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Abstract

Breast cancer is one of the most frequently occurring cancers amongst women throughout

the world. After the diagnosis of the disease, monitoring its progression is important in

predicting the chances of long term survival of patients. The Nottingham Prognostic In-

dex (NPI) is one of the most common indices used to categorise the patients into different

groups depending upon the severity of the disease. One of the key factors of this index is

cancer grade which is determined by pathologists who examine cell samples under a mi-

croscope. This manual method has a higher chance of false classification and may lead to

incorrect treatment of patients. There is a need to develop automated methods that employ

advanced computational methods to help pathologists in making a decision regarding the

classification of breast cancer grade. Fourier transform infra-red spectroscopy (FTIR) is

one of the relatively new techniques that has been used for diagnosis of various cancer

types with advanced computational methods in the literature. In this thesis we examine

the use of advanced fuzzy methods with the FTIR spectral data sets to develop a model

prototype that can help clinicians with breast cancer grading.

Initial work is focussed on using the commonly used clustering algorithms k-means

and fuzzy c-means with principal component analysis on different cancer spectral data

sets to explore the complexities within them.

After that, a novel model based on Type-II fuzzy logic is developed for use on a

complex breast cancer FTIR spectral data set that can help clinicians classify breast cancer
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grades. The data set used for the purpose consists of multiple cases of each grade. We

consider two types of uncertainty, one within the spectra of a single case of a grade (intra-

case) and other when comparing it with other cases of same grade (inter-case). Features

have been extracted in terms of interval data from various peaks and troughs. The interval

data from the features has been used to create Type-I fuzzy sets for each case. After that

the Type-I fuzzy sets are combined to create zSlices based General Type-II fuzzy sets for

each feature for each grade. The created benchmark fuzzy sets are then used as prototypes

for classification of unseen spectral data. Type-I fuzzy sets are created for unseen spectral

data and then compared against the benchmark prototype Type-II fuzzy sets for each grade

using a similarity measure. The best match based on the calculated similarity scores is

assigned as the resultant grade.

The novel model is tested on an independent spectral data set of oral cancer patients.

Results indicate that the model was able to successfully construct prototype fuzzy sets for

the data set, and provide in-depth information regarding the complexities of the data set

as well as helping in classification of the data.
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Chapter 1

Introduction

This thesis investigates the use of advanced models created from the complex data with

various levels of variabilities and uncertainties for the classification of unseen biologi-

cal spectral data. Classification of breast cancer grading with Fourier transform infra-

red spectroscopy (FTIR) based spectral data has been used as a test case. This chapter

provides a background of the research, motivations behind the work and the aims and

objectives of the work. Later on, an outline of the thesis is also reported.

1.1 Background

Breast Cancer, which has the highest incidence rate in women, is also the most common

cancer in the UK. It is estimated that one in eight women in the UK is likely to develop

breast cancer during their lives [105]. In the USA, more than one million people are

diagnosed with breast cancer every year [98]. After the disease has been diagnosed, mon-

itoring its progress with the passage of time and monitoring the re-occurrence of disease

based on the complication of the disease for better prediction of survival of patients is

very important [82]. This approximation is generally known as a prognosis which plays

a vital role in predicting the survival of patients in the future. In estimating long term

survival prognostic Indices have shown good performance [99]. One of the widely used

indices is Nottingham Prognostic Index (NPI), which considers tumour diameter, lymph

1
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node status and tumour grade as parameters for prognosis. Of these, grading is the most

important parameter and is determined by the Nottingham Grading System (NGS) which

is based on the microscopic evaluation of tumour cells by the histopathologist. They

observe the morphological variations found in the cells considering form and shape of

the cells [28, 92]. The breast cancer grades have been classified as either grade-1 (G-I),

grade-2 (G-II) or grade-3 (G-III). G-I patients have more chance of long term survival

where as G-III is the most severe and long term prognosis of such patients is poor. This

microscopic evaluation is dependent upon the observer’s decision to categorise the cancer

sample and different experts may disagree on complex cases when it is difficult to predict

the grade. This manual method involves the chance of incorrect diagnosis of grade which

may result in variable prognosis and sub-optimal treatment [89].

To overcome this critical issue, various efforts have been made in the literature using

advanced computational methods for the correct prediction of breast cancer grade but no

universally accepted global method is found that classifies the cancer grade [3, 32]. For

this research work, we have looked at Fourier Transform Infra-red Spectroscopy (FTIR)

in combination with advanced computational methods to describe a model that can help

experts in classifying the grade.

1.2 Motivations

We have been motivated by the fact that FTIR is a relatively new technique that has been

frequently used in the literature in combination with various machine learning methods

for differentiating different cancers [4, 6, 20, 57, 58, 64, 70, 83, 106, 129]. In FTIR, infra-

red radiation is passed through a sample and wave lengths of various functional groups

involved in the sample along with the intensities at which the sample absorbs radiation are

measured. The quantity of absorption by sample depends upon the chemical bonds and

molecular structures in the sample. It means that small changes in molecular structure are

noted and reflected in the resultant FTIR spectra. That is why researchers have elaborated
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the importance of FTIR in cancer histoptahology [11]. The spectra created from FTIR

serve as a bench mark for a particular class or sample based on its chemical composition.

If samples of three grades of cancer have different chemical characteristics then it is likely

that this method may help in differentiating between these grades. If we have any bench

mark or characteristics spectra saved in a data base then an unknown sample’s spectra can

be compared with the three grades bench mark or finger print spectra and its grade can

be classified. In comparison with traditional histology techniques, the FTIR has major

advantages, some of them are [109].

• It is very sensitive to any molecular changes found in the samples

• For a very high volume of samples, it works much quicker than traditional method

• It has more potential of creating a fully automated measurement and analysis as it

detects smaller changes in cellular compositions before any other method

In this work, we have combined FTIR with clustering algorithms as well as advanced

methods based on fuzzy logic to create a mechanism that may help in the automation

of the breast cancer grading. Principal Component Analysis (PCA) has been used to re-

duce the dimensions of the data set as it is a commonly used method for this purpose

[12, 35, 51, 52, 55, 58, 59, 64, 67, 85, 129]. The motivation behind using clustering is that

it is an unsupervised learning method that does not require any priori knowledge about

the structure of data and it clusters the data according to the number of groups required

given as an input. We have looked at two of the commonly used clustering algorithms of

k-means and fuzzy c-means (FCM) clustering algorithm. Fuzzy logic has been found to

be useful in real world applications with a high level of complexity involved, for example

differentiating between various breast cancer cells [5,33,46,87]. It is likely that for a com-

plicated problem like breast cancer grading where a high level of uncertainty is involved,

fuzzy logic has the potential to deal with such complicated uncertainties. We have initially

used three different data sets with each data set increasing a level of complexity. The first

two data sets have been only used with clustering algorithms. For the third data set, which
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is the most complex one, besides clustering, we develop a fuzzy inferencing system (FIS)

to investigate whether it can be helpful or not for breast cancer grade categorisation. Hill

Climbing (HC) and Simulated Annealing (SA) algorithms have been used for tuning of

different parameters of FIS. We have also created Type-II (T-II) fuzzy sets from spectral

data by using interval data extracted from various spectral features to explore the use of

T-II fuzzy sets for spectral data set as creation of such sets based on spectral data is an

under explored area of research.

1.3 Aims and Objectives

The aim of the current research is to develop an automated method based on advanced

machine intelligence computational methods to classify the grade of breast cancer. We

aim to achieve the the following objectives.

1. Apply necessary pre-processing techniques to remove abnormalities from FTIR

spectral data in order to use a standard data set

2. Compare various advanced machine learning methods and try to identify a method

best suited for classification of breast cancer grading

3. Find methods to identify key features found across various regions of the spectral

data set

4. Use these key features to make a prototype model for classification of breast cancer

grading with advanced mathematical methods suitable for complex data sets with a

high level of uncertainty

5. Evaluate the performance of the created model prototypes on different spectral data

sets in order to create a general frame work
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1.4 Thesis Layout

Chapter 2 includes a detailed literature review. The review starts with introduction to

breast cancer, its prognosis and factors important in prognosis. We describe the univer-

sally accepted Nottingham Prognostic Index (NPI) and its parameters. We also describe

the Nottingham Grading System (NGS) used frequently around the world for breast can-

cer grading and also the difficulties involved in it. FTIR, its pre-processing and a dis-

cussion on selecting specific spectral regions instead of using the whole spectral range

is also part of this chapter. Next, we describe Principal Component Analysis (PCA) as

a common method for reduction of dimensionality of data sets and two commonly used

clustering algorithms k-means and fuzzy c-means clustering (FCM) with their merits and

drawbacks. This chapter also includes a description of Type-I (T-I) and Type-II (T-II)

fuzzy sets and a brief review of their applications for biological data sets. Finally, various

similarity measures used to distinguish between fuzzy sets have also been described.

In Chapter 3, three data sets are used with PCA in combination with k-means and

FCM clustering algorithms to classify different grades. The first data set is created by

combining two cases of oral cancer patients used separately in another research. It con-

sists of 33 patients and the aim is to distinguish cancer cells from stroma cells. The second

data set is a real breast cancer spectra data set obtained with the help of Nottingham City

Hospital and the School of Chemistry at the University of Nottingham. It consists of one

case of breast cancer for each of the three cancer grades. The standard algorithms of k-

means and FCM with PCA have been used to classify the three grades and their results

are compared. Third data set has been obtained from the University of Illinois at Urbana

Champaign, USA. It consists of 40 cases of cancer. It is a complex data set and initially

k-means and FCM clustering algorithms with PCA have been used to distinguish between

the three grades. This chapter focuses on aim numbers 1 and 2 of this research.

In Chapter 4, a FIS is created to classify breast cancer grades for the complex third

data set. PCA has been used and first 3 Principal Components (PCs) have been selected

as an input to the FIS. Three membership functions have been defined for each input
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PC. Membership functions have been trained with the help of Hill Climbing (HC) and

Simulated Annealing (SA) methods. Various approaches have been used and their results

have been compared. This chapter also focuses on aim number 2 of this research.

Chapter 5 introduces the concept of extracting features from various regions of spec-

tra data instead of using the whole spectral region under investigation. A step wise model

has been created with Type-II (T-II) fuzzy sets for grade prediction. Five features based

on peak heights and troughs have been selected from 3 regions. These features have

been used to create a zSlices based Type-II fuzzy set (zGT-II) that includes variabilities

of all the cases within a grade. These features have been used as benchmark prototype

and unseen data in the form of Type-I (T-I) fuzzy sets has been compared with them. A

weighted similarity measure has been selected and comparison of unseen T-I fuzzy sets

with bench mark T-II fuzzy sets for each feature for each grade has been made by this

criteria. Similarity scores have been recorded for each feature. Majority vote and summa-

tion of similarity methods have been used to classify the unseen grade. A detailed grade

profile based on similarity scores has also been created that reflects upon the complexity

of the data set. The results have also been compared with the standard clustering algo-

rithms of k-means and FCM clustering algorithm. An alternative configuration has also

been used to further investigate grade profiles for three grades. This chapter focuses on

aim number 3 and 4 of this work.

Chapter 6 uses a new data set to evaluate the zGT-II fuzzy sets based model created in

Chapter 5 and creates profiles for classification of unseen data. The data set is a FTIR data

set for Oral cancer patients previously used in another research for differentiate between

cancer and stroma cells. We use the same data set to create our zGT-II fuzzy sets based

model. A selection of five features has been made for the data set. These features have

been used to create the prototype model. The prototype model is then tested against the

unseen data and profiles for classification have been created. This chapter focuses on aim

number 5 of the work carried out.

Chapter 7 provides a conclusion of the work with a brief summary. It also includes
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contribution to the knowledge and directions towards the future work. In the end, a list

of published papers and papers in submission has also been provided coming out of the

research carried out during this work.



Chapter 2

Literature Review

This chapter includes a detailed literature review carried out during the research. It starts

with breast cancer, its diagnosis and prognosis followed by introduction to the Notting-

ham Prognostic Index (NPI) with emphasis on its grade parameter. Then we discuss the

difficulties involved in grading, and the potential of FTIR for this purpose. The rest of the

chapter provides a literature review on commonly used clustering algorithms, Type-I and

Type-II fuzzy logic. Finally, a brief review of similarity measures for fuzzy sets is given

with a focus on Type-II fuzzy sets.

2.1 Breast Cancer

Cancer is a disease that can be characterized by uncontrolled growth and spread of abnor-

mal cells. The uncontrolled spread can result in a patient’s death [98]. Breast Cancer is a

cancer that forms in tissues of the breast commonly in the ducts (tubes that carry milk to

the nipple) and lobules (glands that make milk) that can be seen in Figure 2.1.

8
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Figure 2.1: Female breast parts (taken from [1])

It can occur in both men and women, although male breast cancer is rare. Breast can-

cer is either non invasive (referred to as in situ, confined to the site of origin) or invasive

(spreading). Metastasis is the term used to describe a phenomenon where cancer cells

start to break away from their primary location and travel via the blood stream or lym-

phatic system. Breast cancer diagnosis can be achieved by imaging methodologies, such

as X-ray, Mammography and Ultrasound. The result of mammography is a mammogram

that includes additional x-ray views of areas of interest found by the physical examination

of the patient to provide more information about the size and characteristics of the abnor-

mality found in the cells. Biopsy is another technique that is used for cancer diagnosis.

A biopsy involves the removal of a piece of tissue from the patient’s suspected cancerous

region and observing it under the microscope to assess the presence of cancerous cells.

These techniques identify areas of tumour growth in the breast based on the identification

of density changes within the tissue. These methods are not considered very reliable in
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complex cases [28]. Diagnosis of breast cancer is also possible by examining the lymph

nodes in the ipsilateral axoilla. Lymph nodes are oval shape organs and are part of human

immune system. They become enlarged or inflamed in case of cancer. Figure 2.2 shows

the position of lymph nodes in the female breast. Once the disease has been diagnosed,

monitoring its progress with time is critical as it affects the medication and likelihood

survival for a patient.

Figure 2.2: Location of lymph nodes in the breast (taken from [109])

2.2 Cancer Prognosis

Medical prognosis is a field in Medicine which deals with assessing the chances of the

re-occurrence of the disease based on the complication of the disease for better prediction

of survival chances of patients [82]. Prognostic factors in breast Cancer can be separated

into two categories called Chronological and Biological. Chronological category is based

on the amount of time the tumour has been present where as the Biological category is
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based on the potential behaviour of the tumour [15]. The factors commonly in use today

for prognosis of breast cancer include lymph node status, tumour size and histological

grade [26]. Lymph node status is a time dependent factor and when the number of nodes

involved increases, it results in poor prognosis. Tumour size is also a time dependent

factor and a small tumour results in longer term survival of the patients and vice versa.

Histological grade is a biological factor and is strongly correlated with long term sur-

vival. Patients with G-III tumours have the least chance of survival and patients with G-I

tumours have the highest chance of survival [26, 93].

2.3 Nottingham Prognostic Index

In addition to the prognostic factors mentioned above, indices have also been developed

for the prognosis of breast cancer. In the 1970’s and 1980’s, a team of clinicians from

the Nottingham City Hospital developed a prognostic index for breast cancer based on tu-

mour diameter, lymph node status and tumour grade [41]. It was subsequently validated

and called the Nottingham Prognostic Index (NPI) [28]. It is calculated as:

NPI = (0.2∗ tumour diameter in cm)+ lymph node stage+ tumour grade (2.1)

The possible values of lymph node stage are:

1: no nodes affected

2: up to 3 nodes are affected

3: more than three nodes are affected

The possible values of tumour grade are:

G-I: less aggressive appearance of tumour

G-II: intermediate appearance of tumour

G-III: more aggressive appearance of tumour

The generally accepted interpretation of the values is: Good (NPI <3.4), Intermediate

(3.4 <= NPI <= 5.4) and Poor (NPI >5.4). The higher the value of NPI is, the lower
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the chances of survival of patients are. The NPI has been recognized as the only properly

(externally) validated prognostic index for breast cancer [92]. Figure 2.3 describes the

link between different parameters of NPI and possible values.
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Figure 2.3: NPI and its parameters

2.4 Nottingham Grading System

The Nottingham grading system (NGS) is widely used around the world for grading breast

cancer tumours and is also a component of the NPI [80,92]. It is based on Mitotic Count,

Tubule Formation and Nuclear pleomorphism medical parameters.

Tubule Formation parameter relates to the percentage of a tumour in the normal duct

structures. A higher percentage is given fewer points and a lower percentage is given

more points. A break down of points can be seen in Table 2.1.

The Mitotic Count parameter indicates how many mitotic figures (dividing cells) a

histopathologist sees in 10 microscope fields. In cancers, cells divide uncontrollably. The
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higher the number of mitotic count is, the more severe the cancer is. It is essential to

calibrate the microscope before a mitotic count. A minimum of 10 hpf (high power field)

should be counted at the periphery of the lesion and for an attempt to be made to seek out

mitoses. Generally accepted values are given in Table 2.2.

Nuclear pleomorphism is a parameter used to find distinction between cell nuclei of

a normal breast duct epethelial cells and larger, darker irregular (pleomorphoic) cells. In

cancer, changes in genes and chromosomes in the nuclei and pleomorphic changes are

considered signs of abnormal cell growth. Generally accepted values are given in Table

2.3.

If T F is the Tubule formation, MC is the Mitotic count and NP is the Nuclear pleo-

morphism then overall grade can be found with the help of the following equation.

Grade = T F +MC+NP (2.2)

Where Grade is the overall grade. The grade is categorised either as Grade-I (G-I), Grade-

II (G-II) or Grade-III (G-III) as shown in Table 2.4. This overall grade score is then used

within the NPI [28]. The higher the grade is, the more severe it is so the lower grade

patients have more chance of survival than higher grade patients.

Table 2.1: The values for Tubule Formation parameter of NGS

Criteria Score

Majority of Tumour (>75%) 1

Moderate Degree (10-75%) 2

Little or None (<10%) 3

Table 2.2: The values for Mitotic Count parameter of NGS

Criteria Score

0-9 Mitoses /10 hpf 1

10-19 Mitoses /10hpf 2

20 or more Mitoses /10 hpf 3
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Table 2.3: Values for Nuclear Pleomorphism parameter of NGS

Criteria Score

Small regular uniform cells 1

Moderate Nuclear size and variation 2

Marked Nuclear variation 3

Table 2.4: Overall Grade

Grade Combined Score

Low Grade (I) 3-5

Intermediate Grade (II) 6-7

High Grade (III) 8-9

2.5 Difficulties in Cancer Grading

Breast cancer grading with NGS is performed by the histopathologist by observing the

tumour sample with the help of microscope. Such a manual method has many disadvan-

tages.

• Variability amongst different pathologists

• Time consuming

The calculation of the grade by a histopathologist, keeping in mind all the parameters

described, is a complex and time consuming process with high risk of human error. Even

the best histopathologists have been shown to exhibit variability in their scoring of the

grade. Therefore, there is a need to develop automated methods for this complex prob-

lem that minimise the risks of false classification of grade. This false classification can

affect the prognosis and will result in incorrect treatment of patients [80, 89, 104]. The

automated method will also result in reduction of workload, increased consistency and

time saving. In the next section, we investigate the use of FTIR as a potential candidate

to be used in complex biomedical applications. In the literature, FTIR has been used in

combination with various computational techniques to differentiate between healthy and
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cancerous cells of breast cancer [6, 9, 14, 30, 54, 109, 109] but few researchers have fo-

cussed on applying this technique for breast cancer grading. Anastassopoulou et al, [4]

have used FTIR with an unsupervised learning clustering algorithm (Hierarchical cluster-

ing algorithm or HCA) and principal component analysis (PCA) to differentiate between

breast cancer grades with NGS criteria. HCA is an unsupervised learning method that

groups the data in a nested series of clusters. The output of HCA is called dendrogram

which represents the similarity level between patterns of the data. A major disadvantage

of HCA is that it is not considered suitable and computationally efficient for large data

sets as in case of breast cancer grading [44, 45]. The authors were able to find good clas-

sification on their data set. Other than spectral data sets, Petushi et al. [89] developed an

automated imaging system to classify breast cancer grades. The imaging system used dif-

ferent chemical features of the images to find distinct features for each grade. The authors

concluded that the proposed method was able to help reducing intra-observer variability.

They also suggested the need to do more experimentation. There is a need to further ex-

plore this area with more advanced computational techniques that can be used for large

data sets.

2.6 Fourier Transform Infra-red Spectroscopy

Fourier Transform Infra-red Spectroscopy (FTIR) is based on the principle that when an

infrared (IR) beam is passed through a sample, the functional groups within the sample

absorb the infrared radiation and the rest of the radiation passes through. The resulting

spectrum represents the molecular absorption and transmission as shown in Figure 2.4.

FTIR creates a molecular fingerprint of a sample, no two unique molecular structures

produce the same infrared spectrum [24]. If the characteristic spectrum of a sample un-

der analysis are known (in a fingerprint library), it may be possible to compare each of

the obtained spectra to reference spectra within the fingerprint library and find the cor-

rect result. Typical FTIR equipment can be seen in Figure 2.5. FTIR has been used to
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differentiate cancer cells from normal cells in a previous study with the Breast Cancer

Pathology Group, School of Chemistry and School of Computer Science, University of

Nottingham with advanced machine learning methods [111, 112]

Figure 2.4: An example of FTIR spectra (taken from [109])
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Figure 2.5: A typical FTIR Spectrometer (taken from [2])

Besides FTIR, other spectroscopy techniques also exist. Examples are Raman Spec-

troscopy and Near Infra-red (NIR) spectroscopy. Raman spectroscopy is used to observe

low frequency modes in a system based on interaction of laser light on molecular struc-

tures. In NIR, the near infra-red region of electromagnetic spectrum (from 800nm to

2500nm) is used [114]. Each spectroscopic technique has its advantages and disadvan-

tages, and these two have also been used in the literature [17, 18, 57, 96, 121]. We have

selected FTIR as it is one of the most common spectroscopic methods found in the litera-

ture.



2.7. Spectral Pre-processing 18

2.7 Spectral Pre-processing

The raw spectra obtained from FTIR are generally not used for analysis as they may con-

tain abnormalities. These abnormalities are removed by standard procedures that include

base line correction and normalisation. Base line correction is performed to remove base

line abnormalities found in the spectra. These abnormalities are caused by various reasons

including carbon dioxide, oxygen, impurities in the air etc . Normalisation is performed to

remove the effects produced by varying thickness levels of samples [112]. For our work,

we have done basis pre-processing that includes simple base line correction and vector

normalisation using standard procedures with the help of School of Chemistry, Univer-

sity of Nottingham. We have not used other methods in order to keep our pre-processing

as simple and quick as possible. Advanced pre-processing techniques could potentially

be used in future work. Some other methods available for pre-processing not considered

for this work are:

1. Savitzky Golay algorithm [6, 30, 85, 116]

2. Self deconvolution and curve fitting [3, 4]

3. Scaling spectra to a particular band (for example, Amide-I or Amide-II) [4, 109]

2.8 Spectral Features Extraction using Specific Regions

Instead of using the whole spectral region, researchers have used various areas within the

region as representative features for extraction of key information about the spectra. Re-

searchers are focussing on different feature extraction techniques along with using them

for advanced mathematical and computational analysis. A recent critical review of this

research can be found in [103]. In Table 2.5 a few examples of the spectral regions used

for the analysis of the spectral data have been shown.
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Table 2.5: Different spectral regions used for analysis

S.No Articles Year Spectral Features

1 Chiu et al. [20] 2013 950-1350 cm-1

1350-1480 cm-1

1480-1800 cm-1

2 Kumar et al. [58] 2013 1600-1780 cm-1

3 Pallua et al. [85] 2012 3050-3650 cm-1

2800-3000 cm-1

850-1750 cm-1

4 Benard et al. [9] 2010 1000-1800 cm-1

5 Manzano et al [67] 2009 600-1450 cm-1

1500-1750 cm-1

1750-1850 cm-1

2900-3600 cm-1

6 Jusman et al. [50] 2009 950-1800 cm-1

7 Thumanu et al. [102] 2009 900-1800 cm-1

2800-3000 cm-1

8 Anastassopoulou et al. [4] 2009 900-1800 cm-1

9 Wang [109] 2006 900-1800 cm-1

It can be seen from the Table 2.5 that a spectral region considered as a bench mark is

around 900-1800 cm-1 (S.No 6,7,8,9) as it has been frequently used in the literature. It

can also be seen from the table that this region has been further subdivided into smaller

regions (S.No 1). All of these smaller regions have different distinct peaks and troughs

considered as representative features of the area. We shall be focussing more on the bench

mark region throughout this thesis for our experiments instead of using whole spectral

region. This will reduce the size of the data set as well as save computation time while

keeping majority of the key information intact. We do not assume that this area contains

all of the features of the data set and other regions considered by researchers could also

be used in a separate investigation.

Now, we discuss various methods used in combination with FTIR data sets for classi-

fication various types of spectra.
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2.9 Principal Component Analysis

Principal Component Analysis (PCA) is a mathematical procedure that transforms a num-

ber of possibly correlated variables into a smaller number of uncorrelated variables called

principal components (PCs). It is also called the (discrete) Karhunen-Love transform, or

the Hotelling transform depending upon the application area. The first principal com-

ponent called PC1 contains the maximum variation of data and the subsequent principal

components represent reducing variations in values. In this way a set of principal compo-

nents may contain the maximum features of the data sets and other principal components

can be ignored. The PCA is very helpful in the analysis of large data sets as it reduces the

data set substantially while keeping most of the important characteristics of the data set

intact. [49].

Zwielly et al. [129] implemented FTIR-microscopy to view spectral changes between

drug-sensitive and drug-resistant human melanoma cells. PCA was used to reduce the

original data of 512 valid measured variables in the spectra to six principal components.

These PCs contained 98.4% of the variety in the data. The points represented by the

selected PCs were used to distinguish between the two cell types. A t-test was used to

find the Significance of the results, which were considered significant with p <0.05. The

authors concluded that the best separation was attained using two principal components,

PC1 vs PC3 with 91% true identification while addition of PC4 increased the ratio to

almost 96%.

Ly et al. [64] reported a study carried out on a selected set of paraffin embedded skin

biopsies in order to assess the relevance of FTIR micro-imaging for the differential di-

agnosis of skin carcinomas. In the suggested model PCA was used and the first eight

principal components (describing more than 95% of the total variance) were selected.

Different derivative orders and numbers of principal components were tested and the re-

sults were presented. The average prediction rate was 74.6% on the spectra from the

validation set created by the pathologists. It showed that the data reduction by PCA was

not recommended for the precise detection of these types of tumours. Although the first
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eight principal components contained the maximum information, they were not precise

enough to describe the spectral differences between the eight groups.

