing Thin

Films

This section overviews two analytical approaches for analysing thin films
mainly: the transfer matrix method [4.1] and the even/odd mode method [4.2].

4.2.1. Transfer Matrix Method

The general case of a multi-layer thin film with arbitrary thicknesses is shown

in [Fig.4-1| Each layer is characterised with characteristic impedance Z; ,

thickness d; and wavenumber k;.

The incident and reflected fields are considered at the left of each interface.
The overall reflection response, R, = E;_/E, ., can be obtained recursively by
the propagation of the reflection responses.

Fig.4-1 Multilayer thin film structure.

The reflection coefficients p; from the left of each interface are defined in

terms of characteristic impedance as follows [4.1]:
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pi=o———,i=12,..., M+1. (4-1)

The conventions Z, = Z, and Z,,,, = Z,, are used, so that

Z1—Zg Zp —Znm

Pr=g g P T g (4-2)

The forward/backward fields at the left of interface i are related to those at the
left of interfacei+1 by [4.1]:

elkidi  peIKidi| [Ei 4]
[E] T_[ ik ;—jkidi [E ] =MM-1,.... ,1. (4-3)

i+1,—

In equation|(4-3)| at the interface t; = 1 + p; and k;d; is the electrical length

of theith layer, where k; = 2mn; /A, , and A, isthe operating wavelength.
Then, the reflection coefficients at interface i are expressed as,

Ei_  pi+ Ry e 2l
Ri=—= — [ =MM -1, .. .. ,1 -
" Eyy 14 pRiygiem ki (4-4)

and initialized by R,

Assuming no waves coming from the right-most medium, the recursions are
initialized at the (M+ 1)th interface as follows:

EM+1,+]= 1 [ 1 PM+1 [E M+1+]=

E’' . -
EM+1,— Ty+1 LPM+1 ] MH1+ (4 5)

Ty+1 LPM+1
ThUS, RM = pM+1'

Therefore, the reflection responses of the multilayer thin film satisfy the
recursions:
Ei_  pi+ Ry el

Ri=—/—= —— i=MM-1,....,1 i
YT Eir 14 piRi e 2kidi (4-6)
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4.2.2. Even/Odd Mode M ethod

The even/odd mode approach is only applicable to symmetric networks for S
parameter analysis[4.2].

Considering a two port network shown in|Fig. 4-2[ where both sides are

excited using voltages V;*, V!, respectively.

| 2
ﬁ—*\rlﬂ Two Port Vtz—>
or
]-,_po Network porz___ V,*
C o

Fig. 4-2 Two port network.

Thistwo port network has the following relations [4.3]:
Virl _ [S11 512] [V1+]
Vz_] B [521 Syl VT (4-7)

The coefficients, S;1, 512, S21, and S,,, are known as the scattering coefficients

or scattering parameters.

If the network is symmetric, the analysis can be simplified by analysing only
half of the network and placing even and odd boundary conditions on the

symmetric plane.
For asymmetric network, S;; = S,,, and S;, = S5;.
In the even mode, the following equations are sati sfied,

V1+ = V2+ = a, Vl_ == Vz_ == b (4'8)

Replacing the voltages in equation|(4-7)|with equation|(4-8)| it is found that,

b = (511 + S12)a. (4-9)

Therefore, the reflection coefficients I, for the even mode can be expressed as:
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b
I, = i S11 + 512 (4-10)
In the odd mode, the following relations are satisfied,

Vi =-Vy =a V[ =-V; =D (4-11)

Then replacing the voltages in equation|(4-7)|with equation|(4-11)| it is found
that,

b = (S11 — S12)a. (4-12)

Therefore, the reflection coefficients I, for the odd mode may be expressed as:

b
Iy = 7 S11 =~ S12- (4-13)

Based on equations|(4-10)|and|(4-13)| the S parameters can be expressed as,

S11=58,=U+ Fo)/Z,

S12 =81 = I, — I)/2. (414)

For example, consider that the electric field is incident upon a uniform thin

film from free space and then transmitted into free space. Its transmission line

model is shown in|Fig. 4-3

<
~-

s
>

\%

|

V2+
Thin{Film

\%

¥y .
plane ofisymmetry

Fig. 4-3 The transmission line model of athin film.

Assume that the thin film has a thickness d and its characteristic impedance

Z.=.JL/C.
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Since free space is on both sides of the thin layer, the whole structure can be
seen as a symmetric two port network, whose plane of symmetry lies in the

middle of the thin layer.

The even mode is equivalent to having a magnetic wall, i.e. open circuit, in the

symmetry plane, shown in|Fig. 4-4

d/2

5 Magnetic wall (0/c)
: I (1=0)
; plane of symmetry

Fig. 4-4 The even mode network of the thin film.

From(Fig. 4-4{ itsinput impedance is

. kd
Z,+jZctan(y) |z,

. kd, ~ - kd) (4-15)
Zc +jZitan()  jtan(=)

Zine = Z¢

where Z; is the load impedance (in this case equal to infinity) and k is the

wavenumber.

Its reflection coefficient for the even mode is given by,

r = Zine - ZO
e Zine + ZO’ (4‘16)

where load impedance Z;, = oo and Z,, is the characteristic impedance of free

space.

For the odd mode, it islike an electric wall in the symmetry plane, as shown in

Fig. 4-5
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d/2
<—>

.&-

Electric wall (s/c)
(V=0)

:lTane of symmetry

Fig. 4-5 The odd mode network of the thin film.

From|Fig. 4-5{ load impedance Z; = 0 and the input impedance Z;,,,, iS

. kd
Zy+jZctan(=") kd
Zino = Z¢ kd :]ZCtan<7)' (4-17)
ZC +jZLtan(7)

The reflection coefficient for the odd mode is given by

— Zino - ZO
0 Z—ino + 7o (4-18)

Therefore, the reflection and transmission coefficients of the thin film are
calculated from equationg(4-16)|and|(4-18)|as

I, + I
R=5811=58,= 82 0'

n-r, (4-19)
T=51=52= 5

4.3. Applications of Embedded Model to Lossy
Films

In this section lossy non-magnetic materials are considered. For lossy non-

magnetic materials, the permeability is a real number, but the permittivity is a

frequency dependent complex number [4.1]. The equivalent inductance and

capacitance, L and C, can be expressed by
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L =u=popty,
T, (4-20)

C=et+ = +
= o Eor +
where u, = 1.26 X 107 Hm™1! is the permeability of free space, ¢, = 8.85 X
1072 Fm™! is the permittivity of free space, u, and &, are the relative
permeability and permittivity of the material, o, is the conductivity of the

material, and w isthe angular frequency.

In this section, carbon fibre composite (CFC) panels and titanium panels are
used as examples of lossy materials and investigated to test the embedded time
domain thin film model in 1D TLM method.

Results obtained using the numerical method (Ry) will be compared against
with those of the analytical method (R,). For that purpose, the following

percentage error is used,

percentage error = |R—|A|. 100%. (4-21)
A

It is noted that in the following examples, when the percentage errors are
within 2%, it is assumed that the required accuracy of the numerical resultsis

achieved, although in reality bigger percentage errors may be allowed.

4.3.1. Carbon Fibre Composite (CFC) Panels

Carbon fibre composite (CFC) materials have received considerable attention
[4.4 ~ 4.7] due to their high strength-to-weight ratio and ease of fabrication. As
replacement of metals, they have been used in many areas, such as spacecraft
and aircraft structures [4.4], avionics systems [4.8], and Radio-Frequency
Identification (RFID) [4.9]. However, due to their lower conductivity, CFC
materials have lower shielding effectiveness compared to that of metals. In
order to analyse and improve their shielding effectiveness, a variety of CFC

materials have been studied using either numerical or analytical methods [4.4 ~

4.7).
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In this section, the CFC panels are considered as a one dimensiona (1D)
problem and analysed using the embedded model in the 1D TLM method. The
reflection and transmission coefficients of single and multiple layer CFC
panels are calculated to test the accuracy, stability, convergence and efficiency
of the embedded model. For comparison purposes, the conventional TLM
method is aso used to model these panels. The embedded model is then
applied to analyse the shielding effectiveness of CFC panels. Anisotropic CFC
panels are also investigated.

Carbon fibre composite materials are inhomogeneous materials which consist
of continuous carbon fibres embedded in an epoxy matrix [4.10]. In this
section the CFC panels are modelled as a homogeneous medium using the
equivalent-layer model [4.5]. As this equivalent-layer modd is valid up to
several GHz [4.5], the highest frequency discussed in this section was chosen
to be 1GHz.

4.3.1.1. SngleLayer CFC Panels

Fig.4-6|shows the normally incident electric fields E¢, reflected fields E™ and

transmitted fields E* from a CFC panel. The CFC panel is assumed to be

surrounded by free space.

CFC Panel
Er=7?

-\ \—
—AN
E'=?
EF’

Fig.4-6 Incident electric fields E¢, reflected fields E™ and transmitted fields E*
from a CFC panel.

The reflection and transmission coefficients are defined as

ET Et

R=E,T=E.

(4-22)
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The shielding effectiveness (SE) is defined as the ratio of the amplitude of the
incident field to that of the transmitted field. It is typically described in
decibels (dB) as follows,

Ei
SE = 20-log,, (E) (dB). (4-23)
The parameters of the CFC panel used in this section were chosen as: thickness
of 1 mm, effective permittivity £, = 2 and conductivity g, = 10* Sm™! as in
[4.4].

In the 1D TLM model, the length of free space on each side of the panel was
chosen to be 0.1 m, and matched boundaries [4.11] were set at the ends of free
space regions to simulate the infinite free space. Free space on each side of the
panel was discretised using 1D TLM nodes. The CFC panel was modelled
using the time domain thin film model proposed in Chapter 3 and embedded
between two adjacent 1D TLM nodes. A delta pulse was used to excite the
TLM nodes. The reflected and transmitted fields were calculated in the time
domain first and then a Fast Fourier Transform (FFT) was used to transfer
them to the frequency domain to obtain the reflection and transmission

coefficients.

The TLM mesh size is typically set as less than one tenth of the smallest
wavelength [4.11]. In order to obtain the discretisation errors, the reflection
and transmission coefficients of the CFC panel were calculated at 1 GHz using
the embedded model for N = 100 with different mesh size, dz. The results

obtained were compared to the analytical results calculated using the even/odd

mode method described in section|4.2| The percentage errors (calculated using

equation|(4-21)) in the reflection and transmission coefficients at 1 GHz are

shown in|Fig.4-7|against the mesh size, represented by 1/dz.|Fig.4-7|shows

that as the mesh size decreases, the percentage errors in both reflection and
transmission coefficients decrease. Although the CFC panel is not discretised,
the discretisation errors come from the modelling of the fields outside the
panel using the TLM method. In the following calculations, the mesh size was

chosen to be 0.01 m (1/dz = 30), in order to minimize discretisation errors.
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-—Reflection Coefficients |1
-—-Transmission Coefficients]

Percentage Errors / %

10 12 14 16 18 20 22 24 26 28 30
lamda/dz

1 0 1 1 | 1

Fig.4-7 Percentage errors in the reflection and transmission coefficients of the
CFC panel at 1 GHz calculated using the embedded model for N =100, with
different mesh size, dz.

Using amesh size of 0.01 m, the stability of the embedded model is discussed.
A number of digital filters were used in the time domain model for the CFC
panel, as described in section 3.2. From Fig. 3-5, the transfer functions of these
digital filters are derived from the expansions of cotangent and cosecant
functions. Since the stability of digital filtersis dependent on the poles of their
transfer functions [4.12], the poles of the expansions of cotangent and cosecant
functions are investigated.

In equation (3-29), there are (N+1) transfer functions for each expansion. The
poles of these transfer functions are the values of z at which their denominator

equalsto zero. They are the roots of the following denominator polynomials,

AZ + Bzz_l = 0,

4-24
Ay + Bz '+ Cz72 = 0. (4-24)

For the CFC panel, the above coefficients of equations (3-29) are calculated as
follows,

Ay = 2 + oAt = 2.51 X 1076 (Hm™),

B, = oAt — 2u = —2.51 x 1076 (Hm™),

70



4 Embedded Thin Film Model in the One-Dimensional TLM Method

Ay = 4ue + 20t (uo, + £0,) + (01,0 + k1% /d?)At?
=838x10713 +1.10 x 107 k2 (S2m™?), k=12,-,N

k?m?
B, = —8ue + 2 (amae + 7 )Atz

=—1.78 X 10716 + 1.10 X 1071* - k2 (S?m™2), k=12 ,N
k27'[2
Cy = due — 2At(uo, + o,,) + <amae + 7) At?
=—8.38x 10713+ 1.10 x 1071* - k2 (S2m™2). k=12--,N

According to these values, the values for z in equation|(4-24)|can be obtained,

which are the poles of the transfer functions in the expansions. All these poles
are within the unit circle indicating that the time domain CFC model is stable.
To date, it has been found that only when the materials are with gain, the
embedded model becomes unstable.

Since the expansions used in equations (3-11) and (3-12) include infinite terms,
they must be truncated for computational purposes. In order to investigate the

errors from truncating the expansions, the percentage errors (calculated using

equation [(4-21)) in the reflection and transmission coefficients of the CFC
panel at 1 GHz were caculated using the embedded model for different

number of terms, N, shown in|Fig.4-8| It can be seen that the percentage errors

in the transmission coefficients decrease as the number of expansion terms

increases. |Fig.4-8| aso shows the percentage errors in the reflection

coefficients decrease until N = 20 and then converge to some point as the

number of terms, N, increases.
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- Reflection Coefficients
—-Transmission Coefficients

10° -

Percentage Errors / %
o

19 0 10 20 30 40 50 60 70 80 90 100

N

Fig.4-8 Percentage errors in the reflection and transmission coefficients of the
CFC panel at 1 GHz calculated using the embedded model for dz = 0.01 m,
with different number of expansion terms, N.

After investigating the errors from discretisation and truncation in the
expansion terms, the reflection and transmission coefficients of the CFC panel
were calculated in the frequency range from 0 to 1 GHz using the embedded
model with a mesh size of 0.01 m. |Fig.4-9| shows the reflection and

transmission coefficients of the single layer CFC panel in the frequency range
from O to 1 GHz for different number of expansion terms, N, and compares
them with the analytical ones obtained using the even/odd mode method

described in section|4.2| It can be seen that the agreement between numerical

and analytical results for the reflection coefficients is excellent regardless of
the number of expansion terms. The calculated transmission coefficients
decrease with the number of expansion terms especially in the high frequency
region. When N = 100, the numerical results of both reflection and
transmission coefficients are virtually indistinguishable from the analytical
ones over awide frequency span.
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Fig.4-9 Reflection and transmission coefficients of asingle layer CFC panel
with 1 mm thicknessand ¢, = 2,6, = 10* Sm™1, calculated using the
embedded model for different number of expansion terms N (N = 10, 20 and
100) and anal ytical method.

Fig.4-10|(a, b) shows the percentage errors (defined in equation|(4-21)) in the

reflection and transmission coefficients calculated using the embedded model

compared to the analytical ones. From|Fig.4-10((a, b), it can be seen that the

errors in both reflection and transmission coefficients become very small with
the increase of the expansion order, N. When N = 100, the reflection
coefficients errors are less than 0.0006% and the transmission coefficients

errors are less than 0.8% in the frequency range from 0 to 1 GHz.

In reality, the high accuracy (0.0006% error in the reflection coefficients) may
not be needed. Here in order to make sure the percentage errors in the
transmission coefficients are less than 2%, the percentage errors in the
reflection coefficients are very small. In the following examples, smilar high

accuracy in the reflection coefficients exists, due to the same reason.
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Fig.4-10 Percentage errors in the (a) reflection coefficients and (b)
transmission coefficients calculated using the embedded model with different
number of terms, N (N = 10, 20, and 100).

In the conventional TLM method, both free space and the CFC panel need to
be discretised. Since the thickness of this CFC panel is 1 mm, the mesh size dz
must be smaller than 1 mm in order to have at least one node for the panel in
the mesh. For a conductive panel, the mesh size inside it is generally chosen as
less than its skin depth 6 [4.13] in order to anayse the field penetrating the
panel accurately,
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dx K 8 = 1/ fnaxlho (4-25)

where f,,,. 1S the maximum frequency of interest. For this CFC panel, since
the maximum frequency of interest is 1 GHz, the skin depth of the panel is
0.16 mm. Therefore, the mesh sizes for the conventional TLM method should
be chosen as less than 0.16 mm.

In order to investigate the discretisation errors of the conventional TLM
method, the reflection and transmission coefficients of the CFC panel were
calculated at 1 GHz using the conventional TLM method for different mesh
size, dz. Results obtained were compared with the analytical results. The
percentage errors in the reflection and transmission coefficients at 1 GHz are
shown in|Fig.4-11|against the mesh size, represented by d/dz, where d is the
thickness of the panel. It can be seen that when the panel is discretised using

40 nodes (dz = 0.025mm ), the percentage errors in the transmission
coefficients are around 1.02% and the percentage errors in the reflection

coefficients are around 0.002%.

T T
——Reflection Coefficients
-—Transmission Coefficients

10° - -

Percentage Errors / %
=
T

i
o
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|
n

0 5 10 15 20 25 30 35 40
d/dz

10

Fig.4-11 Percentage errors in the reflection and transmission coefficients of a
single layer CFC panel at 1 GHz using the conventional TLM method for
different mesh size, dz.

For comparison purposes, the reflection and transmission coefficients of the

CFC pandl in the frequency range from 0 to 1 GHz were calculated using the
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conventional TLM method with the mesh size of 0.025 mm.|Fig.4-12(shows
the percentage errors (defined in equation [(4-21)) in the reflection and
transmission coefficients calculated using the conventional TLM method

compared to the analytical ones. It can be seen that when the mesh sizedz =
0.025 mm, the errorsin the reflection coefficients are less than 0.001% and the
errors in the transmission coefficients are less than 1% in the frequency range
from O to 1 GHz, which is comparable to the corresponding errors cal cul ated
using the embedded model with a mesh size of 0.01 m.

10 | | |
---Reflection Coefficients

¢ — Transmission Coefficients
o 0
e 10 |
o
e \//
w
© 107 |
o
= 2
B e——————
2
o 10+ 7
o

107° 1 | | |

. 0.1 0.2 0.3 0.4 0.5
requency / GHz

Fig.4-12 Percentage errors in the reflection coefficients and transmission
coefficients calculated using the conventional TLM method with a mesh size
of 0.025 mm.

