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Abstract

Interferometry is used in a wide variety of fields for the instrumentation and

analysis of subjects and the environment. When light beams interfere, an in-

terference fringe pattern is generated. Captured widefield interference patterns

can be used to determine changes in the optical path length of interfering beams

across a 2D area. Two interferometer schemes regularly implemented in modern

systems include the homodyne interferometer, where light with the same optical

frequency in used to generate static intensity fringe patterns, and the heterodyne

interferometer, where light with different optical frequencies are used to generate

a fringe pattern that is modulated at a frequency equal to the optical frequency

difference (beat frequency). A widefield heterodyne system is not straightforward

to bring into practice, however, it does offer some benefits over a comparable ho-

modyne interferometer, such as direct phase interpretation and the suppression

of low frequency background light in interferograms.

In this thesis, a widefield heterodyne interferometer system is presented. A cus-

tom prototype modulated light camera (MLC) chip was used to capture both

homodyne and heterodyne fringe patterns. The 32×32 pixel camera is capable

of continuously demodulating incident modulated light at frequencies between

100 kHz and 17MHz. In the presented system, an error in the interferogram

phase was determined to be ∆φ = ± 0.16 radians (∼9.1◦). Comparisons between

homodyne and heterodyne interferograms, captured using the MLC, are also pre-

sented.

With modifications to the system, an ultrastable widefield heterodyne interfer-

ometer system was implemented. The intention of this system was to eliminate

the contribution of piston phase to a captured interferogram without the need for

common path optics. In contrast to the standard heterodyne setup, the reference

signal used in the demodulation process was derived from one of the pixels on-

board the MLC, rather than from an external source. This new local reference sig-

nal tracks the common changes in the temporal phase detected by all the MLC’s

pixels, eliminating piston phase and substantially reducing the contributions of

unwanted vibrations and microphonics from interferograms. To demonstrate this
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ultrastable system, it is incorporated into a Mach-Zehnder interferometer, where

a vibration is induced onto an object arm mirror (using a mounted speaker) at

various frequencies. Stable interferograms are captured with the mirror moving

at up to 85mms−1 at 62Hz (an optical path length of 220µm, or 350 wavelengths

for λ = 633 nm), however, this limit was the result of the complex motion in the

mirror mount rather than the stability limit of the system. The system is shown

to be insensitive to pure piston phase variations equivalent to an object velocity

of over 3m s−1.

As an application of the ultrastable system, a novel interferometer has been de-

veloped that captures the widefield fringe patterns generated by interfering two

independent light sources, rather than by a single split source. The two sepa-

rately stabilised HeNe lasers, constructed in the laboratory, produce light with

a reasonably stable output frequency. Interfering two of these sources produce

a heterodyne interference pattern with an unknown beat frequency. The beat

frequency continuously varies because of the variation in the output frequency

of each laser, but these stabilised lasers produce a beat frequency that drift by

as little as 3MHz over 30minutes. As the ultrastable system tracks changes in

the temporal phase and instantaneous frequency of an incident fringe pattern, it

can be used to track the variations in the modulation frequency generated by the

fluctuations in the two separate lasers. The separation between the two lasers

with regards to the images presented was about 35 cm, but they can be separated

by much larger amounts.
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Chapter 1

Introduction

In this chapter, an introduction of the work in this thesis is presented. A back-

ground of interferometry and interferometer detection methods is explored. This

chapter will also discuss key concepts important to interferometer systems, such

as photodetection and camera pixels, light coherence properties, and possible

sources of noise and errors in captured images. An overview of this thesis, in-

cluding the methodology for the experiments conducted and the thesis structure,

is presented.

1.1 Introduction to interferometry

The phenomenon of wave interference can be observed in waves such as in light,

sound and surface water. When waves interfere, they superimpose onto each

other, which results in a new waveform defined as the sum of the component

amplitudes.

Interferometers are instruments that use this property in light waves to measure

the path differences between different beams of light. A light beam takes an

amount of time for it to reach a point of observation from the emission source.

This time will vary if the beam’s path length is changed or if there is a change in

the refractive index of the propagation medium. If the light wave is assumed to

be sinusoidal, this time delay/advance can be observed as a phase change.

Direct detection of the phase for visible light is not possible because the opti-

cal frequencies (400-800THz region) have oscillating fields much higher than any

1



Chapter 1. 1.1. Introduction to interferometry

feasible electronic devices’ frequency response (i.e. MOSFETs have a frequency

response in the 100GHZ region [1]). One method of measuring light phase is to

interfere the measurement or object light wave with a reference light wave. This

generates an interference fringe pattern which can be captured as an interfero-

gram image. The light intensity at difference points of an observed interferogram

will depend on the phase difference between the interfering waves.

1.1.1 Historical overview

1.1.1.1 Young’s double slit experiment

An experiment first conceived by Francesco Grimaldi in 1665 showed the interac-

tion between two beams of light [2]. The setup involved a darkened room where

light entered one end and exited through pinholes. Sunlight was used as the

light source and two closely made pinholes let light fall onto an opaque screen.

Grimaldi postulated that an image of the sun would appear but with circles of

light overlapped with darkness. However, the experiment, was unsuccessful; the

light entering the two holes was not coherent.

In 1799, Thomas Young, after working with the properties of acoustics, presented

a paper to the Royal Society arguing the notion of light behaving like waves [3].

Young’s theory contradicted Issac Newton’s corpuscular theory of light, which

stated light was composed of a stream of small particles [4]. In 1803, Young

used his knowledge of overlapping sound waves generating beats to reproduce

Grimaldi’s experiment [5]. The sunlight now entered the apparatus through a

pinhole, making it into a coherent light source; an interference pattern was visi-

ble.

The light source entering the two pinholes was spatially and temporally coherent.

At the point where the two wavefronts have their respective maximum ampli-

tudes (i.e. they are perfectly in phase), they constructively interfered, resulting

in a bright fringe (maxima). When the two waves have amplitudes that negate

each other (i.e. they are completely out of phase), they destructively interfered,

resulting in a dark fringe (minima). This fringe pattern continues across the ob-

servable surface. The observation of interference showed that light can behave

like waves.

Page 2



Chapter 1. 1.1. Introduction to interferometry

Figure 1.1: A sketch by Young showing the diffraction caused by two wavefronts [6].

A coherent wavefront incident on two slits produces two point sources, A

and B. Points C, D, E and F show points of destructive interference (i.e.

minima).

1.1.1.2 Michelson interferometer

During the 19th century, the prevailing theory of light was that it must travel

through a medium; just as tidal waves travel through water or sound through

air, light was thought to travel through a medium called ‘luminiferous aether’.

However, proving its existence had been difficult.

In 1881, Albert Michelson used a device that sent light through a half silvered

mirror, splitting the beam in two, each of which travelled in perpendicular direc-

tions [7]. The two beams were reflected back using mirrors, which caused them

to interfere at the half silvered mirror.

The intensity of the fringe patterns would vary as the properties of the interfer-

ometer changed, which included the distance of the mirrors from the half silvered

mirror and more importantly, the medium that the light travelled in.

Physicists such as James Clerk Maxwell [8] and George Gabriel Stokes [9] noted

several restrictions on the aether medium. The medium had to be almost sta-

Page 3
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(a) (b)

Figure 1.2: Sketches of the interferometer designed by Michelson [7]. The left (a)

schematic shows light being emitted from point a and split at point b.

One of the beam paths has a compensation plate at g so both light beams

travel through the same amount of glass. The beams are reflected back

from the mirrors at c and d, and recombined and interfered at b. The

fringe pattern is observable at e. The right (b) apparatus diagram shows

the how the first Michelson interferometer was arranged and how the

mirrors were designed to be moved.

tionary, otherwise large variations in the speed of light would be observable. To

accommodate the high frequency of light, the medium would need to exhibit the

properties of a solid material. However, to allow the Earth to move unhindered in

proportion to other stellar bodies, the aether would have to move in one direction

throughout the universe; this concept was known as the ‘aether winds’.

It was postulated that as the Earth rotated, the direction of the wind would

either aid or hinder light by a slight amount, fractionally changing the speed of

light. Direct measurements of the speed of light would produce results too inac-

curate to prove conclusively the presence of drag. Michelson intended to use his

interferometer to detect sinusoidal oscillations in fringe patterns as one arm of

the interferometer would travel both with and against the ‘aether wind’ over the

course of a day. The experiment resulted in null results (a 4% fringe shift was

expected, only 1% shift was detected), leading to Michelson to conclude that the

Page 4
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aether medium may be stationary rather than moving. Michelson repeated his

experiment in 1887 with Edward Morley [10], in an improved system, measuring

similar results. The results from these experiments eventually led to a rejection

the aether medium concept.

1.1.2 Project brief

If we consider the most basic interferometer arrangement, a visible fringe pat-

tern can be generated by interfering two coherent (explained in section 1.4) light

beams, which can be simply produced by splitting a single initial light source.

Analysing the intensity of the resulting interference pattern reveals the propaga-

tion distance differences of the split light. As each beam has the same optical

frequency, a static intensity interference pattern is generated; this is known as ho-

modyne interferometry [11]. In practice, when trying to capture the interference

pattern, the influence from background light could make direct phase extraction

from the pattern difficult.

One method of cancelling out the effects of low frequency background light from

a captured pattern is to interfere light with different optical frequencies; this is

known as heterodyne interferometry [12]. The detected intensity pattern is mod-

ulated at a frequency equal to the difference in the optical frequency difference

between the interfering beams. Once the pattern has been captured, electronic

filtering can be applied to remove the low frequency background light influence

on the pattern.

One major disadvantage of developing a heterodyne interferometer is the com-

plexity of the detector. The phase pattern across two dimensions (perpendicular

to the optical axis) is often of interest; a widefield view of an interference pattern

allows for the observation of any changes in the spatial phase difference, which

is stored as an interferogram image. Additionally, fast capture of interferograms

is required in situations where phase change occurs with time. As homodyne in-

terferometers produce static intensity fringe patterns, the detector does not need

to have large frequency response requirements or special demodulation circuitry.

A widefield image of the fringe pattern can be captured and output in real time

using standard commercially available digital cameras. Detectors used in het-

erodyne interferometer on the other hand, due to the response requirements, are

Page 5



Chapter 1. 1.1. Introduction to interferometry

commonly implemented as point detectors [13]. The single-point detector can

either be used to capture the real time phase at a single point in an interference

pattern, or used to scan a pattern in order to acquire a widefield pattern over

longer periods of time [14].

1.1.2.1 Widefield heterodyne interferometry

The initial aim of the project presented in this thesis was to investigate the use of

a modulated light camera (MLC) for heterodyne interferometry. The MLC has

been designed to detect modulated light, demodulate through signal mixing, and

filter the result for output.

A heterodyne interferometer was built incorporating the MLC into the arrange-

ment to capture widefield real-time interferogram images. Whilst this system may

not be the first to capture real time widefield heterodyne interferograms [15,16],

the intention of this project was to produce a system that operates at much higher

modulation frequencies than attempted before, as well as over a broader range of

frequencies.

1.1.2.2 Ultrastable heterodyne interferometry

In order to demodulate a captured optical signal, the MLC requires the use of a

reference signal. The phase data output from each pixel is generated relative to

this reference signal. To produce a stable image, the reference signal is required to

have the same frequency as the detected optical signal. However, a real system

may not produce a stable pattern with a fixed frequency reference signal; this

could be due to changing properties in the propagation medium or light source.

An unstable image could also result from vibrations acting on the components

of the interferometer. One form of instability external vibration imports onto a

captured interferogram can be seen as piston phase change (a phase shift induced

across the entire interferogram, often with an unknown and random function with

time).

The main goal of this project was to investigate a method of producing ultrastable

fringe pattern images using the widefield heterodyne interferometer. Instead of

using an external fixed frequency reference signal, the reference signal is derived

Page 6



Chapter 1. 1.2. Concept of wave superposition

from a single point in the fringe pattern itself. A reference optical signal, mea-

sured using a single pixel on the MLC, will have the same phase relationship,

even in the presence of piston phase vibration, as the optical signal detected on

all other pixels on the MLC. The intention of this setup was to cancel out any

temporally varying phase change and produce stable interferograms.

1.1.2.3 Two laser interferometry

A heterodyne fringe pattern with temporally varying phase shifts can also be

viewed as a pattern with a varying modulation frequency. For conventional in-

terferometry, the visibility of the fringe pattern is dependent on the degree of

coherence between the interfering light (a single split source is used in conven-

tional interferometers). If the sources are not coherent, then the time averaged

captured image shows no pattern.

As an extension to the project, the ultrastable system was adapted to capture

the fringe patterns produced by interfering incoherent sources. The interferome-

ter was designed using two separate lasers with the fringe pattern captured using

the MLC. The single pixel feedback was employed to track the changes in the

instantaneous beat frequency of the fringe pattern, enabling stable interference

fringe patterns.

1.2 Concept of wave superposition

1.2.1 Interference phenomenon

The phenomenon of interference is based on the principle of superposition. The

superposition property is present in all linear systems; this includes waves. The

property states that the resultant response at any point in the system is equal

to the sum of all the individual components at that point [17]; the resultant dis-

turbance observed, Etot, is equal to the algebraic sum of the separate constituent

waves, E1, E2, . . ., such that;

Et = E1 + E2 + . . .En (1.1)
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1.2.2 Electromagnetic waves

A wave can be described as a variation in amplitude at different spatial and tem-

poral points. The amplitude relates to the parameter of the wave, such as the

height or pressure. Light is a form of electromagnetic radiation and can be mod-

elled as a transverse wave [8]. A light wave contains both electric and magnetic

field components, with the direction of propagation perpendicular to the field

components.

The electric field and magnetic field components of light waves are associated

with the changes in each others fields [18–20]. To describe a wave, one field is

used, commonly the electric field is chosen. In a homogeneous medium, free from

regional currents and charges, the electric field homogeneous wave equation can

be expressed as [17];

∂2E

∂t2
− c2 · ∇2E = 0 (1.2)

where E is the electric field, t is time and c is the speed of the wave. For a plane

wave case, a monochromatic solution for this equation can be described by;

E(r, t) = E0 cos(k · r− ωt+ φ0) (1.3)

where ω is the angular frequency, t is time, k is the wave vector, and r is the

position vector, E0 is the peak electric field vector and φ0 is the initial phase

offset of the wave, i.e. the wave angle at time t = 0 and |r| = 0.

1.2.2.1 Polarisation

Given that the electric field wave is a transverse wave, a plane wave travelling in

the z direction can have field components in the x and y direction. The wave can

be expressed as separate scalar components in the x and y direction;

Ex = ax cos(kz − ωt+ φ0)

Ey = ay cos(kz − ωt+ α + φ0) (1.4)

where the electric wave components, Ex, Ey, in the x and y direction have ampli-

tudes, ax and ay, and α is the relative phase difference between the components
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(a value between −π to π).

The polarisation state of the wave describes the shape the wave traces as it prop-

agates [17]. The wave is linearly polarised if the relative phase difference between

the two components, α = 0,±π; the electric field oscillates in a straight line. The

angle of the polarisation, relative to the x/y axis, is dependent on the amplitude

of the separate components, ax and ay.

If one component leads or lags the other component but is not in or out of phase

with the other, i.e. α 6= 0,±π, then the wave is elliptically polarised. Addition-

ally, a special case occurs when α = ±π
2
and ax = ay; this produces circularly

polarised light.

The interferometers designed for this project will use light sources that have

the same polarisation type and angle, with polarisers used for compensation if

required. To this end, it is possible to simplify the wave equation further, and

express it as a single scalar equation;

E = a0 cos(kz − ωt+ φ0) (1.5)

1.2.3 Detection of intensity

Light waves are not measured instantaneously; the frequency of visible light is too

high for photodetectors to generate an instant response [1]. Instead, a detector

will integrate the received light energy over an amount of time. The intensity of

light, I , describes the average light energy per unit area over a period of time. In

the specific case of harmonic fields, the intensity is proportional to the square of

the amplitude of the electric field [17];

I ∝ |E|2 (1.6)

The photocurrent generated by a photo-detector device (e.g. photodiode) is pro-

portional to the square of the amplitude of the electric field. Therefore, the gener-

ated photocurrent is proportional to the light intensity incident on the detector.

The actual current generated is also dependent on the depth of surface pene-

tration, the wavelength of the light, and the photosensitive material itself [21].

These factors determine the responsivity of a device (measured in amperes per

watt) and are taken into consideration when designing photodetectors (discussed
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in section 1.6.2).

1.2.4 Information determined from phase measurements

Given the assumption that in a light wave the field components oscillates si-

nusoidally, the field components repeat periodically over time t = T . This is

determined by the frequency, f , of the wave, such that;

f =
1

T
=

ω

2π
=
c

λ
(1.7)

where λ is the wavelength and c is the speed of the wave in a vacuum (c ≈ 3 ×
108ms−1). The wave vector describes the displacement of a wave as it travels;

k = |k| = 2π

λ
(1.8)

Using the simple scalar wave equation expressed in equation 1.5, it is possible to

see that this wave propagates through one wavelength in the time equal to one

period. At the point of observation, it can be assumed that an incident light wave

takes the form;

E = a0 cos(ωt+ φ) (1.9)

where φ is the phase observed at the point of detection. Comparing equation 1.9

with equation 1.5 shows that changing the propagation time of the wave can

change the phase of a wave at the point of observation. One method of imple-

menting a phase change is by varying the propagation distance as the wave travels.

The other method involves changing the propagation medium. The wavelength

of light changes as it travels through mediums with different refractive indexes.

Given the wavelength of the light wave in a vacuum, λ0, the refractive index of

the medium the light travels through, n, can be determined using;

n =
λ0
λ

(1.10)

where λ is the wavelength of light inside the medium. Vacuum has a refractive

index of n = 1. The diagram in figure 1.3 shows the instantaneous phase observed

at a single observation point at a fixed moment in time.
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Figure 1.3: Examples of waveforms at an instant in time. Methods of altering the

phase measured at an observation point include changing the propagation

medium and the path length.

The phase of an incident light wave can be used to determine the propagation

distance or propagation medium, and one method of determining the phase is by

using interferometry.

1.3 Determining phase using interferometry

1.3.1 Homodyne interferometry

Homodyne interferometry is one technique that can be used to determine the

phase of an incident light wave. Two interfering waves, a reference and object

wave, in homodyne interferometry, have the same optical frequency (ωh). The

electric fields of these two beams at the point of detection, Ehr and Eho, can be

expressed (using equation 1.9) as;

Ehr = ar cos(ωht+ φr)

Eho = ao cos(ωht+ φo) (1.11)

It is possible to express these two waves as a single interfered resultant wave, Eht,

using the superposition principle discussed in section 1.2.1;

Eht = Ehr + Eho (1.12)

As discussed in section 1.2.3, a photodetector will generate an electric current

proportional to the intensity of incident light, which itself is proportional to the
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square of the electric field (equation 1.6). The intensity of the pattern measured

by the photodetector, Ih, as a result of the two waves interfering can be expressed;

Ih = [Eht]
2 = Ihr + Iho + 2

√

IhrIho cos(φhd)

= Ioffset + Iamplitude cos(φhd) (1.13)

where φhd = (φhr−φho) is the phase difference between the two interfering waves,

and Ihr and Iho are the intensities of the separate beams (reference and object

beams respectively) [12]. The intensity of a detected pattern will vary sinusoidally

as the phase difference term changes.

1.3.2 Heterodyne interferometry

Another interferometry technique used for phase measurement is the heterodyne

interferometer. Wave interference occurs between beams with different optical

frequencies, ωr and ωo for the reference and object wave respectively. Their

electric fields, Er and Eo, can be expressed;

Er = ar cos(ωrt+ φr)

Eo = ao cos(ωot+ φo) (1.14)

The resultant interfered electric field wave is equal to the sum of these two waves

(equation 1.1). The intensity of this wave, I , can be determined (like in the

homodyne case) using the square of the electric field wave and the trigonometric

product-to-sum identity;

I = [Er + Eo]
2

=
1

2
ar

2 +
1

2
ao

2 +
1

2
ar

2 cos(2ωrt+ 2φr)

+
1

2
ao

2 cos(2ωot+ 2φo)

+arao cos((ωr + ωo)t+ (φr + φo))

+arao cos((ωr − ωo)t+ (φr − φo)) (1.15)

Due to the frequency response of the photodetector, certain components from this

interference expression are not detected [1]; these include the temporally varying
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components where ω = ωr, ωo, (ωr + ωo). The detected intensity can therefore be

expressed as;

I = IDC + A cos(ωdt+ φd) (1.16)

IDC =
1

2
ar

2 +
1

2
ao

2

A = arao

where differences in beam frequency (beat frequency) and phase between the two

beams (phase difference) are described by ωd = (ωr − ωo) and φd = (φr − φo),

respectively. Unlike the homodyne case, the intensity of an interference pattern

will vary sinusoidally with time. However, the phase offset of this optical signal

is equal to the phase difference between interfering beams. If the phase of the

reference beam is kept constant, the electronic signal observed on the photodetec-

tor is the same signal once carried by the object beam; the process is effectively

down-mixing a 400-800THz signal to a frequency at which the photodetector can

operate.

1.3.3 Interferometer technique considerations

In addition to the fringe pattern, photodetectors also detect external light inci-

dent on them (assuming the light wavelength is within the photosensitive material

absorption range), and contributions from these external sources (e.g. sunlight

or ceiling lights) can be seen on captured interferograms as errors (i.e. increase

in the DC intensity).

A homodyne interference fringe pattern comprises of points of static intensity;

the equipment required for a homodyne interferometer arrangement is minimal

and can be aligned easily (patterns can be seen by the human eye). To capture

widefield images, commercially available cameras can be used which makes the

system inexpensive and easily scalable. If an interferogram is in the presence of

an external DC intensity, the fringe pattern visibility will decrease (an increased

intensity average). This can be expressed using;

ν =
Imax − Imin

Imax + Imin

=
Iamplitude

Iaverage
(1.17)
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where ν is visibility of the fringe pattern. This issue is further compounded if

the background light varies with time, i.e. low frequency influence. There are

methods of physically blocking background light, however, in some situations,

this may be impractical. For example, where light from an open or distant light

source is used. In such cases, different interferometer phase extraction methods

are required.

Heterodyne interferometry is an alternative method of determining the phase

whilst suppressing low frequency background light in a capture interferogram.

As the intensity fringe pattern is modulated at a high frequency, the detector will

require a high frequency response. This is a simple matter for a point detection

scheme, where the phase value is output for a single point in the interferogram

(only one high frequency response photodetector, one demodulation circuit and

one analogue-digital converter is required). However, this becomes more complex

when capturing a widefield image. Heterodyne arrangement require more com-

ponents that an equivelent homodyne arrangement. This may include a device to

shift the frequency of light and signal generators for referencing and driving the

shifting device. Alignment also becomes more problematic as the fringe pattern

will not be visible by eye.

One of the main challenges of capturing an interferogram is in a situation where

the phase dependent component of the pattern is weak. In both homodyne and

heterodyne schemes, this equates to a low intensity variation, which when de-

tected, produces a small photocurrent change. Using an analogue-digital con-

verter (ADC), this small signal can become difficult to read as noise contributions

from the surrounding electronic circuitry will increase the system’s uncertainty

figure (discussed further in section 1.7). The signal can be amplified and filtered,

however, if the noise present in the system is within the same frequency band as

the signal, then amplification and filtering has no effect on the overall signal to

noise ratio.

In practical arrangements, the intensity of the object beam can often be limited.

Increasing the intensity of the reference beam will increase the overall fringe pat-

tern intensity. However this will increase the constant DC term, as well as the

phase dependent term (referring to equation 1.17). The system will therefore re-

quire a method of filtering out the constant DC intensity. In heterodyne systems
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this is achieved simply by electronic filtering the received signal.

1.3.4 Fringe pattern analysis

Whilst the intensity on a captured homodyne interferogram is dependent on the

phase difference of interfering beams, directly interpreting individual points on

the interferogram into a phase value will produce results of limited accuracy.

Instead, direct analysis of a fringe pattern can be implemented by tracking the

maxima and minima across a captured image. While it is possible to perform

fringe analysis by eye, computer algorithms have been designed to search for these

extreme points to provide fast results [22]. In addition to tracking points of max-

imum intensity, the algorithms have been based on finding the maximum points

in the gradient of the measured intensity or discontinuities in the fringe pattern

(i.e. shift in the position of the maxima) [23]; the information determined using

these methods can be used to generate a phase map. However, phase variations

between maxima/minima points are often disregarded, limiting the spatial reso-

lution of the phase image; these point are often filled in using interpolation.

As this process requires only one image, low frequency intensity drifts from back-

ground light will not influence the end results, given the condition of a high

frame capture rate. However, this extraction method requires that the captured

pattern have several fringes, each spaced to allow optimum phase determination

(which may depend on the detector’s resolution, expected interferogram or noise

presence); this could limit the interferometer design and complicate alignment.

Additionally, if the system is subjected to temporally varying background light

or vibration, then no averaging or pixel integrating scheme can be implemented

to reduce the influence of errors on the results. Finally, without additional infor-

mation about the homodyne interferogram, it could be difficult to assign a sign

to the phase map.

1.3.5 Spatial domain filtering method

Another method of extracting the phase from a homodyne interferogram is by

spatially filtering the fringe pattern. An interference pattern arranged to produce

a pattern with many fringes will have large spatial frequencies, whilst the DC off-
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set of the pattern and, ideally, any influence from background light will have low

frequencies or zero spatial frequency. By filtering (i.e. blocking in the Fourier

plane) the interferogram, the phase component can be isolated and extracted.

The filter would need to be designed with knowledge of the intended fringe pat-

tern to preserve the maximum spatial resolution in the image. This method can

be implemented computationally by Fourier transforming the captured interfer-

ogram in two dimensions and applying an ideal filter to the results [24]. In this

scenario, averaging could be used to reduce random noise from images. However,

the application of the filter will add systematic phase errors to an interferogram;

the process could become unreliable if the filter is not optimised for the incident

fringe pattern or if there is a drastic change in the fringe pattern shape.

1.3.6 Quadrature measurements

Examining both the homodyne (equation 1.13) and heterodyne (equation 1.17)

interference expressions, we can see that the detected intensity is dependent on

three unknown variables. These include the DC offset intensity, the phase com-

ponent amplitude and the phase difference (φd). One method of determining the

phase whilst eliminating the other two unknown variables is by acquiring at least

three simultaneous equations, in this case, by acquiring the intensity values as a

known phase shift is applied to the interferogram.

This phase extraction method can be implemented with a minimum of three

intensity measurements [25], however, the calculation for determining the phase

becomes simpler if four specific measurements are taken; these are at quadrature

phase intervals (at 90◦ phase differences). Taking the homodyne interference

expression as an example, we can see that these four expressions are;

I0 = Ioffset + Iamplitude cos (φd)

I1 = Ioffset + Iamplitude cos
(

φd +
π

2

)

I2 = Ioffset + Iamplitude cos (φd + π)

I3 = Ioffset + Iamplitude cos

(

φd +
3π

2

)

(1.18)

As a phase shift is applied, a different intensity is measured, but the DC offset

and phase amplitude stay the same. Once these values are acquired, the phase

can be extracted using an inverse tangent operation;
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φd = arctan
I3 − I1
I2 − I0

(1.19)

= arctan
2 sin(φd)

2 cos(φd)

This process can be used to determine the phase as long as the DC intensity offset

and phase component amplitude remains constant while the interferograms are

being captured.

1.3.6.1 Phase stepping interferometry

A common method of extracting the phase from a homodyne interference pattern

is by using phase stepping [26]. Known phase steps in the captured interfero-

gram are applied; common implementation methods include using a piezoelectric

transducer (PZT), or a stepper motor and wave plate arrangement. An example

implementation could involve mounting the reference arm mirror of a Michelson

interferometer to a piezoelectric transducer; by adjusting the displacement of the

mirror by multiples of λ
8
, phase shifts of π

2
are induce on the captured interfero-

gram. Interferometers that capture four results are commonplace [27], however,

systems where three [28] or five [29] captures are also possible.

In contrast to the direct fringe analysis or spatial filtering method, accurate phase

measurements can be acquired at every capture point (instead of simple fringe

separation measurements and with no loss in the spatial resolution in the resul-

tant image). In an ideal system, the pattern remains static for the duration of

the phase stepping process, allowing standard camera devices to capture the ho-

modyne interferogram and the option of averaging or pixel integration if random

noise is present in the captured interferogram. Only an inverse tangent operation

is required post capture meaning the frame rate of a system is not limited by the

post capture process.

The implementation of linear transducers for phase shifting interferometry can

be complex due to alignment difficulties. The PZT is required to produce sub-

wavelength displacements (wavelength must be known for this method). Finally,

the system is still susceptible to errors from low frequency variation in background

light and vibration in the interfering arms between the multiple phase stepping
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points.

1.3.6.2 Continuous phase shifting interferometry

The continuous phase shifting method is a variation of the phase stepping method;

instead of introducing discrete phase steps, the phase is varied continuously with

time [30,31]. This makes a system that is analogous to a heterodyne interferom-

eter since the intensity pattern will be modulated. For example, a linear phase

shift through 2π (i.e. one wavelength displacement) over one second produces

the same detected interferogram as a heterodyne system with a beat frequency

of 1Hz.

An example system could use an integrating pixel camera (e.g. a standard CCD

camera) to begin capture of the interferogram at fixed intervals (i.e. samples)

within the interferogram modulation period. To illustrate the system, figure 1.4

shows an example plot of four captures (with a short integration period) as the

phase is shifted continuously with time.

Figure 1.4: An example plot showing four captures per modulation period. The phase

offset of this example, φ = -60 ◦, is determined by acquiring the quadra-

ture measurements and using equation 1.20.