Bin et al. [12] have combined PCA with support vector machines (SVM) for the diag-

nosis of colon cancer on FTIR spectral data. The SVM is a supervised learning algorithm

that separates the two classes with a hyperplane in feature space. It is dependant upon

parameters like cost factor and the parameters of kernels. 20 PCs were used for the exper-

iments as they contained more than 90% of the data variance. They conducted 500 repeats

of the experiments with random initialisations. For the 25 samples used, the combination

of PCA and SVM was able to classify 92.6% data correctly. The authors concluded that

the results were very good and validated the performance of the proposed method.

Goncalves et al. [35] investigated the use of FTIR Microscopy with PCA to differ-

entiate between different sugarcane bagasse samples. The authors found that using PC1

and PC2, the different types of samples can be detected through visualization and the PCs

were able to retain 88% of the variation of the original data.

Lasch et al. [59] employed PCA to generate a coloured image of different types of

tissue from the FTIR spectra. Initially, six representative reference spectra from the FTIR

maps were used to generate these images. In order to confirm that biochemical informa-

tion obtained from FTIR analysis was in agreement with conventional light microscopic

analysis, PCA was employed again. The Hierarchical clustering algorithm (HCA) (based

on Ward’s algorithm) was used with six PCs as input. The results showed that IR-based

classification agreed with the visual light microscopic investigations.

Kim et al. [52] used PCA as a pre-processing step for cluster analysis using FTIR

data from seven different species plants. The first two principal components were plotted

and it was shown that the different categories of plants could be identified simply using

the visualization. Furthermore, these results based on PCA were used as the input data

to the HCA. The results showed that FTIR was successful in reflecting the phylogenetic

relationships between the plants.

Kim et al. [51] tried to determine whether multivariate analysis of FTIR spectral data
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from leaves and fruit of Fragaria ananassa could be used for rapid discrimination of com-

mercial strawberry cultivators. PCA was used to analyze preprocessed spectral data from

each cultivar; Euclidian distances between samples were then calculated. Following this,

HCA was used to construct the dendrograms from PCs. This was done by the unweighed

pair group method with arithmetic mean analysis using the Euclidean distance as the sim-

ilarity measure. PCA scores extracted from PCA analysis were used for the calculation

of the correlation matrix. Examination of five strawberry cultivars was performed. The

first two principal components accounted for 87.58% and 5.8% (93.48% total) of the to-

tal variation respectively. A dendrogram based on HCA of the FTIR spectral data was

constructed which separated the five cultivars into two major groups. The first PC axis

of the score plot did not result in any separation pattern between strawberry cultivars

where as the second PC axis of the score plot showed a discrete separation pattern into

two groups. The results indicated that PCA was able to display the natural relationship

among these samples without prior knowledge along with HCA. The authors concluded

that FTIR could be applied as to genetic fingerprinting techniques for investigating the

genetic relationship between genotypes of a higher plant species.

Kloss et al. [55] applied FTIR Microscopy to evaluate the biodegradation of polyurethanes

of different composition. The infrared spectra profiles obtained for all the samples were

very similar. To find minor discrepancies in the spectra the PCA method was applied.

Various matrices of different dimensions were created from the collected data within the

spectra. Initially a matrix of dimensions of 1739*63 was built with all the 63 spectra.

The results indicated that this method was able to identify the differences between these

spectra. The samples collected after 12 months of biodegradation in the soil formed a

group which was more differentiated from all the others. It was shown that the use of the

PCA applied to the infrared spectra was able to determine a better identification of the

differences before and after the biodegradation .

Manzano et al. [67] performed a preliminary study on the ageing process of proteina-

ceous binder materials used in painting under ultra voilet light with FTIR Microscopy and
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PCA. Two different methods of covariance data matrices (scaling by mean-centered data)

and the correlation data matrices (scaling by unit variance) were used for the PCA. The re-

sults of the correlation data matrices were found to be better for this kind of data set. The

authors also reported that it was the first study of this kind involving FTIR Microscopy

and PCA together for this application.

Pallua et al. [85] applied FTIR for a discrimination study of squamous cell carcinoma.

PCA was used for dimension reduction of data set. Scores of first two PCs were plotted

against each other. The results showed that these PC plots were able to distinguish cancer

cells from stroma cells.

Recently, Kumar et al. [58] applied FTIR on histopathological speimens of breast

cancer of different tumour histological grades. The analysis was performed on ECM

(extracellular matrix) which separates epithelial cells from the surrounding environment.

Normal breast tissue contains layers of epithelial cells which do not perform their func-

tions properly in case of cancer. PCA was used as part of the anlysis and PCA plots were

used to show the continuous evolution of the ECM spectra from the tumour towards a po-

sition that was far from tumour. Scores of first two PCs were used on the basis that they

contained 83.3% and 9.25% of the total data variance respectively. The results indicated

there was a significant evolution of distance mainly with PC1 and minor contributions

with PC2. Region between 1600-1700 cm-1 was found to be containing more information

on PC scores. The authors concluded that it was a preliminary study and FTIR could be

used for improving the diagnostic of breast cancer in pre-invasive stages.

The litereture review on PCA shows that this is a reliable technique to be used for

dimension reduction of large data sets and can be used for breast cancer grading with

spectral data sets.
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2.10 Clustering

Clustering is defined as a methodology to group a set of unlabelled multidimensional data

segments or points such that the members of group called clusters share the most sim-

ilar attributes. In other words, the members of two different groups will have the most

dissimilar attributes. Clustering is a type of unsupervised learning in which no training

is performed on data and there are no pre-defined labels reflecting upon the important

characteristics of data. In conventional types of clustering algorithm, each member of

the data is exclusively assigned to one cluster. In data sets where it is easier to define

the cluster boundaries, the results of such method are very good. But in real world ap-

plications where it is hard to identify cluster boundaries, this approach does not work

well. For this type of complicated data sets, fuzzy clustering may provide more optimal

results. In fuzzy clustering each member is a member of every cluster with an associated

membership value [44]. For this thesis, we have considered k-means clustering algorithm

(k-means) and fuzzy c-means clustering algorithm (FCM). Both k-means and FCM are

type of partitional clustering. In partitional clustering a single partition is created by the

algorithm. Partitional clustering algorithms have been found to work well with large data

sets. We have selected these two algorithms for our study in order to compare the results

of a conventional clustering algorithm with a fuzzy based algorithm to find an optimal

choice of clustering algorithm. In the next subsections we describe these two algorithms

and the key literature associated with them.

2.10.1 K-means Clustering Algorithm

K-means is the most well known centroid algorithm. This means that a cluster in k-means

is defined by a cluster centre or a centroid. The algorithm partitions the data set into k-

subsets or clusters trying to keep all subsets closest to the same centre. The algorithm first

selects a criterion and then executes it with a fixed number of clusters multiple times with

different starting values. The result of the algorithm is the best partition found during this
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optimisation. A draw back of the algorithm is that it does not find the number of clusters

in the data automatically, this number has to provided as an input [44].

The criterion used for k-means clustering is the most commonly used criterion for

partitional clustering algorithms and is called the squared error criterion. This criterion

has been found to work well with isolated and compact clusters [44, 45]. To understand

this, lets take an example of a data set, X = {x1,x2, .........,xn} that contains n patterns or

elements. Lets assume we need to divide these n patterns to c groups. We consider, V =

{v1,v2, ..........,vn} as the corresponding set of centres and c j as the number of patterns in

cluster j. We also assume that each pattern can only belong to one cluster. Now we define

the squared error criterion in Equation 2.3:

e2 =
c

∑
j=1

c j

∑
i=1

||xi − v j||
2 (2.3)

where e2 is the squared error, xi j is the ith pattern in the jth cluster, v j is the jth cluster

centre, and ||xi − v j|| is the Euclidean distance between xi and v j.

If v j is the centre of the cluster, then it is calculated as:

v j =
1

ci

c j

∑
i=1

xi j

where j ∈ {1, ...,c}

(2.4)

In Equation 2.4, c j is the number of patterns in cluster j, xi j is the ith pattern in the jth

cluster, and c is the total number of clusters. The working of a typical k-means clustering

is shown in Figure 2.6.
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Figure 2.6: K-means clustering algorithm
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Wang and Garibaldi [110] applied k-means clustering to axillary lymph node data to

distinguish between various types of cells. The IR image created was composed of 7497

spectra that was a significantly higher number than in previous studies. Each spectrum

consisted of 821 wave number absorbencies. PCA was used to reduce the dimension of the

data set. The first 10 PCs were selected as they contained 99.08% variation of the whole

data set. For k-means, the squared Euclidean distance was used as the distance measure;

the initial cluster centres positions were randomly selected. The maximum number of

iterations was set to 100. The number of clusters were varied from 2 to 10 as different

initial positions results in differing performance. The results indicated that k-means was

not able to distinguish between normal and cancer tissues with two clusters. However,

it was able to split normal and cancerous tissues starting with 6 clusters. In comparison

when FCM Clustering algorithm was used on the same data set, it differentiated well

between normal and cancerous cells including when the cluster number was set to 2.

Krafft et al. [57] studied Congenital Cystic Adenomatoid Malformations (CCAMs)

with FTIR imaging. They claimed it was the first study of this type. Lung tissue spec-

imens obtained from two infant patients were used for the experiments. Data sets were

obtained from four tissue sections that allow comparison (i) the biochemical composition

of CCAM and normal lung tissue, (ii) the morphology at macroscopic and microscopic

resolutions and (iii) the information content of Raman and IR spectroscopy. The pre-

processed data sets were subjected to k-means cluster analysis using a Euclidean distance

metric. It was used in this study because of its simplicity on large data sets. The result of

the cluster analysis was represented by colour coded figures representing the segmentation

into four classes or clusters. The result showed that there was overlapping in the clusters

and features were not clearly distinguished. It was argued that vibrational spectroscopic

imaging could complement the existing diagnostic techniques as data acquisition by FTIR

imaging is more rapid and yields spectra with higher signal-to-noise ratios.

Ly et al. [65] applied FTIR spectral imaging on formalin-fixed paraffin-embedded

biopsies from colon and skin cancerous lesions. PCA was used on a set of paraffin spectra
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to keep the maximum variance in the paraffin dataset while reducing the amount of data

modelled. It involved removing of paraffin spectra from the raw images based on out-

lier detection preceded by a quality test. K-means clustering was performed to highlight

tumour tissue within non cancerous tissue. Pseudo-colour images computed by k-means

clustering were used to highlight histological structures of interest. K-means maps were

calculated several times to make sure a stable solution had found; the percentage of con-

vergence was set to 99.9% in all cases. The retained number of clusters was set to 11,

which appeared to match the histology of the epithelial tissues analysed. This method-

ology was applied on the two samples. The results indicated that tumour areas were

successfully demarcated from the rest of the tissue in both colon and skin independently

of the embedding material and of the substrate.

Ly et al. [64] carried out a study on a selected set of paraffin embedded skin biopsies

in order to assess the relevance of FTIR micro-imaging for the differential diagnosis of

skin carcinomas. K-means clustering was applied on pre-processed images to highlight

relevant histological structures. For each image, k-means clustering was used to regroup

spectra based on similar spectral properties. K-means maps were calculated several times

to ensure a stable solution. The percentage of convergence was set to 99.9% and the

number of clusters was selected as 11 matching the histology of tissues analysed. A

pseudo-colour map was plotted to find the cluster membership information by assigning

a colour to each different cluster. Each pseudocolour map was then provided to the col-

laborating pathologist to correlate the spectral maps and the corresponding H& E stained

sections. An almost one-to-one correlation between the IR k-means-clustered images and

the histology was found. This showed the potential of the technique for the direct analysis

of paraffin-embedded biopsies with FTIR Microscopy.

Pallua et al. [85] used FTIR in combination with k-means as part of study to differ-

entiate between different types of cells in squamous carcinoma. The aim was mainly to

distinguish between three types of cells namely cancer, stroma and cornified material. The

results were compared with Hematoxylin and eosin stain (HE) images. HE is a method
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used to highlight biological structures in biological tissues for better viewing. The results

showed that this method was able to distinguish between these three types. Further study

was also done by increasing the number of clusters but no other meaningful information

was obtained.

2.10.2 Fuzzy c-means Clustering Algorithm

Fuzzy c-means (FCM) clustering algorithm is one of the most popular clustering algo-

rithms found in the literature. Instead of hard clustering algorithms like k-means, the

FCM clustering algorithm associates each data point with all the clusters using a member-

ship function. This algorithm was developed by Dunn in 1973 and improved by Bezdek

in 1981 introducing a fuzzifier parameter , 1 ≤ m < ∞ [10,27]. The algorithm is based on

the minimisation of the fuzzy objective function as defined in the Equation 2.5:

J(U,V ) =
n

∑
i=1

c

∑
j=1

(µi j)
m||xi − v j||

2 (2.5)

As in the case of k-means, we assume that X = {x1,x2, .........,xn} is the data that

contains n patterns that require dividing into c groups. V = {v1,v2, ..........,vn} is assumed

that the corresponding set of centres are the same as there defined in section 2.10.1. In

the Equation 2.5, µi j is the membership degree of the pattern xi to the cluster centre v j. It

is compulsory for µi j to satisfy the following two conditions:

µi j ∈ {0,1}

where i ∈ {1, ...,n} and j ∈ {1, ...,c}

(2.6)

c

∑
j=1

= 1 (2.7)

The parameter m is used to control the fuzziness of each data point of the set and is called

the fuzzifier or fuzziness index. Its higher and lower values make the method more and

less fuzzy respectively. There is no theoretical information available to define fuzzifier
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but generally value of 2.0 has been widely accepted [10]. ||xi − v j|| is used to represent

the Euclidean distance between xi and v j. A fuzzy partition defined by U = (ui j)n×c is

a matrix that consists of all the membership degrees from every data point to all cluster

centres. The fuzzy centres are calculated with the help of the following Equation:

v j =

n

∑
i=1

(µi j)
mxi

n

∑
i=1

(µi j)m

∀ j ∈ {1, ...,c}

(2.8)

where v j represents the fuzzy centres. The fuzzy partition matrix U is updated with the

help of the following Equation:

µi j =
1

c

∑
k=1

(
dy

dik
)

2
m−1

where di j = ‖xi − v j‖

i ∈ {1, ...,n} and j ∈ {1, ....,c}

(2.9)

The termination criteria of the algorithm is generally the maximum number of iterations

but users can also define any specific criteria according to their requirements. The working

of a typical FCM clustering algorithm has been shown in Figure 2.7.
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Figure 2.7: FCM clustering algorithm

For all the experiments performed in this thesis with FCM clustering algorithm, after

executing the FCM clustering algorithm, each pattern is associated with the cluster to

which it has the largest membership degree. This is called hardening of clusters and in

the literature it is found to produce better solutions [39, 126].
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Lasch et al. [59] implemented a FCM clustering algorithm with FTIR Microscopy on

colorectal adenocarcinoma tissue sections. Colour intensities coding was used to find the

membership values using PCA. Two dimensional plot was used for the comparison of

clustering results with clinical results. The results showed that for upto 6 clusters, FCM

images were successfully assigned to a specific tissue. Further increases in number of

clusters produced poor results and a weak relationship with the clinical results.

Wang and Garibaldi [110] applied a FCM clustering algorithm to a lymph node tissue

section which had been diagnosed with metastatic infiltration (cancer spread from its

original location). IR spectra used in experiments were collected from a large area of

an axillary lymph node tissue section. The IR image created was composed of 7497

spectra, a significantly higher number than in previous studies. Each spectrum consisted

of 821 wave number absorbencies. PCA was used to reduce the dimension of the data

set. The first 10 PCs were selected as they contained 99.08% variation of the whole data

set. In FCM clustering algorithm, the fuzziness index m was set to a value of 2; the

maximum number of iterations was set to 100. The minimal amount of improvement

was initially set 10-5 (the stopping criterion) of the iteration. Initial results of the FCM

clustering algorithm were poor. After setting the minimal amount of improvement of

algorithm to 10-7, the results were significantly better. The FCM clustering algorithm

produced consistent clustering results including when the number of clusters was set to 2

and it was able to differentiate between normal and cancer cells. The results indicate that

the FCM algorithm can separate the major different tissue types using a small number of

clusters. As the number of clusters increased upto 9, more information about the tissues

was available that could not be recognized by the histopathologists. The performance of

the algorithm was also compared with the same experiments using the k-means algorithm

which was found to be slightly better.

Steller et al. [101] used FTIR Microscopy with FCM clustering algorithm and HCA to

investigate thin sections of cervix uteri encompassing normal tissue, precancerous struc-

tures, and squamous cell carcinoma. One hundred and twenty two images of cervical tis-
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sue recorded by a FTIR spectrometer were used for the experiments. A two step approach

was used combining the advantages of both clustering methods to distinctly enlarge the

tissue area to be characterized at once by IR spectroscopic imaging. Initially, FCM clus-

tering was performed so that every tissue type in the tissue sections is represented by at

least one FCM cluster. The respective cluster centroids were used as the starting point for

subsequent HCA. This procedure reduced the number of potential HCA clusters to less

than 100 (a manageable size) for computation. This approach also improved the signal-

to-noise ratio, because each FCM cluster centroid was the average over a certain set of

IR spectra. The dendrogram resulting from HCA was used to distinguish between differ-

ent tissue types. Clinical results were used for the verification of the results In the first

step, cervical stroma, epithelium, inflammation, blood vessels, and mucus could be dis-

tinguished. The authors claimed that it was the first successful attempt in distinguishing

basal cells, dysplasia, and tumour in a single sample by IR spectroscopy.

Steiner et al. [100] investigated the influence of hydrophobicity of the substrate sur-

face on structural changes during protein adsorption. FCM clustering algorithm was used

for the clustering of FTIR images spectra. The proposed method was demonstrated on an

example with two preselected clusters. It was found that when the preselected number of

clusters was increased, spectra could be assigned more homogeneously. It was also found

that a number of clusters over 5 did not result in significantly lower variance or improved

information retrieval. The experiments showed that significant differences were found

between hydrophobic and hydrophilic surfaces. The authors concluded that FTIR Mi-

croscopy along with a FCM clustering algorithm reliably characterized the thin layers of

adsorbed fibrinogen and also importantly spots of structural changes within larger sample

areas.

A main draw back of both k-means and the FCM clustering algorithm is that because

of their limitations like advance knowledge of number of clusters and convergence to local

optima, they can result in sub-optimal solutions that are locally optimal.
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2.11 Hill Climbing

Hill Climbing (HC) is a technique which is used for optimisation problems. In HC, a

random solution to a problem is found and then the solution is improved (either by climb-

ing down the hill or climbing up the hill) until an optimal solution is reached based on a

certain condition or a termination criteria is reached [94]. A draw back of the algorithm is

that if a better solution is not available with immediate solutions, the algorithm gets stuck

at that point and never goes beyond that point which results in a locally optimal solution

rather than globally optimal solution. A typical HC algorithm can be seen in Figure 2.8.
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The HC algorithm has been used in the literature for problems that involve spectral

data sets.

Luts et al. [63] used a HC algorithm for extracting features from Magnetic Resonance

Spectral (MRS) data set. Magnetic resonance spectroscopy (MRS), also known as nu-

clear magnetic resonance (NMR) spectroscopy, is an analytical technique which is used to
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study various metabolic changes in brain tumour and other diseases like strokes, seizure

disorders etc. It uses the magnetic properties of certain atomic nuclei to determine the

physical and chemical properties of atoms or molecules they are part of. The aim of this

study was to find the best features suitable for brain tumour classification. HC was used

because the high dimensionality of data causes a high computational cost. A subset of

features with the best performance was obtained with the help of cross validation. Cross

validation is a statistical technique that is used to predict the performance of a model.

In this technique, data is divided into various subsets and on a certain criteria, these sets

are used for training and testing of the data. A measure for quantifying separation was

obtained by stepwise addition or deletion of features over whole spectral region. 13 other

methods for the same purpose were also used. The results indicated that this HC method

did not perform well and it was excluded.

Schief et al. [95] have used a HC algorithm along with a genetic algorithm (GA) for

correction of the shift uncertainty on NMR based spectral data set. GA belongs to a class

of evolutionary algorithms which is used to find solutions for optimisation and search

algorithms. GA is inspired by the techniques of natural evolution such as inheritance,

mutation, selection and crossover [8]. NMR spectra were described by means of a set

of overlapping peaks. In order to find the correct target peak, a method of peak picking

was required. The authors selected the HC method because of its simplicity over other

methods. The results indicated that the combined method was able to find highly effective

error estimates for the shift uncertainties in NMR measurements.

HC has also been used in other medical applications. For example, Sasic [97] has

used a HC based algorithm in an application to determine the coating thickness of tablets

by chiseling and image analysis. The main aim of the HC algorithm was to find the

boundaries of the thickness coating on both sides of the tablet. The results indicated

that the proposed approach was able to make a quick and inexpensive assessment of the

coating thickness of tablets.

As both selected clustering algorithms (k-means and FCM) and the HC algorithm



2.12. Simulated Annealing 37

suffer from locally optimised solutions, we may consider a stochastic search based algo-

rithm like simulated annealing. Stochastic search algorithms may produce a near-optimal

solutions quickly. They also avoid converging towards locally optimal solutions [53].

2.12 Simulated Annealing

Simulated Annealing (SA) is a stochastic search technique which has been used for many

years for finding global optimum solutions of the problems [53]. It is inspired by the

physical process of annealing solids. In this process a solid is heated upto a certain high

temperature. After that it is cooled down at a slower pace. The aim is to keep the system

in thermodynamic equilibrium at any instant. At any state in equilibrium, the system has

a certain energy level. To move from one state to another, there may be several solutions

available depending upon the energy levels. The decision to move from one state to

another is dependent upon the difference between the energy levels. To understand the

scenario within artificial intelligence frame work, we consider Ep as energy of the present

state and En as energy of the new state. We always move to the new state if En < Ep.

If En ≥ Ep then we accept the solution and move to the new state with a probability

e−(En−Ep)/CT , where CT is the current temperature. In this way, we might accept a worse

solution and avoid the search getting stuck at a local minima. CT is decreased slowly and

the process is repeated until the solution does not improve any further or a termination

criteria (for example any low temperature) is reached [44]. The workings of a typical SA

algorithm are shown in Figure 2.9.
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Figure 2.9: Simulated Annealing algorithm

SA has been used in the literature with various spectral data sets. Chen et al. [19] have
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used SA to search for the optimal cut off threshold for detecting the quality of glycerol

monolaurate (GML) with a pre-processed FTIR spectral data set and with wavelet trans-

form (WT). GML is a popular emulsifier that is found mainly in the food and cosmetics

industry. GML contains many impurities and it is essential to identify these impurities.

WT is a technology that is used to transform original spectra into a wavelet domain that

is represented by wavelet coefficients. SA was used to eliminate the wavelet coefficients

whose value is less than the obtained cut off threshold. The starting temperature of the

algorithm was set to 100 while the algorithm terminated when the temperature reached 0.

Student’s t distribution was used to generate new solutions in the SA algorithm. The cri-

teria for accepting a worse solution was Boltzman’s probability distribution (Metropolis

criterion) which is a function of temperature T as given by the equations:

ρ(∆F) = exp(
−∆F

T
) (2.10)

Where

∆F = F(x̂)−F(xi) (2.11)

Where F is the objective function, ∆F is used to increment the objective function, xi is the

current values, and x̂ is a new solution close to xi. The performance of the SA was found

using a fitness function that was used to move the algorithm towards global optimum

solution. The results indicated that the SA part of the model worked well and it was able

to successfully eliminate the irrelevant coefficients from the WT.

SA has also been used in other spectral data analysis. Jha et al. [47] have used a

SA algorithm to decide the descriptors that decide nearness between molecules on mass

spectrometry data. These descriptors help to relate the dependencies of the antimicrobial

activity of new compounds on the nature of substitution in oxadiazoles compounds. The

authors conclude that the results were able to provide valuable information relating to

structure of the compounds.

Schumacher et al. [96] have used SA with Raman Spectroscopy in order to develop a
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tree like classifier that differentiates inorganic and organic particulate matter. The method

compared classifiers with different algorithms including artificial neural networks (ANN),

linear discriminant analysis (LDA) and support vector machines (SVM). SA was used as

a classifier for the support vector machine (SVM). SA was used for the optimisation of

these parameters. Metropolis criteria with Boltzman’s function was used for SA. Cross

validation was used for the estimation of the accuracy of the classifier. The results indicate

that the SVM classifier with SA in general performed better than LDA but not better than

ANN.

SA has also been used on other types of data set in the medical domain. For example,

Filippone et al. [31] have used SA along with SVM for gene selection in the classification

of gene expression data. The aim of the algorithm was to select the input for aggregating

an ideally minimal subset of inputs with strong discriminative power. They called it a

simulated annealing input selection (SAIS) algorithm. The authors compared their results

with other variants of SAIS and found the results comparable with other versions.

2.13 Type-I Fuzzy Sets

Classical fuzzy sets or Type-I (T-I) fuzzy sets were introduced by Zadeh in 1965 [122].

The aim of fuzzy logic is to represent and analyse data where uncertainties are involved. In

fuzzy logic, each element has a degree of membership to a fuzzy set which is described by

often a real value in (0,1). For example, classifying a person as young or old is a transition

process rather than a quick switch so a crisp set is not able to represent it correctly as

shown in Figure 2.10. This example has been taken from [77]. In the figure, x-axis

represents age of a person in years and y-axis shows the membership grade as µ. For

age 59, the crisp variable considers it as the Young as boundary for Old age starts from

60. Where as in a fuzzy logic system, a transition is made with the help of membership

functions as shown in Figure 2.11. Age 59 has membership value for Young as 0.4 and

for Old as 0.6. This indicates that age 59 is more towards old age than young. This
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information can not be shown with the help of a crisp set. We can say that fuzzy logic is

different from classical set theory where an element can either be in a set or not where as

in fuzzy theory an elements fuzziness indicates its inclination towards a set. An element

has fuzzy values for all the sets in the system.

Figure 2.10: Example of a crisp set (taken from [75])

Figure 2.11: Example of a fuzzy set (T-I) (taken from [75])

Fuzzy sets are associated with linguistic terms and they better reflect human reasoning
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and decision making. For example if we say that water is very cold then very is the term

that reflects upon the magnitude of the fuzzy variable cold. In 1975, Professor Zadeh

introduced the concept of linguistic variables instead of numerical values in [123].

The fuzzy sets describing linguistic variables are connected through fuzzy rules that

take the following expression

IF antecedents(s) THEN consequent(s)

The antecedent implies fuzzifying the inputs where as consequent is the result af-

ter applying inferencing with those fuzzified input values. Fuzzy rules can have multi-

ple antecedents. These antecedents are connected through fuzzy operators as defined by

Zadeh [122]. They are generally referred as fuzzy conjunction (AND), fuzzy union (OR)

and fuzzy complement (NOT). A brief description of these operators is as follows.

