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Abstract

The work described in this thesis had the main aim of understanding protein solution

rheology. This was from a biopharmaceutical perspective, with account of the biophysical

properties of proteins and in particular their level of aggregation. Molecular interactions

influencing the rheology of a range of protein solutions were studied. Proteins were se-

lected to relate directly to the diversity of protein types used in biopharmaceuticals. In

addition, the roles of a surfactant formulation additive and synthetic amphiphilic poly-

mers in the flow behaviour of protein solutions were studied.

The effect of protein concentration on solution viscosity in a commercially available

biopharmaceutical formulation of a recombinant albumin (rAlbumin) was studied. The

effect of the level of protein aggregation, variation in protein concentration and its im-

pact on solution viscosity was revealed. Theoretical models predicting the increase of

viscosity with concentration were applied to these data. A recent model that accounts

for multiple protein species in solution, predicted the experimental data best. The rAl-

bumin study, although a relatively simple system, represented a ’real-life’ formulation

with results highlighting the need to account for heterogeneity in the level of aggrega-

tion when addressing the increase of viscosity observed at high concentration of protein

solutions.

β-lactoglobulin (β-LG) excipient-free solutions were characterised by bulk and inter-

facial shear rheology. Solutions at various concentrations, characterised using conven-
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tional rheology instrumentation, evidenced an apparent yield stress behaviour at a low

shear rate range (0.01 - 10 s−1), whilst showing constant viscosities throughout higher

shear rates. Comparing interfacial shear rheology, air-water interface-free bulk rheology

measurements, and tensiometry results, it was demonstrated that the complexity of this

protein’s solution rheology was due to the formation of a protein viscoelastic film at

the air-water interface, as present in conventional rheometry. This is in agreement with

literature. Further studies considered the effect of insoluble β-LG aggregates on the

solutions’ rheology, linking with their characterisation in size and quantification. The

presence of insoluble proteinaceous particles was suggested to have an impact on the

solution’s flow behaviour, particularly at the lower shear rates.

Excipient-free monoclonal antibody (mAb) solutions were studied with the aim of

generating protein aggregates (soluble and insoluble) to explore their impact on solu-

tion rheology. mAb samples were subjected to thermal stress and were characterised

for their purity, aggregate content and size. The change in species content did not alter

the original protein’s yield-stress behaviour at low shear rates. An increase in aggregate

content was related to the increase of viscosities observed at high shear rates. Estab-

lishing a relationship between species content (in volume fraction) and viscosities, as for

the rAlbumin study, was not possible due to this mAbs specific aggregation behaviour.

However, from the β-LG and mAb case studies, our results highlight the importance of

detailed characterisation of protein solutions with orthogonal biophysical techniques so

as to better understand protein solution rheology.

An additional study looking at the effect of polysorbate-80 upon protein rheology was

made. In agreement with literature, this commonly used excipient in biopharmaceuticals

was demonstrated to affect the rheological measurements of globular protein solutions.

Amphiphilic brush-like poly(ethylene glycol) methacrylate polymers were also synthes-

ised and tested as novel additives with β-LG and mAb solutions, for their potential effects
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on protein solution rheology, similar to those observed with polysorbate-80. Preliminary

results showed that the effects of these polymers are likely related to competition for the

air-water interface, between these and the proteins involved. This competition leads to

changes in the yield-like behaviour at low shear rates.
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Chapter 1

Introduction

1.1 Introduction

For the past two decades, advances in recombinant DNA technology have allowed a

progressive change in therapeutics from small molecule therapies to biological macro-

molecular formulations, including medicines where the active ingredients are peptides,

proteins and nucleic acids. The target specificity of protein drugs, reaching the potential

for low side effects in comparison to small molecule drugs, along with advances in protein

production at large scales with lower costs, lead to a significant role of protein therapies

in the pharmaceutical industry [1, 2].

Currently there are various protein formulation strategies, spanning from the tradi-

tional parental administration route of a protein solution with stabilizing additives, to

new strategies that explore new administration routes (e.g. non-invasive mucosal route)

or others which are more adequate to the macromolecule’s specific properties or phar-

maceutical needs (e.g. sustained protein formulations) [3].

In protein therapeutics, monoclonal antibodies (mAb) have been essential in medi-

cine targeting many diseases such as rheumatoid arthritis, inflammation, cancer and

infectious diseases [1]. Monoclonal antibodies constituted 20 % of biopharmaceutical
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products in 2008, where projections were that this value would increase in coming

years [1, 2]. With advances in biotechnology, in particular of methods to clone mur-

ine and human antibody sequences, the generation of monoclonal antibodies has moved

from fully murine to fully humanised constructs. Also contributing to the success of

monoclonal antibody therapeutics are the technological developments related to mAb

expression and purification [4]. However, to formulate such complex molecules in stable

formulations, it is necessary to understand the protein’s physicochemical properties and

thermodynamic stability [1, 2].

The administration route normally chosen for protein formulations has largely been

intravenous, since it is a faster and easier way to formulate; allowing better bioavailab-

ility than most other routes and good control in administration [5]. The subcutaneous

route presents a good alternative for products that require a higher frequency of ad-

ministration. This route also has the advantage of allowing a better quality of life for

the patient, providing the potential of using devices such as auto-injectors or pre-filled

syringes permitting home use [6]. However, therapeutic proteins such as monoclonal

antibodies often need to be delivered in high concentration for increased bioavailability

even if administered frequently, due to its low potency. At high concentrations, e.g. 100

mg per dose or higher, special care is required in formulating these medicines so that

a convenient use of an aqueous low volume (1 - 1.5 mL) solution can be administered

through the subcutaneous route [7, 8].

Many challenges arise when formulating a suitable aqueous highly concentrated pro-

tein formulation. Not only there are difficulties in stability, but there can be challenges

in manufacturing processes and delivery [5]. Considering stability challenges, these are

present in general protein formulations and are divided between chemical and physical

instabilities [1]. Aggregation and denaturation are the major pathways to physical in-

stabilities in protein formulation. In medicines where protein is in high concentration,
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the presence of water is reduced and chemical instabilities that are hydrolytically driven

are less expected to induce degradation. However, aggregation is highly dependent on

concentration, and therefore is the primary expected pathway to instability of high con-

centration protein formulations [1, 5]. With reduced volume and the increased possibil-

ity of occurring aggregation, high viscosity is frequently observed in these formulations.

Highly viscous solutions can impair the manufacturing process, and are impractical for

patient use because using a larger needle gauge can lead to pain at administration as

well as more force required to inject [2, 9].

Characterising and studying the properties of a high concentration protein formula-

tion often involves dilution for sample analysis since commonly used techniques require

this (e.g. such as dynamic light scattering, size-exclusion chromatography, analytical

ultracentrifugation) [10]. By diluting the sample, one may possibly create artifacts (e.g.

dissociating soluble aggregates), thus disallowing a proper investigation of high concen-

tration formulation [11]. Due to such analysis challenges, the effect of high concentra-

tions within protein formulations is still poorly understood at a molecular level, and in

particular how molecular interactions within these formulations can lead to aggregation

and high viscosity [6,9]. In addition, understanding the effect of excipients on such pro-

cesses/properties is crucial, so that we are able to understand and manage the challenges.

1.2 Main Aims

The work described in this thesis had the main aim of understanding protein solution

rheology from a biopharmaceutical perspective, with account of the biophysical prop-

erties of proteins and in particular their level of aggregation. Therefore, one of this

thesis aims was focused on understanding the molecular basis of rheological properties

of high protein concentration solutions using a commercially available biopharmaceut-
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ical formulation as a model. The other aim of this thesis was to understand how the

level of aggregation of protein solutions and their underpinning molecular interactions

can influence their rheological measurements. Finally, another aim of this thesis was to

explore the impact of surface active organic molecules on protein solution rheology.

1.3 Protein formulations - monoclonal antibody formula-

tions

As mentioned earlier, monoclonal antibody formulations constitute an important section

within protein formulations. However, it is assumed that achieving commercially viable

antibody products is not straight-forward [1]. Consequently, this has translated into a

thriving development of technology involved in formulating such therapeutic biomacro-

molecules.

The following sections describe briefly the antibody structure and function, their

common instabilities, and a general background on formulation development and char-

acterisation, focusing on high antibody concentration formulations and its relationship

with viscosity, fitting the remit of this thesis.

1.3.1 Antibody structure and function

Antibodies, immunoglobulins, are a family of multidomain glycoproteins in a Y-shape

or can be a combination of such molecules. These soluble proteins are present in the

serum, tissue fluids or on the cell membranes. Their purpose is to help eliminate their

specific antigens or microorganisms bearing these antigens [12]. The structure of an

immunoglobulin is divided into two regions: the variable (V) region, which is on the top

part of the Y-shape; and the constant (C) region, which is the stem of the Y. Immuno-

globulins comprise five classes - IgA, IgD, IgE, IgM and IgG. This division is based on
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the C region, denominated as α, δ, ǫ, µ, and γ, respectively.

IgGs are the most abundant immunoglobulin, accounting for 70-75% of total serum

immunoglobulin pool, occurring as monomers. Also, IgGs are widely used for thera-

peutic purposes as a therapeutic agent (monoclonal IgGs) [1,12]. The primary structure

of IgGs is defined by a four-chain structure with two identical heavy chains - H, 50 kDa -

and two identical light chains (L, 25 kDa) (Figure 1.1). The typical molecular weight of

IgG is between 146-170 kDa [1, 12]. IgGs are divided into subclasses: IgG1, IgG2, IgG3

and IgG4, which is in order of typical quantity present in human plasma. This division

is due to different heavy chains, named γ1, γ2, γ3, and γ4, respectively. The difference

among the isotypes (subclasses) are the interchain disulfide bonds (number and location)

and the length of the hinge region [1, 12]. Regarding the light chains, which can be of

two types: lambda (λ) and kappa (κ). Either light chain type may combine with any

of the heavy chain types, but within any individual immunoglobulin molecule both light

and heavy chains are of the same type [12].

(a) (b)

Figure 1.1: Molecular architecture of an IgG: a) ribbon model (adapted from [4]); b) schematic

model (adapted from [13]).

The variable regions of both light and heavy chains consist approximately of 110
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amino acids, forming the antigen-binding regions (Fab fragment). The remaining se-

quence of amino acids are part of the constant region, forming the Fc region (fragment

crystallisable) [1]. The constant domains of the heavy chains are generally designated

as CH1, CH2, CH3 and CH4. The V regions are divided into hypervariable sequences -

HV1, HV2 and HV3 - on both heavy and light chains. The HV sequences are referred to

as complementarity determining regions - CDR1, CDR2 and CDR3, which form three

loops at the edge of the β barrel. The three CDRs from the light chain are called L1, L2

and L3, in order of appearance in the sequence. Correspondingly, the three CDRs from

the heavy chain are called H1, H2 and H3. Other sequences are the framework regions

- FR1, FR2, FR3 and FR4. These form β-sheets and determine the fold that help the

CDRs to be close to each other, maintaining the folded structure [1, 12, 14].

The secondary structure of IgGs comprises the polypeptide chains assembled in anti-

parallel β-sheets which represent roughly 70% of total structure. Two domains form

the light chains while four domains form the heavy chains, each of these domains are

approximately 110 amino acid long (∼12 kDa in size). All of these domains form a β

barrel, called the immunoglobulin fold [12]. This structure is stabilised by a disulfide

bond and hydrophobic interactions. Each of these domains interact amongst themselves,

are linked by the hinge region and form three spherical shapes of similar size. These

spheres give the Y-shape configuration to the antibody. Its less globular shape is sta-

bilised by interactions via disulfide bonds and strong non-covalent between the heavy

chains and each of the heavy/light chain pairs [1, 12].

In general, IgGs have four interchain disulfide bonds: two connecting the two heavy

chains at the hinge region; and two connecting the two light chains to the heavy chains.

Four intrachain disulfide bonds are also present within each domain of the heavy and

light chains which help stabilise the domains. The intrachain dissulfide bonds between

the VH and VL are required for functional antigen binding [1].
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As mentioned above, IgGs have two functional areas - the V and C regions. The

CDR regions with the framework regions are specifically the antigen-binding sites at

the end of the Fab arms, shown to have a unique surface topography that seems to be

complementary to structures on the antigen [4,12]. Regarding the constant region of an-

tibodies, these have three main effector functions: (1) initiating antibody-dependent cell

cytotoxicities (ADCC), being recognised by receptors on immune cells; (2) by binding to

complement; and (3) being transported throughout the organism to many places, such as

tears and milk [1]. The IgG subclasses interact with cellular Fc receptors (FcγRI, FcγRII

and FcγRIII) expressed on various cell types (e.g. monocytes, neutrophils, eosinophils,

lymphocytes). These receptors are characterised by a glycoprotein α chain that binds

to the antibody and has extracellular domains homologous with the IgG domains, i.e.

they belong to the immunoglobulin super family. These receptors may be upregulated

or induced by environmental factors (e.g. cytokines) [12].

An oligosaccharide chain is found in IgGs, typically N-linked to the conserved as-

paragine Asn 297 residue present between the CH2 domains. This oligosaccharide is

normally fucosylated in antibodies produced in CHO or myeloma cell lines and may

differ in other cell lines [1]. There are many factors that determine the nature of the

glycan micro-heterogeneity on IgGs, including cell line, the bioreactor conditions and

downstream processing. It has been shown that the sugar composition also influences

functionality. For example, other oligosaccharides can be found in IgGs due to process,

and the presence of oligosaccharides in other regions rather than in CH2 domain, can

influence the antibody’s activity. It is essential that correct glycosylation of the antibody

occurs, since it is critical for the binding and activation of Fc receptor. Also, it has been

shown that glycosylation can affect antibody conformation, since it can form multiple

non-covalent interactions with the polypeptide [1, 12].

All purified monoclonal antibodies (mAbs) are heterogeneous in structure due to
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differences in glycosylation patterns, instability throughout production and terminal

processing. Examples of this are occurring deamidation forms in both heavy and light

chains or, more rarely, formation of abnormal heavy chains with less amino acid residues

than normal heavy chain. [1] Undesirable post-translational chemical modifications, such

as asparagine deamidation, or degradation products are also sources of molecular vari-

ability in antibody engineering. However, these problems can be solved by prediction of

problematic residues and omitting these from the sequence of the coding gene [4].

1.3.2 Instability in protein formulations

Like other proteins, antibodies are subject to a number of degradation pathways. These

pathways are divided into chemical and physical instabilities.

1.3.2.1 Chemical Instability

Numerous chemical degradation pathways have been reported. Proteins may lose biolo-

gical activity depending on the site where the chemical changes occurred [1]. The major

chemical degradation pathways occurring in an antibdoy are dissulfide formation/ ex-

change, cross-linking, deamidation, isomerisation, oxidation and fragmentation.

Disulfide Formation or Exchange

In native proteins / peptides, cystein is rarely in the reduced form, being present

typically linked with another cysteine residue as a cystine disulfide (R-S-S-R). In the

presence of other thiols (H-S-R’), a disulfide can interchange to give a mixed disulfide

(H-S-S-R’) [15]. This type of chemical instability a common pathway for cross-linking,

influencing increased protein aggregation [11]. A participating thiolate ion can come
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from a free cysteine in a reduced peptide or protein, or it can come from species added

or occurring during numerous processing steps, such as lyophilisation [1, 15]. This type

of degradation reaction is base catalysed, which means that peptides or proteins cystine-

rich should not be stored in alkaline pH buffers [1, 15].

Non-reducible Cross-Linking

Non-reducible cross-linking between proteins has also been observed as a possible

degradation pathway. Nonreducible cross-linking can lead to high molecular weight ag-

gregates that cross-link due to other chemical pathways than disulfide formation, such as

oxidative steps. It can occur during storage in either liquid or solid protein products [1].

Deamidation

Deamidation has been extensively reported in literature [1, 16–19]. It is the most

common chemical degradation pathway that occurs in proteins which is a nonenzymatic

covalent modification. Deamidation can occur in both liquid and solid state and during

storage [1]. In proteins corresponds to conversion of asparagine aminoacid residue (Asn)

to aspartate or iso-aspartate, by loss of an amide functional group, release of ammonia

and transformation to acidic groups. The pathway goes through the intermediate of

succinimide at Asn and Gln (glutamine), occurring more readily in the former [1, 20].

This reaction occurs in water-accessible regions of proteins at basic or neutral condi-

tions. The key step is the formation of a deprotonated amide nitrogen which attacks a

side-chain carbonyl, resulting in a tetrahedral intermediate and formation of the succin-

imide ring. The ring is then subject to hydrolysis, resulting in either aspartic acid or

the iso-aspartic acid [20]. Although depending on the protein, deamidation can result
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in thermal instability or further chemical susceptibility, influencing in many cases the

protein’s secondary structure by affecting its folding pattern [20,21].

Many factors, such as sequence, steric effect and pH can affect the deamidation rate

via succinimidation in proteins. Buffers, ionic strength, solvents and polymers and sug-

ars have been studied to allow stabilisation of proteins and peptides in order to minimise

deamidation [20].

Isomerisation

Isomerisation in proteins commonly occurs with formation of iso-aspartic acid, which

results from direct isomerisation of aspartic acid (Asp) and from hydrolysis of succinim-

ide intermediate. This intermediate’s production can be pH dependent occurring either

due to asparagine deamidation or aspartate dehydration. It has been shown that pH

and steric effects can influence the rate of this degradation [22,23]. In general, modific-

ations of amino acid side chains by both deamidation and isomerisation may lead to a

different conformation of the protein which can potentially lead to aggregation or self-

association [11].

Oxidation

Amino acid residues in proteins that can be oxidisable are methionine (Met), tyr-

osine (Tyr), tryptophan (Trp), histidine (His), cysteine (Cys), phenylalanine (Phe) and

proline (Pro). Although not as prevalent as deamidation or isomerisation, oxidation

can easily occur during storage of antibodies. A variety of oxidation initiators have

been reported, such as photochemical, metal ion catalysed, high energy γ-radiation and

sonication by generation of reactive oxygen species [1, 20]. This degradation pathway
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can lead to a change in biological activity of the therapeutic protein if a critical residue

for that particular activity is oxidised, or by leading to conformational change due to

oxidation [20].

Fragmentation

This kind of chemical degradation may occur in antibodies during production pro-

cesses: acidic and basic treatments, thermal stress, freeze-thaw and storage [1,24]. Frag-

ments can be masses of antibodies without a light-chain or a Fab arm, or separation

of heavy-chain and light-chain. The hinge region is very susceptible to enzymatic and

nonenzymatic cleavage, leading to fragmentation of the antibody. As examples of en-

zymatic fragmentation, papain and pepsin are the most common enzymes to generate

antibody fragments, cleaving the antibody in the hinge region or in its proximity (CH2

domain) [24]. Hydrolysis is the mechanism that can explain nonenzymatic fragmenta-

tion in the hinge region, being pH and temperature two accelerating conditions for this

degradation pathway [24]. Other less common species, resulting in both peptide and/or

disulfide bond cleavage can occur as fragments [1].

Other chemical degradation pathways

Additional degradation pathways include the formation of acidic and basic species

and terminal clipping.

Acidic and basic species formation is influenced by deamidation, making the form-

ation of acidic or basic species of an antibody an easy indication of deamidation. pH-

dependency is most likely to be the source of this chemical instability. Another pathway

that can lead to acidic or basic forms of antibodies is the Maillard reaction, where re-
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ducing sugars can react with amino acid residues leading to glycosylation [20, 25]. This

reaction results in more acidic antibody species (negatively charged). The formation of

basic species can also result from succinimide formation or removal of sialic acids [1].

Terminal clipping can occur during antibody production and processing, possibly

due to the action of basic carboxypeptidases during product processing [1, 15, 26].

1.3.2.2 Physical Instabilities

Two major physical instabilities are protein denaturation and aggregation [1, 27].

Denaturation

When proteins cannot remain stable indefinitely in the folded native state, they un-

dergo processes of denaturation, i.e. changes of its conformation, thus changing from

its native state (unfolding) [27]. A protein unfolding process can include an interme-

diate step, usually unstable, between the completely folded and the unfolded protein

monomer [27,28]. At an extreme state, these unfolded monomers can eventually lead to

protein aggregation (see below for more detailed explanation). However, not only the

unfolding state can be reversible but this process can involve partially the native state,

i.e. unfolding can be localised within the protein monomer [28].

There are many conditions that can lead to antibody denaturation, including tem-

perature change, and processing steps.

In terms of protein unfolding due to temperature, it occurs only when above a certain

temperature, denoted as ’melting temperature’, where the higher this temperature is,

the more thermally-resistant the protein is. Proteins can exhibit more than one melting

temperature, depending on the experimental and analytical settings used [27]. In the

case of monoclonal antibody formulations, it is often to evaluate conformational stabil-
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ity in the presence of various formulation (solution) conditions via determination of the

protein’s melting temperature [7].

As mentioned above, proteins can suffer denaturation (and eventually aggregation)

during production, transportation, storage and delivery steps, during which shaking

and stirring may occur. It has been recently demonstrated that denaturation due to

shear/ shaking is more likely to occur when air-liquid or solid-liquid interfaces are

present [29–32]. As an example, a study evidenced that directly inserting a needle

through an air-liquid interface of a protein solution yielded to observation of protein

aggregates that are suggested to only occur at the interface [33].

Indeed, protein adsorption to surfaces is a well documented circumstance that can

lead to protein unfolding [34–37]. This can occur since proteins present surface activity,

where in the case of fluid interfaces, this translates in a decrease of interfacial surface

tension [35]. It is the molecular structure of proteins the main factor which controls

adsorption to interfaces, with its charge distribution and hydrophobicity determinant

to this phenomenon, depending on the interface, e.g. if it is highly charged or highly

hydrophobic [34]. In its native folded state, a protein monomer tends to have its amino

acids with h hydrophobic residues buried in its core, hidden from contact with solvent to

allow the protein to remain molecularly soluble. However, proteins can still have some

amino acids with hydrophobic side chains in towards the surface of the molecule, which

can readily absorb at the interface. After adsorption, the protein can suffer conforma-

tional rearrangements that lead to partial or further unfolding [28, 34]. Once unfolding

occurs, inter-protein associations can occur and lead to aggregation [38].

Aggregation

Aggregation in antibody formulation is the most common manifestation of physical
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instability. Protein aggregates can be present and produced in liquid and solid formula-

tions depending on various conditions. Protein aggregation can be due to protein-protein

interactions, depending on the diffusion rate and geometric constraints of the interac-

tion sites. Factors such as concentration, pH, ionic strength, viscosity, and temperature

can influence the aggregation rate. Other factors such as shearing/shaking, long-term

storage or freeze-thawing may also affect antibody aggregation [1].

For therapeutic antibodies, a consequence of aggregation is that aggregates can

lead to reduced activity and increased immunogenicity potential due to conformational

changes and/or higher recognition by the immune system [10]. Therefore, it is import-

ant to control the aggregate level in antibody formulations assuring that therapeutic

protein formulations remain at their highest purity levels possible complying with U.S.

and European Pharmacopoeias [39].

Protein aggregation is comprised of multiple pathways. Figure 1.2 shows a scheme

that demonstrates the various steps involved, focusing on bulk solution conditions. In

the figure, starting with a folded protein (F) in its native state, it can form strongly

associated multimers between two or more folded monomers (Ny) [40]. Another type

of folded self-association is when self-association oligomers (F2, F3) form from folded

monomers. These monomers are formed via colloidal forces, i.e. ”weak” inter-particle

interactions. Due to the nature of these interactions, formation and dissociation of these

protein oligomers can be described as an equilibrium [41].

The other steps represented in this figure refer to aggregation starting from a non-

native (partially unfolded) protein monomer (R). In this case, R is representative of a

’reactive’ monomer that will form oligomers of irreversible nature (Ax), at the condi-

tions the aggregation occurred (e.g. due to thermal stress) [28]. The ’reactive’ partially

unfolded monomer can generate further oligomers (R2, Rx), denoted pronuclei that can
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Figure 1.2: Scheme illustrating multiple stages and pathways to protein aggregation (adapted

from [28]).

be of reversible nature. It is from these pronuclei that a further step leads to irreversible

aggregates (Ax). These can be termed nucleus, and can include several monomer chains

(x), constituting dimers (x = 2), oligomers (x = 3 - 10) or multimers [28, 42]. The

mechanisms described here are related to non-native aggregation occurring in bulk solu-

tions, however the presence of interfaces (e.g. air-liquid, or solid-liquid) can integrate

this scheme as precursor of those species [28]. Finally, Figure 1.2 refers to behaviour

that aggregates can follow: 1) remaining soluble in solution while not suffering sub-

stantial addition of ’reactive’ monomers; 2) remaining soluble but continue to increase

the monomer chains associated, creating higher molecular weight species (in relation to

the monomer’s molecular weight); 3) are soluble but can self-assemble to create protein

precipitates (visible particles) or even lead to a change in phase (e.g. gel) [43].

As discussed earlier, in bulk solution, thermal stress can induce chemical degrada-

tions to proteins, also leading to non-native forms [11, 38]. A chemical modification of

native form of the protein can lead to aggregation, since it often induces change to non-

native form. [11, 38]. Another possible mechanism can imply the generation of critical

nucleation due to a possible formulation contaminant. In this case, continuous addition
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of native protein to the nucleus will eventually lead to visible particulates or even pre-

cipitation [38]. Freeze-thawing is an example where such aggregation mechanism could

occur, not only due to ice-solution interface present, but also due to pH changes when

crystallisation of buffer occurs as well as saturation of protein and solutes when cryo-

concentration occurs [11].

1.4 Types of formulations

According to Wang (1999), protein stability can be defined by the result of balancing

between the stabilising forces, provided by protein-protein interactions, and destabilizing

forces, mainly due to the protein’s tendency to unfold [27]. The balance can be disrupted

to by one or several of the degradation pathways which were described in the previous

section. Therefore, formulating monoclonal antibodies as therapeutic agents has the

purpose of controlling degradation and instability in order to allow for an adequate shelf

life for commercialisation. The most adequate formulation is done by choosing formu-

lation excipients (also denoted as additives) and conditions. However, it is known that

conditions and excipients chosen for a specific antibody to be formulated might not be

appropriate for another molecule due to small structural differences in each protein. A

successful formulation is defined as providing stability of the antibody as well as keep-

ing its activity and reducing potentiality of immunogenicity. Ideally excipients should

remain inert, be well tolerated and should not interfere with antibody’s structure and

activity, but contribute to protein stability [1, 2, 44].

In recent years, several reviews have been published regarding therapeutic protein

formulations (generally applied to antibodies) [1,2,27], types available [1,3], and regard-

ing excipients commonly used and their effect in protein stabilisation [44].

Liquid formulations are easily administrated and typically less expensive to produce
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compared to lyophilised drug products. However, A successful liquid formulation needs

to consider several aspects: protein concentration; effect of pH; buffering agents; effect

of formulation excipients including preservatives; effect of shearing / shaking; process

equipment used and product containers [1, 2].

Some antibodies cannot be formulated in liquid state, hence the necessity of turning

to lyophilised formulations. Critical issues of formulating in this solid state are to be

considered, such as the state that the protein is more stable at, the effect of formulation

excipients, effect of pH and buffering agents, protein concentration and moisture con-

tent [1,27]. Lyophilising a protein formulation not only focuses on maintaining stability,

it also means focusing in appropriate tonicity. However, during lyophilisation, isotonicity

can be difficult to achieve since both the protein and the formulation excipients can be

highly concentrated [5].

A widely applied method of increasing plasma half-life of proteins is to increase its

size by conjugating a poly(ethylene glycol) (PEG) molecule to the protein. This tech-

nique has been applied to antibody fragments that showed less half-life than when the

molecule contained its Fc portion. Conjugation of PEG is usually performed by attach-

ing site-specifically a PEG to an engineered antibody showing a PEG-reactive residue.

Site-specificity is important to reduce interference on losses in binding activity when

PEGylation occurs [1, 27].

Controlled release systems have been applied for proteins. The use of biodegrad-

able polymers, such as poly (lactic-glycolic) acid (PLGA), can offer controlled release of

antibodies [1, 3].

1.5 Formulating Solutions of High Protein Concentration

Typically, the amount of therapeutic protein tends to become relatively large per dose

(> 1 mg/kg), to attain the therapeutic effect [1]. A higher dose can mean that a large
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volume has to be infused, but due to out patient administration requirements, other

routes of administration are needed, such as subcutaneous route. Hence, it is necessary

to formulate therapeutic antibodies in high concentrations (> 50 mg/mL) with reduced

volume (< 1.5 mL) [8].

Formulating at high protein concentration has shown to present many challenges.

Not only it can affect protein stability, but it poses challenges to manufacture as well as

the administration of the protein drug by injection. Subcutaneous syringes are equipped

with 26 or 27 gauge needles (or of even higher gauges) which, if the preparation is too

viscous, may restrict administration. This represents the most challenging factor for for-

mulation at high protein concentration. Not only viscosity is related to painful delivery

but also means that it takes longer to deliver the requested amount, even if in a pre-filled

syringe. Therefore, it is very important to adjust and carefully study how to formulate

in order to prevent or control the product’s viscosity towards a good performance, not

only keeping in mind stability, but also manufacturing and delivery issues [1, 5, 8].

Achieving high concentration largely depends on the solubility of each therapeutical

potein. For practical purposes, protein solubility can be described as the maximum

amount of protein in co-solution with excipients, where the solution does not precipitate

nor generate a sediment [5]. Therefore, low protein solubility refers to in vitro situations,

which involves proteins that are expressed, purified and folded at room temperature, but

cannot be concentrated sufficiently for pharmaceutical or industrial applications [45].

Knowing what is the highest protein concentration achievable is still an empirical task

due to the protein’s conformational change, adsorption to surfaces and specific excipi-

ents, and more importantly, its capability to self-associate [5].

Factors such as ionic strength, salt form, pH, temperature and excipients, can con-

dition protein solubility [5, 45]. Protein solubility can also depend on how hydrated

proteins are by certain salts, amino acids or sugars, depending on these excipients’ in-
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teraction with the macromolecule [46, 47]

1.5.1 Factors leading to high viscosity at high protein concentration

From the study of flow and hydrodynamics in colloidal suspension rheology, it is known

that a material’s viscosity is a physical property which is sensitive to the material’s char-

acteristics and to the properties from its surrounding environment [48, 49]. Therefore,

in protein solutions, it is assumed that its specific properties such as shape, size and

charge, are important to consider when studying its flow behaviour [50].

Aggregation is expected to be the primary degradation pathway in highly concen-

trated protein formulations, since it depends in protein solubility and is influenced by

various interactions including protein-protein, protein-water, protein-ion and ion-water

interactions [5, 9, 45]. As previously described, aggregate formation depends on the size

of aggregates as well as the numerous mechanisms of association, which can occur sim-

ultaneously within the same product [38].

As described earlier, one form of protein aggregation is reversible self-association,

of either native monomer or non-native (partially unfolded) monomers. Reversible self-

association has been poorly studied, since the reversible aggregates may not be present

after a dilution is performed, thus being a limitation of analytical methodologies com-

monly used for aggregate detection. Moreover, when the rate of self-dissociation is low,

this condition may impact formulation and possibly affect the protein’s activity and

pharmacokinetics [51]. At high protein concentration, the equilibrium could be shifted

towards a greater amount of aggregates due to macromolecular crowding effects [5].

Whilst aggregation is due to formation of intermediate states leading to reversible

association or aggregation, protein-protein interactions are predicted to be the major

precursors of high viscosity at high concentrations [9, 52].
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Macromolecular crowding, as defined by Zhou et al., are the effects attributed to

excluded volume on the energetics and transport properties of macromolecules within

a solution of high concentration of macromolecules [53]. The author also refers mac-

romolecular confinement to be related to the effects attributed to excluded volume on

the free energy and reactivity of a macromolecule with fixed boundary, i.e. small com-

partments such as cytoskeletal structures, with an interior dimension only slightly larger

than the dimension of the largest macromolecule. Both macromolecular crowding and

confinement influence the equilibria and kinetics of macromolecule association [5,53]. As

the protein concentration increases, the fraction of total volume occupied by the pro-

tein increases resulting in the effective volume available to the protein decreasing. This

leads to an apparent higher protein concentration that favours self-association. This

association is thought to be one of the common macromolecular reactions to crowding

and confinement to increase the available volume, as well as formation of irreversible

aggregates. These solutions represent a non-ideal solution behaviour of increasing ther-

modynamic association which may be shelf-life limiting, particularly when the aggregates

become irreversible [5, 53–55].

Apart from these thermodynamically driven reactions, non specific protein-protein

interactions occurring in solution also play a part in highly concentrated macromolecular

solutions. The effects of protein-protein interactions have been explained by a model

in which macromolecules in solution, such as proteins, are comparable to effective hard

spheres, whose apparent size reflects not only steric effect but also short-ranged attrac-

tions or repulsions [53, 56]. However, this theory does not explain fully what occurs in

solutions containing high concentration of multiple solute species [56].

Non specific protein-protein interactions are mainly contributed by hydrogen bond-

ing, steric (excluded volume - i.e. volume of solution unavailable for another incoming

molecule), electrostatic, van der Waals and hydrophobic interactions. Of these, elec-
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trostatic and hydrophobic interactions are the major forces conducting protein-protein

interactions in a dilute solution. When a protein solution is highly concentrated, this

is changed [9]. The strength of the overall forces present between protein interactions

is expressed as a potential (W ). This potential measures the force between two protein

molecules averaged over all possible orientations and configurations of the solute and

solvent molecules. The intermolecular centre-centre distance is represented by (r). The

following equation represents the potential between two interacting proteins (W 22):

W22(r) = Whs(r) +Wcharge(r) +Wdisp(r) +Wosm(r) +Wassoc(r) +Wdip(r) (1.1)

In this equation, W hs is the hard sphere (excluded volume) potential, W charge refers

to charge-charge interactions, W disp is the attractive potential referred to van der Waals

forces, W osm accounts for osmotic effect of added salt, W assoc is related to the self-

association interaction of proteins, and W dip represents the interactions due to perman-

ent and induced dipole moment of interacting molecules [9, 57].

Forces that are inherently repulsive are charge-charge interactions and excluded

volume, resulting in a positive second virial coefficient. Excluded volume interactions

arise due to the inability of the centre of the molecule to penetrate the surface of an-

other molecule, hence becoming a repulsive force [50]. In high protein concentration, due

to smaller centre-centre distance, attractive and excluded volume forces are largely re-

sponsible by protein-protein interactions. Although all the interactions mentioned above

have their role in a protein solution, it is still difficult to predict solution behaviour in

all highly concentrated protein solutions, since it depends strongly on the involved pro-

tein [9].

It has been discussed in literature that strong protein-protein interactions may ex-

plain deviations from ideal behaviour of protein solutions, detected in different proper-

ties, such as osmotic pressure, density, rheology, sedimentation, among others [9]. Thus,
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studying and identifying non specific protein-protein interactions is important to protein

stability when the solution is modified under different conditions.

Factors influencing viscosity in protein solutions also include the molecule’s intrinsic

viscosity and hydrodynamics [9]. Intrinsic viscosity is dependent of the protein’s hydro-

dynamic behaviour in solution and represents the effective molecular volume when at

(i.e. close to) infinite dilution [48]. The electroviscous effect is discussed to be a overall

sum of three effects that influence a protein’s intrinsic viscosity: (i) a diffuse double layer

of the macromolecule; (ii) repulsion caused by double layers of two macromolecules; and

(iii) intermolecular repulsions that affect the shape of the molecule. Thus, this effect is

dependent on pH and ionic strength [50,58].

1.5.2 Brief review of revelant studies concerning therapeutic protein

solution rheology

Rheology is the study of the flow or deformation of materials [48, 59]. It has been

applied to the study of globular protein solutions, mainly due to the interest of food

science [60–62] and biologically relevant fluids (e.g. blood and synovial fluid) [63, 64].

In this section we summarise recent developments in the study of the flow properties of

therapeutic protein solutions.

Reversible self-association in therapeutic monoclonal antibodies and its relationship

with solution viscosity has been studied [6,51,65]. The work of Liu et al., demonstrated

that the viscosity of one of the study’s mAbs was highly dependent on its concentration,

pH and ionic strength of the buffer used. This study found that reversible self-association

was the cause behind the solution’s high viscosity, where at high ionic strengths a de-

crease of solution viscosity was observed, thus related to a disruption of electrostatic

charge interactions [6]. This study also demonstrated the effects of arginine to reduce
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the viscosity of a highly concentrated mAb solution [6]. Arginine is an amino acid com-

monly used in protein formulations due to its studied interactions with protein, which

have also been reported to generally improve a mAb’s solubility and stability. The

mechanisms involved in arginine-protein interactions appear to be of various nature,

that include preferential hydration of the protein molecule [44].

The work by Kanai et al. studied the effect of different ions of the Hofmeister series

(from kosmotropes to chaotropes: SO2−
4 , Cl−, Br−, I−, and SCN−) with solution rhe-

ology of the same monoclonal antibodies used in the previously described study [51,66].

It has been shown that the Hofmeister phenomenon has implications in direct interac-

tions between the ions and macromolecules, which cannot be fully explained by changes

in bulk water structure caused by these ions [66]. Kanai et al. showed that chao-

tropic agents (which destroy bulk water structure), such as urea and guanidine HCl,

reduced solution viscosity more than kosmotropic agents (which contribute to bulk wa-

ter structure). The authors also compared between full length mAb with its fragments,

to understand which domain would be implicated in reversible self-association [51].

Studies have also attempted at relating opalescence at high protein concentration

with high viscosity and degree of aggregation [67, 68]. The degree of opalescence in a

solution is related to the light absorbed or scattered on account of submicroscopic op-

tical density inhomogeneities of opalescent / turbid suspensions or solutions [69]. These

authors were able to demonstrate the relationship between ionic strength on the effective

charge of mAbs and its effects on viscosity and opalescence [50, 67].

It has been demonstrated how the non-ideality of rheological behaviour of high pro-

tein concentration is influenced by protein-protein interactions as well as fundamental

properties of the therapeutic molecules, such as their charge [50, 52, 70–73]. With high

surface charge and low ionic strength, this overall effect is expected to govern protein

solution behaviour [50]. Specific highly attractive interactions present in therapeutic
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proteins have been evidenced to influence the studied proteins’ charge-dependent in-

teractions, suggesting that it can explain the pH dependency of the measured high

viscosities, relating this to electroviscous effects [70, 71].

Regarding rheometry and viscometry in most literature studying rheology of thera-

peutic protein solutions, the type of instrumentation typically chosen is cone-and-plate1

rheometers [6, 9, 50, 51, 74]. Glass capillary or falling ball viscometers have also been

used [74,75].

However, as antibody products are still relatively expensive to produce, contributing

to the difficulty of accessing large quantities of material, there has been development

of instrumentation and techniques capable of measuring viscosities from materials at

sample volumes in the order of µL, constrasting to the volume of up to 1 mL when using

a cone-and-plate rheometer.

The system devised by Kalonia and colleagues, is based in a piezoelectric quartz

crystal, which is sensitive to the mechanical properties of the liquid placed on top of it.

By monitoring the quartz crystal’s electrical properties, it is possible to take measure-

ments at high frequencies (10 000 Hz), imparting such high stresses to the sample and

extracting its viscosity. An announced advantage of this system is the possibility of using

microlitre volumes (10-20 µL) [50,76,77]. Another example of an instrument using relat-

ively low quantities of sample is the microfluidics microviscometer/rheometer-on-a-chip

which has also been proven to be useful for protein solution rheology measurements [78].

Due to its construction and the operating principle2, this instrument typically allows

only measurements at high flow rates (that translate into shear stresses) [79]. This can

be an advantage, since it can allow exploring the viscosities of antibody formulations at

high flow rates similar to those achieved during syringe injection [8].

1The theoretical background to rheology and relevant instrumentation is described in Chapter 2.
2Detailed information regarding the microviscometer/rheometer-on-a-chip can be found in Chapter

2.
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An indirect measurement of protein solution viscosity using dynamic light scatter-

ing has been reported [80–82]. In this case, polystyrene particles of known diameter are

mixed with protein solutions and the particles’ apparent hydrodynamic size is measured.

Based on this instrument’s operating principle, this apparent size can then be converted

to viscosity. It has been regarded as a technique with potential advantages due to small

sample volume used and fast measurements. However, in this context, protein solutions

are assumed to have the same flow properties throughout the concentrations studied,

and problems may arise in terms of protein-particle interactions [82].

More details regarding recent developments in protein solution rheology studies are

addressed in the introduction to Chapter 4.

1.6 Characterisation of protein formulations

There are several techniques used in current research laboratories to characterise protein

formulations. There are many reviews in literature regarding this matter, referring to

advantages and disadvantages of each technique, its operating principle and [1,44,83]. A

key concept from the literature concerning the techniques used for protein formulation

characterisation, is that it is important to combine information from several techniques

with different measuring principles, known as orthogonal characterisation [10].

Several of these techniques were used throughout the work presented in this thesis

and their theoretical background is described in Chapter 2 (Materials and Methods).

Differential scanning calorimetry (DSC) is useful for determination of glass trans-

ition temperatures and phase transitions of the solid-state lyophile or dried matrix at

high protein concentration. Its use in liquid protein formulation (micro-DSC) has been

related to the determination of melting temperature of a protein when under different

formulation settings, thus determining which excipients contribute best to an increase
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of the protein’s melting temperature.

The use of vibrational spectroscopy is also important and practical to use in this

type of formulation since it is possible to analyse directly the sample without the need

for diluting or pre-analysis preparation. Fourier-Transform Infrared (FTIR) and Raman

are vibrational spectroscopy techniques that can give information on the protein’s sec-

ondary, which gives information on denaturation of the protein. Applications of FTIR

have been also on helping determining the protein’s melting temperature, for the same

purposes as those used with DSC [84].

Other techniques useful for determination of protein conformation are ultraviolet

absorption (UV), fluorescence, and near-UV (tertiary structure) and far-UV (secondary

structure) circular dichroism [5,84].

As previously mentioned, protein aggregation is important to monitor, several tech-

niques can be used for this monitorisation [10]. Separation techniques for the character-

isation of protein monomers and their aggregates include size exclusion chromatography

and protein electrophoresis using sodium dodecyl sulfate polyacrylamide gels. Tech-

niques such as dynamic and static light scattering, optical microscopy, light obscuration

and micro-flow imaging and visual inspection, are typically used for the detection and

size characterisation of protein aggregates or particulates.

Since protein aggregation can generate multiple oligomeric species of different size

range or due to different aggregation behaviour (reversibility), there have been recent

discussions in the terminology of such categories [85]. In attempt of harmonising such

terminology within the field, Nahri et al. have proposed classification of protein ag-

gregates by five different categories: size, reversibility, secondary or tertiary structure,

covalent modification and morphology (Table 1.1). Throughout this thesis, aggregate

denomination was related to its size characterisation, thus following the ’size category’
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proposed. In addition, aggregate terminology can also be addressed as soluble and insol-

uble. This has to do with the mechanism of aggregate growth, where a soluble oligomer

is molecularly soluble and grows with addition of one monomer at a time; whilst insol-

uble aggregates refer to rapidly growing oligomers that eventually precipitate or lead to

phase separation [28].

Table 1.1: Protein aggregate terminology proposed categories (adapted from [85]).

A major problem with analysis and characterisation of highly concentrated protein

formulations is that most of the analytical techniques require dilution prior analysis [5].

Diluting to lower concentration may have an impact on the result of the assay since there

will be a change in solvent concentration and content, possibly affecting the protein’s

state that may differ from the original conditions [5]. To address the issues of reduced

sample volume availability and to shorten analysis and measurement times, it has be-

come increasingly important to develop techniques in a high throughput methodology.

An example of this is the conversion of conventional protein characterisation techniques

in a high throughput setting that allows faster formulation screening [83].
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Chapter 2

Materials and Methods

In this chapter a description of materials and methods will be made. Information on the

proteins studied throughout the work can be found in the Materials section. A general

explanation of protocols used for buffer exchange using desalting columns and dialysis

cassettes, as well as sample concentration are also described. An account is made for

the purification, dialysis and concentration of the monoclonal antibody studied. Specific

sample preparation details will be addressed in its respective experimental chapter.

A summary of the theory related to rheology and its instrumentation is made, since

this was the principal technique used between all experimental chapters. Specific rhe-

ological protocol details will be addressed in each of the experimental chapters.

Other techniques such as UV-visible spectroscopy, light scattering, size exclusion

chromatography, tensiometry, density, micro-differential scanning calorimetry, protein

electrophoretic methods, circular dichroism, flow imaging microscopy for sub-visible

particle counting and visual inspection, are also described here since these will be referred

to in more than one experimental chapter. Each experimental chapter will include spe-

cific method details. Polymer synthesis and related characterisation methods, the pro-

tein solubility assay and determination of critical micellar concentration via fluorescence

spectroscopy, were left to be described only in Chapter 6.
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2.1 Materials

2.1.1 Proteins used

2.1.1.1 Recombinant human albumin

Recombinant Human Albumin was kindly donated by Novozymes Biopharma UK, Ltd.

(Nottingham, UK) in the form of Recombumin R© Prime (batches used: 1104 and 1101).

The protein comes as a liquid formulation of concentration 200 mg/mL, stored at 2-8

◦C. The formulation buffer is composed of NaCl 145 mM, sodium octanoate 32 mM and

polysorbate-80 15 mg/L, at pH 7.0 ± 0.3.

2.1.1.2 Beta-lactoglobulin

The protein beta-lactoglobulin was obtained from Sigma-Aldrich (product L3908, batches

097K7012 and 080M7312V) as the mixture of bovine variants A and B, in a lyophilised

powder containing sodium chloride.

2.1.1.3 Monoclonal antibody, Immunoglobulin

The humanised monoclonal antibody studied was provided by MedImmune, LLC. (Gaith-

ersburg, Maryland, USA). It is an IgG1 of 145.461 kDa. The protein was supplied in

a lyophilised formulated format containing other additives, including a surfactant. The

formulation additives were removed by purifying the reconstituted material, as per de-

scription in section 2.2.3 of this chapter.
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2.1.2 Sample and buffer preparation details

2.1.2.1 Preparation of Buffers

All prepared buffers had a 2-month expiry date and were kept at 5 ◦. Ultrapure water

was obtained from a water cleaning resin system from NANOpure Diamond (Barnstead,

USA) with water quality of >18.0 mΩ-cm, and 0.22 µm filtered (PVDF membrane,

EMD Millipore, USA). All buffers were filtered using 0.22 µm vacuum-driven filter units

(Nalgene, USA), unless when 0.1 µm pore-size filtering was necessary (using syringe-

filters PDVF Millex-VV from EMD Millipore, USA).

(a) rAlbumin

For rAlbumin samples, the formulation buffer was composed of NaCl (145 mM), Polysorbate-

80 (145 mM) and sodium octanoate (32 mM) in ultrapure water (pH = 7.0 ± 0.3 at

room temperature). Polysorbate-80 was obtained from Fluka and of grade meeting the

standards from the European Pharmacopoeia. All other reagents were obtained from

Sigma-Aldrich, UK and were of analytical grade. Another buffer was prepared contain-

ing only NaCl (145 mM) in ultrapure water, maintaining the pH at 7.0.

(b) β-Lactoglobulin and mAb

All reagents were purchased from J.T. Baker Chemicals (Pennsylvania, USA) and were of

analytical grade. A histidine buffer was prepared containing L-Histidine and L-Histidine

monohydrochloride at 10 mM in ultrapure water (pH = 6.0 ± 0.2 at room temperature).

For circular dichroism analysis of mAb samples, a 10 mM sodium phosphate buffer pH

6.5 was prepared using monosodium phosphate monohydrate and dibasic sodium phos-

phate heptahydrate in ultrapure water.
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Buffer characterisation

The pH of buffers and samples was measured using a pH meter (model PHM220, Ra-

diometer Analytical, SAS, France) with combined Ag/ AgCl pH electrode, calibrated

with appropriate pH buffers traceable to NIST (all pH related components, including

pH calibrating buffers obtained from Radiometer Analytical SAS, France.

The buffers’ osmotic strength was measured for comparison when different samples

were dialysed into their respective buffers. A freezing-point osmometer Osmomat O30-D

(Gonotec GmbH, Germany) was used, zeroed with ultrapure water and calibrated with

a 300 mOsmol/kg NaCl aqueous solution (Gonotec GmBH, Germany). In this method,

the osmolality of a sample is measured by comparing the freezing point of pure water

with the freezing point of a sample which, if containing osmotically active compounds,

will depress water’s freezing point. For example, water has a freezing point of 0 ◦C

whereas an aqueous solution of NaCl at 1 Osmol/kg has a freezing point of -1.858 ◦C [13].

2.2 Methods

2.2.1 Buffer exchange desalting columns and sample concentration

For buffer exchange of mAb samples, disposable buffer exchange/ desalting columns were

used (PD-10 GE Healthcare, USA). These Sephadex G-25 matrix packed columns were

used via the centrifugation method, as per the manufacturer’s instructions, to avoid

sample dilution as much as possible. The columns were equilibrated with equilibration

buffer (that the samples would be exchanged to) prior to sample elution. Sample loading

was typically 2.5 mL. To guarantee an effective buffer exchange the same procedure was

repeated on freshly-equilibrated PD-10 columns.

Centrifugal concentrators were used since it was needed to concentrate protein samples
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to achieve a higher concentration than the starting material. The centrifugal concentrat-

ors were chosen accordingly to the protein’s size, as the membrane cut-off size should

always be at least 10 times smaller than the size of protein monomer. For rAlbumin

samples, the concentrators used were Vivaspin 20 5 kDa molecular weight cut-off size

of PES (polyethersulfone) membrane (Sartorius Stedim, Ltd., UK). For mAb samples

the centrifugal concentrators used were Amicon Ultra 30 kDa molecular weight cut-off

size of regenerated cellulose membrane (EMD Millipore, USA). For sample concentra-

tion the procedure was followed by the manufacturer’s recommendations and adapting

to the laboratory centrifuges available at the time: either a swing-bucket rotor (Heraeus

Mega Fuge 11R, Thermo Fisher Scientific, USA); or a fixed 45-angle rotor (Hermle Z400,

Labortechnik GmbH, Germany). On all occasions, the centrifugal concentrators were

rinsed before used. After centrifugation, all samples were collected, mixed and checked

for their concentration.

2.2.2 β-Lactoglobulin sample dialysis

For β-lactoglobulin samples, as the protein was obtained as a lyophilised powder, sample

preparation consisted of dissolving in a 10 mM His-His.HCl buffer (pH 6.0) with aid of a

oscillatory shaker at mild shaking conditions (∼ 70 rpm) until all sample was dissolved.

After complete dissolution, sample dialysis was done using a 3.5 kDa membrane cut-off

dialysis cassette (Slide-a-lyzer, Pierce Lab, Thermo Fisher Scientific, USA). Dialysis in

the appropriate buffer, in a volumetric ratio of 200 times more than sample volume,

was performed and repeated at least 3 times. After the dialysis, the sample was either

kept as an unfiltered stock or it was filtered using specific syringe-filters according to

the experiment requirements. After this procedure, the β-lactoglobulin samples were

checked for protein concentration, pH and osmolality.

33



2.2.3 Purification, dialysis and concentration of the IgG1 mAb

For complete removal of additives present in the original lyophilised formulation of the

mAb purification of the reconstituted material was performed with affinity chromato-

graphy. This technique separates proteins based on a reversible interaction between a

protein and a ligand attached to the chromatographic matrix when the elution conditions

are set up to enhance this interaction. In the case of immunoglobulins G, purification

can be made with high affinity of protein A and protein G for the Fc region of the IgG-

type of antibodies. Protein A and protein G are bacterial proteins (from Staphylococcus

aureus and Streptococcus sp. bacteria, respectively) which can be covalently attached to

the inert matrix and have relative binding strengths according to the different immuno-

globulins, making these ligands a useful media for antibody purification [86, 87]. In the

case of the IgG1 studied in this work, the media used was an agarose matrix with an

alkali-stabilised recombinant protein A.

A typical affinity chromatography method for protein purification involves the fol-

lowing steps (Figure 2.1) :

1. column equilibration with buffer that provides conditions for protein-ligand bind-

ing;

2. injection of the sample, where target protein(s) will bind reversibly and specifically

to the ligand while the unbound material will be eluted out of the column;

3. a recovery step where by changing the conditions to allow elution of the bound

protein(s) (e.g. change in pH, change in ionic strength or competitive binding);

4. column re-equilibration with binding buffer.
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Figure 2.1: Scheme showing the general steps for affinity chromatography. Affinity chromato-

graphy was used to recover the mAb from a formulated product containing a surfactant. The

ligand that specifically bound to the IgG1 was a recombinant protein A, which is effectively and

widely used for purification of IgGs. (Image adapted from reference [87].)

mAb Purification protocol details

The chromatographic system used was an ÄKTA purifier 10, with a pH detector and

UV spectrophotometer detector (measuring absorbance at 280 nm). The column used

was a HiScale column (ID 2.6 mm x 40 cm) with MabSelect SuRe resin (with a capacity

of ∼ 30 mg of mAb/ 1 mL of resin). All components were obtained from GE Healthcare,

USA.

