# Liu, Ying (2014) Multi-objective optimisation methods for minimising total weighted tardiness, electricity consumption and electricity cost in job shops through scheduling. PhD thesis, University of Nottingham. 

Access from the University of Nottingham repository:<br>http://eprints.nottingham.ac.uk/14125/1/Thesis_of_Ying_Liu_final_version.pdf

## Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

- Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners.
- To the extent reasonable and practicable the material made available in Nottingham ePrints has been checked for eligibility before being made available.
- Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
- Quotations or similar reproductions must be sufficiently acknowledged.

Please see our full end user licence at:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

## A note on versions:

The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the repository url above for details on accessing the published version and note that access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

## The University of

 NottinghamDepartment of Mechanical, Materials and Manufacturing Engineering Faculty of Engineering

# Multi-objective Optimisation Methods for Minimising Total Weighted Tardiness, Electricity Consumption and Electricity Cost in Job Shops Through Scheduling 

By<br>Ying Liu<br>B.Eng.

Thesis submitted to the University of
Nottingham for the degree of Doctor of
Philosophy

JULY 2014

## DECLARATION OF ORIGINALITY

## Title of Thesis: Multi-objective Optimisation Methods for Minimising Total Weighted Tardiness, Electricity Consumption and Electricity Cost in Job Shops Through Scheduling

I declare that the thesis hereby submitted for the degree of Doctor of Philosophy at the University of Nottingham is my own work except as cited in the references and has not been previously submitted for any degree.

Name : YING LIU

Signature :

## Date :


#### Abstract

Manufacturing enterprises nowadays face the challenge of increasing energy prices and requirements to reduce their emissions. Most reported work on reducing manufacturing energy consumption focuses on the need to improve the efficiency of resources (machines). The potential for energy reducing at the system-level has been largely ignored. At this level, operational research methods can be employed as the energy saving approach. The advantage is clearly that the scheduling and planning approach can be applied across existing legacy systems and does not require a large investment. For the emission reduction purpose, some electricity usage control policies and tariffs (EPTs) have been promulgated by many governments. The Rolling Blackout policy in China is one of the typical EPTs, which means the government electricity will be cut off several days in every week for a specific manufacturing enterprise. The application of the Rolling Blackout policy results in increasing the manufacturing enterprises' costs since they choose to start to use much more expensive private electricity to maintain their production. Therefore, this thesis develops operational research methods for the minimisation of electricity consumption and the electricity cost of job shop type of manufacturing systems. The job shop is selected as the research environment for the following reasons. From the academic perspective, energy consumption and energy cost reduction have not been well investigated in the multi-objective scheduling approaches to a typical job shop type of manufacturing system. Most of the current energy-conscious scheduling research is focused on single machine, parallel machine and flow shop environments. From the practical perspective, job shops are widely used in the manufacturing industry, especially in the small and medium enterprises (SMEs). Thus, the innovative electricity-conscious scheduling techniques delivered in this research can provide for plant managers a new way to achieve cost reduction.

In this thesis, mathematical models are proposed for two multi-objective job shop scheduling optimisation problems. One of the problems is a bi-objective problem with one objective to minimise the total electricity consumption and the other to minimise the total weighted tardiness (the ECT problem). The other problem is a tri-objective problem which considers reducing total electricity consumption, total electricity cost


and total weighted tardiness in a job shop when the Rolling Blackout policy is applied (the EC2T problem).

Meta-heuristics are developed to approximate the Pareto front for ECT job shop scheduling problem including NSGA-II and a new Multi-objective Genetic Algorithm (GAEJP) based on the NSGA-II. A new heuristic is proposed to adjust scheduling plans when the Rolling Blackout policy is applied, and to help to understand how the policy will influence the performance of existing scheduling plans. NSGA-II is applied to solve the EC2T problem. Six scenarios have been proposed to prove the effectiveness of the aforementioned algorithms.

The performance of all the aforementioned heuristics have been tested on Fisher and Thompson $10 \times 10$, Lawrence $15 \times 10,20 \times 10$ and $15 \times 15$ job shop scenarios which were extended to incorporate electrical consumption profiles for the machine tools. Based on the tests and comparison experiments, it has been found that by applying NSGA-II, the total non-processing electricity consumption in a job shop can decrease considerably at the expense of the schedules' performance on the total weighted tardiness objective when there are tight due dates for jobs. When the due dates become less tight, the sacrifice of the total weighted tardiness becomes much smaller. By comparing the Pareto fronts obtained by GAEJP and by NSGA-II, it can be observed that GAEJP is more effective in reducing the total non-processing electricity consumption than NSGA-II, while not necessarily sacrificing its performance on total weighted tardiness. Thus, the superiority of the GAEJP in solving the ECT problem has been demonstrated. The scheduling plan adjustment heuristic has been proved to be effective in reducing the total weighted tardiness when the Rolling Blackout policy is applied. Finally, NSGA-II is proved to be effective to generate compromised scheduling plans for using the private electricity. This can help to realise the trade-off between the total weighted tardiness and the total electricity cost. Finally, the effectiveness of GAJEP in reducing the total non-processing electricity consumption has been validated in a real-world job shop case.

## Published Papers

Liu, Y., Dong, H., Lohse, N., Petrovic S. and Gindy N., An Investigation into Minimising Total Energy Consumption and Total Weighted Tardiness in Job Shops. Journal of Cleaner Production, 65, pp87-96, 2014

Liu, Y., Lohse, N., Petrovic S. and Gindy N., An investigation into minimising total energy consumption, total energy cost and total tardiness based on a Rolling Blackout policy in a job shop. In Advances in Production Management Systems (APMS 2012).
2012. Rhodes, Greece, pp.103-110

## Acknowledgements

I would like to dedicate this thesis to the memory of Professor Nabil Gindy, who was initially my main supervisor. Under Nabil's guidance, not only did I learn how to do research, but also, more importantly, about modesty, courage and the spirit of life. Nabil, you will always be with us deep in our heart.

Many thanks to my supervisors, Dr Niels Lohse and Professor Sanja Petrovic, for their invaluable advice, and patient guidance throughout the last two years of my PhD , and especially for your confidence in me.

This PhD was funded by the Dean of Engineering Research Scholarship from the Faculty of Engineering for the initial three years. I gratefully acknowledge the financial support, without which I could not have completed this thesis. Many thanks to my supervisor Dr Niels Lohse for providing my financial support in the fourth year of my PhD study.

Finally, I would like to sincerely thank my parents for their love and support throughout my life. This thesis would not have been possible at all without their support. Thank you for giving me the strength to chase my dreams.

## Table of Contents

DECLARATION OF ORIGINALITY ..... i
Abstract ..... ii
Published Papers ..... iv
Acknowledgements ..... v
Table of Contents ..... vi
Table of Figures ..... xii
Table of Tables ..... xvi
Acronyms ..... xxi
Nomenclature ..... xxiii
CHAPTER 1 INTRODUCTION ..... 1
1.1 Background ..... 1
1.2 Scope, Goals and objective of the thesis ..... 6
1.3 Contributions ..... 7
1.3.1 Multi-objective optimisation models ..... 7
1.3.2 Algorithmic contributions ..... 7
1.4 Outline of thesis ..... 8
CHAPTER 2 LITERATURE REVIEW ..... 10
2.1 Introduction ..... 10
2.2 Reducing electricity consumption in a metalworking and machining-based
manufacturing system ..... 10
2.2.1 Research into the energy consumption at the tool chip interface and sub- component level ..... 11
2.2.2 Research into the energy consumption at the manufacturing equipmentlevel12
2.2.3 Research into energy consumption at the work shop level ..... 15
2.2.3.1 The contribution of existing work (work shop level) ..... 18
2.2.3.2 The limitations of existing work at the work shop level ..... 20
2.2.4 Research into energy consumption at the manufacturing enterprise andsupply chain level24
2.3 Multi-objective optimisation techniques for the job shop scheduling problem25
2.3.1 Multi-objective job shop scheduling optimisation techniques ..... 26
2.3.2 Genetic Algorithms ..... 28
2.3.3 GAs and the job shop scheduling problem (JSSP) ..... 32
2.4 Knowledge gaps ..... 36
2.5 Summary ..... 38
CHAPTER 3 RESEARCH METHODOLOGY, EXPERIMENTAL DESIGNAND OPTIMISATION MODELS OF THE ECT AND EC2T PROBLEMS ............ 39
3.1 Introduction ..... 39
3.2 Research methodology and experiment design ..... 40
3.2.1 Methods for optimisation model and instance development ..... 42
3.2.2 $\quad$ Methods for experimental design ..... 45
3.3 Job shop model ..... 49
3.4 Electricity consumption model ..... 51
3.5 Electricity cost model ..... 56
3.6 Mathematical formalisation ECT and EC2T problem ..... 57
3.7 Generation of job shop and the Rolling Blackout policy instances ..... 58
3.7.1 Job shop and its related parameters ..... 58
3.7.2 Machine tools' electrical characteristics ..... 59
3.7.3 Job-machine related electricity consumption ..... 60
3.7.4 The Rolling Blackout policy ..... 61
3.8 Summary ..... 61
CHAPTER 4 MINIMISING TOTAL ENERGY CONSUMPTION AND TOTAL
WEIGHTED TARDINESS IN JOB SHOPS USING NSGA-II ..... 63
4.1 Introduction ..... 63
4.2 The baseline scenario (Scenario 1) ..... 63
4.3 Solving the ECT with NSGA-II (Scenario 2) ..... 65
4.3.1 NSGA-II ..... 67
4.3.1.1 Non-dominated sorting procedure ..... 67
4.3.1.2 Crowding distance sorting procedure ..... 68
4.3.1.3 Crowded-comparison operator ..... 69
4.3.1.4 The procedure of NSGA-II ..... 70
4.3.2 Crossover operator ..... 72
4.3.3 Mutation operator ..... 72
4.3.4 $\quad$ Stopping criteria ..... 73
4.4 Comparison between Scenario 2 and Scenario 1 ..... 73
4.5 Discussion ..... 78
4.6 Summary ..... 81
CHAPTER 5 MINIMISING TOTAL ENERGY CONSUMPTION AND TOTAL
WEIGHTED TARDINESS IN JOB SHOPS USING GAEJP ..... 83
5.1 Introduction ..... 83
5.2 Scenario 3 and expected results of the comparison experiment ..... 83
5.3 The reason for using the semi-active schedule builder in Scenario 3 and itsdecoding procedure85
5.4 A new algorithm GAEJP based on NSGA-II for solving the ECT problem
(Scenario 3) ..... 87
5.4.1 $\quad 1$ to $n$ schedule building ..... 88
5.4.2 Illustrative example ..... 96
5.4.3 Family creation and individual rejection ..... 99
5.4.3.1 Step 1: Family creation ..... 100
5.4.3.2 Step 2: Individual rejection based on non-dominated front in thepopulation100

| 5.4.3.3 Step 3: Individual rejection based on the crowding distance value in |  |
| :---: | :---: |
| each family ....................................................................................... 101 |  |
|  | 5.5 Comparison between Scenario 3, Scenario 2 and Scenario 1 ................... 105 |
|  | 5.6 Discussion ..................................................................................... 110 |
|  | 5.7 Summary ....................................................................................... 114 |
| CHAPTER 6 INVESTIGATION OF THE ROLLING BLACKOUT POLICY |  |
| ON JOB SHOPS 116 |  |
| 6.1 Introduction................................................................................... 116 |  |
| 6.2 Scenario 4, 5 and 6 and expected results of comparison experiment ........ 117 |  |
| 6.3 The procedure of the adjustment heuristic in Scenario 4......................... 122 |  |
| 6.4 Result comparison.......................................................................... 133 |  |
| 6.4.1 Comparison of results in Scenario 2 to its corresponding Scenario 4 and |  |
| Scenario 5........................................................................................... 134 |  |
| 6.4.2 Comparison of results in Scenario 3 to its corresponding Scenario 4 and |  |
| Scenario 5............................................................................................ 136 |  |
| 6.5 Solving the EC2T with NSGA-II (Scenario 6) ..................................... 138 |  |
| 6.5.1 Encoding schema ..................................................................... 138 |  |
| 6.5.2 Crossover operator.................................................................... 140 |  |
| 6.5.3 Mutation operator..................................................................... 141 |  |
| 6.5.4 Stopping criteria....................................................................... 141 |  |
| 6.5.5 Selection operator and decoding procedure .................................... 141 |  |
| 6.6 Comparison of Scenario 6 and Scenario 3 and its related Scenario 4 and |  |
| Scenario 5 .......................................................................................... 142 |  |
| 6.7 Summary ...................................................................................... 145 |  |
| VAPTER 7 VALIDATION BASED ON A REAL-WORLD JOB SHOP |  |
| SCHEDULING PROBLEM .......................................................................... 147 |  |
| 7.1 Introduction.................................................................................... 147 |  |
| 7.2 The real-world job shop ................................................................... 147 |  |

7.3 Experiment and discussion ..... 150
7.4 Summary ..... 153
CHAPTER 8 CONCLUSIONS AND FUTURE WORK ..... 154
8.1 Summary of the research work and conclusions ..... 154
8.2 Future Research ..... 157
8.2.1 Testing the algorithms in a wider set of job shop instances ..... 158
8.2.2 Reducing the electricity consumption in flexible job shop ..... 158
8.2.3 The lot sizing problem when considering reducing electricity consumption ..... 159
8.2.4 Reliability study with machine setup ..... 160
8.2.5 Reducing electricity consumption in a dynamic job shop ..... 160
8.2.6 Developing dispatching rules considering reduction in electricity consumption ..... 160
Bibliography ..... 161
Appendix I Job shop instances for experiments ..... 168
Appendix I-E-F\&T $\mathbf{1 0} \times \mathbf{1 0}$ job shop ..... 168
Appendix I-E-Lawrence $\mathbf{1 5} \times \mathbf{1 0}$ job shop ..... 169
Appendix I-E-Lawrence $\mathbf{2 0} \times \mathbf{1 0}$ job shop ..... 172
Appendix I-E-Lawrence $\mathbf{1 5} \times \mathbf{1 5}$ job shop ..... 174
Appendix II Experiment result comparison among Scenario 2 (Scenario 3) and its related Scenario 4 and Scenario 5 ..... 178
Appendix II-Experiment result of E-F\&T $\mathbf{1 0} \times \mathbf{1 0}$ job shop ..... 178
Appendix II-Experiment result of E-Lawrence $\mathbf{1 5} \times \mathbf{1 0}$ job shop ..... 181
Appendix II-Experiment result of E-Lawrence $\mathbf{2 0} \times \mathbf{1 0}$ job shop ..... 183
Appendix II-Experiment result of E-Lawrence $\mathbf{1 5 \times 1 5}$ job shop ..... 185
Appendix III Experiment result of Scenario 6 ..... 187
Appendix III- Experiment result of E-F\&T $\mathbf{1 0} \times \mathbf{1 0}$ job shop ..... 187
Appendix III- Experiment result of E-Lawrence $\mathbf{1 5} \times \mathbf{1 0}$ job shop ..... 188
Appendix III- Experiment result of E-Lawrence $\mathbf{2 0} \times \mathbf{1 0}$ job shop ..... 189
Appendix III- Experiment result of E-Lawrence $\mathbf{1 5} \times \mathbf{1 5}$ job shop ..... 190

## Table of Figures

Figure 1.1: U.S.A. energy consumption by market segment from 1950 to 2000 ..... 2
Figure 2.1: Level of analysis of manufacturing with temporal decision scales ..... 11
Figure 2.2: Power breakdown of machine tools, ..... 13
Figure 2.3: The research framework for employing operational research methods to ..... 17reduce electricity consumption in a MMS
Figure 2.4: Types of job shop ..... 21
Figure 2.5: Evolution of evolutionary algorithms (Gen \& Lin 2013) ..... 27
Figure 2.6: The procedure of GA ..... 30
Figure 2.7: The relationships among chromosome, schedule builder and schedule, ..... 33
Figure 2.8: An example of a permissible left shift (Yamada 2003) ..... 34
Figure 2.9: Venn diagram of classes of non-preemptive schedules for job shops (Pinedo 2009) ..... 35
Figure 2.10: Gantt chart of chromosome [321123321], transformed by the activeschedule builder (Liu \& Wu 2008)36
Figure 3.1: The structure of research methodology ..... 42
Figure 3.2: The internal relations between scenarios ..... 42
Figure 3.3: A typical job shop ..... 50
Figure 3.4: Actual power input at machine main connection over time ..... 52
Figure 3.5: The simplified power input of a machine tool when it is working on oneoperation $O_{i k}^{l}$, (a) is the first step simplified version, ................................ 52
Figure 3.6: Gantt chart of $M_{k}$ and its corresponding power profile ..... 56
Figure 3.7: The timeline for the RB and the power input profile of $M_{k}$ ..... 57
Figure 4.1: Non-dominated levels (Deb et al. 2002) ..... 68
Figure 4.2: Computation of the crowding distance (Deb et al. 2002) ..... 68
Figure 4.3: The pseudo-code for the non-dominanted sorting procedure ..... 69
Figure 4.4: The pseudo-code for the crowding distance procedure ..... 69
Figure 4.5: Construction of population $P_{t+1}$ ..... 71
Figure 4.6: The flowchart of NSGA-II ..... 71
Figure 4.7:The solution comparison between NSGA-II and the baseline scenario ..... 75
Figure 4.8: The solution comparison between NSGA-II and the baseline scenario ..... 75
Figure 4.9: The solution comparison between NSGA-II and the baseline scenario ..... 76
Figure 4.10: The solution comparison between NSGA-II and the baseline scenario. 76Figure 4.11: Gantt chart of optimised schedule of SBH while $f=1.5$80
Figure 4.12: Comparison in machine utilisation ..... 81
Figure 5.1: Transforming chromosome [222333111] to feasible active schedule and semi-active schedule, based on (Liu \& Wu 2008) ..... 87
Figure 5.2: A better schedule for the ECT developed based on the semi-activeschedule87
Figure 5.3: Flowchart for GAEJP ..... 88
Figure 5.4: The flowchart of 1 to $n$ schedule building step ..... 90
Figure 5.5: Gantt chart of $s_{p t}^{1}$ ..... 96
Figure 5.6: Gantt chart of $s_{p t}^{1}$ ..... 96
Figure 5.7: Gantt chart of $s_{p t}^{2}$ ..... 97
Figure 5.8: Gantt chart of $s_{p t}^{3}$ ..... 97
Figure 5.9: Gantt chart of $s_{p t}^{4}$ ..... 98
Figure 5.10: Gantt chart of $s_{p t}^{4}$ ..... 98
Figure 5.11: Gantt chart of $s_{p t}^{5}$ and $s_{p t}^{5}$ ..... 98
Figure 5.12: Gantt chart of $s_{p t}^{6}$ ..... 99
Figure 5.13: Gantt chart of $s_{p t}^{7}$ and $s_{p t}^{7}$ ..... 99
Figure 5.14: Defining boundary solutions ..... 102
Figure 5.15: Neighbours searching process for $s_{p t}^{v 1}$ and $s_{p t}^{v 2}$ ..... 104
Figure 5.16: Solutions comparison among the GAEJP, the NSGA-II and the baseline
scenario (E-F\&T $10 \times 10$ job shop) ..... 107
Figure 5.17: Solutions comparison among the GAEJP, the NSGA-II and the baseline scenario (E-Lawrence $15 \times 10$ job shop)107
Figure 5.18: Solutions comparison among the GAEJP, the NSGA-II and the baseline scenario (E-Lawrence $20 \times 10$ job shop)108
Figure 5.19: Solutions comparison among the GAEJP, the NSGA-II and the baseline scenario (E-Lawrence $15 \times 15$ job shop)108
Figure 5.20: The solutions obtained by the GAEJP for E-Lawrence $15 \times 10$ job shop
Figure 5.21: The solutions obtained by the GAEJP for E-Lawrence $20 \times 10$ job shop
Figure 5.22: The new pareto fronts formed by solutions obtained by the GAEJP and the NSGA-II (E-F\&T $10 \times 10$ job shop)................................................. 112
Figure 5.23: The new pareto fronts formed by solutions obtained the GAEJP and . 113
Figure 5.24: Gantt chart of optimal schedule by GAEJP (A) and Gantt chart of optimised schedule of NSGA-II (B) when $f=1.5$
Figure 6.1: Transforming chromosome [222333111] to a feasible active schedule and semi-active schedule, based on (Liu \& Wu 2008) ............................. 122
Figure 6.2: Example for right move........................................................................ 123
Figure 6.3: the flowchart of the adjustment heuristic in Scenario 4 124
Figure 6.4: Splitting points on $s$ ..... 125
Figure 6.5: Postponed schedule based on $s$ ..... 125

| Figure 6.6: The result of finishing all the right moves within schedule $s$.............. 126 |
| :---: |
| Figure 6.7: Feasible forwarded operation (in one GAP)..................................... 127 |
| Figure 6.8: Feasible forwarded operation (in more than one GAP) situation 1....... 127 |
| Figure 6.9: Feasible forwarded operation (in more than one GAP) situation 2....... 127 |
| Figure 6.10: NPE comparison between Scenario 2 and its corresponding Scenario 4 |
| and its corresponding Scenario 5 ..................................................... 134 |
| Figure 6.11: TWT comparison between Scenario 2 and its corresponding Scenario 4 |
| and its corresponding Scenario 5 ..................................................... 135 |
| Figure 6.12: E-Cost comparison of Scenario 2, its corresponding Scenario 4 and its |
| corresponding Scenario 5................................................................ 135 |
| Figure 6.13: NPE comparison between Scenario 3 and its corresponding Scenario 4 |
| and its corresponding Scenario 5 ..................................................... 136 |
| Figure 6.14: TWT comparison between Scenario 3 and its corresponding Scenario 4 |
| and its corresponding Scenario 5 ...................................................... 137 |
| Figure 6.15: E-Cost comparison of Scenario 3, its corresponding Scenario 4 and its |
| corresponding Scenario 5................................................................ 137 |
| Figure 6.16: The result of finishing all right moves within schedule $s$.................. 140 |
| Figure 6.17: A typical scheduling result of Scenario 6....................................... 142 |
| Figure 6.18: TWT comparison among Scenario 6, Scenario 4 and Scenario 5 ....... 143 |
| Figure 6.19: TEC comparison among Scenario 6, Scenario 4 and Scenario 5 ........ 143 |
| Figure 6.20: NPE comparison among Scenario 6, Scenario 4 and Scenario 5 ........ 144 |
| Figure 7.1: The workshop used for validation .................................................. 148 |
| Figure 7.2: Drawing of the example spring cart ................................................ 148 |
| Figure 7.3: One of the turning machines used in the test job shop case ................. 149 |
| Figure 7.4: The solution comparison between GAEJP and the baseline scenario.... 152 |

## Table of Tables

Table 1.1: Existing EPTs (Chinahightech, 2011; Sohu, 2011) ..... 3
Table 2.1: Classification of power demand of machine tools ..... 13
Table 2.2: The individual stages of the Cincinnati Milacron 7VC Automated MillingMachine, made in 1988.(Kordonowy 2003) .............................................. 14
Table 2.3: The expanded definitions for parallel machines of the three types of FJS22
Table 2.4: The parameters of the $3 \times 3$ job shop (Liu \& Wu 2008) ..... 35
Table 3.1: Scenario Design ..... 45
Table 3.2: The processing time $p_{i k}^{l}$ of each operation $O_{i k}^{l}$ and the technical route foreach job $J_{i}$ in the E-F\&T $10 \times 10$ job shop instance (time unit: min)......... 59
Table 3.3: Parameters of each $J_{1}$ in the E-F\&T $10 \times 10$ job shop, $r_{i}=0$ (time unit: min) .......................................................................................................... 59
Table 3.4: The electricity characteristics for the E-F\&T $10 \times 10$ job shop60
Table 3.5: The range of value for $P_{i k}^{l}$ of each $M_{k}$ ..... 60
Table 3.6: The value of each $P_{i k}^{l}$ in the E-F\&T $10 \times 10$ job shop ..... 61
Table 4.1: Parameters of Scenario 1 ..... 64
Table 4.2: The optimisation result of SBH and LSH of the E-F\&T $10 \times 10$ job shop by LEKIN
Table 4.3: The optimisation result of SBH and LSH of the E-Lawrence $15 \times 10$ job
$\qquad$shop by LEKIN65
Table 4.4: The optimisation result of SBH and LSH of the E-Lawrence $20 \times 10$ job
$\qquad$shop by LEKIN65
Table 4.5: The optimisation result of SBH and LSH of the E-Lawrence $15 \times 15$ job
$\qquad$Table 4.6: Parameters of Scenario 266
Table 4.7: Expected results for scenarios comparison for the ECT problem ..... 66
Table 4.8: The parameters settings for the NSGA-II (E-F\&T $10 \times 10$ job shop) ..... 74
Table 4.9: The parameters settings for the NSGA-II (E-Lawrence $15 \times 10$ job shop)74
Table 4.10: The parameters settings for the NSGA-II (E-Lawrence $20 \times 10$ job shop)74
Table 4.11: The parameters settings for the NSGA-II (E-Lawrence $15 \times 15$ job shop)74
Table 4.12: The NPE improvement in percentage for E-F\&T $10 \times 10$ and E-Lawrence $15 \times 10$77
Table 4.13: The NPE improvement in percentage for E-Lawrence $20 \times 10$ and E-Lawrence $15 \times 15$78
Table 4.14: The TWT increase in weighted minutes for E-F\&T $10 \times 10$ and E-Lawrence $15 \times 10$78
Table 4.15: The TWT increase in weighted minutes for E-Lawrence $20 \times 10$ and E-Lawrence $15 \times 15$78
Table 5.1: Parameters of Scenario 3 ..... 84
Table 5.2: Expected results for scenarios comparison for the ECT problem ..... 84
Table 5.3: $3 \times 3$ job shop parameters ..... 96
Table 5.4: The total NPE improvement in percentage for E-F\&T $10 \times 10$ and E-
Lawrence $15 \times 10$ ..... 110
Table 5.5: The total NPE improvement in percentage for E-Lawrence $20 \times 10$ and E-Lawrence $15 \times 15$110
Table 5.6: The TWT increase in weighted minute for E-F\&T $10 \times 10$ and E-
Lawrence $15 \times 10$ ..... 110
Table 5.7: The TWT increase in weighted minute for E-Lawrence $20 \times 10$ and E-
Lawrence $15 \times 15$ ..... 110
Table 6.1: Parameters of Scenario 4 ..... 118
Table 6.2: Parameters of Scenario 5 ..... 119



| Appendix II- Table 24: Experiment result of E-Lawrence $20 \times 10$ job shop (Based |
| ---: |
| on Scenario 2) ............................................................................. 183 |
| Appendix II- Table 25: Experiment result of E-Lawrence $20 \times 10$ job shop (Based |
| on Scenario 3) ........................................................................... 184 |
| Appendix II- Table 26: Experiment result of E-Lawrence $15 \times 15$ job shop (Based |
| on Scenario 2) ............................................................................. 185 |
| Appendix II- Table 27: Experiment result of E-Lawrence $15 \times 15$ job shop (Based |
| on Scenario 3) ........................................................................... 185 |
| Appendix III-Table 28: Experiment result of E-F\&T $10 \times 10$ job shop ................ 187 |
| Appendix III-Table 29: Experiment result of E-Lawrence $15 \times 10$ job shop ........ 188 |
| Appendix III-Table 30: Experiment result of E-Lawrence $20 \times 10$ job shop ........ 189 |
| Appendix III-Table 31: Experiment result of E-Lawrence $15 \times 15$ job shop ........ 190 |

## Acronyms

| APT | automatic programming tool |
| :---: | :---: |
| CNC | computer numerical control |
| DO | delayed operation |
| ECT | the bi-objective total electricity consumption, total weighted |
|  | tardiness job shop scheduling problem |
| EC2T | the tri-objective total electricity cost, total electricity con- |
|  | sumption and total weighted tardiness job shop scheduling |
|  | problem |
| EPTs | electricity usage control policies and tariffs |
| ESP | electricity supply plan |
| FIFO | first in first out |
| FJS | flexible job shop |
| GAs | genetic algorithms |
| GAP | government electricity supply available period |
| GAEJP | multi-objective genetic algorithm for solving the ECT job |
|  | shop scheduling problem |
| GSCM | green supply chain management |
| GUP | the government electricity supply unavailable period |
| IP | idle period |
| JPE | job related processing electricity consumption |
| JSSP | job shop scheduling problem |
| KERS | kinetic energy recovery system |
| LMO | left move operation |


| LSH | local search heuristic |
| :---: | :---: |
| LSO | left shift operation |
| MMS | machining-based manufacturing system |
| MRR | material removal rate |
| NC | numerical control |
| NPE | non-processing electricity consumption |
| OBES | operation-based encoding schema |
| OEMs | original equipment manufacturers |
| PE | processing electricity consumption |
| PLMO | permissible left move operation |
| PLSO | permissible left shift operation |
| POJ | an operation's preceding operation within the same job |
| POM | an operation's preceding operation on the same machine |
| PRS | process route selection |
| PT/TUP | ratio of production time compared to the total up-time of the |
|  | machines |
| PVTOU | peak-valley time of use tariff |
| RB | rolling blackout policy |
| SBH | shifting bottleneck heuristic |
| SMEs | the small and medium enterprises |
| SWP | step-wise power tariff |
| TWT | total weighted tardiness |

## Nomenclature

| $B S_{F_{i}}^{\min }$ | boundary solution in Pareto front $F_{i}$ with the minimum value in the selected objective function |
| :---: | :---: |
| $B S_{F_{i}}^{\max }$ | boundary solution in Pareto front $F_{i}$ with the maximum value |
|  | in the selected objective function |
| $B_{k}$ | the break-even duration of machine $M_{k}$ for which Turn |
|  | Off/Turn On is economically justifiable instead of running the |
|  | machine idle |
| $C_{i}(s)$ | completion time of $J_{i}$ in schedule $s$ (i.e. the completion time of |
|  | the last operation of $J_{i}, O_{i}^{u_{i}}$ ) |
| $C_{k}^{r}$ | completion time of $m_{k}^{r}$ on $M_{k}$ |
| $C_{i k}^{l}$ | completion time of $O_{i k}^{l}$ on $M_{k}$ |
| $C_{i k^{\prime}}^{l-1}$ | completion time of $O_{i k^{\prime}}^{l-1}$ |
| $C_{s_{p t}^{v_{1}}}$ | crowding distance of $s_{p t}^{v_{1}}$ |
| $d_{i}$ | due date of $J_{i}$ |
| $E_{i k}^{\text {lruntime }}$ | electricity consumption of $M_{k}$ when it executes the runtime |
|  | operations for processing $O_{i k}^{l}$ |
| $E_{i k}^{\text {lcutting }}$ | electricity consumption of $M_{k}$ when it actually executes cutting |
|  | for $O_{i k}^{l}$ |
| $E_{i k}^{l b a s i c}$ | electricity consumed by $M_{k}$ with the idle power level during |
|  | $p_{i k}^{l}$ |
| $E_{i k}^{l}$ | JPE of $O_{i k}^{l}$ on $M_{k}$ |
| $E_{k}^{\text {turn }}$ | electricity consumed by Turn Off/Turn On |


| $E_{k}^{\text {turnoff }}$ | electricity consumed to turn off the machine $M_{k}$ |
| :---: | :---: |
| $E_{k}^{\text {turnon }}$ | electricity consumed to turn on the machine $M_{k}$ |
| $E_{2 x}$ | ending time of the $2 x$ th period |
| $E_{2 x-1}$ | ending time of the $2 x-1$ th period |
| $E_{2(x-y)-1}$ | ending time of the $2(x-y)-1$ th period |
| $e i p_{k}^{w}$ | ending time of $i p_{k}^{w}$ on $M_{k}$ |
| $f$ | tardiness factor |
| $G_{p t}^{1}$ | $s_{p t}^{1}$ 's corresponding Gantt chart |
| $I_{p t}$ | individual $p$ in generation $t . I_{p t}=\left\{I_{p t}^{v}\right\}_{v=1}^{u_{p t}}$ after the family |
|  | creation process |
| $I_{p t}^{v}$ | $v$-th family member in $I_{p t}$ |
| $i p_{k}$ | a finite set of $u_{k}$ ordered idle periods on $M_{k}, i p_{k}=\left\{i p_{k}^{w}\right\}_{w=1}^{u_{k}}$ |
| $i p_{k}^{w}$ | $w$-th idle period on $M_{k}$ |
| $i p_{o_{i k}^{l}}$ | a finite set of $t$ idle periods on machine $M_{k}$ that allow $O_{i k}^{l}$ to be left shifted, $i p_{o_{i k}^{l}}=\left\{i p_{o_{i k}^{l}}^{e}\right\}_{e=1}^{t}$ |
| J | a finite set of $n$ jobs, $J=\left\{J_{i}\right\}_{i=1}^{n}$ |
| M | a finite set of $m$ machines, $M=\left\{M_{k}\right\}_{k=1}^{m}$ |
| $M_{k}^{\prime}$ | a finite set of operations processed on $M_{k}$, |
|  | $M_{k}^{\prime}=\left\{m_{k}^{r}\right\}_{r=1}^{\sum_{i=1}^{n} \Sigma_{l=1}^{u_{i}} \gamma_{i k}^{l}}$ |
| $m_{k}^{r}$ | $r$-th operation processed on $M_{k}$ within a feasible schedule $s$ |
| $m_{k}^{r-1}$ | $m_{k}^{r}$ 's preceding operation on the same machine $M_{k}$ |
| $N_{s_{p t}}^{l_{1}}$ | first left neighbour of $s_{p t}^{v}$ |
| $N_{s_{p t}}^{r_{1}}$ | first right neighbour of $s_{p t}^{v}$ |

\begin{tabular}{|c|c|}
\hline $N_{s_{p t}^{v}}^{n_{1}}$ \& first group of neighbours for $s_{p t}^{v}$ <br>
\hline $N_{s_{p t}}^{l_{2}}$ \& second left neighbour of $s_{p t}^{v}$ <br>
\hline $N_{s p t}^{r_{2}}$ \& second right neighbour of $s_{p t}^{v}$ <br>
\hline $N_{s_{p t}}^{n_{2}}$ \& second group of neighbours <br>
\hline $O_{i}$ \& a finite set of $u_{i}$ ordered operations of $J_{i}, O_{i}=\left\{O_{i k}^{l}\right\}_{l=1}^{u_{i}}$ <br>
\hline $O_{i k}^{l}$ \& $l$-th operation of $J_{i}$ processed on $M_{k}$ <br>
\hline $O_{i k^{\prime}}^{l-1}$ \& preceding operation of $O_{i k}^{l}$ in $J_{i}$ <br>
\hline $O_{p t}$

$p_{i k}^{l}$ \& | objective function set of chromosome $I_{p t}, O_{p t}=\left\{O_{s_{p t}^{1^{\prime}}}\right\} \cup$ $\left\{O_{s_{p t}^{n_{v}^{\prime}}}\right\}_{v=1}^{h_{p t}}$ |
| :--- |
| processing time of $O_{i k}^{l}$ | <br>

\hline $P_{k}(t)$ \& input power of $M_{k}$ <br>
\hline $P_{k}^{\text {idle }}$ \& idle power of $M_{k}$ <br>
\hline \multirow[t]{2}{*}{$P_{i k}^{\text {lruntime }}$} \& power level of $M_{k}$ when it executes the runtime operations for <br>
\hline \& processing $O_{i k}^{l}$ <br>
\hline $P_{i k}^{\text {lcutting }}$ \& power level of $M_{k}$ when it actually executes cutting for $O_{i k}^{l}$ <br>
\hline $P_{k}^{\text {turnon }}$ \& average power input for $M_{k}$ during $t_{k}^{\text {turnon }}$ <br>
\hline $P_{k}^{\text {turnoff }}$ \& average power input of $M_{k}$ during $t_{k}^{\text {turnoff }}$ <br>
\hline \multirow[t]{2}{*}{$P_{t}$} \& population at generation $t$ with $N$ individuals, $P_{t}=$ <br>
\hline \& $\left\{I_{p t}\right\}_{p=1, t=1}^{N, G}$ <br>
\hline $r_{i}$ \& release time of $J_{i}$ into the system <br>
\hline $\gamma_{i k}^{l}$ \& $\gamma_{i k}^{l}=1$ if the $l$-th operation of $J_{i}$ processed on $M_{k}, 0$ otherwise <br>
\hline $S_{i k}^{l}$ \& starting time of $O_{i k}^{l}$ on $M_{k}$ <br>
\hline
\end{tabular}

| $S_{2 x}$ | starting time of the $2 x$ th period |
| :---: | :---: |
| $S_{2 x-1}$ | starting time of the $2 x-1$ th period |
| $S_{2(x-y)-1}$ | starting time of the $2(x-y)-1$ th period |
| $s$ | a feasible schedule plan |
| $S$ | a finite set of all feasible schedule plans, $s \in S$ |
| $S_{k}^{r}$ | starting time of $m_{k}^{r}$ on $M_{k}$ |
| $s_{p t}^{1}$ | initial semi-active schedule for chromosome $I_{p t}$ decoded by |
|  | semi-active schedule builder |
| $s_{p t}^{1^{\prime}}$ | first feasible solution for chromosome $I_{p t}$. i.e. the Turn |
|  | Off/Turn On version of $s_{p t}^{1}$ |
| $S_{p t}$ | solution set of chromosome $I_{p t}, S_{p t}=\left\{s_{p t}^{1^{\prime}}\right\} \cup\left\{s_{p t}^{n_{v}^{\prime}}\right\}_{v=1}^{h_{p t}}$ |
| $s_{p t}^{n_{v}^{\prime}}$ | $v+1$-th feasible solution of chromosome $I_{p t}$ |
| $s_{p t}^{v}$ | $I_{p t}^{v}$ 's corresponding solution |
| $S_{\text {min }}^{\text {DO }}$ | earliest starting time of all the delayed operations related to the |
|  | $2 x$ th period |
| $T_{i}(s)$ | tardiness of $J_{i}$, defined as $T_{i}(s)=\max \left\{0, C_{i}(s)-d_{i}\right\}$ |
| $T$ | the cycle period of the Rolling Blackout policy |
| $t_{s}$ | the time point which separates $T$ from $\Delta t_{s}$ and $\Delta t_{o}$ |
| $\Delta t_{s}$ | government electricity supply available period, GAP |
| $\Delta t_{o}$ | government electricity supply unavailable period, GUP |
| $t_{i k}^{l c u t t i n g ~}$ | cutting time |
| $t_{k}^{\text {OFF }}$ | time required to turn off $M_{k}$ and turn on it back on |
| $t_{k}^{\text {turnoff }}$ | time consumed to turn off the machine $M_{k}$ |

$t_{k}^{\text {turnon }} \quad$ time consumed to turn on the machine $M_{k}$
$w_{i} \quad$ weighted importance of $J_{i}$
$Y_{i i^{\prime} k}^{l \prime^{\prime}} \quad Y_{i i^{\prime} k}^{l l^{\prime}}=1$ if $O_{i k}^{l}$ precedes $O_{i^{\prime} k}^{l^{\prime}}$ on $M_{k}, 0$ otherwise
$Z_{k}^{r} \quad Z_{k}^{r}=1$ if $S_{k}^{r+1}-C_{k}^{r} \geq \max \left(B_{k}, t_{k}^{\text {OFF }}\right), 0$ otherwise

## CHAPTER 1 INTRODUCTION

### 1.1 Background

Manufacturing, as the backbone of modern industry (Jovane et al. 2008), consumes resources, and brings about environmental problems. In recent years, threatened by resource depletion and environmental degradation, increasing numbers of researchers have paid attention to topics related to sustainable manufacturing. Sustainable manufacturing has been defined as:
"Sustainable manufacturing must respond to: Economical challenges, by producing wealth and new services ensuring development and competitiveness through times; Environmental challenges, by promoting minimal use of natural resources (in particular non-renewable) and managing them in the best possible way while reducing environmental impact; Social challenges, by promoting social development and improved quality of life through renewed quality of wealth and jobs".
-Jovane et al. (2008)

According to this definition, modern manufacturing enterprises have to guarantee their profitability to keep competitive to survive in the fierce market environment. Meanwhile, they are often under increasing pressure to mitigate the environmental damage caused by their production activities.

Energy is one of the most vital resources for manufacturing. In the last 50 years, the consumption of energy by the industrial sector has more than doubled and industry currently consumes about half of the world's energy (Mouzon et al., 2007), as shown in Figure 1.1. The price of energy is escalating as a result of the increasing price of crude oil (Kilian 2008). For example, in 2006, energy costs for U.S.A. manufacturers were $\$ 100$ billion annually (Mouzon et al. 2007), which today is even higher.

Additionally, energy consumption is one of the most significant factors that lead manufacturing enterprises to become environmentally unfriendly. In the U.S.A., the manufacturing sector consumes about one-third of the energy used and contributes to about $28 \%$ of greenhouse gas emissions (Mouzon 2008). One of the most important forms of energy for manufacturing is electricity which is often highly polluting dur-
ing its production processes. Every year in China, manufacturing consumes around $50 \%$ of the entire electricity produced (Tang et al. 2006), and generates at least $26 \%$ of the total carbon dioxide emission. A quantity of 900 g of carbon dioxide is released into the atmosphere at the production stage of one kilowatt-hour of electricity (Mouzon et al. 2007). Thus, reducing the electricity consumption of manufacturing can significantly improve its environmental performance.


Figure 1.1: U.S.A. energy consumption by market segment from 1950 to 2000 (Mouzon 2008)

Furthermore, there is an increasing trend that manufacturing enterprises across the whole world would be required to pay for their negative environmental impacts. Many enterprises in Europe have begun to pay for their emission since the 1990s (Jeswiet \& Kara 2008). A bill for carbon tax has been passed by the Australian parliament in 2011 (BBC, 2011). Designs of tax on greenhouse gas emission have been tabled in the U.S.A, and China (Metcalf \& Weisbach, 2009; Stdaily, 2011).

The trend of rising energy prices, together with the growing concern over manufacturing's environmental impact, and the possibility of taxing manufacturing's emissions have become obstacles that manufacturing enterprises need to overcome on the way to achieve sustainability. In other words, there is a new objective for modern manufacturing enterprises. To achieve this, solutions need to be proposed for reducing energy and its related environmental cost during production, as well as ensuring quality and customer satisfaction (Gungor \& Gupta 1999).

Many countries including the U.S.A., Australia, Germany, United Kingdom, China and others, have committed to reduce their emission under the Copenhagen Accord in 2009 (Productivity commission, 2011). Based on the fact that the process of generating electricity usually plays the role of the single largest source of carbon dioxide emissions, many countries have proposed new electricity generation and usage control policies to achieve emission reduction.

Some of these new policies are power generation oriented, which are used to decrease carbon intensity in the generation processes, encouraging the electricity generation enterprises to employ clean and low carbon intensive technologies to replace the traditional high carbon intensity ones. (Climatechange, 2011, Epa, 2011, People, 2011). However, as the adoption of these new technologies will cost more than continuing with traditional methods, this would lead to an increased electricity price.

Other policies are electricity consumer focused. For instance, the Chinese government has promulgated corresponding electricity usage control policies and tariffs (EPTs) for emission reduction, which are gathered and shown in Table 1.1. The reason for considering EPTs which executed in China is based on the fact that this country overtook the United States in 2011 to become the world's largest producer of manufactured goods, and it has become a key component of global manufacturing supply chains.

All the current EPTs can be divided into two types. One is direct-control and the other is indirect-control. As their names imply, the direct-control type is designed to limit the electricity usage and its related emissions to a certain level; the indirectcontrol type is supposed to obtain extra incomes from the raising of the electricity price and then devote the extra income to the emission treatment.

Table 1.1: Existing EPTs (Chinahightech, 2011; Sohu, 2011)

| Type | Policy |
| :--- | :--- |
| Direct control | Rolling Blackout (RB) |
| Indirect control | Peak-Valley Time of Use tariff <br> (PVTOU) |
|  | Step-Wise Power tariff (SWP) |

The Rolling Blackout policy for industry electricity supply is a typical direct-control policy, which means the government electricity are cut off for one or two days in every week for a specific manufacturing enterprise. For instance, in every week, the government electricity supply would be cut off during Sunday and Monday for company A, it would be resumed from Tuesday to Saturday. In the same week, the government electricity supply for company B would be available from Monday to Friday. Normally, in China, the manufacturing companies work seven days a week. In some other areas, the Rolling Blackout policy executes in a way that the government electricity is cut off for several hours in a day for a specific enterprise.

The indirect-control type includes the Peak-Valley Time of Use tariff (PVTOU) and the Step-Wise Power tariff (SWP). The PVTOU is designed to balance the timebased the unevenness of electricity demand. Implementation of this policy will encourage manufacturing companies to execute production in the electricity usage valley period for cost saving. The PVTOU does not necessarily cut the total electricity consumption. The SWP is used to limit the resident electricity usage, which means the electricity price would increase in steps when electricity usage accumulates to a certain quantity. The extra income from this rise in electricity price is expected to cover the increase of $\mathrm{CO}_{2}$ emission reduction cost in electricity generation (Nrdc, 2010).

All the aforementioned electricity usage control policies and tariffs will result in increasing costs for manufacturing companies, including electricity costs and other operational costs. The Rolling Blackout policy is the most difficult one for the normal operations of a company within all the existing electricity usage control policies and tariffs, since the production of manufacturing companies can be significantly limited by its implementation. Therefore, the operational cost will be increased. For some companies, up to $1 / 3$ of their production has been lost as a result of the Rolling Blackout policy (Sohu, 2011). To deal with an electricity shortage circumstance, some manufacturing companies are illegally starting their own diesel generators to maintain production which increases their expense on electricity. Private diesel electricity costs twice as much as the government supplied resource. Ironically, the original intention of implementing the Rolling Blackout policy is to reduce emission. However, the policy results in the wide use of diesel generated electricity which is
more emission intensive than the government supplied resource. Finally, the implementation of the Rolling Blackout policy results in emission increasing and production deteriorating. Based on the above discussion about electricity usage control policies and tariffs and the power consumption charging method, it is safe to conclude that the way a manufacturing company uses electricity will exert increasing influence on its production cost. Therefore, another new objective for manufacturing enterprises is to reduce electricity cost during production as well as ensure quality and customer satisfaction when electricity usage control policies and tariffs are implemented.

Most of the existing research on reducing manufacturing energy consumption has focused so far on developing more energy (particularly electrical energy) efficient machines or machining processes (Fang et al., 2011). However, compared to the background energy consumed by the manufacturing equipment operations, the energy requirements for the active removal of material can be quite small (Dahmus and Gutowski, 2004). Especially in the mass production environment it takes no more than $15 \%$ of the total energy usage. The majority of energy is consumed by functions that are not directly related to the production of components (Gutowski et al., 2005). This implies that efficiency improving efforts focusing solely on the machines or processes may miss a significant energy saving opportunity. In fact, there is a larger energy reducing margin on the system-level where the operational research methods can be employed as the energy saving approach. Additionally, compared to machine or process redesign, implementation of optimised shop floor scheduling and plant operation strategies only requires a modest capital investment and can easily be applied to existing systems (Fang et al., 2011). In addition, research considering the EPTs or other electricity price pattern as constraint is scarce. Only Fang et al. (2011) and Herrmann and Thiede (2009) considered the use of operational research methods to reduce the total energy cost when manufacturing plants are charged based on the peak power demand from the energy provider instead of the actual electricity consumption.

As a result, employing operational research methods can be a feasible and effective approach for manufacturing enterprises to reduce the energy consumption (Mouzon \& Yildirim 2008). Approaches to solve the multi-objective scheduling problem with reducing energy consumption and its related cost as part of the objectives need to be
developed. This can offer new solutions for any industry which wants to look at an innovative way to decrease its cost and environmental impact.

### 1.2 Scope, Goals and objective of the thesis

The main goal of this thesis is to address the multi-objective job shop scheduling problems with reducing energy consumption and its related cost as part of the objectives. The job shop type of manufacturing system is selected as the object of study for the following reasons. From the academic perspective, electricity consumption and electricity cost reduction have not been well investigated in the multi-objective scheduling approaches for a typical job shop manufacturing system.. Most of the current energy-conscious scheduling research is focused on single machine, parallel machine and flow shop environments. The lack of a more fundamental energy saving oriented job-shop model and its related scheduling techniques is a significant gap in the current research which needs to be addressed. On the other hand, from the practical perspective, job shops are widely used in the manufacturing industry, especially in small and medium enterprises (SMEs). For instance, original equipment manufacturers (OEMs) in the aerospace industry usually employ the job shop manufacturing system for their capability to satisfy the increasingly diversified customer demands (Harrison et al. 2004).

In this research, all the machines in the job shop are machine tools since they are one of the most important types of equipment in manufacturing industry and highly electricity consuming. Thus, the system can be defined as metalworking and machiningbased manufacturing system (MMS). Electrical energy is the only energy resource considered. The Rolling Blackout policy is set as the electricity supply constraint since it is currently the most difficult electricity usage control policy for normal operations of a company. The on time delivery is an important indicator to evaluate the performance of a manufacturing system. Therefore, the total weighted tardiness (TWT) is selected as the scheduling objective to represent the production performance of the job shop. Hence, the two new research problems can be defined as:

- The bi-objective Total Electricity Consumption, Total Weighted Tardiness Job Shop Scheduling problem (Electricity Consumption and Tardiness-ECT).
- The tri-objective Total Electricity Cost, Total Electricity Consumption and Total Weighted Tardiness Job Shop Scheduling problem (Electricity Consumption, Electricity Cost and Tardiness-EC2T).

In the first problem, the electricity price is a constant. In the second problem the Rolling Blackout policy is applied. As mentioned before, the implementation of the Rolling Blackout policy may stimulate manufacturing companies to use private electricity, thereby increasing the cost and emission of the companies. However, only the cost factor will be considered in the EC2T problem. The extra emission caused by using private electricity is currently not included in the scope of this research and should be considered in the future work.

### 1.3 Contributions

### 1.3.1 Multi-objective optimisation models

One of the main contributions of this thesis is the consideration of reducing electricity consumption and its related cost together with the scheduling indicator of total weighted tardiness while planning jobs on machines in a job shop. The required mathematical models for the electricity consumption pattern of machine tools and the Rolling Blackout policy have been formalised. The proposed multi-objective optimisation models include two or three objectives. The first model minimises total weighted tardiness and total electricity consumption under a set of constraints in a job shop. The second model minimises total weighted tardiness, total electricity consumption and total electricity cost when the Rolling Blackout policy is applied in a job shop. Both of the problems are NP-hard.

### 1.3.2 Algorithmic contributions

Meta-heuristics are proposed to find solutions belonging to the near-optimal approximate Pareto front for each model. Firstly, based on the literature research of multiobjective optimisation techniques, the Non-dominant Sorting Genetic Algorithm (NSGA-II) (Deb et al. 2002) is selected and applied to approximate the optimal Pareto front of the ECT problem. Based on the optimisation result of NSGA-II, it can be found that better optimisation technique could be proposed to solve the ECT problem if the Turn off/Turn on method is used. Secondly, a the new Multi-objective Genetic

Algorithm for solving the ECT job shop scheduling problem (GAEJP) based on the NSGA-II and its corresponding scheduling techniques are developed to provide better solutions compared to NSGA-II. In addition, a new heuristic is proposed to adjust existing scheduling plans when the Rolling Blackout policy is applied. This heuristic helps to investigate how the Rolling Blackout policy will influence the performance of existing scheduling plans. Additionally, it is a remedial measurement for manufacturing companies to reduce the deterioration of the total weighted tardiness objective. Finally, the NSGA-II is modified and applied to solve the EC2T problem.

### 1.4 Outline of thesis

The organisation of this thesis is as follows: Chapter 2 provides the literature review in the area of reducing electricity consumption in metalworking and machiningbased manufacturing system (MMS). The state-of-the-art of the related research on different levels of MMS is summarised. Based on this part of the literature review, the research gaps are clarified, which provides the motivation for the research described in this thesis. Then, the state-of-the-art of the multi-objective optimisation techniques for the job shop scheduling problem is reviewed. Based on the review, NSGA-II is selected as the optimisation technique to be applied in this research. Then, procedure of the Genetic Algorithm and how it can be applied to the job shop scheduling problem are introduced. The literature review concludes with the key knowledge gaps.

Chapter 3 focuses on the research methodology, experimental design and optimisation models of the research problems. Six different scenarios and a scenarios comparison experiment are designed. Scenarios 2 and 6 are used to present how developed optimisation solutions based on NSGA-II can be applied to solve ECT and EC2T problems respectively. Scenario 3 is used to present how the proposed new Multiobjective Genetic Algorithm (GAEJP) is effective in solving the ECT problem. Scenarios 4 and 5 are used to investigate the influence that the Rolling Black policy exerts on the performance of scheduling plans produced in Scenarios 2 and 3.. Finally, several scenarios comparison experiments are designed to prove the effectiveness of the aforementioned solutions. The mathematical models for both the ECT and EC2T problems are developed. Based on the models, a modified job shop instance is devel-
oped and presented which incorporates electrical consumption profiles for machine tools and the Rolling Blackout policy constraint.

The NSGA-II algorithm is applied to solve the ECT problem as described in Chapter 4 (Scenario 2). In comparison with the optimisation result of a well-established traditional scheduling approach without considering reducing total electricity consumption as an objective (Scenario 1), the NSGA-II is proved to be effective in solving the ECT.

In Chapter 5, the Multi-objective Genetic Algorithm for solving the ECT job shop scheduling problem (GAEJP) and its corresponding scheduling techniques (Scenario 3) are developed based on NSGA-II to provide better solutions for the ECT problem. A comparison experiment is performed to demonstrate the superiority of the new algorithm to the NSGA-II.

Chapter 6 investigates how the Rolling Blackout policy will affect the performance of the scheduling plans produced in Scenarios 2 and 3 in terms of total weighted tardiness, total electricity consumption and total electricity cost. In this chapter, the performances of scheduling plans in two scenarios are compared (Scenarios 4 and 5). In Scenario 4, there is no private electricity supply during periods when government electricity is unavailable. In this scenario, an new heuristic is proposed to adjust existing scheduling plans when the Rolling Blackout policy is applied. On the contrary, in Scenario 5, private electricity is employed during all the government supply unavailable periods to guarantee the production. Based on the comparison experiment, a compromise plan for using private electricity is proposed where the NSGA-II is applied to deliver the trade-off between the TWT and the total electricity cost.

Chapter 7 serves for verification purpose, where GAEJP has been applied to solve the ECT problem based on a real job shop instance. Only GAEJP is selected to be verified since it is the most innovative algorithm in this research.

The future research work is proposed in Chapter 8.

## CHAPTER 2 LITERATURE REVIEW

### 2.1 Introduction

The general goal of this research is to investigate and develop new methods for decreasing electrical energy waste in a specific manufacturing system, and its unnecessary cost due to the Rolling Blackout policy. To clearly identify the current knowledge gaps which prevent the solution of the aforementioned problems, a literature review has been conducted to explore the area of reducing electricity consumption in a metalworking and machining-based manufacturing system (MMS). The state-of-the-art of this research area will be stated in the following sections. Based on the above, employing operational research methods to reduce the electricity consumption and electricity cost in a job shop by the appropriate scheduling of jobs has been selected as the research topic. Therefore, optimisation techniques for the multiobjective job shop scheduling are reviewed, and the concept and procedure of the Genetic Algorithm are introduced. Then, the application of the Genetic Algorithm to solve the job shop scheduling problem is presented in more detail. The chapter concludes with a clearly defined set of knowledge gaps which underpin this work.

### 2.2 Reducing electricity consumption in a metalworking and machining-based manufacturing system

In order to understand the electricity consumption of MMSs, Vijayaraghavan \& Dornfeld (2010) have proposed that the energy consumption of manufacturing systems can be studied at different levels. Levels range from the entire enterprise to the tool-chip interface. As shown in Figure 2.1, these levels are not absolutely independent. They overlap each other, filling the whole analysis process for manufacturing systems. The following literature review will be conducted based on these different levels to clarify the knowledge gaps in existing research works and to justify why the manufacturing enterprise level using production planning and scheduling techniques as the energy consumption reducing method is selected as the object of research in this thesis.

### 2.2.1 Research into the energy consumption at the tool chip interface and subcomponent level

At the tool chip interface and sub-component level, research has mainly focused on characterising the energy usage of the specific cutting process. Investigations look at how factors like processing parameters and tool selection affect the cutting energy, or consider approaches to reduce the energy consumption of the individual subcomponent in machine tools.