The intersection between two fuzzy sets x and y is defined as:

µx∩y = Min[x,y] (2.12)

The union between fuzzy sets A and B is defined as:

µx∪y(x) = Max[x,y] (2.13)

The compliment of fuzzy set x represented as A is defined as:

µx = 1− x (2.14)

where µ is a membership function.

There are other types of operators found in the literature besides Zadeh’s conventional

operators of Min and Max. They are generally referred to as Triangular operators (T-

operators) where Triangular Norm (T-Norm), Triangular Conorm (C-Norm) and Negation

are used for finding Union, Intersection and Compliment of fuzzy sets [36]. Now we

briefly describe some of these operators.
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Probabilistic operators are defined by Goguen [115] and Bandler et al. [7]. A brief

description of operators is as follows.

The intersection between fuzzy sets x and y is defined as:

µx∩y = x.y (2.15)

The Union between fuzzy sets x and y is defined as:

µx∪y = x+ y− x.y (2.16)

The compliment of fuzzy set x represented as A is defined as:

µx = 1− x (2.17)

In Lukasiewicz logic [34], T-operators are described as.

The intersection between fuzzy sets x and y is defined as:

µx∩y = Max[x+ y−1,0] (2.18)

The Union between fuzzy sets x and y is defined as:

µx∪y = Min[x+ y,1] (2.19)

The compliment of fuzzy set x represented as x is defined as:

µx = 1− x (2.20)

There are other types of T-operators found in the literature. A few examples of such

operators are described by Weber [115] and Yager [119]. Multiple antecedents connected
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with fuzzy operators evaluate to give a single number. Consequents can also have multiple

parts that can be aggregated to define a single output [81]. The obtained output needs to

be defuzzified in order to get a precise solution as a crisp value. Various defuzzification

methods have been proposed in the literature [23]. Some of them are

• Centre of Area (COA)

• Mean of Maximum (MOM)

• Bisector

• Largest of Maximum (LOM)

• Smallest of Maximum (SOM)

2.13.1 Fuzzy Inference System

A fuzzy inferencing system (FIS) is a rule-based system that uses fuzzy logic, rather than

boolean logic to reason about data. A FIS can also be called a fuzzy expert system (FES)

or a fuzzy logic controller (FLC) dependent upon the area of its application. The four

main components of a FIS are:

• A fuzzifier, which translates real-valued inputs into fuzzy inputs

• An inference engine, which applies a fuzzy reasoning mechanism to obtain a fuzzy

output using a knowledge base

• A defuzzifier, which translates the fuzzy output into a crisp value

• A rule base, which contains an ensemble of fuzzy rules

The fundamental elements of a FIS can be seen in Figure 2.12. The two most common in-

ferencing methods are Mamdani’s fuzzy inference method and the Takagi-Sugeno-Kang

(TSK) method. In Mamdani’s method, the consequents of the rules are fuzzy sets which
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are aggregated to produce an output fuzzy set and the final output is obtained after de-

fuzzification over all fuzzy outputs. Where as in TSK which is also called singleton the

output is the weighted average of each rule’s output [81]. Each input of the FIS is asso-

ciated with one or more membership functions. There are several types of membership

function available, for example, gaussian, triangular, trapezoidal etc. These membership

functions are evaluated with fuzzy rules to find the output. A good classification is de-

pendent upon adequate rules, linguistic variables and membership functions. One of the

main advantages of a medical based FIS is that it is possible to include the knowledge

of specialists, even if statistics data is not available. In the case of medical data, there is

a high level of uncertainty and a FIS may help in providing an optimal solution in such

cases [43, 87].

 

Rule base 

Inference Engine  

Membership Functions 

Fuzzification Defuzzification IIInput Output 

Figure 2.12: Structure of a Fuzzy Inferencing System (taken from [86])

A brief literature review of FIS used with spectral data in medical science follows.

Castanys et al. [17] described a three phase case-based reasoning system (CBR) to

identify unknown materials by means of the automatic recognition of their Raman spectra.

The first phase consists of dimensionality reduction by means of PCA. The second phase

consists of defining similarity measures to objectively quantify the spectral similarity with

a final value obtained by the fuzzy logic system. The final phase consists of revision and
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validation of the results. The total number of rules developed for the fuzzy logic system

was 4. The results indicated that the proposed system worked well and has potential to be

used for other problems like identifying pigment mixtures etc.

Evsukoff et al. [29] presented a frame work for intelligent data analysis of spectral data

in classification and regression problems. In this frame work, the number of interpolation

functions was computed using spectral analysis. Each function was then associated with

a symbol to generate a fuzzy rule. Each symbol was related with a prototype that can be

computed using a clustering algorithm. A rule induction algorithm was used to determine

the minimum number of rules for the frame work. The proposed frame work was tested

on various data sets including iris, cancer, wine etc. The results indicate that the frame

work performed well in classification of these data sets. The authors concluded that the

frame work had the potential to be used in complex problems although there are areas like

finding optimal number of rules that require more in depth research.

Cernuda et al. [18] proposed a specific fuzzy system called the TSK fuzzy system

for calibrating the chemometric models based on NIR spectra. This fuzzy system was

used to model the non-linearity contained in the production process of polytheracrylat

(PEA). The TSK based fuzzy system was used to express non-linearities contained in

the mapping between NIR spectra samples and measured concentrations or target values.

The calibration results obtained by the proposed method were also compared with other

state of the art methods. The results showed that the proposed system outperformed other

methods in terms of properties associated with calibration and was also computationally

comparable.

Mahmoodabadi et al. [66] presented a fully automated system in order to analyse and

classify magnetic resonance spectroscopy (MRS) signals of patients with metabolic brain

diseases. The selected features from MRS constituted the universe of discourse (input).

Every input feature was fuzzified using low (L), normal (N) or high (H) group with a

membership value in range [-1,1]. Only normal (N) had a membership value starting

from 0. Trapezoidal membership functions were used. The proposed fuzzy membership
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functions were used in the classifier to categorize the metabolic brain diseases. The au-

thors stated that the use of specific membership functions was able to increase accuracy

and interpretability of the system.

Zhengmao Ye [121] used livers, lungs, kidneys and glands Raman spectra and created

and artificial intelligence approach along with fuzzy logic filtering to categorise them. For

the fuzzy logic part of the method, from Raman spectra, consecutive intensity differences

between any point and its adjacent points are normalsised and linear combination of dif-

ference terms was considered as crisp inputs to the fuzzy logic filter. Positive or negative

signs of intensity differences were considered for rule making. A Mamdani type fuzzy

system was created. Linguistic variables were expressed as fuzzy sets of Negative big

(NB), Negative small (NS), Zero (ZE), Positive small (PS), Positive big (PB)]. Centroid

defuzzification was used. The authors concluded that their method was able to perform

well on these data sets and argued that the method had potential to be used for various

cancer cell classifications as well.

Similarly, Pueyo et al. [88] and Kong et al. [56] have also developed fuzzy systems

for spectral data sets.

FIS has also been used for various breast cancer data sets in general other than spectral

data sets. A brief literature review of such examples follows.

Reyes [87] used a FIS with evolutionary algorithm for development of an automated

method, and later on created Fuzzy CoCo (a Fuzzy modelling technique with evolution-

ary algorithms) and applied it to the Wisconsin Breast Cancer Database (WBCD). How-

ever, no experiments were performed on real data sets, therefore, the authors themselves

stressed the need for a more practical approach to understand the actual performance of

the model.

Uriarte and Castillo [33] compared the results of FCM Clustering algorithm and a FIS

based on a combination of FCM and a Genetic Algorithm (GA) on WBCD. This data

base consists of 569 cases, 357 benign and 212 malignant. For each case, there are 10

variables defined. The membership values for the fuzzy system were obtained by the re-
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sultant grouping after the FCM clustering algorithm was applied. In each group, average,

minimum and maximum values obtained from the FCM were used as membership func-

tion values. A genetic algorithm (GA) was used to find the rules. For the comparison

of the methods, the final number of grouping was considered as a measure of accuracy.

After training the FIS, four rules were selected. The results of both the methods were

good although the overall FCM clustering algorithm was more accurate at 99.315% as

compared to the FIS which achieved 80.136%.

Jain and Abraham [46] created four fuzzy rule generation methods and compared

their performance on WBCD data set for breast cancer diagnosis. In the first method, a

single fuzzy if then rule was generated for each class using the mean and the standard

deviation of attribute values. For each attribute of the data set, 20 membership functions

were created and a fuzzy partition matrix was used to create the histogram. In the second

method, histogram attribute values were normalised to 1 and used for rule generation

and a single fuzzy if then rule was used as in the first method. In the third method,

rules were created by homogeneously partitioning each attribute creating a simple fuzzy

grid was created. Each attribute had multiple rules instead of a single rule. The last

method was a modified version of the fuzzy grid approach. In this method the shape of

the membership functions is modified by partitioning only areas which are overlapping.

The results showed that modified fuzzy grid approach provided a high classification rate of

99.73% where as modified grade achieved the lowest accuracy of all methods at 62.57%.

Auephanwiriyakul et al. [5] also used FIS to detect abnormalities in mammograms.

One abnormality was microcalcification which is a small deposit of calcium and the other

was mass which is a lump of fat detected in mammograms by expert radiologists, some-

times a small presence of these abnormalities can be ignored. Real mammograms were

used for the experiments. Two FIS were proposed by the authors based on Mamdani’s sys-

tem and their performances were compared. The first system was called the microcalcifi-

cation detection system and it consisted of four features extracted which were parameters

extracted from the mammograms. The second system was called the mass classification
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system and it consisted of 3 features. The results indicated that both systems provide

good classification performance. The microcalcification detection system accuracy was

78.07% where as mass classification’s accuracy was 98.33%.

FIS have also been developed for the diagnosis of other diseases as well for example,

Zhtogullari et al. [127] developed a FIS for diagnosis of urinary system illnesses that

cause obstruction in the urethra and the bladder, Castanho et al. [25] developed a FIS for

the diagnosis of prostate cancer and Nagata et al. [79] used FIS to predict cervical lymph

node metastasis in carcinoma of the tongue.

2.14 General Type II Fuzzy Sets

General Type-II fuzzy sets (GT-II) were introduced by Zadeh as a generalisation of the

T-I fuzzy sets [74, 123]. A GT-II set denoted by Ã, is characterized by a T-II membership

function µÃ(x,u) and can be expressed as [74]:

Ã = {((x,u),µÃ(x,u))|x ∈ X ,u ∈ Jx,Jx ⊆ [0,1]} (2.21)

where X is the primary domain, Jx is secondary domain, µÃ(x) is the secondary member-

ship function at x, and all secondary grades µÃ(x,u) ∈ [0,1]. The GT-II set can also be

expressed as [73]:

Ã =
∫

x∈X

∫
u∈Jx

µÃ(x,u)/(x,u) Jx ⊆ [0,1] (2.22)

where
∫ ∫

denotes union over all admissible x and u. For discrete universes of disclosure,

∫
is replaced by Σ. Figure 2.13 shows a GT-II fuzzy set for our example regarding height

of a person. It can be seen that secondary membership function itself is a T-I fuzzy set (in

blue colour).
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Figure 2.13: Example of a General T-II fuzzy set (taken from [75])

2.14.1 Interval Type-II Fuzzy Sets

An interval Type-II fuzzy set (IT-II) is considered as a special case of GT-II fuzzy set in

which the secondary grade is equal to 1 for all x ∈ X and for all u ∈ Jx ⊆ [0,1]. Thus the

IT-II set Ã can be expressed as [73]:

Ã = {((x,u),1)|x ∈ X ,u ∈ Jx,Jx ⊆ [0,1]} (2.23)

The IT-II set Ã can also be expressed as [73]:

Ã =
∫

x∈X

∫
u∈Jx

1/(x,u) Jx ⊆ [0,1] (2.24)

Figure 2.14 shows the height example in the form of IT-II set. It can be observed that

now the secondary grade has been fixed to 1 (in blue colour as a line) and the primary

membership grade takes the form of an interval between [0.5, 0.7].
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Figure 2.14: Example of an IT-II fuzzy set (taken from [75])

A main advantage of IT-II fuzzy sets is its simplicity and reduced computational cost

and that is why they are the most commonly used T-II fuzzy sets [117].

2.14.2 zSlices Representing Type-II Fuzzy Sets

Researchers have focussed on reducing the complexity of the GT-II sets. We shall be using

Wagner and Hagras approach for the research work carried out throughout this thesis

which uses zSlices approach [37]. In this approach, a GT-II fuzzy set can be represented

by slicing in the third dimension (z) at a level zi to create a zSlices based type-II fuzzy

set (zGT-II). The result of this process is a set of zSlices which are IT-II fuzzy sets with

a secondary membership grade of zi which is in contrast to the regular IT-II fuzzy sets

whose secondary membership grade is always 1. Thus the zSlice can be written as:

Z̃i =
∫

x∈X

∫
u∈Jix

zi/(x,ui) (2.25)

Then fuzzy set Ã is represented as a collection of zSlices.

Ã =
I

∑
i=1

Z̃i (2.26)
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Where I represents the number of zSlices. It is important to note that zSlice z0 is disre-

garded because its secondary grade is zero, therefore, z0 does not contribute to the fuzzy

set [37]. Increasing the number of zSlices to represent a type-II fuzzy set increases the

accuracy of the set. Figure 2.15 shows an example of a zGT-II fuzzy set with 3 zSlices,

the z-axis shows the three zSlices.

(a) Side view with three zSlices (b) Tilted view with three zSlices

Figure 2.15: Example of a General T-II fuzzy set with three zSlices (taken from [107])

Miller et al. [76] have showed that using interval data, both inter and intra-observer

variabilities can be incorporated into zSlices based GT-II sets (zGT-II) on survey data. At

first T-I fuzzy sets were created with the help of interval data obtained from experts over

multiple surveys. These sets represent the intra-expert variability i.e, variability between

values of one expert for different surveys. The T-I fuzzy sets are created with the help of
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the following Equation:

µ(A) = y1/
N⋃

i1=1

Āi1

+ y2/

(

N−1⋃
i1=1

N−1⋃
i2=i1+1

(

Āi1 ∩ Āi2

)

)

+ y3/

(

N−2⋃
i1=1

N−1⋃
i2=i1+1

N⋃
i3=i2+1

(

Āi1 ∩ Āi2 ∩ Āi3

)

)

+ . . .

+ yn/

(

1⋃
i1=1

. . .
N⋃

iN=N

(

Āi1 ∩ . . .∩ ĀiN

)

)

,

where yi =
i

N

(2.27)

Where y is the degree of membership over the survey domain x. It represents the num-

ber of intervals overlapping at a certain point. Ãn is a series of intervals where i ∈ {1....N}

and N is the number of the intervals. The T-I fuzzy set A is defined by the membership

function µ(A). In the Equation 2.27, the ’/’ sign refers to degree of membership and is not

a division sign and the addition symbol represents the union and it is not the arithmetic

addition. The T-I fuzzy set is created by taking the union of all the intervals which are

associated with a membership of y1, the union of all possible two tuple intersections of

intervals associated with y2 and so on.

To add multiple experts opinion as inter-expert variability (the variability between

values of different experts for different surveys), a zGT-II fuzzy set is created with the

help of the following equation:
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µ(Ã) = z1/
N⋃

i1=1

Ai1 +

(

z2/
N−1⋃
i1=1

N⋃
i2=i1+1

(Ai1 ∩Ai2)

)

+ z3/

(

N−2⋃
i1=1

N−1⋃
i2=i1+1

N⋃
i3=i2+1

(Ai1 ∩Ai2 ∩Ai3)

)

+ . . .

+ zN/

(

1⋃
i1=1

. . .
N⋃

iN=N

(Ai1 ∩ . . .∩AiN )

)

,

where zi =
i

N

(2.28)

In Equation 2.28, each zSlice is calculated separately and the total number of zSlices is

the number of experts involved. An is a series of T-I fuzzy sets where i ∈ {1....N} and N is

the number of sets. To combine these T-I fuzzy sets into a zGT-II fuzzy set, the agreement

principle is applied and a higher secondary membership level or zLevel is associated with

areas where more T-I sets overlap. In this way zGT-II fuzzy set created incorporates both

the inter and intra-expert variability. It is worth mentioning that no information is added

and no assumptions are made. Outliers are not removed but are modelled at a lower level

of agreement.

zSlices based logic has also been used in other areas. For example Mbede et al. [68]

have used zSlices based T-II fuzzy logic to develop a navigation system for the au-

tonomous navigation of a robot in crowded and dynamic indoor environments. For the

system, zSlice based primary membership functions were based on sigmoid member-

ship functions where as secondary membership functions were of triangular. The results

showed that proposed system was robust and intelligent. The authors concluded that zGT-

II based logic was able to perform better and also was less complex when compared to

GT-II sets.

Medical decision making is an area that has high level of uncertainty especially lin-

guistic uncertainty and T-II fuzzy logic is expected to provide better solutions [48]. We

provide a brief literature review on T-II fuzzy sets applied in the medical domain.
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Chumklin and Auephanwiriyakul [21] developed a system based on GT-II for the de-

tection of microcalcification in Mammograms for breast cancer. Microcalcification is a

very small deposit of calcium which is a breast abnormality that can cause cancer. The

input to the system was the original image of a mammogram. Four features were selected

from the image. Two algorithms, the FCM clustering algorithm and Possibilistic c-means

clustering algorithms (PCM) were used. The membership functions were designed using

IT-II fuzzy logic. The upper and lower membership functions were defined with refer-

ence to the position of data points on the left and right of the centroid with predefined

membership values. The results were compared with membership function generation

with the FCM clustering algorithm and a Mamdani fuzzy inference system. The results

with interval T-II fuzzy logic system with PCM were found to be the best with 89.47%

accuracy.

Wang and Yu [113] proposed a T-II fuzzy membership test (T-II FM test) for disease

associated gene identification with microarrays of diabetes and lung cancer. They em-

phasised the need to use T-II fuzzy logic as the data obtained from microarray was noisy

with a lot of uncertainties involved and traditional fuzzy logic is not able to handle this

complex situation. IT-II fuzzy sets were used because of their simplicity and reduced

computational cost. They used a heuristic method for the generation of T-II membership

functions. The heuristic method has three main steps.

1. Selection of a heuristic T-I membership function suitable for the data set

2. Setting the parameters for the membership function (These can be provided by the

experts)

3. Designing the upper and lower membership functions using a suitable method

The authors used Gaussian membership functions. The primary and secondary member-

ship values for T-II were combined into a traditional membership. Then the genes were

ranked based on these values. A comparison was made between patients of a normal gene

and patients of infectious gene. For both diabetic and lung cancer genes, a total of 10
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genes were used for each disease. 7 out of 10 genes were correctly classified with the

help of the proposed T-II based testing method.

Hosseini et al. [42] have used T-II fuzzy logic in combination with a GA for rule

extraction for classification. The WBCD was used for to test the proposed method. IT-

II Gaussian membership functions were created for the system. The lower and upper

bound parameters of the IT-II Gaussian membership function with mean m and standard

deviation s were described by the following equations:

m = m+ kms,m = m− kms,km ∈ [0,1] (2.29)

s = s∗ kv,s = s/kv,kv ∈ [0.3,1] (2.30)

where km and kv are parameters for tuning the footprint of uncertainty (FOU), m and m are

the lower and upper bound of the mean and s and s are the lower and upper bound of the

standard deviation of the IT-II lower and upper membership functions respectively. The

structure of the rules was also T-II based. For a given pattern Xp = (Xp1,Xp2, ....,Xpn), the

rule is defined as:

RuleRi: If xp1 is Ãi1 and ,.....,and xpn is Ãin then Class Ci with GCi

where Ãi1, ....., Ãin are IT-II fuzzy sets, i = 1, ...,M is the number of rules. A GA was

used for rule selection and elimination. A 10 fold cross validation with 100 runs was used

to give more accurate results. The average accuracy of the classifier using three rules

with only one variable per rule was found to be 95.96% which is better than previously

used methods. The authors concluded that the proposed method was able to handle more

uncertainties in the rules with the help of T-II fuzzy sets.

Phong and Thien [90] have used IT-II fuzzy sets to create a TSK based fuzzy system

for the classification of electrocardogram (ECG) arrhythmic classification. They used a

FCM clustering algorithm and the back propagation technique to determine parameters of

the T-II fuzzy classifier. Gaussian membership functions were used for the experiments.

70 ECG samples were used for the training and testing of the classifier. The performance
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of the classifier was also compared with a T-I fuzzy classifier and with a T-II Mamdani

classifier. The results indicated that the performance of T-II base classifier with both TSK

and the Mamdani system was better than T-I. TSK was slightly better than the Mamdani

T-II as it was found to have better training. The authors concluded that because of the

complex nature of the data, T-II fuzzy logic produced better results.

Zarandi et al. [124] have proposed an expert system based on T-II fuzzy logic for

processing of brain tumour images. The authors used PCM clustering to create T-II mem-

bership functions. Eight rules were developed for the system. The aim of the system was

to correctly identify the tumour grade among four grades. The results were also compared

with a T-I system. The results indicated that the T-II based expert system performed better

than T-I system.

Ozen and Garibaldi [84] have used IT-II fuzzy logic for the development of a fuzzy

expert system for the problem of Umbilical Acid-Base (UAB) assessment. UAB assess-

ment is a procedure which is based on analysis of blood taken from umbilical cord. This

information is used to obtain information regarding infant’s health. Blood samples may

contain errors and these errors lead to uncertainty and T-I based system is not good enough

to deal with such complex issue. Results indicated that as uncertainty in IT-II fuzzy sets

increased, it also resulted in increase of variation in 50 UAB assessments.

A recent review by Melin and Castillo [71] has also shown that applications of T-

II in classification and pattern recognition in different areas including medical sciences

are increasing and more researchers are inclining towards the use of T-II fuzzy logic in

complex scenarios and problems where more and more uncertainty is involved.

There are other types of T-II fuzzy approaches found in the literature. For example,

Coupland and John [22] have used an approach where fuzzy sets and fuzzy logic operators

are considered as geometric objects and are manipulated only with the help of geometry,

Liu [61] has defined α plane for the representation of fuzzy sets and Hamarwi et al. [40]

have described an α cut representation for T-II fuzzy sets.

The use of zGT-II fuzzy sets for classification of cancer cell types especially with
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a spectral data set is an under explored area of research. In the current work, we have

investigated this area with real spectral data sets of breast cancer for the classification of

breast cancer grade.

2.14.3 Similarity Measures for Fuzzy Sets

A similarity measure between fuzzy set is the representation of the degree to which fuzzy

sets are similar. Similarity measures for T-I fuzzy sets are common and have been used

by many researchers [60, 62, 128]. One of the most common methods used for both crisp

and fuzzy sets is Jaccard’s similarity measure [108]. For crisp sets, it is the division of the

intersection and union of two sets as described by the following equation:

SCS
j (A,B) =

A∩B

A∪B
(2.31)

Equation 2.31 can be modified for a T-I fuzzy set as:

SFS
J (A,B) =

N

∑
i=1

min(µA(xi),(µB(xi))

N

∑
i=1

max(µA(xi),(µB(xi))

(2.32)

Equation 2.32 results in a value between [0,1] where 0 shows completely disjoint sets

and 1 means that sets A and B are identical.

Similarity measures for T-II fuzzy sets are less common. For IT-II fuzzy sets, some of

the common measures have been described by Zeng and Li [125], Jaccard [118], Gorzal-

czany and Bustince [16]. For GT-II sets, similarity measures have been described by

Mitchell [78] and Yang and Lin [120]. Four properties are commonly used to describe

any similarity measure. They are:

1. Reflexivity : s(Ã, B̃) = 1 ⇐⇒ Ã = B̃

2. Symmetry : s(Ã, B̃) = s(B̃, Ã)

3. Transitivity : If Ã ≤ B̃ ≤ C̃, then s(Ã, B̃)≥ s(Ã,C̃)
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4. Overlapping If Ã∩ B̃ 6= φ, then s(Ã, B̃)> 0, otherwise, s(Ã, B̃) = 0

It is not compulsory for a similarity measure to have all of the properties because ap-

plications of a measure may not depend on all of them [69]. As part of current work is

to find similarity between zGT-II fuzzy sets, we shall be using a new similarity measure

introduced by McCulloch et al [69] which finds the similarity between zGT-II sets. This

similarity measure has all four properties previously defined for a similarity measure.

We describe this similarity measure now, which is a modification of Jaccard’s similarity

measure.

For zGT-II fuzzy sets, a measure of similarity for IT-II fuzzy sets can be applied to

each zSlice, and the results of each zSlice are combined with the following Equation:

SZS(Ã, B̃) =

∑
iεL

ziSλ(Ãzi
, B̃zi

)

∑
iεL

zi
(2.33)

where Sλ(Ãzi
, B̃zi

) is any similarity measure for IT-II fuzzy sets. Ãzi
and B̃zi

are zSlices

from two sets Ã and B̃ at zLevel zi. L is the set of zlevels used by Ã and B̃. A high

number of zSlices provides more accurate information from the similarity measure. In

this method, each set will use an equal number of zlevels throughout the T-II system

based on zSlices.

In McCulloch’s method, each zSlice is weighted and the weighted average of Jaccard’s

similarity for IT-II fuzzy sets is computed for each zSlice. The method can be summarized

by the following equation:

SzGT-II
J (Ã, B̃) =

zi

I

∑
i=1

SIT-II
J (Ãi, B̃i)

I

∑
i=1

SIT-II
J (Ãi, B̃i)

(2.34)

In Equation 2.34, Ã and B̃ are zGT-II sets, I is the number of zSlices, i shows a particular

zSlice and zi represents the degree of membership for each zLevel. A value of 0 indicates

that zGT-II sets are disjoint where as a value of 1 shows identical sets. An important aspect
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of this approach is that because of the weighting of zSlices, the uncertainty represented

by each set is properly presented.

Table 2.6 shows a summary of the major computational techniques reviewed in this

Chapter. This table provides a categorisation of the type of the method used with relevant

paper and the application area which has been investigated in that manuscript. It can be

seen from the table that all the methods have been used for a variety of problems from

cancer to categorisation of fruits, navigation of robots etc.