The following buffers were prepared/ used:

1. Dulbecco’s PBS 1x at pH 7.2 (from Sigma-Aldrich, USA) - equilibrating and elution

buffer for non-bound components;

2. 50 mM sodium hydroxide (NaOH) + 1 M sodium chloride (NaCl) - sanitising

buffer;

3. 50 mM glycine + 30 mM NaCl pH 3.5 - elution buffer for bound material;
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4. 1 M Tris pH 9.0 - titration buffer;

5. 10 mM His-His.HCl pH 6.0 - sample’s target buffer;

6. Water/ ethanol 80/20 %v/v - column storage buffer.

After loading the column with the resin, the run began with a sanitising elution with

buffer 2. Column equilibration with PBS followed this sanitising step until the pH of the

column eluant reached pH 7.2. After this was achieved, the reconstituted mAb sample

was loaded and the elution with PBS continued until at least 10 column volumes. To

elute the mAb, 50 mM glycine and 30 mM NaCl pH 3.5 buffer was used. Collection

of the material was monitored with the change in pH and absorption at 280 nm. After

all the product was eluted and collected, it was immediately titrated with 1 M Tris pH

9.0 buffer to pH 6.0. After titration, the material was filtered using a 0.22 µm pore

size membrane vacuum-driven filter unit (Nalgene, USA). Meanwhile, the column was

sanitised again with buffer 2 and re-equilibrated with PBS. These steps were repeated

until all mAb material was purified. If the column was not to be used again, it was

stored in water/ethanol 80/20 %v/v after running at least 5 column volumes and kept

in this buffer at 2-8 ◦C.. Flow rate in all steps was 10 ml/min.

For this study the mAb was purified using the protocol above on two different oc-

casions. It was the subsequent concentration step that differed between batches. The

concentration methods were chosen differently depending on the amount of protein ma-

terial that needed to be concentrated. Therefore, from this point forward, the material

that was concentrated using the stirred cell method is referred to as mAb batch 1 (mAb

b1), and the material that was concentrated using tangential flow filtration is referred

to as mAb batch 2 (mAb b2).
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Diafiltration and concentration steps

(a) Stirred ultrafiltration cell (mAb batch 1)

An Amicon Stirred cell system (EMD Millipore, USA) was used for batch 1 of the

purified mAb as the total volume collected was ∼ 400 mL. This method provides di-

afiltration and concentration of the material by use of a magnetic stirring bar which

keeps the fluid movement during operation thereby reducing the build-up of concen-

trated material on the membrane. An auxiliary reservoir containing the desired sample

buffer is coupled to the stirred cell system which will keep the stirred fluid volume and

concentration constant as the filtrate volume is replaced by the new buffer. This is a

substitution for membrane dialysis (such as that described in section 2.2.2). After dia-

lysis, the material was then concentrated on the same device by direct application of

gas pressure. The solutes above the membrane molecular weight cut-off (Ultracel PL

regenerated cellulose membrane, 30 kDa molecular weight cut-off, EMD Millipore, USA)

are retained in the cell, while water and solutes below the cut-off flow into the filtrate.

This batch was concentrated to ∼88 mg/mL.

(b) Tangential flow filtration (mAb batch 2)

Tangential flow filtration (TFF) is a pressure-driven ultrafiltration/concentration

method that uses membranes to separate proteins in a liquid solution on the basis of

size/ molecular weight. TFF differs from the method described above (stirred cell)

in the way that the fluid flows while it is being filtered. In the stirred cell, the fluid

containing its solutes is pushed against the membrane by applying gas pressure. In TFF,

the solute-containing fluid is flowing tangentially along the surface of the membrane.

Hence, TFF is designed so that the retained molecules do not build up at the surface of

the membrane [88]. This process also allows combination with diafiltration, where the

concentration of protein is maintained but a buffer exchange occurs while the filtrate is
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removed.

A Pellicon 2 mini cassette was used for diafiltration and TFF of this batch, the

polyethersulfone void free membrane was of 30 kDa molecular weight cut-off, surface

area 0.1 m2 with coarse screened feed channels (EMD Millipore, USA). The system

was composed of membrane, membrane holder, peristaltic pump, reservoirs, tubes and

manometers to measure the pressure applied to the membrane.

After concentrating most of the material to ∼100 mg/mL, another batch of material

was collected (∼17 mg/mL) by flushing out the remaining mAb left in the TFF system

with sample buffer (10 mM His-His.HCl, pH 6.0). Thus, mAb batch 2 was divided in

two sub-batches 2a and 2b, corresponding to the concentrated and dilute materials.

Independent of the diafiltration/ concentration method used, all mAb batches were

checked for concentration, pH, osmometry, aggregation level by HPSEC. Additionally,

all batches were checked for presence of the non-ionic surfactant that was an additive

in the original mAb lyophilised formulation (this procedure was performed at and

by MedImmune staff, in Gaithersburg, MD, USA). The three batches were collected

in Nalgene (ThermoScientific, USA) PET (polyethylene terephthalate) bottles of

appropriate volume, filtered with 0.2 µm pore-size membrane filters before storage and

kept at 2-5 ◦C conditions until used for experiments.

2.2.4 Rheology

2.2.4.1 Basic definitions

Rheology is the study of deformation of solids and the flow of fluids. This branch of

physics allows the study and characterisation of materials when under shear. Thus,

materials can be characterised between extremes between being ideal viscous fluids, e.g.
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a low-viscosity mineral oil, or purely elastic solids, e.g. a piece of steel. In between

there are materials that combine both viscous and elastic components, being therefore

denominated viscoelastic materials (e.g. toothpaste or shower gel). However, to determ-

ine these characteristics, it is important to understand that the rheological behaviour

of materials is dependent on the shear applied (e.g. low-shear or high-shear), the way

the sample is loaded (e.g. force applied), temperature and time, as well as many other

parameters (e.g. pH, concentration, presence and size of particles, etc.) [48, 49]

For easy understanding of the fundamental rheological parameters, a two-plates

model is used. In this case, the sample is between two plates and it is sheared in

the gap (h). The upper plate is set in motion by a shearing force (F ) on the shearing

area (A), while the lower plate remains fixed, with a resulting velocity (v) (Figure 2.2).

In this simple case, two assumptions are made: the sample does not slip nor slide out of

its shearing gap; the conditions are for laminar flow (i.e. flow in layers) [59, 89,90].

From this model it is possible to define shear stress:

τ =
F

A
(2.1)

with the force (F, in [N]) and the shearing area (A, in [m2]), the S.I. unit for shear stress

is [Pa]). The shear rate will be defined by:

γ̇ =
v

h
(2.2)

with velocity (v, in [m/s]) and the distance (h, in [m]), the S.I. unit for shear rate is

[1/s or s−1]. For many processes, a shear rate can be calculated or estimated to have

an idea of relevant shear rate range where a sample should be studied at.
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Figure 2.2: Schematic of the velocity of a fluid using the two-plates model for shear rheology.

The top plate (boundary) moves due to an applied force (F ), causing the fluid to shear, while

the bottom plate remains stationary.

Shear viscosity can be defined from the previous equations,

η =
τ

γ̇
(2.3)

where viscosity (η) has S.I. units of [Pa.s]. Physically, viscosity represents the resistence

to flow that all materials will inherently show, since upon shear the molecules consti-

tuting the material will move in relation to each other, thus contributing to an internal

friction forces [49,89]. Although not a S.I. unit, the [P] (Poise) is still sometimes a unit

used for viscosity; 1 P converts to 0.1 Pa.s. Kinematic viscosity (ν) is defined by,

ν =
η

ρ
(2.4)

with the density ρ [kg/m3], where the S.I. unit for ν is [mm2/s] [49, 89, 90].

2.2.4.2 Flow curves and viscosity functions

Newton’s Law describes the flow behaviour of a purely viscous material:

τ = ηγ̇ (2.5)

The flow behaviour can be represented using flow curves and viscosity curves. A flow

curve represents the dependence of shear stress τ on shear rate γ̇, while a viscosity curve
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represents the dependence of shear viscosity η on shear rate.

Typically, in order to characterise the test material, if possible, flow and viscosity

curves are perfomed since the results can give an idea whether the material is ideal-

viscous or if appears to have signs of elasticity. In figure 2.3(a) (and corresponding

flow curve in figure 2.3(b)), the most common possible sample profiles are represented

for different flow behaviours: ideal-viscous, with constant viscosity along the applied

shear rates; shear-thinning, when there is a decrease of viscosity with shear rate; and

shear-thickening, when the viscosity increases with shear rate. The practical tests that

can yield these type of curves are denominated rotational tests. Rotational tests can

be performed with presets controlling the rotational speed (n, in [min−1] ), thus col-

lecting torque (M , in [mN.m]) as response of the sample; or by controlling the shear

stress, where the opposite occurs. These parameters (speed and torque) are the raw

parameters measured by a rheometer, and via the instrumental software are converted

automatically into shear rate, shear stress and shear viscosity. Examples of materials

with shear-thinning properties are polymer dispersions and polymer melts [49, 90]. The

case of shear-thinning materials represents the circumstance where the internal friction

forces are shear-load dependent. The ratio at which this happens can vary, thus it is

often to refer to ”apparent shear viscosity” where the viscosity at each shear rate rep-

resents that point only. Shear-thinning is often related to the structure of molecules and

the way these are originally entangled and disentangle as shear is applied, as an explana-

tion of how the intermolecular forces yield less flow resistance with the increase of shear

load. This is commonly interpreted with samples such as polymer solutions [49, 89].

In the case of colloidal dispersions, for example, the explanation is given in relation

to the intermolecular forces that can become weaker and weaker as the shear-load in-

creases [48, 49,90].

Examples of shear-thickening materials are those dispersions with very high concen-
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tration of solids or gel-like particles, such as ceramic suspensions or starch dispersions.

The term ”apparent shear viscosity” is also applied in this case. For shear-thickening

materials, which are less common in industry, the rationale to account for the increase

of viscosity with the increase of shear load is related to increased interaction between

molecules or particles present in the dispersions [89, 90].
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Figure 2.3: Examples of general of viscosity curves (a) and flow curves (b) for materials showing:

A - idealviscous (Newtonian flow), B - shear-thinning, and C - shear-thickening behaviour, and

D - yield behaviour with a yield point. Note that the axes are represented in linear scales.

However, it should be noted that shear-thickening effects can also appear during

experimental conditions due to flow instabilities and turbulance. These have to do

with hydrodynamic flow and the appearance of centrifugal or inertial forces due to the

mass of the fluid [49]. These can be particularly important for low-viscosity liquids.

Therefore there is one important dimensionless number that is critical to determine

if the experimental conditions are due to create hydrodynamic flow instabilities. The

Reynolds number (Re) represents the ratio between the force due to mass inertia of the

fluid and the force due to its flow resistence:

Re =
vmLρ

η
=

vmL

ν
(2.6)

with vm as the mean velocity of the fluid, and L as the characteristic length of the

geometry used in the measurement [48]. Re numbers are thus used to characterise

42



flow conditions. In the case of a couette (cup-and-bob) geometry, if Re < 1000, the

conditions are of laminar flow; 1000 < Re < 2000, correspond to a transition range; and

if Re > 2000, the conditions are of turbulent flow [48,49]. This turbulence can occur in

low-viscosity fluids particularly when using couette geometries where the cup is rotating

and the bob stationary, and is related to the dimension of the annular shearing gap in

this type of geometry [49,59].

There are materials can show yield type of behaviour (see general curve D, in Figure

2.3). Materials that yield only start flowing when the external applied force is larger

than the internal forces that are resistant to flow. Typically, below the material’s yield

point, it shows an elastic behaviour, a solid-like behaviour where the material flows to

a small degree. Yield stress (also called yield point) can be determined by controlled

shear rate experiments, where shear stress is measured in function of the shear rate.

Curve-fitting can be performed choosing one of the different models that account for

yield behaviour (e.g. Bingham, Casson or Herschel/Bulkley), where the yield point is

extrapolated to when γ̇ = 0 [48,49]

Time dependency of a material’s response is important to its rheological charac-

terisation. To monitor the shear behaviour of a sample in function of time, all the

other applied parameters (shear stress or shear rate, temperature) should remain

constant. Different behaviours can occur with time, such as thixotropy and rheopectic

behaviours. A material that shows thixotropy typically has its shear viscosity reduced

when shearing occurs. After this, and if left at rest, the same material can increase

its viscosity, showing a degree of ’memory’, regenerating the possible interactions that

were present before it was sheared. A thixotropic material thus undergoes a reversible

deformation process. When the opposite occurs, irreversibility of deformation, of the

test sample is considered ’non-thixotropic’. Another time-dependent behaviour is

rheopexy. In rheopetic fluids, when there is an increase of shear viscosity, structural
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strengthening can occur as result, which when followed by complete rest shows complete

decomposition of the structure [49, 89].

2.2.4.3 Oscillatory shear rheology

Oscillatory rheology concerns the detailed measurement of the material’s relative con-

tributions of its viscous and elastic properties. If a test material is again imagined in

between two-plates (Figure 2.4(a)), during an oscillatory test the moving top plate will

oscillate back and forth with a specific frequency and amplitude. The bottom plate

remains stationary and it is where the resulting force is measured. It is assumed that

homogeneous deformation occurs in the sample across the shear gap. When a strain (or

stress) is applied on the top plate at different frequency and amplitude, these will be the

parameters that define the timescales to which the material will respond to. Thus, when

a sinusoidal strain is applied to a material, the deformation function can be expressed

as:

γ(t) = γo sinωt (2.7)

where γ is strain, γo is the shear strain amplitude (in [%]) and ω is the angular frequency

(in [rad/s]).

The linear response of the material can be given by:

τ(t) = τo sin(ωt+ δ) (2.8)

where τ is the stress, and δ is the phase shift (in [◦] between applied strain and

measured stress (see figure 2.4(b)). Typically, linear responses are obtained if small

amplitudes are used of the applied strain. If larger stresses and/or amplitudes are used,

the measurement will tend to yield non-linear responses of the materials [48, 90]. In

this thesis, viscoelasticity of samples was investigated using small amplitude oscillatory
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shear (SAOS).
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Figure 2.4: (a) Two-plates model to represent oscillatory shear with the top plate oscillating

sideways due to the applied force (F ). The bottom plate remains stationary and the deflection

angle (ϕ) in the shear gap (h) is shown to represent the shearing of the material. (b) Shear strain

function (γ(t)) is represented with the resulting shear stress function (τ(t)). In this case, both

functions have the same frequency, but between the applied strain and the resulting stress there

is a phase shift angle (δ).

For an idealviscous fluid, Newton’s law applies:

τ(t) = η∗γ̇(t) (2.9)

where η∗ is complex viscosity, τ and γ̇ are sine functions in order of time. For these type

of samples the phase shift angle between strain and stress is δ = 90◦ [49, 89, 90].

For idealelastic materials, Hooke’s law applies:

τ(t) = G∗γ̇(t) (2.10)

where G∗ is the complex shear modulus, with τ and γ̇ being time-dependent in sine

functions. The phase shift angle for purely elastic samples will be δ = 0◦.

For viscoelastic samples, the phase shift will have an angle value between 0◦ < δ <

90◦. The rheological behaviour of these samples comprises both viscous and elastic

deformations, which can be characterised and quantified with the use of complex math-
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ematics by calculating the loss modulus (relative to the viscous portion) and the storage

modulus (relative to the elastic portion) [49, 89, 90]. The loss modulus, G′′, measures

the deformation energy used by the sample during and after shear. The energy loss

occurs while there is loss of the material’s structure, i.e. when the sample flows while

its molecules or particle components are moving in relation to each other, thus showing

an irreversible deformation behaviour. G′′ (the imaginary component) is defined by:

G′′ =
τo
γo

sin δ (2.11)

The storage modulus, G′, measures the deformation energy stored by the sample during

shear. After shearing, the sample can recover partially or completely to compensate

the previous structure deformation, thus showing a reversible deformation behaviour.

Therefore, G′ represents the sample’s elasticity (the real component), which can be

defined by:

G′ =
τo
γo

cos δ (2.12)

From equation 2.8, and based on the material properties G′ and G′′, this function

can be written as:

τ = G′(ω) sinωt+G′′(ω) cosωt (2.13)

The relation between G′, G′′ and G∗ is that |G∗| =
√

(G′)2 + (G′′)2. The damping

factor, tan δ = G′′/G′, is the ratio between the viscous and elastic portion of a sample,

and for viscoelastic samples, it will have a value between 0 < tan δ < ∞.

A simple model that describes the behaviour of viscoelastic materials is the Maxwell

model that relates the response of the material based on its characteristic relaxation

time (λ), i.e. time that the material takes to respond to the applied strain.

τ + λ
∂τ

∂t
= η0γ̇ (2.14)

Large values of λ in practice mean that the material has elastic behaviour, while lower

values of λ represent a viscous behaviour. In this equation, η0 represents zero-shear
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viscosity, which is the viscosity at the limiting value of complex viscosity (η∗) at infinitely

low angular frequencies (limω→0 η
∗(ω)) [49, 89, 90].

Therefore, in the case of the Maxwell model for viscoelastic fluids, G′ and G′′ can be

represented as follows [89]:

G′ =
ηω2λ

1 + ω2λ2
(2.15) G′′ =

ηω

1 + ω2λ2
(2.16)

In oscillatory shear rheology it is common to perform an amplitude test to determ-

ine the linear viscoelastic range (LVE) of a material. In this type of test the angular

frequency (ω) is kept constant while the amplitude of the applied strain is varied. Monit-

orisation of G′ and G′′, as well as δ and η∗ (or tan δ), in function of the strain. Typically,

if the applied strain is too large the sample’s structure or network (held by either chem-

ical or physical interactions) can be irreversibly affected. From that point onwards, it is

common to observe decrease of both loss and elastic moduli. The strain values before this

occurs are due to a stable structure where reversible deformation occurs nondestruct-

ively, hence denominating this range of linear viscoelastic range (usually performed at

small amplitudes) [90].

The linear viscoelastic range is defined by the proportionality of the applied strain

and measured parameters. If analysing the material’s behaviour well within its LVE

range, it is common to relate the resulting G′ and G′′ to characterise the sample. There-

fore, if G′ > G′′, the elastic behaviour dominates over the viscous portion, indicating a

solid-like behaviour; if G′′ > G′, the viscous behaviour is dominating the elastic charac-

teristics of the sample, indicating a liquid-like character. Another situation could be if

G′ = G′′, in which case the material has balanced characteristics of both elasticity and

viscosity [89].
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From the discussion above, it is clear that for an unknown sample it is desirable

to determine the LVE range and critical strain, and it is important to keep in mind

that these parameters are valid only for the angular frequency tested. Following the

amplitude sweep, is usual to test sample’s rheological behaviour at variable frequencies,

keeping the amplitude at a constant value. In a oscillatory frequency sweep the informa-

tion collected on the sample’s rheological behaviour (G′ and G′′), studied in the LVE, is

time-dependent. The sample’s behaviour can be interpreted in terms of its response to

the applied strain at long times (low frequencies) compared to its response to the same

strain at short times (high frequencies).

Knowing the amplitude and angular frequency that can relate to practical use of

the specific test sample, varying the temperature, pressure or analysing its behaviour

along time, are common experiments that can yield further information on the sample’s

rheology [49].

2.2.5 Rheometry and instrumentation

The rheological characterisation can be challenging due to the importance of choosing

the most suitable hardware to correctly characterise the sample. In this section, the

focus is on explaining how a conventional (rotational/ oscillation) rheometer works,

what were the different geometries used for all rheology experiments and an explanation

of how these measure the viscosity, as well as describing other instrumentation, such

as viscometers, used to acquire viscosity values at different conditions than those

measured with the rheometer. The equipment and techniques described in this section

were those proven to be the more convenient and available at the time to use for an

appropriate rheological measurement of protein solutions. It is worth noting that there

are more measurement equipment and for a complete revision of the different equipment

and techniques available, particularly for traditional techniques and instrumentation,
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references such as [91] and [59] are compreehensive sources for this information.

2.2.5.1 Rheometer

The rheometer is an advanced instrument that allows the user to characterise the rhe-

ological properties of samples through various rheological tests, such as stress or shear

rate controlled tests, creep and relaxation tests, including various types oscillatory tests.

Conventional rheometers have a single-head where the motor and transducer are in

the same system on the side which connects to the measuring geometry. This single-head

can be controlled in two modes: 1) controlled shear rate (CSR) , where the deflection

angles and rotational speeds are controlled by the motor, with the resulting torques be-

ing detected; or 2) controlled shear rate (CSS) , where the torques are set by the motor

and the deflection angles or rotational speeds are detected by the position sensor.

A bearing is needed in a rheometer to allow that its movable part can rotate around

a fixed axis. Bearings can be of different types (e.g. air, mechanical, or magnetic) and

their use in rheometer instrumentation are to reduce the internal friction effects and

inertia effects to the minimum, so that the total torque (Mtotal) measured is due to the

rheological response of the test sample only. In an air bearing, the rotating parts float on

an air ’bed’ created by the continuous supply of compressed air into a gap between the

rotor and the stationary component. This is to reduce direct mechanical contact between

moving and fixed parts, and to reduce potential increase of internal frictions [49].

The rheometers used throughout this work were an Anton-Paar (Graz, Austria)

Modular Compact Rheometer (MCR) 301, MCR 302 and MCR 501; as well as a TA

Instruments (New Castle, Delaware, United States of America) AR-G2 model.
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2.2.5.2 Bulk measurements

Bulk rheology measurements can be performed with different type of geometries. In

this case, since protein solutions are generally considered low viscosity samples, the

choice of geometries is largely due to this fact. Besides low viscosity, the other limiting

factor can be availability of sample volume. For these reasons, this section will only

focus on the measuring geometries that were used specifically for the studies presented

in this thesis.

1. Cone-and-plate

A cone-and-plate geometry is composed by a lower fixed flat circular plate and a

top moving shallow cone which has a truncation (Figure 2.5)Ṫhe dimensions of

the geometry are given by its radius (R) and its angle (α). Truncation of the

cone avoids any friction between cone and the bottom plate, and allows a fixed

gap setting for analysis (as opposed with plate-plate geometry, where different gap

settings may be chosen). With a cone-and-plate, the measurement of shear stress

depends of torque (M) and its radius (R), where Css is the measuring system’s

constant depending on the radius:

τ =
3M

2πR3
= CssM (2.17)

Therefore an increased sensitivity can be achieved if the cone’s radius is larger

[48, 49].

To calculate the shear rate in a cone-and-plate gap,

γ̇ =
vmax

hmax
=

ωR

R tanα
=

ω

tanα
≈

ω

α
(2.18)

where the maximum velocity and gap are reached at the edge of the cone, and

for cones with small angle (e.g. < 3◦) tanα is approximately equal to α. In these
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cases, and from this equation, the shear rate will be independent of cone angle

and radius, therefore, it will remain constant throughout the sample [48].

The advantages of the cone-and-plate geometry are: it shows constant shear rate

throughout the conical gap (in contrast to the varying shear rates conditions in

a parallel plate geometry); the sample volume can be very small; cleaning and

filling the gap is relatively easy. Disadvantages are: the limitation of particle

size regarding the fixed measurement gap; as the sample contains an air/water

interface at the cone’s edge, evaporation can be a problem [49].

Cone-and-plate geometries used throughout this study were stainless steel CP50-1

(R = 50 mm and cone angle = 1◦) and CP40-0.3 (R = 40 mm and cone angle

= 0.3◦), both from Anton-Paar. Sample volume for CP50-1 was 675 µL and

for CP40-0.3 was 150 µL. This geometry was always used with an evaporation

blocking system/ peltier hood.

L = cone diameter

αh

Figure 2.5: Schematics of the cone-and-plate measuring system. L represents the geometry’s

diameter, α is the cone angle and h is the cone’s fixed gap related to its truncation.

2. Double-gap concentric cylinder

The double-gap concentric cylinder geometry is a modified concentric cylinder that

allows measurement of low viscosity samples due to its increased shear area which

is in contact with the sample. An inner cylinder is in the centre of the cup which
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results in an annular gap (see figure 2.6). To achieve uniform shearing (rate)

conditions in the inner and outer gap, the length of the immersed part of the

rotating bob is L ≥ 3R3 and the ratio between radii is δcc = R4/R3 = R2/R1 ≤

1.15 [49]. The major advantage of this geometry is the capability of achieving lower

torques. However, sample volume is much larger than that used for cone-and-plate

and it can be more difficult to clean [49].

The double-gap geometry used in this work was a stainless steel DG26.7 (Anton-

Paar, Graz, Austria). Sample volume when using this measuring system was 3.8

mL. The relevant dimensions of the DG26.7 were: L = 40 mm; R1 = 11.914 mm;

R2 = 12.333 mm; R3 = 13.334 mm; and R4 = 13.795 mm (Figure 2.6).

R4

R3
R2

R1

L

Figure 2.6: Schematics of the double-gap concentric cylinder measuring system. L represents

the length of the geometry immersed in the sample, R1 to R4 are the different radii that define

the annular gap where the sample is loaded.

2.2.5.3 Interfacial shear rheology with the double wall-ring geometry

Interfacial rheology studies the fluid dynamics of films or layers that are formed on the

interfaces of liquids by measuring their response to a dilatational deformation or a shear

deformation. Interfacial rheology describes the relationship between the deformation of

the surface, the stresses applied on and in it, and the resulting flows in the sub-phases.

There are many techniques that can be used to describe the rheology of an interface,
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some being indirect by measuring via imaging and other being direct methods, meas-

uring directly the surface [92]. Examples of direct interfacial rheology measurement

techniques are with the double wall-ring, a bicone geometry, oscillating needles and tor-

sion pendulum technique [92,93].

In interfacial shear rheology, where the measurements are typically performed with

a constant surface area, the flows are generated by moving solid geometries within the

interface or by applying varying surface pressures [93]. It is therefore important that the

resulting flow can be decoupled only for the interfacial layer rather than having contribu-

tions due to the sub-phases. For this, the design of the geometry is very important where

the measurement of interfacial viscosity can be maximised. A dimensionless parameter,

the Boussinesq number, can describe the ratio of the interfacial stresses to bulk stresses,

Bo =
(ηsV/L)Ps

(ηV/LB)AB
=

ηs
ηlG

(2.19)

where ηs is the interfacial shear viscosity, η is the bulk shear viscosity and L and LB are

characteristic length scales for the shear flow in the interface and bulk, respectively. Ps

is the contact perimeter between the interface and the geometry, AB is the contact area

between the geometry and the bulk, V is velocity, and lG is the characteristic length

scale of the geometry. If Bo ≫ 1, the surface shear viscosity dominates over bulk. This

can be increased with use of a geometry that has a larger contact area or that minimises

the characteristic length scale [93,94]. This is the case of the double wall-ring, since the

dimensions of the ring yield a lG = 0.7 mm, leading to higher Boussinesq numbers when

compared to the bicone [94].

The double wall-ring (DWR) (Figure 2.7) is a geometry composed by a trough and a

ring that is positioned at the gas/liquid or liquid/liquid interface and which is connected

to the rheometer (in this case, a AR-G2, TA Instruments, USA). The sample holder,

made of Teflon material, was placed on the bottom peltier plate of the rheometer. The

ring was square-shaped (cross-section), made of platinum/iridium so that it could be
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flamed to remove organic contaminants. The walls of the ring had a step to prevent

meniscus effects at the inner and outer sides of the trough. According to the developers

of this fairly recent geometry, the DWR presents a ration As to Ps, respectively, interfa-

cial contact area and perimeter, is about 48 times smaller when compared to a bi-cone

geometry with a similar radius that of the ring, which results in a high Boussinesq num-

ber for a given surface viscosity [94]. Sample volume for these experiments was of ∼18

mL of fresh sample. After sample loading, the ring was lowered and positioned on the

freshly formed air/water interface.

According to Vandebril et al., it is sometimes necessary to correct the experimental

data for the case that deviations between this data and theoretical values occurs. Cor-

rection of data is performed by computing corrected values via an algorithm developed

by the authors [94]. However, the authors also demonstrated that corrections are only

necessary when surface viscosities reach values below 10−5 Pa.s.m. In all the cases of

our measurements, our data points were above this limit.

Liquid

Air

Figure 2.7: Schematic of double wall-ring (DWR) measuring system for interfacial shear rheo-

metry (adapted from reference [94]). The ring has a square-shaped cross-section, with width

of 1 mm and is made out of Pt/Ir. The radii R1 to R6 are represented to show the different

dimensions of the fixture, the height H from the interface to the bottom of the channel measures

10 mm.
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2.2.5.4 Rheometer calibration check

Calibration tests with ideal viscous (Newtonian) fluids such as deionised water or other

solvents of similar viscosity (at 20 or 25 ◦C) were run to test if the instruments showed

the minimal torque according to expected (typically 0.1 µmN.m or better, depending on

the instrument).

The calibration checks, which were run for all geometries used, also served as dia-

gnostic that thel instruments were measuring the correct viscosities for the standard oils.

An error of 2 % was allowed for each of the standard oils being measured. The meas-

urements were done both at 20 and 25 ◦C. The standard oils were bought from Paragon

Scientific Ltd. (Wirral, UK) and Cannon Instruments (State College, Pennsylvania,

USA) in a range of viscosity that would cover the low viscosities of the test samples.

These general purpose viscosity reference oils were blends of hydrocarbonate oils. Viscos-

ities for all these general purpose standard oils were based on the value for the viscosity

of water (1.0016 mPa.s at 20 ◦C; defined by NIST).

2.2.5.5 Sample preparation for rheological analysis and other measurement

details

For all rheological experiments performed, the experimental settings had to comprise

of devices that would allow a constant temperature during analysis. For this reason,

the lower fixed plate or cup were connected to a peltier unit. As the moving fixtures

(cone or cylinder) were not connected to a peltier device, if possible, the measurement

temperature was maintained by use of a peltier hood.

An evaporation blocking system was used with the cone-and-plate to prevent

evaporation of sample. This system is comprised of a inner metal ring inside the peltier

hood that would sit in a solvent trap around the lower plate. Plastic vapour locks were

used to sit on top of the solvent trap present on top of the peltier hood.
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It was important to reduce the appearance of air bubbles in the samples and during

loading to avoid artifacts in the measurements. Regarding loading, this would be

resolved by fine tuning the speed used to lower the upper fixture. Generally, depending

on how concentrated the samples were, a low vacuum was used to induce bursting of

air bubbles. It was important to do this procedure for short times (<10 s) to prevent

sample evaporation.

Further protocol details for the rheological tests can be found in the methods section

of each of the experimental chapters.

2.2.6 Viscometers

The terms viscometer and rheometer are not well defined, however it is suggested that

a viscometer can be a simple device that can only measure flow and viscosity of fluids,

with some devices built to allow controlled shear rate rotational tests [49].

2.2.6.1 Falling ball viscometer

An example of a viscometer is the falling ball viscometer where a steel ball is sinking

due to gravity through the liquid which is filled in the glass capillary of define inner

diameter [49,59]. These viscometers track the time that a ball takes to move downwards

through the test fluid over a defined distance between two level marks. The viscosity

is then determined from this, based on the calibration of the system using viscosity

standards of known viscosity. By using different angles at which the glass capillary is

set, different velocities can be achieved by the falling ball, and thus different shear rates

can be experienced by the fluid. Testing with a falling (or rolling) ball viscometer is a

single-point viscosity test. During a test period, where the ball rolls at a particular angle,
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the shear rates are changing within a certain range depending on the uncontrolled motion

of the ball, on the distance of the ball to the capillary’s wall, and on its velocity. Only

ideal-viscous samples should be measured without error with this instrumentation as the

shear rate conditions are not constant [49,59]. From these measurements, the kinematic

viscosity is usually reported. As mentioned in section 2.2.4.1, by knowing the density

of the analysed samples, the kinematic viscosity can be converted to shear viscosity.

Throughout this work, viscosity values obtained from the falling ball viscometer are

reported in [Pa.s], since density measurements of the samples were performed (see section

2.2.11).

Some advantages of this instrumentation are its ease of use and that the measurement

is free of evaporation or any air/water interface. Micro falling-ball viscometers allow the

use of low sample volumes (∼ 1 mL) and in the case of protein solution analyses, the

inner interface can be silanised to prevent protein deposition and interaction with the

solid glass interface [49].

An automated micro falling-ball viscometer (AMVn) from Anton-Paar (Graz, Austria)

was used. The capillary used had an inner diameter of 1.6 mm and a steel ball of diameter

1.5 mm. With this instrument the motion of the ball was detected via induction using

magnetic sensors. For a simple measurement, the inclination angle was set at 70◦ (and

-70◦). This instrument allowed temperature control via an attached peltier unit.

Calibration of the capillary to be used with the test samples was performed by

running DI water and a viscosity standard oil at measurement angle matching that for

the sample measurement.

2.2.6.2 mVROC - microviscometer/rheometer-on-a-chip

Another type of viscometer used was the microviscometer/ rheometer-on-a-chip (mV-

ROC), by Rheosense, Inc. (San Ramon, California, USA). The mVROC is a microfluidics
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slit rheometer where the microfluidics chip is composed of a microchannel (rectangular

slit) made of borosilicate glass mounted on a gold-coated silicon base. Viscosity is meas-

ured as a function of pressure drop as the fluid flows in the microchannel (width = 3.02

mm; depth depends on the chip used). As the fluid flows through the slit, pressure

is measured through three sensors located at increasing distances from the inlet [79]

(Figure 2.8). The pressure drop (∆P) which drives the flow (Q) streamwise through a

distance (L), is related to the wall shear stress (τw) by the following expression [79]:

wd.∆P = 2L(w + d)τw (2.20)

The nominal wall shear rate (γ̇w) associated to laminar flow of a Newtonian fluid is

a linear function of flow rate (Q), by the equation:

γ̇w =
6Q

wd2
(2.21)

Pressure sensors

Figure 2.8: Schematics of the Rheosense slit microviscometer/rheometer-on-a-chip (mVROC).

L is a length of 6.5 mm representing the distance where all pressure measurements are done

streamwise. ∆P represents the measured differential pressure; Q represents the flow and the

arrow is pointing in its direction; w and d represent the width and the depth of the channel,

respectively.

In a typical experiment, the flow rate, Q is varied using a syringe pump and Hamilton

gastight glass syringes (Reno, Nevada, USA). The mVROC device outputs the pressure
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drop as a function of flow rate, which is used to calculate the nominal or apparent

viscosity via η(γ̇) = τw/γ̇w [79]. For incompressible 2-D ows of liquids with a rate-

dependent viscosity, the calculation of γ̇w is more complex since the velocity prole is

no longer parabolic. The true shear rate (γ̇w,true) and true shear viscosities (η(γ̇w,true))

can therefore be calculated, respectively, using the Weissenberg-Rabinowitsch-Mooney

equation [59,79]:

γ̇w,true =
γ̇a
3
[2 +

d(lnγ̇a)

d(lnτw)
] (2.22)

η(γ̇w,true) ≡
wd∆P

2L(w + d)

1

γ̇w,true
(2.23)

The chips used in this work were A05 and D05, with a channel depth of 50 µm each,

with different maximum pressure capability of 10 kPa and 1000 kPa, respectively [95].

2.2.7 Quantification of protein concentration by UV-visible spectro-

scopy

Ultra-violet (UV) spectroscopy is a method to analyse quantitatively the concentration

of a protein solution. The peptide bond has an absorption maximum at λ=205 nm, but

it is the absorbance of the aromatic rings of the amino acids tryptophan and tyrosine

that show its maxima between 275 nm < λ < 280 nm, also contributed by the disulfide

bonds although in less quantity [86, 96].

According to Lambert-Beer’s Law, that states that molar absorptivity (also known

as molar extinction coefficient)(ε) is constant and absorbance (A) is proportional to

concentration (c) for a given substance dissolved in a solute and measured at a specific

wavelength (λ):

Aλ = εcl = εc (2.24)
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with absorbance having arbitrary units, concentration in molar (M), when l is the

pathway in cm (usually 1 cm), and ε in L.mol−1cm−1 [86]. The molar extinction

coefficient (εmolar) converts into percent extinction coefficient (A1%
1cm) by εmolar×10 =

ε%×MWprot. The proportions of the aminoacids tryptophan and tyrosine vary between

different proteins, thus for individual proteins its extinction coefficient will vary. Extinc-

tion coefficients can be calculated theoretically by knowing the numbers of Trp, Tyr and

disulfide bonds and then calculating by linearly combining the individual contributions

of these amino acid residues, knowing their respective extinction coefficients [97]. The

extinction coefficients for these residues depends on their microenvironment. In most

globular proteins, most of these cromophores are buried in hydrophobic patches in the

interior of these proteins. [97, 98].

For rHA solutions, the percent extinction coefficient, A1%
1cm, of 5.8 was used [99].

For β-lactoglobulin solutions,A1%
1cm = 9.6 [100]. For the mAb solutions, A1%

1cm was 1.45,

calculated theoretically and provided by MedImmune.

2.2.7.1 UV-Vis spectrophotometer

An Agilent 8453 UV-Vis spectrophotometer was used (model G1103, Agilent Technolo-

gies, Germany). A quartz cuvette with 1 cm path length (Hellma, Germany) was used

for measurements. Cleaning of the cuvette was done with an aqueous solution of 2%

v/v Hellmanex (Hellma, Germany), and thoroughly rinsed with acetone and deionised

water.

The spectrophotometer had a range of 190 to 1100 nm, collecting spectra with a

resolution of 2 nm or better. This spectrophotometer had a UV light source, deuterium

lamp, as well as a visible light source from a tungsten-halogen lamp. It used on single
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beam mode, where the buffer solution was used as blank before measuring the absorb-

ance of diluted protein solutions.

For all protein solutions at higher concentration than 50 mg/mL, a double dilution

scheme was followed to allow a measurement of sample diluted to 0.5 mg/mL. Protein

samples diluted to this concentration would typically guarantee an absorbance value

at the mid-range of linearity for the Lambert-Beer function. Each second dilution was

produced in triplicate so that the absorbance measurement (and posterior concentration

calculation) was reported as an average of 3 measurements. Dilution factors were cal-

culated and used for determination of concentration. Dilutions were chosen so that the

dilution factors would not exceed 1000. An error of up to 10 % was accepted for these

measuremets.

Besides the absorbance measurement at 280 nm, absorbances at 310 and 340 nm were

also monitored. Protein concentrations were reported with its concentration corrected

for absorbance at 310 nm, related to possible interference of aggregates absorption. Thus,

the following equation was applied to calculate the protein sample concentration:

c =
A280m −A310nm

A1%
1cm × 0.10×DF

(2.25)

where DF is the dilution factor.

2.2.7.2 NanoDrop - microquantitation spectrophotometer

When samples were not in sufficient volume to use for conventional UV-

spectrophotometry measurements, the NanoDrop 2000 spectrophotometer was used

(Thermo Scientific, UK). This microquantitation spectrophotometer uses samples of

2.5 µL to measure UV-Vis absorbance. The sample was held in place by its surface

tension between two optical fibers on a pedestal that could optimise the pathlength ac-

cording to the sample concentration, thus allowing measurement of UV -Vis absorbance

for highly concentrated protein samples. The instrument used a Xenon pulse lamp, with
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a wavelength range between 190-840 nm, and a linear CCD array detector analysed the

light with a spectral resolution below 2 nm. The pathlength could be fixed to 1 mm, as

well as it could automatically vary for high concentration samples [101].

2.2.8 Light Scattering techniques

When a solution with molecules is illuminated by light, depending on the optical para-

meters of the instrumentation, part of this light will be scattered by the molecules. This

scattered light can be analysed regarding its intensity or its fluctuations. Scattered light

measured in terms of its time-averaged intensity is called static light scattering. Whereas

when it is measured in terms of the fluctuation of intensity with time, it is called dynamic

light scattering. With the former, the parameters that can be derived are the weight-

average molecular weight of the molecules present in solution, as well as their radius of

gyration and self virial coefficient. DLS allows to characterise the molecule’s translation

diffusion coefficient and obtain a hydrodynamic radius (or diameter) [102,103].

2.2.8.1 Particle sizing using dynamic light scattering

Dynamic light scattering (DLS) is a technique for measuring the size of particles within

the sub micron region. DLS measurements are based on Brownian motion, the random

movement of particles in solution due to displacement of solvent molecules, and relates

to the size of the particles. An estimated measure of the hydrodynamic diameter (HD)

of the analysed particles is based on the measurement of the translational diffusion

coefficient (D) of particles in a solution using the Stokes-Einstein-Sutherland equation:

HD =
kBT

3πηD
(2.26)

where kB is Boltzmann’s constant, T is temperature and η is the solvent viscosity. HD

measured by DLS refers to the diameter of a sphere that has the same diffusion coefficient

as the sample particle. Besides temperature and viscosity, the diffusion speed can also

62



be influenced by ionic strength of the medium [104]. From equation 2.26, the larger

the diameter of the particle, the lower its diffusion speed will be. The DLS instrument

thus measures the diffusion and relates to the size of the particles by illuminating these

with a laser and analysing the intensity fluctuations of the scattered light. The diffusion

coefficient is measured from the time correlation function:

g(τ) = 1 +B exp[−2Dq2τ ] (2.27)

where τ is the time (in µs), B is the signal amplitude of the correlation function. q , the

scattering vector, is defined from the equation:

q =

(

4πn

λ0

)

sin(
θ

2
) (2.28)

where n is the refractive index of the solvent, λ0 is the wavelength of the laser, and θ

is the scattering angle. The instrument uses a digital correlator to produce correlation

functions which relate to the particle size in the suspension tested by the rate of

decay of the correlation function - smaller particles show a rate of decay faster than

larger particles. The software then calculates statistically (through algorithms) the size

distribution of the test sample. The typical size distribution graph is a distribution of

size classes on the x-axis, while the y-axis shows the relative intensity of scattered light

(intensity distribution). This distribution can then be converted to volume distribution

and number distribution [105,106].

Sizing measurements were performed using the Zetasizer NanoZs dynamic light scatter-

ing instrument by Malvern Instruments (Malvern, UK). Samples were illuminated by

a 633 nm laser and light scattering was detected at 173◦ by an avalanche photodiode.

DLS results were managed and analysed using Malvern’s Zetasizer software version 7.01.

The quartz cuvette was for low sample volume (12 µL), and it was extensively cleaned

with detergent (2% v/v Hellmanex), thoroughly rinsed with DI water and acetone of

HPLC grade (Fisher, UK). An air duster was used to prevent any dust contamination
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that could originate artifacts during readings. Protein samples were measured at 1

mg/mL diluted in sample buffer, to reduce non-linearity effects on measurements by

increased viscosity of solvent with higher concentrations. Detailed protocols for these

measurements will be referred in each of the experimental chapters methods subsection

on DLS.

2.2.8.2 Static light scattering theory

The equation that relates the intensity of scattered light with the properties of the

macromolecules in solution is:

Rθ

K∗c
= MP (θ)− 2A2cM

2P 2(θ) + ... (2.29)

where Rθ is the excess Rayleigh ratio, c is the concentration of the macromolecule in solu-

tion (g/mL), M is the molecular weight, A22 is the self (or second) virial coefficient, K∗

is the optical constant, and P (θ) is the particle scattering function. The excess Rayleigh

ratio (Rθ) is the normalised scattering intensity for a specific scattering angle, relating

the intensity of light, measured as voltage by photodiodes, to the scattering intensity

(IT ), refractive index (nT and Rayleigh ratio (RT ) of a known reference compound, e.g.

toluene (equation 2.30).

Rθ =
IAn

2
0RT

ITn2
T

(2.30)

The optical constant K∗ is defined for a vertically polarised incident light by the

following equation:

K∗ =
4π2n2

0

λ4
0NA

(dn/dc)2 (2.31)

This constant is therefore a function of n0 the refractive index of the solution, λ0 the

incident light wavelength, NA Avogadro’s number, and of dn/dc the refractive index

increment specific for the scattering macromolecules.
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With infinitesimal dilutions (c → 0) and scattering angle tending to zero (θ → 0◦),

the equation 2.29 can be simplified to

Rθ

K∗c
= Mw (2.32)

which determines the value of molecular weight for the macromolecule in solution. Since

in practice, static light scattering measurements are made of finite dilutions and scatter-

ing angles, an extrapolation to zero needs to be made with one or both limiting conditions

in order to calculate the molecular weight. Therefore, for polydisperse solutions this

molecular weight will be apparent, since higher concentrations may yield non-ideality in

solution, where non-specific interactions may occur between protein species causing the

molecular weight to differ from the actual molecular weight. It will also be a weight-

averaged molecular weight, since it accounts for the presence of more than one species

in solution [102,103].

The particle scattering function P (θ) refers to the change of scattered light intensity

with the angle of detection. It is typically a decline of scattered light with increasing

angle and it is due to intramolecular interference of light scattered by different points of

the same particle [102]. For protein species with a maximum dimension < λ0/20 there

is small angular dependence, thus behaving as isotropic light scatterers. In contrast,

for much larger sizes, protein species will scatter light differently from different points

of its structure, thus creating an angular dependence. It is from the particle scattering

function (2.33) that the radius of a particle (e.g. higher order protein species) can be

calculated [102,103].

lim
θ→0

1

P (θ)
= 1 +

16π2

3λ2
R2 sin2(θ/2) = 1 +

q2

3
R2 (2.33)

where λ is the wavelength of incident light in a given solven, R2 is the mean square

radius of the macromolecule, and q is the scattering vector. According to equation 2.33,

for small angles, plotting P (θ) against sin2(θ/2) will yield straight lines with slopes pro-
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portional to R2. This means that the slope of the angular variation of scattered light

intensity, when extrapolated to angle zero, gives the root mean square radius of the mac-

romolecule (R). The radius can thus be determined without knowing the concentration

and dn/dc of the scattering particles. For the case of proteins, R can be used to model

protein conformation and understand better its triaxial structure [103].

Equation 2.29 can be represented in the following form:

K∗c

Rθ
=

1

MP (θ)
+ 2A2c+ 3A3c

2 + ... (2.34)

Equations 2.29 and 2.34 represent formalisms, i.e. different ways of processing the

experimental data and are denominated Debye and Zimm formalisms, respectively.

Performing measurements at multiple angles allows extrapolation of the ratio

K∗c/Rθ to zero angle (sin2(θ/2), which with an extrapolation to zero concentration

forms the basis of the Zimm plot (Figure 2.9(a)). In this case, both concentration and

scattering angle dependence is taken in account. A Zimm plot is an analysis method

to extrapolate weight-average molecular weight, the second virial coefficient and the

radius of the macromolecule, based on the Zimm formalism.

A simpler way of processing the data is by plotting K∗c/Rθ versus concentration (c)

neglecting the scattering angle dependency, thus generating a Debye plot (figure 2.9(b)).

This can be the case for protein monomers when dimensions can be < λ0/20. From

this, by extrapolating to zero concentration, the (apparent) weight-averaged molecular

weight can be estimated from the interception at y-axis, and the self virial coefficient

can be estimated from the slope of the linear regression [102]. Note that processing

experimental data via a Debye plot can be performed by either using the Zimm or the

Debye formalisms and the same applies when processing data via a Zimm plot.

The parameter from equation 2.29, A2 the self virial coefficient, is related to the

thermodynamic aspect of the solution. The equation 2.29 has further terms for cross

(third) and higher virial coefficients that can be ignored for dilute concentrations. When
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plotting Rθ/K
∗c against concentration (c), the function becomes linear at the low

concentration region, with its slope directly proportional to the self virial coefficient.

The deviation from linearity occurs at higher concentrations, hence when working at

these conditions non-linearity terms need to be considered [102,103,107].

A2 can be useful in protein formulation since it helps characterise non-specific

intermolecular interactions. The buffer conditions (e.g. ionic strength, pH) can change

the virial coefficients, thus giving information on the effect of the buffer constituents

on the interactions. The virial coefficients do not give a specific form of interaction,

only the net average interaction. A positive value indicates a net repulsion, while a

negative value indicates a net attraction. It is also possible to calculate cross virial

coefficients which represent the non-specific interactions between different species in

solution [107,108].

Experimental details

1. Self virial coefficients

To determine the self virial coefficient for both the β-lactoglobulin (12.7 mg/mL)

and the mAb (5 mg/mL) in their buffers (10 mM His-His.HCl, pH 6.0), a compos-

ition gradient multi-angle light scattering (CG-MALS) Calypso I instrument from

Wyatt Technology Corp. was used. This system allowed samples to mix through

a series of feed syringe pumps that were controlled by the software. Therefore,

a protein stock solution would be continuously diluted with buffer in the number

of step dilutions required, in a continuous process. The mix was then fed into a

multi-angle light scattering system (DAWN-HELEOS II, λ0=658 nm, 18 angles,

fused-silica flow cell) and an OptilabREX differential refractometer (light source

660 nm) (both detectors from Wyatt Technology Corp., Santa Barbara, Califor-
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Figure 2.9: (a) Example of a Zimm plot, where K∗c/Rθ is plotted for four different concentra-

tions (c in mg/mL) and for various scattering angles (θ) (Zimm formalism; k is an arbitrary offset

factor). The molecular weight is calculated by common intercept of the extrapolation of each

concentration curve to zero angle (θ=0◦) and the extrapolation to c=0 mg/mL intercept. The

slopes can give the radius of the molecule (R) and the self virial coefficient values (A2). (Image

based on reference [103].) (b) Example of a Debye plot, where K∗c/Rθ is plotted in function

of concentration, using scattering data from only one angle (θ) (Zimm formalism). In this case,

molecular weight can be calculated from the intercept at y-axis and the slope can give the self

virial coefficient value.

nia, USA). All protein samples and buffers were filtered prior to analysis, using

0.1 µm pore-size Millex-VV PVDF syringe filters. Measurements were taken at

25 ◦C. The system was extensively cleaned with a detergent aqueous solution of

5% v/v Contrad 70, followed by a thorough flush with ultrapure water. Cleaning

solutions were filtered with 0.22 µm pore size Millex-GV PVDF membrane syringe

filters (EMD Millipore, USA). All buffers and solutions were previously degassed

to avoid presence of air bubbles.

2. Size-exclusion chromatography with static light scattering

Multi-angle light scattering was used for the determination of molecular weight

and radius of mAb monomer and aggregated species. The MALS detector was a

DAWN HELEOS II (λ0=658 nm, 18 angles, fused-silica flow cell), connected to an
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Agilent Technologies 1200 series liquid chromatography system (Agilent Technolo-

gies, Germany). Details of this experiment are described in section 2.2.9.3.

2.2.9 High performance size exclusion chromatography

Size exclusion chromatography (SEC) is a liquid chromatography technique, also known

as gel permeation chromatography (GPC) or known as gel filtration chromatography.

SEC will be referred to in this work as the general term that describes the method of

separation of molecules by molecular weight distribution via a chromatographic method.

This method was used in its high performance liquid chromatography format, for quant-

itative analysis purposes only and not for fractionation of materials. The use of high

performance size exclusion chromatography (HPSEC) allowed the analysis of synthetic

polymers and/or biomacromolecules in an appropriate mobile phase in less than 30

minutes.

SEC separates on the basis of molecular hydrodynamic volume or size, and not by an

enthalpic interaction with stationary phase, such as ionic exchange or adsorption parti-

tion chromatography. The sample is dissolved in its solvent and injected into a column

packed with porous particles of an average pore size and particle size. The mobile phase

can be the same as the sample’s solvent. After injection, the molecules elute through

the column and those which are too large to penetrate the pores of the stationary phase

will elute out first, in the column’s void volume. If smaller sized molecules are present,

these will penetrate the pores respectively to its pore size. The smallest material will

freely diffuse into and out of the pores, thus taking longer to elute from the column.

In summary, the high molecular weight material will elute first from a SEC column,

followed by low molecular weight species (Figure 2.10) [102,109].

This basic principle of separation is generally accepted as the major separation mech-

anism and is termed steric exclusion. However, there are other mechanisms that can play
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an important role, such as restricted diffusion and separation by flow. Restricted diffu-

sion refers to the depth of permeation of each molecule being governed by its diffusion

coefficient, which is indirectly related to the molecule’s size. In this case, the elution

volume (time that each molecule takes to elute out of the column) should depend on

the method’s flow rate. The concept of separation by flow is related to narrow capillary

flow that can be considered to be the case of the exclusion volume around the particles

contained in a SEC column. The larger molecules occur closer to the centre of capillary

flow and thus flow faster than the smaller molecules, which are statistically situated close

to the wall (stationary particles) where the flow is slower. Therefore, there is separation

due to hydrodynamic size and exclusion volume [102].