Figure 2.1: Level of analysis of manufacturing with temporal decision scales (Vijayaraghavan \& Dornfeld 2010)

Motivated by building a framework for decision-making in environmentallyconscious manufacturing, Munoz \& Sheng (1995) have developed an analytical model which integrates aspects of the process mechanics, wear characteristics and lubricant flows. The quantifiable dimensions in this analysis included energy utilisation, process rate, work piece primary mass flow, and secondary flow of process catalysts. According to orthogonal-array analysis, the dominant factors influencing energy utilisation are the geometry of the designed part (dictating the volume of material removed), the work piece material selection (determining the hardness and the shear), and the cutting fluid selection (Munoz \& Sheng 1995).

Based on the aforementioned approach for environmentally-conscious machining, Srinivasan \& Sheng (1999) have developed a framework towards integrating environmental factors in process planning at both micro and macro levels. At the micro planning level, process, parameters, tooling and cutting fluids are selected for the individual features, while at the macro planning level, interactions between features
are examined. Vijayaraghavan \& Dornfeld (2010) had defined this work as a very thorough approach for process planning, but the process energy usage was only characterised by the chip removal energy (cutting energy).

Hu et al. (2010) have proposed an additional load loss model based on the power flow model. Theoretically, the additional load losses accounts for $15 \%-20 \%$ of the cutting power. However, in most of the aforementioned research work, this part of the energy loss has been ignored. From the experimental results on a CNC lathe, the author found that the additional load losses is a second order function of the cutting power, and the additional load loss coefficient is a first order function of the cutting power.

A new application of the kinetic energy recovery system (KERS), which is used on F1 racing cars has been proposed by Diaz et al. (2009) for recovering machine tools spindles' energy consumption. By conducting a computer model of a machine tool spindle and a Monte Carlo simulation, the authors showed that the power saving for the whole machine between 5\% and $25 \%$ could be expected with the KERS. However, the feasibility of this method is currently very low because of the high price of super capacitors used in the KERS. All the aforemetioned research provide methods for modelling the energy consumped by machining processes.

### 2.2.2 Research into the energy consumption at the manufacturing equipment level

At the manufacturing equipment level, the analysis of energy consumption is expanded to a system level which not only includes energy requirements for the material removal process itself, but also associated processes such as axis feed. The research at this level results in a more complete assessment of machining energy consumption (Dahmus \& Gutowski 2004).

Some of the representative works have been developed by researchers in professor Gutowski's group in the Massachusetts Institute of Technology. They have focused a considerable amount of work on exploring characteristics of energy consumption or environmental impact of machining process. These processes includes milling, turning, drilling, sawing, grinding, electrical discharge machining, water jet machining, injection-moulding and iron casting (Kordonowy 2003, Dahmus \& Gutowski 2004, Dahmus 2007, Baniszewski 2005, Cho 2004, Kurd 2004, Jones 2007). One of the
most important contributions of this group is their approach for breaking down the total energy use of machining processes, as shown in Table 2.1 and Figure 2.2. This modelling approach is employed as the basis for modelling the power input of machine tools at the workshop level for this research. Based on this approach and experiments for measuring energy consumption of machine tools (Kordonowy 2003), they have unveiled the fact that the energy consumed by actual material removal represents only a small amount of the total energy used in machining. For instance, the specific cutting energy accounts for less than $15 \%$ of the total energy consumed by a modern automatic machine tool during machining. This finding had been referenced by many authors.

Table 2.1: Classification of power demand of machine tools

| Type of energy use | Content |
| :--- | :--- |
| Constant start-up operations | Start-up energy use, for computers, fans, un- <br> loaded motors, etc. |
| Run-time operations | Energy used to position materials and load <br> tools |
| Material removal operations | Actual energy involved in cutting |



Figure 2.2: Power breakdown of machine tools, after Dahmus \& Gutowski (2004) and Diaz et al. (2010)

Kordonowy (2003) has accomplished power measurement work for milling machines at different automotive levels with various material removal rates (MRR), as shown in Table 2.2. This experiment shows the classification of different operations and how much energy they consume. On the other hand, from this experiment, we can
find that the machine "tare" energy consumption accounts for a significant part in the total consumption. The more modern the machine, the higher percentage of the tare energy it uses.

Table 2.2: The individual stages of the Cincinnati Milacron 7VC Automated Milling Machine, made in 1988.(Kordonowy 2003)

| Type of operations | Process | Power Consumption (W) | Percentage of Total Power (\%) |
| :---: | :---: | :---: | :---: |
| Constant start-up operations | Computer and Fans | 1680 | 13.5 |
|  | Servos | >0 | >0 |
|  | Coolant Pump | 1200 | 9.6 |
|  | Spindle Key | 140 | 1.2 |
|  | Unloaded Motors | 340 | 2.7 |
| Constant run-time operations | Jog (x/y/z axis translation) | 960 | 7.7 |
|  | Tool Change | 480 | 3.8 |
|  | Spindle (z axis translation) | 1440 | 11.5 |
|  | Carousel Rotation | 240 | 1.9 |
| Material removal operations | Machining <br> MRR: $4.52 \times 10^{-7} \mathrm{~m}^{3} / \mathrm{s}$ | 2400 | 19.2 |
|  | Machining <br> MRR: $9.03 \times 10^{-7} \mathrm{~m}^{3} / \mathrm{s}$ | 4800 | 38.5 |
|  | Machining <br> MRR: $12.04 \times 10^{-7} \mathrm{~m}^{3} / \mathrm{s}$ | 6000 | 48.1 |

Methods of estimating machining energy consumption and processing time according to the numerical control (NC) code have been proposed by He et al. (2011). This method provides a potentially faster way to estimate the energy consumption of machining processes. However, the drawbacks of it are obvious. Firstly, the cutting force is one of the main factors in the estimation, but it varies during the cutting process, leading to a poor estimation accuracy for the power consumption of the spindle motor and servo motors. Secondly, this method requires power parameters of the specific machine tools. It requires a considerable amount of work to build the power consumption data base for every machine. Additonally, some of the power parameters would vary with the different materials that are processed by the machine tool.

Avram \& Xirouchakis (2011) have developed a methodology to estimate the energy requirements during the use phase of the spindle and feed axis according to an automatic programming tool (APT) file. This method considers the entire machine tool
system by taking into account its steady-state and transient regimes, but it is only applicable to milling process plans of 2.5D part geometries.

Dietmair \& Verl (2009) have proposed a generic method to model the energy consumption behavior of machines tools based on the conclusion that the power consumption of the machine varies mainly with its operating state. This model can be used in planning processes to predict the actual power drain profile and to optimise the machines for minimal energy consumption.

### 2.2.3 Research into energy consumption at the work shop level

Based on the review presented above, the energy consumption reduction in a MMS can be realised on different levels. Most existing research on reducing manufacturing energy consumption has focused so far on developing more energy (particularly electrical energy) efficient machines for machining processes (Fang et al., 2011). However, compared to the background energy consumed by the manufacturing equipment operations, the energy requirements for the active removal of material can be quite small (Dahmus and Gutowski, 2004), especially in a mass production environment, it accounts for no more than $15 \%$ of the total energy usage. The majority of energy is consumed by functions that are not directly related to the production of components (Gutowski et al., 2005). This implies that efficiency improving efforts focusing solely on the machines or processes may miss a significant energy saving opportunity. In fact, there is a larger energy reducing opportunity at the system-level where operational research methods can be employed as an energy saving approach. Additionally, compared to machine or process redesign, implementation of optimised shop floor scheduling and plant operation strategies only requires a modest capital investment and can easily be applied to existing systems (Fang et al., 2011). As a result, the manufacturing enterprise (work shop) level is selected as the entry point for decreasing energy consumption in this research for the following reasons:

From a practical point of view, a considerable amount of electricity consumption could be saved by using operational research methods in a MMS. case study from Mouzon (2008) further illustrates this potential. In Wichita, Kansas, USA, at an aircraft supplier of small parts, the manufacturing equipment energy and time data were collected at a machine shop that had four CNC machines. Although this machine
shop was considered as the bottleneck by the production planning department, it was observed that, in an 8 -hour shift, on average a machine stayed idle $16 \%$ of the time. Typically, $13 \%$ energy saving would have been achieved if proper scheduling plans were applied.

On the other hand, from an academic point of view, apparent knowledge gaps can be identified in this area after analysing the existing research works. A detailed analysis for existing research in this area will be presented in this section. The knowledge gaps identification will be illustrated in Section 2.4 .

Based on existing works in the area of using operational research methods to reduce electricity consumption in a MMS, a general framework for this topic can be summarised, including models, electricity and its cost (E-cost) saving methods (ESMs) and optimisation methods, as shown in Figure 2.3. This framework can not only be employed to analyse the contributions, shortcomings and gaps of the current research works, but also can serve as the foundation for model building, ESMs selection and optimisation methods development.


Figure 2.3: The research framework for employing operational research methods to reduce electricity consumption in a MMS

As shown in Figure 2.3 the model of a MMS including electricity and E-cost saving consideration should be built first, to provide the base for the research. Secondly, the potential methods for electricity and E-cost saving should be proposed. Finally, the optimisation methods will be developed based on the combination of model and ESMs. The MMS model which incorporates the electricity consumption reduction and electricity cost saving consideration can be divided into three sub-models: the MMS models, machine tools electricity consumption model and the electricity price model.

The amount of research on scheduling with environmentally-oriented objectives is currently small but increasing. For example, Fang et al. (2011) considered reducing the peak power load in a flow shop. Bruzzone et al. (2012) developed a method to modify the schedule of the jobs in the flexible flow shops in order to adjust to the
maximum peak power constraint. Subaï et al. (2006) considered the energy and waste reduction in the hoist scheduling problem for the surface treatment processes without changing the original productivity. Wang et al. (2011) proposed an optimal scheduling procedure to select the appropriate batch and sequence policies to improve the paint quality and decrease repaints, thereby reducing energy and material consumption in an automotive paint shop. Mouzon et al. $(2007,2008)$ and He et al. (2010, 2012) developed the representative research in this area, thus the following analysis will be based on their work.

### 2.2.3.1 The contribution of existing work (work shop level)

Manufacturing system models and electricity consumption pattern of machine tools

Both Mouzon et al. (2008a, 2008b, 2007) and He et al. $(2012,2010)$ have adopted simplified manufacturing system models which are widely used in the scheduling research area. Machines and jobs are the only elements considered in these models. The typical models include single machine, flow shop and job shop. Sometimes, parallel machines are added into these basic models to make them closer to the real manufacturing workshops. The definitions and details of these classical models as well as those including parallel machines can be found in Pinedo (2012). Mouzon's research focuses on the single machine environment and the parallel machine environment. The study of He et al. (2012a) is based on a flexible job shop environment which is a generalisation of the job shop with the parallel machine environment.

According to Dahmus and Gutowski (2004) and Kordonowy (2003), the electricity consumption for a machine tool in a feasible schedule can be divided into two types: the non-processing electricity consumption (NPE) and processing electricity consumption (PE). NPE is associated with machine start-up, shut-down and idling. The electricity consumed when a job is processed on a specific machine can be defined as the job related processing electricity consumption (JPE), including the basic power consumption of the machine tools, i.e. idle power, the runtime operations and the actual cutting power consumption. Thus, PE is the sum of all the JPE on a specific machine, and the total PE is the sum of all PEs in a work shop. Each JPE has been defined as a constant value by both Mouzon (2008) and He et al. (2012a) in their models, since at the workshop level, the main concern is how the scheduling plans
affect the total electricity consumption of the manufacturing system. Therefore, the JPE can be seen as a constant for scheduling problems. Additionally, the electricity price in both of the aforementioned research works was considered as a constant.

Electricity and E-cost saving methods

Realising that in the manufacturing environment large quantities of energy are being consumed by non-bottleneck machines as they lie idle, and that whenever a machine is turned on, there is a significant amount of start-up energy consumption (Drake et al., 2006), Mouzon (2008) proposed a Turn Off/Turn On method. The work is based on the assumption that a machine tool could be turned off when it becomes idle for electricity saving purposes. Note that idle time does not include activities considered as set up, part removal or maintenance. A warm-up consumes Start-up (turn on) electricity, i.e. the electricity required to start up the machine. Idle power is the power required per unit time by the machine when staying idle. The machine requires Stop Time to be turned off, which consumes stop (turn off) electricity (Mouzon et al., 2007). According to these characteristics of a machine tool, the value ( S ) of the break-even duration for which the execution of Turn Off/Turn On is economically justifiable instead of running the machine at idle can be calculated as:

$$
\begin{equation*}
S=\frac{\text { Turn Off/Turn On Electricity }}{\text { Idle power consumption per unit time }} \tag{2.1}
\end{equation*}
$$

Let $\gamma$ be the inter-arrival time between jobs and $t_{o f f}$ the time required to turn off and then turn on the machine. If $\gamma \geq \max \left(S, t_{o f f}\right)$, then the machine can be turned off for a particular length of time and then turned on to process some other jobs.

The Process Route Selection (PRS) method has been adopted by Mouzon et al. (2008a, 2008b, 2007) to reduce both total PE and total NPE for parallel machine environment. He et al. $(2012,2010)$ used the same method to decrease both total PE and total NPE for a flexible job shop environment. The limitation for PRS is that it is only effective in systems which have alternative routes with different energy characteristics for the same job, i.e. PRS is not applicable to workshops without alternative routes, or having identical alternative routes for jobs, for instance, the job shop environment.

The Sequencing method has also been adopted by Mouzon (2008). It considers that the order of jobs which are processed on the same machine will affect the total amount of the idle time and the length of each idle period of that machine. This will further influence the decision of whether there should be an execution of Turn Off/Turn On between two consecutive jobs on the same machine. Consequently, the sequencing method could be effective for electricity saving.

## Optimisation methods

Mouzon et al. (2008a, 2008b, 2007) have developed operational research methods including dispatching rules, a genetic algorithm and a greedy randomized adaptive search procedure to determine on WHICH machine the job should be scheduled (in the multi-machine), WHEN to start a job on the machine, and WHEN to execute a Turn Off/Turn On to minimise the total NPE (or both of the total NPE and total PE when the parallel machine exists) and classical scheduling objectives including total completion time, total tardiness, load balancing on a single machine and single machine with machine in parallel environments where jobs have unequal release dates.

### 2.2.3.2 The limitations of existing work at the work shop level

Based on Pinedo's (2012) definition of job shops and the electricity consumption model of machine tools (Mouzon et al., 2008a, 2008b, 2007; He et al., 2012, 2010), the electricity consumption focused job shop models can be defined and classified into several types according to the complexity, as shown in Figure 2.4. The term "complexity" here refers to conditions of parallel machines in terms of processing time and electrical characteristics for a specific operation.

As shown in Figure 2.4, the basic job shop model includes only the most simplified job shop characteristics, which had been defined as a set of $n$ jobs which are to be processed on $m$ machines following a predefined order or technological path (Pinedo, 2012).


Figure 2.4: Types of job shop
The flexible job shop (FJS) models had been defined by Pinedo (2012) as a generalisation of the job shop allowing for parallel machines. Instead of $m$ machines in series there are $c$ work centres with a number of identical parallel machines in each work centre. Each job has its own route to follow through the shop; job $j$ requires processing on only one machine in each work centre and any machine can do. However, the reality of manufacturing workshops is that, parallel machines belonging to the same work centre are not necessarily always identical. In addition, with the consideration of the electricity consumption of machines, the definition for parallel machines in a FJS could be reasonably expanded in this research. The expanded definitions for parallel machines of the three types of FJS (FJS-1, FJS-2 and FJS-3) shown


The aforementioned four types of job shop models can cover nearly all of the job shop circumstances in the real manufacturing world. According to their definitions, in the basic job shop model, no parallel machine exists. In other words, there are no alternative routes for any job. Thus, it is not possible to reduce the total PE in a basic job shop. Hence, two electricity saving methods can be used in a basic job shop to reduce its total NPE, one is the Turn Off/Turn On method, and the other is the Sequencing of jobs. The applicable electricity saving methods for the FJS-1 are the same as the two for the basic job shop as the parallel machines are absolutely identi-
cal from both the processing and electricity consumption aspects in FJS-1. For FJS-2, it is possible to find a way to reduce the total PE, if the parallel machines in a specific work centre consume different amounts of electricity for processing the same job. In other words, the alternative routes for each job have different electricity consumption characteristics, which means the electricity saving can be achieved by Process Route Selection for each job in addition to the approaches for the previous two models. For FJS-3, it is reasonable to conclude that the electricity saving can be realised by all the three ESMs proposed for the previous models.

Table 2.3: The expanded definitions for parallel machines of the three types of FJS

| Name | Definition expansion on parallel machines | Processing time | Energy consumption |
| :---: | :---: | :---: | :---: |
| FJS with identical parallel machines (FJS-1) | Following Pinedo's (2012) definition for identical parallel machine. | The time $p_{i j}$ that job $j$ spends on work centre $i$ is a constant which is independent from the machine processing it, since all the parallel machines in a specific work centre are absolutely identical. | The amounts of electricity consumed by any machine in work centre $i$ for processing job $j$ are the same. |
| FJS with identical parallel machines (FJS-2) | Following Pinedo's (2012) definition for identical parallel machine. | The time $p_{i j}$ that job $j$ spends on work centre $i$ is a constant which is independent from the machine processing it, since all the parallel machines in a specific work centre are identical from the aspect of processing time for job $j$. | The amounts of electricity consumed by each machine in work centre $i$ for processing job $j$ are different. The difference comes from factors like various levels of wear conditions of the parallel machines. |
| FJS with nonidentical parallel machines (FJS-3) | Following Pinedo's (2012) definition for unrelated parallel machine. | The time $p_{i j}$ that job $j$ spends on work centre $i$ depends on the machine processing it, all the parallel machines in a specific work centre are non-identical from the aspect of processing time for job $j$. | The amounts of electricity consumed by each machine in work centre $i$ for processing job $j$ are different. |

According to the above discussion on different types of job shop models and their potential electricity saving methods, it is easy to see that from the modelling perspective, the applicable range of Mouzon et al.'s (2008a, 2008b, 2007) work is limited in circumstances of a single machine environment and parallel machine environment. It may be argued that a typical job shop can be disassembled into several single ma-
chines. Then the optimisation methods developed by Mouzon et al. (2008a, 2008b, 2007) can be applied to each of them to achieve the optimisation of the whole job shop. This is not a reasonable approach since it may result in local optimisation for some machines or jobs, but a deterioration of the performance of the job shop as a whole. He et al. $(2010,2012)$ only developed modelling methods for minimising the electricity consumption of the FJS-3. Nevertheless, the limitations of this type of model are obvious, since they are based on the assumption that alternative routes with different electricity consumption amounts always exist for jobs. This means these models are not applicable for the basic job shop and FJS-1.

From the electricity saving methods perspective, He et al., $(2012,2010)$ only considered the Process Route Selection approach. However, the Turn Off/Turn On and Sequencing are also effective electricity saving methods for the FJSs.

From the optimisation methods perspective, He et al., $(2012,2010)$ have not proposed any effective approaches for the optimisation purpose. The classical First in First out (FIFO) rule has been employed in their research for job dispatching. Therefore, their research work only demonstrates how different process route selection plans affect the total electricity consumption of the FJS-3, but does not effectively optimise them.

According to what has been discussed above, it is clear that employing operational research methods to reduce the total energy consumption in a typical job shop version of MMS without parallel machines has still not been explored very well, i.e. there are research opportunities to develop the electricity saving oriented basic job shop model and its related optimisation techniques. Additionally, both of the aforementioned researchers considered the electricity price as a constant in their research, none of any electricity usage control policies and tariffs have been studied.

In addition, Herrmann et al. $(2009,2011)$ proposed a concept to integrate the energy consideration into a manufacturing system simulation approach. Besides the machines' energy consumption, energy consumed by other facilities like the technical building services are also taken into account. This is a very general framework which integrates both the manufacturing supply chain level and the manufacturing enterprise level, according to Figure 2.3. This approach is different from the research
works discussed above since a simulation technique has been employed. It is worth mentioning that in the flow shop case study of this research, an instantaneous power limit tariff and the lot sizing ESM have been considered. The simulation results of 14 different scenarios have demonstrated that the lot size is a factor that can influence the electricity consumption of MMS. For the optimisation part, in this case the authors only tried to use the simulation technique to run several scenarios, and then to find the scenario which gives the most favourable solution compared to the others. However, the solution quality could have been much improved if the appropriate me-ta-heuristic for optimisation had been applied.

The optimisation methods are very important for this PhD research. It can be seen from above, that the scheduling problems always become multi-objective optimisation problems when the electricity saving objective is added. Thus, based on the knowledge gap identification in Section 2.4 the literature survey includes a focus on multi-objective optimisation techniques for the job shop scheduling problem.

### 2.2.4 Research into energy consumption at the manufacturing enterprise and supply chain level

At the manufacturing enterprise and supply chain level, the associated facilities such as automatic guide vehicles, compressor and lighting would be taken into consideration for the energy consumption analysis.

Herrmann \& Thiede (2009) have proposed a simulation approach to realise the integration concept to foster energy efficiency in manufacturing companies at different levels from a single technical production system to technical building services. In their research, the main objective for companies from an economic as well as ecological perspective is to maximise energy efficiency. This means optimising the ratio of the production output (e.g. in terms of quantities with defined quality) to the energy input (electricity, gas, and oil) for technical building services and the production equipment of the system. A case study of an SME producing inner races for the automotive industry was conducted to show the practical applicability of this method.

Herrmann et al. (2011) have also presented an energy oriented simulation model for the planning of manufacturing systems, including consideration of the dynamic interaction of different processes as well as auxiliary equipment such as compressed
air generation. The authors tried to build a seamless simulation environment to integrate all the relevant energy flows of a factory, and simulated them in order to identify and select measures for improvement. Aluminum die casting and a weaving mill were set as the case studies to demonstrate the applicability of this method.

Zhu \& Sarkis (2004) used emprical results from 186 respondents on the Green supply chain management (GSCM) practice in Chinese manufacturing enterprises to examine the relationships between GSCM practice and environmental and economic performance. Based on a moderated hierarchical regression analysis, they concluded that GSCM practices tended to have a win-win relationship in terms of enviromental and economic performance.

### 2.3 Multi-objective optimisation techniques for the job shop scheduling problem

The aim of multi-objective optimisation is to help decision-makers to find the best or most suitable solution to a specific problem in which more than one objective is considered. This is an emerging area whereas, unlike single-objective optimisation, no common techniques can be applied to all applications. In multi-objective optimisation, instead of only one solution to the problem, there are a set of solutions, a Pareto optimal set.

Marler \& Arora (2004) define multi-objective optimisation as the process of optimising systematically and simultaneously a collection of objective functions. The general mathematical representation of a multi-objective optimisation problem is as follows:

$$
\begin{gather*}
\operatorname{minimise} F(s)=\left(f_{1}(s), \ldots, f_{n O b j}(s)\right) s \in S  \tag{2.2}\\
g_{i}(s) \leq 0 \forall i=1 \ldots n  \tag{2.3}\\
h_{j}(s)=0 \forall j=1 \ldots p \tag{2.4}
\end{gather*}
$$

where $f_{k}: S \mapsto \mathbb{R}$ is the $k$-th objective function and $n O b j$ is the number of objectives. Equation 2.3 is the inequality constraints for the multi-objective optimisation problem where $n$ is the total number of inequality constraints. Equation 2.4 is the
equality constraints for the multi-objective optimisation problem, where $p$ is the number of equality constraints. These two types of constraints can be linear or nonlinear. Elements of vector $F$ are objective functions. The quality of a schedule is measured according to $n O b j$ criteria. The goal is to find the set of non-dominated solutions optimising the nObj objectives over the constraint set. Usually in multiobjective optimisation, there is no single optimal solution but a set of non-dominated solutions. For instance, in the multi-objective scheduling problem, for any two schedules $s$ and $s^{\prime}, s$ is said to dominate $s^{\prime}$, if $f_{i}(s) \leq f_{i}\left(s^{\prime}\right)$ for $i \in\{1, \ldots, n O b j\}$ with at least one strict inequality. A schedule $s^{*}$ is called Pareto optimal or a nondominated solution if no $s^{\prime} \in S$ dominates $s^{*}$, i.e. if it is not possible to improve any of the $f_{i}\left(s^{*}\right)$ values without increasing the $f_{q}\left(s^{*}\right)$ value for at least one $q$. The set of Pareto optimal solutions is known as the Pareto set and its image in the objective function space is known as the Pareto front. The task is to find a set of solutions that lie on and are well spread along the Pareto front. It is the task of the decision-makers in practice to choose the solution that best suits their needs.

### 2.3.1 Multi-objective job shop scheduling optimisation techniques

The job shop used in this research is the static one. In the static type of environment, the number of jobs and the arrival times are already known in advance (Metta 2008). Most of the research during the last three decades has concentrated on the deterministic job shop problem making it one of the well-developed models in the scheduling theory. The solution of any optimisation problem is evaluated by objective functions (Metta 2008). Normally, in a manufacturing company, one or more objectives, such as completion time, tardiness, and throughput, may be considered simultaneously important when a scheduling decision needs to be made. When more than one criterion is considered, usually, a multi-objective scheduling approach is utilised. Often, it is hard to find the optimal Pareto front for these multi-criteria scheduling problems. Jain \& Meeran (1998) provide a review on job shop scheduling techniques, Parveen \& Ullah (2010) and Bakuli (2006) delivered a state-of-the-art review on multiobjective job shop scheduling optimisation techniques. Within this review, lexicographical approaches, weighted objectives approaches, Pareto approaches and goal programming approaches are introduced and compared. Meta-heuristics are semistochastic methods. For complex real world problems, meta-heuristics are often ap-
plied with some other approaches to enhance the problem solving ability. Tabu Search, Simulated Annealing and Evolutionary algorithms are the representative me-ta-heuristic methods. The success of these methods is defined by their capability in producing near optimal solutions in less computational time (Metta 2008). Based on the above, it has been identified that currently methods based on the evolutionary algorithms have been widely used for solving multi-objective job shop scheduling optimisation problems. A comprehensive overview of recent advances of evolutionary computation (EC) studies is provided by Gen \& Lin (2013), as shown in Figure 2.5. Evolutionary Algorithms differ in the implementation details and the nature of the particular applied problem.


EVH Evolvable Hardware
Figure 2.5: Evolution of evolutionary algorithms (Gen \& Lin 2013)

Genetic algorithms are part of the evolutionary methods family. Many authors have studied the application of the multi-objective genetic algorithm in solving the job shop scheduling problem in order to obtain an approximate Pareto front. Veldhuizen \& Lamont (2000) and Zhou et al. (2011) provide detailed literature reviews on multiobjective evolutionary algorithms. Dahal et al. (2007) and Hart et al. (2005) introduced the state-of-the-art of how multi-objective genetic algorithms can be applied to the job shop scheduling problem. Chen \& Ho (2005) developed an efficient multiobjective genetic algorithm to solve the problems of production planning of flexible manufacturing systems, considering four objectives: minimising total flow time, machine workload unbalance, greatest machine workload and total tool cost. Rabiee et al. (2012) apply the Non-dominant Sorting Genetic Algorithm (NSGA-II), the nondominated ranked genetic algorithm, the multi-objective genetic algorithm and the Pareto archive evolutionary strategy to solve a problem of partial flexible job shop with the objectives of minimising the makespan and total operation cost. Vilcot \& Billaut (2008) propose a genetic algorithm based on the NSGA-II to minimise the makespan and maximum lateness in a general job shop which is abstracted from the printing and boarding industry. Based on the aforementioned research works, the NSGA-II (Deb et al., 2002) has been identified particularly suitable for solving a 2 or 3 objective optimisation problem with high efficiency (computationally speaking). This algorithm does not use any external memory as the other multi-objective evolutionary algorithms do. Instead, the elitist mechanism of it consists of combining the best parents with the best offspring. Because of the good performance, it is becoming a benchmark against which other multi-objective evolutionary algorithms have to be compared (Coello 2006). The multi-objective optimisation problems addressed in this research have 2 or 3 objectives. Thus, the NSGA-II is adopted for this research as the optimisation technique. In the following, the basic concept and procedure of the Genetic Algorithm and NSGA-II are introduced.

### 2.3.2 Genetic Algorithms

Genetic Algorithms (GAs) are adaptive heuristic search algorithms inspired by the evolutionary ideas of natural selection and natural genetics to optimise highly complex objective functions. GAs have been successfully applied to solve optimisation problems including scheduling. Based on Yamada (2003), Dahal et al. (2007), Liu \&

Wu (2008); Mukhopadhyay et al. (2009), Eiben \& Smith (2008) and Sivanandam \& Deepa (2007), the basic concepts and the procedure of GAs are introduced in the following section.

Basic Concepts

In GAs, the set of individuals, defined as population, is used to represent solutions. There are two representations for each individual: genotype and phenotype. The genotype, gives an encoded representation of a potential solution in the form of a chromosome. A chromosome is made of genes arranged in a linear succession and every gene controls the inheritance of one or several characters or features. The phenotype represents a potential solution to the problem in a straightforward way. The phenotype can be obtained by decoding the genotype.

Each individual has its fitness value, which measures how suitable the individual is for the local environment. The Evolution Theory tells us that among individuals in a population, the one that is the most suitable for the local environment is most likely to survive and to have greater numbers of offspring. This is called the rule of "survival of the fittest."

The objective function $f$ of the target optimisation problem plays the role of the environment. The fitness $F$ measures an individual's survivability in terms of the original optimisation criteria. When the target is to minimise, an individual with smaller objective function value has a higher fitness. The most straightforward way to calculate an individual's fitness is to define it as the difference between the maximum of objective function over the current population and the individual's own objective function value:

$$
\begin{equation*}
F(x)=\max _{y \in P}\{f(y)\}-f(x) \tag{2.5}
\end{equation*}
$$

where $x$ is an individual in the current population $P$.

The Procedure of a Simple Genetic Algorithm
The main procedure of a GA includes Population initialisation, Evaluation, Selection, Crossover, Mutation and Replacement, as shown in Figure 2.6. The algorithm starts from a random initial population $P_{0} . P_{t}$ is a population at generation $t$ with $N$ indi-
viduals. Then the fitness value of each individual is calculated based on the value of its objective function. As seen from Figure 2.6, the transition from one generation to the next consists of four basic components: selection, crossover, mutation and replacement.


Figure 2.6: The procedure of GA
Selection: Mechanism for selecting individuals for reproduction according to their fitness. The higher fitness value an individual has, the higher probability it has to be selected as the parent into the mating pool. The population size of the mating pool is $N$. Selection is accomplished by the selection operator. For instance, when employing the binary tournament selection operator, two solutions from the original population are randomly selected and then the one with the higher fitness value is chosen.

Crossover: Method of merging the genetic information of two individuals to produce the next generation. The crossover rate $p_{c}$ needs to be defined first, which means the
crossover operation will be applied to $p_{c} \times N$ individuals from the mating pool. The procedure can be depicted as follows: firstly, randomly pair the $N$ individuals to create $N / 2$ parents; then allocate a random number $r$ in interval $(0,1]$ for each pair of parents. If $r<p_{c}$, then crossover the corresponding parents. Typically, $p_{c}$ is in interval $[0.6,0.9]$. After the crossover, the initial offspring with $N$ individuals are produced. The crossover is accomplished by the crossover operator. For instance, assume that the chromosome is a bit string of length $n$. The one point crossover operator sets one crossover point on a string at random and takes a section before the point from one parent and takes another section after the point from the other parent and recombines the two sections to form a new bit string. For example, considering $A_{1}$ and $A_{2}$ being a bit string of length $n=5$ as parents as follows:

$$
\begin{aligned}
& A_{1}=0000: 0 \\
& A_{2}=1111: 1
\end{aligned}
$$

The symbol : indicates the crossover point, and in this case it is set after the fourth bit. The one point crossover yields two initial offspring=s $A_{1}^{\prime}$ and $A_{2}^{\prime}$ as follows:

$$
\begin{aligned}
& A_{1}^{\prime}=1111: 0 \\
& A_{2}^{\prime}=0000: 1
\end{aligned}
$$

Mutation: Randomly deform the chromosomes after the crossover operation with a certain probability. The purpose of mutation is to avoid local optimisation (i.e. being stuck in a local optimum) by preventing the population of chromosomes from becoming too similar to each other and slowing the evolution process. The mutation rate $p_{m}$ needs to be defined first, which means the mutation operation will be applied to $p_{m} \times N$ individuals from the initial offspring. The procedure can be depicted as: allocate a random number $r$ in interval $(0,1]$ for each individual. If $r<p_{m}$, then mutate the corresponding individual. Typically, $p_{m}$ is in interval [0.01, 0.1]. After the mutation, the new generation $P_{t+1}$ is obtained. The mutation is accomplished by the mutation operator. For instance, a bit-flip mutation operator is shown below, where the third gene from the left in $A_{1}^{\prime}$ is selected with a small probability and its bit is flipped resulting in $A_{1}^{\prime \prime}$ which is the final offspring of $A_{1}$ :

$$
\begin{aligned}
& A_{1}^{\prime}=11110 \\
& A_{1}^{\prime \prime}=11010
\end{aligned}
$$

Replacement: A replacement strategy is used to decide if offspring will replace parents, and which parents to replace. Based on the replacement strategy used, two main classes of Genetic Algorithms can be identified. One of them is the generational genetic algorithms (CGA). In this category, the replacement strategy replaces all parents with their offspring after all the offspring have been created and mutated, no overlap between populations of different generations. The other is the steady state genetic algorithms (SSGA). In this category, immediately after an offspring is created and mutated, a replacement strategy is executed. Some overlap exists between populations of different generations. The amount of overlap between the current and new populations is referred to as the generation gap. A replacement rate which specifies the fraction of the population that is replaced by its offspring needs to be defined.

Finally, the objective function and fitness values need to be calculated for individuals in the new generation. Then, if the stopping criteria are satisfied, the algorithm stops and reports the final generation, if not, the algorithm goes back to the selection operation and continues until the stopping criteria are satisfied.

### 2.3.3 GAs and the job shop scheduling problem (JSSP)

The chromosome encoding and decoding procedures are very important when applying GAs to the JSSP. The key factors include chromosome, schedule builder and schedule. The relationships among them are depicted in Figure 2.7.

Chromosome encoding and decoding

As shown in Figure 2.7, referring to Dahal et al. (2007), Essafi et al. (2008), Cheng et al. (1996), in the JSSP, the chromosome formulation methods are classified into two major approaches: the direct encoding and indirect encoding. In direct encoding, a chromosome completely represents a solution. In indirect encoding, the chromosome represents a sequence of preferences. These decision preferences can be heuristic rules or simple ordering of jobs on a machine. Then, a schedule builder is required to decode the chromosome into a schedule. Applying simple genetic operators on
direct representation string often results in infeasible schedule solutions. Thus, the indirect encoding is usually preferable for the JSSP.


Figure 2.7: The relationships among chromosome, schedule builder and schedule, based on Dahal et al. (2007), Essafi et al. (2008), Cheng et al. (1996)

Schedule builder and schedule

In the indirect encoding schema, the chromosome contains an encoded schedule. A scheduler builder is used to transform the chromosomes into a feasible schedule. The schedule builder is a module of the evaluation procedure and should be chosen with respect to the performance-measure of optimisation (Essafi et al. 2008). The following three types of schedule are normally considered in the JSSP: semi-active, active and non-delayed.

Referring to Pinedo (2009), Yamada (2003) and Essafi et al. (2008), a feasible non-pre-emptive schedule is called semi-active if no operation can be completed earlier without changing the order of processing on any one of the machines. The makespan of a semi-active schedule may often be reduced by shifting an operation to the left without delaying other jobs, which is called the permissible left shift. A feasible non-pre-emptive schedule is called active if it is not possible to construct another schedule, through changes in the order of processing on the machines, with at least one operation finishing earlier and no operation finishing later. In other words, a schedule is active if no operation can be put into an empty hole earlier in the schedule while preserving feasibility. Referring to Özgüven et al. (2010), in a typical job shop, $J=\left\{J_{i}\right\}_{i=1}^{n}$ is a finite set of $n$ jobs are to be processed on a finite set of $m$ machines $M=\left\{M_{k}\right\}_{k=1}^{m}$, following a predefined order; $O_{i}=\left\{O_{i k}^{l}\right\}_{l=1}^{u_{i}}$ is a finite set of $u_{i}$ ordered operations of $J_{i} ; O_{i k}^{l}$ is the $l$-th operation of $J_{i}$ processed on $M_{k}$.


Figure 2.8 depicts how a semi-active schedule becomes an active schedule, where in the upper picture (part A$), O_{12}^{2}$ is a permissible left shift operation which can be shifted to the front of $O_{22}^{3}$ without delaying any other operation. After the left shifting, both of $O_{13}^{3}$ and $O_{33}^{3}$ are permissible left move operations which can be moved forward. All the above actions result in a much improved schedule given in the lower part (part B) of Figure 2.8.


Figure 2.8: An example of a permissible left shift (Yamada 2003)
A feasible schedule is called a non-delay schedule, in which no machine is idle, if an operation is ready to be processed. As shown in Figure 2.9, the set of non-delay schedules is a subset of the active schedule. The active schedule is the subset of the semi-active schedule. Correspondingly, there are three types of schedule builders: the semi-active schedule builder, the active schedule builder and the non-delay schedule builder which respectively produce the above three kinds of schedules.

Referring to Essafi et al. (2008), in the traditional searching procedure for the optimal schedule of regular performance measures, the set of active schedules are selected as the search space since it has been demonstrated that some problems have no optimal non-delay schedule, thereby reducing the search space while still ensuring that an optimal schedule can be found. Thus, the active schedule builder is usually employed for decoding the chromosomes to active schedules.


Figure 2.9: Venn diagram of classes of non-preemptive schedules for job shops (Pinedo 2009)

Encoding schema and schedule building process
The operation-based encoding schema (OBES), which is a type of the indirect encoding schemas, is adopted for this research. The OBES incorporates with the schedule builders to develop feasible schedules. OBES is mathematically known as "permutation with repetition" (Dahal et al. 2007), where each job's index number is repeated $u_{i}$ times ( $u_{i}$ is the number of operations of $J_{i}$ ). By scanning the permutation from left to right, the $l$-th occurrence of a job's index number refers to the $l$-th operation in the technological sequence of this job. According to an example provided by Liu \& Wu (2008), [321123321] is a feasible chromosome for a $3 \times 3$ job shop, 3 on the first gene position stands for $O_{32}^{1} ; 2$ on the second gene position stands for $O_{23}^{1} ; 3$ on the sixth gene position stands for $O_{31}^{2} ; 1$ on the third gene position stands for $O_{11}^{1} ; 3$ on the seventh gene position stands for $O_{33}^{3}$. Thus, the chromosome can be translated to a list of ordered operations as $\left[O_{32}^{1} O_{23}^{1} O_{11}^{1} O_{12}^{2} O_{22}^{2} O_{31}^{2} O_{33}^{3} O_{21}^{3} O_{13}^{3}\right]$. Decoded by the active schedule builder, the chromosome [321123321] can be transformed into a feasible schedule as depicted in Figure 2.10. The advantage of such an encoding scheme is that all the generated schedules are feasible (Dahal et al. 2007).

Table 2.4: The parameters of the $3 \times 3$ job shop (Liu \& Wu 2008)

| $O_{i k}^{l}$ | $O_{i k}^{1}$ | $O_{i k}^{2}$ | $O_{i k}^{3}$ | Release time | Due date |
| :---: | :---: | :---: | :---: | :---: | :--- |
| $J_{i}$ |  |  |  |  |  |
| $J_{1}$ | $M_{1}(2)$ | $M_{2}(2)$ | $M_{3}(3)$ | 0 | The $10^{\text {th }}$ time unit |
| $J_{2}$ | $M_{3}(3)$ | $M_{2}(1)$ | $M_{1}(4)$ | 0 | The $10^{\text {th }}$ time unit |
| $J_{3}$ | $M_{2}(1)$ | $M_{1}(3)$ | $M_{3}(2)$ | 0 | The $10^{\text {th }}$ time unit |

In the above example, a schedule is decoded from a chromosome with the following steps by employing the active schedule builder: (1) firstly translate the chromosome to a list of ordered operations, (2) then generate the schedule by a one-pass heuristic based on the list. The first operation in the list is scheduled first, then the second operation, and so on. Each operation under treatment is allocated in the best available processing time for the corresponding machine that the operation requires. The process is repeated until all operations are scheduled. A schedule generated by the procedure can be guaranteed to be an active schedule (Wang et al. 2009).


Figure 2.10: Gantt chart of chromosome [321123321], transformed by the active schedule builder (Liu \& Wu 2008)

The active schedule builder and the semi-active schedule builder are employed in this research. The reason for adopting the active schedule builder and the working principle of it has been presented in Section 2.3.3. The reason for adopting the semiactive schedule builder and how it works will be explained in CHAPTER 5 .

### 2.4 Knowledge gaps

Based on the aforementioned review of the existing research work, one knowledge gap can be identified that the jobs shop scheduling optimisation problem considering electricity saving has not been well explored. In addition, the problem of saving the electricity cost when the Rolling Blackout policy is applied has not been investigated. The further justifications for the knowledge gap are presented as follows:

Firstly, from the optimisation model perspective, the mathematical model of the electricity consumption pattern of machine tools has not been formalised. On the other hand, a typical multi-objective job shop scheduling problem without parallel machines has still not been explored very well when considering reducing the total electricity consumption and electricity cost as part of the objectives.

The basic job shop is the basis for the other flexible job shop models described in Section 2.2.3.2. Complexities like parallel machines can be added to the basic job shop to achieve other models.

Secondly, from the perspective of electricity consumption and its related cost saving methods, the Turn Off/ Turn On method combined with the Sequencing method has not yet been applied in a job shop.

The Turn Off/Turn On approach combined with the Sequencing approach has been applied to reduce the electricity consumption in a single machine environment. For reducing electricity consumption in the flexible job shop environment, the Sequencing method and the Process Route Selection method have been applied, but not the Turn off/Turn on approach. Based on the analysis in Section 2.2.3.2 the Turn Off/Turn On approach combined with the Sequencing approach can be employed in the basic job shop environment. This could maximally reduce the non-processing electricity consumption in job shops.

Finally, from the perspective of the optimisation methods, there is no algorithm which enables both of the Sequencing and Turn Off/Turn On approaches to be optimally applied in solving the multi-objective job shop scheduling problem which considers reducing the total electricity consumption and electricity cost as part of the objectives.

There is no specific multi-objective optimisation approach for the basic job shop model, which considers maximising the benefit of applying both the Turn Off/Turn On and the Sequencing methods. This is a very important knowledge gap that needs to be addressed. A successful approach can become the reference for developing new solutions for more holistic models, or be directly applied to solve them.

Based on the identified knowledge gaps, the two new research problems can be defined in the following way. The reason for choosing total weighted tardiness as one of the objectives is explained in Section 3.3.

- The bi-objective Total Electricity Consumption Total Weighted Tardiness Job Shop Scheduling problem (Electricity Consumption and Tardiness-ECT).
- The tri-objective Total Electricity Cost, Total Electricity Consumption and Total Weighted Tardiness Job Shop Scheduling problem (Electricity Consumption, Electricity Cost and Tardiness-EC2T).


### 2.5 Summary

This chapter provides the literature review on the area of reducing electricity consumption in metalworking and machining-based manufacturing system (MMS) and the multi-objective optimisation techniques for the job shop scheduling problem. . The state-of-the-art of the related research at different levels of the MMSs are summarised and presented. The concept of Genetic Algorithm and its procedure have been introduced. How GAs can be applied to solve the job shop scheduling problems has been presented. Based on the literature, the knowledge gaps have been identified which provide the evidence to support the contributions of this thesis.

# CHAPTER 3 RESEARCH METHODOLOGY, EXPERIMENTAL DESIGN AND OPTIMISATION MODELS OF THE ECT AND EC2T PROBLEMS 

### 3.1 Introduction

The applied research methodology, optimisation model and experimental design are described in this chapter. An experimental environment which includes six different scenarios and a series scenarios comparison experiment are designed for this research. Two Scenarios (Scenario 2 and 6) are developed to present how optimisation solutions developed based on NSGA-II can be applied to solve ECT and EC2T problems respectively. Based on the literature research, NSGA-II has been proved to solve optimisation problems with two or three objectives efficiently. Thus the aforementioned two scenarios, which are part of the innovation points in this research, have to demonstrate the application of the algorithm for solving the new bi-objective (ECT) and tri-objective (EC2T) problems. Besides the aforementioned two scenarios, another new scenario (Scenario 3) is used to introduce the Multi-objective Genetic Algorithm for solving the ECT job shop scheduling problem (GAEJP). GAEJP is another important innovation point of this research. It is based on NSGA-II and aims at solving ECT effectively by combining the semi-active schedule builder and Turn off/Turn On method. Finally, the other two scenarios are developed (Scenario 4 and 5) to investigate the influence that the Rolling Blackout policy exerts on the performance of existing scheduling plans (Scenario 2 and 3) in terms of the objective values of the total weighted tardiness, total non-processing electricity consumption and total electricity cost. A new heuristic is proposed to help the manufacturing plant manager to adjust the scheduling plans to reduce the TWT as much as possible when the Rolling Blackout policy is applied. The comparison between Scenario 2 and Scenario 1 (the baseline scenario which represents the traditional single objective scheduling method to achieve minimum TWT) is used to prove the hypothesis that NSGAII is effective in solving the ECT problem. The comparison between Scenario 3, 2 and 1 is used to prove the hypothesis that GAEJP is superior to NSGA-II in solving ECT. Finally, the comparison between Scenario 6, 5 and 4 is used to prove the hypothesis that NSGA-II is effective in solving the EC2T problem. Finally, based on
the proposed model a job shop instance and a Rolling Blackout policy instance are presented.

The mathematical models for both of the ECT and EC2T problems are proposed. These models are one of the main contributions of this thesis, since they consider reducing electricity consumption and its related cost together with the scheduling indicator of total weighted tardiness in a job shop. The job shop model is introduced. Then the electricity consumption and the electricity cost models are formalised. Objective functions related to the aforementioned models are explained respectively. Finally, a modified job shop instance is developed and presented which incorporates electrical consumption profiles for machine tools and the Rolling Black policy constraints.

### 3.2 Research methodology and experiment design

The research methodology can be split into three modules, as shown in Figure 3.1 The first one is to develop mathematical models for both ECT and EC2T problems. The second part is to propose methods for solving the two problems and the last one is to validate the effectiveness of the new solutions. In addition, there are two submodules for the solution method module. Firstly, to select electricity and its cost (Ecost) saving methods (ESMs) for solving the specific problem (ECT and EC2T) . Secondly, to develop meta-heuristics which enable the selected ESMs to be optimally applied, thereby eventually achieving better Pareto-front. . The aim of this research is to provide potential solutions to manufacturing plant manager to help them reduce the electricity consumption and its related cost. Based on this practical and manufacturing oriented aim, the effectiveness of the proposed meta-heuristics needs to be proved. Normally, indicators like hyper-volume and computational time are employed to evaluate the performance of newly proposed meta-heuristics. However, from a practical perspective, the plant manager could expect a single better solution which can be obtained in a reasonable time instead of a Pareto front which has many solutions and a good value in hyper-volume. It is possible that all solutions from a good Pareto front could be dominated by a single solution from a comparatively worse front (in terms of the hyper-volume value). However the specific solution could be more beneficial to the manager than the general good front. Thus, the effectiveness of the proposed meta-heuristics is evaluated by their electricity consumption
reduction potential. Hence, the classical indicators may still not be suitable in this research, and a new method to prove the effectiveness of the proposed solutions for both of the ECT and EC2T problem needs to be developed.

Traditionally, manufacturing plant managers produce the scheduling plans which try to achieve single objective optimisation such as minimising the total completion time or total weighted tardiness. However, considering reducing the electricity consumption as a new objective, the managers need to adopt new methods to improve their scheduling plans from the electricity saving perspective (the ECT problem). Nevertheless, when the Rolling Blackout policy is applied, the aforementioned new methods may still not be ideal for the new problem (the EC2T problem), therefore, further new solutions need to be proposed.

Hence, based on the above background, the effectiveness of the new solutions proposed in this research can be proved if the optimisation results delivered by them, i.e. the values of objective functions, are superior to the results of existing solutions. For instance, the proposed approach for solving the ECT problem is defined as effective if it can provide scheduling plans which have lower electricity consumption and similar value in total weighted tardiness to plans which are produced by the traditional single objective optimisation approach. In ideal circumstances, the newly developed scheduling plans' performance on total weighted tardiness is not worse than the traditional ones. However, deterioration in total weighted tardiness in a reasonable range can still be acceptable if the electricity has been saved. Whether the new solutions are acceptable is decided by the managers. Based on the discussion above, a new experimental environment is proposed for developing new approaches to solve the ECT and EC2T, and proving their effectiveness. Within the environment, six scenarios are designed based on the solution proposing part, as depicted in Figure 3.1. There are two sub-modules in each scenario, which are ESMs selection and Me-ta-heuristics development. The other part of the experimental environment is the scenario comparison which corresponds to the Effectiveness validation part as depicted in Figure 3.1. The details of the experiment environment are explained below.


Figure 3.1: The structure of research methodology

### 3.2.1 Methods for optimisation model and instance development

The structure of this research and the scenarios and their internal relations within the experimental environment are described in Figure 3.2. The main characteristics and the relationships of six scenarios are shown in Table 3.1 while details are given in Section 3.2.2


Figure 3.2: The internal relations between scenarios
As shown in Figure 3.2, the mathematical models for the ECT and EC2T problems should be developed first as the basis for this research. Thus, the electricity consumption pattern of machine tools when they continuously process different jobs and the

Rolling Blackout policy should be mathematically formalised. The optimisation model for the ECT problem is the combination of the classical job shop model and the newly developed electricity consumption model. Adding the Rolling Blackout policy model to the ECT optimisation model will lead to the model of the EC2T problem. The details of the mathematical model for these two multi-objective optimisation problems will be presented in the following sections.

After the mathematical model development step, job shop instances and the Rolling Blackout policy instances need to be formulated as the test cases. The job shop incorporates electrical consumption profiles for machine tools and the Rolling Blackout policy constraint can be separated into four parts: the job shop and its related parameters; the machine tools' electrical characteristics which correspond to the nonprocessing electricity consumption; the job-machine related electricity consumption which correspond to job related processing electricity consumption; and finally the pattern of electricity supply.

Four job shop cases are selected from the job shop instances provided by the ORlibrary (Beasley 1990) which are usually used as the benchmark for testing the performance of algorithms. The selected instances include: Fisher and Thompson $10 \times 10$ job shop instance (F\&T $10 \times 10$ ), Lawrence $15 \times 10$, Lawrence $20 \times 10$ and Lawrence $15 \times 15$ job shop instances. These job shop instances are selected since they are large and require a comparatively long time to complete all the jobs. Therefore, the effectiveness of the proposed algorithms in reducing the electricity consumption and electricity cost is more evident by using these large job shop instances instead of the smaller ones (with number of jobs and number of machines smaller than 10 , respectively).

To satisfy the requirements of this research, the due date and weight for each job and the time unit of the job shop problem need to be defined. The weight of each job $J_{i}$ is randomly generated integer among 1,2 and 3 . The release time for each job is 0 . The time unit is defined as minutes. According to the TWK due date assignment method (Sabuncuoglu \& Bayiz 1999; Shi et al. 2007), the due date for a job can be defined as Due $=f \times$ total processing time of the job, where $f$ is the tardiness factor. The due date is decided by the tardiness factor $f$, where, for instance, $f=1.5$, this value of $f$ represents a tight due date case (corresponds to $50 \%$ tardy jobs). Thus, the value
of $f$ is gradually increased for each job shop instance until $f=1.9$ during the experiments. When $f=1.9$, in most of the job shop instances the value of total weighted tardiness reaches 0 , which means the due date is loose enough so that all the jobs can be delivered before the deadline. The aim is to investigate the performance of the newly proposed solutions under different delivery requirement conditions by using different values in tardiness factor ( $f=1.5,1.6,1.7,1.8,1.9$ ). In other words, it can be expected that, when the due date is tight, the new solution may deteriorate the schedules' performance on total weighted tardiness though it can effectively reduce the electricity consumption. When the due date becomes loose, the potential to reduce the electricity consumption while guaranteeing an acceptable value in the total weighted tardiness becomes higher. This can inform the manufacturing plant manager that, the less busy the job shop is, the more opportunity there is to reduce the electricity consumption without deteriorating the delivery.

To perform the optimisation, the electrical characteristics for each machine in the job shop are needed. It can be supposed that all the machine tools in this research are automated ones, meaning that they have a high value of idle power. Thus, more significant optimisation results can be shown. Based on the research developed by Avram \& Xirouchakis (2011), Baniszewski (2005), Dahmus (2007), Diaz et al. (2010), Drake et al. (2006), Kalla et al. (2009), Li et al. (2011) and Rajemi (2010), the electricity characteristics for the aforementioned four job shops are generated. All the values are presumed based on the literature. Therefore, they are actually random values located within reasonably defined ranges. The benefits for using random values are as follows. Firstly, the optimisation methods can be defined as generally applicable if they work well with random values. If the electrical consumption profiles for the machine tools are drawn from a real machining-based manufacturing system, and are used as the base for optimisation methods evaluation, then there is a danger that the proposed optimisation methods only work for that specific case. Secondly, if we would like to test more job shop instances in future with electrical characteristics, such as the total 82 job shop instances provided by the OR-library, it would be very time consuming to input the actual electricity characteristics for all the machines. Thus, randomly generating data for electrical characteristics of machines is a feasible method, as long as the values are in reasonable ranges. An example for generating the electricity profile for machines in the F\&T $10 \times 10$ job shop is given in Section
3.7. The method for generating the electricity supply pattern can also be seen in this section.

### 3.2.2 Methods for experimental design

The main characteristics and the relationships of six scenarios are shown in Table 3.1.

Table 3.1: Scenario Design

| Scenario | Content and ESMs selected | Function | Chapter |
| :---: | :---: | :---: | :---: |
| Scenario 1 | The classic job shop scheduling problem with the single optimisation objective of minimising the total weighted tardiness. Corresponds to manufacturing companies that do not consider minimising electricity consumption as an objective for producing scheduling plans. None electricity and E-cost saving method is used in this scenario. | Baseline and Control group for Scenario 2 and Scenario 3 | $\begin{aligned} & \text { Chapter } \\ & 4 \end{aligned}$ |
| Scenario 2 | Minimising the total non-processing electricity consumption is considered as one of the objectives for proposing a job shop scheduling plan. NSGA-II is applied for solving the ECT. Only Sequencing is used as the electricity and E-cost saving method. | Control group for Scenario 3 | Chapter <br> 4 |
| Scenario 3 | Minimising the non-processing electricity consumption is considered as one of the objectives for proposing a job shop scheduling plan. A Multi-objective Genetic Algorithm for solving the ECT job shop scheduling problem (GAEJP) is proposed based on the NSGA-II. The hypothesis that the new solution is superior to NSGA-II for the ECT problem will be tested. Turn Off/Turn On and Sequencing are used as the electricity and E-cost saving methods. | Proposing GAEJP and validation | Chapter 5 |
| Scenario 4 | The Rolling Blackout policy is applied; no private electricity is provided during the government resource unavailable periods; scheduling plans from Scenario 2 and Scenario 3 are executed. A new heuristic is proposed to help the manufacturing plant manager to adjust the scheduling plans to reduce the TWT as much as possible. | Control group for Scenario 6 | Chapter $6$ |
| Scenario 5 | The Rolling Blackout policy is applied; private electricity is provided during all the government resource unavailable periods; Execute the same scheduling plans as that in Scenario 4. | Control group for Scenario 6 | Chapter $6$ |
| Scenario 6 | The Rolling Blackout policy is applied; private electricity supply is available during all of the government resource unavailable periods. The optimisation solution for the EC2T is proposed. | Proposing new solution and validation | Chapter 7 |

Scenario 1

This scenario is the baseline which represents the circumstance that a manufacturing company develops its scheduling plans without considering reducing electricity con-
sumption as an objective. As the benchmark, this scenario corresponds to a job shop scheduling problem with the single optimisation objective of minimising total weighted tardiness. Because the weight for each job and the electrical profile for all machines in the job shop instances are originally generated in this research, there is no available optimal solution in terms of minimising total weighted tardiness in the current literature to be used as the benchmark. Thus, the optimal solution for the single objective optimisation problem needs to be firstly found. The Shifting Bottleneck Heuristic and Local Search Heuristic (Pinedo, 2012) approaches will be used as the optimisation techniques in this scenario, since it has already been studied by many researchers and proven to be effective for the job shop scheduling problems. The software LEKIN developed by researchers at New York University (Pinedo, 2009) will be used for delivering the optimisation result in Scenario 1. An optimal scheduling plan and its corresponding Gantt chart will be obtained after the optimisation process. Then, based on the Gantt chart, the value of the total weighted tardiness and total electricity consumption can be obtained. Scenario 1 is the control group and benchmark for Scenarios 2 and 3 to demonstrate the effectiveness of NSGA-II and the new algorithm in solving the ECT problem and to explore the opportunity for them to reduce the electricity consumption in job shops. A control group in a scientific experiment is a group separated from the rest of the experiment where the independent variable being tested cannot influence the results. This isolates the independent variable's effects on the experiment and can help in ruling out alternate explanations of the experimental results (McBurney \& White 2009). For instance, take identical growing plants and giving fertiliser to half of them; if there are differences between the fertilised plant group and the unfertilised "control" group, these differences may be due to the fertiliser. The algorithm plays the role of the "fertiliser" in this research.