This method requires a reference signal, linked with the phase shifting mechanism,

to synchronise with the capture times of the detector (e.g. using a phase lock

loop). The read rate required from the detector is linked to the modulation fre-

quency of the interferogram. For low modulation frequencies, a standard digital

camera can be used to capture interferograms. However, like the phase stepping

interferometer, this system can be susceptible to errors from background low fre-
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quency light (i.e. intensity variation over the long modulation period). Therefore,

a high modulation frequency is desirable. This requires a method of gating ex-

posure to the incident light (e.g. optical chopper) if the modulation frequency

exceeds the frame rate of the detector [32]. Additionally, if the fringe pattern

remains stable, the measured intensity can be integrated/averaged over multiple

modulation periods.

1.3.6.3 Heterodyne demodulation through mixing

Another method of extracting the phase from a modulated optical signal is

through electronic signal mixing. The objective of the method is to down-mix

the measured intensity signal using a local oscillator or reference signal. This

technique is used in other demodulation systems outside the modulated camera

field (e.g. superheterodyne radio receiver) [33]. The type of waveform used for

mixing largely determines the complexity of the system design (e.g. electronic

circuitry). Mixing two electronic signals (i.e. the measured optical signal and ex-

ternal reference signal) involves multiplying the components in each signal with

the components of the other signal. The multiplication of two sine waves produce

sum-and-difference components (explained further in section 3.1.2); if they have

the same frequency, a DC phase result is produced (e.g. cos(φ)). Since the mixing

process can be conducted at any time (or all the time), mixer devices can oper-

ate in parallel; this method can be used to output phase information continuously.

The simplest implementation of this method involves mixing the measured signal

with a square wave. One method of implementing square wave mixing involves

switching the incident signal (e.g. using a switching multiplier) i.e. the input

wave is inverted and non-inverted every half modulation period. Figure 1.5(a)

illustrates the square wave mixing process.

This measured signal is mixed with the reference square wave with different phase

offsets; for quadrature demodulation, the measured signal is mixed separately

with four reference signals, as shown in figure 1.5(b). Low pass filtering isolates

the DC component in the mixer output (i.e. phase information), which is then

used in equation 1.20.

The alternative to this scheme is to analogue mix the incident signal. Implement-
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(a) (b)

Figure 1.5: Example plots of an incident waveform (phase offset φ = 90 ◦) and a

demonstration of the demodulation process using square wave mixing.

The left figure (a) shows the mixed measured signal (blue sine wave) with

the in-phase square wave (red), resulting in the (magenta) pre-filtered

waveform and the ideal LPF output (black trace). The right (b) shows

the mixed and LPF outputs (with a normalised amplitude range), I0, I1,

I2, I3, where the measured signal is mixed with their respective phase

offset local square wave. The phase calculation using equation 1.20 is

shown.

ing an analogue mixing demodulator can be more complex than simply switching

a signal (discussed further in section 3.1.3.2) especially for in-pixel implementa-

tions. However, it enables the mixing of the measured signal (ideally a sine wave)

with a reference sine wave. In contrast to square wave mixing, the measured sig-

nal is mixed with only one sine wave instead of a series of sine waves, resulting in a

higher retention of spectral power at DC (which contains phase information) and

a cleaner frequency spectrum (allowing for a relaxation in the filter requirement

and a reduction in out-of-band noise which could saturate electronic circuitry).

The MLC used for capturing widefield interferograms in this project uses this

type of demodulation technique (explored further in section 3.1.1).

1.4 Coherence

The wave equation expressed in section 1.2 makes the assumption of the ideal

circumstance where light has a single optical frequency, i.e. monochromatic light.

If a light source emits only at one frequency, it is possible to fully predict (and
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expect) interference with itself (or another single frequency beam) at any point

along its propagation. The beam can be described as being totally coherent at

all temporal points, i.e. infinite coherence time and length.

The coherence of a beam is a set of properties which define how well the beam will

enable interference [12]. A real source will emit light within an optical frequency

band and the instantaneous emission frequency at any point in time cannot be

predicted. For this reason, the frequency difference (beat frequency) between two

separate sources is unknown and can vary randomly; the light emitted can be

considered mutually incoherent. If the light is interfered, they will not produce a

visible fringe pattern using conventional detection methods (explored further in

chapter 6). Therefore, simple interferometers use light from single split sources.

However, even this interferometer arrangement has limitations.

The temporal coherence determines the amount of phase drift (and therefore fre-

quency variation) that occurs in an emitted waveform as it propagates, i.e. the

degree of a phase relationship with itself at origin at different temporal points in

a wave. The temporal coherence of a light wave is an important factor for ampli-

tude splitting interferometer arrangements (e.g. Michelson interferometer), where

interference occurs between the wave and a time delayed version of that wave.

The coherence time, τ , of light is the amount of propagation time between which

light is considered temporally coherent. The coherence length, Lc, is the distance

that light travels in that coherence time. The visibility of a fringe pattern in the

interferometer will decrease as the optical path length difference approaches the

coherence length as illustrated in figure 1.6 [17]. If the OPL difference is more

than the coherence length, then the two interfering light beams will be considered

incoherent, i.e. no visible fringe pattern.

The coherence time is related to the bandwidth of the light source, ∆f , such that;

Tc∆f ≈ 1 (1.20)

A source with a large range of emission frequencies, ∆f , loses correlation with

itself in a shorter time than a source with a smaller bandwidth.

Similar to temporal coherence, the spatial coherence of a wave determines the

amount of phase drift observed across the wavefront, i.e. the phase relationship
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Figure 1.6: A plot of the visibility of a fringe pattern as the OPL difference between

interfering beams approaches and extends beyond the coherence length

of the source [12].

at different point spatial points. The spatial coherence of a light wave is an im-

portant factor for wavefront splitting interferometer arrangements (e.g. Young’s

double slit experiment).

1.5 Interferometer arrangements

An interferometer can be designed in a number of ways. Two of these arrange-

ment categories are double path and common path interferometers.

In a double path (D-P) interferometer, a beam is split and each beam travels

different paths before being interfered. These paths can be referred to as the

reference arm and object arm, where often the reference arm retains a control

wavefront and the object arm transmits through or reflects off a sample. The

source of an amplitude splitting arrangement is commonly split using a beam-

splitter, which typically splits the light 50:50 and into a perpendicular direction,

or alternatively, using a polarising beamsplitter, which splits a beam depending

on the polarisation state of the beam components.

The Michelson interferometer is one form of a double path interferometer [7, 10]

(figure 1.7(a)). A beam from a source is split into separate arms using a beam-

splitter. Each arm reflects back to the initial beamsplitter using mirrors, gener-

ating an interference fringe pattern at the exit of the beamsplitter. A variation of

this interferometer is the Twyman-Green interferometer [34–36] which replaces
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(a) (b)

Figure 1.7: Schematics of double path interferometers. Left (a) shows the Michelson

interferometer and right (b) shows a Mach-Zehnder interferometer.

the reference mirror with a reference surface; this setup is used to test optical

components for difference/defects (i.e. phase comparison between reference and

test surfaces).

Another double path interferometer is the Mach-Zehnder interferometer [37, 38]

(figure 1.7(b)). This setup also uses a beamsplitter to split a beam into separate

arms, however, the beam paths reconverge into another beamsplitter (after re-

flecting off individual mirrors) where interference occurs.

In these interferometers, the phase of the observed interference pattern varies

as the OPL of the object beam varies (assuming a static reference arm). Ad-

ditionally, these homodyne interferometers can be converted into a heterodyne

interferometer by introducing a frequency shifting device into either interferom-

eter arm.

For a common path (C-P) interferometer, the interfering beams propagate mostly

along the same path. Temporally varying phase (e.g. from vibration) common

in both interfering beams is cancelled out when they interfere; the interferometer

produces stable fringe patterns. Figure 1.8 shows examples of three C-P arrange-

ments.

One form of a common path interferometer is the lateral shearing interferome-

ter [39]. The arrangement uses a shear plate, made from high quality flat glass

(figure 1.8(a)); when a beam is incident on the plate at an angle, it is reflected

off the exterior surface. The incident beam is also transmitted into the plate
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and reflected off the internal surface at the other end of the plate. This beam

then transmits back through glass and interferes with the first reflected beam,

generating a laterally shifted interference pattern. One usage for the shearing

interferometer is to determine whether a beam is collimated [40]. In simple ar-

rangements, the thickness of the plate sets the requirement for the coherence of

the incident light (to ensure a visible pattern), however, more complex arrange-

ments can be used to relax the coherence requirement [41].

Another common path arrangement is the point diffraction interferometer [42,43].

The setup includes an apparatus which operates like a spatial filter (figure 1.8(b));

by placing the aberrated beam through a lens and placing a pinhole at the focal

plane, all but the DC spatial frequency is filtered. In point diffraction inter-

ferometry, the pinhole apparatus is semi-transparent. At the observation plane,

an interference pattern is generated between the filtered reference beam and the

‘semi-transmitted’ object beam. The pinhole-lens arrangement is simple, however

considerations need to be made for alignment and high optical power arrange-

ments (i.e. trade-off between optical power and pinhole material costs).

The Sagnac interferometer system is used to determine rotational speed [44, 45].

In this common path arrangement, a beam is split into arms, after which each

arm propagates in different directions (figure 1.8(c)). Mirrors are placed in the in-

terferometer to form a ring where the split beams overlap (e.g. three mirrors and

beamsplitter can be positioned to reflect the beams into a square ring travelling

in opposite directions). As the interferometer rotates, one beam travels a shorter

path compared with the other, generating a shifting interference fringe pattern;

the rate of this shift is used to determine the angular speed of the interferometer.

The choice in using different interferometer arrangements depend on the experi-

mental need. The key difference between the C-P and D-P interferometers is that

the C-P reveals the phase difference relative to a shifted or filtered version of it-

self; it is optically self-referenced. This property of the C-P interferometers can

be both an advantage and disadvantage. The setup generates a stable interfero-

gram, however, the phase range of the system is limited by the optical component

arrangement. The arrangement also has the ability to produce an interferogram

without a separate reference beam, allowing for compact interferometer designs

and relieves issues with a separate beam’s mutual coherence requirement with
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(a) (b) (c)

Figure 1.8: A selection of common-path interferometers, where the interfering beams

travel along the same path (with a slight deviation). The left (a) diagram

shows a shearing interferometer using a shear plate. The wavefront re-

flected from the front of the plate interferes with the wavefront reflected

from the back of the plate. The middle (b) diagram shows the point

diffraction interferometer, an unfiltered wavefront interferes with a spa-

tially filtered wavefront using a semi-transparent pinhole apparatus. The

right (c) diagram shows a Sagnac interferometer, a beam is split and

each beam travels round a ring of mirrors in opposite directions before

interference occurs.

the aberrated beam.

Alternatively, the D-P interferometer is used to determine the phase difference

between an object and reference beam. This allows for a variable phase range

(up to the coherence length difference) but will not produce a stable interfero-

gram if each arm experiences separate vibrations. The D-P interferometer can be

less complex (and less expensive) to setup and align than a C-P interferometer.

Finally, intensity variation across an aberrated beam could make image capture

difficult in a C-P interferometer due to its self-referencing property. For example,

if the incident pattern was strongly scintillated or had high spatial frequencies,

fringe visibility may be extremely low (or non-existent). Fringe visibility is more

controllable if a separate reference beam was used to interfere with the aberrated

beam.

The widefield ultrastable heterodyne interferometer described in this project uses

an electronic feedback system to keep a captured interferogram stable, where the

measured phase is relative to a single point on the interferogram (eliminating pis-

ton phase), whilst maintaining an interferometer setup with a separate reference

arm. If a situation arises where the absolute phase difference is required (i.e.
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phase difference between the reference and object arm), then the electronic local

reference signal can simply be switched from the feedback system to an external

signal.

1.6 Electronic Photodetection

1.6.1 Widefield imaging

To extract phase from an interference fringe pattern, a measurement of the pat-

tern intensity is required. The intensity at a single location can be measured

using a point detector, for which the capture unit and phase extraction compo-

nents can be simple and inexpensive. Measuring the intensity values across a

2D region can be used to construct widefield phase images, revealing information

about the wavefront of the interfering beams.

A widefield phase image can be used to observe variations in physical properties

across an inspection object (i.e. changes in mediums, thicknesses or to acquire the

surface profile), the interferometer arrangement (i.e. from tilting or path length

changes), or detecting anomalous results across the data set (i.e. from electronic

noise or an aberration in the apparatus). It is possible to generate a widefield

image using a point detector by scanning across a fringe pattern [14], however,

due to timely mechanical translations, any fringe pattern change during a scan

(e.g. changes in refractive index or the thickness of an object, or due to external

vibration) will result in unstable interferograms.

The simplest solution for capturing widefield interferograms involves using an ar-

ray of photodetectors to capture light; commercially available digital cameras are

designed using this array structure. Since each photodetector unit in the camera,

known as a pixel, operate independently of each other, only the locally incident in-

tensity (e.g. of a fringe pattern) is measured and output. Commercially available

cameras are ideal for widefield capture of homodyne fringe patterns. However,

an alternative operating scheme or camera is required for capturing the high fre-

quency heterodyne fringe patterns (section 2.1).
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1.6.2 Pixel operation and design

The photosensitive area of each camera pixel converts incident light into a pho-

tocurrent by generating an electron-hole pair. Current flow can be described as a

movement of charge carriers. In a semiconductor, these carriers exist as an elec-

tron flow in the material conduction band and a flow of holes (electron vacancy)

in the valence band [1]. The properties of a semiconductor allow for an electron

to move from the valence band to the conduction band if it supplied with enough

energy. The amount of energy required, i.e. the bandgap, is dependent on the

material.

Light can be described as a stream of photons [17] and each incident photon has

a set amount of energy, E, such that;

E = hv =
hc

λ
(1.21)

where h is Planck’s constant (6.626× 10−15 J s), and v, c and λ is the frequency,

speed and wavelength of the light respectively. In order to generate an electron-

hole pair, each photon must supply energy greater or equal to the semiconductor

bandgap. For example silicon (Si) has a bandgap of 1.11eV and would require

incident light with λ ≤ 1.12µm, whereas gallium arsenide (GaAs) has a bandgap

of 1.43 eV and would require λ ≤ 868nm [21].

In addition, the amount of current generated will also depend on the design of

the photodetector, or in this case the pixel. The quantum efficiency, η, of a light

detection device is the ratio of electron-hole pairs generated given the number of

incident photons, and is usually dependent on the light wavelength. Factors such

as additional transparent layers and coatings can affect the quantum efficiency.

The responsivity of a photodetector, R, indicates the amount of photocurrent

generated given the amount of incident optical power at specific frequencies (and

therefore wavelengths), and can be calculated using;

R = η
q

hv
(1.22)

where q is the charge of an electron. The responsivity has units of amperes per

watt (AW−1).

To create compact camera devices, all pixels (and surrounding ancillary circuitry)

are fabricated on to a small section of semiconductor material. Each pixel con-
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tains a dedicated area which is light sensitive; the pixel fill factor describes what

proportion of each pixel consists of the photosensitive area. A large fill factor is

desirable as this provides a higher conversion from an optical to electronic signal

(given a fixed pixel size).

The overall size of the pixel is also important; the pixel pitch is used to describe

the distance between the centres of each pixel. For a uniform pixel layout, the

pitch is equal to the pixel width and length. Considering a fixed camera chip

fabrication area, a smaller pixel size will allow for more pixels in an array, which

in turn leads to a potentially higher spatial resolution for any images captured.

However, since the photosensitive area has been reduced, less photocurrent is

generated (assuming the same amount of incident light), leading to lower signal

to noise ratios (section 1.7). The design of camera chips (including the pixel and

ancillary circuitry) often take into consideration the trade-offs between resolution

and SNR, with particular emphasis put on reducing the noise contributions to

small signals from surrounding circuitry [46].

Two commonly used technologies utilised for camera pixel design include the

charged coupled device (CCD) or complementary metal oxide semiconductor de-

vice (CMOS); these two technologies define the method of pixel addressing and

reading.

In a CCD pixel, the incident light generates charge over an integration period,

which is collected into a signal bin (i.e. charge collection device) [47]. After the

integration period, the collected charge is transferred along the camera array into

the next pixel. The pixels closest to the readout stage passes its data onto the

output; the information collected by each pixel is read out sequentially. Typical,

a CCD pixel can be designed so that most of the pixel area is used to detect light

(close to 100% fill factor). The CCD array is manufactured using specialised

fabrication processes which are specifically designed to store and transfer charge.

It is not designed to have any additional circuitry within the CCD pixel (i.e.

any transistors designed using the CCD process would have reduced performance

when compared to using the CMOS process [48]). The CCD’s simple design,

low cost and low noise figures (down to a few electrons over long integration

times [49]) made it the preferred camera pixel design technology over most of the

20th century [50].
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The initial MOS pixel devices consisted of a photodiode that was ‘set’ using a

transistor [51]. Each photodiode has an inherent capacitance which could be used

to store charge. However, once the pixel is selected, the photodiode is connected

to the output bus directly, leading to complications such as additional bus capaci-

tances and impedances. This problem was addressed with addition of pixel buffer

components [52]. Unlike the CCD type camera, a camera designed with this type

of pixel would suffer from a rolling shutter effect (each pixel’s information is read

one at a time, with no storage outside the read time).

One major advantage of the CMOS architecture is the ability to allow any pixel

to be selected; this permits direct access to any pixels. In addition, some of the

pixel area could be sacrificed in exchange for additional in-pixel circuitry; this

could include amplifiers to improve performance as well as other subsystems that

perform ‘per pixel’ operations. This, in contrast to performing all operations off

chip, could improve the integratability of the system and limit exposure of the

small signals to external noise.

1.6.3 In-pixel gain

Due to the size of a typical pixel, specifically the photosensitive area of each pixel,

the photocurrent generated with light incident would be small, typically between

a few picoamps and nanoamps. For example, if the photosensitive section of a

single pixel had an area of 2.116 nm2 (pixel pitch and fill factor equal to 115µm

and 16% respectively) and background light with an intensity of 1.3Wm−2 [53]

was incident on the camera (2.75 nW per pixel), assuming that the responsivity

of each pixel was 0.3AW−1, the pixel would generate ∼0.825 nA of photocurrent.

Direct analogue-to-digital conversion of this small signal would be unfeasible with-

out gain applied.

The CCD pixel is designed to collect charge generated by incident light within

its pixel structure. By adjusting the exposure/integration time each pixel has

to the light source, the charge collected changes; signal gain increases with the

integration time.

The CMOS pixel gain method varies with the pixel design. The photosensitive
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region can be designed like a photogate, which acts like a CCD pixel, storing

generated charge over an integration period. The photosensitive component can

also be designed like a photodiode, producing a constant photocurrent signal.

The current generated can be integrated on to a separate storage component

(e.g. a capacitor) implemented into each pixel. However, unlike CCD implemen-

tations, it is also possible to amplify the continuously generated photocurrent in

each pixel; this requires converting the photocurrent into a voltage. This type of

CMOS pixel can either incorporate a linear or a logarithmic frontend scheme.

1.6.3.1 Integrating pixel

Integrating pixel designs use a storage bin in conjunction with the photocurrent

generated by the photodetector. As a concept, the pixel can be modelled as capac-

itor with a photodiode in reverse bias generating photocurrent. If the capacitor,

with known capacitance C, is charged up to a known voltage and then allowed to

discharge due to the photocurrent generated, ipd, over a known integration time

period, dt, then the measured change in voltage, dV , could be used to determine

the photocurrent using the capacitor current-voltage relationship (ipd = C dV
dt
). If

the incident light levels are low, increasing the integration time achieves a larger

change in voltage given the amount of photocurrent generated.

Since this method requires time to collect charge, frame rates are affected; the

lower the light signal, the longer the integration time required to obtain a satis-

factory SNR; the method is not suited for the continuous measurement of incident

light with a high frequency component. The integrating pixel scheme is ideally

suited for CCD arrangements as all pixels collect charge at the same time (before

they are serially read out), while CMOS pixels require setting (via addressing)

before charge is collected.

1.6.3.2 CMOS linear pixels

One method of implementing a current-to-voltage conversion in a CMOS pixel

involves using a linear frontend. As shown in figure 1.9, a linear frontend pixel

can be made with a current source, i.e. photodiode, put in series with a resistor.

Under ideal circumstances, the voltage seen at the output of the frontend will fol-
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Figure 1.9: Schematic of a simple linear frontend pixel. The photodiode is in series

with a resistor. The voltage at the frontend output is linearly related to

the photocurrent generated.

low Ohm’s law, where the output voltage of the arrangement will be dependent

on the resistor value (V = iR), and remain linear for all values of the photocur-

rent.

The linear current-voltage relationship has advantages when detecting a large

intensity range, e.g. if an incident optical signal has a large AC amplitude/mod-

ulation depth. Determining the generated photocurrent (and therefore incident

light intensity) using the output voltage under these conditions is simple. How-

ever, given that the amount of photocurrent generated in a pixel is around the

picoamp to nanoamp range, the resistance required to produce a workable volt-

age would be extremely high. For example, in order to output 0.1mV, a resistor

with resistance between 106 - 109Ω is required. Using the AMS C35 fabrication

process [54], a 1MΩ resistor would require a silicon square of 35µm × 35µm,

whilst a 200MΩ resistor would require a 565µm × 565µm square [48]. This

would be an unreasonable restriction in the pixel design. Additionally, a resistor

made this way will not produce a truly linear resistance as parasitic capacitances

in the implementation will add frequency dependant impedances to the pixel’s

frontend response.

1.6.3.3 CMOS logarithmic pixels

An alternative design to the linear frontend for the current-to-voltage conversion,

involves using a logarithmic frontend. The frontend of the pixel can be designed

using a transistor in series with the photodiode, as shown in figure 1.10.
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Figure 1.10: Schematic of a simple logarithmic frontend pixel. The transimpedance

of the transistor is dynamic, with the voltage at the frontend output

having a logarithmic relationship with the photocurrent generated.

The voltage observed at the output in this scheme has a logarithmic relationship

with the photocurrent generated. A large transimpedance gain (G × V/I) can be

achieved using a small amount of the pixel area. This reduction in the frontend

area improves the camera resolution, cost and response speed of the pixel [48,55].

The downside of this frontend implementation is that the output voltage is not

linearly related to the photocurrent generated making it difficult to determine

the incident light intensity. However, over a small enough photocurrent range,

the current-voltage relationship can appear linear.

1.7 Noise and error sources

In the ideal experimental scenario, a detector would be able to exactly measure

the intensity of a fringe pattern generated by an interferometer. The detection

unit would be able to determine the phase precisely from this measurement, even

if the intensity of the optical signal was low. However, in a real system, contri-

butions to the measured signal from internal and external noise sources increase

the system output uncertainty, and therefore reduce the accuracy of the system.

As noise (and other sources of errors) degrade the performance of a system, it is

important to know its cause and, if possible, how to minimise it.

1.7.1 Shot noise

Light can be described as a stream of discrete packets, known as photons, emitted

from a source. From every real source, the number of emitted photons (per unit
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time) will not be constant, but it can be modelled by its statistical fluctuation.

These fluctuations in the number of photons, and therefore variation in measured

intensity using a photodetector, is known as the optical shot noise. This noise is

not dependent on the quality of the detector and is unavoidable, representing the

fundamental limit to detection.

The events causing shot noise increase with the square root of the expected num-

ber of events [56](i.e. signal), such that;

Nshot =
√

Nsignal (1.23)

Increasing the number of collected photons (e.g. increasing integration time or

with a high intensity beam), and therefore generated photocurrent, also increases

the amount of shot noise. However, the relative proportion of the shot noise de-

creases with higher intensities (due to the square root relationship), which will

increase the signal to noise ratio (considering only the shot noise). Since the opti-

cal power of the shot noise is only proportional to the signal power, it is apparent

at all frequencies, i.e. shot noise is white noise.

In addition to the optical shot noise, shot noise can also occur in electronic

circuitry. Similar to the optical case, electric current can be described as a flow

of electrons. The direction of the electron flow is a random process which causes

a fluctuation in the observed current [57]. The shot noise can be described;

ishot =
√

2qisignal∆f (1.24)

where q is the electron charge, isignal is the signal current, and ∆f is the signal

bandwidth. Again, at high signal intensities, relative shot noise (ishot/isignal) de-

creases. Since each pixel in a camera only generate small amounts of current,

electronic shot noise could be the dominant source of noise on a single captured

image. Additionally, since it is not dependent on the temperature (thermal noise)

or operation frequency (flicker noise), it cannot be eliminated by operating the

system at a high frequency and low temperature. Increasing the measured inten-

sity for an image capture (e.g. increasing integration time on a CCD) or averaging

multiple images (to reduce the random variations) are, techniques that could be

implemented.
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1.7.2 Thermal noise

Thermal noise (or Johnson-Nyquist noise) occurs due to random motions of elec-

trons in resistive materials [58]. This causes small voltage fluctuations, Vthermal,

on the system’s terminals, such that;

Vthermal =
√

4KBTR∆f (1.25)

where KB is the Boltzmann constant (1.38×1023 JK−1), T is the absolute tem-

perature, R is the resistance and ∆f is the bandwidth of the signal; there is

no current term in equation 1.25, so thermal noise will be present in a system

even if there is no signal. At higher temperatures, an increase in electron mo-

tion occurs, which will in turn increase the amount of thermal noise. Therefore,

methods of reducing the system temperature could be used to reduce thermal

noise (e.g. heat sinks, exhaust fans, liquid cooling, etc). In electronic systems,

thermal noise could be considered to be a white noise source (uniform power

contributions at all frequencies up to ∼6000GHz [59]) and operating a system

at different frequencies would not affect the thermal noise contribution (although

a limitation of the operational bandwidth could reduce the overall thermal noise).

1.7.3 Flicker noise

Flicker noise is present in all semiconductor devices and occurs due to resistance

fluctuations in silicon, and crystal defects in diodes and transistors [60]. This

in turn creates voltage or current fluctuations (considering Ohm’s law). Flicker

noise is dominant at low frequencies [61], such that;

iflicker =

√

K
isignalα

fβ
∆f (1.26)

where K, α and β are fabrication process dependent parameters, isignal is the

signal current, f is the signal frequency, and ∆f is the system bandwidth. The

contributions from flicker noise decreases as the system frequency increases. The

reduction of flicker noise in the detection unit is one key advantage of using a

heterodyne interferometer system over a homodyne system.

In detection, the flicker noise appears as a low frequency phenomenon and at

higher frequencies it can be overshadowed by noise from other sources; the corner

frequency where flicker noise is no longer considered dominant is often used as an
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electronic device design parameter. This frequency is illustrated in figure 1.11.

The corner frequency, fc, of a component fabricated on a semiconductor [62] can

be determined using;

fc ∝
K

CoxWL
(1.27)

where K is a process parameter, Cox is the oxide capacitance, and W and L is

the width and length of the device. Since the process parameter and the oxide

capacitance is dictated by the fabrication process and semiconductor properties,

decreasing the flicker noise corner frequency can be implemented by designing a

larger device.

Figure 1.11: An example plot of the noise contribution to a system. In this plot, at

low frequencies (< fc) the dominant form of noise is flicker noise. At

high frequencies (> fc) the flicker noise is sufficiently low so that random

noise from other sources, such as from thermal and shot noise, becomes

the dominant source of noise.

1.7.4 Fixed pattern noise

Even though each pixel in a camera array has the same design, each component

in the pixel can have slight variations in its performance. This generates errors

known as the fixed pattern noise (FPN) in the output image. The variation seen

in each pixel is caused by factors such component layouts and fabrication process

parameters; careful design of components can reduce FPN [46]. Each stage of

the camera circuitry can add further contribution to the FPN and can produce

distinct glitches in the image. For example, where readout and amplification

circuitry is designed in columns, distinct vertical patterns would emerge in the
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output image. Since the FPN causes systematic errors in the image, it is possi-

ble to calibrate the camera by capturing an initial FPN image and subtracting

mismatched values from subsequent images in order to reduce FPN.

1.7.5 Vibration and microphonics

In an interferometer system, temporal phase shifts observed in an interferogram

can be attributed to changes in a beam’s optical path length (OPL) within the

sub-wavelength region (i.e. nanometres). If the physical interferometer arrange-

ment is subjected to even tiny amounts of vibration (microphonics), the phase

accuracy of the system will be affected (e.g. an OPL offset of λ
2
causes a con-

structive interference pattern to change to a destructive pattern).

If the vibration frequency is much higher than the image acquisition rate, the

net result would be a reduction of fringe pattern visibility; the fringe visibility is

dependent on the vibration amplitude (in addition to other factors such as coher-

ence, polarisation, etc). This reduction equates to J0
(

2π
λ
A
)

of the intensity in an

otherwise stationary system (where J0 is the Bessel function of order 0 of the first

kind, and A is the amplitude of optical path length variations [63]). The equation

suggests that the first zero in the visibility occurs when the vibration amplitude is

∼1.2λ (no fringe visibility with this amount of vibration). Beyond this amount,

there is an induced sign change in the visibility, indicating an inversion of the

fringe contrast. For systems where the vibration is unknown, random, or time

varying in frequency or amplitude, interpreting the fringes becomes difficult at

higher vibration amplitudes.

Environmental influences to an interferometer are not just limited to vibrations,

continuous changes in the propagation medium (e.g. from a slight breeze or

fumes) or change in medium density (e.g. due to a temperature difference in the

arms of the interferometer) could also cause an unwanted phase variations in the

measured interferogram. Methods of stabilising an interferometer can be achieved

by physically modifying the setup, for example, reducing environmental factors

such as temperature changes and vibration [64], or through the use of sensors and

feedback into the systems mirrors to counteract unwanted OPL changes [65, 66].