Figure 2.10: Basic schematics of how a size exclusion chromatography method works. After

sample is injected, the separation is based on the molecular size of the solution’s components.

The larger molecular weight species will flow out first and the smaller molecular weight species

will be eluted later.

In pratical SEC experiments, one can often encounter evidence of sample - stationary
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phase interaction by the appearance of peak tailling or changes in elution times. This

is related to various types of interactions between sample and column packing and/

or long-term use of the column. It is possible to minimise this by selecting suitable

column packing, as well as suitable mobile phase, temperature, possible use of additives

to the mobile phase or sample solvent. Peak broadening can also be another problem

in SEC experiments affecting the determination of molar mass distribution. Therefore,

it is necessary to tightly control the column’s efficiency throughout its lifetime. SEC

results, as with all other liquid chromatography techniques, will be highly sensitive to

variables such as temperature, flow rate, and sample concentration. The latter is the

most dependable of the user and therefore it is crucial to keep this parameter in mind

for sample comparability [102,109].

2.2.9.1 Calibration and detectors for HPSEC

As HPSEC is a relative and not an absolute molecular weight determining technique,

the column needs to be calibrated appropriately with standards of known molecular

weight. The most simple way of running a SEC system is the conventional SEC

method where only a concentration detector is connected on-line with the column.

The concentration detector can be a UV detector or refractive index, RI, detector.

Calibration is then performed and established, allowing the analysis of samples and

determination of their molecular weight in relation to the elution volume. To achieve

the most accurate calibration it is necessary to use a series of well-characterised narrow

standards as chemically similar as possible in composition to that of the sample to be

analysed. However, it is often the case that this is unavailable, therefore the alternative

is to use broad standards or a universal calibration [102].

Another method for HPSEC calibration can be the universal calibration method,
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where chemically different standards can be compared to the samples’ chemistry. The

use of universal calibration is related to the assumption that the hydrodynamic volumes

of all species eluting at the same elution volume are identical and that the product

[η]M represents a universal calibration parameter [102]. In this type of calibration, the

intrinsic viscosity can be measured by use of a viscometer on-line with the SEC column

and the concentration detector (e.g. RI).

Another alternative is triple detection and its calibration. The detectors used for

this type of calibration are: a concentration detector (UV or RI), a viscometer (for

measurement of intrinsic viscosity) and a light scattering detector. This type of detec-

tion has the advantage of providing with weight-average molecular weight, molecular

size (within the system’s resolution), and intrinsic viscosity, along with information on

the molecular structure and aggregation - in the case of polymer samples.

In triple detection, the system can be calibrated by running only a single narrow

standard to verify the instrument constants of the detectors and allow to correct for

inter-detector shifts and inter-detector preak broadening effects [110].

Column calibration should occur at identical conditions as those chosen for sample

characterisation (same solvent, temperature, and flow rate). A good calibration usually

comprises that the standard selection covers the entire molar mass range of the samples

to be analysed.

2.2.9.2 HPSEC for the determination of level of protein aggregation

To relatively quantify the level of protein aggregation, the HPLC system used was from

Agilent Technologies 1200 series (Germany) with the following components: degasser,

binary pump with a 100 µL injection loop, an autosampler, thermostatted sample tray

(usually at 5 ◦C, unless noted otherwise), a thermostatted (at room temperature) column
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holder and a UV detector. The software used for this system was Chemstation for LC

systems, by Agilent Technologies.

A Tosoh Biosciences, LLC (USA), model TSK gel G3000SWxl column was used (7.8

mm (ID) x 30 cm (L)), composed of silica gel particles with mean particle size of 5 µm

and pore size of 250Ȧ. A guard column (silica particles of 7 µm, 6 mm (ID) x 4 cm (L))

was also used with the analytical column.

Throughout this work for all protein sample HPSEC analysis, the mobile phase was an

aqueous buffer of 0.1 M sodium sulfate (NaSO4) and 0.1 M dibasic sodium phosphate

anhydrous (Na2HPO4), titrated to pH 6.8 with 6N HCl. This buffer was filtered with

0.22 µm pore size vacuum-driven filter units (PES membrane, EMD Millipore, USA).

All protein samples were diluted to 10 mg/mL, injection volume was of 25 µL. Run

time was 20 minutes at a flow rate of 1 ml/min. Each sample was injected at least three

times, unless stated otherwise. Formulation buffers respective to the protein samples

were also injected.

As this chromatography system allowed variable injection volumes, it was possible

to change both protein sample concentration and injection volume, keeping constant the

sample loading, to check for changes in aggregation level of protein species.

For this method the column was not calibrated for molecular weight analysis, the

chosen standards were used for system suitability. Bio-Rad gel filtration protein stand-

ards (Bio-rad Laboratories, Inc., USA) were prepared according to the manufacturer’s

instructions and an aliquot was injected (25 µL) once after every 20 injections of un-

known protein samples. Bio-Rad protein standards are composed of a mixture of five

molecular weight markers ranging from 1.35 to 670 kDa. The mixture includes vitamin

B12, myoglobulin, ovalbumin, bovine gamma-globulin and thyroglobulin. An example for

the Bio-Rad protein standards chromatogram is in Figure 2.11. The system suitability

criteria were as follows:
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• resolution of peak 4: ≥ 2.00;

• peak symmetry for peaks 4 and 5: > 0.65 and < 1.20.

All samples (including buffers and Bio-Rad protein standards) were filtered through

0.45 µm centrifugal filters (Ultrafree-MC PVDF, EMD Millipore, USA). The obtained

chromatograms followed integration and peak symmetry and resolution were calculated

via the method analysis used on the software.

Figure 2.11: Typical chromatogram obtained with high performance size-exclusion chroma-

tography systems described in section 2.2.9.2 for the Bio-rad gel filtration standards. Peaks

correspond to the following proteins present in the standards mixture: 1) thyroglobulin (670

kDa); 2) bovine gamma-globulin (158 kDa); 3) ovalbumin (44 kDa); 4) myoglobulin (17 kDa);

and 5) vitamin B (1.35 kDa). Inset table refers to chromatography data obtained to assess

system suitability.

2.2.9.3 HPSEC protein analysis with multiple detectors

Two systems were used depending on the information needed: molecular weight, size

and intrinsic viscosity; or only molecular weight and size of protein species.
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1. Calculation of molecular weight and intrinsic viscosity of protein

monomer and its associative species for rAlbumin solutions

The system used for this experiment was a Polymer Labs GPC 50 (Agilent

Technologies, USA) gel permeation chromatography unit that comprises an

autosampler, a fixed volume injection loop (20 µL), thermostatted column holder,

and the following detectors: a 90◦ light scattering detector, a refractive index

detector, and a differential pressure viscometer.

The column and guard column used in this experiment were the same as for

the previous section. Protein samples were diluted to 15 mg/mL. For system

suitability, Bio-Rad protein standards were injected after every 20 injections of

unknown samples. Each sample was injected three times, with buffers injected

at least once. Elution time was kept to 20 minutes, flow rate of 1 ml/min. The

mobile phase was the same as for the conventional HPSEC set-up described

previously.

Calibration of this system was according the triple detection method described

earlier, following the software’s algorithm for calibration. The standard used were

solutions of Polyethylene oxide in PBS. dn/dc used was 0.185 mL/g.

2. Calculation of molecular weight of monomer and its associative species

for mAb solutions

For this experiment the system used an Agilent Technologies system as described in

section 2.2.9.2 with a change in the detectors used. For concentration, an Optilab

REX RI detector was used and an on-line DAWN-HELEOS II multi-angle light

scattering detector was added. Details on both these detectors can be found in sec-

tion 2.2.8.2. The following method details were kept constant as stated in section
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2.2.9.2: HPSEC analytical column and guard column (Tosoh Biosciences), mo-

bile phase, run time, flow rate, number of injections per sample, injection volume

(25 µL), column temperature and system suitability checks with Bio-Rad protein

standards.

Calibration of this experimental setup was made using a BSA standard at 2 mg/mL

in phosphate buffer and sodium azide 0.2 % (dn/dc of 0.185 mL/g), obtained from

Pierce Labs (Thermo Scientific, UK). Analysis and integration of the chromato-

grams was performed using Astra 6 software (Wyatt, Santa Barbara, California,

USA).

2.2.9.4 HPSEC for synthetic polymers

The system used was a Polymer Labs GPC 50 (Agilent Technologies, USA) gel

permeation chromatography unit that was constituted by an autosampler, a degasser, a

fixed volume injection loop, and thermostatted column holder. The following detectors

were used: 90◦ light scattering detector, a refractive index detector, and a differential

pressure viscometer.

Two Polymer Labs PLgel mixed-D columns were used (porous polystyrene and

divinylbenzene matrix, 5 µm mean particle size, ID 7.8 mm x 30 cm) with a correspond-

ing guard column (5 µm mean particle size, ID 7.8 mm x 50 mm) (Agilent Technologies,

USA). For all the polymers analysed, the sample dissolving solvent and the mobile phase

were chloroform / triethylamine (CHCl3/TEA) 95/5 % v/v. Sample concentration was

typically 3 mg/mL, except for intrinsic viscosity measurement where several dilutions

were injected. Injection volume was of 100 µL. All samples were injected three times,

with a runtime of 30 min, flow rate at 1 ml/min and column temperature at room

temperature.
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1. Determination of molecular weight and intrinsic viscosity of polymers

Calibration of the system for this purpose was performed according to the triple de-

tection method where a narrow standard was a polystyrene polymer (2-5 mg/mL).

Linear polyethylglycols (PEGs) were also analysed for validation and for compar-

ison purposes.

2. Determination of molecular weight of polymers

The same system was calibrated using the conventional method where only the RI

detector was used for concentration detection. A mixture of narrow polystyrene

standards were used for calibration (EasiVials polysterene PS-M 2mL, Agilent

Technologies, Germany).

2.2.10 Tensiometry

Tensiometry is a measurement of surface tension at an interface, e.g. liquid - vapour.

Surface tension can be defined as a force resisting change and acting in right angles to

a line of unit length in the surface of a liquid [111].

This technique was used to measure the surface tension of β-lactoglobulin samples

(see Chapter 4), and polymer solutions (see Chapter 6). Tensiometry was measured

using a Krüss K100 tensiometer using a curved Wilhelmy plate with 40.2 mm wetted

length (dimensions: 19.9 mm width, 0.2 mm thickness, 10 mm height). Experiments

were performed at room temperature (∼ 25 ◦) for at least 2 hours, and were performed

with freshly prepared samples. Sample volume was 1.2 mL and contained in a steel

vessel during measurements. Ultrapure water fitered with 0.22 µm pore-size syringe

filters (Millex-GV PVDF, EMD Millipore, USA) was measured to prior any sample

measurement, and after the plate was thoroughly cleaned. Cleaning the plate was done

with ultrapure water and then burning until incandescent to eliminate any contamin-
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ants. Sample buffer’s surface tension was also measured for comparison. Surface tension

measurements were taken every second and values were reported when equilibrium was

attained as an average with standard deviation.

The plate was made of roughened platinum and optimally wetted so that the contact

angle is close to 0◦, meaning that cos 0◦ = 1. According to the equation below,

γST =
F

L cos θ
(2.35)

surface tension should only be dependent of the force measurement, since the wetted

length is also fixed. Using a Wilhelmy plate had the advantages of not needing any

correction nor knowing the densities of the analysed liquids.

2.2.11 Density measurement

Density measurements were performed in order to determine the density of all protein

samples that were used throughout this work for later calculation of viscosity using the

falling-ball viscometry data. In all cases, the measurement was kept the same. The

densitometer DMA 35N was used (Anton-Paar, Graz, Austria). This instrument meas-

ures density via the oscillating U-tube principle, which is a U-shaped borosilicate glass

tube that contains the sample and is electronically vibrated at a specific frequency. The

characteristic frequency will change depending on the density of the sample. As density

is temperature dependent, the temperature of the measurement needs to be determined

with accuracy via a temperature sensor which is part of the instrument [112].

The densitometer was cleaned extensively with DI water and absolute ethanol before

and in between all measurements. Before every measurement of sample, the instrument’s

calibration was checked by measuring the density of DI water at room temperature (typ-

ically 23 ◦C) and cross-checked with the reference table provided by the manufacturer.

For each sample, the density measurement was made at the same temperature that was
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chosen for the viscometry measurement (with the AmVn). For this purpose, the densito-

meter was kept in an incubator for the time needed until the adequate temperature was

reached. Measurements were conducted in triplicate, recording also the temperature.

All samples were at a concentration of 1 mg/mL.

2.2.12 micro-Differential scanning calorimetry

Calorimetry is a technique for measuring the thermal properties of materials to directly

measure the enthalpy associated to physico-chemical processes related to thermal changes

[113]. Generally, there are two types of differential scanning calorimeters: heat-flux

and power-compensated. In a heat-flux calorimeter, the sample and a reference are

enclosed within a furnace which is heated at a linear rate. The thermocouples measure

the difference in heat capacity (Cp) and the heat flow is determined by the following

equation:

qh =
∆T

R
(2.36)

where qh is the heat flow, ∆T is the temperature difference between the sample and

reference, and R is the resistence of the thermoelectric disk that transfers heat to the

sample and the reference [113, 114]. A power-compensated calorimeter has the sample

and reference in separate furnaces heated separately. This technique measures the

difference in thermal power, in function of temperature or time, necessary to keep the

sample and reference at the same temperature [114].

Micro differential scanning calorimetry (µDSC) is a commonly used technique

used and applied to protein physical-chemical analysis. µDSC is typically used to

determine the transition temperature (Tm - also called melting temperature) and

obtain thermodynamic analysis of protein folding and unfolding. The µDSC measures

the excess heat capacity of a sample relative to a reference, which in this case is the

sample buffer, as a function of temperature. Several parameters can be measured,
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such as the transition temperature at a peak maximum, the difference in enthalpy

(∆Hm) which is calculated via area under the heat capacity curve (Cp), and the change

in heat capacity (∆Cp) for the transition between folded and denatured state of the

protein sample. These parameters are related to the free energy change, calculated by

the Gibbs-Helmholtz equation 2.37, from disruptions of the stabilized native protein

structure to an unfolded state (∆Gunf ) [84, 113,115].

∆Gunf = ∆Hunf

(

1−
T

Tm

)

−∆Cp

[

(Tm − T ) + T ln

(

T

Tm

)]

(2.37)

As the µDSC is sensitive enough, it can help identify the most stable protein mutant,

describe the unfolding process and its kinetics (e.g. if it is reversible or irreversible), and

determine the interaction of proteins with various molecules (e.g. DNA, ligands, ions).

In addition, the DSC technique is increasingly used for biopharmaceutical formulation

as it can help detect and quantify the potential stabilisation effects of additives, as the

addition of excipients/additives can alter the transition temperature of the protein.

Therefore, DSC is widely used as one of the techniques for formulation screening,

as pH, ionic strength and the additives can influence the thermodynamics of protein

unfolding [84,113].

For this study, DSC was used for the determination of the monoclonal antibody’s

melting temperatures, as this molecule was the only without any literature reference for

its transition temperatures. For an IgG1 monoclonal antibody, a µDSC scan can show

melting temperatures for the CH2, Fab and CH3 domains. Depending on the secondary

structure for the IgG1 and if the mAb is glycosylated or not, the melting temperature

for each of these domains may or may not be resolved as individual transitions. An

advantage of using µDSC to study antibodies is that the transitions corresponding to

these domains can be identified and compared in most cases. Besides this, by comparing
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mAb µDSC analysis with the use of different formulation buffers, one can detect changes

in peak shape or peak area hence evaluating the possible influence of buffer excipients on

the unfolding of the analysed domains. In the case of storage stability being influenced

by conformational stability, the higher the thermal transition temperature is, often

corresponds to higher stability (keeping the same buffer conditions as studied) [116,117].

2.2.12.1 µ-DSC experimental details

DSC measurements were carried out in the temperature range 25 - 100 ◦C by using

a microcalorimeter VP Capillary DSC (MicroCal Inc., Northampton, MA, USA). A

scan rate 95 ◦C/h was performed for the present study. DSC curves were analysed

with MicroCal LLC Auto sample Origin software. The data were corrected for the

calorimetric baseline (by subtracting water - water scan) and for the difference in heat

capacity between the initial and the final state by choosing a sigmoidal baseline. System

calibration was performed with injection and measurement of melting temperature for

a lysozyme solution at a concentration of 3 mg/mL in ultrapure water (Lysozyme and

ultrapure water obtained from Sigma-Aldrich, UK). All monoclonal antibody samples

were measured at 5 mg/mL. Samples ran three times, each with volume of 500 µL. The

standard lysozyme solution was injected before and at the end of the DSC run, with

ultrapure water as reference. In this study all protein samples were dissolved in the same

buffer (10 mM His-His.HCl, pH 6), therefore only one pair of reference buffer was needed.

2.2.13 Protein electrophoretic methods

Protein electrophoretic methods are techniques that allow separation and identification

of proteins with basis on applying an electric field and therefore promoting migration
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of the charged biomacromolecule. Separation can be made on basis of the protein’s size

(sodium dodecyl sulfate polyacrylamide gel electrophoresis - SDS-PAGE) or the protein’s

charge (isoelectric focusing) [86].

2.2.13.1 Microfluidic chip SDS-PAGE

SDS-PAGE protein electrophoresis is a technique widely used for separation of proteins

according to their size under denaturing conditions by using the anionic detergent SDS

(sodium dodecyl sulfate). It can also determine the relative molecular mass of the

proteins analysed. This technique can allow the detection of dissulfide bonds in protein

structure where samples are diluted in a reducing buffer containing a reducing agent,

either β-mercaptothiol or dithiothreitol (DTT). These agents reduce the accessible

reducible covalent dissulfide bonds responsible for associating species, or associating

domains within the protein monomer (as in the case of an IgG1 antibody). As a

comparison, samples are also ran in a non reducing buffer, where these dissulfide

bonds are not reduced. Therefore, in protein formulation, SDS-PAGE has the utility

of separating aggregate, monomeric and fragmented protein forms in the 10 - 250 kDa

range, identifying the covalent aggregates and fragments [86, 118].

A microfluidic chip protein electrophoresis system was used for rapid qualitative

protein electrophoretic analysis. This recent ’lab-on-a-chip’ technique follows the same

principles as SDS-PAGE for proteins with the advantage of allowing to run samples

at the microscale using a microfludics chip with microliter sample volumes, therefore

providing much faster results [119,120].
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Microfluidic SDS-PAGE experimental details

An Agilent 2100 Bioanalyzer system and its corresponding Protein 230 kit were used

(Agilent Technologies, Germany). All the kit components, including the microfluidics

chip, were proprietary to Agilent Technologies. The kit reagents were: gel matrix

solution, protein dye concentrate, a marker protein sample buffer solution (containing

both a high and low molecular weight fluorescent marker, also present in the protein

ladder, as well as SDS) and a protein molecular mass ladder solution.

The gel matrix and destain solutions were prepared following the manufacturer’s

protocol with only slight changes. To prepare a 1 M DTT solution (dithiothreitol;

reducing agent), the contents of one tube of ’No-weigh’ DTT (Pierce Labs, Thermo

Fisher Scientific, UK) were added to 50 µL of ultrapure water. A reducing sample

buffer was prepared by adding and vortexing 3.6 µL of 1 M DTT solution to a sample

buffer 60 µL aliquot. 1 M Non-reducing NEM (N-ethylmaleidemide, Fluka Biochemika,

UK) solution was prepared by weighing 12.5 mg of NEM into 100 µL of ultrapure

water. This sample was vortexed and left for 2 min at 80 ◦C for full dissolution. The

non-reducing sample buffer was prepared by adding 3.6 µL of 1 M NEM solution into

60 µL of sample buffer. Protein samples to be analysed were individually diluted to 4

mg/mL in phosphate buffered saline (PBS) (constituting individual protein sample stock

solutions). From each of these sample stock solutions, 5 µL were taken and added to 5

µL of either non-reducing or reducing sample buffers in small tubes. The protein ladder

was prepared by aliquoting (6 µL) separately into a new tube. The protein samples and

protein ladder were heated at 80 ◦C for 5 minutes (reduced samples and protein ladder)

and for 1 minute (non-reduced samples). After heating, all tubes were cooled down

by centrifuging at 13 000 rpm for 1 minute (Haereus Pico, Thermo Fisher Scientific,

UK). In new tubes, 84 µL of ultrapure water was added to 6 µL of each reduced and

non-reduced samples, and to the protein ladder. All protein samples, protein ladder,
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reducing and non-reducing sample buffers were freshly prepared, thoroughly mixed and

used only within 24 hours.

After priming the chip with gel-dye mix, each of the 4 wells were filled with more

gel-dye mix (12 µL each). The destain solution (12 µL), protein ladder (6 µL) and

protein samples (6 µL each) were then aliquoted to their corresponding well (Figure

2.12). Detection of protein was made by laser-induced fluorescence. After reading the

chip, the software used a method for automated integration for the peaks detected in

each sample well.

Figure 2.12: Microfluidics SDS-PAGE chip schematics. There are a total of 16 wells where

four are for the gel-dye mix, one is for destain solution, another for the protein ladder and the

remaining wells for samples (all assigned in the figure). Also highlighted are the separation

channel (A), the position for destaining (B) and the position where fluorescence is detected (C)

(figure is adapted from reference [121]).

In this technique, migration times are normalised since the sample buffer contains low

and high molecular weight markers as internal standards. A calibration curve is created

from all the molecular weight markers present in the protein ladder sample [121, 122].

System suitability criteria were followed, particularly concerning the protein ladder used,

to check that the chip had run and samples were integrated correctly. The following
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parameters were checked for system suitability [119]:

• six ladder peaks should be observed;

• the lower molecular weight marker (4.5 kDa) should fall between migration times

of 15 - 22 seconds;

• the mid-molecular weight marker (63 kDa) should fall between migration times of

27.23 - 28.31 seconds;

• the upper marker (240 kDa) should fall between migration times of 37 - 46 seconds.

2.2.13.2 Isoelectric Focusing

Capillary isoelectric focusing (cIEF) is an protein electrophoretic technique that

separates proteins based on the macromolecule’s charge according to the protein’s

isoelectric point (pI) . In this method a pH gradient is formed by a mix of ampholytes,

typically polyamino-polycarboxylic acids which can cover either a wide or a narrow

range of pH, according to the expected pI of the proteins being analysed/ separ-

ated [86, 123]. Capillary electrophoresis uses very narrow bore tubes, allowing faster

method preparation and run time. As IEF is sensitive to any molecular differences

that can cause a change in the protein’s net charge, ciEF can be used to check for

batch-to-batch differences [124,125]. Imaging capillary IEF was used to analyse each of

the mAb batches available.

IEF experimental details

An iCE280 IEF analyser (ProteinSimple Ltd., California, USA) was used, with a mi-

croinjector autosampler and a cIEF cartridge fluorocarbon-coated filled with electrolyte

solution. For imaging, the system has a CCD camera with a UV absorption detector.
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A light source of 280 nm, from a deuterium lamp, was focused onto the capillary. All

reagents and other system specific components were supplied by ProteinSimple, Ltd.. 4

mL glass vials were placed on the autosampler containing 0.5% methyl cellulose solution

(in two vials, respectively, buffer and balance vials), a rinse vial with ultrapure water

and an empty vial. After the instrument start-up procedure, to ensure that the capillary

system was running correctly, it was checked that the anolyte (80 mM phosphoric acid)

and catholyte solutions (19 M sodium hydroxide) were full in their respective tanks (no

leakages were to be observed).

All samples (from the batches: mAb b1, b2a and b2b) were diluted in ultrapure

water to stock concentrations that when added to sample buffers would yield a final

concentration of 0.25 mg/mL. For each sample a buffer was prepared containing 8 µL of

pH 8 - 10.5 Pharmalyte (GE Healthcare, USA), 70 µL of 1% w/w methylcellulose (Pro-

teinSimple, Canada), and 1 µL of each of the pI markers (8.18 and 9.77) (ProteinSimple,

Canada), and remaining volume of ultrapure water (Sigma-Aldrich, UK) to make up to

250 µL total sample volume. Samples were aliquoted (100 µL) to appropriate glass vials

and were analysed in duplicate.

A hemoglobin control was ran for system suitability. This sample was freshly pre-

pared using the ProteinSimple iCE280 suitability kit: 2.5 µL of a hemoglobin stock

solution provided was added to a buffer solution already containing a 8% v/v pH 3-

10 Pharmalyte, internal pI markers 4.22 and 9.46 in 0.35% v/v methyl cellulose. The

control was always included in a cIEF run, typically running twice before and twice at

the end of each group of samples to be analysed. An example of hemoglobin control is

showed in 2.13. Acceptance criteria for the hemoglobin sample were the following:

• absorbance data for each of the pI markers needed to be within ± 3 times the

standard deviation of the mean of absorbance;

• HbA1c shoulder should be observed;
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• Four major peaks of hemoglobin control must be present (HbA, HbF, HbS and

HbC);

• HbA peak pI should be between 6.85 - 7.45.

Focusing conditions for hemoglobin controls were as follows: pre-focusing period - 1 min

and 1500 V; main focus period - 4.50 min and 3000 V. Focusing conditions for mAb

samples were as follows: pre-focusing period - 1 min and 1500 V; main focus period

- 7 min and 3000 V. Both hemoglobin and mAb samples were further analysed using

the analysis software ChromPerfect iCE280. The pI was reported for the main peak

observed.

Figure 2.13: Typical chromatogram obtained with capillary isoelectric focusing electrophoresis

for the hemoglobin standard. Peaks are assigned and identified according to manufacturer’s

details for the product, containing normal hemoglobins A (and its shoulder HbA1c) and F, and

abnormal hemoglobins S and C. pI markers are also assigned.
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2.2.14 Circular Dichroism

Circular dichroism (CD) was used to check the mAb’s conformation after its purification

and concentration. CD is a technique that refers to the difference in absorption of two

circularly polarised components of polarised UV light, left and right. These components

of polarised light (of the same amplitude and frequency) will be absorbed by the

protein, an optically active - chiral - solute, in different ways according to its secondary

and tertiary structures. The CD measurements are reported in ellipticity which is the

angular difference in absorbance (in mdegs), between left and right circularly polarised

light, in function of the wavelengths screened. The secondary structures existing in a

protein (α-helices, β-sheets, turns and random coils) can be identified by screening in

the far UV region (180 to 260 nm). The tertiary structures are identified when screening

the near UV region (250 to 360 nm) [86].

As all batches of mAb were in a 10 mM His-His.HCl pH 6.0 buffer and L-histidine is

an amino-acid commonly present in proteins, thereby showing chirality and absorbing

UV light, aliquots of each batch were buffer exchanged to 10 mM sodium phosphate

pH 6.5. Samples were diluted to 1 mg/mL and measured for both far UV and near UV

using a Jasco J815 circular dichroism spectrometer (Jasco, UK). Near UV required a

10 mm pathlength quartz cuvette (sample volume ∼ 1 mL), while for far UV slides of

0.1 mm pathlength were used (all optical cuvettes from Starna, UK). Each sample was

ran in triplicate and each final spectrum was an accumulation of 3 scans. For near UV

the wavelength range was between 250 - 320 nm, whereas for far UV the wavelength

range was 180 - 260 nm. All scans were performed with a 1 nm step and a scan rate

of 20 nm/min. Scans were collected at 20 ◦C using of a peltier cell holder and a water

cooling system. Blank scans with buffer only were also collected for posterior blank

subtraction from sample scans. For both far UV and near UV data collections, data

were converted using the Jasco Spectra Analysis software, from ellipticity degrees to
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molar ellipticity by accounting for mAb molar concentration (∼ 6.3×10−6 M) and the

optical pathlength. Data was further converted into molar residue ellipticity by dividing

the molecular ellipticity by the total number of amino-acids present in the mAb. For far

UV, final data analysis was performed using CDPro software package which provided

secondary structure information in relative % for each type of structure.

2.2.15 Flow imaging microscopy for sub-visible particle counting

Flow imaging microscopy is a technique that is currently used in biopharmaceutical

industry for the quantification and characterisation of sub-visible proteinaceous particles

in protein formulation [126]. Various protein degradation pathways can generally lead

to aggregation and the formation of sub-visible (1 - 100 µm) and visible (> 100 µm)

particulates, depending on their size. These proteinaceous particulates represent a loss

of monomeric species, potentially containing numerous monomer units [127]. Flow

microscopy, along with light obscuration particle counting and membrane microscopy

methods, are used in the biopharmaceutical industry to characterise and quantify these

proteinaceous particulates to monitor the potential link between protein aggregation

and immunogenicity [128].

Flow microscopy operates by digital image analysis to count the suspended particles

in the flowing liquid. The sample is pumped by a peristaltic pump through a flow

cell (100 µm, 1.6 mm), while images are recorded. The images are analysed relative

to the variations in transmitted light intensity, resulting from particles present in the

fluid [39,129].

A micro-flow imaging microscope DPA4200 (Brightwell Technologies Inc, Canada) was

used to detect and count particles sized between 1 - 150 µm for mAb solutions and

for β-lacroglobulin solutions, both at different concentrations and conditions. On the
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sample inlet, a 10 mL glass syring was fixed with a luer lock and through it 20 mL of

ultra pure water and 10 mL of Decon 90 10% v/v were flushed (6.65 mL/min) into the

flow cell to ensure the system was clean. This cleaning procedure was repeated between

samples and higher volume of water or detergent would be used until the system was

acceptably clean. During this step, it was important to ensure no air bubbles were

present in the flow cell.

The buffer (10 mM His-His.HCl pH 6.0) was run in triplicate as a sample for

negative control. The buffer was filtered prior analysis (0.1 µm pore size syringe filters).

Details on the protein samples’ concentration will be described in the experimental

chapter’s methods section. The filtered buffer was typically sonicated for 20 minutes

prior analysis. All protein samples were gently mixed for homogeneity, with care to not

introduce air bubbles. All liquids were left to equilibrate at room temperature for at

least 30 min to release air bubbles. 1 mL of sample buffer was ran before every sample

for baseline purposes, followed by measurement of 1.1 mL protein sample at a flow rate

of 0.22 mL/min. A purge volume of approximately 250 µL was done for all samples.

Data analysis was made with MFI View application software package. A filter was

applied to ignore all particles with an aspect ratio of ≥0.85. The results were reported

as average cumulative particle numbers per mL or particle counts per size range from

1 - 150 µm. The particle size was reported as equivalent circular diameter (ECD).

The cleaning procedure was resumed after measurements with aid of the glass syringe.

Flow cell calibration was performed with polysterene beads of referenced size (10 µm

diameter).

90



2.2.16 Visual inspection of protein solutions

Presence of visible translucent particles in the samples and determination of colour were

determined against a black and white panel under white fluorescent light. The samples

were visually analysed and compared against particle standards, opalescence standards,

colour standards, and their respective blanks. Prior to analysis, standards and samples

were left at room temperature for equilibration and the illumination lamp was left on

for at least 30 minutes. Analysis consisted on gently shaking the vials (standards and

samples) for 15 seconds and visually inspect immediately after shaking. To improve

probability of detection of particles, if needed, this procedure was repeated multiple

times. In any case of doubt, a (blinded) second opinion by another trained person was

asked for confirmation of analysis.

The particle standards were aqueous dilutions from stock containing 1 mg/mL

barium sulfate (BaSO4) and 0.1% w/w sodium azide (NaN3). Six dilutions were

prepared (0.001 mg/mL to 0.2 mg/mL) as well as a blank (ultrapure water vial). Three

degrees of classification for presence of particles were: free from particles, corresponding

to the blank vial; practically free of particles, corresponding to standards 1 - 5; and

containing particles, corresponding to standards 5 - 7.

The opalescence standards were formazin references standards and its dilutions

described in the European Pharmacopeia [130]. Eight standards were prepared of

increasing nephelometric turbidity units (NTU) ranging from 3 (standard 1) to 1000

(standard 1000) and related to a blank (ultrapure water vial). The classification of

samples according to their opalescence were divided in four categories: clear, when

comparable to standards 0 - 1 (0 - 3 NTU); slightly opalescent, when comparable to

standards 1 - 3 (3 - 18 NTU); opalescent, when comparable to standards 3 - 6 (18 - 120

NTU); and opaque, when comparable to standards 6 - 8 (120 - 1000 NTU).

The colour references solutions (according to the European Pharmacopeia, Fluka,
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Sigma-Aldrich, UK) were of three types: yellow, brown and brown-yellow. Classific-

ation of samples was made according to four categories, compared to the provided

blank solution, as follows: colourless, if comparable to standards 7 - 8; slightly

coloured, if comparable to standards 4 - 7; coloured (yellow, brown-yellow or brown) if

comparable to standards 2 - 4; and intensively coloured, if comparable to standards 1 - 2.
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Chapter 3

The effect of protein concentration on the viscosity of a

recombinant albumin solution formulation

3.1 Introduction

The viscosity of protein formulations is an important issue for the biopharmaceutical

industry due to its practical implications [5]. As discussed earlier in the main intro-

duction, biopharmaceutical liquid formulations are frequently created with high protein

concentration, due to the need for high mass delivery to overcome low potency, and

low volumes to allow patient self-administration in cost effective devices [5,8]. However,

when biomacromolecules reach high solution concentrations problems such as high vis-

cosity and poor flow properties, as well as stability issues, can arise.

Several theories from colloidal science have been used to understand observed in-

creases in solution viscosities with increases in macromolecular content. Some of these

models are based on approximations to hard spherical repulsive particles, and have

been applied to proteins with some success. However, it has been suggested that there

are more factors, such as shape [131], charge distribution [67, 71] or kinetics of associ-

ation [6,51,72] which need to be considered for successful prediction of protein solution

viscosity.

The present theoretical models tend to assure that any change in composition of

93



protein species in solution is negligible. Parameters present in these models typically

account for only one species of a specific shape and size. In the colloidal suspension

literature, some authors have addressed the problem for binary mixtures of different

sized particles, to predict the impact of this on the solution viscosity [132–135]. In the

biopharmaceutical literature, recent reports have studied binary blends of proteins by

controlling the content of each protein in solution and understanding the effect of this on

the overall solution viscosity [136, 137]. Nevertheless, a real biopharmaceutical formu-

lation will depend on various factors such as pH, temperature, ionic strength, different

stabilising additives in solution, and it will most likely be a solution composed of the

monomeric biomacromolecule coexisting with self-associative species that may or may

not be of reversible nature.

From a practical point of view, while developing protein solution formulations, it is

important to understand what the most important factors are in the prediction of protein

solution viscosity. In the work presented here, a recombinant human albumin solution

formulated in a buffer containing salt and a surfactant was studied. Samples were pre-

pared ranging from 0.1 mg/mL to approximately 500 mg/mL, and were investigated for

their rheological characteristics using steady shear rheology with a torsional rheometer

and other viscometric measurements. A detailed biophysical characterisation of these

samples was performed to account for its level of aggregation, size and shape of protein

species. Using this information, a comprehensive analysis of the rheometric data was

performed by applying the most commonly used models that predict protein solution

viscosity. This included a most recent approach reported in the literature, which takes

in account the variation in solution composition [136,137]. Additional experiments were

also done to understand the impact of the formulation buffer and its components.

The main aim of this work was to understand if at higher concentrations of rAlbu-

min, there is a relationship between the level of aggregation and the solution viscosity
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observed. By investigating this possible relationship, we aim at better understanding

why the highly concentrated globular protein solutions (> 200 mg/mL) are often found

to deviate from theoretic models.

3.2 Materials and Methods

3.2.1 Materials

3.2.1.1 Protein sample

Recombinant human albumin (rAlbumin) was donated by Novozymes Biopharma UK,

Ltd. (Nottingham, UK) in the form of Recombumin R© Prime (batches used: 1104 and

1101). The product is a liquid formulation of concentration 200 mg/mL, stored at 2-8 ◦C.

This rAlbumin is expressed in Saccharomyces cerevisiae and is identical to human serum

albumin (HSA) [138]. HSA is the most abundant protein in the blood at a concentration

of ∼40 mg/mL. It is the major transport protein for unsterified fatty acids, having the

capacity of binding numerous metabolites, active pharmaceutical ingredients as well as

other organic molecules [139].

Figure 3.1: Ribbon model of the x-ray chrystal structure of HSA marking the three domains

I, II and II, labeled in red, green and blue, respectively. Generated using the UCSF Chimera

package [140] using X-ray coordinates 1AO6 (Protein Data Bank, taken from reference [139]).
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HSA has three repeating domains (I-III), each divided into two sub-domains [139]

(Figure 3.1). The protein has an average molecular weight of 66.5 kDa, is comprised of

585 amino acids, and its secondary structure has approximately 67% α-helix content

with the remainder is β-turns and extended polypeptide chains [141]. HSA has 17

disulfide bonds. In physiological conditions there is only one free cysteine residue (Cys

34) [131, 138, 139]. The protein’s isoelectric point has been reported to be between

4.7-5.7 depending if the protein is lipid-bound and on the buffer used [106, 141]. In

physiological pH (pH = 7.4), HSA has a negative net charge, calculated to be -19e [141].

HSA has been commonly used as stabiliser for biological materials and with the

availability of recombinant human albumin, the latter has been approved as a substitute

for HSA as a formulation excipient [138].

3.2.1.2 Sample preparation

All reagents were obtained from Sigma-Aldrich, UK and were of analytical grade.

The formulation buffer of Recombumin is composed of NaCl (145 mM), polysorbate-

80 (15 mg/L) and sodium octanoate (32 mM) in ultrapure water (pH = 7.0 ± 0.3 at

room temperature). Another buffer was prepared containing only NaCl (145 mM) in

ultrapure water (pH = 7.0 ± 0.3).

Centrifugal concentrators (Vivaspin 20 - 5 kDa molecular weight cut-off - with PES

(polyethersulfone) membrane (Sartorius Stedim, Ltd., UK) were used to concentrate

rAlbumin samples to a higher concentration than the starting material (200 mg/mL).

The procedure recommended by the manufacturer was followed, using a fixed 45◦ rotor

centrifuge (Hermle Z400, Labortechnik GmbH, Germany). After centrifugation, samples

were collected, mixed and checked for their concentration using UV-Vis spectroscopy.

The stock solution of rAlbumin, as well as all samples in their respective buffers, were
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kept stored at 2 - 8 ◦C.

3.2.2 Methods

3.2.2.1 Quantification of protein concentration by UV-Vis spectroscopy

For the determination of concentration of rAlbumin solutions, the percent extinction

coefficient (A1%
1cm) used was 5.8 [99]. The concentrations reported were calculated as an

average of measurements of 3 separate dilutions prepared from each sample or, in the

case of the NanoDrop, 3 separate samples when no dilution was required. An error of

up to 10 % was accepted for these measurements.

All details related to this method are described in section 2.2.7 in Chapter 2.

3.2.2.2 Rheology

The rheometers used were Anton-Paar (Graz, Austria) modular compact rheometers

(MCR) , models 301 and 501. Cone-and-plate geometries used throughout this study

were stainless steel CP50-1 (diameter = 50 mm and cone angle = 1◦) and CP40-0.3

(diameter = 40 mm and cone angle = 0.3◦). To prevent evaporation of sample and to

maintain a constant temperature of 20 ◦C ± 0.1 ◦C throughout the measurements, an

evaporation blocking system equipped with a peltier unit was used.

Reducing the presence of air bubbles in the samples and during loading was important

to avoid artifacts during measurements. Depending on how highly concentrated the

samples were, a low vacuum was used to induce bursting of air bubbles. This procedure

was done for short periods of time (∼10 s) to prevent sample evaporation. Prior to

measurements, all samples were allowed to equilibrate to room temperature (∼ 23 ◦C)

for at least 40 minutes.

Rotational tests (flow curves and viscosity curves) were performed by controlling the

97



shear rate typically from 0.01 to 1000 s−1, and measuring torque, shear viscosity and

shear stress. To increase data validity and sensitivity of the method, each shear-rate

step had a 60 second duration time during which the instrument was averaging over the

collected data. Typically, two shear-rate sweeps (ramping down and up) were performed

per sample, without waiting time between sweeps.

3.2.2.3 Falling-ball viscometer

For the calculation of intrinsic viscosity (in section 3.3.3) was determined using the bulk

viscosity of lower concentrations of rAlbumin (0.1 - 2 mg/mL), an automated micro

capillary viscometer (Anton-Paar, Graz, Austria). The capillary had an inner diameter

of 1.6 mm and contained a steel ball of 1.5 mm diameter. For a standard measurement,

the inclination angle was set at 70◦ (and -70◦). Temperature control at 20 ◦C ±0.1 ◦C

was ensured via a peltier unit attached to the instrument. The capillary was calibrated

by running DI water and a viscosity standard oil at the same angle used for the sample

measurement. Viscosity values were calculated from measured kinematic viscosities,

accounting with the density values obtained for the studied samples, as described in

section 2.2.11.

3.2.2.4 Micro-viscometer/rheometer on-a-chip (mVROC)

The microviscometer/ rheometer on-a-chip (mVROC), by Rheosense, Inc. (San

Ramon, California, USA) was used for measurement of bulk viscosity at high shear

rates. Samples analysed were rAlbumin solutions at 200 and 500 mg/mL. For these

measurements, the A05 and D05 chips were used and temperature was kept constant

at 20◦C ± 0.1◦C using a water circulation system (ThermoCube, SS cooling systems,

USA) (for additional information, see section 2.2.6.2 in Chapter 2).
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3.2.2.5 High performance size exclusion chromatography (HPSEC)

(a) Determination of level of protein aggregation

rAlbumin samples were analysed for their level of aggregation on HPSEC. Details

related to method and equipment are described in section 2.2.9.2 in Chapter 2.

(b) Analysis with multiple detectors for determination of molecular weight

and intrinsic viscosity of rAlbumin solutions

For the calculation of bulk molecular weight and intrinsic viscosity, the chromatography

system used was a Polymer Labs GPC 50 Plus (Agilent Technologies, USA) gel per-

meation unit. Calibration of the system was made with polyethylene oxide solutions in

PBS.

The method details chosen for these experiments were almost the same as in sec-

tion the previous section with minor differences; samples were diluted to 15 mg/mL

thus injecting 300 µg of total protein. System suitability was still performed with Bio-

rad protein standards and the same buffer was used as mobile phase. Each rAlbumin

sample was injected three times, with buffers injected at least once. dn/dc used for

protein analysis was 0.185 mL/g [142].

3.2.2.6 Dynamic light scattering (DLS)

Details related to this method are described in section 2.2.8.1 in Chapter 2.

Measurement settings for rAlbumin size readings were at a constant temperature of

20 ◦C, performing 15 runs of 10 seconds each. An equilibration time of at least 5 minutes

was set before the measurement started. For all protein samples, size measurements

were made in triplicate with fresh aliquots for each reading.
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3.2.2.7 Microfluidic chip sodium-dodecylsulfate polyacrylamide gel electro-

phoresis (SDS-PAGE)

All details related to this method are described in section 2.2.13.1 in Chapter 2.

The samples that were analysed were rAlbumin at ∼200, 250, 300, 350, 400, 450 and

500 mg/mL.

3.3 Results and Discussion

3.3.1 The rheological analysis of formulated recombinant human albu-

min solutions

The rheological analysis of rAlbumin solutions in its original formulation buffer

(containing polysorbate-80 as a surfactant and salt) was done using a conventional

rheometer equipped with cone-and-plate geometries (CP50-1 and CP40-0.3). As the

commercially available solution is provided at 200 mg/mL of rAlbumin, it was the only

sample studied directly from the manufacturer’s vial. All other samples were prepared

by either diluting in formulation buffer or concentrating using centrifugal concentrators.

Figures 3.2(a) and 3.2(b) showed that rAlbumin solutions showed constant shear

viscosities for the increasing shear rates applied (0.01 to 1000 s−1). Figure 3.3 showed

a linear increase of shear stress with the increasing applied shear rates. For the higher

concentration materials (400 - 500 mg/mL) the shear viscosities were from ∼1 s−1 on-

wards, while showing slight non-linear increase of viscosities when < 1 s−1. However, in

general, throughout the range of concentrations of rAlbumin presented and the applied

shear rates, it was considered that these solutions exhibited a Newtonian-like behaviour.

This is a clear contrast to what has been observed in previous studies of the rheology

of globular proteins [60–62, 78] where an apparent yield-behaviour has been reported,

particularly at lower shear rates. The reason for this purely viscous Newtonian-like
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behaviour is likely due to the presence of polysorbate-80, a well known surfactant used

in biopharmaceutical formulations. Similar rheological behaviour has been reported for

globular protein solutions in a buffer also containing a polysorbate [74, 143].
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Figure 3.2: Experimental steady shear rheology of rAlbumin solutions. Viscosity values are

shown for ramping down (closed circles) and ramping up (lines) shear rates. (a) Samples from

0.1 to 100 mg/mL. (b) Samples from 10 to 500 mg/mL. All data collected with cone-plate 50

mm, 1◦, and cone-plate 40 mm, 0.3◦, at 20 ◦C.
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Figure 3.3: Flow curves for experimental steady shear rheology of rAlbumin solutions from 10

to 500 mg/mL. Shear stress values are shown only for ramping down shear rates. Data collected

with cone-plate 50 mm, 1◦, and cone-plate 40 mm, 0.3◦, at 20 ◦C.

Each sample was measured using two consecutive shear rate sweeps, ramping down

and up, after a 10 minute waiting time (Figures 3.2(a) and 3.2(b)). Hysteresis effects

were not observed, in agreement with the literature [60, 61, 78]. However, the sample

identified as ∼500 mg/mL seemed to show a different behaviour when sweeping up

the shear rates, compared to the result seen with ramping down (Figure 3.2(b)). This

was possibly due to an artifact caused by the presence of air bubbles. As this sample

presented the highest concentration and was the most viscous, loading it on the lower

plate of the rheometer was difficult and small air bubbles could have been introduced.

After the slight increase in viscosity at mid range of shear rates, this sample showed a

gradual decrease of viscosity to values similar to those seen before, particularly at the

higher shear rates. This is an artificial shear-thinning-like behaviour, most likely to

do with presence of air bubbles being squeezed out of the sample as it was sheared at

higher shear rates (> 100 s−1) [144].
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The instrument’s lower detection limit for valid torque measured, according to the

manufacturer, is 0.1 µN.m for steady shear experiments. Therefore, rAlbumin samples

of concentrations from 0.1 up to 50 mg/mL, with viscosities very close to 1×10−3

Pa.s, showed valid data only up to ∼6 s−1. Below this shear rate, torque values were

not considered as valid. To demonstrate this in a clear way, a comparison was made

with calibrant standard hydrocarbonate oils N1.0 and N14 (Cannon Instruments), with

reported viscosities at 20 ◦C of 0.93 mPa.s and 24 mPa.s, respectively (Figure 3.4). As

the rAlbumin samples increased in protein concentration, with a corresponding increase

in viscosity, the measured torque was increasingly higher than the lower detection limit,

therefore increasing the data validity towards lower shear rates (0.01 s−1).
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Figure 3.4: Torque values from experimental steady shear rheology of rHA solutions. Triangles

- torque values for rAlbumin samples. Lines are representative of torque values for calibration

standard oils, N1.0 (solid line, η = 0.93 mPa.s) and N14 (dashed line, η = 24 mPa.s). Data

collected with cone-plate 50 mm, 1◦ at 20 ◦C.

For comparison between the concentration of samples and the obtained shear viscos-

ities, the viscosity values at 1000 s−1 were taken from three separate readings per sample
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and are reported in Figure 3.5 as an average with the respective standard deviation. The

viscosity values reported here are those at high shear viscosity, η∞, and it is assumed

that it is correct to extrapolate a similar viscosity per sample at zero shear (η0), since

the viscosities of these samples were overall shear-rate independent [78].

Table 3.1 shows the measured concentrations of samples in comparison to the tar-

get concentrations. It was difficult to achieve targeted concentration values with higher

concentrations (≥ 300 mg/mL), due to the difficulty of accurately achieving such values

using centrifugal concentrators. This was mostly relevant with the sample targeted at

500 mg/mL, where its higher viscosity yielded difficulties in further concentrating the

sample.

From Figure 3.5, it can be clearly seen that for lower protein concentrations the

viscosity values were similar. An increase of viscosity with increasing of concentration

was clearly seen, in agreement to what has been reported throughout the literature with

regards to serum albumin solutions [71,78,145]. Most importantly, the exponential trend

observed from the data in Figure 3.5 is also reported for other globular proteins, such

as immunoglobulins [6, 51, 70,72].

From correlation of the data in Figure 3.5 and Table 3.1, it is clear that the larger

increase in viscosity occurred between concentrations ∼250 and ∼500 mg/mL. The ∼500

mg/mL sample reached a high shear rate viscosity of ∼10000 times larger than that of

water (1.0016 mPa.s at 20 ◦C, as defined by NIST). Although biopharmaceutical for-

mulations are not formulated at such high concentrations (> 400 mg/mL), particularly

for monoclonal antibodies formulations, the literature has discussed similar increases of

viscosity [70, 136, 137]. Therefore, analysing the viscosity increase with concentration

of rAlbumin solutions as a biopharmaceutical formulation model will help understand

what factors govern this exponential function.

105



0 100 200 300 400 500

0.0

2.5

5.0

7.5

10.0

12.5

 

 

V
is

co
si

ty
 [P

a.
s]

Concentration [mg/mL]

Figure 3.5: Viscosity of rAlbumin solutions ranging from 0.1 mg/mL to 500 mg/mL (target

concentrations). Viscosites are taken at high shear (γ̇ = 1000 s−1) and at 20 ◦C. Viscosity values

are represented as an average and standard deviation (error bars) of 3 separate measurements

for each sample. Concentrations are represented as average of 3 measurements and error bars

are standard deviation.
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Table 3.1: Measured concentrations and respective viscosities corresponding to target con-

centrations of rAlbumin samples. All values reported are an average of 3 measurements, with

corresponding standard deviations.

3.3.2 Characterisation of protein species present in recombinant hu-

man albumin solutions

Our aim was to correlate the observed increase in viscosities with the level of aggregation

present in the increasing concentrations of rAlbumin samples. Therefore, an identifica-

tion, relative quantification and size characterisation of the monomeric and oligomeric

species present in solution was done using HPSEC, DLS and microfluidics SDS-PAGE.

3.3.2.1 High-performance size exclusion chromatography (HPSEC)

High performance size exclusion chromatography (HPSEC) was used to determine

the level of protein aggregation as a function of concentration. Retention times for
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the protein species typically present were ∼ 7.9, 8.7 and 9.8 minutes, corresponding

to trimer, dimer and monomers, respectively (Figure 3.6). This method of analysis

produced good resolution between the different identified species and it was comparable

to literature values using a similar setup [146]. No higher molecular weight species

other than dimers and trimers were found in any of the solutions analysed. This reflects

the high purity of the recombinant albumin material due to its manufacturing process

generating only a small percentage of trimers and dimers [138]. In this case all samples

analysed were not thermally stressed. Therefore, the monomer showed the highest

relative percentage with a peak area of >90%. Comparing peak areas between the

samples (50 - 500 mg/mL), showed that the samples from 50 to 200 mg/mL have similar

peak areas for all protein species. Only when concentrations reached approximately 250

mg/mL and over, a trend could be detected on the increase of dimers and trimers with

a corresponding decrease of monomer. This trend was clearer for samples ∼ 350, 400,

450 and 500 mg/mL (Figure 3.7).
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Figure 3.6: Size exclusion chromatograms for a 200 mg/mL rAlbumin solution, diluted to 10

mg/mL and analysed on a) HPSEC for level of aggregation and b) HPSEC with triple detection

to determine bulk intrinsic viscosity and bulk molecular weight. In the chromatograms, the

letters correspond to: A - trimer; B - dimer and C - monomer.
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Figure 3.7: HPSEC conventional method for determining level of aggregation of rAlbumin solu-

tions showing relative peak areas in %. Data in squares and represents an average of 3 readings.

Error bars are standard deviation per sample for peak area % (y-axis) and for concentration

(x-axis). All samples were diluted to 10 mg/mL prior to analysis.

Size exclusion chromatography required sample dilution for analysis when concentra-

tions were >10 mg/mL. Dilution can be a limitation of the method since it can influence

the material’s content in relative percentage of each species, as it can be a factor for

some aggregates to disassociate, and therefore be considered reversible [147,148]. It was

important to understand if this was the case with rAlbumin solutions. By comparing

neat injections of 50 mg/mL and 10 mg/mL, it was observed that their respective peak

areas were different in less than 1 % (Figure 3.8). Such low difference suggested that

reversibility of trimers and dimers could be negligible. Moreover, this complies to the

irreversibility of associative species that has been reported in literature [149].