## Scenario 2

In Scenario 2, minimising the electricity consumption is considered as one of the objectives for proposing a job shop scheduling plan (ECT). Only the Sequencing method is applied in this scenario, but not Turn Off/Turn On yet. A large amount of research work has been carried out to employ meta-heuristics to minimise the total idle time of a scheduling plan, which can be seen as the reference for developing the
optimisation approach in this scenario. The only difference is that the optimisation objective in this scenario is minimising the total "weighted" idle time of a schedule, the weight is actually the idle power level of each machine tool. NSGA-II will be used as the optimisation approach. The Pareto-front formed by $p$ non-dominated solutions (a group of scheduling plans) will be obtained after the optimisation process. To demonstrate the electricity reduction potential of NSGA-II in solving the ECT problem, the solutions delivered by this algorithm will be compared with the benchmark solution in Scenario 1. The NSGA-II used here is provided by the Jmetal framework (Nebro and Durillo, 2011) since its object-oriented framework allows others to integrate their own algorithms and problems into it. The computational facility used in this research is Dell Latitude E6410 laptop with Intel Core i5 processor $(2.67 \mathrm{GHz})$ and 4 GB RAM.

## Scenario 3

After observing the electricity consumption reduction performance of NSGA-II, it can be supposed that employing both the Turn Off/Turn On and sequencing method should produce better solutions for the ECT problem.. Electricity saving can be achieved by grouping the idle periods to create the new idles which are long enough to execute Turn Off/Turn On. Thus, in Scenario 3, GAEJP is developed based on NSGA-II aiming at solving ECT more effectively. In this algorithm, a new heuristic is developed to promote the aforementioned idle periods grouping. The solutions obtained by GAEJP will be compared with the benchmark solution to prove its electricity consumption reduction potential in solving the ECT problem. Then, the new solutions will be compared with the NSGA-II solutions to prove the hypothesis that it is superior to NSGA-II in solving the ECT problem. The algorithm has been developed based on the Jmetal framework (Nebro and Durillo, 2011).

Scenario 4, 5 and 6

The scheduling plans produced in Scenario 2 and 3 are used as the baseline for Scenarios 4 and 5 to investigate the influence that the Rolling Black policy exerts on the performance of these scheduling plans in terms of the objective values of the total weighted tardiness, total non-processing electricity consumption and total electricity cost. A new heuristic is proposed in Scenario 4 to help the manufacturing plant man-
ager to adjust the scheduling plans to reduce the total weighted tardiness as much as possible when the Rolling Blackout policy is applied.

Scenario 4 is used to analyse how the manufacturing company's delivery deteriorates as a result of the Rolling Blackout policy. Therefore, in this scenario, the manufacturing company will not use any private electricity supply, such as a diesel generator, when the government supplied resource is unavailable. The job shop will stop working during the blackout periods. The scheduling plans produced in Scenario 2 and Scenario 3 will be adjusted in Scenario 4 to allocate the operations to government electricity available periods. The operations that initially would execute during the blackout periods should be postponed to the closest electricity supply available period, thereby constructing the new scheduling plan for Scenario 4. The comparison between the performance of scheduling plans in Scenario 4 and their original plans, for instance, scheduling plans in Scenario 3, will be used to show how the Rolling Blackout policy cause the schedules' performance on the total weighted tardiness to deteriorate when the use of private electricity is not allowed.

Scenario 5 is used to investigate the influence of employing private electricity on the total electricity cost when the Rolling Blackout is applied. Therefore, in this scenario, private electricity is used to provide power for the manufacturing company during all the blackout periods. The scheduling plans produced in Scenarios 2 and 3 will be performed in Scenario 5. Finally, the comparison between the performance of scheduling plans in Scenario 5 and their original plans, for instance, scheduling plans in Scenario 3, will be used to show that the aforementioned influence that the total electricity cost will increase in Scenario 5.Based on the investigation, it will be found that there is a requirement for proposing an approach to optimally use the private electricity supply, which is the EC2T problem. Finally, NSGA-II is applied to solve the EC2T in Scenario 6. The developed GAEJP is not used in this scenario. Since the main aim to build a schedule is not to achieve longer idle periods and then execute the Turn off/Turn on. Because in this scenario, long idle periods may result in wasting the government supplied electricity resource, and then increase the use of private electricity. Comparing the objective functions' values in Scenario 6 to those in Scenario 4, a better performance on total weighted tardiness should be observed. When comparing the objective functions' values in Scenario 6 to those in Scenario 5, a bet-
ter performance on total electricity cost should be observed. The details of each scenario and the comparisons among them will be described in the following chapters. The mathematical models for the ECT and EC2T problems and an example for the job shop instance generation will be introduced in the remainder of this chapter.

### 3.3 Job shop model

Job shops are prevalent in industry. Normally, there are several jobs and each job will visit a number of machines following a predetermined route. As shown in Figure 3.3. component $A$ and $B$ are processed in a job shop with four machines, the processing routine for them are Machine 1-3-2-4 and Machine 3-1-4-2 respectively. The job shop model used in this research is the deterministic (static) one which means the number of jobs is fixed and all jobs are ready to be processed at time 0 . The recirculation circumstance is not considered in this model which means a job only visits any given machine no more than once. The aim of this research is to reduce both TWT and NPE in an aforementioned static job shop. The formal mathematical definition of the problem will be described in detail in the following sections.

Referring to Özgüven et al. (2010), Jain \& Meeran (1998) and Vázquez-Rodríguez \& Petrovic (2010), in a job shop scheduling problem, $J=\left\{J_{i}\right\}_{i=1}^{n}$, a finite set of $n$ jobs are to be processed on a finite set of $m$ machines $M=\left\{M_{k}\right\}_{k=1}^{m}$, following a predefined order; $O_{i}=\left\{O_{i k}^{l}\right\}_{l=1}^{u_{i}}$ is a finite set of $u_{i}$ ordered operations of $J_{i} ; O_{i k}^{l}$ is the $l$-th operation of $J_{i}$ processed on $M_{k}$ and it requires a processing time denoted $p_{i k}^{l} . S_{i k}^{l}$ indicates the time that $O_{i k}^{l}$ begins to be processed on $M_{k}$, while $C_{i k}^{l}$ is the corresponding completion time of the process. $Y_{i i^{\prime} k}^{l \prime^{\prime}}$ is a decision variable such that $Y_{i i^{\prime} k}^{l \prime^{\prime}}=1$ if $O_{i k}^{l}$ precedes $O_{i^{\prime} k}^{l^{\prime}}$ on $M_{k}, 0$ otherwise. Each $J_{i}$ has a release time into the system $r_{i}$ and a due date $d_{i}, w_{i}$ is the weighted importance of $J_{i}$.


Figure 3.3: A typical job shop
Constraints:

$$
\begin{align*}
& S_{i k}^{l} \geq r_{i} \forall J_{i} \in J, \forall O_{i k}^{l} \in O_{i}, \forall M_{k} \in M  \tag{3.1}\\
& C_{i k}^{l+1}-C_{i k^{\prime}}^{l} \geq p_{i k}^{l+1} 1 \leq l<l+1 \leq u_{i}, \\
& k \neq k^{\prime}, \forall J_{i} \in J, \forall O_{i k}^{l+1}, O_{i k^{\prime}}^{l} \in O_{i}, \forall M_{k}, M_{k^{\prime}} \in M  \tag{3.2}\\
& S_{i k}^{l+1}-C_{i k^{\prime}}^{l} \geq 0 \quad 1 \leq l<l+1 \leq u_{i}, \\
& k \neq k^{\prime}, \forall J_{i} \in J, \forall O_{i k}^{l+1}, O_{i k^{\prime}}^{l} \in O_{i}, \forall M_{k}, M_{k^{\prime}} \in M  \tag{3.3}\\
& C_{i^{\prime} k}^{l^{\prime}}-C_{i k}^{l} \geq p_{i^{\prime} k}^{l^{\prime}} \quad Y_{i i^{\prime}}^{l \prime^{\prime}}=1, \\
& i \neq i^{\prime}, \forall J_{i}, J_{i^{\prime}} \in J, \forall O_{i k}^{l} \in O_{i}, \forall O_{i^{\prime} k}^{l^{\prime}} \in O_{i^{\prime}}, \forall M_{k} \in M \tag{3.4}
\end{align*}
$$

Where

$$
\begin{aligned}
& Y_{i i^{\prime} k}^{l \prime^{\prime}} \in\{0,1\} \quad i \neq i^{\prime}, \forall J_{i}, J_{i^{\prime}} \in J, \forall O_{i k}^{l} \in O_{i}, \forall O_{i^{\prime} k}^{l^{\prime}} \in O_{i^{\prime}}, \forall M_{k} \in M \\
& S_{i k}^{l} \geq 0, C_{i k}^{l} \geq 0 \quad \forall J_{i} \in J, \forall O_{i k}^{l} \in O_{i}, \forall M_{k} \in M \\
& C_{i k^{\prime}}^{l} \geq 0 \quad \forall J_{i} \in J, \forall O_{i k^{\prime}}^{l} \in O_{i}, \forall M_{k^{\prime}} \in M
\end{aligned}
$$

Constraint (3.1) makes sure that the starting time of any job must be greater than its release time. Constraint (3.2) and (3.3) ensure that the precedence relationships between the operations of a job are not violated, i.e. $O_{i k}^{l+1}$ is not started before the $O_{i k^{\prime}}^{l}$ has been completed and no job can be processed by more than one machine at a time. Constraint (3.4) takes care of the requirement that no machine can process more than one operation at a time. A schedule $s$ that complies with constraints (3.1) to (3.4) is
said to be a feasible schedule. The $3 \times 3$ job shop instance and its related scheduling plan (Gantt chart) are presented in Section 2.2.3. which is a typical job shop instance. Set $S$ is a finite set of all feasible schedules such that $s \in S$. Given a feasible schedule $s$, let $C_{i}(s)$ indicates the completion time of $J_{i}$ in schedule $s$. The tardiness of $J_{i}$ can be denoted as $T_{i}(s)=\max \left\{0, C_{i}(s)-d_{i}\right\}$.The objective is to minimise the total weighted tardiness of all jobs. This objective is chosen since it is a more general version of a due date related objective function. Minimising the total weighted tardiness is one of the objectives in the multi-objective optimisation for this research. The other two objective functions will be explained in Section 3.4 and Section 3.5, respectively, and the concept of multi-objective optimisation was explained in Section 2.3 .

$$
\begin{equation*}
\operatorname{minimise}\left(\sum_{i=1}^{n} w_{i} \times T_{i}(s)\right) \tag{3.5}
\end{equation*}
$$

### 3.4 Electricity consumption model

A very important basis is formalising the mathematical model of the electricity consumption of machine tools when they continuously process different jobs, thereby getting the total electricity consumption of the whole job shop. Without this model, it is not possible to carry out the optimisation in this research. Dietmair \& Verl (2009) have shown the structure of a typical machine power input measurement for a simple aluminum milling operation. In Figure 3.4 a number of events can be seen to change the power intake between a number of clear cut levels. The time points that the events start are denoted by number 1 to 8 as shown in the figure. The content of the events and their sequence in the milling operation is described in the following. First, the coolant is switched on (1) and the machine executes a rapid motion to its starting position (2). Then the spindle speeds up (3) and the tool enters the work piece (4). Upon termination of the cut (5), the spindle (6) and the coolant (7) are switched off. A substantial idle power intake remains after that (8) (Dietmair \& Verl 2009). The optimisation in this research is focused on the work shop level, thus there are two requirements for the machine's electricity consumption model building, one is simplification, and the other is distinguishing the processing electricity consumption and non-processing electricity consumption. Therefore, based on the existing research work on environmental analysis of machining (Dietmair \& Verl, 2009; Kordonowy,

2003; Dahmus, 2007; Diaz et al., 2010; He et al., 2012), the simplified power input model for $M_{k}$ while it is working on $O_{i k}^{l}$ is shown in Figure 3.5.


Figure 3.4: Actual power input at machine main connection over time (integral area= consumed energy)(Dietmair \& Verl 2009)


Figure 3.5: The simplified power input of a machine tool when it is working on one operation $O_{i k}^{l}$, (a) is the first step simplified version,
(b) is the further simplified version)

The notations used are as follows:

The input power $P_{k}(t)$ a machine $M_{k}$ requires over time is defined as a stepped function represented by the red line in Figure 3.5. The idle power level of a machine $M_{k}$ is defined by $P_{k}^{i d l e}$, the increase in power during runtime operations for processing $O_{i k}^{l}$ on machine $M_{k}$ is defined by $P_{i k}^{l r u n t i m e}$, where the subscript $i, k$ and superscript $l$ have the same meaning with $O_{i k}^{l}$. The further additional power requirement for the actual cutting of $O_{i k}^{l}$ on machine $M_{k}$ is given by $P_{i k}^{l c u t t i n g}$. The overall processing time $p_{i k}^{l}$ is defined as the time interval between the coolant switching on and off. The cutting time $t_{i k}^{l c u t t i n g}$ for an operation $O_{i k}^{l}$ is often a slightly shorter time interval than the overall processing time. During the cutting time, the highest power level is required, that $P_{k}^{\text {max }}=P_{k}^{\text {idle }}+P_{i k}^{\text {lruntime }}+P_{i k}^{\text {lcutting }}$.

Assuming that the power levels remain constant during an operation, the basic energy consumption of a machine $M_{k}$ during the whole processing time for operation $O_{i k}^{l}$ can be defined as $E_{i k}^{l b a s i c}=P_{k}^{i d l e} \times p_{i k}^{l}$ and the additional energy required to put the machine into runtime mode is $E_{i k}^{\text {lruntime }}=P_{k}^{\text {lruntime }} \times p_{i k}^{l}$. The extra energy required for the cutting process during operation $O_{i k}^{l}$ can be defined as $E_{i k}^{l c u t t i n g}=$ $P_{i k}^{l c u t t i n g} \times t_{i k}^{l c u t t i n g}$. Hence, the job related processing electricity consumption (JPE) required to carry out an operation $O_{i k}^{l}$ on machine $M_{k}$ is $E_{i k}^{l}=E_{i k}^{i d l e}+E_{i k}^{\text {lruntime }}+$ $E_{i k}^{l c u t t i n g}$.

According to the above definitions, $E_{i k}^{l}$ can be treated as a constant for each operation $O_{i k}^{l}$, since the power levels ( $P_{k}^{\text {idle }}, P_{i k}^{\text {lruntime }}$ and $P_{i k}^{l c u t t i n g}$ ), the process duration $\left(p_{i k}^{l}\right)$ and cutting time $\left(t_{i k}^{l c u t t i n g}\right)$ for each operation are fixed values. Therefore, it can be concluded that the processing electricity consumption (PE) required for all operations processed on a machine $M_{k}$, which is expressed as $\sum E_{i k}^{l}$, is also a constant. The value of $\sum E_{i k}^{l}$ will not be affected by different scheduling plans. Thus, the objective to reduce the total electricity consumption of a job shop can be converted to reduce the total non-processing electricity consumption (NPE). Hence, the objective function can be set as the sum of all the NPE consumed by all the machines in a job shop to carry out a given job schedule:

$$
\begin{equation*}
\operatorname{minimise}\left(\sum_{k=1}^{m} T E M_{k}^{n p}(s)\right) \tag{3.6}
\end{equation*}
$$

Where $\operatorname{TEM}_{k}^{n p}(s)$ is the NPE of machine $M_{k}$ for schedule $s$. Unlike the PE, the NPE is a function of the scheduling plan. Hence, $\operatorname{TEM}_{k}^{n p}(s)$ needs to be expressed based on the specific order the different operations $O_{i k}^{l}$ have been scheduled to run on a machine $M_{k} . M_{k}^{\prime}=\left\{m_{k}^{r}\right\}_{r=1}^{\sum_{i=1}^{n} \Sigma_{l=1}^{u_{i}} \gamma_{i k}^{l}}$ is the finite set of operations processed on $M_{k}$. $\gamma_{i k}^{l}$ is a decision variable that $\gamma_{i k}^{l}=1$ if the $l$-th operation of job $J_{i}$ processed on $M_{k}$, 0 otherwise. With $S_{k}^{r}$ and $C_{k}^{r}$ respectively indicate the start and completion time of an operation $m_{k}^{r}$ on $M_{k}$ for a schedule $s$, this schedule can be graphically expressed as a Gantt chart as shown in Figure 3.6. Consequently, the calculation of the nonprocessing electricity consumption of machine $M_{k}$ can be expressed based on the start and completion times defined for a schedule $s$ :

If the Turn Off/Turn On is not allowed, then:

$$
\begin{equation*}
T E M_{k}^{n p}(s)=P_{k}^{i d l e} \times\left[\max \left(C_{k}^{r}\right)-\min \left(S_{k}^{r}\right)-\sum_{r}\left(C_{k}^{r}-S_{k}^{r}\right)\right] \tag{3.7}
\end{equation*}
$$

Equation (3.7) means that when the Turn Off/Turn On is not allowed, the NPE of $M_{k}$ for schedule $s$ is the difference between all the basic electricity consumption of $M_{k}$ and the basic electricity consumption of $M_{k}$ when it is processing jobs.

If the Turn Off/Turn On is allowed, then:

$$
\begin{align*}
T E M_{k}^{n p}(s) & =P_{k}^{\text {idle }} \times\left[\max \left(C_{k}^{r}\right)-\min \left(S_{k}^{r}\right)-\sum_{r}\left(C_{k}^{r}-S_{k}^{r}\right)\right] \\
& -P_{k}^{\text {idle }} \times \sum_{r}\left(S_{k}^{r+1}-C_{k}^{r}\right) \times Z_{k}^{r}+E_{k}^{\text {turn }} \times \sum_{r} Z_{k}^{r} \tag{3.8}
\end{align*}
$$

To obtain the NPE of $M_{k}$ for schedule $s$ when the Turn Off/Turn On is allowed, Equation (3.8) firstly calculates the difference between all the basic electricity consumption of $M_{k}$ and the basic electricity consumption of $M_{k}$ when it is processing jobs. Then the basic electricity consumption during the original idle periods where the Turn Off/Turn On had been applied is subtracted. Finally the corresponding electricity consumed by all the Turn Off/Turn On operations (electricity required by all the start-up and shut down operations) is added.

According to Mouzon et al. (2007), $E_{k}^{\text {turn }}$ is the electricity consumed by Turn Off/Turn On, that $E_{k}^{\text {turn }}=E_{k}^{\text {turnoff }}+E_{k}^{\text {turnon }}$.
$t_{k}^{\text {OFF }}=t_{k}^{\text {turnoff }}+t_{k}^{\text {turnon }}, t_{k}^{\text {OFF }}$ is the time required to turn off $M_{k}$ and turn it back on.
$E_{k}^{\text {turnoff }}$ and $t_{k}^{\text {turnoff }}$ are the electricity and time consumed to turn off the machine $M_{k}$ and $E_{k}^{\text {turnon }}$ and $t_{k}^{\text {turnon }}$ are the electricity and time consumed to turn on the machine $M_{k}$.

For the purpose of simplification, the start-up and turn-off power spikes and their electricity consumption can be averagely allocated on $t_{k}^{\text {turnon }}$ and $t_{k}^{\text {turnoff }}$.

Therefore, $P_{k}^{\text {turnon }}$ is defined as the average power input for $M_{k}$ during $t_{k}^{\text {turnon }}$, and $P_{k}^{\text {turnoff }}$ as the average power input of $M_{k}$ during $t_{k}^{\text {turnoff }}$.
$E_{k}^{\text {turnon }}=P_{k}^{\text {turnon }} \times t_{k}^{\text {turnon }}$.
$E_{k}^{\text {turnoff }}=P_{k}^{\text {turnoff }} \times t_{k}^{\text {turnoff }}$.
$B_{k}$ is the break-even duration of machine $M_{k}$ for which Turn Off/Turn On is economically justifiable instead of running the machine idle, $B_{k}=E_{k}^{\text {turn }} / P_{k}^{\text {idle }} . Z_{k}^{r}$ is a decision variable such that $Z_{k}^{r}=1$ if $S_{k}^{r+1}-C_{k}^{r} \geq \max \left(B_{k}, t_{k}^{O F F}\right), 0$ otherwise. Figure 3.6 shows an example for the calculation of the NPE of $M_{k} . O_{i_{1} k}^{l_{1}}, O_{i_{2} k}^{l_{2}}, O_{i_{3} k}^{l_{3}}$, and $O_{i_{4} k}^{l_{4}}$ are processed by $M_{k}$. Based on Equation (3.7), to get the value of NPE which is represented by the blue grid area, firstly the total idle time of machine $M_{k}$ in the above schedule needs to be calculated, which is $\left(C_{k}^{4}-S_{k}^{1}\right)-\sum_{r=1}^{4}\left(C_{k}^{r}-S_{k}^{r}\right)$. Then, the aforementioned value is multiplied by the idle power level of machine $M_{k}$ to obtain the NPE for a schedule.


Figure 3.6: Gantt chart of $M_{k}$ and its corresponding power profile

### 3.5 Electricity cost model

When the Rolling Blackout policy is applied, it will be difficult to estimate the loss for manufacturing companies during the period when no electricity is available from the public supplier (government electricity unavailable period, GUP). For the purpose of simplification, it could be supposed that manufacturing companies can start the private power supplementation with its associated higher cost. Thus, the loss during the electricity unavailable periods can be totally converted to increased electricity cost. This will simplify the calculation for cost. In reality, the Rolling Black policy would be executed as cutting off the government electricity supply for several days in every week. The policy needs to be generalised and abstracted as is seen in the mathematical model below. The objective function for electricity cost of a job shop based on the Rolling Blackout policy is:

$$
\begin{gather*}
\operatorname{minimise}(T E C(s))  \tag{3.9}\\
\operatorname{TEC}(s)=\sum_{k=1}^{m} T E C_{k}(s)  \tag{3.1}\\
T E C_{k}(s)=p^{e} \times \int_{0}^{\max \left(c_{k}^{r}\right)} P_{k} \quad p^{e}=\left\{\begin{array}{l}
\beta_{1}, t \in\left[(n-1) T,(n-1) T+t_{s}\right] \\
\beta_{2}, t \in\left((n-1) T+t_{s}, n T\right]
\end{array}\right. \tag{3.11}
\end{gather*}
$$

As seen in Figure 3.7, $T E C(s)$ and $T E C_{k}(s)$ refer to the total electricity cost of the job shop and $M_{k}$ for a feasible schedule $s$, respectively.
$p^{e}$ represents the electricity price such that $p^{e}=\beta_{1}$ Pounds $/ \mathrm{kWh}$ if it is government electricity supply, and $p^{e}=\beta_{2}$ Pounds $/ k W h$ if it is private electricity supply such as diesel.
$T$ denotes the cycle period of the Rolling Blackout policy.
$t_{s}$ is the time point which separates $T$ from $\Delta t_{s}$ and $\Delta t_{o}$ which respectively indicates the periods with (government electricity supply available period, GAP) and without the government electricity supply (GUP).

In this model, $n$ is the natural number starting from 1 ; and $t$ indicates the time.


Figure 3.7: The timeline for the RB and the power input profile of $M_{k}$

### 3.6 Mathematical formalisation ECT and EC2T problem

The stated ECT and EC2T are multi-objective problems that have the following mathematical form:

$$
\begin{equation*}
\operatorname{minimise} F(s)=\left(f_{1}(s), \ldots, f_{\text {nob } j}(s)\right) s \in S \tag{3.12}
\end{equation*}
$$

where $f_{k}: S \mapsto \mathbb{R}$ is the $k$-th objective function and $n O b j$ is the number of objectives. Vector $F$ is a combination of objective functions, namely, nObj $=2$ for the ECT problem and $n O b j=3$ for the EC2T problem. The quality of a schedule can be measured according to 2 or 3 criteria, including $f_{1}(s)=\sum_{i=1}^{n} w_{i} \times T_{i}(s)$ (Equation 3.5), $f_{2}(s)=\sum_{k=1}^{m} T E M_{k}^{n p}(s)$ (Equation 3.7 and 3.8), $f_{3}(s)=T E C(s)$ (Equation 3.10).

Thus, the objective function of the ECT problem can be mathematically described as the following:

$$
\begin{equation*}
\operatorname{minimise} F(s)=\left(f_{1}(s), f_{2}(s)\right) s \in S \tag{3.13}
\end{equation*}
$$

The objective function of the EC2T problem can be mathematically described as follows:

$$
\begin{equation*}
\text { minimise } F(s)=\left(f_{1}(s), f_{2}(s), f_{3}(s)\right) s \in S \tag{3.14}
\end{equation*}
$$

### 3.7 Generation of job shop and the Rolling Blackout policy instances

A modified job shop problem E-F\&T $10 \times 10$ which incorporates electrical consumption profiles for the machine tools will be presented in the following section as an example to illustrate the required parameter definition approaches. For other modified job shop instances used in this research, see Appendix I Job shop instances for experiments.
3.7.1 Job shop and its related parameters

A modified job shop instance incorporates electrical consumption profiles for the machine tools: E-F\&T $10 \times 10$ is developed based on the Fisher and Thompson $10 \times 10$ instance ( $\mathrm{F} \& \mathrm{~T} 10 \times 10$ ). To satisfy the requirements of this research, the due date and weight for each job and the time unit of the job shop problem need to be defined. According to the TWK due date assignment method (Sabuncuoglu \& Bayiz 1999; Shi et al. 2007), $d_{i}=f \times \sum_{i=1}^{m} p_{i k}^{l}, i=1,2, \cdots, n$ where $f$ is the tardiness factor. The weight of each job $J_{i}$ is randomly generated integer among 1,2 and 3 . The release time $r_{i}$ for each job $J_{i}$ is 0 . The time unit is minutes. The parameters of the $10 \times 10$ job shop is given in Table 3.2 and Table 3.3. where, for instance, $f=1.5$, which represents a tight due date case (corresponds to $50 \%$ tardy jobs). In Table 3.2. for example, $M_{1}(29)$ means the first operation of job $1\left(J_{1}\right)$ is processed on machine $M_{1}$ with a processing time of 29 minutes.

Table 3.2: The processing time $p_{i k}^{l}$ of each operation $O_{i k}^{l}$ and the technical route for each job $J_{i}$ in the E-F\&T $10 \times 10$ job shop instance (time unit: min)

| $M_{k}\left(p_{i k}^{l}\right)$ | $O_{i k}^{1}$ | $O_{i k}^{2}$ | $O_{i k}^{3}$ | $O_{i k}^{4}$ | $O_{i k}^{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $J_{1}$ | $M_{1}(29)$ | $M_{2}(78)$ | $M_{3}(9)$ | $M_{4}(36)$ | $M_{5}(49)$ |
| $J_{2}$ | $M_{1}(43)$ | $M_{3}(90)$ | $M_{5}(75)$ | $M_{10}(11)$ | $M_{4}(69)$ |
| $J_{3}$ | $M_{2}(91)$ | $M_{1}(85)$ | $M_{4}(39)$ | $M_{3}(74)$ | $M_{9}(90)$ |
| $J_{4}$ | $M_{2}(81)$ | $M_{3}(95)$ | $M_{1}(71)$ | $M_{5}(99)$ | $M_{7}(9)$ |
| $J_{5}$ | $M_{3}(14)$ | $M_{1}(6)$ | $M_{2}(22)$ | $M_{6}(61)$ | $M_{4}(26)$ |
| $J_{6}$ | $M_{3}(84)$ | $M_{2}(2)$ | $M_{6}(52)$ | $M_{4}(95)$ | $M_{9}(48)$ |
| $J_{7}$ | $M_{2}(46)$ | $M_{1}(37)$ | $M_{4}(61)$ | $M_{3}(13)$ | $M_{7}(32)$ |
| $J_{8}$ | $M_{3}(31)$ | $M_{1}(86)$ | $M_{2}(46)$ | $M_{6}(74)$ | $M_{5}(32)$ |
| $J_{9}$ | $M_{1}(76)$ | $M_{2}(69)$ | $M_{4}(76)$ | $M_{6}(51)$ | $M_{3}(85)$ |
| $J_{10}$ | $M_{2}(85)$ | $M_{1}(13)$ | $M_{3}(61)$ | $M_{7}(7)$ | $M_{9}(64)$ |
| $M_{k}\left(p_{i k}^{l}\right)$ | $O_{i k}^{6}$ | $O_{i k}^{7}$ | $O_{i k}^{8}$ | $O_{i k}^{9}$ | $O_{i k}^{10}$ |
| $J_{1}$ | $M_{6}(11)$ | $M_{7}(62)$ | $M_{8}(56)$ | $M_{9}(44)$ | $M_{10}(21)$ |
| $J_{2}$ | $M_{2}(28)$ | $M_{7}(46)$ | $M_{6}(46)$ | $M_{8}(72)$ | $M_{9}(30)$ |
| $J_{3}$ | $M_{6}(10)$ | $M_{8}(12)$ | $M_{7}(89)$ | $M_{10}(45)$ | $M_{5}(33)$ |
| $J_{4}$ | $M_{9}(52)$ | $M_{8}(85)$ | $M_{4}(98)$ | $M_{10}(22)$ | $M_{6}(43)$ |
| $J_{5}$ | $M_{5}(69)$ | $M_{9}(21)$ | $M_{8}(49)$ | $M_{10}(72)$ | $M_{7}(53)$ |
| $J_{6}$ | $M_{10}(72)$ | $M_{1}(47)$ | $M_{7}(65)$ | $M_{5}(6)$ | $M_{8}(25)$ |
| $J_{7}$ | $M_{6}(21)$ | $M_{10}(32)$ | $M_{9}(89)$ | $M_{8}(30)$ | $M_{5}(55)$ |
| $J_{8}$ | $M_{7}(88)$ | $M_{9}(19)$ | $M_{10}(48)$ | $M_{8}(36)$ | $M_{4}(79)$ |
| $J_{9}$ | $M_{10}(11)$ | $M_{7}(40)$ | $M_{8}(89)$ | $M_{5}(26)$ | $M_{9}(74)$ |
| $J_{10}$ | $M_{10}(76)$ | $M_{6}(47)$ | $M_{4}(52)$ | $M_{5}(90)$ | $M_{8}(45)$ |

Table 3.3: Parameters of each $J_{1}$ in the E-F\&T $10 \times 10$ job shop, $r_{i}=0$ (time unit: min)

| $J_{i}$ | $d_{i}$ (due date) | $w_{i}$ (weight) |
| :---: | :---: | :---: |
| $J_{1}$ | 592 | 1 |
| $J_{2}$ | 769 | 2 |
| $J_{3}$ | 852 | 3 |
| $J_{4}$ | 982 | 1 |
| $J_{5}$ | 589 | 3 |
| $J_{6}$ | 744 | 2 |
| $J_{7}$ | 624 | 3 |
| $J_{8}$ | 808 | 2 |
| $J_{9}$ | 895 | 1 |
| $J_{10}$ | 810 | 1 |

### 3.7.2 Machine tools' electrical characteristics

The electricity characteristics for the E-F\&T $10 \times 10$ job shop are generated and shown in Table 3.4 based on the method described in Section 3.2.1

Table 3.4: The electricity characteristics for the E-F\&T $10 \times 10$ job shop

| $M_{k}$ | $P_{k}^{\text {idle }}$ | $P_{k}^{\text {turnoff }}$ | $P_{k}^{\text {turnon }}$ | $t_{k}^{\text {turnoff }}$ | $t_{k}^{\text {turnon }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $M_{1}$ | 2400 W | 1700 W | 1500 W | 1.2 min | 4.3 min |
| $M_{2}$ | 3360 W | 1800 W | 2000 W | 1.6 min | 5.7 min |
| $M_{3}$ | 2000 W | 1400 W | 1300 W | 0.8 min | 4.0 min |
| $M_{4}$ | 1770 W | 1100 W | 1000 W | 0.8 min | 3.2 min |
| $M_{5}$ | 2200 W | 1400 W | 1500 W | 1.3 min | 4.4 min |
| $M_{6}$ | 7500 W | 2000 W | 2400 W | 1.5 min | 6.3 min |
| $M_{7}$ | 2000 W | 1400 W | 1300 W | 0.8 min | 4.0 min |
| $M_{8}$ | 1770 W | 1100 W | 1000 W | 0.8 min | 3.2 min |
| $M_{9}$ | 2200 W | 1400 W | 1500 W | 1.3 min | 4.4 min |
| $M_{10}$ | 7500 W | 2000 W | 2400 W | 1.5 min | 6.3 min |

### 3.7.3 Job-machine related electricity consumption:

The value of each $P_{i k}^{l}$, which is the average runtime operations and cutting power of $O_{i k}^{l}$ on $M_{k}$, also need to be defined. Based on the references mentioned in Section 3.2.1 the interval of the average runtime operations and cutting power of each $M_{k}$ is defined in Table 3.5. All of the $P_{i k}^{l}$ values are uniformly distributed integers in these ranges. For instance, $P_{11}^{1}$ is the average runtime operations and cutting power of operation $O_{11}^{1}$, which is an integer within the interval of [2420W, 4000W]. Thus, for each $P_{i k}^{l}$, values are randomly generated within its reasonable interval for the E-F\&T $10 \times 10$ job shop, as shown in Table 3.6. For example, $M_{1}(2450)$ means the first operation of job $1\left(J_{1}\right)$ is processed on machine $M_{1}$ with an average runtime operations and cutting power of 2450 watts.

Table 3.5: The range of value for $P_{i k}^{l}$ of each $M_{k}$

| $M_{k}$ | $M_{1}(\mathrm{~W})$ | $M_{2}(\mathrm{~W})$ | $M_{3}(\mathrm{~W})$ | $M_{4}(\mathrm{~W})$ | $M_{5}(\mathrm{~W})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $P_{i k}^{l}$ | $[2420,4000]$ | $[4200,6100]$ | $[3200,5100]$ | $[2200,3600]$ | $[3120,5700]$ |
| $M_{k}$ | $M_{6}(\mathrm{~W})$ | $M_{7}(\mathrm{~W})$ | $M_{8}(\mathrm{~W})$ | $M_{9}(\mathrm{~W})$ | $M_{10}(\mathrm{~W})$ |
| $P_{i k}^{l}$ | $[10000,13000]$ | $[3200,5100]$ | $[2200,3600]$ | $[3120,5700]$ | $[10000,13000]$ |

Table 3.6: The value of each $P_{i k}^{l}$ in the E-F\&T $10 \times 10$ job shop

| $M_{k}\left(p_{i k}^{l}\right)$ | $P_{i k}^{1}(\mathrm{~W})$ | $P_{i k}^{2}(\mathrm{~W})$ | $P_{i k}^{3}(\mathrm{~W})$ | $P_{i k}^{4}(\mathrm{~W})$ | $P_{i k}^{5}(\mathrm{~W})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $J_{1}$ | $M_{1}(2450)$ | $M_{2}(5730)$ | $M_{3}(5000)$ | $M_{4}(2700)$ | $M_{5}(4300)$ |
| $J_{2}$ | $M_{1}(3900)$ | $M_{3}(3300)$ | $M_{5}(5550)$ | $M_{10}(11080)$ | $M_{4}(3250)$ |
| $J_{3}$ | $M_{2}(5700)$ | $M_{1}(2550)$ | $M_{4}(3600)$ | $M_{3}(4900)$ | $M_{9}(5700)$ |
| $J_{4}$ | $M_{2}(4350)$ | $M_{3}(4760)$ | $M_{1}(3970)$ | $M_{5}(3170)$ | $M_{7}(3780)$ |
| $J_{5}$ | $M_{3}(4620)$ | $M_{1}(3520)$ | $M_{2}(5600)$ | $M_{6}(12800)$ | $M_{4}(2980)$ |
| $J_{6}$ | $M_{3}(5050)$ | $M_{2}(4750)$ | $M_{6}(11700)$ | $M_{4}(3050)$ | $M_{9}(4300)$ |
| $J_{7}$ | $M_{2}(6000)$ | $M_{1}(2800)$ | $M_{4}(3540)$ | $M_{3}(5100)$ | $M_{7}(3970)$ |
| $J_{8}$ | $M_{3}(4670)$ | $M_{1}(3600)$ | $M_{2}(4200)$ | $M_{6}(13000)$ | $M_{5}(4760)$ |
| $J_{9}$ | $M_{1}(3870)$ | $M_{2}(5500)$ | $M_{4}(2560)$ | $M_{6}(10500)$ | $M_{3}(3250)$ |
| $J_{10}$ | $M_{2}(5100)$ | $M_{1}(2980)$ | $M_{3}(3500)$ | $M_{7}(4890)$ | $M_{9}(3970)$ |
| $M_{k}\left(p_{i k}^{l}\right)$ | $P_{i k}^{6}(\mathrm{~W})$ | $P_{i k}^{7}(\mathrm{~W})$ | $P_{i k}^{8}(\mathrm{~W})$ | $P_{i k}^{9}(\mathrm{~W})$ | $P_{i k}^{10}(\mathrm{~W})$ |
| $J_{1}$ | $M_{6}(11200)$ | $M_{7}(4900)$ | $M_{8}(2670)$ | $M_{9}(5130)$ | $M_{10}(10000)$ |
| $J_{2}$ | $M_{2}(5800)$ | $M_{7}(4900)$ | $M_{6}(12100)$ | $M_{8}(3600)$ | $M_{9}(5000)$ |
| $J_{3}$ | $M_{6}(10900)$ | $M_{8}(2300)$ | $M_{7}(4280)$ | $M_{10}(12700)$ | $M_{5}(3370)$ |
| $J_{4}$ | $M_{9}(5290)$ | $M_{8}(2960)$ | $M_{4}(2750)$ | $M_{10}(13000)$ | $M_{6}(12500)$ |
| $J_{5}$ | $M_{5}(5210)$ | $M_{9}(4780)$ | $M_{8}(3250)$ | $M_{10}(11800)$ | $M_{7}(5000)$ |
| $J_{6}$ | $M_{51}(12080)$ | $M_{1}(2420)$ | $M_{7}(4480)$ | $M_{5}(3520)$ | $M_{8}(2720)$ |
| $J_{7}$ | $M_{6}(13000)$ | $M_{10}(12030)$ | $M_{9}(3390)$ | $M_{8}(3500)$ | $M_{5}(5500)$ |
| $J_{8}$ | $M_{7}(5100)$ | $M_{9}(5690)$ | $M_{10}(10000)$ | $M_{8}(2900)$ | $M_{4}(3520)$ |
| $J_{9}$ | $M_{10}(10060)$ | $M_{7}(3450)$ | $M_{8}(2520)$ | $M_{5}(4000)$ | $M_{9}(4260)$ |
| $J_{10}$ | $M_{10}(12700)$ | $M_{6}(10000)$ | $M_{4}(3400)$ | $M_{5}(5210)$ | $M_{8}(3500)$ |

### 3.7.4 The Rolling Blackout policy

This electricity supply pattern is developed based on the fact that in some areas in China the government electricity is available only from Monday to Thursday in one week, which means in $3 / 7$ of the production time private electricity has to be employed. In some other areas, the government electricity is available for several hours in a working day. The private electricity costs twice as much as the government supplied resource. Thus, it can be defined that the electricity price $p^{e}=12.5$ pence/ $k W h$ if it is government electricity supply, while $p^{e}=20.5$ pence $/ k W h$ if it is private electricity supply. The cycle period $T$ of the Rolling Blackout policy is 10 hours. The government electricity supply available period $\Delta t_{s}=480 \mathrm{~min}$ and the government electricity supply unavailable period $\Delta t_{o}=120 \mathrm{~min}$

### 3.8 Summary

An experimental environment which includes six different scenarios is designed in this chapter. A scenarios comparison experiment is proposed to demonstrate that NSGA-II is effective in solving both ECT and EC2T problems, and the developed

Multi-objective Genetic Algorithm for solving the ECT job shop scheduling problem (GAEJP) is effective in solving the ECT problem. The mathematical models for both of the ECT and EC2T are presented. Based on the models, a modified job shop instance has been developed and presented which incorporates electrical consumption profiles for machine tools and the Rolling Blackout policy constraints. The models proposed are one of the main contributions of this thesis, since the electricity consumption profile of machine tools has for the first time been formalised and integrated into the classical job shop model. On the other hand, the model for the Rolling Blackout policy has been formalised for the first time in this research.

# CHAPTER 4 MINIMISING TOTAL ENERGY CONSUMPTION AND TOTAL WEIGHTED TARDINESS IN JOB SHOPS USING NSGA-II 

### 4.1 Introduction

The goal in this chapter is to investigate the effectiveness of NSGA-II in reducing the total non-processing electricity consumption in a basic job shop by changing the processing sequence of jobs on each machine. This problem is modelled as a biobjective optimisation problem (ECT) in Chapter 3. The multi-objective optimisation algorithm NSGA-II has been chosen to obtain a set of alternative solutions (a Paretofront), which can be used by a manager to determine the most suitable solution that can be implemented. The performance of the algorithm has been tested on four extended version of job shop instances which incorporate electrical consumption profiles for the machine tools. The results are compared with the optimisation result of a well-established traditional scheduling approach of a manufacturing company without considering reducing the total electricity consumption as an objective. Employing Sequencing as the electricity and E-cost saving method, the NSGA-II is proved to be effective in solving the ECT and reducing the total non-processing electricity consumption.

### 4.2 The baseline scenario (Scenario 1)

Scenario $1(\mathrm{~S} 1)$ is created to represent the traditional circumstance when manufacturing companies develop their scheduling plans. The Shifting Bottleneck Heuristic (SBH) and Local Search Heuristic (LSH) approaches provided by the software LEKIN (Pinedo 2009) will be used as the optimisation techniques in this scenario. The parameters of Scenario 1 are defined in Table 4.1, where $f$ is the tardiness factor, $s^{f}$ is the optimised scheduling plan under different tardiness constraints; for instance, $s^{1.5}$ is the optimal scheduling plan obtained in the single optimisation circumstance when $f=1.5 ; t w t_{s 1}^{f}$ and $n p e_{s 1}^{f}$ represent the total weighted tardiness and total non-processing electricity of the scheduling plan $s^{f}$, respectively. For the four job shop instances presented in Appendix I, both Shifting Bottleneck Heuristic and Local Search Heuristic are applied as the optimisation approach. The scheduling
plans with minimum objective values are total weighted tardiness are adopted and the total non-processing electricity consumption is calculated, as shown in Table 4.2. Table 4.3. Table 4.4 and Table 4.5. These results will be compared with the optimisation results delivered by NSGA-II in Section 4.4. The due date is decided by the tardiness factor $f$, where, for instance, $f=1.5$, represents a tight due date case (corresponds to $50 \%$ tardy jobs). Thus, the value of $f$ for each job shop instance is gradually increased until $f=1.9$ in the experiments. When $f=1.9$, in most of job shop instances the value of total weighted tardiness reaches 0 , which means the due date is loose enough so that all jobs can be delivered before the deadline. For instance, the first row of Table 4.2 shows that for the E-F\&T $10 \times 10$ job shop, when the tardiness factor is 1.5 , the optimal value of the total weighted tardiness $\left(t w t_{s 1}^{1.5}\right)$ that can be achieved is 309 weighted minutes. This result is obtained by the Shifting Bottleneck Heuristic. Based on this optimal schedule, the value of the total non-processing electricity consumption ( $n p e_{s 1}^{1.5}$ ) can be calculated, which is 181 kWh .

Table 4.1: Parameters of Scenario 1

| Objective | $\bullet$ minimise $\sum_{i=1}^{n} w_{i} \times T_{i}\left(s^{f}\right)$ |
| :--- | :--- |
| Indicators | $\bullet t w t_{s 1}^{f}=\sum_{i=1}^{n} w_{i} \times T_{i}\left(s^{f}\right)$ |
|  | $\bullet n p e_{s 1}^{f}=\sum_{k=1}^{m} T E M_{k}^{n p}\left(s^{f}\right)$ |
| Optimisation Method | Shifting Bottleneck Heuristic (SBH) <br>  <br>  <br> LSMs implementation Search Heuristic (LSH) |

Table 4.2: The optimisation result of SBH and LSH of the E-F\&T $10 \times 10$ job shop by LEKIN

| Tardiness factor $(f)$ | TWT $\left(t w t_{s 1}^{f}\right)$ <br> in <br> weighted min | Total NPE $\left(n p e_{s 1}^{f}\right)$ <br> in <br> kWh | Heuristic |
| :---: | :---: | :---: | :---: |
| 1.5 | 309 | 181 |  |
| 1.6 | 127 | 181 | SBH |
| 1.7 | 25 | 169.7 | SBH |
| 1.8 | 0 | 169.7 | LSH |

Table 4.3: The optimisation result of SBH and LSH of the E-Lawrence $15 \times 10$ job shop by LEKIN

| Tardiness factor $(f)$ | TWT $\left(t w t_{s 1}^{f}\right)$ <br> in <br> weighted min | Total NPE $\left(n p e_{s 1}^{f}\right)$ <br> in <br> kWh | Heuristic |
| :---: | :---: | :---: | :---: |
| 1.5 | 1321 | 212.8 | LSH |
| 1.6 | 694 | 207.7 | LSH |
| 1.7 | 293 | 230.7 | LSH |
| 1.8 | 53 | 169.3 | LSH |
| 1.9 | 0 | 200.0 | LSH |

Table 4.4: The optimisation result of SBH and LSH of the E-Lawrence $20 \times 10$ job shop by LEKIN

| Tardiness factor $(f)$ | TWT $\left(t w t_{s 1}^{f}\right)$ <br> in <br> weighted min | Total NPE $\left(n p e_{s 1}^{f}\right)$ <br> in <br> kWh | Heuristic |
| :---: | :---: | :---: | :---: |
| 1.5 | 5099 | 153.5 | LSH |
| 1.6 | 4032 | 111.2 | LSH |
| 1.7 | 2805 | 122.1 | LSH |
| 1.8 | 2066 | 137.0 | LSH |
| 1.9 | 1352 | 126.7 | LSH |

Table 4.5: The optimisation result of SBH and LSH of the E-Lawrence $15 \times 15$ job shop by LEKIN

| Tardiness factor $(f)$ | TWT $\left(t w t_{s 1}^{f}\right)$ <br> in <br> weighted min | Total NPE $\left(n p e_{s 1}^{f}\right)$ <br> in <br> kWh | Heuristic |
| :---: | :---: | :---: | :---: |
| 1.5 | 600 | 436.9 | LSH |
| 1.6 | 71 | 424.0 | LSH |
| 1.7 | 0 | 458.3 | LSH |

### 4.3 Solving the ECT with NSGA-II (Scenario 2)

In Scenario 2, minimising the total non-processing electricity consumption is considered as one of the objectives for proposing a job shop scheduling plan. The total nonprocessing electricity consumption in this scenario refers only to the idle electricity consumption when the machine is not in use. Only the Sequencing method is applied in this scenario, but not Turn Off/Turn On yet. NSGA-II is used as the optimisation approach. The Pareto-front formed by $p$ non-dominated solutions (a group of scheduling plans) will be obtained after the optimisation process. Thus, indicators' values of Scenario 2 are:

$$
\begin{align*}
t w t_{s 2}^{f q} & =f_{1}\left(s^{f q}\right)=\sum_{i=1}^{n} w_{i} \times T_{i}\left(s^{f q}\right)  \tag{4.1}\\
n p e_{s 2}^{f q} & =f_{2}\left(s^{f q}\right)=\sum_{k=1}^{m} T E M_{k}^{n p}\left(s^{f q}\right) \tag{4.2}
\end{align*}
$$

$f$ is the tardiness factor, and $s^{f q}$ is the $q$-th optimised scheduling plan in the total $p$ solutions under different tardiness constraints. The parameters of Scenario 2 are shown in Table 4.6. $t w t_{s 2}^{f}$ is the set of total weighted tardiness of solutions obtained by NSGA-II, where the subscript $s 2$ represents Scenario 2 . The superscript $f$ represents the tardiness factor. $t w t_{s 2}^{f q}$ is one of the elements in $t w t_{s 2}^{f}$, which represents the total weighted tardiness of the $q$-th optimised scheduling plan in $p$ solutions under different tardiness constraints. Similarly, $n p e_{s 2}^{f}$ is the set of total non-processing electricity consumption of solutions obtained by NSGA-II. $n p e_{s 2}^{f q}$ is the total nonprocessing electricity consumption of the $q$-th optimised scheduling plan in $p$ solutions.

Table 4.6: Parameters of Scenario 2

| Objective | $\bullet$ minimise $\sum_{i=1}^{n} w_{i} \times T_{i}(s)$ |
| :--- | :--- |
|  | $\bullet$ minimise $\sum_{k=1}^{m} T E M_{k}^{n p}(s)$ |
| Indicators | $\bullet t w t_{s 2}^{f}=\left\{t w t_{s 2}^{f q}\right\}_{q=1}^{p}$ |
|  | $\bullet n p e_{s 2}^{f}=\left\{n p e_{s 2}^{f q}\right\}_{q=1}^{p}$ |
| Optimisation Method | NSGA-II |
| ESMs implementation | Sequencing |

Table 4.7: Expected results for scenarios comparison for the ECT problem

| Scenarios comparison | Expected result |
| :--- | :--- |
| Compare Scenario 2 to $t w t_{s 1}^{f} \leq$ minimum of $t w t_{s 2}^{f}, \exists n p e_{s 2}^{f q} \leq n p e_{s 1}^{f}$ |  |
| Scenario 1 |  |

Table 4.7 presents the expected results of comparison between Scenario 2 and Scenario 1. It is used to justify the proposal NSGA-II in Scenario 2 can effectively reduce the total non-processing electricity consumption. However, decreasing in the total non-processing electricity consumption of a scheduling plan might degrade its performance on the objective of minimising the total weighted tardiness. It is the decision maker's responsibility to judge whether the loss in delivery is acceptable or not. Based on the aforementioned scenario comparison experiment, it can be ex-
pected that NSGA-II is effective in solving the ECT problem. This hypothesis will be proved by the following content of this chapter. The procedure of NSGA-II is introduced in the following section.

### 4.3.1 NSGA-II

The NSGA-II has two main operators: This algorithm has two main operators: the non-dominated sorting procedure and crowding distance sorting procedure. Nondominated sorting procedure ranks the solutions in different Pareto fronts. The crowded distance sorting procedure calculates the dispersion of solutions in each front and preserves the diversification of the algorithm. In each generation of this algorithm, these two functions form the Pareto fronts (Rabiee et al., 2012). Vilcot and Billaut (2008) provide a summary for the working procedure of NSGA-II, as in following. For more information refer to Deb et al. (2002).

### 4.3.1.1 Non-dominated sorting procedure

All solutions of a certain population (denoted by $P_{t}$ ) are evaluated according to the non-dominated sorting method as shown in Figure 4.1. Level 1 contains all the dominant individuals within the population. If individuals in the first level are not considered, the second set of dominant individuals constitutes level 2 . The process iterates until each individual belongs to one level. The level (rank) where an individual locates is the most important factor of its fitness. An individual with a lower rank is preferable. The fast non-dominated sorting procedure is described in Figure 4.3 $p \prec q$ means that solution $p$ strictly dominates solution $q$.

For each solution we calculate two entities: 1) Domination count $n_{p}$, the number of solutions which dominate the solution $p$, and 2) $S_{p}$, a set of solutions that the solution $p$ dominates. All solutions in the first non-dominated front will have their domination count as zero. $p_{\text {rank }}$ is the order of front that the solution $p$ belongs to. Then, for each solution $p$ with $n_{p}=0$, we visit each member $(q)$ of its set $S_{p}$ and reduce its domination count by one. In doing so, if for any member $q$ the domination count becomes zero, we put it in a separate list $Q$. These members belong to the second nondominated front. The above procedure is continued with each member of $Q$ and the third front is identified. This process continues until all fronts are identified. For each
solution $p$ in the second or higher level of non-domination, the domination count $n_{p}$ can be at most $N-1$.


Figure 4.1: Non-dominated levels (Deb et al. 2002)


Figure 4.2: Computation of the crowding distance (Deb et al. 2002)

### 4.3.1.2 Crowding distance sorting procedure

The crowding distance of a solution is defined by Deb et al., (2002) as an estimate of the density of solutions in the perimeter of the cuboid formed by using the nearest neighbours as the vertices. The diversity of the population is guaranteed by using the crowding distance sorting procedure. For an individual, the crowding distance is the sum of the normalised distance between the right and left neighbours for each objective function. The extreme solutions have a crowding distance equal to infinity (see Figure 4.2. The algorithm in Figure 4.4 outlines the crowding-distance computation procedure of all solutions in a non-dominated set $I$. Here, $I[i]$. $m$ refers to the $m$-th objective function value of the $i$-th individual in the set $I . f_{m}^{\max }$ and $f_{m}^{\min }$ are the maximum and minimum values of the $m$-th objective function.

```
Fast-non-dominated-sort ( \(P\) )
for each \(p \in P\)
    \(S_{p}=\emptyset\)
    \(n_{p}=0\)
    for each \(q \in P\)
                if \((p<q)\) then If \(p\) dominates \(q\)
                    \(S_{p}=S_{p} \cup\{q\} \quad\) Add \(q\) to the set of solutions dominated by \(p\)
            else if \((q<p)\) then
                \(n_{p}=n_{p}+1 \quad\) Increment the domination counter of \(p\)
    if \(n_{p}=0\) then
            \(p_{\text {rank }}=1\)
            \(F_{1}=F_{1} \cup\{p\}\)
\(i=1 \quad\) Initialise the front counter
while \(F_{i} \neq \emptyset\)
    \(Q=\varnothing\)
    for each \(p \in F_{i}\)
        for each \(q \in S_{p}\)
        \(n_{q}=n_{q}-1\)
        if \(n_{q}=0\) then \(\quad q\) belongs to the next front
        \(q_{\text {rank }}=i+1\)
        \(Q=Q \cup\{q\}\)
    \(i=i+1\)
    \(F_{i}=Q\)
```

Figure 4.3: The pseudo-code for the non-dominanted sorting procedure
(Deb et al. 2002)

```
Crowding-distance-assignment (I)
\(l=|I| \quad\) Number of solutions in \(I\)
for each \(i\), set \(I[i]\).distance \(=0 \quad\) Initialise distance
for each objective \(m\)
    \(I=\operatorname{sort}(I, m)\)
\(I[1] \cdot\) distance \(=I[l]\). distance \(=\infty\)
    for \(i=2\) to \((l-1)\)
\(I[i]\). distance \(=I[i]\). distance
\(+(I[i+1] \cdot m-I[i+1] \cdot m) /\left(f_{m}^{\max }-f_{m}^{\min }\right)\)
Sort using each objective value So that boundary points are always selected For all other points
\(I[i]\). distance \(=I[i]\). distance
\(+(I[i+1] \cdot m-I[i+1] \cdot m) /\left(f_{m}^{\max }-f_{m}^{\min }\right)\)
```

Figure 4.4: The pseudo-code for the crowding distance procedure
(Deb et al. 2002)

### 4.3.1.3 Crowded-comparison operator

Based on Section 4.3.1.1 and Section 4.3.1.2 every individual $i$ in the population has two attributes:

1) Non-domination rank $\left(i_{\text {rank }}\right)$;
2) Crowding distance $\left(i_{\text {distance }}\right)$;

The crowded-comparison operator (a partial order) $<_{n}$ can be defined as:

$$
\begin{gathered}
i<_{n} j \text { if }\left(i_{\text {rank }}<j_{\text {rank }}\right) \\
\qquad \text { or }\left(i_{\text {rank }}=j_{\text {rank }}\right) \\
\text { and }\left(i_{\text {distance }}>j_{\text {distance }}\right)
\end{gathered}
$$

The selection operator is a binary tournament: between two randomly selected individuals, the selected individual is the one with the lower rank. If two individuals are on the same level, the winner is the one with the larger value of the crowding distance.