Interferometer arrangements with self-referencing (e.g. common-path) could also

be used to produce a stable interferogram (discussed further in section 1.5 and
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section 2.3).

1.8 Project summary

The work presented in this thesis explores the use of modulated light cameras

(MLCs) to produce widefield heterodyne interferograms. The flow chart shown

in figure 1.12 depicts the direction of ideas used to produce the interferometer

systems presented in this thesis.

Figure 1.12: A flow diagram showing the ideas used in implementing the interferom-

eter systems discussed. The camera is used to capture widefield het-

erodyne interferograms. Modifying the setup produces an ultrastable

configuration, which can be used to capture two laser interferograms.

Standard digital cameras are suited to capturing homodyne interferograms since

the frame rate is not critical if a steady fringe pattern is incident. Conversely,

a point detection system is commonly used for capturing heterodyne fringe pat-

terns as it has the required frequency response to detect the modulated optical

signal and the system only needs a single demodulation circuit and ADC.
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A modulated light camera is designed to capture modulated light and demodulate

the high frequency contents of incident light; the measurement outputs include

the DC intensity, AC amplitude and/or the phase offset (relative to a reference

signal). The cameras are designed to output data with a frame rate comparable

with regular digital camera devices. The demodulation process is conducted on

each pixel of the MLCs.

The motivation behind developing the first system presented in this thesis was

to demonstrate that widefield images of heterodyne interferograms can be cap-

tured using an MLC. If the assumption is made that the MLC camera becomes

mass-producible, then a user designing an interferometer system does not need

to make the choice between reduced low frequency influence (i.e. point-detection

heterodyne) and real time widefield imaging (i.e. widefield homodyne), the sys-

tem presented in this initial concept experiment can do both.

The second system developed was the ultrastable widefield heterodyne interfer-

ometer. In this system, the modulated optical signal detected by a single pixel

was fed back into the camera and used as the demodulation reference signal,

effectively making the interferometer system electronically self-referenced. This

makes the captured interferogram immune to the effects of piston phase change

(e.g. due to vibrations); a key trait of common path interferometers. However,

the ultrastable system retains the availability of a separate reference signal (e.g.

for boosting the optical signal) as well as keeping the interferometer arrangement

simple and inexpensive. A user deciding to use either a C-P or D-P interferometer

for their respective advantages, can alternatively use this ultrastable system.

As an extension to the ultrastable system, a third interferometer system was

developed to capture the fringe pattern generated by two separate lasers. The

unknown and randomly varying optical frequency difference between the two

incoherent sources was tracked using a single pixel on the MLC and used as

the demodulation reference signal (as long as the optical frequency difference is

within the MLC operation bandwidth). A major constraint of an interferometer

design is the light coherence restriction, e.g. the temporal coherence for single

split source interferometer will limit the optical path length difference between

the arms. This system employs a major relaxation in the coherence requirement

for the light source, such that the interferograms generated by two separate laser
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can be captured; interferometers can be designed with this de-restriction in mind.

1.8.1 Structure of thesis

Chapter 2 gives a review of systems that could be used to acquire the phase of

incident modulated light in the widefield region. A review of developed modu-

lated cameras is given. Reviews of interferometer systems that produce stable

interferograms and of two laser interference systems is also given.

Chapter 3 gives an overview of the MLC camera used to capture the interfero-

grams produced. This includes an outline of the key components used in each

pixel for capture and demodulation, and an analysis of the camera’s performance.

The chapter also details components used in the various interferometer arrange-

ments presented in this thesis, as well as the interface system used to obtain

images from the MLC chip.

Chapter 4 explores the widefield interference patterns captured using the MLC.

The first set of results show the MLC capturing both homodyne and heterodyne

widefield interferogram images. Next, using the knowledge of incident wavefronts

(in one setup of the interferometer), a theoretical fringe pattern was generated;

a measured interferogram is compared with the theoretical pattern. Finally, a

phase shift induced along part of one arm in the interferometer was captured as

a proof-of-concept experiment.

Chapter 5 explores the main aim of this thesis; the ultrastable interferometer sys-

tem. The theory of temporally changing phase, which could relate to unwanted

vibration for example, is modelled into the operation of the system. An expla-

nation of how a signal feedback is used to cancel out these effects is presented.

Experiments are conducted by introducing a fast changing OPL (relative to the

frame rate) into the interferometer (i.e. vibration) and the physical stability lim-

its of the system are determined. Experiments are also conducted simulating the

effects of vibration to determine extended stability limits. The results where the

characterisation of a profiled object determined using the ultrastable interferom-

eter, are presented.

Chapter 6 explores a novel two laser interferometer system using the MLC. Using
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the ultrastable system, interferogram images are captured, even though the beat

frequency generated by the two lasers is unknown (required for many demodula-

tion techniques). The effects of the varying modulation frequency on the MLC

and the images produced is also discussed.

Chapter 7 summarises the work presented in this thesis and discusses the merit

of the MLC in heterodyne interferometers; specifically in its ultrastable configu-

ration.

1.9 Publications based on this project

R. Patel, S. Achamfuo-Yeboah, R. Light, and M. Clark, “Widefield heterodyne

interferometry using a custom CMOS modulated light camera,” Optics Express

19, 24546–24556 (2011).

R. Patel, S. Achamfuo-Yeboah, R. Light, and M. Clark, “Ultrastable heterodyne

interferometer system using a CMOS modulated light camera,” Optics Express

20, 17722–17733 (2012).

1.9.1 Pending publication on this project

R. Patel, S. Achamfuo-Yeboah, R. Light, and M. Clark, “Two laser interferome-

try”
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Chapter 2

Literature review

In this chapter, a review of modulated light cameras (MLCs) is given with an

explanation of their operation. Key specifications of the cameras are provided

as a summary. This chapter will also reviews interferometer systems that are

analogous to the experimental systems described in this thesis. These include

heterodyne interferometer systems that capture widefield fringe patterns, inter-

ferometer systems that produce stable phase measurements using electronic signal

feedback, and widefield two laser interferometer systems.

2.1 Modulated light cameras

Modulated light cameras (MLCs) is a term given to detection units capable of

capturing, storing (if necessary) and demodulating incident modulated light sig-

nals. The aim of these cameras is to determine the phase of modulated light

and are primarily used for 3D ranging [67] or LIDAR (light detection and rang-

ing) [55]. The incident signal produced in LIDAR has a similar form to that

observed in heterodyne interferometry (equation 1.17). A LIDAR system is used

to measure distances within the range of the modulated signal’s wavelength, as

opposed to the optical wavelength in interferometry. Due to the high modulation

frequencies used in these ranging applications (e.g. emitted modulation frequency

of 15MHz gives an imaging range of 10m [55]), direct image capture using com-

mercially available cameras will not provide the necessary frequency response or

a demodulation method. One key factor to note is that the techniques used in

an MLC configuration is not limited to just the pixel/camera design, for example

some methods use external gated structures (such as slit masks) to control expo-
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Chapter 2. 2.1. Modulated light cameras

sure [32] or use lock-in amplifiers [33] to control when pixels begin integration [68].

2.1.1 CCD lock-in arrangements

2.1.1.1 Stenflo and Povel

The first implementation of a lock-in pixel for detecting modulated light was

described by Stenflo and Povel [68]. The intended use for the arrangement was

in the field of polarimetry (measurement of the polarisation state of transverse

waves as it propagates through or reflects off an object). The technique involved

attaching a lock-in amplifier to a single pixel in order to initiate integration. As

the single pixel used an external demodulator, a comparative multi-pixel system

would be slow; the read rate of the CCD pixel was limited to 5MHz. In a se-

rial read-out arrangement for example, a 32×32 pixel array taking two samples

per pixel per modulation period would have a maximum detectable modulation

frequency of about 2 kHz. In contrast, parallel read-out arrangements would be

large, power intensive, and costly due to the requirements of the multiple lock-in

amplifiers.

A potential pixel array solution described by Povel involved using a slit mask to

expose (and block) light to alternate rows of a commercially available CCD cam-

era (385×288 pixel array) [32]. The technique used the CCD camera’s charge

transfer method in order to make two measurements per modulation period,

demonstrating how a CCD could be used directly as a demodulator. In the

first half cycle of a modulation period, light was integrated on exposed rows (no

exposure on blocked rows). Charge on each pixel was transferred down one row

(i.e. into shielded rows) and during the second half-period, the light was inte-

grated onto the exposed pixels (previously contained covered row data). This

cycle could be repeated (i.e equivalent to increasing the integration time) until

the pixels are read out. The two results obtained per ‘pixel’ were used to cal-

culate the amplitude of the modulate light. The technique was used to measure

modulated light with frequencies of 50 kHz and 100 kHz. However, this technique

suffered from misalignment problems with the slit mask (e.g. in the presence of

vibration) and required two pixels to measure modulated light at one position

(loss of spatial resolution).
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Figure 2.1: Diagram of Povel’s slit mask CCD design (Povel et. al 1990 [32]). Light

falls on unmasked pixels (G+), integration begins in the first half modu-

lation period. Integrated charge is then transferred to the masked pixels

(respective G- pixels) and integration begins for the second half of the pe-

riod in the now empty pixel. Extended integration times can be achieved

by transferring charge back and forth before frame read-out.

2.1.1.2 Spirig and Lange

If a demodulation technique takes only two samples per modulation period, it

is possible to determine the amplitude and the offset of modulation signal (as

long as phase difference between the reference and incident signal remains con-

stant). Spirig improved on the lock-in pixel design by increasing the number of

samples taken per modulation period from two to four [69], making the extrac-

tion of phase possible (section 1.3.6). A custom fabricated 3×3 CCD pixel array

with a fill factor of 17% and pixel size of 87.5µm×80µm was produced. Each

pixel consisted of a single photosensitive area (a photogate) with four storage

gates. The transmission gates between the photogate and storage gates on each

pixel controlled where, and critically, when the integrated charge was stored. The

pixel arrangement was able to demodulate at 100 kHz but it was suggested that

a CMOS equivalent design would be able to demodulate signals up to 30MHz.

This concept was investigated further by Lange for the purposes of ranging using

modulated light [67]. The time-of-flight ranging concept uses pulses or a stream

of pulses (e.g. modulated light) to determine the distance between a reflecting

object and measuring device, depending on the measured phase, speed of light

and modulation frequency [70]. The 64×25 pixel array device described by Lange

used a combination of CCD photo-collectors and CMOS readout integrated cir-

cuits (ROICs). The arrangement reported a demodulation frequency of up to

20MHz.

Page 43



Chapter 2. 2.1. Modulated light cameras

2.1.2 CMOS integrating cameras

2.1.2.1 Ando and Kimachi

The equivalent CMOS-only implementation of a lock-in camera was first described

by Ando [71]. The 100×100 pixel array arrangement was similar in function to

Povel’s system (section 2.1.1.1) in that the current generated by the pixel photo-

diode was used to charge one capacitor (i.e. signal bins) over half a modulation

period and another capacitor over the other half modulation period.

This design was improved by Ando with a 64×64 pixel array implementation that

made three measurements per modulation period (known as the three-phase Cor-

relation Image Sensor (CIS)) [72]. This is the minimum number of measurements

required for unambiguous phase determination from an incident modulated signal

(section 1.3.6). The pixel arrangement (illustrated in figure 2.2) shows transistor

switches connected to storage capacitors where the three local signals used to be-

gin charging have the same frequency as the incident modulated signal but with

120◦ phase difference between them.

Figure 2.2: A schematic of Ando and Kimachi’s three phase CIS pixel design (Ando

and Kimachi 2003 [72]). To extract the phase, three measurements of

the intensity are made per modulation period (out1, out2, out3). Capture

of photo-charge is controlled using signals (V) to line switches (Q) and

each line is read-out using the select switch (SW). The phase can be

determined using the equation φ = arctan
( √

3(out2−out3)
2out1−out2−out3

)

.

Building on this, Kimachi produced a 200×200 array camera for use in tomogra-

phy [16]. The system was reported to work with a beat frequency of 25 kHz and

Page 44



Chapter 2. 2.1. Modulated light cameras

was able to produce 30 frames s−1.

2.1.2.2 Schwarte

The commercially available photonic mixer device (PMD) was conceived by Schwarte

[73]. The demodulation of an incident signal is implemented through square wave

mixing. A schematic of the pixel is illustrated in figure 2.3. The pixel arrange-

ment includes two reverse biased photodiodes, where each photodiode can be read

as a normal single photodiode. If the control voltage applied to the transparent

gates is equal, the photocurrent is split equally. However, if the control voltage

to gate is different, the photocurrent tends towards the more negative gate. Ap-

plying local signals with a phase difference (i.e. 180◦) to the gates, the device will

produce switched outputs with the same phase difference. The outputs of the

frontend is integrated onto storage capacitors. The current generation of PMD

camera (2012) produce three outputs for phase determination, demodulates at

15MHz in a 204×204 pixel array camera [74], and is used for range finding pur-

poses.

Figure 2.3: A diagram of the PMD pixel design (Schwarte 1997 [73]). The pixel con-

sists of two reverse bias photodiodes (shown in left image). The voltage

at the transparent control gates (CLK+/CLK-) can be used to direct the

generated photocurrent towards either end of the diode (as shown in right

image). Applying a voltage signal with different phases (with the same

frequency as the incident modulated light) produce switched outputs at

OutA and OutB.
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2.1.2.3 Stoppa

A 80×60 pixel array camera designed by Stoppa used buried channel photode-

tectors [75]. The operation of the pixel was similar to the PMD camera (sec-

tion 2.1.2.2), but differs in that, instead of using surface channels, buried chan-

nels were used. Using the 0.18 µm CMOS process, each pixel had a fill factor of

24% and a pitch of 10µm; a maximum demodulation frequency of 50MHz was

achieved at 20 frames per second.

2.1.2.4 Light

Roger Light designed a custom camera using the 0.35 µm CMOS process [48]

where each pixel integrated the incident modulated light using storage bins. The

output of the pixel was connected to a comparator. The time taken for the

storage bins to reach a certain voltage was measured and that time was used to

determine phase information. The 128×128 pixel camera array was able to detect

modulation frequencies of up to 2.5 kHz.

2.1.3 CMOS continuous-time cameras

2.1.3.1 Benton

Benton described the concept of a CMOS pixel for use in measuring blood oxy-

genation and dental pulp vitality; the pixel demodulated light using square wave

mixing [76]. The pixel consists of two photosensitive channels for detecting two

different modulation signals. The system allows simultaneous detection of light

signals of two different modulation frequencies. The detected signal was fed into

a switching multiplier which would multiply the input by +1 or -1 at a frequency

equal to the light modulation frequency. A low pass filter was implemented to

remove all harmonics apart from the DC (output voltage proportional to the am-

plitude). The system used modulated light with frequencies of between 50Hz

and 40 kHz. The application involved making measurements within the mouth,

however, the pixel had an area of 2.9mm × 0.45mm; the described method used

optical fibres to make measurements.
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2.1.3.2 Bourquin

A camera design described by Bourquin used a 58×58 pixel array where each pixel

consisted of a photodiode, voltage controlled current source, amplifier, square-

wave mixer and a low-pass filter [77]. To perform the square wave mixing, the

detected analogue signal was fed to a phase controlled rectifier circuit, before

being low pass filtered. The operation of the camera was similar to the system

described by Benten (section 2.1.3.1) with the addition of a feedback loop between

the filter and the amplifier to ensure that the amplifier was operating under op-

timum conditions (gain was adjusted on a pixel by pixel basis). The camera was

capable of detecting signals with modulation frequencies from 1 kHz to 1MHz.

The pixel had a pitch of 110 µm.

Figure 2.4: Schematic of Bourquin’s smart pixel (Bourquin et. al 2000 [78]). The

detected photocurrent is amplified and square wave mixed using the rec-

tifier circuit. The low pass filter provides the DC output. A feedback

circuit is used to maintain optimal amplifier conditions.

2.1.3.3 Lu

Lu presented a continuous time pixel which used a buried double junction (BDJ)

detector as the photodetector [79, 80]. In addition, the pixel contained a tran-

simpedance amplifier, differential amplifier, mixer and a low pass filter. As BDJs

are sensitive to different ranges of wavelengths (due to differing junction depths),

the pixel was capable of differentiating between two modulated signals. How-

ever, the single pixel was relatively large and power intensive (an area of at least

2.5 mm2 and power consumption of about 20mW [55]), making it unsuitable for

a full-field camera array.
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2.1.3.4 Pitter

Pitter produced a 4×4 pixel array for measuring modulated thermo-reflectance

(measuring the reflectivity of temperature dependent materials) [81]. Each pixel

used a logarithmic frontend, with the captured signal mixed using two channels

of switched capacitors (for the in-phase (I) and quadrature (Q) phase signals) and

integrated onto signal bins. Each signal was sampled once per modulation period

(set time in the modulation period). The frontend of the pixel produces a con-

tinuous time signal, however this signal integrates onto another capacitor using

a reference signal. Each pixel was 200 µm by 200 µm in area with a 9% fill factor.

Figure 2.5: Schematic of Pitter’s modulated light pixel (Pitter et. al 2003 [81]). The

frontend of the pixel captures a continuous modulated signal and the

signal is sampled at specific points within each modulation period using

φ+
1 and φ−

1 . It is integrated onto capacitor C1. For read-out, a signal is

applied in φ+
2 and φ−

2 for the I and Q output respectively.

This design was followed up by a 64×64 pixel array [82]. In this implementa-

tion, the camera was designed to be column based (rather than individually pixel

based); one entire row was selectable at a time (64 pixels). The amplification,

filtering and demodulation, was performed outside of the pixel, with the selected

row of pixels sharing the same signal processing circuitry. Due to this separation

of photosensitive element and circuity, the size of the pixels was smaller at 25µm

× 25µm with a fill factor of 56% at a cost of a lower frame rate (a larger inte-

gration period was required in this arrangement).
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2.1.3.5 Dmochowski

An initial pixel design by Dmochowski used a continuous wave mixer with two

channels [83]. The emphasis of this test pixel design was on high frequency de-

modulation. The pixel used a logarithmic frontend with a regulated cascode

circuit (multi-stage current amplifier arrangement used to increase bandwidth),

allowing it to demodulate light from 500 kHz to 25MHz. Each pixel was in-

dependent, containing the amplification, mixing, and low pass filtering circuits.

However, the fill factor was only 4%, and was designed with a pixel pitch 180µm.

Figure 2.6: Schematic of Dmochowski’s pixel (Dmochowski et. al 2004 [83]). Con-

tinuous photocurrent is amplified using transimpedance and operation

amplifiers. The signal is mixed with in-phase and quadrature phase local

reference signals using a Gilbert cell. The output signals are low pass

filtered to produce DC, I, and Q outputs.

Further to this design, Dmochowski designed a camera with a 24×32 pixel ar-

ray, called MLCv5 [84], with a decreased pixel pitch of 130 µm and increased fill

factor of 5.4% (and with a decrease in pixel power consumption of 200µA). An

increase in the demodulation frequency bandwidth of between 10 kHz and 30MHz

was reported. The use of a logarithmic frontend however posed problems with

non-linear output responses (i.e a large variation in gain and phase response)

which restricted the DC and AC intensity range of the incident light (discussed

further in section 3.1.3.1).

2.1.3.6 Achamfuo-Yeboah

Samuel Achamfuo-Yeboah created two test designs before producing the final

camera that was used for the work presented in this thesis [55]. The first was a

continuation of Dmochowski’s design, named MLCv6FE. The single pixel fabri-

cation comprised of a logarithmic frontend with a regulated cascode circuit. The
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motivation behind the design was to force the pixel response up the logarithmic

curve so that the response appeared linear (through adding a bias current in with

the photo-detector current). This allows for an increase in the range of AC input

amplitudes. The MLCv6FE frontend had a pixel size of 40µm×40µm and was

able to demodulate light up to 13MHz.

The next iteration of this design was the successor to Dmochowski’s MLCv5 cam-

era; a 32×32 pixel array camera using the MLCv6FE test pixel design, named

MLCv6. The chip was setup in 8 banks of 4 columns, with 4 pixels in the centre

capable of outputting the raw measured signal (known as the RFout). A smaller

fabrication process was used [54] along with shared current mirrors, which allowed

for a more compact pixel. The bias current could also be manually changed to

allow for a larger intensity capture range. However, the chip had a pixel read

design flaw; it was possible to create a workable image, but with significantly

increased noise (compared with the design simulations).

2.1.4 MLC review summary

A brief summary of the MLC camera arrangements discussed in this section is

presented table 2.1 and includes each systems key specifications.

2.2 Widefield heterodyne capture techniques

If a widefield image is captured in real time using a pixel array, both spatial (lim-

ited by the pixel number) and temporal (limited by frame rate) variations in a

phase pattern can be determined. This is in contrast to point detection schemes,

where the frame rate is limited by the scanning setup (i.e. mechanical transla-

tions [14]). Using camera arrays to detect widefield homodyne fringe patterns

is common place. However, capturing widefield heterodyne interference patterns

becomes a challenge (discussed in section 1.3.3). The interferometer arrange-

ments and detection schemes described below produce real time acquisitions of

heterodyne interference fringe patterns in the widefield region. The systems use

a variety of different demodulation techniques.

One common use for widefield interference pattern capture is in the field of surface
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Author Year Pixel arrangement Max. Mod. freq. Measurements

Stenflo [68] 1985 Single pixel CCD 5MHz Amplitude

Povel [32] 1990 385×288 CCD 100 kHz Amplitude

Spirig [69] 1995 3×3 CCD 100 kHz Amplitude + Phase

Lange [67] 1999 64×25 CCD 20MHz Amplitude + Phase

Ando [72] 1999 64×64 CMOS intg. 10 kHz Amplitude + Phase

Kimachi [16] 2010 200×200 CMOS intg. 25 kHz Amplitude + Phase

Schwarte [74] 1997 204×204 CMOS intg. 15MHz Amplitude + Phase

Stoppa [75] 2011 80×60 CMOS intg. 50MHz Amplitude

Light [48] 2008 128×128 CMOS intg. 2.5 kHz Amplitude + Phase

Benten [76] 1997 Single pixel CMOS cont. 40 kHz Amplitude

Bourquin [77] 2001 58×58 CMOS cont. 1MHz Amplitude

Lu [80] 2000 Single pixel CMOS cont. 10Hz Amplitude

Pitter [82] 2003 64×64 CMOS cont. 2 kHz Amplitude

Dmochowski [84] 2004 24×32 CMOS cont. 30MHz Amplitude + Phase

Achamfuo-Yeboah [55] 2012 32×32 CMOS cont. 13MHz Amplitude + Phase

(50MHz with bias)

Table 2.1: Table summarising key factors, including the number of pixels, maximum

modulation frequency, and measurements possible, for the MLCs reviewed

in this section.

profilometry. Interferometry can be used to measure small height variations on

the surface of an object (i.e. interpreting OPL variations across the cross section

of a reflected beam).

2.2.1 Massie

One of the first implementations of a real-time heterodyne interferometer system

was developed by Massie [85]. The presented system was capable of making direct

measurement of the optical path difference between interferometer arms without

the requirement to interpret the fringe pattern (as discussed in section 1.3.4). The

system used a zero-crossing phase-meter; the phase-meter produced an analogue

voltage depending on the time difference between two signals (reference/mea-

sured) crossing a ‘zero’ point (which would be proportional to the phase differ-

ence). The phase-meter was capable of achieving a phase accuracy of ∼ λ/1000.

The interferometer was a combination of modified Mach-Zehnder and Twyman-

Green interferometers. Light emitted from a laser entered a Mach-Zehnder inter-

ferometer. The beam was split into test and reference arms. Each arm passed
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through acousto-optic modulators or AOMs (discussed further in section 3.2.2),

which were driven at 43MHz and 42MHz, shifting the optical frequency of the

reference and test beams by these frequencies. The test beam passed through

a half-wave waveplate before both arms exited the Mach-Zehnder arrangement

through a beamsplitter. The arrangement produced optical outputs similar to

those emitted from a Zeeman laser (two beams with different frequencies and

polarisation planes [86]), however, this arrangement allowed for greater control

over the frequency difference and intensities.

The two beams entered a Twyman-Green interferometer, passing through lin-

ear polarisers before the interference occurred. The modulation frequency of the

interference pattern was equal to the 1MHz differential between the optical fre-

quency shifts. The reference signal for the phase measurement was obtained by

using a detector located at a stationary point on the fringe pattern (discussed

further in section 2.3.1) and the test image was obtained by scanning another

detector (mounted on to an X-Y stage) across the pattern.

Figure 2.7: Optical arrangement of Massie’s interferometer system (Massie et. al

1979 [85]). The light from a Kr-ion laser was split, with each beam arm

frequency shifted by 42MHz and 43MHz. The arms were orthogonally

polarised and reflected off a reference mirror and sample plate. After

passing through a linear polariser, the interference pattern was captured

using a scanning photodetector. Part of the fringe pattern was measured

using a fixed photodetector and used as the reference signal.

The interferometer used a 100 mW Kr-ion laser (λ = 647.1nm) and a computer
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(HP9825A) to control the motors and data recording. The phase detectors re-

quired multiple modulation periods to produce an accurate phase value (at 1MHz,

300ms was required per data point), with a phase accuracy of λ/100 demon-

strated. An improved single point system was demonstrated with a serial data

acquisition rate of 50µsec/point and a system with a spatial resolution of 500

points/line (5 seconds for a total of 100 frames) [87]. A phase accuracy of λ/70

was achieved.

A widefield version of this system was constructed using a multiple photodetector/phase-

meter combination to construct a phase image across two dimensions [15]. The

system was equipped to simultaneously measure and record phase at 64 discrete

locations. The measurements were obtained at 10µs time intervals with a phase

resolution of λ/100. Each phase detector had a dedicated data recording system

(each point generated data 16-bits wide and 4096 words deep, each run of capture

produced ∼500 kB of data). A set of optical fibres (connected to the 64 photode-

tectors) were arranged across the generated heterodyne fringe pattern in a cross

pattern (32 vertical, 32 horizontal) although it could also have feasibly been ar-

ranged in a 2D 8×8 matrix. Two great challenges were faced in the construction

of this instrument; the authors noted that there was difficultly in mounting the

fibres in a closely packed array and processing the considerably large amount of

data generated (at a 100K frame rate, 10MB/s of data required transferring and

storage, a massive undertaking in 1983). Ultimately, large imaging systems like

the described system become prohibitively expensive and complex as both the

number of data points and frame rates increase. Practically, widefield hetero-

dyne capture schemes require pixel (ideally single chip) based detection methods.

2.2.2 Akiba

A heterodyne detection technique developed by Akiba demonstrated capture of

real-time cross sectional phase images in an optical coherence domain reflectom-

etry (OCDR) application [88]. This technique measured the depth of surface

reflectance by detecting the degree of interference using a low coherence light

source. The system used a frequency synchronous detection scheme, similar to

the system described by Stenflo (section 2.1.1.1). The interferometer arrange-

ment was a modified Mach-Zehnder, with the test and reference arms frequency

shifted, using AOMs, by 79.94MHz and 79.90MHz respectively. This generated
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a beat frequency of 40 kHz when they interfered.

Figure 2.8: Example plot of an integrated beat signal. The signal used to drive the

AOM was switched on-off at the fmod frequency. The modulated fringe

pattern is integrated on a CCD camera only when the AOM is switch

on. The presented system was similar to system described by Stenflo

(section 2.1.1.1).

The author noted previous attempts of this demodulation technique used two

pairs of liquid crystal shutters, however, these instruments were difficult to ob-

tain commercially and had introduced alignment problems. In this arrangement

the capture gating effect was produced by switching the AOMs on-off using a

pulse train with a frequency equal to modulation frequency of fringe pattern.

The presented system used a superluminescent diode (central wavelength λ =

813 nm, spectral bandwidth FWHM ∆λ = 16nm) and a commercially available

640×480 pixel CCD camera. The CCD had a frame rate 30 fps, and as three

frames were used to determine phase, a phase image could be obtain in 0.1 s.

This system was later adapted for full-field optical coherence tomography (OCT),

an interferometric technique similar to OCDR which uses back-scattered light

from a sample to determine depth through OPL (depth) and coherence [89]. The

proposed system employed a pair of CCD cameras to detect the in-phase and

quadrature components of the heterodyne signal simultaneously. The interfer-

ometer was setup in a Michelson arrangement. The resultant beam from the

arrangement was split and passed through through liquid crystal shutters (LCS)

for gating at the modulation frequency; there was a phase difference between

the two LCS signals of 90◦. This system used faster cameras than the previ-
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ous attempt and was capable of 100 fps in a single longitudinal scan. The author

noted a signal to noise ratio of approximately 85 dB with 1mW of incident power.

2.2.3 Bourquin

The modulated light camera presented by Bourquin (section 2.1.3.2) was pre-

sented in a heterodyne low-coherence reflectometer application (i.e. similar to

the OCT) which was based on a conventional Michelson interferometer [77, 78].

The novelty of this system was the use of the ‘smart pixel’ camera to capture

and demodulate the heterodyne signal. The modified Michelson interferometer

arrangement used a superluminescent diode (central wavelength λ = 850 nm,

spectral bandwidth FWHM ∆λ = 20nm) with the beat signal in the generated

fringe pattern achieved by varying the optical path length of the reference arm

using a mirror mounted on a speaker.

Figure 2.9: Schematic of Bourquin’s low-coherence reflectometer. Interference only

occurs when the path length difference is within the small coherence

length of the source. The light is modulated using a moving reference

plate, which is also used to perform a depth scan. Bourquin’s smart pixel

array is used to capture the heterodyne interference pattern.