In addition, a stability study of four weeks was done for fresh dilutions of rAlbumin

(10 and 50 mg/mL) stored at 5 ◦C. The aim was to confirm that rAlbumin solutions

would not aggregate when stored at 2-8 ◦C. It was found that within four weeks, a

decrease of approximately 1 % of dimer occurred, corresponding to a similar increase
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of monomer. This change attained a plateau after the first two weeks (Figure 3.8). It

has been found that it is possible that dimerisation of albumin can also be due to self-

association, not involving the free cysteine [150]. Therefore, in the case here, it could be

possible that the low relative percentage of dimers may have formed by self-association

during manufacture, remaining constant while the stock kept at 200 mg/mL and only

dissociating after dilution along the time. When comparing injections of neat rAlbumin

solutions, varying the sample concentration and injection volumes would possibly force

faster dissociation, which would explain why there was not a difference in the relative

peak areas between low and high concentrations of rAlbumin.
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Figure 3.8: HPSEC conventional method comparing neat injections of 10 and 50 mg/mL

rAlbumin solutions along 4 weeks with storage at 5 ◦C. Average and standard deviation (error

bars represented) were reported from 3 separate readings. Line is for eye guidance only.

Triple-detection HPSEC was used to experimentally determine the intrinsic viscosity

for each of the protein species present in rAlbumin samples: monomer, dimer and trimer.

The information provided by triple detection HPSEC is advantageous as it typically

allows the measurement of molecular weight, radius of gyration and intrisic viscosity for

the individual species present in the samples and separated by the analytical column
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[102]. Here, the determination of intrinsic viscosity and MW of rAlbumin species was

relevant for subsequent analysis discussed in the following section (section 3.3.3).

The results presented are relative to the two peaks detected which were the monomer

and dimer, since the differential pressure viscometer could not detect the low percentage

of trimers present in solution (Figure 3.6). Analysis of peak areas per sample showed

the same trend of increasing rAlbumin dimers, similar to what was observed previously

for conventional HPSEC (Table 3.2).

Bulk intrinsic viscosity and bulk molecular weight values match well with the values

reported in literature for human serum and bovine serum albumin [146]. No variation

within these parameters with concentration was observed, which is a good indication of

validity for both the samples and the experimental set-up.

Table 3.2: HPSEC triple detection values of peak area, bulk MW and bulk intrinsic viscosity

(IV) for monomers and dimers detected in rAlbumin solutions. Average and standard deviations

are reported for 3 separate measurements per sample.

3.3.2.2 Dynamic light scattering

The hydrodynamic size analysis of rAlbumin solutions by DLS was performed for the

entire range of solutions 1 - 500 mg/mL after dilution to 1 mg/mL, when applicable.

All solutions were analysed without prior filtration to assess if there were aggregates
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present within the instrument’s detection limit (up to 1 µm hydrodynamic diameter).

In all cases, the samples did not show presence of other aggregates and only one broad

peak was observed for size distribution by intensity (Figure 3.9). The hydrodynamic size

distribution by volume also resulted in a broad peak, with its mean peak value skewed

towards lower sizes, similar to that of the monomer. This reflects the higher relative

contribution of monomer in comparison to the low contribution of dimers and trimers

present in solution. For all the analysed samples, the measured hydrodynamic radii from

the size distributions by intensity ranged between 3.8 - 4.5 nm corresponding to values

commonly reported in literature [106] for a unstressed pure albumin solution.
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Figure 3.9: Dynamic light scattering plots for 200 mg/mL rAlbumin solution diluted to 1

mg/mL. A) Size distributions by intensity (black line), and by volume (red line). B) Correl-

ation data versus the decay time (in [µs]) via the correlation function of measured intensity.

Measurements taken at 20 ◦C.

3.3.2.3 Microfluidics SDS PAGE

Analysis with microfluidics SDS PAGE system allowed for further characterisation

of rAlbumin solutions of higher concentrations. The samples chosen for comparison
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were from 200 mg/mL to 500 mg/mL, since all prepared rAlbumin samples with

concentration below 200 mg/mL would have been diluted from the same stock solution.

For all analysed samples and in both reducing and non-reducing conditions, the major

peak/ band detected at approximately 63 kDa was attributed to rAlbumin’s monomer,

in agreement to literature [138]. The purity of rAlbumin solutions via SDS PAGE

showed consistency with the level of aggregation measured via HPSEC as it did not

detect any protein fragments nor other protein species besides the expected dimerisation

of monomers (peak/band present in reducing and non-reducing conditions, between 95

and 150 kDa markers). The absent detection of trimers, which are expected to have a

molecular weight of approximately 200 kDa [138], could be due to their low quantity

also observed in the HPSEC results (Figure 3.7).

Dimerisation of human serum albumin or bovine serum albumin is mostly due

to formation of a covalent disulfide bridge between the free cysteine present in the

monomer [151]. It was expected that dimers in rAlbumin solutions would be reduced by

dithriothreitol (DTT) at reducing conditions, although it has been reported that HSA’s

oligomeric species can remain present even at similar reducing conditions [138]. It was

seen that the peak percentage correspondent for dimer, although present in both gels

(Table 3.3), exhibited lower values at reducing conditions compared to non-reducing

conditions. To further reduce remaining dimers present in reducing conditions, it would

be the case of further method optimisation by adding higher concentration of reducing

agent (DTT) or allowing for longer heating time.

The protocol followed for this method was originally optimised for monoclonal

antibody analysis. To allow for system suitability evalution, a stable and high purity (>

98 % by HPSEC) mAb (IgG1) sample was added as a control to each of the microchips

(reducing and non-reducing). The peak/band detected on the non-reducing gel could be

attributed to a mAb monomer of approximately 150 kDa. Upon reducing conditions the
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mAb sample yielded two peaks/bands at approximately 50 and 25 kDa, corresponding

respectively to the heavy and light chains present in a IgG1 [1, 12] (Figures 3.10(b) and

3.10(a)).

Table 3.3: Microfluidics protein electrophoresis results for non-reducing and reducing con-

ditions of rAlbumin samples, showing peaks for relative quantity of monomer and dimer and

corresponding molecular weight.
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Figure 3.10: Microfluidics protein electrophoresis gel image for rAlbumin solutions originally

at high concentration. (a) Gel in reducing conditions and (b) gel in non-reducing conditions.

For both gels : [rAlbumin] = 200 (lane 1), 250 (lane 2), 300 (lane 3), 350 (lane 4), 400 (lane

5), 450 (lane 6) and 500 mg/mL (lane 7); formulation buffer (lane 8) and monoclonal antibody

control (lane 9).

3.3.3 Effect of high protein concentration on solution viscosity

The effect of protein concentration on solution viscosity has been discussed by several

authors [71, 137, 145, 152–155]. At dilute concentrations, protein solution viscosity has

been studied and accounted for by predictions that account for the hydrodynamic
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behaviour of proteins in a fluid [145]. Other theories that account for inter-protein

interaction potential and excluded volume have been applied with relative success in

predicting the increase of viscosity with protein concentration [78, 156]. In general,

all these models assume that (globular) proteins are hard spherical or quasispherical

macromolecules, and to some extent, this has been shown to explain the increase of

viscosity with concentration and allow a comparison with the behaviour of colloidal

dispersions. So far, there has not been a theoretical model that is capable of predicting

the viscosity of protein solutions in a range from dilute to highly concentrated (≫200

mg/mL). The following section provides an account for the analysis according to the

most used theories in literature.

(a) Analysis using Hard (quasi) spherical models: Ross-Minton and Krieger-

Dougherty equations

From polymer and protein rheology, the intrinsic viscosity is defined in terms of concen-

tration (c, in mg/mL) by the following equation:

[η] = lim
c→0

(η − η0)

cη0
(3.1)

where η is the solution’s viscosity and η0 is the viscosity of the solvent. Intrinsic viscosity

is a hydrodynamic parameter that can pinpoint the overall aspect ratio of a molecule in

dilute solution and represents the effective molecular volume at these conditions [75]. By

preparing various dilute solutions (0.1 - 2 mg/mL) and measuring its bulk viscosity in a

capillary viscometer, the reduced (ηred) (eq. 3.2) or inherent (ηinh) (eq. 3.3) viscosities

of these solutions can be plotted versus its concentrations and the intrinsic viscosity can

be found by extrapolation to zero concentration.

[η] = limc→0(ηred) = limc→0

(ηsp
c

)

(3.2)
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[η] = limc→0(ηinh) = limc→0

(

ln(ηrel)

c

)

(3.3)

where relative viscosity (ηrel) is defined by the following ηrel =
η
η0

and specific vis-

cosity (ηsp) is defined by ηsp = 1− ηrel [75, 145].

The first approach to the data was to experimentally determine the intrinsic viscosity

of this protein from viscometric data obtained via a falling ball capillary. The results

(Figure 3.11) demonstrated that by extrapolating to zero concentration via both ηred

and ηinh, the intrinsic viscosity had a similar value between the two methods, [η]inh =

0.00678 mL/mg and [η]red = 0.00677 mL/mg. The intrisinc viscosity of human serum

albumin has been reported to be of 0.00473 ± 1.2×10−3 mL/mg, for similar solution

conditions (temperature at 20 ◦C, pH ∼ 7.0) [131]. Values of intrinsic viscosity for bovine

serum albumin, have been reported to be 0.0037 mL/mg [145] or similar values [75,157].

Our intrinsic viscosity values, although agreeable between both methods, were slightly

increased to the expected value (between 0.003 - 0.004 mL/mg). Also, it did not corres-

pond to values measured via triple detection HPSEC (Table 3.2).

These experiments are sensitive to errors in sample preparation, where pippetting

errors can affect both sample preparation and an accurate concentration calculation,

compromising the viscosity measurements. Although various dilutions were prepared,

only four data points were selected to fit the data, thus reducing the accuracy in com-

puting the intrinsic viscosity of rAlbumin.
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Figure 3.11: Inherent and reduced viscosities of dilute samples of rAlbumin. The bulk viscos-

ities (circles) of these samples were measured with a capillary viscometer (AMVn, Anton Paar)

at 20 ◦C. Bulk viscosity of the formulation buffer was 1.0487 ± 0.0013 mPa.s. Samples were

measured in triplicate. Linear fit for reduced viscosity (blue line): r2=0.9461, [η]red = 0.00678 ±

1.83×10−3; linear fit for inherent viscosity (red line): r2=0.9473, [η]red = 0.00677 ± 1.83×10−3.

The obtained intrinsic viscosity value, as well as values from literature [131, 145],

were used to fit the rheometry data (Figure 3.12) using the one of the hard (quasi)-

spherical models relating protein viscosity and concentration. This model was the mod-

ified Mooney equation [158] as per Ross-Minton’s approach [153] defined by:

ηrel =
η

η0
= exp

[

[η]c

1− κ
ν [η]c

]

(3.4)

where relative viscosity is an exponential function of concentration (c in [mg/mL]),

intrinsic viscosity ([η], in [mg/mL]), a crowding effect factor (κ, dimensionless) and

Simha’s shape factor [145] (ν, dimensionless). As the crowding effect is a consequence

of the excluded volume when the protein concentration increases, the model predicts

solution viscosity not only accounting for the protein’s shape but also its excluded

volume.
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Data was fitted with constraint to intrinsic viscosity but not the κ/ν factor (Figure

3.12). The computed values for κ/ν respective to the fixed intrinsic viscosities chosen

from literature were: κ/ν = 0.42, using [η]Tanford; and κ/ν = 0.31, using [η]Monkos.

These values were in agreement with the literature values reported for other globular

proteins, such as IgG (κ/ν = 0.37 to 0.49) and hemoglobin (κ/ν = 0.40) [51, 70, 153].

The calculated κ/ν value (0.18) obtained using the experimentally determined intrinsic

viscosity is far from the reported values in literature, thus suggesting no significance.

0 100 200 300 400 500 600

0

2000

4000

6000

8000

10000

 

 

R
el

at
iv

e 
V

is
co

si
ty

Concentration [mg/mL]

 [η]=0.00472 mL/mg (Monkos)
 [η]=0.0037 mL/mg (Tanford)
 [η]=0.00677 mL/mg (from η

red
)

 Experimental data

Figure 3.12: Experimental cone-and-plate rheometry data (squares) fitted to Ross-Minton’s

equation (eq. 3.4). Relative viscosity was obtained by dividing each of the samples high shear

viscosity (η1000s−1) by the averaged buffer viscosity 1.038 ± 0.013 mPa.s. Fits were calculated by

fixing [η] and leaving the parameter κ/ν free and are as follows: Blue line, [η] = 0.00472 mL/mg

(from [131]), κ/ν = 0.31 ± 6.6×10−4, r2 = 0.95; red line, [η] = 0.0037 mL/mg (from [145]), κ/ν

= 0.42 ± 6.9×10−4, r2 = 0.94 ; green line, [η] = 0.00677 mL/mg (from ηred), κ/ν = 0.18 ±

5.6×10−4, r2 = 0.96.

The Ross Minton model was also fitted to the data allowing free parameters. The
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best fit computed was using experimental data up to ∼ 350 mg/mL (Figure 3.13).

Both the [η] (0.0042 mL/mg) and κ/ν (0.45) values were in agreement to the values

reported in literature [75, 131, 145]. Also, this fitted intrinsic viscosity was similar to

the intrinsic viscosity value calculated with triple detection HPSEC for the monomer

peak of rAlbumin (Table 3.2). However, the Ross-Minton model did not predict solution

viscosity for the highest concentrations (≥ 350 mg/mL) which indicates that there are

other factors to consider to predict all of our experimental data.
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Figure 3.13: Experimental cone-and-plate rheometry data (squares) fitted to Ross-Minton’s

equation (eq. 3.4), using free parameters. Relative viscosity was obtained by dividing each of

the samples high shear viscosity (η(1000s−1)) by the buffer’s viscosity 1.038 ± 0.013 mPa.s. Fit

was calculated leaving both [η] and κ/ν free: [η] = 0.00421 ± 1.5×10−4 mL/mg; κ/ν = 0.45 ±

0.024; r2 = 0.999 and χ2 = 0.40. Experimental data used for this fit was only up to 350 mg/mL.

From colloidal rheology, the Krieger-Dougherty model (eq. 3.5) was also applied to

our experimental data [159].

ηrel =
η

η0
=

(

1−
φ

φmax

)−φmax[η]

(3.5)
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As the Krieger-Dougherty equation is originally applied to infinite dilutions of

hard spherical particles, the intrinsic viscosity ([η]) in eq. 3.5) was fixed to 2.5, and is

dimensionless since it is defined in function of volume fraction (φ), with a maximum

packing fraction (φmax) of 0.64 in the case of random close packing of spheres at low

deformations [48, 156]. Still assuming the spherical shape, this maximum packing

fraction has been discussed to be around 0.71 [156] when the particles are exposed

to higher shear rates. In both cases, fixing intrinsic viscosity to 2.5 and φmax could

only predict the data up to 100 mg/mL, which is in agreement with the literature [78]

(Figure 3.14).
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Figure 3.14: Experimental cone-and-plate rheometry data (squares) plotted against expected

data (lines) from Krieger-Dougherty’s equation (eq. 3.5) with fixed parameters. Relative vis-

cosity was calculated by dividing each sample’s η(1000s−1) by the buffer’s viscosity (η0= 1.038 ±

0.013 mPa.s). For both lines, [η] was fixed to 2.5, but different φmax were used: 0.64 (red line);

0.71 (orange line).

Conversion of weight/volume concentration to volume fraction was calculated via

the polymer chemistry equation for volume fraction (φ = NAV c
MW ), taking into account
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the hydrated molecular weight of the protein - MWh (eq. 3.6). The hydrated protein

molecular weight was calculated from MWh = MWp(1+δ), where MWp is the molecular

weight of the protein and δ is the amount of water associated to the macromolecule in

g/g [131,145].

φ =
c

MWh
·

(

NAV +
MWpδ

ρ

)

(3.6)

where c is the concentration in mg/mL, NA is Avogadro’s number, V is the protein’s

hydrodynamic volume (113.4 nm3), and ρ is the density of water at 20 ◦C (998.2×103

mg/mL) and δ = 0.379 [131].

The data was also fitted to equation 3.5 with free parameters, allowing a prediction

of viscosity applied to non-spherical particles (Figure 3.15). The parameters which were

best fits using data up to 350 mg/mL, where [η] = 6.94 ± 0.14 and φmax = 0.298 ±

0.002 (with r2 = 0.9996 and χ2 = 0.26). In this case, the fitted intrinsic viscosity showed

a higher value than that corresponding to spheres, indicating that particle aspect ratio

had increased and the φmax decreased respectively. These values suggest good physical

significance since their product is still within their usual range 1.4 < [η]φmax < 4 [90].

The fitted intrinsic viscosity value of ∼6.9 also agreed with the reported aspect ratio of

albumin, known to be a prolate ellipsoid [106, 131, 145]. These parameters, along with

the observations previously made from the Ross-Minton model, point to a difficulty in

prediction towards concentrations > 350 mg/mL (see Figures 3.13 and 3.15).
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Figure 3.15: Experimental cone-and-plate rheometry data (blue diamonds) fitted to Krieger-

Dougherty’s equation using free parameters (eq. 3.5). Relative viscosity was calculated by

dividing each of the sample’s viscosity (η(1000s−1)) by the buffer’s viscosity (1.038 ± 0.013 mPa.s).

Fitting parameters were [η] = 6.9 ± 0.14, φmax = 0.30 ± 0.0025, with r2 = 0.999 and χ2 = 0.26.

Experimental data used for this fit was up to 350 mg/mL.

(b) Analysis using Hard-spherical model considering interparticle interac-

tion: Batchelor’s equation

A more complex model, Russel’s revision of Batchelor’s equation [156], was also applied

to the experimental data (Equation 3.7). This model predicts the increase of viscosity

of hard spherical particles while taking into account the interparticle interaction based

on the effective distance between particles.

ηrel =
η

η0
= 1 + 2.5φ+ sφ2 +O(φ3) (3.7)

In equation 3.7, the coefficient s of the quadratic term is defined by,

s = 2.5 +
3

40

(

deff
a

)5

(3.8)
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being dependent of the effective interparticle distance, deff , and the radius of

particle, a. In its turn, deff is dependent on both the hydrodynamic contributions of

the particle as well as the interaction potential, relevant to the dispersion conditions.

Batchelor showed that for a concentrated dispersion of hard spherical repulsive particles,

the value of s is equal to 6.2, where deff = 2a [156]. Sharma et al. showed that the

data of BSA concentrated solutions up to 250 mg/mL could be fit with this model (with

data up to ≈ 250 mg/mL) using a value s = 10. The authors suggested that this value

would correspond to an interaction potential corresponding to a deff = 2.5a, reflecting

BSA’s repulsive net negative charge in a saline buffer.

Applying this model to the data could not anticipate the viscosity at concentrations

higher than ∼ 150 mg/mL (φ = 0.11), even when fixing s = 10 (Figure 3.16). The

discrepancies between our data and that of Sharma et al. could be due to the source

of raw viscosity data, since the authors used a mVROC. Our data, although collected

using a torsional rheometer with cone-and-plate, were of rAlbumin solutions in a buffer

containing a surfactant. There is no likely relation to measurement artifacts influencing

our results (see discussion further ahead in this chapter for more details). The solutions

studied by Sharma et al. were of the bovine version of albumin, a slightly different

protein. Moreover, this model fixes the intrinsic viscosity at 2.5 for hard spheres,

while it has been previously discussed that rAlbumin (and BSA) are not spherical but

prolates. Thus, the model may well not be the most appropriate to fit this data albeit

being the only model presented so far that includes surface charge as determinant to

the viscosity of globular protein solutions. It was not possible to fit this model to the

data when leaving the parameter s free.
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Figure 3.16: Experimental cone-and-plate rheometry data (squares) plotted against expected

data (lines) from Russel’s equation (eq. 3.7) using fixed parameters. Relative viscosity was

calculated by dividing each of the sample’s viscosity (η(1000s−1)) by the buffer’s viscosity (1.038

± 0.013 mPa.s). For both lines, [η] was fixed to 2.5, but s was: 6.2 (blue line); 10 (green line).

(c) Analysis using the generalised Ross-Minton and generalised Krieger-

Dougherty equations

Recently, Galush et al.(2012) presented a study on the viscosity of mixed protein solu-

tions, using mixtures of different monoclonal antibodies (mAbs) and of one mAb with

BSA. Their conclusions derived from measuring the viscosity of both the individual pro-

tein solutions and blends. They proposed that the viscosity of protein blends could be

predicted by an additive function of the viscosity of each individual protein multiplied

by its respective known weight fraction (eq. 3.9).

ln η(wtot, f2) = (1− f2) ln η1(wtot) + f2 ln η2(wtot) (3.9)

where η1 and η2 are the viscosities of pure protein 1 and 2, respectively, f1 and f2

are the weight fractions corresponding to the protein 1 and 2 present in the blend and
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wtot is the total weight/volume concentration of the protein mixture.

Minton [137] has recently contributed with the generalisation of equation 3.4 and

equation 3.5 and application to predicting the viscosity of globular protein solutions

containing only one protein, but with relatively well-known fractions of its monomeric

and higher order associative species. The generalised models of Ross-Minton (eq. 3.10)

and Krieger-Dougherty (eq. 3.11) models, as proposed by Minton, are as follows:

η

η0
= exp

[

[η]wwtot

1− wtot

w∗

]

(3.10)

η

η0
=

(

1−
wtot

w∗

)−[η]ww∗

(3.11)

Note that the Krieger-Dougherty equation has been modified to allow the use of

weight/volume concentrations (wtot, in [mg/mL]), rather than volume fractions. Both

equations 3.10 and 3.11 are now represented as functions of wtot, [η]w and w∗. The

parameter [η]w is weight-averaged intrinsic viscosity (in [mg/mL]), described in equation

3.12. The parameter w∗ represents an estimated protein concentration above which the

solution cannot flow, referred to as jamming concentration [48,137].

[η]w =
∑ wi[η]i

wtot
(3.12)

By fitting these two generalised models to the experimental rheology data, it

was found that the best fits would be achieved if the concentration range would not

include either the last three (generalised Krieger-Dougherty eq.) or two data points

(generalised Ross-Minton eq.) (Figures 3.17(a) and 3.17(b) respectively). The fitted

weight-averaged intrinsic viscosity and w∗ values suggest conformity between both

generalised models. Again, it is noted that using these generalised models it is still not

possible to predict the higher concentrations above ∼ 350 mg/mL. When fitting the
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experimental data, using all the data points available, the fitted parameters usually

presented poor statistical correlations (r2 < 0.9, χ2 >> 1) as well as higher values for

[η]w with no physical significance.
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Figure 3.17: (a) Experimental data fitted to the generalised Krieger-Dougherty equation (eq.

3.11). Fitting parameters were [η]w = 0.00517 ± 1.1×10−4 mL/mg, w∗ = 399 ± 3.4 mg/mL,

with r2 = 0.999 and χ2 = 0.26. Data used for this fit was up to 350 mg/mL. (b) Experimental

data fitted to the generalised Ross-Minton equation (eq. 3.10). Fitting parameters were [η]w =

0.00479 ± 4.0×10−5 mL/mg, w∗ = 569 ± 2.2 mg/mL, with r2 = 1.0 and χ2 = 0.91. Data used

for this fit was up to 400 mg/mL. For both plots, relative viscosity was calculated by dividing

the sample’s η(1000s−1) by the buffer’s viscosity (1.038 ± 0.013 mPa.s).
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In the study by Galush et al.(2012), the protein mixtures were always prepared

to a known total weight/volume concentration and known weight fractions of each

of the proteins in the mixture. In our case, the presented HPSEC results (Figure

3.7) showed that the monomer, dimer and trimer composition was changing with

sample concentration. Therefore, a weight-averaged intrinsic viscosity was calculated

per sample, instead of being assumed to remain constant (Table 3.4), using the data

obtained by triple detection HPSEC (Table 3.2). The weight-averaged intrinsic viscosity

values were only slightly affected.

Table 3.4: Table with calculated [η]w for rAlbumin solutions based on the experimental HPSEC

triple detection data. [η]1 and [η]2 correspond to the average experimental intrinsic viscosity for

monomer and dimer, respectively. f1 and f2 correspond to the fraction of relative peak area for

monomer and dimer, respectively.

Using the calculated weight-averaged intrinsic viscosity, and assuming different w∗

values based on the fitted parameters obtained above, the viscosities were computed for

the studied concentrations (Figures 3.18(a) and 3.18(b)) for both generalised models.

When choosing w∗ of higher values (derived from fits using all data points), the

viscosities were typically underestimated. On the other hand, using w∗ values that

130



were derived from the best fits, 568 mg/mL for the generalised Ross-Minton model, or

399 mg/mL for the generalised Krieger-Doughery model, the viscosities could not be

correctly predicted for the higher concentrations: >400 mg/mL and > 350 mg/mL,

respectively.
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Figure 3.18: (a) Experimental data (circles) plotted against the calculated viscosities (stars)

based on the generalised Ross Minton equation (eq. 3.10). Data in stars calculated when fixing

the w∗ to 530 mg/mL (red), 816 mg/mL (blue) and 568 mg/mL (green). Fitted w∗ values used

were from best fits to eq. 3.10. (b) Experimental data (circles) plotted against the calculated

viscosities (stars) based on the generalised Krieger-Dougherty equation (eq. 3.11). Data in stars

calculated when fixing the w∗ to 1298 mg/mL (dark cyan), 399 mg/mL (purple), 576 mg/mL

(orange), and 445 mg/mL (light green). Fitted w∗ values used are from best fits to eq. 3.11.

For both plots, expected viscosities were calculating using [η]w calculated in Table 3.4. Lines are

represented for guidance to the eye.
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In summary, the analysis suggested that concentrations above ∼ 350 mg/mL have

a solution viscosity that depends on factors other than those taken into account by the

models explored here. Most likely, at this concentration range, the protein solution can

be behaving in a different way to that observed in the less concentrated solutions. As

these models have been developed based on their application to low concentrations of

particle suspensions, where each particle would be far apart from another enough to not

influence each particle’s flow [145]. Therefore, it is not surprising that the equations so

far always apply well to lower concentrations of albumin.

Although the models presented here are based on hard quasi-spherical repulsive

particles and their excluded volume, the predicted data typically suggest that a max-

imum packing fraction of rAlbumin (based on the best fits) will always be lower than the

highest concentrations achieved experimentally (∼ 450 and 500 mg/mL). In addition,

viscosity prediction according to pure hard-sphere particle models clearly underestim-

ates the viscosity values for concentrations higher than ∼ 100 - 150 mg/mL.

One possible suggestion to explain such deviation from predictions at high concen-

trations, is that the maximum packing concentration could be dependent on solution

composition (e.g. the relative quantity of monomers, and oligomeric species such as

dimers and trimers). It is known that suspensions composed of binary sized spherical

particles yield a maximum packing fraction approximately larger than the random close

packing for a homogenous suspension [132–135]. However, the protein has a different

shape which has been shown to also influence the maximum packing fraction. It has

been predicted that for globular protein solutions up to approximately 250 mg/mL with

the protein having a 5:1 aspect ratio, the increase of jamming limit would not be sig-

nificant [137]. Analysis so far has always assumed that associative species remain with

the same globular quasispherical shape, which is clearly not the case.

Apart from shape, it is possible that rAlbumin would likely resemble a nearly hard
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sphere, as its homologous HSA has been reported to exhibit a drop in intrinsic viscosity

with temperature increase, thus a sign of less rigidity [131]. Moreover, as the protein

is further concentrated, less rigidity could be an added factor to account for the slow

increase of viscosity compared to hard sphere model predictions. This could be due

to repulsive nature of inter-particle interactions, which is a phenomenon that has been

observed for sterically stabilised colloids [48].

The deviation to models seen at higher concentrations (≥ 350 mg/mL) could be

related to a glass transition similar to what occurs with colloidal hard spheres. In this

case, accounting for repulsive excluded volume, suspensions are expected to approach

a glass transition at volume fractions φ ≈ 0.58 before approaching the random close

packing fraction (φ = 0.64) [48]. When the concentration approaches a glassy state,

the particle is caged by the presence of neighbouring particles thus slowing down its

flow and leading to increased viscosities. In the case of rAlbumin, an analogous glass

transition behaviour could be taking place at the concentrations between ∼ 400 to ∼ 500

mg/mL based on similar results seen with highly concentrated solutions of BSA [160].

This would suggest that these concentrations are approaching the jamming limit but

does not explain why viscosities cannot be predicted in conventional models. Finally,

it is precisely the range between 350 mg/mL and 500 mg/mL samples that showed an

increase in relative quantity of dimers (with a respective decrease of monomers). So it

does suggest that the change of composition and the increase of viscosity with increase

of concentration are somehow connected.

3.3.4 Surface tension effects on rheology measurements and other con-

trol experiments

To ensure that the rheological measurements were taken as accurately as possible and

were free of artifacts related to both the method or preparation of samples and the
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rheometer’s characteristics, a series of additional experiments were carried out.

The influence of surface tension at the air/water interface of protein solutions in

surfactant-free buffers has been shown to present apparent high-viscosities at low shear

rates. The use of conventional rheometer with cone-and-plate was suggested as not

being the most appropriate instrumentation for this type of samples precisely as it isn’t

an air/water interface-free technique [78].

The microfluidics slit rheometer (mVROC) was used to compare to the rheometry

results. rAlbumin solutions at 200 mg/mL (from the original formulation) and 500

mg/mL were analysed with the mVROC in separate microchips adequate to the sample’s

viscosities (A05 chip for 200 mg/mL and D05 chip for 500 mg/mL). Both samples

showed Newtonian-like behaviour, with the calculated shear viscosities remaining

constant as the the true shear rates were applied (Figure 3.19).

When superimposing the cone-and-plate (CP) rheometer data with mVROC data,

the sample at 200 mg/mL showed no difference in its viscosity values. As an example,

at shear rate γ̇ ≈ 1000 s−1, the average viscosities measured with each instrument were

ηCP ≈ 3.5 mPa.s and ηmV ROC ≈ 3.4 mPa.s (Figure 3.19). This clearly showed that the

CP rheometer data were most likely free of air/water interfacial artifacts.

The sample at 500 mg/mL showed a difference of approximately one decade

between CP and mVROC data (Figure 3.19). Although subsequent repeats had similar

values and rheological characteristics, it was not possible to further explain the sharp

difference. An explanation based on surface tension effects on CP rheometer data might

be ruled out since this data showed constant viscosities along the shear rates applied

up to relatively low shear rates (γ̇ ≈ 0.01 s−1), whereas a surface tension induced

apparent yield-behaviour would be expected. To our knowledge, there are no other

reports in literature analysing globular protein solutions at this level of concentration

using a mVROC. It could be possible that such high concentrations of protein solutions
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are problematic samples for this system due to, for example, a higher propensity of

adhesion to the construction materials.
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Figure 3.19: mVROC data for 200 (blue) and 500 (green) mg/mL of rAlbumin in comparison

to the cone-and-plate rheology data. mVROC data: crossed circles - ramping up shear rates,

dashed lines - ramping down shear rates; CP rheology data: closed circles - ramping up shear

rates; lines - ramping down shear rates.

In another experiment samples were prepared by diluting in a aqueous NaCl 145

mM surfactant-free solution. Dilutions at 5, 10, 50 and 100 mg/mL were analysed on

the CP rheometer as well as their level of aggregation was assessed by HPSEC and DLS.

Results from HPSEC and DLS analyses were similar to those of formulated rAlbumin.

A few differences were identified with the CP rheometer data. Samples at 5, 10 and 50

mg/mL in NaCl 145 mM showed an increase of viscosities towards low shear rates; only

the sample at 100 mg/mL of rAlbumin in NaCl 145 mM presented constant viscosities

throughout a similar shear rate range (Figure 3.20). Samples at 5 and 10 mg/mL

showed a slightly increased high shear viscosity (η∞ at γ̇ = 1000 s−1), when compared

to the data collected from formulated samples.
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These two differences are possibly related to the lower concentration of polysorbate-

80 present in samples 5 and 10 mg/mL, and to some extent, 50 mg/mL. Polysorbate-80

is present in the formulation to prevent the macromolecule reaching the air/water and

solid/water interface [138]. As polysorbate was also diluted during sample preparation

below a critical concentration, it allowed the protein to form films at the air/water

interface present with the CP geometry. Such surface tension effects are proposed to

influence torque measurements at low shear rates, creating an apparent yield-behaviour

translated in a pronounced increase of the viscosity function’s slope [78, 143]. Other

authors also observed similar differences when adding surfactants to globular protein

solutions [8, 74]. By measuring the viscosity of protein samples prepared in surfactant-

containing buffer, true values of viscosity and shear stress are being measured and is

similar to a measurement performed with an air/water interface-free instrumentation,

such as the mVROC.
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Figure 3.20: Viscosity curves for rAlbumin solutions diluted in 145 mM NaCl buffer, in com-

parison to the formulated material at the same concentrations: 5, 10, 50 and 100 mg/mL. Half

circles - rAlbumin in 145 mM NaCl only; full circles - rAlbumin in formulation buffer.
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To demonstrate that using centrifugal concentrators would not affect the rheological

behaviour nor increase the level of aggregation, an aliquot of the original rAlbumin

solution at 200 mg/mL was diluted in formulation buffer to 50 mg/mL and then

concentrated back to 200 mg/mL. The centrifugal concentrators used would allow

smaller molecules to pass through, such as water, salts and polysorbate-80. The

comparison of the rheological behaviour between this control sample and the original

formulation showed that both had superimposable profiles (Figure 3.21). This sample

at ∼ 200 mg/mL showed similar results to the original 200 mg/mL sample via HPSEC

and DLS.
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Figure 3.21: Comparison of the viscosity curve between 200 mg/mL control sample prepared

via centrifugal concentration (crossed circles) and the originally formulated 200 mg/mL sample

(full circles). Respective lines correspond to ramping up shear rates, while the circles correspond

to ramping down data.

The possibility remains that polysorbate-80 was concentrated along with rAlbumin

for those samples between 250 and 500 mg/mL. In order to fully address this issue, it

would be necessary to directly quantify the presence of this surfactant in the protein
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solutions, which could not be done at the time of this study. To address the analysis

made here, the simplest case was considered, where the polysorbate would have diffused

through the concentrator’s membrane during centrifugation.

3.4 Conclusions

In this work a range of rAlbumin solutions, in a formulated buffer containing salt and a

surfactant, were analysed for their rheological behaviour with the aim to understand the

effects of high concentration on the solution viscosity. Rheological measurements showed

that the solutions (0.1 - ∼500 mg/mL) behaved as purely viscous fluids in the range of

the applied shear rates. It was observed that as the protein concentration increased in

solution, the samples presented an increase of viscosity.

Characterisation regarding the level of aggregation and species size was also made.

By HPSEC, all samples showed the same species were present in solution; monomers,

dimers and trimers of rAlbumin. The relative quantity of each species was fairly similar

between 0.1 - 200 mg/mL but as concentration increased to ∼500 mg/mL, the relat-

ive quantity of dimers and trimers increased along with a corresponding decrease of

monomer. By DLS and SDS-PAGE (microfluidics) analysis, the solutions showed no

other signs of impurities such as other higher order aggregates or protein fragments.

Throughout this study several experiments proved that concentrating the rAlbumin

≥200 mg/mL did not seem to have any other effect besides the increase of solution

viscosity and the change in relative composition of protein species. HPSEC was also

used with aid of triple detectors for the determination of the intrinsic viscosity and bulk

molecular weight. These results showed consistency throughout the concentrations stud-

ied, which was a sign of method and sample validity. Rheological analysis of rAlbumin

diluted in a surfactant-free buffer suggested that presence of polysorbate-80 in the for-

mulation buffer contributed for artifact-free measurements in rheometry, in light of what
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has been discussed in recent literature.

A comprehensive theoretical analysis of the rheological experimental data was per-

formed using different models that are currently assumed to be the most appropriate

to predict protein solution viscosity. These models are considered for hard spherical

or quasispherical particle suspensions and when plotted against the experimental data,

fixing the fitting parameters to the known shape and crowding conditions of spherical

particles, they could only predict the viscosity of rAlbumin up to ∼100 mg/mL. By

leaving these parameters free, the Ross-Minton and Krieger-Dougherty equations were

demonstrated to predict the solution viscosity well, up to 350 mg/mL, when excluding

concentrations >350 mg/mL. When applying an equation that accounted for the pro-

tein interdistance and thus, the effect of interaction potential upon viscosity (the Russel

equation), it couldn’t be applied to concentrations ≥ 150 mg/mL.

Generalised versions of the Ross-Minton and Krieger-Dougherty equations were also

studied and our best results showed that the former could successfully fit when using

experimental data up to ∼400 mg/mL of rAlbumin. These generalised models, although

still based on just two factors (shape or aspect/ratio and particle packing), introduce the

concept of a weight-averaged intrinsic viscosity. Our study showed that this approach

was the best to address the variation of protein species composition in solution. The fact

that our analysis produced better fits using these altered equations, further highlights

the importance of considering this variation in composition within a protein solution,

thus justifying its complete characterisation of oligomeric species. It is important to note

here that, so far no other analysis typically accounts for this variation within a sample

of one protein only - Galush et al.(2012) analysed binary mixtures of different mAbs and

a mAb and BSA. Moreover, while assuming there is no variation in protein species com-

position, the same theoretical models assume that the jamming limit remains unaltered

with changing composition. We still suggest that other factors related to highly con-
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centrated solutions may need to be considered, particularly since those concentrations

not fitted were the most concentrated (>400 mg/mL), where crowding effects should be

more accentuated.

In conclusion, our rAlbumin example explored here may well be a situation close to

what happens to reality in biopharmaceutical formulation science. Although a rather

complicated system, it highlights that the variation of protein species composition

between samples is a key factor for predicting the solution viscosity of protein solu-

tions.
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Chapter 4

The effect of insoluble protein aggregates on the rheology

of beta-lactoglobulin solutions

4.1 Introduction

The rheology of protein solutions have frequently been addressed in the literature

with regards to the flow properties of biological fluids, such as blood [64] and synovial

fluid [63], as well as food materials, including milk [161]. In recent years, due to

the rapid development of biopharmaceutical industry, attention has also turned to

therapeutically proteins such as monoclonal antibodies.

Although many of these studies have focused on different aims, it is easily noticed

that measurements performed with a conventional torsional rheometer show a flow

behaviour often addressed as being ’solid-like’ or ’shear thinning’ [61, 62]. The obser-

vations constantly point to this flow regime, commonly seen at lower shear stresses,

where viscosity seems to decrease as stress increases. This has been observed for

BSA, β-LG, ovalbumin and other globular proteins at concentrations ranging from

0.03 - 10 % (w/w) [60]. It has been discussed that this solid-like behaviour is due

to strong long-range repulsive interactions between globular protein monomers in

solution [60–62,162].

Recently, the work of Sharma et al.(2011) has suggested that the observed solid-
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like characteristics are typical of a material showing yield-behaviour. In colloidal

suspensions, viscosity is known to depend on the solids content of the suspension,

as well as interparticle interactions. These interactions confer specific behaviours to

the fluids depending on the force that must be overcome to create a deformation,

i.e. to flow. Following this logic, authors have suggested the existence of long-range

interactions that could generate a colloidal crystalline-like structure within a globular

protein solution [60–62, 162]. However, no evidence of such structures has yet been

demonstrated [63]. Sharma et al.(2011), proposed that protein-protein interactions

are responsible for this yield-behaviour. This suggestion was based on the fact that

most conventional bulk rheology measurements are performed with measuring systems

where a small air-water interface is present. Since macromolecules such as proteins are

known to be surface active [35, 163], it is proposed that inter-protein interactions are

responsible for a protein film that forms at the air-water interface which leads to the

observed yield-stress behaviour [78].

Yield-behaviour is commonly characterised in materials that only flow once a critical

stress is overcome [48, 49]. In colloids, yield stress is explained by the interactions

between the suspended material, which contribute to a strengthened network, and

can thus be related to interaction potential [90]. The work by Sharma et al.(2011)

is important since it was the first attempt at deriving a quantitative model of bulk

rheology including the influence of the air-water interface. However, other authors

have reported this viscoelastic behaviour to air-water interfacial effects when studying

biological solutions [164] and food materials [165]. Moreover, the rheology of globular

proteins in the presence of surfactant molecules (polysorbates) is Newtonian-like,

with no signs of yield-stress [74, 143]. This suggests that the presence of a surfactant

competes with the protein at the air-water interface enough to diminish the solid-like

behaviour observed in surfactant-free protein solutions [74, 166].
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The study presented here focuses on the rheology of β-lactoglobulin (β-LG) solutions

in surfactant-free aqueous buffer at pH 6.0. β-LG is a globular protein present in

milk whey and has been studied for its surface activity, flexible structure and ability

to foam and form stiff films at the air-water interface [163, 167, 168]. A conventional

torsional rheometer was used to characterise these solutions with cone-and-plate (CP)

and double-gap (DG) couette measuring systems, both of which exhibit a surface area

exposed to air. Interfacial shear rheology, using the double-wall ring (DWR) was also

performed. In addition, air-water interface-free measurements were obtained with a

microfluidics rheometer and the falling ball viscometer. Tensiometry data was collected

to compare with time-dependent bulk shear rheology measurements in an attempt to

understand the influence of the interfacial protein film and its effects on the solution

rheology. Further analysis was subsequently performed to quantify the bulk and

interfacial contributions on the observed solution rheology.

One of the aims of our work was to use β-LG as a model protein to identify the

origins of yield-behaviour often observed in protein solution rheology. Therefore we

hoped to contribute to a better understanding of excipient-free protein solution rheology

by demonstrating that this behaviour, and its causes, are inherent to such materials

in similar conditions. Our work also included a characterisation of protein species

present in the β-LG solutions, in terms of insoluble and soluble protein aggregates [85].

Generally, in protein solution rheology it is common to notice a lack of this type of

biophyiscal characterisation. However, as already outlined, the viscosities of protein

solutions are expected to depend not only on inter-particle interactions but the physical

characteristics of the components present in the fluid. Therefore, our other aim in

this work was to understand if by including an extendend particle characterisation, it

would be possible to relate the presence of insoluble particles to the observed yield-like

behaviour.
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4.2 Materials and Methods

4.2.1 Materials

4.2.1.1 Protein sample

β-LG was obtained from Sigma-Aldrich (product L3908, batches 097K7012 and

080M7312V) as a mixture of bovine variants A and B, in a lyophilised powder contain-

ing approximately 10% w/w of sodium chloride.

This protein is found in large quantity in the whey fraction of the milk of ruminants

(1.8 - 5 g/L) but not in human milk. It is a globular protein with molecular weight 18.4

kDa, with 162 amino acids and one free cystein (Cys121). There are more variants of

β-LG but variants A and B are the most common, of which differ by two amino acids.

The structure of β-LG is an eight-stranded, flattened β-barrel and flanking three-turn

α-helix with a ninth β-strand flanking the first strand (Figure 4.1). This protein has

been reported for having a pI at 5.2 [169]. It has a tendency to self-associate depending

on the pH and ionic strength of the buffer. Below pH 3 and above pH 9, β-LG is usually

present mainly as a monomer. Whereas between pH 5.2 and 9, monomers and dimers

coexist in equilibrium, with the dimers being more predominant. The dimer is stabilised

by hydrogen bonds between the surface of the AB loop and the ninth β-strand present

in each monomer, and by tight packing of the residues in the interface [169–172].

β-lactoglobulin undergoes changes of physical, chemical and spectroscopic properties

over the neutral pH range (6 - 8), which is related to the opening of the β-barrel (also

denominated calyx ). At basic pH, the calyx has an ”open” conformation providing

access of ligands to the hydrophobic cavity at its center. At acidic pH, there is structural

rearrangement to ”close” the calyx. This might help explain the physiologic relevance
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of this protein as having a possible role as a transporter of small hydrophobic ligands

protecting these from acidic pH present in the stomach [171,173].

(a) (b)

Figure 4.1: Structure of the β-lactoglobulin dimer from the X-ray coordinates, 1BEB (from the

RCSB Protein Data Bank, cited in [170]), showing a side view (a) and a top view (b). Letters

A-I are labels to the nine β-strands, coloured in blue. Figures were generated using the UCSF

Chimera package [140].

4.2.1.2 Sample preparation

Sample preparation for β-LG is described in section 2.2.2 in Chapter 2. For the work

presented in this chapter, a fresh batch of dialysed β-LG solution in 10 mM His-His.HCl

pH 6.0 was prepared at a stock concentration of ∼86 mg/mL. β-LG samples were checked

for protein concentration, pH and osmolality. Osmotic strength was measured using a

freezing-point osmometer (Osmomat O30-D, Gonotec GmbH, Germany), zeroed with

ultrapure water and calibrated with a 300 mOsmol/kg NaCl aqueous solution (Gonotec

GmBH, Germany). Samples were also checked for osmolality before and after dialysis.
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4.2.2 Methods

4.2.2.1 Quantification of protein concentration by UV spectroscopy

All details related to this method are described in section 2.2.7 in Chapter 2.

The percent extinction coefficient (A1%
1cm) used was 9.6 [100]. The concentrations

reported were calculated as an average of 3 measurements of separate dilutions prepared

from each sample or, in the case of the NanoDrop, 3 separate aliquots when no dilution

was required. An error of up to 10 % was accepted for these measurements.

4.2.2.2 Bulk Rheology

The rheometers used were Anton-Paar (Graz, Austria) modular compact rheometers

(MCR) 301 and MCR 501 models. A CP geometry stainless steel CP50-1 (diameter =

50 mm and cone angle = 1◦) was used, purchased from Anton-Paar. To prevent evap-

oration of sample and to keep constant temperature of 25◦C ± 0.1◦C throughout the

measurements, an evaporation blocking system equipped with a peltier unit was used

with the CP50-1. A double gap concentric cylinder (DG26.7) stainless steel geometry

with an inner diameter of 26.7 mm was also used. In this case, the lower outer cylinder

was embedded in the peltier unit that kept the temperature at 25◦C ± 0.1◦C. Sample

volume for this geometry was of 3.8 mL sample, while for the CP50-1 it was of 650 µL.

Both measuring systems and rheometers were calibrated with hydrocarbonate standard

oils (N1.0 and N14) from Cannon Instruments (USA) using the same method for data

collection. Prior to measurements, all samples were allowed to equilibrate to room tem-

perature (∼ 23◦C) for at least 40 minutes. Samples that were analysed after filtration

were filtered immediately before the start of a measurement.

Rotational tests (flow curves and viscosity curves), on the MCR 301 and 501 rheo-

meters using both geometries, were performed by controlling the shear rate from 0.01
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to 1000 s−1. Each shear rate step had a 60 second duration time during which the

instrument was averaging over the collected data. For standard flow behaviour sample

characterisation, two shear rate sweeps (ramping down and up) were performed per

sample, without waiting time between sweeps. This set of two sweeps was measured

at least twice, per sample concentration. When testing for hysterisis, the same sample

would be repeatedly sheared after a first set of sweeps, testing the effect of waiting time

(0 minutes or 5 minutes) between ramping.

Steady shear time sweeps were performed with the CP. The method consisted of load-

ing a freshly prepared sample and as soon as the measuring gap position was reached,

the sample was sheared at constant shear rate of γ̇ = 1000 s−1 for 10 minutes. The shear

rate was then reduced to γ̇ = 0.01 s−1 for 60 minutes, followed by a period of rest (γ̇ =

0 s−1) for 10 minutes, and finally subjected to a γ̇ = 0.01 s−1 for 20 minutes.

4.2.2.3 Interfacial shear rheology with the double wall-ring geometry

For interfacial shear rheology measurements a double wall-ring (DWR) geometry was

used. The DWR is composed of a trough and a ring that is positioned at the air/liquid

and connected to the rheometer - in this case, an AR-G2 rheometer (TA Instruments,

USA). The sample holder was placed on the bottom peltier plate of the rheometer. The

ring had a square-shaped cross-section and was made of platinum/iridium. The sample

volume for these experiments was ∼18 mL. After loading, the ring was lowered and

positioned on the freshly formed air-water interface. Measurements were conducted at

25◦C. Samples were filtered prior the measurement, and analysed immediately, unless

otherwise stated.

With the DWR, flow and viscosity curves were obtained by controlling the shear rate

from 0.01 - 100 s−1, ramping down and up, collecting data every 45 seconds. Oscillatory

tests started with amplitude sweeps in order to determine the linear viscoelastic range of
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the studied sample. These sweeps were run separately at different but constant angular

frequencies: 0.1, 0.5, 1, 5, 10, 50 and 100 rad/s. Frequency sweeps were then performed

with a new sample where the range of studied angular frequencies was between 0.1 to

100 rad/s. Throughout the angular frequency sweep, constant strains used were of 2,

1.7 and 1.5 % for the frequency steps of 0.01 - 0.5 rad/s, 0.5 - 5 rad/s, and 5 - 50 rad/s,

respectively.

Time sweeps with the DWR were performed for oscillatory shear at a constant strain

of γ = 1% and constant angular frequency of ω = 5 rad/s, for 90 minutes. All interfacial

shear rheology tests were started immediately after a fresh sample was loaded and as

soon as the ring was set at the air-liquid interface.

4.2.2.4 Falling-ball viscometer

An automated micro capillary viscometer (Anton-Paar, Graz, Austria) was used as a

complimentary technique to determine bulk viscosity. The capillary had an inner dia-

meter of 1.6 mm and contained a steel ball of 1.5 mm diameter. For a standard meas-

urement, the inclination angle was set at 70◦ (and -70◦). Temperature control at 25◦C

± 0.1◦C was ensured via a peltier unit attached to the instrument. The capillary was

calibrated by running DI water and a viscosity standard oil at the same angle used for

the sample measurement. β-LG samples analysed with this technique were filtered (0.1

µm pore size) prior to these measurements. Viscosity values presented were computed

using the measured density of the analysed samples (for details of density measurement

procedure, see section 2.2.11 in Chapter 2).

4.2.2.5 Micro-viscometer/rheometer on-a-chip

The microviscometer/ rheometer on-a-chip (mVROC), by Rheosense, Inc. (San Ramon,

California, USA) was also used to measure the bulk viscosity of filtered (0.1 µm pore size)
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β-LG solutions only. For these measurements, the A05 chip was used and temperature

was kept constant at 25◦C ± 0.1◦C using a water circulation system (ThermoCube, SS

cooling systems, USA) (for additional information, see section 2.2.6.2 in Chapter 2).

4.2.2.6 High performance size exclusion chromatography for the determin-

ation of level of protein aggregation

All the details related to this method are described in section 2.2.9.2 in Chapter 2.

4.2.2.7 Dynamic light scattering

All details related to this method are described in section 2.2.8.1 in Chapter 2.

β-LG samples were measured at 1 mg/mL diluted from samples that at their original

concentration were either unfiltered or filtered (0.1 µm pore size). The measurement

settings for size readings were at a constant temperature of 25◦C ± 0.1◦C, performing a

total of 20 runs of 5 seconds duration each. Prior to the measurement, all samples had

an equilibration time of 5 minutes at the same temperature. Size measurements were

made in triplicate with fresh aliquots for each reading.

Time-dependence size measurements were performed using 1 mg/mL β-LG solution

filtered (0.1 µm pore-size) directly into the clean quartz cuvette. The measurement

duration was the same as for size characterisation, but repeated up to 40 consecutive

times with no delay between each measurement.

4.2.2.8 Microfluidic chip sodium-dodecylsulfate polyacrylamide gel electro-

phoresis (SDS-PAGE)

All details related to this method are described in section 2.2.13.1 in Chapter 2.

A gel was run to compare dilutions of unfiltered and filtered β-LG solutions

151



(originally at ∼68 mg/mL) .

4.2.2.9 Composition-gradient multi-angle light scattering (CG-MALS) for

the determination of protein self-virial coefficient

For the CGMALS experiment see details on section 2.2.8.2 of Chapter 2. The analysed

β-LG solution was a 12.7 mg/mL, doubly filtered with 0.1 µm pore-size syringe filters.

The sample was in 10 mM His-His.HCl pH 6.0 buffer and the successive dilutions were

analysed with the filtered sample buffer (0.1 µm). Data analysis was performed using

Calypso software (Wyatt Corporation Technologies, Santa Barbara, California, USA).

4.2.2.10 Tensiometry

All the details referring to this technique are described in section 2.2.10 in Chapter 2.

A freshly prepared filtered sample (0.1 µm pore size) of β-LG solution ∼68 mg/mL

in buffer was analysed.

4.2.2.11 Flow imaging microscopy for sub-visible particle counting

All details related to this method are described in section 2.2.15 in Chapter 2.

β-LG samples were either filtered (0.1 µm) or measured without prior filtration. β-

LG samples at 0.1, 10 and 35 mg/mL were measured without prior dilution. Since the

β-LG ∼68 mg/mL unfiltered solution showed visible particles and opalescence, it was

diluted to 10 mg/mL to prevent clogging of the flow cell. A dilution to 10 mg/mL of

the filtered β-LG 68 mg/mL solution was also analysed. All samples were measured at

least once, except for the diluted sample for β-LG 68 mg/mL which was measured three
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times (unfiltered and filtered samples).