Therefore, to get the results of the same accuracy as the embedded model, the
conventional TLM method should use a mesh size of 0.025 mm (approximate
one sixth of its skin depth at the highest frequency of interest). The free space
on each side of the CFC panel is discretised into 4000 nodes. The CFC panel is
discretised into 40 nodes. In total there are 8040 nodes using the conventional
TLM method. Compared to the embedded model, there are only 20 nodes with
a mesh size of 0.01 m since the CFC panel is not discretised. Furthermore, to
get the same frequency resolution as that in the embedded model, the number
of time steps needed in the conventional TLM is 4 x 10>, while the number of
time steps needed in the embedded model is 1000. In other words, the smaller
mesh size in the conventional TLM results in 420 times bigger memory storage
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for the nodes and 400 times the number of iterations compared to those in the
embedded model, as shown in|Table 4-1

Table 4-1 Comparison between the conventional TLM model and the
embedded model for the single layer CFC panel

Mesh size Number of Number of Run time (s)
Model )
(mm) nodes time steps *
Conventional 5
TLM 0.025 8040 4x10 82
Embedded 10 20 1000 0.188
model

(* the run time is based on a PC with an Intel Core 2 Duo CPU 3GHz
processor and 4GB memory)

In summary, the mesh size in the conventional TLM is dependent on the
thickness of the CFC panel, while the mesh size in the embedded model is
determined by the highest frequency of interest since the embedded model
eliminates the need for discretisation of the panel. The condition determined by
the thickness of thin films is generaly much more restrictive than that
determined by the highest frequency for the choice of mesh size. Thus,
compared to the conventional TLM method, the embedded model can achieve
the same or better accuracy using a larger mesh size. Therefore, the embedded
model has the advantages of saving memory storage and reducing

computational requirements for simulation.

As an application of the verified embedded model, four kinds of single layer
CFC panels with different conductivities and thicknesses were studied to

analyse their shielding effectiveness.

The parameters of these four CFC panels are as follows,
Panel 1: &, = 2,0, = 10* Sm™!,d = 1 mm,

Panel 2: ¢, = 2,0, = 10* Sm™,d = 1.2 mm,

Panel 3: ¢, = 2,0, = 8000 Sm™1,d = 1 mm,
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Panel 4: ¢, = 2,0, = 8000 Sm™1,d = 1.2 mm.

Panel 1 has the same parameters as the previous example. To anayse the
effects of the conductivity and thickness on the shielding effectiveness, these
four panels have the same permittivity but different conductivities and
thicknesses. Panel 2 has the same conductivity as panel 1, but it is thicker than
panell. Panel 3 has the same thickness as panel 1, but its conductivity is lower.

Panel 4 has the same conductivity as panel 3, but it isthicker than panel 3.

Fig.4-13| shows the shielding effectiveness of these four single layer CFC

panels. It can be seen that they all show good shielding properties, especially
in the high frequency range. Panel 2 shows better shielding effectiveness than
panel 1 because of its greater thickness. It also presents better shielding
effectiveness than panel 4 due to its higher conductivity. Overall panel 2 with
its greater thickness and higher conductivity provides best shielding
effectiveness. These results show that thicker panels with higher conductivity
provide better shielding effectiveness.
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Fig.4-13 The shielding effectiveness of four different single layer CFC panels
calculated using the embedded model.
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4.3.1.2.  Anisotropic Panel

For the anisotropic CFC panel, the electrical properties are considered for
electric field components in the x and y directions. In the x direction they are
given by &, = 2 and ,,, = 10* Sm~? from [4.4], and it is assumed that in the
y direction they are given by ¢,, = 3 and o,,, = 10 Sm™*. The thickness of

the panel is1 mm.

As shown in Fig. 3-9, the electric field E is normally incident to the panel

aong the z axis. It can be decomposed into E, and E,, components as
E' = E,X + E)y = |EY|cosp - & + |E[sing - ¥,

where ¢ is the angle between the electric field and the x axis, and X and y are

the unit vectorsin the x and y direction, respectively.

As demonstrated in section 3.4, the anisotropic thin film has different
independent responses for the two x and y directions components. Two models
were built for the x and y directions using the embedded single layer thin film
model. For each one, the reflected and transmitted electric fields were obtained
through the model. Then combining these two components as in the equation
(3-47), the overall reflected and transmitted electric fields were acquired.

The mesh size was chosen to be 0.01 m asin section 4.3.1.1.

Fig.4-14| shows the (a) reflection and (b) transmission coefficients of this

anisotropic CFC pandl as a function of the angle between the electric field and
thex axisat 1 GHz. The order of the expansions, N, is 100, which was found to
be sufficient to produce results virtually indistinguishable with the analytical

ones on the figure.

It should be noted that when the electric field E' is parallel to the x axis, i.e. the
angle ¢ = 0° or ¢ = 180°, it only has effects on the thin film aong the x axis.
Thus the thin film presents itself as an isotropic film with the parameters of
&y =2ando,, = 10* Sm™1 . Its reflection and transmission coefficients
should be the same as those shown in|Fig.4-9{when N = 100 at 1 GHz.
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Similarly, when the angle ¢ equals 90°, the electric field E' is paralel to the'y
axis so that only the thin film along the y axis has response to the field. Its
reflection and transmission coefficients come from the thin film with the
parameters of €., = 3 and g,,, = 10 Sm~*. When the angle ¢ is between 0°
and 90° or between 90° and 180°, the thin film along both x and y directions
has responses to the electric field. That is why the shapes of its reflection and

transmission coefficients against the angle are the ones shown in|Fig.4-14
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Fig.4-14 (a) Reflection coefficients and (b) transmission coefficients of an
anisotropic CFC panel against the angle between the incident field with x axis
at 1 GHz.
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4.3.1.3. Multi-Layer CFC Panels

Thefirst example to test the accuracy of the multilayer CFC model was chosen
to be a symmetric three-layer CFC panel. The materia in the middle layer was
chosen to have the same parameters as in the example for single layer CFC
panel, withe, = 2,0, = 1 X 10* Sm™1 [4.4] .The first and third layers of this
panel were assumed to have the same electric properties as ¢, = 4,0, =5 X

103 Sm~1. All layers have the same thickness of 0.6 mm.

As before, free space on each side of this panel was discretised using 1D TLM
nodes. The three-layer CFC panel, as a whole, was modelled using the
multilayer time domain model proposed in section 3.3.2 and then embedded
between two adjacent 1D TLM nodes. A delta pulse was chosen to be the
excitation of the simulation. The reflected and transmitted electric fields were
firstly obtained in the time domain and then a FFT was used to transform them
into the frequency domain in order to get the reflection and transmission
coefficients.

In order to investigate the discretisation errors of the embedded model, the
reflection and transmission coefficients of the three-layer CFC panel a 1 GHz
were calculated using the embedded model for N = 100 with different mesh
size, dz. Results obtained were compared to the analytical ones calculated
using the even/odd mode method described in section 4.2.2.|Fig.4-15| shows

the percentage errors in the reflection and transmission coefficients at 1 GHz
against the mesh size, represented by A/dz . |Fig.4-15| shows that the

discretisation errors decrease as the mesh size decreases. Therefore, in the
following calculations, the mesh size was chosen to be 0.01 m (1/dz = 30), in

order to minimise the discretisation errors.

The errors from the truncation of the cotangent and cosecant function

expansions are also investigated. |Fig.4-16(shows the percentage errors in the

reflection and transmission coefficients of the three-layer CFC panel at 1 GHz
caculated using the embedded model for different number of terms, N,
compared with the analytical ones. It can be seen that as the number of terms
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increases, the percentage errorsin the transmission coefficients decrease, while

the percentage errorsin the reflection coefficients converge much faster.

- Reflection Coefficients
-—Transmission Coefficients

Percentage Errors / %

~4 1 1 1 1

10 12 14 16 18

22 24 26 28 30

20
lamda/dz
Fig.4-15 Percentage errors in the reflection and transmission coefficients of a

symmetric three-layer CFC panel at 1 GHz calculated using the embedded
model for N = 100, with different mesh size, dz.
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Fig.4-16 Percentage errorsin the reflection and transmission coefficients of a
symmetric three-layer CFC panel at 1 GHz calculated using the embedded
model for dz = 0.01 m, with different number of terms, N.

After investigating the discretisation errors and truncation errors, the reflection
and transmission coefficients of the three-layer CFC panel were calculated in
the frequency range from 0 to 1 GHz, using the embedded model with a mesh
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size of 0.01 m.|Fig.4-17|shows the reflection and transmission coefficients of

the three-layer CFC panel as a function of frequency. The numerical results
obtained using different expansion terms N (N = 10, 20 and 100) are compared
with the analytical ones obtained from the even/odd mode method mentioned

in section (4.2 It can be seen that al the numerica results show good

agreement with the analytical ones, with the agreement becoming closer when
more terms are used to approximate the infinite series in equations (3-11) and
(3-12).
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Fig.4-17 Reflection and transmission coefficients of a symmetric three-layer
CFC panel calculated using the embedded model for N = 10, 20 and 100 and
the analytical method.

Fig.4-18|(a, b) show the percentage errors (defined in equation|(4-21)) in the

reflection and transmission coefficients calculated using the embedded model
compared to the analytical ones. It can be seen that the errors decrease with an
increase in the number of expansion terms, N. When N = 100, the errors for the
reflection coefficients are less than 0.001% and the errors for the transmission

coefficients are less than 1.5%.
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Fig.4-18 Percentage errors in the (a) reflection coefficients and (b)
transmission coefficients calculated using the embedded model with different
number of terms, N (N = 10, 20 and 100).

The three-layer CFC panel was aso modelled using the conventional TLM
method for comparison. Since the CFC panel needs to be discretised, the mesh
size must be smaller than its skin depth at the highest frequency of interest.

The discretisation errors of the conventiond TLM method were first

investigated. |Fig.4-19| shows the percentage errors in the reflection and

transmission coefficients of the three-layer CFC panel at 1 GHz calculated
using the conventional TLM method with different mesh size, represented by
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d/dz, where d is the thickness of the three-layer panel (1.8 mm), compared to
the analytical ones. It can be seen that when the mesh sizedz = 0.025 mm
(d/dz = 72), the percentage errors in the reflection coefficients are around

0.002% and the percentage errors in the transmission coefficients are around
1%.

I I
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o[ —~Transmission Coefficients|

Percentage Erros / %

_al i

| Il | 1 | Il
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Fig.4-19 Percentage errors in the reflection and transmission coefficients of a
symmetric three-layer CFC panel at 1 GHz calculated using the conventional
TLM method for different mesh size, dz.

For comparison purposes, the reflection and transmission coefficients of the
three-layer CFC panel in the frequency range from 0 to 1 GHz were calculated
using the conventional TLM method with a mesh size of 0.025 mm.|Fig.4-20

shows the percentage errors in the reflection and transmission coefficients
calculated using the conventiona TLM method compared to the analytica
results. It can be seen that in the frequency range from 0 to 1 GHz, the errorsin
reflection coefficients are less than 0.002% and the errors in transmission
coefficients are less than 1%, which is comparable to the corresponding errors
calculated using the embedded model with a mesh size of 0.01 m.
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Fig.4-20 Percentage errors in the reflection coefficients and transmission
coefficients calculated using the conventional TLM method with amesh size
of 0.025 mm.

With amesh size of 0.025 mm in the conventional TLM model, there are 4000
nodes for free space (0.1 m) on each side of the three-layer CFC panel and 72
nodes for the three-layer CFC panel. In total, there are 8072 nodes in the mesh.
Compared to the embedded model, there are only 20 nodes with the mesh size
of 10 mm since the three-layer CFC panel is not discretised. Furthermore, the
number of time steps needed in the conventional TLM model and the
embedded model is4 x 10° and 1000, respectively. Therefore, the embedded
model saves 403.6 times memory storage for nodes and 400 times the number
of iterations than those of the conventional TLM model, as shown in|Table 4-2

Table 4-2 Comparison between the conventional TLM model and the
embedded model for the three layer CFC panel

Mesh size Number of Number of Run time ()
Model .
(mm) nodes time steps *
Conventiona 5
TLM 0.025 8072 4 %10 83
Embedded 10 20 1000 0.28
model

(* the run time is based on a PC with an Intel Core 2 Duo CPU 3GHz
processor and 4GB memory)
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In summary, the multi-layer embedded model can achieve the same accuracy
as the conventional TLM model by using a larger mesh size, thus saving

memory storage and reducing the number of time steps.

As a further application, the multilayer CFC model was used to calculate the
shielding effectiveness (SE) of four CFC panels with different layers, which
wereoriginally studied in [4.4].

The properties of four CFC panels studied are given in| Table 4-3([4.4].

Table 4-3 Composition of multi-layer panels. number of layers, layer
conductivity, relative permittivity and thickness

Pandl No. of Layer Layer relative Layer
layers  conductivity(Sm~!)  permittivity  thickness(mm)
A 1 o, = 10* Eq =2 di =1
o, = 10* &g =2 d, =06
B 3 o, =50 &y =4 d, =0.6
o3 = 103 &3 =3 d; = 0.6
0,=03=10* &g,=¢g3=2 d;=d;=0.2
C 5 o, =04 =50 &y =6us=4 d,=d,=0.2
os = 103 &5 =3 ds = 0.2
01 = 03 = Og &r1 = &r3 dy =d3 =dg
= 10* = &g =2 =0.2
D 9 02 = 04 = O¢ &r2 = &rg dy =dy =dg
=50 =¢&¢ =4 =0.2
05 = 07 = 09 &5 = &7 ds = d; = dy
=103 = &9 =23 = 0.2

Panel A is modelled using a single layer time domain embedded model
developed in section 3.2. Panel B is modelled using the three-layer time
domain embedded model as demonstrated in section 3.3.2. Panels C and D are
modelled using the generalised multi-layer thin film model introduced in
section 3.3.3.

For panel C with 5 layers, equations like (3-45) are obtained, in which thereis

asguare matrix of the order 6 and 6 unknowns.
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For panel D with 9 layers, equations like (3-45) are obtained, in which thereis

a square matrix of the order 10 and 10 unknowns.

Fig. 4-21 shows the shielding performances of these four panels as a function
of frequency calculated using the embedded TLM model compared to those
calculated using the FDTD method from [4.4]. It can be concluded that the
results show excellent agreements with those from [4.4].
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Fig.4-21 Shielding performances of the panelsin Table | calculated using the
embedded TLM model compared to those calculated using the FDTD method
from [4.4].

From Fig. 4-21, it can be seen that panel A provides the best SE performance,
which is composed of only one layer of CFC with thickness of 1 mm and
conductivity of 10* Sm~1. With the same total thickness as panel A, panel C
has the lower SE since only two layers of the whole panel is made of the
materials with conductivity 10* Sm™!. Panels B and D have the same
thickness and volume composition so they have the same SE performance in
the lower frequency up to 10 MHz, where the reflection phenomenon
dominates. At higher frequencies, due to the lamination effect, the SE of panel
D increases dramatically and becomes much better than panel B, which is
nearly equal to the one of panel A.
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4.3.2. Titanium Panels

Titanium materials are excellent candidates for applications in aerospace
industries because of their high strength-to-weight ratio, high operating

temperature and excellent corrosion resistance [4.14].

To further prove the embedded model, the reflection and transmission
properties of a titanium panel are studied in this section. The frequency range
Is chosen to be up to the highest lightning frequency (0 ~ 10 MHz) [4.6]. For
comparison, the conventional TLM method is aso used to modd titanium

panels.

A titanium panel used in C-27J aircraft [4.6] is taken as an example with

parameters &, = 1,0, = 5.88 X 10° Sm™? and thickness of 1.2 mm.

The éectric field is normally incident to the panel. The length of free spacein
each side of the titanium panel was chosen to be 10 m and the matched
boundaries were used at the both ends to simulate the infinite space. Free space
was discretised using 1D TLM nodes and the titanium panel was modelled
using the embedded model. A delta pulse was used as the excitation of the

simulation.

Since the highest frequency was chosen to be 10 MHz, the corresponding
smallest wavelength is 30 m. The discretisation errors were firstly investigated.
The reflection and transmission coefficients of the titanium panel a 10 MHz
were calculated using the embedded model for N = 100 with different mesh
size, dz. Results obtained were compared with the analytical ones calculated
using the even/odd mode method described in section 4.2.2.|Fig.4-22| shows

the percentage errors in the reflection and transmission coefficients at 10 MHz
against the mesh size, represented by A/dz. It can be seen that the
discretisation errors decrease with a decrease in the mesh size. In order to
minimize the discretisation errors, the mesh size was chosen to be 1 m
(A/dz = 30) inthe following calculations.
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Fig.4-22 Percentage errors in the reflection and transmission coefficients of the
titanium panel at 10 MHz calculated using the embedded model for N =100,
with different mesh size, dz.

Using a mesh size of 1 m, the stability of the embedded model is investigated.
In the embedded titanium model, the stability coefficients used in equation
(4-24)|are calculated as follows,

A, = 2u + oAt = 2.51 x 1076 (Hm™?),
B, = g,,At — 24 = —2.51 X 1076 (Hm™1),

Ay = 4ue + 20t(uo, + £0,) + (01,0, + k*m? /d?)At?
=493 x107°+7.62 x 10711 - k2 (S2m™?), k=12,-,N

k?m?
B, = —8us + 2 (O’mO'e +— )At2

=—-889x 107 +7.62x 107 k? (S2m™2), k=12--,N

2,2
Cy = 4us — 2At(uo, + £0,,) + <0’m0'e +—3 )At2

=—493x107°+7.62x 10711 - k2 (S2m™2). k=12 ,N
According to these values, the poles of the transfer functions of all the digital

filters used in this titanium model are within the unit circle indicating that the
model is stable.
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The truncation errors from the approximation of the cotangent and cosecant

functions using the expansions (equations (3-11) and (3-12)) are aso

investigated as before. [Fig.4-23|shows the percentage errors in the reflection

and transmission coefficients of the titanium panel at 10 MHz calculated using
the embedded model for different number of terms, N, compared to the
analytical ones. It can be seen that when N = 100, the percentage errors in the
transmission coefficients are less than 1% while the percentage errors in the

reflection coefficients are less than 0.0001%.
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Fig.4-23 Percentage errors in the reflection and transmission coefficients of the
titanium panel at 10 MHz calculating using the embedded model for dz =1 m,
with different number of expansion terms, N.

In order to maintain minimum discretisation errors, the reflection and
transmission coefficients of the titanium panel were calculated in the frequency

range from 0 to 10 MHz, using the embedded model with a mesh size of 1 m.

Fig.4-24| shows the reflection and transmission coefficients of the titanium

panel in the frequency range from 0 to 10 MHz, for different number of

expansion terms, N, compared to the analytical results obtained using the

even/odd mode method introduced in section [4.2{2. As expected, with an

increase in the order of expansions, N, the numerical results in the frequency
range from O to 10 MHz converge to the analytical ones. The reflection and

transmission coefficients show that aimost all the waves from 0 to 10 MHz
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(larger than 99.99%) incident upon the titanium panel are reflected, indicating

avery good shielding performance.
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Fig.4-24 Reflection and transmission coefficients of a 1.2 mm titanium panel
withe, = 1,0, = 5.88 x 10° Sm™?! calculated using the embedded mode! for
different number of terms, N, and analytical method.

Fig.4-25|(a, b) show the percentage errors (defined in equation|(4-21)) in the

reflection and transmission coefficients of the titanium panel compared to the
analytical results. It can be seen that when N = 100, the errors for the reflection
coefficients are less than 0.00003% and the errors for the transmission

coefficients are less than 0.4% in the frequency range from 0 to 10 MHz.