A symmetric sawtooth waveform was applied to the mirror mounted speaker, pro-

ducing a pattern modulation with a frequency of 3.7 kHz. The MLC (discussed

in section 2.1.3.2) plus the ancillary electronics had a reported frame acquisition

time of ∼3.36ms (∼300 fps). The system created a 3D map of reflectances from

a sample through depth scanning (i.e. frame grab traverse layer by transverse
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layer). The detection limit of the system was reported as being 7.2 dB above the

shot noise limit.

2.2.4 Pitter

A heterodyne interferometer microscope arrangement presented by Pitter cap-

tured full-field phase images using a combination of a modified Mach-Zehnder

and Michelson interferometer [90]. The Mach-Zehnder generated an object and

reference beam, which were orthogonally polarised and frequency shifted using

AOMs to have a 1Hz optical difference (i.e. beat frequency), similar to the setup

used by Massie. At the entrance of the Michelson interferometer, the light was

scattered using a rotating diffuser such that the reference and object beams were

temporally coherent but spatially incoherent. As the object beam speckle pattern

defocused, the interference signal (i.e. visibility) decreased. Coherent noise in the

image was suppressed by averaging over many captured patterns.

The CCD camera used captured at a rate of 4Hz in order to obtain quadrature

images. The system demonstrated a full-field surface height precision of 1 nm

RMS. The author noted future implementations of this arrangement could in-

clude using MLCs to improve performance (e.g. increased beat frequency) and

the use of an optically generated reference signal to enable stable image capture.

2.2.5 Kimachi

The MLC presented by Ando and Kimachi was used to capture and demodu-

late widefield heterodyne interference fringe patterns [25]. As described in sec-

tion 2.1.2.1, the 64×64 pixel camera was capable of outputting real-time phase

images, operating at 30 fps, by acquiring the data at three phase points in a mod-

ulation period (three-phase correlation image sensor).

The reported interferometer described a combination of Mach-Zehnder and Michel-

son interferometers, similar to the arrangement described by Massie. A stabilised

HeNe beam (λ = 632.8nm) entered the Mach-Zehnder interferometer, and two

AOMs and a waveplate were used to generate frequency shifted (by 80MHz and

80.025MHz) orthogonally polarised arms. The two frequency separated beams
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entered the Michelson interferometer and produced the interference pattern onto

the camera device after reflecting off a reference mirror and object. A beamsplit-

ter was used before the two beams enter the Michelson interferometer in order

to capture a beat signal (beat frequency f = 25 kHz) using a photodiode; this

captured optical signal was used as the electronic local reference signal to demod-

ulate the captured fringe pattern (the electronic signal was 3-way phase split by

2π/3). This is similar to the ultrastable technique described in chapter 5, but the

goal in this implementation was only to determine the beat signal (vibration in

the Michelson interferometer would still produce an unstable pattern. The setup

was used to obtain results of a scanning PZT mirror and of heated silicone oil,

with a reported phase accuracy of 0.85◦.

The improved 200×200 pixel correlation image camera was used for real-time

capture of heterodyne speckle patterns [16]. Two interferometer arrangements

were presented; a Michelson arrangement where beams reflected off a reference

grating and an object grating before interference (figure 2.10(a)), and an in-plane

interferometer where a split beam reflected off a single object grating at different

angles, generating an interference pattern which was detected at a fixed distance

from the grating(figure 2.10(b)). In both arrangements, an external signal genera-

tor provided the local reference for image demodulation, and was used to drive an

electro-optic modulator (EOM). The light source from a 6mW HeNe laser passed

through the EOM, which produced a pair of orthogonally polarised beams (with

a frequency separation of f = 100Hz), which entered the interferometer arrange-

ments after passing through a polarising beamsplitter.

The system had a reduced frame rate of 8.33 fps due to limitations on the external

circuitry (not of the camera itself); a demodulated phase standard deviation of

19◦ was reported.

2.3 Electronically stabilised heterodyne capture

The ability to detect changes in the optical path length of a beam within a sub-

wavelength range (i.e. nanometers) is a major asset of using interferometry for

a variety applications. However, this causes a problem in practical systems as

changes in the ambient conditions (heat, vibration, air flow, etc) could cause
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(a) (b)

Figure 2.10: Two scattering heterodyne interferometer arrangements designed by Ki-

machi which used the 3-phase CIS camera (Kimachi 2010 [16]). A local

reference signal was used in the electro-optic modulator (EOM) and

for the camera’s demodulation method (after phase splitting). Both

arrangements used the EOM to generate two orthogonally polarised fre-

quency shifted beams. The left (a) and right (b) arrangements are of a

Michelson interferometer and in-plane interferometer respectively.

measurement instability (e.g. time varying phase shifts cause unstable phase

images) that will greatly affect the accuracy of the system; the stability of a cap-

tured interferogram can be the critical factor for an interferometer system design.

An often used technique to counteract the effects from external influences involves

using self-referencing, i.e. removing the unwanted temporally varying phase from

an interferogram with some form of feedback. This involves acquiring a reference

signal with the same unknown temporal phase variations as the testing beam or

the generated fringe pattern (producing a relative phase image).

Optically, this can be achieved by using a common path (C-P) interferometer

(described in section 1.5) where interference occurs between one part of a single

beam with another part, i.e. a temporally delayed [91] or spatially shifted version

of itself [92]. Therefore, the two interfering beams contain (most of) the same

unknown temporally varying phase function.
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In heterodyne interferometer systems, this can also be implemented electroni-

cally. Environmental variations will cause a shift in the observed modulation

frequency (explored further in section 5.1.2.3). This signal can be used as the

reference signal for the demodulation technique [85] (analogous to a phase-lock

loop operations used in RF communication systems [33]). This section explores

heterodyne interferometer systems that use this electronic stabilisation technique.

2.3.1 Massie

The real-time heterodyne interferometer system described by Massie was one of

the first to implement an electronic feedback system to remove ‘the corrupting

motions’ of the interferometer optics [15,85,87]. The reference signal used in the

zero crossing phase-meter was derived optically by measuring the beat signal at

a fixed point in the fringe pattern using a photodiode. The author referred to

this as a common path phase reference signal which records rigid body motions of

the interferometer optics (in addition to controlling the phase offset) and noted

that it would not be possible to measure the absolute phase using this setup.

Due to the slight variations in the optical arrangement between the two capture

points, the system’s precision was limited by external noise sources (noted as air

turbulence, component mechanical jitter, etc.) to λ/1000. A similar technique

to this is used in the ultrastable interferometer explored in chapter 5, except the

measurement of the beat signal is made on the camera array itself.

2.3.2 Toyooka

A heterodyne interferometer presented by Toyooka makes use of a cascading

double-diffraction optical arrangement [93]. In this setup, a collimated beam

from a HeNe laser (λ = 633 nm) was passed through a moving grating (at a fixed

velocity). This created different orders of diffraction; the grating functions as

both a beam divider and frequency shifter. The scattered light entered the first

spatial filter where at the focal plane, the light was spatially split into many

components. The filter at this plane consisted of two holes allowing through the

zeroth-order beam with a small hole, i.e. DC spatial frequency only, and first

order beam with a large hole, i.e. extended spectrum passes, which became the
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reference and frequency shifted test beams respectively. This created two diffrac-

tion components at the exit of the first spatial filter, so a second filter was used

to select one to produce one interference pattern.

Figure 2.11: Toyooka’s cascading double-diffraction interferometer (Toyooka et. al

1984 [93]). Light from a HeNe laser was spatially split and frequency

shifted into multiple orders using a moving grating. The light entered a

spatial filter where the spatial DC content and wideband content of two

orders were allowed through. Two heterodyne interference patterns are

generated, so a second filter was used to select one to pass through. A

scanning photodetector was used to record the widefield image, whilst a

fixed photodetector is used to determine a reference signal (to keep the

measure pattern stable).

Similar to the system described by Massie, the resultant interference pattern was

measured using photo-multipliers at two points, one at a fixed location (to ac-

quire the beat signal) and another on a stepper motor mount to scan across the

fringe pattern. Both signals are fed into a phase-detector, which would output

a voltage depending on the time intervals between the zero-crossing times of the

two electronic waveforms. The beat frequency of the system was equal to 100Hz

and a standard deviation in measured phase of λ/130 was reported.

2.3.3 Offside

A scanning optical profilometer presented by Offside produced two orthogonally

polarised heterodyne interference patterns which utilised a common path arrange-

ment [94]. The setup produced three beams in a modified Michelson interferom-

eter, a sample reference beam, a sample probe beam and a common reference

beam. Light from a laser was split using a beamsplitter, one arm passed through

a Bragg cell twice and reflected back into the system as the common reference

beam. The other arm passed through an optical construct made of an annular
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waveplate and a lens with a hole. This created two beams that were orthogonally

polarised; the wide area collimated beam was used as the sample reference beam

and the focused beam was used as the sample probe. Both beams reflected back

off a sample surface and back into the interferometer. All three beams passed

through a polarising beamsplitter which splits the common reference beam and

separated the sample reference and probe beams, generating two separate inter-

ferograms that were detected by photodiodes, much like the system described by

Massie. A stable phase image was determined using a vector voltmeter using the

two capture signals and a scanning system.

Figure 2.12: Offside’s scanning optical profilometer (Offside et. al 1989 [94]). Light

from a laser is split into two arms, sample and reference. The reference

arm double passes through an AOM to introduce a frequency shift (C.

ref.). The sample arm passes through an annular quarter wave plate with

a hole, generating two beams, the sample probe and sample reference.

Each of these beams interfere separately with the common reference,

and each interference pattern is split (using the polarising beamsplitter)

and detected using two separate photodetectors. The reference signal is

used to maintain a stable interferogram.

The author demonstrated a comparison between the presented system and a basic

Michelson interferometer which showed that under the same stability test (64 g

ball dropped on the table from 30 cm) the RMS variation in the phase equalled

0.28 nm and 4.12 nm in the respective systems. It was also noted that drilling

holes in lenses was practically challenging and other arrangements could be made

possible using mirrors.
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2.3.4 Chou

A heterodyne interferometer developed by Chou used a birefringent lens to pro-

duce a common-path polarised optical profilometer [95]. The optical arrange-

ment used a modified combination Mach-Zehnder/Michelson interferometer. Af-

ter light from a HeNe laser entered the Mach-Zehnder interferometer, two fre-

quency shifted beams were produced using two AOMs driven at 80.0000MHz

and 80.0377MHz (beat frequency f = 37.7 kHz). The object beam entered the

Michelson arrangement, where the object arm consisted of a birefringence lens

arrangement; the light in one polarisation plane had a different focal plane to the

light in the orthogonal polarisation plane (fe = 87.8485mm for the extraordinary

ray and fo = 40.0735mm for the ordinary ray). This property of the lens was

exploited in order to create two sample beams, a reference and probe, similar

to the arrangement presented by Offside. Once reflected off a test sample, the

beams combine with the original Mach-Zehnder reference beam, and the three

beams were split using a polarising beamsplitter. The interference patterns were

captured using two photodetectors and stable phase measurements were made

using a lock-in amplifier and a PC. Repetition in the surface profile measurement

revealed a maximum variation of 0.5 nm.

2.3.5 Aguanno

An approach for heterodyne interference pattern capture described by Aguanno

involved using a high read rate CMOS camera [96]. The optical arrangement in

the setup was a Mach-Zehnder interferometer, with each arm frequency shifted by

80MHz and 80MHz+82.2Hz (beat frequency f = 82.2Hz). The light source used

was a Ti:Sapphire laser (λ = 532 nm). The interferogram was detected using a

512×512 CMOS camera (AKAtech iMVS-135) read by a 40MS/s ADC/DSP. In

order to construct a stable image, the system read one row at a time and used the

first pixel in each row as the reference pixel (eliminating the temporally varying

phase common in both captured signals). Each pixel was sampled at 1.3 kHz.

The DSP unit was used to output phase using a quadrature mixing process (as

described in section 1.3.6) using the captured sample and reference waveform.

This generated a full-field phase image without mechanical scanning. The author

noted that the pixel read rate was dependent on the light intensity incident on

each pixel as averaging was required over time. With 40mWm−2 incident, the
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Figure 2.13: Chou’s optical profilometer (Chou. et al 1998 [95]). The light from a

HeNe laser was split. Each arm was frequency shifted using AOMs and

passed through a second beamsplitter. One arm passed through to a

birefringent lens, where light with different polarisation planes focused

to different points away from the lens. These two new beams now be-

come the sample probe and reference, analogous to the interferometer

described by Offside. These two beams recombined with the other orig-

inal beam, generating two interference patterns, which were split using

a polarising beamsplitter and detected using photodetectors.

read time was equal to ∼4ms, however, increasing the intensity to 400mWm−2,

reduced pixel the read time to 400µs. A phase error of 0.004◦ was reported.

2.3.6 Park

A heterodyne interferometer scheme developed by Park used a double pass through

a single AOM in order to generate a reference and sample fringe pattern [97].

In this arrangement, light from a single mode stabilised HeNe laser was passed

through a polarising beamsplitter (only one of the split paths was used at this

stage). An AOM, driven at 40MHz, was tilted at an angle to satisfy the Bragg

condition with respect to the angle of light incidence. Two beams were present

at the output; one travelled along the same path as the incident light with no

frequency shift, referred to as FO, and the other beam appeared deflected (with

respect to the incident beam path) and was frequency shifted, referred to as ZO.

Both beams passed through a waveplate and were reflected along the same path

using mirrors. When each beam passed through the AOM again, they were each

split into two. Due to each beams path, they both experience different frequency
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shifts; the diffracted versions of FO and ZO experienced an upshift and downshift

in frequency respectively. Therefore, on the second pass through the AOM, the

FO splits into the original FO (or ZFO) and +FO (or FFO) and the ZO was split

into the original ZO (or ZZO) and -FO (or -FZO). Once all four beams passed

thorough the polarising beamsplitter, the ZZO and FFO beams interfered along

one trajectory and the -FZO and ZFO beams interfere along another trajectory.

Due to the double pass through the AOM, both interference patterns had the

same beat frequency, and since both beams travelled along similar paths, the op-

tical signal they carried include the same common temporally varying phase (e.g.

due to vibration). The fringe patterns were detected using a pair of photodiodes

and a differential amplifier was used to electronically determine the difference be-

tween each signal. Demodulation was conducted using quadrature demodulation

through mixing. The author claimed a displacement resolution of ∼0.5 nm.

Figure 2.14: Park’s AOM double pass heterodyne interferometer (Park and Cho 2011

[97]). Light from a HeNe laser passed through an AOM where light was

split into a frequency shifted order (FO) and non-frequency shifted order

(ZO). After both beams were reflected back into the AOM, each beam

generated additional orders (FO → ZFO and FFO, ZO → ZZO and -

FZO). Owing to their trajectory, [-FZO and ZFO] and [ZZO and FFO]

interfered; the modulation frequency in each pattern was equal (double

the AOM drive frequency). One pattern is used for the reference beat

signal and the other was used to capture a stable interferogram.
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2.4 Two separate source interferometer systems

A common misconception in the field of interferometry is that light from differ-

ent sources do not produce observable interference patterns. Dirac claimed in

his quantum mechanics book in 1930 that “each photon then interferes only with

itself. Interference between different photons never occurs.” [98]. It was viewed

that interference patterns generated by a light stream would only interfere on

account of its own wave function and not with another stream’s function.

In basic interferometer systems, for interference patterns to be detectable, the

interfering light beams are required to have a constant or, at least, a definable

phase relationship between each other [12]. It was thought that the relationship

was only maintainable when interfering split light from the same source. The

visibility of the interference pattern would depend on the coherence properties of

the source (discussed in section 1.4).

However, the visibility due the coherence of the source is a time averaged value,

which is the case if an image is captured over time (large integration time or

averaged) at one frequency (DC or a single heterodyne frequency). If the cap-

ture time is lowered sufficiently or if the pattern is allowed to be captured over

a large operational bandwidth, it is possible to capture the interference pattern

from sources considered incoherent [99]. The instantaneous beat frequencies of

two sources interfering (discussed in Appendix B) can vary randomly; a large

variation in beat frequencies requires an extremely high operational bandwidth

system or a high speed acquisition system. Therefore, a light source is required

to keep the beat frequency to within a workable range. For example, in a laser

implementation, a frequency locking method could be used between the separate

sources in order to maintain a phase relationship between the sources (to ensure

that the beat is within the parameters of the detection unit [100]). This section

describes interferometer systems that have been used to capture the widefield

interference patterns generated by two lasers.

2.4.1 Magyar and Mandel

Two laser interferometry was first performed by Magyar and Mandel [101]. The

experiment used short pulses of light from two ruby lasers (referred to as ‘opti-
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cal masers ’) with the interference captured on the photocathode of an electronic

gated image tube. Using a mode-locking technique, short timed pulses from each

laser (wavelength λ = 694.3 nm) had a constant phase relationship over a short

observation time, noted as being less than the reciprocal total frequency spread

(1/∆λ) between the two lasers. Within this time, fringe patterns could be viewed

as being static and could therefore be imaged. Even with the lock-in technique

used, the system was limited by the exposure time of the detection unit (40 ns).

When an image had been taken, the author noted a fringe visibility of 15%.

Additionally, provisions had to be made for preventing multiple exposures by

paralysing the electronic gate for upto a millisecond after image capture.

(a) (b)

Figure 2.15: Experimental images captured by Magyer and Mandel of two lasers in-

terfering (Mandel and Magyar 1962 [101]). The left (a) image is the

photograph taken of the fringe pattern generated and the right (b) is

the intensity plot across the fringe pattern measured using a micro-

photometer tracing.

2.4.2 Louradour

A two laser interferometer presented by Louradour [102] improved on the setup

used by Mandel and Magyar, in which the interference fringes lacked stability

due to the thermal fluctuations of the source (which caused variations in the

emission frequency). The system described by Louradour used a Nd:YAG laser

to simultaneously pump two dye lasers. The emission frequency of the dye lasers

depended on the temperature of the dye solution (i.e. tunable wavelength set

to λ ≈ 568 nm), therefore, frequency stability (and adjustment) was maintained
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through thermal regulation between the laser dye solutions; a maximum temper-

ature difference of 0.1 ◦C was maintained for 30mins.

The Nd:YAG pump laser was used to trigger emission pulses in the dye lasers

where each pulse width, 20 ps, was less than to the coherence time of the dye

lasers (the spectral bandwidth of the dye laser ∆f ≈ 30GHz). A picosecond

streak camera was used to capture the two lasers’ interference pulse patterns.

The author noted that upto 100% fringe contrast was achievable, but fringe po-

sitions shifted shot by shot.

2.4.3 Basano

An interferometer system described by Basano captured the fringe patterns gen-

erated using two stabilised laser diodes [100]. The light from the lasers were

combined using a beamsplitter and interference fringes were generated by prop-

agating each beam through a dual slit arrangement. The fringe pattern was

recorded using a linear array of CCD pixels and was displayed using an oscillo-

scope.

In this implementation, the individual linewidths of the two single mode lasers

(30mW laser diode, λ = 780 nm) were narrower than 1 kHz. The average fre-

quency drift rates for the stabilised lasers was noted as being less than 0.1MHz/s.

The experiment measured the correlation between the visibility of interference

fringes and the integration time used for each CCD element. The results showed

a loss in fringe contrast as the integration time was increased. Fringe patterns

were visible for up to 1ms.

2.4.4 Kawalec

A system developed by Kawalec allowed for naked eye observations of the interfer-

ence patterns (i.e. long term stable DC fringes), generated using two lasers [103].

The emitted wavelength of each laser diode (I < 300mW, 370 nm < λ < 1770 nm)

was varied by applying different currents to the laser input. One laser (labelled

L2) had an emission frequency 200MHz higher than the other laser (labelled L1).

The system was implemented in two stages. In the first stage, light from each
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laser was sent through a beamsplitter and the generated interference/beat signal

was detected using a fast photodiode. The 200MHz (difference frequency) signal

was fed to a phase-lock loop and used to modulate the current input of the laser

L2 in order to maintain the 200MHz frequency difference between lasers L1 and

L2. In the second stage of the system, an AOM was used to shift the frequency

of laser L1 (using a double pass arrangement) by 200MHz using the beat signal

measured in the first stage. This ensured that, in this second stage, the instan-

taneous frequency of both lasers were the same.

(a) (b)

Figure 2.16: Kawalec’s two laser interferometer (Kawalec and Bartoszek-Bober 2012

[103]). (left) Light from L2 was set to have a central emission frequency

at 200MHz higher than L1. The beat signal produced when they in-

terfere was measured using a photodiode and used to ‘stabilise’ L2’s

emission frequency. The same signal was used to frequency shift light

from L1 at another stage of the interferometer, where this light was

interfered with L2 to generate DC fringe patterns (right).

The generated interference pattern (visible to the naked eye) was captured using

a commercially available CCD camera. The author demonstrated the system’s

ability to overcome the fast random changes in the laser emission frequencies by

integrating a fringe pattern for 5 s.
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MLC and system methods

In this chapter, the modulated light camera (MLC) utilised to capture interfer-

ence fringe patterns presented in this thesis is analysed. A brief overview of the

camera is given, along with an examination of the circuitry in each pixel and a

discussion of the output uncertainty. This chapter also discusses the components

used in the interferometer systems, including acousto-optic frequency shifters and

lasers, as well as the data acquisition process for the MLC output. Considerations

during the capture process are also discussed.

3.1 Modulated light camera

3.1.1 Camera brief

One of the major themes of this thesis was to capture heterodyne interference

fringe patterns using a modulated light camera (MLC). The modulated light

camera used for this project is the next iteration of the MLCv6 camera design

(discussed in section 2.1.3.6).

Like its predecessors, each pixel on the camera produces a continuous electronic

signal of the detected optical signal, which is continuously demodulated through

analogue mixing using local reference signals (as long as the pixel has been se-

lected [55,84]). Updates to the camera design from MLCv6 include the correction

of an on-chip read error, component rearrangement to reduce electronic noise

(specifically the crosstalk from the RFout), improvements to the fill-factor, and

an increase to the power supply and RF signal distribution lines.
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The camera features a 32×32 CMOS pixel array; the pixels have a pitch (i.e. dis-

tance between pixel centres) of 115µm, each with a fill factor (i.e. photosensitive

area of each pixel) of 16% (area of 2.116 nm2). The total size (including address-

ing/buffer/other external circuitry) of the camera is 3.68mm × 3.68mm. Each

pixel electronically demodulates the detected optical signal through continuous

quadrature mixing (mixed with an external reference signal) to produce differen-

tial in-phase (I+out/I
−
out) and quadrature phase (Q+

out/Q
−
out) outputs. DC intensity

outputs are also available for each pixel. The CMOS chip architecture allows for

random access to any pixel, which is setup set up in 8 banks of 4 columns. The

combination of continuous demodulation and random access pixels means that

any pixel’s phase data can be read immediately after being addressed. Addition-

ally, four pixels in the centre of the camera have been designed to directly output

the raw detected modulated signal (RFout).

Specifying the operation bandwidth figure of the camera can be complex as it

is dependent on a number of factors. Most notably, the bandwidth is largely

dependent on the DC and AC content of the incident light (discussed further

by the chip designer [55]). The amplifier stage of the camera can be tuned to

provide maximum gain by sacrificing bandwidth; a gain of 32 dB → 38 dB for a

bandwidth of 100 kHz to 40MHz → 17MHz. Hence, a ‘conservative’ bandwidth

figure for the MLC of 100 kHz to 17MHz has been determined. Optical signals

with modulation frequencies of up to 50MHz have been successfully measured us-

ing high values of DC intensity (100s nanowatts per pixel) and data averaging [55].

3.1.2 Analogue demodulation process

As briefly discussed in section 1.3.6, quadrature demodulation of an incident sig-

nal can be performed through analogue mixing. The advantages of using analogue

mixing for heterodyne signal demodulation over other methods include being able

to determine phase continuously (as opposed to signal sampling or integrating

bucket methods) and retaining the maximum signal for the phase output (i.e.

square wave mixing).

Each pixel on the camera captures the local incident modulated light. As dis-

cussed in section 1.2.3 and section 1.6.2, the photocurrent generated by the pho-

tosensitive material is proportional to the light intensity incident on it.
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In an ideal detection unit, this photocurrent is passed through a linear load.

The voltage observed across the load, Vin, would be proportional to the incident

intensity, such that;

Vin = VDC + VAC cos(ωt+ φ) (3.1)

where VDC and VAC is the component in the voltage signal due to the DC intensity

and the AC amplitude of the incident optical signal respectively, ω is the angular

modulation frequency, and φ is the phase offset of the incident modulated light.

External reference in-phase, ILO, and quadrature phase, QLO, signals are mixed

with the detected signal;

ILO = VLODC + VLOAC cos(ωt) = VLODC + VLOAC cos(ωt− 0◦)

QLO = VLODC + VLOAC sin(ωt) = VLODC + VLOAC cos(ωt− 90◦)

(3.2)

where VLODC and VLOAC are the DC offsets and AC amplitudes of the local ref-

erence signals respectively. The reference signals have the same frequency as the

incident optical signal.

Mixing two signals involves multiplying them together; multiplying two sinusoidal

signals produces a sum-and-difference output. For each of the reference signals

mixed with the detected signal, the output can be expressed as;

Imix = VinILO

= VDCVLODC + VDCVLOAC cos(ωt) + VLODCVAC cos(ωt)

+
VACVLOAC

2
[cos(2ωt+ φ)] +

VACVLOAC

2
[cos(φ)]

Qmix = VinQLO

= VDCVLODC + VDCVLOAC sin(ωt) + VLODCVAC cos(ωt)

+
VACVLOAC

2
[sin(2ωt+ φ)] +

VACVLOAC

2
[sin(φ)] (3.3)

where Imix and Qmix is the resultant signal from mixing the detected signal (Vin)

with the in-phase (ILO) and quadrature phase (QLO) reference signals respectively.

Given that the frequencies of both mixed signals are the same (ω), the temporally
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varying components in the ‘difference’ term are cancelled out (i.e. down-mixed

to DC), leaving only the phase element.

Applying an ideal low pass filter to these signals eliminates all but the DC com-

ponents, such that the in-phase (Iout) and quadrature phase (Qout) outputs can

be expressed;

Iout = VDCVLODC +
VACVLOAC

2
cos(φ)

Qout = VDCVLODC +
VACVLOAC

2
sin(φ) (3.4)

The process of extracting the phase requires the removal of the DC offset and

AC amplitude components. For this, the differential in-phase (I+out/I
−
out) and

quadrature phase (Q+
out/Q

−
out) outputs are determined. The phase of the signal

detected at each pixel can be extracted by using;

φ = arctan

(

Q+
out −Q−

out

I+out − I−out

)

(3.5)

The atan2 operation (available in the majority of mathematics based program-

ming environments) is preferred over using atan as it is capable of distinguishing

direction and can output angles over the full 2π range.

In a practical system (i.e. this MLC), the accuracy of the output phase is based

on a number of factors; the linearity of the frontend, the phase and amplitude

differences between the reference signals, the output filter response, and quanti-

sation error in the analogue to digital conversion [33], in addition to the noise in

the signal from electronic and optical sources (section 1.7).

3.1.3 Pixel overview

Each pixel on the MLC is fabricated using the same electronic footprint. A

schematic of the components that form a signal MLC pixel is illustrated in fig-

ure 3.1.

The modulated light that is incident on each pixel is detected using the pho-

todiode element (taking 16% of the pixel’s area). A continuous photocurrent

signal (iPD) is generated if the frequency of the modulated signal is less than the
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Figure 3.1: Schematic of a single pixel. The diagram shows the different stages of

each pixel; the photodiode and transimpedance amplifier (TIA) produce

a frontend voltage that has a logarithmic relationship with the photocur-

rent. This signal is amplified where it is, low pass filtered for a DC

output, fed out directly in the RFout pixels, and fed to two analogue

mixers. The signal is mixed with LO signals (with the same frequency

as the modulated signal), producing differential I and Q values (at 0Hz),

and is filtered before being output.

frequency response cutoff of the photodiode (simulation results indicate this to

be ∼70MHz [55]). In the pixel frontend, a current-to-voltage conversion is con-

ducted using a transistor-diode arrangement (transimpedance amplifier). This

provides a voltage, VFEout, that has a logarithmic relationship with the generated

photocurrent; this is discussed further in section 3.1.3.1.

The frontend voltage signal is amplified (Vin) using an operational amplifier and

a unity gain inter-stage buffer. In the setup used for the images captured in this

thesis, the amplifier stage has been set to provide an operating frequency range

(-3 dB cutoff) of between 100 kHz and 17MHz.

At this stage, each pixel outputs (when addressed) the low frequency component

of the incident signal (VDC) as it is passes through a variable low pass filter (1 kHz

- 5 kHz, set to 2 kHz).

Four pixels in the centre of the camera array (pixels [x=15 y=17], [x=16 y=15],

[x=17 y=18], [x=18 y=16], shown in figure 5.1) are designed with additional RF
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output lines (RFout), which output the amplified detected signal (i.e. Vin). This

output is constantly ‘on’ and requires no specific pixel addressing. When design-

ing the MLC, the choice of designating which pixels should be RFout pixels was

determined by assuming that the maximum optical intensity would be incident

at the centre of the array. Simulations showed that these RFout pixels produced

more electronic crosstalk than regular MLC pixels [55], so the number of these

pixels was limited to four, with none of the pixels sharing the same row or column.

The amplified detected signal (Vin) is mixed with external reference signals (ILO

and QLO) using two fully differential Gilbert cell mixers. The operation of the

mixer stage is discussed further in section 3.1.3.2.

The two differential outputs from the Gilbert cells are low pass filtered, with the

filter -3 dB cutoff set to 2 kHz. The four outputs (I+out/I
−
out and Q+

out/Q
−
out) are

available on the MLC’s output pins when the pixel is addressed (described further

in section 3.2.3).