2.15. Summary 61

Table 2.6: Summary of literature review

Type Authors Application area

PCA Zwielly et al. [129] Drug-sensitive and drug-resistant human melanoma cells

Ly et al. [64] Diagnosis of skin carcinoma

Bin et al. [12] Diagnosis of colon cancer

Goncalves et al. [35] Differentiate between different sugarcane bagasse samples

Lasch et al. [59] To generate a coloured image of different types of tissue

Kim et al. [52] Different species plants

Kim et al. [51] Different categories of fruits

Kloss et al. [55] Diodegradation of polyurethanes

Manzano et al. [67] Ageing process of proteinaceous binder materials

Pallua et al. [85] Discrimination study of squamous cell carcinoma

Kumar et al. [58] Grading of breast cancer

K-means Wang and Garibaldi [110] Study of axillary lymph node

Krafft et al. [57] Study of Congenital Cystic Adenomatoid Malformations

Ly et al. [65] Biopsies from colon and skin cancers

Ly et al. [64] Study of Skin cancer

Steller et al. [101] Study of squamous cancer

FCM Lasch et al. [59] study of colorectal adenocarcinoma tissue sections

Wang and Garibaldi [110] Study of lymph node sections

Steller et al. [101] Study of cervix uteri

Steiner et al. [100] Study of hydrophobicity of protein adsorption

HC Luts et al. [63] Extracting features from MRS

Schief et al. [95] Shift uncertainty of NMR data set

Sasic [97] Coating thickness of tablet

SA Chen et al. [19] Study of quality of GML

Jha et al. [47] Study of molecules of mass spectrometry data

Schumacher et al. [96] Classification of Raman Spectroscopy data

Filippone et al. [31] Classification of gene expression data

Type-I Castanys et al. [17] Identification of Raman Spectra

Evsukoff et al. [29] Classification and regression problem

Cernuda et al. [18] Classification of NIR spectra

Mahmoodabadi et al. [66] Classification of MRS signals

Zhengmao Ye [121] Classification of kidney,lungs etc spectra

Type-II Miller et al. [76] Modelling inter & intra expert variabilities

Mbede et al. [68] Mobile navigation of Robots

Chumklin [21] Mammograms for breast cancer

Wang and Yu [113] Gene identification of diabetes and lung

Hosseini et al. [42] Rule extraction for WBCD

Phong and Thien [90] Classification of ECG

Zarandi et al. [124] Classification of brain tumour images

Ozen and Garibaldi [84] For assessment of UAB

2.15 Summary

This chapter presents a general overview of breast cancer and the problems related to clas-

sification, FTIR, a literature review of spectral data sets in particular with the clustering

algorithms k-means and FCM, T-I fuzzy logic and fuzzy inferencing, T-II fuzzy logic and

similarity measures for T-II fuzzy sets specifically with zGT-II fuzzy sets.
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Initially a description of breast cancer, its diagnosis and prognosis especially in line

with widely accepted NPI has been described. Grade is a critical parameter of NPI and

problems with manual methods have been described. FTIR is a technique that has been

frequently used in the literature in biomedical applications because of its ability to ex-

tract key information from molecular cells in the form of spectra. Instead of using the

whole spectral regions, specific areas in literature have been described as key features and

examples have been given from the literature.

A brief literature review of the commonly used clustering algorithms k-means and

FCM with FTIR has also been included as we have used these two algorithms for our data

sets.

Fuzzy logic and fuzzy inferencing has been used to handle variability and uncertainty

in data found in real world applications. A review of some important work in the medical

domain with traditional or T-I fuzzy logic has also been presented.

For more complex and highly uncertain data sets, T-II fuzzy logic is a better choice.

An introduction of T-II fuzzy sets has also be given in this chapter. As we have used zGT-

II fuzzy sets for our work with interval data, we have described this in detail. Finally,

similarity measures used for T-II fuzzy sets with emphasis on zGT-II fuzzy sets has also

been given.

In the next chapter, we give an introduction to the data sets. We have used three dif-

ferent data sets for this study each with a different level of complexity. Initial experiments

with clustering algorithms of k-means and FCM and their results will also be discussed.



Chapter 3

Data Sets Description and Initial

Experiments with Clustering

Algorithms

This chapter includes a detailed description of the data sets used during this work for the

initial experiments. The preliminary experiments done with standard FCM and k-means

clustering algorithms are also part of this chapter.

3.1 First Data Set Description

For our initial experiments, we created a data set which was derived from a real oral

cancer spectral data set. This data set was created by combining two data sets previously

used in work on oral cancer tissues provided by Derby General Hospital with full consent

of patients [109]. The dataset consists of 33 records obtained from three oral cancer

patients. This data set is different from the original work because in the original study

both data sets, with different histopathological background, were used separately where

as for our experiments, we consider them as single data set regardless of histopathological

differences. The classifications made by the histopathologists between tumour and stroma

cells were recognized as the original results for each set. Stroma is made up of the non-

63
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malignant host cells and plays an important role in cancer pathology. The FTIR spectra

for 33 different locations for two patients were obtained. These locations can be seen in

Figure 3.1. The data points 1-15 belong to one data set and 16-33 from the second data

set. The dotted white line separates the regions between tumour and stroma. Data points

1-5, 11-15 and 16-25 belong to the tumour cells whereas points 6-10 and 26-33 belong

to the stroma cells. The spectral range was limited to 900-1800 cm-1. Each spectrum

consisted of 900 absorbance values. The aim of the experiments was to separate tumour

cells from stroma cells.

 

Figure 3.1: Location of data points in tissue samples of two data sets used for FTIR

analysis (taken from [109])

3.1.1 Methods

A two step approach was used. First, PCA was performed on the data set and then the

FCM clustering algorithm was run 10 times on the reduce data set obtained from PCA.

PCA was used to reduce the dimensionality of data while keeping most of the information

contained intact. We have used first 10 PCs for this study. The original data set was of

size 33*900 wave numbers cm-1. After selecting first 10 PCs, the data set was of size

33*10 PCs that indicates that data set was reduced substantially. For the FCM clustering
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algorithm, the fuzziness index (m) was set as 2.0, previous experiments had examined

various values of m and found that this was the most effective value, the maximum number

of iterations was set to 100. For distance measurements, the squared Euclidean distance

was used. The number of clusters was set to 2. The variation of the spread of the data

was calculated by the method described in [109]. In this method the percentage variance

is calculated as described in Equation 3.1.

PV = 100∗
sum[ f irstN]

sum[All]
(3.1)

Where PV is percentage variance. f irstN has variance of the number of PCs included (in

our case 10) where as All includes variance from all PCs (in our case 900). The results

were compared with the original classifications made by histopathologists to determine

the accuracy. Both PCA and the FCM clustering algorithms were implemented using a

script written in MATLAB 6.5 (Mathworks, Natick, MA, USA).

3.1.2 Results

The results show that the proposed method created two clusters of tumour and stroma

cells having 23 and 10 members respectively. A comparison of results obtained by this

experiment with the original results is shown in Table 3.1.

Table 3.1: Comparison of results with PCA+FCM

Tissue Type Original Result PCA+FCM Correctly Classified Incorrectly Classified

Tumour 20 23 19 1

Stroma 13 10 9 4

These results indicate that there were five data points of the original data that were

assigned to the incorrect cluster. In other words, 15.15% of the data was misclassified.

This may be due to the adjustments made in the original data sets. The first 10 principal

components, along with their percentage variances, are shown in Table 3.2.



3.1. First Data Set Description 66

Table 3.2: First 10 PCs with the associated variance in data

Number of PCs Variance (Percentage)

1 50.77%

2 92.16%

3 97.93%

4 98.65%

5 99.09 %

6 99.42 %

7 99.57 %

8 99.78%

9 99.75 %

10 99.81 %

This shows that as the number of components increases, the percentage variance also

increases (as expected). It also shows that after a certain point this change becomes

smaller (for example from PC5 to PC10). The first two PCs contain 92.16% of the vari-

ance of the data and their plot gives a clear visual appreciation of the spread of the mem-

bers of the clusters as shown in Figure 3.2. It shows cluster members of tumour and

stroma cells after the execution of PCA and FCM clustering algorithm. It also indicates

that more stroma cells (4) were misclassified by the procedure and most of the tumour

cells were correctly classified with only one misclassified.
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Figure 3.2: Plot of PC1 and PC2. The squares are actual tumour cells; the circles ac-

tual stroma cells. The filled (black) symbols are correctly classified; the open symbols

incorrectly classified

These results indicate that the combination of FTIR spectra data sets with PCA and

clustering algorithms is helpful in classification of the data. It also shows that with a

few PCs, the majority of information about the data spread can be obtained helping de-

crease computational cost for larger data sets that are anticipated to be used for future

experiments.

3.2 Second Data Set Description

For this data set, a total of 25 breast cancer tissue samples from 5 different breast cancer

biological subtypes were identified from the archives of the Nottingham Tenvous Primary

Breast cancer Series. These samples were collected by a team at the breast cancer research

group in Queens Medical Centre Hospital in Nottingham. NGS was used to define the
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grade for each sample. The samples belong to different breast cancer categories classified

as either G-I, G-II or G-III. The aim of these experiments is to classify the grade of a

sample with the help of standard commonly used clustering algorithms i.e k-means and

FCM.

3.2.1 Methods

Figure 3.3 shows the flow of the work for our experiments in the form of a step wise pipe

line. We will now describe each stage of the pipe line in detail pointing out the difficulties

involved.
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Figure 3.3: FTIR pipeline
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3.2.2 Samples

After detailed discussions with clinical experts at Nottingham City Hospital, we selected

one sample of each case for our experiments which were recommended by the experts as

these samples were clinically better and reliable.

3.2.3 FTIR of Samples

FTIR was carried out on a Nicolet Continum FTIR Microscope in the school of Chemistry,

University of Nottingham. For this purpose, selected samples were mounted on a slide

and then placed within a slide holder on the microscope and the spectrum was recorded

within the region of 800-4000 cm-1.

Each spectrum obtained by this method contained 3319 absorbance values and the

total size of data for each sample was very large. For the G-I sample, the data size was

25944*3319 wave numbers, for G-II sample, it was 18400*3319 wave numbers and for

G-III sample, it was 9393*3319 wave numbers. The data size for each sample varied

because of different size of the samples. It is computationally expensive to process such

a large amount of data, therefore, a section of the cancerous region from each sample was

identified with the help of pathologists and data was extracted for those cancerous regions

using a script written in Matlab version 7.02 (Mathworks, Natick, MA, USA). These

regions have been represented as boxes in Figure 3.4 for G-I, G-II and G-III selected

cases. The number of spectra in each region varies as it is not possible to get same size of

section for each sample because of the different shapes of samples. In order to get the best

spectral data available, only 100 spectra from each section were used for our experiments.

The selection of these spectra was made possible by visual inspection of each spectrum

with the help of the clinical experts. In total, 300 spectra (100 of each grade) were used as

data set for the current work. It is also important to note that the sections identified were

not the only cancerous regions in the samples. The samples also contained non-cancerous

regions as well as fatty tissues not included in our experiments.
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(a) G-I sample with selected area in box (b) G-II sample with selected area in box

(c) G-III sample with selected area in box

Figure 3.4: Samples of second data set with selected areas in box

3.2.4 Pre-processing

Baseline correction was performed to correct the sloping baseline that is present with

cell spectra. Subsequently all data underwent vector normalisation, to remove effects

arising from the thickness of the sample. It was achieved by scaling all spectra such that

the squared deviation over the indicated wave number range equals unity. An example

of normalised spectra has been shown in Figure 3.6. The two spectra belonging to G-

II were clearly different from each other before pre-processing as shown in Figure 3.5.

After pre-processing, the blue colour spectrum and red colour spectrum have overlapped

and it seems that there is only one spectrum visible in Figure 3.6. Normalisation has

synchronized the raw spectra which can now be used for analysis to distinguish it from

spectra of other grades. All of the corrections mentioned were achieved using a script

written using Matlab version 7.02 (Mathworks, Natick, MA, USA). Spectra were also cut
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to the region between 900-1800 cm-1 as a finger print region. Each spectrum consist of

934 absorbance values over this region which is significantly less than 3319 found in the

original data set.

Figure 3.5: Example of non-processed spectra
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Figure 3.6: Example of processed spectra

A data set was created by combining the selected 100 spectra from the cancerous

region of each case. The final data set was of the size 300*934 wave numbers.

3.2.5 Dimension Reduction

For this data set, we have selected PCA as the standard method for dimension reduction.

Although our data set size is not very large (300*934), but we have used it as a standard

procedure. We have used the first 10 PCs for our experiments. The selection was made

on the basis that first 10 PCs contained more than 95% variation of the overall data set.

After dimension reduction, the final data set was of size 300 spectra * 10 PCs.

3.2.6 Clustering Algorithms

We have used k-means and FCM clustering algorithms for our experiments. The selec-

tion has been made to compare a hard clustering algorithm (k-means) and a fuzzy based
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algorithm (FCM).

For the FCM Clustering algorithm squared Euclidean distance was used. Fuzziness

index was set a value of 2 and minimal amount of improvement was set as 10-5. For the

k-means clustering algorithm, again squared Euclidean distance was used for the mea-

surement and maximum number of iterations was set as 100. The number of clusters for

both FCM and k-means clustering algorithms was set as 3. The results obtained from

clustering were compared with the classification made by the expert histopathologists.

3.2.7 Results

Table 3.3 shows the results with FCM and k-means clustering algorithm with 3 clusters.

Table 3.3a shows results with FCM clustering algorithm. It indicates that cluster one

mainly contains members of G-I. Twenty four members of G-I became part of cluster

3 which mainly contains G-II members. Cluster 2 was able to successfully differentiate

the G-III members from the data set and only one member was misclassified and became

part of cluster 1. Cluster 3 represents 87 members of G-II where as the remaining 13

were part of cluster 1. Table 3.3b describes the results obtained by the k-means clustering

algorithm. Cluster 1 has majority of grade 2 members and only one G-III member where

as cluster 2 consists of G-II members. G-III is clearly separable by cluster 3. Both FCM

and k-means clustering algorithms results indicate that spectral data of G-I and II had less

variation, therefore, cluster members became part of each other. In case of G-III data,

both FCM and k-means clustering algorithms were able to clearly distinguish it from rest

of the grades.

Table 3.3: Results with FCM and k-means clustering algorithm with data set 2

(a) FCM Clustering

Cluster with members G-I G-II G-III

1(87) 73 13 1

2(102) 3 0 99

3 (111) 24 87 0

(b) K-means Clustering

Cluster with members G-I G-II G-III

1(113) 40 73 1

2(87) 60 27 0

3 (100) 0 0 100
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Our experiments indicate that both the FCM and k-means clustering algorithms can

be used to differentiate between different breast cancer grades with spectral data sets. But

there are certain things which need to be considered while dealing with medical spectral

data sets. In our experiments G-III was clearly separable form the rest of the grades with

both FCM and k-means clustering algorithms, but it may be because G-III spectra was

more distinct when compared to G-I and G-II.

The second data set only had one case of each grade. To further investigate a complex

data set we have selected the following data set which has more cases of each of grades

of breast cancer. The data set also has different number of cases for each grade.

3.3 Third Data Set Description

The third data set is called BR804 obtained from University of Illinois at Urbana Cham-

paign, USA [13]. It consists of 80 cores of 40 cases of paired breast invasive cancer and

matched normal adjacent tissue with a single core per class. Figure 3.7 shows the Tissue

Microarray (TMA) slide of the data set. TMAs are paraffin blocks in which a very large

number of tissue cores (up to 1000) can be assembled together. A major advantage TMA

is that it allows experts to do multiplex histological analysis [91]. The TMA of this data

set consists of 10*8 Matrix where each pair of circles indicate a cancer case and a relevant

normal case. It can also be observed that cancer cases are darker than the normal cases. A

detailed microarray panel display is also shown in Figure 3.8 where a normal case is in-

dicated by NAT (not a tumour). The cancer grade break down of the data set is described

in Table 3.4. These grades were calculated by expert histopathologists with NGS criteria.

Table also shows that there are 6 cases whose grade could not be determined by the nor-

mal histopathological procedure and are undefined. The three grades and their relation

with cases and spectra is shown in Figure 3.9. It is also important to note that each case

has different ni number of spectra as size of each case is different from other. The FTIR

data set for this TMA slide is of size 85.4 GB. It has been calculated between (722-4000)
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cm-1 for every alternative wave number. It consists of three parameters.

X: Samples = 4062 (along x-axes)

Y: Bands = 3420 (along y-axes)

For each (X, Y) pair there is an absorbance Z that consists of 1641 wave numbers. Each

point is of type float (4 bytes). Therefore, the total data size is calculated as:

Total data set size = 4(X*Y*Z) = 85.4GB.

The data set is of an extremely large size. FTIR spectra have been calculated for the whole

TMA slide resulting in a large data set. Also, the TMA slide includes normal spectra cases

as well as cancerous samples and their spectral results also contribute to the size of the

data set. It is worth mentioning here that we have not used the normal sample cores or the

undefined cores as the aim is to differentiate cancer grades from one another rather than

differentiating them from normal samples.

 

Cancer  Normal  ---------------

---------------

Cancer  Normal  

Figure 3.7: TMA Slide of Data set 3
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Figure 3.8: Microarray panel display for Data set 3 (taken from [13])

Table 3.4: Categorisation of grades (cases)

Grade-I Grade-II Grade-III Undefined

2 26 6 6
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Figure 3.9: Cancer grades and their relation with cases and spectra
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Figure 3.10: Example of a sample used for data extraction

3.3.1 Data Extraction

As the data set is very large, extraction of all spectra at the same time is computationally

expensive. To resolve this issue, smaller areas were identified with the help of clinical

experts. The spectra were extracted from 10*10 square areas from all cases (100 spectra

for each square). An example of such a square has been shown in Figure 3.10.

3.3.2 Data Pre-processing

Instead of using whole spectral range for the experiments, we have selected the spectral

region between 1000-1800 cm-1 for our experiments as in literature the spectral region

around this region (sometimes starting with 900 cm-1) has frequently been used as it is

estimated to include spectra that can provide valuable information about the data [109].

Thus reduced the wave numbers values from 1641 to 401 which was significantly less.

Data from the selected spectral region was pre-processed with standard base line correc-

tion and normalisation process using a script written in Matlab provided by the School of

Chemistry, University of Nottingham. The processed data was discussed with experts in
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Figure 3.11: An Example of a pre-processed spectra in region 1000-1800 cm-1

the School of Chemistry and then used for the experiments performed here.

3.3.3 Dimension Reduction

PCA was used to reduce the dimensions of the data. Initially we have selected 10 PCs as

they cover more than 90% of the variance of the data. These PCs were used in combina-

tion with clustering algorithms for our experiments.

3.3.4 Clustering Algorithms

We have created a data set of 300 spectra * 10 PCs for experiments with clustering algo-

rithms. As we have different number of cases for each grade, we have used the following

approach to create a balanced data set.

• G-I: 100 spectra * 10 PCs (2 cases, 50 spectra from each case)

• G-II:104 spectra * 10 PCs (26 cases, 4 spectra from each case)

• G-III: 96 spectra * 10 PCs (6 cases, 16 spectra from each case)

For this complex data set, we have again used the two clustering algorithms, one a hard

clustering algorithm, k-means and other a fuzzy logic base algorithm, FCM. Both algo-
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rithms were used with 3 clusters as an input in order to classify the three grades. The

parameters of the algorithms were the same as described in subsection 3.2.6. The aim of

the research is to create a decision support system with the help of advanced fuzzy logic

for breast cancer grading. Therefore, We have used both k-means and FCM clustering

algorithms in order to explore only the complexities of the data set.

3.3.5 Results

Table 3.5 shows results with the k-means clustering algorithm with 3 clusters. It can be

seen that cluster 1 mainly consists of values of G-II and G-III but with no clear distinction.

Cluster 2 has G-I and G-III members and cluster-3 mainly consists of members of G-I and

G-II. The results indicate that because of the complexity of the data no cluster was able

to differentiate between the three grades.

Table 3.5: Results with k-means clustering algorithm with data set 3

Cluster with members G-I G-II G-III

1(112) 13 51 48

2(91) 40 17 34

3 (97) 47 36 14

Table 3.6 shows results with FCM clustering algorithm with three clusters. It can be

seen that cluster 1 include a small number of members from G-I and majority classified

as G-II and G-III. Cluster 2 include members from all grades. Cluster 3 was able to

differentiate 50 members of G-I out of 100 correctly.

Table 3.6: Results with FCM clustering algorithm with data set 3

Cluster with members G-I G-II G-III

1(83) 5 41 37

2(135) 45 37 53

3 (82) 50 26 6

The results with clustering algorithms indicate that neither of the two algorithms are

able to differentiate between the three grades with 10 PCs. The results indicate that be-
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cause of high level of variabilities involved in the data set, unsupervised learning with

standard clustering algorithms is not able to find a clear distinction between cancer grades.

These uncertainties may exist between between spectra of same case of grade (intra-case)

as well as between multiple cases same grade (inter-case). The other type of uncertain-

ties may exist between cases of same grade (intra-grade) and between cases of different

grades (inter-grade).

The results indicate that both k-means and FCM clustering algorithms are able to show

the complicated nature of the data as both algorithms performed poorly on the data set.

In the next stage of the research, we take this complicated data set and move towards a

decision support system with fuzzy logic.

3.4 Summary

In this chapter, we have used three different data sets with standard k-means and FCM

clustering algorithms to differentiate between different classes with the help of PCA. Data

set 1 was used to distinguish between tumour and stroma cells with PCA and FCM. The

results indicated that the method was able to make good classification. Data set 2 was a

real breast cancer spectral data set used to differentiate between three cancer grades with

PCA and k-means and FCM clustering algorithms. Results indicate that both methods

are able to differentiate between three grades. Data set 3 was a real complex spectral

data set involving a variety of cases from all grades. The same methods of PCA with k-

means and FCM clustering algorithms were applied to differentiate between breast cancer

grades. Results indicate that because of variabilities between cases of same grade and

between grades, the clustering algorithms perform poorly and are not able to distinguish

between grades emphasising high level of uncertainties involved in the data set. In the

next Chapter, we take this complex data set and move towards a decision support system

supervised learning approach by developing a fuzzy inferencing system that can classify

the correct grade for such a complicated data set.



Chapter 4

Experiments with Fuzzy Inferencing

System

In this chapter, we have used data set 3, and a Mamdani type fuzzy inferencing system

(FIS) has been developed with 300 spectra and using three PCs taken from different cases

of each grade for classification. The system uses HC and SA algorithms to train member-

ship functions and rules. The developed system has also been tested with unseen data. The

results are compared with the standard k-means clustering algorithm and the performance

of the system is discussed.

4.1 System Structure

Figure 4.1 shows a block diagram of the main structure of the FIS used. A data set has

been created either by selecting data taken from a single case per grade or from all cases

of all grades. The created data set goes through PCA and first three PCs are selected as

an input to the system. Each input has three membership functions. These membership

functions are trained with the help of three training methods namely, Hill Climbing with

Membership Function Tuning (HCMT), Simulated Annealing with Membership Function

Tuning (SAMT) and Simulated Annealing with Membership function and Rule Tuning

(SAMRT). The HC algorithm is selected because it has been previously used in a spectral

82
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problem to find correct target spectral peak and was able to perform well [95]. We have

selected SA in order to avoid limitations of HC as in complex scenarios, HC tends to tilt

towards local minima. In case of SA, the chances of getting a better solution increase.

In the literature, SA has been found to perform well with complex FTIR spectral data in

order to find the optimal cut off threshold for detecting the quality of glycerol monolaurate

(GML) [19]. It shows that SA can be useful in problems where complexity of spectral

data is high. The best trained FIS is found by comparing the results on training data. The

selected FIS is tested on unseen data. The next sections describe the processes involved

in each of these steps.
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Figure 4.1: Main structure of FIS

4.2 Spectral Regions

We have used all of the spectral region available (722-4000 cm-1)and the spectral region

between 1000-1800 cm-1 wave numbers in two different sets of experiments using spectra
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from all the cases available (multiple case study). The first set uses spectral data from all

the spectral regions available where as the second set uses spectral data from 1000-1800

cm-1 spectral region. The reason is to show that instead of using the complete spectral

region, a smaller region is also able to achieve similar results. It has been shown to

produce good results in previous studies done with breast cancer spectral data sets [109].

The advantage of using a smaller region is that it reduces the number of spectra, making

it more computationally efficient. All spectra have been pre-processed by the standard

methods as described in Chapter 3.

4.3 Case Studies

We have considered two types of case studies, namely, a single case study and a multiple

case study for our experiments. We now describe each of them.

4.3.1 Single Case Study

100 spectra were extracted from each of the cases F1 (G-I), A9 (G-II) and D7 (G-III)(from

Figure 3.8). These cases were arbitrarily chosen as a test case. The data set consists of

300 spectra*1641 wave numbers for the whole spectral region, and 300*401 for the 1000-

1800 cm-1 spectral region. PCA was used to reduce the dimensions of the data, and the

first three PCs were selected. The selection of the number of PCs was made in order to

keep the initial number of fuzzy rules manageable. The final training set after PCA was

300 spectra * 3 PCs for both regions. It is worth mentioning that the single case study was

done as a proof of concept for the new system. A large number of possible combinations

of single cases are available, and different combinations may produce different results

depending upon how close the PCs of cases are.
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4.3.2 Multiple Case Study

With all available cases involved, the data set was 300 spectra * 1641 wave numbers. The

same pre-processing and PCA was performed as with a single case, and the first 3 PCs

were used as input to the system. As the number of cases was not the same for all grades,

the following number of spectra were extracted to make a balanced data set.

• G-I: 100 spectra * 3 PCs (2 cases, 50 spectra from each case)

• G-II: 104 spectra * 3 PCs (26 cases, 4 spectra from each case)

• G-III: 96 spectra * 3 PCs (6 cases, 16 spectra from each case)

4.4 Development of Fuzzy Inferencing System

All experiments were carried out with Matlab using the Fuzzy Logic Tool Box. We have

used a Mamdani type fuzzy system for our experiments with three input variables, three

membership functions (MFs) for each input variable and one output variable with three

membership functions. The three input variables are the first 3 PCs. The total number

of membership functions is 12 (9 for input variables and 3 for output). We have used

Triangular type membership functions for our experiments as they are commonly used

and computationally efficient. The output of the system is a grade classification match-

ing the possible cancer grades I, II or III. Initially, 27 rules were created for the system

comprising of all possible combinations of the input membership functions. Table 4.1

shows these rules. The rules were joined by fuzzy AND operator. The consequent of

the rules are decided by a majority vote out of the three membership function values.

Rules 6, 8, 12, 16, 20 and 22 were not included for experiments with Hill Climbing and

Simulated Annealing with membership functions. They were excluded from these exper-

iments because they result in a tie when majority vote is used. For Hill Climbing and

Simulated Annealing with Membership Function Tuning, the rule set was comprised of

21 rules. For Simulated Annealing with both Membership Function and Rule Tuning,
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they were included for experiments as consequents of the rules were changed during the

experiments and majority vote was not used for the final assignment. The Defuzzification

method selected was Largest of Maximum (LOM). This method finds the maximum value

out of three output membership functions and assigns MF with the largest value as grade

for the input data.