For comparison purposes, the titanium panel was also modelled using the
conventional TLM method. Since in the conventional TLM method the
titanium panel needs to be discretised, the mesh size should be less than the
skin depth of the panel a 10 MHz, which is 0.2 mm. |Fig.4-26| shows the
percentage errors in the reflection and transmission coefficients of the titanium
panel at 10 MHz calculated using the conventional TLM method for different

mesh size, represented by d/dz, where d is the thickness of the panel,
compared to the analytical ones. It can be seen that when the mesh size is
0.025 mm (d/dz = 48), the errors in the reflection coefficients are less than

0.0002% while the errors in the transmission coefficients are | ess than 0.5%.
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Fig.4-25 Percentage errors in the (a) reflection coefficients and (b)
transmission coefficients calculated using the embedded model with different
number of terms, N ( N =10, 20 and 100).
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Fig.4-26 Percentage errors in the reflection and transmission coefficients of the
titanium panel at 10 MHz calculated using the conventional TLM method for
different mesh size, dz.

For comparison purposes, the reflection and transmission coefficients of the
titanium panel were calculated in the frequency range from 0 to 10 MHz, using

the conventional TLM method with a mesh size of 0.025 mm.|Fig. 4-27|shows

the percentage errors in the reflection and transmission coefficients calculating
using the conventional TLM method compared to the analytical results. It is
shown that in the frequency range from O to 10 MHz, the errors in the
reflection coefficients are less than 0.00002% and the errors in the
transmission coefficients are less than 0.5%, comparable to the corresponding

errors calculated using the embedded model with amesh size of 1 m.
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Fig. 4-27 Percentage errors in the reflection coefficients and transmission
coefficients calculated using the conventional TLM method with amesh size
of 0.025 mm.

However, the number of nodes and the number of time steps needed in the
conventional TLM model are huge, as shown in[Table 4-4

Table 4-4 Comparison between the conventional TLM model and the
embedded model for the single layer titanium panel

Model Mesh size Number of Number of Run time *
nodes time steps
Conventiond  , 5o mm 400048 4 % 107 >4hours
TLM
Embedded 1m 20 1000 0.39s
model

(* the run time is based on a PC with an Intel Core 2 Duo CPU 3GHz
processor and 4GB memory)

In the conventional TLM method, the mesh size was chosen to be 0.025 mm in
order to include more details of the panel into the mesh so that accurate results
were obtained. In the embedded model, the mesh size depends on the smallest
wavelength regardless of the thickness of the panel. Therefore, the mesh size
used in the embedded model is 40000 times bigger than that used in the
conventional TLM method.
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In conclusion, the titanium embedded model once again shows that the
embedded model can achieve the same accuracy as the conventional TLM
method using a larger mesh size, resulting in saving memory storage and
reducing the number of time steps thus saving the computational overheads.

4.4, Applications of Embedded Model to

Didlectric Films

As examples of dielectric films, anti-reflection (AR) coatings and fibre Bragg
gratings (FBG) are utilized to examine the embedded model proposed in
Chapter 3.

For the isotropic and lossless dielectric materials, the equivalent inductance

and capacitance, L and C, can be expressed by

L =p=popy,

C = ¢ = g¢,. (4-26)

A modified embedded thin film model is also presented to model single layer

dielectric thin films.

4.4.1. Antireflection (AR) Coatings

AR coatings are used in optical amplifiers, couplers and switches [4.15] to

reduce the reflection and enhance transmission.

In this section, the reflection coefficients of one quarter-wavelength AR
coating are calculated using the embedded model proposed in Chapter 3. For
comparison, the conventional TLM method is also used to model the AR
coating.

The AR coating is assumed to be infinite in length and width, but only have

finite thickness. As shown in|Fig.4-28| the electric field is normally incident
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from free space with refractive index n, on to the film with refractive index n,

and then emerges into a substrate with refractive index n,, .

E B
H
H
<
Er
n, n, n,

>

Fig.4-28 The electric field is normally incident to a quarter-wavelength film on
asubstrate.

The AR coating studied is taken from [4.1]. It has arefractiveindex n, = 1.22

and a quarter-wavelength thickness d; = 4’1—0 =112.7 nm a A, = 550 nm.

nq

The glass substrate has refractive index n,, = 1.5.

When analysing the reflection coefficients of the AR coating, the background
materials (free space and glass substrate) were assumed to be infinite. In the
simulation, the lengths of free space and glass substrate regions were chosen to
be the same as 100 nm, and at both ends matched boundaries [4.11] were used
to simulate the infinite space. The background materials were discretised using
1D TLM nodes, while the coating was modelled by the embedded model
proposed in Chapter 3. The excitation was placed in the first node using a delta
pulse. The incident field to and the reflected field from the AR coating were
calculated in the time domain and then a Fast Fourier Transform (FFT) was
taken to get the reflection coefficients of the AR coating.

In order to choose an appropriate mesh size, the discretisation errors were
investigated first. The reflection coefficients of the AR coating at 550 nm were
calculated using the embedded model with different mesh size, dz. Results

obtained were compared with the analytical ones calculated using the transfer

matrix method described in section 4.2.1.|Fig.4-29|shows the percentage errors
in the reflection coefficients of the AR coating at 550 nm calculated using the
embedded model with different mesh size, represented by A/(n, - dz),
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compared to the analytical ones. It can be seen that when the mesh sizedz =
1nm (1/(n, - dz) = 366.7), the errors in the reflection coefficients are less

than 1%. In the following calculations, the mesh size was chosen to be 1 nm to
minimize the discretisation errors.

Percentage Errors / %

L 0 50 100 150 200 250 300 350 400
Iamda/(nb*dz)

Fig.4-29 Percentage errors in the reflection coefficients of the AR coating at
550 nm calculated using the embedded model with different mesh size, dz.

Using a mesh size of 1 nm, the stability of the embedded model is investigated.
For the time domain model of this AR coating connecting with the TLM
algorithm, the key is to solve equations (3-9) and (3-10). According to section
3.2, these two equations can be seen as a complex digital filter system. The

stability of the system depends on the poles of the transfer functions of all the
digital filters.

According to the parameters of the AR coating, the stability coefficients used
in equation|(4-24)|are calculated as follows (o, = 0 and g,,, = 0),

Ay =2u =251x10"° (Hm™),
B, = —2u=-251x10"% (Hm™?),

Ay = 4us + k?m? /d?At?
=6.615x 10717 +8.634 x 1072 - k2 (S’m™%), k=1.2,--,N
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2.2
d2
= —13.23 X 10717 + 8.634 x 10721 - k2 (S?m™2), k=12--,N

B, = —8ue + 2 At?

272
d2
= 6.615 X 10717 + 8.634 x 10721 - k2 (S2m™2), k=12--,N

At?

Cy = 4ue +

From these values, it can be seen that for all the digital filters used in this
system, the poles of their transfer functions are within the unit circle indicating
that the AR model is stable[4.12].

Using the stable embedded model, the reflection coefficients of the AR coating
were calculated in the wavelength range from 450 nm to 550 nm. |Fig.4-30

shows the reflection coefficients of the AR coating as a function of wavelength
for different number of terms, N (used in equations (3-11) and (3-12)), together
with the analytical ones calculated using the transfer matrix method described

in section|4.2] It shows that with an increase in the number of terms, N, the

numerical results converge to the analytical ones. The convergence is best at

the operating wavelength A, = 550 nm.

Fig.4-31| shows the percentage errors (defined in equation [(4-21)) in the

reflection coefficients calculated using the embedded model and the analytical
results. When N = 400, the errors are less than 2% in the wavelength range
from 450 nm to 650 nm.

The runtime for N = 400 was 45s using a PC with an Intel Core 2 Duo CPU
3GHz processor and 4GB memory.

It is noticed that the results for the AR coating with n; = 1.22 show the slow
convergence with the number of terms, N. 400 terms are needed to get results
with errors less than 2%, which increases the computational costs. Thus it is
desirable to obtain a more efficient implementation. The development of a

modified embedded model is the subject of the following section.
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Fig.4-30 Reflection coefficients of the AR coating with n; = 1.22 calculated
using the embedded model for different number of terms, N.
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Fig.4-31 The percentage errors in the reflection coefficients calculated using
the embedded model for different number of terms, N (N = 50, 200 and 400).
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4.4.2. Modified Embedded Model for Single-layer

Didlectric Films

From the previous examples, it can be seen that for single-layer AR coatings,
400 or more expansion terms are needed in cotangent and cosecant function
expansions (equations (3-11) and (3-12)) to get good convergence to anaytical
results. This increases the computational costs. In this section, a modified
embedded model for single-layer dielectric films is presented, which can

reduce the number of expansion terms for convergence. This model is tested

using the AR coating example studied in section(4.4.1

The expansions for the cotangent and cosecant functions given in equations (3-
11) and (3-12), are repeated here for convenience.

jYcotO —]f( Z k2n2>'
k=

. (1 o (—DF

jYcscO = I §+ 20 Z, —92 el |

The above two equations converge rapidly when 6 = 0, that is a zero

=

frequency for any thin thickness film. This means that accurate results for low
frequencies could be obtained even using only a few terms. However, for very
high frequencies, such as in the visible part of the electromagnetic spectrum, to
get the accurate results, many more terms are needed to approximate the
infinite series.

The above equations can be manipulated so that they converge faster at the
specific frequency f,.

For the cotangent function, the specific electrical length 8, isintroduced as

cos(8 — 6y + 6,)
sin(6 — 6, + 6,)

cotd = cot(8 — 0y + 6,) =

cos(0 — 6,) cosB, — sin(6 — 0,) sinb,
sin(6 — 6,) cosB, + cos(0 — 0,) sinb,’
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By dividing both the numerator and the denominator by sin(6 — 6,) sinf,,

one can obtain,

cot(6 — 6,) — tanb,

cotb = 1+ cot(8 — 6,) tanb,’ (4-27)
where cot isreplaced by cot(6 — 6,).
Similarly, csc6 can be expressed by
csc(6 — 0,) /cosB,
cscl = (4-28)

~ 1+ cot(6 — 6,) tanb,’

After replacing cotf and csc6 in equations (3-11) and (3-12) with equations

(4-27)|and|(4-28)| they become

(()’13’2 +YY +jY(y1tyz)tanb,) + (y1y, + YY)tanB, cot(6 — 6,)
= Y(y1t+y2) jeot(6 — 90)) %

= ((2y1y; + 2y,jYtandy) + 2y,y,tand, cot(6 — 6,) — 2y,Y

jesc(8 —06,)

cjcot(8 —0y)) - Vi—=2y,Y
jeot( 0)) 1 V2 cosf,

0 4 Zi,
(4-29)

((3’13’2 +YY + jY(y1+yz)tanby) + (y1y, + YY)tanB, cot(6 — 6,)

= Y(y1t+y2) jeot(6 — 90)) Vs

jesc(8 —6,)
cosf,

= Y1 V1i

+ ((Zylyz + 2y,jYtan6,) + 2y, y,tanb, cot(8 — 6,) — 2y,Y
- jeot(6 — 6,)) - V4.

(4-30)

Equations|(4-29)|and|(4-30)|now involve cot(8 — 6,) and csc(6 — 8,) which

converge faster at 6,,, which corresponds to the frequency f, defined as 6, =
2mf,dvLC.
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In equations|(4-27)|and|(4-28)| tan6, is aknown value given a specific f,, and

cot(6 — 0,) and csc(6 — 6,) are expanded using the same expansion

technique as in equation (3-11) and (3-12), asfollows,

N=oo
1 1
cot(6 —0,) = Py +2(6 - 6,) kZ:l (6 —0,)% — k22’
- (4-31)
6-8,) = +2(6-06 )NE 1
CcSC —Upy) = 9 — 90 0 & (0 _90)2 _ kzn.z-

Equation|(4-31)|converges rapidly when 6 = 6,,, which means that fewer terms

are needed to get accurate results at the given frequency fj.

After substituting equation |(4-31)| in equations|(4-29)| and |(4-30)| and then

transferring them into Z domain, the solutions are obtained using the same

method as described in section 3.2.
Since

0 = wdVLC, 0, = wodVLC = 2nf,VLC,

then equation|(4-31)|in the Z domain becomes

1+z1

AAZ + CCZZ_l

AA, + BB,z + CCyz2

AAk + BBkZ_1 + CCkZ_Z’
1+z1
™M A4, + CCpzt
AA2 + BBzz_1 + CCZZ_Z
AAk + BBkZ_1 + CCkZ_Z-

cot(0 —0y) = —my

—2my

(4-32)
csc(6—0y) = —

—2my (=1

Parameters in equation|(4-32)|are given by:

AAZ = a)oAt + 2],
BBZ == Za)oAt,

CCZ == (UoAt - 2],
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At
 dpE

my

k?m?
AA, = —4 + 4jw At + At? 2 ,
K t 4jwoAl + (‘Uo dz,u£>

k?m?
BB, = 8 + 2At? 2 ,
k + ((JJO d2ﬂ£>

k?m?
CCx = —4 — 4jwoAt + At? <w5 — dz_ug)
This modified embedded model can only work well for single layer dielectric
films since this model involves an electrical length shifting procedure. For
multilayer films, there are two or more electrical lengths which was found to
result in not only no savings in computational resource but also stability

problems in practice.

In order to test the modified embedded model, the AR coating studied in

section|4.4.1]is used as an example.

The AR coating studied in [4.1] has a refractiven; = 1.22 and has a quarter-

wavelength thickness d; = 4’170 =112.7nm a A, =550 nm. The glass

substrate has refractive index n;, = 1.5.

Since the centre wavelength is A4, = 550 nm, the frequency at which the
operating of the coating is optimized is f, = ¢/A, = 545 THz. According to
the described model the cotangent and cosecant functions are now shifted to

frequency f;, for which they converge faster.

The TLM mesh size was chosen to be 1 nm as before.

Fig.4-32| (a) shows the reflection coefficients of the AR coating calcul ated

using the modified embedded model for different number of terms N (N = 5,
10 and 20), together with the analytical results. It can be seen that numerical

results indistinguishable from the analytical ones are obtained using only 20

terms. This is in contrast to |Fig.4-30| where 400 terms are used and

convergenceis only achieved at resonant wavel ength.
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Fig.4-32| (b) shows the percentage errors (defined in equation|(4-21)) in the
reflection coefficients calculated using the modified embedded model for
different number of terms, N, and compared to the analytical ones. It can be

seen that when N = 20, the errors in the wavelength range from 450 nm to 650
nm are less than 3%. Compared to the embedded model proposed in Chapter 3,
the modified model achieves similar accuracy in the desired wavelength range,

even using only 20 terms.

Reflection Coefficients / dB
&
(63}

-40
- N=5
—45+ === N=10 ||
N=20
—Analytical
_59 1 L L
50 500 550 600 650
Wavelength / nm

Percentage Errors / %

1 1 1
450 500 550 600 650
Wavelength / nm

(b)

Fig.4-32 (a) Reflection coefficients of the AR coating with n, = 1.22 (b)
percentage errorsin the reflection coefficients, cal culated using the modified
model for different number of terms N (N =5, 10 and 20).
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Therefore, the number of terms used in the modified model is reduced by
twenty times over that in the embedded model proposed in Chapter 3, and this
improves the efficiency of the ssmulation.

For comparison purposes, the conventional TLM method is also used to model
the AR coating. The discretisation errors were firstly investigated, in order to
choose an appropriate mesh size.|Fig.4-33|shows the percentage errors in the
reflection coefficients of the AR coating at 550 nm calculated using the
conventional TLM method for different mesh size, dz, represented by d/dz,

where d is the thickness of the coating, compared to the analytical ones. It can
be seen that when dz = 0.2 nm (d/dz = 563.5), the errors in the reflection

coefficients are around 0.2%.

|~=Reflection Coefficients|§

T

Percentage Errors / %
=
T
1

0 100 200 300 400 500 600
d/dz

Fig.4-33 Percentage errors in the reflection coefficients of the AR coating with
n = 1.22 calculated using the conventional TLM method with different mesh
size, dz.

For comparison purposes, the reflection coefficients of the AR coating were
caculated in the wavelength range from 450 nm to 650 nm using the

conventional TLM method with the mesh size of 1 nm and 0.2 nm.|Fig. 4-34

shows the percentage errors in the reflection coefficients calculated using the
conventiona TLM method with different discretisations dz = 1 nm and 0.2
nm. It can be seen that when the mesh size is 1 nm, the errors in the reflection

coefficients are less than 10% in the wavel ength range from 450 nm to 650 nm;
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when the mesh sizeis 0.2 nm, the errors are below 4% in the wavelength range
from 450 nm to 650 nm, comparable with the results from the embedded
model with a mesh size of 1 nm.

——dx=1nm ||
—dx=0.2nm |

Percentage Errors / %

450 500 550 600 650
Wavelength / nm

Fig. 4-34 The percentage errorsin the reflection coefficients cal culated using
the conventional TLM method compared with the anal ytical ones for two
different discretisation dz = 1 nm and 0.2 nm.

Table 4-5[shows the comparison in the compuational consumptions for the
conventional TLM model and the modified embedded model. It can be seen
that for the conventional TLM method, smaller mesh size is needed to capture
the details of the AR coating, which leads to bigger memory storage for the

nodes and a larger number of time steps in the simulation.

Table 4-5 Comparison between the conventional TLM model and the modified
embedded model for the AR coating withn; = 1.22

Mesh size Number of Number of Run time(s)
Model )
(nm) nodes time steps *
Conventional P

TLM 0.2 1564 2.5x10 137
Modified
Embedded 1 200 5% 10° 25

model

(* the run time is based on a PC with an Intel Core 2 Duo CPU 3GHz
processor and 4GB memory)
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4.4.3. Fibre Bragg Gratings (FBG)

Fibre Bragg gratings (FBG) have been the subject of intense investigation in
recent years, driven by applications such as filters, fibre lasers, dispersion
compensators and wavelength converters [4.17 ~ 4.18]. They operate through
reflecting light over a narrow frequency range and transmitting at all other

frequencies[4.19].

In this section, the filter property of alinear Bragg grating structure [4.20] is
tested using the embedded model. The structure shown in|Fig.4-35|consists of
68 dternating layers of refractive indices n; = 2.05andn, = 1.95. The

thickness of each layer is chosen to be a quarter wavelength at the Bragg

(centre) wavelength of A, = 1um. Thus the thicknesses of each layer are d; =

20 = 112.95 nmand d, = > = 128.20 nm , respectively. The length of the

nq 477,2
free space region on each side of the grating in the model is chosen to be 1000
nm and matched boundaries [4.11] were used at both ends to simulate the

infinite space.
<«— 068 layers ——>
freegspace o n, |03 0, *.&¥ n;|n ﬁ"eegspace
Y d, d, LT
incident wave - transmitted wave

Fig.4-35 Fibre Bragg grating structure having 68 alternating layers of
refractiveindicesn, = 2.05 and n, = 1.95. The thicknesses at the centre
wavelength of 1 um are: d; = 112.95 nm and d, = 128.20 nm.

To calculate the transmission coefficients of this FBG structure, free space on
both sides of this structure was discretised using 1D TLM nodes. The FBG
structure was embedded between two adjacent 1D TLM nodes using the time
domain embedded multilayer thin film model introduced in Chapter 3.