3.1.3.1 Logarithmic frontend

As each pixel contains a small photosensitive area, it generates a small photocur-

rent when light is incident. To enable a pixel read, a current-voltage gain method

is required (ref. section 1.6.3). As the MLC was intended to be a continuous

time camera, a gain method that involves charge collection over time (e.g. using

signal bins) cannot be used. Instead, the time varying photocurrent generated by

the photodiode, ipd, in each pixel is converted to a voltage with a function, such

that VFEout = f(ipd). The frontend circuit in the MLC provides a logarithmic

current-voltage conversion relationship; an example plot of the frontend voltage

response is illustrated in figure 3.2.

One of the requirements of the detection unit for the demodulation process de-

scribed in section 3.1.2 is to provide a linear relationship between the voltage

and photocurrent. It is possible to work within a photocurrent range (and hence

intensity range), where f(ipd) appears linear. Referring to the frontend response

plot (figure 3.2), this ‘linear’ range is indicated as the shaded orange region. The

incident light is required to have a high intensity (high DC offset) but with a

low variation/modulation depth (small AC amplitude) to stay within the ‘linear’
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Figure 3.2: Graph showing the (blue) voltage output observable at the frontend

(VFEout) vs. the photocurrent generated by the pixel photodiode. The

gradient of the voltage, with respect to the photocurrent, is shown as

the green trace. The shaded area on the graph indicates the local region

where the gradient is approximately flat, and where the frontend response

appears linear.

range.

As an improvement on the design of the MLCv5 frontend [84], the frontend cir-

cuit of this MLC also includes a biasing transistor. The bias transistor acts as a

current sink for the reverse bias photodiode and logarithmic load transistor cir-

cuit (section 1.6.3.3). This allows the user to tune to a bias point on the frontend

response curve, effectively simulating an additional amount of incident DC light

onto each pixel. This ‘tune biasing’ function is not used in the interferometer sys-

tems presented in this thesis, but is used by the chip designer to test the camera

at different points on frontend response curve [55].

The voltage at the frontend output given the photocurrent, also known as the

transimpedance gain or the frontend load, is regulated using a current feedback

circuit. Figure 3.3 illustrates the results of a design simulation [55] for the op-

erational frequency against the transimpedance gain for varying values of pho-

tocurrent. In effect, this is the AC amplitude frontend response, assuming it is

small (in this simulation, the AC amplitude is 1 nA). The response diminishes as
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the frequency increases, but also has a lower frequency cutoff for lower values of

photocurrent (in exchange for the gain required).

Figure 3.3: Graph of the simulated transimpedance gain of a small AC signal (1nA)

at various frequencies [55]. A number of plots are given for differing values

of DC photocurrent. As the amount of DC photocurrent increases, the

current-voltage conversion value decreases. This remains almost constant

upto an AC ‘cut-off’ frequency.

In addition to the amplitude response, frontend simulations were conducted to

determine the noise equivalent bandwidth (NEB) [55]. Figure 3.4 illustrates the

noise response in V/
√
Hz with varying AC frequencies at different values of DC

photocurrent.

The noise response graph can be used to determine the RMS noise at a given

frequency over a specific bandwidth, and indicates the minimal detectable AC

signal (unity SNR). As an example, assuming that the photocurrent generated

due to the DC component of an incident modulated optical signal is 200 nA (light

intensity of 600 nW) and measurement bandwidth of 2 kHz, Vrmsnoise = 98.3 pV.

Using the transimpedance plot in figure 3.2, this equates to a RMS noise current

of irmsnoise = 0.5 fA (equivalent to a light intensity of 1.5 fW, 478 photons at λ =

633 nm). The AC component of the example optical signal will need to be larger

than this value.
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Figure 3.4: Graph of the simulated noise response (as an RMS voltage) at different

operational frequencies [55]. Plots for different values of DC photocurrent

is presented.

3.1.3.2 Mixer stage

Analogue multiplication of two signals can be achieved by using a non-linear de-

vice (where the output has a function consisting of a polynomial equation). With

two signals input into a device, the second order output is of interest as one of

its components is the multiplication of the two input signals. For example, if two

signals, υi1 and υi2, are fed into a diode (forward bias, small signal), the output

signal would be proportional to υ0 = (υi1 + υi2) +
1
2
(υi1 + υi2)

2 + . . .. The second

order output can be expressed as (υi1 + υi2)
2 = υ2i1 + υ2i2 + 2υi1υi2 which contains

the multiplication of the two input signals [1, 33, 104].

A diode used in this way can be characterised as an unbalanced mixer. This

type of mixer is simple in its design and can achieve a broad bandwidth, how-

ever since the output contains many components, sharp filters may be required

to isolate the desired output (which may also be required to prevent the satura-

tion of any output electronics). In addition, the input signals are required to be

directly connected together, which could increase the circuit design complexity
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(e.g. impedance matching). Instead of a diode, a transistor could be used. The

signals are fed into the transistor source and gate, producing a mixed output

(a source signal controlled using a gate signal with a non-linear response). This

provides a degree of input signal isolation at a cost of bandwidth.

An alternative mixer circuit design is the balanced mixer; these mixers are de-

signed to cancel out the unneeded first order components in the output signal, as

well as providing isolation between the input signals. This class of mixer can be

categorised into single balanced mixers or double balanced mixers, where either

one of, or both input signals (i.e. first order components) are eliminated from the

output equation respectively.

The mixer stage of the MLC has been designed using two Gilbert cell mixers [105],

which are classed as a form of double balanced mixers. The Gilbert cell produces

differential outputs using differential input signals. A simplified circuit diagram

is illustrated in figure 3.5. The mixing process in the cell is performed by the

four transistors in the centre. The signal at locations a, b, c and d will be propor-

tional to the mix of signals [RF+ and LO+], [RF+ and LO−], [RF− and LO−]

and [RF− and LO+]. Considering the first and second order components of each

signal, adding the signal at a and c will eliminate all but the multiplication term

(RF+LO+) at Out+ (the same is true for Out−). Each pixel contains two Gilbert

cells for mixing the detected signal with either the in-phase or the quadrature

local oscillator signal.

3.1.3.3 Estimated uncertainty

As discussed in section 1.7, a signal in a real system becomes ‘contaminated’ as

each stage within the system adds noise onto the signal. Noise on an output signal

introduces measurement uncertainties. Sources of uncertainty in the system can

either be systematic or random. If systematic uncertainty is present in the sys-

tem, repeat measurements of an unchanging variable will produce a static error

onto the result. The system can be calibrated in order to remove this error (it will

not be considered in this section). If there are random errors present in a system,

repeat measurements of an unchanging variable will produce randomly different

result. The spread of the random results can be described by using probability

distributions, such as a Gaussian distribution or uniform distribution; the error
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Figure 3.5: Schematic of a Gilbert Cell [105]. The four centre transistors form a

ring; the two differential RF signals each mix with the two differential

LO signals, producing four output signals. The addition of the signals

at a and c, and b and d produce the differential output with first order

suppression.

on the measured value is often given as the standard deviation.

The noise contributions from components along the system chain are assumed

to be independent of each other as there is no correlation between the noise

sources. The noise powers through a system are additive and are assumed not

to be correlated, the noise voltages (or currents) can be calculated by summing

the individual noise contributions in quadrature. This can be extended when

considering multiple signals by using;

∆f =

√

√

√

√

n
∑

i=n

(

δf

δxi
∆xi

)2

(3.6)

Figure 3.6 shows the MLC signal chain (different electronic stages of each pixel);

the noise and signal is annotated between the amplifiers and the mixer.

At the mixer stage, each phase output is generated by using two signals; the

measured signal and the local oscillator signal. Using the uncorrelated noise

assumption, it is possible to model the uncertainty at the output of the mixer,

∆Mixout, using equation 3.6, such that;
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Figure 3.6: A diagram of the signal chain for the MLC. Both the signal and noise

from the receiver is amplified. The amplifier components contribute its

own noise to the signal chain.

Mixout = Sig.LO

∆Mixout =

(

(

δMixout
δSig

∆Sig

)2

+

(

δMixout
δLO

∆LO

)2
)

1

2

=

√

LO2.∆Sig2 + Sig2.∆LO2 (3.7)

where the measured signal and local oscillator signal at the mixer is expressed as

Sig and LO, with the uncertainty of these signals expressed as ∆Sig and ∆ILO

respectively.

In the standard widefield interferometer setup, the LO signal is derived from a

signal generator. For the analysis described in this section, the assumption is

made that there is no uncertainty in the LO signal (∆LO = 0). The mixer is

designed to produce unity gain and assumed to contribute negligible noise. The

schematic in figure 3.7 shows how the noise around the modulation frequency

(Fmod) appears at the output. The noise and signal from the mixer output is

filtered using a 2 kHz low pass filter, as represented in figure 3.7(c). This is the

equivalent of applying a sharp band pass filter around the high Fmod frequency

signal, as illustrated in figure 3.7(d).

The phase (φ) of an incident optical signal is calculated by capturing the in-phase

(VI) and quadrature phase (VQ) voltages at the output of the MLC. This is repre-

sented in the complex plane graph illustrated in figure 3.8. Repeat measurements

of the voltage (given a constant input phase) will produce random results due to

noise. In this analysis, the spread of the repeat results can be expressed as the
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Figure 3.7: Schematic of frequency spectra depicting the inputs and output of the

MLC mixer stage. The measured signal input (a) contains some random

noise, whilst an assumption is made that the LO signal input (b) contains

no noise. The output of the mixer (c) will be a down-mixed version of

the measured signal (entire spectrum is mixed with the LO signal). This

signal is filtered around DC using a low pass filter, which is the equivalent

to band pass filtering the signal input (d).

RMS voltage around an offset (depicted as red dots around the ‘true’ value in

figure 3.8) for both the in-phase (∆VIrms) and quadrature phase (∆VQrms) sig-

nals. Given the condition that the signal to noise ratio of the output is greater

than one, the uncertainty of the output phase (±∆φ) can be calculated (using

Pythagoras’s theorem and trigonometry), using;

s =
1

2

√

∆VIrms
2 +∆VQrms

2

∆φ = arctan

(

s

amplitude

)

= arctan

(

√

∆VIrms
2 +∆VQrms

2

2.amplitude

)

(3.8)

The error in phase can be further simplified by using the small angle approxima-

tion where tan θ ≈ sin θ ≈ θ.
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Figure 3.8: Argand diagram showing the relation between the MLC VI/VQ outputs

and the signal phase, φ. With noise present on the MLC outputs, the

captured voltage (given an incident signal with static phase) varies ran-

domly (red dots) over the range, ∆VIrms/∆VQrms, shown as the green and

blue shaded region respectively. This creates uncertainty in the measured

phase, ±∆φ. The phase error can be determine by measuring the MLC

I/Q errors and amplitude.

Determining the phase error for the detection system is complicated due to the

characteristics of the MLC components and the surrounding electronic circuity.

Factors such as different modulation frequencies (and any change in these fre-

quencies), the incident optical AC and DC intensities (and hence the modulation

depths) and any biasing currents applied to the MLC, all affect the system’s phase

error. A comprehensive overview of the noise characteristics at each stage of the

MLC and the system as a whole is provided by the chip designer [55].

Due to the complexity of the system, a figure for the phase error was determined

for the typical operating conditions described in section 4.1.2; light intensity of

43Wm−2 with a modulation depth of ∼28%, and a LO frequency of 15MHz

(500mVpp). The MLC output amplitude was measured to be 11.8mV; this was

determined by capturing (in differential) VI (8.5mV) and VQ (8.0mV) using an

oscilloscope with 512 averages, and applying a 15MHz+1Hz optical signal. The

I/Q phase noise as an RMS voltage was measured to be ∆VIrms = 3.1mV and

∆VQrms = 2.2mV, again using the oscilloscope but with no averages, and applying

a 15MHz optical signal. Referring to equation 3.7, the phase error is equal to

∆φ = ± 0.16 radians (∼9◦).
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Figure 3.9: An example frequency plot of a laser’s longitudinal modes. The modes

have different emission centre frequencies, fm(n) and is separated by ∆v.

Increasing the laser’s cavity finesse (degree of feedback), shown in this

example as yellow to green to blue indicating increasing finesse, increases

the relative intensity at each mode’s centre frequency.

3.2 Interferometer system methods and compo-

nents

3.2.1 Laser sources

A laser is a device that emits light based on optical amplification through a stim-

ulated emission process. A typical laser has a resonant optical cavity formed by

mirrors; usually one mirror is slightly transmitting to allow the light out. A gain

medium in the cavity provides amplification. The stimulated emission process

means that photons in the cavity cause new photons to be emitted from the gain

medium with the same wavelength, phase and direction.

The resonant cavity gives rise to different longitudinal and transverse modes. The

laser cavity can be designed to suppress higher order transverse modes [106]. It is

often the case that several longitudinal modes lase at the same time with different

frequencies (fm) separated by a mode separation frequency (∆v), as illustrated

in figure 3.9. The frequencies of the longitudinal modes are determined by the

properties of the laser cavity.

In continuous wave (CW) lasers, each mode has a narrow bandwidth. There is

no correlation between each mode and a continuous beam is emitted from the
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laser. It is possible for interference to occur between modes over brief periods of

time, causing intensity fluctuations. This is lessened as the number of longitu-

dinal modes increase (fluctuation is averaged over the number of modes). The

narrow emission bandwidth of the CW laser indicates a large temporal coherence

(section 1.4).

The interferometer arrangements described in this thesis use continuous wave

helium neon (HeNe) lasers; a Uniphase 1100 series (1136p) 10mW multi-mode

CW laser [107] and two lab constructed stabilised two-mode 0.9mW(±0.5mW)

CW lasers [108]. A mixture of helium and neon gases in the laser’s tubes are

used as the gain medium. This gas medium determines the laser gain bandwidth

(∆fgb) and the centre frequency (fcf ) of the gain bandwidth. It is possible for a

laser to have the centre frequency at different locations along the spectrum (with

different gain bandwidths), however, the lasers used for this project are designed

to emit at fcf = 474THz, or more usefully, at the red end of the visible spectrum

at λcf = 632.8 nm. The gain bandwidth at this emission wavelength of a HeNe

laser is ∆fgb = 1.5GHz (full width half maximum) [109]; the laser will emit light

with frequencies within this bandwidth.

By combining the gain bandwidth and the optical resonator conditions for the

HeNe CW lasers, it is possible to see that only longitudinal modes that are present

within the gain bandwidth region will be emitted from the laser; the number of

potential emitted modes equals the number of mode separations within the gain

bandwidth (
∆fgb
∆v

). The Uniphase and the lab constructed lasers have a mode sep-

aration of 320MHz and ∼650MHz respectively. Additionally, each laser contains

a lasing threshold (which exist due to absorption in the mirrors and scattering

losses) which each mode must surpass for emission.

In the HeNe gas lasers, the frequency separation of the modes, and therefore

the centre frequency of each mode, depend on the cavity length, L, (i.e. length

between the mirrors). The mode frequency separation between each possible

emitted frequency can be calculated by using equation 3.9. One of the features

of a HeNe laser is that each alternative mode is orthogonally linearly polarised

(maximum optical gain for a set of two longitudinal modes occurs when their

polarisation is linear and perpendicular with respect to each other) [110].
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∆v =
c

2L
(3.9)

Figure 3.10: An example of a HeNe laser’s emission spectrum. The laser will only

emit modes that are within the gain bandwidth profile. The intensity of

each mode must also be above the laser threshold. Each mode is linearly

polarised and orthogonal to the proceeding mode, indicated in blue and

red. Two linear and orthogonally polarised modes are emitted in this

example laser; this changes as the cavity length varies.

HeNe CW lasers are used as the light source for the experiments in this thesis

as they are inexpensive, simple, reliable and widely available with a variety of

different optical powers. The narrow linewidth of each mode equates to a large

temporal coherence, allowing for a degree of flexibility when designing the inter-

ferometers.

As discussed, the frequency (as well as the intensity) of each mode changes as the

cavity length changes. The temperature of the laser can cause the contraction

and expansion of the cavity (changing L). One of the requirements for the two

laser interferometer system is a highly frequency stable (low drift) light source.

The stabilised HeNe lasers used for the experiments described in chapter 6, con-

structed using inexpensive parts, provides this requirement.

3.2.2 Acousto-optic frequency shifters

In a heterodyne interferometer, beams with different optical frequencies are re-

quired. Heterodyne detection schemes have a limited operational bandwidth, and
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crucially, the demodulation techniques they employ often require that the differ-

ence in the optical frequencies, and hence the phase relationship, is known and

stationary (i.e. the interfering beams should be mutually coherent).

The simplest method of fulfilling this requirement is by using a single split source

and shifting the optical frequency of one of the split beams. Since the func-

tion driving the shifting mechanism is known, the phase relationship between the

shifted and un-shifted beam can be defined (as long as the coherence limits of

the source are adhered to in the interferometer design). Another method involves

phase-locking different laser sources using a common reference signal (section 2.4).

A common method of changing the optical frequency is by introducing a Doppler

shift onto light [17]. As the position of the light source moves closer to or away

from observation, the wavelength of the light wave shortens or lengthens respec-

tively; this shift in wavelength (and therefore frequency) is dependent on the

speed of the movement. In practice, having something move away or towards the

detector indefinitely would be impossible, however, a variety of methods can be

used to simulate the Doppler shift effect [111–117].

Acousto-optic frequency shifters (AOFS, also known as acousto-optic modulators

or AOM) are used in the heterodyne interferometers described in this thesis to

implement an optical frequency shift. An acousto-optic effect is produced by

applying an acoustic wave into an optically transparent material (e.g. quartz).

As the wave travels through the material, it causes periodic variations in the re-

fractive index. This generates an effect analogous to a moving diffraction grating

along the material with the site spacing equal to the wavelength of the acoustic

wave.

An AOFS cell is constructed using a piezo-electric transducer to introduce the

sound waves into the transparent material. A single cell can be designed to in-

duce shifts centred within the 108-1011Hz range (with a small bandwidth around

this frequency).

The cells used for frequency shifting in the interferometer systems presented oper-

ate in the Raman-Nath regime [118] and are designed to generate multiple orders

from incident light, all frequency shifted by an amount depending on their order.
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This is in contrast to the Bragg regime, where only two orders are present at the

exit of the cell, one of which is either up-shifted or down-shifted (depending on

the angle of incidence) [119].

The AOFS diffraction pattern, showing the different orders generated, is shown

in figure 3.11.

Figure 3.11: The operation diagram of an AOFS. A signal is fed to the transducer,

which propagates an acoustic wave through the quartz (top to bottom).

When light enters (left), the beam is diffracted at an angle and frequency

shifted (right). The acoustic wave is absorbed on the other end of the

quartz (bottom).

The angle of diffraction depends on the spacing between the ‘grating fingers’,

which is determined by the wavelength of the sound wave. The angle of each

order exiting the cell can be described using;

sin θm =

(

mλ

Λ

)

(3.10)

where θ is the angle of diffraction for each mth order (m = . . . ,−2,−1, 0, 1, 2, . . .),

and λ and Λ are the wavelengths of the light and sound waves respectively. The

optical frequency is shifted on each diffraction order, such that;

fm−order → flight +mfsound (3.11)

where fm−order is the frequency of the produced light at each mth order, flight is

the frequency of the light entering the cell, and fsound is frequency of the sound

wave. The optical frequency shift is controlled by the frequency of the sound
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wave. Interfering the 1st and 0th order beams from the AOFS would produce a

pattern with a beat frequency equal to fsound.

The experiments presented use AOFSs from Gooch and Housego (I-FS040). The

devices are designed to operate at 40MHz, with up to 99% transmission at λ

= 633 nm-680 nm [120, 121]. Working at this drive frequency (interfering 1st/0th

orders), the interferogram modulation frequency would exceed the maximum op-

eration frequency of the MLC (∼17MHz).

One solution in producing lower frequency shifts is to use two AOFSs with slightly

different frequencies to drive the cells (e.g. 40.0MHz and 40.1MHz). Combined,

it is possible to generate a pattern (1st/1st order interference) with a modulation

frequency equal to the difference in driving frequencies (e.g. 100 kHz for 40.1MHz

and 40.0MHz).

As mentioned, the AOFS diffraction angle is linked to the acoustic frequency and

the AOFS is designed for this to be perpendicular to the device. If the AOFS is

tilted by an angle, the angle of light incidence changes, along with the optimum

drive frequency for the AOFS (i.e. a diffraction pattern can be generated if it is

driven at a lower frequency). The AOFS cell in this new configuration is capable

of shifting light down to ∼12MHz, eliminating the need for a second cell at the

expense of reduced light intensity for each diffracted order [122]. The hetero-

dyne interferometers described in chapter 4 and chapter 5 use one AOFS. Each

arrangement requires only one signal generator/amplifier (removing the need for

a phase locking method if two AOFSs are used).

3.2.3 MLC interfacing

In each pixel of the MLC, incident light intensity is continuously detected and

converted into an electronic signal. The signal is amplified, mixed with local ref-

erence signals and filtered, but remains continuous.

A diagram of the inputs and outputs of each pixel is illustrated in figure 3.12.

Each pixel produces differential I (I+out/I
−
out) and Q (Q+

out/Q
−
out) outputs, and a

DC output. In addition, four pixels in the centre of the MLC array output an

amplified version of the detected signal.
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Figure 3.12: A diagram of the inputs and outputs of a single pixel in the MLC. The

light intensity is detected, and mixed with local differential in-phase

and quadrature sinusoidal signals. With one input address, four pixel

are selected and their outputs can be observed at the output buffer.

The modulated light camera requires four local sinusoidal reference signals; each

signal is the same except with a phase difference of 90◦ between them. The cam-

era selects four pixels to output per address, hence a maximum of 20 outputs

(plus 4 RF outputs) can be measured per address.

The acquisition and control system to extract and provide these signals is de-

scribed in this section. It was built and written with the co-operation of Samuel

Achamfuo-Yeboah [55].

3.2.3.1 Camera interface PCB

Over the course of the project, a variety of test PCBs had been designed and

fabricated before the final version, described here, was used in the capture of

the interferograms presented in chapter 4, chapter 5 and chapter 6. The PCB

is used as an interface between the MLC chip and external devices; the aim was

to directly link the MLC with a single signal generator, single ended 12V power

supply and an ADC (connected to a PC). The design of the PCB is based on the

flow of signals around the acquisition system (in addition to external component
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Figure 3.13: Schematic of image acquisition system. The MLC is represented by the

centre block, with the local reference signal and addressing inputs, and I,

Q and DC outputs the same as shown in figure 3.12. The local reference

signal is taken from a signal generator and the output data is sent to

the 16 input ADC under PC control. The PC sends addresses to the

MLC via the ADC.

restrictions). A schematic of the acquisition system is illustrated in figure 3.13.

In the standard interferometer setup (chapter 4), the local oscillator signal is fed

in to the PCB from a signal generator (Tektronix AFG 3252). This signal is also

sent to the AOFS in the interferometer arrangement. Phase (differential I/Q)

and DC output data is read using a 16 analogue-input data acquisition (DAQ)

card (section 3.2.3.2) under PC control. The PC also sends in control signals to

the MLC via the DAQ, most notably the pixel address (which selects four pixels

for output). The schematic of the two-layer PCB used to interface these signals

with the MLC is illustrated in figure 3.14.

This PCB contains power supply regulators (LM1117); two sets of the 3.3V and

5V versions (left of board) to supply power to the chip using the 12V (top left of

top layer) input, with the analogue supply separate to the digital supply. The lo-

cal oscillator signal (input through an SMA connector in the top left of the board)

is phase split on the PCB (left on the bottom layer); a Mini Circuits JSPQ-80+
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(a)

(b)

Figure 3.14: The top (a) and bottom (b) layer schematic of the PCB used to send

and receive control and data signals from the MLC (chip holder), signal

generator, oscilloscope (SMA) and PC (via DAQ board and SCSI 68-

way port). The PCB was designed so that the majority of the inputs

were kept on the left, the MLC in middle and the outputs on the right

(with control signals on the top and bottom), as the MLC chip itself

had been design in this manner.

and two T4-1 transformers are used to generate the in-phase and quadrature

phase reference signals (90◦ split) and then into two sets of differential reference

signals (180◦ split) respectively. These transformers have an operation band-
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width of between 3MHz and 80MHz. The MLC itself fits in the centre of the

PCB through a 84-pin chip holder.

The DAQ board interfaces with the PCB through a SCSI 68-way port (right).

All 1024 pixels can be selected using an 8-bit address (5-bit row, 3-bit column),

with four pixels selected at a time. Since there are 20 MLC outputs (Ip, In, Qp,

Qn, DC × 4) and the DAQ only has 16 analogue inputs, a set of multiplexers

(FSA2257) are used to switch between the DC outputs and arbitrarily chosen

I/Q outputs. Whilst the MLC is capable of outputting four consistent RFout

signals, only two have been chosen for output through SMA connectors (top of

the board). This MLC chip has been designed with multiple pins to supply power

to the internal circuitry [55]; each pin is fed the required voltage in series with

individual bypass capacitors in order to prevent power spikes (which could po-

tentially damage the chip). Finally, fixed resistors are used for biasing currents

in the MLC (to control gain and bandwidth), with the resistor values chosen by

the chip designer [55]. The chip consumes approximately 420mA.

3.2.3.2 Acquisition and control ADC

Control signals to the MLC are sent from a PC, via a data acquisition (DAQ) card

(NI PCI-6251) [123], using a 68-way SCSI port and shielded cable. The DAQ card

has a 16-bit 16 channel ADC and is capable of a 1Ms s−1 multi-channel acquisition

rate, i.e. a single sample on a single channel can be measured in t = 1
1(M)

= 1µs.

Given the multi-channel acquisition rate, a single DC intensity frame capture

(1024 pixels) could be completed in 1ms, with a complete phase image capture

(I+, I−, Q+ and Q−) taking ∼4ms, giving a maximum theoretical frame rate of

250 frames s−1.

In addition to receiving data, the DAQ is also used to send control signals, such

as the multiplexer switch signal and the 8-bit address, to the PCB.

3.2.3.3 PC interface programs

The acquisition and control software was written in C and Matlab. Comedi

v0.8 [124] was used to communicate with the DAQ card. It was determined that

the PC processing time was the bottleneck in the overall frame rate, so tech-
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niques such as addressing in Gray code [125], which also prevents the possibility

of spurious data as is possible in binary counting (i.e. different pixels selected if

each address line has different propagation times), and saving the read data as a

binary file, were employed to reduce the PC processing times. The averaging of

each pixel’s data was conducted before the data was saved. The total time for

both image and phase frame grab (no averaging) was 25ms, giving a frame rate

of 40 frames s−1.

Matlab was used to perform the atan2 function to extract phase and for reshap-

ing the raw data into images, which were both saved and displayed on-screen;

this typically took around 0.4 s per frame.

3.2.4 Capture procedure

When capturing an image, a few considerations have to be made to minimise

noise contributions to the image, as well as reduce the errors in the phase calcu-

lation due to the MLC’s non-linear frontend.

Section 3.1.3.1 discusses how, in order to achieve a frontend response that appears

linear, the incident light (equation 1.17) is required to have a large DC component

(IDC) and a small AC component (A). In other words, a high intensity, low mod-

ulation depth optical signal. Considering the heterodyne interference equation

(equation 1.17), this can be achieved by interfering beams with large intensity

differences. i.e. low and high intensity beams.

For the situation where random noise becomes prevalent in a captured image,

data averaging can be used. Given that the random noise content (with a mean

of zero) of the system has the value N without averaging, a decrease of this noise

figure of N/
√
n would be observable with averaging, where n is the number of

averages. If the assumption is made that there is no correlation between the sys-

tem signal and noise (and that the signal value remains constant in each captured

image), the SNR increases by
√
n. This is analogous to increasing the integration

time on a CCD camera. The disadvantage of averaging is a decrease in the system

frame rate (increase in read time per pixel). In addition, low frequency drift in

an interference fringe position will result in the reduction of fringe visibility (ex-

plored in section 1.7.5), as it will add systematic errors into an image (depending
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on the frame capture time).

As discussed in section 1.7.4, the modular array design of the MLC ensures, in

theory, that each pixel operates in the same way. However, in practice, factors

such as slight physical variations and the power distribution introduces fixed pat-

tern noise (FPN) into each image. One component of the FPN can be described

as the dark signal non-uniformity. In a standard camera, this is an offset observ-

able in each pixel’s output with no light incident. It is eliminated post capture

by capturing an initial ‘dark’ image (FPN image) and removing the offset from

each ‘irradiated’ image captured. This becomes more complex for a camera with

a logarithmic frontend pixel; the ’fixed’ pattern noise is no longer independent

of illumination and assumes non-linear behaviour [126]. Fortunately, since one

of the major objectives is to operate in a ‘linear’ region of the camera, the FPN

image is captured with DC light present (and no AC light). As long as images are

captured with incident light intensity around this DC light level, the assumption

is made that FPN is eliminated.
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Widefield heterodyne

interferometer

In this chapter, the interferometer system developed to capture widefield hetero-

dyne interferograms using the MLC is presented. The MLC is used to capture

homodyne and heterodyne interferograms, with comparisons made between the

images and system arrangements. Modelled images, calculated using knowledge

of incident wavefronts, are compared with the measured results. As a proof-of-

concept experiment, a phase shifting object is placed within the interferometer

and the phase change in the interferogram is captured.

4.1 Widefield heterodyne interferometer outline

4.1.1 Interferometer system brief

Widefield interferograms show the phase variations across the spatial domain of

an interference fringe pattern. Capturing this widefield phase information can

be useful when determining the difference in the optical path length between in-

terfering beams at individual spatial point of capture; the position of each pixel

on a camera array determine these points (assuming a static camera is used for

capture).