Table 4.1: Fuzzy rule set for FIS

Rule MF1 MF2 MF3 Consequent

1 1 1 1 1

2 1 1 2 1

3 1 1 3 1

4 1 2 1 1

5 1 2 2 2

6 1 2 3 1/2/3

7 1 3 1 1

8 1 3 2 1/2/3

9 1 3 3 3

10 2 1 1 1

11 2 1 2 2

12 2 1 3 1/2/3

13 2 2 1 2

14 2 2 2 2

15 2 2 3 2

16 2 3 1 1/2/3

17 2 3 2 2

18 2 3 3 3

19 3 1 1 1

20 3 1 2 1/2/3

21 3 1 3 3

22 3 2 1 1/2/3

23 3 2 2 2

24 3 2 3 3

25 3 3 1 3

26 3 3 2 3

27 3 3 3 3
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4.4.1 Single Control Point and Multiple Control Points (SCP and

MCP)

Two types of control points (CPs) were defined for the membership functions of each

input variable. When using a single control point (SCP), three membership functions

parameters are set to zero and the other six are set to either the maximum or minimum of

the range of each input variable. Figure 4.2 shows an example of the membership function

parameters for an input variable. The vertical red line represents the control point passing

through the parameters that are controlled by the control point i.e, right parameter of

MF1, the centre parameter of MF2 and the left parameter of MF3. Out of the remaining

6 parameters (2 for each membership function), for MF1, the left parameter is set to the

minimum value of the input range and the centre parameter is set to 1, for MF2, right and

left parameters are set to minimum values within range for the input variable, for MF3,

the centre parameter is set to 1 and right parameter is set to the maximum value within

input range. In the case of SCP when the control point is incremented by a random value

within the range, all three parameters that it controls take the same value and move in

the same direction as shown in Figure 4.3. They are controlled by single value which is

why we call it SCP. In case of MCP, all three parameters are controlled independently

of each other meaning that each of them is assigned a different random value generated

within the range and they move in that direction regardless of other parameters as shown

in Figure 4.4. This provides three independent control points instead of a single value for

all parameters. The rest of the parameters are kept constant to keep the working of control

points simple and efficient. If we use all 9 control points then moving all of them will be

a bottleneck as we shall have to restrict movement to avoid values that are not valid for

left, right or centre parameters of a triangular membership function.
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Figure 4.2: Control Points (CP=0)

Figure 4.3: Single Control Point (CP=0.1)
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Figure 4.4: Multiple Control Points (CP1=0.05, CP2=0.1, CP3=0.2)

4.5 Fuzzy Inferencing System Training Methods

The following methods were used to train the FIS. Training was performed on CPs for the

MFs for each input variable with Hill Climbing and Simulated Annealing with Member-

ship Function and Rule Tuning by changing the consequents of the fuzzy rules. The aim

of the training was to find the membership function parameters and rules that provide the

best possible classification for breast cancer grading.

4.5.1 Hill Climbing with Membership Function Tuning

Figure 4.5 shows a flow chart of the Hill Climbing with Membership Function Tuning

(HCMT) method used for our experiments. In the HCMT method, CP(s) are initialised at

zero and then CP(s) are incremented or decremented by a small random value within the

input range. The input range is defined as the values between the minimum and maximum

values of the input variables. The rule set consists of 22 rules as described in Table 4.1.

After that, the FIS is evaluated and the output is compared with the known output for each

spectra. The squared error is calculated using Equation 4.1.

Er = (GI − c1)2 +(GII − c2)2 +(GIII − c3)2 (4.1)
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where Er is the squared error, GI, GII and GIII are the number of spectra available for

each grade and c1, c2, c3 are the number of correct classifications of each grade. If it is

lower, it is accepted and then, with the CP(s) and c1, c2, and c3, the process is repeated

and the FIS re-evaluated. A lower value of Er shows improvement in the result towards a

better solution. The process is continued for 85 iterations. This number is selected to keep

it in line with the other two methods as they also have the same number of iterations. The

aim of the method demonstrated here is to find the optimal values of CP(s) by reducing Er

to as low value as possible and accepting parameter values only when Er is reduced and

rejecting all other solutions. The squared error is used to avoid tilting of accepted values

towards correctly classifying one grade. It keeps a balance between correct grade values

of all grades by using squared error. If summation of correct classification is used as the

criteria then if one grade is completely classified correctly, it will indicate a reasonable

solution where in reality it will be a poor solution. To avoid such scenarios, we have used

squared error criterion. In the case of SCP, only one CP per input is used for HCMT where

as in case of MCP, 3 CPs per input are used for HCMT, and the rest of the procedure

remains the same as described before. The entire process is repeated, initialising the

system with 10 different random numbers within the input range. The exit criteria is the

maximum number of iterations which is 85. At the end, the system with the least squared

error is considered to be the best system and is used for testing of the system. Testing is

based on unseen spectra taken from all cases.
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Figure 4.5: Flow chart for Hill Climbing method
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4.5.2 Simulated Annealing with Membership Function Tuning

Figure 4.6 shows the flow chart of the Simulated Annealing with Membership Function

Tuning (SAMT) method used for our experiments. In this method, CP(s) are initialised

with a random value(s) within the input range. A starting temperature of 170 has been

selected. This selection was made after a number of experiments with different starting

temperatures. The selected temperature was found to provide the best result. The param-

eters of the Simulated Annealing algorithm are as follows.

• Starting Temperature (T)=170

• Cooling Schedule after each iteration: T=T-2

• Stopping criteria: T=0

• Total number of iterations:85

As before the rule set consists of the 22 rules defined in Table 4.1. The initial FIS is

evaluated, then perturbed, then evaluated again. If the squared error is greater than the

previous value, then it may still be accepted based on the probability function as defined

in equation 4.2.

accept = rand()< e−(er2−er1)/T (4.2)

where rand() generates a random number from 0 to 1, er2 and er1 are new and previous

squared error values respectively, T is the temperature value at that time. The solution is

accepted if the random value is less otherwise it is rejected. Initially, simulated annealing

accepts every solution, as the temperature decreases, the cooling down starts to reject

solutions where squared error is high. By the end of the search, eventually, simulated

annealing reduces to hill climbing. The algorithm stops when the temperature reaches

zero which takes 85 iterations. The best CP(s) are saved and used for testing on unseen

data. We have used 10 different random initialisations to cover the range available for

membership function parameters. Like in HCMT, for SCP, only one value per input PC
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is used and in case of MCP, 3 different values for membership functions parameters per

input PC are used.
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4.5.3 Simulated Annealing with Membership Function and Rule Tun-

ing

Figure 4.7 shows a flow chart for the Simulated Annealing with both Membership func-

tions and Rule Tuning (SAMRT) algorithm used for our experiments. The FIS CP(s) are

initialised in the same way as in SAMT. In this method, the consequents of the fuzzy

rules shown in Figure 4.1 are also changed before the FIS is evaluated. The rule set for

this method includes all 27 rules as defined by Table 4.1. We have selected to change 3 out

of 27 rules consequents in each iteration. The value of the consequents of 3 rules selected

at a random are changed to a random value in (1,3). The parameters for the simulated

annealing algorithm remain the same as for SAMT. The aim is to find whether any rule

consequent changes the results. The rule changes also allows membership functions to

move along within input parameters and behave differently because of changes of rules.

After the FIS has been evaluated and the squared error and probability functions have

been executed, we change the values of the CP(s) and the consequents of the 3 rules. The

algorithm is repeated for 10 random initialisations and the best values of the FIS parame-

ters are saved and used for testing on unseen data. The process is repeated for both SCP

and MCP in the same way as for HCMT and SAMT. After evaluating all of the methods,

a comparison between the results is made and the best method is identified.
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4.6 Results with Single Case Experiments

For all experiments with a single case, 10 random initialisations were used for each

method. All initialisations used a fixed random seed to ensure that numbers are gener-

ated in same sequence for all the experiments and can be repeated. The best training

result out of each 10 was selected for use with the testing data. The results are shown as

FIS percentage accuracy out of 300 test spectra (100 from each grade) which has been

calculated by the formula shown in Equation 4.3.

PA =
SumCP

T spectra
∗100 (4.3)

where PA is Percentage Accuracy, SumCP is sum of correct spectra and T spectra is total

number of spectra used for an experiment.

Table 4.2 shows the results of all the six methods. It can be seen that in the case of

HCMT-SCP, HCMT-MCP, SAMT-SCP and SAMT-MCP, the results are less than 50% ac-

curate which is quite poor for both the whole region and the region 1000-1800 cm-1. In the

case of SAMRT-SCP the results improved considerably and in case of region 1000-1800

cm-1, over 80% correct. SAMRT-SCP also performed better than HCMT and SAMT. It

can also be observed that in the case of all regions and region between 1000-1800 cm-1,

the results were slightly better in the region 1000-1800 cm-1. It shows that instead of us-

ing the whole spectral region , region between 1000-1800 cm-1 can be used as bench mark

region. This observation is also supported by the fact that this region has been frequently

used in the literature as benchmark region [4, 9, 20, 50, 102, 109].

Table 4.2: Classification accuracy (%) for single case experiments

Regions HCMT-SCP HCMT-MCP SAMT-SCP SAMT-MCP SAMRT-SCP SAMRT-MCP

All 42.3 36.6 42 34 66.3 59.6

1000-1800 cm-1 46.3 33.3 45.3 33.3 80.6 63.3

Now, we look at the results for a single case with each method grade-wise to investi-

gate which grade spectra are correctly classified and which were mis-classified as another
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grade.

Table 4.3 shows grade-wise categorisation with the HCMT-SCP method. The correct

classifications have been highlighted in bold. It can be observed that the method per-

formed poorly. G-I was mostly classified as G-III, G-II was mostly predicted correctly

but 24 spectra were incorrectly classified as G-III. In case of G-III, 63 spectra were clas-

sified correctly but the rest were classified as G-II. In summary, no spectra were classified

as G-I. It indicated that G-II and G-III spectra were more close to each other where as G-I

spectra were quite different from them.

Table 4.3: Grade wise categorisation with Single Case using HCMT-SCP with region

1000-1800 cm-1

Actual Grade Predicted Grade

G-I G-II G-III Sum

G-I 0 4 96 100

G-II 0 76 24 100

G-III 0 37 63 100

Table 4.4 shows the results with the HCMT-MCP method. It can be observed that

having multiple control points does not make any difference as grade categorisation is

still poor. All the spectra are classified as G-III. Results showed that multiple control

points were locally optimized thus indicating a major drawback of HC.

Table 4.4: Grade wise categorisation with Single Case with HCMT-MCP with region

1000-1800 cm-1

Actual Grade Predicted Grade

G-I G-II G-III Sum

G-I 0 0 100 100

G-II 0 0 100 100

G-III 0 0 100 100

Table 4.5 shows results with the SAMT-SCP method. It can be observed that the

majority of G-III were correctly classified and that there is a split between G-II and G-III

for most of the spectra and no spectra are classified as G-I. These results are slightly better
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in comparison with the HCMT-MCP method as G-II and G-III are classified correctly to

some degree. As in HCMT-MCP, no spectra were classified as G-I.

Table 4.5: Grade wise categorisation with Single Case with SAMT-SCP with region 1000-

1800 cm-1

Actual Grade Predicted Grade

G-I G-II G-III Sum

G-I 0 4 96 100

G-II 0 83 17 100

G-III 0 47 53 100

Table 4.6 shows results with SAMT-MCP method. It can be seen that method did not

perform well and in this case also, all spectra were classified as G-III.

Table 4.6: Grade wise categorisation with Single Case with SAMT-MCP with region

1000-1800 cm-1

Actual Grade Predicted Grade

G-I G-II G-III Sum

G-I 0 0 100 100

G-II 0 0 100 100

G-III 0 0 100 100

Table 4.7 shows results with SAMRT-SCP method. It can be noted that in this method

the rules are also changed along with membership functions. It can be observed that

results are better than the HCMT and SAMT methods. In the case of G-I, 67 spectra

were correctly classified, in the case of G-II 99 spectra were correctly classified where as

in case of G-III, mostly spectra were correctly classified (76) and remaining were mis-

classified as G-I (24). Overall this method produced the best result among all methods. It

is much better than we would expect at random for all 3 grades.
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Table 4.7: Grade wise categorisation with Single Case with SAMRT-SCP with region

1000-1800 cm-1

Actual Grade Predicted Grade

G-I G-II G-III Sum

G-I 67 0 33 100

G-II 1 99 0 100

G-III 24 0 76 100

Table 4.8 shows results with SAMRT-MCP method. It can be observed that results

were good for G-II, G-I and G-III are confused with one another.

Table 4.8: Grade wise categorisation with Single Case with SAMRT-MCP with region

1000-1800 cm-1

Actual Grade Predicted Grade

G-I G-II G-III Sum

G-I 57 0 43 100

G-II 0 96 4 100

G-III 63 0 37 100

In summary, SAMRT-SCP was the best method among all the methods used in terms

of classifying grades. It also shows that the rules initially set up for the system are not

ideal, therefore, both the HCMT and SAMT methods performed poorly. When the rules

were altered in SAMRT, results improved with both SCP and MCP. The change of rules

also reduced the squared error indicating an improvement on overall grade prediction.

Table 4.9 shows the final rule set obtained for the trained FIS for the SAMRT-SCP

method with region 1000-1800 cm-1. It can be seen that these rules are quite different

from the initial rules. For example, in rule-1 the consequent is 3 when all input MFs are

1 and it is contrary to original majority vote scheme where consequent was 1. Similar

observations can be made for other rules as well. The consequents different from the

initial consequent (IC) previously described in Table 4.1 have been highlighted in bold.

Six rules (6, 8, 12, 16, 20, 22) were never assigned any specific consequent and they

varied with rule changes. It shows that the majority vote method that has been used for

HC and SA previously is not suited to this data set and rule changes method is the one
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better suited to the data set.

Table 4.9: Fuzzy rule set for FIS with SAMRT-SCP method for Single Case

Rule MF1 MF2 MF3 IC SAMRT-SCP Consequent

1 1 1 1 1 3

2 1 1 2 1 3

3 1 1 3 1 2

4 1 2 1 1 1

5 1 2 2 2 3

6 1 2 3 1/2/3 3

7 1 3 1 1 1

8 1 3 2 1/2/3 2

9 1 3 3 3 3

10 2 1 1 1 2

11 2 1 2 2 3

12 2 1 3 1/2/3 1

13 2 2 1 2 2

14 2 2 2 2 2

15 2 2 3 2 2

16 2 3 1 1/2/3 1

17 2 3 2 2 3

18 2 3 3 3 1

19 3 1 1 1 1

20 3 1 2 1/2/3 2

21 3 1 3 3 2

22 3 2 1 1/2/3 3

23 3 2 2 2 2

24 3 2 3 3 2

25 3 3 1 3 1

26 3 3 2 3 3

27 3 3 3 3 2

Figure 4.8 shows the final membership functions after training for all input variables.

It can be seen that all membership functions have moved for all input variables in order

to find the best possible membership functions parameters.
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(a) Membership functions for input variable 1

(b) Membership functions for input variable 2

(c) Membership functions for input variable 3

Figure 4.8: Final membership functions for SAMRT-SCP for single case

4.7 Results with Multiple Case Experiments

In multiple case experiments where spectral data was obtained from all the known cases,

10 random initialisations were done for all the experiments as in the case single case

experiments. The results obtained by all methods over the whole spectral region and

1000-1800 cm-1 spectral region are shown in the Table 4.10. The results are in terms

of percentage accuracy calculated using Equation 4.3. It can be observed from the table

that HCMT-SCP, HCMT-MCP, SAMT-SCP and SAMT-MCP performed very poorly and

were not able to find a FIS with high accuracy, and the percentage accuracy remained

very low, equivalent to a random guess. In case of SAMRT-SCP, the accuracy improved
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to 51.6% which was not very good, but better than other methods. Similarly, SAMT-

MCP resulted in percentage accuracy of 48.6%. In terms of regions, 1000-1800 cm-1

region results were found to be slightly better than the whole region. It indicates that this

region, which is much smaller than the whole spectral region, can be used as a bench mark

region for the experiments. The results with SAMT also showed that changing the rules

and membership function parameters at the same time provides a better approach as this

method tends to result in optimal membership functions as well as rules for the data set.

It means that results are improved by this method which shows a convergence towards an

optimal solution.

Table 4.10: Classification accuracy (%) for Multi case experiments

Regions HCMT-SCP HCMT-MCP SAMT-SCP SAMT-MCP SAMRT-SCP SAMRT-MCP

All 35 35.33 35 38.3 41.3 45.3

1000-1800 cm-1 34.6 34.3 28.3 29.66 51 49.66

It can also be noted that in the case of multiple case experiments results were poorer

than experiments with a single case. Although the single case was randomly chosen and

was not representative of all the variations and uncertainties involved, it still indicates that

adding cases adds considerable complexity to the data set.

Now, we look at the results for multiple cases with each method grade-wise as we did

in the single case experiments.

Tables 4.11 and 4.12 show grade wise categorisation with the HCMT-SCP and HCMT-

MCP methods. It can be observed that both methods performed poorly as with a single

case.

Table 4.11: Grade wise categorisation with Multiple Case with HCMT-SCP with region

1000-1800 cm-1

Actual Grade Predicted Grade

G-I G-II G-III Sum

G-I 0 39 61 100

G-II 0 58 46 104

G-III 0 50 46 96
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Table 4.12: Grade wise categorisation with Multiple Case with HCMT-MCP with region

1000-1800 cm-1

Actual Grade Predicted Grade

G-I G-II G-III Sum

G-I 0 33 67 100

G-II 0 52 52 104

G-III 0 45 51 96

Tables 4.13 and 4.14 show results with the SAMT-SCP and SAMT-MCP methods

respectively. The results follow the same pattern as in the single case and no spectra are

classified as G-I.

Table 4.13: Grade wise categorisation with Multiple Case with SAMT-SCP with region

1000-1800 cm-1

Actual Grade Predicted Grade

G-I G-II G-III Sum

G-I 0 74 26 100

G-II 0 37 67 104

G-III 0 48 48 96

Table 4.14: Grade wise categorisation with Multiple Case with SAMT-MCP with region

1000-1800 cm-1

Actual Grade Predicted Grade

G-I G-II G-III Sum

G-I 0 62 38 100

G-II 0 28 76 104

G-III 0 35 61 96

Tables 4.15 and 4.16 show results with the SAMRT-SCP and SAMRT-MCP methods.

It can be seen that changing the rules produce better results. In both methods, a high

percentage of G-I spectra are classified correctly. For G-II, most of spectra are classified

as G-II or G-III. G-III spectra are the worst of all and are often confused with G-I. In

general, SAMRT-SCP performed slightly better than SAMRT-MCP. Results also show

that the initial rules set up for the system are not suitable and the altered rules provide

better results when compared to the static rules.
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Table 4.15: Grade wise categorisation with Multiple Case with SAMRT-SCP with region

1000-1800 cm-1

Actual Grade Predicted Grade

G-I G-II G-III Sum

G-I 71 20 9 100

G-II 28 73 3 104

G-III 40 47 9 96

Table 4.16: Grade wise categorisation with Multiple Case with SAMRT-MCP with region

1000-1800 cm-1

Actual Grade Predicted Grade

G-I G-II G-III Sum

G-I 64 1 35 100

G-II 38 48 18 104

G-III 43 16 37 96

Table 4.17 shows the final rule set obtained after training of FIS with SAMRT-SCP

and its comparison with the initial consequents (IC) as described in Table 4.1. It can be

observed that rules consequents have changed from the initial rule set. For example, in

rule 2, the consequent has changed from 1 to 3, in rule 9 the consequent is 2 where as

the input memberships are 1 and 3. Rules whose consequents have changed have been

highlighted in bold. Six rules (6, 8, 12, 16, 20, 22) were always flexible and their best

consequent has been found with the method as seen in the table. It indicates that changing

rules works better as it improves the results and the majority vote criteria was not a good

choice for the system.
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Table 4.17: Fuzzy rule set for FIS with SAMRT-SCP method for Multiple Case

Rule MF1 MF2 MF3 IC SAMRT-SCP Consequent

1 1 1 1 1 1

2 1 1 2 1 3

3 1 1 3 1 1

4 1 2 1 1 2

5 1 2 2 2 1

6 1 2 3 1/2/3 1

7 1 3 1 1 3

8 1 3 2 1/2/3 2

9 1 3 3 3 2

10 2 1 1 1 2

11 2 1 2 2 2

12 2 1 3 1/2/3 1

13 2 2 1 2 2

14 2 2 2 2 3

15 2 2 3 2 2

16 2 3 1 1/2/3 2

17 2 3 2 2 3

18 2 3 3 3 2

19 3 1 1 3 3

20 3 1 2 1/2/3 2

21 3 1 3 3 1

22 3 2 1 1/2/3 2

23 3 2 2 2 1

24 3 2 3 3 1

25 3 3 1 3 2

26 3 3 2 3 3

27 3 3 3 3 1

Figure 4.9 shows the final membership functions after training with SAMRT-SCP. It

can be observed that all three membership functions for the three input variables have

moved around the input range.
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(a) Membership functions for input variable 1

(b) Membership functions for input variable 2

(c) Membership functions for input variable 3

Figure 4.9: Final membership functions for SAMRT-SCP for Multi case

The results also indicate that results with HC algorithm were always poor. The reason

might be that it stuck to a local minima and because of it, the solution never improved

which means that squared error did not reduce. Therefore, we did not use rule tuning with

HC as well as it was expected to do the same with rules as well.

We conducted another series of experiments starting with taking spectra from a single

case and then by adding cases step by step to see the effect of adding cases and the com-

plexity involved in it. These experiments were conducted with SAMRT-SCP method as it

was found to provide better results both in case of single case and multi case experiments.

The region used was 1000-1800 cm-1 which we consider as a bench mark region.

Table 4.18 shows results with the step wise approach with the SAMRT-SCP method.
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Table 4.18: Classification accuracy percentage for step wise cases with SAMRT-SCP over 1000-1800 cm-1 region

Exp No G-I cases G-II cases G-III cases Spectra for each case Total spectra Best Summation Percentage accuracy

1 1 1 1 G-I:100,G-II:100,G-III:100 300 242 80.6
2 2 2 2 G-I:50,G-II:50,G-III:50 300 158 52.6
3 2 4 4 G-I:50,G-II:25,G-III:25 300 181 60.3
4 2 8 6 G-I:50,G-II:12,G-III:16 292 165 56.5
5 2 12 6 G-I:50,G-II:8,G-III:16 292 150 51.3
6 2 16 6 G-I:50,G-II:6,G-III:16 292 159 53
7 2 20 6 G-I:50,G-II:5,G-III:16 300 146 48.6
8 2 26 6 G-I:50,G-II:4,G-III:16 300 155 51.6
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The column Spectra for each case indicates the number of spectra selected from each case

as we have two cases of G-I, 26 cases of G-II and six cases of G-III. The Total Spectra

column is the total sum of all spectra from all cases for a set of experiments. The number

varies for experiments as we wanted to take an equal number of spectra from each case

of a particular grade to keep a balanced data set. The final column is the Percentage

accuracy over 300 spectra calculated as defined in Equation 4.3. It can be observed from

the table that as the number of cases of G-II starts to increase, the uncertainty of the results

also start to increase. In experiment 3 where 4 cases of G-II are involved, the percentage

accuracy is 60.3% where as from experiments 4-8 it does not exceed 51.6%. It is also

worth mentioning that from experiments 4-8, the cases of G-I and G-III are fixed to 2

and 6 respectively as this is the maximum number of cases available for these grades. The

results indicate that there is a lot of difference between cases of the same grade and grades

are not easily separable. Especially in case of G-II when more cases are added, it seems

that they are quite different from each other and this confuses the FIS during training and

does not provide a good solution. Figure 4.10 shows a 3d scatter plot of three PCs for

three grades. It can be observed the three PCs are not able to provide a clear distinction

between grades and all grades are overlapping.

Figure 4.10: 3D Scatter plot of three PCs for all grades
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From our experiments, the following observations can be made.

• A particular FIS setting performed well with a single case of each grade

• With data from all cases, clear distinction between grades was not achieved

• There is the possibility of more variance in the data within cases of same grade than

between grades

To have more confidence in our results, we also used the k-means clustering algorithm

as an example with three PCs to make a comparison. We have shown results with both

k-means and FCM with 10 PCs in Chapter 3.

4.8 Results with k-means Clustering

In these experiments, the same number of spectra for each grade were used as in the

multiple case experiments i.e, for G-I (100 spectra), for G-II (104 spectra) and for G-III

(96 spectra) using three PCs. The number of clusters was set to three, one for each grade.

The algorithm was repeated with 10 different start positions. Table 4.19 shows the results

of the k-means experiments. It shows three clusters with the number of spectra from each

grade in each cluster. It is evident from the Table 4.19 that k-means is not able to create

3 distinct clusters that match the grades. The clusters contain a mix of spectra from all

grades.

Table 4.19: k-means clustering results with three clusters

Clusters with members G-I G-II G-III

1(83) 4 47 32

2(111) 46 24 41

3(106) 50 33 23

We also conducted experiments with k-means by setting number of clusters to two to

further investigate the matter. In these experiments, the same data was used as in case of
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previous k-means experiments i.e, for G-I (100 spectra), for G-II (104 spectra) and for

G-III (96 spectra) using three PCs. The results are shown in Table 4.20 . It can be seen

that cluster 1 only includes eight members of G-I and is mainly comprised of members

from G-II and G-III where as cluster 2 has nearly all members of G-I and about half of

G-II and G-III. It also suggests that there is more uncertainty found within cases of the

same grades especially G-II and G-III which are adding complexity as both with two and

three clusters, G-II and G-III are never predicted clearly where as G-I prediction remained

better. The k-means clustering algorithm is not able to find an optimal classification of

the grades.

Table 4.20: k-means clustering results with 2 clusters

Clusters with members G-I G-II G-III

1(109) 8 62 39

2(191) 92 42 57

4.9 Summary

In this chapter, we developed a Mamdani type fuzzy inferencing system with triangu-

lar type-I fuzzy membership functions. We trained membership functions using HCMT,

SAMT and both rules and membership functions using SAMRT for the complex data set

3. Two types of control points SCP and MCP were defined for membership functions.

Experiments were performed on the whole region and region between 1000-1800 cm-1.

The latter region was selected and SAMRT-SCP was found to provide the best results of

all methods, though none of the methods used was able to find a clear distinction between

cancer grades. K-means clustering was also used with the same number of PCs as used for

the FIS to make a comparison of the results in terms of correctly classified grades. It too

performed poorly on our data set. It has been concluded that these methods are not able to

find a useful classification of breast cancer grading. This may be because more variability

and uncertainty found within spectra from the case of the same grade (intra-case vari-
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ability) than spectra from different cases of the same grade (inter-case variability). The

evidence is provided by the experiment in which cases are added gradually that ultimately

results in poor classification. There is a need to find advanced computational methods that

can deal with these types of uncertainties. The next chapter introduces a model based on

T-II fuzzy logic in order to classify the cancer grades as T-II fuzzy logic in general has

been found to work well when there is more uncertainty in a data set.



