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Abstract

The aim was to assess the impact of milk somatic cell count (SCC)

during the first lactation on the lifetime milk production of cows, and therefore

estimate potential savings through heifer mastitis control. Cow level SCC over

the first lactation was summarised as SCC between 5 and 30 days in milk

(SCC1), and the geometric mean and variance of first lactation SCC. The

impact of SCC1 on cumulative milk yield over different time periods was

assessed for cows in Irish, English, and Welsh dairy herds. The impact of

SCC1 and the geometric mean and variance of first lactation SCC on lifetime

milk yield, and the association between SCC1 and disposal risk were assessed

for cows in Irish dairy herds. Increase in SCC throughout the first lactation was

associated with large reductions in the milk yield of cows, and increased

disposal risk. Bayesian micro-simulation was used to demonstrate the impact in

different herd scenarios. This was extended to synthesise evidence on potential

savings using previous research, to estimate the economic impact of specific

interventions to reduce the prevalence of cows with high SCC1. There was

considerable variation between herds in the apparent impact of SCC1 on SCC

throughout the first lactation, indicating the importance of a herd specific

approach to control. ‘Cost effectiveness’ of interventions to reduce the

prevalence of cows with high SCC1, was found to be highly dependent on the

willingness of decision makers to pay for control measures. Increase in herd

size was associated with increase in cow SCC, highlighting a need for

improved management of mastitis when expansion is planned. An important

component of this should be through monitoring and control of mastitis in

heifers, especially those in spring-calving Irish dairy herds.
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Chapter 1: Introduction

1.1 Importance of mastitis in dairy cows

Mastitis is one of the most costly endemic diseases of dairy cows

(Kossaibati and Esslemont, 1997). Treatment costs, production losses, and

reduced sale value of high somatic cell count (SCC) milk are well known

consequences of the disease (Halasa et al., 2007). The European Commission

Milk Hygiene Directive (92/46) requires that bulk milk for human consumption

has a 3 month rolling geometric mean SCC not exceeding 400,000 cells/mL,

which is also effectively the international export standard (More, 2009). In

some countries, dairies pay a premium for milk with lower SCC (Bradley,

2002) to maximise the shelf life of pasteurised milk (Santos et al., 2003), and

cheese yields (Barbano et al., 1991). In addition to the adverse effect of high

SCC on milk quality, food safety is adversely affected through increased risk

of antibiotic residues and bacterial contamination from infected quarters (van

Schaik et al., 2002). Antibiotics are widely used in the treatment and

management of mastitis, and drug residues in milk are of public health concern,

because resistant strains of bacteria could enter the food chain (White and

McDermott, 2001). The negative environmental impact of mastitis has rarely

been studied, but if mastitis rates are high, through discarded milk, lower

productivity, and increased culling risk, larger herds are required for the same

milk output, with relatively more manure, methane, and ammonia produced

(Garnsworthy, 2004). The lower efficiency of herds with high mastitis rates is

reported to increase potential for global warming, eutrophication, and

acidification of the environment per litre of milk (Hospido and Sonesson,
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2005). Importantly, mastitis impairs cow welfare (Kemp et al., 2008), and this

has potentially serious consequences for the public perception of dairy farming.

1.1.1 Pathogens associated with mastitis

Pathogens associated with bovine mastitis are typically bacteria, and

these penetrate the teat canal to cause intramammary infection (IMI) and hence

mastitis. One way of classifying pathogens is on niche or host adaption, which

in turn determines the epidemiology of infection. The major ‘contagious’

bacteria Mycoplasma spp., Staphylococcus aureus, Streptococcus dysgalactiae,

and Streptococcus agalactiae are generally adapted to survive in the bovine

udder, often causing persistent IMI which may be associated with increase in

herd bulk milk SCC. Transmission occurs during milking, making IMI more

common in older cows, or in late lactation due to increased exposure (Barkema

et al., 2009). The major ‘environmental’ bacteria Escherichia coli and

Streptococcus uberis are opportunistic invaders of the udder, can cause

persistent IMI during the dry period (Bradley and Green, 2000), and disease in

peri-parturient cows that have compromised immune defences

(Suriyasathaporn et al., 1999). Seasonal variations in mastitis incidence are

often consistent with IMI of environmental origin (Bradley and Green, 2005;

Morse et al., 1988). These classifications are not absolute and may be strain

dependent, since ‘environmental’ bacteria have potential for contagious spread

(Bradley and Green, 2001; Zadoks et al., 2003), and environmental sources of

S. aureus can lead to IMI in heifers (Roberson et al., 1998). Minor pathogens

include Coagulase-Negative Staphylococcus spp. (CNS), and IMI can be of

environmental or contagious origin depending on species (Piessens et al.,

2011). CNS can access the udder of pre-partum heifers leading to persistent
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IMI, and are commonly isolated early in the first lactation (De Vliegher et al.,

2012). Some CNS, along with the common minor pathogen Corynebacterium

bovis may protect against IMI with major pathogens (Lam et al., 1997).

1.1.2 Milk somatic cell count data

Somatic cells found in milk are predominantly leucocytes. During the

innate immune response to IMI, macrophages and mammary epithelial cells

produce chemokines that attract peripheral neutrophils to the mammary gland

and milk SCC can increase more than 10 fold (Paape et al., 2003; Sordillo et

al., 1997). Cow SCC data are collected routinely by dairy farmers participating

in recording schemes in many developed dairy nations, and are used as a

screening test for subclinical mastitis (Bradley and Green, 2005). The samples

for each cow are a composite of milk from all quarters, collected from the

milking equipment. Cow SCC data should be interpreted in light of the

following limitations: Firstly, misidentification of samples from individual

cows can occur. Secondly, SCC data are often from visibly ‘normal’ cows, and

those with clinical mastitis are typically ‘missing’. Thirdly, sensitivity and

specificity of cow level SCC cut off values for putative IMI require careful

consideration depending on the objectives of the test (Dohoo et al., 1981;

McDermott et al., 1982). Cow level SCC ≥ 200,000 or ≥ 400,000 cells/mL can 

be used to indicate IMI in at least one quarter, and these thresholds had

sensitivities of 89% and 60% respectively, and specificities of 75% and 87%

respectively for IMI associated with major pathogens in 12 herds in the United

States of America (McDermott et al., 1982). Elsewhere test characteristics

depend on the herd pathogen distributions. This has been demonstrated for

quarter level SCC thresholds; using SCC ≥ 200,000 cells/mL to indicate 
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prevalent IMI with both major and minor pathogens in a Canadian herd,

sensitivity and specificity were estimated to be 73%, and 86% respectively

(Dohoo and Leslie, 1991). If only IMI with major pathogens were considered

sensitivity increased to 84% and specificity was unchanged (Dohoo and Leslie,

1991). Varying the threshold depending on the stage of lactation and parity of

cows could increase sensitivity, but this would decrease specificity (Schepers

et al., 1997). Bacterial culture has been used as the gold standard test for IMI,

requiring aseptic samples of foremilk. The same samples have been used to

evaluate SCC (Dohoo and Leslie, 1991; Schepers et al., 1997), but at quarter

level the SCC of foremilk may differ to that of the alveolar milk (Sarikaya et

al., 2006), which is routinely collected (at cow level) in milk recording

schemes. Quarter level studies should be extrapolated to the cow level with

caution, mainly because high SCC from infected quarters can be diluted by low

SCC milk from uninfected quarters (Barkema et al., 1999a). Despite these

limitations, cow level SCC data are widely available, and high values are

commonly used as a proxy for IMI. Trends in cow SCC can be informative,

and these data are routinely used to monitor udder health and aid management

decisions on farms, as well as for research.

1.2 Mastitis in heifers

When evaluating mastitis in dairy herds, the heifer group (primiparous

cows) warrants special attention. It is typically the largest parity group, and

mastitis risk factors for heifers are likely to differ from those in multiparous

cows, for instance when rearing takes place away from the main herd (De
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Vliegher et al., 2012). With most rearing systems, heifers have yet to reach

mature adult size by their first calving, and this may have a negative influence

on resistance to disease through sub-ordinance in the herd (Proudfoot et al.,

2012).

1.2.1 Importance of heifers

Expansion of dairy herds worldwide increases demand for heifers in

excess of replacement needs. Through selective breeding, heifers can be

genetically superior to older cows and are therefore a valuable asset. Average

replacement cost has been estimated to be $32,000 /year for a 100 cow herd in

the United States of America (Tozer and Heinrichs, 2001), and €45,000 /year

for a typical 100 cow Dutch dairy herd (Mohd Nor et al., 2012). Furthermore,

there is no return on investment until after the first calving when milk can be

sold, and rearing costs are unlikely to be recovered until the second lactation.

In a study of English dairy herds, around 30% of heifers born alive were culled

prior to a second calving (Brickell and Wathes, 2011), and were likely not

profitable, increasing the economic burden of heifer rearing at herd level.