The focus of this initial investigation, presented in this chapter, is to show the

MLC’s capability of capturing, demodulating, and outputting the phase of an

incident heterodyne interference pattern. The MLC is also able to capture static

(DC) intensity; a comparison between the captured DC and modulated fringe
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patterns can easily be made. The interferometer was setup to produce homodyne

and heterodyne interference patterns separately.

The interferogram images captured by the MLC can be compared against ex-

pected modelled images. Fringe patterns generated in an interferometer depend

on the wavefront properties of the interfering beams. By measuring and adjust-

ing the distances between certain optical components (i.e. lenses) within the

interferometer, and determining the characteristics of the wavefronts using these

distances, an expected (i.e. incident on to each pixel of the MLC) phase image

can be generated.

As a proof of concept experiment, a microscope slide was placed half way across

one of the interfering beams. By measuring the fringe pattern before (control im-

age) and after the slide was introduced, and determining the difference between

them, a confirmation can be made that the phase shift observed in the output

image was due to the slide (comparing the covered/uncovered side of the image).

4.1.2 Heterodyne interferometer arrangement

To capture widefield interferograms, the MLC was used in the configuration de-

scribed in figure 3.13 and incorporated into a Mach-Zehnder interferometer. A

light beam was split using a beamsplitter into object and reference arms. Taking

separate paths, the beams were recombined using another beamsplitter, where

interference occurred. One arm of the interferometer passed through an AOFS

and a fixed spatial filter with a laterally movable entry lens. A schematic of the

interferometer setup is illustrated in figure 4.1, with a photograph of the setup

shown in figure 4.2.

The light source used in this system was a Uniphase 1100 series (1136p) 10mW

HeNe (λ = 633 nm) laser [107]. The Uniphase 1100 series HeNe lasers have a

coherence length of ∼40 cm [127]. In this Mach-Zehnder interferometer arrange-

ment, the path length difference was less than the coherence length of the source

(path length difference was the combination of the light through the AOFS, the

modified spatial filter, and any difference in the wavefronts and the sample). With

the light passing through the AOFS and the spatial filter arrangement, some of its

intensity was lost (due to the low drive frequency and slight optics misalignment);
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Figure 4.1: The Mach-Zehnder homodyne/heterodyne interferometer used a fixed

spatial filter/pinhole and a movable lens so that it could switch between

homodyne and heterodyne modes while preserving the generated inter-

ferogram. In heterodyne mode, the AOFS shifted the frequency of one

arm of the interferometer, resulting in a modulated interferogram at the

detector. A signal from the signal generator (sine wave with frequency

f =15MHz) drove the AOFS via an amplifier. The same signal was also

used (after phase splitting) as the local oscillator in the MLC for mixing.

the intensity of the object (blue) and reference (red) beams were measured (us-

ing an optical power-meter) to be 0.76Wm−2 and 42.03Wm−2 respectively. This

measured value was the average profile intensity, as the beam emitted from the

laser had a Gaussian profile (as indicated in figure 4.3(a)). While the reduction

in intensity in one of the interferometer arms reduced the overall optical signal

to the MLC, it was not entirely disadvantageous. As discussed in section 3.2.4,

for the MLC’s frontend to operate in the ‘linear’ region, the incident modulated

light requires a high DC intensity and low modulation depth; this was achieved

with this arrangement (approximately 28% modulation depth).

The MLC was capable of outputting (simultaneously) the DC intensity and AC

phase information (after demodulation). The described setup was used to switch

between homodyne and heterodyne modes; by moving the entrance lens of the

spatial filter, either the 0th or the 1st order output (discussed in section 3.2.2) from

the AOFS could be selected to pass through the pinhole which then interfered

with the other arm of the interferometer. When the 0th order was selected, both

interfering beams had the same optical frequency (homodyne interference). When

the 1st order was selected, the interfering beams had a frequency difference equal

to the AOFS drive frequency (heterodyne interference). The drive frequency was
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chosen to be 15MHz as this is within both the lower operating frequency thresh-

old of the AOFS (discussed in section 3.2.2) and the upper operating limit of

the MLC (expressed in section 3.1.1). The spatial filter arrangement allowed for

a quick switch between the interferometer modes without changing the spatial

phase relationship between the interferometer arms; i.e. the interferogram ob-

served in the homodyne mode was the same as in the heterodyne mode. This

aided in the alignment for the heterodyne mode, since the homodyne interference

pattern was visible by eye.

The size and position of each beams were adjusted using a beam expander ar-

rangement. The reference and object arms produced plane and weakly spherical

waves respectively, generating a concentric circular fringe pattern. The images

presented in this chapter used 50 averages to reduce the amount of random noise

(discussed in section 3.2.4).

Figure 4.2: Photograph of the heterodyne interferometer shown in figure 4.1; beam

path is indicated along with the key components in the arrangement.
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4.2 Heterodyne-Homodyne mode image compar-

ison

Since the beam profile from the laser was Gaussian, the light intensity incident

on the MLC array was non-uniform. An intensity (DC) image captured of the

object beam (the higher intensity beam) is illustrated in figure 4.3(a) (captured

by covering up the reference beam). When the interferometer was set into homo-

dyne mode (0th order transmitted through), a DC fringe pattern was generated;

the captured image is illustrated in figure 4.3(b).

(a) (b)

Figure 4.3: Captured DC image of (a) the reference arm beam profile and of (b) a

circular fringe pattern. Both images show normalised measured outputs.

A circular fringe pattern was visible in the homodyne interferogram image, with

the centre of the circles apparent at the top. The pattern image (figure 4.3(b))

shows a variation in the fringe visibility, represented by the range between the

peaks and troughs. The range variation correlates with the beam profile image

(figure 4.3(a)), which shows that the DC intensity is inversely proportional to

the homodyne fringe pattern visibility. This observation agrees with the cam-

era’s logarithmic frontend response (i.e. larger output voltage range with lower

input photocurrents). Non-uniform DC offsets across a homodyne fringe pattern,

such as in this instance, make direct phase determination difficult (discussed in

section 1.3.4). Therefore, a phase extraction technique was required; a phase

image was constructed using the spatial domain filtering method (discussed in

section 1.3.5). The captured image was filtered digitally using a 2D FFT Matlab

routine with aim of removing the DC spatial offset. Looking at the interferogram,
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the centre of the concentric circle fringe pattern is at the top, so a simple ideal

filter was applied to all positive y-axis spatial components (i.e. reduced to zero).

A 2D IFFT was applied to the filtered output. A phase image was constructed

by performing an inverse tangent operation on the imaginary part over the real

part of the IFFT output; the resultant image is illustrated in figure 4.4.

Figure 4.4: Constructed phase image using the DC fringe pattern. A Matlab script

was used to perform a 2D FFT on the pattern and to apply an ideal filter.

After an inverse FFT, an inverse tangent operation was performed using

to the resultant real and imaginary parts in order to determine the phase.

The heterodyne interferogram was captured by switching the interferometer into

heterodyne mode (transmitting 1st order through). The phase information of the

incident modulated light was determined by measuring the in-phase and quadra-

ture phase outputs from of each pixel (I+, I−, Q+ and Q− outs); the captured

differential I and Q outputs (in image form) are illustrated in figures 4.5(a) and

(b).

The I/Q images show the heterodyne fringe pattern; the fringe pattern is in the

same position as in the homodyne interferogram. The images show a phase dif-

ference between the patterns equal to 90◦. The I/Q data was used to construct

a phase image (equation 3.5), illustrated in figure 4.6.

As expected, the heterodyne interferogram phase image shows the same fringe

pattern seen in the homodyne image. However, unlike the homodyne case, phase

information was available immediately (after an inverse tangent operation) and

displayed phase independent of the DC/low frequency offset.
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(a) (b)

Figure 4.5: The differential (a) in-phase (Ip-In) and (b) quadrature phase (Qp-Qn)

images of the heterodyne interferometer fringe pattern. The colours rep-

resent the normalised measured signal from the MLC.

Figure 4.6: AC phase output image of the heterodyne interferogram. The output was

generated using the IQ images.

4.3 Measured and modelled image comparisons

To ensure the MLC operated as expected, theoretical fringe pattern images were

generated using a program to corroborate measurements made in the optical ar-

rangement setup. Circular fringe patterns in this setup were generated by inter-

fering a weakly spherical wave and a plane wave. A diagram and the parameters

of the setup is described in Appendix A.

The heterodyne fringe pattern captured using this setup is illustrated in fig-

ure 4.7(a). The program, written in Matlab, produced theoretical fringe pattern

images using the data described in Appendix A, except for δmL (ref. equa-

tion A.1), which was varied to find a theory image of best fit with respect to the
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measured image, shown in figure 4.7(b). The theoretical image (a), was calcu-

lated given the distances between the lens and the detector.

(a) (b)

(c)

Figure 4.7: Circular fringe pattern images. The measured image (a) was capture

under the conditions described in this section, with the theory image (b)

determined using a Matlab program, varying lens displacement and beam

angle parameters to find an image of best fit. The difference (c) between

the measured and theory images is displayed as a modulo 2π image.

Excepting the noise, the theory and measured interferograms appear similar; the

position and size of the circular fringes are comparable. Figure 4.7(c) illustrates

the difference between the measured and theory images as a modulo 2π image (to

remove phase steps and restrict the difference range to 2π). The δmL value de-

termined by the program was equal to 4.8mm (with parameter steps of 0.1mm).

The difference image does indicate that there is a slight fringe pattern difference,

however, this can be explained as experimental error for all the parameters de-

scribed at beginning of this section. Additionally, the best fit determination could
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have been skewed by the noise prevalent near the edges of the image.

4.4 Object characterisation experiment

To perform an interferometry experiment, a microscope slide was placed over half

the object beam; this changed the phase relationship φ(x, y) across the covered

half. To capture the phase change, the MLC was used to capture the heterodyne

fringe pattern before and after the microscope slide had been introduced into

the interferometer; the captured images are illustrated in figure 4.8(a) (no-slide

image) and figure 4.8(c) (slide image) respectively.

To aid in determining the phase change, each image had been unwrapped; the

unwrapping process extends the phase measurement range beyond the 2π range,

removing phase steps. The complexity of the unwrapping process depends on

whether the captured phase data is in 1D or 2D, and on the fringe pattern shape

(an advantage of capturing a simple circular fringe pattern). This process was im-

plemented post-capture; figure 4.8(b) and figure 4.8(d) illustrates the difference

images between a non-slide and slide image respectively, and a control image,

after applying a 2D unwrapping routine (in Matlab [128]).

The slide covered the left half of the MLC (x-axis pixels approximately less than

16), with the right half of the MLC (x-axis pixels approximately more than 18)

being uncovered. Figure 4.8(c) shows the phase image measured with the slide

placed in the setup and figure 4.8(d) shows the unwrapped difference image be-

tween the slide and control image. The right side of the image is constant as in

figure 4.8(b) meaning that this side has the same fringe pattern as the control

image (therefore no slide is present). The phase on the left side of the image has

changed in figure 4.8(d) as is consistent with the introduction of the slide.

4.5 Widefield heterodyne system discussion

The heterodyne interferometer system described in this chapter was used to in-

vestigate the viability of capturing a widefield fringe pattern using the MLC

described in section 3.1. The MLC is capable of capturing a modulated optical
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(a) (b)

(c) (d)

Figure 4.8: Phase images of (left) heterodyne fringe patterns (a) without a slide, (c)

with a slide present in the left half of the object arm (incident on the left

half of the MLC array). The images are unwrapped, and the difference

between them and a control image are presented (right) (b) without the

slide, (d) with a slide. Colour represents the phase in radians (which

extend beyond the 2π range in the unwrapped images).

signal and outputting readily (after pixel select) continuous DC and AC phase

values in quadrature, which are directly proportional (assuming linear operation)

to the respective optical signal components; the continuous output is available

due to the camera’s use of HF amplifiers instead of using signal bins. Real time

widefield images can be captured using the camera without relying on a scanning

technique. The size of MLC chip (3.68mm × 3.68mm) is comparable with other

digital camera sensor arrays, and its CMOS architecture allows for random indi-

vidual pixel access (allowing information capture on a smaller selection of pixels

for increased frame rates).
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As the MLC is capable of outputting the low frequency intensity information and

the high frequency phase information of an incident optical signal, the device

was used to capture both homodyne and heterodyne widefield interferograms us-

ing a modified Mach-Zehnder arrangement. Using an AOFS and spatial filter

combination, the interferometer was capable of generating both homodyne and

heterodyne fringe patterns by switching between whether the 0th or 1st AOFS or-

der interfered with the reference arm. The AOFS was driven using an externally

generated 15MHz sinusoidal signal. The captured homodyne and heterodyne

fringe pattern is illustrated in figure 4.3(b) and figure 4.6 (derived using the I/Q

outputs illustrated in figure 4.5(a)/(b)) respectively. As well as confirming that

the MLC functions as expected, the similar pattern images showed that by using

the modified spatial filter, the spatial phase relationship was maintained between

the object and reference beam independent of the AOFS order selected.

One method of extracting the phase from a homodyne pattern is by using the spa-

tial domain filtering method (discussed in section 1.3.5). Considering the setup

described in this chapter, this method was preferred over other methods such as

phase shifting interferometry as only one DC pattern image was required, whilst

pattern range variations (DC background influences and low frequency back-

ground influences) are removed. The resultant image is illustrated in figure 4.4.

Some information was lost from the top of the image and a more complicated

filter could be applied to avoid the loss of this information. However, the image

is in good agreement with the heterodyne phase image (figure 4.6). Both images

produce phase images without influence from intensity offset variations.

While the spatially filtered images display less random noise than the measured

heterodyne image, there will be increased phase uncertainty due to errors in-

troduced by the filtering process. For a more diverse range of generated fringe

patterns or a changing fringe pattern, different and complex filters would need to

be applied. In contrast, the heterodyne setup produces a fringe pattern directly,

independent of the fringe pattern generated.

To show a proof of system concept, two measurement experiments were con-

ducted. The first of the two experiments compared the measurements made

when capturing a heterodyne fringe pattern against values used in a computer

generated theory image (illustrated in figure 4.7(a)). The theory image of best
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fit, illustrated in figure 4.7(b), was determined by adjusting one value, δmL, in

the model illustrated in figure A.1; 4.8mm was calculated whilst the measured

result was 5.0mm, which is within a margin of human measurement error. The

second experiment conducted involved placing a microscope slide in the object

arm of the interferometer. Unwrapped pattern images captured before and after

the introduction of the slide was illustrated in figure 4.8(b) and figure 4.8(d).

Each of the pattern images captured contain errors due to random noise influ-

encing the measured I/Q voltage signals (e.g. notable between the measured and

theory images in figure 4.7(a) and figure 4.7(b)). An analysis of the phase error

was presented in section 3.1.3.3. Conducting a full noise analysis on the MLC

is complicated (an in-depth analysis is provided by the chip designer [55]), so

the phase error of ∆φ = ±9.1◦ was determined under the conditions described

in section 4.1.2. The light intensity measurement of 43Wm−2 was made using

an optical power meter (which averages the incident power received across its

detection head), and in determining the phase error, the assumption was made

that this intensity was uniform across the array. In practice, the images show

more noise nearer the edges, where the SNR was lower due to the laser’s Gaussian

beam profile (receiving less light than at the centre). To reduce the amount of

random noise visible in each image, sample averaging could be used. Random

noise would be reduced by
√
n, where n is the number of samples taken for aver-

aging (explored in section 3.2.4). However, this process would increase the image

capture time.

The performance of the system described in this chapter can be compared against

other widefield heterodyne detection systems described in section 2.2. The par-

allel detection (64 device) system developed by Massie [15] for use in captur-

ing heterodyne fringe patterns, was reported to have a phase accuracy of λ/100

(3.6◦), working with modulation frequency of 1MHz, capturing at a frame rate

of 100K fps. However, a complex parallel system such as this is unsuitable for

many applications due to its size, cost and power requirements. The 58×58

smart pixel CMOS camera designed by Bourquin was used in a heterodyne re-

flectometer application [77, 78]; the camera could detect modulation frequencies

of upto 1MHz, with readout speeds of upto 300 fps and had a maximum output

SNR of SNRout = (1560mV
0.81mV

)2 = 65.7dB. However, as this camera used a rectifier

circuit for signal demodulation, only the signal amplitude was obtainable (and
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not the phase). The 64×64 pixel 3PCIS CMOS camera developed by Kimachi

was used in a heterodyne Michelson interferometer system and was capable ex-

tracting phase information from a 25 kHz optical signal at 30 fps [25]. A phase

accuracy of 0.85◦ was reported (an updated camera design includes a 200×200

pixel array [16]). The camera units used in these systems can be compared with

modern commercially available modulated light cameras, such as the PMD [129];

the camera contains a 160×120 pixel array, capturing optical signals with mod-

ulation frequencies of upto 80MHz at 90 fps with a typical LIDAR measurement

error (at 10MHz) of 5mm/1500mm (1.2◦).

An initial comparison show that these other detection systems are superior to

the system described in this chapter, when considering phase error, modulation

frequency and pixel count. However, there are some advantages that the MLC

has over these other systems. The notable feature of the MLC is its ability

to output continuous phase information (by using amplifiers and mixers instead

of using sampling bins). The phase of a fringe pattern can be determined (in

the widefield region) directly, without waiting for an integration period, without

performing phase stepping, and without an extensive post capture processing.

The MLC is able to demodulate in the 106Hz region (tests conducted by the

chip creator reported on detecting upto 50MHz [55]) using on-chip circuitry. In

combination with the output low pass filter (which is the equivelent of applying

a sharp filter at the high modulation frequency, shown in figure 3.7(d)), the MLC

has the potential to reduce the influence of noise (e.g. flicker noise) on an output

that other systems may not be able to. However, the MLC is a prototype device,

and as such, is not as optimised as it could be. It should be possible for an

improved MLC design to feature a higher modulation frequency and a reduction

of in-system noise [55].
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Ultrastable widefield heterodyne

interferometer

This chapter describes the operation of the ultrastable heterodyne interferometer

system. The stability of the system is compared with the standard interferom-

eter setup by inducing vibration into the system. Images of interferograms are

presented as well as an analysis of the system and its immunity.

5.1 Ultrastable interferometer outline

5.1.1 Ultrastable system brief

Microphonics and vibration on interferometers introduce an unwanted time vary-

ing phase variation (with an unknown function) into each arm. If this variation

is fast compared with the frame rate of the detector, the fringe visibility could be

lost entirely (as discussed section 1.7.5). One common form of vibration observed

in an interferometer system is piston phase, where the same temporally varying

OPL is seen across the interferogram.

In the standard interferometer scheme described in chapter 4, the local reference

signal fed to the mixers was derived from the signal generator (which also drove

the AOFS). The system described in this chapter utilised the same interferometer

arrangement but was converted into an ultrastable system by using the RFout

from one of the four special pixels on the camera that output the raw detected

signal, as the local reference signal.
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The ultrastable interferometer system was tested in a modified Mach-Zehnder ar-

rangement by applying a vibration to one of the interferometer mirrors which was

implemented by fixing the driver from a disassembled loudspeaker to an object

arm mirror. As the vibration could be controlled, and the switch between the

standard and ultrastable modes could simply be made by changing over a lead in

the setup, comparisons could easily be made between the stable relative images

captured using the ultrastable system and the unstable absolute images captured

using the standard setup.

The vibrating mirror experiment could only be used as long as the OPL change

was uniform across the array (i.e. only piston vibration), and it was observed

that at large mirror vibration amplitudes, this was no longer the case. Hence,

an experiment was designed to simulate the effects of vibration on the system.

This was achieved by varying the modulation frequency, as this was related to

the amount of constant OPL change. The ultrastable system was also used in a

practical experiment, profiling the height of a chrome grating (∼150 nm depth)

in real time and in the widefield region.

5.1.2 Ultrastable system operation

The interferometer setup described in section 4.1.2 (described here as the stan-

dard interferometer arrangement) used the signal taken from an external signal

generator as the LO reference for the quadrature mixing process. In contrast,

the ultrastable interferometer uses the RFout signal as a feedback to compensate

for the temporally varying phase observable across an entire interferogram (i.e.

changing piston phase); this internal reference signal contains the same tempo-

rally varying phase term seen on each pixel. The interferograms generated using

the ultrastable system display the phase captured (at each pixel) relative to the

phase observed at a single pixel on the MLC array. The RFout signal is continu-

ously output, i.e. no need to be addressed, and is routed off chip, amplified and

filtered. A schematic of the operation is illustrated in figure 5.1.

The detected intensity of an incident heterodyne fringe pattern expressed by

equation 1.17 describes a stable pattern, where the frequency difference between

the interfering beams (i.e. beat or modulation frequency) do not change (mak-

ing the function simple to express). If vibration is introduced into the system,
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Figure 5.1: A schematic of the MLC camera array and of an RFout pixel. Four pixels

in the array contain additional circuitry that allows them to output the

raw RF (pre-mixed) signal. In the standard mode of operation, the ILO

and QLO inputs are driven by a signal generator. In the ultrastable mode,

they are driven by signals derived from the RFout signal (i.e. signal

feedback). The signal is filtered and amplified before being phase split.

an additional temporally varying phase term is required in the expression. The

expression of a constant carrier beat frequency signal (plus phase offset) and an

introduced phase variation is analogous to phase modulation in analogue com-

munication systems [33], such that the AC angle function varies linearly with the

phase change induced by the OPL shift due to vibration. Equation 5.1 expresses

the heterodyne fringe pattern intensity with this additional unknown temporally

varying vibration term, ψd(t), between the interfering arms;

I = IDC + A cos(ωdt+ φd + ψd(t)) (5.1)

The goal of producing a stable interferogram is achieved by extracting the ‘useful’

phase difference φ, while eliminating ψ. For example, in a common path inter-

ferometer, the beam paths are almost identical (therefore the temporally varying

phase difference ψd ≈ 0).
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5.1.2.1 Eliminating instability

In the ultrastable system described by figure 5.1, the temporally varying phase

difference, ψd, is eliminated by using the signal from a single RFout pixel (equa-

tion 5.1) as the LO mixer signal. This is implemented on each individual pixel

and requires spatial coherence in the fringe pattern (i.e. the same ψd and ωd

measured on each pixel). Considering the MLC mixing process discussed in sec-

tion 3.1.2, the in-phase and quadrature phase outputs from the camera in this

ultrastable configuration can be described by;

Iout = VDCVRFDC +
VACVRFAC

2
cos(φd(x, y)− φRFd + ψd(t)− ψRFd(t))

= VDCVRFDC +
VACVRFAC

2
cos(φd(x, y)− φRFd)

Qout = VDCVRFDC +
VACVRFAC

2
sin(φd(x, y)− φRFd + ψd(t)− ψRFd(t))

= VDCVRFDC +
VACVRFAC

2
sin(φd(x, y)− φRFd) (5.2)

The phase can be extracted using;

φd(x, y)− φRFd = arctan

(

Q+
out −Q−

out

I+out − I−out

)

(5.3)

The phase determined using this setup does not contain the temporally varying

phase term, ψd(t). The determined phase does contain the RF pixel’s phase term

(φRFd), i.e. relative phase is measured, however it is possible to remove this post

capture if the absolute phase is measured separately.

5.1.2.2 Limitations of the system

It is important to note that the ultrastable system is only immune to piston phase

vibrations (i.e. the same temporal phase shifts in the fringe pattern observable

across the whole camera array). It is possible for the temporally varying phase to

vary with different functions at different points across the beam, i.e. has spatial

and temporal dependence, ψ(t) → ψ(x, y, t).

Another potentially restrictive factor of using the ultrastable system is that each

interferogram will be a relative phase pattern (to RFout pixel). This is in contrast

with the standard interferometer setup (section 4.1.2), which measures the abso-

lute phase (i.e. total OPL difference is measured). In a point detection scheme,
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solely detecting the relative phase may not be useful, but in the widefield region

(captured either through scans or multi-point detectors), it is possible to directly

determine the interfering wavefront information. It should be noted however,

that by using an external fringe counting system with the RFout signal, it would

be possible to acquire the absolute phase (combining this information with the

relative phase image would generate an absolute phase image).

The fundamental requisite for this system to successfully operate is for the RFout

pixel on the MLC to receive an incident signal (which includes the same ψd ob-

servable at all other pixel). There may be scenarios where not all pixels on the

array receive the modulated light (e.g. speckle, object edges, local opaque re-

gions). Under these conditions measures are required to ensure that an optical

signal is incident on the RFout pixel (e.g. focusing a split beam or realignment

of the apparatus).

5.1.2.3 System based vibration immunity limit

The maximum change in piston phase the ultrastable system can tolerate is de-

pendant on the range of frequencies the system is able to demodulate. A change

in the pattern modulation frequency can be modelled simplest when there is a

uniform OPL difference change; any change in the piston phase is equivalent to

a linear change in the beat frequency (referring to equation 5.1).

An OPL difference change of one wavelength (e.g. ∆dOPL = λ = 633 nm) over 1

second (e.g. a constant OPL change in one arm with velocity vOPL = 633 nm s−1)

results in modulation frequency change of 1Hz. It follows that for any change in

the OPL difference, a shift in the modulation frequency, fmod, would result, such

that;

∆fmod =
vOPL

λ
(5.4)

The MLC will continue to produce ultrastable images given the condition that any

resultant shift in the modulation frequency is within the operational bandwidth

of the MLC (the camera will adapt to the changes in the modulation frequency).

This model assumes a constant change in OPL and is therefore, theoretically,

not limited to a maximum OPL difference. This scheme could be useful for an

experiment where the subject being analysed is constantly moving away.
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In another scenario, a vibration introduced into the system moves the appara-

tus; this movement could be periodic or random. The vibration on an object

can be measured by its peak vibration displacement, dvib, vibration velocity, vvib,

or vibration acceleration, avib, and can be converted to and from each other by

integrating or differentiating the vibration function over time.

Making the assumption that a piston phase vibration introduced into the inter-

ferometer has a simple harmonic motion, the OPL would change as a sinusoidal

function with a frequency, fvib, where the vibration displacement, velocity and

acceleration can all expressed by;

avib = vvib(2πfvib) = dvib(4πfvib
2) (5.5)

In this model, the displacement is dependent on the vibration velocity and fre-

quency, and there is a limit on the amount of OPL movement that can be tolerated

by the ultrastable system. Assuming that the MLC is capable of demodulating

light from DC to 15MHz without error (i.e. the operation bandwidth of the

MLC), in an interferometer with a 633 nm light source, the theoretical velocity

immunity limit for the system would be 9.4m s−1 (referring to equation 5.4).

It is possible to translate this into a vibration acceleration and displacement limit

using equation 5.5. For example, assuming a vibration frequency fvib =1Hz, the

vibration acceleration and displacement limit would equal avib = 59.0m s−2 and

dvib = 1.5m respectively. In practice, the tolerable vibration velocity is much

lower as it is dependent on the actual bandwidth of the MLC, the surrounding

electronics and filter responses (explored further in section 5.3).

5.1.3 Ultrastable interferometer with internal vibration

The most direct way of testing the ultrastable system was by introducing a con-

trolled vibration into the interferometer system. For an ideal test, the vibration

induced would have changed the OPL of one arm uniformly (described in sec-

tion 5.1.2.3), practically however, this was challenging. Basing the ultrastable

system on the Mach-Zehnder interferometer described in section 4.1.2, a vibrat-

ing mirror was placed into one arm of the interferometer as illustrated in figure 5.2;

a photograph of the arrangement is show in figure 5.3.
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Figure 5.2: Mach-Zehnder ultrastable interferometer. The optical setup was based on

the system presented in the previous chapter (figure 4.1). The object arm

mirror had been replaced by a PBS, with the object beam propagating

to a mirror mounted on a speaker (vibrating mirror), inducing large OPL

changes in the arm. A vibrometer was aimed at the vibrating mirror

to determine the vibration velocity. The local reference (LO) signal was

derived from the RFout of a single pixel.

The ultrastable interferometer presented retained the modified spatial filter (from

the previous setup), which allowed quick switching between homodyne and het-

erodyne modes (to aid alignment). A polarising beamsplitter (PBS) was placed

in the object arm, replacing the mirror from the previous setup. The object

beam propagated through the AOFS and spatial filter arrangement, and passed

through the PBS and a quarter wave plate (QWP). The light reflected off the

mirror mounted on a speaker and back through the PBS, where it continued to in-

terfere with the reference beam. An externally generated signal (sine wave) with

frequency f =15MHz was used to drive the AOFS, however, unlike the previous

arrangement, this signal was not used as the LO reference signal in the MLC.

Instead, the RFout signal was fed in as the LO (as discussed in section 5.1.2)

through a filter/amplifier chain; the signal was low pass filtered (<15MHz) to

remove high frequency noise induced by the MLC, amplified with a gain of 40 dB,

boosting the signal for mixing, and band pass filtered (8MHz to 15MHz) in order

to reduce the DC and low frequency content in the signal. The filter chain was

employed in this ultrastable arrangement to prevent the saturation of the elec-

tronic components on the camera chip. The measured propagation (phase) delay
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through this chain was negligible.

An OPL change was implemented by mounting the large object arm mirror onto

a speaker, producing roughly uniform OPL changes. The speaker was driven

using a separate signal generator and was capable of producing vibrations on

to the mirror with frequencies from 18Hz to 20 kHz at various amplitudes. A

vibrometer (Polytec OFV-2570) was used to determine the mirror displacement,

operated by targeting the device’s probe beam on to the vibrating mirror.

The interferometer was switched between ultrastable mode and the standard

mode by moving the local oscillator reference line from the MLC’s RFout to a

signal generator output, and vice versa; comparisons of the images captured using

the MLC in both modes are made.