The FBG structure has two different didlectric materials. Therefore, their

capacitance and inductance are expressed as,
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L1 = poiy = Uo, C1 = gy, = 4.2025¢,,
L2 = polty = U, C2 = gy, = 3.8025¢,

and their characteristic admittances are given by

Yl = C1—00054s
L ’
Y2 = C1—000525
- Ll_ . L

The 68-layer FBG embedded between two adjacent TLM nodes is shown in

Fig. 436
;
VL, VR,.,
ntl
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LM I, 1 lg Lgs Iy TLM
—== {} | et e e [} 2
BT ]T Layer1 T V, Layer2 V;T 32 pairs of layers TV ", Layer67 TV 5 Laver68 pr Yz
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Fig. 4-36 68 layer fibre Bragg grating embedded between two adjacent 1D
TLM nodes.

Since the FBG structure has 68 layers, there are 68 admittance matrix
equations with the form given in equation (3-31). Equations like (3-45) can be
obtained, in which there is a square matrix of the order 69 and 69 unknowns.

Its solution is obtained by the Gauss-Seidel method described in section 3.3.3.

The discretisation errors were firstly investigated in order to choose an

appropriate mesh size. |Fig.4-37| shows the percentage errors in the

transmission coefficients of the FBG structure at 1 um calculated using the
embedded model for different mesh size, represented by 1/dz, compared to
the anaytical ones. It can be seen that when the mesh size is 10 nm (1/dz =
100), the errors are around 0.01%. In the following calculation, the mesh size
was chosen to be 10 nm in order to minimize the discretisation errors in the

frequency range from 280 THz to 320 THz.
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Fig.4-37 Percentage errors in the transmission coefficients of the FBG
structure at 1 um calculated using the embedded model for different mesh size,
dz.

Fig.4-38| (a) shows the transmission coefficients of the FBG structure with

different expansion terms N, namely N = 50, 100 and 200, compared to the

analytical one calculated using atransfer matrix method as described in section

4.2|2. When N = 200, the numerical results are virtually indistinguishable from

the analytical ones. The percentage errors (defined in equation|(4-21)) in the
transmission coefficients of the FBG compared with the analytical results are
shown in|Fig.4-38|(b). It can be seen that when N = 200, the errors are below
0.2% from 280 THz to 320 THz.
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Fig.4-38 (a) The transmission coefficients of the FBG and (b) the percentage
errors in transmission coefficients obtained using the embedded model for
different number of terms N (N = 50, 100 and 200).

For comparison purposes, the FBG structure was also modelled using the

conventional TLM method with a discretisation dz = 10 nm and dz = 1 nm.

Fig.4-39|shows the percentage errors in the transmission coefficients obtained

from the conventional TLM method in comparison to the analytical results. It
can be seen that when the mesh size is 10 nm the errors are below 20%, while
for amesh size of 1 nm, the errors are below 0.8%, comparable with the ones

calculated using the embedded model with a mesh size of 10 nm.
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Fig.4-39 The percentage errors in transmission coefficients obtained using the
conventional TLM method for mesh size 1 nm and 10 nm.

Table 4-6| shows the comparison in the computational costs for the
conventional TLM model and the embedded model for the FBG structure. It
can be seen that since the mesh size for the embedded model is bigger, a

smaller number of nodes and time steps are needed, leading to a saving in

memory storage for the nodes and a saving in the number of time steps. The
total run time is longer for the embedded model because there are 68 layers of
films, for each of which at least 200 digital filters are used. The large number
of digital filters used may aso take up large memory storage.

Table 4-6 Comparison between the conventional TLM model and the
embedded model for the FBG structure

Model Mesh size Number of Number of Run time
(nm) nodes time steps (s)*
Conventional 6
TLM 1 14500 1x10 180
Embedded 5
modd 10 300 1x10 450

(* the run time is based on a PC with an Intel Core 2 Duo CPU 3GHz
processor and 4GB memory)
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In this example, there is no saving in the run time and total memory storage for
the embedded model due to the large number of layers, but a relative large
mesh sizeis used, resulting in a saving in the number of time steps.

4.5. Conclusions

In this chapter, the frequency responses of lossy, anisotropic and lossless thin
films were investigated using the embedded thin film model proposed in
Chapter 3. A variety of applications was studied, such as CFC panels and a
titanium panel for EMC, and AR coatings and FBG for photonics.

For lossy materials, CFC panels and titanium panel were used as examples.
Both single and multiple layer CFC panels were studied using the embedded
model. For a single layer CFC panel, the errors in reflection coefficients are
less than 0.0006% while the errors in transmission coefficients are less than
0.8%. For multilayer CFC panel the errors in the reflection coefficients are less
than 0.001% while the errors in the transmission coefficients are less than
1.5%. As further applications, the shielding effectiveness of CFC panels was
also discussed. It was shown that thicker panels with higher conductivity
provide better shielding effectiveness. For titanium panels, the errors in the
reflection coefficients are less than 0.00003% while the errors in its
transmission coefficients are less than 0.4% . The high accuracy in the
reflection coefficients is due to the requirement that the percentage errors in

the transmission coefficients are less than 2%.

For lossless materials, antireflection coatings and fibre Bragg gratings were
taken as examples to test the embedded thin film model. For asingle layer AR
coating in the visible spectrum, the errors in reflection coefficients compared
with the analytical ones are less than 2% when N = 400. It was shown that the
embedded thin film model has slow convergence in the case of lossless thin
films with large electrical length. To alleviate this, the cotangent and cosecant
expansions used were manipulated so that they converged faster at a desired
frequency. By doing this, the number of terms needed to approximate the
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infinite expansions is reduced by 20 times at a given frequency. However, the
downside of this modified model is that it works well only for single layer
films. For the fibre Bragg gratings, the transmission coefficients were
caculated using the embedded model. The errors in FBG transmission

coefficients are less than 0.2% in the desired wavelength range.

All examples considered proved the accuracy, stability and convergence of the
embedded thin film model.

All models were compared against the conventional TLM method that requires
discretisation of the panel. The embedded model shows great advantages over
the conventional TLM method for lossy materials operating at microwave
frequencies. Since a larger mesh size is used in the embedded mode,
considerable memory storage is saved and the number of time stepsis reduced.
However, in the case of a multi-layer stack with a large number of layers
working in the optical frequency, the embedded model does not show much
advantage over the conventional TLM method due to the fact that a large
number of digital filtersis needed.

The next two chapters will consider the embedded model in the two-
dimensional (2D) TLM method, in which its applications in arbitrary

excitations and curve structures will be elaborated.
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5.Embedded Thin Film Mode for
Arbitrary Excitations in the Two-
Dimensional TLM method

5.1. Overview

In this chapter, the embedded model developed in Chapter 3 isfirst applied to
model the reflection and transmission from a thin film of infinite length at
oblique incidence, in which the thin film is represented by a one-dimensional
(1D) model embedded between two-dimensional (2D) TLM nodes. It is then
extended to model a thin film of finite length subject to arbitrary excitations by
using the plane wave decomposition theory. Its accuracy and convergence are
verified using examples of infinitely long CFC panels excited at oblique
incidence. Finally it is applied to model CFC panels of finite length with a

point source excitation.

5.2. Analytical Method for Analysing Oblique

Incidence onto a Thin Film

At oblique incidence, the reflection and transmission coefficients of the thin
film can be calculated using the transfer matrix method or the even/odd mode
method derived in section 4.2. However, the impedances in these methods
should be replaced by transverse impedances [5.1] in the case of oblique
incidence. Thus, the concept of transverse impedance at oblique incidence is
introduced first.

When a plane wave is incident onto a thin film at an arbitrary angle, the
discussion can be separated into two cases [5.1]: polarisation with the electric
field normal to the plane of incidence, referred to as the transverse electric (TE)

polarisation and polarisation with the electric field in the plane of incidence,
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referred to as the transverse magnetic (TM) polarisation. Other cases may be

considered as a superposition of these two.

Fig. 5-1|depicts a plane wave incident from free space onto a thin film at an

angle of ¢, and the subsequent reflection and transmission into free space, for
(@) the TE and (b) the TM polarisations.

Free Space Free Space

H 'j Hy Hi

H, E, Iy
Thin Film ©*—
@
Free Space Free Space
Et
HI'
r H'
E
k, k,
5
E Ey El ki
E, H, H Iy
Thin Film ®—%
(b)

Fig. 5-1 Oblique incidence onto athin film for (a) TE-polarised and (b) TM-
polarised waves.
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Asin Fig. 5-1 (a), the existing field components in the TE-polarised wave are
H,, H, and E,, while the components in the TM-polarised wave are E,, E,, and
H, asin Fig. 5-1 (b). The transverse impedance [5.1] is defined as the ratio of
the electric to magnetic field components in the plane parallel to the boundary.
For TE-polarised wave, the transverse impedance is calculated as E, /H,,; for

TM-polarised wave, the transverse impedance is calculated as E,, /H,,.

Considering that H,, = Hcos for the TE polarisation and E,, = Ecos¢ for the
TM polarisation, the transverse impedances in free space for both polarisations,
Zrg for TE-polarised wave and Z,, for TM-polarised wave, are given in terms

of theincident angle as[5.1],

Zo
cosq’ (5-1)

Zrg =

Zry = ZoyCoSQ,

where Z, is the characteristic impedance of free space and ¢ is the incident

angle with respect to the x-axis in free space.

The transverse impedance in a thin film can also be expressed in terms of the

refraction angle with the same form as equation|(5-1)| However, if the thin film

is composed of lossy materials, the wavenumber in the thin film is complex-

valued and so the angle of refraction may also become complex-valued. In

equation|(5-1)| the calculation of the transverse impedance needs to deal with

the cosine of the angle, which is difficult to calculate for a complex-valued
angle. To avoid the need for such a calculation, it is convenient to express the
transverse impedance in terms of the wavenumber in the medium as follows
[5.2].

In the case of oblique incidence, the wavenumber in the given medium k; has

two components k,; and k,,;, whose relations are k,; = k;cos@; with cosp; =

yis
kxi/ki and kyi = kisin(pi.

Sinceki = W,/ Ui&; and Zi = w/,l,li/é'i, then kiZi = WU; and ki/Zi = wé;.

119



5 Embedded Thin Film Model for Arbitrary Excitationsin the 2D TLM Method

Therefore, the transverse impedance for both polarisations may be re-

expressed in terms of the wavenumber in the medium as[5.2]:

Zi  _Zitki _wm

Zirg = ,
TE T cosg; Kyi Kyi ,
5-
_ Ziky kg 2
Zirm = Zi€0SQ; = —— =",
l l

where Z; is the characteristic impedance of the medium and ¢; is the

propagation angle with respect to the x-axis in the medium.

After introducing the transverse impedance, the reflection and transmission
coefficients of thin films are calculated using the transfer matrix method as

follows.

As discussed in section 4.2, the pand is assumed to consist of M layers. At

oblique incidence, the characteristic impedance of each layer in equation (4-1)

is replaced by its transverse impedance given by equation|(5-1)|or|(5-2)| The

reflection coefficients of each interface for both polarisations are,

i i-1
ZTE - ZTE

Zig + Zig"

TE _

Pi
e (5-3)
™ _ Z’;‘M - Z’;"Ml

Y Ziwt Ity

wherei =1,2,---,M + 1.

Therefore as in equation (4-6), the reflection coefficients of the thin film are
given by,
Ei_  pi+ Ry e 2kidicosoi

R, =—= - , i=MM-—1,.... ,1
' Ei 1+ piRy e Hkidicoses
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5.3. Embedded Mode for Thin Films at

Arbitrary Excitations

In this section, the simple two-dimensional (2D) case of an infinitely long thin
film with a plane wave impinging at oblique incidence is studied. Based on this
simple case, a more complicated situation of athin film of finite length subject
to arbitrary excitationsis also studied.

5.3.1. Infinitely Long Thin Film at Oblique Incidence

Consider a plane wave obliquely incident upon an infinitely long thin film at

an angle ¢, as shown in[Fig. 5-2

1D Thin Film

Fig. 5-2 A plane wave isincident upon a one-dimensional (1D) thin film
model, embedded between 2D series nodes in the TLM, at oblique incidence.

In[Fig. 5-2| the thin film is considered to be 1D and embedded in a2D TLM

mesh. As discussed in the previous section, at oblique incidence, the study of

the reflection and transmission properties of the thin film is reduced to a 1D
problem due to the introduction of the transverse impedance. Thus, the thin
film can be seen as a section of 1D transmission line with the appropriate
transverse impedance and then embedded between the adjacent 2D TLM nodes.
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In order to embed the frequency responses of the thin film at oblique incidence
into the time domain 2D TLM agorithm, the same technique can be used as
was discussed for the normal incidence case in Chapter 3. Assume the
infinitely long thin film is placed between the nodes (n,, n,) and (n, + 1,n,),
where n,, and n,, are the indices of the TLM node along the x and y axis,
respectively. For each pair of nodes (n,, n,) and (n, + 1,n,) in the modelling
space, the equation (2-31) for the node (n,, n,,) and the equation (2-30) for the
node (n, + 1,n,) in the connection process are modified because of the
embedding of the thin film; in Chapter 3, they were replaced by equations (3-9)
and (3-10) for the normal incidence case. In the case of oblique incidence, the
impedances in equations (3-9) and (3-10) should be changed to the
corresponding transverse impedances. The details of the modification are now
discussed for both TE and TM polarisations.

As shown in|Fig. 5-1((a), the field components for the TE polarised wave are
H,,H, and E,. Therefore, the background materia is modelled using the 2D

shunt TLM nodes, as shown in Chapter 2.

In the case of oblique incidence, y; and y, in equations (3-9) and (3-10) are
corresponding to the characteristic admittances of the 2D shunt nodes on both

sides of the film, which are given by,

1 1
R ) =

The admittance of the thin film is replaced by its transverse admittance Y for
the case of oblique incidence, which can be expressed in terms of the
wavenumber as,

1 kym

Y- = = 3 -
" Zrg Whm (&-5)

where k,.,, is the x component of the wavenumber in the thin film, given by

K2y = k2, — k.
According to the Snell’s law,
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kym = kyp = kpsing, (5-6)

where k;, is the wavenumber in the background materia and k,,, is the y

component of the k;,, and ¢ is the incident angle with respect to the x axis.

Thus,
kyzcm = krzn - kalm = krzn - (kain(p)z- (5-7)

Therefore, the square of the admittance of the thin film in equations (3-9) and
(3-10) iswritten as,
Kim ki — (kpsing)?

YreYre = = . -
TE'TE wzlu";n wzu%l (5 8)

Furthermore, the electrical length of the thin film, 8%, isreplaced by,

Or = kmd = dy/k, — (kpsing)2. (5-9)

Finaly, jYcotf and jYcscO in equations (3-9) and (3-10) are expanded for the

case of oblique incidence as

JYrgcotOrg = jYrg (@"‘ 207 Z 02, — k27'[2 '

(5-10)

1 (-1)*
]YTECSCHTE _]YTE BTE —+ ZGTE Z m .

For the TM polarised wave, |Fig. 5-1((b) shows that the field components are

E,, E, and H,, so the background material is modelled using the 2D series

nodes as shown in Chapter 2.

In order to embed the thin film into 2D TLM nodes for TM-polarised wave at
oblique incidence, the modification of the equations (3-9) and (3-10) for the
normal incidence is similar to that just described for the TE polarisation; the
only difference is that the transverse admittance of the thin film is now
replaced by,
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1 WE
Yry =5 —=7— (5-11)

™ kxm

After these modifications, similar procedures to those described for the normal
incidence case in section 3.2 are followed in order to embed the thin film

model into the TLM algorithm for the case of oblique incidence.

5.32. Thin Film of Finite Length with Arbitrary

Excitations

Consider a thin film of finite length in the 2D space. An arbitrary source, for

example a point source, excites the nodes in the space as shown in|Fig. 5-3

When the waves hit the thin film, they are incident onto the thin film at many
different angles. In such a case, the above embedded model for afixed angle of

incidence needs extending.

In this section, an embedded model for a thin film of finite length with
arbitrary excitations is introduced, based on the plane wave decomposition
theory [5.3].

(0,b) (a,b)

)

Point
Source

YA
Thin Film

(0,0) X (a,0)

Fig. 5-3 The excitation from a point source hits athin film of finite length.
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The plane wave decomposition theory isintroduced first.

The plane wave decomposition theory, also known as the angular spectrum
representation of fields [5.3], says that an arbitrary field can be expanded as a
series of plane waves and evanescent waves, which are physically solutions of
Maxwell equations. In the following, the TE polarisation is considered to
demonstrate the theory. The TM polarisation can be treated in a similar manner.

Assume that the electric field a x=0 is expressed as E,(0,y), which
propagates towards the +x direction.

It is well known that a function in the time domain can be decomposed into a
series of oscillations with different frequencies, different amplitudes and
different phases using the Fourier transform [5.4]. Based on the same principle,
the field E,(0, y) can be decomposed into a number of parts using a Fourier

transform.

The Fourier transform of E, (0, y) can be expressed as,

o]

1 - .
E,(0,y) = o f_ OOE (s)el*Vds, (5-12)
where E (s) isthe Fourier transform of E, (0, y), which is given by
B = [ E0yeTvay, (513)

where s is the Fourier transform variable.

If the field propagates in an infinite homogeneous space, the total field must
satisfy the wave equation [5.1],

2 d2
<E + ay? + kz) E,(x,y) = 0. (5-14)
Therefore, it can be predicted that

1 (. ) ;
BGoy) =5 | E(serre ¥ s (5-15)
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since, if x=0, equation|(5-15)|becomes equation|(5-12)|and for each value of s,

e~IVk*=s%x jsthe only x dependent term.

In order to gain some understanding, equation|(5-15)|can be written as

1 (.
E,Coy) =5 f E(s)P(s; x,y)ds, (5-16)

where P(s; x,y) = e/ = JVk*=s%x

If P(s;x,y) isthe field of a plane wave propagating at an arbitrary direction,

equation|(5-15)|expresses a genera arbitrary field E,(x, y) as a superposition

of the simpler fields P(s; x, y), each of which has a weighting amplitude £ (s)
and can propagate independently as each P(s; x, y) satisfies the wave equation

on its own.

In the following, it will be shown that P(s; x,y) can represent a plane wave

propagating in an arbitrary direction.

The definition of a plane wave heading along the x axis (Fig.5-4{(d)) is

E,(plane wave) = P(s = 0;x,y) = e Jk*, (5-17)

If a plane wave propagates at an angle ¢ to the x axis as shown in|Fig.5-4|(b),

the coordinate rotation principleis applied

x"\ _ [(cosep —sing\ (X
<Y') B (Singo cosQ )(y) (5-18)
so that
P(s = 0; x',y’) — g~ Jk(xcosp-ysing) — ,—jkxcosp pjkysing (5-19)

In equation |(5-17)| if s = ksing is chosen, then P(s = ksing;x,y) =

eJsy g=IVk*=s%x \nhjch is the same as equation|(5-19)

In other words, a plane wave propagating at an angle ¢ to the x axis has afield

P(s = ksing; x,y). Reversing the logic, a field P(s = ksing; x,y) can be
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interpreted as that of a plane wave heading at an angle ¢ = sin~1(s/k) to the x

axis.
AY
yl
Xl
> ¢
y 4
\ \ N T T x
contours of constant phase contoutrrs of constant phase
@ (b)

Fig.5-4 (a) A plane wave propagatesin the x direction (b) a plane wave
propagates at an angle ¢ to the x axis.
However, it should be noted that if k% <s?, P(s=ksing;x,y) =

eJsYeVs*~k*x \which is an exponentially decaying function representing

evanescent waves, where the angle ¢ is acomplex number.

