m The Uniyersitg of
A | Nottingham

UNITED KINGDOM - CHINA - MALAYSIA

Lovegrove, Will. (1996) Advanced document analysis
and automatic classification of PDF documents. PhD
thesis, University of Nottingham.

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/13967/1/336930.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

Copyright and all moral rights to the version of the paper presented here belong to
the individual author(s) and/or other copyright owners.

To the extent reasonable and practicable the material made available in Nottingham
ePrints has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-
for-profit purposes without prior permission or charge provided that the authors, title
and full bibliographic details are credited, a hyperlink and/or URL is given for the
original metadata page and the content is not changed in any way.

Quotations or similar reproductions must be sufficiently acknowledged.

Please see our full end user licence at:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

http://eprints.nottingham.ac.uk/Etheses%20end%20user%20agreement.pdf
mailto:eprints@nottingham.ac.uk

Advanced document analysis and
automatic classification of PDF
documents

by William Lovegrove, BSc.

Submitted to the University of Nottingham for the degree of Doctor of Philosophy, December, 1996

Acknowledgements

I would like to thank the following persons for their help and contributions
towards this thesis.

My supervisor, Leon Hai'rison, my research group leader, David Brailsfor.d
and my advisor, David Elliman, for expert advice in the domains of electronic
publishing and artificial intelligence.

My parents, Gillian and Michael for their constant support and
encouragement.

My colleagues in the Electronic Publishing Research Group at the Universi.ty
of Nottingham for all the advice they have given me over the years: Paul, Phil,
Steve, Dave, Peter, Wendy and Eddie.

Liz McQuarrie and the Acrobat Engineering Team at Adobe Systems for
introducing me to the finer points of the PDF document model.

William Lovegrove,
16/9/96

Contents

CHAPTER 1, INTRODUCTION : 10

CHAPTER 2, CONTEMPORARY ELECTRONIC DOCUMENT FORMATS 18
2.1 INTRODUCTIONoeenrvmmnirisnsnsssssensssssessssensssssssssansssssssssssmesesssssssssessssesssnsssssssssnssess
2.2 ELECTRONIC DOCUMENT DEFINITIONSvvveveomsseessensesnsenseseeseessesseeessseesssesssssssssees
2.3 LOGICAL DOCUMENTS

23.1 SGML
2.3.1.1 The document type definition
232 HTML ..ot st sssassss s esssssssssssssssssssssssssssssssssssssn sossosssssssosenes
24 GEOMETRIC DOCUMENTS........ccoovvvnnns

2.4.1 PAGE DESCRIPTION LANGUAGES....
2.4.2 POSTSCRIPT ...coenenereervseserersnsssssnsanssases

..

2.4.3.1 The PDF document MOAEL.........cececuevvveuereereieeiiserentesememssssnssssesessssssessssonsessssess
2.5 OFFICE DOCUMENT ARCHITECTUREcvvvesserssesesessesssessessssssesssesssssesssssssssssssssssesns

CHAPTER 3, DOCUMENT ANALYSIS
3.1 INTRODUC'I‘ION

.....................................
..

..
..

3.2.1 DOCUMENT IMAGE PREPROCESSINGccvcunuvsvmssnsesemsssseesesenssasssssessesssosssessssossssmsessssons
3.2.2 PAGE SEGMENTATION AND SEGMENT CLASSIFICATION ...
3.2.2.1 Top-down segmentation strategies
3222 Bottom-up segmentation Strategiescocovevvevrrirecrscrnennnne.
3.2.2.3 Hybrid segmentation Strategiesee.eunnss s
3.2.2.4 An assessment of Page Segmentation strategies
3.23 SEGMENTED GEOMETRIC REGION CLASSIFICATION TECHNIQUES
3.3 INVESTIGATIVE DOCUMENT ANALYSIS RESEARCH
33.1 DIRECTED K-CLUSTERING - RECOG
3.3.1.1 Discussion of the RECOG results
33.2 EXAMINATION OF THE PIXEL PROFILES OF CHARACTERS
3.3.3 BASIC DOCUMENT ANALYSIS OF PDFooovvovovvvveevevcsemsesanosesssesssesssses oo oeeeseeeseeeeones
3.3.3.1 Typeface COMPAMISON.ovvvrrrvrriveees
3.3.3.2 Prototype segmentation techniques

..

CHAPTER 4, DOCUMENT UNDERSTANDING 72
R3S 04100014 oy 4 (o) OO 73

4.2.1
422

4.2.2.1 Understanding Form documents
4.2.2.2 Understanding Library Cards..............
4.2.2.3 Understanding Japanese newspapers
423 Nryoar's NEWSPAPER UNDERSTANDING SYSTEM
4.24 DENGEL’S BUSINESS DOCUMENT PROCESSING
4.2.5 SEMANTIC NET STRATEGIES

Contents

43

4.2.6 TAYLOR’'S DOCUMENT CLASSIFIERc0vteereenesssosssensessessesssnisssossassesssssssssasassessssssseaseans
4.2.7 ESPOSITO’S LOGICAL RULE BASE..........c.co....
4.2.8 SAITOH’S TEXT AREA ORDERING SYSTEM
4.2.8.1 A discussion of Saitoh’s approach...
4.29 LAM’'S ADAPTIVE READING FRAMEWORKceeevrmrruerereesreressnronsassosssssnnens
UNDERSTANDING PDF DOCUMENTS: THE PROTOTYPE APPROACH
4.3.1 CLASSIFYING BLOCKSecevernmesueaetesssesessssesssessssssosessssessssssosssssssssessassessssssesssessssssesssessss
4.3.1.1 Finding main text blocks
4.3.1.2 Finding peripheral blocks

4.3.2 TAGGING TITLE BLOCKS AND FINDING LOGICAL DEPENDENCIES BETWEEN BLOCKS 99

4.3.2.1 Finding title DIOCKScccevrrereerreveearneessseessenseieiesersssinseassesssssssssssssesossansesssssessses 100
4.3.3 PROTOTYPE DOCUMENT UNDERSTANDING DISCUSSION........cvreueereerserssesessessenssoseesenee 106
SUMMARY ...ttt nesssssss s essssssesssssssss s sos s e s s sesassonas snsas s sesessesassesnses 107

CHAPTER 5, FINAL SYSTEM DEVELOPMENT AND ENGINEERING 109

3.1
52

5.3

54

5.5

A PRECISE DEFINITION OF THE TASK 110

5.1.1 A FORMAL HYPOTHESIS 112
SYSTEM DETAILScvvevrrrrenens 114
5.2.1 THE STASIS INTERFACE 115
FINAL SYSTEM DOCUMENT ANALYSIS OF PDF 116
3.3.1 INVESTIGATING PDF GRAPHICS.......cocoeeureerirenesisrscsessstseneenssesessssesssssssssssssssssssssssnsssnen 117
5.3.2 PROCESSING TEXT LINES......ccocevevereresescrsamseseresssessssssssssssssesssessssssesssssssosssssssssssessnsasaes 118
5.3.2.1‘Democracy units’ 119
5.3.3 ANALYSING A BLOCK'S ‘LEADING EDGES’vvuveveeirssessenenessssesssessasssessssssssssssssssssssens

5.3.3.1 Segmenting a block using ‘leading edge’ values..............c..cou...u..,
5.3.4 ANALYSING A BLOCK’S INTER-LINE SPACING.........cocrvereereememsirsreensssasassasens

5.3.4.1 Segmenting a block using inter-line spacing values.......................
DEVELOPMENT AND DESIGN OF THE BLACKBOARD ARCHITECTURE
54.1 BLACKBOARD SYSTEMS...........

5.4.1.1 Knowledge sources

5.4.1.2 Blackboard data structures

5.4.1.3 The CORIOLIET.oecvoeeveessenssresesesssesesssersssssnssesessensenssssssesessesssnsssmmesesseeseseee

5.4.1.4 Problem solving behaviour and knowledge application

54.1.5 Example blackboard SYSIEIMS...........cuetresimisiecersssnsnssnsiesssessssesesessessesesssesssenes
5.4.2 OBJECT-ORIENTED SYSTEM DESIGN.............connns

5421 Analysis of the knowledge sources

54.2.2 Design of the blackboard.....................

5.4.2.3 Design of the knowledge sources ...

5424 Design of the CONOLIETcuevvereeversanrsesrerermnesessesesseesasnesesssssssossessesessos s ssees

5425 Tailoring the blackboard framework to the document processing problem..... 138
ADVANCED DOCUMENT ANALYSIS: THE GENERATION OF DOCUMENT FEATURES
5.5.1 EXTRACTION OF MEANINGFUL DOCUMENT FEATURES «...cconovvounovveooooooooooooooooooeooooeoo 145
5.5.2 KNOWLEDGE SOURCE ALGORITHMS
5.5.2.2 Text Frequency KS.....
5.5.2.3 Graphic KScuu.....
5.5.2.4 Structure KS ...
5.5.2.5 Title KS............
5.5.2.6 Super-title XS
5.5.2.7 Image KS..........
5.5.2.8 Caption KS ..
5.5.2.9 Footer KS.....
5.5.2.10Header KS
5.5.2.11Peripheral KS
5.5.2.12Column KS..................

Contents

5.7

5.6.1 SPECIFICATION OF THE TARGET LOGICAL DOCUMENT CLASSESceovvssurseeressersisiisiss 168
5.6.1.1 Logical NEWSPAPETSc.covereremiriimvsreriireessiiersresnissesisssnsssastssssssssssssssssissassese
5.6.1.2 Logical academic documents....................
5.6.1.3 Logical brochures ceveeereneressaens
5.6.1.4 Logical forms................