Figure 5.3: Photograph of the ultrastable Mach-Zehnder heterodyne interferometer

shown in figure 5.2; precision alignment was required of the vibrating

mirror to maximise the amount of uniform OPL available (misalignment

would produce unstable images).

5.1.3.1 The effect of the vibrating mirror

The RFout pixel in the middle of the array outputs the raw measured light. In the

experiment described, modulated light (i.e. heterodyne fringe pattern) was inci-

dent on this pixel and had a beat frequency of 15MHz; the RFout pixel outputs
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a signal with this 15MHz component similar to an independent point detector

(e.g. a photodiode). Figure 5.4(a) (bottom trace) illustrates the RFout signal

after amplification/filtering (top trace shows a 15MHz reference signal) measured

using an oscilloscope (Tektronix MSO 4034).

(a) (b)

Figure 5.4: High frequency capture of incoming signals using the oscilloscope . In

both images, the top (blue) trace is of the clean (15MHz) reference signal

from the signal generator and the bottom (magenta) trace is of the signal

measured from the RFout pixel. The left (a) image was taken without vi-

bration induced and the right (b) image was taken with vibration induced

on to the mirror mount.

A constant OPL shift would change the phase of the RFout signal over time (or

as a shift in modulation frequency). This is observable in figure 5.4(b) (bottom

trace), where a 10Hz sine wave signal was applied to the mirror mounted speaker;

the measured RFout signal has no single distinguishable frequency.

5.1.4 Ultrastable interferometer with simulated vibration

Referring to equation 5.4, a vibration introduced into a heterodyne interferometer

will shift the modulation frequency; the limit of the ultrastable system’s vibration

immunity limit is dependant on the system’s operational bandwidth (inc. filters,

amplifiers and MLC). Practically, determining the vibration limit mechanically is

difficult (massive piston phase vibration). Instead, the effect of vibration can be

simulated experimentally by varying the optical frequency difference in a hetero-

dyne interferometer (and therefore determine the system operational bandwidth).

Page 116



Chapter 5. 5.1. Ultrastable interferometer outline

The Mach-Zehnder arrangement used in the previous sections was unsuitable for

varying the modulation frequency, and therefore a Michelson interferometer ar-

rangement, illustrated in figure 5.5, was used; a photograph of the interferometer

setup is shown in figure 5.7.

Figure 5.5: Michelson ultrastable interferometer. The AOFS (driven at various fre-

quencies) splits the incident beam into two orders with different frequen-

cies. They took different paths after going through a polarising beam-

splitter as each order was orthogonally polarised. One beam reflected

off the object, and both beams interfered when they passed through the

beamsplitter the second time. As the AOFS drive frequency is varied,

the diffraction angle changed; adjustments to the reference arm mirror

and the AOFS were made to obtain similar fringe pattern images. The

setup retained the RFout/LO feedback circuit from the Mach-Zehnder

ultrastable interferometer.

The 0th and 1st order output from the AOFS are orthogonally polarised [120]. In

the Michelson ultrastable interferometer shown, the beams were ‘split’, using a

polarising beamsplitter (i.e. sent in different directions, as indicated). The beams

are reflected off mirrors, with the object beam passing through a wave plate, and

interfered at the same PBS.

The optical frequency difference (and therefore the modulation frequency) was

changed by adjusting the input drive frequency of the AOFS. Changing the

AOFS’s drive frequency also changed the angle of diffraction of the 1st order

output beam. Careful realignment of the tilt angle of both the AOFS and refer-
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ence mirror was required whenever the frequency was changed. This would have

been difficult in the Mach-Zehnder ultrastable interferometer due to the rigidity

of the spatial filter (specifically the translatable entry lens). The wavefronts of

both arms were the same in this interferometer and were assumed to be roughly

plane. With no object present in either arm, a uniform phase interferogram was

observed by the MLC.

In contrast to the Mach-Zehnder arrangement, light intensity was retained through

the optics until detection, (absence of pinhole, less light lost through light split-

ting), which maximised the optical signal. Averaging was no longer needed, which

increased the frame rate up to the maximum 40 frames s−1.

In addition to testing the system bandwidth, a surface profiling experiment was

conducted. A chrome plated substrate with a chrome relief grating pattern was

placed on the object arm mirror. The entire pattern was a few millimetres in

width and height, with the interferometer only probing a small portion of the

pattern. An image of one finger in the pattern was measured using an atomic

force microscope (AFM) and is illustrated in figure 5.6.

Figure 5.6: A profile image of a finger in the grating used to test the ultrastable

system, captured using an AFM system. The colour indicates the height

in nanometres. The height difference between the top of the finger to the

substrate is between 120-160 nm.

The AFM probe area of 100µm × 100µm showed that the height of a finger in

the grating was 140± 20nm. The AFM capture process took around 10minutes.
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Figure 5.7: Photograph of the ultrastable Michelson heterodyne interferometer shown

in figure 5.5; the AOFS was used to both split and frequency shift the

incident beam. As each order emitted has a different polarisation plane,

they were split effectively using the PBS. The arrangement shown in this

photograph has swapped object and reference paths.

5.2 Comparison of standard and ultrastable sys-

tem

The difference between the standard (figure 4.1) and ultrastable (figure 5.2) in-

terferometer modes was the LO reference signal source, which in this experiment

could be conveniently switched via a fly lead, allowing for a direct comparison

between both systems (as well as produce both relative and absolute phase inter-

ferograms).

Similar to the setup presented in chapter 4, circular fringe patterns were captured

(weakly spherical wave on plane wave). Each image presented in this section used

20 frame averages. A set of four images had been captured, in both the standard

and ultrastable modes, under three mirror-speaker signal (i.e. piston phase vibra-

tion) conditions; with no signal, a 1Hz square wave signal, and a 62Hz sine wave

signal. The vibration velocities of the mirror were measured with the vibrome-

ter; the measured plot (recorded using the oscilloscope) under each scenario is

illustrated in figure 5.8. It is possible to determine the vibration displacement by

integrating each plot. Given the number of averages (20) and frame rate (40 fps),
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each complete frame capture took 0.5 s. Each image was captured with roughly

a minute time separation (no fixed time period between capture).

(a) (b)

(c)

Figure 5.8: Plotted results from the vibrometer for the three piston phase vibration

scenarios, (a) no signal, (b) 1Hz square wave signal, and (c) 62Hz sine

wave signal applied to the mirror speaker, used to test the immunity

of the ultrastable system. Integrating the measured velocity reveals the

mirror displacement (or 1
2OPL); the maximum displacement for these

measurement windows equals (a) 3.9mm, (b) 7.5mm, and (c) 14.5mm

from the resting position.

The first set of images were taken under the stable state (figure 5.8(a)); figures

5.9(a) to (d) show fringe pattern images captured using the standard mode setup

(sig. gen. → LO), figures 5.9(e) to (h) show images captured in the ultrastable

mode setup (RFout → LO).

Both the standard mode (figures 5.9(a) to (d)) and ultrastable mode (figures

5.9(e) to (h)) interferograms show the expected concentric circle fringe pattern.

The ‘stable’ state vibrometer plot shown in figure 5.8(a), reveals the presence of
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.9: Sets of four images, separated by time, taken of a circular fringe pattern.

Top images (a to d) were taken with the standard setup and the bottom

images (e to h) were taken in the ultrastable configuration; the phase is

represented in greyscale.

microphonics in the interferometer. This is observable in the standard mode inter-

ferogram images, which were taken over a period of approximately four minutes;

a random/unknown piston phase change is present between the images (most no-

ticeable between figure 5.9(c) and figure 5.9(d)). The ultrastable mode images, in

contrast, show a relative phase interferogram; the ultrastable fringe patterns are

all the same. Any piston phase variation over time is eliminated in these images.

However, there is a larger presences of noise in the ultrastable mode images than

in the standard mode images, this is discussed further in section 5.4.2.

The second set of images were taken with the mirror-speaker driven using a 1Hz

square wave. The interferograms captured in the standard and ultrastable in-

terferometer modes are shown in figures 5.10(a) to (d) and figures 5.10(e) to (h)

respectively.

The vibrometer plot in figure 5.8(b), shows a disturbance every 0.5 s. This is

consistent with the expected vibration velocities with a 1Hz square wave applied

to the mirror speaker; a peak vibration velocity of ∼4mms−1 was measured. Due

to the sudden changes in the OPL, the standard interferometer mode interfero-

grams, shown in figures 5.10(a) to (d), appear distorted. Within the time period
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.10: Sets of four fringe pattern images taken with a 1Hz square wave induced

on the object arm mirror; top images (a to d) in the standard mode and

bottom images (e to h) in the ultrastable mode.

in which one image was captured, including averaging (0.5 s), the mirror was

disturbed (caused by the square wave); this induced a severe distortion to inter-

ferogram. The ultrastable images, however, show no distortion in the patterns.

The interferograms in figures 5.9(e) to (h) (no vibration) and figures 5.10(e) to

(h) are almost identical (with the exception of noise).

A third set of images were taken with the speaker driven at a larger amplitude

and at a higher frequency; a 62Hz sine wave was used to drive the speaker. The

standard and ultrastable interferometer mode images are shown in figures 5.11(a)

to (d) and figures 5.11(e) to (h) respectively. The drive frequency of 62Hz was

chosen, as the maximum mirror displacement was achieved at this frequency (re-

ferring to the speaker response).

Firstly, the vibrometer plot in figure 5.8(c) shows a sinusoidal movement of the

object mirror at 62Hz with a total peak vibration velocity of ∼26mms−1. Using

the formula expressed in equation 5.5, this equates to a peak mirror displacement

of ∼66µm (around 105 wavelengths). A rate of change in the OPL of this mag-

nitude is beyond the immunity range for the standard mode setup (discussed in

section 1.7.5), evident by interferograms shown in figures 5.11(a) to (d), where no

discernible fringe pattern is observable. This is again in contrast with the ultra-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.11: Sets of fringe pattern images taken with a 62Hz sine wave induced on

the object arm mirror; top images (a to d) with the standard setup and

the bottom images (e to h) in the ultrastable configuration.

stable mode images, which are identical to the two previous vibration condition

interferograms (figures 5.9(e) to (h) and figures 5.10(e) to (h)), which shows that

the system was unaffected by the induced vibrations.

Fringe patterns were observable until the object mirror vibration velocity mea-

surement exceeded 85mms−1, above which, the fringe patterns were progressively

lost; at 62Hz, this velocity correspond to a sinusoidal motion with a displacement

of 0.22mm. In terms vibration immunity this can be considered large, but it is

considerably lower than the theoretical maximum limit of the system (discussed

in section 5.1.2.3). It was deduced that at large displacements, the motion of the

mirror was not purely translational, i.e. no longer piston phase vibration, and as

such, the ultrastable system was no longer immune to the vibration. A variety

of different drivers were tried, all of which produced similar results at different

frequencies and amplitudes.

Page 123



Chapter 5. 5.3. Characterisation of object using the ultrastable system

5.3 Characterisation of object using the ultra-

stable system

The aim of this experiment was to simulate the effect of a changing OPL distance.

This was achieved by adjusting the beat frequency of a heterodyne fringe pattern;

the operating bandwidth of the system determines the vibration immunity limit

(section 5.1.2.3).

The modified Michelson interferometer (figure 5.7) was used to capture the sur-

face profile of a chrome grating (figure 5.6). An initial phase image (control

image) was captured using a non-grated section of the substrate and compared

with all subsequent pattern images. The AOFS drive frequency was swept until

the phase image of the grating fingers deteriorated. Figure 5.12 illustrates the

interferograms captured of the fingers in the grating pattern at various drive fre-

quencies.

The interferograms show the same grating configuration in all images; this in-

cludes both the shape and phase (represented by the colour of the peaks and

troughs). A phase measurement of 2π signifies a height range in the object of

316.5 nm. The height of each finger (relative to the substrate) is comparable with

the AFM measurement (figure 5.6) of the grating, where the height for the AFM

= 120-160 nm and MLC = 150-175 nm.

There is a significant noise presence in the images at both ends of the frequency

range, due to the diminishing RFout signal. In addition to the filters used in

the RFout feedback chain, in this arrangement the upper modulation frequency

limit was determined by the MLC’s frequency response and the lower frequency

limit was determined by the AOFS. Outside this band range, either the optical or

electronic signal was diminished (the system produces a phase image where the

pattern was indistinguishable from noise). The images shown in figures 5.12(a)

and (d) still display the grating pattern, and as such, a conservative estimate for

this system’s operational band range is between 11.2MHz and 16.0MHz (∼5MHz

bandwidth) with no averaging. Using equation 5.4, this operation bandwidth cor-

responds to an object velocity tolerance of ∼3.1m s−1. This is equivalent to a

vibration with a sinusoidal displacement of ∼0.5mm at 1 kHz, or ∼8mm at 62Hz.

This is significantly larger than the limit determined by the vibrating mirror ex-
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(a) Measured depth, Mod freq. = 11.2MHz (b) Measured depth, Mod freq. = 12.9MHz

(c) Measured depth, Mod freq. = 15.0MHz (d) Measured depth, Mod freq. = 16.0MHz

(e) 1D profile of grating pattern

Figure 5.12: Ultrastable grating interferogram images captured using (a) 11.2MHz,

(b) 12.9MHz, (c) 15MHz and (d) 16MHz as the modulation frequency.

The colour of the fingers indicate the surface depth, measured to be

about 150-175 nm. The extreme upper (a) and lower (d) modulation

limit can be increased further if averaging was introduced. A 1D surface

profile plot using this setup (line x=15 at f=15MHz) (e) of the grating

pattern is shown for reference.
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periment.

5.4 Ultrastable system discussion

5.4.1 System summary

The aim of the ultrastable system presented in this chapter was to facilitate the

capture of modulated fringe patterns in the presence of large OPL changes. The

ultrastable system does this by using the beat signal measured at a single pixel

(RFout) to mix with the detected signal at all other pixels. Given the condi-

tion that any OPL change seen on one arm of the interferometer was uniform,

the generated fringe pattern would experience a piston phase change. As the

RFout signal was mixed with the detected signal at all other pixels, the pis-

ton phase shift observed in both signals cancels out, leaving only the position

dependant phase (outputting a relative interferogram rather than an absolute in-

terferogram). The limit of the ultrastable system’s vibration immunity (discussed

further in section 5.4.3) is related to the range in beat frequency the system was

able to demodulate (i.e. operational bandwidth) and the wavelength of light, as

described by equation 5.5.

The ultrastable system achieves vibration immunity without the need of external

signals or post capture processing; the same read and addressing routine was used

for both the standard and ultrastable mode system. Additionally, as the local

reference (LO) input no longer required an external signal generator, there was a

reduction in the number of inputs (and components) in this system.

In practice, piston phase is often observed when vibrations act on a probe object

independent to the rest of the interferometer. The first experiment described

in this chapter (section 5.1.3) was designed to emulate this occurrence by us-

ing a mirror-speaker mount. This ultrastable system test was restricted, as at

high amplitudes, the OPL change induced by the vibrating mirror was no longer

uniform (not piston phase). To this end, another experiment was conducted (sec-

tion 5.1.4) to simulate the process of a probe object moving at different velocities

by adjusting the fringe pattern modulation frequency (i.e. varying the AOFS

drive frequency to determine the bandwidth of the system).
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Interferometers are capable of making sub-wavelength OPL measurements, how-

ever the slightest vibration can have a major effect on the image captured if there

are no techniques used to compensate. Under typical conditions within the labo-

ratory, small amounts of vibrations were induced on the apparatus (figure 5.8(a)).

The OPL change was seen as phase offsets in the interferograms over time; this

was observable in the standard mode images shown in figures 5.9(a) to (d). In

this standard mode setup, the system’s ability to compensate for piston phase

change was dependant on the frame capture rate (discussed in section 1.7.5). In-

creasing the vibration amplitude by a small amount was seen to severely distort

the interferograms, seen in figures 5.10(a) to (d), and increasing the vibration

by a large amount destroyed the interferogram entirely, seen in figures 5.11(a) to

(d); vibrations influencing the standard interferometer mode setup could severely

limit the usefulness of a system.

The ultrastable system was immune to piston phase vibrations, all images cap-

tured in the vibrating mirror experiment (figures 5.9(e) to (h), figures 5.10(e) to

(h) and figures 5.11(e) to (h)) display an unchanging fringe pattern, independent

of the time the image was captured or the vibration induced (up to a limit).

5.4.2 Additional pixel noise

In section 3.1.3.3, an analysis of the error through the MLC system was de-

scribed; the assumption was made that in the MLC mixer stage, the LO input

contained no noise (i.e. a clean reference signal). This assumption was adequate

for the standard interferometer mode setup explored in chapter 4, and for the

images shown in figure 5.9(a)-(c), figure 5.10(a)-(c), and figure 5.11(a)-(c). If

the additional assumption is made that the mixer adds negligible noise to its out-

put, the mixer input SNR (SNRSig) would equal the mixer output SNR (SNROut).

However, for the ultrastable arrangement described in this chapter, the fed-back

RFout signal used as the LO input does contain noise. This is apparent in the

oscilloscope trace of the RFout signal shown in figure 5.4(a). Referring to equa-

tion 3.7, the presence of noise on the LO input increases the error at the output

of the mixer (assuming that the measured and LO input noise is uncorrelated).

The equation can be rearranged to show the effect this has on the mixer’s output

SNR (SNROut);
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∆Mixout =

√

LO2.∆Sig2 + Sig2.∆LO2

∆Mixout
2

Mixout2
=

LO2.∆Sig2 + Sig2.∆LO2

LO2.Sig2

=
∆Sig2

Sig2
+

∆LO2

LO2

1

SNROut

=
1

SNRSig

+
1

SNRLO

(5.6)

where SNRLO is the SNR of the LO input. The addition of the LO noise into the

mixer operation increases the MLC output noise (decreasing the SNR).

The schematic in figure 5.13 shows the noise on the LO contributes to the noise

at the output. This can be compared with the noiseless LO case described in

figure 3.7. The output of the mixer contains the noise components from both

the measured input and LO input, which is low pass filtered as depicted in fig-

ure 5.13(c).

As with the standard setup, this is analogous to applying a band pass filter at

the modulation frequency Fmod, as shown in figure 5.13(d).

The standard mode (figure 4.1) and ultrastable mode (figure 5.2) interferometer

setup operate under similar circumstances (e.g. AD/DC light intensity, mod-

ulation frequency, etc.). Therefore, SNRSig value from section 3.1.3.3 can be

transferred over to this model. The RFout signal and noise have been measured

(after passing through the filter/amplifier chain); the RFout signal amplitude was

measured to be 1.4V by applying a large degree of averages, and the noise on the

RFout was determined to be 2.4mVrms by capturing a ‘dark’ signal and using a

digital filter to simulate the MLC output filter.

Using equation 5.6 and equation 3.7, the phase uncertainty was determined to be

φultrastable = 0.18 radians (∼10◦).

The output for this prototype sensor does contain significant electronic noise,

which limits the practical applicability of this particular system. The noise per-

formance is below some of the detection schemes described in section 2.3, however,
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Figure 5.13: Schematic of frequency spectra depicting the inputs and output of the

MLC mixer stage under the ultrastable configuration. Both the mea-

sured signal input (a) and the LO signal input (b) contains random noise.

Similar to the widefield setup (figure 3.7), the output of the mixer (c)

will be a down-mixed version of measure signal, but with additional

noise due to the RFout noise, as shown in equation 5.6. The signal is

filtered.

this experiment provides a proof of concept for a system that can capture wide-

field ultrastable interferograms in real time.

5.4.3 Vibration immunity context

If an object is moving uniformly (e.g. along the optical axis), it is possible to

capture a fringe pattern off the object using the ultrastable system if the object

velocity is within the system’s immunity limit. The immunity limit is derived

from the system’s operation bandwidth; probing an object moving with veloc-

ity vOPL shifts the modulation frequency of the generated fringe pattern by the

amount expressed in equation 5.4. Assuming an MLC operation bandwidth of

15MHz, theoretically, a relative fringe pattern could be captured off an object

moving at a peak velocity of 9.4m s−1 (λ = 633 nm). This model can be extended
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to vibrations, where an object moves with a function (e.g. sinusoidally) along one

axis. The ultrastable system is able to capture interferograms given this type of

movement, but is limited by the amount displacement and frequency.

To practically determine vibration velocity limits, two experiments were con-

ducted. Fringe patterns were captured in the vibrating mirror experiment with

the mirror moving with a peak vibration velocity of vvib = 85.0mms−1 (measured

using a vibrometer), above which it was determined that the mirror was no longer

vibrating uniformly. As the system’s operational bandwidth is related to the vi-

bration velocity (equation 5.4), an experiment was conducted to determine the

bandwidth (simulating an object moving at different velocities); relative phase

images of a chrome grating were obtainable between 11.2MHz and 16.0MHz,

which gives a bandwidth of 5MHz, and velocity limit of vvib = 3.1m s−1. The

bandwidth in this experiment was limited by the MLC’s upper operational fre-

quency threshold as well as the AOFS’s lower frequency threshold.

Given these different vibration velocity limits (measured, simulated and theo-

retical), vvib, table 5.1 shows the peak vibration displacement, dvib, at various

vibration frequencies, fvib (assuming purely sinusoidal movement, using equa-

tion 5.5).

Peak dvib @ Peak dvib @ Peak dvib @ Peak dvib @

vvib fvib = 0.5Hz fvib = 10Hz fvib = 62Hz fvib = 1kHz

Measured 85.0mms−1 27mm 1.3mm 220µm 14µm

Simulated 3.1m s−1 1m 50mm 8mm 0.5mm

Theoretical 9.4m s−1 3m 150mm 24mm 1.5mm

Table 5.1: Table summarising the vibration immunity limits of the ultrastable inter-

ferometer. The right hand columns indicate the amplitude of sinusoidal

vibration at various vibration frequencies.

To put these object displacement immunity limits into context, they can be com-

pared with real world environmental vibrations. A stand-alone building experi-

ences vibrations of 0.1m s−2 due to environmental effects such as traffic and up

to 1.0m s−2 of shock vibration, both situations have vibration frequencies below

10Hz [130]. Other examples include a car travelling at 30 kph and 60 kph, and

a train experiencing vibration acceleration of 0.87m s−2, 0.96m s−2 [131], and
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0.32m s−2 [132] respectively, again with vibration frequencies below 10Hz.

Table 5.2 shows the peak change in displacement at two vibration frequency

(0.5Hz and 10Hz, i.e. within the frequency range of the environmental vibra-

tions). The vibration displacement increases as the frequency decreases. Assum-

ing that the vibration experienced in these examples act on an object (e.g. such

as the chrome grating shown in figure 5.5) along one axis, the ultrastable system

(given the theoretical and simulated immunity limits) would be able to capture

stable interferograms.

avib Peak dvib @ Peak dvib @

fvib = 0.5Hz fvib = 10Hz

Building background 0.1m s−2 10.1mm 25.3µm

Building shock 1.0m s−2 101.3mm 253.3µm

Car 30kph 0.87m s−2 88.1mm 220.3µm

Car 60kph 0.96m s−2 97.2mm 243.2µm

Train 0.32m s−2 32.4mm 81.0µm

Table 5.2: Table showing the measured vibration accelerations and the peak vibration

displacements (given that the vibration frequency is 0.5Hz and 10Hz) of

various environmental conditions.

Other examples of vibrations include the largest set of ISO2631 guidelines, which

state that the maximum vibration displacement experienced should be 6.4µm

and 12.7µm (at 10Hz) for an office and a workshop respectively [133], which is

within the vibration immunity limits.

The ultrastable system could also be used under a degree of seismic activity.

Large seismic shocks from earthquakes have peak amplitudes at 0.55Hz [134,135]

and can reach amplitudes of ∼1m. At 0.55Hz, the ultrastable system would be

able to cope with up to 32.4m s−2 of sinusoidal ground vibration, which is beyond

any acceleration that any real recorded earthquake has caused (beyond a Richter

scale of 10 and the Shindo rating of 7 [136]).

The vibration immunity feature of this ultrastable system can be compared

against other widefield interferometer systems. One method involves using a high

speed acquisition technique for fringe pattern capture [137]. In such a system,

the phase uncertainty due to an introduced vibration would depend on the frame
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rate of the camera (which would be in addition to the random electronic/optical

noise of the system). For a system experiencing a vibration/movement with a

peak velocity, vpeak, the minimum frame rate required, frmin, would depend on

the maximum phase error allowable (due to vibration), ∆φreq, such that;

frmin =
2πvpeak
∆φreqλ

(5.7)

where the phase error is a value in radians, and λ is the wavelength of light

used in the interferometer. If compared with the ultrastable system (phase error

of ∼0.18 radians, using light where λ = 633 nm), a limited vibration velocity of

around 66µms−1 (as shown in section 5.2) would require a camera frame rate of

3600 fps. If a vibration with velocity 3.0m s−1 was induced in to the system, a

frame rate of 165Mfps would be required (a widefield detection system with a

frame rate in this region would be prohibitively expensive and sizeable). However,

the major advantage of using a high speed acquisition system is its tolerance of

all types of vibration and movement, not just piston phase vibration. Therefore,

for the relatively small vibrations observed in some test areas (microphonics), it

is often the preferred solution.

Another solution is to use a common-path interferometer. Due to the common-

path arrangement, it is immune to piston phase vibration; as both the reference

and object beams travel along similar paths, common temporally varying phase

shifts cancel out optically when they interfere. However, in certain scenarios it is

not always convenient to construct a common path interferometer.

The ultrastable system presented in this chapter is a solution in between the two

systems described; it offers a high degree of piston phase vibration immunity (by

using electronic self-referencing) with a practical frame rate, and allows for some

flexibility in the interferometer arrangement. For example, the separate reference

beam could be used to increase a signal’s amplitude optically (if the object beam

becomes heavily attenuated).
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Two-laser widefield heterodyne

interferometer

The work presented in this chapter is an extension of the ultrastable system,

where it is used to perform multiple source interferometry. The challenges in pro-

ducing two-laser interferograms are explored. To produce the light used in two

laser interferometry, stabilised lasers were constructed; these are analysed. The

images captured are shown and the advantages of the interferometer are explored.

6.1 Two-laser interferometry outline

6.1.1 Two-laser interferometer brief

The ability to observe interference fringe patterns is predicated on the phase func-

tion of the interfering light as well as the detection method used. If the phase

relationship between two interfering beams is definable, a measurable fringe pat-

tern can be captured by using the knowledge of the phase relationship. In an

amplitude splitting interferometer (e.g. Michelson/Mach-Zehnder interferome-

ters), a definite phase relationship is obtained by splitting a single source to

generate the two interfering beams (even if one/both are frequency shifted). The

phase relationship between the two beams can be considered predictable as long

as the optical path length difference is less than the coherence length of the source.

In contrast to a single split beam, the phase relationship between the light from

two separate sources are prone to fluctuate randomly as their phase functions

are independent of each other and therefore can be considered incoherent over a
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large period of time. This can be viewed as a variation in the source emission

frequency and makes continuous capture of fringe patterns difficult.

The signal feedback arrangement (RFout → LO) used in the ultrastable inter-

ferometer system (described in chapter 5) allowed for a major relaxation in the

temporal coherence requirement for the light source. The unknown optical fre-

quency difference between the interfering beams (i.e. phase relationship) was

detected using an RFout pixel on the MLC. This signal was used to demodulate

the incident fringe pattern captured at other pixels. Given the condition that

the beat frequency was within the operation bandwidth of the MLC, continuous

fringe patterns could be captured, even as the beat frequency shifted.

The system could have also been used to capture the patterns from an amplitude

splitting interferometer where the OPL difference between each arm was larger

than the coherence length of the split source.

6.1.2 Adapting the ultrastable system for two-laser inter-

ferometry

The continuous capture of interferograms, produced by interfering two indepen-

dent lasers, can be modelled using a similar approach to the ultrastable system

(section 5.1.2.1). The intensity of the heterodyne interference pattern can be

described using the equation B.1, which consists of an AC component defined by

an unknown angle function, θ(t). As described in Appendix B, the instantaneous

beat frequency, ωi(t), for the interference pattern is equal to the differential of

the unknown angle. As a result, the intensity pattern can be described by equa-

tion B.4; the described model is analogous to frequency modulation in analogue

communication systems [33].

The ultrastable system showed that temporal phase shifts due to environmen-

tal vibration could be eliminated. In this two laser system, the same feedback

methodology was applied to capture stable and continuous two laser interfero-

grams. Both the RFout signal and the signal detected at all other pixels contain

an AC component with the same unknown instantaneous frequency, ωi(t). After

the mixing process and filtering, the unknown frequency component cancels out,

leaving the I and Q outputs; the relative phase of the incident pattern can be
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determined by using the inverse tangent function expressed in equation 5.2. This

system can eliminate the effects of both frequency shifts and piston phase shifts

from interferograms. However, similar to the ultrastable configuration, the sys-

tem is limited by the optical frequency difference (beat) between the two separate

lasers being within the operational bandwidth of the MLC and the supporting

electronics. If the independent light sources are kept stable (within a few MHz),

two lasers fringe patterns could be captured continuously.

6.1.3 Construction of stabilised HeNe lasers

As discussed in section 3.2.1, the optical frequency emitted by a gas laser (e.g. of

a single mode) is linked to its cavity length. This length can change due to the

environmental changes, and in particular the temperature of the laser and sur-

roundings. Stabilised lasers were constructed in order to maintain a steady output

frequency with minimal frequency drift. It would have been possible to purchase

a commercially available stabilised laser with low frequency drift (e.g. ±5MHz

over 24 hours, iodine stabilised HeNe laser [138]). However, stabilised lasers were

built in lab at a fraction of the cost. In addition, some degree of frequency tuning

was required (to set the beat frequency to within the system’s operation range)

and commercially available stabilised lasers with this feature had additional costs.