1.2.2 Economic impact of mastitis in heifers

Mastitis has been highlighted as a common problem for primiparous

cows early in their first lactation, which is economically important due to its

impact on first lactation productivity (De Vliegher et al., 2012; Piepers et al.,

2009). Losses are mainly accrued through decreased milk production, and

discarded milk (Kossaibati and Esslemont, 1997). However, mastitis has also

been associated with reduced longevity (Beaudeau et al., 1993; Seegers et al.,

1998), and this has been estimated as the next biggest cost (Heikkilä et al.,
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2012; Huijps et al., 2008). Reduced longevity will limit the opportunity to

recover the initial rearing costs from heifers that succumb to mastitis. Further

losses such as the cost of drugs, veterinary services, diagnostic costs, labour,

decreased milk quality, capital investments, and impact on other diseases

(Halasa et al., 2007), are typically less, but may be important for particular

herds (Huijps et al., 2008). The deleterious effects of high SCC after the first

calving has been demonstrated in terms of first lactation milk yield and culling

risk (De Vliegher et al., 2005a; 2005b). However, the effect of high SCC early

in the first lactation on milk yield and longevity beyond the first lactation has

not yet been investigated and is a major focus of this thesis.

1.2.3 Epidemiology of heifermastitis

Despite lack of exposure to milking equipment, pre-partum heifers can

develop IMI from around 9 months of age (Trinidad et al., 1990). These

infections are persistent, and may manifest early in the first lactation when the

incidence rate of clinical mastitis in heifers is at its highest, typically exceeding

that for multiparous cows (Barkema et al., 1998b). However, SCC in early

lactation is commonly elevated as a normal physiological response to

parturition; which is also particularly marked in heifers, can last for a variable

length of time (Barkema et al., 1999a; Dohoo, 1993), and biases the use of

SCC thresholds for diagnosis of subclinical mastitis in early lactation.

Therefore, subclinical heifer mastitis prevalence has mainly been described

based on IMI determined by bacterial culture, but methodology has varied. As

a result, estimates range from 29% to 75% pre-partum, and 12% to 57% post-

partum (De Vliegher et al., 2012). The predominant major pathogen in these

studies was either S. aureus, E. coli, or S. uberis, but CNS were isolated most
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frequently (De Vliegher et al., 2012). The epidemiology, and pathogenicity of

CNS varies by species. For example Staphylococcus chromogenes and

Staphylococus epidermidis appear adapted to survive in the udder, whereas

Staphylococcus haemolyticus and Staphylococcus simulans appear to be of

environmental origin (Piessens et al., 2011). Although cases of clinical mastitis

associated with CNS are rare, IMI with S. chromogenes, and S. simulans can

lead to an increase in SCC comparable to that of the major pathogen S. aureus

(Supré et al., 2011). Importantly, the frequency of isolation of CNS species

varies by herd (Piessens et al., 2011; Supré et al., 2011), indicating it may no

longer be appropriate to consider these bacteria as a single group, and

molecular identification may be required to develop species specific control

measures in different herds (Zadoks and Watts, 2009). This may become

important in herds with heifer mastitis problems, and where IMI associated

with major pathogens are under control (Schukken et al., 2009). A suggested

intervention level is when ≥ 15% of heifers have high SCC, or clinical mastitis 

in early lactation (De Vliegher et al., 2012).

1.2.4 Control of mastitis in heifers

Heifer mastitis is predominantly an early lactation problem (Barkema et

al., 1998b), therefore most control measures should focus on the pre and peri-

partum (ppp) period (Green et al., 2007b; 2008). Control of mastitis originating

while heifers are in milk (> 30 days) may be important for particular herds, and

preventive measures have been described, as for multiparous cows (NMC,

2011). These measures can be targeted towards either contagious or

environmental mastitis based on patterns in the occurrence of clinical and

subclinical mastitis and culture results from cases (Bradley and Green, 2005).
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The relative importance of high SCC early in the first lactation compared to >

30 days in milk (DIM) in the first lactation is investigated in this thesis in

relation to first lactation and lifetime milk production.

1.2.4.1 Control of mastitis during the pre- and peri-partum period

Possible herd level management changes to control heifer mastitis can be

suggested based on known risk factors (De Vliegher et al., 2012), but

intervention studies on mastitis control for ppp heifers are lacking. Individual

heifer treatments have the support of intervention studies but require the

handling of heifers which increases labour costs and can be hazardous for the

operator and animal. This could influence cost effectiveness, compared to herd

management changes. Although data on management strategies to prevent

heifer mastitis are sparse, in this thesis spending budgets for implementing

possible interventions are explored so that the decision maker can at least be

aware of the rational ‘scope for investment’ to reduce disease.

Individual heifer treatments

Heifers can have open teat canals from 80 days prior to calving (Krömker

and Friedrich, 2009). Therefore either using teat sealants (McDougall et al.,

2008; Parker et al., 2007b; 2008), or pre-partum teat disinfection (Lopez-

Benavides et al., 2009) has been successful in New Zealand pasture-based

systems. Pre-partum antibiotic therapy (Nickerson, 2009) has also been

assessed, but the impact is herd dependent (Borm et al., 2006), and is only

appropriate for herds with heifer mastitis problems associated with a high

prevalence of major pathogens to ensure the prudent use of antibiotics (De

Vliegher et al., 2012). Mastitis vaccines are in development, but cost
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effectiveness has yet to be demonstrated in field trials (McDougall et al.,

2009). Individual animal treatments are unlikely to be successful in isolation

without consideration of improvements to herd level management.

Herd level management changes

An overall aim is for heifers to be managed to minimise dystocia and

peri-partum disease to also reduce mastitis risk (Svensson et al., 2006). Stress

should be minimised during the transition period but how this is achieved may

vary between systems (Barkema et al., 1999b; Parker et al., 2007a; Santman-

Berends et al., 2012), emphasising the importance of a herd specific approach

to control. For a holistic approach to mastitis control for ppp heifers, herd

specific changes may be required to improve environmental hygiene, reduce

contagious spread of pathogens, and improve host resistance (De Vliegher et

al., 2012); the literature related to these risk factors is summarised as follows.

Environmental mastitis control

Hygienic calving areas (De Vliegher et al., 2004b; Piepers et al., 2011),

and udders (Compton et al., 2007a) should be maintained. For heifers at

pasture, overgrazing and poaching should be avoided (Green et al., 2007b;

2008) with access tracks maintained (Lopez-Benavides et al., 2007). For

heifers that are housed, avoiding deep bedding (Elbers et al., 1998), but

maintaining cleanliness of cubicles (Schukken et al., 1990), with frequent

scraping of collecting yards and passages (Peeler et al., 2000) should be

considered.
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Contagious mastitis control

Control of contagious disease in cows (Neave et al., 1966) would be

expected to reduce the risk of spread to heifers during milking (Piepers et al.,

2011). Cross suckling can lead to IMI directly or indirectly through damage to

the suckled teats, and should be avoided during rearing (McDougall et al.,

2009). Flies can also act as vectors for mastitis pathogens (Nickerson et al.,

1995; Piepers et al., 2011). Resistance of fly populations to common

insecticides has been reported, therefore control rather than elimination of flies

by chemical means should be emphasised, and avoidance strategies used where

possible (Broce, 2006; McDougall et al., 2009). Operators should wear gloves

when handling heifer teats (Huijps et al., 2010; Piessens et al., 2011).

Host resistance

Udder oedema is an important risk factor for heifer mastitis (Compton et

al., 2007a), and has been associated with excessive energy and mineral intake

pre-partum, excessive condition loss post-partum, increased milk yield, and

increased age and size at calving, yet control measures remain unclear

(McDougall et al., 2009). For instance, pre-calving milking reduced udder

oedema and mastitis, but exacerbated negative energy balance (Daniels et al.,

2007; Santos et al., 2004). This may conflict with attempts to minimise body

condition loss in early lactation through improved nutritional management,

since reduced prevalence of cows with subclinical ketosis is likely to benefit

udder health (Compton et al., 2007a). Deficiency of minerals (copper, selenium

and zinc), and vitamins (A and E) has been associated with mastitis. Heifers

fed home grown forage may be deficient if not supplemented depending on
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farm soil status (Heinrichs et al., 2009). The need for supplementation should

be assessed carefully as in the absence of deficiency this can have adverse

effects on udder health (Bouwstra et al., 2010). Increased concentrate feeding

from 11 to 16 months of age was associated with increased SCC early in the

first lactation but the reason for this remains unclear (Svensson et al., 2006).

1.2.4.2 Control of contagious mastitis during the first lactation

Methods for the control of contagious mastitis are well known (Neave et

al., 1966), although often not satisfactorily applied (Barkema et al., 2009). If

contagious mastitis is suspected in lactating heifers, whole herd control

measures should be reviewed to reduce the risk of further transmission.

Ensuring optimal milking machine operation may be a particular problem for

heifers if their teats are smaller or shorter than those of older cows (Baxter et

al., 1992; Rasmussen et al., 1998).

1.2.4.3 Control of environmental mastitis during the first lactation

Where contagious mastitis control has been successful, environmental

mastitis can become a problem (Bradley, 2002). Control measures focussing on

risk factors related to environmental hygiene, and increasing host resistance are

important (Barkema et al., 1999b; Green et al., 2007b; 2008). Cubicle housing

designed for mature cows may not be suitable for heifers, and this could lead to

problems with comfort and hygiene. Grouping heifers separately may therefore

have advantages in terms of udder health.
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1.3 Study populations used in this research

1.3.1 Background

Consumption of dairy products is increasing worldwide, largely driven

by increasing demand from developing countries (OECD-FAO, 2012).

European Union milk quotas are to be removed by 2015, providing an

opportunity for farmers to increase production and benefit from global trade.