4.2.2.12 Visual inspection of protein solutions

All details related to this method are described in section 2.2.16 in Chapter 2.

β-LG samples analysed for visual inspection were ∼0.1, 10, 35 and 68 mg/mL,

before and after filtration.

4.3 Results and Discussion

4.3.1 Bulk and interfacial shear rheology of β-LG solutions

β-LG solutions with concentrations of approximately 68, 35, 10 and 0.1 mg/mL were

prepared after dialysis and its rheology was characterised using CP and DG geometries

(Figures 4.2(a) and 4.2(b)). Samples exhibited a strong viscoelastic behaviour, showing

decreased shear viscosity as the shear rates were increased. Analysis of the shear

viscosity dependence on applied shear stresses, revealed a very sharp decrease of

viscosity at the lower shear stresses (Figure 4.3). The same observations could be drawn

for measurements from both type of geometry.
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Figure 4.2: Viscosity and flow curves of β-LG solutions using (a) CP and (b) DG geometries.

Circles represent the viscosity values, while the squares represent the shear stress values. Samples

were 0.1, 10, 35 and 68 mg/mL, all unfiltered solutions, measured at 25 ◦C.
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Figure 4.3: Viscosity curves versus shear stress for CP (larger graph) and DG rheology (inset

graph) of β-LG. Samples were 0.1, 10, 35 and 68 mg/mL, all unfiltered solutions, measured at

25 ◦C.

At low shear rates all samples showed a common linear slope of -1 representing

the decrease of viscosity. The results also pointed to a non-monotonic dependence of

viscosity with concentration at the lower shear rates (γ̇ < 10 s−1), whereas this depend-

ence could be observed at higher shear rates (e.g. γ̇ = 1000 s−1). Similar observations

can be identified in the literature with regards to globular protein solution rheology,

including that of β-LG solutions in similar excipient-free buffers [60–62]. The observed

behaviour at low shear rates has been often classified as shear-thinning. However, it

has been recently suggested that it is actually an apparent yield stress behaviour [78].

Analysis of Figures 4.2 and 4.3, with shear stress pointing towards a finite value at

the lower shear rates, and the sharp drop of viscosity at these low deformations, are

evidence of yield stress, i.e. where little flow is detected up to a point where external

forces overcome internal forces from which the material will deform [49]. Many authors

who referred to this behaviour as shear-thinning, suggested that it was related to the

155



possible existence of colloidal crystals at low deformations, a consequence of long-range

electrostatic interactions [60–62]. Nevertheless, such globular proteins solutions did

not reveal the existence of any crystalline-like network [63]. However, shear-thinning

behaviour is typically characterised with stress increasing non proportionally to the

shear rate, often resulting in a linear plot in a log-log representation, which is different

to what was seen in our results at lower shear rates [48,49] (Figure 4.3). Shear-thinning

is a typical behaviour of a fluid, since by definition a shear-thinning fluid cannot be in

equilibrium if at rest [48].

For the highest concentration used, β-LG ∼68 mg/mL, steady state as well as

oscillatory interfacial shear rheology was studied. The use of the double wall ring as

an interfacial shear rheology geometry is one of the most adequate methods to measure

the surface viscosity due to its ratio of contact surface area to wetted perimeter [94].

A flow and viscosity curve characterisation of the air-water interface for β-LG at 68

mg/mL showed a linear decrease of viscosity with the applied shear rates (0.01 to 100

s−1) and a slope of -1 (Figure 4.4).
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Figure 4.4: Interfacial shear rheology flow and viscosity curves for β-LG at 68 mg/mL (filtered

0.1 µm). The experiment was run immediately after the interface was formed. There was no

waiting time between sweeps.

Further interfacial shear rheology characterisation included oscillatory studies, with

strain and frequency sweeps (Figures 4.5(a) and 4.5(b)). For both strain and frequency

sweeps the material always showed storage moduli (elastic portion) of higher values than

the loss moduli (viscous portion), G′
s >> G′′

s .
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Figure 4.5: Interfacial shear oscillatory rheology for β-LG 68 mg/mL filtered (0.1 µm). (a)

Strain sweeps at constant ω = 100; 50; 10; 50; 5; and 1 rad/s. (b) Frequency sweep was run

from 0.01 to 50 rad/s, with constant strains at 2, 1.7 and 1.5 % from low to higher frequencies.

For this test, the sample had an interface age of approximately 1.5 hour.

The strain sweeps with different constant angular frequencies of a range between 0.1

to 100 rad/s showed that the sample could still respond within the linear viscoelastic

range throughout the chosen angular frequency range. It was only for a strain sweep
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with ω = 50 rad/s that a drop in G′′
s occurred at strain from 0.1 onwards, even

though G′
s remained constant. This was a signature of how strongly elastic this protein

solution’s interface was, at the conditions studied.

For the interfacial shear frequency sweep (Figure 4.5(b)), G′
s was always larger

than G′′
s at all applied ω, showing a narrow difference of values at ω = 0.01 rad/s but

increasing G′
s as ω increased, a sign of increased surface stiffness. This stiffness was

accompanied with the damping factor tans δ <1, suggesting a solid-like state. This

indicated that the phase angle δ, i.e. the shift between applied strain and the resulting

deformation, was approaching 0◦. All of these observations were signs characteristic of

viscoelastic behaviour, which in this case reflected in a protein solution with a surface

of increasingly stiff (elastic) characteristics. These observations were in agreement

with literature for interfacial shear rheology of β-LG films in similar experimental

conditions [167]. It was also noted that our frequency sweep did not show signs of

cross-over between G′
s and G′′

s at lower frequencies, possibly indicating the fast transport

of this protein to the air-water interface.

The linear increase observed for G′
s from ω = 0.3 rad/s onwards was related to fluid

inertial effects inherent to the DWR geometry [94,174] and accounted for by evaluation

of the Reynolds number (Re) and consideration of the DWR’s characteristic geometry

length (1 mm).

Drawing together the viscosity curves of interfacial and bulk shear rheology (Figure

4.6) it is clear that similar flow behaviour can be identified independent of the geometry

used. Assuming that yield behaviour better explained these results, the simple Bingham

model for yield-stress of viscoelastic fluids (Equation 4.1) was fitted to these data.

τ = τBY + ηBY γ̇ (4.1)

This model is commonly used to find the yield point value (τBY ) by extrapolating
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the function τ(γ̇) to the zero shear rate value (γ̇ = 0 s−1), where ηBY represents the

function’s coefficient. Plotting the calculated viscosities (Figure 4.6), based on the

obtained fitting parameters (all with r2 >0.97), these fitted data (lines in the graph)

correlated well with the experimental data, highlighting that the underpinning factors

leading to the yield behaviour seen on bulk rheology (CP and DG) could indeed relate

to what causes the same behaviour at the interface of β-LG solutions. In addition, the

observations so far noted for this protein have been similarly made for bovine serum

albumin (BSA) solutions in PBS [78].
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Figure 4.6: Flow and viscosity curves comparing bulk viscosity obtained by CP (red circles)

and DG (green circles) with surface viscosity (blue circles) of a filtered 68 mg/mL β-LG solution.

The lines represent respective fitting of data to the Bingham equation for yield stress (equation

4.1).
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4.3.1.1 Air-water interfacial effects on conventional bulk rheology of β-LG

solutions in excipient-free buffers

In many studies, excipient-free protein solution rheology has been measured using

conventional (shear or stress-controlled) rheometers with geometries such as the CP.

Sharma et al. (2011) combined analysis (bulk and interfacial rheology) of BSA in PBS

lead to their suggestion that the apparent yield behaviour observed resulted from a

protein film formed at the air-water interface. Indeed, β-LG is known to adsorb and

form a film at the air-water interface [175] and its rheology at the interface has been

extensively studied [167, 176–178]. Thus, our interpretation of bulk rheology results

take on the suggestion that an apparent solid-like behaviour is inherently present in CP

and DG bulk shear rheology of surfactant-free globular protein solutions. However, it

is important to better understand which underpinning factors influence this behaviour

and how do these interplay in protein solution rheology of surfactant-free samples.

Therefore, the combination of rheological time sweep measurements and surface tension

measurements were performed to seek if any correlations could be drawn.

A steady state time sweep rheological measurement of a β-LG ∼68 mg/mL (filtered

solution with 0.1 µm pore-sized syringe filter) was performed on a CP to characterise

the effect of time with continuous shearing (Figure 4.7(a)). The viscosity increased

until it reached a maximum at a time point of approximately 1940 seconds (from the

start of the second step). Viscosity then remained constant, and a rest period did not

seem to affect the sample, since the viscosity values remained similar. The time point

at which viscosity attained a steady state on the CP experiment, did not match the

timescale measured from the tensiometry experiment shown in Figure 4.7(b). The latter

experiment showed that surface tension reached an equilibrium (52.4 ± 0.37 mN/m)

just after ∼1000 s. Filtered (0.22 µm) pure water and filtered (0.1 µm) sample buffer

were measured as controls and had surface tension values of 72.9 ± 0.14 mN/m and
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73.0 ± 0.34 mN/m.
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Figure 4.7: (a) Steady state time sweep with CP rheology and (b) a tensiometry curve for the

β-LG 68 mg/mL filtered (0.1 µm) in 10 mM His-His.HCl pH 6.0. Stages for the time sweep (a)

were: constant shear rate at 1000 s−1 for 10 min (a); γ̇ = 0.01 s−1 for 60 min (b); rest period

(c); γ̇ = 0.01 s−1 for 20 min (d).

While the surface tension measurement was performed without shearing the air-
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water interface, the CP rheological time sweep kept the sample volume with aid of an

evaporation blocking system, to resemble the conditions of the tensiometry experiment.

In the case of constant shearing, after the shear rate was dropped to 0.01 s−1, the

protein not likely formed the film at the air-water interface since the shear rate should

be low enough to allow protein transport to the surface. The differences in methodology,

inherent to the instrumentation, could explain why the timescales do not match between

the different measurements. Nevertheless, the combination of these time-dependent

experiments could represent, to different extents, the kinetics of protein transfer from

bulk sub-phase to the air-water interface. Analogous time sweep experiments of BSA

solutions and synovial fluid using bulk and interfacial shear rheology yielded similar

results [63, 78].This suggests that the observed time and surface dependency is likely

inherent to general surface activity properties of proteins.

In addition to timesweep results, consecutive rotational tests with the same sample

(β-LG at ∼68 mg/mL filtered) were performed with CP and DG (Figure 4.8). With

both geometries, no hysterisis was observed when ramping down and up with no

waiting time. However, between runs, resting for at least 5 minutes seemed to produce

slightly lower viscosity values at the lower shear rates (<10 s−1) while still presenting

an apparent yield behaviour. This difference was clearer with the CP data than with

the DG data. Interpretation of these results would require further tests to understand

if the main reasons leading to the observed hysterisis relies solely upon surface activity.

Although all the CP measurements were performed at a controlled environment with an

evaporation blocking system, evaporation could still be possible, thus becoming another

variable to consider as an influence to the changes observed at low stresses.
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Figure 4.8: Viscosity curves of consecutive runs for βLG ∼68 mg/mL comparison using CP and

double gap. Circles (full or hollow) correspond to ramping down the shear rates, while lines (full

or dashed) correspond to ramping up. CP data is represented in dark red, and DG is represented

in blue. Time between runs was 5 minutes. Measurements taken at 25 ◦C.

These time-dependent results support the hypothesis that air-water interfacial

effects need to be accounted for when measuring this type of fluid on a CP and DG

geometries, since these are not free of an air-water surface area. Therefore, when using

such geometries care needs to be taken to avoid unreliable readings for excipient-free

protein solutions, particularly at the lower shear rates.

4.3.1.2 Air-water interface-free bulk rheological measurements of β-LG

solutions and extrapolation of surface viscosity from CP and DG

rheology

Having established that the air-water interface may influence the conventional bulk

measurements, a comparison to air-water interface-free bulk measurements was needed

as a control. Therefore, measurements at the higher shear rates (γ̇ > 1000 s−1) using
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a mVROC were performed (Figure 4.9 and Figure A.3 in Appendix A). The flow

behaviour observed with the mVROC showed constant viscosities along the shear rates,

suggesting that the samples had a Newtonian-like flow, comparable to a purely viscous

liquid. Superimposition of mVROC data with CP and DG data at high shear (γ̇ >10

s−1) showed that the DG data matched better with the mVROC viscosity values. This

has been observed by Sharma et al. (2011) with BSA solutions.
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Figure 4.9: Rheology profiles of β-lactoglobulin samples comparing CP and DG data of un-

filtered samples, with mVROC data (filtered samples). mVROC data are the crosses, CP data

are the full circles and DG data are the hollow circles. Data shown only for higher shear rates

of CP data. Measurements with mVROC were taken using the A05 chip. All data was taken at

25 ◦C.

A falling ball viscometer was also used for comparison, since the shearing rates

applied by the falling ball to the fluid produce much lower shear rates than those

imposed by the mVROC [49]. The viscosity values measured per solution were similar

to those measured at γ̇ = 1000 s−1 with both the CP and the DG (Table 4.1).
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Table 4.1: Comparison between the viscosity values of β-LG filtered (0.1 µm) samples obtained

using the CP and DG geometries, and the mVROC and falling ball viscometers. The results

shown are mean and standard deviation of three separate measurements from each instrument.

Both AMVn and mVROC results demonstrated that applying high shear rates (γ̇

= 1000 s−1) using a CP or DG would be approximate to a bulk viscosity measurement

performed with an air-water interface-free viscometer or rheometer. Although mVROC

data did not allow measurements at the lower shear rates, it can be suggested that

extrapolation to zero-shear viscosity (η0(γ̇ → 0)) would yield values similar to those

measured at the higher shear rates. As seen from previously discussed results (e.g.

Figure 4.6), the same extrapolation to zero-shear rate cannot be made with CP and DG

data without accounting for the yield-like behaviour [78].

The suggestion that bulk viscosities measured with CP and DG are not true bulk

viscosities implies that it is important to understand how the interface can influence

the measurements. A rheometer fitted with a CP or a DG geometry will measure the

torque as response of all the fluid in contact with the moving geometries, i.e. the cone

and the bob, respectively. Therefore, if a surface active molecule forms a film at the

air-water interface, the torque response will depend of the film’s response to shear as

well as the bulk’s deformation. Calculating the surface area exposed to the air-water

interface present in a CP and a DG system, we conclude that these areas are roughly
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similar (73 mm2 and 71 mm2 for the CP50-1 and DG26.7, respectively). This could

explain why the viscosities with CP are only just above to those obtained with the DG.

The Boussinesq number (Bo) is a dimensionless parameter that allows the calculation

of the contribution of surface drag (ηs) relative to the bulk (ηb).

Bo =
surface drag

sub− phase drag
=

ηs
ηb ls

(4.2)

Bo depends on ls, which is the geometry’s characteristic length scale, where ls ≈

Ab/Pi. ls depends on the geometry’s dimensions, since Ab is the contact area between

the geometry and the bulk sub-phase and Pi is the perimeter of wetted geometry in

contact with the interface. From Equation 4.2, Bo ≫1 when the interfacial stresses

contribute more to the flow than the bulk stresses, while the contrary happens when

Bo ≪1. A geometry with a maximised wetted perimeter also contributes to high Bo

values. This is the case of the DWR where ls = 0.7 mm allows it to have higher sens-

itivity for interfacial measurements [94, 179]. The ls for CP and DG were calculated

considering the geometry’s dimensions and are ls(CP ) ≈ 12.5 mm and ls(DG) ≈ 40.5

mm, respectively (details are shown in Appendix A).

Figure 4.10 represents the calculated Bo for these three geometries using the meas-

ured interfacial shear viscosities and assuming η∞ = ηb from mVROC data.
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Figure 4.10: Boussinesq parameter dependent of shear rate calculated for DWR, CP and DG

geometries using respective steady state shear rheology data, interface and bulk, from a filtered

∼68 mg/mL β-LG solution.

These results showed that BoDWR ≫ BoCP > BoDG at the shear rates studied, and

that Bo ≫1 for these geometries, particularly at the lower shear rates (γ̇ <10 s−1). It

showed that the bulk stresses started matching the interfacial stresses on the DG and

the CP only when γ̇ >16 s−1 and >63 s−1, respectively. This also coincided to when

viscosity values of the ∼68 mg/mL sample reached constant values (cf. Figure 4.6). Our

results were similar to those observed for BSA solutions from ref. [78], although in that

study a CP of smaller dimensions (40 mm diameter) and a DG with a ls of 59.5 mm were

used. These differences in geometry were reflected in the Bo values, their DG provided

lower Bo values at lower shear rates, thus measuring viscosities free from interfacial

effects from slightly lower shear rates [78]. The opposite was reflected with the CP of

their choice, which explained why our mVROC data superimpose better to our CP50-1

viscosity data at the higher shear rates (> 100 s−1) (cf. Figure 4.9).

Following the proposal of Sharma et al. (2011), it was possible to quantify the
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connection between these interfacial contributions and the torsional rheometry bulk

measurement. The authors proposed the Equations 4.3 and 4.4, from which is possible

to estimate bulk viscosities for a DG and CP from interfacial shear and a interface-free

bulk measurements (e.g. mVROC, where ηb ≈ η∞ ≈ η0(γ̇ → 0)). Assumptions have to

be taken in account, such as the thickness of the surface active component is assumed

to be smaller compared to the bulk geometry’s effective characteristic length lG. In

addition, these derivations were made assuming that the measured torque (M(γ̇)) has

contributions from the bulk sub-phase shear stress (τb = ηb γ̇) and the surface shear

stress (τs = ηs γ̇). Finally, these contributions are calculated for the simple case where

the surface is sheared without coupling with its bulk sub-phase [78].

η(γ̇) =
MDG(γ̇)

4πR2Lγ̇

≈ ηb + l−1
G ηs(γ̇)

≈ η∞ + l−1
G (τs/γ̇)

(4.3)

η(γ̇) =
MCP (γ̇)

(2πR3/3)γ̇

≈ ηb +
3ηs(γ̇

R

≈ η∞ + l−1
G ηs(γ̇)

(4.4)

The effective characteristic length scales for each geometry, lG, were also derived from

the torque expressions and calculated to be lG(DG)= L and lG(CP ) = R/3, for the DG

and CP, respectively [78]. Note that both equations (4.3 and 4.4) can be generalised to

the same format (since ηs(γ̇) = τs/γ̇).

Conversely, it was possible to estimate the surface viscosities extracted from the

bulk measurements with CP and DG, based in a general equation derived similarly and

assuming the same scenarios (Equation 4.5).

ηs(γ̇) ≈ lG (η(γ̇)− η∞) (4.5)

All results related to the extrapolation of surface viscosity from the bulk measure-

ments and estimation of CP and DG data from surface measurement were based on
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filtered (0.1 µm) β-LG ∼68 mg/mL (Figures 4.11(a) and 4.11(b)).
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(a) Estimation of bulk viscosities from CP and DG experimental data
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(b) Estimation of surface viscosity from CP and DG experimental data

Figure 4.11: (a) Bulk viscosity for CP and DG rheology estimated from interfacial rheology

measurements. Measured data from CP and DG are shown for comparison. (b) Estimation of

surface viscosity from CP and DG rheology. Measured data from DWR is plotted for comparison.

All experimental data was obtained at 25 ◦C.

Estimation of bulk viscosity from the interfacial data (Figure 4.11(a)) resulted
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in slightly underestimated values, particularly for the DG geometry. However, the

estimated values for surface viscosity (Figure 4.11(b) seem to closely agree with the

measured ηs using the DWR, especially for the CP data. The discrepancies here found

may be due to the assumed scenario avoiding a coupling between sheared surface

and sub-phase, i.e. the interfacial contributions from a CP or DG most likely come

from a length larger than the film thickness, thus including a small proportion of bulk

sub-phase [78]. Beyond these discrepancies, these latter calculations, in addition to the

Boussinesq calculations, helped understand how the CP measurements were subject to

higher influence of air-water interface, compared to the DG.

Since our results generally compare well to literature [78], even though when ob-

tained from solutions of a different protein and using slightly different bulk geometries,

they show that the air-water interface influence is inherent to CP and DG rheology of

globular protein solutions. This also reinforces the importance of a better understand-

ing of what happened at the lower shear rates of flow and viscosity curves of such samples.

4.3.2 Studying the influence of protein aggregates in bulk rheology of

β-LG solutions

If protein solution viscosity is expected to be a function of volume fraction of the

solutes present, it would be expected that all particles in a protein solution would

also contribute to its viscosity proportionally to its concentration. Thus, it was

hypothesised that the presence of insoluble aggregates could be a reason why the

non-monotonic dependence appeared particularly at low shear rates. For this study,

a comparison of rheological behaviour was made between unfiltered and filtered (0.1

µm) solutions, as well as an aggregate characterisation of the particles present in the

samples. A further characterisation of the protein was made to understand its level
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of aggregation and self-associative tendency at the solution conditions used in this study.

β-LG is known to be self-associative with the level of self-association dependent on

the solution pH. At pH 6.0 β-LG was expected to be present mostly as a dimer, since pH

6.0 is higher than it’s reported pI (5.2) and the dimers can associate further at between

pH 5 - 8 [169]. In our case, a measurement with CG-MALS allowed characterisation

of the associative state that β-LG was in the sample buffer at pH 6.0 (Figure 4.12).

The MW was estimated to be 33.4 ± 0.14 kDa, which is close to the expected β-LG

dimer MW of ∼36 kDa. The calculated self-virial coeffcient was -1.46×10−4± 4.9×10−6

mol.mL/g2. The negative value reflected the overall attractive self-interactions that

can explain the self-associative characteristics of this protein at low ionic strength

and close to physiologic pH [169]. CG-MALS data therefore showed that this pro-

tein was present mostly as a dimer at the solution conditions used throughout this study.

Figure 4.12: Static light scattering data (R/K∗) versus concentration of β-LG starting at a

stock concentration of 12.7 mg/mL and diluted with 10 mM His-His.HCl pH 6.0 buffer. The red

squares represent the data and the line is for guidance only.

An analysis with HPSEC showed no difference in the number of peaks (species)
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detected and respective elution times, between the unfiltered and the filtered samples

(see Figure A.1 in Appendix A for an example of a chromatogram). Filtration of β-LG

solutions did not affect the peak areas, as these remained essentially the same as seen

with the unfiltered samples (Figure 4.13).
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Figure 4.13: HPSEC chromatography data of β-LG species present in unfiltered and filtered

solutions.

On microfluidics SDS-PAGE analysis, both unfiltered and filtered β-LG samples

showed one band on both reducing and non-reducing conditions, identified to have a

molecular weight of approximately 19 and 16 kDa, respectively (Figure 4.14). Consid-

ering the self-associative tendency of this protein, and due to successive dilutions used

in this technique, all dimer dissociated into monomer. It was not possible to resolve

the two variants A and B from this analysis. The purity of the material was confirmed,

since no other MW band of a potential protein contaminant was identified [100, 169].

Although the MW obtained from this analysis were slightly lower than expected for the

β-LG monomer, similar results were obtained in literature [121].
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Figure 4.14: A microfluidics protein electrophoresis gel image for reduced and non-reduced

conditions of β-LG samples. All samples diluted to 4 mg/mL with PBS. Lanes are: protein

ladder, 1 - reduced β-LG unfiltered sample, 2 - reduced β-LG filtered 0.1 µm sample, 3 - reduced

standard mAb sample (control), 4 - non-reduced β-LG unfiltered sample, 5 - non-reduced β-LG

filtered 0.1 µm, 6 - non-reduced standard mAb sample (control).

After dialysis of several batches of β-LG stock, typically of∼80 mg/mL, these samples

were always found to have visible particles. A qualitative characterisation of the prepared

unfiltered samples was made via visual inspection (Table 4.2) regarding visible particles,

opalescence and colour. After filtration into a clean vial, all samples were free of visible

particles, showed no colour and were non opalescent (Figure 4.15).

The undialysed and dialysed β-LG stocks solutions were assessed on its osmolality

with a calibrated freezing-point osmometer. A typical β-LG undialysed batch had an

average of 55 ± 0.001 mOsmol/kg, whereas the dialysed batch would be 21 ± 0.002

mOsmol/kg which was similar to the value found for the filtered sample buffer (15

± 0.001 mOsmol/kg). All batches of β-LG showed a similar osmolality value. pH

measurements also showed that the samples retained their pH to 6.0.
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Figure 4.15: Image of β-LG solutions (∼68 mg/mL) before (right) and after (left) filtration

using a 0.1 µm pore-sized syringe filter.

Table 4.2: Visual inspection classification for β-LG unfiltered samples. The material was

assessed based on its colour, opalescence and visible particles content against a black and white

screen with aid of a white light. Values or codes in parenthesis correspond to the standard to

which the sample was similar.

Unfiltered samples were measured on the rheometer using both the CP and the

DG geometries, as shown on Figures 4.2(a) and 4.2(b) in section 4.3.1. These samples

exhibited a non-monotonic concentration dependence at the low shear rates (< 10 s−1).

It was expected that filtration would yield lower viscosities, reduce the influence to the

flow of larger insoluble particles (visible and sub-visible) and thus restore a monotonic

concentration dependence at the lower shear rates. The results suggest that this was the

case for the CP data, but not with the DG data (Figures 4.16(a) and 4.16(b)). Filtration

could change slightly the concentration of material, where some monomer/dimers of

β-LG could be adsorbed to the filter while the larger protein aggregates were filtered

out. However, the difference between unfiltered and filtered solution concentrations
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was lower than the accepted instrumental error for determination of concentration (10

%), except in the case of β-LG at 0.1 mg/mL (Table 4.3), while still being close to

this error percentage. This slight drop in concentration can explain these differences

between the viscosities at the higher shear rate (1000 s1). Nevertheless, the larger

differences between unfiltered and filtered samples were detected within the lower

shear rates γ̇ <10 s−1, particularly and consistently with the CP data. One possible

reason for disagreement with the DG data might be due the difficulty of loading the

sample onto the cylinder gap, especially immediately after filtration where it is possible

to inadvertently introduce micro-air bubbles that can further influence this measurement.

176



10-2 10-1 100 101 102

10-3

10-2

10-1

100

101

102

 

 

 unfilt.  filt.
β-LG 0.1 mg/mL
β-LG 10 mg/mL
β-LG 35 mg/mL
β-LG 68 mg/mL

V
is

co
si

ty
 [P

a.
s]

Shear Rate [1/s]

Cone-and-plate

102 103

10-3

10-2

 

 

V
is

co
si

ty
 [

P
a.

s]

Shear Rate [1/s]

(a) CP

10-2 10-1 100 101 102

10-3

10-2

10-1

100

101

102

 

 

 unfilt.  filt.
β-LG 0.1 mg/mL 
β-LG 10 mg/mL
β-LG 35 mg/mL
β-LG 68 mg/mL 

V
is

co
si

ty
 [P

a.
s]

Shear Rate [1/s]

Double-gap

102 103

10-3

2x10-3

3x10-3

4x10-3

5x10-3

 

 

V
is

co
si

ty
 [P

a.
s]

Shear Rate [1/s]

(b) DG

Figure 4.16: (a) CP data and (b) DG data of viscosity curves for samples of β-LG of different

concentrations, comparing between the unfiltered and filtered (0.1 µm) solutions. Larger plots

show the data at the lower shear rates (<100 s−1) and the inset graphs show the data at the

higher shear rates > 100 s−1. All measurements taken at 25 ◦C.
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Table 4.3: Measured concentrations via UV-Vis spectroscopy, of β-LG before and after filtra-

tion. Results are showed as an average and standard deviation of three separate measurements.

1 - ∆concentration was calculated from [Unfilt.]−[Filt.]
[Unfilt.] × 100.

A comparison between the mVROC data superimposed with the CP and DG data of

equally filtered samples, highlighted the similarity at the higher shear rates of viscosity

values between the DG data and mVROC, with a slightly larger difference between CP

and mVROC data (Figure 4.17).
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Figure 4.17: Rheology profiles of β-LG samples comparing mVROC, CP and DG data. Protein

samples were all previously filtered with 0.1 µm pore-size syringe filters. Measurements were all

taken at 25 ◦C.

It was necessary to identify what type of aggregates (soluble or insoluble) would

influence this protein’s solution rheology. The DLS correlation function data showed

two steps, reflecting the existence of two different-sized populations (Figure 4.18). After

filtration, slightly faster diffusion times were noted for the second population, while the

first population remained unaltered (see Table A.1 in Appendix A). Size distribution

by intensity (Figure 4.18, see inset graph) showed that apart from a main peak with a

mean hydrodynamic diameter (HD) of ∼6 nm, these solutions presented a second peak

with a Dh > 100 nm. According to literature, the typical hydrodynamic diameter of

β-LG dimers in physiological pH conditions is around 5.2 - 5.8 nm [100, 180] assuming

a thin hydration layer. Our DLS data was similar, taking in account differences in pH

and ionic strength referred in literature, but also confirmed with the data obtained by
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CG-MALS.
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Figure 4.18: Size distribution by intensity of β-LG 68 mg/mL before and after filtration.

Large graph corresponds to the normalised correlation function data versus decay times (hollow

circles), as well as the fit to an exponential decay curve (dashed lines) for the before and after

filtration β-LG 68 mg/mL samples. For both fits, the good-fitting parameter of r2 was larger

than 0.99. The inset graph shows the size distribution by intensity of the same samples shown

on the correlation data.

It was expected that after filtering the solutions, the second population would

have lower hydrodynamic size (HD) or disappear altogether. However, filtration could

generate new protein aggregates [127]. Other authors have also found that β-LG

has an ability of forming aggregates (of diameter between 100 - 800 nm) quickly

after being filtered, even when filtered directly to the DLS clean cuvette which was

also our case [169]. This particular spontaneous clustering (or aggregation) of β-LG,

particularly of variant A, has been addressed regarding the protein’s specific surface

180



charge distribution [180,181].

A time-sweep DLS measurement was done for a 1 mg/mL β-LG sample freshly

filtered into the cuvette to investigate if this was the case, or if the equipment could

detect the time point where the β-LG protein soluble aggregates would appear. Results

showed that as soon as the sample was filtered and measured, it demonstrated a second

peak with a mean HD of between 200 - 500 nm, which fluctuated towards 1000 or higher

nm with time (Figure 4.19). Although the populations with HD > 1000 nm should not

be considered due to the instrument’s limit of detection [110], this was a sign that the

monomers/ dimers could be clustering into aggregates of higher diameters shortly after

filtration, in agreement to literature [169].
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Figure 4.19: DLS time sweep of filtered 1 mg/mL β-lactoglobulin solution. The hydrodynamic

diameter size by intensity for monomer/dimer ( blue circles) and for aggregates (green circles).

The lines correspond to their relative peak areas, also by intensity (monomer/dimer - blue;

soluble aggregates - green).

A comparison with DLS and HPSEC analysis was also made between unsheared

samples (’before rheology’) and after being sheared (’after rheology’). DLS data is shown
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in Appendix A (see Figures A.6(a) and A.6(b), and Table A.1). On HPSEC there was

no difference detected on the chromatographic profiles and relative peak areas between

before/after rheology on both unfiltered and filtered samples. With the ’after rheology’

samples, there was a tendency towards larger aggregates detected by DLS. This could

be have been an effect of shearing and the presence air-water interface on CP and DG

measuring systems. Moreover, the possibility of shearing conditions and the adsorption

to stainless-steel surfaces, such as those from CP and DG geometries, could contribute to

the observed increase of soluble aggregates [29, 30]. Nevertheless, further investigations

would be needed to determine the exact origin of these aggregates, taking in account

the specific physical-chemical properties of β-LG.

To allow for a quantitative measurement and characterisation of sub-visible particles

with a circular diameter (ECD) between 1 - 150 µm, all samples were analysed with

micro-flow imaging. Filtration considerably reduced the number of sub-visible particles

detected by micro-flow imaging (Figures 4.20(a) and 4.20(b)).

It would be assumed that after filtration, the material would be free from sub-visible

particles, since the pore-size was of 0.1 µm. However, literature has shown that

proteinaceous particles can remain even after filtration [127], where particles which have

an axis length < 0.1 µm can still go through the membrane’s pores. It can also be the

case of filtered-induced protein aggregation [127]. As a control, 0.1 µm filtered sample

buffer was measured in triplicate and repeatedly presented less than 10 particles per mL

(see Table A.2 and Figures A.7 and A.8 in Appendix A). Therefore, when working with

the MFI one has to consider the cleanliness of the environment, tubes or vials used, and

be aware that there will be a residual number of sub-visible particles still present even

after sample filtration.
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Figure 4.20: MFI sub-visible frequency histograms of (a) unfiltered and (b) filtered (0.1 µm)

β-LG samples. Samples at ∼68 mg/mL were diluted to 10 mg/mL to avoid clogging of the flow

cell with visible particles present. The diluted 68 mg/mL unfiltered and filtered β-LG samples

were measured in triplicate. Other concentrations (∼0.1, ∼10 and ∼35 mg/mL) were measured

with no further dilution and only once.
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From MFI characterisation one concludes that these insoluble sub-visible protein-

aceous particles were not only of different shapes, sizes and opacity (see Figures A.7 and

A.8 in Appendix A), but also when under shear these aggregates were suspended in the

sample. Therefore, to explain the differences seen between the rheology of unfiltered

and filtered β-LG samples, especially with the CP data, it could be possible that these

insoluble particles were contributing to increased viscosities at the shear rates applied.

To estimate impact of this, the use of a rheological dimensionless parameter, the dressed

Péclet number was calculated assuming a simple scenario. The dressed Péclet number

is defined by:

Pe∗ =
τa3

kBT
=

ηγ̇a3

kBT
(4.6)

Pe∗, also known as reduced stress, measures whether the applied stress (in this

case, shear stress τ) is large or small relative to the characteristic stress arising from

Brownian motion (since kB is Boltzmann’s constant and T the fluid’s temperature).

Thus, equation 4.6 is dependent of the particle size, where a corresponds to the particle’s

characteristic length scale. Equation 4.6 is a ratio between the rate of advection imposed

to the flow and the rate of the particle’s relaxation by Brownian motion [48]. When

Pe∗ ≫1, the shear stress effects overcome the particle’s Brownian motion, whereas if

Pe∗ ≪1, the opposite occurs [48].

The calculations of Pe∗(γ̇) shown in Figures 4.21(a) and 4.21(b) represent the

simplified situation where Pe∗(γ̇) was in order of each of the sizes assumed to be

present in a ∼68 mg/mL β-LG solution. In this case, it is considered only for the

case of a monodispersed suspension composed of those separate sizes only. Besides

polydispersity being a problem in calculating true Péclet numbers, the interparticle

interactions also play an important role in colloidal suspensions, therefore interfering in

the hydrodynamics of the suspension [48]. Finally, it was also assumed that the applied

shear stresses were not disturbing the sizes of the protein soluble and insoluble species.
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Figure 4.21: Comparison of Péclet number dependent on shear rate using different size data

between unfiltered and filtered ∼68 mg/mL β-LG sample. (a) Calculations using DG shear

rheology data. (b) Calculations using CP shear rheology data.
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Nevertheless, these simplified calculations of Pe∗(γ̇) highlighted that the larger

the sizes of proteinaceous particles in a protein sample, the higher their influence the

shear rheology particularly at low shear rates. For the CP and DG, only the Pe∗(MFI

ECD data) >1. This meant that the stresses imposed to the fluid influenced the way

these larger particles flowed, while the soluble aggregates and dimers flowed due to

their Brownian motion. For both geometries the Pe∗unfiltered < Pe∗filtered from the MFI

data, when we should expect the opposite and as it is seen from the aggregate data.

This discrepancy can be explained by the constant presence of large (ECD > 10 µm)

sub-visible particles in the filtered samples, therefore skewing the mean ECD used for

Pe∗ calculations (Table A.2 in Appendix A).

4.4 Conclusions

In this chapter a detailed evaluation of the rheology of excipient-free β-LG solutions was

made, where this protein served as a model for globular proteins. By collecting data from

different types of rheometric instrumentation and comparing these, it was possible to

identify that these solutions had a complex flow behaviour dependent on the shear rates

applied. At low shear rates the flow properties of these samples seemed to be similar to

solid-like flow, with a corresponding yield behaviour observed. Further analysis and close

agreement of the data to a simple yield-stress Bingham model, supported our findings.

At the higher shear rates, achieved with both the conventional torsional rheometers (CP

and DG geometries) and a microfluidic rheometer (mVROC), these solutions produced

a Newtonian-like flow, i.e. characteristic of a purely viscous fluid.

The origin of this yield-behaviour was also studied and suggested to be related to

the surface activity of the protein and its time dependent formation of a protein film

at the air-water interface. Comparison between interfacial rheology, tensiometry and
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time-dependent bulk measurements with CP, although not reflecting matched timescales

between measurements, further highlighted the importance of the presence of the air-

water interface in the rheology of excipient-free protein solutions. Complementary data

obtained from mVROC and AMVn provided evidence that when lacking this influence,

protein solutions seem to show low viscosities and with constant values (e.g. mVROC).

Further analysis of this apparent change in regime between low and high shear showed

that it was dependent, in an simple additive way, on contributions from surface effects

and bulk sub-phase to the measured torque. Although our calculations included a few

simplistic assumptions, these highlighted the fundamental hypothesis that a protein

film at the air-water interface present in CP or DG experiments will be detected and

translated in high viscosities at low shear rates.

Our detailed results add to recent findings in the literature [78] to the extent that

this hypothesis was applied to another globular protein model. This brings emphasis

to the broad application of this knowledge to protein solution rheology, in particular by

applying to the study of therapeutically relevant proteins such as monoclonal antibodies.

We also hypothesised that the rheological properties depended on the soluble and

insoluble protein species present in these samples. Even though filtration could have

limitations, it was shown that the presence of sub-visible proteinaceous particles had an

impact on the sample rheology, particularly at the lower shear rates. Small differences

in rheology were detected, between the unfiltered and filtered samples, but this could be

due to the small proportion of sub-visible particles (and visible, although not quantified)

on the sample’s total solids content. These findings highlight that the contents and size

of protein species within a protein solution are key factors to understand in order to

correctly and realistically evaluate its rheology.
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Chapter 5

The rheology of a monoclonal antibody solution: a case

study on the effect of aggregation of a model monoclonal

IgG1 on its solution rheology

5.1 Introduction

It is known that protein solutions will inherently contain different associative species

that are formed with time, solution conditions, temperature, and/or dependent on other

physical-chemical factors [28]. For the perspective of biopharmaceutical formulations,

determination of stability is therefore an important part of development to ensure that

the right conditions are chosen to prevent any loss of protein monomer, which in the

case of antibodies, is the pharmacologically active substance [1, 44].

The generation of protein associative species can be lead by several pathways from

which a protein monomer can degrade [28, 43]. The consequence of these pathways

can ultimately lead to proteinaceous aggregates that vary in its size, morphology,

reversibility properties, secondary and/or tertiary structure, and if cross-linked by

covalent bonds [85]. In the protein formulation, it is important to understand the

mechanisms that may lead to protein aggregation, in order to inhibit these as much as

possible. Characterisation of proteinaceous associative species and their quantification
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is therefore necessary to account for the stability and safety of the formulated drug

product [10].

For colloidal suspensions, it is known that viscosity is a physical parameter con-

nected to the suspension’s content, to the particle morphology and the inter-particle

interactions present [48]. This has been discussed in literature [182], and was discussed

in the previous chapters of this thesis (Chapters 3 and 4) as a concept that should

be addressed when understanding the rheology of protein solutions. Moreover, the

importance of influence of the air-water interface in conventional rheology measurements

of protein solutions was highlighted in Chapter 4 [74, 78, 143]. Therefore, the work in

this chapter focused on extending these concepts to mAb solution rheology.

The mAb used for the studies presented in this thesis was a humanised IgG1,

provided as a lyophilised product containing stabilising additives. It was necessary to

remove these excipients to generate the excipient-free mAb solution needed for this

study. The first section of this chapter accounts for the physico-chemical comparisons

of the different batches obtained after this removal procedure. This mAb has been

characterised in literature, for its engineered ADCC enhancement via three mutations

which were introduced to its CH2 domain [183].

The general aim of this work was to understand if and how protein aggregation

influenced the solution viscosity of this mAb. Thermal stressing over defined periods

was the chosen method to promote the protein aggregation process. The solutions

were characterised using several biophysical techniques to help understand the level

of aggregation, the size, morphology, and quantity of the aggregates. In addition, by

extending this case to the complexity of monoclonal antibody aggregation, we aimed to

understand the effects of aggregation on the yield-like behaviour typically observed in

excipient-free protein solutions. The ultimate aim of this chapter was, in light of the

discusssions concerning the effect of concentration on the viscosity of protein solutions
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(Chapter 3), if it was possible to relate the volume fractions of protein aggregates, as

well as their size and shape to the solution’ viscosities. An achievement in that regard,

could help the development of future biopharmaceutical formulations in predicting

mAb solution viscosity based on the physico-chemical characterisation of the protein

aggregates generated during stability test.

5.2 Materials and Methods

5.2.1 Materials

5.2.1.1 Protein sample

The humanised monoclonal antibody studied was provided by MedImmune, LLC.

(Gaithersburg, Maryland, USA). It is an IgG1 of 145.461 kDa. The protein was

supplied in a lyophilised formulation containing other additives, including a surfactant.

The formulation additives were removed by purifying the reconstituted material, as

described in section 2.2.3 of Chapter 2.

5.2.1.2 Sample preparation

After purification, diafiltration and concentration steps were performed to collect the

mAb solutions (section 2.2.3 in Chapter 2). Three batches were obtained depending on

the processing step and concentration: batch 1, 2a and 2b.

Independent of the diafiltration/ concentration method used, all mAb batches were

checked for concentration, pH, osmolality, and their aggregation level by HPSEC.

Additionally, all batches were checked for presence of the non-ionic surfactant which

was an additive in the original lyophilised formulation (this procedure was performed
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at and by MedImmune, Gaithersburg, MD, USA).

mAb solutions were prepared in a histidine buffer containing L-Histidine and

L-Histidine monohydrochloride at 10 mM in ultrapure water, with a pH of 6.0 ± 0.2

at room temperature. L-Histidine salts were obtained from J.T. Baker Chemicals

(Pennsylvania, USA) and were of analytical grade.

For circular dichroism analysis, a 10 mM sodium phosphate buffer pH 6.5 was

prepared using monosodium phosphate monohydrate and dibasic sodium phosphate

heptahydrate in ultrapure, both purchased from J.T. Baker Chemicals and of analytical

grade. Ultrapure water was obtained from a water cleaning resin system from NAN-

Opure Diamond, Barnstead, USA, with water quality of 18.0 mΩ-cm, and 0.22 µm

filtered (EMD Millipore, USA). All buffers were filtered using 0.22 µm vacuum-driven

filter units (Nalgene, USA), unless when 0.1 µm pore-size filtering was necessary (using

PDVF syringe-filters Millex-VV from EMD Millipore, USA).

Filtration of mAb samples, using syringe filters, was done under a vertical laminar-

flow fumehood to avoid any contamination by dust particles (LabCaire fumehood VLF6

Clean Air, PuriCore, Inc., USA).

Thermal stress aggregation study

After filtration of batches 2a (∼100 mg/mL) and 2b (∼17 mg/mL), the samples were

left at 40 ◦C and 5 ◦C (control) for 6 weeks. Aliquots of the samples were analysed

at 2 week intervals. The samples were typically taken out of the incubator and left at

room temperature to equilibrate (∼30 minutes), since most of the experiments required

readings at room temperature.
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Dilution and temperature study of reversible aggregates

The sample used was stored at 40 ◦C for 7 weeks. Dilutions of 10 and 50 mg/mL of

this sample were analysed on DLS and on HPSEC (with a sample tray temperature)

either at 25 ◦C or 5◦C. Injection concentration was kept 10 and 50 mg/mL, therefore

the injection volume was changed according to keep constant the protein load in the

chromatography column. For the HPSEC experiment at 5 ◦C, injections were made

over a period of time of 7 days, whereas the experiment at 25 ◦C took a total of 21

hours. The DLS experiments lasted 25 hours.

For the rheology and HPSEC parallel studies of the effect of reversible aggregates,

a mAb sample of 100 mg/mL left at 40 ◦C for 2 weeks was used. After the first

measurement, for rheology and HPSEC, the original sample was stored at 5 ◦C. Fresh

aliquots were measured on HPSEC as well as on the double-gap rheometer 24 hours later.

5.2.2 Methods

5.2.2.1 Quantification of protein concentration by UV spectroscopy

A calculated percent extinction coefficient (A1%
1cm) of 1.45 was used for mAb solutions.

The concentrations reported were calculated as an average of measurements of 3 separate

dilutions prepared from each sample. An error of up to 10 % was accepted for this

measurement. All details related to this method are described in section 2.2.7 in Chapter

2.

5.2.2.2 Freezing-point osmometry

The osmotic strength of buffers and samples was measured. A freezing-point osmometer

Osmomat O30-D (Gonotec GmbH, Germany) was used, zeroed with ultrapure water and

calibrated with a 300 mOsmol/kg NaCl aqueous solution (Gonotec GmBH, Germany).
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5.2.2.3 Differential scanning calorimetry

All details related to this method are described in section 2.2.12.1 in Chapter 2.

5.2.2.4 Isoelectric Focusing

All details related to this method are described in section 2.2.13.2 in Chapter 2.

5.2.2.5 Circular Dichroism

All details related to this method are described in section 2.2.14 in Chapter 2. The

far-UV data collected was processed and fitted using the CONTINLL, SELCON3 and

CDSSTR algorithms available on with the CDPRO software. The protein base reference

used for these computations was reference set SP43. The data shown in this work is

obtained from using the CDSSTR algorithm, since it was the best fit, having the lowest

root mean squared (RMS) values compared to the other fits.

5.2.2.6 Bulk Rheology

The rheometer used was Anton-Paar (Graz, Austria) MCR 301 model. A cone-and-plate

geometry was a stainless steel CP50-1 (diameter = 50 mm and cone angle = 1 ◦; Anton-

Paar). To prevent evaporation of sample and to keep constant temperature of 25◦C ±

0.1◦C throughout the measurements, an evaporation blocking system equipped with a

peltier unit was used. A double gap concentric cylinder geometry (DG26.7) was also

used. The rheometer was calibrated with hydrocarbonate standard oils (N1.0 and N14)

from Cannon Instruments (USA) using the same method for data collection. Prior to

measurements, all samples were allowed to equilibrate to room temperature (∼ 23◦C)

for at least 30 minutes.

The reconstituted mAb formulation was analysed on the TA AR-G2 rheometer (TA
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Instruments, USA), using a CP40-1 (40 mm diameter, 1 ◦ cone angle; TA Instruments).

This measurement was performed at 25 ◦C.

Rotational tests (flow curves and viscosity curves) were performed by controlling the

shear rate typically from 0.01 to 1000 s−1. Each shear-rate step had a 60 second duration

time during which the instrument was averaging over the collected data. For the TA

AR-G2 rheometer, the shear-rate step had a 45 second duration time. Typically, two

shear-rate sweeps (ramping down and up) were performed per sample, without waiting

time between sweeps.

5.2.2.7 Micro-viscometer/rheometer on-a-chip

The microviscometer/ rheometer on-a-chip (mVROC), by Rheosense, Inc. (San Ramon,

California, USA) was also used to measure the bulk viscosity of filtered (0.1 µm pore size)

mAb solutions only. For these measurements, the A05 chip was used and temperature

was kept constant at 25◦C ± 0.1◦C using a water circulation system (ThermoCube, SS

cooling systems, USA) (for additional information, see section 2.2.6.2 in Chapter 2).

5.2.2.8 High performance size exclusion chromatography for determination

of level of protein aggregation

All the details related to this method are described in section 2.2.9.2 in Chapter 2.

5.2.2.9 Static light scattering - HPSEC-MALS and CGMALS

For the HPSEC-MALS experiments, the system was an Agilent Technologies chroma-

tography system as that described in section 2.2.9.2 of Chapter 2, adding an Optilab

REX refractive index detector and an on-line DAWN-HELEOS II multi-angle light

scattering detector. Details on both these detectors can be found in section 2.2.8.2 in

Chapter 2. The method details were kept constant as stated for the HPSEC method.

Calibration of this experimental setup was made using a BSA standard at 2 mg/mL
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in phophate buffer and sodium azide 0.2 %, obtained from Pierce Labs (Thermo

Scientific, UK). Analysis and integration of the chromatograms was performed using

Astra 6 software (Wyatt Corporation Technologies, Santa Barbara, California, USA).

The dn/dc (refractive increment) used for this experiment was set at 0.185 mL/g [142].

The mAb samples analysed were: a non-stressed 100 mg/mL samples (stored at 5

◦C); a 17 mg/mL sample stored at 40 ◦C for 2 weeks; and two 100 mg/mL samples

stressed at 40 ◦C for T= 2 and T= 6 weeks, respectively. All the 100 mg/mL mAb

samples were injected at 10 mg/mL dilutions and the 17 mg/mL samples were injected

neat.

For the CGMALS experiment see details on section 2.2.8.2 of Chapter 2. The

analysed mAb solution was a 5 mg/mL dilution from batch 2a, doubly filtered with 0.1

µm pore-size syringe filters. The sample was in 10 mM His-His.HCl pH 6.0 buffer and

the successive dilutions were analysed with the filtered sample buffer (0.1 µm pore size).

Data analysis was performed using Calypso software (Wyatt Corporation Technologies,

Santa Barbara, California, USA).

5.2.2.10 Dynamic light scattering (DLS)

All details related to this method are described in section 2.2.8.1 in Chapter 2. mAb

samples were measured at 1 mg/mL to reduce non-linearity effects on measurements due

to increased viscosity of the samples at higher concentrations. Measurement settings

for size readings were at a constant temperature of 25◦C ± 0.1◦C, performing 20 runs

of 20 seconds duration each. Sample equilibration for 5 minutes was done at the same

temperature. Size measurements were made in triplicate with fresh aliquots for each

reading.

For time sweeps, the samples were also measured at 1 mg/mL and set up for
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continuous readings for 24 hours. The number of runs were 20, with 20 seconds duration

each. The temperature was either at 5 ◦C or 25 ◦C. With the sample measurement at 5

◦C, a nitrogen gas flow was run through the sample compartiment at sufficient pressure

to prevent condensation on the cuvette’s sides.

5.2.2.11 Microfluidic chip sodium-dodecylsulfate polyacrylamide gel elec-

trophoresis (SDS-PAGE)

All details related to this method are described in section 2.2.13.1 in Chapter 2. A gel

was run to compare the dilutions of the three batches of excipient-free mAb solutions

(batch 1, 2a and 2b). Another µ-SDS-PAGE experiment was performed to check the

purity of thermally-stressed mAb samples. A comparison was made between samples

at the last time point of the study with those at T=0. For the 100 mg/mL mAb

samples, this experiment was performed after the study had finished, due to lack of

timing before completion of the study. Therefore, about 250 µL of the samples at T=0

and T= 6 weeks were frozen at -80 ◦C and then thawed for the preparation of the gel

electrophoresis test. Concerning the 17 mg/mL mAb samples, the comparison made

was between the last time point (T=6 weeks) at 5 and 40 ◦C and the frozen sample at

T= 0 at 5 ◦C (Figure 5.14(b)).

5.2.2.12 Flow imaging microscopy for sub-visible particle counting

All details related to this method are described in section 2.2.15 in Chapter 2. The mAb

samples chosen for MFI analysis were, for both ∼100 and ∼17 mg/mL, unfiltered and

filtered (0.1 µm) solutions. During the thermal stress study, aliquots from these two

dilutions were measured at each time point (T= 0, 2, 4 and 6 weeks). Aliquots from
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stressed samples at 40 ◦C and 5 ◦C were measured. The samples (100 and 17 mg/mL)

at T= 0 corresponded to the initially filtered material. After the first filtration, no

other filtration step was performed before measuring the solutions at the remaining time

points.

5.2.2.13 Visual inspection of protein solutions

All details related to this method are described in section 2.2.16 in Chapter 2. Unfiltered

and filtered (0.1 µm) samples of ∼100 and ∼17 mg/mL mAb solutions were visually

inspected regarding their colour, opalescence and visible particle content.

5.3 Results and Discussion

5.3.1 Excipient removal and mAb characterisation

In order to explore the effects of aggregation on viscosity, this study utilised an

excipient-free solution. To guarantee that none of the additives remained in solution,

affinity chromatography followed by diafiltration/ concentration steps were employed.

mAb batch 1 was obtained using a stirred-cell diafiltration-concentration method,

while mAb batch 2 was obtained via a tangential flow filtration (TFF) method. Batch

2 was divided into 2a and 2b, and the solutions were kept separate, since batch 2b

corresponded to the washings of the TFF membrane. All mAb batches were diafiltered

in 10 mM His-His.HCl pH 6.0 buffer. These were characterised to confirm that, despite

the different diafiltration-concentration methods used, the protein remained the same

in its physical-chemical characteristics.

mAb Batch 1 had a total volume of ∼35 mL at a concentration of ∼88 mg/mL.