5.6.2 CLASSIFICATION TECHNIQUEScvvrveuernreneonssssscsesnensessssoresesssssssssnsnes
5.6.2.1 Basic classifier reqUIrements.............cocrmreveeiseneersrensnnesenssnnens
5.6.2.2 Production rule expert systems
5.6.2.3 Neural Net Classifiers..........coceevnvnennininnennniencecnen
5.6.2.4 Development of the STASIS neural net classifier

SYSTEM OUTPUTcecvruenesmsissisisssnssississiosssssssssssisssesssssssassassssnssassssssssssssssssssssssssssen

CHAPTER 6, ANALYSIS OF SYSTEM RESULTS 182

6.1
6.2
6.3

6.4
6.5

6.6

6.7

6.8

INTRODUCGTIONc.ovveeeeereeecessssesssseosssssssessssesssssssssssssesssssssssresssssssssssnsrnsesssssessssassssss
DOCUMENT ANALYSIS RESULTS ...ecoeererssssrrasssavesseersesasessstosasssssesssosssessossosssssssnnassssssss
DOCUMENT ANALYSIS ERRORS.....ccocvieieriireeriersnreessessssesssssesssnsesssasssrsesssssssesssassssssses
6.3.1 BAD APILINESccoveecrusumrsiunsesnmsessssnsnssssnsssenes
6.3.2 ASSIGNING POOR LINE ATTRIBUTES
6.3.3 BAD GEOMETRIC BLOCK FORMING
6.3.4 DROPPED CAPSvereesverecseesssssessssssssassarsssssnssssssassssassssons sessssssssnsesorsssnssnsassssnsessssssssnsssses
ADVANCED ANALYSIS RESULTS
ADVANCED ANALYSIS ERRORSoceevrersrmsoessesseseesessans
6.5.1 LINKING ERRORS.....cccoruvrerevvsrerieses
6.5.2 CoLUMN FORMING ERRORS
6.5.3 BLACKBOARD DIAGNOSIS ERRORS
6.5.3.1 Hanging headerscovurucrnmrmeresiestsesssess s ssessise st sssssassassasssssssssansensessess
6.5.3.2 Captions of diagrams...
6.5.3.3 Peripheral eRtItIesoovereererrmiasssnssesescescnorsessessrssrsessns s s ssssssssssssessessess
NEURAL NET CLASSIFICATION RESULTSoeciueverceesnerersorsirnessreessssssessenssnssssensssesees 199
6.6.1 ACADEMIC DOCUMENTS
6.6.2 NEWSPAPER DOCUMENTSvvvetierrereesssssmersossssssssssossssssasassssasssssonssessasssssnssssnsasassessnssss 201
6.6.3 BROCHURE DOCUMENTSccovivververrisissarsessessessssseesesssssssssassssssrnesnsssestassasssossossastossessonss 202
6.6.4 FORM DOCUMENTS
6.6.5 SUMMARY ..ooovoeveeveeeeeeeeseeseessssssssssseseesessossssessasasesseasessssssessesnsossssessossasessosssssssesesssssessses

6.7.1 NEURAL NET SHORTCOMINGSccoververrerrssransessesstssssssossasssserssssassssssessessssssessessassassossonse
A STATISTICAL ANALYSIS OF STASIS
6.8.1 EVALUATING THE STATISTICS
6.8.2 EVALUATING THE RUN-TIME EFFICIENCY OF STASIS’ STRATEGY

CHAPTER 7, DISCUSSION AND CONCLUSIONS 219

71
72
13
14

RESEARCH SYNOPSISoceovtieresstisesessesissesesssssesesssssssessassesessessessossosessssesisssensescons 220
AN ANALYSIS OF STASIS’ DOCUMENT PROCESSING STRATEGYc.ccvvvereeerverereenees 222
A UNIVERSAL DOCUMENT PROCESSING SYSTEMcccevrerenrenrsiremsensasessassenssessssssssnes 226
CLOSING REMARKS AND CONCLUSIONScvoiuireinereincnsessensnsssesessssmsessnsessasmsssssssns 233

REFERENCES CCXXXV

APPENDICES ' CCXLVI

APPENDIX I: STASIS SCREEN SHOTS.......vcovereesresseessesseesssseessesscssssssssssesssssssssessssssens CCXLVII
APPENDIX II: AN EXAMPLE DTD ...oooccooveeeeeeeesees s eesevesesseesssesssssessesessssesssnssssaes CCLXVIII

APPENDIX III: RECOG

List of Tables

/
CHAPTER 1, INTRODUCTION
CHAPTER 2, CONTEMPORARY ELECTRONIC DOCUMENT FORMATS
Table 1: Some portable document elements and their geometric attributes........................ 29
CHAPTER 3, DOCUMENT ANALYSIS
Table 2: Pavlidis’ rules for merging cORMN BIOCKS...........cccouveuiuireicierinnrenrenieereesernsnens 45
Table 3: Essential properties of the manhattan layout Style.................ccvveveerrrrnreererennes 45
Table 4: SivaramakriShnan’s ZONe CLASSES........covreeriverisuersssrerstsrererersessersssssssssssossssserssens 56
Table 5: Useful attributes Of TONLSc.cerreerreereresesssseresssuesssosssossssessssemsessaesesssssssssssosesnns 61
CHAPTER 4, DOCUMENT UNDERSTANDING
Table 6: Niyogi’s physical NEWSPAPET SHUCIUT............uuirremreinmrmseissssersisssassassssssansessesses 84
Table 7: Niyogi’s logical NEWSPAPET SHUCKUIEvversssesssecssssissosssssssssssssessisssssssssesssses 84
Table 8: Examples of Niyogi’s rules from different knowledge hierarchies....................... 85
Table 9: Examples from Esposito’s knowledge 1anguagesoo.uceeererneruesinnsrrsrennss 90
Table 10: A list of the tags used in the PIOIOLYPE........ceevrvvrssssssnreenmerssmmsmssnsssnsnssssssnsessens 97
Table 11: Rules for linking block A t0 bloCK B ..ottt sersesnnnnes 101
CHAPTER 5, FINAL SYSTEM DEVELOPMENT AND ENGINEERING
Table 12: STASIS knowledge sources and the knowledge they ‘encapsulate’ 133
Table 13: STASIS bIACKDOAIA ODJECES .vvr.vvevsscrrsessorersssnsssssssssisssssmssccsssnmmsssssnsssssssssensoneees 134
Table 14: STASIS PrOCESSIIE SEAZESvecvrerrresersessrssserisnrssssssssssssssensrssesssssanssssnssssssssersaoees 140
Table 15: Document features and their iNAEXES.ccsreeserrervssesmmsecssrsnsrnrssssessesesseenens 145
Table 16: The number of documents used to train the STASIS classification net 177
CHAPTER 6, ANALYSIS OF SYSTEM RESULTS
Table 17: The STASIS report for the STELLA.PDF document....................coceoueevrvssrrenne. 200
Table 18: The STASIS report for the document SPAINO.PDFccconirerirverrvereecenn 202
Table 19: The STASIS report for THOMBRAD.PDFccoouniuivionineenesesessscessnnns 203
Table 20: The STASIS report for TAXTLPDFEc.ccovieeeiieineiieereeneeessseseesessesessessens 205
Table 21: STASIS document analysis and classification SEALSHCS...................crvrrerrrrernnrnen. 213
Table 22: Run-time performances Of STASIS...........couurueerrnieircvorensisseesseessesessessssssssees 217

CHAPTER 7, DISCUSSION AND CONCLUSIONS

vi

List of Figures

i
CHAPTER 1, INTRODUCTION
Figure 1: The traditional document processing Venn diagramcvvveverrecrsnsincenns 15
Figure 2: A new approach to dOCUMENt PrOCESSINGcvvuucereseecrsesusrsasnrssssssnsssssersrssoraes 16
CHAPTER 2, CONTEMPORARY ELECTRONIC DOCUMENT FORMATS
CHAPTER 3, DOCUMENT ANALYSIS
Figure 3: The projection profiles of a lower case ‘u’ in Times-Roman font..................... 62
Figure 4: The projection profiles of a lower case ‘u’ in Helvetica font.ccceeeneee. 63
Figure 5: Typical output from the prototype PDF processing Systemc...couucseeeesrenns 70
CHAPTER 4, DOCUMENT UNDERSTANDING
Figure 6: The influence range of Saitoh’s BIOCKS.........cvvuimmiimiiniimiiiimiiiinisinsiinine 92
CHAPTER 5, FINAL SYSTEM DEVELOPMENT AND ENGINEERING
Figure 7: Part of the tree of 10giCal dOCUMENLS.........ovvverrsuseceusssesstssssesinseusmssismmsssnsssssrins 110
Figure 8: The Acrobat Exchange U.IL with the STASIS ULcccuverniinnriiinnniinnans 115
Figure 9: A flow chart of the segmentation routine based on inter-line gap values......... 124
Figure 10: A prefabricated multi-column page of text segmented by STASIS 125
Figure 11: A blackboard frameWOrK...........cocoevreeremmeisemsssessessesssssmsessnsessassssssssssessssassassseses 129
Figure 12: The blackboard and blackboard object class diagram............cvveeccencereneenens 135
Figure 13: The STASIS knowledge source class diagramc..omveerriinnsrissnsccrsnssenee 137
Figure 14: The cONroller MECRAMISIIL...........crveeeeererisesssesesmsssussssssensssssssssmsessasssesssesasasesens 138
Figure 15: STASIS object diagram..........cc.ovremsenescsmsisssisisstsniiniiiseisnninissssesses 138
Figure 16: A flow chart of the main text style finding algorithmccccourverernnrernneens 154
Figure 17: Parts Of CRATACLELSccoreerernreeeeensssssssossssososmsissesssssssersssssesnressssseansressasesess 156
Figure 18: Various umbrellas of iNfIUENCEcoeverrvivenimniennrtiinsiininiieicesesinnnenesneressssnsnne 157
Figure 19: A decomposed page and its column hiStOZram...........ccvevveemmuinsnreressiessennes 167
Figure 20: A two layer neural DEtWOTKccocvveremserssseincinensnietsnininnsissinssestensessessessssns 175
Figure 21: The Sigmoidal Activation FUNCHONc.coeeivveiiiiiiinirniseisisisissenns 176
Figure 22: The STASIS document data STUCIUTEcovemiuiiienresosssisesesneesasssssssasesnesses 180

CHAPTER 6, ANALYSIS OF SYSTEM RESULTS
Figure 23: A page portion of ‘Le Figaro’ showing a single API text line definition error. 186