The downside of this is exposure to competition and hence potentially volatile

world market prices. In a competitive market, maximising the value of milk

through minimising SCC is crucial (More, 2009).

1.3.2 Dairy farming in Ireland, England andWales

There are approximately 19,000 and 11,000 dairy farms in Ireland, and

England and Wales respectively (DairyCo, 2012). The data analysed in this

thesis are from subsets of these farms that have participated in milk recording

schemes. Despite fewer herds, annual milk production in England and Wales is

approximately double the 5 billion litre annual production of Ireland (DairyCo,

2012; ICBF, 2011). Population density in Ireland is approximately 4 times

lower (67 people /km2) than in England and Wales (Anon, 2012), meaning

relatively more land is available for farming. Compared to other agricultural

land use, dairying generates most income (Hennessy et al., 2011). Low-input,

spring-calving, pasture-based systems predominate in Ireland, and 85% of milk

is exported (More, 2009). In contrast, domestic markets for milk are of major

importance for English and Welsh dairy herds; 50% of raw milk is pasteurised

for liquid consumption, and 4% of raw milk is exported (DairyCo, 2012). In

England and Wales, seasonal variation in milk price therefore favours autumn-
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calving. Production systems with higher input costs (largely through feed), that

are dependent on scale in terms of milk yield and herd size are therefore

required to operate efficiently (Bailey et al., 1997). Trends for fewer, larger

herds are evident in both countries (DairyCo, 2012; ICBF, 2011). However, in

Ireland the decline in producer numbers is around 10 times less than the 4%

annual decline seen in England and Wales (DairyCo, 2012). In general to

increase efficiency, optimal management of higher stocking rates is required

for Irish pasture-based systems, and optimal management of higher yielding

cows is required for English and Welsh confined systems. Both systems can

benefit from economies of scale.

1.3.3 Importance of heifer mastitis in Ireland

The Irish dairy industry is well placed to increase production (Lips and

Relder, 2005; O' Donnell et al., 2008), and aims for a 50% increase in milk

output by 2020 (DAFM, 2011). One way this could be achieved is through

increasing herd sizes and stocking rates, to exploit the competitive advantage

of low-cost, pasture-based production systems (Läpple et al., 2012). Expansion

depends on an increased supply of heifers, and maximising the longevity of

cows; the former trend is evident in Irish herds (ICBF, 2011). Due to the

predominance of spring-calving systems in Ireland, ppp heifers are typically

housed. Herd expansion may lead to overstocking and increase environmental

mastitis risk in heifers, unless investment in improved facilities and

management can be justified. Therefore the impact of high SCC in heifers on

lifetime milk yield (LiMY) and longevity is of huge significance, and is a

major focus of this thesis. The importance of heifer mastitis, including the

prevalence of heifers with high SCC, has not been reported for Irish herds. This
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information is essential to estimate the economic impact of heifer mastitis and

monitor herd performance. For interest, comparisons are made to data from

English and Welsh herds where there is also a dearth of information in this

area.

1.4 Statistical methods used in the thesis

A particular strength of this research is the use of large national milk

recording datasets, based on multiple production records from cows in almost

10,000 dairy herds, to make robust statistical inferences of relevance to herds

in Ireland, England, and Wales. However, these datasets have a multilevel

hierarchical structure (herd, cow, parity, recording), implying clustering at each

level and hence units are not independent; an assumption required for classical

statistical tests (Petrie and Watson, 2004). As the data are observational,

relationships of interest have the potential to be obscured by the confounding

influence of other variables, or modified by intervening variables (Dohoo et al.,

2009). The aims of statistical analyses in this thesis were to summarise

relationships of relevance to the research questions, while accounting for lack

of independence between observations, and confounding influences. Multilevel

models with random effects for each level were therefore used for analyses

(Goldstein, 2003; Rasbash et al., 2009), but compromise was required between

presenting too complex models that represent the data well, or simpler models

that are easier to explain to stakeholders but still useful (Gelman et al., 1996).

The assessment of model fit, and usefulness was therefore an important aspect

of the analyses.
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1.4.1 Limitations of observational studies

The data used for this thesis are entirely observational. There are

important limitations to consider for interpretation of results relating to the

design of observational studies. Unlike in a randomised controlled trial, the

exposure of interest in observational studies has not been randomly allocated

between groups, and direct comparisons therefore cannot be made. This is due

to the confounding influence of other variables related to the exposure and

outcome of interest, meaning that exposed individuals may also differ in some

other way to those that are unexposed (Dohoo et al., 2009). For example, the

relationship between mastitis and milk yield can be confounded by cow parity,

stage of lactation, and season. In other circumstances the relationship between

the exposure and outcome of interest can be altered by another variable. In an

additive model, an interaction is deemed to be present if the combined impact

of 2 variables on the exposure is not equal to its sum. An example of an

interaction would be if the impact of mastitis on milk yield was different in

cows of different breed. Confounding can lead to biased results, and therefore

appropriate adjustment is important. Interactions may be biologically important

and these should be reported. Multivariate statistical models are required to

adjust for multiple confounding variables and interactions, without loss of

power. As a result of confounding and lack of control over exposures,

observational studies do not provide strong evidence of a causal relationship

between an exposure and the outcome of interest, and only ‘associations’

should be claimed.



17

1.4.2 Model outcomes and fit

The model outcomes in this thesis are either continuous (lifetime milk

yield; chapters 3, 4, and 6), or discrete (disposal in a 50 day interval; chapter

5). Continuous outcomes can be modelled directly with linear models, and

these are deemed to fit the data if residuals at all levels are distributed

normally, with a mean of 0 (Goldstein, 2003; Rasbash et al., 2009). Discrete

outcomes require a transformation to be modelled on a linear scale, for

example the logit function in logistic regression, but the residuals are

constrained as the outcome can only be 0 or 1. For a model fitted value of µ,

residuals can only take the values (1-µ) or (0-µ), therefore assessment of model

fit based on graphical inspection of these residuals is often inadequate (Green

et al., 2009). A rational approach to model assessment is therefore to

demonstrate that the model can predict biologically useful aspects of the

observed data, and in particular that predictions related to the research question

are reliable (Gelman et al., 1996), and this principle has been applied

throughout the thesis. Model fit was assessed by comparing predictions to the

observed data that was used for model development. To assess model

usefulness, predictions were compared to observed data which was relevant to

the research question but not used for model development. In order to assess

whether the results could be generalised to other herds, cross validation was

used, that is a comparison was made between predicted and observed data for

herds that were not used for the estimation of model parameters.
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1.4.3 Classical approach

In classical (frequentist) analyses as used in chapter 2, the probabilities

obtained refer to the chance of obtaining similar results in repeated trials, and

this is used to make decisions around accepting hypotheses. Likelihood

functions (L) describe the probability of obtaining the data as a function of

unknown parameters, given the hypothesis. With multiple unknowns in a linear

model, the likelihood function is multi-dimensional (Myung, 2003) and

computer algorithms are required for estimation. As likelihood values can be

very small, the transformation to deviance (-2 x ln[L]) is used (Dohoo et al.,

2009). The deviance should be minimised (to maximise likelihood), but a

compromise may be required between model complexity and fit (Spiegelhalter

et al., 2002). Importantly, probabilities from classical analyses do not refer to

the model parameters directly, but to the likelihood of obtaining the same

results if the trial was repeated. Classical probabilities therefore cannot be

applied in a predictive sense for future trials, or to inform decisions (Berry and

Stangl, 1996; Bolstad, 2007). With the Bayesian paradigm, the converse is true,

and this methodology is applied in chapters 3 to 7.

1.4.4 Bayesian approach

In Bayesian analyses, prior knowledge is combined with the data

obtained in a particular study to generate probability distributions for

parameters (Spiegelhalter et al., 2004). These are termed posterior

distributions, which represent the updated state of knowledge, and can be

interpreted as the distribution of probability for particular outcomes, and hence

prior knowledge for future trials (Berry and Stangl, 1996; Bolstad, 2007). This
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is inherently useful for decision makers, as it gives information on how likely

different outcomes are, based on a synthesis of all available evidence

(Parmigiani, 2002). In this research there was no prior knowledge of

parameters, and this was represented as flat prior distributions, with all values

over a large range being equally likely. With vague prior distributions and a lot

of data, the data has the major influence in the estimation of posterior

distributions for parameters (Green et al., 2004), giving similar results to a

frequentist analyses for linear models.

1.4.5 Markov chain Monte Carlo

For logistic models, likelihood methods can lead to bias in parameter

estimates (Browne and Draper, 2006). Alternative algorithms are available, but

these may lead to problems with convergence (Rasbash et al., 2009). One

method to avoid this is Markov chain Monte Carlo (MCMC), which

necessitates working in a Bayesian framework, and this was of particular

importance in this research such that posterior distributions could be used

directly for prediction. Therefore parameters for the logistic model of cow

disposal (chapter 5) were estimated by MCMC using Gibbs sampling (Gilks et

al., 1996). In this procedure, starting values for Markov chains are specified

and each new value is generated by an algorithm that samples from a proposed

conditional distribution given the current value. After a number of iterations to

‘burn in’, a Markov chain converges to a stationary distribution. Initial ‘burn

in’ iterations are discarded leaving a probability distribution for the parameter

of interest. Determining when a Markov chain has converged is controversial,

and may require running several parallel chains or a very long chain (Gilks et

al., 1996). Following convergence, parameter estimates at each iteration can be
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used for onward prediction and simulation. Therefore, MCMC was also used

for linear models in this thesis (chapters 3, 4, and 6).