Batch 2a had a total volume of ∼180 mL at ∼100 mg/mL, while batch 2b had a total

volume of ∼140 mL at ∼17 mg/mL. After extracting the excipients, the mAb solutions

were checked for osmolality. The excipients were clearly removed from the original
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solution, since the purified mAb solutions presented an osmolality of ∼26 mOsmol/kg,

comparable to the buffer (15 ± 2 mOsmol/kg) and much lower than the value measured

for the formulation (896 ± 19 mOsmol/kg). The consistency of these solutions’ pH was

also checked and it remained to pH 6.0 at room temperature. Additionally the batches

were checked for the non-ionic surfactant additive present in the original formulation.

The gas chromatography method demonstrated that this additive was not detectable

in the excipient-free material. The batches were submitted to circular dichroism,

micro-differential scanning calorimetry, capillary isoelectric focusing, HPSEC, and

microfluidics SDS-PAGE. Flow and viscosity plots of each batch were obtained using a

cone-and-plate geometry and compared to the formulated material.

Since the diafiltration/concentration methods are a processing step common in mAb

solution preparations, it has been discussed in literature its role in influencing the pro-

tein’s structure and level of insoluble and soluble aggregates due to the high fluid shear

rates involved [5]. As an initial characterisation, the circular dichroism technique was

used to confirm the secondary and tertiary structures of the mAb remained unaltered.

Figure 5.1 summarises the obtained circular dichroism scans made at far and near UV

wavelengths. Figure 5.1(a) includes a table that shows the relative content of secondary

structures present in this mAb. Between batches, no evident change was observed in the

secondary structure, although the spectra were not super-imposable. The goodness of

fit values of the CDSSTR algorithm fit to the experimental data represent these subtle

differences between spectra at far UV wavelengths, though producing similar relative

percentages of each secondary structure present in this macromolecule. The negative

peak at ∼217 nm and a positive peak at ∼203 nm, as well as the resulting relative

percentages high percentage (total ∼70 %) in β-sheet and low percentage of α-helix

showed agreement with the expected results for a IgG1 mAb [184, 185]. For the near

UV wavelengths (Figure 5.1(b)), there was no major difference between the spectra
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collected showing that the tertiary structure remained similar across the batches. The

near UV spectra showed peak values slightly shifted to lower wavelengths, compared

to literature [184–186]. A positive peak at ∼285 nm (related to tryptophan residues),

followed by a negative band with a range between 270-250 nm, were still observed and

considered to be typical to IgG near UV dichroisms. In summary, there was no evident

difference found between the batches collected and, although this CD analysis had to

be made at a different non-chiral buffer than in which the mAb was originally diluted,

the macromolecule seemed to retain its structure.
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Figure 5.1: Circular dichroism spectra for the three batches of excipient-free mAb in a 10 mM

phosphate buffer pH 6.5: a) Far UV from 180 - 260 nm, including a table showing the relative

percentages of each secondary structure present in the studied monoclonal antibody (results

obtained from CDSSTR algorithm fitting and showing the calculated RMSD (root mean square

deviation) as a measure of accuracy of the fit; b) Near UV spectra from 250 - 320 nm

CD data suggested that the mAb would be structurally similar throughout the

solutions, however for an additional check and related to future studies (see following
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section in this chapter), a calorimetry scan was obtained. Figure 5.2 shows that there

were no evident differences in the identified melting temperatures (positive peaks in

the spectra) between the different batches. Three peaks were found, corresponding to

the melting temperatures of specific domains of the mAb. Throughout the solutions,

these melting temperatures presented consistency in their values and were as follows:

Tm1 ∼48.5 ◦C; Tm2 ∼72.4 ◦C; and Tm3 ∼83.7 ◦C. Correspondence of these peaks to

the mAb’s domains was as follows: Tm1 was attributed to the CH2 domain; Tm2 to

the F(ab’)2 domain; and the Tm3 to the CH3 domain [183]. This mAb was originally

studied for its engineered 3-point mutation in the Fc region, more specifically in the

CH2 domain. It was found that this change was sufficient to produce an additional

melting temperature at a lower value (∼48.5 ◦C), than the commonly main peak

typically around 72-73 ◦C, attributed to melting of both CH2 and F(ab)’2, found in

non-mutated IgG1 [183,187]. It is noted that µ-DSC is also a commonly used technique

for excipient screening, since the Tm values can shift due to the presence of several

additives at different content [44]. The agreement of our measured Tm values with

literature available about this mAb, studied in the same solution conditions as in our

case, were a guarantee that the different process steps to obtain an excipient-free mAb

solution were successful.
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Figure 5.2: Micro differential scanning calorimetry data for the three batches of excipient-free

mAb in 10 mM His-His.HCl pH 6.0 buffer. The melting temperatures were attributed to the

different mAb domains as follows: Tm1 = CH2 domain; Tm2 = F(ab’)2 domains; Tm3 = CH3

domain.

Capillary isoelectric focusing was performed to verify that the batches of mAb

were similar in their charge heterogeneity. cIEF is a commonly used technique to help

identify batch-to-batch consistency between the same macromolecule submitted to

several processing steps [123]. As with CD and µ-DSC, the cIEF results showed that

there were no evident differences between batches of this mAb (Figure 5.3). The cIEF

electropherogram of this mAb had a main peak of pI = 8.94. Two acidic isoforms were

detected, as well as one basic isoform. The acidic species are often related to sialylation

and deamidation reactions which generate acidic isoforms of the mAb, due to storage or

processing steps [125]. On the other hand, the basic isoforms can be due to a C-terminal

lysine at the heavy chain [124].
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Figure 5.3: Example of capillary isoelectric focusing electropherogram showing the isoforms for

batch 2b of the excipient-free mAb. All batch samples were analysed in a Pharmalyte composition

between pI 8 and 10.5, with the pI markers 8.18 and 9.77. Each sample was analysed in duplicate.

The summarised cIEF results for the three batches are shown in the table.

The mAb batches was checked for its level of aggregation by HPSEC. In general,

all batches had a monomer content of >98 % (with a retention time of ∼8.7-8.9 min),

a small presence of higher molecular weight species (HMWS, eluting at ∼7.4 min) and

a low percentage of lower molecular weight species (LMWS, eluting at 10.8-10.9 min)

(Table 5.1). For an example of a chromatogram of a non-stressed mAb sample, see

Figure B.1 in Appendix B. By comparing these batches, the only difference is with

batch 2a where there was a slightly lower content of monomer. As this material was

concentrated to the highest value of concentration (∼100 mg/mL) and that step was

performed with TFF, the slight increase in HMWS could be a result of the effect of

shear and high concentration [5]. In fact, during TFF it is common to concentrate to

higher values than intended, only to dilute it to the actual target concentration.
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Table 5.1: Table showing the relative peak area for the species detected by HPSEC analysis of

the three batches of mAb. Each batch was analysed in triplicate. Data is shown as average and

its standard deviation.

The microfluidics SDS-PAGE gel image shown in Figure 5.4 compared the mAb

present in these three solutions. Lanes 1 to 3 show these samples after exposure

to reducing-conditions. The two typical strong bands at ∼56 kDa and ∼25 kDa,

correspond to the expected heavy and light chains present in a IgG1, respectively [186].

These bands are in agreement with the those observed for the other mAb in lane 4, also

an IgG1, used here for control and system suitability purposes. Under non-reducing

conditions (lanes 5 - 7), the samples had a strong band at ∼145 kDa, in agreement with

the control sample. The high purity of these samples, with > 98 % relative presence of

monomer, was highlighted with the HPSEC and the µ-SDS-PAGE results.
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Figure 5.4: Microfluidics SDS-PAGE gel image of non-reduced and reduced samples of each of

the three batches of the excipient-free mAb. Legend to the lane number is as follows: 1) reduced

- batch 1; 2) reduced - batch 2a; 3) reduced - batch 2b; 4) reduced control mAb; 5) non-reduced -

batch 1; 6) non-reduced - batch 2a; 7) non-reduced - batch 2b; 8) non-reduced control mAb. The

control mAb was a different IgG1 from the mAb in our study, and was used for this technique’s

system suitability check.

The three batches of excipient-free mAb were compared to the formulated material in

terms of its rheological response. Figures 5.5(a) and 5.5(b) represent the viscosity curves

and the flow curves, respectively. In Figure 5.5(a), a striking difference between the for-

mulated mAb and the additive-free solutions was observed, where the former showed

a Newtonian-like behaviour, while the latter had a change of viscosity throughout the

applied shear rates. As with what was discussed in Chapter 4, the viscosity profiles of

the additive-free mAb samples had an apparent yield-like behaviour. In Figure 5.5(b),

the linear decrease of shear stress with shear rates, for formulated mAb solution, was a

marked difference in comparison to the almost shear-rate independent shear stress val-

ues at lower shear rates seen on the additive-free mAb solutions. Since the formulation

included a non-ionic surfactant, the data suggested that the yield behaviour seen on the

other mAb solutions was a result of the lack of competitive surface active molecules such

as the surfactant. This comparison has been observed in literature and similar results
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to ours were obtained [74, 143]. However, as the formulation contained other additives

apart from the non-ionic surfactant it is was not clear if the surfactant’s presence was

solely responsible for this Newtonian-like effect. On the other hand, this experiment em-

phasised that conducting the previous ’purification’ with affinity chromatography was

a successful method for eliminating the formulation additives from the original mAb

solution.

In detail, at the higher shear rates the additive-free material showed that its viscos-

ities were monotonically dependent of concentration (see inset of Figure 5.5(a)). The

formulated material had a slightly higher viscosity (∼5 mPa.s) compared to the ∼100

mg/mL solution. This could be due only to its concentration ∼120 mg/mL, or a com-

bination of that with the presence of additives in solution. At a lower shear rate (γ̇=

0.01 s−1, the batches of mAb demonstrated viscosities decreasing with the solution con-

centration (see inset of Figure 5.5(a)).
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Figure 5.5: Experimental rheology data showing a) viscosity and b) flow curves comparing the

three excipient-free mAb batches and the formulated mAb sample, all prior any filtration. Inset

graph in a) is the relative viscosity at low shear (η(0.01 s−1)) and at high shear (η(1000 s−1))

versus the concentrations of three batches of non-formulated mAb.

In summary, throughout this batch characterisation, the material was similar in its

phyiscal-chemical properties even though it suffered different post-processing steps. The
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additives present in the original mAb formulation were efficiently removed. Nevertheless,

for future studies discussed in this chapter and the following chapter, these batches were

not combined into one. Since batch 2a had the largest volume and highest concentration,

it was chosen for the studies regarding the effect of thermal stress on its solution rheology.

For this study, the comparison with a diluted mAb sample was made using batch 2b.

Batch 1 was used solely for the results presented and discussed in Chapter 6.

5.3.2 mAb solution rheology: a case study on the effect of aggregates

This section is focused on the effect of aggregation on the mAb’s solution rheology.

Since the mAb had a melting temperature of about ∼48 ◦C, it was expected that its

stability at this buffer conditions would be compromised by thermal stressing at 40

◦C. Thus, this was the chosen method to force protein aggregation. However, before

starting this study, large particles (of size > 0.1 µm diameter) were filtered out to reduce

a possible nucleation effect influencing the generation of further protein aggregation.

Therefore, the time point when filtration occurred was considered the initial time point

(T= 0) for the aggregation study that lasted for 6 weeks.

For the study of filtration and aggregation of the mAb solutions, the rheology was

measured with cone-and-plate and double-gap geometries, and characterisation of the

protein oligomers was performed by HPSEC, MFI, DLS, and µ-SDS-PAGE. Micro-

fluidics rheometry with mVROC was used to measure only the filtered mAb solutions.

The sample’s concentration was also monitored during the study. Also, a study was

done on the potential effect of CP and DG rheology on these samples, focusing on the

relative quantity and/or size of the aggregates before and after the rheology experiments.

209



5.3.2.1 Effect of insoluble particles on the mAb solution rheology

The unfiltered ∼100 and ∼17 mg/mL mAb solutions were visually inspected before

filtration with 0.1 µm pore-size membrane syringe filters. The results are shown

in Table 5.2. Although the ∼100 mg/mL sample was practically free of particles,

these usually formed a dust-like spiral from the bottom of the vial after swirling

the sample for inspection. The 17 mg/mL sample did not show this. The sample

at 100 mg/mL presented higher degree of opalescence and colour than the diluted

mAb solution. This could be related to the concentration effect. After filtration both

samples showed to be free of particles, the colour was maintained respective to each

concentration, while the 100 mg/mL mAb solution showed slight opalescence (score: III).

Table 5.2: Visual inspection score for mAb unfiltered samples at 100 and 17 mg/mL. The

material was assessed based on its colour, opalescence and visible particles content against a

black and white screen with aid of a white light. Values or codes in parenthesis correspond to

the standard to which the sample was similar.

Since visual inspection is a qualitative analysis, a quantitative evaluation of filtration

efficiency was performed with micro-flow imaging. Figure 5.6 shows the comparison of

particle count frequency histograms along the equivalent circular diameters between

the unfiltered and filtered mAb samples. As expected from visual inspection analysis,

the ∼100 mg/mL sample showed higher particle count, mostly concentrated towards

smaller sizes. This was a feature also seen with the diluted mAb solution, however its
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total particle count was lower (2213 particles) compared to the higher concentration

(43987 particles) (see Table B.2 in Appendix B). Both filtered samples showed an

evident decrease of particle count per size class and in the analysed volume. Filtered

sample buffer was also measured, as a control sample. Sub-visible particles were present

in the filtered buffer although to a much reduced level compared to the filtered mAb

solutions (Table B.2 in Appendix B). As discussed in the previous chapter, although

MFI allowed a quantitative analysis of sub-visible size range proteinaceous particles (1 -

100 µm), it still drew uncertainties regarding the effectiveness of filtration since filtered

solutions always presented some sub-visible particles.
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Figure 5.6: MFI sub-visible protein aggregates frequency histograms comparing between un-

filtered and filtered 100 mg/mL mAb solutions (large graph) and 17 mg/mL mAb solutions (inset

graph).

For HPSEC data, no change was observed between unfiltered and filtered mAb

solutions (Table 5.3). Since the HPSEC technique allows the detection of soluble

aggregates only up to a certain MW size (∼600 kDa, in this case), and the unfiltered
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solutions had over 98 % relative amount of mAb monomer, it was expected that

filtration would not affect the sample’s HPSEC profiles.

Table 5.3: Table with the relative peak area for the species detected by HPSEC analysis

comparing unfiltered and filtered 100 mg/mL and 17 mg/mL mAb solutions. Data is represented

as average and standard deviation of three measurements of each sample.

On the DLS analysis of the unfiltered mAb samples a main peak was identified by

intensity distribution with a mean HD of ∼11 nm (Figure 5.7). The values agreed

with the commonly reported hydrodynamic diameter corresponding to an equilibrium

between IgG1 monomer and dimer [104], where monomer content is much larger than

the dimer’s.

Only the unfiltered 100 mg/mL mAb sample showed two peaks by intensity distri-

bution. The relative amplitude of the second population with larger diameters (∼1000

nm) was lower (∼3 %). The likelihood that these particles were present in such low

number was evidenced by volume distribution showing only one peak (∼11 nm) (values

on Table 5.4 in section 5.3.2.2). After filtration, a slightly narrower monomer/dimer

peak was observed on the intensity distribution plot, corresponding to a slight difference

in the HD and relaxation times (Figure 5.7(a) and Table 5.4). For the 17 mg/mL mAb

unfiltered/ filtered samples, the slight change to a narrower main peak (at ∼11 nm)

after filtration could be representative of the loss of proteinaceous material to the filter’s

membrane (Figure 5.7(b) and Table 5.4).
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Figure 5.7: Comparison of DLS data for unfiltered and filtered samples (1 mg/mL dilutions)

from a) 100 and b) 17 mg/mL mAb solutions. For both a) and b): the large graph represents

the normalised correlation data (circles) and the lines are the fit to the exponential decay curve;

and the inset graph shows the same data presented as hydrodynamic diameter size distribution

by intensity.
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Evaluation of both MFI and DLS results suggested that the 100 mg/mL unfiltered

solution had a larger heterogeneity in particle size. However, analysis by HPSEC showed

that most of the soluble proteinaceous material was in the monomeric state. Moreover,

from the MFI analysis reports, for both filtered and unfiltered samples, the insoluble

particles had a volume fraction of <1 % of total sample volume.

The results discussed above, along with the previous chapter’s conclusions, helped to

understand that the rheology could still be affected by presence of these larger particles

related to their actual volume fraction in suspension (Figure 5.8). The DG rheology

data demonstrated a smaller difference in the viscosities between the unfiltered and

filtered samples, when compared to those differences in the CP rheology data. Other

similarities were found in these solutions to the results discussed for the β-LG data.

On both mAb concentrations, the unfiltered samples measured with CP had higher

viscosities throughout the applied shear rates, compared to the DG data. The mVROC

data of filtered mAb solutions, shown in Figures 5.8(a) and 5.8(b), demonstrated the

Newtonian-like behaviour at the higer shear rates (≥1000 s−1). The viscosities measured

with mVROC were almost superimposed with the filtered sample CP and DG data.

In addition, at all instances, the data obtained with CP and DG geometries always

demonstrated a yield-like behaviour at low shear rates such as also observed for β-LG

solutions. The rheological data was fitted to the Bingham equation for yield stress for

viscoelastic samples (Equation 5.1), resulting in good correlation to the experimental

data (all r2 > 0.97).

τ = τBY + ηBY γ̇ (5.1)

where τBY represents the yield point value. An example of how τBY is extra-

polated when plotting the τ(γ̇) to the zero shear rate value (γ̇ = 0 s−1), is shown

in Figure B.3, and the computed τBY values are shown in Table B.3, both in Appendix B.
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Figure 5.8: Rheology data for unfiltered and filtered a) 100 mg/mL and b) 17 mg/mL mAb

solutions, comparing results obtained from CP and DG geometries. The experimental data

was fitted to the Bingham equation (lines - full and dashed). On both plots, mVROC data is

represented for the filtered samples. All measurements were made at 25 ◦C.

The similarities in the rheological observations between the IgG and β-LG protein

studies, and comparison to literature [74, 78, 143, 182], suggests that in this case it

could also be assumed an air-water interface influence on the conventional rheology
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measurements. Moreover, these observations point towards the hypothesis that protein

species contribute to the rheology as a response of their own surface activity at the

air-water interface during these measurements.

After filtration, the CP data presented lower viscosities than the DG rheology data.

This was in disagreement to similar data obtained with β-LG filtered solutions. The

Bousssinesq parameter, accounting for the influence of surface effects compared to bulk

sub-phase contributions, was calculated to better understand this case (Figure 5.9).

With the mAb filtered samples, BoCP > BoDG. Since Bo was computed using the

data provided in Figure 5.8, and ηCP,filt. < ηDG,filt these results suggested that the

mAb CP data was influenced more by the bulk flow contributions than the DG data.

The reason why this was observed may well be related to the surface activity of the

macromolecular species present in solution. It could be possible that this mAb had

less air-water surface activity, compared to β-LG. Time restraints did not allow a ten-

siometry study to be performed for mAb solutions which would allow us to ascertain this.

216



10-2 10-1 100 101 102 103
10-2

10-1

100

101

102

103

104

 

 

 Bo
DG

(100 mg/mL)

 Bo
CP

(100 mg/mL)

 Bo
DG

(17 mg/mL)

 Bo
CP

(17 mg/mL)

B
o 

(s
he

ar
 r

at
e)

Shear rate [1/s]

10-2 10-1 100 101 102 103

10-3

10-2

10-1

100
 DG (100 mg/mL)
 CP (100 mg/mL)
 DG (17 mg/mL)
 CP (17 mg/mL)

 

 

V
is

co
si

ty
 [P

a.
s]

Shear rate [1/s]

Filtered mAb solutions

Figure 5.9: Boussinesq parameter (shear-rate dependent) calculated for CP (hollow diamonds)

and DG (full diamonds) rheology of filtered 100 (red) and 17 mg/mL (blue) solutions. The

inset graph shows the viscosity curves correpondent to the data used to calculate the Boussinesq

number (full circles - DG; hollow circles - CP).

The estimated surface viscosity was calculated using on the filtered mAb viscosities,

based on the same arguments in section 4.3.1.1 in Chapter 4. As seen in Figure

5.10, for both concentrations, CP and DG rheology data suggested that these samples’

estimated surface viscosity would be similar with the exception of the higher shear rates.

Unfortunately, it was not possible to perform any interfacial rheology measurements

using the DWR with these mAb solutions.
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Figure 5.10: Estimated surface viscosity from the measured CP and DG rheology for 100 and

17 mg/mL filtered (T= 0) mAb solutions. The calculations are made using the average ηbulk

obtained from measurements of these samples with mVROC.

5.3.2.2 Effect of thermal stress on the mAb solution rheology

After the previous assessment, the filtered mAb material at 100 and 17 mg/mL was left

at 40 ◦C for 6 weeks and its level of aggregation and rheology were characterised every

2 weeks.

Figures 5.11(a) and 5.11(b) represent the relative peak areas for monomer, total

high MW and low MW species from 100 and 17 mg/mL mAb samples at each time

point, respectively. Samples at the same concentration were stored at 5 ◦C and also

characterised on HPSEC for control purposes. Results from the 100 mg/mL mAb

samples showed a steep decrease of monomer through time, with a corresponding

increase of high MW species, while the low MW species remained the same (Figure

5.11(a)). Total monomer loss after 6 weeks for this sample was ∼40 %. Soluble

aggregates were observed for the 17 mg/mL sample, with a total monomer loss of

∼10 % after 6 weeks. It is important to remember that the 100 mg/mL samples were
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diluted to 10 mg/mL prior HPSEC analysis, while the 17 mg/mL samples were injected

neat. Therefore, it was expected that these relative peak areas from the analysis

of the dilution would be representative of the original sample. Peak area values are

summarised in Table B.1 in Appendix B.

Examples of chromatograms throughout the time points are shown in Figure B.1

in Appendix B. From the 2 weeks time point onwards, the chromatograms of the

100 mg/mL samples had four peaks corresponding to high MW samples. For clarity,

the level of aggregation relative to high MW species was chosen to be represented as

sum of the four peak areas. Chromatograms of the 17 mg/mL sample had two peaks

corresponding to the HMWS. At 6 weeks, for both concentrations of mAb, a shoulder

peak with retention time ∼9.3 min was detected. This shoulder peak was inconsistently

detected by the analysis software, therefore it was counted as part of the monomer peak

for comparison with the remaining time points.
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Figure 5.11: Relative peak percentage of monomer, fragment and total aggregates detected by

HPSEC for a) 100 mg/mL (injected at 10 mg/mL) and b) 17 mg/mL (injected neat) at 40 ◦C

and 5 ◦C during 6 weeks. Error bars are standard deviation of three measurements per sample.

Figure 5.12 shows the sub-visible particle count throughout time and for each of the

studied samples. An increase in the particle count between time points indicated that

besides the increase of soluble aggregates with temperature stress, a small percentage
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of sub-visible particles was generated. From the MFI reports, the volume fraction of

these particles although increasing, was still < 1% of total sample volume. It was

noted that, in comparison to the previously discussed unfiltered mAb samples, the

aggregated materials did not reach such high particle counts even at the end of this study.

0 2 4 6
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

 

 

P
ar

tic
le

 c
ou

nt

Time [weeks]

 mAb 100 mg/mL at 40 oC
 mAb 17 mg/mL at 40 oC

Figure 5.12: MFI sub-visible particle count comparing 100 and 17 mg/mL mAb samples at

different time points after aggregation at 40 ◦C.

The DLS analyses showed the increased aggregation of mAb along the study.

However, the peaks obtained by this technique did not allow any resolution by intensity

or volume distribution between the possible sizes of the aggregates. Figure 5.13(a)

shows results for the 1 mg/mL dilutions from 100 mg/mL mAb samples throughout

the time points. By intensity, the peak clearly shows a mean hydrodynamic diameter

size changing to higher values (> 20 nm). The detected peak was wider with time,

corresponding to the known increase of soluble aggregates’ volume fraction in the

samples. By volume distribution, the increased tailing of the peak towards higher

diameters confirmed the increase in soluble aggregate volume fraction. For ∼17 mg/mL
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samples very slight changes to the hydrodynamic sizes were noted (Figure 5.13(b)).

This corresponded well with the small changes in monomer loss/ increase of high MW

species observed with HPSEC. DLS confirmed that protein aggregation was occurring

with exposure at 40 ◦C, generating soluble aggregates of HD < 100 nm. However, in

correlation to the collected HPSEC data, DLS did not allow any resolution between this

IgG monomer and its oligomers sizes. Table 5.4 summarises the size differences for the

mAb samples measured by DLS. The DLS intensity distribution data was also fitted to

exponential decay functions in order to determine the relaxation times of the detected

size-populations. In general, these relaxation times increased, reflecting the presence

of soluble species of higher sizes. The lack of resolution between mAb monomer and

protein oligomers yielded one computed relaxation time.
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(b) 17 mg/mL mAb samples

Figure 5.13: Comparison of hydrodynamic diameter size by intensity and by volume distribu-

tion, for a) 100 and b) 17 mg/mL mAb samples stressed for 6 weeks at 40 ◦C. For both a) and

b), the large graph represents the size distribution by intensity and the inset graph corresponds

to the size distribution by volume.
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Table 5.4: Mean hydrodynamic size and relaxation times obtained by DLS for the 100 and 17

mg/mL mAb samples (unfiltered, filtered and aggregated at 40 ◦C). 1 - Data was obtained by

diluting samples to 1 mg/mL; 2 - the dilution from 100 mg/mL mAb unfiltered solution was the

only sample to present two peaks in size distribution by intensity; 3 - mean hydrodynamic size

by intensity distribution and standard deviation of three measurements; 4 - mean hydrodynamic

size by volume distribution and standard deviation of three measurements; 5 - relaxation time

obtained by fitting the correlation data with exponential decay equations, showing the standard

error from fit.

µ-SDS-PAGE was used for evaluation of sample degradation products. Figure

5.14(a) shows the gel corresponding to the non-reduced and reduced samples of 100

mg/mL mAb at T=0 , T= 6 weeks, at 5 and 40 ◦C, respectively, compared to the T=2.5

months samples at 5 and 40 ◦C (as controls). The controls in this experiment were

both the frozen samples at T=0 but also the aggregated mAb sample after 2.5 months

exposure to 40 ◦C. At non-reducing conditions, samples exposed to 40 ◦C showed extra

bands at lower MW than the main monomer band (∼150 kDa), typically at ∼143 kDa

and ∼137 kDa. This could correspond the lower MW species corresponding to the

shoulder-peak observed with HPSEC.

The 100 mg/mL mAb samples exposed to reducing conditions showed a consistent
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break-down between heavy (∼60 kDa) and light (∼27 kDa) chains (Figure 5.14(a)).

Extra bands were observed at ∼121 kDa and ∼93 kDa, which could correspond to

other reductions at different dissulfide bond locations in the original monomer, such

as producing a half-IgG or F(ab)’2 fragments [188]. Reduced samples at 5 ◦C did not

show extra bands, supporting the conclusion that these bands are most likely products

of mAb degradation.

As seen previously via HPSEC and DLS results, the 17 mg/mL samples stored

at 40 ◦C suffered degradation to a lower extent to that observed with the higher

concentration. This was observed with µ-SDS-PAGE, where extra bands of lower MW

than monomer (non-reducing conditions) and higher MW than the heavy chain (at

reducing conditions), were detected. This indicated the mAb had similar degradation

products and degradation mechanisms independent of concentration.

Those samples exposed at 40 ◦C showed bands with lower relative intensity com-

pared to the non-aggregated mAb samples. This was another indication of the loss of

monomer throughout the time exposure at 40 ◦C. In summary, µ-SDS-PAGE analysis

provided further information regarding mAb degradation products. It addition, these

observations added evidence to the heterogeneity of protein species present in solution

of these thermally stressed mAb samples.
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Figure 5.14: Microfluidics SDS-PAGE gel images for a) 100 mg/mL and b) 17 mg/mL mAb

samples, comparing stressed samples at 40 ◦C with those at 5 ◦C at different time points. For

a), dilutions from 100 mg/mL mAb solutions, lanes are: 1) non-reduced - 40 ◦C, T= 6 weeks; 2)

non-reduced - 5 ◦C, T= 0; 3) non-reduced - 40 ◦C, T= 2.5 months; 4) non-reduced - 5 ◦C, T=

2.5 months; 5) reduced - 40 ◦C, T= 6 weeks; 6) reduced - 5 ◦C, T= 0; 7) reduced - 40 ◦C, T=

2.5 months; 8) reduced - 5 ◦C, T= 2.5 months. For b), dilutions from 17 mg/mL mAb solutions,

lanes are: 1) non-reduced - 40 ◦C, T = 6 weeks; 2) non-reduced - 5 ◦C, T= 0; 3) non-reduced -

5 ◦C, T= 6 weeks; 4) reduced - 40 ◦C, T= 6 weeks; 5) reduced - 5 ◦C, T= 0; 6) reduced - 5 ◦C,

T= 6 weeks.
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So far, one can conclude that this is a very complex model in terms of its components.

It has also been demonstrated that there could be an increase of insoluble particles

as result of this thermodynamic stress. As the materials change in its composition of

monomer, dimers and other oligomers, soluble or insoluble, and even mAb fragments,

it would be expected that the viscosity of this mAb’s aggregated material would be

affected.

The measurements on double-gap and cone-and-plate geometries demonstrated that,

in general, the viscosities were increasing with exposure time at 40 ◦C (Figure 5.15).

This trend was more visible with the 100 mg/mL mAb samples than with the samples

at 17 mg/mL and particularly looking at the high shear viscosities (γ̇ = 1000 s−1)

(Figure 5.16(a)). However, at lower shear rates, for time points such as the CP data of

100 mg/mL at T= 6 weeks, the viscosities were lower than the material had showed at

previous time points. Superimposition of the CP and DG viscosities showed that, at

the higher shear rates, the CP data was generally slightly higher than the viscosities

measured by DG rheology (Figure B.2 in Appendix B).
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Figure 5.15: Rheology data obtained for both cone-and-plate and double-gap geometries of a)

100 mg/mL and b) 17 mg/mL mAb solutions left for 6 weeks at 40 ◦C and analysed at room

temperature (25 ◦C).
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The rheological profiles of these protein solutions, even though of altered contents,

did not change its flow behaviour. The data showed no hysteresis between sweeping up

and down the shear rates. The profiles remained with yield-behaviour characteristics,

and the experimental data was fitted with the Bingham model (Equation 5.1) to find

if the yield points would follow a similar trend as the high-shear viscosities (Figure

5.16(b)). Yield points and r2 values from corresponding fits are represented in Table

B.3 in Appendix B.

Figure 5.16(b) showed that throughout the time points, yield values for each sample

were not consistently increasing. It was inconclusive if the increase of aggregation had

an impact on the yield behaviour of these samples. The hypothesis would be that the

proteinaceous aggregates generated would potentially contribute to this yield-behaviour

as it is known that the increase of solid content in dispersions that demonstrate

yield-like behaviour originate higher yield points [48]. If the contents would be solely

involved in contributions to the air-water interface protein films hypothetically present

in these geometries would be another point to investigate. Presumably, part of the

monomers here present could be in a partially unfolded state, where hydrophobic areas

of the protein would be exposed and therefore more air-water surface active [189].
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Figure 5.16: a) High shear viscosity (η = 1000 s−1) of mAb samples stressed at 40 ◦C for 6

weeks (from CP and DG data). Data points are average of three readings at 1000 s−1. Error

bars represent the standard deviation. b) Yield point values of the same mAb solutions stressed

at 40 ◦C for 6 weeks. Yield points were obtained by fitting the Bingham model to the CP and

DG rheology experimental data. Error bars correspond to the standard error given by the linear

regression.
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On a detailed note, the CP rheology data suffered irreproducibility within repeating

samples, such as what is demonstrated in Figure 5.17. At times, a Newtonian-like

behaviour was observed, whereas a new loading from the same sample would have a

yield-like behaviour at low shear rates. Double-gap rheology presented reproducibility

across mAb samples at all the time points/ conditions of sample. It could be possible

that the same events observed here were related to those described with reference to the

rheology of unfiltered and filtered mAb solutions. In light of our hypothesis discussed

so far, and what recent literature has proposed [74, 78], the Newtonian-like behaviour

observed in protein solutions would be related to a lack of protein-film formation at

the air-water interface present in these measurements. However, since both measuring

systems used here were shown to have a similar air-water interface surface area (73

mm2 and 71 mm2 for the CP50-1 and DG26.7, respectively), it was interesting to

observe that the DG did not show inconsistencies similar to those from the CP geometry.
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Figure 5.17: Comparison between waiting times before measurements of a 100 mg/mL mAb

sample thermally stressed at 40 ◦C after 2 weeks, with CP and DG geometries. Circles - data

ramping down shear rates; lines - data sweeping up shear rates. On CP rheology, run 1 and run

2 were obtained from the same sample, while run 3 and run 4 were another aliquot, both from

100 mg/mL T= 2 weeks at 40 ◦C sample. Run 1 and 2 for DG rheology data were performed

on the same loaded sample. All measurements performed at 25 ◦C.

5.3.2.3 Analysis of level of aggregation of recovered mAb solutions after

cone-and-plate and double-gap rheology

The CP and DG geometries are made of stainless steel, which is a material that has

been shown to cause aggregation of mAbs, suggested to be via an oxidation mediated

degradation pathway [30]. Therefore, there was an interest in understanding if this

surface in conjugation to shearing, would evidence any signs of change in aggregation

pattern.

Aliquots of mAb samples ran on the cone-and-plate and double-gap geometries were
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recovered and analysed for its level of aggregation by DLS and HPSEC. Table 5.5 shows

a summary of the concentrations measured for all the samples analysed throughout

this study. There was a slight increase within the material that was stored for 6 weeks

at 40 ◦C. This variation in concentration was within the 10 % error allowed for the

UV-vis spectroscopy method. Despite this, a larger difference was identified between

mAb samples after the CP rheology experiments and the same samples before that

experiment. Although the technique used the evaporation blocking system, evaporation

seemed to be inevitable, probably due to the lower sample volume (675 µL) when

compared to the double-gap (3.8 mL).

Table 5.5: Table summarising the concentrations of mAb for its different batches, and in

different conditions (when applicable): before and after filtration with 0.1 µm pore-size syringe

filter, before and after the rheology experiments, and along the time at 40 ◦C.

On HPSEC analysis, comparing before/after rheology sample from 17 mg/mL

mAb samples did not show any differences (Figure 5.18(b)). Results derived from

the 100 mg/mL mAb samples showed differences at 4 weeks and 6 weeks data with
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contradicting tendencies. The apparent lack of any consistent deviation of ’after CP’

or ’after DG’ data from ’before rheology’ data suggests that these differences could

be minor. Therefore, no change of aggregate content could be conclusively related to

be due to rheological experiments only. In all of these samples, the low MW species

presented superimposed data suggesting that these were not changed (not shown in the

figures, to improve graphical clarity).
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Figure 5.18: Comparison of level of aggregation by HPSEC between the same samples before

and after the rheology experiments. a) corresponds to data from 100 mg/mL mAb samples, and

b) corresponds to data from 17 mg/mL mAb samples, all stressed at 40 ◦C for 6 weeks. Low

MW species not represented since all data points were superimposed for both concentrations.

For the DLS analysis of these samples, similar observations were made (Figure
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5.19). In general, for the 17 mg/mL samples no change between ’after’ and ’before’

hydrodynamic diameter sizes (by volume distribution) was observed. The 100 mg/mL

sample set showed slight variation on the data although no evident trend was found.
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Figure 5.19: Hydrodynamic diameter by volume distribution comparison between before and

after rheology for dilutions of 100 and 17 mg/mL mAb samples stressed at 40 ◦C for 6 weeks.

Based on these observations, even though the ’after rheology’ samples generally

had increased concentrations when compared to the ’before rheology’ solutions, the

evaporation of sample and use of these geometries did not seem to influence the mAb’s

level of aggregation. However, HPSEC and DLS were the only techniques used here,

leaving unanswered questions regarding if changes to the mAb’s tertiary or secondary

structure occurred.

The importance of investigating the effect of shearing on the studied mAbs, during

these rheological experiments, became clear when it was detected that thermally

stressed mAb samples that had undergone rheology showed a slight change of colour

between yellow and brown. This was found for the 100 mg/mL solutions stressed at

40 ◦C at T= 2 weeks and T= 4 weeks, for CP and DG rheology. After analysis, these
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recovered samples were restored to the incubator at 40 ◦C . The change of colour

was noticed 2 months after the study had started. HPSEC analysis revealed that the

coloured samples had an extra low MW species peak compared to the control sample

(100 mg/mL mAb at 40 ◦C for T= 2 months, not undergone the rheology experiment).

Due to a lack of time further investigations were not pursued. This could have been

result of further chemical degradation due to the degraded mAb being in contact with

stainless steel leading to protein oxidation [30]. In addition, it was noted that the

control sample did not show any change of colour. Moreover, non-thermally stressed

mAb samples that had been previously analysed on the rheometer, recovered and stored

at 5 ◦C, did not have any colour change.

5.3.3 Soluble reversible aggregates: biophysical characterisation and

effect on the viscosity of the mAb solution

It was important to understand if the analysis of the diluted aggregated mAb samples

would be a good representation of the original content of soluble aggregates. It is known

that reversible self-association can occur with proteins and due to various reasons, such

as changes in pH or ionic strength [6, 51].

The IgG1 studied here was characterised by CG-MALS to measure its self-virial coef-

ficient and determine if the monomer would show reversible self-associative properties in

10 mM His-His.HCl pH 6.0. The mAb was found to have an estimated A2 = 3.97×10−4±

5×10−6 mol.mL/g2 and a MW = 150.02 ± 0.6 kDa. The MW estimate was close to

the actual predicted MW. The positive self-virial coefficient value suggested that there

would be mainly repulsive interactions between the monomers in the studied conditions.

This information suggested that the mAb monomer would not be expected to show signs

of reversible self-association at these conditions.
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Figure 5.20: Static light scattering data (R/K∗) versus concentration of mAb solution starting

at a stock concentration of ∼5 mg/mL and diluted with 10 mM His-His.HCl pH 6.0 buffer. The

red squares represent the light scattering data and the line is for guidance only.

The question remained whether the relative quantification of the level of aggregation

by size-exclusion would be representative of the total soluble aggregates after stressing

at 40 ◦C. Therefore, a dilution and temperature study were performed. Dilutions of 10

and 50 mg/mL from a 100 mg/mL mAb sample at 40 ◦C were analysed on HPSEC,

keeping the auto-sampler tray temperature either at 25 ◦C or 5◦C. The results are

shown in the two following sets of Figures 5.21 and 5.22.

Figure 5.21 shows the first analysis of 10 and 50 mg/mL dilutions at a constant

temperature of 5 ◦C, which is the typical auto-sampler tray temperature of the HPLC

system used throughout our work. A difference of 3 to 4 % was observed for the

peak areas for total high MW species and monomer between the 10 and 50 mg/mL

dilutions. There was no change in the low MW species relative content. Between

the first measurement and the last, there was a ’gain’ in monomer peak area of ∼9

and ∼7 % for 10 and 50 mg/mL dilutions, respectively (Figure 5.21(a)). Figure

5.21(b) shows the different relative peak areas versus time, discriminated by each

of the identified high MW species peaks. It was observed that only the peak area

corresponding to the retention time at ∼7.5 min remained almost constant. Peaks with

retention times at ∼6.6 and ∼7.0 min evidenced a descending trend on their relative area.
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Figure 5.21: Level of aggregation along a 5 day period of 10 and 50 mg/mL dilutions from

100 mg/mL mAb sample that was at 40 ◦C for 7 weeks. a) corresponds to the global level of

aggregation, where total HMWS is represented. b) shows the detailed peak areas correspondent

to the eluted HMWS only. Graph a) and b) represent the HPSEC study performed leaving the

analysed dilutions at 5 ◦C (HPSEC tray temperature).
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A similar experiment was performed, with the auto-sampler tray at 25 ◦C (Figure

5.22). Since the previous experiment showed a large decrease in total aggregate species

during the first 50 hours, this experiment had a total time of 21 hours. At 25 ◦C, the

monomer increase was not as sharp, with a difference of ∼4 and ∼3 % for 10 and 50

mg/mL dilutions, respectively. The difference in peak area between the dilutions at

each time point remained at 3 - 4 ∼ (Figure 5.22(a)). Within each of the detected

high MW species peaks, the peak area corresponding to the retention time at ∼7.4 min

remained constant (Figure 5.22(b)).
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Figure 5.22: Level of aggregation along a 24 hour period of 10 and 50 mg/mL dilutions from

100 mg/mL mAb sample that was at 40 ◦C for 7 weeks. a) corresponds to the global level of

aggregation, where total HMWS is represented. b) shows the detailed peak areas correspondent

to the eluted HMWS only. Graph a) and b) represent the HPSEC study performed leaving the

analysed dilutions at 25 ◦C (HPSEC tray temperature).
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A quick analysis with DLS was performed measuring HD sizes at 5 and 25 ◦C for

24 hours (Figure 5.23). By diluting to 1 mg/mL, the potential ’break-up’ of aggregates

is most likely higher than when diluting to 10 mg/mL, leaving less larger sized species

in solution.
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Figure 5.23: Time sweep of measured hydrodynamic size of 1 mg/mL dilution from 100 mg/mL

mAb sample stressed at 40 ◦C for 2.5 months. The full circles represent the diameter size by

intensity distribution and the open circles are correspondent to the hydrdynamic size by volume.

The data is also comparing the difference in size along time when performing the measurement

at 5 ◦C (blue) and 25 ◦C (red).

In summary, it was demonstrated that once this mAb presented soluble aggregates, a

part of these species could dissociate into monomer. This suggested that this percentage

of aggregates were most likely formed by non-covalent bonds, thus suggesting their

reversible nature. It was observed that dilution and low temperature (5 ◦C), promoted

this aggregate dissociation to monomer. These findings were most evident with the

sample at 100 mg/mL, whereas the sample at 17 mg/mL also studied for its rheology

did not show such a significant change on its aggregate relative content, while still
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demonstrating signs of the same phenomenon (Figure B.5(b) in Appendix B).

The impact of these observations reflect on the quantitative and qualitatitive

analysis of the thermally stressed mAb samples studied so far. In this mAb’s specific

case, it could impact its rheology measurements. Attempting at quantitatively relating

the level of aggregation of these samples to their viscosity at 100 mg/mL would not

be accurate, since HPSEC was typically conducted with 10 mg/mL dilutions and the

samples left at the auto-sampler at 5 ◦C until analysed.

5.3.3.1 Evaluation of the effect of soluble aggregate reversibility on rheolo-

gical measurements

A rheology experiment alongside HPSEC analysis was performed with a 100 mg/mL

mAb solution stressed at 40 ◦C for 2 weeks, to understand the implications of these

findings in the viscosity measurements of this IgG1 in this buffer. After the first

measurement, the original sample was stored at 5 ◦C. Fresh aliquots were measured

on HPSEC as well as on the double-gap rheometer 24 hours later, for comparison. A

slight drop in viscosities across the shear rate range was observed between the time

points, e.g. at 1000 s−1 the difference was ∼0.15 mPa.s (Figure 5.24). This difference

in viscosities was too small (<1 mPa.s) to be considered significant. This suggests that

the percentage of aggregates that dissociate to monomer, at this stage, would not likely

affect the rheological measurements of this mAb solution, not only in terms of its flow

(as it was not changed) but also in terms of the viscosity values.
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Figure 5.24: Double-gap rheology of a 100 mg/mL mAb sample stressed at 40 ◦C for 2 weeks

measured with a 24 hour interval. After the first rheological measurement (T= 0), the mAb

solution was stored for 24 hours at 5 ◦C and another aliquot was analysed on the DG geometry

when T= 24 hours. Measurement temperature was 25 ◦C.

With the HPSEC results, similar results were found to those previously described

in this section. A difference of about 3 % was seen between the 10 and 50 mg/mL

injections at each time point; and an increase of monomer/ decrease of total high MW

species of ∼3 and 2 % was found for the 10 and 50 mg/mL injections, respectively

(Figure 5.25). Such low percentage of reversible soluble aggregates could well explain

the small differences measured with DG rheology.
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Figure 5.25: Level of aggregation of a 40 ◦C stressed T=2 weeks 100 mg/mL mAb sample,

diluted and analysed at 10 and 50 mg/mL, measured with a 24 hour interval. This experiment

was performed at the same time the rheology experiment was conducted. The mAb solution was

stored for 24 hours at 5 ◦C and another aliquot was analysed on HPSEC when T= 24 hours.

HPSEC tray temperature was 5 ◦C.

5.3.3.2 HPSEC-MALS analysis of mAb solutions: calculation of the MW

Static light scattering analysis was performed to obtain information of MW of HMWS

and monomer peaks. Figure 5.26 represents examples of one injection per each of the

analysed samples. These plots correspond to the computed (fitted) molecular weight

for each of the peaks identified and analysed, versus the elution time. Note that the

lower molecular weight species (at 10.9 min, with the UV-detector) were not fitted.

This is because of their small size yielding that their relative signal in light scattering

data was poor and thus making its analysis difficult [102]. Therefore, the peaks that

were analysed were those with relevant light scattering signal (full line in the figure),

and corresponded to the monomer peak (∼8.9 min), and aggregates at ∼7.5 min, ∼6.9

min, ∼6.5 min and ∼6.1 min.
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Analysis of these samples was made by applying the Debye formalism to each

of the peaks detected. The degree of fitting of each of the peaks experimental data

was changed accordingly to achieve higher R2. Note that the fittings were done for a

particular elution volume slice and checked if adequate for the remaining slices. An

example of this analysis are Figures 5.27(a) and 5.27(b) which show the Debye plots -

light scattering data versus sin2(θ/2) - corresponding to a specific elution volume slice

of peak 1 and peak 2, respectively, from different samples. Included in these figures are

the summary data obtained from this fitting.

246



41.0x10

51.0x10

61.0x10

71.0x10

Time [min]
6.0 8.0 10.0 12.0

41.0x10

51.0x10

61.0x10

71.0x10

41.0x10

51.0x10

61.0x10

71.0x10

41.0x10

51.0x10

61.0x10

71.0x10

1
2

1
23

1
2345

1
2

34
5

M
ol

ar
 M

as
s 

[g
/m

ol
]

A) mAb 100 mg/mL, T= 0, 5 °C 

B) mAb 17 mg/mL, T= 6 weeks, 40 °C 

C) mAb 100 mg/mL, T= 2 weeks, 40 °C 

D) mAb 100 mg/mL, T= 6 weeks, 40 °C 

Light scattering data Differential refractive index data

Figure 5.26: HPSEC-MALS experiments showing light scattering (full line), differential re-

fractive index data (dotted line), and calculated molecular weight (circles) for each detected

peak from mAb solutions at different time points during thermal stressing at 40 ◦C: A) un-

stressed mAb solution; B) 17 mg/mL mAb sample that was stressed for 6 weeks at 40 ◦C; C)

100 mg/mL mAb after 2 weeks at 40 ◦C; D) 100 mg/mL mAb solution after 6 weeks at 40 ◦C.

The 100 mg/mL mAb solutions here presented were diluted to 10 mg/mL, while the 17 mg/mL

mAb solution was injected neat.
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Figure 5.27: Debye plots for two of the analysed peaks of the mAbs samples, along with the

data respective to each of the analysed elution volume slices . a) Debye plot for 100 mg/mL

mAb sample at T= 0, 5 ◦C; b) Debye plot for 17 mg/mL mAb sample at T= 6 weeks, 40 ◦C.

Raleigh ratio experimental data are represented in full circles, and the fit corresponds to the line.

Data analysed using the Debye formalism.

From this analysis, the molecular weights were computed as a sum per peak for

each sample. Table 5.6 summarises these results showing the weight-averaged molecular

weight. The root mean square radius is not reported since these scatterers, including
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the higher MW oligomers, had a radius < 1/20*λ of the incident light used in the

instrument, thus disabling computation of the RMS radius for these macromolecules

Table 5.6: Molecular weight (weight-averaged) (Mw) for each peak identified from mAb samples

exposed to 40 ◦C, compared to storage at 5 ◦C. Each sample was analysed in triplicate. Molecular

weight reported is the average, and the standard error is from the 3 measurements.

From the data in Table 5.6, and knowing that the predicted MW of this mAb was

∼145.46 kDa, a correspondence of these calculated MW with the number of associated

monomers for each peak, was made. Peak 1 was attributed to the mAb monomer since

the calculated MW was within 5 % of the predicted monomer’s MW. A dimer, trimer,

tetramer and pentamer of this mAb would be expected to have the following molecular

mass: ∼290; ∼435; ∼580; and ∼725 kDa. Our data suggested that the only plausible

correlation to dimers and trimers, could be for peak 2 and peak 3, respectively. As

for peaks 4 and 5, the calculated MW indicated that these eluted volume fractions were

composed of mAb oligomers of higher order than pentamers. Even though the calculated

polydispersity for each of these peaks was ∼1, it is noted that for the highly aggregated

samples (100 mg/mL after T= 2 and T= 6 weeks), fitting of these peaks to the Debye

model required higher order fit degrees. This was a consequence of higher error in light

scattering data, due to the species of higher mass and possibly of irregular shape. Peak 3
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was better analysed from the 17 mg/mL mAb sample, since its chromatographic profile

showed better separating resolution.

Relating the MALS data to the detailed study of the reversible high MW species,

indicated that the nth-oligomers’ dissolution was mostly directly to monomer, without

including a gradual step dissociation into dimer. Therefore, it is likely that this IgG’s

dimers were not the ’reactive species’ for nth-oligomer formation.

Judging by the DLS data and the close MW values calculated for these aggregates,

it is expected that its aspect ratios would be very similar. This would likely yield a very

small difference between the aggregates’ intrinsic viscosities, explaining how although the

relatively high percentage present of these aggregates after 6 weeks at 40 ◦C, the increase

in viscosity at high shear remained a difference of ∼5-6 mPa.s for the 100 mg/mL mAb

sample.

5.4 Conclusions

In the first section it was shown that the mAb material purified and concentrated was

free of previously added excipients. It was also shown that the different processing steps

did not influence the physico-chemical properties of the mAb. All the batches were of

high monomer content (>98 %), revealing the material’s high purity.

A comparison between the flow and viscosity curves of these batches and the ori-

ginal formulation suggested that the original formulation additives had an effect on the

rheology of this mAb. Removing the excipients contributed to a yield-like behaviour at

low shear rates, regardless of the mAb concentration. The rheology data observed with

the excipient-free material had similar features to those previously observed with β-LG

solutions and discussed in literature [78, 182]. This indicated that similar factors were

underpinning this type of sample’s flow properties.

A comparison between unfiltered and filtered mAb solutions was made to understand
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the influence of visible and sub-visible particles in the flow behaviour. A drop in the

viscosities was detected, although more marked at the lower shear rates and particularly

with the CP geometry. Further characterisation suggested that, by filtering out most of

the insoluble visible and sub-visible particles, lead to this reduction of viscosities at the

lower shear rates.

The filtered material was then studied during thermal stress at 40 ◦C for 6 weeks.

Results obtained from HPSEC, µ-SDS-PAGE, DLS, and MFI provided information on

the type of aggregates formed, their relative quantification and size. DLS did not allow

a resolution in sizes between the IgG monomer and any possible oligomers, showing that

the mean HD sizes were increasing slightly. HPSEC results were advantageous for de-

termining the level of aggregation, although it demonstrated that the oligomers formed

were most likely of similar MW. µ-SDS-PAGE and HPSEC were particularly useful to

emphasize other products of degradation where possible fragmentation could have oc-

curred, although further analysis would be needed to clarify this.

In general, the thermally stressed material showed increased viscosities throughout

the time of exposure, while the increasing amount of oligomers dominated. The evident

differences were detected with samples at the highest mAb concentration (100 mg/mL).

The 40 ◦C stressed ∼17 mg/mL mAb solution also demonstrated loss of monomer, al-

though to much lower extent (∼10 %, after 6 weeks), when compared to the higher

concentration (∼40 %), the latter being an effect of high concentration. This increase of

aggregates did not seem to change whatsoever their flow behaviour at low shear rates,

remaining as a yield-like behaviour at that shear rate range (0.01 - 10 s−1). At the

highest shear rates, the difference in viscosities between time points was evident and did

follow a increasing trend. However, there was no evident increase of yield values with

time at stressing conditions. The increase of viscosity observed in these samples was

suggested to be mostly due to the increase in soluble aggregates. Even though there was
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an increase in the sub-visible particle content, these were calculated to be <1 % of total

sample volume.