Chapter 5

Experiments with Type-II Fuzzy Model

This chapter introduces a step wise approach to create zSlices based General Type-II fuzzy

sets (zGT-II) from spectral data by selecting a number of features from a data set. The

features extracted from the data will be used as interval data for the model. The aim of the

model is to classify breast cancer grade while accounting for the complex uncertainties

found in the data. We also test the model with unseen data with different configurations

and discuss the results obtained by the model.

5.1 Model Structure

The aim of the proposed methodology is to investigate the use of zGT-II fuzzy sets created

using interval data representing features extracted from spectral data. T-II fuzzy sets have

been shown to do well when there is more uncertainty involved [38,72,74]. In the case of

our data set, we have two types of uncertainty, one within the spectra of a case of a grade

(intra-case) and other when comparing it with other cases of same grade (inter-case). The

proposed model aims to cover these uncertainties by creating a zGT-II set involving both

spectra from same case of a grade and spectra from different cases of a grade with interval

data covering both types of variabilities. Figure 5.1 shows a broad view of the model from

creation to testing. We describe each of these stages of the model in detail in the following

sections.

114
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 Select five features for each grade 

Features are based on absorbance values at different wave lengths 
in the spectral region 

Create 6 T-I fuzzy sets for each feature for each grade (G-I: 2 
cases with 3 sets per case,  

G-II: 6 sets from 6 cases, G-III: 6 sets from 6 cases) 

Combine 6 T-I fuzzy sets into a zGT-II fuzzy set with cases 
represented as z-axes (zSlices) 

We have one zGT-II fuzzy set per feature per grade with 6 zSlices 

Each zGT-II fuzzy set of a grade is considered as a prototype for 
that grade for a particular feature 

Select spectra from unseen data for any grade for each of the five 
features 

Create a T-I fuzzy set with 30 spectra per feature 

Use weighted zsliced based similarity measure to find similarity 
between created T-I fuzzy set and zSlices of prototype zGT-II 

fuzzy sets for each feature for each grade.  

A similarity score for zSlices for each feature for each grade is 
obtained by this method 

Based on the results of similarity measure, predict the grade of 
unseen data by using the following methods 

 Maximum sum of summation of similarity scores 
 Majority vote 

Discuss the results of similarity scores for each feature for each 
grade and classification method 

Describe a Grade profile for each grade on the basis of features 
and similarity scores 

Figure 5.1: Block diagram of the model structure
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5.2 Features Extraction from Spectral Regions

Initially, five features have been selected for the experiments. The region 1000-1800 cm-1

was divided into three sections in line with Chiu et al’s [20] division of the region. A

slight modification from Chiu et al is that our spectral range starts from 1000 cm-1 instead

of 950 cm-1 and ends at 1800 cm-1 instead of 1780 cm-1 because of the availability of the

processed data. The regions are described in Table 5.1.

Table 5.1: Regions of Features with Spectral Range

Regions Spectral Range

A 1000-1350 cm-1

B 1350-1480 cm-1

C 1480-1800 cm-1

For region A, three features have been selected in order to define interval data. The

regions and approximate location of the areas covered by the features are shown in Figure

5.2. The bar in the figure indicates the approximate area covered by each feature. It is

worth mentioning that these features have been selected based on absorbance values of

spectra at certain peak heights and troughs at different wave lengths and no other specific

criteria has been used. Intervals representing features have been extracted from each spec-

trum. For example, for feature 1, minimum absorbance value A and maximum absorbance

value B are combined to create an interval (A,B) as shown in Figure 5.2. For feature 5,

two distinct peak heights have been used to create an interval. A number of other features

comprising of various other combinations of peak heights and troughs is possible, though

not considered for this initial study. The description of the selected features is as follows.

Feature 1: This feature consists of minimum absorbance values from the region 1000-

1020 cm-1 and maximum peak spectral absorbance in the region 1080-1100 cm-1. We

have selected this feature to cover the highest distinct left peak available in the region

with the left most negative peak or trough in the region.

Feature 2: This feature consists of the maximum peak height absorbance values in the
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Figure 5.2: Regions and approximate locations of selected features

region 1080-1100 cm-1 and minimum absorbance values in the region 1180-1200 cm-1.

The aim is to cover maximum left side peak in the region and right side lowest trough

value in the region.

For features 1 and 2, the peak height value is the same. The aim is to see how these

two features whose one value is common respond in the model.

Feature 3: This feature consists of minimum absorbance values in the region 1200-

1220 cm-1 and maximum peak absorbance values of the region 1220-1250 cm-1. The

feature was selected to cover second main peak in the region 1200-1300 cm-1.

For region B, one feature has been selected.

Feature 4: This feature consists of minimum absorbance values in the region 1350-

1400 cm-1 and the maximum peak absorbance values in the region 1400-1410 cm-1.

For region C, one feature has been selected.

Feature 5: This feature consists of peak heights of Amide-I and Amide-II region

as interval data. This feature has been selected to cover the two most distinct peaks in

the region. Amide-II peak height is the maximum peak absorbance values in the region

1500-1600 cm-1 and Amide-I is the maximum peak height absorbance values in the region

1600-1700 cm-1.
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5.3 Construction of Type-I Fuzzy Sets from Features

The next stage of the model is to construct T-I fuzzy sets from the interval data. A combi-

nation of the minimum and maximum absorbance values of the selected features are used

to create an interval. We have initially selected 30 spectra to create a T-I fuzzy set. As

there are 30 values for each set, the primary membership domain is divided into 30 sec-

tions ranging from 1/30 to 30/30. As we have two cases from G-I, 26 cases from G-II and

six cases of G-III, we have decided to create six T-I fuzzy sets for each grade per feature

from these cases. For G-I, three regions from two cases have been selected making it six

sets in accordance with other grades. The hierarchy used for construction of the fuzzy sets

for G-I is shown in Figure 5.3. It can be observed from the figure that three sets for each

of the two cases have been used to construct six fuzzy sets for each feature. The steps

used to create the sets for G-II and G-III can be seen in Figure 5.4. For G-II, a random

selection of six cases out of 26 has been made and for G-III, spectra from all six cases

have been included. In this way we have six sets of 30 spectra (in terms of interval data)

from each grade per feature. All five features use the same set of spectra. Each grade has

30 sets for five features. In total we have 90 T-I sets for all grades.
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Figure 5.3: Block diagram of construction of fuzzy sets for G-I
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 Grades II & III 

Set 1 

Features (1-5) 

Set 2 Set 3 Set 4 Set 5 Set 6 

Interval 1 
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Figure 5.4: Block diagram of construction of fuzzy sets for G-II and G-III

The method used to create T-I fuzzy sets is the one described by Miller et al. [76] and

explained in Chapter 2. The method was implemented using a script written in Matlab

(version 7.02). As this method compares a number of combinations of values, as the

number of input values increases, the number of combinations to be compared increases

exponentially. While using spectral values as interval data, we observed that as number

of spectra increases beyond 20, the computational time increases rapidly. To understand

the scenario, we selected 20 random spectra and created a T-I fuzzy set with feature 1

and calculated the computational time. Figure 5.5 shows the computational time with
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the increase in number of spectra for the original method for the creation of T-I fuzzy

sets from 15 to 20 spectra. It can be seen that as the number of spectra reach 20, the time

changes exponentially and it becomes computationally very expensive to create fuzzy sets

beyond that as the number of combinations to be compared increases and system runs out

of memory to handle such massive data combinations. To overcome this issue, the author

of this thesis has proposed a method that gives an approximation of the original method

while substantially reducing the time. The next subsection describes the proposed method

in detail.

Figure 5.5: Processing time for methods shown in Miller et al. [76] with increasing spectra

(intervals)

5.3.1 An Approximate Method to Create Fuzzy Sets from Interval

data

Let (x1,y1), .....,(xn,yn) be the interval data set to be used to create T-I fuzzy set. The

method is as follows.

Step 1: Sort the (left) first elements of each interval in ascending order and store them as

(a1 : an) = sort(ascend(x1......xn))

Step 2: Sort the (right) second elements of each interval in descending order and save
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them as

(b1 : bn) = sort(descend(y1.....yn))

Step 3: If any (a ≥= b) then delete that entry of (a,b), this eliminates any empty intervals

that result in NULL with the original method intervals

Step 4: Combine both results as interval data and save them as final result=(a1,b1), ......,(an,bn)

This algorithm is an approximation of the original algorithm in many cases giving

identical result. The major advantage of the proposed method is that it is much faster than

the original method making it practical in real world applications where high dimensional

data of large volume needs to be processed in computationally efficient manner. Now we

consider a few examples based on synthetic data to create T-I fuzzy sets with the proposed

method and compare the results with the original method.

5.3.2 Examples from Synthetic Data

To explain the method, we consider some examples based on synthetic data. As we are

dealing with interval data, it is possible that input data can be either completely overlap-

ping, partially overlapping or mainly non-overlapping. Completely overlapping means

that all intervals have some common values, partially overlapping means that some en-

tries will not have any common values and non-overlapping means that all entries will be

isolated and nothing will be common between them. We consider all of these scenarios

and provide the details of the method.

First we take an example of interval data that is completely overlapping. Table 5.2

shows a set of three overlapping interval data. Figure 5.6 shows that all three entries

of data have some area common in them. We apply both the original method and our

proposed method on the data.
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Table 5.2: Example of completely overlapping data

Interval Number Interval data

1 (3,6)

2 (2,7)

3 (4,8)

Figure 5.6: Plot of completely overlapping data

First we apply the original method described in Chapter 2 using Equation 2.27 for T-I

fuzzy set creation.

µ(A) = y1/([3,6]∪ [2,7]∪ [4,8])+y2/(([3,6]∩ [2,7])∪ ([3,6]∩ [4,8])∪ ([2,7]∩ [4,8]))+

y3/([3,6]∩ [2,7]∩ [4,8])

=y1/[2,8]+ y2/[3,7]+ y3/[4,6]

Now we apply our proposed method.

Step 1: Sort [3,2,4] in ascending order = [2,3,4]

Step 2: Sort [6,7,8] in descending order = [8,7,6]

Step 3: Check if (2 ≥ 8 or 3 ≥ 7 or 4 ≥ 6)= Null

Step 4: Combine both sorting results = [2,8], [3,7], [4,6]

The results obtained by both the methods are shown in Table 5.3. It can be seen
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that both methods have produced equal results in case of completely overlapping data. It

indicates that the proposed method is working well when all intervals overlap. Figure 5.7

shows the created T-I fuzzy set by applying both methods. The x-axis shows the domain

values for the fuzzy set and y-axis shows the membership grade values.

Table 5.3: Result of overlapping data

Interval Number Original Method Proposed Method

1 (2, 8) (2, 8)

2 (3, 7) (3, 7)

3 (4, 6) (4, 6)

Figure 5.7: T-I fuzzy set for overlapping data

Now, we take an example of data where some of the entries do not overlap. Table 5.4

shows the data where interval one is completely non-overlapping while intervals 2 and 3

overlap. It can also be seen in Figure 5.8.

Table 5.4: Example of partially overlapping data

Interval Number Interval data

1 (1, 3)

2 (5, 9)

3 (4, 8)
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Figure 5.8: Plot of partially overlapping data

Firstly, we apply the original method.

µ(A) = y1/([1,3]∪ [5,9]∪ [4,8])+y2/(([1,3]∩ [5,9])∪ ([1,3]∩ [4,8])∪ ([5,9]∩ [4,8]))+

y3/([1,3]∩ [4,8]∩ [5,9])

=y1/[1,3], [4,9]+ y2/[5,8]+ y3/NULL

Now we apply our proposed method.

Step 1: Sort [1,5,4] in ascending order = [1,4,5]

Step 2: Sort [3,9,8] in descending order = [9,8,3]

Step 3: Check if (1 ≥ 9 or 4 ≥ 8 or 5 ≥ 3)= delete [5,3]

Step 4: Combine both sorting results = [1,9], [4,8]

The result of the original and proposed method are shown in Table 5.5. It can be seen

that the result is a sub-normal fuzzy set. Both methods are behaving differently in this

example and this shows that if the interval data involves non-overlapping data then the

proposed method does not provide the result equivalent to the original method.
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Table 5.5: Result of data with some non-overlapped entries

Interval Number Original Method Proposed Method

1 (1, 3),(4, 9) (1, 9)

2 (5, 8) (4,8)

3 - -

To further investigate a complex situation, we take an example of interval data where

all of the data is non-overlapping. Table 5.6 shows the data. The plot of non-overlapping

data is shown in Figure 5.9. It is evident from the figure that all three entries have no

common area between them. Table 5.7 shows a comparison of result of the two methods.

Table 5.6: Example of completely non-overlapping data

Interval Number Interval data

1 (2,3)

2 (6,7)

3 (4,5)

Figure 5.9: Plot of completely non-overlapping data

Firstly, we apply the original method.

µ(A) = y1/([2,3]∪ [6,7]∪ [4,5])+y2/(([2,3]∩ [6,7])∪ ([2,3]∩ [4,5])∪ ([6,7]∩ [4,5]))+
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y3/([2,3]∩ [6,7]∩ [4,5])

=y1/[2,3], [4,5], [6,7]+ y2/NULL+ y3/NULL

Now we apply our proposed method.

Step 1: Sort [2,6,4] in ascending order = [2,4,6]

Step 2: Sort [3,7,5] in descending order = [7,5,3]

Step 3: Check if (2 ≥ 7 or 4 ≥ 5 or 6 ≥ 3)= delete [6,3]

Step 4: Combine both sorting results = [2,7], [4,5]

The results of proposed and original methods are shown in Table 5.7. It can be seen

that the proposed method results are completely different from the original method. It

indicates that the proposed method is not suitable for completely non-overlapping data.

Table 5.7: Result of completely non-overlapping data

Interval data Number Original Method Proposed Method

1 (2,3),(4,5),(6,7) (2,7)

2 - (4,5)

The examples for overlapping, partial overlapping and non-overlapping synthetic data

are shown to illustrate the working of the proposed method. Further experiments were

conducted with more higher order synthetic data for three scenarios and on the data set

used by Miller et al. [76] to have more confidence in the method. The results showed

that the proposed method produces an acceptable approximation when data is completely

overlapping. In case of non-overlapping data, different scenarios produce different results.

As we are dealing with spectral data within a certain region or wave numbers, the chances

are minimal that the data will be completely non-overlapped. We believe that for the

majority of the time our proposed method will provide near equivalent results.

In the next section we present examples from the spectral data set.
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5.3.3 Examples from Real Spectral Data

A main advantage of the proposed method is that it is computationally efficient when data

is overlapping and provides near equivalent results when compared to the original method.

We consider an example based on interval data extracted from G-I feature 1. We create T-I

fuzzy sets varying from 15-20 spectra and compare the results to those produced with the

original method with computation times. As an example, the interval data for 20 spectra

is shown in Table 5.8. A fuzzy set created by the method is shown in Figure 5.10. The

computational time for both methods varying from 15 to 20 spectra is shown in Table 5.9

and plotted in Figure 5.11. It can be observed that both methods provide equal results but

in case of the proposed method, the computational time is significantly less. This shows

that the proposed method can be used for higher order spectral data relatively easily.

Table 5.8: Comparison of result on Real spectral data

Interval Number Interval data Original Method Proposed Method

1 (-0.0103, 0.0084) (-0.0139, 0.0102) (-0.0139, 0.0102)

2 (-0.0100, 0.0085) (-0.0119, 0.0096) (-0.0119, 0.0096)

3 (-0.0102, 0.0078) (-0.0119, 0.0096) (-0.0119, 0.0096)

4 (-0.0099, 0.0084) (-0.0115, 0.0096) (-0.0115, 0.0096)

5 (-0.0115, 0.0080) (-0.0113, -0.0088) (-0.0113, -0.0088)

6 (-0.0113, 0.0084) (-0.0107, 0.0087) (-0.0107, 0.0087)

7 (-0.0119, 0.0096) (-0.0106, 0.0086) (-0.0106, 0.0086 )

8 (-0.0106, 0.0102) (-0.0105, 0.0085) (-0.0105, 0.0085)

9 (-0.0107, 0.0088) (-0.0103 ,0.0084) (-0.0103, 0.0084)

10 (-0.0097, 0.0074) (-0.0103, 0.0084) (-0.0103, 0.0084)

11 (-0.0105, 0.0087) (-0.0103,0.0084) (-0.0103, 0.0084)

12 (-0.0103, 0.0096) (-0.0102, 0.0080) (-0.0102, 0.0080)

13 (-0.0097, 0.0079) (-0.0102, 0.0079) (-0.0102, 0.0079)

14 (-0.0095, 0.0078) (-0.0100, 0.0078) (-0.0100, 0.0078)

15 (-0.0102, 0.0071) (-0.0100, 0.0078) (-0.0100, 0.0078)

16 (-0.0103, 0.0068) (-0.0099, 0.0075) (-0.0099, 0.0075)

17 (-0.0119, 0.0096) (-0.0097, 0.0074) (-0.0097, 0.0074)

18 (-0.0139, 0.0073) (-0.0097, 0.0073) (-0.0097, 0.0073)

19 (-0.0100, 0.0075) (-0.0097, 0.0071) (-0.0097, 0.0071)

20 (-0.0097, 0.0086) (-0.0095, 0.0068) (-0.0095, 0.0068)
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Table 5.9: Comparison of computational time (in seconds)

Number of Spectra Original method Proposed method

15 1.651 0.950

16 5.692 0.960

17 22.096 0.970

18 75.875 0.980

19 314.656 0.990

20 1380.000 1.000

Figure 5.10: Fuzzy set for 20 spectra example

Figure 5.11: Computational time comparison



5.3. Construction of Type-I Fuzzy Sets from Features 130

Figure 5.12 shows an example of T-I set created by the proposed method. This exam-

ple has 100 spectral interval data set taken from feature 3 for case 1 of G-I. The compu-

tational time for set creation was 2.500 seconds. A comparison with the original method

was not possible for these experiments as the computational power of the system (Core-i3

processor, 4GB RAM , 2.2 GHz) was not sufficient to handle the extraordinary number

of comparisons required. Throughout this thesis, we assume that the proposed method

provides a near equal approximation of the original method. In our examples with real

spectral data, the results have been exactly the same, however, they may differ for differ-

ent scenarios and confirmation is not practical because of computational limitations. The

evidence indicates that the results generated by the proposed method is a practical method

of achieving a close approximation of the original method.

Figure 5.12: Example of creating a T-I fuzzy set from 100 spectra

Figure 5.13 shows 6 T-I fuzzy sets created for feature 1 of G-I, each consisting of

interval data from 30 spectra. First three sets have been created from spectra from Case 1

and the last three from Case 2 of G-I. It can be seen that sets vary reflecting the intra-case

uncertainty.
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(a) Set 1 (b) Set 2

(c) Set 3 (d) Set-4

(e) Set 5 (f) Set 6

Figure 5.13: T-I fuzzy sets for feature 1 for G-I

In the same way, T-I fuzzy sets were created for the remaining four features for G-

I. These sets are shown in Figures 5.14, 5.15, 5.16 and 5.17 with reference to features

2-5 respectively. There are a total of 30 T-I sets for G-I. For G-II and G-III, the same

procedure was repeated and 30 T-I sets for each grade were created.
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(a) Set 1 (b) Set 2

(c) Set 3 (d) Set 4

(e) Set 5 (f) Set 6

Figure 5.14: T-I fuzzy sets for feature 2 for G-I
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(a) Set 1 (b) Set 2

(c) Set 3 (d) Set 4

(e) Set 5 (f) Set-6

Figure 5.15: T-I fuzzy sets for feature 3 for G-I
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(a) Set 1 (b) Set 2

(c) Set 3 (d) Set 4

(e) Set 5 (f) Set 6

Figure 5.16: T-I fuzzy sets for feature 4 for G-I
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(a) Set 1 (b) Set 2

(c) Set 3 (d) Set 4

(e) Set 5 (f) Set 6

Figure 5.17: T-I fuzzy sets for feature 5 for G-I

5.4 Construction of zGT-II Fuzzy Sets

For the construction of zGT-II fuzzy sets creation, we are using the method as described

in Chapter 2 Equation 2.28. For the creation of the sets we use the similar approach as we

used for the creation of T-I fuzzy sets. The algorithm for zGT-II set creation is as follows:

Let ([a1,b1], ....., [an,bn]) and ([c1,d1], ...., [cn,dn]) are two T-I fuzzy sets.

Step 1: Split data in groups with one group consisting of left entry of each interval data

and second consisting of right entry of each interval data horizontally.

([a1,c1], [a2,c2]), ...([an,cn]) and ([b1,d1], ....., [bn,dn])

Step 2: Sort elements of the first group in ascending order
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[a1s,c1s], [a2s,c2s], .., [ans,cns] = sort(ascend[a1,c1]),sort(ascend[a2,c2]), ...,sort(ascend[an,cn])

where [a1s,c1s], ..., [ans,cns] is used to represent the result after sorting

Step 3: Sort elements of the second group in descending order

([b1s,d1s]), ....,([bns,dns]) = sort(descend[b1,d1]),sort(descend[b2,d2]), ..,sort(descend[bn,dn])

where ([b1s,d1s]), ....,([bns,dns]) is used to represent the result after sorting

Step 4: the zSlices for created zGT-II set are achieved by combining the results of step 2

and 3:

z1(z = 0.5) = ([a1s,b1s], ...., [ans,bns])

z2(z = 1) = ([c1s,d1s], ....., [cns,dns])

Note: The number of zSlices in zGT-II set is the number of T-I fuzzy sets to be combined.

To illustrate the algorithm we consider an example using synthetic data. As we are

mainly concerned with overlapping data, therefore, the example is also of overlapping

interval data. Suppose we have three sets of interval data as described in Table 5.10.

Table 5.10: Synthetic data example for zGT-II fuzzy set creation

Data set 1 Data set 2 Data Set 3

(3,6) (2,5) (4,7)

(2,7) (1,6) (1,5)

(4,8) (3,7) (3,8)

Firstly, we create the T-I fuzzy sets by the method explained before. The created T-I

sets are shown in Table 5.11. The sets can also be viewed in Figure 5.18.

Table 5.11: T-I fuzzy sets for Synthetic data example for zGT-II fuzzy set creation

Data set 1 Data set 2 Data Set 3

(2,8) (1,7) (1,8)

(3,7) (2,6) (3,7)

(4,6) (3,5) (4,5)
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(a) Data set 1 (b) Data Set 2

(c) Data Set 3

Figure 5.18: T-I fuzzy sets for synthetic data

Firstly, we apply the original method to create zGT-II fuzzy sets described in Chapter

2.

z̃1 = 0.3333/(y1/([2,8]∪ [1,7]∪ [1,8])+ y2/([3,7]∪ [2,6]∪ [3,7])+ y3/([4,6]∪ [3,5]∪

[4,5])

= 0.25/(y1/[1,8]+ y2/[2,7]+ y3/[3,6])

z̃2 = 0.6667/(y1/(([2,8]∩ [1,7])∪ ([2,8]∩ [1,8])∪ ([1,7]∩ [1,8])+ y2/(([3,7]∩ [2,6])∪

([3,7]∩ [3,7]))∪ ([2,6]∩ [3,7]))+ y3/((4,6]∩ [3,5])∪ ([4,6]∩ [4,5])∪ ([3,5]∩ [4,5])

= 0.25/(y1/[1,8]+ [3,7]+ [4,5])

z̃3 = 1/(y1/(([2,8]∩ [1,7]∩ [1,8])+([3,7]∩ [2,6]∩ [3,7])+([4,6]∩ [3,5]∩ [4,5]))

= 1/(y1/[2,7]+ [3,5]+ [4,5])

Now, we apply our proposed approximation algorithm to create zGT-II fuzzy sets.

Step 1: Combine intervals in two groups with 3 intervals in each group:

[(2,1,1),(3,2,3),(4,3,4)] and [((8,7,8),(7,5,7),(6,5,5)]

Step 2: Sort first group in ascending order:

(1,1,2),(2,3,3),(3,4,4)

Step 3: Sort second group in descending order:
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(8,8,7),(7,7,5),(6,5,5)

Step 4: Combine results to create zGT-II fuzzy set with 3 zSlices

z1(z = 0.3333) = [(1,8),(2,7),(3,6)]

z2(z = 0.6667) = [(1,8),(3,7),(4,5)]

z3(z = 1) = [(2,7),(3,5),(4,5)]

It can be seen that both the methods produce equivalent results. The resultant 2 di-

mensions plot of zGT-II fuzzy set can be viewed in Figure 5.19.

(a) zSlice 1 = 0.3333 (b) zSlice 2 = 0.6667

(c) zSlice 3 = 1

Figure 5.19: 2D plot of zGT-II fuzzy set for synthetic data

For our data set, for each feature, we create a zGT-II fuzzy set. Each zGT-II fuzzy set

has 6 zSlices. For each grade, we have 5 zGT-II fuzzy sets each consisting of 6 zSlices.

• Number of Features = 5

• Number of zGT-II fuzzy sets for each grade = 5

• Number of zSlices in each zGT-II fuzzy set = 6

• Number of Grades=3
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• Total number of zGT-II fuzzy sets = 15

Figure 5.20 shows zGT-II fuzzy set with 6 zSlices created after combining the 6 T-I

fuzzy sets for feature 1 of G-I as previously shown in Figure 5.13.

(a) zSlice 1 = 0.1667 (b) zSlice 2 = 0.3333

(c) zSlice 3 = 0.5 (d) zSlice 4 = 0.6667

(e) zSlice 5 = 0.8333 (f) zSlice 6 = 1

Figure 5.20: 2D plot of zGT-II fuzzy set for feature 1 for G-I

The combined plot showing the complete zGT-II fuzzy set is shown in Figure 5.21.

The z-axes shows the 6 zSlices. It can be observed from the figure that these zSlices aim

to cover both the intra-cases and inter-case uncertainties between interval data taken from

spectra of the same case and from different cases. As in the first phase of creation, T-I

fuzzy sets are created as shown in Figure 5.13. These sets cover the intra-case uncertainty

found in the two cases of G-I. The zGT-II fuzzy set combines individual intra-case un-

certainties and with the help of zSlices and in this way, the inter-case uncertainties are
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modelled.

Figure 5.21: 3D plot of zGT-II fuzzy set for feature 1 of G-I

The zGT-II fuzzy sets for features 2-5 for G-I are shown in Figure 5.22. It can be seen

that each feature has distinct zSlices. These zGT-II fuzzy sets are used as bench mark

prototype for a particular feature of a grade.