1.4.6 Micro-simulation

The meaning of model parameters may not be intuitive. This can occur if

herd level interpretation of a cow level model is required, or the parameters are

on a non-linear scale. In these circumstances, micro-simulation can be used to

demonstrate the impact of results in a context relevant to interpretation as a

further aid to decision making (Parmigiani, 2002). The trajectory of individuals

is modelled as if a carefully controlled trial were conducted, varying only the

exposure of interest. This approach is useful when such a trial would be

impossible or very expensive. Micro-simulation can involve either a 1-step or a

2-step procedure. The 2-step procedure is also described as probabilistic

sensitivity analysis and involves summarising parameter distributions, often by

assuming they are parametric, and act independently. Parameter distributions

for a 2-step analysis can be obtained from a separate Bayesian analysis,

previous research, or elicited from experts (O' Hagan et al., 2006). A 1-step

micro-simulation procedure runs in parallel with a Bayesian analysis of the

underlying data; following ‘burn in’ each parameter estimate is propagated

forwards and used for prediction (Spiegelhalter et al., 2004). The 1-step

procedure therefore does not make distributional assumptions about

parameters, and any relationship between parameters is also maintained

(Chessa et al., 1999). One-step micro-simulation is used in chapters 3 to 6 of

this thesis to show the impact of model results in a useful context to aid

interpretation. Chapter 7 extends the simulations from chapters 3 and 5 to
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estimate rational budgets for specific herd level interventions to control heifer

mastitis.

1.5 Aims of the thesis

1.5.1 Summary

The overall aim was to describe the prevalence of heifer mastitis based

on SCC and assess the impact of SCC during the first lactation on the lifetime

milk production of cows. Potential savings from increased milk sales through

heifer mastitis control could then be estimated to give approximate budgets for

the development of cost effective management interventions.

1.5.2 Descriptive data (chapter 2)

Chapter 2 presents descriptive data from the Irish, English, and Welsh

herds used throughout the thesis, in particular the prevalence of heifers with

high SCC through lactation. Having collated and assessed the available data

two further questions arose: Firstly, to compare seasonal variation in cow SCC

for Irish, English, and Welsh dairy herds. Secondly, to assess the association

between herd size and cow SCC to evaluate the potential impact of trends for

increased herd size on udder health.

1.5.3 Somatic cell count early in the first lactation and the lifetimemilk

yield of cows in Irish dairy herds (chapter 3)

The aims of chapter 3 were to assess the associations between SCC at 5

to 30 days in milk during parity 1 (SCC1) and lifetime milk yield, and also to

first lactation milk yield for cows in Irish dairy herds.
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1.5.4 Somatic cell count early in the first lactation and the cumulative

milk yield of cows in English andWelsh dairy herds (chapter 4)

The aim of chapter 4 was to assess the association between SCC1 and

cumulative milk yield over 2 years for cows in English and Welsh dairy herds.

1.5.5 Somatic cell count early in the first lactation and longevity of cows in

Irish dairy herds (chapter 5)

The aim of chapter 5 was to assess the association between SCC1 and

survival over a 5 year period for cows in Irish dairy herds.

1.5.6 Somatic cell count during the first lactation and the lifetimemilk

yield of cows in Irish dairy herds (chapter 6)

The aims of chapter 6 were firstly to compare associations between the

exposures; SCC1 and SCC throughout the entire first lactation, on cumulative

milk yield over both the first lactation and the subsequent lifetime of cows in

Irish dairy herds. The second aim was to assess the association between SCC1

and SCC throughout the entire first lactation of cows in Irish dairy herds.

1.5.7 Bayesian evaluation of budgets for endemic disease control; an

example using management changes to reduce somatic cell count

early in the first lactation of cows in Irish dairy herds (chapter 7)

The aim of chapter 7 was to use 1-step Bayesian micro-simulation to

synthesise evidence from previous research with the outcomes from chapters 3

and 5, to determine budgets for specific management interventions to control

mastitis early in the first lactation of cows in Irish dairy herds under different

circumstances.
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Chapter 2: Association of season and herd size with

somatic cell count for cows in Irish, English, andWelsh

dairy herds

2.1 Introduction

For individual dairy producers, treatment costs, production losses and

reduced sale value of high somatic cell count (SCC) milk are well known

consequences of mastitis (Halasa et al., 2007). In the dairy processing industry,

increased SCC is associated with both shortened shelf life of pasteurised milk

(Santos et al., 2003), and reduced cheese yields (Barbano et al., 1991).

Seasonal increase in bulk milk SCC (BMSCC) supplied to dairies has been

reported from Ireland (Berry et al., 2006), and England and Wales (Green et

al., 2006b), reducing the ability of these countries to meet demand for high

quality milk products.

In general BMSCC tends to be highest in spring and summer, in

countries where calving patterns are non-seasonal, such as England and Wales

(Green et al., 2006b), Canada (Olde Riekerink et al., 2007; Sargeant et al.,

1998), and Holland (Barkema et al., 1998a; Lievaart et al., 2007); possibly

related to the influence of higher temperature and humidity on intramammary

infection (IMI) risk (Morse et al., 1988). In Ireland however, BMSCC is

generally lowest during April, and highest in November (Berry et al., 2006),

probably because spring-calving predominates. BMSCC in Ireland is therefore

lowest when most milk is produced but this may not reflect udder health,

because cow level SCC dynamics associated with IMI may be masked by

dilution (Green et al., 2006a). A key time for the occurrence of new infections
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in Irish dairy herds may therefore be overlooked if monitoring strategies use

only BMSCC.

Increasing herd size is common throughout the developed dairy industry

worldwide; producers hope to benefit from economies of scale accrued from

lower investments per cow, lower variable costs per unit of production and

increased labour efficiency (Bailey et al., 1997). Larger herds in the United

States of America have been reported to have lower cow level average SCC

compared to smaller herds (Oleggini et al., 2001), however, larger Dutch herds

have been reported to have higher BMSCC (Barkema et al., 1998a). In general,

Irish, English, and Welsh dairy herds are increasing in size (DairyCo, 2012;

ICBF, 2011) and it is important for these industries to evaluate the effect on

SCC.

In addition to describing the datasets used throughout the thesis, the

specific aims of this chapter were twofold: Firstly, to investigate the

association between time of year and cow SCC, particularly in Irish dairy herds

after accounting for stage of lactation. Secondly, to evaluate the association

between herd size and cow SCC in Irish, English, and Welsh dairy herds, to

evaluate the possible impact of expansion on SCC.
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2.2 Materials andmethods

2.2.1 Data selection

Data from 2005 to 2009, comprising 11,619,287 records from 964,612

cows in 8,095 Irish herds were provided by Irish Cattle Breeding Federation

(ICBF; County Cork, Ireland), and restricted to remove implausible values

(Table 2.1). For each herd year, the mean number of cows present per test day

was determined (a proxy for herd size); herds with a mean of ≤ 10 cows were 

excluded. The minimum proportion of cows present per test day in each herd

year had a distribution with distinct modes at 0.05, and 0.65. It was deemed

that there were likely to be differences between recordings with a low

minimum proportion of the herd present at a test date, compared to the majority

(possibly associated with purchased cows), and 0.7% of herd test day

recordings were excluded in which < 10% of the mean annual number of cows

were present. For inclusion ≥ 4 herd test day recordings per year were required; 

5% of herd years not meeting this criterion were excluded, leaving herd years

with a median of 8 test days (interquartile range (IQR) 7 to 13). The cleaned

dataset (Ire_dat) contained 10,181,545 recordings from 1,938,359 lactations in

860,563 cows, in 7,551 herds.

A second dataset was available for English and Welsh (UK) herds from

2004 to 2006, provided by National Milk Records (Chippenham, UK).

Selection criteria for this dataset have been described in detail (Madouasse,

2009). Briefly, herd years with at least 10 test dates based on ≥ 20 cows were 

included, and those with factored data (daily milk yield and milk constituents

extrapolated from a single sampling point) were removed. At least 80% of
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cows were of Holstein or Friesian breeds. The data were limited (Table 2.1),

and the final dataset (UK_dat) contained 6,772,182 records from 953,242

lactations in 474,669 cows in 2,128 herds.

Table 2.1. Selection criteria for the Irish, and English and Welsh datasets

Irish dataset

Variable

Range before

selection

Range after

selection

Recordings

removed (%)

Days in milk -503 to 3,548 5 to 304 10

Parity 1 to 87 < 15 0.2

Test day milk yield (kg) 0.2 to 92.6 > 1 and < 71 0.003

Calving interval1 (days) -1,046 to 2,265 ≥ 300 0.4 

English and Welsh dataset

Variable

Days in milk 1 to 1,794 5 to 304 17

Parity 1 to 19 < 15 0.001

Test day milk yield (kg) 0.2 to 99.8 > 1 and < 71 0.003

Calving interval (days) 36 to 1,647 ≥ 300 0.3 

1 For cows with more than 1 recorded calving date from subsequent parities.

2.2.2 Descriptive statistics

Not all variables were normally distributed, therefore median and

interquartile range (IQR) were evaluated and reported for each. The number of

cows (parity 1 and > 1) calving in each calendar month were determined. Herd

level geometric means of test day SCC were calculated for cows by lactation

month (1 to 10), and parity (1 and > 1, because lactation curve shape differed

mostly between these groups). Herd level proportions of primiparous cows

with SCC ≥ 200,000 cells/mL, and ≥ 400,000 cells/mL by lactation month 

were determined for comparison.