Figure 24: A text line with invalid geometric attributesccocveereieeenreessnsnsesessnsenens 188
Figure 25: Bad block forming example ‘Accccoonrverrinrerninessnssessessssssenssseasaseasssssecess 189
Figure 26: Bad block forming example ‘B’cccocoireieninrnnrneneiersenceseiecseseseseseasenesseens 190

vii

List of Figures

Figure 27: A paragraph formatted with a dropped Cap SEYIEccoouememeeeeemrereeerererersrrenns 192
Figure 28: A document formatted with ‘hanging headers’o.eeeeecvuenenrerersresenne 197
Figure 29: A document portion with a mis-classified header blockcoevvvvvervivnan. 198
Figure 30: A document portion showing the a mis-classified footer block - 199
Figure 31: An academic document, STELLA.PDF..............cooovniueeommeorerrssressrcssssoessseenens 200
Figure 32: A newspaper document, SPAINO.PDFcccocoeerermmmerinereveoniensnsesesesnen. 201
Figure 33: A brochure document, THROMBRAD.PDFccooceuerrernmirrnereneeeseneeens 203
Figure 34: A form document, TAXT1.PDFccooeimmnirmvennsenieninisisessesessssssssssseseseens 205
Figure 35: A page of a1ogical BIOCBUTEccovcvninsisicssencneerennnanenesnseseaessssssssesaone 208
Figure 36: The front page of a logical form dOCUMENL..........ccoveveiverruiiriireseeeeeecsereseseens 209
Figure 37: The back page of a logical form doCUIDENLcceoevererrrireisinnieneressseserereens 210
Figure 38: STASIS StAtiStICS CHAITS.....ccouirireinisimreneressessssssssseassnnnssessosmasssssoresessssses 214

CHAPTER 7, DISCUSSION AND CONCLUSIONS

Figure 39: The first tier of the universal document processing SyStemooo.o.n. 231
Figure 40: The second tier of the universal document processing system........................ 232
APPENDICES

Figure A: An SGML MAark-up fOr & IgUIE.......ccevevcseeccsssssssessssssssesmesssssssssssessasmnsssmenes cclxviii
Figure B: SGML DTD declarations for a figure mark-upcccecveeveserenrnerersnnnes cclxviii

viii

Abstract

This thesis explores the domain of document analysis and document classification
within the PDF document environment. The main focus is the creation of a document
classification technique which can identify the logical class of a PDF document and so
provide necessary information to document class specific algorithms (such as document

understanding techniques).

The thesis describes a page decomposition technique which is tailored to render the
information contained in an unstructured PDF file into a set of blocks. The new
technique is based on published research but contains many modifications which enable
it to competently analyse the internal document model of PDF documents.

A new level of document processing is presented: advanced document analysis. The aim
of advanced document analysis is to extract information from the PDF file which can be
used to help identify the logical class of that PDF file. A blackboard framework is used
in a process of block labelling in which the blocks created from earlier segmentation
techniques are classified into one of eight basic categories. The blackboard’s knowledge
sources are programmed to find recurring patterns amongst the document’s blocks and
formulate document-specific heuristics which can be used to tag those blocks.

Meaningful document features are found from three information sources: a statistical
evaluation of the document’s ®sthetic components; a logical based evaluation of the
labelled document blocks and an appearance based evaluation of the labelled document
blocks. The features are used to train and test a neural net classification system which
identifies the recurring patterns amongst these features for four basic document classes:
newspapers, brochures; forms and academic documents.

In summary this thesis shows that it is possible to classify a PDF document (which is
logically unstructured) into a basic logical document class. This has important
ramifications for document processing systems which have traditionally relied upon a
priori knowledge of the logical class of the document they are processing.

Chapter 1,
Introduction

Document image processing (DIP) can be defined as electronically managing
information which has previously been distributed on paper. This vague description
washes over the many component areas within the field of document image processing
yet it has served as a metaphorical compass to all researchers, both academic and
commercial, who have worked towards the machine comprehension of document

images.

Initially, Optical Character Recognition (OCR) was seen as the most important aspect
of document processing. Consequently, it is the oldest of the document processing
research areas. Contemporary OCR packages produce reliable results when presented
with a wide spectrum of character fonts and handwritten text [Clark95, Ellim90). Early
document processing packages extracted the text using OCR algorithms and then stored
the text with the original image. A user could then search the text files for keywords and
call up the appropriate document image if the search returned a match. This was a
primitive attempt to present the user with the @sthetic feel of the document plus the

power of computerised search.

This partial solution is weak for a variety of reasons. From an @sthetic viewpoint a
bitmap is a poor document storage medium. Bitmaps are large, resolution dependent
files. From a practical viewpoint, the user cannot perform complex text searches which
take advantage of a document’s structure, for example, a librarian may want to view all

documents which have been written by a certain author. With a structured document all

10

introduction

the computer need do is search the author fields in the document’s structure for a match
with the author’s name. A crucial aspect of document processing is the re-creation of the
original document’s structure. Without structure, the text extracted from a document
image by a simple OCR package will not always follow the natural reading flow of the
original document, particularly if the original document is multi-columned. More
importantly, the computer usability of a document’s unstructured text is extremely
limited.

Document structure and appearance

/

In a local system, for example a small company, there will be thousands of documents
generated in a single year. These documents will range from loosely structured and
®sthetically pleasing managing director reports, to highly structured tax return forms.
The ideal storage format for these documents should have the capacity to hold both

appearance and structural information with equal gravity.

This research presents no such file format, but emphasizes a point that is becoming more
and more important as document technology advances: the logical structure of a
document is as important as the geometric (or layout) structure of a document. When
one thinks of a document one must think of both these aspects. Appearance denotes the
feel and presentation of a document, plus hidden or implicit information which is
decoded cognitively by our minds to unfold the logical structure. The logical structure
of a document must be stored to help computers traverse, recall and understand the
document without the need to process the documents with complex cognitive based
structure recognition programs. Some authoring packages, for example

FrameMaker+SGML™, cater for structure and appearance within their documents.

A more pressing issue is the recognition of logical structure from a legacy document. A
legacy document is the term used to describe a paper document which can only be
converted to an electronic format by a document image processing system. Libraries, the
military, large companies and Universities all have legacy documents that require

structural recognition processing. Only recently has research been directed to

Lh|

Introduction

identifying the logical structure of legacy documents as well as their textual content, and
yet to be brought up to date and stored electronically as efficiently as contemporary

documents are, their structure must be recognised and recorded.

Documents that only exist as page description languages (PDLs) traditionally have no
concept of structure, since sending a document’s structural information to a printer is
redundant work [Adobe90, Oakle88]. Recently, technology has advanced to a position
where PDLs have been purposely designed for electronic storage, electronic display and
electronic dissemination. Consequently, PDLs can be added to the list of sources of

legacy documents which requiré the identification of structure,

Human perception of document layout

Newsf:apers have extremely complex page layouts, for example, multi-column pages,
multi-font text and different sized colour images. The purpose of a page’s layout is to
transfer implicit information about the document’s content to the reader. A good
example can be found on the front page of a tabloid newspaper. The use of exaggerated
text sizes draws the eye to the primary story, thus implicitly creating a hierarchy of
articles. In essence the appearance of the newspaper is helping us to understand its

structure.

This transfer of implicit information is not limited to newspapers. Studies of readers’
perceptions of journal articles and software manuals by Dillon et al. [Dillo93] have
shown that such readers conceptualise documents as possessing a prototypical form of
structure that aids location of material. Dillon suggests that this structure can be viewed

from three different perspectives.

* Structure can be imposed on what is browsed by the reader. Therefore, the reader

builds a structure to gain knowledge from the document.

* Structure is a representation of convention. It occurs in a text form according to the

expected rules a writer follows during document production.

12

Introduction

» Structure is the conveyor of context. There is a naturally occurring structure to any
subject matter that holds together the raw data of that domain. The context is

conveyed so the reader grasps the organisation of the text.

These concepts apply with varying degrees of relevance to different document classes.
The notion of structure as convention seems to be perceived by readers of journal
articles. The notion of structure supporting contextual inference seems pertinent to users
of software manuals. Research in the domain of linguistics and discourse
comprehension lends strong support to the concept of structure as a basic component in

the reader’s mental representation of a text.

Van Dijk and Kintsch [vanDi80], linguists, suggest that readers acquire schemata, or
superstructures, through experience. The schemata facilitate the comprehension of
material by allowing readers to predict the likely ordering and grouping of constituent

elements of a body of text.

“a superstructure is the schematic form that organises the global
meaning of text. We assume that such a superstructure consists of
Junctional categories... [and]... rules that specify which category may

Jollow or combine with what other categories” Van Dijk [vanDi80]

On the other hand Johnson-Laird [Johns83], a psychologist, proposes what he terms
mental models as a further level of representation that facilitates document
understanding. The mental models are based on the perception of structure by the reader.

They offer a possible explanation to human document understanding from a

psychological perspective,

It is not clear exactly how humans perceive and utilise a document’s structure. However,
it is widely acknowledged that humans have excellent pattern matching abilities.
Humans can tell (to a certain degree) the type of a document they are looking at without
semantically processing the content of the document. The only information used to
make the classification is the layout of the document, coupled with experience of

previous examples of the same document class.

13

introduction

The field of document understanding encompasses the field of structure recognition. By
representing structure in a file format the author is dissecting the document and stating
the relationships between the logical component parts for the sake of the computer. As
humans we do not need to look at the file format to know these component parts, or their
relationships. We can recognise the structural relationships in a document thanks to the
layout and appearance of the document and our own previous experiences and cognitive

abilities.

Document processing

The task of automated documetit processing can be divided into two fundamental parts:
document analysis (the segmentation of a document image) and document
understanding (the logical structuring of the segmented image). This thesis includes two
chapters which research these parts (“Thesis structure” on page 16 provides more
information on these chapters). Document processing also demands a wide variety of
other problem solving techniques, for example, diagram analysis, technical drawing
recognition, table recognition, and optical character recognition. This research does not
discuss any of these topics but they can be thought of as existing inside the realms of

document processing.