Therefore, equation|(5-15)shows that a general field E, (x, y) can be expressed

as a superposition of plane waves, each of which has a different angle of
propagation ¢ and a different amplitude £ (s), and evanescent waves with

decaying factors.

Based on the idea of the plane wave decomposition theory, an embedded
model for athin film of finite length with arbitrary excitations is devel oped.

According to the plane wave decomposition theory, the field incident from
TLM nodes onto the film can be decomposed into a series of plane waves with
different incident angles and evanescent waves with decaying factors. Each
wave in the decomposition is independently incident upon the film at its own
angle or decaying factor. At the excitation of each wave, the previous
embedded model for the fixed incident angle can be applied to solve the
reflection and transmission of the film. In the end, these fields are combined
together and reflect back to the TLM nodes.
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This is the first time that the plane wave decomposition theory is adopted for
use in the TLM agorithm. Its implementation is given below for further

clarification.

Assume the thin film, with length [, is placed between the nodes (n,, n,) and

(ny +1,n,).

In the model, the voltages incident onto the thin film from both sides,
V. (ny ) and V' (n, + 1,1,,), can be obtained through the TLM algorithm.
According to the plane wave decomposition theory, the incident voltages can

be decomposed by using a Fourier transform into a superposition of waves,

V(@) and Vi () as shown in|Fig. 5-5| each of which is incident onto the thin

film at a fixed angle ¢; (complex values represent evanescent waves). The
response of the thin film to each of the waves can be obtained using the
embedded model for the fixed angle of incidence. Thus the reflected voltages
from the thin film, v/ (¢) and V§ (¢), are obtained for each incidence angle. In
the end, an inverse Fourier transform is used to transform the reflected voltages
from the angle domain, V] (¢) and V (¢), to the space domain, V" (1, n,)

and VRr(TLx + 1, ny).

DF
Vii(o) input input V(o)
ik [DE(e) e

IFFT tput
Vii(neny) V() <—2PY

FFT FFT

VLi(n,\any)

VRi(nx+ 1 sny)

output

T
VRr((P) VRr(nx+ 1 any)

Embedded Model for
Each Angle Incidence

Fig. 5-5 The flow chart of the embedded thin film model for arbitrary
excitations.

54. Plane Wave Excitations

At normal incidence, as discussed in Chapter 3, the periodic and matched

boundary conditions were used to yield suitable problem boundary conditions
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at the edge of the computational window in order to simulate a plane wave
propagating in infinite space using the TLM method. However, those boundary
conditions are not applicable for oblique incidence. In this section, the plane
wave excitations are introduced within the TLM method to model a plane
wave propagating in the infinite space at an arbitrary incident angle, ¢ .

Furthermore, excitations for an infinitely long thin film are a so described.

5.4.1. Excitationsfor Infinite Free Space

Consider a finite 2D TLM space in the x-y plane, 0 <x <aand0 <y <b
where a and b are dimensions in metres. In order to simulate a plane wave
propagating in the infinite space, the excitations and boundaries should be

properly set.

When a plane wave propagates in infinite free space, the electric and magnetic
fields at each point can be evaluated using the plane wave propagation theory
[5.1]. Thus, the fields at the boundaries of the finite region can be obtained and
then converted to the voltages and currents in the TLM nodes, acting as
excitations of the finite region.

In the following sub-sections, the plane wave excitations with TE polarisation
and TM polarisation are elaborated separately.

54.1.1. TE-Polarised Wave Excitations

Consider a TE-polarised plane wave propagating in free space at an angle ¢ to

the x axis, as shown in|Fig. 5-6| The four nodes in|Fig. 5-6|represent arbitrary

shunt nodes on each of the four boundaries.

In|Fig. 5-6| I,,, I, and V, are the currents and voltage at the given boundaries

(x,0), (x,b),(0,y) and (a, y), respectively. They can be calculated as follows.
Based on the plane wave propagation theory, it is assumed that
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E, = —sin(wgt — (kcose - x + ksing - y)),
H, = Hsing = —yysing - sin(wyt — (kcose - x + ksing - y)), (5-20)
H,, = Hcosp = yocos@ - sin(wot — (kcosg - x + ksing - y)),

where w, is the angular frequency of the plane wave, y, is the admittance of

free space and k is the wavenumber.

(0,b) Iy A Vz (a,b)
’ ® Vil NV,
Wy
Vi
Vz ®|Vz
Ix Ix
y
(0,0) x (a,0)
Fig. 5-6 A TE polarised plane wave propagates in the x-y plane at an angle ¢

to the x axis.
The corresponding voltage and currents at the boundaries of the 2D TLM
space are given by [5.5]

V,=—E,-dl,
lo=H,-dl, I, =-Hgdl, (5-21)
where dl isthe mesh size.

According to network theory [5.6], the incident and reflected voltages of the
nodes at the boundaries can be calculated from the known currents and

voltages, i.e. Iy, I, and V.
For the boundary y = 0, the following relations exist,
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{ Vi+ Vi =V,
yTL(Vll - Vlr) = Iy.

Substituting equation [(5-21)| into equation |(5-22)

voltages at the boundary y = 0 are calculated as,

(Vf:i

i

1 . )
kV{ = E(yTL — YoSing)V,

) yrL + Yosing)V,
TL

Similarly, for the boundary x = 0,

) 1
V3 = 5— (YL + Yocosp)V,

2yrL
T 1 .
V; = 2y (VrL — Yocos@)V,
For the boundary y = b,
i 1 :
V3 = > YrL — Yosing)V,
TL
1 .
Vs = > (yrL + Yosing)V,
VL
For the boundary x = a,
Vi ! ( W,
=— — YoCOS
4 2911 YrL — YoCOSQ)V,

1 )
U/4r = (Y1 + Yocos@)V,
2y7L,

(5-22)

the incident and reflected

(5-23)

(5-24)

(5-25)

(5-26)

Therefore, the incident and reflected voltages at the four boundaries of the 2D

TLM region are calculated, which are the excitations of the whole region.

After the derivation of the excitations of the finite region, the boundary

conditions are discussed as follows.

The voltages in a shunt node at the boundary may be expressed as in|Fig. 5-7

where V},,, and V7, ,, are the incident and reflected voltages from TLM nodes,
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respectively, and V! and V™ are the plane wave excitations obtained from the
above derivations.

From |Fig. 5-7| it can be seen that, except for the excitation, matched

boundaries [5.5] should also be set at the four boundaries in order to smulate
the infinite space.

E Excitation
: \A

/ / VTLMr i A Var
—

2I¥ shunt TLM nbdes Zy

s Vo . —I_ | A Matched
. . Vi Boundary
TLM region Excitation

Fig. 5-7 The excitations in a node at the boundary.

From equation |(5-1)| the load impedance Z, = Z,/cos@, so the reflection

coefficient from the boundary is expressed as,

ZL - ZTL

k=757 (5-27)

Therefore, the incident voltage for the TLM nodes can be obtained as

Viey =V + R (Vi — V7). (5-28)

54.1.2. TM-Polarised Wave Excitations

Consider a TM-polarised plane wave propagating in the x-y plane at an angle ¢

to the x axis as shown in[Fig. 5-8

As shown in [Fig. 5-8] the voltages, V, and V,,, and the current I, on the

boundaries are the excitations of the region. They are calculated as follows.

According to the plane wave propagation theory, it is assumed that
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E = sin(wt — kxcosp — kysing), (5-29)
then
E, = —Esing, E, = Ecosg, H, = y,E. (5-30)
(0,b) | —_ (a,b)
Vi l| |1 Vs
Iz
Vo vy
v; 2
Vy Vylz
y .
VAV
(0.0) x o (2.0)
z

Fig. 5-8 A plane wave with TM polarisation propagates in the x-y plane at an
angle ¢ to the x axis.

According to these fields, the voltages and currents at the boundaries are given
asfollows[5.5],

Vo=—Ey-dl, V,=-E,-dl, I,=H,dL (5-31)

Therefore, the incident and reflected voltages at the boundaries can be

calculated based on the network theory asin the TE polarisation case.

For the boundary y = 0,

Vi+ Vi =V,
, (5-32)

yr(Vi - V) =1,

then
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, dl
l — : E
4 _ZyTL (yrLsing + yo)
. dl ]
Vi = > (yrising — yo)E
TL
For the boundary x = 0,
(Vi :i(— cosQ — yo)E
{ 2 2ym1 YTLCOSP — Yo
, dl
kVZ =5 (=yrLcos@ + yo)E
TL

For the boundary y = b,

(vi=4 (yrisi )E
=— sing —
{ 3 2911 VrLSing — Yo
. dl ) )
U/3 = S (yrLSing + yo)E
YrL

For the boundary x = a,

. dl
Vi =——(—yr.cos@ + yy)E
4 2ym1 YTLCOSQP T Yo
v dl ( )E
= — Y1 COSQ —
4 2ym1 VL P —Yo

(5-33)

(5-34)

(5-35)

(5-36)

Finally, the incident and reflected voltages at the boundary nodes are obtained,

which are the excitations of the region.

The matched boundary conditions should also be used to simulate the infinite

space, which can be expressed as equation|(5-28)

case isthat the load impedance Z;, = Z, - cosg.

The difference from the TE

5.4.2. Excitationsfor Infinitely Long Thin Film

When an infinitely long thin film is placed in free space, the distribution of the

electromagnetic fields in the space is changed. In this section, the field

distribution in the space is shown for TE- and TM-
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The same procedure as that introduced in section 5.4.1 for the infinite free

space can be used to set the excitations of the TLM space.

As shown in|Fig.5-9|for the case of the TE polarised wave, a thin film is

positioned a x = a/2 , which separates the space into the left and right parts.

The plane wave is incident onto the film from the left at an angle ¢ to the x

axis.

(0,b) (a,b)
y
(0,0) x Thin Film (a,0)

Fig.5-9 A plane wave with TE polarisation is obliquely incident onto athin
film at an angle ¢ ina2D TLM space.

For the left part, the fields are composed of the incident wave and the reflected
wave; for theright part, the fields are composed of the transmitted wave only.

According to plane wave propagation theory, it is assumed that

E' = —sin(wot — k - xcosp — k - ysing),

. . -37
leyo'El. (53)
The reflected fields and the transmitted fields are then expressed as
ET=R-E!, H" =y, E,
(5-38)

Et=T-E!, H'=y,-Ef
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where R and T are the reflection and transmission coefficients of the thin film

at the angular frequency w,, respectively.

Therefore, the fieldsin the left part are expressed as

E, =E'+E,
H,, = H'sing + H"singp,  H,, = —H'cosg + H"cos¢. (5-39)
Thefieldsin theright part are expressed as
E,r = E¢, H.,, =H'sing, H,g = —H'cosg. (5-40)

For the TM-polarised wave, the field distribution can be calculated similarly.
Fig.5-10|shows a thin film positioned at x = a/2. The TM polarised wave is

obliquely incident onto the thin film from the left at an angle ¢.

(0,b) (a,b)
Ht
K,
y
(0,0) x Thin Film (a,0)

Fig.5-10 A TM polarised plane wave is obliquely incident to athin film at an
angle ¢ ina2D TLM space.

According to the plane wave propagation theory, it is assumed that
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E' = sin(wyt — kxcosp — kysing),

. . 541
Hl:yo'El. ( )

The reflected and transmitted fields are expressed as in equation |(5-38)
Therefore, the fieldsin the | eft part are obtained as

E, = —Ei-simp—ET-sin(p, EyL =Ei'COS<p—ET'COS§0,

. (5-42)

H, =H'+H".

Thefieldsin the right part are obtained as
Exr = —E'-sing,  Eyp =E'-cosp,  H,p=H" (5-43)

According to the calculated distribution of the fields in the space, the
excitations of the TLM space can be evaluated using the procedure described

in section 5.4.1 for the infinite free space.

55. Validations

In this section, the embedded model for arbitrary excitations is validated using
infinitely long CFC panels. A TE- or TM- polarised plane wave is obliquely
incident onto the panel and its reflection and transmission coefficients are
calculated using the embedded model and compared to the analytical results.

In order to examine its convergence and accuracy over a wide frequency range
and for various incident angles, the reflection and transmission coefficients of
the infinitely long CFC at 30° incidence are first calculated over the frequency
range from O to 1 GHz. Reflection and transmission coefficients are then

calculated at 1 GHz for several angles of incidence.

The parameters of the CFC panel were chosen as in section 4.3.1: effective

permittivity £, = 2, conductivity o, = 10* S/m and thicknessd = 1 mm.
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Plane wave excitations and matched boundaries were used to represent the

infinite space.

Percentage errors are used in this section for comparison purposes, which are
defined using equation (4-21). The size of the whole 2D problem space was
assumedtobe 0.3 m X 0.394 m.

5.5.1. TE-Polarised Wave

The embedded model for an arbitrary excitation is firstly used to model the
TE-polarised plane wave obliquely incident onto an infinitely long CFC panel
at an angle of 30°.

In this example, 2D shunt nodes were used to model free space. The CFC
panel was placed in the middle of the computational space, at x = 0.15 m.

In order to calculate the reflection and transmission coefficients of the CFC
panel, two models were built. First, the plane wave propagating into free space
at 30° to the x-axis was modelled in the 2D TLM space. The voltages at the
noda line n, = 0.15/dl, where dl is the mesh size, were calculated as
incident voltages V/;,,. The infinite CFC panel in free space was then modelled

using the TE-polarised wave excitation, as described in section 5.4.2. The
voltages at the noda linesn, = 0.15/dl andn, = 0;1—115 + 1 were calculated as

Vg and V., respectively. Finally, the reflection and transmission coefficients

wereobtainedasR = (Vg — Vi) /Vip and T = Vi /V,,, respectively.

In order to evaluate the appropriate mesh size dl, the reflection and
transmission coefficients of the CFC panel were calculated using different
mesh sizes and compared to the analytical results. The TE-polarised wave has

an assumed frequency of 1 GHz and is obliquely incident upon the panel at

30 ° to the x axis.|Fig. 5-11|shows the percentage errors in the reflection and

transmission coefficients of the CFC panel, calculated using the embedded
model, against the mesh size, represented by A/dl. The comparisons were
made against results from the analytical method. It can be seen that as the mesh
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size decreases, the percentage errors for both reflection and transmission

coefficients become very small for sufficiently small di, i.e. large A/dl. It is
noticed that when the mesh size dl = 6 mm (% = 50), the errors in the

reflection and transmission coefficients are below 1%.

10°
—--Reflection Coefficients
-—Transmission Coefficients
210" 3
c\e : 3
o
L
8)100 3
8 3
= F
s [
9 L
(DR |
0. 10k
10_2- 1 1 1 1 1 1 | L |
0 10 20 30 40 50 60 70 80 90 100

lamda/d|

Fig. 5-11 Percentage errors in the reflection coefficients and transmission
coefficients of the CFC panels cal culated using the embedded model and the
analytical method against 1/dl when the TE-polarised wave at 1 GHz is
obliquely incident onto the panel at 30°.

In order to get good accuracy, the embedded model with a mesh size of 6 mm
was used to calculate the reflection and transmission coefficients of the CFC

panel in the frequency range from 0 to 1 GHz. |Fig. 5-12| (&) shows the
reflection coefficients of the CFC pand calculated using the embedded model
for N = 10, 20 and 100 and the analytical method, when the TE-polarised wave
is obliquely incident onto the panel at 30°. It can be seen that the reflection

coefficients calculated using the embedded model have a small difference
(around 0.02 dB) with those calculated using the analytica method in the
frequency range from O to 1 GHz, athough a gap between the numerica

results and analytical results is observed in the figure. To clarify this,|Fig. 5-12

(b) shows the percentage errors in the reflection coefficients calculated using
the embedded model and the analytical method.|Fig. 5-12|(b) indicates that the
errors are very small and within 0.258% in the frequency range from O to 1
GHz.
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Fig. 5-12 (a) The reflection coefficients of the CFC panel when the TE-
polarised plane wave is obliquely incident onto the panel at 30° and (b) the
percentage errorsin the reflection coefficients cal culated using the embedded
model with different N (N = 10, 20 and 100) compared to the analytical results.
The TLM mesh sizedl = 6 mm.

Fig. 5-13|(@) shows the transmission coefficients of the CFC panel calculated

using the embedded model for N = 10, 20 and 100 and the analytical method,
when the TE polarised wave is obliquely incident onto the panel at 30°. When
N = 100, the numerical results are very close to the analytical ones in the
frequency range from 0 to 1 GHz. The percentage errors in the transmission
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coefficients are shown in[Fig. 5-13(b), from which it can be seen that when N

= 100 the errors are within 1% in the frequency range from 0 to 1 GHz.

I
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Frequency / Hz 8
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Fig. 5-13 (a) The transmission coefficients of the CFC panel when the TE-
polarised plane wave is obliquely incident onto the panel at 30°(b) the
percentage errors in the transmission coefficients cal culated using the

embedded model with different N (N = 10, 20 and 100) compared to the
analytical results. The TLM mesh sizedl = 6 mm.

From these results, it can be concluded that very good agreement between the
results from the embedded model and the analytical method is achieved over a

wide frequency range at one fixed angle of incidence.
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If a conventional TLM method is used to simulate the CFC panel at oblique
incidence, a much smaller mesh size should be used. According to the results
from Chapter 4, the mesh size should be chosen as 0.025 mm to account for
the existence of the 1 mm CFC panel. In such case, the number of nodes used
in the simulation would be 12000 x 15360 to model the space with the size
of 0.3 m % 0.384 m, i.e. 120 times higher in each direction than used in the
embedded model (100 x 128). To store these nodes, the memory required
would be very large. At the same time, the run time needed for the
conventional TLM method would be much longer. From this point of view, the
use of the proposed embedded model in the 2D TLM method reduces the

usage of memory and run time significantly.

To further validate the accuracy of the embedded model, the reflection and
transmission coefficients of the CFC panel at different angles of incidence are
calculated at 1 GHz. Several angles of incident were selected from 0° (normal
incidence) to approaching 90° (grazing incidence) as examples. The mesh size

here was chosen to be 3 mm in order to get good accuracy for al the angles.

Fig. 5-14|(a) shows the reflection coefficients of the CFC panel at 1 GHz

calculated using the embedded model for N = 10, 20 and 100 and the anal ytical
method against the incident angle. It is seen that the numerical results have
small differences with the analytical ones and they oscillate on both sides of

the analytical results for different angles. In order to observe the differences,

Fig. 5-14| (b) shows the percentage errors in the reflection coefficients

calculated using the embedded model when compared to those from the
analytical method. The errors are within 0.22% for the incident angles from 0°
to 85°.

It is noticed that at 84° of incidence, the reflection coefficient is larger than 1.
Although the error is small (around 0.2%), it is not practical. This can be

improved by using a smaler mesh size. |Fig.5-15| shows the reflection

coefficients of the CFC panel against the incident angle calculated using the
embedded model for different discretisations. It can be seen that as the mesh
Size decreases, the errors in the reflection coefficients for different angles of
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incidence become smaller. For the large angle of incidence and for fine

discretisation the reflection coefficient is less than 1.