Tests on the level of aggregation comparing samples before and recovered from rhe-

ology experiments showed that, in our case, no obvious tendencies were detected. The

case of ’after rheology’ degraded mAb material had a change in colour towards brown

could not be conclusively attributed to the effect of shear stress and stainless steel on

these samples.

In addition, it was shown that a percentage of these aggregates were dissolving to

monomer after dilution (10 mg/mL) and at lower temperatures (5 ◦C). This phenomena

was as a drawback for the accurate quantification of soluble aggregates via HPSEC.

Implications of this aggregate-to-monomer reversibility in the accuracy of the viscosity

measurements performed during the study, were however likely to be negligible.

Finally, mAb samples were submitted to HPSEC-MALS analysis to calculate the

MW of the detectable protein species. Poor resolution between the high MW species did

not allow a accurate measurements for the highest MW oligomers, but it was possible to

compute that this IgG monomer tended to aggregate in dimers and trimers, and other

oligomers.

This mAb was a case study to demonstrate that protein degradation, by entailing a

complex interpretation and quantification of different protein species, makes the inter-

pretation of its solution rheology difficult. In this case, the non-static protein species

content, due to soluble aggregate reversibility, adds to this complexity. However, our

aim of studying the rheology of this mAb solutions using orthogonal characterisation

biophysical techniques, allowed an analysis at the molecular level to a detail that shed

light into variables commonly dismissed in study of protein solution rheology.
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Chapter 6

Exploring the impact of surface active macromolecular

excipients on the flow properties of protein solutions

6.1 Introduction

In the previous two chapters, the rheology of globular proteins was studied using β-LG

and mAb as model proteins in additive-free solutions. The discussion of factors likely

influencing the flow properties observed, particularly at the low shear rates, reflected

the concept that the macromolecules’ surface-activity was underpinning the materials’

rheology [78]. Moreover, our studies of formulated rAlbumin and mAb solutions

contributed to the argument, as without a surfactant additive, the rheology of this

protein solution also demonstrated a tendency towards a yield stress.

Therefore, to further this knowledge, for the work in the present chapter two studies

were envisioned. The first focussed on further understanding the rAlbumin solution rhe-

ology, exploring further the role of polysorbate-80 in the case of thermal stressing. The

second part of this chapter refers to the synthesis and study of amphiphilic brush-like

poly(ethylene glycol) methacrylate polymers as potential additives to biopharmaceutical

formulations as modifiers of rheology.
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6.1.1 The use of polysorbate-80 in biopharmaceutical formulations

Polysorbates are compounds frequently used in pharmaceutical, cosmetic and food

products for their properties as non-ionic amphiphilic surfactants [190]. A polysorbate

is a viscous liquid that is composed of fatty acid esters of poly(oxyethyelene) sorbitan,

where in the case of polysorbate 80 the fatty acid ester is octadecenoic ester (Figure

6.1) [191]. However, polysorbates are known to contain a variety of derivatives of

sorbitan poly(oxyethylene) fatty acid esters [192].
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Figure 6.1: Structure of polysorbate-80, where w+x+y+z= 20, referring to the total number

of oxyethylene groups.

Specifically in biopharmaceutical formulations, the use of polysorbate (e.g. poly-

sorbate 20 and 80) has been due its capabilities in preventing protein aggregation

and potential interactions of the biomacromolecule with interfaces (solid and/or li-

quid) [33,193]. Since there are numerous processes that biopharmaceutical solutions are

subjected to where interface cannot be avoided, the use of polysorbates in monoclonal

antibody drug products is predominant [194].

The reason why these surfactants are very successful in biopharmaceutical formula-

tions lies in their low critical micelle concentrations [195], thus enabling the use of low

amounts of the compound. The mechanism of how polysorbates interact with proteins is

attributed to their capability to slowly competitively displace the adsorption of proteins

at interfaces [37, 163]. It has been found that this mechanism in protein-surfactant
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mixtures, denominated as orogenic displacement, occurs with an increase of surfactant

in solution resulting in a decrease of protein absorption, even if the molar ratios

between both are fixed [37]. This mechanism is suggested to be complex involving not

only interfacial adsorption, but also interactions between protein-surfactant. The free

surfactant molecules are suggested to interact hydrophobically with the hydrophobic

’patches’ of an absorbed protein at the interface, forming protein-surfactant complexes

which will lead to a less surface active protein. When higher surfactant concentrations

are present, free molecules will therefore gradually displace these hydrophilic protein-

surfactant complexes, thus displacing completely the protein from the hydrophobic

interface [34,163,196]. This theory has been verified through various techniques, such as

surface tension [163, 166, 189], interfacial dilatational and shear rheology [143, 176, 196],

and using atomic force microscopy [176, 177]. Recently, theoretical models have been

developed to describe this mechanism [163].

The use of polysorbates in biopharmaceutical industry, can however come with

the risk of adding degradation reactions to protein formulations. It has been shown

that these surfactants can induce protein aggregation if stored for long periods of

time at high temperature [32, 197]. Protein degradation by oxidation has also been

demonstrated to occur via peroxide contamination of the surfactant [198]. Recently,

assessment of polysorbate degradation under similar conditions to those imposed in

biopharmaceutical studies has revealed that an increased presence of peroxides leads to

an auto-oxidation degradation mechanism of the surfactant [189]. For these reasons, it

remains highly important that the addition of surfactants such as polysorbates needs

to be at as low concentration as possible, so to reduce its effects on the drug product

degradation [197].

In the context of the work presented here, the use of polysorbate 80 in the rAlbumin

formulation was investigated for its rheological effects, in conjugation with thermal
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stressing at 60 ◦C. The study involved characterisation of the solution’s rheology with

CP measuring system, and characterisation of level of protein aggregation, by DLS,

HPSEC and gel electrophoresis.

6.1.2 Exploring the effect of brush-like PEG methacrylate amphiphilic

polymers as excipients in protein formulations

Applications of synthetic polymers spans a large range of areas, from nanoelectronics,

cosmetics, healthcare, biomedical to biotechnology processes [199], particularly with the

advent of polymerisation processes allowing versatile synthesis of materials [200].

One particular class of polymeric materials that stands out in its applications in

biotechnology and biomedical purposes, are stimuli-responsive polymer brushes [201].

This type of polymer, of varying architecture and composition, can be prepared by

grafting polymers into a linear polymer chain (’backbone’) or grafted from a sur-

face [201]. Various types of stimuli-responsive molecular brushes have been developed,

with changes in their properties that are dependent on their surrounding environment,

such as temperature, pH, type of ion or magnetic field [201–203]. When present in

a specific stimuli-predominant environment this type of polymers typically undergoes

conformational changes such as collapse of the brushes’ linear chains into globules,

yielding reversible changes in solubility and a tendency to self-assemble into micelles or

vesicles [201,203,204].

The development of versatile polymerisation processes, such as controlled/living

radical polymerisation techniques (LRP), were key to advancing the synthesis and

application of such polymers [199, 201, 205]. These techniques include atom transfer

radical polymerisation (ATRP), reversible addition fragmentation chain transfer

(RAFT), and nitroxide-mediated radical polymerisation (NMRP), among other types
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of processes [205]. Since in this work we used the ATRP technique to synthesise

poly[poly(ethylene glycol) methyl ether methacrylate] homopolymers, an explanation of

its mechanism will follow.

Figure 6.2 summarises the mechanism of ATRP, which is a catalytic reaction that

uses a metal-ligand complex. The radicals (R·) are generated by reaction of the ATRP

initiator (R − X, an alkyl halide) with the transition metal complex (My
t /L, where

L is the ligand) at its lower oxidation state (y). This reaction yields the radical and

increases the transition metal’s oxidation state, coupling it to the halide (X−My+1
t /L).

This is denominated the activation reaction (with rate constant kact). The generated

radicals R· can polymerise with the (macro)monomer, in a propagation reaction with

rate constant of kp. However, the transition metal complex can also transfer the halide

to the R· regenerating the original alkyl halide compound, which corresponds to a

deactivation reaction (kdeact originating a dormant polymer chain capped with the

halide. In parallel, the radicals can undergo other termination reactions (rate constant

kt), reacting with each other (R − R), or by disproportionation (generating R − H,

R−HC = CH2) [200,205].

R-X Mt
y / L R X-Mt

y+1 / L

Monomerkp

kact

kdeact

R-R / R-H + R X-Mt
y+1 / L

kt

Figure 6.2: Scheme for general ATRP reaction. Adaptaed from [205].

Polymerisation by ATRP is therefore a catalytic process where the persistent radical

effect self-regulates the reaction’s equilibrium between activation and deactivation by

transfering the atom between the growing chains and the transition metal catalyst.

257



For this reason, the equilibrium is shifted towards the deactivation reaction producing

dormant polymerised chains [200,205].

In the case of poly[poly(ethylene glycol) methyl ether methacrylate] polymers,

ATRP gives a good control in polymerisation and molecule architecture, producing

polymers of narrow molecular weight distribution [205]. The reaction can be conducted

in organic solvents and high temperature [199], although it has also been performed

under aqueous and room temperature conditions [203,204].

In the case of the study presented here these polymer brushes were synthesised by

grafting through, i.e. by polymerising macromonomers (Figure 6.3). Other possible

ways of constructing brush-like polymers in general consist of coupling individual side

chains to a common backbone, and polymerising the side chains from a backbone

chain [199, 201]. In our case, the chosen method proves simple particularly since the

ether-capped poly(ethylene glycol) methacrylates used (PEGMA) were commercially

available, needing only the synthesis of the ATRP initiator. Provided a high purity

of the original macromonomer, the technique exemplified in the scheme of Figure 6.3

can provide 100 % density of brushes up to a limit where steric hinderance can disable

further polymerisation [201].
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Figure 6.3: General schematics of poly[poly(ethylene glycol) methyl ether methacrylate] brush

polymers. The PEGMA is the functional (methacrylate) macromonomer that was polymerised,

thus creating a homopolymer with a brush-type structure.

The choice for the synthesis and use of PEGMA brushes in their effect on protein

rheology laid also with their suggested biocompatibility [204], good solubility in aqueous

media [199, 201], amphiphilic properties [202, 204, 206], and capacity to micellise [199].

Other uses of PEGMA brushes have been on protein-resistant antifouling membranes or

films [204,207]. The latter reason has large potential in the biopharmaceutical industry

since, as mentioned above, they may be useful in preventing interaction with different

interfaces along the biopharmaceutical processing steps which can lead to protein de-

gradation [194]. Other authors have developed techniques to conjugate PEGMA brushes

to proteins, proving an alternative to linear PEG conjugation [208,209].

As a starting point, the work shown in this chapter focused only on the synthesis of

homopolymers of PEGMA, using ATRP as the polymerisation technique. The materials

recovered were then characterised by 1H-NMR and HPSEC with triple detection. The

polymers were assessed for their capability of micellisation and their molecular crowd-

inducing properties in the presence of proteins. These experiments were prepared in

order to help detect any possible limit in concentration of these materials when blending

with proteins. The chosen proteins were again β-LG and the mAb, the same proteins de-
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scribed in the previous chapters of this thesis. Once the protein-polymer mixtures were

prepared, measurements with cone-and-plate rheology and mVROC were performed, as

well as characterisation with HPSEC and DLS for the level of aggregation.

6.2 Materials and Methods

6.2.1 Materials

6.2.1.1 Protein samples

The monoclonal antibody studied was provided by MedImmune, LLC. (Gaithersburg,

Maryland, USA). It is an IgG1 of 145.461 kDa. The protein was supplied in a lyophilised

formulated format containing other additives, including a surfactant. The formulation

additives were removed by purifying the reconstituted material, as per description in

section 2.2.3 of Chapter 2.

The protein β-LG was obtained from Sigma-Aldrich (product L3908, batches

097K7012 and 080M7312V) as a mixture of bovine variants A and B, in a lyophilised

powder containing approximately 10% w/w of sodium chloride.

rAlbumin used in this work was kindly donated by Novozymes Biopharma UK Ltd.

(Nottingham, UK). The original sample was formulated at 200 mg/mL concentration.

For rAlbumin samples, the formulation buffer was composed of NaCl (145 mM),

Polysorbate-80 (15 mg/L) and sodium octanoate (32 mM) in ultrapure water (pH =

7.0 ± 0.3 at room temperature).

6.2.1.2 Reagents

All reagents used for the rAlbumin formulation buffer preparation were obtained from

Sigma-Aldrich and were of analytical grade. Polysorbate-80 used for the rAlbumin buffer
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and its determination of critical micellar concentration by fluorescence was obtained

from Fluka and of grade meeting the standards from the European Pharmacopoeia.

PEG 8000 for the protein solubility test was purchased from Alpha-Aesar.

All the chemicals used for polymer synthesis were purchased from Sigma-Aldrich

or Acros. All the solvents used for polymer synthesis, purification and analysis (size

exclusion chromatography and nuclear magnetic ressonance) were purchased from

Sigma-Aldrich or Fisher Scientific and were of HPLC grade, and used without further

purification.

The histidine buffer was prepared containing L-Histidine and L-Histidine mono-

hydrochloride at 10 mM in ultrapure water (pH = 6.0 ± 0.2 at room temperature).

Histidine salts were purchased from J.T. Baker Chemicals (Pennsylvania, USA) and

were of analytical grade.

All prepared buffers had a 2-month expiry date and were kept at 5 ◦C. Ultrapure

water was obtained from a water cleaning resin system from NANOpure Diamond

(Barnstead, USA) with water quality of >18.0 mΩ-cm, and 0.22 µm filtered (PVDF

membrane, EMD Millipore, USA). All buffers were filtered using 0.22 µm vacuum-driven

filter units (Nalgene, USA), unless when 0.1 µm pore-size filtering was necessary (using

PDVF syringe-filters Millex-VV from EMD Millipore, USA).

6.2.1.3 Sample preparation

(a) rAlbumin thermal stress study

For the thermal stress study of rAlbumin, samples at 200 mg/mL and at 20 mg/mL were

used. The 20 mg/mL sample was prepared by 1:10 dilution of original stock sample in

rAlbumin formulation buffer. Samples were stored in closed glass vials at 60 ◦C and

5 ◦C (control samples). Aliquots of thermally-stressed and non-stressed samples were
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analysed at the following time points: T= 0, T= 3 days, T= 7 days, T= 14 days, T=

28 days. If sample dilution was needed, these were prepared into formulation buffer.

(b) mAb and β-LG blends with polyPEGMAs

For the work described in this chapter, mAb batch 1 was used. This batch (∼89

mg/mL) was concentrated to ∼100 mg/mL using centrifugal concentrators Millipore

MW cut-off 30 kDA (Millipore EMD) by following the manufacturer’s protocol. The

final mAb sample was then filtered with 0.22 µm pore-size syringe filters.

Sample preparation for β-LG is described in section 2.2.2 in Chapter 2. For the work

presented in this chapter, a fresh batch of dialysed β-LG solution in 10 mM His-His.HCl

pH 6.0 was prepared at a stock concentration of ∼79 mg/mL after filtration (0.22 µm).

Any dilution of either mAb or β-LG samples was prepared in 10 mM His-His.HCl

pH 6.0 buffer.

Blends of β-LG and mAb samples were prepared individually with each of the

synthetic polyPEGMAs. All β-LG samples were at ∼68 mg/mL, while all mAb

samples were used at ∼100 mg/mL. Each of the polyPEGMAs were added to each

of the protein solutions at the following concentrations: 0.1, 1, 2.5 % w/v. A total

of 7 samples were prepared per protein solution: 3 with increasing concentrations of

polyPEGMA475 and 3 with increasing concentrations of polyPEGMA1100, and one

control protein sample without any added polymer. All samples were prepared in 10

mM His-His.HCl pH 6.0 buffer, into sterile glass vials with a rubberised cap. All sample

preparation and any filtration of mAb or β-LG solutions, using syringe filters, was done

under a vertical laminar-flow fumehood to avoid any contamination by dust particles

(LabCaire fumehood VLF6 Clean Air, PuriCore, Inc., USA). After preparation, to

ensure full mixing of the materials, all samples were subjected to a gentle oscillatory

shake (∼50 rpm) for at least 5 hours. The materials were then left for 24 hour at
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5 ◦C to before being analysed. All samples were checked for the pH at room temperature.

6.2.2 Methods

6.2.2.1 Protocol for ATRP pPEGMA synthesis

(1) Synthesis of ATRP initiator

The ATRP initiator 2-bromo-2-methylpropionic benzyl ester (3) was synthesised in the

following conditions and used for synthesis of both pPEGMAs studied in this work.

The commercially available phenylmethanol ((2), 50 g, 0.462 mol) was dissolved in

dicloromethane (DCM ∼ 200 mL) in a 1 L round-bottom flask with a magnetic stirrer

bar under argon gas. Triethylamine (97 mL, 0.694 mol) was added with a syringe, and

the flask was put over ice (0-5 ◦C). Attached to the flask was a closed glass ampoule

that was filled with 2-bromoisobutyrylbromide (1) (86 mL, 0.692 mol) which was slowly

added dropwise to the solution in the flask, over a 1 hour period. After this addition,

the reaction was left overnight at room temperature remaining under argon. The

precipitate formed (triethylammonium bromide) was removed by filtration twice and

discarded. All filtrate was collected and the solvent removed by rotary evaporation. The

product was then put through a basic alumina column with DCM, consecutively until

the extracted fraction was a yellow coloured liquid. This fraction was collected, the

DCM evaporated, and the product was dried over phosphorus pentoxide in a vacuum

desiccator.

The initiator (2-bromo-2-methylpropionic benzyl ester) (3) was characterised by

1H-NMR to ensure its purity.
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(2) Synthesis by ATRP and purification of polyPEGMA-475 and

polyPEGMA-1100

Prior to the synthesis of polyPEGMA homopolymers, each of the commercially

available monomers PEGMA-475 and PEGMA-1100 were separately dissolved in DCM

and passed through a neutral alumina column to remove the inhibitor present in

solution. The monomers were collected and the recovered after evaporation of solvent.

Then the respective monomer (PEGMA-475 or PEGMA-1100), along with PMDETA

(N,N,N’,N”,N”-pentamethyldiethylenetriamine) and 2-bromo-2-methylpropionic benzyl

ester were added to a two-neck round-bottom flask with a magnetic stirrer and dissolved

with toluene (see Table 6.1 for the reagents’ quantities used per reaction). The flask was

sealed with rubber septums and degassed with argon for at least 20 minutes. Cu(I)Br

was added under argon atmosphere, the mixture was continually stirred and put at 60

◦C under continuous argon bubbling. The polymerisation was stopped after 1 hour

by removing the flask from the heat, cooling it on ice and immediately exposing its

contents to air.

The unreacted PEGMA monomer was precipitated in petroleum ether, recovering

the supernatant. The solvents were then evaporated, and the resulting product was

dissolved in DCM and passed through an alumina column at least three times to

remove the copper catalyst. The excess DCM was removed by evaporation. The

polymer was further dissolved in purified water (∼500 mL) and Na2S was added to

react with any remaining copper (II). This reaction was left stirring overnight at room

temperature. The precipitate was filtered out (0.22 µm pore-size nylon membrane,

Millipore) by vacuum-driven filtration. The aqueous polymer solution was dialysed in

purified water (1000 Da cut-off membrane, Spectra/Por-6). The final dialysed solution

was freeze-dried.

The polyPEGMA-475 and polyPEGMA-1100 resulting polymers were further dried
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under vacuum for several days, and kept at 2-5 ◦C, under argon atmosphere when not

in use. The polymers were characterised by 1H-NMR and HPSEC.

Table 6.1: Quantities of the reagents used for the synthesis of polyPEGMA-475 and

polyPEGMA-1100.

6.2.2.2 Quantification of protein concentration by UV spectroscopy

The calculated percent extinction coefficient (A1%
1cm) was of 1.45 for mAb solutions. For

β-LG A1%
1cm= 9.6 [100], and for rAlbumin A1%

1cm = 5.8 [99]. The protein and polyPEGMA

blends, as well as the controls (polyPEGMA in buffer) were also analysed on Nanodrop

without diluting to obtain a UV-Vis scan from 200 - 800 nm. All details related to this

method are described in section 2.2.7 in Chapter 2.

6.2.2.3 Bulk Rheology

The rheometer used was an Anton-Paar (Graz, Austria) modular compact rheometers

(MCR) 301. For the rheology measurements of rAlbumin solutions, a cone-and-plate

CP50-1 (diameter = 50 mm and cone angle = 1 ◦) was used. For the analysis of
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polymer-protein blends a cone-and-plate CP40-0.3 was used (diameter = 40 mm, cone

angle = 0.3 ◦). To prevent evaporation of sample and to keep constant temperature of

25◦C ± 0.1◦C, an evaporation blocking system equipped with a peltier unit was used.

Prior to measurements, all samples were allowed to equilibrate to room temperature (∼

23◦C) for at least 30 minutes.

Rotational tests (flow curves and viscosity curves) were performed by controlling the

shear rate typically from 0.01 to 1000 s−1, and measuring torque, shear viscosity and

shear stress. To increase data validity and sensitivity of the method, each shear-rate

step had a 60 second duration time during which the instrument was averaging over the

collected data. Typically, two shear-rate sweeps (ramping down and up) were performed

per sample, without waiting time between sweeps.

6.2.2.4 Micro-viscometer/rheometer on-a-chip

The microviscometer/ rheometer on-a-chip (mVROC), by Rheosense, Inc. (San Ramon,

California, USA) was used for measurement of bulk viscosity at high shear rates. All

samples analysed with the mVROC were filtered with 0.1 µm pore-size syringe filters

(Millex-VV Millipore filters). For these measurements, the A05 chip was used and

temperature was kept constant at 25◦C ± 0.1◦C using a water circulation system

(ThermoCube, SS cooling systems, USA) (for additional information, see section 2.2.6.2

in Chapter 2).
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6.2.2.5 High performance size exclusion chromatography for determination

of level of protein aggregation

rAlbumin samples were analysed for their level of aggregation on HPSEC. β-LG

and mAb solutions only as well as the blends of these proteins with the synthetic

polyPEGMAs were also analysed for their level of aggregation. Details related to

method and equipment are described in section 2.2.9.2 in Chapter 2.

6.2.2.6 HPSEC for synthetic polymers

During and immediately after synthesis, aliquots of polyPEGMA homopolymers were

characterised using a chloroform/ TEA 95/5 % v/v HPSEC (or GPC) system to check

solely for their molar masses and purity. For this purpose, the system was calibrated

for conventional calibration with a mixture of narrow MW polystyrene standards

commercially available (EasiVial PS-M, Agilent Technologies, UK).

The synthesised polyPEGMAs and PEG 8000 were analysed for MW and intrinsic

viscosity on a chloroform/ TEA 95/5 % v/v gel-permeation chromatography system

calibrated for triple detection (refractive index, 90 ◦ light scattering detector, and

differential pressure). A narrow polystyrene was used as standard for detector response

and inter-detector delay. Polyethylene glycol standards from Polymer Labs (Agilent,

UK) were also analysed for comparison. All PEG/PEO samples were injected only once

at concentrations 3-5 mg/mL, while the polyPEGMAs were injected at ∼2.5 mg/mL

and in triplicate. The refractive index increment used for analysis of all PEG or PEO

polymers was dn/dc = 0.053 mL/g, while for the polyPEGMA analysis dn/dc = 0.057

mL/g.

All equipment and method details for both HPSEC/GPC systems are described in

section 2.2.9.4 in Chapter 2.
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6.2.2.7 1H-Nuclear magnetic resonance

1H-Nuclear Magnetic Resonance (1H-NMR) spectra were recorded on a Brüker 400 MHz

spectrometer (Brüker, Germany). Chemical shifts are reported in ppm (δ units) downeld

from internal tetramethylsilane standard. Polymer samples were dissolved (1:3 parts) in

CDCl3.

6.2.2.8 Dynamic light scattering

Details related to this method are described in section 2.2.8.1 in Chapter 2. Meas-

urement settings for rAlbumin size readings were at a constant temperature of 25 ◦C,

performing 15 runs of 10 seconds each. For the β-LG, a total of 10 runs of 10 seconds

each were performed. For mAb solution size measurements, 20 runs of 20 seconds each

were collected. For β-LG and for IgG samples, measurements were performed at 25 ◦C.

Analysis of polyPEGMA and protein blends were measured at the same conditions as

those chosen for each protein, respectively. The polyPEGMA solutions (in buffer) were

analysed at their original concentration (1, 10 and 25 mg/mL), while the protein and

polyPEGMA mixtures were measured at a protein concentration of ∼1 mg/mL. An

equilibration time of at least 5 minutes was set before the measurement started. For all

protein samples, size measurements were made in triplicate with fresh aliquots for each

reading.

6.2.2.9 Microfluidic chip sodium-dodecylsulfate polyacrylamide gel electro-

phoresis (SDS-PAGE)

Details related to this method are described in section 2.2.13.1 in Chapter 2. rAlbumin

samples used for this experiment were: 200 and 20 mg/mL at 5 ◦C T= 4 weeks; and
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200 and 20 mg/mL at 60 ◦C at T= 4 weeks.

6.2.2.10 Tensiometry

All the detailes referring to this technique are described in section 2.2.10 in Chapter

2. A freshly prepared filtered solution (0.1 µm pore-size syringe filters, Millex-VV,

EMDMillipore, USA) of polyPEGMA-475 in buffer at 1 mg/mL was analysed.

6.2.2.11 Detection of critical micellar concentration by fluorescence spec-

troscopy

Polysorbate-80 (PS-80) and polyPEGMA solutions were prepared in 10 mM His-

His.HCl pH 6.0 buffer, by dissolving the materials in purified water to prepare stock

concentrations (100 µM for PS-80, and 5 mg/mL for polyPEGMAs) and diluting with

water to achieve all concentrations for the experiment.

A stock solution of pyrene (Sigma-Aldrich) in acetone was prepared at a concentra-

tion of 0.05 mg/mL. Aliquots of 24 µL from the pyrene stock solution were transferred

to capped clean glass vials, and left to evaporate the acetone. After solvent evaporation,

surfactant and polymer dilutions were individually added to each of the vials yielding a

final concentration of 6×10−7 M of pyrene (each vial containing 10 mL of solution). This

procedure was done in triplicate for each dilution per studied compound. The samples

were shaken well and then incubated at 25 ◦C overnight away from light in a water

bath with a gentle oscillatory shake (∼70 rpm). After this, the samples were measured

on a Varian Cary Eclipse fluorescence spectrophotometer with an excitation wavelength

of 342 nm. The emission spectra was collected at a scan rate of 10 nm/s, emission slit

of 2.5 nm, from 350 to 400 nm. The pyrene fluorescence peaks between 373-374 nm

269



(peak I) and 383-385 nm (peak III) were obtained and its ratio (IpeakI/ IpeakIII) was

calculated per sample.

6.2.2.12 Protein solubility assay using polymers

Polymer solutions were prepared at 40% w/w in separate acidic and basic buffer

components. In this study, the sample buffer was 10 mM His-His.HCl pH 6.0. The basic

polymer solution was titrated with the acidic polymer solution while being thoroughly

stirred. Protein samples were prepared in 10 mg/mL stock solutions in the same buffer.

In a 96-well plate (UV-Vis clear plates, Greiner Bio-One, Ltd., UK) the buffer was

loaded, followed by the protein sample and then the polymer solution, mixing well.

Each protein-polymer blend was prepared in triplicate. The microplate was covered and

left in an incubator at 25◦C overnight. After this time, the microplate was centrifuged

(Heraeus Megafuge 11R, Thermo Fisher Scientific, UK) at the temperature of the assay

at 338 g for up to 2 hours at a time, until a precipitation or distinct phase-separation

was observed. Subsequently, 70 µL of supernatant from each well were transferred to

a new UV-Vis clear 96-well plate. These solutions were then measured for absorbance

at 280 nm on a UV-Vis plate reader (FluoStar Optima, BMG Labtech, Germany).

A UV-visible scan was obtained from these solutions, including for the polyPEGMA

solutions only, without any protein added (considered as control solutions). The

absorbance at 280 nm data was converted to calculate the concentration of protein

present in each well. The logarithm of protein concentrations were plotted versus

% w/w of polymer present in solution. The slope of the graph was reported as the

apparent solubility for the studied protein in the tested buffer containing the selected

polymer. The reported solubility values for the proteins tests were used for relative

comparison only, therefore being denominated as ’apparent’ solubility.
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This method was used with the commercially available polymer polyethylene

glycol (PEG) with molecular weight of 8 kDa (Alfa Aesar, UK) as well as the poly-

poly(ethylene glycol)methyl ether methacrylates (polyPEGMAs) prepared in this work.

The % w/w of polymer used had to be changed between the different proteins and when

using different polymers.

6.3 Results and Discussion

6.3.1 Part I - The effect of thermal stressing of rAlbumin solutions on

its solution rheology

Vials of rAlbumin at two concentrations (200 and 20 mg/mL) were left at 60 ◦C for

28 days to thermally stress the protein into forming higher order aggregates. From

literature, the melting temperatures of human serum albumin have been reported

to be a two-state transition with Tm1 of ∼56 ◦C and Tm2 of ∼63 ◦C, due to the

sequential unfolding of the protein’s domains [27, 210, 211]. Since rAlbumin solutions

were biopharmaceutical preparations formulated to withstand stresses and prevent

protein agregation, the chosen temperature to thermally stress this protein had to be

approximate to the monomer’s ’melting’ temperature.

From the evaluation by HPSEC, those samples at 200 mg/mL showed clear signs of

loss of monomer, with increasing presence of dimers, trimers and evidence of higher MW

species. Figure 6.4 shows a drop in monomer peak area of ∼7 %, with the corresponding

increase of higher MW species distributed between dimer, trimer and other oligomers,

but no evidence of lower MW species. At the last time point, it was noticed an increase

of monomer, contradicting the previously seen tendency of monomer loss. This sudden

increase in monomer content, was most likely related to a large fraction of proteinaceous
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material that was retained on the 0.45 µm pore-size membrane centrifuge filters, since

it was noticed that it took longer time to fully centrifuge the samples from this time

point. Therefore, with much of the protein aggregates retained at the filter’s membrane,

it reduced the quantity of soluble protein aggregates present in solution which most

certainly did not correspond to the material’s true level of aggregation.
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Figure 6.4: Level of aggregation of 200 mg/mL rAlbumin sample after 4 weeks at 60 ◦C for 4

weeks. Results shown are average values of analysis in triplicate, with error bars corresponding

to the standard deviation of these measurements.

Examples of HPSEC chromatograms are shown on Figure 6.5, for both dilutions

of 200 and 20 mg/mL of rAlbumin. The 20 mg/mL sample at T=0 weeks evidenced

the typical rAlbumin chromatogram with monomer, dimer and trimer peaks, but for

the remaining time points, the trimer peak was not observed. The assessment of this

sample’s aggregation level by HPSEC suggested that the aggregation was occurring at

a lower rate than that experienced by the higher concentration.

Control samples, at the same concentrations, were also analysed by HPSEC and

showed a very slight decrease of monomer with corresponding increase in dimer content,
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generally showing that the samples were stable at this concentration (detailed data is

shown in Tables C.1(a) and C.1(b), in Appendix C).
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at 60 °C (T = 4 weeks)

rAlbumin 20 mg/mL
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Figure 6.5: Example of HPSEC chromatograms from rAlbumin samples at 200 and 20 mg/mL

exposed to 60 ◦C for 4 weeks. A comparison between chromatograms shown for the 200 and 20

mg/mL at 5 ◦C, T= 0 weeks (control) is shown against samples at the same concentration but

after study completion (at 60 ◦C, T= 4 weeks). All samples subjected to HPSEC analysis were

diluted to ∼10 mg/mL and filtered with 0.45 µm centrifuge-filters.
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The data observed after DLS analysis of these same samples at the chosen times

points for the HPSEC study, demonstrated further evidence of protein aggregation

occurring with time exposure at 60 ◦C. Those dilutions obtained from 200 mg/mL

sample showed larger difference compared to the samples analysed from 20 mg/mL of

rAlbumin.

With the 200 mg/mL samples, an increase in protein aggregate species were observed

by the presence of the second peak which had increasingly higher peak area with time.

Comparatively, the analyses from 20 mg/mL of rAlbumin also showed peaks at higher

mean hydrodynamic diameter but at lower intensities. By volume distribution, these

samples evidenced less influence of these larger scatterering species, since the only peak

detected did not seem to trend to much higher hydrodynamic diameters. However, the

changes observed on intensity plot for samples diluted from 200 mg/mL rAlbumin, had

a marked deviation to higher HD of the peak detected by volume distribution. Detailed

data are shown in Table C.2 in Appendix C.

All samples were analysed after preparing fresh dilutions at 1 mg/mL, without any

further filtration. However, the rHA sample originally at 200 mg/mL after 4 weeks

at 60 ◦C had to be filtered using 0.45 µm centrifugal concentrators to remove large

proteineaceous particles to record feasible DLS measurements.

These results, confirmed the tendency seen with the HPSEC results. Both of these

experiments showed that, with time, the protein aggregates formed at 200 mg/mL of

rAlbumin monomer were demonstrating higher sizes towards 1 µm of diameter and

were becoming insoluble.
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Figure 6.6: DLS data of rAlbumin samples thermally stressed for 28 days at 60 ◦C, showing

hydrodynamic diameter of detected peaks by intensity (large graph) and volume (inset graph)

distributions. (a) Samples diluted from 200 mg/mL rAlbumin. (b) Samples diluted from 20

mg/mL.

µ-SDS-PAGE analysis comparing dilutions from each concentration of rAlbumin

275



after 4 weeks at 60 and 5 ◦C was performed. The comparison with samples at 5 ◦C

served as control, where samples where not expected to show any signs of aggregation

(as demonstrated by HPSEC). As discussed previously in Chapter 3, the correspondence

to albumin monomer was attributed to the band at ∼53-54 kDa. A slight band at ∼110

kDa observed with the non-reduced 200 mg/mL T= 28 days at 60 ◦C corresponded

to the increase of dimerisation of rAlbumin after thermal stressing. The remaining

analysed non-reduced samples also demonstrated a peak/ band at this MW, having a

peak area of ∼3 %, compared to the ∼10 % observed for the fully aggregated sample.

At reducing conditions the band at ∼60 kDa was present in all samples with peak areas

of >96 %, indicating an almost full reduction of the dimers detected in non-reducing

conditions.

Although the 200 mg/mL sample presented higher aggregation levels and contained

species of higher oligomeric association than trimers (in HPSEC and DLS), both these

nor trimers were not detected with µ-SDS-PAGE. Species of higher MW than 240 kDa

would not be detected with this system, and the trimers were most likely present at

too low concentration to be detected - note that even with the samples at 5◦C, trimers

were not detected.

276



[kDa] [kDa]

240

150

95

63
46

28

15

7
4.5

240

150

95

63
46

28

15

7
4.5

Ladder 1 2 3 4 5 6 7 8 9 10

Figure 6.7: Gel image for rAlbumin samples after storage at 60 ◦C for 28 days. At non reducing

conditions, lanes: 1) 200 mg/mL dilution, at 60 ◦C, T= 28 days; 2) 20 mg/mL dilution, at 60

◦C, T= 28 days; 3) 200 mg/mL dilution, at 5 ◦C, T= 28 days; 4) 20 mg/mL dilution, at 5 ◦C,

T= 28 days; 5) non-reduced control mAb sample. At reducing conditions, lanes: 6) 200 mg/mL

dilution, at 60 ◦C, T= 28 days; 7) 20 mg/mL dilution, at 60 ◦C, T= 28 days; 8) 200 mg/mL

dilution, at 5 ◦C, T= 28 days; 9) 20 mg/mL dilution, at 5 ◦C, T= 28 days; 10) reduced control

mAb solution. The mAb sample was used for system suitability purposes.

Up to 28 days the samples had a constant visual appearance where those solutions

with 200 mg/mL of rAlbumin had a light yellow colour, whereas the 20 mg/mL solution

presented no colour, and both typically did not show any signs of opalescence nor

visible insoluble particles. However, after the fourth week at 60 ◦C, the samples at 200

mg/mL had a gel-like viscous residue formed at the bottom of its vials. These samples

were opalescent but did not have any visible particulates or fibers.

The rheology profiles of these samples at each of the time points are shown in

Figures 6.8(a) and 6.8(b). At the initial time point, before submitting the samples

to high temperatures, the solutions at both concentrations showed a Newtonian-like

behaviour, with constant shear viscosities along the applied shear rates. This had been

observed previously for the formulated rAlbumin solutions addressed in Chapter 3.

However, the rheological behaviour of those samples at 200 mg/mL exposed to 60 ◦C
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changed with time. After 3 and 7 days, the samples exhibited increased viscosities at

low shear rates, resembling an apparent yield-stress behaviour. The material exposed

to 60 ◦C after 14 days showed signs of transition in its profile. At 28 days, the sample

clearly had signs of shear thinning, that of a gel-like fluid (slope <-1).

Apart from these changes in behaviour, particularly at low shear rates, the samples

seemed to show constant viscosities at the higher shear rates (> 100 s−1), with exception

of the sample at T= 28 days.

Those samples at 20 ◦C did not show signs of change in their rheological profiles

nor a significant variation of their shear viscosities. This correlated well with the data

shown for HPSEC, DLS and µ-SDS-PAGE, where it was proven that the degree of

rAlbumin aggregation was much lower when compared to the solutions at 200 mg/mL

also at 60 ◦C. Particularly from the DLS data, it was seen that the 20 mg/mL samples

had an increasingly higher level of aggregation but of low relative volume fraction in

the solutions. Therefore, the small amount of protein aggregates present did not affect

these samples’ rheological behaviour, at least at a level detectable by CP rheology and

at these conditions.
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Figure 6.8: Cone-and-plate rheology data for rAlbumin samples along the time exposed to 60

◦C, up to 28 days. (a) 200 mg/mL rAlbumin samples. (b) 20 mg/mL rAlbumin samples.

Following from the discussions and conclusions of the previous chapters in this

thesis, and from literature evidencing the effect of PS-80 in the rheology of globular

protein solutions [74, 143], the results shown here point to the fact that this non-ionic

surfactant was responsible for the Newtonian-like behaviour observed for the rAlbumin
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samples at the initial time point. In the case presented here and based on the literature,

we assumed that the PS-80, being a surface active molecule, would out-compete the

albumin species to the air-water interface present when using the cone-and-plate. In

our data, after protein aggregation was induced by increased temperature, the fact that

the rheological profile showed a change to an apparent yield stress behaviour could

be an indication that the surfactant was not enough to prevent the protein species

from reaching the air-water interface. It remained uncertain whether this change was

caused from presence of protein aggregates or solely albumin species partially unfolded,

exhibiting higher areas of hydrophobic patches. Further studies should follow in order

to determine this effect.

The change in rheological behaviour, from the apparent yield stress behaviour to a

shear thinning behaviour was attributed to the higher levels of aggregation. Visually,

the samples exposed to 60 ◦C after 28 days did evidence signs of gelation. From the

literature, it is known that albumin can create gels after thermal stressing [61, 212].

These properties have been discussed to originate from the formation of aggregates,

which create an inter-particle network [210].

Also present in this formulation buffer was NaCl, at 145 mM, which could also

impact on the rheological results. Recalling results from Chapter 3 regarding the

dilution of rAlbumin solutions provided from the commercially available stock into

a 145 mM NaCl only buffer, showed that the apparent yield stress properties were

increasingly evident with higher dilution of these solutions. As the concentration of salt

was maintained in the studies in that chapter, the presence of PS-80 and protein were

gradually reduced as the dilutions progressed. It was clear that there was tendency

towards an apparent yield stress rheological profile at the lower shear rates in these

solutions, and it was suggested that it was this difference that mainly contributed to the

changes observed in rheology. The study shown in the present chapter aims to support
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this suggestion, by showing that after a 3 days at extreme thermal stress, the effect

of PS-80 on surface activity was no longer seen on the rheology of such rAlbumin samples.

6.3.2 Part II - Novel use of polyPEGMA brush-type polymers as ad-

ditives in protein solutions and their effect in rheology

In this section we describe the synthesis and use of polyPEGMA brush-type polymers

as additives in protein solutions. As mentioned earlier, the aim was to synthesise homo-

polymers poly[poly(ethylene glycol) methyl ether methacrylate]. Two compounds were

synthesised aiming for a 10 000 Da molecular weight each, using as macromonomers

the PEGMA-475 and PEGMA-1100, both commercially available PEG-methacrylates,

differing only in the chain length.

It was discussed earlier that brush-like polymers based on PEGMAs can be stimuli-

responsive, with temperature as an example of a stimulus [201, 213]. The PEG chain

length has been shown to impart solubility limitations when it comes to temperature re-

sponse in aqueous environment, i.e. beyond a lower critical solution temperature (LCST)

the materials tend to precipitate [201]. This is an important factor to consider for our

purposes, since biopharmaceutical formulations are typically tested for protein stability

at high temperature (40 ◦C) and for long periods of time. Therefore, it was important

to avoid phase transitions that could affect the protein’s native state even though it is a

reversible event [201]. The macromonomers chosen here are known to have a high LCST

in aqueous conditions, well above 40 ◦C. The LCST of these compounds tends to increase

with chain length, e.g. LCST of PEGMA-475, estimated to be ∼90 ◦C [199, 201]. In

the case of PEGMA-1100, as it comprises 22-23 units of PEG versus its methacrylate

backbone, it remains soluble in water even at temperatures ∼ 100 ◦C [213].
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6.3.2.1 Synthesis and characterisation of polyPEGMAs

The synthesis of the brush-type PEG based polymers was performed by controlled

ATRP. The initiator for this synthesis, 2-bromo-2-methylpropionic benzyl ester (3),

was synthesised as shown in Figure 6.9, by acylation of benzyl alcohol (2) with

2-bromo-2-methylpropionyl bromide (1) at freezing conditions, as per similar reactions

described in literature [214]. The yield obtained was ∼63 %. Compound 3 was further

purified and dried to ensure it was free of solvents and at high purity. Its 1H-NMR

spectrum in CDCl3 is shown in Figure C.1 with its description in Appendix C.
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Figure 6.9: Scheme for the synthesis of ATRP initiator. 1 - 2-bromo-2-methylpropionyl brom-

ide; 2 - benzyl alcohol; Et3N - triethylamine; reaction conditions were dichloromethane (CH2Cl2)

and ∼0 ◦C; 3 - 2-bromo-2-methlypropionic benzyl ester; Et3NHBr - triethylammonium bromide.

The homopolymers poly[poly(ethylene glycol) methyl ether methacrylate] (5a

and 5b) were synthesised in presence of Cu(I)Br catalyst and the ligand PMDETA

(N,N,N’,N’,N”-pentamethyldiethylenetriamine) from polymerisation of monomers

PEGMA-475 (4a) or PEGMA-1100 (4b) [203, 208, 214]. The products were isolated

and purified as described in the methods, yielding highly pure homopolymers cor-

responding to compounds 5a (yellow viscous liquid) and 5b (white powder). For

simplicity, the two poly[poly(ethylene glycol) methyl ether methacrylate] polymers

synthetised will be referred in this work as polyPEGMA-475 or pPEGMA-475, and

polyPEGMA-1100 or pPEGMA-1100, respectively corresponding to products 5a and 5b.
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Figure 6.10: Scheme for the synthesis of poly[poly(ethylene glycol) methyl ether methac-

rylate] by ATRP. 3 - 2-bromo-2-methlypropionic benzyl ester; 4a - PEGMA monomer 475

g/mol; 4a - PEGMA monomer 1100 g/mol; reaction conditions were PMDETA (N,N,N’,N’,N”-

pentamethyldiethylenetriamine), Cu(I)Br, in toluene at 60 ◦C; 5a - polyPEGMA-475; 5b -

polyPEGMA-1100.

Synthesis of these brush-like homopolymers was carried out up to one hour, yielding

∼90 % conversion of monomer to polymer. Monomer conversion was calculated via

1H-NMR analysis of aliquots during synthesis. This estimation was made by comparing

the integration of the vinyl protons present in the monomer (δ = 5.71 and 6.31 ppm,

corresponding to one proton each) to the overall integration of protons corresponding

to the ester protons of monomer (δ = 4.41 ppm) and polymer (δ = 4.27 ppm).

1H-NMR analysis of both polymers evidenced peaks characteristic to the PEG

pendant chains (brush) of the polymer, at δ = 3.37 ppm (methoxyl protons, g) and δ

∼ 3.64 ppm (methylene protons, f (Figure 6.11) [204]. Another signal corresponding to

protons present in the PEG brush were δ = 4.07 ppm (e), the ester protons. From the

methacrylate backbone, the group of peaks in the range ∼0.6 - 1.2 ppm were assigned

to the methyl protons (d), and the range ∼1.78 - 2.1 ppm to the methylene protons (c).

The remaining peaks at δ = 7.30 ppm and 5.05 ppm, correspond to the aromatic (a)

and the benzyl protons (b), present in the end group present in each homopolymer.

The degree of polymerisation could be estimated from the 1H-NMR analysis of these

polymers. This was estimated by fixing the integration of the aromatic protons (a, in
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Figure 6.11) to 5, and integrating either the ester protons (e) or methoxyl protons (g).

By dividing integrations of e or g by 2 or 3, respectively, it was estimated that for

the polyPEGMA was constituted by polymerisation of 8-9 monomer units, and that

polyPEGMA-475 was constituted of 16-17 monomer units (Figure C.2 in Appendix C).
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Figure 6.11: NMR spectra for poly[poly(ethylene glycol) methyl ether methacrylate]-1100.

Sample was dissolved in CDCl3.

The target MW for these homopolymers was at 10 kDa. HPSEC analysis, with

triple detection, was performed to characterise these polyPEGMAs in terms of their

purity, weight and intrinsic viscosity. Table 6.2 compares the calculated peak MW

(Mp), number-averaged MW (Mn), weight-averaged MW (Mw), polydispersity index

(PDI = Mw/Mn), and calculated intrinsic viscosity for the polymers analysed. The

synthesised polyPEGMAs were analysed on the same HPSEC system along with linear

PEG or PEO of Mp ranging from 1970 Da to 43580 Da. These linear PEG polymers

were compared to the polyPEGs regarding the intrinsic viscosity and MW.

From triple detection HPSEC analysis, the calculated MW for the polyPEGMAs
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was revealed to be quite similar, with the polyPEGMA-475 having slightly lower Mn

(∼10709 Da) compared to the poly-PEGMA1100 (∼10973 Da). This corresponded

to the expected MW target. The polydispersity index was relatively low for both

polymers, indicating a narrow range of polymer sizes. Since the PEG/ PEOs chosen for

analyses were of high purity grade for standard purposes (except for PEG 8000), it was

expected that these materials would exhibit a PDI of ∼1.0.

Table 6.2: Data obtained from HPSEC calibrated for triple detection with PEG/ PEOs of

standard quality (range 1970 - 43580). Mp - peak MW; Mn - number-averaged MW; Mw -

weight-averaged MW; PDI - polydispersity index, corresponding to Mw/Mn. 1 - PEG 8000 of

analytical grade, was the linear PEG used for protein solubility studies; 2 - polyPEGMAs were

analysed in triplicate, where data is reported as average and standard deviation; 3 - [η] values

obtained from analytical specifications of the PEG/PEO standards; 4 - [η] values calculated from

this analysis.

The intrinsic viscosities measured for polyPEGMA-475 and polyPEGMA-1100 were

0.0682 ± 0.001 and 0.1096 ± 0.002, respectively. In comparison to the linear PEG/PEO,

the [η] measured showed a linear increase with MW. polyPEGMA-475, although having

a similar molar mass to polyPEGMA-1100, was the analysed polymer which yielded
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the lowest intrinsic viscosity. As this physical parameter is dependent on the shape

and aspect ratio of the molecule, and in this case, all polymers were measured in a

good solvent and at the same temperature (∼25 ◦C), the overall shape/aspect ratio was

expected to be the variable changing between polymer. Although both polyPEGMAs

had a Mn ∼10 kDa, which is larger than the first three analysed PEG standards, the

brush-like shape of the synthesised polymers clearly translated in a difference in intrinsic

viscosity. Between the polyPEGMAs, it was clear from its [η] value that the shorter

PEG chains of 475 Da (brushes), would probably yield a compact molecule, compared

to the longer chains of 1100 Da. Even though these calculations were performed in

chloroform, a good solvent for these analysed polymers, it is assumed that the materials

should have similar tendencies when dissolved in water, another good solvent for PEG

and PEGMA polymers [199].

The relatively low MW and the lower intrinsic viscosities of the polyPEGMAs

were two important properties sought after for this study. If using these amphiphilic

polymers as potential additives in protein formulations, minor viscosity increase due to

its addition would be critical.

6.3.2.2 Study of the required concentration of polyPEGMA for the protein-

polymer blends

The study of a concentration range of polyPEGMAs to use with the protein solutions was

an important issue to address. Macromolecules such as PEG based polymers are known

to influence the solubility of biomacromolecules, such as globular proteins, particularly

forcing protein precipitation due to polymer-protein interactions in crowding solution

conditions [215, 216]. From another perspective, since homopolymers polyPEGMAs are

known for its self-assembly properties at aqueous conditions [199, 204], our additional
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criteria in terms of concentration limits was to prevent micellisation of this material in a

protein solution. By keeping the polymer concentration lower than its potential critical

micellar concentration, the single chain brush polymers would be available in solution

for possible inter-particle interactions, or if solely acting as amphiphiles, to be free to

interact with any potential interfaces. Moreover, this is a common practice when adding

polysorbates in biopharmaceutical formulations. For these two reasons, a protein ’solu-

bility’ test was performed with the polyPEGMAs, as well as an indirect assessment of

their potential critical micellar concentrations.

The technique chosen to determine the critical micellar concentration (CMC) was

an indirect method utilising a hydrophobic molecule (pyrene), which should preferably

stay at the hydrophobic core of a micelle once it is formed in an aqueous solution [190].

The guest probe pyrene has been studied for this purpose since changes in its polar

enviroment can be easily measured through its fluorescence emission. The intensity of

its peaks change accordingly to the change in pyrene’s local environment, and the fluor-

escence intensity ratio between its first (λ ∼373 nm) and third peak (λ ∼383 nm) is

typically reported. The higher the ratio (measuring in fluorescence emission intensity)

the more polar the environment is. The hydrophobic cores of micelles should contribute

to high solubility of pyrene therefore allowing detection of micellisation [190].

For comparison purposes and to guarantee that the chosen technique details were

adequate, detection of polysorbate-80’s CMC was made (Figure 6.12). From the figure,

the data showed that at lower concentrations of polysorbate the intensity ratio of peaks

I and III was higher, whereas from polysorbate concentrations higher than 10 µM the

ratio was reduced. Polysorbate-80 reported CMC is ∼10 µM, with which our data is in

agreement [190]. The change in this ratio was visually detected in the fluorescence emis-

sion scans (λexcitation = 342 nm), where the third peak increased its emission intensity

(Figure 6.12 inset graph, arrow pointing at ∼383 nm).
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Figure 6.12: Determination of critical micellar concentration of polysorbate-80 by guest probe

pyrene emission fluorescence intensity. The large graph refers to the ratio between intensities of

peak I and III for pyrene, at λ ∼373 nm and ∼383 nm, respectively. The inset graph shows the

fluorescence emission scans from 360 to 400 nm. Arrows are pointing to the peaks I and III.

The polyPEGMA polymers were also subjected to this experiment, but yielded

completely different results. From Figure 6.13, it was concluded that these polymers did

not seem to micellise at these experimental conditions (water, at room temperature).

The intensity ratio measured, throughout the range of concentrations used (0.01 - 5

mg/mL), suggested that pyrene was always present in a polar environment. According

to literature, micellisation of similar polyPEGMA homopolymers should occur promptly

at aqueous environment and at room temperature [204]. However, the materials dis-

cussed in Hussain et al. (2008) although homopolymers composed of the same 475 and

1100 Da monomer units, and of similar MW, have a short chain poly(ethylene glycol)

end group, which could contribute differently to its self-assembly.

From tensiometry studies, it was possible to measure the surface tension

polyPEGMA-475 at 1 mg/mL, at the air-liquid interface. In a 1 mg/mL aqueous

solution, polyPEGMA-475 at 1 mg/mL had a surface tension of 56.6 ± 0.18 mN/m,
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having a similar surface tension at the same concentration in 10 mM His-His.HCl pH 6.0

buffer (55.6 ± 0.19 mN/m). Filtered (0.22 µm) pure water and filtered (0.1 µm) buffer

had surface tension values of 72.9 ± 0.14 mN/m and 73.0 ± 0.34 mN/m, respectively.

Since no significant change was observed in the polymer’s surface tension in water vs.

buffer, it was concluded that the polymer would not micellise at buffer conditions. The

fluorescence emission spectra for this experiment is shown in Figure C.5 in Appendix C.