Random samples of 497 Irish, and 200 UK herds were selected from

Ire_dat, and UK_dat respectively using R (R-Development-Core-Team. 2010),
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and the corresponding records extracted. Sample sizes were selected to give the

largest sub-datasets of Irish (Ire_datSUB1) and UK (UK_datSUB1) herds, with

similar numbers of lines in each that could be handled with the available

computing power. Ire_datSUB1 contained 633,751 records from 122,707

lactations in 56,899 cows, and UK_datSUB1 contained 635,346 records from

88,798 lactations in 43,943 cows. Actual BMSCC was not available for the

herds of interest; therefore BMSCC over the study period was estimated from

individual cow records using Ire_datSUB1 and UK_datSUB1. For each calendar

month j, in each herd k, BMSCC was approximated by the arithmetic mean of

the yield corrected SCC from test day records i as;

BMSCCjk ≈ ∑ (SCCijk (cells/mL) x TDYijk (mL)) / ∑ TDYijk (mL),

where; ∑ = sum of, and TDY = test day milk yield. 

Estimated BMSCC was compared graphically with the cow level data, both

before and after adjustment for the confounding influence of stage of lactation,

and milk yield in the following models.

2.2.3 Model development

Models including random effects, in addition to fixed effects, were used

to account for a lack of independence due to clustering in the data. Models

were constructed using Ire_datSUB1 and UK_datSUB1 separately; ln SCC at the

test day level for individual cows was the outcome variable used, to ensure

normality of residuals. The models took the form;

yijkl= g+Xijkl く1 + Xjkl く2+ Xkl く3 + Xl く4+ fl + vkl + ujkl+ eijkl

fl ~ MVN (0, ∑f)
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vkl ~ N (0, j2
v)

ujkl ~ N (0, j2
u)

eijkl ~ N (0, j2
e)

where yijkl = ln SCC at test day i, in parity j, for cow k, in herd l, g = intercept 

value, Xijkl = matrix of test day variables, く1 = vector of coefficients for Xijkl,

Xjkl = matrix of parity variables, く2 = vector of coefficients for Xjkl, Xkl =

matrix of cow variables, く3 = vector of coefficients for Xkl, Xl = matrix of herd

variables (including polynomials of herd size), く4= vector of coefficients for

Xl, fl = matrix of random effects to account for herd level variation in g, and 

fixed effect coefficients for calendar month (multivariate normal distribution

with mean = 0 and covariance matrix ∑f), vkl = random effect to account for

variation between cows (normal distribution with mean 0 and variance j2
v), ujkl

= random effect to account for variation between parities (normal distribution

with mean 0 and variance j2
u), and eijkl = residual level 1 error (normal

distribution with mean 0 and variance j2
e). Model parameters were estimated

by the iterative generalised least squares procedure (Goldstein, 2003), using

MLwiN 2.22 (Rasbash et al., 2009).

Categorical variables were constructed for year, calendar month, and

parity (1 to 5+). To account for dilution of SCC with increased test day milk

yield (TDY) on a linear scale, and reduced TDY with increased SCC due to

IMI on an exponential scale (Green et al., 2006a), ln TDY, and ln ln TDY were

included, as the outcome of the models was ln SCC. Stage of lactation was

included as days in milk (DIM) + e-0.065 X DIM (Silvestre et al., 2006).

Biologically plausible interactions, and herd level variation in fixed effects
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were assessed. Variables remained in the model if the mean value of

coefficients was > twice the standard error (p ≤ 0.05), and their inclusion 

resulted in a decrease in the deviance. Intra-class correlation coefficients (ICC)

for the unexplained variance at each level of the model were calculated (Dohoo

et al., 2009).

2.2.4 Assessment of model fit

To assess model fit, distributions of standardised residuals at the herd,

cow, parity, and recording level were examined for normality. Further

checking used within model predictions; fixed effects were applied to each line

of Ire_datSUB1 and UK_datSUB1 to predict ln SCC. Predictions were compared

graphically to observed data, and correlation was assessed (r2; (Petrie and

Watson, 2004)). Equations for regression lines between observed and predicted

values were estimated.

To further assess model fit and usefulness, cross validation was carried

out in two further random samples of 493 different Irish, and 200 different UK

herds taken from Ire_dat and UK_dat respectively. The second Irish sub-

dataset (Ire_datSUB2) contained 678,950 records from 125,493 lactations in

56,902 cows, and the second UK sub-dataset (UK_datSUB2) contained 613,072

records from 86,036 lactations in 42,539 cows. Fixed effects from the

respective model were used to predict ln SCC for every line of Ire_datSUB2, and

UK_datSUB2 using Microsoft Excel (2007). Comparisons with the observed data

were repeated. Shrinkage of r2 on cross validation (Dohoo et al., 2009) was

assessed to determine if the models could be generalised to other herds, not

involved in parameter estimation.
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2.3 Results

2.3.1 Descriptive statistics

Summaries of TDY, test day fat proportion (TDF), test day protein

proportion (TDP), SCC, and herd size are presented in Table 2.2. In Ire_dat,

25, 50 and 25% of recordings were from cows in parities 1, 2 to 4, and ≥ 5 

respectively. In UK_dat, 22, 53, and 25% of recordings were from cows in

parities 1, 2 to 4, and ≥ 5 respectively. Calving patterns also differed (Figure 

2.1); 59 and 56% of parity 1 and parity 2+ cows’ calving dates were from

January to March in Ire_dat. In UK_dat, 64 and 58% of parity 1 and parity 2+

cows’ calving dates were from July to December.

Table 2.2. Descriptive results for the selected Irish dataset (Ire_dat), and the selected English and Welsh

dataset (UK_dat)

Irish dataset:

Variable Lower quartile Median Upper quartile

Test day milk yield 17 kg 22 kg 28 kg

Test day fat proportion 0.034 0.038 0.043

Test day protein proportion 0.032 0.034 0.036

Test day somatic cell count 55,000 cells/mL 110,000 cells/mL 243,000 cells/mL

Mean herd size (cows) 46 71 81

English and Welsh dataset:

Variable

Test day milk yield 21 kg 27 kg 33 kg

Test day fat proportion 0.034 0.039 0.043

Test day protein proportion 0.030 0.032 0.034

Test day somatic cell count 37,000 cells/mL 74,000 cells/mL 173,000 cells/mL

Mean herd size (cows) 101 139 189
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Figure 2.1. Number of cows calving per month during 2005 and 2006 for 7,551 Irish and 2,128 English

and Welsh dairy herds

2.3.1.1 Herd level descriptive statistics

The median herds’ geometric means of cow SCC for primiparous and

multiparous cows by month of lactation are shown in Table 2.3, with the full

distributions in Figure 2.2. For comparison herd level proportions of

primiparous cows with SCC ≥ 200,000 cells/mL and ≥ 400,000 cells/mL by 

month of lactation for the median herd are shown in Table 2.4, with the full

distributions in Figure 2.3.

Table 2.3. Geometric mean cow level somatic cell count (cells/mL) by month of lactation for the median

herd from 7,551 Irish and 2,128 English and Welsh dairy herds

Month of lactation
Irish dataset English and Welsh dataset

Parity 1 Parity > 1 Parity 1 Parity > 1

1 104,000 101,000 75,000 75,000

2 75,000 93,000 50,000 60,000

3 77,000 106,000 50,000 67,000

4 83,000 121,000 54,000 76,000

5 89,000 137,000 57,000 86,000

6 96,000 154,000 59,000 96,000

7 102,000 173,000 61,000 107,000

8 112,000 196,000 65,000 121,000

9 122,000 224,000 69,000 137,000

10 127,000 245,000 74,000 158,000
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Figure 2.2. Distributions
2
of herd level geometric mean test day somatic cell count (SCC), for primiparous

and multiparous cows, by month of lactation for 7,551 Irish and 2,128 English and Welsh dairy herds

2 For each month; the median herd is the horizontal black line, the surrounding boxes contain data for 50% of herds,

the attached whiskers extend to 1.5 times the interquartile range (95% of the data), and outliers are marked by circles.
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Table 2.4. Proportions of primiparous cows with high somatic cell count at different thresholds by

month of lactation for the median herd from 7,551 Irish and 2,128 English and Welsh dairy herds

Month of lactation

Irish dataset English and Welsh dataset

≥ 200,000 
cells/mL

≥ 400,000 
cells/mL

≥ 200,000 
cells/mL

≥ 400,000 
cells/mL

1 0.21 0.11 0.16 0.09

2 0.13 0.06 0.10 0.05

3 0.13 0.06 0.09 0.04

4 0.14 0.06 0.10 0.04

5 0.16 0.06 0.10 0.04

6 0.18 0.06 0.10 0.04

7 0.19 0.06 0.11 0.04

8 0.21 0.07 0.11 0.04

9 0.24 0.07 0.12 0.04

10 0.26 0.07 0.15 0.05

2.3.1.2 Estimated herd bulk milk somatic cell count

Distributions of calculated herd level BMSCC by calendar month, based

on sub-datasets; Ire_datSUB1 and UK_datSUB1 are shown in Figure 2.4. For the

Irish herds, geometric mean BMSCC was lowest in April (223,000 cells/mL),

and highest in November and December (314,000 cells/mL). For the UK herds,

geometric mean BMSCC was lowest in January (176,000 cells/mL) and

highest in August (205,000 cells/mL).