Figure 1 is a Venn diagram showing the relationships between document analysis and
document understanding for the majority of contemporary document processing
techniques. There are elements of both analysis and understanding which are
independent of each other. There are also elements which are both analysis and
understanding and which lie in a ‘grey’ area between them, for example, OCR. OCR
systems can utilise segmentation techniques (document analysis) and contextual

analysis techniques (typically dictionary look-up) to help locate logical words [Ellim90].

The majority of document understanding systems have one thing in common. They all
assume a priori knowledge of the logical class of document they are processing and are
designed to only process examples from that one class of document. Lam [Lam95]

describes these document understanding systems as being “closed” systems due to their

14

Introduction

Document
Processing
Techniques

Document Analysis
Techniques

Document Understanding
Techniques

Figure 1: The traditional document processing Venn diagram
inability to process documents from more than one class. Engineering a document
processing system to logically understand a document from a single class of documents
is an extremely complex problem because of the variance that can exist between one
document and another within the same class, for example, two different newspapers

may have different layouts but they are still newspapers.

This research has concentrated upon finding a method of identifying a document’s
logical class using only the appearance of the document as a starting point. The practical
use of this method extends to helping to create a universal document image processing
system which can construct the logical structure of a document from an unclassified
document image. The method presented extracts document features from the image
using a mixture of established document processing techniques and new algorithms. The
features are then used to classify the document. After classification one can apply tried
and tested document understanding techniques which are engineered for one particular

class of documents.

Figure 2 shows the correct place in the document processing Venn diagram for the
proposed classification technique. Aspects of document analysis and document
understanding are drawn upon in order to help extract meaningful features. The
document understanding techniques used by the systém are very basic. They do not
require document class specific knowledge and consequently they can be used on all

classes of document.

15

introduction

Document
Processing
Techniques

Document Analysis
Techniques
e

Document Classification
Techniques

-

Document Understanding
Techniques

Figure 2: A new approach to document processing
Exploring PDF .

Traditional document processing has always started with a bitmap image of the
document. Adobe™ Systems Inc. have developed an electronic file format which
preseni;s documents to the user in exactly the same format as that in which they were
created by the author: the portable document format (PDF) [Adobe93]. However, PDF
contains no logical structural information about the document, other than defining
logical words. Theoretically, PDF can be thought of as a bitmap. Adobe export an
application programme interface (API) with PDF which can be utilised under a licensed
agreement with Adobe. The API allows programmers to access the basic components of
a PDF document in much the same way as one can access the components of a
segmented and decomposed document bitmap image. Whilst achieving the major goal
of document classification, this research also documents the experiences of using PDF

as the starting point of a document processing system.

Thesis structure

In Chapter two the spectrum of electronic document formats is described. The definition
of a purely logical document is introduced by examining the ISO Standard Generalised
Markup Language [ISO86]. Various document formats, which become less structured
and increasingly geometrically oriented, are discussed. PDF is described, together with
PostScript™, as a document format which contains no capacity for logical structure but
which can give a document’s author perfect control over the presentation of his or her
document. The chapter ends with a review of the Office Document Architecture which

attempts to combine logical structure and page appearance in one format.

16

introduction

Chapter three defines the concept of document analysis as a sub goal of document
processing. A literature review is included which describes the fundamental
requirements of a document analysis system as well as discussing contemporary
document analysis research. Early research work which contributed to the author’s

comprehension of document analysis is included in this chapter.

Chapter four reviews contemporary document understanding research. The goals and
objectives of document understanding systems are discussed whilst examining the
methodologies which other researchers have adopted to reconstruct a document’s
logical structure. A description of a PDF document processing prototype is included in
this chapter. The prototype allowed the author to experiment with a variety of document
processing strategies whilst gaining experience from the PDF document model and from

approaching the practical problems of document understanding.

Chapter five describes the design and engineering of the final system. The creation of a
blackboard framework within the system is documented together with an object-
oriented breakdown of the design process. The algorithms used to segment and analyse
a PDF document are also explained. This chapter describes the definition of a new level
of document processing: advanced document analysis. Advanced document analysis
helps extract document features which can be passed to a pre-trained document
classifier. The design and development of the document classifier is also described in

this chapter.

Chapter six examines the results that the system produces, for a variety of different
documents, at each different stage of document processing. Positive and negative
document processing results are discussed and classified. Results of the document
classification algorithms are included together with a discussion of the strengths and

weaknesses of classifying a document based purely on its geometric features.

Finally, the summary restates the major achievements of this research and discusses the
practical and theoretical limitations of STASIS’s document processing strategy. This
chapter.also contains the outline of a proposed strategy for universal document image

processing in which STASIS’s ability to automatically classify documents is vital.

17

Chapter 2,
Contemporary
Electronic Document
Formats

This chapter introduces the concepts of logical and geometric electronic
documents by examining contemporary examples of both classes of
document. In doing so, the goal of many document image processing
systems (a purely logical document) is compared and contrasted with the
starting state of this research (a purely geometrical document). The ISO
Standard 8613 Office Document Architecture (ODA) is discussed and
evaluated as a format which is capable of containing the logical structure

and geometric structure of a document.

18

Contemporary Electronic Document Formats

2.1 Introduction

This chapter is not intended to be an exhaustive review of document models, formats
and typesetting systems. Instead, this chapter aims to clearly define some basic concepts
of electronic publishing which are necessary in order to comprehend this thesis. There
are many models, formats and typesetting systems which are not discussed in this
chapter but which have played a significant role in the evolution of electronic
publishing. They are omitted in order to restrict the content of this chapter to the

’

essential items.

2.2 Electronic Document Definitions

“Knowing the structure of a document is the key to successful
computer processing of a document. From different points of view

there exist different definitions of document structure” Tang [Tang93]

Document structure can be realised as two types: geometric (layout) structure in terms
of its geometric characteristics (for example, the position and size of each document

object), and logical structure due to its logical properties [Tang93].

There are ISO standards for both geometric and logical structures which are taken from
the ISO Standard 8613 for ODA [ISO89]. Geometric or layout structure is the result of
dividing and subdividing the content of a document into smaller parts on the basis of
presentation. A geometric object is an element of the specific layout structure of a

document. The following types of layout object are defined:

* a ‘block’ is a basic geometric object corresponding to a rectangular area on the

presentation medium containing a portion of the document content;

19

Contemporary Electronic Document Formats

* a‘frame’ is a composite geometric object corresponding to a rectangular area on the

presentation medium containing one or more blocks or other frames;

» a ‘page’ is a basic or composite geometric object corresponding to a rectangular

area. It is a composite object, containing one or more frames or one or more blocks;
* a ‘page set’ is a set of one or more page sets and/or pages;

« the ‘document layout root’ is the highest level object in the hierarchy of the specific

layout structure.

,

According to ISO standard 8613 (ODA), the logical structure of a document can be
defined as

“..the result of dividing and subdividing the content of a document
into increasingly smaller parts on the basis of human perceptible
meaning of the content, for example, into chapters, sections,

subsections, paragraphs.” [ISO89]

A logical object is an element of the specific logical structure of a document. For a
logical object, no classification other than ‘basic logical object’, ‘composite logical
object’ and ‘document logical root’ is defined. Logical object categories such as

‘article’, ‘chapter’ and ‘section’ are application dependent.

Most documents such as newspapers, journals, books, and reports are organized
hierarchically. Both the geometric and logical structures can be represented as trees. The
geometric relationships between blocks can be described by a geometric tree while the
logical properties of the document can be represented by its logical tree. Building both
the geometric tree and the logical tree is a major task of a document image processing

system [Tang93].

The geometric structure and logical structure provide alternate but complementary

views of the same document, for example, a document can be regarded as consisting of

20

Contemporary Electronic Document Formats

chapters containing figures and paragraphs, or alternatively, as consisting of pages that
contain text blocks and/or graphics blocks. Correspondence between geometric objects
and logical objects may exist, but in general there is no one-to-one correspondence

because a logical structure corresponds to a number of geometric structures.

The geometric structure and the logical structure are independent of each other because
they have different creation processes. The logical structure of a document is determined
by the author and embedded in the document in the editing process. The geometric
structure is usually determined by a formatting process. The formatting process may be
controlled by attributes associated with the logical structure, for example, each chapter
has to start on a new page, or that a section title and the first two lines of its first

paragraph are present on the same page [Tang93].

2.3 Logical Documents

A logical document contains content elements (text, images, sound, movies) and tags
which provide logical markup. According to Goldfarb [Goldf90] these tags have two
purposes:

* separating the logical elements of the document;
* specifying the processing functions to be performed on those elements.

SGML (Standard Generalised Markup Language, ISO Standard 8879) [ISO86] will be
used as the definitive meta-language for creating a logical document. The markup
language HTML (Hypertext Markup Language) will be analysed as an example of
SGML’s power to create new logical document languages. HTML is a good example to
use as it is the ‘cornerstone’ document format of the World Wide Web. Consequently,
HTML has been pressurised and distorted from its original logical definition by users

who det\nand both structure and appearance from the documents they use.

21

Contemporary Electronic Document Formats

2.3.1 SGML

SGML is an international standard for the description of marked up electronic text. It is
a meta-language that defines the syntax of generalised markup languages [Barro89,
Goldf90, ISO86]. HTML is an instance of a markup language. A markup language is a
set of markup conventions used together for encoding texts and other document
elements. A markup language must specify what markup is allowed, what markup is

required, how markup is distinguished from text and what markup means.

SGML can describe logical objects and the structure of a document. It is orientated
towards textual data, but provides constructs for identifying the notation of non-textual
objects. SGML provides the language to model objects and structure, known as a
document type definition (DTD) and the language to identify these objects within a
document instance. Logical objects or elements can have additional characieﬁstics
associated with them called attributes. Other capabilities exist for handling non-
structural portions of a document known as entities, reducing the amount of markup

required in a document.

It is worth noting that the document style, semantics and specification language
(DSSSL) is designed to specify formatting and other transformations of SGML encoded
documents [Roisi93]. For formatting, a DSSSL specification language can create a style
sheet language that can be mapped into the DSSSL typographic characteristics and other
composition and layout semantics. Additionally, DSSSL [ISO96] includes a language
for writing a general transformation specification that allows the user to transform

documents from one SGML application into another.