### 4.3.1.4 The procedure of NSGA-II

In the beginning of the algorithm, an initial population $P_{0}$ with the size of $N$ is randomly generated. All the individuals of $P_{0}$ are sorted using the non-dominated sorting procedure and the crowding distance sorting procedure. Then, the algorithm employs selection, crossover and mutation operators to create the first offspring set $Q_{0}$ $\left(\left|Q_{0}\right|=N\right)$. The selection process employs the crowded-comparison operator and binary tournament method described in Section 4.3.1.3. At a given generation $t, R_{t}$ is defined as the union of the parents $P_{t}$ and their offspring $Q_{t}$. Thus, $\left|R_{t}\right|=2 N$. Individuals of $R_{t}$ are sorted following the aforementioned two procedures. Front $F_{f}$ is defined as the set of non-dominated solutions of level $f$. The individuals in $P_{t+1}$ are the solutions of front $F_{1}$ to $F_{\lambda}$ with $\lambda$ such that $\sum_{i=1}^{\lambda}\left|F_{i}\right| \leq N$ and $\sum_{i=1}^{\lambda+1}\left|F_{i}\right|>N$ plus the $N-\sum_{i=1}^{\lambda}\left|F_{i}\right|$ first solutions of $F_{\lambda+1}$ according to their descending value in crowding distance. The remaining solutions are rejected. Solutions from $P_{t+1}$ are used to make the new offspring population $Q_{t+1}$. Figure 4.5 illustrates the generation of population $P_{t+1}$ and Figure 4.6 shows the whole process of NSGA-II.


Figure 4.5: Construction of population $P_{t+1}$


Figure 4.6: The flowchart of NSGA-II

The OBES and active schedule builder (see Section 2.3.3 are adopted in this Scenario. The binary tournament is adopted as the selection operator (See Section 2.3.2 Referring to Liu \& Wu (2008), Cheng et al. (1999) and Ono et al. (1996), the crossover and mutation operators and stopping criteria are explained in the following section. These operators are selected since they have been widely used in solving job shop scheduling problems with genetic algorithms. The crossover operator described below is particularly suitable for job shop scheduling problems.

### 4.3.2 Crossover operator

The operation-based order crossover (OOX) which is developed based on the jobbased order crossover (JOX) is adopted as the crossover operator. The advantage of OOX is that it can avoid producing an illegal chromosome as offspring. Given parent $1-A_{1}$ and parent $2-A_{2}$, OOX generates child $1-A_{1}^{\prime}$ and child $2-A_{2}^{\prime}$ by the following procedure:

1. Randomly, choose the same operations from both parents. The loci of the selected operations are preserved.
2. Copy the operations chosen at step 1 from $A_{1}$ to $A_{1}^{\prime}, A_{2}$ to $A_{2}^{\prime}$, the loci of them are preserved in the offspring.
3. Copy the operations, which are not copied at step 2 , from $A_{2}$ to $A_{1}^{\prime}, A_{1}$ to $A_{2}^{\prime}$, their order is preserved in the offspring.

For example, in a $3 \times 3$ job shop, [321123321] and [222333111] are feasible parent chromosomes. The loci of operations, which are $O_{32}^{1}, O_{22}^{2}$ and $O_{13}^{3}$ in the boxes are preserved.

$$
\begin{aligned}
& A_{1}=[3211 \boxed{2} 332 \boxed{1}] \\
& A_{2}=[2 \boxed{2} 2 \sqrt[3]{3} 311 \sqrt{1}]
\end{aligned}
$$

$A_{1}^{\prime}$ and $A_{2}^{\prime}$ are feasible child chromosomes as shown below:

$$
\begin{aligned}
& A_{1}^{\prime}=[3223 \boxed{2} 311 \boxed{1}] \\
& A_{2}^{\prime}=[2 \boxed{2} 1 \sqrt{3} 1332 \boxed{1}
\end{aligned}
$$

The crossover rate will be added according to the experimental results.

### 4.3.3 Mutation operator

The swap mutation operator is employed which means that two different arbitrary genes of the chromosome in the mating pool after the crossover procedure are chosen and then the values are swapped. Following the above example, $A_{1}^{\prime \prime}$ is the final child chromosome of $A_{1}$ after applying mutation on $A_{1}^{\prime}$.

$$
A_{1}^{\prime}=[3 2 \boxed { 2 } 3 2 3 1 \longdiv { 1 } 1]
$$

$$
A_{1}^{\prime \prime}=[32 \boxed{1} 323121]
$$

The mutation rate will be added according to the experimental results. After the mutation, all parents in the population will be replaced by offsprings.

### 4.3.4 Stopping criteria

The maximum number of generations is used as the stopping criteria. When the algorithm reaches this stage, the algorithm stops, and the approximate Pareto-front is contained in the current set of non-dominated solutions.

### 4.4 Comparison between Scenario 2 and Scenario 1

The optimal parameters settings of the NSGA-II for the operators and stopping criteria, which provide the best final solution, are obtained after the initial tuning process, as shown in Table 4.8. Table 4.9. Table 4.10 and Table 4.11. The values of the tardiness factor f for each job shop are the same as those in Scenario 1, as described in Section 4.2 During the tuning process, the values used for the crossover rate are $[0.8,0.9,1.0]$, for the mutation rate are $[0.01,0.02,0.05,0.1,0.2,0.3,0.4,0.5,0.6]$, for the number of generations are $[25000,30000,35000,40000,45000,50000]$, for the population size are $[500,600,700,800,900,1000]$. Different combinations of the aforementioned values are tested in the experiments. Based on these tests, the optimal parameters setting of the NSGA-II for each case can be obtained. Take the first row in Table 4.8 as an example, for the E-F\&T $10 \times 10$ job shop, when the tardiness factor is 1.5 , with the population size of 1000 , crossover probability of 1.0 , mutation probability of 0.6 , the NSGA-II has been run for 40000 generations to achieve the optimal solution. Actually, during the test, the algorithm has been run for 50000 generations, but the solutions did not improve in the 40000 's to 50000 's generations. Thus, 40000 is the best value for the numbers of generations in this case. The same method has been applied to find the best value for the number of generations for other cases. It also can be found from Table 4.8 that a comparatively high mutation probability is used in the algorithm for the E-F\&T $10 \times 10$ job shop. The reason for this situation might be that the population size is not large enough. Since generally, a larger population size means a higher diversity of population. Thus, a lower mutation rate can be used if the diversity of the population is originally high. Therefore, in the future work, larger values in the population size will be tested.

Table 4.8: The parameters settings for the NSGA-II (E-F\&T $10 \times 10$ job shop)

| Tardiness | Population | Crossover | Mutation | Generation |
| :---: | :---: | :---: | :---: | :---: |
| Factor | size | probability | probability | $t$ |
| $f$ | $N$ | $p_{c}$ | $p_{m}$ |  |
| 1.5 | 1000 | 1.0 | 0.6 | 40000 |
| 1.6 | 1000 | 1.0 | 0.6 | 40000 |
| 1.7 | 800 | 1.0 | 0.6 | 30000 |
| 1.8 | 800 | 1.0 | 0.6 | 25000 |

Table 4.9: The parameters settings for the NSGA-II (E-Lawrence $15 \times 10$ job shop)

| Tardiness |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Factor | Population <br> size | Crossover <br> probability | Mutation <br> probability | Generation <br> $t$ |
| $f$ | $N$ | $p_{c}$ | $p_{m}$ |  |
| 1.5 | 500 | 0.9 | 0.1 | 30000 |
| 1.6 | 500 | 0.9 | 0.2 | 30000 |
| 1.7 | 800 | 0.9 | 0.2 | 30000 |
| 1.8 | 800 | 0.9 | 0.1 | 40000 |
| 1.9 | 800 | 0.9 | 0.2 | 40000 |

Table 4.10: The parameters settings for the NSGA-II (E-Lawrence $20 \times 10$ job shop)

| Tardiness | Population <br> Factor | Crossover <br> size | Mutation <br> probability | Generation <br> probability |
| :---: | :---: | :---: | :---: | :---: |
| $f$ | $N$ | $p_{c}$ | $p_{m}$ | $t$ |
| 1.5 | 500 | 0.9 | 0.1 | 20000 |
| 1.6 | 500 | 0.9 | 0.1 | 30000 |
| 1.7 | 500 | 0.9 | 0.1 | 30000 |
| 1.8 | 500 | 0.9 | 0.1 | 25000 |
| 1.9 | 500 | 0.9 | 0.1 | 30000 |

Table 4.11: The parameters settings for the NSGA-II (E-Lawrence $15 \times 15$ job shop)

| Tardiness | Population <br> sactor | Crossover <br> probability | Mutation <br> probability | Generation <br> $t$ |
| :---: | :---: | :---: | :---: | :---: |
| $f$ | $N$ | $p_{c}$ | $p_{m}$ |  |
| 1.5 | 1000 | 0.9 | 0.2 | 40000 |
| 1.6 | 1000 | 0.9 | 0.1 | 40000 |
| 1.7 | 800 | 0.9 | 0.2 | 30000 |

The algorithm has been developed based on the Jmetal framework (Nebro and Durillo, 2011). The comparisons between the solutions in S1 (a single objective job shop scheduling problem) and the solutions in Scenario 2 are shown in Figure 4.7.

| Figure 4.8. Figure 4.9 | and Figure 4.10. |
| :--- | :--- |



Figure 4.7:The solution comparison between NSGA-II and the baseline scenario (E-F\&T $10 \times 10$ job shop)


Figure 4.8: The solution comparison between NSGA-II and the baseline scenario (E-Lawrence $15 \times 10$ job shop)


Figure 4.9: The solution comparison between NSGA-II and the baseline scenario (E-Lawrence $20 \times 10$ job shop)


Figure 4.10: The solution comparison between NSGA-II and the baseline scenario (E-Lawrence $15 \times 15$ job shop)

In the above figures, the hollow points represent the optimisation results of LEKIN which had been shown in Table 4.2.Table 4.5. The solid points represent the optimisation results of NSGA-II. Analysing these figures, a considerable total nonprocessing electricity consumption reduction can be observed when employing NSGA-II as the bi-objective optimisation approach, compared to the single objective optimisation result of Shifting Bottleneck Heuristic and Local Search Heuristic. The non-processing electricity consumption reductions in percentage for each job shop are shown in Table 4.12 and Table 4.13. Compared to the results of LEKIN, an increase in total weighted tardiness values of the NSGA-II results can also be observed from the above figures. The total weighted tardiness increases in weighted minutes for each job shop instance under different tardiness conditions are shown in Table 4.14 and Table 4.15. These two tables demonstrate the range for the total weighted tardiness deterioration of the optimisation result of NSGA-II when compared to the LEKIN result. It can be observed that total weighted tardiness reduces when the due date become less tight, i.e. when the value of $k$ increases. Take the E-F\&T $10 \times 10$ job shop as an example, when $f=1.5$, the minimum and maximum value of $n p e_{s 2}^{1.5}$ are 61 kWh and 172 kWh respectively, which means a $5.0 \%$ to $66.3 \%$ improvement in the total non-processing electricity consumption compared to the values obtained by LEKIN, which is 181 Kwh . There is an increase in total weighted tardiness, the minimum value of $n p e_{s 2}^{1.5}$ is 1226 weighted min, while $t w t_{s 1}^{1.5}=309$ weighted min. However, when the due date becomes less tight, the difference between $t w t_{s 2}^{f}$ and $t w t_{s 1}^{f}$ is much smaller. For instance, when $f=1.8, \min \left\{t w t_{s 2}^{1.8}\right\}-t w t_{s 1}^{1.8}=241$ weighted min, at the same time, the total non-processing electricity consumption reduction is $16.9 \%$ compared to the value obtained by LEKIN.

Table 4.12: The NPE improvement in percentage for E-F\&T $10 \times 10$ and ELawrence $15 \times 10$

| Compare NSGA-II <br> to <br> LEKIN | E-F\&T $10 \times 10$ |  |  |  | E-Lawrence $15 \times 10$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{f}=1.5$ | $\mathrm{f}=1.6$ | $\mathrm{f}=1.7$ | $\mathrm{f}=1.8$ | $\mathrm{f}=1.5$ | $\mathrm{f}=1.6$ | $\mathrm{f}=1.7$ | $\mathrm{f}=1.8$ | $\mathrm{f}=1.9$ |  |
| NPE | $\min$ | $5.0 \%$ | $5.0 \%$ | $8.7 \%$ | $16.9 \%$ | $24.0 \%$ | $21.1 \%$ | $30.1 \%$ | $4.9 \%$ | $6.3 \%$ |
| Improvement | $\max$ | $66.3 \%$ | $66.3 \%$ | $62.3 \%$ | $64.1 \%$ | $37.7 \%$ | $42.7 \%$ | $44.2 \%$ | $21.9 \%$ | $36.2 \%$ |

Table 4.13: The NPE improvement in percentage for E-Lawrence $20 \times 10$ and ELawrence $15 \times 15$

| Compare NSGA-II <br> to <br> LEKIN | E-Lawrence $20 \times 10$ |  |  |  |  | E-Lawrence $15 \times 15$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{f}=1.5$ | $\mathrm{f}=1.6$ | $\mathrm{f}=1.7$ | $\mathrm{f}=1.8$ | $\mathrm{f}=1.9$ | $\mathrm{f}=1.5$ | $\mathrm{f}=1.6$ | $\mathrm{f}=1.7$ |  |
| NPE <br> Improvement | $\min$ | $41.9 \%$ | $22.6 \%$ | $34.9 \%$ | $44.7 \%$ | $21.5 \%$ | $24.0 \%$ | $21.1 \%$ | $30.1 \%$ |
|  | $\max$ | $58.8 \%$ | $48.1 \%$ | $49.7 \%$ | $53.1 \%$ | $47.9 \%$ | $37.7 \%$ | $42.7 \%$ | $44.2 \%$ |

Table 4.14: The TWT increase in weighted minutes for E-F\&T $10 \times 10$ and $E-$
Lawrence $15 \times 10$

| Compare NSGA-II | E-F\&T $10 \times 10$ |  |  |  | E-Lawrence $15 \times 10$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lo <br> LEKIN | $\mathrm{f}=1.5$ | $\mathrm{f}=1.6$ | $\mathrm{f}=1.7$ | $\mathrm{f}=1.8$ | $\mathrm{f}=1.5$ | $\mathrm{f}=1.6$ | $\mathrm{f}=1.7$ | $\mathrm{f}=1.8$ | $\mathrm{f}=1.9$ |  |
| TWT <br> Increase | $\min$ | 917 | 576 | 668 | 241 | 3736 | 2783 | 2076 | 1442 | 691 |
|  | $\max$ | 4394 | 3706 | 2097 | 2182 | 5385 | 3816 | 3424 | 3824 | 1915 |

Table 4.15: The TWT increase in weighted minutes for E-Lawrence $20 \times 10$ and ELawrence $15 \times 15$

| Compare NSGA-II <br> to <br> to <br> LEKIN | E-Lawrence $20 \times 10$ |  |  |  |  | E-Lawrence $15 \times 15$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{f}=1.5$ | $\mathrm{f}=1.6$ | $\mathrm{f}=1.7$ | $\mathrm{f}=1.8$ | $\mathrm{f}=1.9$ | $\mathrm{f}=1.5$ | $\mathrm{f}=1.6$ | $\mathrm{f}=1.7$ |  |
| TWT <br> Increase | $\min$ | 6603 | 5881 | 5261 | 4734 | 4234 | 1747 | 875 | 298 |
|  | $\max$ | 8359 | 6349 | 6299 | 6911 | 4506 | 1747 | 1263 | 946 |

### 4.5 Discussion

Based on the above, it can be observed that NSGA-II is effective in reducing the total non-processing electricity consumption in a scheduling plan while sacrificing its performance of total weighted tardiness to a certain extent, especially when a very tight due date is presented. However, it can be expected that this sacrifice can be neglected when there are more jobs to be processed in the work shop. For instance, when combining 100 such $10 \times 10$ job shop, the difference between $t w t_{s 2}^{f}$ and $t w t_{s 1}^{f}$ is very small compared to the total weighted production time. Nevertheless, the decrease in the total non-processing electricity consumption will become more and more considerable along with the increasing number of jobs. The upper (part A) and bottom (part B) parts of Figure 4.11 represent the Gantt charts of optimised schedules of Shifting Bottleneck Heuristic and NSGA-II respectively. When $f=1.5$ for the E-F\&T $10 \times 10$ job shop. It can be observed that the schedule produced by NSGA-II has a higher ratio of Production Time compared to the Total Up-Time of the machines (PT/TUP) for most of the machines, as shown in Figure 4.12. In this case, the average values of PT/TUP for all machines in S1 and the NSGA-II optimisation scenario
are $69.5 \%$ and $77.7 \%$ respectively. From above, the scheduling plans produced by NSGA-II are more preferable for managers when considering the real life job shop type manufacturing system. Since the varieties and amounts of components in the real manufacturing circumstance are largely increasing compared to the simple $10 \times 10$ job shop, and the PT/TUP is a very important indicator for shop floor management. As shown in Figure 4.11, the scheduling plan provided by NSGA-II is tighter than the scheduling plan provided in Scenario 1. This means that with the increase of the number of jobs, the NSGA-II scheduling plans can provide more space for new jobs to be scheduled in (as the comparison between the area circled by the red line between Part B and Part A). This further implies that when there are more jobs, the scheduling plan provided by the NSGA-II will keep its good performance on reducing the total NPE and increasing PT/TUP. In addition, it can be observed from Figure 4.7 that the less tight the due date, the less deterioration there is in minimising the total weighted tardiness objective, i.e. the more non-bottleneck machines in the manufacturing system, the larger the opportunity to reduce the total NPE.


Figure 4.11: Gantt chart of optimised schedule of SBH while $f=1.5$
(E-F\&T $10 \times 10$ job shop)


Figure 4.12: Comparison in machine utilisation (E-F\&T $10 \times 10$ job shop)

### 4.6 Summary

Reducing electricity consumption as well as keeping good performance on classical scheduling objectives for job shops is a difficult problem that can take a large amount of time to solve. For solving this problem, the multi-objective optimisation algorithm NSGA-II was applied. The performance of the algorithm has been tested on four extended versions of job shop instances which incorporate electrical consumption profiles for the machine tools. These instances include: Fisher and Thompson $10 \times 10$ job shop scenario, Lawrence $10 \times 10,20 \times 10$ and $15 \times 15$ job shop scenarios. In addition, comparison experiments have been applied where the Shifting Bottleneck Heuristic and the Local Search Heuristic had been adopted as the single objective optimisation techniques to deliver the baseline scenarios of the aforementioned job shops. The result of the comparison indicates that by applying NSGA-II, the total non-processing electricity consumptions in the job shop are decreased considerably, but at the sacrifice of their performance on the total weighted tardiness up to a certain extent. However, it can be expected that this sacrifice can be largely reduced if the number of jobs is increased. This chapter focused only on how to reduce the total non-processing electricity consumption in a basic job shop by changing the processing sequence of jobs on each machine. However, the Turn off/Turn on method developed by Mouzon et al. (2007) is another very effective approach in achiev-
ing this objective. Therefore, developing a new algorithm which enables both the Sequencing and Turn Off/Turn On approaches to be applied to solve the ECT problem is worth investigating. The developed new algorithm is presented in the next chapter.

# CHAPTER 5 MINIMISING TOTAL ENERGY CONSUMPTION AND TOTAL WEIGHTED TARDINESS IN JOB SHOPS USING GAEJP 

### 5.1 Introduction

The Turn off/Turn on method developed by Mouzon et al. (2007) is another very effective approach to reduce the total non-processing electricity consumption in a basic job shop. Thus, in this chapter, the goal is to develop a new algorithm which enables both of the Sequencing and the Turn Off/ Turn On approaches to be optimally utilised in solving the ECT problem. As a result, a multi-objective optimisation algorithm GAEJP is developed based on the NSGA-II (Scenario 3). Its corresponding scheduling techniques are developed as well. The performance of the algorithm has been tested on four extended version of several job shop instances which incorporate electrical consumption profiles for the machine tools. This is compared with the optimisation results of well-established traditional scheduling approaches of a manufacturing company where reducing the electricity consumption is not considered as an objective (Scenario 1). The GAEJP is proved to be effective in solving the ECT and reducing the total non-processing electricity consumption. In the comparison with the optimisation results of NSGA-II (Scenario 2), the GAEJP demonstrated superiority in solving the ECT problem.

### 5.2 Scenario 3 and expected results of the comparison experiment

The Multi-objective Genetic Algorithm for solving the ECT job shop scheduling problem (GAEJP) will be developed in this scenario. The hypothesis is that the new solution is superior to the NSGA-II at solving the ECT problem. This is one of the main contributions of this PhD research. The parameters of Scenario 3 are shown in Table 5.1 $t w t_{s 3}^{f}$ is the set for the objective function values of total weighted tardiness of solutions obtained by the GAEJP. The subscript $s 3$ represents Scenario 3, the superscript $f$ represents the tardiness factor. $t w t_{s 3}^{f q}$ is one of the elements in $t w t_{s 3}^{f}$, which represents the total weighted tardiness of the $q$-th optimised scheduling plan in the total $p$ solutions under different tardiness constraints. Similarly, $n p e_{s 3}^{f}$ is the set for the objective function values of total non-processing electricity consumption of
solutions obtained by the GAEJP. $n p e_{s 3}^{f q}$ is the total non-processing electricity consumption of the $q$-th optimised scheduling plan in the total $p$ solutions under different tardiness constraints.

Table 5.1: Parameters of Scenario 3

| Objective | $\bullet$ minimise $\sum_{i=1}^{n} w_{i} \times T_{i}(s)$ |  |
| :--- | :--- | :--- |
|  | $\bullet$ | minimise $\sum_{k=1}^{m} T E M_{k}^{n p}(s)$ |
| Indicators | $\bullet t w t_{s 3}^{f}=\left\{t w t_{s 3}^{f q}\right\}_{q=1}^{p}$ |  |
|  | $\bullet n p e_{s 3}^{f}=\left\{n p e_{s 3}^{f q}\right\}_{q=1}^{p}$ |  |
| Optimisation Method | Modified NSGA-II (GAEJP) |  |
| ESMs implementation | Turn Off/Turn On; Sequencing |  |

The optimisation objectives, performance indicators of Scenario 3 are the same as in Scenario 2. However, the Turn Off/Turn On method is applied in Scenario 3, which means the non-processing electricity consumption refers to idle and Turn Off/Turn On electricity consumption. An algorithm is proposed based on the NSGA-II as the new solution for the ECT. The Pareto-front formed by $p$ non-dominated solutions (a group of scheduling plans) are obtained after the optimisation process. Thus, indicators' values of Scenario 3 are two sets where:

$$
\begin{align*}
t w t_{s 3}^{f q} & =f_{1}\left(s^{f q}\right)=\sum_{i=1}^{n} w_{i} \times T_{i}\left(s^{f q}\right)  \tag{5.1}\\
n p e_{s 3}^{f q} & =f_{2}\left(s^{f q}\right)=\sum_{k=1}^{m} T E M_{k}^{n p}\left(s^{f q}\right) \tag{5.2}
\end{align*}
$$

$f$ is the tardiness factor, and $s^{f q}$ is the $q$-th optimised scheduling plan in the total $p$ solutions under different tardiness constraints.

Table 5.2: Expected results for scenarios comparison for the ECT problem

$$
\begin{array}{lll}
\hline \text { Scenarios comparison } & \text { Expected result } \\
\hline \text { Compare Scenario } 3 \text { to } & t w t_{s 1}^{f} \leq \text { minimum of } t w t_{s 3}^{f}, \exists n p e_{s 3}^{f q} \leq n p e_{s 1}^{f} \\
\text { Scenario 1 } & & \\
\begin{array}{l}
\text { Compare Scenario } 3 \text { to } \\
\text { Scenario 2 }
\end{array} & \exists n p e_{s 3}^{f q} \leq \forall n p e_{s 2}^{f q} \\
\hline
\end{array}
$$

Table 5.2 presents the expected results of comparison between Scenarios 3 and 1, and the expected results of comparison between Scenarios 3 and 2 . They are used to justify that the GAEJP in Scenario 3 will be effective in reducing the total non-
processing electricity consumption. However, decreasing the total non-processing electricity consumption of a scheduling plan might cause deterioration in its performance on the objective of minimising the total weighted tardiness. It is the decision maker's preference to judge whether the loss in delivery is acceptable or not. The comparison between Scenario 3 and Scenario 2 is to demonstrate that the optimisation approach developed in Scenario 3 is more effective than that in Scenario 2. Based on the aforementioned scenario comparison experiments, it can be expected that the approach delivered in Scenario 3 is currently the most effective one for solving the ECT problem. This hypothesis is proved by the following content of this chapter.

### 5.3 The reason for using the semi-active schedule builder in Scenario 3 and its decoding procedure

In Scenario 3, Turn Off/Turn On and Sequencing are selected and combined as the electricity and E-cost saving method. Thus, the way to reduce the total nonprocessing electricity consumption is to try to build longer idle periods during the operation sequence generating process on each machine $M_{k}$. Since it can create opportunities to execute the Turn Off/Turn On operation. This is also the reason for building the semi-active schedule at the initial stage instead of the active one, since in a semi-active schedule normally some operations can be shifted to the left without delaying other operations. This creates some longer idle periods which are opportunities for executing Turn Off/Turn On. In the next section, the decoding procedure of the semi-active schedule builder is explained. The semi-active schedule in Figure 5.1 and Figure 5.2 show how to develop a schedule which is a better solution for the ECT.

The definition of the semi-active schedule is introduced in Section 2.2 .3 . The procedures of using the active and the semi-active schedule builders to transform the example chromosome [222333111] into feasible schedules are depicted in Figure 5.1. In employing the semi-active schedule builder, the first step of the decoding procedure is the same as that of the active schedule builder as described in Section 2.2.3 The example chromosome can be firstly translated to a list of ordered operations as [ $\left.O_{23}^{1} O_{22}^{2} O_{21}^{3} O_{32}^{1} O_{31}^{2} O_{33}^{3} O_{11}^{1} O_{12}^{2} O_{13}^{3}\right]$. In the second step, the schedule generation still follows the one-pass heuristic. However, the allocation method for the current opera-
tion is different. To build the semi-active schedule, the current operation is not allowed to be put into an empty hole earlier in the schedule, which means the chromosome also describes the sequence of operations on $M_{k}$. The starting time of an operation is equal to the maximum between the completion time of its preceding operation (the same $J_{i}$, POJ) and the completion time of its preceding operation on the same machine $M_{k}(\mathrm{POM})$. In Figure 5.1 the upper Gantt chart (part A) is the active schedule, while the lower Gantt chart (part B) is the semi-active schedule. Normally, the initial semi-active schedule has higher value in total weighted tardiness than the active one, but it provides more opportunity for improvement.

In Scenario 2, the active schedule builder is employed. In Scenario 3, a new algorithm GAEJP for the ECT is developed and the semi-active schedule builder is adopted as the initial decoding approach. The comparison between the results of these two scenarios is used to demonstrate that the proposed new optimisation technique, which includes the new algorithm and the semi-active schedule builder, outperforms the existing one which uses the NSGA-II and the active schedule builder for solving the ECT. A simple example is provided in Figure 5.2 to show how the improved semi-active schedule outperforms the active one (part A) in terms of total weighted tardiness and total non-processing electricity consumption. In Figure 5.2, the bottom schedule (part C) is developed based on the middle schedule (part B) which is the semi-active schedule in Figure 5.1. $O_{11}^{1}$ is shifted to the left of $O_{21}^{3}$, the description for the left shift can be referred to in Section 2.2.3.Then $O_{12}^{2}$ is moved forward to follow $O_{32}^{1}$, finally $O_{13}^{3}$ is shifted to the left of $O_{33}^{3}$. Assuming that the due date for every job is the $15^{\text {th }}$ time unit, and it is justifiable to execute Turn Off/Turn On for each machine when the idle period is longer than 3 time units. Thus, it can be observed that the bottom schedule outperforms the other two schedules on both the objectives (minimisation the total non-processing electricity consumption and minimisation the total weighted tardiness). Therefore, in Scenario 3, the optimisation strategy is building a semi-active schedule in the first place, then trying to improve the schedule by performing left shift and left move operations.


Figure 5.1: Transforming chromosome [222333111] to feasible active schedule and semi-active schedule, based on (Liu \& Wu 2008)


Figure 5.2: A better schedule for the ECT developed based on the semi-active schedule

### 5.4 A new algorithm GAEJP based on NSGA-II for solving the ECT problem (Scenario 3)

Apart from adopting the semi-active schedule builder, the encoding schema (OBES), crossover, mutation, selection operators, replacement strategy and stopping criteria used in Scenario 3 are the same as what has been used in the Scenario 2 (As described in Section 4.3.24.3.4. The flowchart of the new algorithm which is developed based on NSGA-II is shown in Figure 5.3. Two new steps are introduced. One
is labelled " 1 to $n$ schedule building". The purpose of creating this new step is to use the advantage of the semi-active schedule builder to improve the schedules' performance on both the total weighted tardiness and the total non-processing electricity consumption objectives step by step. At the end of the 1 to $n$ schedule building step, an individual chromosome can be decoded to several feasible scheduling plans (solutions). Some of these solutions can be defined as a family in the new "Family creation and individual rejection" step. The purpose of this step is to reserve the elitist solution within each family and abandon others, thereby guaranteeing the solution quality in each generation. These two steps will be explained in detail. The notation used is as follows: $P_{t}=\left\{I_{p t}\right\}_{p=1, t=1}^{N, G}$ where $P_{t}$ is the population at generation $t$ with $N$ individuals, $I_{p t}$ is the individual $p$ in $P_{t}$.


Figure 5.3: Flowchart for GAEJP

### 5.4.1 1 to $n$ schedule building

As shown in Figure 5.4 the 1 to $n$ schedule building process starts from the decoding procedure using the semi-active schedule builder. After obtaining the initial schedule, all the idle periods within it are evaluated to find those which are suffi-
ciently long to allow a machine to be turned off and switched back on. Then the values of the objective functions are calculated based on the Turn Off/Turn On version of the scheduling plan. Thus, the first feasible solution corresponding to the chromosome is obtained. To improve the schedule's performance on the total weighted tardiness objective, some operations need to be shifted left. Thus, all the operations which are allowed to be shifted left within the aforementioned schedule need to be selected and ranked according to specific rules. The operation with the highest rank is shifted left to the earliest left-shifting-available idle period for it. After the left shifting, it might be found that some operations can be moved left to further improve the schedule's performance on the total weighted tardiness. Then all these permissible left move operations are selected and ranked. The operation with the highest rank is moved left to its earliest possible starting time. After completing all the aforementioned steps, the algorithm iterates the permissible left move operation selection, ranking, left moving steps until there are no further operations that can be moved left.

Then evaluating all the idle periods in the schedule without any permissible left move operations to find those for which it is justifiable to apply the Turn Off/Turn On method. The values of the objective functions can then be calculated based on the Turn Off/Turn On version of scheduling plan. Thus, the second feasible solution corresponding to the chromosome is obtained. Then, the algorithm goes back to the permissible left shift operations selection and executes the subsequent steps, and iterates until there is no permissible left shift operation within the schedule. The details of each step in the algorithm are described in the following.


Figure 5.4: The flowchart of 1 to $n$ schedule building step

Initial schedule building: Employ the semi-active schedule builder $\left(\xrightarrow{D_{\text {semi }}}\right)$ to decode the chromosome $I_{p t}$ to a semi-active schedule $s_{p t}^{1}$. The decoding process has been described in Section 2.2.3. and is denoted by $I_{p t} \xrightarrow{D_{s e m i}} S_{p t}^{1}, G_{p t}^{1}$ is $s_{p t}^{1}$ 's corresponding Gantt chart.

Idle periods evaluation: Evaluate all the idle periods (IPs) within schedule $s_{p t}^{1}$ to find out those for which it is justifiable to apply the Turn Off/Turn On method. Then, apply the Turn Off/Turn On method to all eligible IPs. Thus, $s_{p t}^{1^{\prime}}$-the Turn Off/Turn On version of $s_{p t}^{1}$ is obtained. $s_{p t}^{1_{t}^{\prime}}$ is the first feasible solution corresponds to individual $I_{p t}$.

Objective functions calculation: Calculate the values of the objective functions based on $s_{p t}^{1^{\prime}}$, the calculation method can be referred to Section 3.4. where

$$
\begin{gather*}
t w t_{s_{p t}^{1^{\prime}}}=\sum_{i=1}^{n} w_{i} \times T_{i}\left(s_{p t}^{1^{\prime}}\right)  \tag{5.3}\\
n p e_{s_{p t}^{1^{\prime}}}=\sum_{k=1}^{m} T E M_{k}^{n p}\left(s_{p t}^{1^{\prime}}\right) \tag{5.4}
\end{gather*}
$$

Thus, $O_{s_{p t}^{1^{\prime}}}=\left(t w t_{s_{p t}^{1^{\prime}}}, n p e_{s_{p t}^{1^{\prime}}}\right)$, where $O_{s_{p t}^{1^{\prime}}}$ denotes the objective function values of $s_{p t}^{1^{\prime}}$.

Permissible left shift operations selection: Select all the operations which are allowed to be shifted left within $s_{p t}^{1} . O_{i k}^{l}$ can be defined as a PLSO if there exists at least one idle period before it on machine $M_{k}$, and the length of the idle period is longer than the required processing time of $O_{i k}^{l}$. An example of a PLSO can be referred to part A of

Figure 2.8. The aforementioned condition can be mathematically expressed as following:

$$
\begin{gather*}
\exists i p_{k}^{w} \in i p_{k} \quad e i p_{k}^{w}>S_{i k}^{l}  \tag{5.5}\\
\exists i p_{k}^{w} \in i p_{k} \quad e i p_{k}^{w}-\operatorname{sip}_{k}^{w} \geq p_{i k}^{l}  \tag{5.6}\\
\exists i p_{k}^{w} \in i p_{k} \quad e i p_{k}^{w}-C_{i k^{\prime}}^{l-1} \geq p_{i k}^{l} \tag{5.7}
\end{gather*}
$$

Where
$S_{i k}^{l}$ is the starting time of $O_{i k}^{l}$.
$p_{i k}^{l}$ is the processing time of $O_{i k}^{l}$ on $M_{k}$. $i p_{k}=\left\{i p_{k}^{w}\right\}_{w=1}^{u_{k}}$ is a finite set of $u_{k}$ ordered idle periods on $M_{k}$.
$i p_{k}^{w}$ is the $w$-th idle period on $M_{k}$, has its own starting time and ending time, which are denoted by $\operatorname{sip} p_{k}^{w}$ and $e i p_{k}^{w}$. The $e i p_{k}^{w}$ is adopted to represent $i p_{k}^{w}$. $C_{i k^{\prime}}^{l-1}$ is the completion time of $O_{i k^{\prime}}^{l-1}$ which is the preceding operation of $O_{i k}^{l}$ in $J_{i}$.

The constraint (5.5) makes sure that $i p_{k}^{w}$ ends before $O_{i k}^{l}$ starts on $M_{k}$ in a feasible schedule. The constraint (5.6) and (5.7) guarantee the time length of $i p_{k}^{w}$ is long enough to accommodate the duration of operation $O_{i k}^{l}$.

Permissible left shift operations ranking: All of the PLSOs within schedule $s_{p t}^{1}$ are found after the "Permissible left shift operations selection" step. Only one of them will be selected as the "Left shift operation" in this "Left shift adjusting loop", thus they need to be ranked to find out the one with the highest priority for shifting left. The ranking rules are described below. $O_{i k}^{l} \prec_{s} O_{i^{\prime} k}^{l^{\prime}}$ means $O_{i k}^{l}$ is prior to $O_{i^{\prime} k}^{l^{\prime}}$ in shifting left.

$$
\begin{equation*}
O_{i k}^{l} \prec_{s} O_{i^{\prime} k}^{l^{\prime}} \text { if } \frac{w_{i}}{d_{i}}>\frac{w_{i^{\prime}}}{d_{i^{\prime}}} \tag{5.8}
\end{equation*}
$$

else if

$$
\begin{equation*}
\frac{w_{i}}{d_{i}}=\frac{w_{i^{\prime}}}{d_{i}{ }^{\prime}}, \text { then } O_{i k}^{l} \prec_{s} O_{i^{\prime} k}^{l^{\prime}} \text { if } w_{i}>w_{i^{\prime}} \tag{5.9}
\end{equation*}
$$

else if

$$
\begin{equation*}
w_{i}=w_{i^{\prime}} ; d_{i}=d_{i^{\prime}}, \text { then randomly ranking } O_{i k}^{l} \text { and } O_{i^{\prime} k}^{l^{\prime}} \tag{5.10}
\end{equation*}
$$

else if

$$
\begin{equation*}
i=i^{\prime}, \text { then } O_{i k}^{l} \prec_{s} O_{i^{\prime} k}^{l^{\prime}} \text { if } l<l^{\prime} \tag{5.11}
\end{equation*}
$$

For operations from different job $J_{i}$, condition (5.8) means $O_{i k}^{l}$ with a higher value of the ratio of its importance to its due date, $\frac{w_{i}}{d_{i}}$ gets the priority for shifting left. Condition (5.9) means when the values of $\frac{w_{i}}{d_{i}}$ are the same, the one with the higher value in $w_{i}$ is prioritised. Condition (5.10) indicates that when weighted and due of the two operations are the same, randomly rank them. Finally, for operations from the same job, the one positioned earlier in the technology path is prioritised.

LSO left shifting: Based on the above step, it can be supposed that $O_{i k}^{l}$ ranks the first in all permissible left shift operations, thus it is selected as the left shift operation and will be shifted to the earliest left-shifting-available idle period. Its new completion time is equal to the ending time of that idle period. In other words, idle periods on machine $M_{k}$ that allow $O_{i k}^{l}$ to be left shifted into can be denoted by a finite set $i p_{o_{i k}^{l}}=\left\{i p_{O_{i k}^{l}}^{e}\right\}_{e=1}^{t}$, then shift the $O_{i k}^{l}$ to the idle period $i p_{O_{i k}^{l}}^{e}$ with the minimum value in ending time $e i p_{O_{i k}^{l}}^{e}$. Defining the new completion time of $O_{i k}^{l}$ as $C_{i k}^{\text {lnew }}$, where $C_{i k}^{\text {lnew }}=$ minimum $\left\{\text { eip } p_{O_{i k}^{l}}^{e}\right\}_{e=1}^{t}$. After the left shift, a new schedule for $I_{p t}$ can be obtained, denoted by $s_{p t}^{2}$.

Permissible left move operations selection: After the left shifting step as above, there might emerge some operations which can be moved left. Select all the operations which are allowed to be moved left within schedule $s_{p t}^{2} . O_{i k}^{l}$ can be defined as a permissible left move operation if there is an idle period just left attached to it and the completion time of its preceding operation (the same $J_{i}$, POJ) is smaller than the starting time of $O_{i k}^{l}$. An example of a permissible left move operation can be referred to part B of Figure 2.8. The aforementioned condition can be mathematically expressed as the following:

$$
\begin{equation*}
S_{i k}^{l}>\operatorname{maximum}\left(C_{k}^{r-1}, C_{i k^{\prime}}^{l-1}\right) X_{i k}^{l r}=1 \tag{5.12}
\end{equation*}
$$

Where
$M_{k}^{\prime}=\left\{m_{k}^{r}\right\}_{r=1}^{\sum_{i=1}^{n} \sum_{l=1}^{u_{i}} \gamma_{i k}^{l}}$ is a finite set of operations processed on $M_{k}$.
$\gamma_{i k}^{l}$ is a decision variable that $\gamma_{i k}^{l}=1$ if the $l$-th operation of $J_{i}$ processed on
$M_{k}, 0$ otherwise.
$m_{k}^{r}$ is the $r$-th operation processed on $M_{k}$ within $s_{p t}^{2}$.
$X_{i k}^{l r}$ is a decision variable, $X_{i k}^{l r}=1$ if $O_{i k}^{l}$ of $J_{i}$ is scheduled in the $r$-th position for processing on $M_{k}, 0$ otherwise. Thus, in constraint (6.10), $m_{k}^{r}=O_{i k}^{l}$.
$O_{i k^{\prime}}^{l-1}$ is the POJ of $O_{i k}^{l}$.
$m_{k}^{r-1}$ is the POM of $O_{i k}^{l}$.
$C_{i k^{\prime}}^{l-1}$ is the completion time of $O_{i k^{\prime}}^{l-1}$.
$C_{k}^{r-1}$ is the completion time of $m_{k}^{r-1}$.

This constraint (5.12) means if the starting time of $O_{i k}^{l}$ is larger than the maximum between the completion time of its preceding operation (the same $J_{i}$, POJ) and the completion time of its preceding operation on the same machine $M_{k}$. It can then be defined as a permissible left move operation. However, the left shift operation which has just been shifted left in the LSO left shifting step does not participate the permissible left move operation selection.

Permissible LMO ranking: All of the permissible left move operations within schedule $s_{p t}^{2}$ are found after the permissible left move operation selection step. Only one of them will be selected as the left move operation in this "Left move adjusting loop", thus they need to be ranked to find out the one with the highest priority for moving left. The ranking rules are the same as the rules described in permissible left shift operations ranking step. $O_{i k}^{l} \prec_{m} O_{i^{\prime} k}^{l^{\prime}}$ means $O_{i k}^{l}$ is prior to $O_{i^{\prime} k}^{l^{\prime}}$ in moving left.

LMO left moving: Moving $O_{i k}^{l}$ left on $M_{k}$ to its earliest possible starting time, which is the maximum between the completion time of its preceding operation (the same $J_{i}$, POJ) and the completion time of its preceding operation on the same machine $M_{k}$ (POM). In other words, the new starting time of the left move operation $O_{i k}^{l}$ is defined as $S_{i k}^{\text {lnew }}$, that $S_{i k}^{\text {lnew }}=\operatorname{maximum}\left(C_{k}^{r-1}, C_{i k^{\prime}}^{l-1}\right)$. After the left moving, a new schedule for $I_{p t}$ can be obtained, denoted as $s_{p t}^{3}$.

After completing all the nine steps described above, the algorithm goes back to the permissible left move operations selection step, then executes permissible left moving operations ranking and left moving operation left moving, and iterates until there is no permissible left moving operation to be found. The schedule without any permissible left moving operation is denoted as $s_{p t}^{n_{1}}$. Once this schedule has been established, the idle periods within $s_{p t}^{n_{1}}$ need to be evaluated to find out those that justify applying the Turn Off/Turn On method. The Turn Off/Turn On method can then be applied to all eligible idle periods. Thus $s_{p t}^{n_{1}^{\prime}}$, the Turn Off/Turn On version of $s_{p t}^{n_{1}}$ can be obtained. If there is no idle period available for applying the Turn Off/Turn On, then $s_{p t}^{n_{1}^{\prime}}=s_{p t}^{n_{1}}$. Calculate the values of the objective functions based on $s_{p t}^{n_{1}^{\prime}}$, the calculation method can be referred to Section 3.4, where

$$
\begin{align*}
& t w t_{s_{p t}^{n_{1}^{\prime}}}=\sum_{i=1}^{n} w_{i} \times T_{i}\left(s_{p t}^{n_{1}^{\prime}}\right)  \tag{5.13}\\
& n p e e_{s_{p t}^{n_{1}^{\prime}}}=\sum_{k=1}^{m} T E M_{k}^{n p}\left(s_{p t}^{n_{1}^{\prime}}\right) \tag{5.14}
\end{align*}
$$

Thus, $O_{s_{p t}^{n_{1}^{\prime}}}=\left(t w t_{s_{p t}^{n_{1}^{\prime}}}, n p e_{s_{p t}^{n_{1}^{\prime}}}\right)$
$s_{p t}^{n_{1}^{\prime}}$ is the second feasible solution corresponds to individual $I_{p t}$. Once the values for the objective functions have been obtained, the algorithm goes back to permissible left shift operations selection to select the permissible left shift operations within $s_{p t}^{n_{1}^{\prime}}$, executes the subsequent steps, and iterates until there is no permissible left shift operation within the schedule. Finally, $h_{p t}+1$ feasible solutions (schedules) can be obtained corresponding to $I_{p t}$, therefore, the solution set of $I_{p t}$ can be denoted as $S_{p t}=\left\{s_{p t}^{1^{\prime}}\right\} \cup\left\{s_{p t}^{n_{v}^{\prime}}\right\}_{v=1}^{h_{p t}}$, and the objective function set of $I_{p t}$ can be denoted as $O_{p t}=\left\{O_{s_{p t}^{\prime}}\right\} \cup\left\{O_{s_{p t}^{n_{v}^{\prime}}}\right\}_{v=1}^{h_{p t}}$, where $O_{s_{p t}^{n_{v}^{\prime}}}=\left(t w t_{s_{p t}^{n_{v}^{\prime}}}, n p e_{s_{p t}^{n_{v}^{\prime}}}\right)$. An illustrative example is provided in the following section to further explain the the 1 to $n$ schedule building process.

### 5.4.2 Illustrative example

A $3 \times 3$ job shop is employed as a case study to demonstrate the 1 to $n$ schedule building process. The job shop information is shown in Table 5.3. Suppose the idle power of all machines is 1 power unit. It is justifiable to turn off then turn on a machine if the idle period is longer than 5 time units. To simplify the calculation, suppose $E_{k}^{\text {turn }}=0, E_{k}^{\text {turn }}$ is the electricity consumed by Turn Off/Turn On.

Table 5.3: $3 \times 3$ job shop parameters

| $\left.\begin{array}{ccccc}O_{i k}^{l} & O_{i k}^{1} & O_{i k}^{2} & O_{i k}^{3} & r_{i} \\ J_{i} & & & \begin{array}{c}d_{i} \\ \text { (time unit) }\end{array} & w_{i} \\ \hline J_{1} & M_{1}(2) & M_{2}(2) & M_{3}(3) & 0 \\ M_{2}(3) & M_{2}(1) & M_{1}(4) & 0 & 10 \\ J_{2} & M_{3}(10 & 3 \\ J_{3} & M_{2}(1) & M_{1}(3) & M_{3}(2) & 0\end{array}\right) 10$ | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

The sample chromosome is $I_{p t}=[222333111]$. Initially, $I_{p t}$ is decoded by the semi-active schedule builder to the schedule $s_{p t}^{1} I_{p t} \xrightarrow{D_{\text {semi }}} s_{p t}^{1}$, the Gantt chart $G_{p t}^{1}$ of schedule $s_{p t}^{1}$ is shown in Figure 5.5. After the Turn Off/Turn On has been applied the resulting Gantt chart $G_{p t}^{1^{\prime}}$ of $s_{p t}^{1^{\prime}}$ is shown in Figure 5.6.


Figure 5.5: Gantt chart of $s_{p t}^{1}$


Figure 5.6: Gantt chart of $s_{p t}^{1^{\prime}}$


Figure 5.7: Gantt chart of $s_{p t}^{2}$
Based on Figure 5.6. it can be obtained that the values of objective functions of $s_{p t}^{1^{\prime}}$ is $O_{s_{p t}^{1^{\prime}}}$, that $O_{s_{p t}^{1^{\prime}}}=\left(t w t_{s_{p t}^{1^{\prime}}}, n p e_{s_{p t}^{1^{\prime}}}\right)=(27,2)$. There are two permissible left shift operations in $s_{p t}^{1}: O_{11}^{1}$ and $O_{32}^{1}$. We select $O_{11}^{1}$ as the left shift operation since for $J_{1}$ the ratio $w_{1} / d_{1}$ equals to $3 / 10$ while for $J_{3}$ the ratio $w_{3} / d_{3}$ equals to $1 / 10$ (the job with the highest ratio is chosen). Then left shift $O_{11}^{1}$ according to the method described in the LSO left shifting step to get $s_{p t}^{2}$, the resulting Gantt chart, $G_{p t}^{2}$, is shown in Figure 5.7.
There is only one permissible left move operation in schedule $s_{p t}^{2}: O_{12}^{2}$. Thus, $O_{12}^{2}$ is selected as the left move operation. Left move $O_{12}^{2}$ to its earliest possible starting time results in $s_{p t}^{3}$. The corresponding Gantt chart $G_{p t}^{3}$ is shown in Figure 5.8.


Figure 5.8: Gantt chart of $s_{p t}^{3}$
There is just one permissible left move operation in schedule $s_{p t}^{3}$, which is $O_{13}^{3}$. So it is selected as the left move operation. After move $O_{13}^{3}$ left to its earliest possible starting time, the schedule $s_{p t}^{4}$ is obtained. After this moving, there is no more available permissible left move operation in $s_{p t}^{4}$. The resulting Gantt chart $G_{p t}^{4}$ is shown in Figure 5.9. The Turn Off/Turn On can be applied to get $s_{p t}^{4^{\prime}}$ since the idle time on machine $M_{3}$ between $O_{13}^{3}$ and $O_{13}^{3}$ is longer than 5 time units. $G_{p t}^{4^{\prime}}$ is shown in Figure 5.10


Figure 5.9: Gantt chart of $s_{p t}^{4}$
Next, the permissible left shift operations need to be searched for again. In $s_{p t}^{4}, O_{13}^{3}$ and $O_{32}^{1}$ are available permissible left shift operations. $O_{13}^{3}$ is selected as the left shift operation since $J_{1}$ gets the highest value in $w_{i} / d_{i}$. Thus, $s_{p t}^{5}$ can be obtained. However, there is no permissible left move operation within it, and it is not possible to apply the Turn Off/Turn On since the idle period on $M_{3}$ is just 5 time units. Thus $s_{p t}^{5^{\prime}}=s_{p t}^{5}, G_{p t}^{5^{\prime}}$ is shown in Figure 5.11 $O_{s_{p t}^{s^{\prime}}}=\left(w t_{s_{p t}^{5^{\prime}}}, n p e_{s_{p t}^{5^{\prime}}}\right)=(6,5)$. Based on


Figure 5.10: Gantt chart of $s_{p t}^{4^{\prime}}$


Figure 5.11: Gantt chart of $s_{p t}^{5}$ and $s_{p t}^{5^{\prime}}$
The third round of permissible left shift operation searching finds that there is only one permissible left shift operation: $O_{32}^{1}$, then left shift it to get $s_{p t}^{6}, G_{p t}^{6}$ is shown in Figure 5.12.


Figure 5.12: Gantt chart of $s_{p t}^{6}$
There is just one permissible left move operation in $s_{p t}^{6}: O_{12}^{2}$, so $O_{12}^{2}$ is selected as the left move operation. Left move $O_{12}^{2}$ to its earliest possible starting time. Then $s_{p t}^{7}$ is obtained.


Figure 5.13: Gantt chart of $s_{p t}^{7}$ and $s_{p t}^{7^{\prime}}$
In $s_{p t}^{7}$, there is no available permissible left shift operation, thus, the 1 to $n$ schedule building process for the given $3 \times 3$ job shop is completed. $s_{p t}^{7^{\prime}}=s_{p t}^{7}, G_{p t}^{7^{\prime}}$ is shown in Figure 5.13. $O_{s_{p t}^{7^{\prime}}}=\left(w t_{s_{p t}^{7^{\prime}}} n p e_{s_{p t}^{\gamma^{\prime}}}\right)=(6,5)$.
According to the above process, $I_{p t}=[222333111]$ corresponds to four feasible solutions: $s_{p t}^{1^{\prime}}, s_{p t}^{4^{\prime}}, s_{p t}^{5^{\prime}}$ and $s_{p t}^{7^{\prime}}$, the values of their objective functions are (27,2), $(21,0),(6,5)$ and $(6,5)$. Although $s_{p t}^{5^{\prime}}$ and $s_{p t}^{7^{\prime}}$ have the same value in objective functions, they are different solutions for $I_{p t}$ since the schedules are different.

### 5.4.3 Family creation and individual rejection

On Completion of the aforementioned schedule building process, the relationship between population individuals and solutions becomes 1 to $n$, where $n \geq 1$. To reserve the elitist solution in each family and abandon others, thereby guaranteeing the
solution quality in each generation, an approach for converting 1 to $n$ schedule building to 1 to 1 schedule building, and reducing population size has been developed, as shown in Figure 5.3 as "Family creation and individual rejection". The individual steps of this algorithm will be described in detail in the following.

### 5.4.3.1 Step 1: Family creation

The non-dominated sorting algorithm is applied to all solutions in the set $S_{p t}$ of each individual $I_{p t}$. The solutions is sorted into different levels. Only those located in the best level are preserved in $S_{p t}$, others will be abandoned. The non-dominated sorting method has been described in Section 4.3.1.1. With this approach, the number of elements of each $I_{p t}$ 's solution set can be reduced from $h_{p t}+1$ to $u_{p t}$, i.e. $I_{p t}$ corresponds to $u_{p t}$ feasible solutions, and $S_{p t}$ becomes $S_{p t}=\left\{s_{p t}^{v}\right\}_{v=1}^{u_{p t}}$.

Copy each $I_{p t}$ for $u_{p t}-1$ times, a new set is created and denoted by $I_{p t}=\left\{I_{p t}^{v}\right\}_{v=1}^{u_{p t}}$. The procedure that $I_{p t}^{v}$ is decoded to $s_{p t}^{v}$ is defined as $I_{p t}^{v} \xrightarrow{D} s_{p t}^{v}$. Thus, the 1 to $n$ decoding is converted to the 1 to 1 decoding. Thus, $I_{p t}$ represents not only a single individual, but a set of individuals with the same genotype but a different phenotype. Therefore, instead of using the traditional name "individual", $I_{p t}$ is referred to as "family", and all of the $u_{p t}$ individuals in set $I_{p t}$ can be called "family members". The solutions of individuals from the same family are different and non-dominate to each other. After the family creation, the population size of $P_{t}$ increase from $N$ to $N^{\prime}$, where $N^{\prime}=\sum_{p=1}^{N} u_{p t}$. Aiming at reserving the elitist solutions and keeping the diversity of the population, the two steps individual rejection method is developed in the following to reduce the population size from $N^{\prime}$ back to $N$. In the first step, some of the individuals in each family are rejected based on the non-dominated sorting. At the end of this step, there is at least one individual survivor in each family. The second step is to reduce the number of members in each family to 1 based on the crowding distance value, i.e. finally only one member in each family is preserved.
5.4.3.2 Step 2: Individual rejection based on non-dominated front in the population

All solutions in population $P_{t}$ with a size of $N^{\prime}$ are sorted according to nondomination. As a result, the solutions of individuals from the same family can be
sorted into different levels. Thus, within a family $I_{p t}$, only individuals with solutions located in the lowest level are preserved, others are abandoned. For instance, it can be assumed that there are three individuals in $I_{p t}: I_{p t}^{1}, I_{p t}^{2}$ and $I_{p t}^{3}$, and their corresponding schedules are $s_{p t}^{1}, s_{p t}^{2}$ and $s_{p t}^{3}$. Based on the objective function value calculation and non-dominated sorting, assuming that $s_{p t}^{1}$ is located in level $2, s_{p t}^{2}$ in level 3 and $s_{p t}^{3}$ in level 4. Thus, only $I_{p t}^{1}$ is preserved, while both $I_{p t}^{2}$ and $I_{p t}^{3}$ are abandoned. By completing this process, the solutions of all the individuals within a specific family are located in the same level, and the population size of $P_{t}$ is decreased from $N^{\prime}$ to $N^{\prime \prime}, N^{\prime \prime} \geq N$. Some members still need to be rejected from each family to reduce the population size back to $N$.

### 5.4.3.3 Step 3: Individual rejection based on the crowding distance value in each family

The solutions of $P_{t}$ with a population size of $N^{\prime \prime}$ are sorted according to each objective function value in ascending order of magnitude. The crowding distance sorting procedure can be referred to in Section 4.3.1.2. The boundary solutions for each front $F_{i}$ are definitely kept according to Deb et al., (2002) since they have an infinite value in the crowding distance. They need to be defined as in the following.