34

Figure 2.3. Distributions
3
of herd level proportions of primiparous cows with test day somatic cell count
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and Welsh dairy herds

3 For each month; the median herd is the horizontal black line, the surrounding boxes contain data for 50% of herds,

the attached whiskers extend to 1.5 times the interquartile range (95% of the data), and outliers are marked by circles.
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Figure 2.4. Herd level distributions of bulk milk somatic (BMSCC)
4
by calendar month

5
for 497 Irish and

200 English and Welsh dairy herds

4 Estimated from test day milk yield and somatic cell count data.
5
Where 1 = January, 2 = February, 3 = March, 4 = April, 5 = May, 6 = June, 7 = July, 8 = August, 9 = September, 10

= October, 11 = November, and 12 = December.
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2.3.2 Model results

2.3.2.1 Association between season and somatic cell count

Table 2.5 shows the fixed effect coefficients in the final models for ln

SCC, developed from Ire_datSUB1 and UK_datSUB1. Having accounted for stage

of lactation and TDY, October was associated with lowest ln SCC in both

models and was set as the reference. Calendar month interacted with stage of

lactation and parity. For baseline cows (parity 2, mean TDY, TDF, and TDP,

and in herds of mean size) in Irish herds (Figure 2.5), geometric mean SCC

was highest from February to August, independent of stage of lactation; for

cows that were 100 DIM, geometric mean SCC peaked at 111,000 cells/mL

(95% confidence interval (CI); 92,000 to 133,000) during May, and was 61,000

cells/mL (95% CI; 56,000 to 66,000) in October. For baseline cows in UK

herds (Figure 2.5), geometric mean SCC was highest from January to June; for

cows that were 100 DIM, geometric mean SCC was highest during February

and June, at 84,000 cells/mL (95% CI; 71,000 to 100,000), and was 66,000

cells/mL (95% CI; 60,000 to 72,000) in October. Random effects and ICC

from the models (Table 2.6), show additional herd level variance in ln SCC

from February to August; this was larger for the Irish than the UK herds. As a

result, less total variance in ln SCC in the null model (Table 2.7) was explained

by the fixed effects in the Irish model from February to August (11 to 13%),

compared to September to January (16%). For the UK model, 11 to 13% of the

total variance in ln SCC in the null model was explained by the fixed effects all

year round.
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Table 2.5. Final models of repeated ln
6
SCC

7
(�000 cells/mL) within cow parity, from 497 and 200

randomly selected herds from Ireland and England and Wales respectively; fixed effects

Irish model English and Welsh model

Fixed effects (baseline) Mean
Standard
error8 Mean Standard error

Intercept 4.146 0.040 4.119 0.036

Year (2005)

2004 NA9 NA -0.055 0.004

2006 0.004 0.006 0.027 0.004

2007 -0.038 0.006 NA NA

2008 -0.105 0.007 NA NA

2009 -0.020 0.007 NA NA

ln TDY10 (mean)11 -0.965 0.026 -1.396 0.034

ln ln TDY (mean)14 0.762 0.068 1.650 0.096

ln TDF12 (mean) 0.444 0.008 0.351 0.008

ln TDP13 (mean) 1.124 0.017 1.477 0.019

DIM14 (5) -0.0004 0.00001 0.0007 0.0001

e( -0.065 x DIM) (5 DIM) 0.055 0.060 0.188 0.041
Month of recording
(October)

January 0.308 0.047 0.282 0.032

February 0.481 0.042 0.312 0.034

March 0.483 0.040 0.237 0.034

April 0.495 0.041 0.242 0.036

May 0.524 0.043 0.149 0.037

June 0.549 0.049 0.235 0.036

July 0.494 0.059 0.168 0.033

August 0.463 0.068 0.125 0.031

September 0.122 0.056 0.058 0.029

November 0.126 0.049 0.173 0.030

December 0.422 0.054 0.200 0.032

Parity (2)

1 0.320 0.020 0.220 0.021

3 0.082 0.022 0.150 0.022

4 0.266 0.024 0.307 0.024

5+ 0.514 0.020 0.533 0.021

6 Natural logarithm.
7Milk somatic cell count.
8 Coefficients are significant at the 5% level if the mean effect > twice the standard error.
9 Not applicable.
10Test day milk yield (kg).
11Baseline = mean value in respective dataset.
12 Test day fat proportion.
13Test day protein proportion.
14 Days in milk.
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Table 2.5 continued

Irish model English and Welsh model

Fixed effects (baseline) Mean Standard error Mean Standard error

Size (mean)

(Size)1 0.00007 0.0001 0.0005 0.0002

(Size)2 0.000003 0.000001 0.000004 0.000001

(Size)3 -0.000000007 0.000000004 NA NA
Month of recording
and DIM (October, 5
DIM)

January -0.0002 0.0001 -0.0007 0.00008

February 0.0002 0.0001 -0.0007 0.00008

March 0.0008 0.0001 -0.0005 0.00008

April 0.0011 0.0001 -0.0003 0.00008

May 0.0008 0.0001 -0.000004 0.00008

June 0.0004 0.0001 0.00003 0.00008

July 0.00002 0.0001 -0.0001 0.00008

August -0.0003 0.0001 -0.00005 0.00007

September -0.0001 0.0001 0.0001 0.00007

November 0.0002 0.0001 -0.0003 0.00007

December -0.00002 0.0001 -0.0006 0.00007
Month of recording
and eDIM X -0.065

(October, 5 DIM)

January 0.290 0.079 0.226 0.053

February 0.574 0.070 0.219 0.054

March 0.709 0.065 0.129 0.054

April 0.760 0.064 0.087 0.056

May 0.756 0.068 -0.051 0.058

June 0.671 0.076 0.081 0.057

July 0.514 0.090 -0.062 0.054

August 0.485 0.102 -0.071 0.052

September 0.076 0.089 0.007 0.049

November 0.229 0.081 0.219 0.049

December 0.507 0.090 0.149 0.053
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Table 2.5 continued

Irish model English and Welsh model
Fixed effects

(baseline) Mean
Standard
error Mean

Standard
error

Parity and DIM
(Parity 2, 5 DIM)

1 -0.0011 0.00004 -0.0011 0.00004

3 0.0003 0.00005 0.0004 0.00005

4 0.0002 0.00005 0.0003 0.00005

5+ -0.0002 0.00004 0.0002 0.00004
Parity and eDIM X -0.065

(Parity 2, 5 DIM)

1 0.525 0.031 0.400 0.032

3 -0.147 0.034 -0.079 0.034

4 -0.198 0.037 -0.185 0.037

5+ -0.355 0.031 -0.201 0.031

Deviance 1,646,471 1,647,317

Table 2.6. Final models of repeated ln
15
SCC

16
(�000 cells/mL) within cow parity, from 497 and 200

randomly selected herds from Ireland and England and Wales respectively; random effects

Level Variance
Standard
error ICC17

Irish model Herd ∑f1 ∑f1 0.08

Cow 0.256 0.003 0.21

Parity 0.296 0.002 0.24

Recording 0.570 0.001 0.47
English and Welsh

model
Herd ∑f2 ∑f2 0.08

Cow 0.289 0.004 0.22

Parity 0.351 0.003 0.26

Recording 0.592 0.001 0.44

15 Natural logarithm.
16Milk somatic cell count.
17 Intra-class correlation coefficient = proportion of unexplained variance at each level from September to January.
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Table 2.6 continued

∑f1= Herd level (co)variance matrix for the Irish model (standard error)

Intercept 0.095
(0.0066)

February -0.020
(0.0056)

0.082
(0.0080)

March -0.015
(0.0046)

0.046
(0.0056)

0.072
(0.0060)

April -0.014
(0.0041)

0.050
(0.0061)

0.054
(0.0054)

0.096
(0.0071)

May -0.015
(0.0041)

0.038
(0.0050)

0.041
(0.0044)

0.054
(0.0050)

0.066
(0.0050)

June -0.0004
(0.0037)

0.028
(0.0045)

0.037
(0.0040)

0.049
(0.0045)

0.040
(0.0038)

0.054
(0.0041)

July 0.0031
(0.0034)

0.017
(0.0041)

0.024
(0.0035)

0.033
(0.0039)

0.031
(0.0034)

0.030
(0.0031)

0.044
(0.0035)

August 0.0027
(0.0034)

0.017
(0.0040)

0.018
(0.0033)

0.032
(0.0038)

0.029
(0.0032)

0.029
(0.0030)

0.022
(0.0027)

0.042
(0.0034)
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Table 2.6 continued

∑f2 = Herd level (co)variance matrix for the English and Welsh model (standard error)

Intercept 0.11 (0.011)
February 0.00039

(0.0030)
0.013

(0.0016)
March -0.0015

(0.0031)
0.0073
(0.0013)

0.013
(0.0016)

April -0.0084
(0.0038)

0.0048
(0.0014)

0.0083
(0.0016)

0.021
(0.0025)

May -0.0094
(0.0035)

0.0018
(0.0013)

0.0048
(0.0014)

0.0077
(0.0017)

0.017
(0.0021)