SGML provides the ability to distinguish between the intrinsic content and structure of
a document and the specifications for processing that document. With DSSSL,
formatting and other processing specifications can be interchanged with SGML

documents in a standardised form, while still preserving that essential distinction.

22

Contemporary Electronic Document Formats

2.3.1.1 The document type definition

Within the abstract syntax of SGML there is defined a standard way of specifying the
document type definition (DTD). The DTD defines the logical structure of a document
in terms of the elements that comprise it (for example, paragraphs, headings, footnotes
and so on) and their relationships (for example, the case where a second level heading

can only occur within the scope of a first-level heading). It also associates a generic
identifier with each element, thus defining the tags that will be used for the descriptive

markup of a document [Barro89].

-

In order to show how a DTD defines the structure of a document an example used by
Barron is provided in “Appendix II: An example DTD”. Barron originally took this
example from Annexe A of the ISO SGML standard [ISO86].

2.3.2 HTML

HTML is a markup language developed at CERN, the European Laboratory for Particle

Physics in Switzerland [Graha95]. It allows hypertext links to be followed between
documents which can reside anywhere on the internet and are identified by a universal
resource locator (URL). It is not the place of this research to investigate or evaluate
collective HTML documents together with the hypertext transfer protocol as a hypertext
system. What is of more interest is the acceptance and evolution of a structured

document language that operates in, and is influenced by, the internet community.

HTML designers have had to serve two audiences: people and computers. The HTML
language is geared towards creating machine readable documents rather than @sthetically
pleasing documents [Statc96]. There is increasing pressure, coming from users, to evolve
HTML from consisting of mainly semantic tags to including capabilities which SGML never
set out to accomplish, for example, giving the author the power to define how the document
istobe Presented to the reader [Sperb94]. HTML document authors have always had the

ability to markup bold and italic text and in its latest revision (HTML 3.2), they now

23

Contemporary Electronic Document Formats

have the ability to set table widths. Good SGML documents should be totally

independent of any formatting process.

Web browsers have tried to improve the situation for document designers by offering
their own custom tags. Browser companies add more functionality to their browsers
with the hope that if their own browser is the only one capable of correctly displaying
pages, their product will prevail. This competitiveness continues to alter the definition

of HTML.

There are HTML solutions to the problem of appearance in logical documents.
W3MAGIC provides a set of HTML tags which enhance web pages and are independent
of the browser [W3Mag96]. The software required to interpret the tags is held in a plug-
in! which is accessible over the internet. When the user downloads a document which
contains the special tags, the browser notifies the user that a plug-in is required and asks

permission from the user to locate and download the specific plug-in.

From an electronic publishing point of view a more satisfying solution is HTML style
sheets. They allow authors to clearly split content and structure from form and
appearance. The web browser companies must implement the style sheets into their

browsers. DSSSL can be used to formulate these style sheets [ISQ96].

The WWW is on the brink of expanding its content base and this may save HTML from
corruption. Soon, Adobe Acrobat™, the virtual reality markup language (VRML),
Java™, Macromedia Director™ and other data formats will take hold as support for
them in popular browsers emerges. There will be less pressure on HTML to be all things

to all people [Behle95].

1. A “plug-in” is portion of code that can be ‘loaded’ by a parent application and which
increases the functionality of the parent application.

24

Contemporary Electronic Document Formats

2.4 Geometric Documents

A pure geometric document is a document which contains only appearance information,
and no logical information. Page description languages (PDLs) [Oakle88] and bitmap
formats (JPEG, TIFF, GIF, BMP) [Keyes94] are examples of this class of document.
Bitmaps are the traditional input media to document processing systems. Although
PDLs, particularly PDF [Adobe90] and PostScript [Adobe93] may contain letters
arranged in such a way inside their file format that they form logical words they equaily
have the capability to be arrariged in a totally non-logical formation. Consequently

PDLs cannot be thought of as containing any logical information.

2.4.1 Page Description Languages

Traditionally page description languages were intended as printer languages. They were
designed to facilitate the integration of complex text and graphics for use with laser
printers. They can be considered as a communication of an already formatted page or
document description from a composition system to an output device, either screen or

printer [Oakle88].

PDLs have evolved beyond the printer and are now being used to electronically
disseminate documents. PDF [Adobe93] and Digital Paper™ [Commo96] are two
examples of PDLs designed for electronic display rather than printing. All forms of PDL
have one aspect in common; none contain the capacity to store logical structure. In fact
the only geometrical structure they are guaranteed to contain extends to the page level
in the geometric structure hierarchy. PDLs are at the other end of the document spectrum
from SGML. Oakley gives a good description of the evolution of PDLs into the late
eighties [Oakle88].

25

Contemporary Electronic Document Formats

2.4.2 PostScript

PostScript was designed at Xerox™ in the late 1970’s by John Warnock. PostScript was '
and is developed and promoted by Warnock’s company Adobe Systems Inc. and is
today the de facto PDL standard. PostScript is a programming language which was built
for expressing graphic images. Powerful typesetting features are built into PostScript for
sophisticated handling of characters as graphics. PostScript programs are created,
transmitted and interpreted in the form of ASCII text which is device independent. The
interpreter executes the PostScript program by manipulating a stack of procedure calls
which manage other stacks containing operands and dictionaries. Graphics are normally
handled as vectors and curves although bitmaps may be specified. As execution
proceeds, the interpreter’s painting or imaging functions use graphics state variables to
calculate where dots should be placed on a page and set the corresponding bits of a page
bitmap stored in the printer controller memory. PostScript has a mathematical
foundation allowing commands such as scale and rotate. This ensures resolution

independent fidelity [Adobe90, Oakle88].

2.4.3 The Portable Document Format

The Portable Document Format (PDF) was developed by Adobe Systems Incorporated
specifically to aid in the transfer of documents across platforms. PDF is a file format
used to represent a document in a manner independent of the application software,

hardware, and operating system used to create it [Adobe93, Adobe96].

Based on the PostScript language, PDF allows for device independence and resolution
independence. Using Adobe Type Manager™ (ATM) and Multiple Master font
technologyl, PDF allows for font substitution across platforms. PDF font substitution

does not cause documents to reformat. Substitute fonts created from special serif and

.

1. Multiple Master fonts attempt to duplicate the appearance of the original font used in
the document by adjusting certain attributes of their font metrics.

26

Contemporary Electronic Document Formats

sans serif Multiple Master fonts retain the width and height of the original font. PDF
supports standard compression filters to help reduce file size for images, text, and

graphics.

A PDF file contains a PDF document and other supporting data. A PDF document
contains one or more pages. Each page in the document may contain any combination
of text, graphics, and images in a device and resolution independent format. This is the

page description (Adobe96).

The Portable Document Farmat is based on the PostScript language. Although PDF and
the PostScript 1anguage share the same basic imaging model, there are several important

differences between them.

The PostScript language is a complete programming language. To simplify the
processing of page descriptions, PDF omits programming constructs. PDF files contain
information such as font metrics, to ensure viewing fidelity. PDF files may also contain
objects such as hypertext links that are useful only for interactive viewing. PostScript
language files do not contain font metrics or hypertext objects. PDF enforces a strictly
defined file structure that allows an application to access parts of a document randomly.
PostScript language files are linear. Unlike PostScript language files, PDF files cannot

be downloaded directly to a PostScript printer for printing.

Adobe has developed the Acrobat™ suite of products to produce and view PDF. PDF
can be generated from a printer vdriver, distilled from a PostScript program via a
specialised PostScript interpreter or generated from a bitmap image using Adobe
Capture™: a document image processing program. It can be viewed by either Acrobat
Reader™ or Acrobat Exchange™. Only the latter program has the capacity to modify
the original file, and even then only in terms of deleting and adding entire pages or
editing peripheral navigational aids to the document. The navigational aids include
electronic bookmarks, hyper-jumping from hotspots to page images and sticker notes

which allow the user to comment on the document [Smith93]. Adobe have provided an

27

Contemporary Electronic Document Formats

application program interface (API) to the Exchange viewer through which third parties
can develop their own specialised functionality to Exchange.

PDF, thanks to its PDL ancestry has no capacity for structure. This has its disadvantages.
All of the capabilities of SGML are lost, for example logical hypertext, the presence of
logical objects and a logical reading order. Furthermore, its critics claim a lack of
compatibility with internet search robots (the automatic, behind the scenes cataloguing
of HTML documents by internet search engines), a lack of comparable functionality (for
example, interactive form technology and Java™ applet technology) and an increased
file size over similar HTML documents. PDF’s champions claim that the current content
expansion of the internet will solve the indexing problem, functionality is being
continuously added to Acrobat (the PDF viewer) with each new release and that PDF
file sizes are not significantly larger than ‘equivalent’ HTML files in the average case.
Some of PDF’s advocates claim to have found cases in which PDF has a significantly
reduced file size compared to alternative HTML documents, thanks to the inbuilt ability
of PDF to compress text and graphics. There are other contemporary electronic PDLs,
notably Digital Paper™, from Common Ground™ Inc. [Commo96]}. Digital paper is to
Common Ground as PDF is to Acrobat: a platform independent electronic format that

reproduces the document as an exact representation of the original.

2.4.3.1 The PDF document model

Although PDF is a pure geometric document format, its internal structure does not
exactly match that of the geometric structure tree outlined by the ISO ODA standard
(ISO89). The similarity between PDF and ISO standard 8613 extends only to the storage
of page objects and a document root. The PDF document model does not store frames
or blocks in the same sense as the ISO ODA standard defines them. Instead PDF
contains streams of information. Typically large images are stored as separate data
streams, although PDF does have the capacity to store small images in standard streams
containing text and graphics. The streams correspond neither to geometric blocks or
frames nor to logical content. They simply contain the ‘soup’ of PDF operators and text

elements which make up the content of the document.

28

Contemporary Electronic Document Formats

Through the API, Adobe allow the software developer to access logical words. Adobe
have developed an in-house algorithm which processes the text and graphic operator
‘soup’ in the streams and reconstructs logical words based on the geometric positions of
_characters and the legality of the generated words. There is no guarantee that the words
created will be logically correct. Through trials conducted during the development of the
final system presented in this thesis, various invalid logical words were detected in a
variety of different documents (see section 6.3.1, “Bad API lines” for more details).
Table 1 lists the most commonly used PDF document model information accessible
through the API. Adobe use a naming convention whereby all elements in the PDF

document model are prefixed with the letters PD which stands for ‘page description’.