Defining boundary solutions

After the sorting, in each front $F_{i}$, two boundary solutions are found according to one of the optimisation objectives, respectively (here the bi-objective optimisation problem is used). The $x$-axis is selected to represent $O_{2}$ (see Figure 5.14 as the reference objective. Thus, the solution with a minimum value of $O_{2}$ is one of the boundary solutions which can be denoted by $B S_{F_{i}}^{\min }$. The solution with a maximum value of $O_{2}$ is another boundary solution which can be denoted by $B S_{F_{i}}^{\max }$. There are two possible relationships between the two boundary solutions:

Relationship type 1: the individuals which correspond to $B S_{F_{i}}^{\text {min }}$ and $B S_{F_{i}}^{\text {max }}$ belong to different families. Then both the individuals are preserved.

Relationship type 2: the individuals which correspond to $B S_{F_{i}}^{\min }$ and $B S_{F_{i}}^{\max }$ belong to the same family. Then randomly choose one of them and preserve it. Thus, another
boundary solution needs to be found such that the individual corresponding to it belongs to a different family from the preserved one. The searching method is described as follows:

If $B S_{F_{i}}^{\min }$ is preserved, then the new $B S_{F_{i}}^{\max }$ needs to be found and vice versa. The searching starts with the original $B S_{F_{i}}^{\max }$ in the list sorted by $O_{2}$ in descending order. The first solution with its corresponding individual belongs to a different family from that of $B S_{F_{i}}^{\min }$,s belongs to is defined as the new $B S_{F_{i}}^{\max }$. An example of the searching process is depicted in Figure 5.14. Analogue procedure applies if $B S_{F_{i}}^{\max }$ is preserved and new $B S_{F_{i}}^{\min }$ has to be found.


Figure 5.14: Defining boundary solutions
Neighbours searching

The aim of this step is to find and preserve the individual with the highest value in the crowding distance within each family. Other individuals are abandoned. The calculation method for the crowding distance is based on Deb et al. (2002). However, a new approach to define the neighbourhood is developed. Based on this approach, normally there are two groups of neighbours for each individual. To define the first group of neighbours of solution $s_{p t}^{v}$, firstly, the searching starts with $s_{p t}^{v}$ according to $\mathrm{O}_{2}$ in descending order. The first solution with its corresponding individual belongs to a different family from the one that individual $I_{p t}^{v}$ belongs to can be defined as the first left neighbour of $s_{p t}^{v}$ which is denoted by $N_{s_{p t}}^{l_{1}}$. Secondly, the searching starts with $s_{p t}^{v}$ according to $O_{2}$ in ascending order. The first solution with its corresponding
individual belongs to a different family from that $I_{p t}^{v}$ belongs to and that $N_{s_{p t}^{v}}^{l_{1}}$,s corresponding individual belongs to, can be defined as the first right neighbour of $s_{p t}^{v}$, which is denoted by $N_{s_{p t}^{v}}^{r_{1}}$. Here, the first group of neighbours for $s_{p t}^{v}$ is obtained, denoted by $N_{s_{p t}}^{n_{1}}$.

Then the second group of neighbours for $s_{p t}^{v}$ needs to be found. The searching process is similar to the process presented above for the first group of neighbours. However this time the right neighbour is found first and then the left neighbour. Then, the second group of neighbours can be obtained, denoted by $N_{s_{p t}}^{n_{2}}$. Normally, two groups of neighbours can be found for a specific solution. However, a special case exists for some solutions that only have one group of neighbours that meets the above requirements. Figure 5.15 depicts the neighbours searching process for $s_{p t}^{v_{1}}$ and $s_{p t}^{v_{2}}$. For solution $s_{p t}^{v_{1}}$, two groups of neighbours are found, but for solution $s_{p t}^{v_{2}}$, its first group of neighbours $N_{s_{p t}^{v_{2}}}^{n_{1}}$ is illegal since it is not possible to find the right neighbour with its corresponding individual that comes from a family different from the family that $N_{s_{p t}}^{l_{1}^{v_{2}}}{ }^{2}$ s corresponding individual belongs to. So, its second group of neighbours $N_{s_{p t}}^{n_{2}}$ is the only feasible group of neighbours for solution $s_{p t}^{v_{2}}$.


Figure 5.15: Neighbours searching process for $s_{p t}^{v_{1}}$ and $s_{p t}^{v_{2}}$

## Crowding distance calculation

An infinite crowding distance value is assigned to boundary solutions $B S_{F_{i}}^{\min }$ and $B S_{F_{i}}^{\max }$. Therefore, it is easy to conclude that the family members of individuals corresponding to $B S_{F_{i}}^{\min }$ and $B S_{F_{i}}^{\max }$ are abandoned. Hence, it is not necessary to search the neighbours of the solutions of the aforementioned members. The crowding distance values for them are defined as 0 . For other solutions, the crowding distance calculation process is described as follows:

For the solutions with two groups of neighbours, like $s_{p t}^{v_{1}}$ in Figure 5.15, its crowding distance is denoted by $C_{s_{p t}^{v_{1}}}$, that $C_{s_{p t}^{v_{1}}}=\operatorname{maximum}\left(C_{s_{p t}}^{n_{1}}, C_{s_{p t}^{v_{1}}}^{n_{2}}\right)$, where $C_{s_{p t}^{v_{1}}}^{n_{1}}$ and $C_{s_{p t}}^{n_{2}}$ are the alternative crowding distance values for $s_{p t}^{v_{1}}$, they are calculated respectively based on $N_{s_{p t}^{v_{1}}}^{n_{1}}$ and $N_{s_{p t}^{v_{1}}}^{n_{2}}$. The calculation method is based on Deb, et al. (2002).

For the solutions with just one legal group of neighbours, like $s_{p t}^{v_{2}}$ in
Figure 5.15 $C_{s_{p t}^{v_{2}}}=\operatorname{maximum}\left(C_{s_{p t}^{v_{1}}, 0}^{n_{x}}\right)$, where $C_{s_{p t}^{v_{1}}}^{n_{x}}$ denotes the crowding distance value for $s_{p t}^{v_{2}}$,
which is calculated based on the only feasible group of neighbours $N_{s_{p t}}^{n_{x}}, x=1$ or 2 . 0 is assigned to the distance value of the illegal group of neighbours.

Crowding distance comparison and individual rejection

In a specific family, each individual's solution is compared in terms of crowding distance value. The individual whose solution has the highest crowding distance value is preserved and others are rejected. $I_{p t}^{v_{2}} \prec_{c} I_{p t}^{v_{1}}$ if $C_{s_{p t}^{v_{2}}}>C_{s_{p t}^{v_{1}}}$; randomly preserve one of $I_{p t}^{v_{1}}$ and $I_{p t}^{v_{2}}$ if $C_{s_{p t}^{v_{1}}}=C_{s_{p t}^{v_{2}}}$. Completing this step, the population size of $P_{t}$ will be decreased to $N$. Only one individual in each family is preserved.

## Crowding distance re-calculation

Some solutions that served as neighbours for other solutions might be rejected during the above process, which results in an unavailable crowding distance calculation for some of the preserved solutions. However, the crowding distance value of each solution is essential for producing the next generation $Q_{t}$. Thus, to redefine the neighbours and re-calculate the crowding distance value for all of the $N$ solutions in $P_{t}$. At this stage, the solutions' corresponding individuals are different from each other, the typical approach for the crowding distance calculation can be followed as described in Section 4.3.1.2

### 5.5 Comparison between Scenario 3, Scenario 2 and Scenario 1

In this section, the scenario comparison experiments are delivered to prove that the GAEJP is more superior in solving the ECT problem than the NSGA-II. The optimal parameters settings of the GAEJP for the operators and stopping criteria, which provide the best final solutions, are obtained after the initial tuning process. For all the job shop instances, the values are as follows: population size $N=150$; crossover probability $p_{c}=1.0$; mutation probability $p_{m}=0.4$; generation $t=8000$. During the tuning process, the values used for the crossover rate are [ $0.8,0.9,1.0$ ], for the mutation rate are $[0.1,0.2,0.3,0.4,0.5,0.6]$, for the number of generations are [5000, 6000, 7000, 8000, 9000, 10000] , for the population size are [80, 100, 150, 200, 300, 400, 500]. Different combinations of the aforementioned values are tested in the experiments. Based on these tests, the optimal parameters
setting of the GAEJP for each case can be obtained. During the tests, the value of the population size which is more than 500 has been tried, but the algorithm stopped due to a lack of RAM (4 GB RAM is used in this research). Thus, the maximum value of the population size which can be used in this research is 500 . The optimal solutions were achieved with the population size of 150 and a comparatively high mutation rate of 0.4. It can be supposed that if the computational facility with a larger RAM had been used in the experiments, which would have allowed a bigger size of population, then a lower mutation rate could have been achieved. The algorithm has been run for more than 8000 generations, but the solutions have not been improved since that. Thus, 8000 is the best value for the generation. According to the experiments, it was quite time consuming to get the optimisation results of the GAEJP. Normally, it costs about half an hour to finish a single run. Thus, in the future work, optimising the algorithm and reducing the computational time of the GAEJP will be considered.

Considering the possibility of accelerating machine wear by frequent turn off and turn on operations, $B_{k}$, the break-even duration of a machine for which Turn Off/Turn On is economically justifiable instead of running the machine idle, is predefined to 30 min . This means the Turn Off/Turn On operation will only be applied when the idle time on the machine is longer than 30 min . The comparison among the solutions in S1 (a single objective job shop scheduling problem), the solutions in S2 (the bi-objective job shop scheduling problem solved by NSGA-II) and the solutions obtained by the GAEJP are shown in Figure 5.16 to Figure 5.19.


Figure 5.16: Solutions comparison among the GAEJP, the NSGA-II and the baseline scenario (E-F\&T $10 \times 10$ job shop)


Figure 5.17: Solutions comparison among the GAEJP, the NSGA-II and the baseline scenario (E-Lawrence $15 \times 10$ job shop)


Figure 5.18: Solutions comparison among the GAEJP, the NSGA-II and the baseline scenario (E-Lawrence $20 \times 10$ job shop)


Figure 5.19: Solutions comparison among the GAEJP, the NSGA-II and the baseline scenario (E-Lawrence $15 \times 15$ job shop)

In the above figures, the LEKIN solutions and the NSGA-II solutions are the same as those shown in Section 4.4. The hollow points represent the optimisation results of the LEKIN which had been shown in Table 4.2 Table 4.5. The solid points represent
the optimisation results of the NSGA-II. The points with different types of grid in them are the optimisation results of the GAEJP. Considering the demonstrated effect of the figures, not all the solutions on each Pareto-front are presented in Figure 5.16 to Figure 5.19. The selection mechanism is as following: for each Pareto-front, all the solutions are ranked by the ascending sequence of non-processing electricity consumption value. Then both of the boundary solutions are shown, oddly ranking solutions like the 3rd, 5th and 7th are shown. Based on these figures, a considerable total NPE reduction can be observed when employing the GAEJP as the bi-objective optimisation approach. Compared to the bi-objective optimisation approach of the NSGA-II and the single objective optimisation result of the local search heuristic, the non-processing electricity consumption improvements are shown in Table 5.4 and Table 5.5. Take the E-F\&T $10 \times 10$ job shop as an example. When $f=1.5$, the minimum and maximum value of $n p e_{s 3}^{1.5}$ are 3.5 kWh and 6.0 kWh respectively, which means a $96.7 \%$ to $98.1 \%$ improvement in the total non-processing electricity consumption compared to the values obtained by the LEKIN. When comparing with the optimisation result of NSGA-II, the improvement in total non-processing electricity consumption is $90.3 \%$ to $98.0 \%$. The total weighted tardiness increases of the GAEJP (compared to the LEKIN result) in weighted minutes for each job shop instance under different tardiness conditions are shown in Table 5.6 and Table 5.7 These two tables demonstrate the range for the total weighted tardiness deterioration of the optimisation result of the GAEJP when comparing to the LEKIN result. When considering the performance on both of the total non-processing electricity consumption and total weighted tardiness objectives, scheduling plans delivered by the GAEJP always have a much smaller non-processing electricity consumption than the scheduling plans delivered by the NSGA-II if they have similar value in total weighted tardiness. For instance, in the E-F\&T $10 \times 10$ job shop, when $f=1.6$, one of the boundary solutions delivered by the GAEJP is (12.2 ( kWh ), 1118), comparatively, the solution delivered by the NSGA-II with the closed value in the total weighted tardiness is $(170(k W h), 1136)$. This means the most of the solutions delivered by the NSGA-II are dominated by solutions delivered by the GAEJP. This can also be observed from the above figures. The comparison result between the GAEJP and the NSGA-II will be further discussed in the next section.

Table 5.4: The total NPE improvement in percentage for E-F\&T $10 \times 10$ and ELawrence $15 \times 10$

| Compare GAEJP to LEKIN |  | E-F\&T $10 \times 10$ |  |  |  | E-Lawrence $15 \times 10$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{f}=1.5$ | $\mathrm{f}=1.6$ | $\mathrm{f}=1.7$ | $\mathrm{f}=1.8$ | $\mathrm{f}=1.5$ | f=1.6 | $\mathrm{f}=1.7$ | $\mathrm{f}=1.8$ | $\mathrm{f}=1.9$ |
| NPE <br> Improvement | min | 96.7\% | 93.2\% | 93.9\% | 95.0\% | 94.8\% | 94.5\% | 93.0\% | 94.3\% | 96.0\% |
|  | max | 98.1 \% | 98.1\% | 97.4\% | 98.6\% | 98.4\% | 98.0\% | 98.6\% | 98.0\% | 98.3\% |
| Compare GAEJP to NSGA-II |  | E-F\&T $10 \times 10$ |  |  |  | E-Lawrence $15 \times 10$ |  |  |  |  |
|  |  | $\mathrm{f}=1.5$ | $\mathrm{f}=1.6$ | $\mathrm{f}=1.7$ | $\mathrm{f}=1.8$ | $\mathrm{f}=1.5$ | $\mathrm{f}=1.6$ | $\mathrm{f}=1.7$ | $\mathrm{f}=1.8$ | $\mathrm{f}=1.9$ |
| NPEImprovement | min | 90.3\% | 80.1\% | 83.9\% | 86.3\% | 91.7\% | 90.4\% | 87.4\% | 92.8\% | 93.7\% |
|  | max | 98.0\% | 98.0\% | 97.1\% | 98.3\% | 97.8\% | 97.4\% | 97.9\% | 97.9\% | 98.1\% |

Table 5.5: The total NPE improvement in percentage for E-Lawrence $20 \times 10$ and E-Lawrence $15 \times 15$

| Compare GAEJP to LEKIN |  | E-Lawrence $20 \times 10$ |  |  |  |  | E-Lawrence $15 \times 15$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{f}=1.5$ | f=1.6 | $\mathrm{f}=1.7$ | $\mathrm{f}=1.8$ | $\mathrm{f}=1.9$ | $\mathrm{f}=1.5$ | $\mathrm{f}=1.6$ | $\mathrm{f}=1.7$ |
| NPE Improvement | min | 90.1\% | 93.3\% | 94.1\% | 91.5\% | 90.1\% | 96.1\% | 96.2\% | 96.6\% |
|  | max | 97.1\% | 96.9\% | 97.1\% | 96.7\% | 96.5\% | 96.9\% | 96.8\% | 97.2\% |
| Compare GAEJP to NSGA-II |  | E-Lawrence $20 \times 10$ |  |  |  |  | E-Lawrence $15 \times 15$ |  |  |
|  |  | $\mathrm{f}=1.5$ | f=1.6 | $\mathrm{f}=1.7$ | $\mathrm{f}=1.8$ | $\mathrm{f}=1.9$ | $\mathrm{f}=1.5$ | $\mathrm{f}=1.6$ | $\mathrm{f}=1.7$ |
| NPE Improvement | min | 75.9\% | 87.0\% | 88.3\% | 81.9\% | 81.1\% | 95.0\% | 95.5\% | 95.7\% |
|  | max | 95.0\% | 95.9\% | 95.6\% | 94.1\% | 95.5\% | 96.0\% | 96.6\% | 96.9\% |

Table 5.6: The TWT increase in weighted minute for E-F\&T $10 \times 10$ and ELawrence $15 \times 10$

| Compare GAEJP <br> to LEKIN | E-F\&T $10 \times 10$ |  |  |  |  | E-Lawrence $15 \times 10$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{f}=1.5$ | $\mathrm{f}=1.6$ | $\mathrm{f}=1.7$ | $\mathrm{f}=1.8$ | $\mathrm{f}=1.5$ | $\mathrm{f}=1.6$ | $\mathrm{f}=1.7$ | $\mathrm{f}=1.8$ | $\mathrm{f}=1.9$ |  |
| TWT <br> Increase | $\min$ | 1979 | 991 | 695 | 638 | 2465 | 2094 | 1515 | 659 | 78 |
|  | $\max$ | 2870 | 2794 | 1209 | 2811 | 3555 | 3165 | 3306 | 1131 | 647 |

Table 5.7: The TWT increase in weighted minute for E-Lawrence $20 \times 10$ and ELawrence $15 \times 15$

| Compare GAEJP to | E-Lawrence $20 \times 10$ |  |  |  |  | E-Lawrence $15 \times 15$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LEKIN | $\mathrm{f}=1.5$ | $\mathrm{f}=1.6$ | $\mathrm{f}=1.7$ | $\mathrm{f}=1.8$ | $\mathrm{f}=1.9$ | $\mathrm{f}=1.5$ | $\mathrm{f}=1.6$ | $\mathrm{f}=1.7$ |  |
| TWT |  | $\min$ | 4898 | 3860 | 3880 | 3386 | 2738 | 2807 | 3052 |
| Increase | $\max$ | 9480 | 9008 | 7391 | 4281 | 5139 | 3526 | 3242 | 1152 |

### 5.6 Discussion

It can be observed that the GAEJP combined with the Turn Off/Turn On method is more effective in reducing the total non-processing electricity consumption in a scheduling plan than the NSGA-II without compromising the total weighted tardiness too much. For E-Lawrence $15 \times 10$ and $20 \times 10$ job shop, all solutions obtained by the NSGA-II are dominated by at least one solution obtained by the GAEJP,
as shown in Figure 5.20 and Figure 5.21. For the other two problems (E-F\&T $10 \times 10$ and E-Lawrence $15 \times 15$ ), some of the NSGA-II solutions are not dominated by any of the GAEJP solutions. For these two problems, Pareto fronts generated by two algorithms are combined together to form new Pareto fronts, and only nondominated solutions are preserved. It can be noticed that solutions obtained by the GAEJP take a larger proportion of the total number of solutions on the new Pareto fronts, as shown in Figure 5.22 and Figure 5.23. Which means the GAEJP can provide more feasible options to the plant manager.


Figure 5.20: The solutions obtained by the GAEJP for E-Lawrence $15 \times 10$ job shop
(All of the solutions obtained by the NSGA-II had been dominated)


Figure 5.21: The solutions obtained by the GAEJP for E-Lawrence $20 \times 10$ job shop
(All of the solutions obtained by the NSGA-II had been dominated)


Figure 5.22: The new pareto fronts formed by solutions obtained by the GAEJP and the NSGA-II (E-F\&T $10 \times 10$ job shop)


Figure 5.23: The new pareto fronts formed by solutions obtained the GAEJP and the NSGA-II (E-Lawrence $15 \times 15$ job shop)

The upper (part A) and bottom (part B) of Figure 5.24 represent the Gantt charts of the optimal schedules produced by the GAEJP and the NSGA-II respectively for EF\&T $10 \times 10$ job shop when $f=1.5$. It is possible to observe that the schedule produced by the GAEJP has a smaller total amount of idle periods on all machines (31 idles periods on schedule produced by the GAEJP and 37 idle periods produced by the NSGA-II), and normally the lengths of those idle periods are longer. This means when the varieties and amounts of components, increase, it is easier to place the new operations in the existing idle periods on scheduling plans produced by the GAEJP, thereby creating a more intense scheduling plan with a higher machine utilisation rate. From the above, the scheduling plans produced by the GAEJP might be more preferable for managers when considering the real life job shop manufacturing system. Someone may argue that when the Turn off/Turn on method is applied to the optimisation result of the NSGA-II, the GAEJP may lose its priority in solving the ECT problem. However, in the case presented in Figure 5.24, the original values for objective functions of scheduling plans conducted by the GAEJP and the NSGA-II are $(6.0(k W h), 2288)$ and $(170(k W h), 3595)$. When the Turn off/Turn method is applied to the bottom scheduling plan (part B) in Figure 5.24, the value of objective
functions become (14.5 ( kWh ), 3595). Thus the solution delivered by the GAEJP is still preferable for the plant manager in this case. The effect of applying the Turn off/Turn on method to the optimisation results of the NSGA-II will be investigated in future research to further prove the GAEJP's priority in solving the ECT problem.


Figure 5.24: Gantt chart of optimal schedule by GAEJP (A) and Gantt chart of optimised schedule of NSGA-II (B) when $f=1.5$ (E-F\&T $10 \times 10$ job shop)

### 5.7 Summary

The Turn off/Turn on method developed by Mouzon et al. (2007) is a very effective approach in achieving the objective of reducing the total non-processing electricity consumption in a basic job shop. To optimally use this technique and the sequencing method to solve the ECT problem, the multi-objective optimisation algorithm GAEJP is developed based on the NSGA-II. The performance of the algorithm has been tested on four extended versions of job shop instances, which incorporate elec-
trical consumption profiles for the machine tools. These job shop instances include Fisher and Thompson $10 \times 10$ job shop scenario, Lawrence $10 \times 10,20 \times 10$ and $15 \times 15$ job shop scenarios. In addition, comparison experiments have been applied to demonstrate the effectiveness of the GAEJP in solving the ECT problem. Firstly, the Shifting Bottleneck Heuristic and the Local Search Heuristic have been adopted as the single objective optimisation techniques to deliver the baseline scenarios of the aforementioned job shops. The result of the comparison indicates that by applying the GAEJP, the total non-processing electricity consumptions in the job shop decrease considerably, but at the sacrifice of the total weighted tardiness objective up to a certain level. Secondly, the Pareto fronts of the GAEJP have been compared with the ones obtained by the NSGA-II. It can be observed that the GAEJP combined with the Turn Off/Turn On and the Sequencing methods is more effective in reducing the total non-processing electricity consumption than the NSGA-II combined with the Sequencing method while not necessarily sacrificing its performance on total weighted tardiness. Thus, the superiority of the GAEJP in solving the ECT problem has been demonstrated.

## CHAPTER 6 INVESTIGATION OF THE ROLLING BLACKOUT POLICY ON JOB SHOPS

### 6.1 Introduction

This chapter investigates how the Rolling Blackout policy affects the performance of the scheduling plans produced in Scenario 2 and Scenario 3 in terms of the total weighted tardiness, total non-processing electricity consumption and the total electricity cost. The performances of scheduling plans in two scenarios are compared in this chapter (Scenario 4 and Scenario 5). In Scenario 4, there is no private electricity supply during the government electricity unavailable periods. On the contrary, in Scenario 5, the private electricity is employed during all the government supply unavailable periods to maintain the production.

Scenario 4 is used to present how the Rolling Blackout policy deteriorates the manufacturing company's delivery. The job shop will stop working during the blackout periods since there is no private electricity supply. Thus, a scheduling plan adjustment scheme will be provided in this scenario (new heuristic). The scheduling plans produced in Scenario 2 and Scenario 3 will be performed in Scenario 4 for adjustment. The operations that initially execute during the blackout periods should be postponed to the next electricity supply available period, thus, leading to the construction of the new scheduling plan in Scenario 4. Based on the new scheduling plan, the values of indicators in Scenario 4 will be re-calculated.

Scenario 5 is used to present the influence of employing private electricity on the total electricity cost. Therefore, in this scenario, the private electricity is used to provide the power for the manufacturing companies during all the blackout periods. The scheduling plans produced in Scenario 2 and Scenario 3 will be performed in Scenario 5 , i.e. the scheduling plans will stay the same, however the values of the total electricity cost should be re-calculated. In this investigation, the emphasis is on the cost element of using the private electricity supply rather than the environmental impact.

Based on the comparison experiments between the performance of the scheduling plans of Scenario 4 and 5, it has been found that it is necessary to develop compromised plans for using the private electricity to deliver the trade-off between the total
weighted tardiness and the total electricity cost. This leads to the EC2T problem. In this chapter, NSGA-II will be adapted to solve the EC2T problem. The new encoding schema, crossover and mutation operators are provided. This method is used to decide whether to provide private electricity to a machine during each government electricity supply unavailable period. The performance of the algorithm will be tested on four extended versions of job shop instances which incorporate electrical consumption profiles for the machine tools. To compare the indicators' values in Scenario 6 to those in Scenario 4, a better performance on the total weighted tardiness should be observed; to compare the indicators' values in Scenario 6 to those in Scenario 5 , a better performance on total electricity cost should be observed. Therefore, the NSGA-II and its related new encoding schema, crossover operator and mutation operator are proved to be effective in solving the EC2T problem.

### 6.2 Scenario 4, 5 and 6 and expected results of comparison experiment

In the EC2T problem, the Rolling Blackout policy is applied to the job shop. Obviously, the policy will exert a negative influence on the performance of the job shop, such as a deterioration in delivery and an increasing in the electricity cost if the private electricity is started for maintaining production. Thus, the total electricity cost the $\operatorname{TEC}(s)$ is introduced as another indicator. The different responses of the manufacturing company to the Rolling Blackout policy are described respectively in Scenarios 4, 5 and 6 .

Scenario 4 is used to investigate how the Rolling Blackout policy deteriorates the manufacturing company's delivery. Therefore, in this scenario, the private electricity supply such as the diesel generator is not used when the government supplied resource is unavailable. The job shop stops working during the blackout periods. The scheduling plans produced in Scenario 2 and Scenario 3 are performed in this scenario. The operations that initially execute during the blackout periods should be postponed until the next electricity supply available period, thus, constructing the new scheduling plan for Scenario 4. The adjustment is completed by the newly developed heuristic. Based on the new scheduling plan, the values of indicators in Scenario 4 can be defined as shown in Table 6.1. Since only the government supplied electricity is used in this Scenario, the electricity price $p^{e}=\beta_{1}$ Pounds $/ k W h . s^{s i}$ represents the scheduling plans after adjustment. For instance, $s^{s 2}$ represents the scheduling
plans in Scenario 4 after adjusting the optimised scheduling plans in Scenario 2. The superscript S2 means Scenario 2. $t w t_{s 4}^{s i}$ is the value of the total weighted tardiness of the adjusted scheduling plan $s^{s i}$, where the superscript si represents the original scenario. For instance, $t w t_{s 4}^{s 2}$ is the total weighted tardiness value of the Scenario 4 schedule $s^{s 2} . s^{s 2}$ is the adjustment result of a schedule produced by the NSGA-II (Scenario 2). Similarly, $n p e_{s 4}^{s i}$ and $e C_{s 4}^{s i}$ respectively represent the total nonprocessing electricity consumption value and the total electricity cost value of the adjusted scheduling plan $s^{s i}$.

Table 6.1: Parameters of Scenario 4

| Objective | The scheduling plans in Scenario 4 are developed from scheduling plans produced by the NSGA-II (Scenario 2) and the GAEJP (Scenario 3). This is not a multi-objective optimisation problem. Thus, there is no objective in Scenario 4. |
| :---: | :---: |
| Indicators | $\begin{aligned} & t w t_{s 4}^{s i}=\sum_{i=1}^{n} w_{i} \times T_{i}\left(s^{s i}\right) \quad i=2,3 \\ & n p e_{s 4}^{s i}=\sum_{k=1}^{m} T E M_{k}^{n p}\left(s^{s i}\right) i=2,3 \\ & e c_{s 4}^{s i}=T E C\left(s^{s i}\right) i=2,3 \end{aligned}$ |
| Adjustment Method | Newly developed adjustment heuristic |
| ESMs implementation | Turn Off/Turn On (if the original scheduling plan is produced by the GAEJP) <br> None (if the original scheduling plan is produced by the NSGA-II) |

Scenario 5 is used to investigate the increase of employing private electricity on the total electricity cost. Therefore, in this scenario, the private electricity is started to provide power for the manufacturing company during all the blackout periods. The scheduling plans produced by the NSGA-II (Scenario 2) and the GAEJP (Scenario 3) are performed in Scenario 5. Here the electricity price $p^{e}=\beta_{1}$ Pounds $/ k W h$ when the electricity is supplied by the government, otherwise $p^{e}=\beta_{2}$ Pounds $/ k W h$. In Table 6.2. $t w t_{s 5}^{s i}$ is the total weighted tardiness value of the scheduling plan $s^{s i}$, where the superscript si represents the original scenario. The value of the total weighted tardiness and total non-processing electricity consumption should equal the tardiness and consumption values in the original scenario, respectively, since the schedules have not been changed. The value of the total electricity cost $e c_{s 5}^{s i}$ will be
larger than the cost value in the original scenario (Scenario 2 or 3 ) because of the use of private electricity.

Table 6.2: Parameters of Scenario 5

| Objective | The scheduling plans in Scenario 4 are developed from scheduling plans produced by the NSGA-II (Scenario 2) and the GAEJP (Scenario 3). This is not a multi-objective optimisation problem. Thus, there is no objective in Scenario 5. |
| :---: | :---: |
| Indicators | $\begin{aligned} & t w t_{s 5}^{s i}=\sum_{i=1}^{n} w_{i} \times T_{i}\left(s^{s i}\right) \quad i=2,3 \\ & n p e_{s 5}^{s i}=\sum_{k=1}^{m} T E M_{k}^{n p}\left(s^{s i}\right) i=2,3 \\ & e c_{s 5}^{s i}=T E C\left(s^{s i}\right) \quad i=2,3 \end{aligned}$ |
| Adjustment Method | None |
| ESMs implementation | Turn Off/Turn On (if the original scheduling plan is produced by the GAEJP) <br> None (if the original scheduling plan is produced by the NSGA-II) |

Table 6.3: Expected results for scenarios comparison and conclusion

| Scenarios comparison | Expected result |
| :--- | :--- |
| Compare Scenario 4 to its original sce- | $t w t_{s 3}^{f}<t w t_{s 4}^{s 3}, n p e_{s 3}^{f} \neq n p e_{s 4}^{s 3}$ |
| nario, for instance, Scenario 3 |  |
| Compare Scenario 5 to its original sce- | $t w t_{s 3}^{f}=t w t_{s 5}^{s 3}, n p e_{s 3}^{f}=n p e_{s 5}^{s 3}$ |
| nario, for instance, Scenario 3 |  |
| Compare Scenario 5 to Scenario 4 (Take | $t w t_{s 5}^{s 3}<t w t_{s 4}^{s 3} \quad, \quad n p e_{s 4}^{s 3} \neq n p e_{s 5}^{s 3} \quad$, |
| Scenario 3 as the original scenario) | $e c_{s 4}^{s 3}<e c_{s 5}^{s 3}$ |

Take Scenario 3 (GAEJP) as an example, as presented in Table 6.3 the comparison of indicators' values between Scenario 4 (the adjustment scenario) and Scenario 3 (GAEJP) can show how the Rolling Blackout policy affects the performance of the job shop on delivery when there is no remedial measure for the lack of electricity. It can be expected that firstly the total weighted tardiness will increase in Scenario 4. Secondly, the fluctuation of the total non-processing electricity consumption cannot be decided. Finally, the fluctuation of the total electricity cost related to the value of the total non-processing electricity consumption cannot be decided either. However the difference of the total non-processing electricity consumption between these two scenarios is not expected to be large.

The comparison of indicators' values between Scenario 5 (private electricity used) and Scenario 3 will show that the employment of private electricity would keep the
job shop's performance on the total weighted tardiness from deteriorating. The electricity consumption amount in Scenario 5 is the same with that in Scenario 3, but the cost for electricity will definitely increase since the private electricity is much more expensive than the government supplied resource.

The aforementioned comparisons are expected to demonstrate that if insisting on the optimised scheduling plan for the ECT problem, at least the performance of one indicator is expected to be weakened when the Rolling Blackout policy is applied, despite whether the private electricity supply is started or not during the electricity unavailable periods. This hypothesis will be proved in the following sections in this chapter.

Therefore, to solve the EC2T problem, a compromised private electricity supply plan between Scenario 4 and Scenario 5 needs to be developed. The proper private electricity allocation plan for each machine tool during the blackout periods needs to be developed, i.e. it is not necessary to provide electricity to every machine tool in every electricity unavailable period. A decision should be made to use the private electricity as less as possible while guaranteeing the in time delivery. Based on the private electricity supply plan, new scheduling plans should be delivered. The new solution is proposed in Scenario 6. This is another contribution of this PhD research. The parameters of Scenario 6 are shown in Table 6.4

Table 6.4: Parameters of scenario 6

| Objective | $\bullet$ minimise $\sum_{i=1}^{n} w_{i} \times T_{i}(s)$ |
| :--- | :--- |
|  | $\bullet$ minimise $\sum_{k=1}^{m} T E M_{k}^{n p}(s)$ |
| Indicators | $\bullet$ minimise $T E C(s)$ |
|  | $\bullet t w t_{s 6}^{f}=\left\{t w t_{s 6}^{f q}\right\}_{q=1}^{p}$ |
|  | $\bullet n p e_{s 6}^{f}=\left\{n p f_{s 6}^{f q}\right\}_{q=1}^{p}$ |
|  | $\bullet e c_{s 6}^{f}=\left\{e c_{s 6}^{f q}\right\}_{q=1}^{p}$ |
| Optimisation Method | NSGAA-II |
| ESMs implementation | Turn Off/Turn On; Sequencing |

In this scenario, the encoding schema for the algorithm should be expanded since the decision for the private electricity allocation is taken into consideration in the chromosome encoding. The new encoding schema is developed in the following content
of this chapter. The Pareto-front formed by $p$ non-dominated solutions (a group of scheduling plans) is obtained after the optimisation process. Thus, the indicators' values of Scenario 6 are the following three sets:

$$
\begin{gather*}
t w t_{s 6}^{f q}=f_{1}\left(s^{f q}\right)=\sum_{i=1}^{n} w_{i} \times T_{i}\left(s^{f q}\right)  \tag{6.1}\\
n p e_{s 6}^{f q}=f_{2}\left(s^{f q}\right)=\sum_{k=1}^{m} T E M_{k}^{n p}\left(s^{f q}\right)  \tag{6.2}\\
e c_{s 6}^{f q}=f_{3}\left(s^{f q}\right)=\operatorname{TEC}\left(s^{f q}\right) \tag{6.3}
\end{gather*}
$$

$f$ is the tardiness factor, and $s^{f q}$ is the $q$-th optimised scheduling plan in the total $p$ solutions under different tardiness constraints. $t w t_{s 6}^{f}$ is the set for the objective function values of total weighted tardiness of solutions obtained by NSGA-II for the EC2T problem. The subscript $s 6$ represents Scenario 6, and the superscript $f$ represents the tardiness factor. $t w t_{s 6}^{f q}$ is one of the elements in $t w t_{s 6}^{f}$, which represents the total weighted tardiness of the $q$-th optimised scheduling plan in the total $p$ solutions under different tardiness constraints. Similarly, $n p e_{s 6}^{f}$ and $e c_{s 6}^{f}$ respectively represent the set for the objective function values of total non-processing electricity consumption and the set for the objective function values of total electricity cost of solutions obtained by NSGA-II for the EC2T problem.

Table 6.5: Expected results for scenarios comparison for the EC2T problem

| Scenarios comparison |  | Expected result |  |
| :--- | :--- | :--- | :--- |
| Compare <br> (Based on Scenario 6 6 to Scenario | 4 | $\forall t w t_{s 6}^{f q} \leq t w t_{s 4}^{s 3} ; \forall e c_{s 6}^{f q} \geq e c_{s 4}^{s 3}$ |  |
| Compare Scenario 6 6 <br> (Based on Scenario 3) | to Scenario | 5 | $\forall t w t_{s 6}^{f q} \geq t w t_{s 5}^{s 3} ; \forall e c_{s 6}^{f q} \leq e c_{s 5}^{s 3}$ |

The optimisation result obtained in Scenario 6 is compared with Scenario 4 and Scenario 5 which are developed based on Scenario 3. Since only in Scenario 6 and Scenario 3, the Turn Off/ Turn on method has been applied. To compare the indicators' values in Scenario 6 to that in Scenario 4 (see Table 6.5), it can be expected to observe a better performance on the total weighted tardiness; to compare the indicators' values in Scenario 6 to that in Scenario 5, it can be expected to observe a better performance on total electricity cost. However, the comparison results on the total nonprocessing electricity indicator is currently hard to decide.

### 6.3 The procedure of the adjustment heuristic in Scenario 4

The procedure of the adjustment algorithm S 4 are described by using a $3 \times 3$ job shop provided by Liu \& Wu (2008) as shown in Table 6.6. It can be supposed that [222333111] is a feasible chromosome. Decoded by the active schedule builder, the chromosome can be transferred to a feasible schedule $s$, as shown in Figure 6.1

Table 6.6: $3 \times 3$ job shop parameters

| $O_{i k}^{l}$ <br> $J_{i}$ | $O_{i k}^{1}$ | $O_{i k}^{2}$ | $O_{i k}^{3}$ | $r_{i}$ | $d_{i}$ <br> (time unit) | $w_{i}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $J_{1}$ | $M_{1}(2)$ | $M_{2}(2)$ | $M_{3}(3)$ | 0 | 10 | 3 |
| $J_{2}$ | $M_{3}(3)$ | $M_{2}(1)$ | $M_{1}(4)$ | 0 | 10 | 2 |
| $J_{3}$ | $M_{2}(1)$ | $M_{1}(3)$ | $M_{3}(2)$ | 0 | 10 | 1 |



Figure 6.1: Transforming chromosome [222333111] to a feasible active schedule and semi-active schedule, based on (Liu \& Wu 2008)

In this case, the cycle period of the Rolling Blackout policy is 7 time units ( $T=7$ ) where $\Delta t_{s}=5$ and $\Delta t_{o}=2$, which indicates that the government electricity supply available period (GAP) is the first 5 time units of each cycle period and the government electricity supply unavailable period (GUP) is the next 2 time units. Based on the aforementioned information, all the GAPs and GUPs in $s$ can be enumerated. The GAPs can be numbered as $2 x-1$ th period and GUPs can be numbered as $2 x$ th period, where $x=1,2,3 \ldots a$. As seen in Figure 6.1, the 1 th, 3 th and 5 th periods are the GAPs, while the 2 th and 4 th periods are the GUPs.

The idea for the heuristic developed in Scenario 4 is that when the Rolling Blackout policy is applied, the operations locate in the government electricity unavailable period and their subsequent operations on the same machine and in the same job are needed to be firstly postponed. As shown in Figure 6.2, 450 to 600 time unit is the
first government electricity unavailable period. Thus, all operations after the red line which is the splitting line need to be moved right. The sequence and pattern of these operations are kept the same after the right move. Applying this kind of right move is based on the fact that the original scheduling plan is an optimal one, thus it is beneficial to keep the sequence and pattern during the right moving. Then, the operations locate in the second government electricity unavailable period, which is 1050 to 1200 , and their subsequent operations on the same machine and in the same job are needed to be found out and postponed. After all the right move work is finished, it might be found that some of the operations can be moved left to improve the schedule's performance on the total weighted tardiness objective. The new scheduling plan can be obtained after finishing the left moving.


Figure 6.2: Example for right move


Figure 6.3: the flowchart of the adjustment heuristic in Scenario 4
Figure 6.3 presents the flowchart of the adjustment algorithm developed in Scenario 4. The process of the algorithm is detailed described in the following.

Delayed operation selection: The task in this step is to find out operations which need to be delayed for the unavailable electricity supply in $2 x$ th period, where $x=1,2,3 \ldots a$. The search starts from the period 2. $O_{i k}^{l}$ can be defined as delayed operation related to the $2 x$ th period if any part of its processing time locates in the $2 x$ th period. The condition can be mathematically expressed as following:

$$
\begin{gather*}
\exists O_{i k}^{l} \in O_{i} \quad S_{2 x}<C_{i k}^{l} \leq E_{2 x}  \tag{6.4}\\
\exists O_{i k}^{l} \in O_{i} \quad C_{i k}^{l}>E_{2 x}, S_{i k}^{l} \leq E_{2 x} \tag{6.5}
\end{gather*}
$$

Where
$S_{i k}^{l}$ is the starting time of $O_{i k}^{l}$.
$C_{i k}^{l}$ is the completion time of $O_{i k}^{l}$.
$S_{2 x}$ is the starting time of the $2 x$ th period.
$E_{2 x}$ is the ending time of the $2 x$ th period.

Define splitting point and right moves after identifying all the delayed operations related to the $2 x$ th period, the splitting line and splitting point on schedule $s$ needs to be defined. The starting time of all the delayed operations form the splitting line, as the red line shown in Figure 6.4. The earliest starting time of all the delayed operations on the machine $M_{k}$ are defined as the splitting point. In Figure 6.4, $O_{21}^{3}$ is the delayed operation on $M_{1}$ and $O_{33}^{3}$ is the delayed operation on $M_{3}$. Thus $S_{21}^{3}=4$ and $S_{33}^{3}=4$ form the splitting line. All of the operations after the splitting line will be postponed. Since $S_{21}^{3}=S_{33}^{3}$, either of them can be defined as the splitting points. Here selecting $S_{21}^{3}$ as the splitting point. $S_{\text {min }}^{D O}$ can be defined as the earliest starting time of all the delayed operations related to the $2 x$ th period. Then the rule for the right moves is: $S_{\text {min }}^{D O}=S_{2 x+1}$, which means the new value for the $S_{\text {min }}^{D O}$ should equal the starting time of the government electricity supply available period (the period $2 x+1$ ) following the $2 x$ th period. The result of the right moving based on Figure


Figure 6.4: Splitting points on $s$


Figure 6.5: Postponed schedule based on $s$

## Condition 1:

Condition 1 is used to judge whether all operations that need to be postponed have finished their right move. If yes, the algorithm goes to next step for forwarded operation selection. Otherwise, the algorithm goes back to the delayed operation selection. The condition can be mathematically expressed as follows:

$$
\begin{equation*}
\forall \max \left(C_{k}^{r}\right)<S_{2 x} \quad \forall m_{k}^{r} \in M_{k}^{\prime} \tag{6.6}
\end{equation*}
$$

Where
$M_{k}^{\prime}=\left\{m_{k}^{r}\right\}_{r=1}^{\sum_{i=1}^{n} \Sigma_{l=1}^{u_{i}} \gamma_{i k}^{l}}$ is a finite set of operations processed on $M_{k}$.
$\gamma_{i k}^{l}$ is a decision variable such that $\gamma_{i k}^{l}=1$ if the $l$-th operation of $J_{i}$ is processed on $M_{k}, 0$ otherwise.
$m_{k}^{r}$ is $r$-th operation processed on $M_{k}$ within a feasible schedule $s$.
$C_{k}^{r}$ is the starting time of $m_{k}^{r}$ on $M_{k}$.
$S_{2 x}$ is the starting time of the $2 x$ th period.

Condition (6.6) makes sure that all of the last operations on each $M_{k}$ are finished before the starting time of the $2 x$ th period. Thus, when it has been satisfied, all of the operations in schedule $s$ have been moved to the government electricity supply available periods, and the algorithm goes to the forwarded operation selection step. If it is not satisfied, the delayed operation selection related to the $2(x+1)$ th period is executed. The result of finishing all the right moves within schedule $s$ is shown in Figure 6.6. The new schedule can be denoted as $s^{\prime}$.


Figure 6.6: The result of finishing all the right moves within schedule $s$
Forwarded operations selection: After finishing all the right moves, normally it can be noticed that some of the operations can be moved forward (left), thus the schedule performance on the total weighted tardiness can be improved. Therefore, all of the forwarded operations in $2 x-1$ th periods within the schedule $s^{\prime}$ where $x=$ $1,2,3 \ldots a$, should be found out and moved forward. The search starts from the 1 th period. If there is no forwarded operation related to the $2 x-1$ th period, then move to the $2(x+1)-1$ th period to begin a new search procedure. An operation can be

defined as a forwarded operation in the $2 x-1$ th period if its position on the scheduling plan looks like the target operation $O_{i k}^{l}$ in | Figure 6.7 Figure 6.9. |
| :--- | :--- |



Figure 6.7: Feasible forwarded operation (in one GAP)


Figure 6.8: Feasible forwarded operation (in more than one GAP) situation 1


Figure 6.9: Feasible forwarded operation (in more than one GAP) situation 2
In Figure 6.7. $O_{i k}^{l}$ and its preceding operation within the same job (POJ) and preceding operation on the same machine (POM) are in the same government electricity supply available period (GAP). There is a space for $O_{i k}^{l}$ to move left to the blue line which is the maximum between the completion time of its POJ and the completion time of its POM. In Figure 6.8 $O_{i k}^{l}$ and its POJ and POM are in different GAPs, but there is enough space for $O_{i k}^{l}$ to move into GAP 1 where POJ locates $(\mathrm{A}>\mathrm{B}$, where B represents the processing time of $O_{i k}^{l}$ ). Then $O_{i k}^{l}$ can be moved into GAP 1 to the blue line. In Figure 6.9, although $O_{i k}^{l}$ and its POJ and POM are in different GAPs and $\mathrm{A}<\mathrm{B}, O_{i k}^{l}$ can still be defined as a forwarded operation and it can be moved to the starting time of GAP 2 . All the aforementioned conditions can be mathematically defined in the following:

$$
\begin{equation*}
S_{i k}^{l}>\max \left(C_{k}^{r-1}, C_{i k^{\prime}}^{l-1}\right) X_{i k}^{l r}=1 \tag{6.7}
\end{equation*}
$$

If

$$
\begin{align*}
& S_{2 x-1}<\max \left(C_{k}^{r-1}, C_{i k^{\prime}}^{l-1}\right)<E_{2 x-1} \\
& S_{2 x-1}<S_{i k}^{l}<E_{2 x-1} \\
& \quad E_{2(x-y)-1}-\max \left(C_{k}^{r-1}, C_{i k^{\prime}}^{l-1}\right) \geq p_{i k}^{l} \quad X_{i k}^{l r}=1  \tag{6.8}\\
& \quad S_{2(x-y)+1}<S_{i k}^{l}, \text { if } E_{2(x-y)-1}-\max \left(C_{k}^{r-1}, C_{i k^{\prime}}^{l-1}\right)<p_{i k}^{l} \quad X_{i k}^{l r}=1 \tag{6.9}
\end{align*}
$$

If

$$
\begin{aligned}
& S_{2(x-y)-1}<\max \left(C_{k}^{r-1}, C_{i k^{\prime}}^{l-1}\right) \leq E_{2(x-y)-1} \\
& S_{2 x-1}<S_{i k}^{l}<E_{2 x-1}
\end{aligned}
$$

Where
$\mathrm{x}=2,3,4, \ldots, a$.
$\mathrm{y}=1,2,3, \ldots, b$.
$S_{i k}^{l}$ is the starting time of $O_{i k}^{l}$.
$C_{i k}^{l}$ is the completion time of $O_{i k}^{l}$.
$p_{i k}^{l}$ is the processing time of $O_{i k}^{l}$.
$S_{2 x-1}$ is the starting time of the $2 x-1$ th period.
$E_{2 x-1}$ is the ending time of the $2 x-1$ th period.
$S_{2(x-y)-1}$ is the starting time of the $2(x-y)-1$ th period.
$E_{2(x-y)-1}$ is the ending time of the $2(x-y)-1$ th period.
$M_{k}^{\prime}=\left\{m_{k}^{r}\right\}_{r=1}^{\sum_{i=1}^{n} \Sigma_{l=1}^{u_{i}} \gamma_{i k}^{l}}$ is a finite set of operations processed on $M_{k}$.
$\gamma_{i k}^{l}$ is a decision variable that $\gamma_{i k}^{l}=1$ if the $l$-th operation of $J_{i}$ processed on $M_{k}, 0$ otherwise.
$m_{k}^{r}$ is the $r$-th operation processed on $M_{k}$ within $s$.
$X_{i k}^{l r}$ is a decision variable, $X_{i k}^{l r}=1$ if $O_{i k}^{l}$ of $J_{i}$ is scheduled in the $r$-th position for processing on $M_{k}, 0$ otherwise. Thus, in constraint (6.10), $m_{k}^{r}=O_{i k}^{l}$.
$O_{i k^{\prime}}^{l-1}$ is the preceding operation within the same job of $O_{i k}^{l}$.
$m_{k}^{r-1}$ is the preceding operation on the same machine as $O_{i k}^{l}$.
$C_{i k^{\prime}}^{l-1}$ is the completion time of $O_{i k^{\prime}}^{l-1}$.
$C_{k}^{r-1}$ is the completion time of $m_{k}^{r-1}$.

The meaning of mathematical symbols in the above conditions can be seen in Nomenclature. This condition (6.7) means that when the starting time of $O_{i k}^{l}$ and the maximum value in the completion time of $O_{i k}^{l}$ 's preceding operation within the same job (POJ) and the completion time of $O_{i k}^{l}$ 's preceding operation on the same machine (POM) are in the same government electricity supply available period, if the starting time of $O_{i k}^{l}$ is larger than the maximum between the completion time of its POJ and the completion time of its POM, then it can be defined as a forwarded operation. When the aforementioned two time points belongs to different government electricity supply available periods, $O_{i k}^{l}$ can be defined as forwarded operation if condition (6.8) or condition (6.9) can be satisfied. We can suppose that $C_{i k^{\prime}}^{l-1}>C_{k}^{r-1}$, thus (6.8) means the processing time of $O_{i k}^{l}$ is smaller than the gap between the ending time of the $2(x-y)-1$ th period where the completion time of $O_{i k}^{l}$ 's POJ locates and the completion time itself. When (6.8) is not satisfied, (6.9) means if the starting time of $O_{i k}^{l}$ is larger than the starting time of the $2(x-y)+1$ th period which is the first government electricity supply available period following the $2(x-y)-1$ th period.

## Condition 2:

Condition 2 is used to judge whether all operations that need to be moved forward have finished their left move. If yes, the algorithm is stopped. Otherwise, the algorithm checks if there is any forwarded operation in the $2 x-1$ th period. If yes, the algorithm executes the forwarded operation ranking step. Otherwise, the algorithm will go back to the forwarded operation selection step.

$$
\begin{equation*}
\forall \max \left(C_{k}^{r}\right)<S_{2 x-1} \quad \forall m_{k}^{r} \in M_{k}^{\prime} \tag{6.11}
\end{equation*}
$$

Where
$M_{k}^{\prime}=\left\{m_{k}^{r}\right\}_{r=1}^{\sum_{i=1}^{n} \Sigma_{l=1}^{u_{i}} \gamma_{i k}^{l}}$ is a finite set of operations processed on $M_{k}$.
$\gamma_{i k}^{l}$ is a decision variable that $\gamma_{i k}^{l}=1$ if the $l$-th operation of $J_{i}$ processed on $M_{k}, 0$ otherwise.
$m_{k}^{r}$ is $r$-th operation processed on $M_{k}$ within a feasible schedule $s$.
$C_{k}^{r}$ is the starting time of $m_{k}^{r}$ on $M_{k}$.
$S_{2 x-1}$ is the starting time of the $2 x-1$ th period.
Condition (6.11) makes sure that all of the last operations on each $M_{k}$ are finished before the starting time of the $2 x-1$ th period. Thus, when it has been satisfied, all of the forward moving in schedule $s$ have been finished, and the algorithm is stopped. Otherwise, the algorithm will check whether there is any forwarded operation in the $2 x-1$ th period. If there is none, the algorithm goes to $2(x+1)-1$ th period to do the forwarded operation selection. Otherwise, the algorithm executes the forwarded operation ranking step.

Forwarded operations ranking: After all forwarded operations in the $2 x-1$ th period have been found, they need to be ranked to find out the one with the highest priority for forward (left) moving. The ranking rules are described below. $O_{i k}^{l} \prec_{f} O_{i^{\prime} k}^{l^{\prime}}$ means $O_{i k}^{l}$ is prior to $O_{i^{\prime} k}^{l^{\prime}}$ in forward moving.

$$
\begin{equation*}
O_{i k}^{l} \prec_{f} O_{i^{\prime} k}^{l^{\prime}} \text { if } \frac{w_{i}}{d_{i}}>\frac{w_{i^{\prime}}}{d_{i^{\prime}}} \tag{6.12}
\end{equation*}
$$

else if $\frac{w_{i}}{d_{i}}=\frac{w_{i^{\prime}}}{d_{i^{\prime}}}$,

$$
\begin{equation*}
\text { then } O_{i k}^{l} \prec_{f} O_{i^{\prime} k}^{l^{\prime}} \text { if } w_{i}>w_{i^{\prime}} \tag{6.13}
\end{equation*}
$$

else if $w_{i}=w_{i^{\prime}} ; d_{i}=d_{i^{\prime}}$,

$$
\begin{equation*}
\text { then randomly ranking } O_{i k}^{l} \text { and } O_{i^{\prime} k}^{l^{\prime}} \tag{6.14}
\end{equation*}
$$

else if $i=i^{\prime}$,

$$
\begin{equation*}
\text { then } O_{i k}^{l} \prec_{f} O_{i^{\prime} k}^{l^{\prime}} \text { if } l<l^{\prime} \tag{6.15}
\end{equation*}
$$

For operations from different $J_{i}$, condition (6.12) means that operation $O_{i k}^{l}$ with a higher value in $\frac{w_{i}}{d_{i}}$ gets the priority for forward moving. Condition (6.13) means that when the values of $\frac{w_{i}}{d_{i}}$ are the same, the one with higher a value in $w_{i}$ gets the priority. Condition (6.14) indicates that when the $w_{i}$ and $d_{i}$ of the two operations are the same, either can be preferred. Finally, for operations from the same $J_{i}$, the one positioned forward in the technology path gets the priority.