June -0.0089
(0.0037)

0.00069
(0.0014)

0.0061
(0.0014)

0.0092
(0.0018)

0.013
(0.0018)

0.02
(0.0024)

July -0.012
(0.0039)

0.00011
(0.0014)

0.0038
(0.0015)

0.0064
(0.0018)

0.0092
(0.0018)

0.014
(0.0020)

0.022
(0.0025)

August -0.0067
(0.0036)

-0.0032
(0.0014)

0.00085
(0.0014)

0.0052
(0.0017)

0.0068
(0.0016)

0.012
(0.0019)

0.012
(0.0019)

0.019
(0.0022)
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Figure 2.5. Model predictions for the impact of calendar month
18
on cow level geometric mean test day

somatic cell count (SCC)
19

(�000 cells /mL) for cows at 100 and 200 days in milk (DIM) in Irish, English,

and Welsh dairy herds

18 Where 1 = January, 2 = February, 3 = March, 4 = April, 5 = May, 6 = June, 7 = July, 8 = August, 9 = September, 10
= October, 11 = November, and 12 = December.
19 Refers to parity 2 cows in 2005 with mean test day milk yield (Irish herds; 21 kg, English and Welsh herds; 27 kg),

and fat (3.8%) and protein proportions (Irish herds; 3.4%, English and Welsh herds; 3.2%), in herds of mean size for

Ireland (96 cows), and England and Wales (196 cows).
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Table 2.7. Random effects from the null models of repeated ln
20
SCC

21
(�000 cells/mL) within cow parity,

from 497 and 200 randomly selected herds from Ireland and England and Wales respectively

Null model
Level Variance

Standard
error ICC22

Irish

(deviance =
1,813,845)

Herd 0.107 0.007 0.074

Cow 0.295 0.003 0.204

Parity 0.313 0.002 0.217

Recording 0.730 0.001 0.505

Totals 1.445 1.000

English and Welsh

(deviance =
1,771,367)

Herd 0.108 0.011 0.070

Cow 0.321 0.004 0.208

Parity 0.384 0.003 0.248

Recording 0.732 0.001 0.474

Totals 1.545 1.000

20 Natural logarithm.
21 Milk somatic cell count.
22 Intra-class correlation coefficient; proportion of the variance at each level.

2.3.2.2 Association between herd size and somatic cell count

Following adjustment for confounding influences, there was a non-linear

relationship between herd size and test day SCC, included in the final Irish and

UK models as 3rd and 2nd degree polynomials respectively (Figure 2.6). For

herd sizes of up to 130 cows, test day SCC for baseline cows (parity 2, 5 DIM,

recorded in October with mean TDY, TDF, and TDP) in Irish herds remained

at 63,000 cells/mL (95% CI; 59,000 to 68,000). Further increase in herd size

was associated with non-linear increase in test day SCC; reaching 68,000

cells/mL (95% CI; 59,000 to 89,000) with a herd size of 300 cows. In UK

herds, test day SCC decreased for baseline cows in herds of up to 130 cows;

reaching 60,000 cells/mL (95% CI; 57,000 to 65,000), and this was maintained

in herd sizes up to 180 cows. For larger herds, test day SCC increased with

increasing size at a higher rate than for the Irish herds; also reaching 68,000

cells/mL (95% CI; 59,000 to 77,000) with a herd size of 300 cows. For the
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Irish herds, there was more uncertainty in these estimates that increased with

increasing herd size from 130 cows, due to relatively few larger herds

compared to the UK dataset. For the UK herds, uncertainty in the estimates,

increased with increasing herd size, particularly for > 230 cows.

Figure 2.6. Model predictions for the impact of herd size on cow level geometric mean test day somatic

cell count (SCC)
23
(�000 cells /mL) with 95% confidence interval for Irish, English and Welsh dairy herds

23 Refers to parity 2 cows in October 2005 that are 5 days in milk, and have mean test day milk yield (Irish herds; 21

kg, English and Welsh herds; 27 kg), and fat (3.8%) and protein proportions (Irish herds; 3.4%, English and Welsh

herds; 3.2%), truncated at 400 cows per herd.
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2.3.3 Model fit

For Ire_datSUB1 andUK_datSUB1, standardised residuals were distributed

approximately normally at all levels, suggesting good model fit. For the Irish

and UK within model predictions, lines of best fit between predicted and

observed ln SCC had intercepts of 0.6 and 0.9 respectively, both with slopes of

0.8 (r2 = 0.14 (Irish) and 0.12 (UK)). For Ire_datSUB2 andUK_datSUB2, lines of

best fit between predicted and observed ln SCC had intercepts of 0.6 and 1.2,

and slopes of 0.9 and 0.7 (r2 = 0.14 (Irish) and 0.12 (UK)), indicating zero

shrinkage on cross validation, suggesting that the model results can be

generalised to herds not involved in parameter estimation (Dohoo et al., 2009).

However, the models were not good at predicting extremes of SCC in either

sample datasets, resulting in low r
2 values.

2.4 Discussion

2.4.1 Association between season and somatic cell count

The association between calendar month and cow SCC was of particular

interest in the Irish dataset. When confounding by stage of lactation and TDY

were removed, the underlying values of cow SCC were highest, and most

variable from February to August, despite BMSCC being at its lowest at this

time in Irish herds. Although the number of years studied was limited, seasonal

patterns in SCC dynamics for both datasets were consistent with previous

observations (Green et al., 2006b; Lievaart et al., 2007; Olde Riekerink et al.,

2007), with underlying cow SCC being increased, and more variable during

spring and summer. In addition to an association with high SCC, infection
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status is reported to be the most important factor influencing SCC variance

(Schepers et al., 1997). Having adjusted for other confounding factors,

unexplained variation in SCC is therefore most likely to be attributable to

increased new IMI rate (resulting in low r
2 values). Inclusion of herd level

random coefficients between February and August, demonstrated additional

unexplained variation in cow SCC that was herd specific, and this suggests that

there is important between herd variation in the rates of new IMI and cures

during these months. Monitoring new IMI rate using SCC thresholds is

recommended, so control measures can be applied and adapted as necessary

(Bradley and Green, 2005). It thus appears important to characterise

differences in rates of new IMI between Irish herds so achievable targets, based

on individual cow SCC can be used to improve udder health management.

2.4.2 Association between herd size and somatic cell count

In general, increase in herd size was associated with increased cow SCC,

although the rate of increase differed between the Irish, and English and Welsh

herds studied. This suggests more attention is required to optimise udder health

management when herds increase cow numbers. These findings contrast with

the previously observed lower average SCC with increasing herd size in a

dataset with a higher frequency of larger herds (Oleggini et al., 2001), but are

consistent with Dutch experience (Barkema et al., 1998a). For typical ranges of

Irish, English, and Welsh herd sizes, these results suggest that expansion may

be associated more with penalties, and loss of efficiency, than economic

advantage in terms of SCC. The size of this effect on geometric mean cow

SCC was small, and uncertainty increased with herd size, however the 95% CI
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indicate that for Irish herds, increased herd size was more likely associated

with higher, than lower cow SCC (Figure 2.6). Risk of transmission of udder

pathogens during milking may increase with herd size, as more susceptible

quarters could be exposed. Poor management of higher pasture stocking rates

in larger herds could contribute to increased risk of Streptococcus uberis IMI

(Lopez-Benavides et al., 2009). Capital investments in improved facilities

requires a critical herd size such that the fixed cost per cow is acceptable; many

Irish, English, and Welsh herds may not have reached this point. More labour

units are required by larger herds, although the number of labour units per cow

is less, emphasising the importance of farm staff developing expertise in cow

management.

2.5 Conclusion

The Irish herds contained predominantly spring-calving cows, typically

with lower milk yield and higher SCC, compared to cows in the year-round

calving English and Welsh herds. After correcting for stage of lactation and

milk yield, SCC for cows in Irish, English and Welsh dairy herds was higher

and more variable in spring and summer, than autumn and winter. For Irish

dairy herds, monitoring individual cows is particularly important in spring and

summer, despite low BMSCC and farmers should not be complacent about

udder health at this time. Increasing herd size was associated with a non-linear

increase in cow SCC in these countries, highlighting an important area that

may influence cost effective dairy herd expansion.
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Chapter 3: Association between somatic cell count early in

the first lactation and the lifetime milk yield of cows in

Irish dairy herds

3.1 Introduction

Mastitis in primiparous cows early in their first lactation has been

highlighted as a common problem that is economically important through its

impact on their future productivity (De Vliegher et al., 2012; Piepers et al.,

2009), which limits their ability to achieve genetic potential for milk yield.

Increased milk somatic cell count early in the first lactation (SCCel) has been

associated with decreased milk yield throughout the entire first lactation

(Coffey et al., 1986; De Vliegher et al., 2005a). This loss has been estimated in

Belgian primiparous cows at 0.13 kg/d for every unit increase in ln transformed

somatic cell count (SCC) measured between 5 and 14 days in milk (De

Vliegher et al., 2005a). The relationship between SCCel and cumulative milk

yield in subsequent lactations is less clear. Coffey et al. (1986) reported that for

cows in Virginia (United States of America), mean first lactation milk yield

(FLMY) decreased with increasing SCCel, and was 6,452 kg, 6,050 kg, and

5,696 kg for groups of cows with SCCel < 100,000 cells/mL, 100,000 to

400,000 cells/mL, and > 400,000 cells/mL respectively. However, over

subsequent lactations beyond the first this trend did not continue, and mean

lactation milk yields were 6,840 kg, 7,241 kg, and 7,163 kg respectively for the

same groups (Coffey et al., 1986). This study did not control for clustering of

cows in different herds, any potential confounding variables, or importantly,

how long cows survived. The impact of SCCel on lifetime milk yield (LiMY)
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has not otherwise been considered. This is an important omission, as it may not

be until cows reach their second lactation, that sufficient milk is produced to

break even on rearing costs, and the true cost of milk loss may extend further

than the first lactation. For example, under Irish conditions the cost of rearing

to the point of calving is approximately €1,451 /heifer (Kennedy et al., 2011).