Therefore, these polymers were proven to be surface active at the air-liquid interface,

but did not seem to micellise readily at room temperature in water. From this study a

limitation in concentration could not be derived.
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Figure 6.13: Determination of critical micellar concentration of polysorbate-80 by guest probe

pyrene emission fluorescence intensity. The graph refers to the ratio between intensities of peak

I and III for pyrene, at λ ∼373 nm and ∼383 nm, respectively, and compares data obtained for

polyPEGMA-475 and polyPEGMA-1100.

The mAb and β-LG apparent solubilities were studied by testing if the protein would

precipitate using a linear polymer (PEG 8000) and our synthetic polymers. In theory,
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as the polymer concentration increases, the protein should have lower free volume

and protein self-assembly should eventually lead to its own precipitation [215, 217]. A

micro-plate technique adapted from ref. [217] was chosen for this assessment. Solutions

were all in buffer conditions and the test was conducted at 25 ◦C, since these would be

the same conditions for the rheology experiments.

As with the pyrene probe studies, apparent solubility of mAb and β-LG solutions

were first prepared in presence of increasing concentrations (% w/w) of PEG 8000.

From literature, it has been shown that using PEG of MW up to 6000 can yield different

results, however from that MW onwards, the globular proteins seem to precipitate in

presence of the same PEG concentration, regardless of chain length [215, 216]. When

there a decrease of protein concentration, precipitation occurred and it is the slope

of the linearity in that decrease which is often reported as the protein’s ’apparent

solubility’ [215,217].

Figure 6.14(a) shows this assessment for β-LG solutions. Comparing the results

between the different polymers, it was observed that β-LG precipated at ∼8 % w/w

of PEG 8000, while its concentration only started decreasing from ∼10 % w/w of

polyPEGMA-1100 and from ∼13.2 % w/w of polyPEGMA-475. From Figure 6.14(b)

this comparison did not produce significant changes across the polymers used, where

these did not induce precipitation of the mAb.

The polymer concentrations identified to induce protein precipitation (or even just

opalescence) were determined as a maximum polymer quantity in solution that could

be used for further studies.

Although it is not reported that PEG and PEG-based materials should absorb at

280 nm, the solutions of polyPEGMA only were analysed for its UV-visible absorption

and any residual absorbance at this wavelength was subtracted (see Figure C.4 in
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Figure 6.14: (a) β-LG and (b) mAb ’apparent solubility’ assessment in the presence of increased

concentrations (% w/w) of PEG 8000 and the synthesised polyPEGMAS (-475 and -1100). The

experiment was conducted at 25 ◦C and all solutions were made in 10 mM His-His.HCl pH 6.0

buffer.
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Appendix C).

6.3.2.3 Characterisation of protein-polyPEGMA blends

β-LG and mAb solutions, at ∼68 and ∼100 mg/mL concentrations respectively, were

blended with three chosen concentrations of each polyPEGMA at: 1, 10 and 25 mg/mL.

Even though the [η] values of polyPEGMAs were demonstrated to be low in comparison

to a linear polymer, there would be no interest in increasing its concentration in these

blends to avoid the risk of increasing of overal sample viscosity.

The samples were prepared and characterised on basis of its size distribution by

DLS, its level of aggregation by HPSEC, and for its rheology.

The polymer in buffer solutions were analysed upon UV-visible spectrometry to

check for consistency in their preparation. Absorption maximum peaks at ∼230 and

∼258 nm were identified.
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Figure 6.15: UV-Vis spectrum for polyPEGMA solutions in buffer.
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In parallel to the DLS data measured from 1 mg/mL (to protein concentration)

of each sample, the mean HD were measured for each of the polymer only solutions

(Figure 6.16). From both Figures 6.16(a) and 6.16(b) the data suggested that be-

sides a main peak present in the intensity distribution, other populations of higher

HD were present at any of the concentrations studied. However, these larger sized

populations constituted a low relative percentage of total sample, as per observed

by volume distribution where the main peak had HD towards the lower sizes (∼4 - 5 nm).
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Figure 6.16: Hydrodynamic diameter size by intensity distribution (large graph) and volume

distribution (inset graph) of polyPEGMA solutions in buffer. (a) DLS data for polyPEGMA-475

solutions; (b) DLS data for polyPEGMA-1100 solutions. All measurements taken at 25 ◦C.

A comparison of our data to the literature showed that the HD at ∼4.48 - 5.24 nm

and ∼4.81 - 5.89 nm, for polyPEGMA-475 and polyPEGMA-1100, respectively, corres-
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ponded to the single chain sizes [204]. The larger sized scatterers detected by intensity

distribution, were most likely self-assembled micelles of the polyPEGMAs [204]. Their

heterogeneity and presence at low fraction in solution, would explain why it was not

consistently possibly to detect these material’s CMC by the guest probe technique.

Within each polyPEGMA’s DLS data, the increase in concentration seemed to pro-

duce a narrower main peak at volume distribution suggesting lower presence of larger

sized scatterers. Between the two polyPEGMAs, the hydrodynamic diameter size corres-

pondent to single chain was slightly within the same range size, possibly due to similar

MW even though the PEG-chain length was higher with polyPEGMA-1100.

The mAb-polymer blends presented consistent values for both intensity and volume

distributions, where only the peak attributed to the mAb monomer-dimer equilibrium

was detected at a HD ∼ 11 nm (by intensity distribution). By diluting the protein-

polymer samples, the detection by light scattering of single chain polymers or possible

self-associative polymer species was not possible. However, for the β-LG-polymer blends,

higher diameter-sized populations were detected, although the original β-LG sample

evidenced peaks at the similar size range. The results shown here were consistent to ob-

servations on DLS measurements of filtered (0.1 µm) β-LG samples discussed in chapter

4). These results also demonstrated that after filtration (0.22 µm) protein aggregates

were always detected. DLS data are reported in tables summarising the mean peaks

HD by intensity and volume distribution measured for the polyPEGMA buffers and

β-LG-polymer blends (Tables C.3 and C.4).
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Figure 6.17: Hydrodynamic diameter size by intensity distribution and volume distribution of

polyPEGMA and protien blends. (a) data for blends with polyPEGMA-475; (b) data for blends

with polyPEGMA-1100. All measurements performed at 25 ◦C.

As well as with DLS data, the HPSEC analysis of these protein-polymer blends

proved to show no differences between the blends and the protein only sample. The
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chromatograms of β-LG and mAb blends with polymers showed the same peaks and at

similar retention times. Examples of chromatograms for the studied blends are shown

in Figure C.3 in Appendix C. Tables 6.3(a) and 6.3(b) summarise this HPLC data,

where the relative mean peak areas (in %) showed consistency throughout the β-LG

and mAb samples, respectively.

Table 6.3: Tables summarising the HPSEC peak area relative percentage for (a) β-LG and (b)

mAb blends with polyPEGMAs.

(a)

(b)

The protein-polymer blends, as well as the polymers solutions in buffer, were

measured on a CP rheometer and on mVROC. The polyPEGMA solutions in 10 mM

His-His.HCl pH 6.0 buffer had a Newtonian-like behaviour throughout the range of

applied shear rates (Figure 6.18. The values measured with CP at shear rates ∼600-1000
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s−1 are close to the values measured with mVROC, with no significant change (see

Table C.5).
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Figure 6.18: Cone-and-plate and mVROC rheology data for buffer and polyPEGMA solutions

in buffer. Large graph - polyPEGMA-475 samples; inset graph - polyPEGMA-1100 samples.

The cone-and-plate (CP) experimental data are circles (sweep down) and respective lines (sweep

up). mVROC data are represented in crosses/pluses (average of triplicate measurements with

error bars as standard deviation. Measurements performed at 25 ◦C.

Rheology data for the β-LG-polyPEGMA blends showed that adding these poly-

mers to this protein solution (at ∼68 mg/mL), did not change the protein’s original

rheological profile (Figure 6.19(a)). At low shear rates, yield-like behaviour was still

dominant. With increased concentrations of added polyPEGMA-475, the viscosities at

low shear rates (0.01 - 1 s−1) had a slight decrease when compared to the protein only

solution. However, the data with polyPEGMA-1100 did not show the same tendency.

At higher shear rates (>100 s−1), the samples typically showed a tendency towards

constant viscosity. The viscosity values at high shear rates (∼600-1000 s−1) were very
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similar to the viscosities measured by mVROC, with the latter showing slightly lower

values (∼0.2-0.3 mPa.s difference).
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Figure 6.19: Cone-and-plate and mVROC rheology data for (a) β-LG and polyPEGMA blends,

and (b) mAb and polyPEGMA blends, both in 10 mM His-His.HCl pH 6.0 buffer. Large graphs

- polyPEGMA-475 samples; inset graphs - polyPEGMA-1100 samples. The cone-and-plate (CP)

experimental data are circles (sweep down shear rates). mVROC data are represented as crosses/

pluses (average of triplicate measurements with error bars as standard deviation. All measure-

ments were taken at 25 ◦C.
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For the mAb-polymer blends, a noticeable change in these sample’s rheological

profiles was observed (Figure 6.19(b)). Between the mAb sample (∼100 mg/mL) and

the mAb plus polyPEGMA at 1 mg/mL (both -475 and -1100), no major differences

were observed at low shear rates, where a yield-like behaviour was prominent. However,

for both polymers, the increase of its concentration to 25 mg/mL led to a change in the

flow properties towards a Newtonian-like behaviour. This was evident with addition

of polyPEGMA-475 at 25 mg/mL. The intermediate concentration of polyPEGMAs

at 10 mg/mL produced different results at low shear rates. Nevertheless, the values

of viscosities of the blends when the polyPEGMAs had their concentration increased,

showed a tendency to increased viscosities. This was valid for all blends with each of

the proteins.

In general, the rheology data showed that only when adding 25 mg/mL of poly-

PEGMAs, an effect could be observed on the rheology of the studied protein solutions.

Considering the data discussed in previous chapters, and in the previous Part I of the

present chapter related to the effects of polysorbate-80, we suggest that it is the surface

tension of the solution’s components what dominates the rheological response at the

lower shear rates. The differences observed between the flow properties of β-LG and

mAb to the presence of the amphiphilic polyPEGMAs may well be related to each of

these protein’s own surface-activity and its difference to the polymers surface tension

at the air-liquid interface. However, possible interactions between the proteins and

polymers could be considered, without involving the same thermodynamic mechanisms

involved in surfactant-protein competition at air-liquid interfaces. Although it has been

shown that brush-type copolymers of PEGMA have the tendency of repel interaction

with proteins [207], to our knowledge no studies towards protein and homopolymer

polyPEGMAs have not been made. Moreover, the PEG side-chain length could play an

important role, since it confers higher hydrophilicity to the polymer [213]. This would
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explain the difference in the behaviour noted between mAb + polyPEGMA-475 at 25

mg/mL and mAb + polyPEGMA-1100 at the same concentrations. Therefore, further

work would be needed towards understanding what possible underpinning interactions

could be involved between these chosen proteins and the polyPEGMAs synthesised

here.

The effects of using relatively low MW brush-polymers, yielding low intrinsic

viscosities compared to linear PEG polymers, were noted on the rheology since only at

the highest concentration of polyPEGMAs a change in the flow behaviour was observed

(difference ∼1 mPa.s). Protein samples (both β-LG and mAb) added with 1 mg/mL

of either polyPEGMA had virtually no increase in solution viscosities (when γ̇ ∼1000

s−1), with an addition of 10 mg/mL yielding a viscosity difference of < 0.5 mPa.s.

6.4 Conclusions

This chapter presented studies with its aims following from the investigations discussed

throughout this thesis. In the first part we aimed to further understand the role of PS-80

in protein solution rheology, by exploring the changes in flow behaviour along a time

period after thermal stressing. In the second part, synthetic brush-type PEG-based

polymers were used for their amphiphilic properties to explore their potential at

reducing the yield behaviour exhibited by globular protein solutions, at low shear rates.

By stressing formulated rAlbumin solutions at 60 ◦C, it was observed that after

14 days, the protein had aggregated highly, culminating in formation of a gel after

28 days at 60 ◦C. Since gelation of albumin solutions have been demonstrated to

happen at such temperature conditions but in faster rates [61,210], it can be concluded

that the additives present in this rAlbumin formulation were effective in delaying
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the protein’s degradation and aggregation, in agreement with literature [218]. In

terms of the rheological aspects, this gradual protein degradation was observed by a

change in flow properties which started as Newtonian-like fluids (non stressed samples),

showing increased yield-like behaviours (after 7 days at 60 ◦C), followed by signs of

shear-thinning.

To contribute to these findings, we recall the experiment in Chapter 3, where dilution

of a stock formulation was made with 145 mM NaCl buffer. At these conditions, while

the concentration of protein and polysorbate-80 were being diluted, its rheology showed

that a yield-like behaviour was emerging, coinciding with reports in literature [143].

Again, as with the mAb solutions studied in Chapter 5, it is assumed that the

aggregated material increases in its complexity throughout the time of the study, not

only in terms of protein species contents, but also possible degradation products of

the excipients involved could also influence the rheology data. As mentioned earlier,

and according to literature, it was expected that at 60 ◦C polysorbate-80 would

degrade by hydrolysis and oxidation, which could have effects on the rheology by

consequently reducing the capability of this surfactant to out-compete the protein at

the air-water interface [189]. Nevertheless, it is suggested that it was due to the level

of rAlbumin aggregation that should have mostly contributed to the change of phase of

this material, in agreement with other literature concerning human serum albumin [210].

Regarding the second part of this chapter, synthetic brush-type polyPEGMAs

(polyPEGMA-475 and polyPEGMA-1100) were used as additives in protein solutions

(β-LG and mAb, individually), with the aim of exploring their amphiphilic properties

and effects on shear rheology. The study did not involve any thermal aggregation,

instead it focused only on the use of these polymers in protein blends at room temper-

ature. Following from the first part of this chapter, using conventional rheometry with
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a cone-and-plate where an air-water interface is present, the rheology measurements

revealed to be an indirect way to evaluate the surface activity of these polymers in

comparison to polysorbate-80.

The polymers were studied for their capability of self-assembly, which was shown

by DLS that it possibly occurs at low concentrations (1 mg/mL), although through

indirect determination by fluorescence of pyrene as a guest probe, the CMC was not

identified. Based on HPSEC triple detection, measurement of these polymers’ intrinsic

viscosity yielded low [η] values when compared to linear PEGs of similar MW. For

protein ’apparent solubility’ studies, where it was expected that only excluded-volume

play a role, the polyPEGMAs caused each of the proteins to precipitate at higher

concentrations of polymer compared to PEG 8000. This corroborated with results

from [η] determination - lower aspect ratios would cause lower excluded volume effects.

Finally, the analysis by aqueous HPSEC for protein purity showed that the presence

of these materials did not alter the protein level of aggregation when compared to the

polymer-free samples.

Rheology experiments showed that the increase of polymer, particularly at 25

mg/mL, did result in a slight increase of overall solution viscosity at the higher shear

rates. At low shear rates, the three concentrations used of polyPEGMAs (1, 10 and

25 mg/mL), showed different results depending on the protein used in the mixture.

For β-LG solutions, the rheological profiles remained to be yield-like, throughout the

concentrations of added polyPEGMA. For mAb solutions, only the addition of 25

mg/mL of polyPEGMA-475 markedly changed the protein solution’s flow behaviour

from showing an apparent yield to constant viscosities throughout the applied shear

rates. The polyPEGMA1100 at 25 mg/mL showed a similar result, although did not

fully show a Newtonian-like behaviour.

We suggest that the reason for this could be with the different surface-activity of
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each of the proteins, where it is known that β-LG forms strong elastic films at the

air-water interface [167]. Therefore, although the polyPEGMAs are surface active

amphiphilic materials, their surface activity might not reach such low surface pressure

as those from these proteins, or even if compared to polysorbate-80.
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Chapter 7

Conclusions and future work

7.1 Conclusions

7.1.1 The effect of protein concentration on the viscosity of a recom-

binant albumin solution formulation

In this work, a range of rAlbumin solutions, in a formulated buffer containing salt and a

surfactant, were analysed for their rheological behaviour with the aim of understanding

the effects of high protein concentration on the solution viscosity. Rheological measure-

ments showed that the solutions (∼0.1 - 500 mg/mL) behaved as purely viscous fluids

in the range of the applied shear rates. It was observed an increase in viscosity as the

protein concentration was increased in solution.

Characterisation with regards the level of aggregation and species size proved that

concentrating the rAlbumin had the effects of increasing solution viscosity and the

change in relative composition of protein species.

The rAlbumin viscosity data was fitted using theoretical models known to predict

suspension viscosity, which have been applied to protein solution rheology. Based on

the shape or aspect ratio of particles and its packing fraction (or concentration), these

equations are applied to hard spherical or quasispherical particles [153,159], and account
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for interparticle distance [156]. However, these models did not predict successfully the

viscosities for the entire range of rAlbumin concentrations.

The most successful viscosity predictions, up to 400 mg/mL, were obtained when

using generalised versions of the original models [136, 137]. These revised equations

introduce the concept of a weight-averaged intrinsic viscosity, allowing for its applic-

ation to suspensions containing known concentrations of multiple particles of varying

shape. Our results further highlighted the importance of considering this variation

in composition within a protein solution, thus justifying its complete characterisation

of oligomeric species. To our knowledge, no other analysis typically accounts for this

variation within a sample containing one protein.

These recent generalised models assume that the jamming limit remains unaltered

with changing composition. However, since the highest concentrations (450 and 500

mg/mL) were not computed with these fits, it may well be that at such concentrations

this jamming limit may change. At such high concentrations, close to predicted

jamming limits, other crowding effects such as protein-protein interactions should be

also considered into these models. This possibly leaves space for these considerations to

be accounted for in future theoretical models to be developed.

The simple model of rAlbumin was studied as an example of a ’real-life’ biophar-

maceutical formulation at high concentrations and to explore successful predictions

of its solution viscosity. To be able to predict the effect of high concentrations (e.g.

400 mg/mL) of a monoclonal antibody based on species shape/ aspect ratio and its

contents, is an ultimate goal in this field. However, this does not exclude the possibility

of existing complex flow behaviours of protein solutions at high concentrations, or

additional physicochemical variables related to protein degradation. Nevertheless, the

application of these generalised models to biopharmaceutical formulation is important,

as the need for developing protein drugs at high concentrations has been a demanding
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parameter [5, 8]. Our results highlighted that the number of protein species, and its

variation in composition, are key factors for predicting the solution viscosity of protein

solutions.

7.1.2 The effect of insoluble protein aggregates on the rheology of beta-

lactoglobulin solutions

β-LG excipient-free solutions were characterised by bulk and interfacial shear rheology.

Solutions at various concentrations, characterised using conventional rheology instru-

mentation, evidenced an apparent yield stress behaviour at a low shear rate range (0.01

- 10 s−1), whilst showing constant viscosities throughout higher shear rates. Comparing

interfacial shear rheology, air-water interface-free bulk viscosity measurements, and

tensiometry results, it was demonstrated that the observed yield-like behaviour was

due to the formation of a protein viscoelastic film at the air-water interface, as present

in conventional rheometry. Further application of theoretical equations to our data,

concerning this yield-stress at lower shear rates, evidenced that our results were in

agreement with literature. In addition, the results highlighted the importance of taking

in account the presence of air-water interface in conventional rheology measurements

of excipient-free protein solutions. In this practical perspective, the results contributed

to a better understanding of rheological measurements of such samples, when using

conventional rheometry (e.g. cone-and-plate), being such a commonly used instrument-

ation to evaluate the rheology of biopharmaceutical liquid formulations.

Our detailed results add to recent findings [78] in the extent that this hypothesis

was applied to another globular protein model. This brings emphasis to the broad

application of this knowledge to protein solution rheology, in particular by applying to

the study of therapeutically relevant proteins such as monoclonal antibodies.
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Further studies considered the effect of insoluble β-LG aggregates on the solutions’

rheology, linking with their characterisation in size and quantification. The presence

of insoluble proteinaceous particles was suggested to have an impact on the solution’s

flow behaviour, particularly at the lower shear rates. These findings highlighted that

the content in protein species and their size characteristics of a protein solution are

key factors to understand correctly and realistically evaluate its rheology. Moreover,

the results emphasized the importance of understanding and interpreting better these

measurements of protein solutions, looking at the widest range of shear rates possible,

taking advantage of complementary rheometry instrumentation (e.g. mVROC besides

the conventional rheometer), to extract useful information obtained throughout this

range.

7.1.3 The rheology of a monoclonal antibody solution: a case study

on the effect of aggregation of a model monoclonal IgG1 on its

solution rheology

Since the monoclonal antibody was provided formulated, several steps were performed

not only to extract the excipients from this solution but to confirm similarity between

batches of this macromolecule’s excipient-free solutions. These were proved to have no

evident difference between them.

The rheological response of the excipient-free mAb solutions, was similar to the re-

sponse of β-LG samples: a yield-like behaviour at low shear rates was present, when

using cone-and-plate or double-gap geometries. These observations highlighted the com-

mon features regarding this characterisation, observed across globular protein solution

rheology, indicating that similar factors (e.g. macromolecule’s surface-activity) were un-

derpinning this type of sample’s flow properties.
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With the mAb solutions (not thermally stressed samples), the presence of insoluble

protein particles was suggested to have a pronounced effect on the solution’s flow be-

haviour at the lower shear rates, revealing a drop in viscosities. By thermally stressing

the mAb samples at 40 ◦C, throughout a period of 6 weeks, the materials showed higher

viscosities overall, but particularly was evident at the higher shear rates (∼600 - 1000

s−1). However, their flow behaviour remained similar - still observing yield-stress at

low shear rates (0.01 - 10 s−1). Although relationships between computed yield values

along sample time points were attempted, the hypothesis that the presence of generated

protein aggregates (soluble and insoluble) do contribute to this yield-like behaviour re-

mained unanswered. However, judging by quantifications made of the different types of

aggregates (by size/ soluble/ insoluble), it was suggested that for this mAb, the large

increase of soluble aggregates (detected by HPSEC and DLS) may have contributed the

most to the increase of protein viscosity. Further analysis of the mAb’s different species

formed during this study revealed that for this particular case, its aggregation behaviour,

i.e. aggregate reversibility, yielded implications in accurately quantifying these species.

The aim of studying mAb solution rheology under these extreme conditions, using

orthogonal characterisation biophysical techniques, allowed an analysis at the molecular

level to a detail that focused on variables commonly dismissed in the study of protein

solution rheology.

7.1.4 Exploring the impact of surface active macromolecular excipients

on the flow properties of protein solutions

Since it was observed, and supported by literature, that the yield-like behaviour at low

shear rates on CP or DG rheology were likely to be related to protein surface-activity,

it was then investigated the role of a non-ionic surfactant (polysorbate-80) commonly

used in protein formulation. Indeed, the role of PS-80 in suppressing yield behaviour in
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these measurements was observed in Chapter 3. In this chapter, however, formulated

rAlbumin samples were stressed at 60 ◦C. In comparison to the previously discussed

mAb study, thermally stressed rAlbumin samples evidenced a change of rheological

behaviour throughout the period of time - starting as Newtonian-like fluids (non

stressed samples), showing increased yield-like behaviours (after 7 days at 60 ◦C), and

followed by signs of shear-thinning at the end of the study. This was suggested to be

mostly related to the observed aggregation of albumin [212], and the loss of PS-80’s

competitive mechanisms at the air-water interface [189].

In another take of the findings reported so far, a study was also developed

to use synthethic poly[poly(ethylene glycol) methyl ether methacrylate] polymers

(polyPEGMA-475 and polyPEGMA-1100), with amphiphilic properties, to investigate

their potential effects in protein solution rheology, in a similar perspective as the

observed role of PS-80.

After polymer characterisation with 1H-NMR and HPSEC, studies for polymer

self-assembly and protein-polymer crowding effects were performed. The aim was to

establish concentration limits when adding the synthetic macromolecules to the chosen

protein solutions (β-LG and mAb). The physicochemical properties of the polymers,

measured directly (MW and intrinsic viscosity) or indirectly (e.g. CMC determination),

helped understanding the rheological results obtained for the studied protein-polymer

blends. The results suggested that a change in flow behaviour, from the typical

yield observed on excipient-free protein solutions, could only be suppressed towards

a Newtonian-like behaviour if higher concentrations of the polymers were used - this

was observed when mixing with a ∼100 mg/mL mAb solution. The almost unchanged

yield-behaviour observed with the ∼68 mg/mL β-LG blends highlighted the importance

of having sufficiently surface-active additives present in formulations to minimise the

yield-like behaviour, since this protein is known to rapidly form strong elastic films at
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the air-water interface [167].

Overall, this chapter’s results highlighted the importance of understanding the un-

derpinning molecular interactions governing protein solution rheology, by relating these

to commonly used excipients in protein formulations and their possible mechanisms of

action.

7.2 Future Work

Regarding the effect of concentration on the viscosity of protein solutions, it was

clear that current theoretical models are simplified to a point which its applicability

is no longer possible when concentrations reach higher values. Other factors at this

range (in the case of rAlbumin, >400 mg/mL) are suggested to be implicated in the

viscosities observed. These could involve protein-protein interactions, since the models

are ideally applied to hard spherical or other-shaped particles, assuming interparticle

repulsion [153, 159]. Further work should include investigations of the jamming limit

variations at high concentrations, which could also help develop applicable equations.

The study of mAb samples, in a way similar to ours, could also bring benefit partic-

ularly since mAb are typically relevant to biopharmaceutical formulations [5]. Direct

quantifications should be performed of PS-80 in the highly concentrated rAlbumin

solutions (> 200 mg/mL), to understand if there could be any potential effect on these

samples’ viscosity, species distribution and inter-particle interaction.

Overall, for the remaining chapters of this thesis, it was evident that surface-activity

of macromolecules (of bio or synthetic source) was an important parameter throughout

the presented discussions. Although tensiometry data was initially developed for

the β-LG samples, in parallel with interfacial shear rheology, further work would be

necessary to complement the data regarding the mAb and the surfactant/ polymer
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studies. In relation to β-LG and mAb data, one of the interests was to explore the effect

of protein aggregates present in solution could contribute to the air-water interface.

This would be most important regarding the mAb case-study and the effect of its

increasing protein aggregates during thermal stressing, on the samples’ interfacial

properties.

It is important to highlight that the results observed regarding the mAb study were

markedly related to this molecule’s specific properties [183]. Knowing that mAbs are

engineered for specific pharmacological targets this can yield individual particularities

concerning their properties [1, 219]. Thus, it is largely assumed that studies concerning

mAb samples are usually a case-to-case scenario. Based on the rationale presented

here, studying other mAbs could be of benefit to explore common underpinning factors

involving their aggregation behaviour and its effects on mAb solution rheology.

The results related to the role of PS-80 in biopharmaceutical formulations, in

a rheological perspective, could be basis to investigations concerning therapeutic

proteins formulated in other commonly used excipients. In the case of PS-80, due

to its mechanism of action in competing with proteins at the air-water interface,

this was indirectly observed via our data. Other excipients could also be of interest,

such as arginine, shown to markedly reduce the viscosity of high concentration mAb

solutions [6] and to be implicated on the protein’s surface-activity via preferential

hydration among other mechanisms of interactions [44]. Once more, it is emphasised

the importance of studying throughout the largest shear rate range possible, preferably

considering the lower shear rates (0.01 - 10 s−1) where the yield-like behaviour observed

for excipient-free protein solutions.

Suggested future work concerning the synthetic brush-like polyPEGMA homo-

polymers, would be mostly focused on polymer structure. For example, still using

PEG side-chains of low MW but taking into account the LCST of the monomer used,

314



would enhance the hydrophobicity of the polymer, but possibly restricting to the use of

PEGMA-475 would be the best option. The initiator used could be changed towards

fine tuning the surface-activity of the single-chain brush polymers [204]. In terms of

polymer MW, keeping to low degrees of polymerisation, thus low MW (∼8 - 10 kDa)

would be ideal to maintain the low intrinsic viscosity values observed here. However,

the steric hindrance present in polyPEGMAs of low MW could be a problem [199].

Synthesis of PEG-brush copolymerised with other monomers containing different

moieties or creating copolymer of mixed length PEG side-chains, could be considered

to fine-tune the macromolecule’s hydrophilic - hydrophobic balance. Desirably, these

architectures should be designed to benefit of hydrophilicity, low MW, minimum steric

hinderance between side chains, low intrinsic viscosity, non-ionic surface-activity yield-

ing low CMC values, with high LCST, while still being biocompatible and biodegradable.
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Appendix A

Appendix A

A.1 β-LG size exclusion chromatogram

Figure A.1 is an example of a size-exclusion chromatogram of a 10 mg/mL injection of

β-LG. The peak at ∼ 10.4 minutes represents the dimer of β-LG at a approximate 98-99

% peak area and the peak at ∼9.2 minutes represents dimer aggregates at a roughly 1

% peak area [220]. The peaks shown between 12.5 and 15 minutes are correspondent to

the His-His.HCl sample buffer.

Figure A.1: β-LG high performance size-exclusion chromatogram. Peaks at 10.4 minutes

and 9.2 minutes corresponded to β-LG species, respectively, dimers and aggregates. The peaks

between 12.5 and 15 minutes were related to the sample’s buffer.
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A.2 mVROC data

Figure A.2 shows the shear stress values from a ∼68 mg/mL β-LG filtered solution

versus the sensor’s distance on the microfluidics channel of the chip used (A05) on the

instrument. The linear decrease of shear stress along the microchannel was seen at all

the flow rates (Q) applied to the sample and were considered valid measurements since

it’s r2 = 1.0. This plot represents an example of the raw data that was measured for this

sample and all samples while using the mVROC. Figure A.3 shows the mVROC results

obtained from all β-LG filtered solutions, measured in triplicate.
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Figure A.2: Distance of the A05 chip’s sensors versus the shear stress of a β-LG 68 mg/mL

sample on the mVROC. Each line corresponded to a flow rate Q imposed to the sample in the

syringe. The decrease in stress has a linear correlation of r2 = 1.
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Figure A.3: Rheology profiles of β-lactoglobulin samples obtained from mVROC experiments.

Protein samples were all previously filtered with 0.1 µm pore-size syringe filteres. Each sample

was measured three times. Error bars represent standard deviation. Measurements taken using

the A05 chip.

A.3 Calculation of ls

In section 4.3.1.2, regarding the calculation of Boussinesq shear rate dependency for each

measuring system, it was referred that the parameter ls was needed (Equation A.3).

Bo =
ηs

ηb ls
(A.1)

ls depends on the dimensions of the measuring system since it is a ratio between Ab,

the area of a geometry in contact with the bulk of the sample, and Pi, the perimeter

of wetted geometry in contact with the interface. In the case of the cone-and-plate, As

corresponded to the lateral surface area of the cone (Figure A.4(a)). This measuring

system had a truncation, which was accounted for in our calculations shown below. The

Pi of the CP corresponded to the perimeter of a circle. Consequently, the ls(CP ) was
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represented by the following equation:

ls(CP ) =
πR2

√

tan2(θ) + 1− π
h2

2

tan(θ)

√

1
tan2(θ)

+ 1

2πR
(A.2)

The known dimensions of CP are the cone’s angle (θ, 1◦), the radius (R, 25 mm)

and the truncation gap (h2, 0.104 mm), therefore computing ls(CP ) ≈ 0.0125 mm.

In the case of the double-gap, the As was a sum of the two lateral faces of the moving

bob (hollow cylinder) and the area corresponding to the thickness of the hollow cylinder

(Figure A.4(b)). The Pi was the sum of two perimeters, corresponding to the outer and

inner radius of the bob (Ro and Ri, respectively). ls(DG) was therefore represented by

the equation:

ls(DG) = L+
R2

o −R2
i

2(Ro +Ri)
(A.3)

The dimensions of the double-gap were its immersed length (L, 40 mm), and the

outer and inner radius of the bob (Ro and Ri, 13.334 mm and 12.333 mm, respecitvely).

This yielded a ls(DG) ≈ 40.5 mm.

R

θh2

(a)

Ro

Ri L

(b)

Figure A.4: Schematic side-view of the (a) cone-and-plate and the (b) double-gap measuring

systems. Dimensions correspondent to the letters in the figures are given in the text.
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A.4 Additional DLS data

The following figures and table summarise the data obtained using dynamic light scat-

tering to characterise various samples. In the main text, Figure 4.18 summarised the

results for the β-LG 68 mg/mL. Here, the remaining results are shown. All samples

suggest that filtration yielded a population of protein aggregates of lower hydrodynamic

diameter compared to the unfiltered sample (Figure A.5 and Table A.1).

The β-LG sample at 68 mg/mL was also compared regarding its size characterisation

between before and after the cone-and-plate and double-gap rheology. Results seen on

Figures A.6(a) and A.6(b) correspond to the unfiltered and filtered ∼68 mg/mL only

and respectively. Table A.1 shows the results for the relaxation times corresponding to

each of the populations detected, obtained from fitting the 2-term exponential decay

equation, which followed the data’s tendency (Equation A.4). All the fits had a r2 >

0.99.

g(τ) = g0 +A1 exp
−x/t1 +A2 exp

−x/t2 (A.4)
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Figure A.5: Normalised correlation data from DLS for 10 and 35 mg/mL β-LG samples (hollow

circles) comparing between unfiltered and filtered solutions, and its respective 2-term exponential

decay fits (lines).
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Figure A.6: Normalised correlation data from DLS for 68 mg/mL β-LG unfiltered and filtered

solutions diluted to 1 mg/mL comparing between before and after rheology with cone-and-plate

and double-gap. The shown data (hollow circles) were fitted to a 2-term exponential decay

equation (lines).
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Table A.1: Table summarising DLS results of β-LG samples. 1 - all samples were measured

after dilution to 1 mg/mL and were not obtained after rheological measurements; 2 - results for

68 mg/mL sample (unfiltered and filtered) obtained after cone-and-plate rheology, and diluted

to 1 mg/mL; 3 - results for 68 mg/mL sample (unfiltered and filtered) obtained after double-gap

rheology, and diluted to 1 mg/mL; 4 - mean hydrodynamic diameter size and standard mean

obtained by intensity results from the DTS software; 5 - relaxation times were obtained from

fitting the 2-term exponential decay equations to the normalised correlation data, and are here

reported as its value with standard error.

A.5 Additional MFI data

Table A.2 summarises the reported results of β-LG samples and sample buffer in particle

concentration (#/mL), particle count, equivalent circular diameter (in µm) mean size

with standard deviation, and the size range of the detected particles. The samples were

read as unfiltered solutions and after filtration with 0.1 µm pore-size syringe filters. The

buffer was also analysed after filtration.
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Table A.2: Table with the final reported results from micro-flow imaging analysis of unfiltered

and filtered (0.1 µm) β-LG samples at 0.1, 10, 35 and 68 mg/mL. The table also includes data

for three separate measurements of the sample buffer, also filtered with 0.1 µm syringe filters.

Samples at 0.1, 10 and 35 mg/mL (unfiltered and filtered) were only read once. The unfiltered

and filtered samples at 68 mg/mL were analysed in three separate runs. 1 - Particle concentration

values were approximated to units; 2 - ECD is ”equivalent circular diameter”.

The figures below are an example of one frame and a few examples of sub-visible

particles detected for a unfiltered and a filtered ∼68 mg/mL β-LG (diluted to 10 mg/mL)

(Figures A.7 and A.8, respectively). Included in the figures are also its respective particle

size properties. Circularity represents the ratio of the circumference of an equivalent area

circle over the measured perimeter. The intensity parameter of a particle is expressed

in illumination intensity levels that are related to the bit depth supported by the digital

camera on the instrument. Intensity is dependent of the difference in refractive index

between formulation buffer and the particle. The aspect ratio is the ratio between the

longitudinal and transversal axis of the particle [39, 127].
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F17-P71

Figure A.7: Images and sizing properties of examples of particles detected with MFI for un-

filtered ∼68 β-LG solution.
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F32-P1 F597-P1 F868-P1

F1396-P1 F1890-P1

Figure A.8: Images and sizing properties of examples of particles detected with MFI for filtered

∼68 β-LG solution.
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Appendix B

Appendix B

B.1 Additional data on HPSEC

Table B.1 summarises the values obtained from HPSEC analysis of the 100 and 17

mg/mL mAb samples stressed at 40 ◦C and, as a control, from samples stored at 5 ◦C.

Figure B.1 represents some examples for the chromatograms obtained from the 100

and 17 mg/mL mAb. Typically, a non stressed mAb sample would elute such as what

is represented in the first chromatogram of this figure. After 2 weeks storage at 40 ◦C,

the 100 mg/mL mAb sample showed four peaks of high MW species (chromatogram

B, in the figure). The difference between the sample after 2 weeks and 6 weeks not

only was the increase in peak area of the higher MW species (with respective drop for

the monomer), but a shoulder peak on the tail of the monomer peak. This shoulder

was not always detected by the software. An example of this shoulder peak is given on

chromatogram D, from the sample 17 mg/mL at 40 ◦C after 6 weeks. Here, the high

MW species were only detected as two small peaks.
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Table B.1: Relative peak percentage of monomer, fragment and total aggregates detected by

HPSEC for a) 100 and b) 17 mg/mL at 40 ◦C and 5 ◦C during 6 weeks. Each sample was

measured in triplicate. Results are reported as average and standard deviation.

(a)

(b)
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Figure B.1: HPSEC chromatograms of mAb solutions at different time points during thermal

stressing at 40 ◦C:A) represents the typical chromatogram of unstressed mAb solution, showing a

monomer peak (B), the higher molecular weight species (HMWS) peak (C), and a lower molecular

weight species (LMWS); B) corresponds to the 100 mg/mL mAb sample that was stressed for

2 weeks at 40 ◦C, where peaks B and C remained similar to T=0 but more HMWS peaks (A)

were identified; C) 100 mg/mL mAb after 6 weeks at 40 ◦C showing higher peak area percentage

for all detected HMWS (A); D) a 17 mg/mL mAb solution after 6 weeks at 40 ◦C, where only

two peaks of HMWS were detected but another LMWS peak was identified. The 100 mg/mL

mAb solutions here presented were diluted to 10 mg/mL, while the 17 mg/mL mAb solution was

injected neat.
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B.2 Additional MFI data for the mAb samples

Table B.2 gives the particle concentration, particle count, ECD mean size and its

standard deviation and the range of detected sizes per mAb sample analysed with

the MFI. Note that control mAb samples at both concentrations stored at 5 ◦C were

measured at the same time points. Also included in the table are the data for three

separate measurements of the sample buffer (10 mM His-His.HCl at pH 6.0).
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Table B.2: Table with the final reported results from micro-flow imaging analysis of 100 and

17 mg/mL mAb solutions for: unfiltered and filtered material; as well as a comparison between

aggregated and non-aggregated material along a 6 week period time. The table also includes

data for three separate measurements of the sample buffer, also filtered with 0.1 µm syringe

filters. mAb samples were only read once. 1 - Particle concentration values were approximated

to units; 2 - ECD is ”equivalent circular diameter”.

B.3 Additional data on the mAb rheology

The figures below show the superimposed CP and DG rheology data of mAb samples

through the time points after storage at 40 ◦C for 6 weeks. The larger graphs are focused

at the lower shear rates up to 100 s−1, whereas the inset graphs show the viscosities of
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these samples at the higher shear rates (Figures B.2(a) and B.2(b)).
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Figure B.2: Superimposition of cone-and-plate and double-gap rheology data looking in detail

at low and high shear rates of a) 100 mg/mL and b) 17 mg/mL mAb solutions aggregated for

6 weeks at 40 ◦C and analysed at 25 ◦C.

Figure B.3 is an example for fitting the Bingham model for yield-stress to the

experimental flow data (shear stress versus shear rate). Here represented are the

cone-and-plate and double-gap data from 100 mg/mL mAb solution after storage at
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40 ◦C at T=0 and T= 6 week. The yield points correspond to the y-axis intercepts of

the fitted linear functions. The calculated yield points and r2 values to the respective

regressions are summarised in Table B.3.
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Figure B.3: Example of fitting to Bingham equation for yield stress, for flow curves comparing

T= 0 and T= 6 weeks time point samples of 100 mg/mL mAb solution after thermal stressing

at 40 ◦C. Data obtained using both CP and DG geometries, and measured at 25 ◦C.
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Table B.3: Yield stress values calculated from fitting the Bingham equation for yield stress to

the experimental flow curves of mAb samples at 100 and 17 mg/mL, unfiltered and filtered, and

after thermally stressing these samples at 40 ◦C for 6 weeks. The yield stress values are reported

with its standard error from the linear regression. The values in brackets represent the fitting’s

adjusted R-squared.

B.4 Additional data on DLS

The correlation data for the mAb samples at 100 mg/mL and 17 mg/mL (after dilution

to 1 mg/mL) analysed on DLS are shown on Figure B.4. The data was fitted with an

exponential decay function (of one term only) and the relaxation time values obtained

from these fits are shown in Table 5.4 in the main text. For all the fits to the correlation

data, the r2 > 0.97.
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Figure B.4: DLS correlation data for the 100 and 17 mg/mL mAb solutions, diluted to 1

mg/mL for analysis, after aggregation at 40 ◦C for 6 weeks. The large graph shows data related

to the samples diluted from 100 mg/mL mAb solution, and the inset graph corresponds to data

from 17 mg/mL mAb solution. For each time point, the correlation data (circles) was fitted with

an exponential decay curve (lines) to find the correspondent relaxation times.

The data shown on Tables B.4(a) and B.4(b) correspond to the mean hydrodynamic

size by intensity and by volume for the mAb samples recovered after CP and DG

rheology, respectively. This data is represented on Figure 5.19 in the main text.
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Table B.4: Mean hydrodynamic size obtained by DLS for the 100 and 17 mg/mL mAb samples

(aggregated at 40 ◦C) after a) cone-and-plate and b) double-gap rheology. 1 - Data was obtained

by diluting samples to 1 mg/mL; 2 - mean hydrodynamic size by intensity distribution and

standard deviation of three measurements; 3 - mean hydrodynamic size by volume distribution

and standard deviation of three measurements.

(a)

(b)

Figure B.5(a) represents the HPSEC data of 10 mg/mL dilutions from the 100

mg/mL mAb sample (40 ◦C, T= 2.5 months) that was collected in parallel to the DLS

time sweep study of the same stock sample (see Figure 5.23). This was related to the

study of reversible aggregates present in the thermally stressed mAb samples at 5 ◦C

and 25 ◦C conditions. Note that at this point in time (2.5 months), the total HMWS

was ∼60 %, while monomer peak area was ∼40 %. This data is also a reference for the

µ-m-SDS-PAGE experiment, which made use of an aliquot of this aggregated material

for one of its control samples.
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Figure B.5(b) summarises the data obtained for the neat injections of 17 mg/mL at

40 ◦C at T= 7 weeks. The red data points were obtained while leaving the samples on

the HPSEC auto-sampler tray at 5 ◦C; while the green data points correspond to the

25 ◦C conditions.

338



0 5 10 15 20 25 30 35 40
0

2

4
30

35

40

45

50

55

60

65
mAb @ 100 mg/mL 
(10 mg/mL dilution) at 5oC

 Monomer
 Low MW
 Total High MW

mAb @ 100 mg/mL 
(10 mg/mL dilution) at 25oC

 Monomer
 Low MW
 Total High MW 

 

P
ea

k 
A

re
a 

[%
]

Time [hour]

(a)

0 5 10 15 20 25
0

2

4

6

8

80

85

90

95

100
mAb @ 17 mg/mL 
(no dilution) at 5oC

 Monomer
 Low MW
 Total High MW

mAb @ 17 mg/mL 
(no dilution) at 25oC

 Monomer
 Low MW
 Total High MW

 

 

P
ea

k 
A

re
a 

[%
]

Time [hour]

(b)

Figure B.5: Time sweeps relating the level of aggregation of diluted mAb solutions and the

effect of temperature - experiment conducted in parallel to similar time sweep performed with

DLS (dilution of 100 mg/mL mAb solution only). a) Corresponds to dilutions made from 100

mg/mL mAb sample, thermally stressed after T= 2.5 months at 40 ◦C. b) Corresponds to 17

mg/mL mAb sample (not diluted), thermally stressed after T= 7 weeks at 40 ◦.
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Appendix C

Appendix C

C.1 Part I - The effect of thermal stressing of rAlbumin

solutions on its solution rheology

The following tables summarise the relative peak areas for the detected protein

species of rAlbumin samples exposed to 60 ◦C throughout a 4 week study (Table

C.1(a) and C.1(b)). Samples at 200 and 20 mg/mL of rAlbumin were also left at

5 ◦C for control purposes. In the case of thermally stressed 200 mg/mL rAlbumin

samples, these evidenced a third peak corresponding to high molecular weight protein

species that increased in peak area with time. Presence of trimers or high MW spe-

cies were not detected for 20 mg/mL as early as at the 3rd day after the start of the study.
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Table C.1: Relative peak areas of protein species detected by HPSEC of rAlbumin samples

at 5 and 60 ◦C, during a time period of 28 days. (a) Refers to data for 200 mg/mL rAlbumin

solutions. (b) Refers to data for 20 mg/mL rAlbumin solutions. These samples were all diluted

to 10 mg/mL and analysed in triplicate. The values presented are averages with respective

standard deviations.

(a)

(b)

DLS results for the analysis of rAlbumin at 60 ◦C for 28 days are shown on Table C.2.

The protein samples were analysed after dilution to ∼1 mg/mL and the data shown are

the mean hydrodynamic diameter sizes by intensity and volume. The relaxation times

were obtained by fitting the experimental correlation data to a one or two step decay

exponential function. All samples were analysed directly after dilution, without any

filtration, except for the 200 mg/mL T= 28 days sample, where a filtration (0.45 µm)
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was needed to allow a reading on the instrument.

Table C.2: DLS results for the rAlbumin samples stressed at 60 ◦C for 28 days. 1 - Data was

obtained by diluting samples to 1 mg/mL; 2 - mean hydrodynamic size by intensity distribution

and standard deviation of three measurements; 3 - mean hydrodynamic size by volume distribu-

tion and standard deviation of three measurements; 4 - relaxation times were obtained by fitting

an exponential decay curve (1 or 2 step) to the experimental data.

C.2 Part II - Novel use of polyPEGMA brush-type poly-

mers as additives in protein solutions and their effect

in rheology

Figures C.1 and C.2 refer to the 1H-NMR spectra of 2-bromo-2-methylpropionic benzyl

ester and poly[poly(ethylene glycol)methylether methacrylate]-475, respectively.

NMR characterisation of the synthesised initiator yielded three peaks at δ = 7.38

ppm (a), 5.22 ppm (b) and 1.96 ppm (c), corresponding respectively to the aromatic
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protons, the benzylic protons and the protons of the two methyl groups present in the

molecule (Figure C.1).
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Figure C.1: NMR spectra for 2-bromo-2-methylpropionic benzyl ester. Sample was dissolved

in CDCl3.

The NMR spectra for polyPEGMA-475 (Figure C.2) has the same peaks at the

approximately the same chemical shifts as the NMR results found for polyPEGMA-

1100 (Figure 6.11). The difference between these spectra has to do with the integra-

tion for most of its peaks, corresponding to the less number of protons present in the

polyPEGMA-475 molecule. The peaks that remain with equal integration are for those

protons present in the end group at chemical shifts δ = 7.33 ppm and δ = 5.05 ppm,

corresponding to the aromatic protons (a) and the benzylic protons (b), respectively.
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Figure C.2: NMR spectra for poly[poly(ethylene glycol)methylether methacrylate]-475. Sample

was dissolved in CDCl3.

Figure C.3 shows the calculated molar mass after analysis of the polyPEGMAs on

HPSEC calibrated with triple detection. The polymers were injected in triplicate and

represented here is an example of one analysis per polymer.
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Figure C.3: Example of chromatograms for polyPEGMA analysis on HPSEC calibrated with

triple detection. (A) pPEGMA-475 (B) pPEGMA-1100. Black points represent the calculated

molar mass per peak; blue line refers to the refractive index signal (concentration); red line

corresponds to the light scattering (90 ◦) detector; and green line corresponds to the differential

pressure signal from the viscometer.

Figure C.4 represents the UV-visible absorbance spectra of the polyPEGMA solutions

(in % w/w) used for the protein solubility studies. Aliquots of these samples were

analysed to ensure the correct increase of polyPEGMA presence in each sample. These

were also measured for any possible absorbance at 280 nm, useful when determining the

protein concentration of the protein in the blends prepared for this experiment. The

arrows on the graph are pointing at the two maximum peaks of UV absorbance for

polyPEGMAs (at this buffer conditions): at ∼230 nm and ∼258 nm. The third arrow
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points at λ = 280 nm, where it can be observed that there was an increase of absorption

at this wavelength, with an increase of polymer concentration.
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Figure C.4: UV-Visible absorption spectra of polyPEGMA solutions in buffer, in the concentra-

tions used for the protein solubility test. The larger graph corresponds to data of polyPEGMA-

1100 dispersions, while the polyPEGMA-475 data is represented on the inset graph. The three

arrows are pointing to the following wavelengths: ∼230 nm, ∼258 nm and 280 nm.

The figures below represent the emission spectra for pyrene fluorescence a probe for

micellisation occurrence on polyPEGMA solutions (in the range of 0.01 to 5 mg/mL)

(Figures C.5(a) and C.5(b)). Although there was an increase of emission with the in-

crease of the polymer concentrations, on each of the cases, the increase in intensity of

peak III (λ ∼ 384 nm) was not observed.
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Figure C.5: Emission spectra for fluorescence of pyrene probe on the micellisation studies with

polyPEGMA solutions. a) polyPEGMA-475 solutions, and b) polyPEGMA-1100 solutions.

The tables below summarise the measured hydrodynamic diameter (HD) in nm

measured by intensity and volume distribution for the polyPEGMA solutions and the

β-LG samples (Tables C.3 and C.4). The polymer solutions in buffer (10 mM His-
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His.HCl pH 6.0) were analysed at their actual concentration, without further dilution.

The protein-polymer blends were diluted to 1 mg/mL (of protein concentration, at 280

nm), so to allow a comparison to the previous results of protein only DLS measurements

(discussed in the other chapters of this thesis).

Table C.3: Table with the hydrodynamic diameter sizes by intensity and volume distribution

of the polyPEGMA samples. 1 - polymer samples were measured at the stated concentrations;

2 - mean hydrodynamic size by intensity distribution and standard deviation of three meas-

urements; 3 - mean hydrodynamic size by volume distribution and standard deviation of three

measurements.

348



Table C.4: Table with the hydrodynamic diameter sizes by intensity and volume distribution

of of β-LG and polyPEGMA blends. 1 - Data was obtained by diluting samples to 1 mg/mL;

2 - mean hydrodynamic size by intensity distribution and standard deviation of three meas-

urements; 3 - mean hydrodynamic size by volume distribution and standard deviation of three

measurements.

Figure C.6 shows examples of HPSEC chromatograms obtained from β-LG and mAb

blends with polyPEGMA at 25 mg/mL. The samples were all diluted to 10 mg/mL

(at protein concentration), prior HPSEC analysis. These chromatograms are examples

representative for all the blends analysed, since there was no difference between samples,

within the same protein type of sample.
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A) β-LG + pPEGMA-475 25 mg/mL

B) β-LG + pPEGMA-1100 25 mg/mL

C) mAb + pPEGMA-475 25 mg/mL

D) mAb + pPEGMA-1100 25 mg/mL

Figure C.6: HPSEC chromatograms for polyPEGMA and protein blends. A and B - ∼68

mg/mL of β-LG solution with 25 mg/mL polyPEGMA-475 or polyPEGMA-1100, respectively.

C and D - ∼100 mg/mL of mAb solution with 25 mg/mL of polyPEGMA-475 or polyPEGMA-

1100, respectively. Samples were analysed on HPSEC after dilution to 10 mg/mL of protein.

350



The following tables C.5, C.6 and C.7 list the average values and standard deviation

of three readings of each sample from the cone-and-plate rheology experiments and the

mVROC experiments. For the CP rheology data, the represented viscosity values were

those at 1000 s−1 and for the mVROC experiments, those at 990-1000 s−1. As the

sample’s viscosities vary slightly, the calculated true shear rates applied on the mVROC

measurements varied correspondingly still being close to 990 - 1000 s−1.

Table C.5: High shear rate viscosities measured with cone-and-plate and mVROC for buffer

and polyPEGMA solutions.
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Table C.6: High shear rate viscosities measured with cone-and-plate and mVROC for β-LG

solution and its blends with polyPEGMAs. β-LG solution was at ∼68 mg/mL in all samples,

while the concentrations of polyPEGMA-475 and polyPEGMA-1100 were varying.
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Table C.7: High shear rate viscosities measured with cone-and-plate and mVROC for mAb

solution and its blends with polyPEGMAs. The mAb solution was at ∼100 mg/mL in all

samples, while the concentrations of polyPEGMA-475 and polyPEGMA-1100 were varying.
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