Reflection Coefficients / dB
S
=

-0.02 4
--N=10
-0.03 ---N=20
-=N=100
—Analytical
-0.04 1 L 1 1 | 1 L T
0 10 20 3 40 5 60 70 80 90
Angle / degrees
@
o
i 022 — T T T T T T T T
2 B ——
§ o2 N I —— -
QO N\ i
8 018~ \\\ g
O N
§0.16 ¥
8
5 0.14+ 4
=
» 0.121 -
o
w 01r .
2 --N=10
£0.08F --"N=20
8 -=N=100
o 0.06 I L 1 I I 1 1 1
o 0 10 20 30 40 50 60 70 80 90
Angle / degrees
(b)

Fig. 5-14 (a) The reflection coefficients of the thin CFC panel against the
incident angle ¢ at the frequency f, = 1 GHz for TE polarisation (b) the
percentage errorsin the reflection coefficients cal culated using the embedded
model for N = 10, 20 and 100 compared to the analytical results against the
angleof incident. The TLM mesh sizedl = 3 mm.
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Fig.5-15 The reflection coefficients of the CFC panel against the angle of
incidence at the frequency f, = 1 GHz for TE polarisation obtained using the
embedded model and different discretisation dl.

Fig. 5-16|(a) shows the transmission coefficients of the CFC panel at 1GHz

using the embedded model for N = 10, 20 and 100 and the analytical method
against the incident angle. When N = 100, the numerical results converge to

the anaytical results. |Fig. 5-16| (b) shows the percentage errors in the

transmission coefficients calculating using the embedded model as a function
of the incident angle. When N = 100 the errors are within 2% for the incident
angles less than 40° and within 10% from 40° to 85°. Considering that the
transmission coefficients at larger angles are very small, i.e. less than -95 dB,

10% error is deemed an acceptable error.

Fig. 5-14((a) and|Fig. 5-16|(a) show that, for the TE-polarised wave, as the

angle of incident increases the reflection coefficients of the panel become

bigger, while its transmission coefficients become smaller.

In summary, the results calculated using the embedded model show very good
agreement with the analytica results. Thus the convergence and accuracy of
the embedded model for the TE-polarised wave with arbitrary excitations is
verified over awide frequency range and for various angles of incidence.
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Fig. 5-16 (a) The transmission coefficients of the thin CFC panel against the
incident angle ¢ at the frequency f, = 1 GHz for TE polarisation (b) the
percentage errors in the transmission coefficients calculated using the
embedded model for N = 10, 20 and 100 compared to the analytical results

against theincident angle. The TLM mesh size dl = 3 mm.
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5.5.2. TM-Polarised Wave

As in the case of the TE-polarised wave, the embedded model for arbitrary
excitations is firstly used to model the reflection and transmission of TM-
polarised waves obliquely incident upon an infinitely long CFC panel at an
angle of 30°.

In this example, 2D series nodes were used to model free space. The CFC
panel was placed in the middle of the computational space, at x = 0.15 m. The
reflection and transmission coefficients of the CFC panel were calculated using
the same method as that for the TE polarised wave case. The mesh size was

chosen to be 6 mm as in the TE-polarised case.

Fig. 5-17|(a) shows the reflection coefficients of the CFC panel calculated

using the embedded model for N = 10, 20 and 100 and the analytical method,
when the TM polarised wave is obliquely incident onto the panel at 30°. It can

be seen that the numerical results converge to the anaytical ones in the

frequency range from 0 to 1 GHz.|Fig. 5-17|(b) shows the percentage errorsin
the reflection coefficients calculated using the embedded model when
compared to those from the analytical method. The errors are within 0.002%,

indicating the accuracy of the model.

Fig. 5-18(a) shows the transmission coefficients of the CFC panel calculated

using the embedded model for N = 10, 20 and 100 and the analytica method,
when the TM polarised wave is obliquely incident upon the panel at 30°. It can
be seen that the numerical results become closer and closer to the analytical

ones as the number of terms N increases. The percentage errors in the

transmission coefficients of the CFC panel are shown in|Fig. 5-18|(b), from

which it can be seen that the errors are within 3% in the frequency range from
Oto1 GHz.
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Fig. 5-17 (a) The reflection coefficients of the CFC panel when the TM-
polarised plane wave is obliquely incident onto the panel at 30° (b) the
percentage errorsin the reflection coefficients cal culated using the embedded
model with different N (N = 10, 20 and 100) compared to the analytical results.
The TLM meshsizedl = 6 mm.
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Fig. 5-18 (a) The transmission coefficients of the CFC panel when the TM-
polarised plane wave is obliquely incident onto the panel at 30° (b) the
percentage errors in the transmission coefficients calculated using the
embedded model with different N (N = 10, 20 and 100) compared to the
anaytical results. The TLM mesh sizedl = 6 mm

8 9 10
x108

148



5 Embedded Thin Film Model for Arbitrary Excitationsin the 2D TLM Method

In summary, the accuracy and convergence of the embedded model for
arbitrary excitations is verified over a wide frequency range by calculating the
reflection and transmission coefficients of the CFC panel when the TM-

polarised wave is obliquely incident onto the panel at 30°.

As was done for the TE case in section 5.4.1, to further validate the accuracy
of the embedded model for arbitrary excitations, the reflection and
transmission coefficients of the CFC panel at different angles of incidence
were calculated at 1 GHz. Several angles of incidence were selected from 0° to
approaching 90° as examples. The mesh size here was chosen to be 3 mm in

order to get good accuracy for al the angles.

Fig. 5-19|(a) shows the reflection coefficients of the CFC panel at 1 GHz

calculated using the embedded model for N = 10, 20 and 100 and the analytical
method when the incident angles vary for the TM polarisation.|Fig. 5-19(b)

shows the percentage errors in the reflection coefficients calculated using the
embedded model in comparison to those from the analytical method. It is seen
that the numerical results converge as the number of terms, N, increases. The
numerical results have excellent agreement with the analytical ones when the
angle is less than 60°. The errors are within 0.3% for the incident angles from
0° to 60°. When the angle is larger than 60°, the error becomes big, i.e. the

error is around 10% at 84° of incidence.

The accuracy for the large incident angle can be improved by using a smaller
mesh size. Fig. 5-20 shows the reflection coefficients of the CFC panel against
the angle of incidence calculated using the embedded model for different mesh
size, dl. It is shown that as the mesh size decreases, the numerical results
become closer to the analytical ones. Especially at large angle of incidence, the
differences between the numerical results and the anaytical ones are very

small for afine mesh size.
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Fig. 5-19 (a) The reflection coefficients of the thin CFC panel against the
incident angle ¢ at the frequency f, = 1 GHz for TM polarisation; (b) the
percentage errorsin the reflection coefficients cal culated using the embedded
model for N = 10, 20 and 100 compared to the analytical results against the
incident angle. The TLM mesh size dl = 3 mm.
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Fig.5-20 The reflection coefficients of the CFC panel against the incident angle
at 1 GHz for the TM polarisation, obtained using the embedded model with
different discretisation, dl.

Fig. 5-21|(a) shows the transmission coefficients of the CFC panel at 1 GHz

using the embedded model for N = 10, 20 and 100 and the analytical method
against the incident angle for the TM polarisation. When N = 100, the

numerical results are very close to the analytical results.|Fig. 5-21|(b) shows

the percentage errorsin the transmission coefficients against the incident angle.
When N = 100, the errors are within 2% for the incident angle from 0° to 60°

and the error for 84° is around 10%.

Fig. 5-19|(a) and|Fig. 5-21|(a) exhibit that as the angle of incident increases for

the TM-polarised wave, the reflection coefficients of the panel decrease and its
transmission coefficients increase. This behaviour of the panel in the TM-
polarised wave excitations differs from that observed for the TE-polarised

wave excitations.

In summary, the convergence and accuracy of the embedded model for the TM
polarised wave with arbitrary excitations are verified over a wide frequency
range and for different angles of incidence.
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Fig. 5-21 (a) The transmission coefficients of the thin CFC panel against the
incident angle ¢ at the frequency f, = 1 GHz for TM polarisation; (b) the
percentage errors in the transmission coefficients calculated using the
embedded model for N = 10, 20 and 100 compared to the analytical results
against theincident angle. The TLM mesh size dl = 3 mm.
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5.6. Applications

In the previous section, the embedded model has been verified for plane waves
obliquely incident upon infinitely long CFC panels at fixed angles. In this
section, it is applied to investigate the effects of a CFC panel having finite
dimensions on the TE- and TM- polarised fields.

Consider a CFC panel with finite thickness in the x direction, finite length in
the y direction, and infinite in the +z directions. The parameters of the CFC
panel were chosen as in section 4.3.1:. effective permittivity &, =2,

conductivity o, = 10* Sm™1, and thicknessd = 1 mm.

As shown in|Fig. 5-3| the CFC panel was placed in a 2D space, which was

excited by a point source. As a demonstration, the 2D space was chosen to be
1.2 m x 0.9 m and matched boundaries [5] were used at the four problem-
space boundaries. The dimension of the panel in the y direction was chosen to
be 0.384 m. It was assumed that the panel was parallédl to the y axis and located
at x = 0.6 m. A point source was chosen to be the input signal. It was placed
at the point (0, 0.45 m), and was taken to have the form of a sine wave with a
frequency of 1 GHz.

The 2D shunt and series nodes were used to model the TE-polarised and the
TM-polarised waves, respectively. In both cases, the fields from the TLM
nodes near the panel are decomposed into a series of plane waves and
evanescent waves, each of which is incident upon the panel independently at

its own angle. As shown in{Fig. 5-5| a Fourier transform was used to transfer

the voltages in the space domain to the angle domain. If the indices of the
voltage in the space domain are 0,dl,2-dl, ...,i-dl,...,and NN - dl, where

NN is areal positive number, the s indices of the voltages in the angle domain

1 2 i 1 . . .
are 0, T T T T T Since s = ksing (equation (5-19)), the

angle ¢; corresponding to acertain sindex i is

@; = arcsin(i/(2-pi-1l/Ay)), (5-44)
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where [ is the length of the thin film and 4, is the operating wavelength. From

the equation|(5-44)] it can be seen that the angles of incidence depend on the

ratio of the film’s length to the operating wavelength.

For this example, the mesh size was chosen to be 3 mm as discussed before.

Since the length of the thin film was 38.4 cm, the total number of nodes NN =

38.4cm
0.3cm

incidence, 0°,7.14°,14.4°,21.90°, 29.83",38.44°,48.25°,60.5° and 84.11",

= 128. According to the equation |(5-44)| there are 9 real angles of

contributing to plane waves, and 119 complex angles, contributing to the

evanescent waves.

Fig.5-22| shows the field intensity distribution of (a) the eectric field

component £, and the magnetic field components (b) H,, and (c) H,, of the TE-

polarised wave at 50,000 time steps.|Fig.5-23|shows the field intensity of (a)

the magnetic field component H, and the electric field components (b) E, and
(c) E,, of the TM-polarised wave at 50,000 time steps. From |Fig.5-22| and

Fig.5-23| it can be seen that the field intensities of al the components exhibit

symmetry about y = 0.45 m. Because of the point source, the field is localy
propagating in aradial direction until it hits the CFC panel. When the fields hit
the CFC pandl, their direct propagation is blocked by the panel, but a part of
the fields reaches the right side around the top and bottom of the panel.

In summary, for both TE and TM polarisations, the presence of the panel
disturbs the electromagnetic field distributions in the 2D space. Due to the
finite length of the panel, it cannot block all the fields, some of which reaches
the side of the panel remote from the source, around its top and bottom. As the
distance from the panel increases, more waves reach the right side over the

panel and thus the shielding performance of the panel decreases rapidly.

It should aso be noted that in contrast to the infinitely long panel case, the
electric field shielding effectiveness is no longer equa to the magnetic field
shielding effectiveness at each point on the side of the panel remote from the
source. This is because of the different influence the finite dimension of the
panel has on the electric and magnetic fields.
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Fig.5-22 Thefield intensity distribution of (a) £, (b) H, and (c) H,,
componentsin the 2D space when the TE-polarised wave isincident onto a
0.384 m long CFC panel.
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Fig.5-23 Thefield intensity distribution of (a) H,, (b) E, and () E,,
components in the 2D space when the TM-polarised wave isincident onto a
0.384 m long CFC pandl.
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If the conventional TLM method is used to simulate the effects of the finite
length CFC panel on the TE- and TM- polarised fields, the mesh size should be
chosen as 0.025 mm as discussed in Chapter 4. The number of nodes needed to
represent the 1.2 m X 0.9 m region would be 48,000 x 36,000 and the
number of nodes needed to represent the CFC panel would be 40 x 15360. In
total, there would be 48,040 x 36,000 nodes needed in the conventional
TLM method, compared to 400 x 300 nodes needed in the embedded model.
From this point of view, the embedded model can save the memory storage
significantly. Besides, since the mesh size needed in the conventional TLM
method is 120 times bigger than that needed in the embedded model, the
number of time steps needed in the conventional TLM method is 120 times
bigger than that needed in the embedded model, in order to achieve the same
frequency accuracy. Therefore, the embedded model for arbitrary excitations
can save the memory storage and number of time steps significantly compared
to the conventional TLM method.

In order to prove the results shown in |Fig.5-22| and |Fig.5-23[ the

straightforward thinking would be doing the same simulation using the
conventional TLM method. However, considering the large memory storage
and the number of time steps needed to simulate the finite length CFC panel, a
simulation of the finite length zero thickness PEC boundary using the
conventional TLM method is considered. Since the CFC materias have very
high conductivity, the finite CFC panel should have similar responses to the
fields as the PEC boundary.

In the simulation, the finite length CFC panel was replaced by the same length
zero thickness PEC boundary, which has reflection coefficients of -1 and

transmission coefficients of 0.|Fig.5-24|shows the field intensity distribution of

(8 the electric field component E, and the magnetic field components (b) H,

and (c) H,, of the TE-polarised wave in the presence of the finite length zero

thickness PEC boundary at 50,000 time steps. [Fig.5-25| shows the field

intensity of (@) the magnetic field component H, and the electric field

components (b) E, and (c) E,, of the TM-polarised wave in the presence of the

finite length zero thickness PEC boundary at 50,000 time steps.
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Fig.5-24 Thefield intensity distribution of (a) £, (b) H, and (c) H,,
components in the 2D space when the TE-polarised wave is incident onto the
0.384m long zero thickness PEC.
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Fig.5-25 Thefield intensity distribution of (a) H, (b) E, and () E,,
components in the 2D space when the TM-polarised wave isincident onto the
0.384 m long zero thickness PEC.
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Comparing|Fig.5-22|and|Fig.5-23[with|Fig.5-24|and|Fig.5-25| it can be seen
that the filed intensity distributions in the presence of the finite length CFC

panel are similar to those in the presence of the finite zero thickness PEC
boundary. There is evidence of more penetration for the CFC panel with

respect to the PEC boundary. The comparison validates the results shown in

Fig.5-22]and[Fig.5-23

5.7. Conclusions

In this chapter, the thin film model developed in Chapter 3 has been embedded
in the 2D TLM codes to account for arbitrary excitations. A ssmple case of a
plane wave incident at a fixed angle was first presented and then the theory for
arbitrary excitations was presented using the plane wave decomposition theory.
Both TE and TM polarisations were considered.

The accuracy and convergence of the embedded model were verified using
examples of plane waves obliquely incident onto infinitely long CFC panels at
various fixed angles and over a wide frequency range. The embedded model
was then applied to demonstrate the effects of the finite length of the CFC
panel on the shielding performance for both polarisations.

The embedded model for arbitrary excitations was also proved to have the
advantage of saving the computational overheads significantly, compared to
the conventional TLM method.

In the next chapter, an embedded model for the curved thin film in the 2D
TLM is presented. The model is used to analyse curved structures, such as

circular and elliptical waveguides and an airfoil structure.
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6.Embedded Curved Thin Film
Model Iin the Two-Dimensional
TLM Method

6.1. Overview

In previous chapters, the embedded models were used to model planar thin
films. However, there are a number of instances where the thin films are
curved, such as cylinder-shaped structures used in aircraft fuselages [6.1 ~ 6.2]
and airfoil structures [6.3]. In this chapter, the embedded model developed in
Chapter 3 is extended to model curved thin films. This is done by first
linearising the curved thin films and then embedding the equivalent model
between the adjacent two-dimensional (2D) TLM nodes alowing for arbitrary
positioning between adjacent node centres. The accuracy and convergence of
the embedded model are examined by comparing the resonant frequencies of
the infinitely long, hollow, CFC circular and elliptical cylinders with those of
the equivalent metal circular and elliptical cylinders. Furthermore, the
embedded model is applied to analyse the shielding performance of a CFC
airfoil with the profile of NACA2415. In addition, the impact of small gapsin
the airfoil NACA2415 structure on its shielding performance is also presented.

6.2. Embedded Curved Thin Film Model

In this section, the approach for embedding a curved thin film within TLM is
described.

Fig. 6-1|(a) shows the schematic of a curved thin film, represented by the solid

curve (green), positioned within a coarse mesh of size dl, represented by

dashed lines (black). The solid cross lines (red) represent the transmission link
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lines adlong which the voltages travel, and the point of their intersection is
defined as the TLM node centre.

dl

\ < dl .
= (nx-l,_n)) : (nx’.ny),:
| 7 i\i /|
! «l‘ i 11 E
........ 1; /:!‘__. : (n.\" ny).<—’>‘B|

7 - 5 4
. E 7 2
E (n’f-]’ n.‘ ']z .f‘”( (nx’ ny']) :_ _________ _A__ J: ___________ i

i ® y
@i A L (b) P

Fig. 6-1 (@) A curvethin film embedded between 2D TLM nodes (b) the
enlarged TLM node (ny, n,).

The curved thin film is firstly approximated by linear piece-wise segments,
represented by dash-dot lines (blue), each of which can be viewed as a planar
thin film. The linearisation is done by connecting the crossing points of the arc

and the link lines of the nodes. The crossing point can be either exactly

between two nodes as for point A on|Fig. 6-1|(b) or can split the transmission

line of anode at an arbitrary position as for point B in|Fig. 6-1{(b). The curved

panel thus needs to be embedded at each crossing point. If the arc is defined by
afunction y = f(x) , then the position of points A and B in an arbitrary node
(ny, ny) can be expressed as (n, - dl, f(n,-dl) and (f~(n,-dl), n,-
dl) , respectively.

At the crossing point A, the curved panel is modelled and embedded as a
transmission line positioned centrally between the two adjacent nodes with
coordinates (ny,, n,) and (n,, n, — 1), which is done by modifying the
TLM’s connection process as discussed in section 3.2. However, at the
crossing point B, the curved panel splits the transmission link line at the right

side of the node (n,, n,) into two segments of lengths [; and [,. In this case,
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the whole section of transmission line together with the section of the curved

panel is modelled and embedded as a three-layer stack whereby the curved

panel is sandwiched between two sections of transmission lines of lengths [,

and [, asshown in|Fig. 6-2

Thin Film

(O8]

|
>}

Fig. 6-2 Two layers of air together with the planar thin film are composed of a
three-layer stack embedded between two adjacent 2D series nodes.