In the same way, zGT-II fuzzy sets are created for G-II and G-III. These zGT-II fuzzy

sets are shown in Figures 5.23 and 5.24 for G-II and G-III respectively. Finally, we have

15 bench mark zGT-II sets with 5 zGT-II fuzzy sets for each grade.
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(a) Feature 2 (b) Feature 3

(c) Feature 4 (d) Feature 5

Figure 5.22: 3D plots for zGT-II fuzzy sets for features 2-5 for G-I
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(a) Feature 1 (b) Feature 2

(c) Feature 3 (d) Feature 4

(e) Feature 5

Figure 5.23: 3D plots for zGT-II fuzzy sets for features 1-5 for G-II
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(a) Feature 1 (b) Feature 2

(c) Feature 3 (d) Feature 4

(e) Feature 5

Figure 5.24: 3D plots for zGT-II fuzzy sets for features 1-5 for G-III

5.4.1 Similarity Measures for Type-II Fuzzy Sets

Similarity measures are commonly used in set theory to compare crisp, T-I and T-II fuzzy

sets. For our work we are using the extended version of Interval T-II Jaccard method

recently introduced by McCulloch et al [69] and explained in Chapter 2. After creating

the zGT-II prototype fuzzy sets, we find similarity between prototype zGT-II sets with an

unseen T-I fuzzy set. As each zGT-II set has 6 zSlices, we shall replicate the T-I fuzzy

sets 6 times to compare it against each zSlice and then find the similarity measure.
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The similarity is calculated by the following Equation:

S(P̃,U) =

∑
i∈L

ziSλ(P̃zi
,U)

∑
i∈L

zi

(5.1)

where S is a similarity function for the zGT-II fuzzy set P̃ and an unseen T-I fuzzy set

U . Sλ is a similarity function applied to the IT-II fuzzy set at zLevel i shown as P̃zi
and

the unseen T-I fuzzy set U . L is the set of zLevels used in P̃, and zi represents a particular

zLevel (secondary degree of membership). A value of 0 indicates disjoint sets where as a

value of 1 means the sets are identical.

To describe the method, we consider an example with unseen data for G-I. Firstly, we

create T-I fuzzy sets with 30 spectral interval data for 5 features. These T-I fuzzy set are

shown in Figure 5.25.
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(a) Feature 1 (b) Feature 2

(c) Feature 3 (d) Feature 4

(e) Feature 5

Figure 5.25: T-I fuzzy sets for unseen data of G-I

Now, these T-I fuzzy sets are compared against the model prototype zGT-II fuzzy sets

for each feature for each grade. To illustrate this, we show the similarity of unseen T-I

fuzzy set with zGT-II fuzzy set for feature 1. The comparison of unseen T-I fuzzy set with

each zSlice of feature 1 of zGT-II set is shown in Figure 5.26. The first similarity values

calculated by Equation 5.1 are shown in Table 5.12.
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(a) zSlice at 0.1667 (b) zSlice = 0.3333

(c) zSlice = 0.5 (d) zSlice = 0.6667

(e) zSlice = 0.8333 (f) zSlice = 1

Figure 5.26: T-I fuzzy sets for unseen data of G-I

Table 5.12: First Similarity scores for feature 1 for unseen T-I fuzzy set example

zSlice level Similarity score

0.1667 0.8083

0.3333 0.8313

0.5 0.8503

0.6667 0.9371

0.8333 0.9704

1 0.9719

Now these similarity scores are multiplied by their corresponding weighted zSlice

value and then divided by the sum of all weights as defined in Equation 5.1.

FS = 0.1667∗0.8083+0.3333∗0.8313+0.5∗0.8503+0.6667∗0.9371+0.8333∗0.9704+1∗0.9719
0.1667+0.3333+0.5+0.6667+0.8333+1
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Where FS is the final similarity for this feature, that after evaluation comes at 0.9264. In

the same way similarity for all features is calculated for all grades.

In the next section we test the prototype model with unseen data in order to assess its

performance.

5.5 Model Testing with Unseen Data

In this section, we consider examples of unseen spectral data from our data set. We create

10 T-I fuzzy sets each created using 30 spectra, for each feature. Two sets are from two

cases of G-I, 6 sets from G-II cases and 6 sets from 6 cases of G-III. All of these T-I fuzzy

sets are compared against the prototype zGT-II fuzzy sets for each feature of each grade.

For the classification grade of unseen data, we use two methods.

1. Summation over similarities

2. Majority vote

In the first method, we record a similarity value for each feature against each grade

and then compute the sum of all similarities for each grade and report the maximum value

as the predicted grade.

In the second method we take the maximum value for each feature as a vote. In the

end the grade with maximum number of votes is reported as the classified grade.

This model testing scheme is also shown in Figure 5.27.
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Create T-I fuzzy sets for unseen 

spectral data for 5 features  

Find similarity by comparing 

unseen T-I fuzzy sets against 

prototype model zGT-II sets for 

each grade against each feature   

G-I  G-II G-III 

Feature 1  

Feature 2 

Feature 3 

Feature 4 

Feature 5 

Feature 1  

Feature 2 

Feature 3 

Feature 4 

Feature 5 

Feature 1  

Feature 2 

Feature 3 

Feature 4 

Feature 5  

Apply classification methods   

Summation 

Majority 

vote 

Figure 5.27: Model testing scheme
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The method has been tested on all cases used for the creation of the prototype model.

Table 5.13 shows the similarity scores for the two cases of G-I compared against all grades

along with results determined by the both classification methods. W in majority vote

column indicates the winning grade where as L indicates a losing grade. T indicates a tie

when votes are equal for a certain feature. The maximum similarity score for a feature is

highlighted in the tables and is also considered the winner for that feature. It can be seen

that both methods correctly classified the grade. In case of majority vote, case 1 won by

4-1 and case 2 by 5-0.

Table 5.13: Similarity scores for G-I with test data

(a) Case 1

Feature G-I G-II G-III

1 0.9264 0.8397 0.8235

2 0.8938 0.8035 0.7905

3 0.8122 0.8452 0.8790

4 0.6407 0.5194 0.5347

5 0.9001 0.8391 0.8719

Sum 4.1732 3.8469 3.8996

Majority Vote W L L

(b) Case 2

Feature G-I G-II G-III

1 0.9047 0.8424 0.8235

2 0.8681 0.7935 0.7905

3 0.7816 0.6838 0.7319

4 0.7653 0.7089 0.7102

5 0.9283 0.8684 0.8617

Sum 4.248 3.897 3.9421

Majority Vote W L L

The similarity scores with both methods for G-II are presented in Table 5.14. It can

be seen that in the case of the sum of similarities method, only case 1 was classified as

G-II where as cases 2-5 were classified as G-III. In case of the majority vote, two cases

(case 1 and case 6) were classified as G-II, cases 2, 4 and 5 were classified as G-III, case

3 was tied between G-I and G-II. The results indicate that performance was very poor in

the case of classifying G-II spectra. This reiterates the point discussed earlier that G-II is

regarded as a difficult grade to distinguish from other grades.
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Table 5.14: Similarity scores for G-II with test data

(a) Case 1

Feature G-I G-II G-III

1 0.8140 0.7370 0.7232

2 0.7098 0.6733 0.6532

3 0.3543 0.4593 0.4163

4 0.4513 0.5545 0.5279

5 0.8300 0.8922 0.8804

Sum 3.1594 3.3163 3.201

Majority Vote L W L

(b) Case 2

Feature G-I G-II G-III

1 0.8723 0.8938 0.8847

2 0.8122 0.8947 0.9032

3 0.8606 0.8165 0.8919

4 0.8773 0.7602 0.7872

5 0.8666 0.9111 0.9390

Sum 4.289 4.2763 4.4060

Majority Vote L L W

(c) Case 3

Feature G-I G-II G-III

1 0.8820 0.9175 0.9077

2 0.8044 0.8889 0.8795

3 0.8606 0.8177 0.8886

4 0.8547 0.7804 0.7973

5 0.9422 0.8802 0.8928

Sum 4.3336 4.2847 4.3659

Majority Vote T T L

(d) Case 4

Feature G-I G-II G-III

1 0.7915 0.8728 0.8556

2 0.7877 0.8893 0.8910

3 0.7877 0.8203 0.8374

4 0.7847 0.8037 0.8060

5 0.9518 0.8977 0.9001

Sum 4.1034 4.2838 4.2901

Majority Vote L L W

(e) Case 5

Feature G-I G-II G-III

1 0.8902 0.9028 0.9040

2 0.8488 0.8959 0.9092

3 0.5784 0.7176 0.6603

4 0.8394 0.7005 0.7223

5 0.8719 0.9066 0.9513

Sum 4.0287 4.1234 4.1471

Majority Vote L L W

(f) Case 6

Feature G-I G-II G-III

1 0.8268 0.8887 0.8793

2 0.7615 0.8549 0.8491

3 0.8100 0.7337 0.8075

4 0.3884 0.4778 0.4518

5 0.8950 0.9105 0.9094

Sum 3.6817 3.8656 3.8971

Majority Vote L W L

Table 5.15 represents the results obtained from testing unseen spectra taken from 6

cases of G-III. It can be seen that in case of maximum sum of similarity method, all

six cases were classified as G-III. In the case of Majority vote, three cases (3, 4 and 5)

were classified correctly where as case 1 was falsely classified as G-II and there was a

tie between G-II and G-III for case 2 and between G-I and G-III for case 6. The results
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indicate that both methods performed reasonably well for classification of unseen spectra

from G-III cases.

Table 5.15: Similarity scores for G-III with test data

(a) Case 1

Feature G-I G-II G-III

1 0.7970 0.8803 0.8621

2 0.7101 0.8147 0.8131

3 0.7737 0.6343 0.6968

4 0.3061 0.3890 0.3641

5 0.8296 0.8779 0.8618

Sum 3.4165 3.5962 3.5979

Majority Vote L W L

(b) Case 2

Feature G-I G-II G-III

1 0.8981 0.9199 0.9131

2 0.8198 0.9234 0.9153

3 0.7767 0.8246 0.8352

4 0.8004 0.7767 0.7987

5 0.8860 0.8901 0.9463

Sum 4.1810 4.3347 4.4086

Majority Vote L T T

(c) Case 3

Feature G-I G-II G-III

1 0.8674 0.9168 0.9088

2 0.8284 0.9120 0.9036

3 0.7827 0.8261 0.8387

4 0.6564 0.7321 0.7392

5 0.8860 0.9195 0.9499

Sum 4.0209 4.3065 4.3402

Majority Vote L L W

(d) Case 4

Feature G-I G-II G-III

1 0.8242 0.8848 0.8755

2 0.8128 0.9075 0.9085

3 0.8227 0.8260 0.8736

4 0.6840 0.7516 0.7318

5 0.8819 0.9219 0.9405

Sum 4.0256 4.2918 4.3299

Majority Vote L L W

(e) Case 5

Feature G-I G-II G-III

1 0.8695 0.9150 0.9023

2 0.8331 0.8930 0.9109

3 0.8151 0.8397 0.8746

4 0.8388 0.7214 0.7362

5 0.9069 0.8853 0.9313

Sum 4.2634 4.2544 4.3553

Majority Vote L L W

(f) Case 6

Feature G-I G-II G-III

1 0.8151 0.8415 0.8363

2 0.7523 0.8437 0.8449

3 0.8476 0.8286 0.8859

4 0.8019 0.6984 0.7087

5 0.9409 0.8888 0.9190

Sum 4.1578 4.101 4.1948

Majority Vote T L T

In general we can say that both methods have their advantages and disadvantages.

With maximum of summation, we always get a winner no matter how close the other

values have been as it mathematically declares a winner. It means that even if there is
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a difference of a very small fraction between summation scores of grades, the one with

larger value will be declared and it will not indicated the closeness of the competition. In

case of the majority vote, if different features have different winners then it may result in

a tie as we have seen in case 3 of G-II and case 6 of G-III. A tie reflects that features from

multiple grades behave differently. So majority vote does not always have a winner but

reflects competition among grades for certain cases; in case of a it shows the complexity

involved in classifying a grade. cases.

In the next section, we create grade profiles based on the similarity scores and discuss

which features have been able to perform well in predicting the correct grade.

5.6 Discussion

Figure 5.28 shows a grade profile for two cases of G-I testing data plotting similarity

scores for features as described in previous section. It can be seen that features 1, 2 and

5 provide high similarity scores for both cases with the correct grade where as feature

4 provides the lowest similarity score. For feature 4, G-I similarity was comparatively

higher with the correct grade. Feature 3 is the most inconsistent feature as it was able to

classify case 2 but classified case 1 as G-III. It can also be observed that there is signifi-

cant differences between G-I similarity scores compared to G-II and G-III in general for

all features where G-I was chosen. That is why both maximum sum of similarity and ma-

jority vote performed well for G-I. Another observation is that scores for G-II and G-III

remained very close to each other in more features. We conclude that features 1, 2 and 5

are the most useful as bench mark features to distinguish G-I from other grades.
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(a) Case 1

(b) Case 2

Figure 5.28: Grade profile for two cases of G-I

Figure 5.29 shows grade profiles for six test cases of G-II. Previously we have seen

that both classification methods perform poorly and G-II is not clearly distinguishable

from other grades. However, there are some interesting observations that we can make by

looking at the Figure 5.29. Feature 1 is able to classify the correct grade for cases 2, 3,

4 and 6 and case 5 is narrowly mistaken as G-III. Feature 2 correctly classified the grade

for cases 3 and 6 where as for cases 2, 4 and 5 it was very close to classifying the correct

grade. Feature 5 only classified correctly for case 1. In the majority of the cases where

G-II was not classified correctly, it was classified as G-III. This is generally the case in

real world scenarios, as G-II and G-III are considered very close to each other and chances

of false classification remain high. We conclude that only feature 1 is able to classify the

correct for majority of the G-II cases (4 out of 6) while other features remain inconsistent

so only feature 1 is useful as a bench mark feature for identifying G-II from other grades.
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Figure 5.29: Grade profile for six cases of G-II
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Figure 5.30 shows grade profile for six test cases of G-III with their similarity scores

for each feature of each grade. It can be seen that feature 3 always classified correctly

except for case 1. Feature 5 also classified correct grade for 4 out of 6 cases (cases 2,3,4,

and 5). In case of features 1 and 2, G-III scores were slightly less than G-II where as in

case of feature 4, G-III was also falsely classified as G-I for cases 2, 5 and 6. We conclude

that features 3 and 5 are best suited for classifying G-III correctly for the majority of the

cases and may be used as bench mark features for G-III classification.
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Figure 5.30: Grade profile for six cases of G-III
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Table 5.16 shows a summary of the features against correctly classified grades. The

features that were able to classify the grade correctly for test cases have been highlighted.

The results indicate that features performed differently for the three grades. Feature 3

is only significant in case of G-III classification and did not perform well for any other

grade. Similarly, feature 2 only performed well in case of G-I and classified false grade in

all other cases. Our results indicate that various features based on different regions of the

same spectra may provide different information and some may be helpful in classifying a

grade correctly while others may not be useful as explained before. It can also be seen that

zGT-II fuzzy sets based on interval data from spectral regions may be useful in extracting

important information regarding grade classification problems where both inter and intra

variabilities are involved.

Features 1 and 2 have the same peak value but they do not behave identically, although

they have similar results in some cases. This shows that a feature with a common value

can still be useful and may provide useful information for classification.

Table 5.16: Summary of grade profiles

Grades Feature 1 Feature 2 Feature 3 Feature 4 Feature 5

Correctly classified / Total test cases

I 2/2 2/2 1/2 2/2 2/2

II 4/6 2/6 2/6 2/6 2/6

III 0/6 3/6 5/6 1/6 4/6

Table 5.17 shows the summary of the results in terms of correct classification of grades

by both the summation and the majority vote method for all test cases. It can be seen that

summation method has performed well for G-I and G-III test cases. The majority vote

method has performed well for G-I test cases and has shown reasonable results for G-III

test cases as well. Both methods have not been able to classify G-II.
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Table 5.17: Summary of results with test cases by the summation and majority vote

method

Type Test Cases Correct Classification Incorrect Classification Correct Classification Incorrect Classification

Summation Summation Majority vote Majority vote

G-I 2 2 0 2 0

G-II 6 1 5 2 3 (1 Tie)

G-III 6 6 0 3 1 (2 Tie)

5.7 Model Testing with an Alternative Configuration

The model has also been tested with a similar configuration as that used for creating the

FIS in Chapter 4. To allow comparison, we create 26 sets for G-II each consisting of 4

spectra making a total of 104 spectra, the same number of spectra as used in Chapter 4.

For our model, the number of sets needs to be same for all grades, therefore, we create 26

sets for G-I and G-III. We have used the following approach to achieve this.

G-I: 13 sets each for 2 cases making 26 sets in total per feature each consisting of 4

spectra.

G-II: 26 sets from 26 cases

G-III: 4 sets for first 4 cases each consisting of 4 spectra: 5 sets for last 2 cases each

consisting of 4 spectra each completing a total of 26 sets.

For all features for all grades, at first T-I fuzzy sets were created. Each feature has

26 sets. After that zGT-II sets were created for each grade by combining the 26 sets per

feature. Each zGT-II set has 26 zSlices. These zGT-II fuzzy sets serve as prototype for

the unseen data to be compared against.

We have used 2 unseen sets of each grade to test the system.

G-I: 2 sets from 2 cases

G-II: 2 sets from 2 cases out of 26

G-III: 2 sets from 2 cases out of 6

Table 5.18 shows the results obtained after testing the model with two G-I cases.

The tables show the similarity scores as well as classified grade by the maximum sum
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of similarity and the majority vote method. It can be seen that case 1 was incorrectly

classified as G-III by both methods and case 2 was classified correctly as G-I by both

methods.

Table 5.18: Similarity scores for G-I (Alternative Configuration)

(a) Case 1

Feature G-I G-II G-III

1 0.8823 0.9005 0.9430

2 0.8194 0.8814 0.9380

3 0.8745 0.8580 0.8964

4 0.7755 0.7188 0.7167

5 0.9420 0.8838 0.9056

Sum 4.2937 4.2425 4.3997

Majority Vote L L W

(b) Case 2

Feature G-I G-II G-III

1 0.7907 0.8183 0.8220

2 0.7433 0.8129 0.8076

3 0.7479 0.6867 0.7272

4 0.7941 0.6930 0.7166

5 0.9194 0.8548 0.8562

Sum 3.9954 3.8657 3.9296

Majority Vote W L L

Figure 5.31 shows a grade profile plot of the similarity scores for both test cases of

G-I with all features. It can be seen that features 4 and 5 correctly classified the grade for

both cases where as features 1 and 2 never classified the correct grade, falsely classifying

it as G-III or G-II with a significant difference in scores as G-I scores remained the lowest

for these features. In terms of low scores, feature 4 scores remained low and feature 5

scores remained consistently high. We conclude that for this configuration, features 4 and

5 are the most appropriate for classification of G-I.
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(a) Case 1

(b) Case 2

Figure 5.31: Grade profile for two cases of G-I (Alternative configuration)

Table 5.19 shows the results obtained after testing the model on two cases of G-II. The

tables show the similarity scores as well as grade class by the maximum sum of similarity

and the majority vote method. It can be seen that case 1 was falsely classified as G-III in

terms of maximum sum of similarity method where as the majority vote resulted in a tie

between G-II and G-III. Case 2 was also not classified correctly by both methods as both

resulted in classification as G-III.

Table 5.19: Similarity scores for G-II (Alternative Configuration)

(a) Case 1

Feature G-I G-II G-III

1 0.8580 0.8825 0.9246

2 0.7140 0.8154 0.8452

3 0.8537 0.7838 0.8386

4 0.3392 0.4661 0.3702

5 0.9018 0.9432 0.9427

Sum 3.6667 3.891 3.9303

Majority Vote L T T

(b) Case-2

Feature G-I G-II G-III

1 0.8165 0.8619 0.8796

2 0.7519 0.8485 0.8581

3 0.8697 0.8314 0.8719

4 0.7935 0.6649 0.7019

5 0.9719 0.9255 0.9412

Sum 4.2035 4.1322 4.2527

Majority Vote L L W

Figure 5.32 shows the grade profile for G-II for this configuration. It can be observed
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that in case 1, features 4 and 5 classified the correct grade where as features 1 and 2 falsely

classified it as G-III though the values of similarity scores were close to G-II as well. In

test case 2 for this configuration, features 1 and 2’s similarity scores for G-II and G-III

were close although G-III was the highest. Features 3 falsely classified case 2 as G-III

and features 4 and 5 classified it as G-I. We conclude that the features make inconsistent

classifications for these cases but features 1 and 2 have been a close and may be used for

testing with other configurations to make correct classifications. As these two features

falsely classified G-II as G-III but for both cases, their scores remained competitive.

(a) Case 1

(b) Case 2

Figure 5.32: Grade profile for two cases of G-II (Alternative configuration)

Table 5.20 shows the results obtained after testing the model with 2 randomly selected

cases of G-III. It can be clearly noted that both methods correctly classified the grade for

both cases. This shows that the model performed well for these cases and was able to

produce correct results.
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Table 5.20: Similarity scores for G-III (Alternative Configuration)

(a) Case 1

Feature G-I G-II G-III

1 0.8164 0.8703 0.8930

2 0.7541 0.8584 0.8810

3 0.8017 0.7827 0.8174

4 0.6834 0.7533 0.6886

5 0.9607 0.9523 0.9764

Sum 4.0163 4.217 4.2564

Majority Vote L L W

(b) Case 2

Feature G-I G-II G-III

1 0.8507 0.8912 0.9283

2 0.7561 0.8417 0.8798

3 0.8090 0.6873 0.7534

4 0.7467 0.6814 0.6844

5 0.9561 0.9555 0.9701

Sum 4.1186 4.0571 4.216

Majority Vote L L W

Figure 5.33 shows the grade profile for G-III for this configuration. It can be seen

that for both cases, features 1, 2 and 5 classified the correct grade where as feature 4

never classified the correct grade and also produced lower similarity scores. Feature 3

was inconsistent as it classified correct grade for case 1 only. We conclude that features

1, 2 and 5 are the most suitable to be used as bench mark features to classify the correct

grade for this configuration.

(a) Case 1

(b) Case 2

Figure 5.33: Grade profile for two cases of G-III (Alternative configuration)

Table. 5.21 shows a summary of all grade profiles plotting grades and features that



5.7. Model Testing with an Alternative Configuration 163

classify a grade correctly. In general, it can be observed that features 4 and 5 represent

G-I clearly. In case of G-II, no feature was able to consistently classify correctly and for

G-III, features 1, 2 and 5 were able to perform well for the configuration.

Table 5.21: Summary of grade profiles with the alternative configuration

Grades Feature 1 Feature 2 Feature 3 Feature 4 Feature 5

Correctly classified / Total test cases

I 0/2 0/2 1/2 2/2 2/2

II 0/2 0/2 0/2 1/2 1/2

III 2/2 2/2 1/2 0/2 2/2

If we compare Table. 5.16 and Table. 5.21, we can observe that for both the con-

figurations, feature 5 commonly classified G-I correctly. For G-II, features 1 and 2 were

found to be the closest for classifying it from others. For G-III, feature 5 was the common

feature for both configurations for correct classification.

Table 5.22 shows a summary in terms of correct classification of each test case by

both methods. It can be observed that for G-I cases, both summation and majority vote

perform fairly (1 out of 2 correct). For G-II, both method’s results are poor and they are

not able to classify a single test case correctly. For G-III, both methods have shown good

results. The results indicate that G-II has been the most complex one to classify and no

method has been able to classify this grade correctly.

Table 5.22: Summary of results with test cases by the summation and majority vote

method (alternative configuration)

Type Test Cases Correct Classification Incorrect Classification Correct Classification Incorrect Classification

Summation Summation Majority vote Majority vote

G-I 2 1 1 1 1

G-II 2 0 2 0 1 (1 Tie)

G-III 2 2 0 2 0

In brief, we have seen that for both configurations, G-I and G-III were distinguishable

from other grades based on certain features where as classification of G-II is found to be

very complex. Our experiments have shown that selection of different features from same
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spectra classify for the same grade differently, and zGT-II fuzzy sets with interval data

may provide guidance in classification of breast cancer grading.

5.8 Summary

In this chapter we have described a model to create zGT-II fuzzy sets from interval data

and use them as prototypes for classification of cancer grades from unseen data. Features

were extracted from spectral data and then used to create first T-I fuzzy sets, and then

zGT-II fuzzy sets from interval data. An approximate method to create fuzzy sets in a

computationally efficient way has also been described. Two different test data configu-

rations were tested on the model. This was done by creating T-I fuzzy sets from unseen

data and then measuring the similarity between the T1 sets and prototype zGT-II fuzzy

sets using a new method found in the literature. A discussion on results obtained by

testing data in terms of grade profiles was also described. Results indicate that features

perform differently for different grades and different configurations. G-III was found to

be consistently classified followed by G-I. G-II was found to be the most difficult to clas-

sify and is generally confused with G-III. Results also indicate that the prototype was

able to provide useful information even in case of false classification of grade. In the next

chapter, we further evaluate the model on a new data set from the literature and analyse

the performance of the model.



Chapter 6

Model Evaluation

This chapter includes the testing of the model proposed in Chapter 5 on a new FTIR

data set of oral cancer patients to differentiate between tumour and stroma cells from 3

patients. Five features have been created to construct the prototype model, it has been

tested against unseen data to evaluate its performance.

6.1 Data set Description

This data set was originally used by Wang [109] to distinguish between tumour and stroma

cells using clustering algorithms. The data set is a combination of 7 individual spectral

data sets obtained from three different oral cancer patients. The spectra have been col-

lected from the 900-1800 cm-1 spectral region. The spectral data has been pre-processed

with base line correction and normalisation by standard procedures. A brief summary

of these data sets is given in Table 6.1. It can be seen that data sets 4 and 7 have addi-

tional spectral classifications other than tumour and stroma. It is also important that in the

original work all data sets were used separately with clustering algorithms.

165
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Table 6.1: Original Oral cancer data Set

Data set No. Total Spectra Tumour Stroma Any other

1 15 10 5 0

2 18 10 8 0

3 11 8 3 0

4 31 12 7 12

5 30 18 12 0

6 15 10 5 0

7 42 21 14 7

We have made slight modifications to the data set for our work. They are

• We have excluded the data for additional classifications from our experiments (in

data set 4 and data set 6 because of availability of lower number of spectra available

to build the system)

• We have set a minimum of 5 spectra for a data set to be included so data set 3 has

been excluded

• We shall be using 10 spectra each for tumour and stroma for each data set where

available (5 for training and 5 for testing) and the remaining spectra will not be

included

After these modifications, we have 6 data sets. We have re-numbered them for our con-

venience. The data set used for evaluation is shown in Table 6.2. It can be seen that data

sets 1, 2, 3, and 5 have only 5 spectra for stroma cells. The reason is that another group

of 5 spectra (the number required to create a data set) was not possible from the original

data sets. We shall be testing with unseen stroma cells for data sets 4 and 6 while unseen

tumour cells will be tested for all 6 data sets. The final spectral data sets used for both

training and testing of tumour and stroma cells are described in Tables 6.3 and 6.4 re-

spectively. As this data set consists of data from 3 different patients and for two types of

cells namely tumour and stroma, it contains both intra-patient and inter-patient variability

for tumour and stroma cell classification. We shall be using our developed zGT-II fuzzy

model for the classification of these two cell types.
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Table 6.2: Data set for evaluation

Data set No. Total Spectra Tumour Stroma

1 15 10 5

2 15 10 5

3 15 10 5

4 20 10 10

5 15 10 5

6 20 10 10

Table 6.3: Final data set for tumour data

Data Set Training Testing

1 5 5

2 5 5

3 5 5

4 5 5

5 5 5

6 5 5

Table 6.4: Final data set for stroma data

Data Set Training Testing

1 5 0

2 5 0

3 5 0

4 5 5

5 5 0

6 5 5

6.2 Evaluation of Model Frame Work

Evaluation of the model will follow the same steps as described in Chapter 5. Now we

describe each of them for this data set.