The laser emission frequency varies as the heat generated from within the tube

causes it to expand until a steady equilibrium is attained with the environmental

temperature. If the environmental temperature fluctuates, so too does the emis-

sion frequency, causing frequency instability. Balhorn et al. proposed a technique

to use optical and electrical feedback to maintain a fixed cavity length [139]. This

method used a two mode HeNe laser, where the gas tube consisted of two silvered

mirrors, allowing light to exit both ends of the tube; the main exit and waste exit.

The main exit operated as normal (e.g. the emitted light from this side of the

laser was used for the interferometry experiment), however the beam observed at

the waste exit was used for feedback.

The importance of using a HeNe laser is that each alternative mode is orthogo-

nally polarised. Experiments conducted by Tang et al. indicated that for a HeNe

gas laser, maximum optical amplification occurs when a set of two longitudinal

modes have polarisation that was linear and perpendicular with respect to each
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other [110]. As the two modes are orthogonally polarised, they can be split using

a polarising beamsplitter (PBS). Referring to the laser gain-band plot shown in

figure 3.10 and frequency mode separation equation expressed in equation 3.9, as

the laser cavity length changes, the frequency of the emitted modes also changes.

Due to the laser gain band, the intensity of each mode also changes (depending

on its position inside the band).

The HeNe lasers constructed for use in the experiment were made in-lab us-

ing cheap readily available parts. They are based on an updated design of one

presented by Bennett et al. [140], which itself was based on the stabilisation tech-

nique described by Balhorn at al. [139]. The laser tubes and instructions on how

to build the lasers were provided by Sam Goldwasser [108]. Figure 6.1 shows a

schematic of the feedback stabilisation circuitry used in the laser.

Figure 6.1: Stabilised laser system. Each HeNe laser outputs two longitudinal modes

which are orthogonally polarised. As the tubes expand and contract (due

to the temperature), the optical frequency and intensity of these modes

shift. The intensities are detected at the waste exit, compared, and the

current into the tube coiling changes to maintain an adaptive tube length.

This feedback system was used to maintain a constant frequency for each

mode.

The intensities of the two laser modes (separated at the waste exit using the PBS)

were measured using photodiodes. These signals were fed into a comparator cir-

cuit to generate an error/difference signal. The changes in the mode intensities,

and therefore emission frequencies, generated a shift in error signal. Balhorn et al.

used this error signal to vary the discharge current going into the laser itself [139].

This idea was later adapted by Bennett et al. [140] (simplified by Gordon and

Jacobs [141]) which used the error signal to drive a current through a coil wound

round the laser tube. The current heats (expands) the tube or allows the tube

to cool (contract) as required, which increased or decreased the cavity length re-
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spectively. The comparator circuit also contained a bias offset input, which was

used to apply/remove current to the heater to shift the laser modes up or down

the gain curve. This allowed the user to tune the laser output frequency. The

comparator circuit used is detailed further in Appendix C.

The lasers built have a laser gain bandwidth of ∼650MHz centred at 632.8 nm. A

trait of keeping a laser frequency stabilised is intensity variations while frequency

stability is being achieved. The measured output intensity of each laser varied

between ∼0.4mW and ∼1.2mW.

6.1.4 Two-laser interferometer arrangement

The optical setup required to capture widefield heterodyne interferograms pro-

duced by two lasers is much less complex than most other interferometer designs.

An interference pattern can be generated by simply imposing one laser’s beam

onto the other (and captured by the MLC). The interferometer setup used in this

chapter used a beamsplitter, polarisers, a mirror and collimating lenses to enable

more convenient imaging; a schematic of the setup is illustrated in figure 6.2,

along with a photograph of the setup, shown in figure 6.3.

The external photodiode in the setup has a much larger frequency response

(around 150MHz) when compared with the MLC, and was used to observe the

beat frequency as the lasers stabilised. Once the lasers were in a relatively stable

state, a bias was applied to the comparator circuit to shift the beat frequency

into the operational region of the MLC.

Measuring the absolute emission spectrum of each laser would be difficult and

resource intensive, however, measuring the beat frequency generated by interfer-

ing the two beams gives a good indication of the lasers stability with respect to

each other. After the initial warm up, the beat frequency stability was measured

to be (at the very least) ∼1MHz over 10 minutes and ∼3MHz over 30 minutes.

Measurements to acquire these figures are explored in Appendix D.
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Figure 6.2: The two laser interferometer system. Each laser was completely inde-

pendent, with separate power supply units, heated using individual tube

coiling and were aligned separately. Polarisers were used to select a mode

of the laser for interference. The photodiode was used to keep track of

the beat frequency. The MLC detector was kept in the ultrastable con-

figuration as described in section 5.1.3. The lasers were separated by

∼35 cm.

6.2 Captured two laser interferograms

6.2.1 Fringe patterns in stable laser conditions

In this interferometer setup, the optics were aligned to produce roughly horizon-

tal fringes (instead of circular fringes shown in previous chapters). Once the two

lasers had become relatively stable in their environment, the MLC was used to

capture the interference fringe patterns; three phase images were captured over

time, illustrated in figures 6.4(a), (b) and (c). At the same time as the image

capture, a snapshot of the RFout waveform, measured using an oscilloscope (data

transferred to a PC), was also captured, illustrated in figures 6.4(d), (e) and (f)

under their respective phase images. An FFT of the RFout waveforms was con-

ducted to show the frequency components present in the captured waveform, and

is illustrated in figures 6.4(g), (h) and (i), under their respective waveforms.

As expected, the FFT plots show that there was a modulation frequency shift

over time. Even with this change in beat frequency, the same fringe pattern

had been observed using the MLC (pattern was relative to the RFout pixel). As
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Figure 6.3: Photograph of the two-laser heterodyne interferometer shown in fig-

ure 6.2; the photograph shows no interaction between the two lasers,

and the only input into each laser is the power supply (12v and 24v).

long as the lasers were kept stable enough to generate a beat frequency within

the operating range of the MLC, two laser interferograms could be continuously

captured. More importantly, undistorted images were captured even as the beat

frequency varied during the capture process (i.e. pixel-by-pixel). These images

were captured with no averaging and took the same time to read and process as

with the previous interferometer setup (25ms read time, 0.4 s processing time).

6.2.2 Fringe patterns in shifting laser conditions

Much like the ultrastable experiment conducted to explore the upper operational

frequency limit of the MLC/feedback arrangement (section 5.3), this two laser

setup was used to explore the effects at the lower operational frequency limits

(as there was no lower optical limit due to an AOFS). Lowering the bias input

of one laser caused it to destabilise, lowering beat frequency to ∼2MHz. Figures

6.5 (a) to (c) illustrate the interferograms captured at this lower beat frequency,

measured using the RFout signals illustrated in figures 6.5 (d) to (f), with the

FFT plots of these signals illustrated in figures 6.5 (g) to (i).

The phase at each point of the interferogram was fixed with respect to the phase
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.4: The images of interference fringe patterns generated using two lasers. The

lasers were in a stable state; the top (a to c) images show three images

over a length of time. The RFout was also captured at the point of image

capture, shown in the middle (d to f) and FFT plots that were generated

from the snapshot RFout waveform, shown at the bottom (g to i).

of the RFout signal and by the delay in the external electronic devices (filters,

amplifiers, phase splitters, etc). The phase response (delay) of some of these elec-

tronics changed below 2MHz. This explains the shift in relative phase pattern

seen across each of the interferograms.

6.2.3 Fringe patterns as beat frequency approaches 0Hz

Further tests of the interferometer at low modulation frequencies were conducted

by reducing the bias input further. Figures 6.6(a) and (d) illustrate the captured
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.5: Phase images captured by the MLC of the two lasers interfering shown

on top (a to c), the RFout signal measured at the time of fringe pattern

capture shown in the middle (d to f) and the FFT of the RFout signals

shown at the bottom (g to i). The phase images show a shift in the phase

as the modulation frequency decreased.

phase images, figures 6.6(b) and (e) illustrate the RFout signals recorded at the

time of capture, and figures 6.6(c) and (f) illustrate the FFTs of the RFout signals.

As the lowering of the beat frequency continued (as shown in figure 6.6(c)), the

output interferograms became distorted, shown in figure 6.6(a). The fringes ap-

peared to show signs of clipping; this was due to the low frequency cutoff of the

electronic components (amplifiers, phase splitters) and of the MLC itself.

After falling to a DC beat frequency, the observed beat frequency began to climb

again, illustrated in figure 6.6(f). The interferogram, shown in figure 6.6(d),
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appears to be an inverted version of the fringe patterns seen thus far due to a

cross-over in frequency between the two lasers. This gives a relative ‘negative’

frequency, which appears as a rise in the detected beat frequency at RFout, and

‘negative’ phase, showing an inversion in the fringes.

(a) (b) (c)

(d) (e) (f)

Figure 6.6: Fringe pattern phase images shown at left (a)(d), RFout plots of these

images shown in middle (b)(e), and FFT of these RFout plots shown at

right (c)(f) of the two lasers interfering as the beat frequency near DC

(0Hz). The captured fringe patterns appear distorted and an inversion

in the fringe pattern was seen as the observed beat frequency fell to zero

and began to rise again.

6.2.4 Inversion of fringe patterns

An inversion in the fringe patterns was produced when there was a crossover

in the interfering beams’ optical frequency. The beat frequency was equal to

∆f = f1 − f2, where the frequencies of laser 1 and laser 2 are represented by f1

and f2 respectively. If f1 > f2, the beat frequency could be thought of as being

‘positive’, and as f1 decreased until f1 < f2, the beat frequency changed sign, i.e.

relative ‘negative’ frequency.

The inverted fringe patterns captured exhibit similar behaviour with respect to
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their ‘positive’ frequency counterparts. Figures 6.7(a) to (c) illustrate the cap-

tured inverted interferograms, with the measured RFout signal illustrated in fig-

ures 6.7(d) to (f), and the relative ‘negative’ frequency spectra at the point of

capture illustrated in figures 6.7(g) to (i).

The fringes seen in the previous interferograms (e.g. figure 6.4(a)) have increasing

phase from the top of the pattern to the bottom, whilst in these inverted fringes,

the phase decreases from the top to the bottom (indicated by the colour). The

inversion and the ‘negative’ frequency observed is only relative and depends on

perspective.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.7: Fringe patterns of two lasers interfering, shown top (a to c), the RFout

signal shown in the middle (d to f), and the FFT of the RFout signal

is shown at the bottom (g to i). The phase images are inverted when

compared with earlier images (figure 6.4(a) to (c)).
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6.2.5 Two-laser interferometer object experiment

Similar to the experiment conducted in section 4.4, an object was placed in to the

path of one of the laser beams to induce a phase step. In this case, a microscope

slide was placed on the right-hand side of one of the beams. The experiment

was conducted at both a ‘negative’ frequency, illustrated in figure 6.8(a), and a

‘positive’ frequency, illustrated in figure 6.8(b). These images were unwrapped;

figures 6.8(c) and (d) illustrate the ‘negative’ and ‘positive’ unwrapped images

respectively.

(a) (b)

(c) (d)

Figure 6.8: Fringe patterns generated by interfering two lasers and introducing a mi-

croscope slide in front of one laser. Wrapped captured images are shown

on top (a and b) and unwrapped processed images are shown at the bot-

tom (c and d), colour represents radians. The left (a and c) and right (b

and d) images have been taken with the beat frequency at either sides

of DC and are inverted versions of each other. The slide can be seen to

cause a phase step on the right hand side of the images.

The unwrapped images were normalised using control images, illustrated in fig-
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ures 6.9(a) and (b). Both images show constant phase on the left section of the

image, where no slide was present, and phase change on the right part of the

image, where light passed through the slide.

(a) (b)

(c)

Figure 6.9: Normalised unwrapped images of the interferogram with a slide intro-

duced (on the right side of the images), the normalised images on the

top (a and b) are of figure 6.8(c) and (d) respectively. Both images show

constant phase on the left half of the images, and the phase step due to

the slide on the right half. The bottom (c) image is the inverted (× -1)

outcome of image (b).

Figure 6.9(c) shows the post-capture inversion of figure 6.9(b) (i.e. image was mul-

tiplied by -1). Even though the scale had been shifted (phase offset by -8 radians),

both figure 6.9(a) and (c) look similar, as the pattern shape and aberrations are

roughly in similar areas. This shows that with an object being characterised, the

same result can be obtained, independent of whether the MLC captures with a

relative ‘positive’ or ‘negative’ fringe pattern.
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6.3 Two-laser interferometer system conclusions

The two laser interferometer system explored in this chapter was an extension to

the ultrastable system presented in chapter 5. The system’s capability to adapt

to large beat (modulation) frequency changes lead to this two laser interferometer

application.

The two lasers used for interfering were truly independent as the stabilisation

system does not depend on the other laser source. After interfering the beams

of the two lasers, the beat frequency generated drifts over time (∼3MHz over 30

minutes). The interferometer, and specifically the MLC’s RFout feedback loop,

was used to not only capture interferograms at different frequencies, but also to

capture interferograms as the frequency changed mid-capture. The pixel data

can be read in real time after being addressed, and the I/Q output was deter-

mined continuously on all pixels using the instantaneous modulation frequency

observable at the RFout. The major disadvantage of operating the system with

a varying modulation frequency was the varying phase response due to that fre-

quency (i.e. phase response of the MLC/phase-splitters/filters/etc), however this

could have been counteracted by performing calibration experiments and mea-

suring the instantaneous frequency.

The lasers themselves were simple to create, built using readily available compo-

nents. Although the lasers are required to have a degree of frequency stability,

the system would be able to cope if the frequency difference between them drifted

by several MHz. The optical arrangement itself was also much simpler than the

single light source equivalent interferometer; no optical components are required,

meaning less aberrations and systematic errors would be present in the interfero-

grams. For the end user, these factors mean simple assembly and alignment of the

apparatus (as well as lower costs), leading to certain applications not requiring

an optical/laser engineer to build the system.

The two laser interferometer also has other advantages over the single split source

interferometer. The two individually stabilised lasers can be separated by a large

distance (and therefore have a large OPL difference) with no interaction needed

between them (figure 6.2) without losing fringe visibility; in the presented inter-

ferometer the lasers are kept 35 cm apart.
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Summary and discussion

This final chapter summarises the content explored in this thesis. The opera-

tion and observations of the presented experiments are discussed and possible

improvements to the systems are analysed.

7.1 Summary of thesis

Chapter 1 presented an overview of interferometry. This included the purpose

of using interferometry, the implication of an observable phase shift in a wave,

and the theory behind a generated interference pattern. Different methods of

extracting the phase from an interference pattern was explored as well as a se-

lection of interferometer arrangements. Electronic methods of light capture were

also explored, along with the practical limitations of detection, such as source

coherence limits and sources of signal noise.

Chapter 2 presented a literature review of different modulated light cameras and

other light demodulating schemes. The chapter also reviewed interferometer sys-

tems that were comparable to the three experimental arrangements discussed in

this thesis; these included widefield or parallel multi-point heterodyne interfer-

ometer systems, techniques to stabilise a captured interferogram using electronic

feedback, and a systems that captured interferograms generated by two lasers.

Chapter 3 discussed the different components and methods used to capture the

widefield heterodyne interferograms shown in this thesis. Most notably, an overview

of the MLC chip was given, exploring the key features of the camera and an anal-
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ysis of its operating principle. Other components reviewed included the HeNe

laser sources and the AOFS. The chapter also explored the MLC interface setup.

In chapter 4, the widefield interferogram images captured using the MLC were

presented. The MLC was used to capture both homodyne and heterodyne wide-

field interference patterns; the images captured were compared. The MLC was

also tested by comparing a theoretical interference image (using optical setup

measurements) against a captured image. Finally, a phase shift of part of a

pattern, introduced by a microscope slide, was detected as a proof-of-concept

experiment.

In chapter 5, the ultrastable widefield interferometer system was presented. Insta-

bility in captured interferograms was likened to temporary changes in phase differ-

ence. The MLC ultrastable system used a feedback loop (electronic self-reference)

to eliminate the temporally varying phase, leaving only a relative fringe pattern.

The limits of the system were discussed and the fringe patterns captured using

the MLC were shown. Comparisons were made between the standard (chapter 4)

and ultrastable interferometer system by introducing a vibration element into one

of the arms of an interferometer. A second experiment to determine the system

operational bandwidth was conducted (the bandwidth determined the system’s

vibration velocity immunity limit). Images were captured of a chrome grating to

verify the correct operation of the detector.

In chapter 6, a novel interferometer design using two separate (independent)

lasers was presented. The challenges in obtaining fringe patterns modulated at a

randomly varying frequency was explored and how the ultrastable system could

be used to overcome these challenges. Two frequency stabilised HeNe lasers were

built in-lab (using a He-Ne laser tube, 34AWG wire, photodiodes, op-amps and

other readily available components). Interference fringe patterns were captured

continuously using the ultrastable system even as the beat frequency between

the lasers varied. Inversions in the pattern were detected as the beat entered the

relative ’negative’ frequencies.
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7.2 Discussion

The interference patterns generated by beams of light are dependent on the phase

difference between them. This in turn can be used to determine the dissimilari-

ties between each beams propagation path (e.g. object placed into a beam path

or change in path length, as shown in figure 1.3). Often, the phase across an

area (i.e. widefield region) is required, for example, in surface profilometry. In

homodyne interferometry, the phase is represented as a static intensity which is

easy to digitally capture but may be susceptible to background optical influences

(e.g. sunlight). Techniques such as spatial domain filtering and phase stepping

interferometry could be employed to extract the phase, however, these methods

have drawbacks such as not being immune to low frequency influence or addi-

tional phase error (discussed further in section 1.3).

A solution to this is to use heterodyne interferometry where the pattern is modu-

lated by interfering beams with different optical frequencies. Using this method is

advantageous; by using a high modulation frequency, low frequency contributions

to an interferogram can be filtered out. However, detecting/extracting phase in-

formation in the widefield region is challenging; the work presented in this thesis

used a modulated light camera (MLC) to capture and demodulate widefield het-

erodyne interferograms. All the positives of a homodyne interferometer system,

such as a simple and cost effective interferometer setup (assuming mass produc-

tion of the MLC), real time data measurements, and widefield capture, are all

attributes of the presented systems.

The interferometer system was modified to also capture ultrastable interfero-

grams, where the system used a feedback loop to track changes in temporally

varying phase (e.g. due to vibrations). This provided a relative widefield inter-

ferogram (phase relative to a single point on the MLC). The ultrastable system

was capable of being immune to large amounts of piston phase change, which

is useful in vibration heavy or temperature variant environments, or where the

propagation medium changes rapidly (e.g. in the atmosphere). The system is

also compact and simple in its design. The presented ultrastable system was in-

corporated into a double path interferometer which retained a separate reference

beam; the separate beam could be used to increase the amplitude of the incident

optical signal. This increase in amplitude is comparable to electronically ampli-

fying a detected signal, but will not be subject to additional electronic amplifier
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noise.

As an extension to the ultrastable system, the MLC was also used to capture the

phase pattern generated by two independent lasers. This had been difficult in the

past as the beat frequency generated between the two lasers would appear to ran-

domly change, however, the ultrastable system was used to track this temporally

varying change and capture continuous two laser interference fringe patterns. Ef-

fectively, as long as the sources remain stable, they could be kept an indefinite

distance apart (as they are completely independent) and the system would still

be able to capture interference patterns. With the light sources separated, in-

terferometer designs are no longer confined to the usual optical restrictions (e.g.

include splitting a beam).

7.3 Noise contributions

The limiting factor in determining the phase of the presented interferometer fringe

patterns was on the uncertainty of the system output (i.e. system performance).

Noise introduced at the different design stages of the modulated light camera

contribute towards the phase uncertainty (causing undesired random fluctua-

tions of the useful information signal). The sources of electronic noise include

thermal noise, which varies depending on the device temperature (detailed in

section 1.7.2), electronic shot noise, which varies with the signal magnitude (de-

tailed in section 1.7.1), and flicker noise, which varies depending on the device

properties and operating frequency (detailed in section 1.7.3). In addition, in-

tegrated circuit devices such as the MLC are susceptible to crosstalk (electronic

interference) where signals are affected by other nearby signals [33] (either in-

pixel or cross pixel). When capturing interferograms, environmental effects, such

as vibration acting on the interferometer also add to the phase error (discussed

in section 1.7.5 and section 5.4.3). The ultrastable system employs a reference

signal feedback (RFout) to eliminate the piston phase variation from the cap-

tured interferogram. However, noise in the feedback signal increases the phase

uncertainty (detailed in section 5.4.2).

To reduce the amount of noise (and phase uncertainty) in the system, preventa-

tive methods can be used. Thermal noise can be reduced by better regulating
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the temperature of the device. The MLC drew in ∼420µA and temperatures

upto 60 ◦C were measured on the device; effective use of heatsinks, heat extrac-

tion fans (although this may increase vibration) or more comprehensive cooling

methods (e.g. liquid cooling, Peltier cooler, etc.) would decrease thermal noise.

Flicker noise can be the dominant noise source at low operational frequencies and

operating the MLC at higher frequencies (by using a high intensity light source,

using the vtune bias, or by increasing the pixel fill factor) would reduce the flicker

noise influence. A larger signal would also decrease the relative influence of shot

noise, since show noise increases only by the square root of the signal magnitude.

Additionally, all random noise can be reduced by decreasing the system band-

width (decreasing and sharpening the cut off for the low pass output filters) and

increasing data averaging (discussed in section 3.2.4); a faster acquisition card

could be used to maintain similar frame rates. To reduce IC crosstalk, design

techniques such as increased spacing between adjacent modules or signal line re-

designing could be employed [46].

7.4 Future considerations

To continue to take this work forward, ideally, the next iteration of the MLC

would be required. A few specification enhancements could relax the design cri-

teria of the interferometers, and improve the quality and accuracy of the images

captured. These include a higher pixel resolution, a decrease of in-pixel noise

contributions (and improve the phase output and RFout SNR), an increase in

the operation frequency bandwidth and an improvement of the pixel frontend

design to make use of a larger ‘linear’ response region. However, designing a

camera with these enhancements would require time (including simulation time)

and cost due to a smaller fabrication processes being used or by using a bespoke

design (e.g. buried multi-junction photodiodes).

Whilst these design considerations for the MLC would improve the image SNR,

it is key to note that the current MLC has yet to be tested extensively. More

comprehensive tests of the camera should be conducted, where the phase er-

ror is measured against modulation frequencies, DC light intensities, modulation

depths, and different on-chip biasing conditions, to see if an improvement could

be made to the error figure determined in section 3.1.3.3. Additional tests could
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be performed to observe the effects on the phase output if the LO signal was

changed, such as different voltage offsets and modulation depths, waveforms, and

the influence of varying degrees of noise.

As described in section 3.2.3.1, there were several iterations of the PCB design;

some of the components (such as the phase splitters) as well as the PCB design

itself, may not be optimised for small signal or RF signal transfer. A more com-

prehensive PCB design software could be used to simulate the performance of an

interface board and components (using datasheet information) before fabrication

to improve output SNR.

One of the other camera functions, introduced in the MLCv6, was the input of

a vtune bias current. This current is fed in as an addition to the photodiode

current. The system presented in this thesis did not make use of this function as

it could have been used to ‘push’ the incident signal further up into the apparent

‘linear’ region of the logarithmic response curve (figure 3.2); i.e. higher DC cur-

rent seen at the transimpedance amplifier (photocurrent + vtune bias current).

This function warrants further investigation to see if this expands system limits.

Many of the experimental system limits determined (such as the ultrastable im-

munity limits) were mainly due to the equipment used to test the system; for

example, the mirror mount and filters/amplifiers in the ultrastable system, and

the stability of the lasers in the two laser interferometer setup. These external

components could have been better optimised to provide experimental results

closer to the theoretical limits.

The next stage of the ultrastable interferometer test would be to implement it into

a real system. It could be compared with a comparable common-path interfer-

ometer on the phase acquisition speed and performance under various conditions,

for example, low light levels or scattered light (each system has advantage and

disadvantages in these scenarios). Another experiment that could be conducted

would be to use the ultrastable system to construct both relative and absolute

interferograms; an external fringe counter could be integrated into the system

using the RFout pixel as an independent photodiode.

Unlike most other interferometers, the two laser system is free from many of lim-
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itations/conditions that are required from interferometer setups. The ability to

put separate lasers anywhere could enable a new range of widefield interferometer

designs. Considerations should be made in order to deduce situations/scenarios

that would warrant the use of a two laser interferometer. Building optical sys-

tems to demonstrate these interferometers (e.g. free space communications or

long distance interferometry) could be included as part of future work.
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Appendix: Optical setup

To generate the concentric fringe pattern shown in section 4.3, a spherical wave

was interfered with a plane wave. To generate the spherical wave, the lens ar-

rangement shown in figure A.1 is used.

The position of the exit lens is moved by δmL so that S1 < FL. The virtual point

source for this beam is a distance S2 from the exit lens and di from the real point

source.

The distance between the virtual point source and the detector, zs, is determined

using the identities;

(a)

Figure A.1: A diagram showing the weakly spherical wave (red line) and plane wave

(green line) incident on a detector (MLC). The weakly spherical wave is

generated by moving the exit lens creating a virtual point source a fixed

distance zs away, calculable using FL, dL and S1; x and y distances on

the camera array (pixel pitch) are already known.
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zs = di + FL + dL

FL = S1 + δmL

S2 + δmL = di + FL (A.1)

where FL, δmL, dL are either known or measured, and S2 is calculated using the

thin lens formula 1
fL

= 1
S1

+ 1
S2

[17].

An expected fringe pattern (as used in section 4.3) is generated using these equa-

tions, and is used to compare with a captured image to test the MLC system.

The focal length of the exit lens was equal to FL = 0.1m and the distance from

the point of beam collimation to the detector was equal to dL = 0.3m. The

lens was moved back by δmL = 5mm, and the point source (beam focus point)

distance was equal to S1 = 0.095m from the exit lens. The virtual point source

distance from the lens was therefore equal S2 = -1.9m. The distance from the

virtual point source to the centre of the fringe pattern was equal to zs = 2.205m.
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Appendix: Modulated light with

unknown AC function

If in a heterodyne interferometer an undefinable vibration is introduced into the

system, or if the incoherent light sources are interfered, the AC component of the

pattern intensity will contain a temporally varying unknown angle function. The

detected signal can only be expressed as;

I(t) = Idc + A cos (θ(t)) (B.1)

where θ(t) is an unknown angle function that varies over time; an example plot

of such a function is shown in figure B.1 as a black trace.

The instantaneous frequency, ωi(t), of an unknown angle function can be ex-

pressed as the differential of the function, i.e. the frequency over an infinitesimally

small period of time, such that;

dθ

dt
= ωi(t) (B.2)

This instantaneous frequency is also unknown. As a comparison, a stable angle

function (from a stable heterodyne fringe pattern) is plotted in figure B.1 (blue

trace) alongside the unknown angle function; over the short time ∆t, the stable

and unstable fringe patterns have the same frequency (ωi = ω0). The instanta-

neous frequency can be substituted back into the fringe pattern intensity equation

(equation 1.17) after integration, such that;
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Figure B.1: Example plot of an unknown angle function (black), θ0(t). The graph

also includes an example plot of a stable heterodyne angle function with

the same phase offset (blue), and the same unknown angle function with

a different phase offset (grey).

I(t) = Idc + A cos

(
∫ t

−∞

[ωi(τ)]dτ

)

(B.3)

= Idc + A cos

(
∫ t

0

[ωi(τ)]dτ + φd

)

The limits of the frequency integral range from −∞ to t (the time of the mea-

surement), however, from −∞ to time 0, it can be replaced by a phase offset

relative to a signal with the same unknown frequency function; this is shown in

figure B.1 as the difference between the ω0(t) (black) and ω1(t) (grey) plots.
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Appendix: Laser stabilisation

comparator circuitry

A stabilisation circuit was used to compare the two emitted modes from the built

laser. Each mode has different polarisation states and by using a polarising beam-

splitter, the different intensities of the modes was measured using photodiodes.

The current generated from each mode was compared; depending on their ratio,

the amount of current going to a heater coil was adjusted. An offset bias current

could also be controlled to manually adjust the heater current, which was used

to shift the mode frequency. All circuit boards, laser tubes and some of the parts

for the lasers were purchased from the Repair FAQs website [108], owned and run

by Sam Goldwasser. He also provided direct support for some of the construction

of the laser units themselves.
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(a)

Figure C.1: Circuit used to compare the photocurrents detected at the waste exit of

the stabilised laser; designed by Sam Goldwasser [108]. The photodiode

currents are detected at PD+ and PD- which control the current sent to

the heater at HTR+ and HTR-. An offset can also be set using resistor

R3 to bias the current going into the heater.
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Appendix: HeNe laser stability

measurements

To measure the performance of the stabilised He-Ne, the beat frequency of the

lasers as they interfere was measured. Even though the lasers themselves may

not be emitting a stable optical frequency, their ability to maintain a constant

frequency difference with respect to each other could be measured, and is the end

value of interest. Figure D.1 (a) to (f) show the measured beat frequency.

The beat frequency was measured using a commercially available photodiode,

shown in figure 6.2, which output a cleaner signal than can be measured using

the RFout on the MLC. Over the course of around 30minutes, the beat frequency

changed by about 3MHz (∼5MHz down to ∼2MHz and eventually back up to

∼4MHz). Looking at figure D.1(e) and (f), the frequency only changes by about

1MHz over 10Minutes.
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(a) (b)

(c) (d)

(e) (f)

Figure D.1: The stability measurements of the two in-lab designed/built He-Ne lasers.

The beat frequency, generated by interfering the two lasers, is measured

(green plot) at the times indicated in the bottom right of each image.

An FFT of the beat signal is also shown (red plot).
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