Forwarded operation left moving: The different types of forwarded moving can be referred to as in Figure 6.7.Figure 6.9. Suppose $O_{i k}^{l}$ gets the highest priority for forward moving in the $2 x-1$ th period, defining the new starting time of $O_{i k}^{l}$ as $S_{i k}^{\text {lnew }}$, the forward moving rules are presented below.

$$
\begin{equation*}
S_{i k}^{\text {lnew }}=\operatorname{maximum}\left(C_{k}^{r-1}, C_{i k^{\prime}}^{l-1}\right) \quad X_{i k}^{l r}=1 \tag{6.16}
\end{equation*}
$$

If

$$
\begin{aligned}
& S_{2 x-1}<\max \left(C_{k}^{r-1}, C_{i k^{\prime}}^{l-1}\right)<E_{2 x-1} \\
& S_{2 x-1}<S_{i k}^{l}<E_{2 x-1}
\end{aligned}
$$

Else if

$$
\begin{align*}
& S_{2(x-y)-1}<\max \left(C_{k}^{r-1}, C_{i k^{\prime}}^{l-1}\right) \leq E_{2(x-y)-1} \\
& S_{2 x-1}<S_{i k}^{l}<E_{2 x-1} \\
& E_{2(x-y)-1}-\max \left(C_{k}^{r-1}, C_{i k^{\prime}}^{l-1}\right) \geq p_{i k}^{l} \\
& \qquad S_{i k}^{\text {lnew }}=S_{2(x-y)+1} \quad X_{i k}^{l r}=1 \tag{6.17}
\end{align*}
$$

If

$$
\begin{aligned}
& S_{2(x-y)-1}<\max \left(C_{k}^{r-1}, C_{i k^{\prime}}^{l-1}\right) \leq E_{2(x-y)-1} \\
& S_{2 x-1}<S_{i k}^{l}<E_{2 x-1} \\
& E_{2(x-y)-1}-\max \left(C_{k}^{r-1}, C_{i k^{\prime}}^{l-1}\right)<p_{i k}^{l}
\end{aligned}
$$

$$
S_{2(x-y)+1}<S_{i k}^{l}
$$

Where
$\mathrm{x}=2,3,4, \ldots, a$.
$\mathrm{y}=1,2,3, \ldots, b$.
$S_{i k}^{l}$ is the starting time of $O_{i k}^{l}$.
$C_{i k}^{l}$ is the completion time of $O_{i k}^{l}$.
$p_{i k}^{l}$ is the processing time of $O_{i k}^{l}$.
$S_{2 x-1}$ is the starting time of the $2 x-1$ th period.
$E_{2 x-1}$ is the ending time of the $2 x-1$ th period.
$S_{2(x-y)-1}$ is the starting time of the $2(x-y)-1$ th period.
$E_{2(x-y)-1}$ is the ending time of the $2(x-y)-1$ th period.
$M_{k}^{\prime}=\left\{m_{k}^{r}\right\}_{r=1}^{\sum_{i=1}^{n} \Sigma_{l=1}^{u_{i}} \gamma_{i k}^{l}}$ is a finite set of operations processed on $M_{k}$.
$\gamma_{i k}^{l}$ is a decision variable that $\gamma_{i k}^{l}=1$ if the $l$-th operation of $J_{i}$ processed on $M_{k}, 0$ otherwise.
$m_{k}^{r}$ is the $r$-th operation processed on $M_{k}$ within $s$.
$X_{i k}^{l r}$ is a decision variable, $X_{i k}^{l r}=1$ if $O_{i k}^{l}$ of $J_{i}$ is scheduled in the $r$-th position for processing on $M_{k}, 0$ otherwise. Thus, in constraint (6.18), $m_{k}^{r}=O_{i k}^{l}$.
$O_{i k^{\prime}}^{l-1}$ is the POJ of $O_{i k}^{l}$.
$m_{k}^{r-1}$ is the POM of $O_{i k}^{l}$.
$C_{i k^{\prime}}^{l-1}$ is the completion time of $O_{i k^{\prime}}^{l-1}$.
$C_{k}^{r-1}$ is the completion time of $m_{k}^{r-1}$.
 the completion time of $O_{i k}^{l}$ 's POM are in the same GAP, moving $O_{i k}^{l}$ left on $M_{k}$ to its earliest possible starting time which is the completion time of the POJ, $C_{i k^{\prime}}^{l-1}$ in this case (suppose $C_{i k^{\prime}}^{l-1}>C_{k}^{r-1}$ ). Or when the aforementioned two time points belong to different GAPs, if the processing time of $O_{i k}^{l}$ is smaller than the gap between the ending time of the $2(x-y)-1$ th period where the completion time of $O_{i k}^{l}$ 's POJ locates and the completion time itself, moving $O_{i k}^{l}$ left on $M_{k}$ to its earliest possible starting time which is $C_{i k^{\prime}}^{l-1}$ in this case. Rule (6.17) means that when the processing time of $O_{i k}^{l}$ is larger than the gap between the ending time of the $2(x-y)-1$ th period where the completion time of $O_{i k}^{l}$ 's POJ locates and the completion time of $O_{i k}^{l}$ itself, and the starting time of $O_{i k}^{l}$ is larger than the starting time of the $2(x-$ $y)+1$ th period which is the first GAP following the $2(x-y)-1$ th period, then $O_{i k}^{l}$ can be moved left on $M_{k}$ to its earliest possible starting time which is $S_{2(x-y)+1}$. When finishing the left moving for the FO with the highest priority, the algorithm starts searching for FOs in the $2 x-1$ th period again. Searching continues to the $2(x+1)-1$ th period if there is no FO in the $2 x-1$ th period.

Compared to S 4 , the procedure of S 5 is less complex. Since the private electricity is provided during all the GUPs, thus the original schedule is not changed. Different values should be applied to the electricity price for GAPs and GUPs during the objective function calculation for the total electricity price.

### 6.4 Result comparison

The aim of this section is to demonstrate how the Rolling Blackout policy affects the performance of the scheduling plans produced in Scenario 2 (NSGA-II) and Scenario 3 (GAEJP) in terms of total weighted tardiness, total non-processing electricity consumption and total electricity cost. Based on the experimental results, all job shop instances behave the same. Thus, only the E-Lawrence $15 \times 15$ job shop with $f=1.6$ is used as an example for the comparison, while other experimental results will be shown in Appendix II. The electricity supply pattern is developed based on the fact that in some areas in China, the government electricity is available only from Monday to Thursday in one week, which means in $3 / 7$ of the production time the
private electricity has to be employed. The private electricity nearly doubles the price of the governmental one. Thus, it has been assumed that the electricity price $p^{e}=$ 12.5 pence $/ k W h$ if it is government electricity supply, while $p^{e}=20.5$ pence/ $k W h$ if it is private electricity supply. The cycle period $T$ of the Rolling Blackout policy is 10 hours, $\Delta t_{s}=480 \mathrm{~min}$ and $\Delta t_{o}=120 \mathrm{~min}$

### 6.4.1 Comparison of results in Scenario 2 to its corresponding Scenario 4 and Scenario 5

The Turn Off/ Turn On method has not been applied to scheduling plans in Scenario 2 (NSGA-II has been used as the optimisation technique). This method was also not applied to scheduling plans in Scenario 4 which are developed based on plans in Scenario 2. Therefore the machines are only turned off during the government electricity supply unavailable periods, and stay idle during the electricity supply available period even if there is no operation being processed on it. In Scenario 2, 6 solutions form the Pareto-front of E-Lawrence $15 \times 15$ job shop when $f=1.6$. These solutions are ranked by the ascending order of the non-processing electricity consumption objective function value. In Figure 6.10 Figure 6.12, the horizontal axis represents the number of solutions.


Figure 6.10: NPE comparison between Scenario 2 and its corresponding Scenario 4 and its corresponding Scenario 5


Figure 6.11: TWT comparison between Scenario 2 and its corresponding Scenario 4 and its corresponding Scenario 5


Figure 6.12: E-Cost comparison of Scenario 2, its corresponding Scenario 4 and its corresponding Scenario 5

### 6.4.2 Comparison of results in Scenario 3 to its corresponding Scenario 4 and Sce-

 nario 5The Turn Off/ Turn On method has been applied to scheduling plans in Scenario 3 (GAEJP has been used as the optimisation technique). This method is also applied to scheduling plans in Scenario 4 which are developed based on plans in Scenario 3. Therefore the machines are turned off if the idle period is longer than 30 minutes. In Scenario 3, 4 solutions form the Pareto front of E-Lawrence $15 \times 15$ job shop when $f=1.6$. Thus in Figure 6.13 Figure 6.15, the horizontal axis represents the number of solutions.


Figure 6.13: NPE comparison between Scenario 3 and its corresponding Scenario 4 and its corresponding Scenario 5


Figure 6.14: TWT comparison between Scenario 3 and its corresponding Scenario 4 and its corresponding Scenario 5


Figure 6.15: E-Cost comparison of Scenario 3, its corresponding Scenario 4 and its corresponding Scenario 5

Since the private electricity supply is unavailable in Scenario 4, it can be observed from Figure 6.10, Figure 6.11, Figure 6.13 and Figure 6.14 that both the total nonprocessing electricity consumption value and total weighted tardiness value increase in Scenario 4 after postponing some operations in Scenario 2 and Scenario 3 as anticipated in Section 6.2. Compared to the total electricity cost (TEC) value in Scenario 2 and Scenario 3, the total electricity cost values in Scenario 4 and Scenario 5 are
increased, as anticipated in Section 6.2 the total electricity cost value in Scenario 5 is the highest since the private electricity supply is utilised in this scenario, as shown in Figure 6.13 and Figure 6.15. Based on the above comparison experiments, it can be found that the total weighted tardiness is sacrificed if the private electricity is not used during the blackout periods, while the total electricity cost is sacrificed if the private electricity is used during all the blackout periods. To deliver the trade-off between total weighted tardiness and total electricity cost, compromised plans for using the private electricity need to be developed. This is the EC2T problem which is a tri-objective optimisation problem which is to reduce the total electricity cost, total electricity consumption and total weighted tardiness job shops. The solution for this problem will be detailed described below.

### 6.5 Solving the EC2T with NSGA-II (Scenario 6)

In the following section of this chapter, the goal is to generate compromised plans for using the private electricity where the NSGA-II is adapted to realise the trade-off between the total weighted tardiness and the total electricity cost. A new encoding schema, crossover and mutation operators are provided for solving the EC2T problem. The new method is used to decide whether to provide private electricity to each machine in the job shop during each government electricity supply unavailable period. The basic idea for the solution presented below is that when the Rolling Blackout policy is applied, and the private electricity supply is allowed to be used during the government electricity supply unavailable period, a plan for private electricity supply which is used to decide whether to provide the private resource to each machine in the job shop during each government electricity supply unavailable period needs to be produced. Then, the operations will be scheduled according to the final electricity supply situation. The optimisation method will be detailed described in the following sections.

### 6.5.1 Encoding schema

The chromosome used in Scenario 6 is composed of two parts. The first part is the OBES which had already been used in the aforementioned algorithm to represent the priority for operations to be assigned to the machines. The second part of the chromosome is created to represent the private electricity supply plan for each machine
during each government electricity supply unavailable period which can be denoted by ESP (Electricity Supply Plan). A typical chromosome for the $3 \times 3$ job shop provided by Liu \& Wu (2008) is shown below.

$$
[222333111]+\left[\begin{array}{cccccc}
\boxed{1} & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0
\end{array}\right]
$$

The electricity supply plan part of the chromosome is a matrix. The rows represent machines. For instance, the first row corresponds to machine $M_{1}$. The columns represent the government electricity supply unavailable periods. For instance, the first column corresponds to the first GUP in the scheduling plan. In ESP, " 1 " means the private electricity supply is available for a given machine $M_{k}$ during a specific GUP, 0 otherwise. For a specific job shop, the size of the matrix for ESP is decided by the number of machines and the maximum number of GUPs in its schedules after the schedules have been adjusted in Scenario 4. Thus, the number of rows is equal to the number of machines and the number of columns is double the maximum number of GUPs. This chromosome design method is developed based on the fact that at the initial stage of the genetic algorithm, the operations allocation sequences are still not very good. It is highly possible that some solutions which are not very good in terms of their performance on the total weighted tardiness are in the population. In other words, these solutions need longer ESP (larger number in columns) to finish the scheduling plan. Otherwise, the algorithm is forced to stop. It can be found that normally scheduling plans provided in Scenario 4 (the none private electricity supply case) need to experience the maximum number of government electricity supply unavailable periods to complete. This means the number of columns that the ESPs need in the final stage of the algorithm is expected to be smaller than the maximum number of GUPs in Scenario 4. Based on this, some test experiments had been delivered and found that for a specific job shop, when the number of columns in the ESP doubles the maximum number of GUPs in its corresponding Scenario 4, the algorithm can execute successfully. For the above $3 \times 3$ job shop and the OBES part of the chromosome, based on the scheduling adjustment result in Scenario 4, Figure 6.16 shows that 3 GUPs can be identified in the adjustment schedule. Thus, in the ESP part of the above chromosome, the number of rows is 3 and the number of columns is 6.


Figure 6.16: The result of finishing all right moves within schedule $s$

### 6.5.2 Crossover operator

The OOX crossover operator is employed for the OBES part of the chromosome. For the ESP part, the one point crossover operator is adopted. Given parent 1- $A_{1}$ and parent $2-A_{2}$, the one point crossover operator generates child $A_{1}^{\prime}$ and child $A_{2}^{\prime}$ by the following procedure:

1. Randomly, choose the same crossover point from both of the parents.
2. Exchange all the genes before the crossover point in $A_{1}$ and $A_{2}$.

For example, in a $3 \times 3$ job shop, $A_{1}$ and $A_{2}$ are shown as below, : represents the crossover point.

$$
\left.\begin{array}{l}
A_{1}=\left[\begin{array}{llllll}
1 & 0 & \vdots & 0 & 1 & 1 \\
1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 \vdots & 1 & 0 & 1 & 0
\end{array}\right] \\
A_{2}=\left[\begin{array}{llllll}
0 & 0 & \vdots & 0 & 1 & 0
\end{array} 1\right. \\
1 \\
1 \\
1
\end{array} 0 \vdots \begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

$A_{1}^{\prime}$ and $A_{2}^{\prime}$ are feasible child chromosomes as shown below.

$$
\begin{aligned}
& A_{1}^{\prime}=\left[\begin{array}{llllll}
0 & 0 & \vdots & 0 & 1 & 1 \\
1 \\
1 & 1 & \vdots & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0
\end{array}\right] \\
& A_{2}^{\prime}=\left[\begin{array}{llllll}
1 & 0 & \vdots & 0 & 1 & 0 \\
0 & 1 \vdots & 0 & 0 & 1 & 0 \\
1 & 1 \vdots & 0 & 0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

The latter half of all the columns in the ESP are just spare GUPs for schedule building, they rarely influence the scheduling result. So the crossover point is always located in the first half of the columns.

### 6.5.3 Mutation operator

The one point mutation operator is employed for solving the EC2T problem; namely an arbitrary gene in each row of the parent chromosome is chosen and its value is switched. Following the above example, $A_{1}^{\prime \prime}$ is the final child chromosome of $A_{1}$ after applying mutation on $A_{1}^{\prime}$.

$$
\left.\begin{array}{l}
A_{1}^{\prime}=\left[\begin{array}{cccccc}
{[0} & 0 & 0 & 1 & 1 & 1 \\
1 & \boxed{1} & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
\end{array}\right]
$$

### 6.5.4 Stopping criteria

The maximum number of generations is used as the stopping criterion. When the algorithm reaches this stage, the approximate pareto-front is obtained in the current set of non-dominated solutions.

### 6.5.5 Selection operator and decoding procedure

The selection operator is the binary tournament and the active schedule builder is employed. Each operation under treatment is allocated the best available processing time on the corresponding machine the operation requires. During the schedule building procedure, if any of the processing times of an operation overlaps with a GUP, then the operation is moved to the earliest available GAP, unless the private electricity supply is available for that GUP. This means the starting time of the specific operation is equal to the starting time of its earliest available GAP. For instance, the corresponding scheduling plan for the chromosome presented in Section 6.5.1 is shown in Figure 6.17.


Figure 6.17: A typical scheduling result of Scenario 6

### 6.6 Comparison of Scenario 6 and Scenario 3 and its related Scenario 4 and Scenario 5

The optimal parameter settings of the NSGA-II for the operators and stopping criteria, which provide the best final solution, are obtained after the initial tuning process. For all the job shop instances, the values are as follows: population size $N=500$; crossover probability $p_{c}=0.9$; mutation probability $p_{m}=0.2$; generation $t=$ 40,000 . During the tuning process, the values used for the crossover rate are [ $0.8,0.9,1.0$ ], for the mutation rate are $[0.01,0.02,0.05,0.1,0.2,0.3,0.4]$, for the number of generations are $[25000,30000,35000,40000,45000,50000]$, for the population size are $[300,400,500,600,700,800]$. Different combinations of the aforementioned values are tested in the experiment. Based on these tests, the optimal parameters setting of the NSGA-II for each case can be obtained. The NSGA-II has been run for 40000 generations to achieve the optimal solution. During the test, the algorithm has been run for 50000 generations, but the solutions have not been improved from the $40000^{\text {th }}$ to the $50000^{\text {th }}$ generation. Thus, the 40000 is the best value for the number of generation in this case. The same method has been applied to find the best value in the number of generation for other cases.

The aim of this section is to demonstrate that the compromised plans developed in Scenario 6 are effective in reducing the total electricity cost compared to Scenario 5 and reducing the total weighted tardiness compared to Scenario 4. Based on the data analysis, the changing trend of the two aforementioned objective function values are the same for all of the aforementioned job shop instances. Thus, only the E-Lawrence $15 \times 10$ job shop with $f=1.6$ is used as the example for the comparison, other experiment results are shown in Appendix III. The electricity supply pattern is the same as the one which has been described in Section 6.4. The machines are turned off if the idle period is longer than 30 minutes. The comparison results are shown in Fig-
ure 6.18, Figure 6.19 and Figure 6.20. There are 15 solutions on the Pareto-front obtained by the NSGA-II in Scenario 6, 7 solutions on the Pareto-front in Scenario 4 and 7 solutions on the Pareto-front in Scenario 5.


Figure 6.18: TWT comparison among Scenario 6, Scenario 4 and Scenario 5
(Scenario 4 and Scenario 5 are developed based on Scenario 3)


Figure 6.19: TEC comparison among Scenario 6, Scenario 4 and Scenario 5 (Scenario 4 and Scenario 5 are developed based on Scenario 3)


Figure 6.20: NPE comparison among Scenario 6, Scenario 4 and Scenario 5 (S4 and S5 are developed based on Scenario 3)

Table 6.7: The average TWT, TEC and NPE values for Scenario 4, 5 and 6

|  | Average TWT | Average TEC <br> (pence) | Average NPE <br> $(\mathrm{kWh})$ |
| :--- | :--- | :--- | :--- |
| Scenario 4 | 12699.57 | 15018.2 | 10.228 |
| Scenario 5 | 3028.571 | 16482.3 | 7.3 |
| Scenario 6 | 4617.667 | 15860.0 | 13.0 |

According to Figure 6.18 and Table 6.7, the scheduling plans obtained in Scenario 6 have a better performance on the total weighted tardiness compared to the plans delivered in Scenario 4 as expected. In Scenario 6, the average value in total weighted tardiness is 4617.7 weighted minutes while in Scenario 4 it is 12699.6 weighted minutes. The minimum improvement is $61.65 \%$, the maximum improvement is $71.95 \%$ and the average improvement is $63.64 \%$. According to Figure 6.19, the scheduling plans obtained in Scenario 6 have a better performance on total electricity cost compared to the plans delivered in Scenario 5 as anticipated. In Scenario 6, the average value in total weighted tardiness is 15860.0 pence while in Scenario 5 it is 16482.3 pence. The minimum improvement is $0.78 \%$, the maximum improvement is $7.91 \%$ and the average improvement is $3.78 \%$. According to Table 6.7. the average value of the total non-processing electricity is slightly increased in the NSGA-II solutions compared to the other two scenarios. However, it can be observed from Figure 6.20
that some of the NSGA-II solutions outperform the adjusted schedules in terms of NPE. Thus, it can be concluded that the compromised plan for using private electricity developed in Scenario 6, produced by the NSGA-II, is effective to realise the trade-off between the total weighted tardiness and the total electricity cost. Therefore, the method developed based on the NSGA-II is effective in solving the EC2T problem.

### 6.7 Summary

The Rolling Blackout policy affects the performance of the scheduling plans produced in Scenario 2 and Scenario 3 in terms of total weighted tardiness, total nonprocessing electricity consumption and total electricity cost. The performances of scheduling plans in the two scenarios are compared in this chapter (Scenario 4 and Scenario 5). In Scenario 4, there is no private electricity supply during the government electricity unavailable periods. On the contrary, in Scenario 5, the private electricity is employed during all the government supply unavailable periods to maintain the production.

Scenario 4 provides a scheduling plan adjustment scheme. The scheduling plans produced in Scenario 2 and Scenario 3 have been adjusted in Scenario 4.The operations that initially execute during the blackout periods are postponed to the next electricity supply available period, thus, leading to the new scheduling plan for Scenario 4. In Scenario 5 the private electricity is started to provide power for the manufacturing company during all the blackout periods. The scheduling plans produced in Scenario 2 and Scenario 3 are performed in Scenario 5, i.e. the scheduling plans have been kept the same, however the values of the total electricity cost have been re-calculated.

A scenario comparison has been performed. As expected, both the total nonprocessing electricity consumption and total weighted tardiness are increased in Scenario 4 after postponing some operations in Scenario 2 and Scenario 3, and the total electricity cost is increased in Scenario 5 since the private electricity supply is utilised in this scenario.

A compromised plan for using private electricity is developed in this chapter for solving the EC2T problem (Scenario 6). The NSGA-II is applied to realise the tradeoff between the total weighted tardiness and the total electricity cost. New encoding
schema, crossover operator and mutation operator are provided. The new method is used to decide whether to provide private electricity to each machine in the job shop during each GUP. The performance of the algorithm has been tested on four extended versions of several job shop instances which incorporate electrical consumption profiles for the machine tools, including Fisher and Thompson $10 \times 10$ job shop scenario, Lawrence $10 \times 10,20 \times 10$ and $15 \times 15$ job shop scenarios. In addition, comparison experiments have been applied to demonstrate the effectiveness of the NSGA-II in solving the EC2T problem. To compare the scheduling plans in Scenario 4, the scheduling plans delivered in Scenario 6 have a better performance on total weighted tardiness. To compare the scheduling plans in Scenario 5, the scheduling plans delivered in Scenario 6 have a better performance on total electricity cost. Therefore, the NSGA-II and its related new encoding schema, crossover operator and mutation operator successfully realise the trade-off between the total weighted tardiness and the total electricity cost and proved to be effective in solving the EC2T problem.

## CHAPTER 7 <br> VALIDATION BASED ON A REAL-WORLD JOB SHOP SCHEDULING PROBLEM

### 7.1 Introduction

The aim of this chapter is to validate the effectiveness of the GAJEP in reducing the total non-processing electricity consumption in a real job shop case. The GAEJP is chosen in the validation process since it is the most innovative optimisation approach developed in this thesis. The test case (a real world ECT problem) is developed based on a Mechanical Engineering module at the University of Nottingham, Ningbo. This $7 \times 5$ job shop instance is an example used in education which resembles a realworld job shop. The performance of the algorithm has been tested on the aforementioned job shop instance. It is compared with the optimisation result of the wellestablished traditional scheduling approach which does not consider reducing the total electricity consumption as an objective (Scenario 1). The GAEJP is shown to be effective in solving the ECT and reducing the total non-processing electricity consumption for this real job shop instance. Additionally, it will be identified that the GAEJP merely deteriorates the total weighted tardiness objective for this test case.

### 7.2 The real-world job shop

The real-world job shop instance for validation is developed based on a workshop at the University of Nottingham, Ningbo, as shown in Figure 7.1. The test case is developed based on a Mechanical Engineering module where the students are divided into different groups and have to design and manufacture a simple cart using a spring as the source of power. The drawing for one of the spring carts is shown in Figure 7.2. Seven groups developed their own spring carts. All the parts of the seven carts were mainly machined on three turning machines and two milling machines; one of the turning machines is shown in Figure 7.3.


Figure 7.1: The workshop used for validation


Figure 7.2: Drawing of the example spring cart
This situation can be generalised as a job shop. After grouping some parts which have the same process routines, a $7 \times 5$ job shop is developed for validation as shown in Table 7.1. The processing time for each operation is estimated by a very experienced technician. The different due dates are calculated based on the TWK due date assignment method which has been described in Section 3.7.1 and the weights for each job are assigned randomly, as presented in Table 7.2. To validate the per-
formance of the GAEJP in this real test case, the electricity characteristics that need to be known are the idle power level of each machine tool, the average power and the time consumed to turn off and turn on the machine tools. These electricity characteristics are measured by a VC3266B clamp-on multi-meter, the measurement method is following Kordonowy (2003). The values for the aforementioned characteristics are shown in Table 7.3. Based on the above information, the test experiments to verify the effectiveness of the GAEJP in reducing the total non-processing electricity consumption in a real job shop problem are presented in the next section.


Figure 7.3: One of the turning machines used in the test job shop case
Table 7.1: The $p_{i k}^{l}$ of each $O_{i k}^{l}$ in the $7 \times 5$ job shop instance

| $M_{k}\left(p_{i k}^{l}\right)$ | $O_{i k}^{1}$ | $O_{i k}^{2}$ | $O_{i k}^{3}$ | $O_{i k}^{4}$ | $O_{i k}^{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $J_{1}$ | $M_{2}(83)$ | $M_{1}(49)$ | $M_{3}(90)$ | $M_{5}(77)$ | $M_{4}(65)$ |
| $J_{2}$ | $M_{3}(27)$ | $M_{2}(81)$ | $M_{1}(35)$ | $M_{4}(65)$ | $M_{5}(42)$ |
| $J_{3}$ | $M_{1}(46)$ | $M_{2}(55)$ | $M_{3}(59)$ | $M_{4}(69)$ | $M_{5}(44)$ |
| $J_{4}$ | $M_{2}(65)$ | $M_{1}(92)$ | $M_{3}(87)$ | $M_{4}(48)$ | $M_{5}(59)$ |
| $J_{5}$ | $M_{2}(69)$ | $M_{4}(32)$ | $M_{1}(22)$ | $M_{5}(78)$ | $M_{3}(41)$ |
| $J_{6}$ | $M_{1}(80)$ | $M_{4}(80)$ | $M_{3}(65)$ | $M_{2}(42)$ | $M_{5}(24)$ |
| $J_{7}$ | $M_{1}(37)$ | $M_{3}(39)$ | $M_{2}(77)$ | $M_{4}(89)$ | $M_{5}(66)$ |

Table 7.2: Parameters of each $J_{1}$ in the $7 \times 5$ job shop, $r_{i}=0$

| $J_{i}$ | $d_{i}(f=1.5)$ | $d_{i}(f=1.6)$ | $d_{i}(f=1.7)$ | $d_{i}(f=1.8)$ | $w_{i}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $J_{1}$ | 546 | 582 | 618 | 655 | 3 |
| $J_{2}$ | 375 | 400 | 425 | 450 | 1 |
| $J_{3}$ | 409 | 436 | 464 | 491 | 2 |
| $J_{4}$ | 526 | 561 | 596 | 631 | 2 |
| $J_{5}$ | 363 | 387 | 411 | 435 | 3 |
| $J_{6}$ | 436 | 465 | 494 | 523 | 1 |
| $J_{7}$ | 462 | 492 | 523 | 554 | 2 |

Table 7.3: The electricity characteristics for the $7 \times 5$ job shop

| $M_{k}$ | $P_{k}^{\text {idle }}(\mathrm{W})$ | $P_{k}^{\text {turnon }}(\mathrm{W})$ | $P_{k}^{\text {turnoff }}(\mathrm{W})$ | $t_{k}^{\text {turnon }}(\mathrm{min})$ | $t_{k}^{\text {turnoff }}(\mathrm{min})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $M_{1}$ | 510 | 200 | 140 | 0.9 | 0.7 |
| $M_{2}$ | 600 | 220 | 150 | 1.1 | 1.0 |
| $M_{3}$ | 220 | 150 | 100 | 0.8 | 0.7 |
| $M_{4}$ | 460 | 170 | 160 | 1.0 | 0.8 |
| $M_{5}$ | 280 | 140 | 120 | 0.8 | 0.7 |

### 7.3 Experiment and discussion

The Shifting Bottleneck Heuristic (SBH) and Local Search Heuristic (LSH) approaches provided by the software LEKIN (Pinedo 2009) are used as the optimisation techniques to provide the baseline scenario (Scenario 1) for the $7 \times 5$ job shop. Currently, no scheduling technique is currently applied to this work shop. The optimisation result of the LEKIN software can be seen as the first step of optimisation for this job shop. The scheduling plans with a minimum objective value in total weighted tardiness are adopted, while the total non-processing electricity consumption value are calculated based on each optimised scheduling plan under different due date conditions, as shown in Table 7.4. These results are compared with the optimisation results delivered by the GAEJP.

Table 7.4: The optimisation result of LSH of the $7 \times 5$ job shop by LEKIN

| Tardiness factor $(f)$ | TWT $\left(t w t_{s 1}^{f}\right)$ <br> in <br> weighted min | Total NPE $\left(n p e_{s 1}^{f}\right)$ <br> in |
| :---: | :---: | :---: |
|  | 619 | kWh |
| 1.5 | 421 | 2.748 |
| 1.6 | 280 | 3.736 |
| 1.7 | 94 | 2.532 |
| 1.8 | 0 | 1.942 |
| 1.9 |  | 1.712 |

The parameter settings of the GAEJP are obtained after an initial tuning process; the values are as follows: population size $N=150$; crossover probability $p_{c}=1.0$; mutation probability $p_{m}=0.4$; generation $t=8000$. During the tuning process, the values used for the crossover rate are in the set $[0.8,0.9,1.0]$. The values used for the crossover rate are $[0.8,0.9,1.0]$, for the mutation rate are $[0.1,0.2,0.3,0.4,0.5,0.6]$, for the number of generations are [5000, 6000, 7000, 8000, 9000, 10000], for the population size are $[80,100,150,200,300,400,500]$. Different combinations of the aforementioned values are tested in the experiment. Based on these tests, the optimal parameter settings of the GAEJP for each case can be obtained. The Turn Off/Turn On operation are only applied when the idle time on the machine is longer than 15 min . Considering the effect of display in Figure 7.4. some of the representative solutions (solutions with maximum, minimum and medium value of total weighted tardiness in each front) on Pareto-fronts delivered by the GAEJP for the $7 \times 5$ job shop are shown in Table 7.5. The comparison between the results delivered by the aforementioned two optimisation techniques is shown in Figure 7.4.

Table 7.5: The representative solutions on Pareto-fronts delivered by GAEJP for the $7 \times 5$ job shop

| Tardiness factor (f) | $\begin{gathered} \text { TWT }\left(t w t_{s 3}^{f}\right) \\ \text { in } \\ \text { weighted min } \\ \hline \end{gathered}$ | ```Total NPE (npes3) in kWh``` |
| :---: | :---: | :---: |
| 1.5 | 1137 | 0.009 |
|  | 759 | 0.024 |
|  | 619 | 0.104 |
| 1.6 | 1021 | 0.009 |
|  | 484 | 0.045 |
|  | 421 | 0.177 |
| 1.7 | 599 | 0.009 |
|  | 364 | 0.018 |
|  | 280 | 0.189 |
| 1.8 | 396 | 0.010 |
|  | 165 | 0.029 |
|  | 103 | 0.170 |
| 1.9 | 201 | 0.010 |
|  | 38 | 0.022 |
|  | 0 | 0.035 |



Figure 7.4: The solution comparison between GAEJP and the baseline scenario ( $7 \times 5$ job shop)

It can be observed that in this $7 \times 5$ job shop, the GAEJP combined with the Turn Off/Turn On method can reduce the total non-processing electricity consumption in a scheduling plan without deterioration of the total weighted tardiness in most cases (when $f=1.5,1.6,1.7,1.9$ ). When $f=1.8$, the total weighted tardiness obtained by the LEKIN software is 94 weighted min, while the minimum total weighted tardiness obtained by the GAEJP is 103 weighted minutes, comparatively which is not a huge deterioration. The non-processing electricity consumption reductions in percentage are shown in Table 7.6. The total weighted tardiness increases in weighted minutes for each job shop are shown in Table 7.7.

Table 7.6: The NPE improvement in percentage for the $7 \times 5$ job shop

|  |  | $7 \times 5$ job shop |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{f}=1.5$ | $\mathrm{f}=1.6$ | $\mathrm{f}=1.7$ | $\mathrm{f}=1.8$ | $\mathrm{f}=1.9$ |
| NPE | $\min$ | $96.2 \%$ | $95.3 \%$ | $92.5 \%$ | $91.2 \%$ | $98.0 \%$ |
| Improvement | $\max$ | $99.7 \%$ | $99.8 \%$ | $99.6 \%$ | $99.5 \%$ | $99.4 \%$ |

Table 7.7: The TWT increase in weighted minutes for the $7 \times 5$ job shop

|  |  | $7 \times 5$ job shop |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{f}=1.5$ | $\mathrm{f}=1.6$ | $\mathrm{f}=1.7$ | $\mathrm{f}=1.8$ | $\mathrm{f}=1.9$ |  |
| TWT | $\min$ | 0 | 0 | 0 | 6 | 0 |  |
|  | $\max$ | 518 | 600 | 319 | 302 | 201 |  |

The performance of the GAEJP in this $7 \times 5$ job shop instance is better than in other job shop instances presented in Chapter 5 since there is nearly no deterioration in the total weighted tardiness objective. The difference in this $7 \times 5$ job shop instance from other instances is that it has a comparatively longer processing time for each operation. The minimum processing time of all operations is 22 minutes. Thus, it is possible to assume that the GAEJP might be more effective in reducing the total nonprocessing electricity consumption without a deterioration of total weighted tardiness for job shops which have a long processing time for every operation, and the differences in the processing time among all the operations are not large. This might be a new attribute for the algorithm. This result needs to be tested on a wider range of job shop instances in the future work to prove this trend.

### 7.4 Summary

The effectiveness of the GAEJP in solving the ECT problem has been tested in four classic job shop instances in Chapter 6. To further verify its effectiveness, a real job shop instance had been formalised to provide a test bed for this algorithm. The reason for only the GAEJP being tested is that it is the most innovative optimisation approach developed in this thesis. The test case (a real ECT problem) is developed based on a module of mechanical engineering in University of Nottingham, Ningbo where a $7 \times 5$ job shop instance has been formalised and the electricity characteristics of machine tools needed for the experiments have been measured. Based on the aforementioned real job shop instance, the performance of the algorithm has been tested. Compared with the optimisation results of the Local Search Heuristic, it has been found that, the GAEJP is very effective in reducing the total non-processing electricity consumption nearly without deteriorating the total weighted tardiness performance. Thus, the GAEJP has been proved to be effective in solving the ECT problem in a real job shop circumstance.

## CHAPTER 8 CONCLUSIONS AND FUTURE WORK

The purpose of this chapter is to summarise and conclude this PhD research and propose the future research directions. Firstly, the research work is summarised and the conclusion is conducted that the optimisation techniques proposed in this research are effective for solving both ECT and EC2T problems. In addition, the contribution of this work is re-emphasised. Finally, future research directions based on the finding of this research are proposed.

### 8.1 Summary of the research work and conclusions

Reducing the electricity consumption and its related cost as well as maintaining a good performance in classical scheduling objectives in job shops is a difficult problem to optimally solve. In this thesis, the mathematical models for the electricity consumption pattern of machine tools and the Rolling Blackout policy has been formalised. Multi-objective models are proposed to solve different scheduling problems. For the first model, one of the objectives is to minimise the total non-processing electricity consumption (the ECT problem). For the other model, one of the objectives is to minimise the total non-processing electricity consumption and the other objective is to minimise the total electricity cost when the Rolling Blackout policy is applied (the EC2T problem).

Meta-heuristics are proposed to find solutions belonging to the near-optimal approximate Pareto front for each model. The NSGA-II is selected and applied to approximate the optimal Pareto front of both the ECT and EC2T problems and explore the opportunity for electricity saving in job shops. The algorithm is adapted for the problems described in an innovative way in terms of the encoding schema and the operators in the algorithm. Based on the optimisation results of the NSGA-II, it has been found that better optimisation techniques could be proposed to solve the ECT problem. Thus, the new Multi-objective Genetic Algorithm for solving the ECT job shop scheduling problem (GAEJP) and its corresponding scheduling techniques have been developed based on the NSGA-II. To understand how the Rolling Blackout policy will influence the performance of existing scheduling plans, a new heuristic has been proposed to adjust scheduling plans when the policy is applied. This heuristic also
provides a remedial measurement for manufacturing companies to reduce the deterioration of the total weighted tardiness objective when the Rolling Blackout is applied.

A research methodology including six scenarios and comparison experiments has been developed to prove the effectiveness of the aforementioned algorithms. Scenario 1 is the baseline scenario which represents the traditional single objective scheduling method to achieve a minimum total weighted tardiness. Scenario 2 and Scenario 6 have been used to present how optimisation solutions developed based on the NSGA-II can be applied to solve the ECT and EC2T problems respectively. Scenario 3 has been used to present how the proposed Multi-objective Genetic Algorithm for solving the ECT job shop scheduling problem (GAEJP) is effective in solving the ECT problem. Scenario 4 and Scenario 5 have been used to investigate the influence that the Rolling Black policy exerts on the performance of scheduling plans produced in Scenario 2 and Scenario 3 in terms of the objective values of the total weighted tardiness, total non-processing electricity consumption and the total electricity cost. The adjustment heuristic has been proposed in Scenario 4 to help the manufacturing plant manager to adjust the scheduling plans to reduce the total weighted tardiness as much as possible when the Rolling Blackout policy is applied. The scenario comparison between Scenario 2 and Scenario 1 has been used to prove that the NSGA-II is effective in solving the ECT problem. The scenario comparison among Scenario 3, Scenario 2 and Scenario 1 has been used to prove that the GAEJP is superior to the NSGA-II in solving the ECT. Finally, the scenario comparison of Scenario 6, Scenario 5 and Scenario 4 has been used to prove that the NSGA-II is effective in solving the EC2T problem.

The performance of all the aforementioned algorithms has been tested on an extended version of Fisher and Thompson $10 \times 10$, Lawrence $15 \times 10,20 \times 10$ and $15 \times 15$ job shop scenarios which incorporate electrical consumption profiles for the machine tools. Based on the tests and comparison experiments, it has been proved that by applying the NSGA-II, the total non-processing electricity consumption in the job shop decreases significantly with the sacrifice of the schedules' performance on the total weighted tardiness objective when there are tight due dates for jobs. When the due date becomes less tight, the sacrifice of the total weighted tardiness becomes much smaller. The Pareto fronts of the GAEJP have been compared with the ones
obtained by the NSGA-II. It has been observed that the GAEJP combined with the Turn Off/Turn On and Sequencing methods is more effective in reducing the total non-processing electricity consumption than the NSGA-II combined with the Sequencing method while not necessarily sacrificing its performance on total weighted tardiness. Thus, the superiority of the GAEJP in solving the ECT problem has been demonstrated. The scheduling plan adjustment heuristic has been proved to be effective in reducing the total weighted tardiness as much as possible when the Rolling Blackout policy is applied. It also helps us to understand that both the value of the total non-processing electricity consumption and the value of the total weighted tardiness are increased if there is no private electricity available when the Rolling Blackout policy is applied. Comparatively, the value of the total electricity cost is increased if the private electricity is available during all periods when the government electricity is not supplied. This provides the basis for solving the EC2T problem, and the NSGA-II has been proved to be effective to generate compromised plans for using the private electricity to realise the trade-off between the total weighted tardiness and the total electricity cost.

To the author's best knowledge, the problems studied and models proposed in this thesis, examines for the first time in the literature, the minimisation of electricity consumption and electricity cost as part of the objectives for a job shop while minimising the total weighted tardiness. The contribution of this work can be summarised in the following points:

Filling the knowledge gap that a typical multi-objective job shop scheduling problem without parallel machines still has not been explored very well when considering reducing the total electricity consumption and electricity cost as part of the objectives.

- The mathematical model for the electricity consumption pattern of machine tools has been formalised.
- New multi-objective optimisation models considering reducing electricity consumption and its related cost as part of the objectives have been proposed for job shop scheduling problems.
- The model for the Rolling Blackout policy has been developed.

Filling the knowledge gap that the Turn Off/ Turn On method combined with the Sequencing method has not been applied in a job shop in previous research, and that there is no algorithm which enables both of the approaches to be optimally applied in solving the aforementioned multi-objective job shop scheduling problem.

- The NSGA-II has been applied for the first time to solve the bi-objective Total Electricity Consumption Total Weighted Tardiness Job Shop Scheduling problem and the tri-objective Total Electricity Cost, Total Electricity Consumption and Total Weighted Tardiness Job Shop Scheduling problem.
- A Multi-objective Genetic Algorithm based on the NSGA-II and its corresponding scheduling techniques have been developed to solve the biobjective Total Electricity Consumption Total Weighted Tardiness Job Shop Scheduling problem.
- A new heuristic is proposed to adjust the existing scheduling plans when the Rolling Blackout policy is applied. This heuristic is a remedial measurement for manufacturing companies to reduce the deterioration of the total weighted tardiness objective when a Rolling Blackout policy is applied. It can also help us to understand how a Rolling Blackout policy will influence the performance of existing scheduling plans.

The optimisation techniques proposed in this thesis may be used to solve a large set of scheduling problems with different objectives. The developed techniques can be applied to companies which employ the job shop type manufacturing system to help them to achieve an electricity consumption reduction and an electricity cost reduction on the work shop level. However, there are some limitations and possible extensions that will define future research, which is presented in the next section.

### 8.2 Future Research

The optimisation methods developed in the previous chapters are useful to minimise electricity consumption and its related cost and the total weighted tardiness objective in a job shop model when the Rolling Blackout policy is applied. In future research, the proposed algorithms should be tested on a wider set of job shop instances to further validate their general applicability. The proposed mathematical models could be extended to more complex manufacturing environment, such as the flexible job shop
environment where parallel machines with different working conditions such as processing times can be added in the job shop model. Also, a job shop including the lot sizing problem can be studied and the relevant optimisation techniques can be developed to extend the applicable range of the developed methodology. The trade-off between electricity saving and machine wear due to frequent turning on/off of machines is also worth investigating. The job shop scheduling problem which considers reducing the electricity consumption when all the jobs arrive at the work shop with a dynamic pattern also needs to be studied. Finally, Composite dispatching rules which include electricity consumption as an objective to minimise when jobs arrive over time can be developed, since they can approximate the Pareto front without complex calculations for job shop scheduling problems. A more detailed description of possible research directions is provided below.

### 8.2.1 Testing the algorithms in a wider set of job shop instances

The performances of the NSGA-II in solving both the ECT and EC2T problems and the GAEJP in solving the ECT problem has been tested on four job shop instances in this work. In future work, the algorithms should be tested on a wider set of job shop scenarios to validate their more general applicability. In addition, the effect of applying the Turn off/Turn on method to the optimisation results of the NSGA-II on ECT problem (Scenario 2) should be investigated. The new results should be compared with the optimisation results of the GAEJP to further prove the GAEJP's priority in solving the ECT problem. Finally, in the validation chapter, it has been identified that the GAEJP might be more effective in reducing the total non-processing electricity consumption without deterioration of the total weighted tardiness for job shops which have long processing times for every operation and the differences in processing times among all the operations are not large. Test experiments should be conducted on more job shop scenarios to verify this assumption.

### 8.2.2 Reducing the electricity consumption in flexible job shop

The flexible job shop is a generalisation of the job shop model where work centers have multiple machines in parallel (Pinedo, 2012). The flexible job shop is widely used in the manufacturing industry. For instance, the flexible job shop with recirculation is one of the most complex machine environments which is a very common set-
ting in the semiconductor industry (Pinedo, 2012). When considering reducing the total electricity consumption, the new definition for different types of flexible job shop has been presented in Section 2.2.3.2. If the amounts of electricity consumed by any machine in a work centre $i$ for processing job $j$ are the same, the only chance for reducing the electricity consumption is to minimise the total non-processing electricity consumption. Otherwise, both the total non-processing electricity consumption and the processing electricity consumption can be reduced. To solve this problem, new model and optimisation techniques should be developed based on the existing research.

### 8.2.3 The lot sizing problem when considering reducing electricity consumption

From the model perspective, this research focuses on the typical job shop problem which is defined as: $n$ jobs should be processed on $m$ distinct machines in a predefined sequence. A job is completed only if it goes through all the machines. In the manufacturing industry, there are some more complex models. In some cases, the manufacturing system executes production according to the product orders. At least one type of product is required in each order and the quantity demanded for each type of product is more than one. For instance, assuming that a manufacturing company produces Product A and Product B, a typical order for this company would arrive at $t$ (release time), requiring 100 units of Product A and 120 units of Product B, to be delivered at $d$ (due date). So, the 100 units of Product A can be seen as the first job $J_{1}$, and 120 units of Product B can be seen as the other job $J_{2}$. Therefore, $J_{i}$ can be defined as a batch of a certain type of product that is required by a product order, i.e. $J_{i}$ is the non-single unit job. For the ease of presentation, a job is the same as a lot which contains a batch of identical items. Traditionally, it is assumed that a lot cannot be split. If this assumption is relaxed, lots can be split to possibly shorten the lead time. This leads to the problem of lot sizing which adds complexity to the basic model and makes it more close to some real manufacturing circumstances. The lot sizing deals with the decision of when and how to split a job into lots (S. Petrovic et al. , 2007). Thus, in the future research, a methodology should be defined for splitting $J_{i}$ to proper sub-lots to reduce the total electricity consumption in the job shop.

### 8.2.4 Reliability study with machine setup

The turning off and on of a machine might deteriorate the reliability of a machine resulting from mechanical shocks. Further research should be conducted to determine the trade-off between electricity saving and machine wear due to the frequent turning on/off of machines. A model could be developed and included in the non-processing electricity minimisation method to capture the effect of turning on/off the machine on its reliability.

### 8.2.5 Reducing electricity consumption in a dynamic job shop

Reducing the electricity consumption in a dynamic job shop should be studied in the future. Existing dynamic scheduling algorithms should be extended to reduce the electricity consumption and improve productivity for job shops where the components arrive at the production system at randomly distributed times. This will extend the applicable range of the developed multi-objective optimisation methodology to include stochastic manufacturing systems which are widely used in the real manufacturing world.

### 8.2.6 Developing dispatching rules considering reduction in electricity consumption

A dispatching rule is a rule that prioritises all the jobs that are waiting for processing on a machine. The prioritisation scheme may take into account the job's attributes, the machines' attributes as well as the current time (Pinedo 2009b). Compared to exact algorithms and meta-heuristics, dispatching rules are easy to implement and fast to calculate, and can be used in real time to schedule jobs (Mouzon 2008). In other words, dispatching rules usually can deliver reasonably good solution in a relatively short time. Thus, in the future work, dispatching rules which include electricity consumption as an objective to minimise when jobs arrive at the production system at randomly distributed times should be developed. Techniques like genetic programming could be used to construct the composite dispatching rules.

## Bibliography

Avram, I.O. \& Xirouchakis, P., 2011. Evaluating the use phase energy requirements of a machine tool system. Journal of Cleaner Production, 19(6-7), pp.699-711.

Bakuli, D., 2006. A Survey of Multi-Objective Scheduling Techniques Applied to the Job Shop Problem (JSP). Applications of Management Science, 12, pp.5162.

Baniszewski, B., 2005. An Environmental Impact Analysis of Grinding. Massachusetts Institute of Technology.

BBC News, 2011. Australia parliament passes divisive carbon tax. Available at: http://www.bbc.co.uk/news/world-asia-pacific-15269033 [Accessed November 9, 2011].

Beasley, J.E., 1990. OR-Library. Available at:
http://people.brunel.ac.uk/~mastjjb/jeb/info.html.
Bruzzone, A.A.G., Anghinolfi, D., Paolucci, M., Tonelli, F., 2012. Energy-aware scheduling for improving manufacturing process sustainability: A mathematical model for flexible flow shops. CIRP Annals - Manufacturing Technology, 61(1), pp.459-462.

Chen, J. \& Ho, S., 2005. A novel approach to production planning of flexible manufacturing systems using an efficient multi-objective genetic algorithm. International Journal, 45, pp.949-957.

Cheng, R., Gen, M. \& Tsujimura, Y., 1999. A tutorial survey of job-shop scheduling problems using genetic algorithms, part II: hybrid genetic search strategies. Computers \& Industrial Engineering, 36(2), pp.343-364.

Cheng, R., Gen, M. \& Tsujimura, Y., 1996. A tutorial survey of job-shop scheduling problems using genetic algorithms-I. Representation. Computers \& Industrial Engineering, 30(4), pp.983-997.

Chinahightech, 2011. The electricity shortage compel the SMEs in Wenzhou to introduce reform in production. Available at:
http://www.chinahightech.com/views_news.asp?Newsid=836353032323 [Accessed November 13, 2011].

Cho, M.H., 2004. Environmental Constituents of Electrical Discharge Machining. Massachusetts Institue of Technology.

Coello, C.C., 2006. Evolutionary multi-objective optimization and its use in finance,

Dahal, K.P., Tan, K.C. \& Cowling, P. 1., 2007. Evolutionary Scheduling, Springer.
Dahmus, J.B., 2007. Applications of Industrial Ecology: Manufacturing, Recycling, and Efficiency. Massachusetts Institute of Technology.

Dahmus, J.B. \& Gutowski, T.G., 2004. An environmental analysis of machining. In Proceedings of ASME International Mechanical Engineering Congress and RD\&D Expo 2004. Anaheim, Calofornia USA, pp. 1-10.

Deb, K. , 2002. A Fast and Elitist Multiobjective Genetic Algorithm : NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), pp.182-197.

Diaz, N., Helu, M., Jayanathan, S., Chen, Y., Horvath, A., Dornfeld, D., 2010. Environmental analysis of milling machine tool use in various manufacturing environments. In Sustainable Systems and Technology ISSST 2010 IEEE International Symposium on (. pp. p.1-6.

Diaz, N., Choi, S., Helu, M., Chen, Y., Jayanathan, S., Yasui, Y., Kong, D., Pavanaskar, S., Dornfeld, D., 2010. Machine Tool Design and Operation Strategies for Green Manufacturing. In Proceedings of 4th CIRP Internatinal Conference on High Performance Cutting. pp. 1-6.

Diaz, N. Helu, M., Jarvis, A., Tonissen, S., Dornfeld, D., Schlosser, R., 2009. Strategies for Minimum Energy Operation for Precision Machining. In The proceesings of MTTRF 2009 Annual Meeting.

Dietmair, A. \& Verl, A., 2009. Energy Consumption Forecasting and Optimisation for Tool Machines. Energy, pp.63-67.

Drake, R. Yildirim, M.B., Twomey, J., Whitman, L., Ahmad, J., Lodhia, P., 2006. Data collection framework on energy consumption in manufacturing. In Institute of Industrial Engineering Research Conference. Orlando, FL.

Efficiency Australia Goverment Department of Climate Change and Energy, 2011. Reducing Australia's emissions. Available at: http://www.climatechange.gov.au/government/reduce.aspx [Accessed February 6, 2012].

Eiben, A.E. \& Smith, J.E., 2008. Introduction to Evolutionary Computing (Google eBook), Springer.

Essafi, I., Mati, Y. \& Dauzère-Pérès, S., 2008. A genetic local search algorithm for minimizing total weighted tardiness in the job-shop scheduling problem. Computers \& Operations Research, 35(8), pp.2599-2616.

Fang, K., Uhan, N., Zhao, F., Sutherland., J.W., 2011. A New Shop Scheduling Approach in Support of Sustainable Manufacturing. In J. Hesselbach \& C. Herrmann, eds. Glocalized Solutions for Sustainability in Manufacturing. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 305-310.

Gen, M. \& Lin, L., 2013. Multiobjective evolutionary algorithm for manufacturing scheduling problems : state-of-the-art survey. Journal of Intelligent Manufacturing.

Gungor, A. \& Gupta, S.M., 1999. Issues in environmentally conscious manufacturing and product recovery: a survey. Computers \& Industrial Engineering, 36(4), pp.811-853.

Harrison, T.P., Lee, H.L. \& Neale, J.J., 2004. The Practice of Supply Chain Management: Where Theory and Application Converge, Springer-Verlag.

Hart, E., Ross, P. \& Corne, D., 2005. Evolutionary scheduling: A review. Genetic Programming and Evolvable Machines, 6(2), pp.191-220.

He, Y., Liu, B., Zhang, X., Gao, H., Liu X., 2012. A modeling method of taskoriented energy consumption for machining manufacturing system. Journal of Cleaner Production, 23(1), pp.167-174.

He, Y., Liu, F., Wu, T., Zhong, F.P., Peng. B., 2012. Analysis and estimation of energy consumption for numerical control machining. Journal of Engineering Manufacture, 226(2), pp.255-266.

He, Y., Liu. F., Cao, H.J. Liu, C., 2007. Job shop scheduling model of machining system for green manufacturing. Chinese Journal of Mechanical Engineering, 43(4), pp.27-33.

He, Y. \& Liu, F., 2010. Methods for Integrating Energy Consumption and Environmental Impact. Chinese Journal of Mechanical Engineering, 23(50775228).

Herrmann, C., Thiede, S., Kara, S., Hesselbach, J., 2011. Energy oriented simulation of manufacturing systems - Concept and application. CIRP Annals Manufacturing Technology, 60(1), pp.45-48.

Herrmann, C. \& Thiede, S., 2009. Process chain simulation to foster energy efficiency in manufacturing. CIRP Journal of Manufacturing Science and Technology, 1, pp.221-229.

Hu, S. Liu, F., He, Y., Peng, B., 2010. Characteristics of Additional Load Losses of Spindle System of Machine Tools. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 4(7), pp.1221-1233.

Jain, A.S. \& Meeran, S., 1998a. A state-of-the-art review of job shop scheduling techniques,

Jain, A.S. \& Meeran, S., 1998b. A state-of-the-art review of job-shop scheduling techniques. , (1).

Jeswiet, J. \& Kara, S., 2008. Carbon emissions and CES ${ }^{\text {TM }}$ in manufacturing. CIRP Annals - Manufacturing Technology, 57(1), pp.17-20.

Jones, A.J., 2007. The industrial ecology of the iron casting industry. Massachusetts Institue of Technology.

Jovane, F. Yoshikawa, H., Alting, L., Boer, C., Westkamper, E., Williams, D., Tseng, M., Seliger, G., Paci, A, 2008. The incoming global technological and industrial revolution towards competitive sustainable manufacturing. CIRP Annals Manufacturing Technology, 57(2), pp.641-659.

Kalla, D., Twomey, J. \& Overcash, M., 2009. MR4 Turning Process Unit Process Life Cycle Inventory,

Kilian, L., 2008. The Economic Effects of Energy Price Shocks. Journal of Economic Literature, 46(4), pp.871-909.

Kordonowy, D., 2003. A power assessment of machining tools. Massachusetts Institue of Technology.

Kurd, M.O., 2004. The material and energy flow through the abrasive waterjet machining and recycling processes. Massachusetts Institue of Technology.

Li, W., Zein, A., Kara, Sami., Herrmann, C., 2011. An Investigation into Fixed Energy Consumption of Machine Tools. In Glocalized Solutions for Sustainability in Manufacturing: Proceedings of the 18th CIRP International Conference on Life Cycle Engineering. pp. 268-273.

Liu, M. \& Wu, C., 2008. Intelligent Optimization Scheduling Algorithms for Manufacturing Process and Their Applications, National Defense Industry Press.

Marler, R.T. \& Arora, J.S., 2004. Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimisation, 26(6), pp.369-395.

McBurney, D.H. \& White, T.L., 2009. Research Methods 8th Editio., Cengage Learning.

Metcalf, G.E. \& Weisbach, D., The design of a carbon tax. Harvard Environmental Law Review.

Metta, H., 2008. Adaptive, Multi-objective Job Shop Scheduling Using Genetic Algorithms. University of Kentucky.

Mouzon, G., 2008. Operational methods and models for minimization of energy consumption in a manufacturing environment. Wichita State University.

Mouzon, G. \& Yildirim, M.B., 2008. A framework to minimize total energy consumption and total tardiness on a single machine. In Proceedings of 4th Annual GRASP Symposium. Wichita State University, pp. 105-116.

Mouzon, G., Yildirim, M.B. \& Twomey, J., 2007. Operational methods for minimization of energy consumption of manufacturing equipment. International Journal of Production Research, 45(18-19), pp.4247-4271.

Mukhopadhyay, D.M., Balitanas, M.O. Farkhod A., A., Jeon, S.H., Bhattacharyya, D., 2009. Genetic Algorithm : A Tutorial Review. International Journal of Grid and Distributed Computing, 2(3), pp.25-32.

Munoz, A.A. \& Sheng, P., 1995. An analytical approach for determining the environmental impact of machining processes. Journal of Materials Processing Technology, 53, pp.736-758.

Ono, I., Yamamura, M. \& Kobayashi, S., 1996. A genetic algorithm for job shop scheduling problems using job based order crossover. In Proceedings of IEEE International Conference on Evolutionary Computation. pp. 3-8.

Özgüven, C., Özbakır, L. \& Yavuz, Y., 2010. Mathematical models for job-shop scheduling problems with routing and process plan flexibility. Applied Mathematical Modelling, 34(6), pp.1539-1548.

Parveen, S. \& Ullah, H., 2010. Review on job shop and flow shop scheduling using multi-criteria decision making. Journal of Mechanical Engineering, 41(2), pp.130-146.

People, 2011. Electricity control policies had been employed to encourage power generation industry to reduce emission. Available at: http://paper.people.com.cn/zgnyb/html/2011-07/25/content_880649.htm?div=-1 [Accessed November 13, 2011].

Petrovic, S., Fayad C., Petrovic, D., Burke, E., Kendall., G., 2007. Fuzzy job shop scheduling with lot-sizing. Annals of Operations Research, 159(1), pp.275-292.

Pinedo, M.L., 2009a. Planning and Scheduling in Manufacturing and Services, Springer.

Pinedo, M.L., 2009b. planning and scheduling in manufacturing and services,
Pinedo, M.L., 2012. Scheduling: Theory, Algorithms, and Systems, Springer.
Productivity commission, 2011. Carbon Emission Policies in Key Economies, Melbourne.