Fig. 6-2|shows the three-layer stack embedded between two 2D series nodes

(ny,n,) and (n, +1,n,), where the two shaded layers represent the

transmission lines of the node and the middle layer (blue) represents the curved

panel. In the figure, ,V} and ,V/ are the incident and reflected voltages at

port 4 of the node (n,,n,), while w1V4 and ,,V7 are the incident and

reflected voltages at port 2 of the node (n,, + 1,n,).

The transmission line model of this three-layer stack embedded between two

TLM nodes is shown in

Fig. 6-3

Transmission lines of lengths [; and [, are, in

this case, made of air but in general can represent any material parameters.
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7 i II 7 I l—)—l }
— 4 -la -Ib >
o, w1V,

Fig. 6-3 Transmission line model of the three-layer stack embedded between
two TLM nodes.

Since the transmission line mode! in|Fig. 6-3|is similar to that depicted in Fig.

3-8 (b), the reflected voltages from the three-layer stack, i.e. .1 V4, Vi asin

Fig. 6-3| can be solved in terms of the incident voltages to the stack, i.e.

x+1V4, V4 , using the three-layer thin film model described in section 3.3.2.

As discussed in section 3.3.2, the admittance matrix of each layer in the three-

layer stack can be expressed as

(14) _ (yTL — jYycot8,  jYycscO, )(xV4>
I.) ~\ jYeschy  —jYocotdy)\ V, ) (6-1)

(—Ia) _ (—thcotQt jYicscl, )(Va>
Ib - thCSCHt —thCOtQt Vb ’ (6-2)

(—Ib)_<—jYOcot92 jYocsch, )( Vy )

L jYoescO,  yrp — jYocot8y )\ (x+1)V2 (6-3)

where Y, is the characteristic admittance of the air layer given by Y, = \/ &0/ lo,
0, and 8, are the electrical lengths of the layers with length [, and [,

expressed as 0; = wli /g, and 0, = wly [ Uos,, respectively.

The electrical length of the thin film that represents the curved panel is 6, =

wd+LC, where d is the thickness of the film and Y, = /C/L is the admittance
of the thin film where L and C can be expressed asin [6.4]

L=pu+2m c=g42
_‘u+jz, =&+ —. (6-4)

Combining equations|(6-1)|[(6-2)|and|(6-3)| the linear matrix equations|(6-5)
can be obtained,
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I, v — jYpcot8, jYocsch, 0 0 V4

0 jYycsch, — jYycotB, — jY.cotl, jYicsch, 0O V.

0 0 jYicscl, —jY.cotf, — jYocotl, jYycscH, Vy : (6-5)
1, 0 0 jYycsch, yr. — jYocot, )V 2

The terms on the left hand side of equation|(6-5)|are known and are

Iy = 2yry - XV, I = 2yry* er)Va- (6-6)

The unknown voltages on its right side, V4, V,, V), and (,1yV>, can be solved
using an iterative matrix solver based on the Gauss-Seidel method [6.5] as
described in section 3.3.2. The solutions are given in the frequency domain and
need to be transferred into the time domain to enable time-stepping of the
TLM code. This is done by using an inverse Z-transform and digital filter

theory.

In order to do that, the cotangent and cosecant functions in equation|(6-5)|are

expanded as an infinite summation in the form of [6.6]

, lefr T

]YCOt@ =] z 54‘29 m ,
k=1

. e T (D"

]YCSCH =] Z 5+29 k_lm ’

where N denotes the number of terms in the expansion and determines the

(6-7)

accuracy of the expansion.

With this expansion in place, the solutions of equation|(6-5)| i.e. V4, V,, V)

and 41V arefirst transferred to the s-domain using the transformation s=j @

and then to the Z-domain using the transformation

2 1—2z71
STA 1z

(6-8)

The final solutions are expressed in the time domain using the inverse Z

transform and general digital filter theory asin section 3.2.
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The embedded curved thin film model can be smplified to simulate the curved
perfect electric conductor (PEC) boundaries, for example, modelling a curved

metal structure.

The same linearisation as in|Fig. 6-1|is firstly used to model the curved PEC

boundaries. As in|Fig. 6-1|(b), the cross points may be exactly between two

nodes as for point A in[Fig. 6-1|(b) or split the transmission line of a node at an

arbitrary position as for point B in[Fig. 6-1|(b). At point A, the incident voltage

to the transmission line equals the negative value of the reflected voltage from
the transmission line due to the short circuit effects of the PEC boundaries. At

point B, the three layer stack shown in|Fig. 6-2|is reduced to only one layer

transmission line since there is no transmission outside the PEC boundaries.

Fig. 6-4|(a) shows the one layer model of the PEC boundaries when the point

B is placed at distance [, away from the (n,, n,) node.|Fig. 6-4{(b) shows the

equivalent transmission line model with the air layer represented by a
transmission line of length [; and a metal layer represented by a short circuit
(S/C) boundary.

I ,
(nn,) = '
—=—— |
metal Air Layer
L N
¥ a 1 (@) (&)

Fig. 6-4 (a) The one layer model of the PEC boundaries and (b) the equivalent
transmission line model.

In|Fig. 6-4|(b), V' and V™ are theincident and reflected voltages along the right

transmission line of a node (n,, n,,), respectively. The relation between Vi and

V" can be expressed as,

Vi=R-VT, (6-9)
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where R isthe reflection coefficient, given by [6.7]

Zin—Zr, _JjZotanbgy — Zr,  Zo+ Zyp - jeotOgy

R = - . - . ) -
Zin+Zr, jZotanOu + Zp,  Zo— Zrp tjcotOgy, (6-10)

where Z;,, is the input impedance and 6, is the electrical length of the air

layer.
Thus,

(Zy — Zyy, - jcotO) - Vi = (Zy + Zyy, - jecotf) - VT, (6-11)

The incident voltage V¢ in equation|(6-11)|can be solved using the Z transform
and digital filter technique as described in the section 3.2.

6.3. Validations

Since modelling curved thin films involves linearisation and embedding the
structure into the TLM algorithm, the accuracy of the linearisation of the
embedded curved thin film model is firstly tested by extracting the resonant
frequencies of infinitely long, hollow, circular and éliptical PEC cylinders
using the model for the curved PEC boundaries. Furthermore, the convergence
and accuracy of the embedded curved thin film model are investigated by
comparing the resonant frequencies of the infinitely long, hollow, circular and
elliptical cylinders formed using CFC materials with those analytical values of
the equivalent metal cylinders.

In the following examples, 2D series nodes and 2D shunts nodes, as discussed
in Chapter 2, were used to model free space for TE and TM modes,
respectively. A delta pulse was used as an excitation. Matched boundaries [6.4]
were used to terminate the computationa space.
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6.3.1. Accuracy of Linearisation of Curved Structures

To verify the accuracy of the linearisation of the curved structures, the resonant
frequencies of the infinitely long, hollow, circular and elliptical metal cylinder
were calculated using the model for PEC boundaries. Results obtained are

compared to those analytical values.

The resonant frequencies of a metal circular cylinder with aradius of r =3 cm
are calculated first. An input signal in the form of a delta pulse was launched

from apoint (3 cm, 3 cm). The TLM simulation was run for 2 - 10° time steps.

The analytical resonant frequencies of a metal cylinder for TE and TM modes,

‘TE and £;,TM | are calculated using the following equations from [6.8],

X;nn
TE _ , =0,1,2,.. =12,..
= M " o1
M _ _Xmn m=012. n=12.. ¢
M e S w

where y,.n are the zeroes of the derivative of the Bessel function /,,(x), i.e.
Jm (Xmn) = 0, xmn aethe zeroes of the Bessal function J,,,(x), i.€. J;u (Ymn) =

0, and r isthe radius of the circle.

Fig. 6-5|shows the percentage errors in resonant frequencies for the first six TE
and TM modes calculated using the analytical method and the embedded TLM
method for different discretisations, represented by the ratio r/dl, where the

percentage errors are defined as

Percentage Errors: |fanalytical_fTLM| . 100%, (6-13)

analytical

Where fanaiyticar @d fr .y represent the resonant frequencies calculated using
the analytical method and the embedded TLM method. Usually 2% error is
deemed to be avery good accuracy [6.9] in numerical calculations.

Fig. 6-5|shows that as the mesh size decreases (the ratio r/dl increases), the

percentage errors in the resonant frequencies for the first six TE and TM

modes aso decrease. When the mesh size is 0.3 mm, i.e. é = 100, the errors
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are very small, within 0.8%. It validates the accuracy and convergence of the

linearisation of the curved thin film model.

Percentage Errors / %

10 2‘0 30 40 50 dl 60 70 80 90 100
r

Fig. 6-5 The percentage errors in the resonant frequencies for TE and TM
modes of metal circular cylinder.

To further validate the accuracy of the linearisation of the curved structures,
the resonant frequencies of a metal eliptical cylinder with amajor axis a = 10
cm and minor axis b = 6.614 cm [6.10] were calculated using the model for the
PEC boundaries. An input signal in the form of a delta pulse was launched
from a point located at the point (0.1 m, 0.06 m). The TLM simulation was run
for 2 - 10° time steps.

Fig. 6-6/shows the percentage errors (defined in equation|(6-13)) in resonant
frequencies for the first six TE and TM modes calculated using the analytical
method and the embedded TLM method for different discretisations,

represented astheratio %. In the figure, e and o represent even and odd modes,

respectively. The analytical values of the metal elliptical cylinder are taken

from [6.10].[Fig. 6-6|shows that when the mesh sizeis 0.8 mm (% = 82.5), the

percentage errors in all resonant frequencies are very small, within 1.6%. The
accuracy of the linearisation is further validated.
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Fig. 6-6 The percentage errors in the resonant frequencies for TE and TM
modes of metal elliptical cylinder.

6.3.2. CFC Circular Cylinder

In this section, the embedded curved thin film model is used to calculate the
resonant frequencies of an infinitely long, hollow, circular CFC cylinder with
the radius of r = 3 cm. Results obtained are compared against the analytical

values for the equivalent metal circular cylinder.

The parameters of the CFC materials used in this section were chosen as in
[6.11]: thickness d = 1 mm, effective permittivity &, = 2 and conductivity
0, = 10* Sm™1. The 2D computation window was chosen to be 18 cm X
18 cm and terminated with matched boundaries. The number of time steps

used in the calculationis 2 - 10°.

Fig. 6-7|shows the relative differences in the resonant frequencies for the first

six TE and TM modes of the CFC and metal circular cylinder for different
mesh sizes represented by r/dl. The relative differences in the resonant

frequencies are defined as
Relative differences = |fmetal - fCFC |/fmetal x 100% (6-14)

where feta @Nd fope are the resonant frequencies of the metal and CFC
cylinder, respectively.
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Fig. 6-7|shows that the relative differences in the resonant frequencies of TE2:

and TE11 mode converge to around 1% and the relative differences in the TEo;

mode resonant frequencies converge to around 0.4%, as the mesh size

decreases. The relative differences in the TMo1, TM11 and TM21 mode resonant

frequencies converge to around 0.3%, 0.2% and 0.18%, respectively, as the

mesh size decreases.

Fig. 67

confirms the resonant frequencies of CFC

cylinder are similar to those of the metal cylinder, confirming the metal-like

properties of the CFC materials.

Relative Difference / %

50 70 80 90 100
r/dl

Fig. 6-7 The relative differences in the resonant frequencies for TE and TM
modes of the CFC circular cylinder and the meta circular cylinder.

Table 6-1{further compares the resonant frequencies of the first six TE and TM

modes of the CFC and meta circular cylinder when the mesh size dl =

0.03 cm (i = 100). It can be seen that the relative differences in the resonant

frequencies of the CFC and metal cylinder are very small and within 1.02%.
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Table 6-1 The resonant frequencies and relative percentage differences
between the first three TE and TM modes of the CFC and metal circular

cylinder.
Modes Resonant Frequency (GHz) _ Relative
Metal Circular Cylinder  CFC Circular Cylinder ~ Differences (%)

TEu 2.9283 2.899 1.00

TEx 4.8575 4.808 1.02

TEo1 6.0943 6.067 0.45
TMo1 3.8249 3.814 0.28
TM1u1 6.0943 6.081 0.22
TM21 8.1668 8.153 0.17

6.3.3. CFC Elliptical Cylinder

In this section the embedded curved thin film model is used to extract the
resonant frequencies of CFC dliptical cylinders. Results obtained are
compared against the known analytica values for the equivalent meta
elliptical cylinder.

The CFC dliptical cylinder has the same dimensions as that of the metal
elliptica cylinder described in section 6.3.1. The parameters of the CFC
materials used were chosen as in [6.11]: thickness d = 1 mm, effective
permittivity &, = 2 and conductivity o, = 10* Sm™!. The 2D computation
window was set to 40 cm X 26 cm, and terminated with matched boundaries
[6.4]. The number of time steps used in the calculationis 2 - 10°.

Fig. 6-8[shows the relative differences (defined in equation |(6-14)) in the
resonant frequencies of the first six TE and TM modes of the CFC and metal

elliptica cylinder for different mesh sizes represented by the% parameter. It

can be seen that the relative differences in the even (e) and odd (0) TE11 mode
resonant frequencies converge to around 0.7% and the relative differences in

the even TEo1 mode resonant frequencies converge to around 0.5% as the mesh

size decreases.|Fig. 6-8[also indicates that the relative differences in the even

TM11 mode resonant frequencies converge to around 1.56% and the relative

differences in the odd TM11 and even TMo: mode resonant frequencies
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converge to around 0.2% as the mesh size decreases.|Fig. 6-8|confirms that the

resonant frequencies of the CFC resonator are close to those of the metal

resonator, once more confirming the metal-like properties of the CFC material.

Relative Difference / %

' T™11o ’ e —
i TMO1e =

1 0_2 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80
b/dl

Fig. 6-8 The reative differences of the resonant frequencies for TE and TM
modes in the CFC dliptical cylinder and metal elliptical cylinder.

Table 2[further compares the resonant frequencies of the metallic and CFC

elliptica cylinder for the first six modes when the mesh size dl =
0.8 mm (% = 82.7). It can be seen that the relative differences in the resonant

frequencies of the CFC cylinder and metal cylinder are very small and within
1.56%.

Table 2 The resonant frequencies for the six lowest modes of an elliptical CFC
cylinder compared to those of an dlliptical metal cylinder

Resonant Frequency (GHz)

Relative
Modes Metal elliptical CFCellipticd  Difference (%)
cylinder cylinder
Even TEx 0.889 0.883 0.67
Odd TEx 1.30 1291 0.69
Even TMoy 1467 1.465 0.14
Even TMu1 2124 2.001 156
Even TEn: 2550 2.487 052
Odd M1 2554 2.549 0.20
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In summary, the convergence and accuracy of the embedded curved thin film
model are verified by comparing the resonance frequencies of the circular and
elliptical CFC cylinders with those analytical values of the equivalent circular
and elliptical metal cylinders.

6.4. Applications

In this section, the embedded model for curved thin filmsis applied to analyse
the shielding performance of a CFC airfoil with the profile NACA2415.
Furthermore, the effect of small gaps in the airfoil structure on the shielding
performance is al so discussed.

In the following examples, 2D shunt nodes were used to model free space. The
excitation was chosen to be in the form of a TE-polarised plane wave as
described in section 5.4. The wave propagates from the bottom of the space to
the top of the space. Matched boundaries [6.4] were set in the four boundaries
to simulate the infinite space.

The parameters of the CFC materials used in this section were chosen as in
[6.10]: thickness d = 1 mm, effective permittivity &, = 2 and conductivity

o, = 10* Sm™L.

6.4.1. Shielding Performance of a CFC Airfoil Structure

The profile of an airfoil structure is taken from the National Advisory
Committee for Aeronautics (NACA) report [6.3]. An airfoil with the profile
NACA?2415 from the NACA four-digit seriesis taken as an example.

In the NACA four-digit series, the first digit specifies the maximum camber
(m) in percentage of the chord (airfoil length ch); the second digit indicates the
position of the maximum camber along the chord (p) in tenths of chord; the

last two digits provide the maximum airfoil thickness (t) in percentage of

chord. These terminologiesin the airfoil are shown in|Fig. 6-9
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thickness
mean camber line

leading edge
trailing edge

camber chord line
chord ¢/

Fig. 6-9 Airfoil terminology

In the example of the airfoil NACA2415, the airfoil length ch was chosen as 1
m. It has a maximum thickness t = 0.15 m with a camber m = 0.02 m located
0.4 m back from the airfoil leading edge. Based on these vaues, the

coordinates for the entire airfoil can be computed using the analytica

equations reported in [6.3]. |[Fig. 6-10| shows the profile of the airfail
NACA2415 modelled using the TLM method, with a computational window

sizeof 1.2 m x 0.3 m terminated with matched boundary conditions.

% 0.3 0.6 0.9 1.2
x/m

Fig. 6-10 The CFC airfoil NACA2415 modelled by TLM

The electric field shielding effectiveness SE; in dB isdefined asin [6.12],
SEg = 20 - logyo(|EWthout JEWith|) (6-15)

where EWithout gnd EVith gre the magnitudes of the electric field component at

the same point without and with the shield.

The magnitude of the electric field component E, is observed at four points
along the chord, i.e. P1 (0.3 m, 0.15 m), P2 (0.5 m, 0.15 m), P3 (0.7 m, 0.15 m),
and P4 (0.9 m, 0.15 m) as shown in|Fig. 6-10] with and without the CFC airfoil.
The electric shielding effectiveness (SE) is computed at these four specific

points along the chord using equati on‘(B- 15)
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Fig. 6-11[shows the €electric field shielding effectiveness of the CFC airfoil
NACA?2415 at the points P1, P2, P3 and P4 in the frequency range from 1 GHz
to 2 GHz. The TLM mesh size used was dl = 2 mm. It can be seen that the SE

of the airfoil becomes much smaller at certain frequencies due to resonance
effects [6.13].|Fig. 6-11|also indicates that the SE at the points P1 and P2 are
similar in the frequency range from 1 GHz to 2 GHz, while the SE at the point
P3 is higher than that at the points P1 and P2 at the frequencies below 1.2 GHz
and the SE at the point P4 is much higher than that at the points P1 and P2 at
the frequencies below 1.7 GHz. At higher frequencies, the SE is very similar
for al the four points because the existence of the higher modes contributes to

an even distribution of the eectric field in the structure.
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Frequency / GHz
Fig. 6-11 The electric field shielding effectiveness of the CFC airfail
NACA2415.

To explain the lower SE at the points P1 and P2 at lower frequencies,
compared to that at the points P3 and P4, the scattering of the CFC airfail
NACA?2415 when illuminated by the TE wave at f; = 1.063 GHz is shown in

Fig. 6-12| The electric field intensity in the 2D space at the 10*th time step is

plotted in dB. As shown in the figure, due to the non-metallic properties of the
CFC pandl, the electric field penetrates the airfoil and excites the first resonant
mode. The centre of the resonant mode is near the points P1 and P2, leading to
the lower shielding effectiveness at these points at 1.063 GHz. The resonance
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has little effect on the eectric field at the point P4 so the SE at the point P4 is
high.