PD Element Useful attributes of that PD element
PDWord Bounding box of the word on the page
Point size '

Font name and metrics

Textual content

PDImage Bounding box of the image on the page

PDGraphic Bounding box of the graphic on the page

Nature of the graphic, (i.e. line or curve)

A set of control points for the graphic operator.

Table 1: Some portable document elements and their geometric attributes

2.5 Office Document Architecture

If, as predicted, browser companies introduce style sheet implementations into their
browsers there will be a joining of separate formats for structure and appearance for
internet documents. In this way HTML documents will start to resemble ODA
documents. ODA was designed as an inter;:hange format for word-processor
documents, and is intended for software-to-software communication rather than for

Y

direct use by a human user [Barro89].

29

Contemporary Electronic Document Formats

ISO standard 8613 ODA [ISO89] has the capacity to represent fully both structure and
appearance. The definitions for geometric structure and logical structure described
earlier in this chapter were taken from this standard. Both dimensions of an ODA '
document are stored as trees [Nicho84]. The specific logical structure corresponds to the
document’s logical view. An ODA document may have a generic logical structure,
corresponding roughly to the DTD in an SGML document, which indicates for a given
logical document object which other logical document objects may appear as its
subordinates. The layout view is represented by the specific layout structure, which

conforms to a generic layout structure in a similar manner to their logical counterparts.

ODA was designed for transparent stand alone document interchange, yet its acceptance
into the pre-internet boom computer user society was severely hampered by the
dominance of corporate de facto standards such as Microsoft Word™. ODA may see a

revival as the internet content base expands.

There is clearly an overlap between SGML and ODA and it has been claimed that
SGML subsumes ODA. This is not completely true, since SGML does not have
anything to match the layout structure of ODA. The logical structures that can be
described in SGML are much more complex than the simple hierarchies of ODA, and it
is unlikely that one would want to use the power of SGML in the context for which ODA
was intended [Barro89]. Similarly, ODA does not have the descriptive power of PDF or
PostScript. By trying to create a format for both structure and appearance ODA makes
compromises to the natural abilities of SGML and PDF.

There are other document formats which successfully combine structure and
appearance. The most prominent of these is Adobe’s Framemaker+SGML™.
Framemaker+SGML has all the formatting power of a WYSIWIG document editor
coupled with the structural capability of SGML. One needs a Framemaker+SGML
application in order to view these documents and the format is not directly internet
compatible (for example, one cannot create ‘URL-type’ hypertext links). In terms of the

electronic document spectrum with SGML at one end and PDF at the other, there is a

30

Contemporary Electronic Document Formats

multitude of document formats which lie in between these extremes and which
incorporate different degrees of control over document structure and document
appearance. TROFF, LATEX, Microsoft Word™, Word Perfect™ and PageMaker™
are all examples of electronic document authoring packages which handle the balance
between geometric structure and logical structure differently. Probets [Probe94]
provides a good description of various formatting languages and hypertext models in his
PhD thesis.

s

This chapter has defined and provided examples of the starting point of
this research (geometric documents) and the desired goal of document
image processing research (logical documents). The next chapter will
outline the initial stage in document image processing: document

analysis.

31

Chapter 3, Document
Analysis

This chapter includes a literary review of contemporary document
analysis research. It will continue with a brief synopsis of early research
conducted by the author into the decomposition of monochrome TIFF
bitmap images. Bitmaps contain no font or typesetting information but
with the help of vectorisation software, outlines of black pixel connected
components can be isolated and treated as basic geometric components.

Inspection and analysis of individual character outiines are also explored.

32

Document Analysis

3.1 Introduction

Document image processing is a relatively young subject and as such there has been no
de jure or international ISO standards established to provide guidelines and definitions
in this area of research. Work by Cambell-Grant [Cambe95], who helped define ODA,
is currently addressing this situation. For clarity this thesis will follow the terminology
outlined by Tang [Tang91] in his survey paper of document understanding and

document analysis systems.

Document processing is divided into two phases: document analysis and document
understanding. Document analysis is defined as the extraction of the geometric structure
from a document image; document understanding is defined as mapping the geometric
structure into the logical structure. Once the logical structure has been captured its
meaning can be decoded by artificial intelligence or other techniques. Tang and Suen
[Tang95] acknowledge that the boundary definition between document analysis and

document understanding is not clear in all cases but their definitions are applicable to

this thesis.

Various methods of image segmentation were researched during early stages of the
thesis research. The literature survey represents a synopsis of all the algorithms and
techniques which were considered by the author; however, only the “Document

Spectrum Plot” (described on page 41) was experimented with.

3.2 Literature Survey

Analysing the geometric structure of a document takes place one page at a time. Each
page is a geometric element which may contain various layouts of text (of varying point
sizes and fonts), images and graphics. It is the task of document analysis to decompose

that page into its geometric components and extract the geometric structure. There are a

range different techniques which accomplish this task.

33

Document Analysis

3.2.1 Document image preprocessing

The traditional source of document images (which are supplied to document analysis
systems) are provided by electronically scanning pages into a bitmap format. Frequently
the pages to be scanned are photocopied so that the tone of the image can be increased
and so make fainter text marks bolder. Additionally the photocopied sheets can be fed
into an automatic document feeder to the scanner. However, this process can enhance
image noise and increase the chance that the document image will be skewed either at

the photocopy stage or the scannjng stage.

There are several well known image enhancement algorithms which can be applied to
the document image to help improve the clarity of the image. Noise detection and

removal is often performed before document analysis begins [Gonza92].

Many document analysis systems integrate skew detection algorithms with other aspects
of document analysis and so take advantage of the attributes of geometrical objects
which have been found previously and which may help in the determination of the skew
angle. These systems typically employ bottom-up or hybrid strategies such as white

space analysis [Pav1i92], white space tiles [Anton95], k-clustering [0’Gor93] and the
Hough transform [Hinds90].

Skew has a detrimental effect upon document analysis, particularly if the analysis
system is top-down or model-driven. Column recognition algorithms always assume
that the columns are perpendicular to the horizontal; similarly, line finding algorithms
assume that lines are formatted parallel to the horizontal. In a skewed document image

these assumptions would be incorrect.

Several algorithms to detect the skew angle of a digitised image have been published.
One of the major factors in detecting the skew angle is iooking at the angle of the base
line of text to the horizontal. Baird [Baird87] exploits this feature in an algorithm which

examines the power spectrum of abstract points taken from clumps of data from the

34

Document Analysis

image which are presumed to be text characters. Due to the algorithm’s reliance upon
text the efficiency of this algorithm is lower in images which have an increased page
percentage devoted to non-textual matter. Ishitani [Ishit93] acknowledges the presence
of multi-composite documents and adds a new parameter based on the document image
complexity which is obtained from the number of transitions from white to black pixels.
Ishitani claims this parameter helps to estimate skew correctly. This global feature is
known as ‘crossing counts’, and can be used as a guide in the classification of segmented

areas.

s

3.2.2 Page segmentation and segment
classification

Page segmentation is the process by which a geometric document is decomposed into
its geometric component elements and those components labelled, typically into one of
three classes: image blocks, text blocks and graphic blocks. Graphic blocks differ from
image blocks in that graphic blocks consist of graphic operators such as lines, ellipses

and rectangles. Image blocks are typically bitmap images, for example, photos.

The goal of page segmentation and classification is to prepare the document to enable
the execution of algorithms specifically designed for a particular geometric element, for
example, isolating and labelling a text portion enabling OCR algorithms to be directed
at it, or, isolating and labelling a graphic block and applying an Engineering Drawing
recognition system to try to identify logical entities. Text regions should not really
contain more than one text style unless they are of a significantly low percentage of the
overall text in that geometric object. This statement increases the complexity of page
segmentation and classification algorithms as font recognition is required to

discriminate text styles accurately. Yet this discrimination is vital for successful

document understanding.

35

Document Analysis

A fuzzy, vague boundary lies between document analysis and document understanding.
OCR is definitely part of document understanding but font recognition can be
considered document analysis, and typically both are merged into one process. One
thing is certain: document understanding takes the output of document analysis (basic
geometric page components) and forms high level logical components and the

relationships between them.

Most document analysis methods can be described as one of three broad categories: top-
down (or model-driven), bottom-up (or data-driven) or hybrid. Top-down algorithms
proceed with an expectation of the layout characteristics of the document and are fast
and effective for processing documents which always have a specific layout. Bottom-up
approaches progressively refine the data by layered grouping operations which can be
time consuming, yet it is possible to develop algorithms which are applicable to a variety

of documents [Tang91]. The hybrid approach attempts the best of both worlds.

3.2.2.1 Top-down segmentation strategies

A top-down page decomposition strategy starts by hypothesising a series of
interpretations at a high level and attempts to verify each by searching the tree of implied
hypothesis at a lower level of detail finally consulting evidence at the lowest level

(characters or pixels). The tree search is typically depth first and fully back tracking
[Tang91].

Hu and Ingold [Hu93] describe a very pure top-down strategy. They give as input to
their processing system not only the document images but a complete document
description. This description contains details of the geometric proportions of layout
objects and which page they can be found on. This complete document breakdown is
extremely document-specific and would require the creation of an individual document
description for every document instance. Such a system is inefficient in terms of
processing unknown documents. Therefore, this section will focus on more flexible

(N

model-driven strategies which have a greater degree of ‘artificial intelligence’ in them.

36

Document Analysis

Projection Profile Cuts

Projection profile cuts is a popular top-down decomposition method. ‘Projection’ refers
to the mapping of a two dimensional region of an image into a wave form whose values
are the sums of the values of the image points along a particular direction, commonly
either horizontal or vertical. A projection profile is obtained by determining the number
of black pixels that fall on a particular axis. The profiles represent global features of the
document and play an important role in skew normalization, character segmentation and
font recognition. The general document composition rule is that every object in the
document is contained in a rectangular area. Blank areas are placed between these
rectangles. The horizontal document image projection profile will be a wave form
whose deep valleys correspond to the blank areas above and below element rectangles.
Because a document generally contains several blocks in the horizontal and vertical
directions, the projection profile cut should be executed recursively until all blocks have

been located [Tang91].