Rabiee, M., Zandieh, M. \& Ramezani, P., 2012. Bi-objective partial flexible job shop scheduling problem: NSGA-II, NRGA, MOGA and PAES approaches. International Journal of Production Research, 50(24), pp.7327-7342.

Rajemi, M.F., 2010. Energy Analysis in Turning and Milling. The University of Manchester.

Sabuncuoglu, I. \& Bayiz, M., 1999. Job shop scheduling with beam search. European Journal of Operational Research, 118(2), pp.390-412.

Shi, R., Zhou, Y. \& Zhou, H., 2007. A hybrid evolutionary algorithm for bi-objective job shop scheduling problems. Control and Decision, 22(11), pp.1228-1234.

Sivanandam, S.N. \& Deepa, S.N., 2007. Introduction to Genetic Algorithms, Springer.

Sohu, 2011. Electricity crisis for SMEs in Zhejiang Province. Available at: http://news.sohu.com/20110615/n310170381.shtml [Accessed November 13, 2011].

Subaï, C., Baptiste, P. \& Niel, E., 2006. Scheduling issues for environmentally responsible manufacturing: The case of hoist scheduling in an electroplating line. International Journal of Production Economics, 99(1-2), pp.74-87.

Tang, D., Li, L. \& Du, K., 2006. On the Developmental Path of Chinese Manufacturing Industry Based on Resource Restraint. Jiangsu Social Sciences, 4, pp.51-58.

United States Environmental Protection Agency, 2006. Human-Related Sources and Sinks of Carbon Dioxide. Available at: http://www.epa.gov/climatechange/emissions/co2_human.html [Accessed February 7, 2012].

Vázquez-Rodríguez, J. \& Petrovic, S., 2010. A new dispatching rule based genetic algorithm for the multi-objective job shop problem. Journal of Heuristics, pp.771-793.

Veldhuizen, D.A. Van \& Lamont, G.B., 2000. Multi-objective evolutionary algorithm: Analysing the state-of-the-art. Evolutionary computation, 8(2), pp.125-147.

Vijayaraghavan, A. \& Dornfeld, D., 2010. Automated energy monitoring of machine tools. CIRP Annals - Manufacturing Technology, 59(1), pp.21-24.

Vilcot, G. \& Billaut, J.-C., 2008. A tabu search and a genetic algorithm for solving a bicriteria general job shop scheduling problem. European Journal of Operational Research, 190(2), pp.398-411.

Wang, J., Li, J. \& Huang, N., 2009. Optimal Scheduling to Achieve Energy Reduction in Automotive Paint Shops. In ASME 2009 International Manufacturing Science and Engineering Conference, Volume 1. ASME, pp. 161-167.

Wang, J., Li, J. \& Huang, N., 2011. Optimal vehicle batching and sequencing to reduce energy consumption and atmospheric emissions in automotive paint shops. International Journal of Sustainable Manufacturing, 2(2-3), pp.141-160.

Wang, Y.M., Yin, H.L. \& Wang, J., 2009. Genetic algorithm with new encoding scheme for job shop scheduling. The International Journal of Advanced Manufacturing Technology, 44(9-10), pp.977-984.

Xiao, W., 2011. NRDC Proposes Stepwise Residential Power Tariff (Oct. 2010). Natural Resource Defense Council. Available at: http://www.nrdc.cn/english/E_news_center_flag.php?id=933\&cid=208 [Accessed February 7, 2012].

Yamada, T., 2003. Studies on metaheuristics for job shop and flow shop scheduling problems. Kyoto University.

Zhou, A. Qu, B.Y., Li, H., Zhao, S.Z., Suganthan, P.N.,Zhang Q.F., 2011. Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary Computation, 1(1), pp.32-49.

Zhu, Q. \& Sarkis, J., 2004. Relationships between operational practices and performance among early adopters of green supply chain management practices in Chinese manufacturing enterprises. Journal of Operations Management, 22(3), pp.265-289.

## Appendix I Job shop instances for experiments

## Appendix I-E-F\&T $10 \times 10$ job shop

Appendix I-Table 1: The $p_{i k}^{l}(\min )$ of each $O_{i k}^{l}$ the E-F\&T $10 \times 10$ job shop

| $J_{i}$ | $O_{i k}^{1}$ |  | $O_{i k}^{2}$ |  | $O_{i k}^{3}$ |  | $O_{i k}^{4}$ |  | $O_{i k}^{5}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $M_{k}$ | $p_{i k}^{1}$ | $M_{k}$ | $p_{i k}^{2}$ | $M_{k}$ | $p_{i k}^{3}$ | $M_{k}$ | $p_{i k}^{4}$ | $M_{k}$ | $p_{i k}^{5}$ |
| $J_{1}$ | 1 | 29 | 2 | 78 | 3 | 9 | 4 | 36 | 5 | 49 |
| $J_{2}$ | 1 | 43 | 3 | 90 | 5 | 75 | 10 | 11 | 4 | 69 |
| $J_{3}$ | 2 | 91 | 1 | 85 | 4 | 39 | 3 | 74 | 9 | 90 |
| $J_{4}$ | 2 | 81 | 3 | 95 | 1 | 71 | 5 | 99 | 7 | 9 |
| $J_{5}$ | 3 | 14 | 1 | 6 | 2 | 22 | 6 | 61 | 4 | 26 |
| $J_{6}$ | 3 | 84 | 2 | 2 | 6 | 52 | 4 | 95 | 9 | 48 |
| $J_{7}$ | 2 | 46 | 1 | 37 | 4 | 61 | , | 13 | 7 | 32 |
| $J_{8}$ | 3 | 31 | 1 | 86 | 2 | 46 | 6 | 74 | 5 | 32 |
| $J_{9}$ | 1 | 76 | 2 | 69 | 4 | 76 | 6 | 51 | 3 | 85 |
| $J_{10}$ | 2 | 85 | 1 | 13 | 3 | 61 | 7 | 7 | 9 | 64 |
| $J_{i}$ | $O_{i k}^{6}$ |  | $O_{i k}^{7}$ |  | $O_{i k}^{8}$ |  | $O_{i k}^{9}$ |  | $O_{i k}^{10}$ |  |
|  | $M_{k}$ | $p_{i k}^{6}$ | $M_{k}$ | $p_{i k}^{7}$ | $M_{k}$ | $p_{i k}^{8}$ | $M_{k}$ | $p_{i k}^{9}$ | $M_{k}$ | $p_{i k}^{10}$ |
| $J_{1}$ | 6 | 11 | 7 | 62 | 8 | 56 |  | 44 | 10 | 21 |
| $J_{2}$ | 2 | 28 | 7 | 46 | 6 | 46 | 8 | 72 | 9 | 30 |
| $J_{3}$ | 6 | 10 | 8 | 12 | 7 | 89 | 10 | 45 | 5 | 33 |
| $J_{4}$ | 9 | 52 | 8 | 85 | 4 | 98 | 10 | 22 | 6 | 43 |
| $J_{5}$ | 5 | 69 | 9 | 21 | 8 | 49 | 10 | 72 | 7 | 53 |
| $J_{6}$ | 10 | 72 | 1 | 47 | 7 | 65 | 5 | 6 | 8 | 25 |
| $J_{7}$ | 6 | 21 | 10 | 32 | 9 | 89 | 8 | 30 | 5 | 55 |
| $J_{8}$ | 7 | 88 | 9 | 19 | 10 | 48 | 8 | 36 | 4 | 79 |
| $J_{9}$ | 10 | 11 | 7 | 40 | 8 | 89 | 5 | 26 | 9 | 74 |
| $J_{10}$ | 10 | 76 | 6 | 47 | 4 | 52 | 5 | 90 | 8 | 45 |

Appendix I-Table 2: The $r_{i}, d_{i}$ and $w_{i}$ of each $J_{1}$ in the E-F\&T $10 \times 10$ job shop

| $J_{i}$ | $d_{i}(f=1.5)$ | $d_{i}(f=1.6)$ | $d_{i}(f=1.7)$ | $d_{i}(f=1.8)$ | $w_{i}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $J_{1}$ | 592 | 632 | 671 | 711 | 1 |
| $J_{2}$ | 769 | 816 | 867 | 918 | 2 |
| $J_{3}$ | 852 | 908 | 965 | 1022 | 3 |
| $J_{4}$ | 982 | 1048 | 1113 | 1179 | 1 |
| $J_{5}$ | 589 | 628 | 668 | 707 | 3 |
| $J_{6}$ | 744 | 793 | 843 | 892 | 2 |
| $J_{7}$ | 624 | 665 | 707 | 748 | 3 |
| $J_{8}$ | 808 | 862 | 916 | 970 | 2 |
| $J_{9}$ | 895 | 955 | 1014 | 1074 | 1 |
| $J_{10}$ | 810 | 864 | 918 | 972 | 1 |

Appendix I-Table 3: The idle electricity characteristics for the E-F\&T $10 \times 10$ job shop

| $M_{k}$ | $P_{k}^{\text {idle }}(\mathrm{W})$ | $P_{k}^{\text {turnon }}(\mathrm{W})$ | $P_{k}^{\text {turnoff }}(\mathrm{W})$ | $t_{k}^{\text {turnon }}(\mathrm{min})$ | $t_{k}^{\text {turnoff }}(\mathrm{min})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $M_{1}$ | 2400 | 1500 | 1700 | 4.3 | 1.2 |
| $M_{2}$ | 3360 | 2000 | 1800 | 5.7 | 1.6 |
| $M_{3}$ | 2000 | 1300 | 1400 | 4.0 | 0.8 |
| $M_{4}$ | 1770 | 1000 | 1100 | 3.2 | 0.8 |
| $M_{5}$ | 2200 | 2000 | 1800 | 4.4 | 1.3 |
| $M_{6}$ | 7500 | 2400 | 2000 | 6.3 | 1.5 |
| $M_{7}$ | 2000 | 1300 | 1400 | 4.0 | 0.8 |
| $M_{8}$ | 1770 | 1000 | 1100 | 3.2 | 0.8 |
| $M_{9}$ | 2200 | 2000 | 1800 | 4.4 | 1.3 |
| $M_{10}$ | 7500 | 2400 | 2000 | 6.3 | 1.5 |

Appendix I-Table 4: The value of each $P_{i k}^{l}(\mathrm{~W})$ in the E-F\&T $10 \times 10$ job shop

| $J_{i}$ | $O_{i k}^{1}$ |  | $O_{i k}^{2}$ |  | $O_{i k}^{3}$ |  | $O_{i k}^{4}$ |  | $O_{i k}^{5}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $M_{k}$ | $P_{i k}^{1}$ | $M_{k}$ | $P_{i k}^{2}$ | $M_{k}$ | $P_{i k}^{3}$ | $M_{k}$ | $P_{i k}^{4}$ | $M_{k}$ | $P_{i k}^{5}$ |
| $J_{1}$ | 1 | 2450 | 2 | 5730 | 3 | 5000 | 4 | 2700 | 5 | 4300 |
| $J_{2}$ | 1 | 3900 | 3 | 3300 | 5 | 5550 | 10 | 11080 | 4 | 3250 |
| $J_{3}$ | 2 | 5700 | 1 | 2550 | 4 | 3600 | 3 | 4900 | 9 | 5700 |
| $J_{4}$ | 2 | 4350 | 3 | 4760 | 1 | 3970 | 5 | 3170 | 7 | 3780 |
| $J_{5}$ | 3 | 4620 | 1 | 3520 | 2 | 5600 | 6 | 12800 | 4 | 2980 |
| $J_{6}$ | 3 | 5050 | 2 | 4750 | 6 | 11700 | 4 | 3050 | 9 | 4300 |
| $J_{7}$ | 2 | 6000 | 1 | 2800 | 4 | 3540 | 3 | 5100 | 7 | 3970 |
| $J_{8}$ | 3 | 4670 | 1 | 3600 | 2 | 4200 | 6 | 13000 | 5 | 4760 |
| $J_{9}$ | 1 | 3870 | 2 | 5500 | 4 | 2560 | 6 | 10500 | 3 | 3250 |
| $J_{10}$ | 2 | 5100 | 1 | 2980 | 3 | 3500 | 7 | 4890 | 9 | 3970 |
| $J_{i}$ |  | $O_{i k}^{6}$ |  | $O_{i k}^{7}$ |  | $O_{i k}^{8}$ |  | $O_{i k}^{9}$ |  | $O_{i k}^{10}$ |
|  | $M_{k}$ | $P_{i k}^{6}$ | $M_{k}$ | $P_{i k}^{7}$ | $M_{k}$ | $P_{i k}^{8}$ | $M_{k}$ | $P_{i k}^{9}$ | $M_{k}$ | $P_{i k}^{10}$ |
| $J_{1}$ | 6 | 11200 | 7 | 4900 | 8 | 2670 | 9 | 5130 | 10 | 10000 |
| $J_{2}$ | 2 | 5800 | 7 | 4900 | 6 | 12100 | 8 | 3600 | 9 | 5000 |
| $J_{3}$ | 6 | 10900 | 8 | 2300 | 7 | 4280 | 10 | 12700 | 5 | 3370 |
| $J_{4}$ | 9 | 5290 | 8 | 2960 | 4 | 2750 | 10 | 13000 | 6 | 12500 |
| $J_{5}$ | 5 | 5210 | 9 | 4780 | 8 | 3250 | 10 | 11800 | 7 | 5000 |
| $J_{6}$ | 10 | 12080 | 1 | 2420 | 7 | 4480 | 5 | 3520 | 8 | 2720 |
| $J_{7}$ | 6 | 13000 | 10 | 12030 | 9 | 3390 | 8 | 3500 | 5 | 5500 |
| $J_{8}$ | 7 | 5100 | 9 | 5690 | 10 | 10000 | 8 | 2900 | 4 | 3520 |
| $J_{9}$ | 10 | 10060 | 7 | 3450 | 8 | 2520 | 5 | 4000 | 9 | 4260 |
| $J_{10}$ | 10 | 12700 | 6 | 10000 | 4 | 3400 | 5 | 5130 | 8 | 3500 |

## Appendix I-E-Lawrence $15 \times \mathbf{1 0}$ job shop

Appendix I-Table 5: The $p_{i k}^{l}(\mathrm{~min})$ of each $O_{i k}^{l}$ the E-Lawrence $15 \times 10$ job shop

| $J_{i}$ | $O_{i k}^{1}$ |  | $O_{i k}^{2}$ |  | $O_{i k}^{3}$ |  | $O_{i k}^{4}$ |  | $O_{i k}^{5}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $M_{k}$ | $p_{i k}^{1}$ | $M_{k}$ | $p_{i k}^{2}$ | $M_{k}$ | $p_{i k}^{3}$ | $M_{k}$ | $p_{i k}^{4}$ | $M_{k}$ |  |$p_{i k}^{5}$.


| $J_{7}$ | 5 | 28 | 6 | 59 | 4 | 16 | 10 | 43 | 1 | 46 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $J_{8}$ | 6 | 9 | 5 | 20 | 3 | 39 | 7 | 54 | 2 | 45 |
| $J_{9}$ | 2 | 28 | 6 | 33 | 1 | 78 | 4 | 26 | 3 | 37 |
| $J_{10}$ | 3 | 94 | 6 | 84 | 7 | 78 | 10 | 81 | 2 | 74 |
| $J_{11}$ | 2 | 31 | 5 | 24 | 1 | 20 | 3 | 17 | 10 | 25 |
| $J_{12}$ | 6 | 28 | 10 | 97 | 1 | 58 | 5 | 45 | 7 | 76 |
| $J_{13}$ | 6 | 27 | 10 | 48 | 9 | 27 | 8 | 62 | 5 | 98 |
| $J_{14}$ | 2 | 12 | 9 | 50 | 1 | 80 |  | 50 | 10 | 80 |
| $J_{15}$ | 5 | 61 | 4 | 55 | 7 | 37 | 6 | 14 | 3 | 50 |
| $J_{i}$ |  |  |  |  |  |  |  |  |  |  |
|  | $M_{k}$ | $p_{i k}^{6}$ | $M_{k}$ | $p_{i k}^{7}$ | $M_{k}$ | $p_{i k}^{8}$ | $M_{k}$ | $p_{i k}^{9}$ | $M_{k}$ | $p_{i k}^{10}$ |
| $J_{1}$ | 7 | 71 | 1 | 53 | 9 | 52 | 2 | 21 | 8 | 26 |
| $J_{2}$ | 9 | 77 | 7 | 77 | 6 | 98 |  | 55 | 8 | 66 |
| $J_{3}$ | 10 | 79 | 9 | 62 | 6 | 37 | 3 | 64 | 8 | 43 |
| $J_{4}$ | 8 | 38 | 2 | 87 | 7 | 41 | 10 | 83 |  | 93 |
| $J_{5}$ | 1 | 44 | 8 | 43 | 7 | 75 | 2 | 49 | 6 | 25 |
| $J_{6}$ | 2 | 7 | 6 | 28 | 5 | 61 | 1 | 95 | 4 | 76 |
| $J_{7}$ | 9 | 50 | 7 | 52 | 8 | 27 | 3 | 59 | 2 | 91 |
| $J_{8}$ | 8 | 71 | 1 | 87 | 4 | 41 | 10 | 43 | 9 | 14 |
| $J_{9}$ | 8 | 8 | 9 | 66 | 7 | 89 | 10 | 42 | 5 | 33 |
| $J_{10}$ | 4 | 27 | 9 | 69 |  | 69 | 8 | 45 | 5 | 96 |
| $J_{11}$ | 9 | 81 | 6 | 76 | 4 | 87 | 8 | 32 | 7 | 18 |
| $J_{12}$ | 4 | 99 | 3 | 23 | 2 | 72 | 9 | 90 | 8 | 86 |
| $J_{13}$ | 7 | 67 | 4 | 48 | 1 | 42 | 2 | 46 | 8 | 17 |
| $J_{14}$ | 4 | 19 | 6 | 28 | 7 | 63 |  | 94 | 8 | 98 |
| $J_{15}$ | 9 | 79 | 2 | 41 | 10 | 72 | 8 | 18 | 1 | 75 |

Appendix I-Table 6: The $r_{i}, d_{i}$ and $w_{i}$ of each $J_{1}$ in the E-Lawrence $15 \times 10$ job shop

| $J_{i}$ | $d_{i}$ <br> $(=1.5)$ | $d_{i}$ <br> $(f=1.6)$ | $d_{i}$ <br> $(f=1.7)$ | $d_{i}$ <br> $(f=1.8)$ | $d_{i}$ <br> $(f=1.9)$ | $w_{i}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $J_{1}$ | 666 | 710 | 754 | 799 | 843 | 3 |
| $J_{2}$ | 864 | 921 | 979 | 1036 | 1094 | 1 |
| $J_{3}$ | 850 | 907 | 963 | 1020 | 1077 | 3 |
| $J_{4}$ | 988 | 1054 | 1120 | 1186 | 1252 | 2 |
| $J_{5}$ | 904 | 964 | 1025 | 1085 | 1145 | 3 |
| $J_{6}$ | 676 | 721 | 766 | 811 | 856 | 1 |
| $J_{7}$ | 706 | 753 | 800 | 847 | 894 | 2 |
| $J_{8}$ | 634 | 676 | 719 | 761 | 803 | 2 |
| $J_{9}$ | 660 | 704 | 748 | 792 | 836 | 3 |
| $J_{10}$ | 1075 | 1147 | 1218 | 1290 | 1362 | 1 |
| $J_{11}$ | 616 | 657 | 698 | 739 | 780 | 2 |
| $J_{12}$ | 1011 | 1078 | 1145 | 1213 | 1280 | 2 |
| $J_{13}$ | 723 | 771 | 819 | 867 | 915 | 1 |
| $J_{14}$ | 861 | 918 | 975 | 1033 | 1090 | 3 |
| $J_{15}$ | 753 | 803 | 853 | 903 | 953 | 1 |

Appendix I-Table 7: The idle electricity characteristics for the E-Lawrence $15 \times 10$ job shop

| $M_{k}$ | $P_{k}^{\text {idle }}(\mathrm{W})$ | $P_{k}^{\text {turnon }}(\mathrm{W})$ | $P_{k}^{\text {turnoff }}(\mathrm{W})$ | $t_{k}^{\text {turnon }}(\mathrm{min})$ | $t_{k}^{\text {turnoff }}(\mathrm{min})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $M_{1}$ | 2700 | 1500 | 1900 | 5.7 | 1.7 |
| $M_{2}$ | 6500 | 2000 | 1700 | 4.3 | 1.6 |
| $M_{3}$ | 3200 | 1300 | 1500 | 4.0 | 0.9 |
| $M_{4}$ | 2770 | 1000 | 1100 | 6.3 | 0.7 |
| $M_{5}$ | 2200 | 1500 | 1900 | 4.9 | 1.6 |
| $M_{6}$ | 2500 | 2400 | 1400 | 3.2 | 1.4 |
| $M_{7}$ | 3000 | 1300 | 1300 | 4.0 | 0.9 |
| $M_{8}$ | 7500 | 1000 | 1100 | 3.2 | 0.8 |
| $M_{9}$ | 3360 | 1500 | 2000 | 6.3 | 1.4 |
| $M_{10}$ | 1770 | 2400 | 2200 | 4.4 | 1.5 |

Appendix I-Table 8: The average runtime operations and cutting power of each $M_{k}$

| $M_{k}$ | $M_{1}(\mathrm{~W})$ | $M_{2}(\mathrm{~W})$ | $M_{3}(\mathrm{~W})$ | $M_{4}(\mathrm{~W})$ | $M_{5}(\mathrm{~W})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $P_{i k}^{l}$ | $[2420,4000]$ | $[4200,6100]$ | $[3200,5100]$ | $[2200,3600]$ | $[3120,5700]$ |
| $M_{k}$ | $M_{6}(\mathrm{~W})$ | $M_{7}(\mathrm{~W})$ | $M_{8}(\mathrm{~W})$ | $M_{9}(\mathrm{~W})$ | $M_{10}(\mathrm{~W})$ |
| $P_{i k}^{l}$ | $[10000,13000]$ | $[3200,5100]$ | $[2200,3600]$ | $[3120,5700]$ | $[10000,13000]$ |

Appendix I-Table 9: The value of each $P_{i k}^{l}(\mathrm{~W})$ in the E-Lawrence $15 \times 10$ job shop

| $J_{i}$ | $O_{i k}^{1}$ |  | $O_{i k}^{2}$ |  | $O_{i k}^{3}$ |  | $O_{i k}^{4}$ |  | $O_{i k}^{5}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $M_{k}$ | $P_{i k}^{1}$ | $M_{k}$ | $P_{i k}^{2}$ | $M_{k}$ | $P_{i k}^{3}$ | $M_{k}$ | $P_{i k}^{4}$ | $M_{k}$ | $P_{i k}^{5}$ |
| $J_{1}$ | 3 | 3450 | 4 | 2730 | 6 | 10500 | 10 | 2700 | 5 | 4300 |
| $J_{2}$ | 4 | 3600 | 3 | 3300 | 1 | 3550 | 2 | 5080 | 10 | 12250 |
| $J_{3}$ | 2 | 5700 | 1 | 2550 | 4 | 3600 | 5 | 4900 | 7 | 5100 |
| $J_{4}$ | 5 | 4350 | 3 | 4760 | 9 | 3970 | 6 | 10170 | 4 | 2780 |
| $J_{5}$ | 9 | 4620 | 10 | 12520 | 3 | 4600 | 5 | 3800 | 4 | 2980 |
| $J_{6}$ | 9 | 5050 | 8 | 2750 | 7 | 3700 | 10 | 11050 | 3 | 4300 |
| $J_{7}$ | 5 | 5000 | 6 | 12800 | 4 | 3540 | 10 | 10100 | 1 | 3970 |
| $J_{8}$ | 6 | 10670 | 5 | 3600 | 3 | 4200 | 7 | 4000 | 2 | 4760 |
| $J_{9}$ | 2 | 4870 | 6 | 10500 | 1 | 2560 | 4 | 2500 | 3 | 3250 |
| $J_{10}$ | 3 | 5100 | 6 | 12980 | 7 | 4500 | 10 | 11890 | 2 | 5970 |
| $J_{11}$ | 2 | 4700 | 5 | 5000 | 1 | 3100 | 3 | 5040 | 10 | 10250 |
| $J_{12}$ | 6 | 10730 | 10 | 12480 | 1 | 2460 | 5 | 4540 | 7 | 3240 |
| $J_{13}$ | 6 | 12820 | 10 | 12000 | 9 | 4830 | 8 | 3570 | 5 | 5440 |
| $J_{14}$ | 2 | 4300 | 9 | 5060 | 1 | 3070 | 3 | 3660 | 10 | 12100 |
| $J_{15}$ | 5 | 4170 | 4 | 2980 | 7 | 3990 | 6 | 10160 | 3 | 3600 |
| $J_{i}$ | $O_{i k}^{6}$ |  | $O_{i k}^{7}$ |  | $O_{i k}^{8}$ |  | $O_{i k}^{9}$ |  | $O_{i k}^{10}$ |  |
|  | $M_{k}$ | $P_{i k}^{6}$ | $M_{k}$ | $P_{i k}^{7}$ | $M_{k}$ | $P_{i k}^{8}$ | $M_{k}$ | $P_{i k}^{9}$ | $M_{k}$ | $P_{i k}^{10}$ |
| $J_{1}$ | 7 | 4200 | 1 | 3900 | 9 | 4670 | 2 | 5130 | 8 | 3000 |
| $J_{2}$ | 9 | 5700 | 7 | 4900 | 6 | 12100 | 5 | 3600 | 8 | 2200 |
| $J_{3}$ | 10 | 10900 | 9 | 4300 | 6 | 10280 | 3 | 3700 | 8 | 3370 |
| $J_{4}$ | 8 | 3290 | 2 | 4960 | 7 | 3750 | 10 | 13000 | 1 | 2500 |
| $J_{5}$ | 1 | 4000 | 8 | 2780 | 7 | 4250 | 2 | 5800 | 6 | 13000 |
| $J_{6}$ | 2 | 6080 | 6 | 12420 | 5 | 4480 | 1 | 3520 | 4 | 2720 |
| $J_{7}$ | 9 | 4000 | 7 | 4030 | 8 | 3390 | 3 | 4500 | 2 | 5500 |
| $J_{8}$ | 8 | 3100 | 1 | 3690 | 4 | 3000 | 10 | 12900 | 9 | 4520 |
| $J_{9}$ | 8 | 2760 | 9 | 3450 | 7 | 4520 | 10 | 10000 | 5 | 4260 |
| $J_{10}$ | 4 | 2700 | 9 | 5000 | 1 | 3400 | 8 | 5130 | 5 | 3500 |
| $J_{11}$ | 9 | 5690 | 6 | 12300 | 4 | 2300 | 8 | 3160 | 7 | 4790 |
| $J_{12}$ | 4 | 2360 | 3 | 4620 | 2 | 5070 | 9 | 3560 | 8 | 2440 |


| $J_{13}$ | 7 | 4110 | 4 | 2750 | 1 | 3460 | 2 | 5320 | 3 | 3700 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $J_{14}$ | 4 | 2550 | 6 | 10470 | 7 | 3900 | 5 | 5230 | 8 | 3180 |
| $J_{15}$ | 9 | 4870 | 2 | 4800 | 10 | 10500 | 8 | 2900 | 1 | 2530 |

## Appendix I-E-Lawrence $20 \times 10$ job shop

Appendix I-Table 10: The $p_{i k}^{l}(\mathrm{~min})$ of each $O_{i k}^{l}$ the E-Lawrence $20 \times 10$ job shop

| $J_{i}$ | $O_{i k}^{1}$ |  | $O_{i k}^{2}$ |  | $O_{i k}^{3}$ |  | $O_{i k}^{4}$ |  | $O_{i k}^{5}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $M_{k}$ | $p_{i k}^{1}$ | $M_{k}$ | $p_{i k}^{2}$ | $M_{k}$ | $p_{i k}^{3}$ | $M_{k}$ | $p_{i k}^{4}$ | $M_{k}$ | $p_{i k}^{5}$ |
| $J_{1}$ | 9 | 52 | 8 | 26 | 7 | 71 | 10 | 16 | 3 | 34 |
| $J_{2}$ | 5 | 55 | 6 | 98 | 4 | 39 | 10 | 79 | 1 | 12 |
| $J_{3}$ | 6 | 37 | 5 | 92 | 3 | 64 | 7 | 54 | 2 | 19 |
| $J_{4}$ | 2 | 87 | 6 | 77 | 1 | 93 | 4 | 69 | 3 | 87 |
| $J_{5}$ | 3 | 98 | 6 | 25 | 7 | 75 | 10 | 77 | 2 | 49 |
| $J_{6}$ | 2 | 7 | 5 | 61 | 1 | 95 | 3 | 35 | 10 | 10 |
| $J_{7}$ | 6 | 59 | 10 | 43 | 1 | 46 | 5 | 28 | 7 | 52 |
| $J_{8}$ | 6 | 9 | 10 | 43 | 9 | 14 | 8 | 71 | 5 | 20 |
| $J_{9}$ | 2 | 28 | 9 | 66 | 1 | 78 | 3 | 37 | 10 | 42 |
| $J_{10}$ | 5 | 96 | 4 | 27 | 7 | 78 | 6 | 84 | 3 | 94 |
| $J_{11}$ | 5 | 24 | 8 | 32 | 10 | 25 | 3 | 17 | 4 | 87 |
| $J_{12}$ | 9 | 90 | 6 | 28 | 2 | 72 | 8 | 86 | 3 | 23 |
| $J_{13}$ | 3 | 17 | 5 | 98 | 4 | 48 | 2 | 46 | 9 | 27 |
| $J_{14}$ | 1 | 80 | 9 | 50 | 4 | 19 | 8 | 98 | 6 | 28 |
| $J_{15}$ | 10 | 72 | 1 | 75 | 5 | 61 | 9 | 79 | 7 | 37 |
| $J_{16}$ | 4 | 96 | 3 | 14 | 6 | 57 | 1 | 47 | 8 | 65 |
| $J_{17}$ | 2 | 31 | 8 | 47 | 9 | 58 | 4 | 32 | 5 | 44 |
| $J_{18}$ | 2 | 44 | 8 | 40 | 3 | 17 | 1 | 62 | 9 | 66 |
| $J_{19}$ | 3 | 58 | 4 | 50 | 5 | 63 | 10 | 87 | 1 | 57 |
| $J_{20}$ | 2 | 85 | 1 | 84 | 6 | 56 | 4 | 61 | 10 | 15 |
| $J_{i}$ | $O_{i k}^{6}$ |  | $O_{i k}^{7}$ |  | $O_{i k}^{8}$ |  | $O_{i k}^{9}$ |  | $O_{i k}^{10}$ |  |
|  | $M_{k}$ | $p_{i k}^{6}$ | $M_{k}$ | $p_{i k}^{7}$ | $M_{k}$ | $p_{i k}^{8}$ | $M_{k}$ | $p_{i k}^{9}$ | $M_{k}$ | $p_{i k}^{10}$ |
| $J_{1}$ | 2 | 21 | 6 | 95 | 5 | 21 | 1 | 53 | 4 | 55 |
| $J_{2}$ | 9 | 77 | 7 | 77 | 8 | 66 | 3 | 31 | 2 | 42 |
| $J_{3}$ | 8 | 43 | 1 | 83 | 4 | 34 | 10 | 79 | 9 | 62 |
| $J_{4}$ | 8 | 38 | 9 | 24 | 7 | 41 | 10 | 83 | 5 | 60 |
| $J_{5}$ | 4 | 17 | 9 | 79 | 1 | 44 | 8 | 43 | 5 | 96 |
| $J_{6}$ | 9 | 35 | 6 | 28 | 4 | 76 | 8 | 95 | 7 | 9 |
| $J_{7}$ | 4 | 16 | 3 | 59 | 2 | 91 | 9 | 50 | 8 | 27 |
| $J_{8}$ | 7 | 54 | 4 | 41 | 1 | 87 | 2 | 45 | 3 | 39 |
| $J_{9}$ | 4 | 26 | 6 | 33 | 7 | 89 | 5 | 33 | 8 | 8 |
| $J_{10}$ | 9 | 69 | 2 | 74 | 10 | 81 | 8 | 45 | 1 | 69 |
| $J_{11}$ | 9 | 81 | 6 | 76 | 7 | 18 | 2 | 31 | 1 | 20 |
| $J_{12}$ | 4 | 99 | 7 | 76 | 10 | 97 | 5 | 45 | 1 | 58 |
| $J_{13}$ | 7 | 67 | 8 | 62 | 1 | 42 | 10 | 48 | 6 | 27 |
| $J_{14}$ | 3 | 50 | 5 | 94 | 7 | 63 | 2 | 12 | 10 | 80 |
| $J_{15}$ | 3 | 50 | 6 | 14 | 4 | 55 | 8 | 18 | 2 | 41 |
| $J_{16}$ | 5 | 75 | 9 | 79 | 2 | 71 | 7 | 60 | 10 | 22 |
| $J_{17}$ | 6 | 58 | 7 | 34 | 1 | 33 | 3 | 69 | 10 | 51 |
| $J_{18}$ | 7 | 15 | 4 | 29 | 10 | 38 | 6 | 8 | 5 | 97 |
| $J_{19}$ | 7 | 21 | 8 | 57 | 9 | 32 | 2 | 39 | 6 | 20 |
| $J_{20}$ | 8 | 70 | 9 | 30 | 3 | 90 | 7 | 67 | 5 | 20 |
|  |  |  |  |  |  |  |  |  |  |  |

Appendix I-Table 11: The $r_{i}, d_{i}$ and $w_{i}$ of each $J_{1}$ in the E-Lawrence $20 \times 10$ job shop

| $J_{i}$ | $d_{i}$ <br> $(f=1.5)$ | $d_{i}$ <br> $(f=1.6)$ | $d_{i}$ <br> $(f=1.7)$ | $d_{i}$ <br> $(f=1.8)$ | $d_{i}$ <br> $(f=1.9)$ | $w_{i}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $J_{1}$ | 666 | 710 | 754 | 799 | 843 | 1 |
| $J_{2}$ | 864 | 921 | 979 | 1036 | 1094 | 3 |
| $J_{3}$ | 850 | 907 | 963 | 1020 | 1077 | 2 |
| $J_{4}$ | 988 | 1054 | 1120 | 186 | 1252 | 2 |
| $J_{5}$ | 904 | 964 | 1025 | 1085 | 1145 | 3 |
| $J_{6}$ | 676 | 721 | 766 | 811 | 856 | 1 |
| $J_{7}$ | 706 | 753 | 800 | 847 | 894 | 3 |
| $J_{8}$ | 634 | 676 | 719 | 761 | 803 | 1 |
| $J_{9}$ | 660 | 704 | 748 | 792 | 836 | 1 |
| $J_{10}$ | 1075 | 1147 | 1218 | 1290 | 1362 | 3 |
| $J_{11}$ | 616 | 657 | 698 | 739 | 780 | 2 |
| $J_{12}$ | 1011 | 1078 | 1145 | 1213 | 1280 | 1 |
| $J_{13}$ | 723 | 771 | 819 | 867 | 915 | 1 |
| $J_{14}$ | 861 | 918 | 975 | 1033 | 1090 | 3 |
| $J_{15}$ | 753 | 803 | 853 | 903 | 953 | 2 |
| $J_{16}$ | 879 | 937 | 996 | 1054 | 1113 | 2 |
| $J_{17}$ | 685 | 731 | 776 | 822 | 868 | 1 |
| $J_{18}$ | 624 | 665 | 707 | 748 | 790 | 3 |
| $J_{19}$ | 726 | 774 | 822 | 871 | 919 | 2 |
| $J_{20}$ | 867 | 924 | 982 | 1040 | 1098 | 1 |

Appendix I-Table 12: The idle electricity characteristics for the E-Lawrence $20 \times 10$ job shop

| $M_{k}$ | $P_{k}^{\text {idle }}(\mathrm{W})$ | $P_{k}^{\text {turnon }}(\mathrm{W})$ | $P_{k}^{\text {turnoff }}(\mathrm{W})$ | $t_{k}^{\text {turnon }}(\mathrm{min})$ | $t_{k}^{\text {turnoff }}(\mathrm{min})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $M_{1}$ | 2400 | 1500 | 1700 | 4.3 | 1.2 |
| $M_{2}$ | 3360 | 2000 | 1800 | 5.7 | 1.6 |
| $M_{3}$ | 2000 | 1300 | 1400 | 4.0 | 0.8 |
| $M_{4}$ | 1770 | 1000 | 1100 | 3.2 | 0.8 |
| $M_{5}$ | 2200 | 1500 | 1400 | 4.4 | 1.3 |
| $M_{6}$ | 7500 | 2400 | 2000 | 6.3 | 1.5 |
| $M_{7}$ | 2000 | 1300 | 1400 | 4.0 | 0.8 |
| $M_{8}$ | 7500 | 1000 | 1100 | 3.2 | 0.8 |
| $M_{9}$ | 2200 | 1500 | 1400 | 4.4 | 1.3 |
| $M_{10}$ | 1770 | 2400 | 2000 | 6.3 | 1.5 |

Appendix I-Table 13: The average runtime operations and cutting power of each $M_{k}$

| $M_{k}$ | $M_{1}(\mathrm{~W})$ | $M_{2}(\mathrm{~W})$ | $M_{3}(\mathrm{~W})$ | $M_{4}(\mathrm{~W})$ | $M_{5}(\mathrm{~W})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $P_{i k}^{l}$ | $[2420,4000]$ | $[4200,6100]$ | $[3200,5100]$ | $[2200,3600]$ | $[3120,5700]$ |
| $M_{k}$ | $M_{6}(\mathrm{~W})$ | $M_{7}(\mathrm{~W})$ | $M_{8}(\mathrm{~W})$ | $M_{9}(\mathrm{~W})$ | $M_{10}(\mathrm{~W})$ |
| $P_{i k}^{l}$ | $[10000,13000]$ | $[3200,5100]$ | $[2200,3600]$ | $[3120,5700]$ | $[10000,13000]$ |

Appendix I-Table 14: The value of each $P_{i k}^{l}(\mathrm{~W})$ in the E-Lawrence $20 \times 10$ job shop

| $J_{i}$ | $O_{i k}^{1}$ |  | $O_{i k}^{2}$ |  | $O_{i k}^{3}$ |  | $O_{i k}^{4}$ |  | $O_{i k}^{5}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $M_{k}$ | $P_{i k}^{1}$ | $M_{k}$ | $P_{i k}^{2}$ | $M_{k}$ | $P_{i k}^{3}$ | $M_{k}$ | $P_{i k}^{4}$ | $M_{k}$ | $P_{i k}^{5}$ |
| $J_{1}$ | 9 | 3450 | 8 | 2730 | 7 | 4000 | 10 | 12700 | 3 | 4300 |
| $J_{2}$ | 5 | 3900 | 6 | 11300 | 4 | 3600 | 10 | 11080 | 1 | 3250 |
| $J_{3}$ | 6 | 10000 | 5 | 4550 | 3 | 3600 | 7 | 4900 | 2 | 5700 |
| $J_{4}$ | 2 | 4350 | 6 | 10760 | 1 | 3970 | 4 | 3170 | 3 | 3780 |
| $J_{5}$ | 3 | 4620 | 6 | 11520 | 7 | 5100 | 10 | 12800 | 2 | 4980 |
| $J_{6}$ | 2 | 5050 | 5 | 4750 | 1 | 3700 | 3 | 4050 | 10 | 10300 |
| $J_{7}$ | 6 | 11000 | 10 | 12800 | 1 | 2540 | 5 | 5100 | 7 | 3970 |
| $J_{8}$ | 6 | 12670 | 10 | 13000 | 9 | 4200 | 8 | 3000 | 5 | 4760 |
| $J_{9}$ | 2 | 4870 | 9 | 5500 | 1 | 2560 | 3 | 4500 | 10 | 12250 |
| $J_{10}$ | 5 | 5100 | 4 | 2980 | 7 | 3500 | 6 | 10890 | 3 | 3970 |
| $J_{11}$ | 5 | 4700 | 8 | 3000 | 10 | 11100 | 3 | 5100 | 4 | 3250 |
| $J_{12}$ | 9 | 4730 | 6 | 12480 | 2 | 4460 | 8 | 2540 | 3 | 3240 |
| $J_{13}$ | 3 | 4820 | 5 | 5700 | 4 | 2830 | 2 | 5570 | 9 | 5440 |
| $J_{14}$ | 1 | 4300 | 9 | 5060 | 4 | 3070 | 8 | 2260 | 6 | 12100 |
| $J_{15}$ | 10 | 10170 | 1 | 2980 | 5 | 3990 | 9 | 4160 | 7 | 3600 |
| $J_{16}$ | 4 | 2900 | 3 | 4630 | 6 | 10320 | 1 | 2440 | 8 | 2320 |
| $J_{17}$ | 2 | 4300 | 8 | 3030 | 9 | 4730 | 4 | 2370 | 5 | 3510 |
| $J_{18}$ | 2 | 5760 | 8 | 3500 | 3 | 4580 | 1 | 2920 | 9 | 4000 |
| $J_{19}$ | 3 | 3860 | 4 | 2900 | 5 | 3470 | 10 | 10100 | 1 | 3950 |
| $J_{20}$ | 2 | 4500 | 1 | 3100 | 6 | 10900 | 4 | 3470 | 10 | 11740 |
| $J_{i}$ | $O_{i k}^{6}$ |  | $O_{i k}^{7}$ |  | $O_{i k}^{8}$ |  | $O_{i k}^{9}$ |  | $O_{i k}^{10}$ |  |
|  | $M_{k}$ | $P_{i k}^{6}$ | $M_{k}$ | $P_{i k}^{7}$ | $M_{k}$ | $P_{i k}^{8}$ | $M_{k}$ | $P_{i k}^{9}$ | $M_{k}$ | $P_{i k}^{10}$ |
| $J_{1}$ | 2 | 4200 | 6 | 11900 | 5 | 4670 | 1 | 3130 | 4 | 3100 |
| $J_{2}$ | 9 | 5700 | 7 | 4900 | 8 | 3100 | 3 | 3600 | 2 | 5000 |
| $J_{3}$ | 8 | 2900 | 1 | 3300 | 4 | 3280 | 10 | 12700 | 9 | 3370 |
| $J_{4}$ | 8 | 2290 | 9 | 3960 | 7 | 3750 | 10 | 13000 | 5 | 5500 |
| $J_{5}$ | 4 | 3210 | 9 | 4780 | 1 | 3250 | 8 | 2800 | 5 | 5000 |
| $J_{6}$ | 9 | 5080 | 6 | 12420 | 4 | 3480 | 8 | 3520 | 7 | 4720 |
| $J_{7}$ | 4 | 3500 | 3 | 5030 | 2 | 4390 | 9 | 3500 | 8 | 3500 |
| $J_{8}$ | 7 | 5100 | 4 | 2690 | 1 | 4000 | 2 | 5900 | 3 | 3520 |
| $J_{9}$ | 4 | 3060 | 6 | 10450 | 7 | 4520 | 5 | 4000 | 8 | 3260 |
| $J_{10}$ | 9 | 5700 | 2 | 6100 | 10 | 3400 | 8 | 3130 | 1 | 3500 |
| $J_{11}$ | 9 | 5690 | 6 | 12300 | 7 | 3300 | 2 | 5160 | 1 | 4790 |
| $J_{12}$ | 4 | 2360 | 7 | 4620 | 10 | 10070 | 5 | 3560 | 1 | 2440 |
| $J_{13}$ | 7 | 4110 | 8 | 2750 | 1 | 3460 | 10 | 11320 | 6 | 12700 |
| $J_{14}$ | 3 | 4550 | 5 | 5470 | 7 | 3900 | 2 | 5230 | 10 | 13000 |
| $J_{15}$ | 3 | 3870 | 6 | 12000 | 4 | 2500 | 8 | 2900 | 2 | 5530 |
| $J_{16}$ | 5 | 4100 | 9 | 5650 | 2 | 4200 | 7 | 4980 | 10 | 10620 |
| $J_{17}$ | 6 | 10740 | 7 | 3310 | 1 | 3500 | 3 | 4370 | 10 | 11420 |
| $J_{18}$ | 7 | 4900 | 4 | 2820 | 10 | 11560 | 6 | 11330 | 5 | 3900 |
| $J_{19}$ | 7 | 4800 | 8 | 3100 | 9 | 3800 | 2 | 4750 | 6 | 10380 |
| $J_{20}$ | 8 | 2250 | 9 | 4300 | 3 | 4130 | 7 | 4700 | 5 | 3340 |

## Appendix I-E-Lawrence $15 \times 15$ job shop

Appendix I-Table 15: The $p_{i k}^{l}(\mathrm{~min})$ of each $O_{i k}^{l}$ the E-Lawrence $15 \times 15$ job shop

| $J_{i}$ | $O_{i k}^{1}$ |  | $O_{i k}^{2}$ |  | $O_{i k}^{3}$ |  | $O_{i k}^{4}$ |  | $O_{i k}^{5}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $M_{k}$ | $p_{i k}^{1}$ | $M_{k}$ | $p_{i k}^{2}$ | $M_{k}$ | $p_{i k}^{3}$ | $M_{k}$ | $p_{i k}^{4}$ | $M_{k}$ | $p_{i k}^{5}$ |
| $J_{1}$ | 5 | 21 | 4 | 55 | 7 | 71 | 15 | 98 | 11 | 12 |
| $J_{2}$ | 12 | 54 | 5 | 83 | 2 | 77 | 8 | 64 | 9 | 34 |
| $J_{3}$ | 10 | 83 | 6 | 77 | 3 | 87 | 8 | 38 | 5 | 60 |
| $J_{4}$ | 6 | 77 | 1 | 96 | 10 | 28 | 7 | 7 | 5 | 95 |
| $J_{5}$ | 11 | 87 | 5 | 28 | 9 | 50 | 3 | 59 | 1 | 46 |


| $J_{6}$ | 1 | 20 | 3 | 71 | 5 | 78 | 14 | 66 | 4 | 14 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $J_{7}$ | 9 | 69 | 5 | 96 | 13 | 17 | 1 | 69 | 8 | 45 |
| $J_{8}$ | 5 | 58 | 14 | 90 | 12 | 76 | 4 | 81 | 8 | 23 |
| $J_{9}$ | 6 | 27 | 2 | 46 | 7 | 67 | 9 | 27 | 14 | 19 |
| $J_{10}$ | 12 | 37 | 6 | 80 | 5 | 75 | 9 | 55 | 8 | 50 |
| $J_{11}$ | 8 | 65 | 4 | 96 | 1 | 47 | 5 | 75 | 13 | 69 |
| $J_{12}$ | 2 | 34 | 3 | 47 | 4 | 58 | 6 | 51 | 5 | 62 |
| $J_{13}$ | 4 | 50 | 8 | 57 | 14 | 61 | 6 | 20 | 12 | 85 |
| $J_{14}$ | 10 | 84 | 8 | 45 | 6 | 15 | 15 | 41 | 11 | 18 |
| $J_{15}$ | 10 | 37 | 11 | 81 | 12 | 61 | 15 | 57 | 9 | 57 |
| $J_{i}$ | $O_{i k}^{6}$ |  | $O_{i k}^{7}$ |  | $O_{i k}^{8}$ |  | $O_{i k}^{9}$ |  | $O_{i k}^{10}$ |  |
|  | $M_{i k}{ }^{6}{ }^{6}$ |  | $M_{k}$ | $p_{i k}^{7}$ | $M_{k}$ | $p_{i k}^{8}$ | $M_{k}$ | $p_{i k}^{9}$ | $M_{k}$ | $p_{i k}^{10}$ |
| $J_{1}$ | 3 | 34 | 10 | 16 | 2 | 21 | , | 53 | 8 | 26 |
| $J_{2}$ | 15 | 79 | 13 | 43 | 1 | 55 | 4 | 77 | 7 | 19 |
| $J_{3}$ | 13 | 98 | 1 | 93 | 14 | 17 | 7 | 41 | 11 | 44 |
| $J_{4}$ | 14 | 35 | 8 | 35 | 9 | 76 | 12 | 9 | 13 | 95 |
| $J_{5}$ | 12 | 45 | 15 | 9 | 10 | 43 | 7 | 52 | 8 | 27 |
| $J_{6}$ | 13 | 8 | 15 | 42 | 7 | 28 | 2 | 54 | 10 | 33 |
| $J_{7}$ | 12 | 31 | 7 | 78 | 11 | 20 | 4 | 27 | 14 | 87 |
| $J_{8}$ | 10 | 28 | 2 | 18 | 3 | 32 | 13 | 86 | 9 | 99 |
| $J_{9}$ | 11 | 80 | 3 | 17 | 4 | 48 | 8 | 62 | 12 | 12 |
| $J_{10}$ | 1 | 94 | 10 | 14 | 7 | 41 | 15 | 72 | 4 | 50 |
| $J_{11}$ | 15 | 58 | 11 | 33 |  | 71 | 10 | 22 | 14 | 32 |
| $J_{12}$ | 7 | 44 | 10 | 8 | 8 | 17 | 11 | 97 | 9 | 29 |
| $J_{13}$ | 13 | 90 | 3 | 58 | 5 | 63 | 11 | 84 | 2 | 39 |
| $J_{14}$ | 5 | 82 | 12 | 29 | 3 | 70 | 2 | 67 | 4 | 30 |
| $J_{15}$ | 1 | 52 | 8 | 74 | 7 | 62 | 13 | 30 | 2 | 52 |
| $J_{i}$ | $O_{i k}^{11}$ |  | $O_{i k}^{12}$ |  | $O_{i k}^{13}$ |  | $O_{i k}^{14}$ |  | $O_{i k}^{15}$ |  |
|  | $M_{k}$ | $p_{i k}^{11}$ | $M_{k}$ | $p_{i k}^{12}$ | $M_{k}$ | $p_{i k}^{13}$ | $M_{k}$ | $p_{i k}^{14}$ | $M_{k}$ | $p_{i k}^{15}$ |
| $J_{1}$ | 9 | 52 | 6 | 95 | 13 | 31 | 12 | 42 | 14 | 39 |
| $J_{2}$ | 10 | 37 | 6 | 79 | 11 | 92 | 14 | 62 | 3 | 66 |
| $J_{3}$ | 4 | 69 | 12 | 49 | 9 | 24 | 2 | 87 | 15 | 25 |
| $J_{4}$ | 3 | 43 | 2 | 75 | 11 | 61 | 15 | 10 | , | 79 |
| $J_{5}$ | 2 | 91 | 14 | 41 | 4 | 16 | 6 | 59 | 13 | 39 |
| $J_{6}$ | 12 | 89 | 9 | 26 | 8 | 37 | 11 | 33 | 6 | 43 |
| $J_{7}$ | 2 | 74 | 6 | 84 | 15 | 76 | 3 | 94 | 10 | 81 |
| $J_{8}$ | 15 | 97 | 1 | 24 | 11 | 45 | 7 | 72 | 6 | 25 |
| $J_{9}$ | 15 | 28 | 5 | 98 | 1 | 42 | 10 | 48 | 13 | 50 |
| $J_{10}$ | 11 | 61 | 14 | 79 | 3 | 98 | 13 | 18 | 2 | 63 |
| $J_{11}$ | 6 | 57 | 9 | 79 | 3 | 14 | 12 | 31 |  | 60 |
| $J_{12}$ | 12 | 15 | 14 | 66 | 13 | 40 | , | 44 | 15 | 38 |
| $J_{13}$ | 10 | 87 | 7 | 21 | 15 | 56 | 9 | 32 | 1 | 57 |
| $J_{14}$ | 14 | 50 | 7 | 23 | 1 | 20 | 13 | 21 | 9 | 38 |
| $J_{15}$ | 3 | 38 | 14 | 68 | 5 | 54 | 4 | 54 | 6 | 16 |

Appendix I-Table 16: The $r_{i}, d_{i}$ and $w_{i}$ of each $J_{1}$ in the E-Lawrence $15 \times 15$ job shop

| $J_{i}$ | $d_{i}(f=1.5)$ | $d_{i}(f=1.6)$ | $d_{i}(f=1.7)$ | $w_{i}$ |
| :---: | :---: | :---: | :---: | :---: |
| $J_{1}$ | 999 | 1065 | 1132 | 1 |
| $J_{2}$ | 1381 | 1473 | 1565 | 2 |
| $J_{3}$ | 1338 | 1427 | 1516 | 3 |


| $J_{4}$ | 1231 | 1313 | 1395 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| $J_{5}$ | 1038 | 1107 | 1176 | 3 |
| $J_{6}$ | 963 | 1027 | 1091 | 2 |
| $J_{7}$ | 1422 | 1516 | 1611 | 3 |
| $J_{8}$ | 1281 | 1366 | 1451 | 2 |
| $J_{9}$ | 1006 | 1073 | 1140 | 1 |
| $J_{10}$ | 1330 | 1419 | 1507 | 1 |
| $J_{11}$ | 1213 | 1294 | 1375 | 1 |
| $J_{12}$ | 975 | 1040 | 1105 | 2 |
| $J_{13}$ | 1290 | 1376 | 1462 | 2 |
| $J_{14}$ | 949 | 1012 | 1076 | 2 |
| $J_{15}$ | 1189 | 1268 | 1348 | 3 |

Appendix I-Table 17: The idle electricity characteristics for the E-Lawrence $15 \times 15$ job shop

| $M_{k}$ | $P_{k}^{\text {idle }}(\mathrm{W})$ | $P_{k}^{\text {turnon }}(\mathrm{W})$ | $P_{k}^{\text {turnoff }}(\mathrm{W})$ | $t_{k}^{\text {turnon }}(\mathrm{min})$ | $t_{k}^{\text {turnoff }}(\mathrm{min})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $M_{1}$ | 2400 | 1500 | 1700 | 4.3 | 1.2 |
| $M_{2}$ | 3360 | 2000 | 1800 | 5.7 | 1.6 |
| $M_{3}$ | 2000 | 1300 | 1400 | 4.0 | 0.8 |
| $M_{4}$ | 1770 | 1000 | 1100 | 3.2 | 0.8 |
| $M_{5}$ | 2200 | 1500 | 1400 | 4.4 | 1.3 |
| $M_{6}$ | 7500 | 2400 | 2000 | 6.3 | 1.5 |
| $M_{7}$ | 2000 | 1300 | 1400 | 4.0 | 0.8 |
| $M_{8}$ | 1770 | 1000 | 1100 | 3.2 | 0.8 |
| $M_{9}$ | 2200 | 1500 | 1400 | 4.4 | 1.3 |
| $M_{10}$ | 7500 | 2400 | 2000 | 6.3 | 1.5 |
| $M_{11}$ | 2000 | 1300 | 1400 | 4.0 | 0.8 |
| $M_{12}$ | 1770 | 1000 | 1100 | 3.2 | 0.8 |
| $M_{13}$ | 2200 | 1500 | 1400 | 4.4 | 1.3 |
| $M_{14}$ | 7500 | 2400 | 2000 | 6.3 | 1.5 |
| $M_{15}$ | 2000 | 1300 | 1400 | 4.0 | 0.8 |

Appendix I-Table 18: The average runtime operations and cutting power of each $M_{k}$

| $M_{k}$ | $M_{1}(\mathrm{~W})$ | $M_{2}(\mathrm{~W})$ | $M_{3}(\mathrm{~W})$ | $M_{4}(\mathrm{~W})$ | $M_{5}(\mathrm{~W})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $P_{i k}^{l}$ | $[2420,4000]$ | $[4200,6100]$ | $[3200,5100]$ | $[2200,3600]$ | $[3120,5700]$ |
| $M_{k}$ | $M_{6}(\mathrm{~W})$ | $M_{7}(\mathrm{~W})$ | $M_{8}(\mathrm{~W})$ | $M_{9}(\mathrm{~W})$ | $M_{10}(\mathrm{~W})$ |
| $P_{i k}^{l}$ | $[10000,13000]$ | $[3200,5100]$ | $[2200,3600]$ | $[3120,5700]$ | $[10000,13000]$ |
| $M_{k}$ | $M_{11}(\mathrm{~W})$ | $M_{12}(\mathrm{~W})$ | $M_{13}(\mathrm{~W})$ | $M_{14}(\mathrm{~W})$ | $M_{15}(\mathrm{~W})$ |
| $P_{i k}^{l}$ | $[4200,6100]$ | $[3200,5100]$ | $[2200,3600]$ | $[10000,13000]$ | $[1800,3600]$ |