It is emphasised that the field is shown on a logarithmic scale and that the
intensity of the field inside the CFC airfoil is small compared to that of the

excitation wave, as can be seen in|Fig. 6-12

-80 .60 -40 20 0 20 40 60
S e—

0.9 1.2

Fig. 6-12 The scattering of the CFC airfoil NACA2415 upon the 1.063 GHz
TE wave illumination. The plot shows electric field intensity on adB scale.

In order to show the convergence of the proposed model, the first four resonant

frequencies of the CFC airfoil (labelled as f1, fo, f3 and f4 in|Fig. 6-10) were

calculated using different mesh sizes and are shown in|Fig. 6-13|as a function

of t/dl. The figure indicates that as the mesh size decreases, all four resonant

frequencies converge.
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Fig. 6-13 Thefirst four resonant frequencies of the CFC airfoil NACA2415
against t/dl.
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If the conventional TLM method is used to model the CFC airfail, the mesh
size should be chosen as 0.025 mm as discussed in Chapter 4. Based on a mesh
size of 0.025 mm, there would be 48,000 x 12,000 nodes only for the finite
region of 1.2 m X 0.3 m, excluding the CFC panel. In addition, the number of
time steps needed in the conventional TLM method is 80 times bigger than that
needed in the embedded model in order to get the same frequency resolution.
Therefore, the embedded model has the advantage of saving the computational
costs significantly in terms of memory storage and the number of time steps,

compared to the conventional TLM method.

6.4.2. Shielding Performance of CFC Airfoil Structure
with Gaps

Imperfections on the airfoil, such as gaps, even if very small, can affect the SE
of the structure [6.14]. This section investigates the impact of the gaps on the
SE of the CFC airfail.

The same CFC airfoil NACA2415 is used and the gap is positioned in the
downside of the structure at x = 0.9 m. Two examples were chosen, one with
agap of 2 mm and the other with a gap of 6 mm. The excitation of the problem
is the same as that for|Fig. 6-11| The shielding effectiveness at the points P1
and P4 along the chord of the CFC airfoil is computed and shown in|Fig. 6-14

(@ and (b), respectively, for two different size gaps in the airfoils and
compared to the case of no gapsin the frequency range from 1 GHz to 2 GHz.

Fig. 6-14|(a) shows when the frequency is below 1.1 GHz, the gaps in the

airfoil do not affect the SE a the point P1. However, as the frequency
increases, the SE at the point P1 decreases rapidly for both airfoils with 2 mm
and 6 mm gaps compared to the case of no gapsin the airfoil. For example, at
the seventh resonant frequency (1.883 GHz), the shielding effectiveness of the
airfoils with 2 mm and 6 mm gaps is around 25 dB and 14 dB, respectively,
compared to 45 dB with the case of no gaps. This can be explained by the fact
that at higher frequencies, the shorter wavelength of the signal results in an
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increased penetration of fields through the gap, which change the field

distribution in the airfail.

Unlike the SE at the point P1, the SE at the point P4 is greatly influenced by
the gaps in the airfoil as shown in|Fig. 6-14|(b). The SE at the point P4 is

drastically reduced in the frequency range from 1 GHz to 2 GHz, for both
airfoils with 2 mm and 6 mm gaps compared to the case of no gaps in the
airfoil. The reduction of the SE at the point P4 is more prominent at the lower
frequency. For example, at 1.063 GHz, the SE at the point P4 of the airfoil
with 2 mm and 6 mm gaps is reduced by around 40 dB and 50 dB, respectively,
compared to that of the airfoil without gaps.

To explain the prominent reduction of the SE at the point P4 at lower
frequencies, the scattering of the CFC airfoil NACA2415 with a 2 mm hole

under illumination from a TE wave a f; = 1.063 GHz is shown in[Fig. 6-15
The electric field intensity in the 2D space at the 10*th time step is plotted in

dB. It can be seen that the small gap allows the incident field to more readily

couple with the inside of the airfoil. Compared to|Fig. 6-12| the field intensity

isincreased at thetail of the airfoil, resulting in reduced shielding performance
of the airfoil at the point P4. Comparison of [Fig. 6-12|and|Fig. 6-15|indicates

that the field penetrating through the gap does not greatly perturb the resonant
field at point P1 at 1.063 GHz, so the SE at that point is not significantly
affected by the gap, as seen in[Fig. 6-14|(a).
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Fig. 6-14 The shielding effectiveness of the CFC airfoil NACA2415 with no

gap, a2 mm gap and 6 mm gap (a) at the point P1 and (b) at the point P4.
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Fig. 6-15 The scattering of the CFC airfoil NACA2415 with 2 mm gap in the

1

063 GHz TE wave illumination. The plot shows electric field intensity on a
dB scale.
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6.5. Conclusions

In this chapter, an embedded TLM model for curved thin films is described. Its
implementation in the 2D TLM algorithm is done by firstly, linearising the
curvature of the panel and secondly, representing the panels as three-layer
transmission lines to allow for arbitrary positioning of the panel within the
mesh.

The embedded model is validated by firstly comparing the resonant
frequencies of metallic 2D circular and elliptical resonators with analytical
values to verify the accuracy of the linearisation. The differences between the
CFC and metallic circular and elliptical resonators have also been obtained,
confirming good metallic properties of the CFC material. Findly, the
embedded model is applied to analyse the shielding performance of a CFC
airfoil NACA?2415 structure. The impact of small gaps in the CFC airfoil on
the SE is aso reported, showing considerable worsening in the SE
performance.

The embedded model for curved structures was also proved to have the
advantage of saving the computational overheads significantly since arelative
large mesh size can be used, thus saving the memory storage and number of
time steps.

References

[6.1] M. Apr, M. D. Amore, K. Gigliotti, M. S. Sarto, S. Member, and V.
Volpi, “Lightning indirect effects certification of a transport aircraft by
numerical simulation,” |EEE Transactions on Electromagnetic
Compatibility, vol. 50, no. 3, pp. 513-523, 2008.

[6.2] B. D. Cordill, S. A. Seguin, and M. S. Ewing, “Shielding effectiveness
of carbon-fiber composite aircraft using large cavity theory,” IEEE
Transactions on Instrumentation and Measurement, vol. 62, no. 4, pp.
743-751, 2013.

186



6 Embedded Curved Thin Film Modél in the Two-Dimensional TLM Method

[6.3] E.N. Jacobs, K. E. Ward, and R. M. Pinkerton, “The characteritics of 78
related airfoil sections from tests in the variable-density wind tunnel,”
NACA report No.460, 1933.

[6.4] C. Christopoulos, The Transmission-Line Modeling Method TLM. IEEE
Press, 1995.

[6.5] H. Press, A. Teukolsky, T. Vetterling, and P. Flannery, Numerical
Recipes in C++. The Art of Computer Programming. Cambridge
University Press, 2002.

[6.6] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables. Washington, D.C.:
Government printing office, 1972.

[6.7] S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in
Communication Electronics, 3rd ed. John Wiley & Sons, Inc., 1997.

[6.8] C. A. Baanis, Advanced Engineering Electromagnetics. Wiley New
York, 1989.

[6.9] G. D. Tsogkas, J. A. Roumeliotis, and S. P. Savaidis, “Cutoff
wavelengths of dliptical metallic waveguides,” IEEE Trans. Microw.
Theory Tech., vol. 57, no. 10, pp. 24062415, 2009.

[6.10] D. A. Goldberg, L. J. Laslett, and R. A. Rimmer, “Modes of elliptical
waveguides: a correction,” |EEE Transactions on Microwave Theory
and Techniques, vol. 38, no. 11, pp. 1603-1608, 1990.

[6.11] M. S. Sarto, “A new model for the FDTD analysis of the shielding
performances of thin composite structures,” |EEE Transactions on
Electromagnetic Compatibility, vol. 41, no. 4, pp. 298-306, 1999.

[6.12] C. R. Paul, Introduction to Electromagnetic Compatibility. Wiley New
Y ork, 1992.

[6.13] L. Klinkenbusch, “On the shielding effectiveness of enclosures,” |[EEE
Transactions on Electromagnetic Compatibility, vol. 47, no. 3, pp. 589
601, 2005.

[6.14] R. W. Scharstein, M. L. Waller, and T. H. Shumpert, “Near-Field and
plane-wave electromagnetic coupling into a slotted circular cylinder :
hard or TE polarization,” IEEE Transactions on Electromagnetic
Compatibility, vol. 48, no. 4, pp. 714724, 2006.

187



7 Conclusions

7. Conclusions

7.1. Overview of the Work Presented

Modern circuits and numerical problems are becoming increasingly multi-scale
in their appearance in that they contain both large and small features. High
operating frequencies in many applications mean that small features can no
longer be ignored and need to be sampled with a suitable mesh size, which
consequently requires large run time and memory storage. To solve such
problems, an efficient and versatile approach for embedding small features in
an otherwise coarse mesh has been presented in this thesis. The embedded
model removes the need for discretisation within itself and alows for the
relatively coarse mesh to be used, thus saving the computational overheads.
The thesis focuses on thin film panels as small features although any small
feature for which an analytical response is known can in practice be
implemented. In this thesis the implementation of thin films in the one-
dimensional (1D) and two-dimensional (2D) Transmission Line Modelling
(TLM) methods has been presented. The accuracy, stability, convergence and
efficiency have been verified using examples of lossy and lossless thin films,
in particular, single and multiple CFC panéls, AR coatings and Fibre Bragg
gratings.

In Chapter 2, the Transmission Line Modelling (TLM) method was introduced.
Based on the field-circuit equivalence, the procedures for modelling free space
using the 1D, 2D and 3D TLM models were firstly presented. Furthermore, the
stub techniques and the condensed nodes were briefly overviewed as methods
of modelling material parameters different from free space. These models were

used to model the background materials surrounding the thin films.

In Chapter 3, time domain embedded thin film models, including a single layer
thin film model, a multi-layer thin film model and an anisotropic thin film
model, were derived in the TLM method. The single layer thin film model was
firstly introduced. In the model, the single layer thin film was seen as a section

of transmission line, whose admittance matrix was used to describe the
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frequency responses of the thin film. The admittance matrix was manipulated
by expanding the constituent cotangent and cosecant functions using their
analytical expansion equations, which were then transformed to the time
domain from the frequency domain using the inverse Z transform and genera
digital filter theory. In this way, the frequency responses of the thin film were
sucessfully embedded into the TLM agorithm by modifying its connection
process. Based on the single layer thin film model, the multi-layer thin film
model was derived by solving a linear matrix equation describing the
scattering properties of the multi-layer thin film using a Gauss-Seidel method.
In the end, an anisotropic thin film model was introduced by using two single

layer thin film models.

In Chapter 4, the accuracy, stability, convergence and efficiency of the
embedded thin film models were validated in the one-dimensional (1D) TLM
method using examples of lossy, anisotropic and lossless thin films.

As examples of lossy thin films, the frequency responses of carbon fibre
composite (CFC) panels and a titanium panel were investigated using the
embedded thin film model. The reflection and transmission coefficients of both
single (layer thickness of 1 mm) and multiple layer CFC panels (layer
thickness of 1.8 mm) were calculated using the embedded thin film model with
amesh size of 10 mm. The accuracy was verified by comparing the numerical
results with the analytical results. For a single layer CFC panel, the errorsin
the reflection coefficients are less than 0.0006% while the errors in the
transmission coefficients are less than 0.8% in the frequency range from O to 1
GHz. For a multi-layer CFC panel, the errors in the reflection coefficients are
less than 0.001% while the errors in the transmission coefficients are less than
1.5% in the frequency range from 0 to 1 GHz. The reflection and transmission
coefficients of a titanium panel (thickness 1.2 mm) were also calculated using
the embedded thin film model with a mesh size of 1000 mm. The errors in the
reflection coefficients are less than 0.00003% while the errors in the
transmission coefficients are less than 0.4% in the frequency range from 0 to
10 MHz. The high accuracy in the reflection coefficients is due to the
requirement that the percentage errors in the transmission coefficients are less
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than 2%. To examine the efficiency of the embedded thin film model, the
conventional TLM method was also used to model the CFC panels and
titanium panel. In order to achieve the same accuracy as that of the embedded
thin film model, the mesh size of the conventional TLM method was chosen to
be 0.025 mm (1/40 of the thickness of the single layer thin film or 1/72 of the
thickness of the multi-layer thin film or 1/48 of the thickness of the titanium
panel). Since the mesh size of the conventional TLM method is restrictive to
the thickness of the thin film, while the mesh size of the embedded thin film
model is determined by the smallest wavelength of interest, the mesh size used
in the embedded thin film model is much larger than that in the conventional
TLM method. Therefore, the embedded thin film model is proven to have the
advantage of saving computational resources significantly, including the

memory usage and run time.

As examples of lossless thin films, the frequency responses of an antireflection
(AR) coating and a fibre Bragg grating (FBG) were investigated using the
embedded thin film model. For a single layer AR coating in the visible
frequency spectrum, the errors in the reflection coefficients compared to the
analytical results are less than 2% when the number of expansion terms is very
large, i.e. N = 400. It was shown that the embedded thin film model has slow
convergence in the case of lossless thin films with large electrical length. To
alleviate this, the cotangent and cosecant expansions used were manipulated so
that they are centred at desired frequency at which they converge faster. By
doing so, the number of terms needed to approximate the infinite expansions
was reduced by 20 times at a desired frequency. However, the downside of this
modified model is that it works well only for single layer films. The
transmission coefficients of a FBG structure were also calculated using the
embedded thin film model. The errors in the transmission coefficients are less
than 0.2% in the desired wavelength range. The conventional TLM method
was also used to model the AR coating and FBG structure in order to examine
the efficiency of the embedded thin film model. In order to achieve the same
accuracy as that in the embedded thin film model, the mesh size used in the
conventional TLM method was chosen to be 0.2 nm for the AR coating (5
times smaller than that used in the embedded thin film model) and 1 nm for the
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FBG structure (10 times smaller than that used in the embedded thin film
model). Therefore, the efficiency of the embedded model is validated by using
alarger mesh size compared to the conventional TLM method.

In Chapter 5, the thin film model developed in Chapter 3 was extended to the
two-dimensional (2D) TLM method to account for arbitrary excitations. It was
firstly used to model the infinitely long thin films at oblique incidence. Here
thin films were viewed as a 1D model embedded into the TLM agorithm due
to the introduction of atransverse impedance. The model was then extended to
include thin films with finite length at arbitrary excitations by using the plane
wave decomposition theory. It was the first time that the plane wave
decomposition theory has been combined with the TLM method. In order to
simulate a plane wave propagating in an infinite space at oblique incidence,
plane wave excitation methods for both TE- and TM- polarised waves were
presented.

After introducing the theory, the accuracy and convergence of the embedded
thin film model for arbitrary excitations were verified by caculating the
reflection and transmission coefficients of an infinitely long CFC panels with
TE- and TM- polarised waves at different angles of incidence over a wide
frequency range. In the end, the embedded thin film model for arbitrary
excitations was applied to smulate a CFC panel with finite length with a point
source excitation. The field propagation in the space with a CFC panel inside
was shown at a certain time step for each field component. It was shown that
the shielding performance of the CFC panel with finite length decreases
rapidly as the distance from the panel increases because the finite length of the
CFC panel allows the fields to propagate over the panel ends to the other side
of the pand. In addition, the embedded model for arbitrary excitations was
proved to have the advantage of saving the computational costs significantly,
compared to the conventional TLM method.

In Chapter 6, the embedded thin film model developed in Chapter 3 was
extended to model curved thin filmsin the 2D TLM method. Curved thin films
were firstly linearised using piece-wise segments and then embedded into the

TLM agorithm. The linear segment may split the link line of one TLM node
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into two parts, so athree-layer stack was introduced to account for the arbitrary

position of the linear segment within the TLM mesh.

The accuracy of the linearisation in the curved structure was firstly validated
by comparing the resonant frequencies of 2D metallic circular and dliptical
resonators calculated using the embedded thin film model and anaytica
method. The accuracy and convergence of the embedded thin film model was
then verified by comparing the resonant frequencies of 2D CFC circular and
elliptical resonators calculated using the embedded model with those of
equivalent 2D metallic circular and elliptical resonators calculated using an
analytical method. Furthermore, the embedded thin film model was applied to
analyse the shielding performance of a CFC airfoil with the profile of
NACA?2415. It was shown that the shielding effectiveness inside the airfoil
varies with the position of observation points. It was also noticed that the
shielding performance of the airfoil become poor at certain frequencies
because of the resonance effects. In addition, the worsening of the shielding
effectiveness in the presence of small gaps in the airfoil was aso reported. In
addition, the embedded model for curved structures was proved to have the
advantage of saving the computational costs significantly, compared to the
conventional TLM method.

In conclusion, an embedded thin film model was developed in the
Transmission Line Modelling method to solve a particular multi-scale problem,
i.e. the presence of flat and curved thin film panels in a large space. In the
presented model, thin films are not discretised so arelative large mesh size can
be used in the smulation, thus saving the computational resources significantly.
The accuracy, stability, convergence and efficiency have been validated in the
one-dimensional TLM method using examples of lossy and lossless thin films.

The embedded thin film model was also extended to two-dimensional TLM

method to account for arbitrary excitations and curved thin film structures. The
accuracy, efficiency and applicability of the embedded model in these two

cases were validated using severa examples.

It is noted that in the thesis, a significant reduction in the computational costs
needed in the embedded model is based on the comparison with those needed
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in the conventional TLM method. It is here emphasised graded and multi-grid
techniques aso reduce the computational costs; however, in these techniques,
the problem that the time step is determined by the smallest of the mesh size
still exists. In contrast to this, the embedded model developed in the thesis
eliminates the need of discretising small features and thus keeps large mesh

size and hence large number of time steps.

7.2. Future Work

Throughout the thesis, the embedded thin film model is discussed in the one-
dimensional and two-dimensional Transmission Line Modelling (TLM)
method. Whilst real three-dimensional (3D) problems can in some cases be
approximated with equivalent 2D models, the full 3D model may be more
useful in reality. The embedding of the thin film model in the 3D TLM method
can be implemented by modifying its connection process as described in
equations (2-36) — (2-47). The stability graph of the embedded model for al

kinds of materialsis another problem worth exploring.

To date small features such as thin panels and wires [7.1 ~ 7.2] have been
embedded in the TLM method. However, this can be extended to include other
electrically small objects such as bundles of wires, metal tracks on boards or

small antennas.

Furthermore, recently a TLM algorithm based on unstructured TLM meshes
[7.3 ~ 7.4] has been presented. An exciting area would be embedding the thin
film model into the unstructured TLM method. The difficulty hereisin dealing
with the not-aligned position of the two node centres on both sides of the thin
film that isimposed by the meshing algorithm.

In addition, another possible area of future work is the combination of the
embedded model with a stochastic analysis. The uncertainty in the excitation
or in material parameters caused by material in-homogeneities or fabrication
and placement tolerance [7.5], makes the electromagnetic behaviour of the

material difficult to predict. The perfect example is the placement of a bundle
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of wires along the fuselage of an airplane for which it is necessary to include
the stochastic analysis in the simulation [7.6]. Combining the stochastic

analysis with an embedded model of the airframe may be another interesting

subject of future work.
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