6.2.1 Feature Extraction

As in previous experiments, a set of 5 features has been selected for this data set. A

sample spectrum from the data set with approximate locations of features is shown in
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Figure 6.1. The bar indicates the approximate area covered by each feature. The minimum

and maximum absorbance values obtained from the features serve as interval data for the

model. The features have been selected from similar locations to our previous models.

The only change is that this data set starts at 900 cm -1 wave number rather than 1000

cm-1 wave number, therefore, for feature 1, the minimum value of interval data has been

calculated from 900 cm-1. A brief description of these features is as follows.

Figure 6.1: An example of a sample spectrum with regions and approximate locations of

features

Feature 1: This feature consists of the minimum absorbance values from the region

900-1020 cm-1 and maximum peak spectral absorbance values between region 1000-1100

cm-1. This feature has been selected to cover the highest distinct left peak available in the

region with the left most lowest value in the region.

Feature 2: This feature consists of the peak height absorbance values 1000-1100 cm-1

and minimum absorbance values in region 1050-1120 cm-1. The aim is to cover maximum

left side peak in the region and associate it with a negative peak in the region.

For features 1 and 2, the peak height value is the same. The aim is to see how these

two features whose one value is common respond in the model.

Feature 3: This feature consists of minimum absorbance values in the region 1150-

1220 cm-1 and peak absorbance values of 1200-1250 cm-1. The feature was selected to
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cover second main peak in region A.

For region B, one feature has been selected.

Feature 4: This feature consists of minimum absorbance value in the region 1350-

1400 cm-1 and peak absorbance value in the region 1350-1420 cm-1.

For region C, one feature has been selected.

Feature 5: This feature consists of the peak heights of Amide-I and Amide-II regions

as interval data. This feature has been selected to cover the two most distinct peaks in the

spectra. Amide-II peak height is the maximum absorbance values in the region 1500-1600

cm-1 and Amide-I peak is the maximum peak absorbance value in the region 1600-1700

cm-1 wave numbers.

6.2.2 Construction of Type-I Fuzzy Sets

Five spectra from each data set were used to create T-I fuzzy sets for each feature. 6 T-I

fuzzy sets were created for each feature for tumour and stroma cells for each data set.

Figure 6.2 shows the 6 T-I fuzzy sets for feature 1 for stroma cells. The x-axes shows the

domain values for the fuzzy set and y-axes shows the membership grade values.
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(a) Set 1 (b) Set 2

(c) Set 3 (d) Set 4

(e) Set 5 (f) Set 6

Figure 6.2: T-I fuzzy sets for stroma cells with feature 1

These fuzzy sets incorporate the intra-patient variability found in the stroma cells of

each patient. Similarly for tumour cells, intra-patient variability between spectra can be

seen in Figure 6.3 with an example of 6 T-I fuzzy sets for feature 1 for 6 data sets.
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(a) Set 1 (b) Set 2

(c) Set 3 (d) Set 4

(e) Set 5 (f) Set 6

Figure 6.3: T-I fuzzy sets for tumour cells with feature 1

Similarly, T-I fuzzy sets were created for other 4 features for the tumour and stroma

cells. In total, we have 30 T-I sets for five features for tumour and stroma cells each

consisting of 5 spectral interval values.

6.2.3 Construction of zGT-II Fuzzy Sets

These 6 T-I sets have been combined to create a zGT-II fuzzy set for each feature for

tumour and stroma cells as described below.

• Total Number of zGT-II fuzzy sets: 10 (2 for each feature for tumour and stroma)

• Number of zSlices in each Set: 6
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• Number of classifications to be made : 2 (tumour and stroma)

These zGT-II fuzzy sets were created using the same method as described in Chapter 5.

The created zGT-II fuzzy sets serve as a bench mark prototype and are used for the testing

of unseen data. The zGT-II fuzzy sets for stroma cells for all five features are shown in

Figure 6.4 where z-axes shows the secondary membership grades and x and y-axes have

got domain values and primary membership grades respectively.

(a) Feature 1 (b) Feature 2

(c) Feature 3 (d) Feature 4

(e) Feature 5

Figure 6.4: zGT-II fuzzy sets for stroma cells for five features

The zSlices on z-axes represent the variability found in the T-I fuzzy sets in terms of

inter-patient variability, that is, variability found between different patients stroma spectra.

The more zSlices a zGT-II fuzzy set has, the more variability it captures. The zGT-II fuzzy

sets created for tumour cells can be seen in Figure 6.5.
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(a) Feature 1 (b) Feature 2

(c) Feature 3 (d) Feature 4

(e) Feature 5

Figure 6.5: zGT-II fuzzy sets for tumour cells for five features

6.2.4 Model Testing with Unseen Data

We have tested this prototype model on 6 T-I fuzzy sets for unseen tumour spectra and

2 T-I unseen sets for stroma spectra for each feature against the prototype zGT-II fuzzy

sets with the similarity measure described in Chapter 5. The data for testing was unseen.

The created T-I fuzzy sets for testing data for feature 1 for tumour cells data are shown in

Figure 6.6 and for stroma cells in Fig. 6.7. Similarly T-I fuzzy sets have been created for

the other 4 features for tumour and stroma cells.
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(a) Set 1 (b) Set 2

(c) Set 3 (d) Set 4

(e) Set 5 (f) Set 6

Figure 6.6: T-I fuzzy sets for tumour cells for testing data with feature 1

(a) Set 4 (b) Set 6

Figure 6.7: T-I fuzzy sets for stroma cells for testing data with feature 1

The results using two methods of majority vote and summation method for tumour test

cases with their similarity scores are shown in Table 6.5 for 6 testing data sets. The highest

similarity scores have been highlighted in bold. For majority vote, W indicates the winner

and L indicates the losing category. It can be observed from the tables that both methods
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perform well on tumour test cases. All the test data sets have been classified correctly by

both methods. Although scores for features 1 and 5 are relatively very close, the majority

vote correctly classifies the type of cell with these two features. The Summation method

produces accurate results because the difference of similarity scores between tumour and

stroma cells for features 2-4 is very large and the tumour scores are substantially higher

making the summation value larger than the stroma similarity summation values.

Table 6.5: Similarity scores for tumour data sets

(a) Data Set 1

Feature Tumour Stroma

1 0.9200 0.9000

2 0.9220 0.3920

3 0.9319 0.4643

4 0.9472 0.2572

5 0.8737 0.7322

Sum 4.5948 2.7457

Majority Vote W L

(b) Data Set 2

Feature Tumour Stroma

1 0.9180 0.9157

2 0.9187 0.3893

3 0.9295 0.4376

4 0.9443 0.2730

5 0.8954 0.7564

Sum 4.6059 2.7720

Majority Vote W L

(c) Data set 3

Feature Tumour Stroma

1 0.8733 0.8070

2 0.8719 0.3517

3 0.9119 0.4844

4 0.9288 0.2894

5 0.9044 0.7650

Sum 4.4903 2.6975

Majority Vote W L

(d) Data set 4

Feature Tumour Stroma

1 0.8659 0.8251

2 0.8626 0.3646

3 0.8798 0.4977

4 0.9164 0.3170

5 0.9394 0.8477

Sum 4.4641 2.8521

Majority Vote W L

(e) Data set 5

Feature Tumour Stroma

1 0.8253 0.7738

2 0.8292 0.3375

3 0.8643 0.4907

4 0.9074 0.3245

5 0.9381 0.8422

Sum 4.3643 2.7687

Majority Vote W L

(f) Data set 6

Feature Tumour Stroma

1 0.8797 0.9345

2 0.8893 0.3785

3 0.9184 0.4721

4 0.9256 0.2703

5 0.9357 0.8326

Sum 4.5487 2.8880

Majority Vote W L
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Table 6.6 shows the similarity scores and their results using the two methods for two

test cases of stroma cells for data sets 4 and 6 respectively. It can be observed from the

tables that both methods produced the correct classification for stroma cells. Features 1

and 2 behave differently for the two test cases of stroma cells but features 3-5 produce the

same results for both methods. For the test case for data set 4, a majority vote classifies

stroma cells as tumour cells for first two features but classified them correctly for remain-

ing 3 features winning the majority vote for stroma cells by 3 votes to 2 votes. Similarly,

for data set 6, feature 2 classifies incorrectly but the rest of the features made the correct

classification and in this case, the majority vote won by 4 votes to 1 vote. The Summation

method classifies correctly for both test cases of stroma because of the large difference

between the similarity values for features 3 and 4 for stroma cells.

Table 6.6: Similarity scores for stroma for data sets

(a) Data set 4

Feature Tumour Stroma

1 0.9223 0.9148

2 0.9241 0.3934

3 0.4256 0.8570

4 0.2594 0.8065

5 0.8710 0.9070

Sum 3.4024 3.8787

Majority Vote L W

(b) Data set 6

Feature Tumour Stroma

1 0.8799 0.9255

2 0.8875 0.4030

3 0.4680 0.8604

4 0.2962 0.7990

5 0.8580 0.9059

Sum 3.3896 3.8938

Majority Vote L W

6.3 Discussion

Figure 6.8 shows tumour test case profiles with similarity scores for tumour and stroma

cells. It can be observed from the figure that feature 1 does not indicate a clear distinction

between tumour and stroma cells and scores remain very close to each other. Feature 5

also produce high scores for both tumour and stroma cells. Features 2-4 show a clear

distinction between these two types and tumour scores remain very high for tumour cells

as compared to stroma cells and classify the tumour test cases correctly. We can conclude

that features 2-4 can be used as bench mark features for the classification of tumour cells.
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(a) Data set 1 (b) Data set 2

(c) Data set 3 (d) Data set 4

(e) Data set 5 (f) Data set 6

Figure 6.8: Classification profiles for tumour cells test cases
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Figure 6.9 shows profiles for two test cases of stroma cells (for data sets 4 and 6)

with their similarity scores for each feature for tumour and stroma cells. It can be seen

that features 1 and 2 behave differently for two test cases. In the case of data set 4,

both features 1 and 2 classify stroma cells as tumour cells. Feature 5 classifies stroma

cells correctly but the scores for tumour cells also remain high. In the case of data set 6,

feature 2 produce significantly lower scores for stroma cells. Feature 1 classifies stroma

cells correctly but scores for tumour cells also remain high. For both test cases, features

3 and 4 provide significantly higher scores for stroma cells as compared to tumour cells.

We conclude that features 3 and 4 can be used as bench mark features to classify tumour

cells from stroma cells.

(a) Data set 4

(b) Data set 6

Figure 6.9: Classification profiles for stroma cells test cases

Table 6.7 shows a break down of correctly classified cells of tumour and stroma by

each feature’s individual similarity score. It can be observed that except for feature 1, all

other features are able to classify tumour cells correctly. In case of stroma cells, features

1 and 2 are not consistent but features 3-5 provide correct classification.
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Table 6.7: Summary of grade profiles

Grades Feature 1 Feature 2 Feature 3 Feature 4 Feature 5

Correctly classified / Total test cases

Tumour 5/6 6/6 6/6 6/6 6/6

Stroma 1/2 1/2 2/2 2/2 2/2

Table 6.8 shows a summary of test cases for both tumour and stroma cells using ma-

jority vote and summation methods. Both methods produce the same results for the test

cases and all the test data sets have been classified correctly. The number of spectra for

the creation of sets is relatively small (5) and we have only tested 2 data sets for stroma

cells. Still, the results indicate that method has the capability to be used for classification

of spectral data sets that have a high level of uncertainty.

Table 6.8: Summary of results with test cases by Majority vote and Summation Method

Type Test Cases Correct Classification Incorrect Classification

Tumour 6 6 0

Stroma 2 2 0

Features 1 and 2 have the same peak value but do not behave identically, feature 1 is

not able to provide clear distinctive scores for both tumour and stroma cell classification,

while feature 2 has performed well for tumour cell classification. As in Chapter 5, it shows

that a feature with a common value can still be useful in providing useful information for

classification.

6.4 Comparison with Original Results

Table 6.9 shows the results obtained in the original study by Wang in differentiating cancer

and stroma cells [109]. In this study, HCA, k-means and FCM clustering algorithms were

used by setting number of clusters as 2 and matching it with the clinical study. Table 6.9

shows the best results obtained by each clustering algorithm in the original study. ’Data
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set No. modified’ is the reference number for each data set used in this study where as

’Data set No. original’ is the data set number used in the original study. It can be seen

from the table that generally all three clustering algorithms have produced good results

except for the data set 7 of the original study where results are not good as compared to

other data sets. Our results with the newly proposed model have also produced equally

good results as discussed in the previous section. It shows that our proposed method is

able to compete well in terms of providing near equivalent results of the original study.

Although in our study, the number of spectra is reduced because of the requirement of the

model, still results are generally as good as in the original study.

Table 6.9: Results of original study

Data set No. Data set No. Tissue Type Clinical Study HCA k-means FCM

Modified Original Study

1 1 Tumour 10 10 10 10

Stroma 5 5 5 5

2 2 Tumour 10 9 9 9

Stroma 8 9 9 9

3 4 Tumour 12 12 11 11

Stroma 7 7 8 8

4 5 Tumour 18 18 17 14

Stroma 12 12 13 16

5 6 Tumour 10 10 10 10

Stroma 5 5 5 5

6 7 Tumour 21 28 17 18

Stroma 14 13 18 16

Our experiments have shown that zGT-II fuzzy sets can be created with the help of

spectral data sets by extracting features as interval data. Results with Oral cancer achieved

by the proposed method are as good as in the original study with clustering algorithms.

Although results are based on a smaller data set but they indicate that the proposed model

can be applied on any FTIR spectral data set involving higher level of complexities and

with higher order data sets, statistical significance of the model can be evaluated.
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6.5 Summary

In this Chapter, we have evaluated the model prototype from Chapter 5 on a different

data set of oral cancer patients. Five features were selected, and 5 spectra were used to

create T-I fuzzy sets for differentiating between tumour and stroma cells. These T-I fuzzy

sets were combined to create zGT-II fuzzy sets for all features for both types of cells.

The prototype model zGT-II fuzzy sets were tested against unseen T-I fuzzy sets for both

tumour and stroma cells and the results were obtained by two methods, majority vote

and summation of scores of features. Profiles based on similarity scores for both tumour

and stroma cells were also created to get in depth information regarding the behaviour

of features. The results indicate that the proposed prototype model is able to produce

appreciable results in classifying unseen tumour and stroma cells. Although the number

of spectra is low, the results show that the proposed model can be created with independent

spectral data sets and bench mark zGT-II fuzzy sets can be created that include various

types of complex uncertainties involved in real spectral data sets, and may become a tool

for solving real world classification problems, especially with cancer spectral data sets. In

the next chapter, we conclude the findings contributed by this thesis and report directions

towards future work.



Chapter 7

Conclusions and Future Work

This chapter concludes the research work done during the course of this PhD project.

It also identifies the contributions made to the knowledge during the research. A list of

possible future work is also provided in this chapter. The chapter ends with a list of papers

published or in preparation for submission from the research work.

7.1 Conclusions

Breast cancer has become a major cause of death among women throughout the world.

Use of Computer based technique to help in the diagnosis and prognosis of cancer is a

common area of world wide research. Fourier Transform Infra-red Spectroscopy (FTIR)

is one of the techniques that has been frequently used for cancer data. A main reason

is that this technique has ability to identify small molecular changes found in the cell

relatively easily which is not possible by microscopic evaluation of cancer cells. After

the diagnosis, predicting the long term survival for the patients is important and cancer

grading is a critical parameter in it which is part of world wide accepted Nottingham

Prognostic Index(NPI). Cancer grade is found with the help of Nottingham Grading Sys-

tem (NGS) method accepted world wide. Manual classification of cancer grade is done

by experts by observing a cancer sample under microscope to assign it as Grade-I (G-

I), Grade-II (G-II) or Grade-III (G-III). This manual method has a higher probability of

182
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errors and automated methods can assist the experts in grade classification.

In this thesis, we have investigated the use of advanced computational methods with

FTIR based spectral data for classification of breast cancer grading. In the real world,

cancer spectral data is complex and obtained from multiple patients of the 3 grades. There

are two types of variabilities involved in it, one is between spectra obtained from one case

of a patient (intra-case) and other is between different patients of different cases (inter-

case) for each of three grades. We have used standard clustering algorithms followed by

the use of a supervised learning method to create a Fuzzy Inferencing System (FIS) for

grade classification and have shown that traditional methods are unable to address the

complicated classification problem. We have shown a new method using zSlices based

General Type-II fuzzy sets (zGT-II) fuzzy sets to create bench mark prototype models

that can be saved in a data base and compared against unseen spectral data for grade

classification. To the best of our knowledge, it is the first attempt of its kind to create

interval data from different features from spectral regions and then create prototype zGT-

II fuzzy models from it as a bench mark for grade classification. Now, we describe the

summary of the work carried out.

7.2 Summary

In Chapter 2, a comprehensive literature review on spectral data is given. It covers topics

including breast cancer, NPI, NGS, Spectral pre-processing, spectral features extraction,

the standard clustering algorithms of k-means and fuzzy c-means clustering (FCM), Type-

I (T-I) fuzzy logic and FIS. This chapter also covers Type-II (T-II) fuzzy logic with a

special emphasis on zGT-II fuzzy sets and similarity measures used with T-II fuzzy sets.

In Chapter 3, three different types of spectral data sets have been used with unsuper-

vised learning methods using the standard clustering algorithms of k-means and FCM.

Each data set increases the complexity of the data. We have shown that in the case of

data set 3 where both intra-grade and inter-grade variabilities were involved, standard



7.2. Summary 184

clustering algorithms are not able to classify the grade successfully.

In Chapter 4, a supervised learning mechanism has been used for grade classification

for data set 3. A Mamdani type FIS has been created with three outputs each representing

a grade. Principal Component Analysis (PCA) was used to reduce the dimensionality of

the data sets and Hill Climbing (HC) and Simulated Annealing (SA) methods along with

the first three PCs have been used to train the membership functions and rules of a FIS

that can predict the breast cancer grade. The developed FIS was tested on unseen data.

Results indicated that the proposed method was able to distinguish between G-I and G-III

reasonably well, but was unable to classify the G-II. The results also showed that this

method was not good enough for dealing with the complexities involved in the data set.

In Chapter 5, a novel model based on zGT-II fuzzy sets has been described. It is

the first reported attempt to the best of our knowledge to create such model based on

zGT-II fuzzy sets on spectral data sets. The model starts by extracting 5 key features

based on certain peak heights and trough values selected from spectral regions to create

interval data. T-I fuzzy sets are created for each feature for each grade. These T-I fuzzy

sets incorporate the variabilities involved with in the spectra of a case (intra-case). An

approximate method has been developed that creates fuzzy set from interval data with

substantial reduction in computation time. From examples it has been shown that this

approximate method works well for highly overlapped data but as overlapping reduces,

the results deviate lot from those produced by the original algorithm to create fuzzy sets

from interval data. zGT-II fuzzy sets have been created for each grade by combining the

T-I fuzzy sets. These zGT-II fuzzy sets contain the inter-case variabilities found in the data

set. These zGT-II fuzzy sets serve as bench mark for unseen data and T-I fuzzy sets from

unseen data were compared against these bench mark prototypes and similarity scores

were used to classify the grade. Majority vote and summation of similarity methods were

used for final classification. Results indicated that proposed model was able to work well

for G-I and G-III but for G-II, it did not perform well. Profiles for each grade were created

for in depth analysis of their similarity scores with a discussion to find the complexities
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that resulted in this performance. An alternative data set created with a different set of

G-II cases was also used for the analysis of the model and results were discussed. Overall,

the model did not work well for G-II but showed the potential that it can be used as an

alternative method for extraction of key information from complex cancer spectral data

set.

In Chapter 6, the model created in Chapter 5 is evaluated on a new data set. This

data set is a spectral data set of 3 oral cancer patients and consists of 6 data sets. The

model was used to classify tumour and stroma cells. The results show that the proposed

model is able to classify between tumour and stroma cells on a small sample data set. A

draw back of this evaluation was that number of spectra was low. 5 spectra were used to

create a fuzzy set. As such, the evaluation can not be proven statistically but the model

creation indicates the potential of this method to be used for real spectral data sets where

various types of uncertainties and variabilities are involved. We have tried to obtain novel

breast cancer spectral data sets from various patients for all three grades from Nottingham

Breast Cancer Research Group and School of Chemistry, University of Nottingham and

are still in the process of obtaining those data sets as they may be used to find statistically

significant results and further investigate for the improvement of the model.

7.3 Contributions to the Knowledge

Following are the main contributions to the knowledge made by this PhD project.

• Creating interval data from spectral data set

• A newly developed method to create fuzzy sets from interval data in a computation-

ally efficient manner

• Development of fuzzy sets (Type-I & II) based on interval data extracted from fea-

tures from spectral data set

• Development of a step wise model for classification of unseen spectra by using a
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similarity measure with known benchmark zGT-II fuzzy sets

7.4 Limitations

Following is a list of limitations of the work carried out.

• The proposed model can only work with interval data and does not support any

other type of data

• The proposed model does not work when interval data is non-overlapping

• The proposed model is not able to distinguish between Grade-II and Grade-III

which is considered a complicated problem in cancer pathology as well

7.5 Directions towards Future Work

The following suggestions are made to carry this work forward.

• For the FTIR spectra, we have used basic pre-processing methods. It will be inter-

esting to use various other pre-processing techniques found in the literature and to

develop an automated method that can identify the best pre-processing technique

for a particular raw spectral data set.

• For clustering algorithms, we have used Euclidean distance. Other type of distance

measures can be used and results can be compared. Examples of other distance

measures are, squared Mahalanobis distance, mutual neighbour distance and the

Chebychev distance

• For FIS, we only used 3 PCs to keep initial rules manageable. Different number of

PCs could be used and also there is scope for developing a method that can help in

rule reduction or rule optimisation
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• We have used HC and SA for membership functions and rule optimisation, other

methods like GAs could also be used and the results compared to find the optimal

method

• We have not used any automated method to extract features from spectral data.

There is scope for developing an automated method that can look at various peak

heights and troughs involved in spectra and find an optimal number of features

• A FIS can be developed that uses membership functions of zGT-II fuzzy sets instead

of the commonly used T-I fuzzy sets. A comparison of FIS, with T-I and zGT-II

fuzzy sets could also be made

• We have used only one new similarity measure for finding the similarity between

zSlices. It is important to use other similarity measures as well and compare their

results to select a particular similarity measure best suited to the data set

• We have mainly investigated breast cancer spectral data sets for this research. In

future, various cancer spectral data sets of different cancer types or any other classi-

fication problem with data with similar characteristics can be used and their model

prototypes can be used to develop an expert system. Such an expert system could

be used to make different categorisations for unlabelled spectra

• A large volume of spectra can be used for model creation. Although it will be

computationally very expensive to handle such a high volume. As technology is

growing very rapidly, it is very likely that it will be possible easily in the near

future

• It is proposed to develop a dedicated software sub system built into Spectrometer

that can identify key features out of the spectral data and report them. Although it

will require more time and effort to develop such a system, it will make the process

of analysing features and extracting key information from them significantly easier
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7.6 Publications

The following is a list of publications that are due to be submitted or have been published

coming from this research work with a reference to the relevant chapter.

1. Shabbar Naqvi, Simon Miller and Jonathan M. Garibaldi: A Type-II Fuzzy Logic

based Model for the Classification of Breast Cancer Grading from FTIR Spectral

Data Sets, (in preparation) for submission in IEEE Transactions on Fuzzy Systems

[Chapters 5 & 6]

2. Shabbar Naqvi, Simon Miller and Jonathan M. Garibaldi: A Fuzzy Inferencing Sys-

tem for Breast Cancer Grade Classification with Membership Functions and Rules

Tuning with a Spectral Data Set, (in preparation) for submission in International

Journal of Uncertainty, Fuzziness and Knowledge-Based Systems [Chapter 4]

3. Shabbar Naqvi, Simon Miller and Jonathan M. Garibaldi: A General Type-II Simi-

larity Based Model for Breast Cancer Grading with FTIR Spectral Data (Accepted)

in FUZZ IEEE 2014 (IEEE International Conference on Fuzzy Systems), July 6-11,

2014, Beijing, China [Chapter 5]

4. Shabbar Naqvi, Simon Miller and Jonathan M. Garibaldi: Towards Development

of a Fuzzy Inferencing System for the Automation of Breast Cancer Grading with

Spectral Data Sets (Abstract publication) in The 2012 Mini EURO Conference on

Computational Biology, Bioinformatics and Medicine, University of Nottingham,

September 2012 [Chapter 4]

5. Shabbar Naqvi and Jonathan M. Garibaldi: The complexities involved in the anal-

ysis of Fourier Transform Infrared Spectroscopy of breast cancer data with clus-

tering algorithms in 3rd Computer Science and Electronic Engineering Conference

(CEEC 2011), Colchester, 2011, U.K, pages:80-85 [Chapter 3]

6. Shabbar Naqvi and Jonathan M. Garibaldi: An Investigation into the use of Fuzzy

C-Means Clustering of Fourier Transform Infrared Microscopic Data for the Au-
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tomation of Breast Cancer Grading in The 9th Annual Workshop on Computational

Intelligence (UKCI 2009), Nottingham, 2009, U.K [Chapter 3]
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[127] K. Zühtüoǧullari, I. Saritaş, and N. Arikan. Diagnosis modelling of urethral ob-

structions using fuzzy expert system. In Proceedings of the 9th International Con-

ference on Computer Systems and Technologies and Workshop for PhD Students

in Computing, CompSysTech ’08, pages 34:IIIA.14–34:1, New York, NY, USA,

2008. ACM.

[128] R. Zwick, E. Carlstein, and D.V. Budescu. Measures of similarity among fuzzy

concepts: A comparative analysis. International Journal of Approximate Reason-

ing, 1(2):221 – 242, 1987.

[129] A. Zwielly, J. Gopas, G. Brkic, and S. Mordechai. Discrimination between dru-

gresistant and non-resistant human melanoma cell lines by ftir spectroscopy. The

Analyst, 134:294, 2009.