XYCut

Sylvestor and Seth [Sylve95] present a trainable single pass algorithm for column
segmentation. In their approach the document image is initially segmented into large
layout elements. Sylvestor and Seth use the XYCUT based upon horizontal and vertical
projection profiles of the image to produce an XY tree representing the column structure
of a page of a technical document. These larger frames are then repeatedly decomposed
to produce lines in a depth first, back tracking manner. Sylvestor and Seth’s system
produces poorer segmentation results with any image not of the technical document
layout model. Errors such as over segmentation and under segmentation occur. An
example of over segmentation is when a word gap is recognised to as a column gap. An

example of under segmentation is when a column gap is recognised as a word gap.

Run Length Smoothing Algorithm

The run length smoothing algorithm (RLSA) was first used to separate text from

graphics. Wong et al. [Wong82] extended this research to obtain a bitmap of white and

37

Document Analysis

black areas representing blocks containing various different types of data. The basic
RLSA idea is applied to a binary sequence in which pixels are represented by 0’s and
black pixels by 1’s. The algorithm transforms a binary sequence X into an output

sequence Y according to the following rules:

« 0’s in X are changed to 1’s in Y if the number of adjacent 0’s is less than or equal to

a predefined limit C;
* 1’sin X are unchanged in Y.

When applied to pattern arra/ys, the RLSA has the effect of linking together
neighbouring black areas that are separated by less than C pixels. With an appropriate
choice of C, the linked areas will become regions of a common data type. The degree
of linkage depends upon the value of C, the distribution of white and black in the
document, and the resolution. The RLSA is applied row-by-row as well as column-by-
column to yield two different sets of results. Different values of C may be applied in
different directions. The two sets of results are then combined with a logical AND
operation. Wong found that if smoothing thresholds are chosen correctly the blocks of
different content will be smeared into regions with differing features. A shortcoming of
this algorithm is the calculation of the constant value, C. Too great a value will produce
blocks which contain regions of differing content within them. Too small a value will

produce blocks which are too small.

Hough transform

The Hough Transform can be used to detect lines at any angle. It consists of mapping
points in Cartesian space (X,Y) to sinusoidal curves in rq space by the transformation
r = xCos(q) + ySin(q). Each time a sinusoidal curve intersects another at a particular
value of I and q, the likelihood increases that a line corrpsponding to that rq coordinate
value is present. An accumulator array is used to count the number of intersections at

various I and Q. The cells in the accumulator array with the highest count will

correspond to lines in the original image.

38

Document Analysis

For the best results, the resolution of Q should be selected such that the pixels
comprising the height of a character should be mapped to a single row in the

accumulator array. Roughly this means setting Q to the point size of the text in question.

The Hough transform approach exploits the fact that documents have significant
linearity. There exist straight lines in tables and diagrams. Centroids of connected

components corresponding to text also line up.

Srihari et al. have shown that the Hough transform is a representation of the projection
profiles of the document in every possible orientation [Sriha89]. The analysis of the

accumulator array has an added advantage in that it can provide the angle of skew in the

document.

Form Definition Languages

Higashino et al. proposed a top-down document analysis method where the document
layout structure knowledge is effectively utilized to parse the two dimensional physical
document structure [Higas86]. They devised a knowledge representation called Form
Definition Language (FDL), to describe the generic layout structure of a document. The
structure can be represented in terms of rectangular regions each of which can be
recursively defined in terms of smaller regions. The basic concept of the form definition
language is that both the geometric and logical layout structures of a document can be
described using these rectangles. These generic descriptions are then matched to the
preprocessed input document images. This method is powerful but entirely reliant upon
the efficiency of the matching algorithm. This technique sits between the boundaries of

document analysis and document understanding.

Yu et al. [Yu93] have extended Higashino’s idea with their Document Architecture
Language (DAL) approach to document processing. The DAL supports both regular and
irregular document blocks and organises the document blocks in terms of the block

relations. However, DAL inherits all of the disadvantages as well as the advantages of

Higashiﬁo’s Form Definition Language.

39

Document Analysis

3.2.2.2 Bottom-up segmentation strategies

Bottom-up, or data-driven decomposition starts at the lowest level of detail (pixel
clumps or characters) and merges groups of basic geometric components with similar
characteristics into larger groups. The features of the data are continually processed as
the analysis continues, consequently the classification and segmentation processes are
usually one and the same in bottom-up document analysis methods. Neighbourhood line
density and connected component analysis are the two commonly used bottom-up
methods. Neighbourhood line density (NLD) indicates the complexity of characters and
graphics. NLD peaks on chara{cter areas are higher than peaks on graphic areas.

Character sizes can also be predicted from NLD peak values [Tang91].

Connected Component Analysis

A connected component is a set of 8-connected black or white pixels. There is an 8-
connected path between any two pixels in every component. Different contents of the
document tend to have connected components with different properties. Generally,
graphics consist of connected components with a large size [Loveg95a, Tang91]. Text
consists of smaller, regular components. By analysing these connected components,

graphics and text in the document image can be identified, grouped together into a block

and separated from each other.

Connected component analysis is a very popular starting point for a variety of bottom-
up strategies. The connected components themselves can be detected and stored by a

variety of different methods.

Toyoda et al. [Toyod82] uses a four tuple1 to represent the size and location of the
connected components. The content of Japanese newspapers is classified into five
regions: text, abstract, article body, picture and figure. During image analysis the four

tuples are merged and classified into these regions according to the features of the

regions.

.

1. A tuple is a set. A four tuple is a set of four elements.

40

Document Analysis

A widely used alternative is the creation of skeletal vector outlines which trace the
boundary of connected components reducing them to a series of vector loops. Pavlidis
proposed an algorithm in 1986 which detects groups of similar length run lines on
adjacent scan lines, which overlap [Pavl1i86]. Work at the University of Nottingham has
developed a variation of Pavlidis’s method which looks at pixel runs in the vertical
direction as well as horizontal run lengths. A good description of these variations is
described by Clarke [Clark95]. Similar work based on contours and skeletons of pixel

connected components is described by Hori et al. [Hori93].

Drivas and Amin [Drivas93] arg/ue that a bottom-up approach is much better suited to
the segmentation of composite documents which contain graphics intertwined with text,

since one can distinguish between the two types before the page is reconstructed.

Drivas uses connected components and a grouping process to determine the skew and
form the segmentation algorithm. After the connected components have been
determined, neighbouring connected components are grouped together if they have
similar dimensions. The grouping algorithm takes one connected component at a time

and tries to merge it into a group from a set of existing groups.

Sauvola and Pietikainen [Sauvo95] adopt a similar approach but base their segmentation

upon feature classification of connected components.

Document Spectrum Plot

The document spectrum piot, or ‘Docstrum’ plot, was developed by Lawrence
O’Gorman [0’Gor93]. It is based on the nearest neighbour clustering of connected
components. The docstrum is a representation of the document page that describes
global structural features of the page and can be used for page analysis. The k-nearest
neighbours are found for each page element. Each nearest neighbour pair {i,j} is
described by a two tuple Dj;(d,q) of the distance d and the angle q between centroids
of the two components. A character might make two or three pairings in a word and

A Y
across word boundaries within the same line, as well as pairings with characters on

41

Document Analysis

upper and lower lines. The docstrum is the plot of Dij(d,q) for all nearest neighbours on
the page. It is a polar plot with its origin at the centre; radial distance from this is d and
the counter clockwise direction from the horizontal is . The docstrum is so termed
because of its similarity in appearance to the two dimensional power spectrum and its
analogous utility in globally describing an image. Orientation (skew) and text line

information can be determined directly from clusters on the docstrum plot.

O’Gorman uses a value of five for K. Ideally neighbours would be found to the left, right,
above and below each component. The extra neighbour is found for redundancy. The
disadvantage of picking a la.rger’value of K is the extra computational time required to
compute the neighbours. Other values of k may be chosen for different purposes, for
example, if text lines are ultimately desired then between line pairs are not needed and

a value of two or three for K is sufficient.

A transitive closure is performed on the ‘line’ nearest neighbour pairings to obtain
groups on the same text lines. A regression fit is then made to centroids of each group
component to find text lines. This fits a strength line to the centroids in each group by
minimizing the sum of the squares of errors between the centroids and the line.

O’Gorman uses these text lines and the docstrum plot to make a final estimation of the

skew of the page.

He groups lines into blocks based upon three properties to determine if two lines are in
the same particular group: a test to see if both lines are parallel, perpendicular proximity
and overlap. A feafure of the docstrum is that spacing parameters are not required from
the user. The docstrum automatically determines dominant spacings from peaks on the
histograms of nearest neighbours distances and then uses multiples of these for text line
and block detection. The docstrum is also independent of page orientation and the line
detection is very robust. However, O’Gorman admits that block detection is less robust

and that the whole procedure can be computationally expensive on a image full of text.

42

Document Analysis

3.2.2.3 Hybrid segmentation strategies

Both top-down and bottom-up document analysis techniques have weaknesses which
have caused some researchers to question the strict application of either strategy within
document analysis [Pavli92]. In top-down strategies, verification must finally depend on
statistical information and so top-down strategies must unreliably descend to the lowest
possible level of detail without triggering frequent backtracking which would increase
computation time. Top-down techniques are also widely acknowledged to be weak with
highly complex geometric images. Bottom-up strategies are forced to make earlier
decisions using evidence from thé smallest samples, and so they may suffer from a rapid
accumulation of mistakes. According to work by O’Gorman [O’Gor93] and Okamoto
[0kam993] the use of bottom-up strategies only is not enough to guarantee the

robustness of segmentation.