Appendix I-Table 19: The value of each $P_{i k}^{l}$ in the E-F\&T $15 \times 15$ job shop

| $J_{i}$ | $O_{i k}^{1}$ |  | $O_{i k}^{2}$ |  | $O_{i k}^{3}$ |  | $O_{i k}^{4}$ |  | $O_{i k}^{5}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $M_{k}$ | $P_{i k}^{1}$ | $M_{k}$ | $P_{i k}^{2}$ | $M_{k}$ | $P_{i k}^{3}$ | $M_{k}$ | $P_{i k}^{4}$ | $M_{k}$ | $P_{i k}^{5}$ |
| $J_{1}$ | 5 | 3450 | 4 | 2730 | 7 | 5000 | 15 | 2700 | 11 | 5700 |
| $J_{2}$ | 12 | 3900 | 5 | 3300 | 2 | 5550 | 8 | 3080 | 9 | 5080 |
| $J_{3}$ | 10 | 12700 | 6 | 12550 | 3 | 3600 | 8 | 2900 | 5 | 4900 |
| $J_{4}$ | 6 | 10350 | 1 | 3760 | 10 | 12970 | 7 | 3870 | 5 | 3170 |


| $J_{5}$ | 11 | 4620 | 5 | 3520 | 9 | 5600 | 3 | 4800 | 1 | 2800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $J_{6}$ | 1 | 3050 | 3 | 4750 | 5 | 5700 | 14 | 13000 | 4 | 3050 |
| $J_{7}$ | 9 | 5000 | 5 | 4800 | 13 | 3540 | 1 | 3100 | 8 | 3100 |
| $J_{8}$ | 5 | 4670 | 14 | 13000 | 12 | 4200 | 4 | 3000 | 8 | 2700 |
| $J_{9}$ | 6 | 13000 | 2 | 5500 | 7 | 3560 | 9 | 4500 | 14 | 10500 |
| $J_{10}$ | 12 | 5100 | 6 | 12980 | 5 | 3500 | 9 | 4890 | 8 | 3090 |
| $J_{11}$ | 8 | 2860 | 4 | 2240 | 1 | 2880 |  | 5550 | 13 | 2670 |
| $J_{12}$ | 2 | 4600 | 3 | 3930 | 4 | 3180 | 6 | 10160 | 5 | 5450 |
| $J_{13}$ | 4 | 2290 | 8 | 2670 | 14 | 11780 | 6 | 11800 | 12 | 3840 |
| $J_{14}$ | 10 | 10090 | 8 | 2460 | 6 | 10650 | 15 | 1930 | 11 | 6100 |
| $J_{15}$ | 10 | 11330 | 11 | 4400 | 12 | 3710 | 15 | 3570 | 9 | 5400 |
| $J_{i}$ | $O_{i k}^{6}$ |  | $O_{i k}^{7}$ |  | $O_{i k}^{8}$ |  | $O_{i k}^{9}$ |  | $O_{i k}^{10}$ |  |
|  | $M_{k}$ | $P_{i k}^{6}$ | $M_{k}$ | $P_{i k}^{7}$ | $M_{k}$ | $P_{i k}^{8}$ | $M_{k}$ | $P_{i k}^{9}$ | $M_{k}$ | $P_{i k}^{10}$ |
| $J_{1}$ | 3 | 3200 | 10 | 11900 | 2 | 4670 | 1 | 3130 | 8 | 2200 |
| $J_{2}$ | 15 | 2800 | 13 | 2900 | 1 | 4000 |  | 3600 | 7 | 5000 |
| $J_{3}$ | 13 | 2900 | 1 | 3300 | 14 | 12280 | 7 | 4700 | 11 | 5370 |
| $J_{4}$ | 14 | 11290 | 8 | 2860 | 9 | 4750 | 12 | 4700 | 13 | 2500 |
| $J_{5}$ | 12 | 5100 | 15 | 2780 | 10 | 12250 |  | 3800 | 8 | 3000 |
| $J_{6}$ | 13 | 3080 | 15 | 2420 | 7 | 4480 | 2 | 4520 | 10 | 12720 |
| $J_{7}$ | 12 | 5000 | 7 | 5030 | 11 | 4390 | 4 | 3500 | 14 | 11500 |
| $J_{8}$ | 10 | 10100 | 2 | 5690 | 3 | 4000 | 13 | 2900 | 9 | 3520 |
| $J_{9}$ | 11 | 5060 | 3 | 3450 | 4 | 2520 | 8 | 3000 | 12 | 4260 |
| $J_{10}$ | 1 | 2700 | 10 | 10000 | 7 | 3400 | 15 | 3130 | 4 | 3500 |
| $J_{11}$ | 15 | 2070 | 11 | 5650 | 2 | 6070 | 10 | 12500 | 14 | 11720 |
| $J_{12}$ | 7 | 4400 | 10 | 11340 | 8 | 3410 | 11 | 4340 | 9 | 4100 |
| $J_{13}$ | 13 | 2300 | 3 | 4290 | 5 | 4130 | 11 | 6090 | 2 | 5760 |
| $J_{14}$ | 5 | 3400 | 12 | 4870 | 3 | 3770 | 2 | 5110 | 4 | 3280 |
| $J_{15}$ | 1 | 3460 | 8 | 2800 | 7 | 4700 | 13 | 3340 | 2 | 5580 |
| $J_{i}$ | $O_{i k}^{6}$ |  | $O_{i k}^{7}$ |  | $O_{i k}^{8}$ |  | $O_{i k}^{9}$ |  | $O_{i k}^{10}$ |  |
|  | $M_{k}$ | $P_{i k}^{6}$ | $M_{k}$ | $P_{i k}^{7}$ | $M_{k}$ | $P_{i k}^{8}$ | $M_{k}$ | $P_{i k}^{9}$ | $M_{k}$ | $P_{i k}^{10}$ |
| $J_{1}$ | 9 | 5200 | 6 | 11900 | 13 | 2670 | 12 | 5100 | 14 | 10000 |
| $J_{2}$ | 10 | 10800 | 6 | 10900 | 11 | 6100 | 14 | 13000 | 3 | 5000 |
| $J_{3}$ | 4 | 2900 | 12 | 5300 | 9 | 4280 | 2 | 5700 | 15 | 3370 |
| $J_{4}$ | 3 | 4290 | 2 | 3960 | 11 | 4750 | 15 | 3000 | 4 | 3500 |
| $J_{5}$ | 2 | 5210 | 14 | 12780 | 4 | 3250 | 6 | 11800 | 13 | 3000 |
| $J_{6}$ | 12 | 5080 | 9 | 5420 | 8 | 3480 | 11 | 5520 | 6 | 12720 |
| $J_{7}$ | 2 | 6000 | 6 | 12030 | 15 | 3390 | 3 | 3500 | 10 | 10500 |
| $J_{8}$ | 15 | 2100 | 1 | 3690 | 11 | 5000 | 7 | 3900 | 6 | 10520 |
| $J_{9}$ | 15 | 3060 | 5 | 3450 | 1 | 2520 | 10 | 12000 | 13 | 2260 |
| $J_{10}$ | 11 | 5700 | 14 | 10000 | 3 | 3400 | 13 | 3600 | 2 | 4500 |
| $J_{11}$ | 6 | 12500 | 9 | 5560 | 3 | 5030 | 12 | 4030 | 7 | 4200 |
| $J_{12}$ | 12 | 3690 | 14 | 10420 | 13 | 2990 | 1 | 3460 | 15 | 2300 |
| $J_{13}$ | 10 | 11100 | 7 | 4160 | 15 | 3350 | 9 | 4230 | 1 | 2990 |
| $J_{14}$ | 14 | 10740 | 7 | 4790 | 1 | 3170 | 13 | 2770 | 9 | 5450 |
| $J_{15}$ | 3 | 3460 | 14 | 12760 | 5 | 5570 | 4 | 3020 | 6 | 11730 |

## Appendix II Experiment result comparison among Scenario 2 (Scenario 3) and its related Scenario 4 and Scenario 5

## Appendix II-Experiment result of E-F\&T $10 \times 10$ job shop

Appendix II- Table 20: Experiment result of E-F\&T $10 \times 10$ job shop (Based on Scenario 2)

| $f=1.5$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S2 NPE | S2 TWT | S2 TEC | S5 TEC | S4 NPE | S4 TWT | S4 TEC |
| 58 | 5202 | 9676.7 | 10880.5 | 91 | 10962 | 10077.9 |
| 59 | 4942 | 9686.9 | 10827.8 | 84 | 10657 | 9998.1 |
| 61 | 5081 | 9715.1 | 10813.2 | 113 | 12076 | 10356.0 |
| 62 | 4893 | 9726.1 | 10909.1 | 101 | 10653 | 10211.7 |
| 63 | 4787 | 9736.6 | 10829.4 | 124 | 11964 | 10500.1 |
| 64 | 5308 | 9740.7 | 10864.4 | 97 | 11436 | 10164.4 |
| 65 | 4589 | 9759.7 | 10947.2 | 120 | 11203 | 10451.0 |
| 67 | 4131 | 9789.9 | 10855.8 | 119 | 9891 | 10437.4 |
| 68 | 3667 | 9797.8 | 10851.3 | 122 | 9388 | 10474.6 |
| 76 | 3414 | 9891.7 | 11040.0 | 136 | 9535 | 10647.9 |
| 83 | 3146 | 9987.5 | 11125.4 | 123 | 8267 | 10487.2 |
| 84 | 3036 | 10001.8 | 11187.4 | 124 | 7931 | 10501.5 |
| 87 | 2732 | 10032.4 | 11218.0 | 127 | 7321 | 10532.1 |
| 94 | 2646 | 10118.0 | 11303.6 | 142 | 6826 | 10723.1 |
| 110 | 2579 | 10322.1 | 11410.9 | 172 | 8027 | 11097.4 |
| 111 | 2564 | 10329.8 | 11390.9 | 154 | 6863 | 10875.4 |
| 112 | 2492 | 10348.2 | 11419.0 | 157 | 6887 | 10904.1 |
| 116 | 1853 | 10395.0 | 11540.8 | 158 | 6594 | 10916.9 |
| 142 | 1507 | 10724.2 | 11720.7 | 192 | 5812 | 11352.6 |
| $f=1.6$ |  |  |  |  |  |  |
| S2 NPE | S2 TWT | S2 TEC | S5 TEC | S4 NPE | S4 TWT | S4 TEC |
| 55 | 4207 | 9635.6 | 10724.4 | 112 | 11005 | 10343.3 |
| 58 | 4041 | 9668.6 | 10832.0 | 118 | 10899 | 10422.6 |
| 64 | 3785 | 9750.7 | 10871.4 | 130 | 10547 | 10577.5 |
| 66 | 3661 | 9766.0 | 10964.1 | 122 | 9849 | 10466.0 |
| 68 | 3046 | 9790.4 | 10883.2 | 123 | 8777 | 10486.1 |
| 70 | 2995 | 9824.1 | 10979.8 | 116 | 8797 | 10398.0 |
| 72 | 2891 | 9843.2 | 11018.2 | 109 | 7947 | 10312.0 |
| 76 | 2858 | 9902.2 | 11122.0 | 106 | 7657 | 10266.4 |
| 80 | 2756 | 9945.9 | 11186.2 | 108 | 7501 | 10296.6 |
| 81 | 2290 | 9955.9 | 11163.9 | 119 | 7168 | 10436.0 |
| 84 | 2214 | 9997.5 | 11147.7 | 124 | 6980 | 10499.3 |
| 89 | 2103 | 10060.4 | 11210.6 | 129 | 6559 | 10562.1 |
| 116 | 2013 | 10393.0 | 11503.7 | 183 | 8030 | 11233.2 |
| 120 | 1960 | 10444.7 | 11572.3 | 178 | 7121 | 11170.4 |


| 131 | 1841 | 10586.2 | 11657.4 | 174 | 6482 | 11122.6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 136 | 1630 | 10650.8 | 11680.1 | 186 | 6188 | 11268.8 |
| 147 | 1517 | 10780.6 | 11859.1 | 199 | 6084 | 11436.2 |
| 154 | 1324 | 10866.7 | 12015.5 | 233 | 6543 | 11856.3 |
| $f=1.7$ |  |  |  |  |  |  |
| S2 NPE | S2 TWT | S2 TEC | S5 TEC | S4 NPE | S4 TWT | S4 TEC |
| 62 | 3092 | 9721.6 | 10922.8 | 95 | 8896 | 10133.1 |
| 65 | 2046 | 9757.6 | 10964.1 | 92 | 6667 | 10099.0 |
| 66 | 2038 | 9765.6 | 10917.5 | 106 | 6832 | 10276.3 |
| 82 | 1957 | 9973.3 | 11229.6 | 112 | 6642 | 10343.7 |
| 84 | 1793 | 10000.4 | 11141.0 | 154 | 7642 | 10865.8 |
| 87 | 1629 | 10033.3 | 11090.1 | 124 | 5912 | 10499.0 |
| 88 | 1529 | 10042.1 | 11195.8 | 115 | 5506 | 10389.4 |
| 97 | 1339 | 10164.8 | 11288.2 | 156 | 5819 | 10893.7 |
| 99 | 1184 | 10182.0 | 11364.8 | 145 | 5049 | 10761.8 |
| 105 | 818 | 10260.5 | 11338.5 | 141 | 4404 | 10705.4 |
| 122 | 808 | 10477.8 | 11669.6 | 184 | 5264 | 11246.7 |
| 130 | 572 | 10575.6 | 11733.2 | 195 | 5411 | 11381.7 |
| 160 | 461 | 10949.8 | 11993.8 | 196 | 3782 | 11394.9 |
| 171 | 377 | 11085.0 | 12268.5 | 218 | 3466 | 11666.7 |
| $f=1.8$ |  |  |  |  |  |  |
| S2 NPE | S2 TWT | S2 TEC | S5 TEC | S4 NPE | S4 TWT | S4 TEC |
| 60 | 3109 | 9701.8 | 10801.6 | 89 | 8827 | 10064.1 |
| 61 | 2165 | 9709.8 | 10893.3 | 118 | 8995 | 10423.9 |
| 62 | 1471 | 9715.6 | 10848.2 | 110 | 6596 | 10320.7 |
| 64 | 1460 | 9747.3 | 10887.5 | 107 | 6487 | 10283.5 |
| 73 | 1417 | 9864.3 | 10944.5 | 129 | 6786 | 10563.5 |
| 77 | 1282 | 9911.5 | 11014.4 | 129 | 7027 | 10564.4 |
| 78 | 1046 | 9919.7 | 11108.9 | 116 | 5391 | 10402.6 |
| 82 | 1026 | 9974.7 | 11156.5 | 121 | 5166 | 10457.6 |
| 85 | 1012 | 10009.0 | 11190.7 | 124 | 5300 | 10491.8 |
| 87 | 992 | 10033.7 | 11213.9 | 126 | 5368 | 10516.5 |
| 97 | 843 | 10154.1 | 11363.7 | 142 | 4635 | 10726.0 |
| 106 | 758 | 10268.5 | 11289.8 | 157 | 5152 | 10909.7 |
| 109 | 713 | 10304.9 | 11424.7 | 168 | 5799 | 11050.7 |
| 127 | 441 | 10529.7 | 11726.3 | 179 | 4717 | 11179.5 |
| 138 | 294 | 10672.0 | 11726.3 | 205 | 4617 | 11504.6 |
| 141 | 285 | 10713.7 | 11758.0 | 180 | 4292 | 11196.9 |
| 153 | 273 | 10857.2 | 12116.0 | 211 | 4224 | 11590.2 |

Appendix II- Table 21: Experiment result of E-F\&T $10 \times 10$ job shop (Based on Scenario 3)

| S3 NPE | S3 TWT | S2 TEC | S5 TEC | S4 NPE | S4 TWT | S4 TEC |
| ---: | ---: | ---: | :---: | ---: | ---: | ---: |
| 3.5 | 3179 | 8989.8 | 10148.5 | 5.7 | 7699 | 9018.2 |
| 4.5 | 2909 | 9002.6 | 9859.3 | 6.4 | 7922 | 9026.6 |
| 5.2 | 2406 | 9012.0 | 10002.7 | 10.8 | 6691 | 9082.0 |
| 6.0 | 2288 | 9021.1 | 10011.7 | 11.4 | 6699 | 9088.7 |
|  |  |  | $f=1.6$ |  |  |  |
| S3 NPE | S3 TWT | S2 TEC | S5 TEC | S4 NPE | S4 TWT | S4 TEC |
| 3.5 | 2921 | 8990.3 | 10140.0 | 11.7 | 8258 | 9093.1 |
| 4.5 | 1584 | 9002.3 | 9903.2 | 9.0 | 6508 | 9058.8 |
| 4.9 | 1329 | 9007.7 | 9956.3 | 9.6 | 6244 | 9066.5 |
| 6.0 | 1264 | 9021.2 | 9969.4 | 10.6 | 6313 | 9079.1 |
| 7.5 | 1242 | 9040.5 | 9981.6 | 12.2 | 6064 | 9098.6 |
| 8.4 | 1134 | 9051.9 | 9999.9 | 13.1 | 5393 | 9109.8 |
| 12.2 | 1118 | 9099.7 | 10057.8 | 9.6 | 4879 | 9067.0 |
|  |  |  | $f=1.7$ |  |  |  |
| S3 NPE | S3 TWT | S2 TEC | S5 TEC | S4 NPE | S4 TWT | S4 TEC |
| 4.5 | 1234 | 9002.8 | 10048.4 | 9.1 | 6228 | 9060.9 |
| 5.4 | 905 | 9014.2 | 9966.8 | 10.6 | 5842 | 9079.3 |
| 6.3 | 867 | 9025.7 | 9977.8 | 11.2 | 5877 | 9087.0 |
| 7.8 | 821 | 9044.5 | 10021.3 | 11.8 | 5442 | 9094.6 |
| 9.0 | 801 | 9058.6 | 10012.4 | 11.4 | 5448 | 9089.3 |
| 10.4 | 720 | 9076.4 | 10261.5 | 15.2 | 4973 | 9136.2 |
|  |  |  | $f=1.8$ |  |  |  |
| S3 NPE | S3 TWT | S2 TEC | S5 TEC | S4 NPE | S4 TWT | S4 TEC |
| 2.4 | 2811 | 8977.2 | 9753.3 | 4.7 | 8740 | 9005.0 |
| 3.5 | 1417 | 8990.0 | 9903.2 | 6.0 | 6163 | 9022.0 |
| 4.3 | 809 | 9000.6 | 9984.4 | 8.5 | 5212 | 9053.0 |
| 5.5 | 720 | 9015.2 | 10064.3 | 9.5 | 5277 | 9065.9 |
| 6.4 | 713 | 9026.5 | 10112.5 | 13.1 | 5608 | 9110.7 |
| 7.3 | 665 | 9037.6 | 10112.8 | 12.5 | 5600 | 9102.5 |
| 8.4 | 638 | 9052.1 | 10112.2 | 14.6 | 5509 | 9129.2 |
|  |  |  |  |  |  |  |

## Appendix II-Experiment result of E-Lawrence $15 \times 10$ job shop

Appendix II- Table 22: Experiment result of E-Lawrence $15 \times 10$ job shop (Based on Scenario 2)

| $f=1.5$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S2 NPE | S2 TWT | S2 TEC | S5 TEC | S4 NPE | S4 TWT | S4 TEC |
| 133 | 6706 | 16541.5 | 18167.9 | 241 | 18814 | 17891.3 |
| 136 | 6482 | 16586.1 | 18150.1 | 226 | 18062 | 17704.8 |
| 143 | 5738 | 16673.6 | 18187.0 | 234 | 15730 | 17807.5 |
| 144 | 5694 | 16688.5 | 18276.9 | 212 | 15013 | 17529.7 |
| 154 | 5607 | 16808.1 | 18397.0 | 238 | 15469 | 17854.5 |
| 155 | 5495 | 16823.1 | 18325.5 | 235 | 16157 | 17822.2 |
| 162 | 5057 | 16903.7 | 18558.1 | 258 | 15019 | 18112.5 |
| $f=1.6$ |  |  |  |  |  |  |
| S2 NPE | S2 TWT | S2 TEC | S5 TEC | S4 NPE | S4 TWT | S4 TEC |
| 119 | 4510 | 16370.3 | 17937.6 | 204 | 14475 | 17431.6 |
| 120 | 4028 | 16380.8 | 17860.6 | 203 | 12897 | 17417.8 |
| 134 | 3677 | 16560.8 | 18122.2 | 222 | 13610 | 17659.5 |
| 164 | 3477 | 16930.2 | 18554.7 | 261 | 12801 | 18146.0 |
| $f=1.7$ |  |  |  |  |  |  |
| S2 NPE | S2 TWT | S2 TEC | S5 TEC | S4 NPE | S4 TWT | S4 TEC |
| 128 | 3717 | 16488.6 | 17919.3 | 209 | 13806 | 17490.8 |
| 132 | 3471 | 16533.5 | 17966.7 | 236 | 15045 | 17833.4 |
| 136 | 2612 | 16583.6 | 18115.6 | 235 | 13706 | 17814.3 |
| 151 | 2456 | 16773.8 | 18366.7 | 233 | 12525 | 17801.3 |
| 161 | 2369 | 16899.8 | 18495.3 | 241 | 11498 | 17893.2 |
| $f=1.8$ |  |  |  |  |  |  |
| S2 NPE | S2 TWT | S2 TEC | S5 TEC | S4 NPE | S4 TWT | S4 TEC |
| 132 | 3877 | 16535.4 | 18149 | 193 | 12543 | 17298.7 |
| 134 | 2279 | 16552.8 | 18058 | 228 | 11433 | 17738.0 |
| 136 | 1916 | 16583.2 | 18137 | 216 | 10572 | 17587.3 |
| 148 | 1831 | 16733.3 | 18311 | 244 | 11963 | 17933.3 |
| 161 | 1495 | 16896.3 | 18571 | 232 | 10206 | 17785.7 |
| $f=1.9$ |  |  |  |  |  |  |
| S2 NPE | S2 TWT | S2 TEC | S5 TEC | S4 NPE | S4 TWT | S4 TEC |
| 128 | 1915 | 16477.1 | 18005.1 | 212 | 9918 | 17529.21 |
| 140 | 1633 | 16632.6 | 18241.2 | 215 | 9959 | 17569.98 |
| 141 | 1484 | 16645.3 | 18318.6 | 233 | 11195 | 17800.64 |
| 149 | 1333 | 16745.1 | 18211.6 | 209 | 9061 | 17496.23 |
| 154 | 852 | 16813.5 | 18463.9 | 230 | 8649 | 17754.21 |
| 165 | 828 | 16941.2 | 18637.2 | 253 | 9866 | 18050.83 |
| 187 | 691 | 17226.5 | 18896.0 | 272 | 8205 | 18277.03 |

Appendix II- Table 23: Experiment result of E-Lawrence $15 \times 10$ job shop (Based on Scenario 3)

| $f=1.5$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S3 NPE | S3 TWT | S2 TEC | S5 TEC | S4 NPE | S4 TWT | S4 TEC |
| 3.5 | 4762 | 14927.3 | 16152.5 | 12.6 | 13550 | 15040.0 |
| 4.5 | 4493 | 14939.0 | 16252.1 | 13.6 | 13095 | 15053.0 |
| 5.3 | 4016 | 14949.0 | 16150.5 | 9.8 | 12161 | 15005.6 |
| 6.5 | 3973 | 14964.0 | 16157.4 | 10.7 | 12118 | 15016.9 |
| 7.4 | 3895 | 14975.7 | 16145.1 | 12.0 | 12244 | 15033.0 |
| 7.9 | 3865 | 14981.4 | 16155.7 | 12.2 | 12214 | 15035.7 |
| 9.3 | 3802 | 14999.7 | 16196.8 | 12.7 | 11947 | 15041.2 |
| 9.9 | 3787 | 15006.5 | 16209.2 | 12.7 | 11932 | 15042.3 |
| 11.0 | 3786 | 15020.8 | 16248.5 | 14.2 | 11931 | 15060.3 |
| $f=1.6$ |  |  |  |  |  |  |
| S3 NPE | S3 TWT | S2 TEC | S5 TEC | S4 NPE | S4 TWT | S4 TEC |
| 4.2 | 3859 | 14936.0 | 16462.4 | 8.8 | 14206 | 14992.7 |
| 5.4 | 3038 | 14949.9 | 16423.3 | 8.8 | 12983 | 14992.6 |
| 6.0 | 2906 | 14958.0 | 16443.7 | 8.9 | 12429 | 14994.5 |
| 6.6 | 2893 | 14965.3 | 16456.6 | 9.1 | 12461 | 14996.7 |
| 7.9 | 2869 | 14981.3 | 16502.8 | 10.3 | 12433 | 15011.8 |
| 9.9 | 2847 | 15006.3 | 16589.1 | 12.2 | 12080 | 15035.0 |
| 11.4 | 2788 | 15025.4 | 16498.6 | 13.6 | 12305 | 15052.8 |
| $f=1.7$ |  |  |  |  |  |  |
| S3 NPE | S3 TWT | S2 TEC | S5 TEC | S4 NPE | S4 TWT | S4 TEC |
| 3.3 | 3599 | 14924.5 | 16345.5 | 6.0 | 12901 | 14957.8 |
| 4.3 | 3047 | 14936.3 | 16459.4 | 10.5 | 12913 | 15014.4 |
| 5.4 | 2655 | 14950.3 | 16473.2 | 13.0 | 12504 | 15045.2 |
| 6.5 | 2385 | 14964.7 | 16467.1 | 15.1 | 12773 | 15071.2 |
| 7.4 | 2131 | 14975.3 | 16374.9 | 11.2 | 11626 | 15023.2 |
| 8.3 | 1938 | 14987.2 | 16361.9 | 11.3 | 11431 | 15024.4 |
| 8.9 | 1923 | 14994.0 | 16364.7 | 11.7 | 11675 | 15028.8 |
| 10.3 | 1902 | 15012.1 | 16388.1 | 15.5 | 12047 | 15076.9 |
| 11.4 | 1865 | 15025.3 | 16397.1 | 13.7 | 11607 | 15053.8 |
| 12.5 | 1852 | 15039.2 | 16434.1 | 17.2 | 11654 | 15097.4 |
| 13.1 | 1832 | 15046.3 | 16422.2 | 17.5 | 11771 | 15101.6 |
| 15.4 | 1820 | 15076.1 | 16448.4 | 20.1 | 12109 | 15134.2 |
| 16.2 | 1808 | 15086.0 | 16469.1 | 24.0 | 11793 | 15183.5 |
| $f=1.8$ |  |  |  |  |  |  |
| S3 NPE | S3 TWT | S2 TEC | S5 TEC | S4 NPE | S4 TWT | S4 TEC |
| 3.4 | 1184 | 14925.6 | 16306.2 | 7.6 | 9589 | 14977.8 |
| 4.5 | 1102 | 14938.8 | 16365.1 | 7.7 | 9039 | 14978.7 |
| 5.5 | 1038 | 14951.7 | 16221.9 | 10.1 | 8594 | 15008.8 |
| 6.5 | 893 | 14963.7 | 16232.4 | 9.8 | 8565 | 15005.7 |
| 8.1 | 744 | 14984.8 | 16266.7 | 11.6 | 8461 | 15028.4 |
| 8.1 | 744 | 14984.8 | 16266.7 | 11.6 | 8461 | 15028.4 |
| 9.6 | 712 | 15002.6 | 16226.4 | 13.1 | 8383 | 15046.2 |


|  |  | $f=1.9$ |  |  |  |  |
| ---: | ---: | ---: | :---: | ---: | ---: | ---: |
| S3 NPE | S3 TWT | S2 TEC | S5 TEC | S4 NPE | S4 TWT | S4 TEC |
| 3.5 | 647 | 14926.6 | 16362.2 | 7.2 | 8586 | 14972.7 |
| 4.5 | 526 | 14939.3 | 16338.7 | 8.7 | 9612 | 14992.3 |
| 5.3 | 284 | 14948.7 | 16408.4 | 8.1 | 7355 | 14984.2 |
| 6.3 | 202 | 14961.5 | 16435.7 | 9.8 | 6472 | 15005.6 |
| 6.9 | 81 | 14969.6 | 16370.1 | 8.9 | 5360 | 14994.0 |
| 8.0 | 78 | 14982.7 | 16374.4 | 9.4 | 5337 | 15000.7 |

## Appendix II-Experiment result of E-Lawrence $20 \times 10$ job shop

Appendix II- Table 24: Experiment result of E-Lawrence $20 \times 10$ job shop (Based on Scenario 2)

|  |  |  | $f=1.5$ |  |  |  |
| ---: | ---: | :---: | :---: | ---: | ---: | ---: |
| S2 NPE | S2 TWT | S2 TEC | S5 TEC | S4 NPE | S4 TWT | S4 TEC |
| 63 | 13458 | 19527.2 | 21657.1 | 136 | 27912 | 20435.2 |
| 66 | 13295 | 19558.9 | 21731.6 | 135 | 27095 | 20419.8 |
| 75 | 12970 | 19674.4 | 21996.4 | 164 | 27766 | 20791.3 |
| 83 | 12749 | 19776.8 | 22040.7 | 178 | 27917 | 20968.0 |
| 89 | 11702 | 19852.6 | 21940.2 | 147 | 23266 | 20581.2 |
|  |  |  | $f=1.6$ |  |  |  |
| S2 NPE | S2 TWT | S2 TEC | S5 TEC | S4 NPE | S4 TWT | S4 TEC |
| 58 | 10381 | 19459.4 | 21713.1 | 131 | 24223 | 20380.8 |
| 80 | 10274 | 19735.1 | 21958.3 | 152 | 23596 | 20639.3 |
| 86 | 9913 | 19813.2 | 21942.6 | 147 | 23014 | 20578.8 |
|  |  |  | $f=1.7$ |  |  |  |
| S2 NPE | S2 TWT | S2 TEC | S5 TEC | S4 NPE | S4 TWT | S4 TEC |
| 61 | 9104 | 19506 | 21707.4 | 134 | 22385 | 20418.6 |
| 62 | 8247 | 19507 | 21721.7 | 140 | 22542 | 20482.6 |
| 79 | 8066 | 19731 | 21906.0 | 146 | 21225 | 20567.9 |
|  |  |  | $f=1.8$ |  |  |  |
| S2 NPE | S2 TWT | S2 TEC | S5 TEC | S4 NPE | S4 TWT | S4 TEC |
| 64 | 8977 | 19541.2 | 21766.8 | 150 | 24110 | 20617.4 |
| 66 | 8443 | 19568.1 | 21855.8 | 133 | 21079 | 20396.1 |
| 70 | 7965 | 19616.1 | 21815.5 | 139 | 21087 | 20471.3 |
| 73 | 7792 | 19644.4 | 21849.0 | 137 | 20853 | 20447.8 |
| 76 | 6800 | 19684.0 | 21918.0 | 165 | 20846 | 20803.3 |
|  |  |  | $f=1.9$ |  |  |  |
| S2 NPE | S2 TWT | S2 TEC | S5 TEC | S4 NPE | S4 TWT | S4 TEC |
| 66 | 5858 | 19562.8 | 21753.2 | 148 | 20446 | 20587.3 |
| 75 | 5636 | 19675.5 | 21928.6 | 135 | 17893 | 20422.7 |
| 79 | 5624 | 19723.9 | 21944.0 | 139 | 17881 | 20471.2 |
| 80 | 5612 | 19738.0 | 21996.8 | 158 | 18746 | 20718.1 |
| 98 | 5598 | 19961.0 | 22207.2 | 164 | 18085 | 20790.0 |
| 99 | 5586 | 19981.1 | 22282.8 | 181 | 18915 | 20996.3 |
|  |  |  |  |  |  |  |

Appendix II- Table 25: Experiment result of E-Lawrence $20 \times 10$ job shop (Based on Scenario 3)

| $f=1.5$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S3 NPE | S3 TWT | S2 TEC | S5 TEC | S4 NPE | S4 TWT | S4 TEC |
| 4.4 | 14579 | 18792.9 | 21018.0 | 19.3 | 30367 | 18979.0 |
| 5.4 | 13419 | 18804.8 | 20996.2 | 9.9 | 26389 | 18861.4 |
| 6.1 | 13058 | 18813.3 | 21023.3 | 11.0 | 26103 | 18875.5 |
| 7.1 | 11666 | 18826.5 | 20916.2 | 12.5 | 26056 | 18893.4 |
| 8.5 | 11128 | 18843.4 | 21076.0 | 16.0 | 23721 | 18937.8 |
| 9.4 | 10718 | 18855.3 | 21021.2 | 17.0 | 23447 | 18949.8 |
| 10.3 | 10563 | 18866.4 | 21029.8 | 16.3 | 23449 | 18941.4 |
| 11.4 | 10483 | 18879.6 | 21043.0 | 17.4 | 23369 | 18954.6 |
| 11.6 | 10405 | 18882.8 | 21088.2 | 17.4 | 23797 | 18955.2 |
| 13.4 | 10291 | 18905.0 | 21036.6 | 17.7 | 23790 | 18959.0 |
| 14.3 | 10074 | 18916.6 | 21067.2 | 19.2 | 23723 | 18976.9 |
| 15.3 | 9997 | 18928.1 | 21096.2 | 18.6 | 23646 | 18970.6 |
| $f=1.6$ |  |  |  |  |  |  |
| S3 NPE | S3 TWT | S2 TEC | S5 TEC | S4 NPE | S4 TWT | S4 TEC |
| 3.5 | 13040 | 18781.2 | 21090.0 | 7.6 | 27463 | 18832.8 |
| 4.5 | 11347 | 18793.5 | 20995.8 | 10.6 | 25224 | 18870.4 |
| 5.3 | 8544 | 18803.7 | 20865.1 | 10.7 | 22427 | 18870.9 |
| 6.3 | 8147 | 18816.6 | 20935.7 | 11.6 | 22431 | 18882.1 |
| 7.5 | 7892 | 18831.1 | 20920.8 | 13.1 | 21872 | 18901.1 |
| $f=1.7$ |  |  |  |  |  |  |
| S3 NPE | S3 TWT | S2 TEC | S5 TEC | S4 NPE | S4 TWT | S4 TEC |
| 3.5 | 10196 | 18781.0 | 20972.8 | 6.3 | 25436 | 18816.0 |
| 4.4 | 7091 | 18792.0 | 20964.3 | 13.3 | 20617 | 18904.1 |
| 5.4 | 6804 | 18805.4 | 20937.6 | 12.6 | 19780 | 18895.3 |
| 6.4 | 6709 | 18818.0 | 20887.9 | 14.3 | 20349 | 18916.7 |
| 7.2 | 6685 | 18827.4 | 20955.5 | 14.7 | 20205 | 18921.4 |
| $f=1.8$ |  |  |  |  |  |  |
| S3 NPE | S3 TWT | S2 TEC | S5 TEC | S4 NPE | S4 TWT | S4 TEC |
| 4.5 | 6281 | 18793.9 | 20889.6 | 9.2 | 19880 | 18852.3 |
| 5.0 | 6073 | 18800.1 | 20839.5 | 10.5 | 19526 | 18869.1 |
| 6.5 | 5767 | 18818.4 | 21009.4 | 13.5 | 19121 | 18905.6 |
| 7.1 | 5767 | 18826.6 | 20895.6 | 10.4 | 18378 | 18867.5 |
| 8.4 | 5715 | 18843.1 | 20911.0 | 10.9 | 18324 | 18873.3 |
| 8.8 | 5634 | 18847.1 | 20792.1 | 11.3 | 18203 | 18878.1 |
| 10.2 | 5582 | 18864.8 | 20837.9 | 12.5 | 18151 | 18894.0 |
| 11.2 | 5460 | 18877.3 | 20955.8 | 13.5 | 18033 | 18906.6 |
| 11.6 | 5452 | 18882.9 | 20938.9 | 14.0 | 18025 | 18912.1 |
| $f=1.9$ |  |  |  |  |  |  |
| S3 NPE | S3 TWT | S2 TEC | S5 TEC | S4 NPE | S4 TWT | S4 TEC |
| 4.5 | 6491 | 18793.7 | 20743.2 | 15.6 | 21391 | 18932.6 |
| 5.5 | 5668 | 18806.2 | 20757.4 | 14.7 | 20934 | 18921.7 |
| 6.3 | 5400 | 18816.3 | 20733.1 | 14.9 | 20353 | 18923.5 |


| 7.5 | 5335 | 18830.9 | 20787.5 | 15.7 | 19278 | 18934.2 |
| ---: | ---: | ---: | ---: | :--- | :--- | :--- |
| 10.5 | 5186 | 18868.6 | 20812.8 | 15.4 | 17302 | 18930.2 |
| 10.5 | 5186 | 18868.6 | 20812.8 | 15.4 | 17302 | 18930.2 |
| 11.5 | 4785 | 18880.8 | 20880.3 | 23.2 | 18431 | 19027.7 |
| 12.4 | 4238 | 18892.4 | 20900.4 | 17.7 | 17383 | 18958.4 |
| 12.5 | 4090 | 18893.8 | 20964.0 | 18.0 | 16807 | 18962.0 |

## Appendix II-Experiment result of E-Lawrence $15 \times 15$ job shop

Appendix II- Table 26: Experiment result of E-Lawrence $15 \times 15$ job shop (Based on Scenario 2)

|  |  | $f=1.5$ |  |  |  |  |
| ---: | ---: | :---: | :---: | ---: | ---: | ---: |
| S2 NPE | S2 TWT | S2 TEC | S5 TEC | S4 NPE | S4 TWT | S4 TEC |
| 337 | 2347 | 25326.2 | 28268.5 | 449 | 14055 | 26728.9 |
|  |  |  | $k=1.6$ |  |  |  |
| S2 NPE | S2 TWT | S2 TEC | S5 TEC | S4 NPE | S4 TWT | S4 TEC |
| 362 | 1334 | 25642.6 | 28446.1 | 516 | 13634 | 27574.2 |
| 364 | 1220 | 25664.3 | 28652.8 | 436 | 9086 | 26567.2 |
| 377 | 1207 | 25830.9 | 28881.2 | 451 | 10297 | 26758.2 |
| 382 | 1192 | 25897.7 | 29075.2 | 465 | 10370 | 26933.9 |
| 386 | 1031 | 25939.7 | 28836.1 | 509 | 11829 | 27477.1 |
| 394 | 946 | 26041.1 | 29171.5 | 471 | 9510 | 27007.8 |
|  |  |  | $f=1.7$ |  |  |  |
| S2 NPE | S2 TWT | S2 TEC | S5 TEC | S4 NPE | S4 TWT | S4 TEC |
| 365 | 946 | 25678.8 | 28713.4 | 493 | 10017 | 27281.9 |
| 371 | 658 | 25751.0 | 28885.8 | 497 | 9642 | 27332.5 |
| 381 | 608 | 25878.9 | 28898.5 | 526 | 11148 | 27698.3 |
| 384 | 528 | 25918.7 | 28707.1 | 529 | 11034 | 27734.7 |
| 395 | 447 | 26060.7 | 29122.3 | 539 | 10972 | 27856.1 |
| 413 | 298 | 26287.8 | 29129.7 | 560 | 11952 | 28116.9 |

Appendix II- Table 27: Experiment result of E-Lawrence $15 \times 15$ job shop (Based on Scenario 3)

|  |  | $f=1.5$ |  |  |  |  |
| ---: | ---: | :---: | :---: | ---: | ---: | ---: |
| S3 NPE | S3 TWT | S2 TEC | S5 TEC | S4 NPE | S4 TWT | S4 TEC |
| 13.4 | 4126 | 21286.5 | 23755.1 | 18.5 | 19510 | 21350.6 |
| 14.3 | 4002 | 21298.0 | 23770.2 | 18.6 | 19646 | 21351.5 |
| 15.3 | 3950 | 21310.6 | 23803.6 | 19.6 | 19594 | 21364.5 |
| 16.0 | 3440 | 21318.7 | 24000.9 | 19.5 | 17727 | 21363.1 |
| 16.9 | 3407 | 21330.1 | 23998.4 | 20.1 | 17700 | 21369.9 |
|  |  |  | $f=1.6$ |  |  |  |
| S3 NPE | S3 TWT | S2 TEC | S5 TEC | S4 NPE | S4 TWT | S4 TEC |
| 13.5 | 3313 | 21287.7 | 23503.4 | 18.3 | 17239 | 21347.5 |


| 13.8 | 3186 | 21291.9 | 23520.0 | 19.3 | 15892 | 21360.2 |
| ---: | ---: | ---: | :---: | ---: | ---: | ---: |
| 15.0 | 3177 | 21306.9 | 23506.2 | 19.9 | 20363 | 21368.2 |
| 16.1 | 3123 | 21320.5 | 23661.6 | 18.5 | 16923 | 21350.8 |
|  |  |  | $f=1.7$ |  |  |  |
| S3 NPE | S3 TWT | S2 TEC | S5 TEC | S4 NPE | S4 TWT | S4 TEC |
| 12.7 | 1152 | 21278.4 | 23596 | 23.6 | 16901 | 21414.0 |
| 14.1 | 1125 | 21295.8 | 23611.7 | 24.5 | 17345 | 21425.4 |
| 14.7 | 1101 | 21303.5 | 23638.6 | 24.6 | 16991 | 21427.2 |
| 15.6 | 1079 | 21314.1 | 23681.8 | 25.4 | 16786 | 21436.8 |

## Appendix III Experiment result of Scenario 6

## Appendix III- Experiment result of E-F\&T $10 \times 10$ job shop

Appendix III-Table 28: Experiment result of E-F\&T $10 \times 10$ job shop

| $f=1.5$ |  |  | $f=1.6$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| S6 NPE | S6 TWT | S6 TEC | S6 NPE | S6 TWT | S6 TEC |
| 4.2 | 9054 | 9540.8 | 3.9 | 9012 | 9478.3 |
| 4.4 | 9559 | 9539.1 | 4.1 | 7773 | 9668.5 |
| 4.6 | 8471 | 9568.1 | 4.3 | 7201 | 9660.3 |
| 4.7 | 7904 | 9579.8 | 4.8 | 7055 | 9692.1 |
| 5.6 | 5146 | 9648.0 | 4.9 | 6582 | 9347.8 |
| 5.9 | 4129 | 9355.9 | 5.2 | 5380 | 9358.8 |
| 6.0 | 3314 | 9511.2 | 5.3 | 5132 | 9354.7 |
| 6.3 | 3083 | 9520.9 | 5.5 | 4943 | 9708.0 |
| 6.5 | 3031 | 9493.8 | 5.8 | 4642 | 9609.9 |
| 6.5 | 2933 | 9554.8 | 5.9 | 4479 | 9566.4 |
| 7.2 | 2870 | 9538.1 | 6.1 | 4177 | 9714.0 |
| 8.0 | 2786 | 9609.2 | 6.7 | 3850 | 9215.7 |
| 8.3 | 2552 | 9659.5 | 6.8 | 3312 | 9305.9 |
| 9.0 | 2342 | 9560.8 | 7.0 | 2143 | 9760.5 |
| 9.6 | 2272 | 9651.0 | 7.1 | 1968 | 9612.8 |
| 10.2 | 2042 | 9947.6 | 7.5 | 1903 | 9650.8 |
| 10.3 | 1845 | 9782.1 | 7.7 | 1654 | 9747.9 |
| 11.0 | 1801 | 9692.2 | 8.0 | 1498 | 9745.3 |
| 11.4 | 1755 | 9795.8 | 8.2 | 1395 | 9727.5 |
| 11.6 | 1541 | 9916.9 | 8.4 | 1159 | 9881.4 |
| 12.6 | 1418 | 9695.1 | 8.5 | 1106 | 9845.4 |
| 12.8 | 1261 | 9712.4 | 9.0 | 1093 | 9930.3 |
| 13.1 | 910 | 9717.4 | 9.2 | 1019 | 9921.8 |
| 14.4 | 877 | 9759.3 | 9.4 | 974 | 9980.8 |
| 14.5 | 826 | 9779.5 | 10.1 | 946 | 9917.1 |
|  |  |  | 10.7 | 898 | 9666.3 |
|  |  |  | 11.8 | 689 | 9899.7 |
|  | $f=1.7$ |  | $f=1.8$ |  |  |
| S6 NPE | S6 TWT | S6 TEC | S6 NPE | S6 TWT | S6 TEC |
| 5.1 | 3859 | 9454.6 | 4.3 | 6945 | 9674.1 |
| 5.2 | 3921 | 9450.3 | 4.4 | 5485 | 9680.6 |
| 5.3 | 3374 | 9411.8 | 4.5 | 5164 | 9725.6 |
| 5.4 | 2564 | 9444.3 | 4.7 | 2065 | 9879.6 |
| 5.9 | 2452 | 9429.3 | 4.8 | 1859 | 9865.0 |
| 6.0 | 2425 | 9419.7 | 5.0 | 651 | 9794.9 |
| 6.1 | 2365 | 9430.9 | 5.8 | 432 | 9930.4 |
| 6.2 | 2325 | 9445.7 | 6.3 | 423 | 9799.9 |


| 6.3 | 2173 | 9807.9 | 6.5 | 155 | 9845.0 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 6.4 | 1985 | 9810.3 | 6.6 | 144 | 10004.1 |
| 6.8 | 1757 | 9628.0 | 6.7 | 105 | 10023.8 |
| 6.9 | 1625 | 9475.0 | 9.2 | 100 | 9957.5 |
| 7.2 | 1478 | 9670.1 | 10.3 | 61 | 9990.2 |
| 7.3 | 1367 | 9528.5 |  |  |  |
| 7.4 | 1341 | 9681.1 |  |  |  |
| 7.7 | 1273 | 10064.8 |  |  |  |
| 7.9 | 1153 | 9919.3 |  |  |  |
| 8.2 | 1054 | 9974.4 |  |  |  |
| 9.1 | 970 | 9939.0 |  |  |  |
| 9.2 | 942 | 9865.8 |  |  |  |
| 9.7 | 928 | 9946.9 |  |  |  |
| 10.0 | 847 | 9918.4 |  |  |  |
| 11.1 | 561 | 9831.1 |  |  |  |
| 11.2 | 500 | 9969.7 |  |  |  |
| 12.3 | 443 | 9846.4 |  |  |  |
| 13.0 | 416 | 9837.9 |  |  |  |
| 13.6 | 347 | 9899.6 |  |  |  |
| 14.8 | 335 | 9952.8 |  |  |  |
| 17.1 | 208 | 9972.7 |  |  |  |
| 22.2 | 202 | 9924.7 |  |  |  |

## Appendix III- Experiment result of E-Lawrence $15 \times 10$ job shop

Appendix III-Table 29: Experiment result of E-Lawrence $15 \times 10$ job shop

| $f=1.5$ |  |  |  | $f=1.6$ |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | :---: |
| S6 NPE | S6 TWT | S6 TEC | S6 NPE | S6 TWT | S6 TEC |  |
| 5.4 | 5754 | 15798.8 | 6.2 | 4719 | 15899.1 |  |
| 5.7 | 5672 | 15946.2 | 7.1 | 4667 | 15835.1 |  |
| 5.9 | 5475 | 15913.9 | 8.0 | 5353 | 15681.8 |  |
| 6.1 | 5331 | 15955.2 | 9.1 | 4314 | 15980.1 |  |
| 6.8 | 5301 | 15963.2 | 10.0 | 5678 | 15277.1 |  |
| 7.4 | 4917 | 16130.3 | 11.2 | 4296 | 15974.2 |  |
| 8.1 | 4865 | 15970.1 | 11.8 | 4113 | 16013.6 |  |
| 8.6 | 4650 | 16128.5 | 12.6 | 5177 | 15678.6 |  |
| 9.5 | 4635 | 16246.8 | 13.8 | 4286 | 15971.4 |  |
| 10.1 | 4533 | 16345.7 | 15.7 | 4002 | 16295.1 |  |
| 11.3 | 4379 | 16335.6 | 16.8 | 4035 | 16074.7 |  |
| 12.3 | 4335 | 16352.3 | 18.3 | 5337 | 15522.7 |  |
| 13.0 | 4302 | 16335.7 | 18.5 | 3969 | 16070.1 |  |
|  |  |  | 20.7 | 5334 | 15577.9 |  |
|  |  |  | 22.2 | 3985 | 16044.6 |  |


| S6 NPE | S6 TWT | S6 TEC | S6 NPE | S6 TWT | S6 TEC |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 5.3 | 5554 | 15662.7 | 5.8 | 3931 | 16335.3 |
| 5.4 | 5174 | 15604.6 | 6.4 | 3794 | 16334.9 |
| 5.5 | 4572 | 15627.5 | 6.9 | 3774 | 16327.8 |
| 5.6 | 4360 | 15577.1 | 7.3 | 3750 | 16325.6 |
| 5.8 | 4288 | 15988.5 | 7.7 | 2256 | 16081.6 |
| 5.9 | 3710 | 15825.1 | 8.0 | 2218 | 16119.4 |
| 6.1 | 3536 | 15745.4 | 8.4 | 2163 | 16086.6 |
| 6.4 | 3506 | 15688.2 | 9.5 | 2147 | 16148.5 |
| 6.5 | 3327 | 15915.4 | 9.7 | 2008 | 16126.3 |
| 6.6 | 3125 | 16244.5 | 10.0 | 1867 | 16142.6 |
| 7.0 | 3122 | 16291.1 | 11.3 | 1860 | 16027.1 |
| 7.2 | 2908 | 16197.3 | 11.4 | 1756 | 16119.4 |
| 8.3 | 2865 | 16174.5 | 11.5 | 1738 | 16132.7 |
| 8.4 | 2823 | 16273.8 | 11.6 | 1735 | 16134.0 |
| 9.3 | 2666 | 16310.5 | 12.4 | 1708 | 16041.4 |
| 9.7 | 2619 | 16182.5 | 12.5 | 1652 | 16040.7 |
| 10.0 | 2552 | 16070.9 | 12.6 | 1559 | 16145.8 |
| 10.2 | 2464 | 16376.9 | 13.2 | 1543 | 16152.9 |
| 10.8 | 2360 | 16448.4 | 22.0 | 1497 | 16298.5 |
| 10.9 | 2353 | 16530.6 |  | $f=1.9$ |  |
| 11.1 | 2266 | 16482.3 | S6 NPE | S6 TWT | S6 TEC |
| 11.6 | 1994 | 16460.3 | 5.2 | 2882 | 15868.8 |
| 13.0 | 1983 | 16491.5 | 5.4 | 1321 | 15938.5 |
| 13.1 | 1976 | 16526.0 | 7.0 | 1009 | 15880.9 |
| 13.9 | 1950 | 16475.6 | 7.6 | 896 | 16018.5 |
| 14.0 | 1943 | 16547.8 | 7.7 | 853 | 15985.7 |
| 14.9 | 1940 | 16496.7 | 8.4 | 797 | 16038.3 |
| 16.5 | 1912 | 16607.7 | 9.4 | 761 | 16026.5 |
|  |  |  | 11.5 | 697 | 16052.1 |

## Appendix III- Experiment result of E-Lawrence $\mathbf{2 0} \times \mathbf{1 0}$ job shop

Appendix III-Table 30: Experiment result of E-Lawrence $20 \times 10$ job shop

|  | $f=1.5$ |  | $c$ | $f=1.6$ |  |
| ---: | :---: | ---: | ---: | ---: | ---: |
| S6 NPE | S6 TWT | S6 TEC | S6 NPE | S6 TWT | S6 TEC |
| 7.7 | 12695 | 20545.9 | 12.0 | 16337 | 20406.5 |
| 7.8 | 12493 | 20377.7 | 15.6 | 16328 | 20431.6 |
| 8.0 | 11799 | 20413.2 | 15.8 | 16142 | 20285.7 |
| 9.0 | 11761 | 20457.8 | 16.0 | 13742 | 20522.9 |
| 11.1 | 11703 | 20499.1 | 19.8 | 12443 | 20746.1 |
| 11.2 | 11591 | 20548.7 | 23.6 | 11850 | 21147.9 |
|  | $f=1.7$ |  |  | $f=1.8$ |  |
| S6 NPE | S6 TWT | S6 TEC | S6 | S6 | S6 TEC |

NPE TWT

| 8.3 | 8892 | 20661.4 | 12.4 | 15385 | 19990.48 |
| ---: | ---: | ---: | :---: | :---: | ---: |
| 8.8 | 8687 | 20696.7 | 12.5 | 13626 | 20145.62 |
| 8.9 | 8581 | 20688.0 | 13.8 | 12352 | 20670.66 |
| 9.3 | 8487 | 20541.2 | 14.3 | 12343 | 20519.71 |
| 10.5 | 8384 | 20547.4 | 14.5 | 10157 | 20536.32 |
| 10.8 | 7954 | 20713.3 | 15.5 | 9846 | 20768.39 |
| 11.4 | 7900 | 20697.9 | 17.6 | 8698 | 20801.6 |
| 12.4 | 7710 | 20645.6 | 33.4 | 8549 | 21214.06 |
| 12.5 | 7695 | 20667.1 |  | $f=1.9$ |  |
|  |  |  | S6 | S6 |  |
| 13.8 | 7468 | 20677.8 | NPE | TWT | S6 TEC |
| 15.3 | 7465 | 20713.1 | 12.9 | 10441 | 20319.66 |
| 15.5 | 7448 | 20613.5 | 13.5 | 10371 | 20659.78 |
| 15.8 | 7416 | 20660.6 | 15.9 | 10042 | 20037.1 |
| 16.1 | 7373 | 20659.9 | 16.9 | 10007 | 20342.61 |
| 16.3 | 7330 | 20684.7 | 17.4 | 9282 | 20597.83 |
| 17.7 | 7235 | 20826.6 | 18.1 | 9253 | 20651.57 |
| 18.7 | 7220 | 20769.2 | 18.2 | 7908 | 20541.78 |
| 20.6 | 7185 | 20846.6 | 20.1 | 7832 | 20923.5 |
|  |  |  | 25.1 | 7457 | 20990.47 |
|  |  |  | 26.4 | 7077 | 20816.08 |

## Appendix III- Experiment result of E-Lawrence $15 \times 15$ job shop

Appendix III-Table 31: Experiment result of E-Lawrence $15 \times 15$ job shop

| $f=1.5$ |  |  |  | $f=1.6$ |  |  |  | $f=1.7$ |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: |
| S6 NPE | S6 TWT | S6 TEC | S6 NPE | S6 TWT | S6 TEC | S6 NPE | S6 TWT | S6 TEC |  |  |
| 19.8 | 11860 | 22060.3 | 18.2 | 6786 | 22238.06 | 20.3 | 6612 | 22398.5 |  |  |
| 20.3 | 10012 | 22754.01 | 19.3 | 5289 | 22674.6 | 20.9 | 5940 | 22581.31 |  |  |
| 20.5 | 9072 | 22749.41 | 20.0 | 3647 | 22518.58 | 21.2 | 5620 | 22807.71 |  |  |
| 21.8 | 8854 | 22839.5 | 22.0 | 2122 | 22948.79 | 21.7 | 4838 | 22323.2 |  |  |
| 22.1 | 8046 | 22845.08 | 23.3 | 1924 | 23071.75 | 22.2 | 3887 | 22794.79 |  |  |
| 22.8 | 6699 | 23199.11 | 24.8 | 1904 | 23179.85 | 24.0 | 3881 | 23056.36 |  |  |
| 27.4 | 6146 | 23049.65 | 25.3 | 1895 | 23185.59 | 25.2 | 3633 | 23006.18 |  |  |
| 28.7 | 5751 | 23362.29 | 26.9 | 1610 | 23247.18 | 25.4 | 2599 | 22780.51 |  |  |
| 29.7 | 5408 | 23612.47 | 27.2 | 1601 | 23297.61 | 26.5 | 2354 | 22890.53 |  |  |
| 30.3 | 5060 | 23616.61 | 28.1 | 1569 | 23265.79 | 28.2 | 2323 | 23324.95 |  |  |
|  |  |  | 29.6 | 1514 | 23201.86 | 29.3 | 2288 | 22951.32 |  |  |
|  |  |  | 30.0 | 1512 | 23278.7 | 32.2 | 2201 | 22650.28 |  |  |
|  |  |  | 31.6 | 1458 | 23307.35 | 32.3 | 1932 | 22880.35 |  |  |
|  |  |  | 32.3 | 1444 | 23316.49 | 32.4 | 1853 | 22924.09 |  |  |
|  |  |  |  |  |  | 34.5 | 1714 | 23142.51 |  |  |