Bounding Box Projections

Ha et al. [Ha95] can extract words, text lines and text blocks by analysing the spatial
configuration of bounding boxes of connected components in a given document image.
They recognised the reliance of this particular top-down method upon skew detection.
The recognition rate degraded dramatically if a skew angle greater than 0.5% was
present. This method is not pure pixel projection technology but it applies the same
techniques on a greater scale. Consequently, this method is faster than pixel projection
but requires connected component detection beforehand. Connected components are

basic data blocks but the bounding box projection reveals larger global structures; in this

sense this strategy is hybrid.

Pattern Classification

Iwane et al. [Iwane93] propose a layout analysis algorithm based on a pattern

classification scheme. They combine the segmentation of an image with the
classification of the blocks to help geometrically divide up a page. The classifier defines

the feature space in terms of low level image processing features such as connected

43

Document Analysis

components and projection profiles. In this manner the strategy is data-driven. Iwane
targets technical journals and gives the classifier a dictionary that holds reference
vectors. In this sense the classifier has a high level model of the page to be decomposed.
For a different class of document a different dictionary must be substituted. The basic
idea behind the approach is that the layout analysis is put into a pattern classification
perspective by treating logical layout components as categories of input patterns. An
input pattern is then mapped to a vector in the feature space and classified as a certain

category.

White Space Analysis

Pavlidis and Zhou [Pavli92] propose a method that is independent of skew, unlike
RLSA and XY recursive cuts. Their method identifies wide white spaces on adjacent
scanlines. The goal of white space analysis is to identify column frames which are as
large as possible. The skew angle of the page is estimated from these white streams and
the blocks are located as regions between the white streams. The isolated blocks are then

placed in accordance with the skew angle.

Pavlidis’ algorithm requires a small region elimination process to prune away fragments
caused by printing defects. A refining process is employed to merge adjoining regions
into very narrow blocks such as those produced by isolated text characters. Pavlidis
merges column blocks according to the rules set out in Table 2. The blocks that are
narrow in the vertical direction usually contain only a fragment of a single text line and
must also be refined. Akindele and Belaid [Akind93] have devised a white space related
algorithm. Their method converts the inter-column and inter-paragraph gaps into
horizontal and vertical lines and builds an intersection table from the lines. The entries

of this table are used to construct simple polygon blocks with the aid of four connected

chain code and a direction table.

Another variation of the white space algorithm is given by Antonacopoulos and Ritchings:
the representation and classification of complex shaped printed regions using white tiles.

White tiles are the representation of the white space in segmented regions [Anton95].

44

Document Analysis

Notation: Block P and Block Q are column blocks, Q is merged into P when the fol-
lowing three conditions are satisfied. [Pavli92]

1. P and Q are very close in the vertical direction

2. The centre of column block Q is not far away from the central Y-axis of P

3. The widths of P and Q are approximately the same.

Table 2: Pavlidis’ rules for merging column blocks
Ittner et al. [Ittne93] describe a hybrid layout technique that first analyses white space
to isolate blocks and then uses projection profiles to find lines. The page must have a
manhattan layout. A manhattan layout is briefly described in Table 3. This restrictive
definition excludes some types of advertising documents, forms and some broadsheet
newspaper layouts. Generally speaking, top-down layout analysis strategies require a

manhattan style page layout.

1. Pages contain blocks of text and lines of symbols.

2. All symbols are printed upright

3. Non textual graphics do no occur

4. Text lines are either horizontal or vertical

5. Manhattan layout possesses a single transformation that describes skew and
shear alignment over the entire image.

Table 3: Essential properties of the manhattan layout style

Ittner et al. use projection profiles (see “Projection Profile Cuts” on page 37) to further
segment text blocks which have previously been segmented using their hybrid system
[Ittne93]. Normally for an image of height i, the horizontal projection P; represents the
number of black pixels at height i. Ittner et al. differ slightly from many published
methods in that they project their components abstracted as rectangular boxes of the
same centre and area in order to reduce implementing system dependent details of
symbol shape. From the projection profiles of segmented page zones, the dominant line

spacing D is estimated from the derivative of P, which is compounded by taking the

square roots.

. “D is used as a heuristic to segment blocks into lines motivated by

the diversity of text profiles encountered.” Ittner {Ittne93]

45

Document Analysis

A smoothed projection is then convolved from P using a Gaussian kernel with a
standard error taken from the dominant line spacing, D. With this profile and D the
original block is partitioned horizontally by assigning each component to the text line

region in which the majority of its area lies.

Ittner et al. also attempt to segment lines into words but only after symbol recognition
within the line zones. The algorithm then asks the user for confirmation that words are
delimited by word spaces. If there are no word spaces then no segmentation is attempted
at all. If word spaces are present a scaleable word threshold is inferred from each text
block separately. The threshold ‘must be independent of text size and the text size is
estimated from the symbol or font set being used by the document. Consequently,
symbol recognition must be utilised before word recognition. However, in attempting to

automate language free layout analysis, Ittner has simply reduced the problem to symbol

dependent layout analysis.

Okamoto [Okamo93] presents a hybrid algorithm that resembles the recursive XY cut
but analyses white spaces as a whole. Okamoto noticed that columns are either separated
by white spaces or thin black lines. Through horizontal and vertical scanning of the page
he detects these lines and separators. The block connected components are merged in
the direction of the separators to complete the segmentation. Okamoto intends his
method to be independent of the orientation of the text lines, although they must be
either horizontal or vertical. His algorithm shows that a very simple global analysis of a

page can produce a good segmentation result.

Model matching

Although model based analysis immediately suggests that the strategy should be top-
down or model-driven by definition, the model is stored separately and used in
conjuction with bottom-up techniques to provide evidence to help with the choice of
model. The recognition of a document is realised by an analysis system with the help of
a model, A model that contains general information about a group of documents is a

generic model. Liu-Gong et al. claim that with only a few generic models an analysis

46 -

Document Analysis

system (which uses a model recognition system) can analyse and recognise many

different types of document [Liu95].

Liu-Gong’s generic model definition (which should not be confused with the ODA’s
generic layout structure) is a tree structure containing the characteristics of the layout
objects and indicates whether or not a layout object must be present in specific layout
structures. Thus while analysing a document the analysis system travels through the
hierachical tree of a model and at the same time it uses the attributes and the methods
contained in the class-objects to identify the specific layout objects. Liu-Gong employs
histogram analysis and Hough/ transform skew correction techniques to achieve
segmentation. His model matching techniques effectively breaks down any theoretical
barriers between document analysis and document understanding as Liu-Gong attempts

to logically label his component elements using his generic model.

Farrow et al. have researched another model based hybrid system [Farro95). Feature
tokens are generated from the original image using bottom-up processes. Processing
proceeds in a bottom-up manner via a Forward Production System in which production
rules utilise the low-level evidence available and detect designated object types in the
original image. These objects types are designated high level feature tokens. Farrow
uses a matching method to associate the tokens with nodes in his model. In essence
Farrow’s objective is to fill a defined column area with tokens that have been previously

detected: he calls this a column tiling process.

A global-to-local approach to layout analysis

Lam has developed a ‘local to global’ approach to complex document layout analysis

which addresses some of the problems that have troubled other white space analysis

segmentation algorithms:

* documents have complex layouts, for example, the white gaps between regions are

usually small and some of the regions are non-rectangular;

LN

47

Document Analysis

« documents are degraded, for example, the detection of white space regions becomes

difficult when the white gaps are corrupted by noise.

Lam uses no prior layout knowledge of the document being processed. This is a
deliberate strategy on behalf of Lam so that he may use this segmentation technique
within an “open” document understanding system. An “open” system is not restricted to

processing only one class of document [Lam94a, Lam94b].

Lam’s approach utilises the strength of both top-down and bottom-up strategies and tries
to compensate each strategy’s weakness with the other’s strength. The strength of his
approach lies in its ability to locate and combine white gap candidates into white space
regions. Top-down analysis first divides the page into four equal sized sub-images. Each
sub-image is then divided again into four smaller sub images. The partitioning stops
when the sub-images are smaller than a predefined threshold. White space zones are
identified in the sub-images by looking at the vertical and horizontal pixel profiles of the

sub-image. Pixel profile analysis is a top-down strategy. Lam states that

“top-down analysis does not provide reliable segmentation on noisy
and complex documents at the layout level, it can hypothesize
probable [white space] candidates when it only focuses on a small

area of the page.” Lam [Lam94b]

The white space zones are then combined in a pair-wise merging operation. The
merging operation is performed horizontally and then vertically in two separate stages.

The separate sets of results are then ‘aligned’ to see if rectangular regions can be formed.

Hirayama'’s hybrid column segmentation technique
Hirayama [Hiray93] has devised a block segmentation method for a document

recognition system. His technique is designed specifically for text-segmentation and

acts as an input tool for creating electronic databases of various printed Japanese

documents.

Y

48

Document Analysis

The block segmentation process has four stages: detection of character strings; grouping

of character strings by height-distance relation; page segmentation using border lines

and block unification.

The first stage uses a form of RLSA (see “Run Length Smoothing Algorithm” on
page 37 for more details) to group runs of connected black pixels which are separated
by an interval of white pixels. The length of the interval is determined by a predefined
threshold. The neighbouring lines of black pixels are merged together to form blocks
which are then classified (see section 3.2.3, “Segmented geometric region classification
techniques” for more details) as either horizontal lines, vertical lines, picture elements

or character strings. Character strings can be thought of as lines of text.

Hirayama observed that the character strings were arranged regularly and exploited this

feature in order to merge each text area into groups in stage two.

“The regularity is in the spacing, where the distances between
adjacent character strings in a vertical direction within a text area

are almost the same” Hirayama [Hiray93]

Hirayama calculated a threshold value which he used to guide the string merging
process. The threshold value is calculated from the analysis of two histograms: a
histogram of the heights of the character strings and a histogram of the distances
between baselines of adjacent character strings in a vertical direction. Once the
threshold has been calculated, two adjacent string lines are merged into the same group

if the distance between them is less than or equal to the threshold.

In stage three, the border lines of columns are detected by linking the edges of the text

groups. Again, Hirayama bases his strategy upon a key observation:

“Text areas consist of mainly columns, thérefore, the column
Structure (in other words the edges of the columns)...can be detected

by analysing the edges of text groups.” Hirayama [Hiray93]

49