Therefore with an average margin over variable costs of €0.17 /kg (Hennessy

et al., 2011), 8,535 kg of saleable milk is required to break even, which likely

requires > 1 lactation. Furthermore, primiparous cows have yet to achieve

mature adult weight and size. Hence, lactation milk yield and financial returns

increase in subsequent lactations (Madouasse, 2009). Considering impact on

LiMY is therefore important to evaluate the total cost of SCCel, and aid

decision making around mastitis control measures for pre- and peri-partum

(ppp) heifers.

The aims of this chapter were to assess the associations between SCC at

5 to 30 days in milk during parity 1 (SCC1) and lifetime milk yield, and also

first lactation milk yield for cows in Irish dairy herds. A Bayesian approach

was taken, and posterior predictions were used to evaluate the economic impact

of the results on meaningful, intuitive scales, and for particular herd scenarios.
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3.2 Materials andmethods

3.2.1 Data selection

Herds were selected for the analysis using the criteria specified in chapter

2. To be eligible for inclusion, cows required a first SCC recording between 5

and 30 days in milk (DIM) during parity 1. There were 233,176 eligible cows

in 7,423 herds (DAT); 893 of these cows had more than 1 record between 5

and 30 DIM during parity 1, and SCC at the first of these was taken as SCC1.

A sub-dataset of production records from 25% of cows in DAT, with a record

of SCC1 between January 2005 and March 2007, and with dates of birth

available was then created. Cows with age at first calving (AFC) < 700 days

were deemed at increased risk of culling because of dystocia (Berry and

Cromie, 2009), and individual cows with AFC < 700 days (6% of the total

population) were discarded to remove this effect. For the selected cows,

cumulative milk yields for all lactations up to July 25, 2012 were determined

based on a published method (Olori et al., 1999), and provided by ICBF. These

were summed to give an estimate of ‘lifetime milk yield’ for each cow over

follow up times from 5.3 to 7.5 years, based on the time from the first calving

to the end of the study for each cow. The selected dataset included records

from 53,652 cows in 5,922 herds. Random samples of 2,500 (samp_1), and

3,422 (samp_2) of these herds were selected using R (R-Development-Core-

Team, 2010) and the data for all 22,023 and 31,629 eligible cows in samp_1

and samp_2 respectively were collated. The statistical models were fitted to

samp_1, and samp_2was used for cross validation; sample sizes were

determined based on the computational constraints imposed by these
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procedures. Median, and interquartile range (IQR) for LiMY, first lactation

milk yield (FLMY), proportion of cows surviving lactations 1 and 4, and SCC1

were determined for each sample, stratified by sub-groups based on SCC1

(SCC1_gp; group 1; < 55,000 cells/mL, group 2; 55,000 to 149,000 cells/mL,

group 3; 150,000  to 400,000 cells/mL, group 4; ≥ 400,000 cells/mL).  

3.2.2 Statistical analysis

The outcomes used were lifetime or first lactation milk yield (LiMY or

FLMY; yij), for the ith cow, in the jth herd. The models developed for samp_1,

took the form;

yij = g+Xij く1 + Xj く2 + uj+ eij ,

uj ~ Normal (0, j2
u),

eij ~ Normal (0, j2
e),

where g = intercept value, Xij= matrix of exposure variables for each cow, く1 =

vector of coefficients for Xij, Xj= matrix of exposure variables for each herd,

く2 = vector of coefficients for Xj, uj = a random effect to account for residual

variation between herds (assumed to be normally distributed with mean = 0,

and variance = j2
u), and eij = residual level 1 error (assumed to be normally

distributed with mean = 0, and variance = j2
e). SCC1 was the exposure of

interest for each cow, and was included on a ln scale. To focus attention on the

ppp period, for the control of heifer mastitis, only confounding variables

deemed to be operating by 30 DIM during parity were selected. Therefore,

polynomials for ln AFC, and DIM at the first recording were investigated for
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inclusion. Due to the importance of seasonal production to Irish dairy herds

(chapter 2), month, and year of first calving were included as categorical terms.

Biologically plausible interactions, and herd level random slopes (herd x fixed

effect interactions) were assessed. Initial values for all covariates were

generated in MLwiN 2.22 (Rasbash et al., 2009), using the iterative generalised

least squares procedure (Goldstein, 2003). To facilitate posterior predictions

that incorporated all uncertainty in parameters, the models were developed in a

Bayesian framework using WinBUGS 1.4.3 (Lunn et al., 2000). Parameters

were estimated from 10,000 MCMC simulations, following a burn in of 1,000

simulations during which time chain convergence occurred (determined by

inspection of 3 simultaneous chains to ensure a stationary distribution had been

reached (Gilks et al., 1996)). Vague prior distributions were used for; j-2
u ~

Gamma (0.001, 0.001), j-2
e ~ Gamma (0.001, 0.001), and く ~ Normal (0, 106),

to give the major influence to the data in the estimation of parameters (Green et

al., 2004). Distributions of covariates, and interaction terms were inspected,

these remained in the model based on biological plausibility, and if the 95%

Bayesian credible interval (BCI) excluded 0. Sensitivity of the final model

results to prior distributions for the herd level random effect variance

(Spiegelhalter et al., 2004) was evaluated by repeating simulations using the

prior; j2
u ~ Uniform (10-7, 107).

3.2.3 Model checking

For both models, the posterior distribution of the mean residual from

samp_1was inspected to determine if the 95% BCI included 0, suggesting

adequate model fit. The LiMY model was of primary interest, and further

checking, and simulations used this model only. To further evaluate model fit
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and usefulness (Gelman et al., 1996), fixed and random effects were used to

predict cow life time milk yield (y.predij) thus;

y.predij
1 ~ p(y.predij | く, samp_1, uj)

y.predij
xval ~ p(y.predij

xval | く, samp_2),

where p represents conditional probability distributions, y.predij
1 and y.predij

xval

are posterior predictions of LiMY for the ith cow in the jth herd in samp_1, and

samp_2 respectively, く is the vector of model coefficient distributions, uj is the

random effect for the jth herd in samp_1. Predicted and observed mean LiMYs

were calculated for cows categorised by SCC1_gp; these categories were not in

the final models. Posterior predicted distributions of mean LiMY for cows in

these groups were inspected to determine if the observed mean LiMYs were

within the 95% BCI of the posterior predictions, indicating the extent of model

usefulness for predictions based on SCC1, and if the results could potentially

be generalised to other Irish dairy herds (Gelman et al., 1996).

3.2.4 Micro-simulation

To illustrate the impact of SCC1 on LiMY at herd level, and to

demonstrate financial relevance, ‘micro-simulation’ was used (Spiegelhalter et

al., 2004). This method simulates the trajectory of individual cows, to evaluate

the expected outcomes for particular scenarios with all variability in model

parameters, and dependence between variables included (Spiegelhalter et al.,

2004). This allows the impact of SCC1 (the effect of interest) to be evaluated

in the absence of confounding influences, as if a carefully controlled trial had

been carried out. Therefore, the Bayesian model for LiMY was extended to
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include a 1-step micro-simulation for 1,000 theoretical cows with different

characteristics, in herds with ≥ 20%, and ≥ 10% initial prevalence of cows with 

SCC1 ≥ 400,000 cells/mL. For each cow, values for ln SCC1 were drawn from 

normal distributions (determined from the initial dataset; DAT) for herds in

these prevalence groups (Table 3.1). In order to demonstrate the impact of

achievable reductions in the prevalence of cows with SCC1 ≥ 400,000 cells/mL 

on LiMY at herd level, herds ≥ 20% initial prevalence of cows with SCC1 ≥ 

400,000 cells/mL were deemed to reduce this to < 10%, or < 5%, and herds

with ≥ 10% initial prevalence of cows with SCC1 ≥ 400,000 cells/mL, were 

deemed to reduce this to < 5% (Table 3.1). To provide a straight forward

comparison between different herd scenarios, all simulated cows had a first

calving date in February 2005. At each of 10,000 MCMC simulations

(following a burn in of 1,000), final model coefficients were combined with

data from the theoretical cows to generate predictions of LiMY for the ith cow

in the jth herd (y.predij);

y.predij ~ p(y.predij| く, Xsim),

where く is a vector of model coefficient distributions, and Xsim is a matrix of

data for simulated cows, including a simulated value for ln SCC1, based on the

herd level prevalence of cows with SCC1 ≥ 400,000 cells/mL (Table 3.1), and 

indicator variables to denote a first calving in February 2005.

3.2.5 Change in revenue

At each iteration, mean LiMY for the simulated cows in each herd

scenario was calculated. Differences in mean LiMY were multiplied by an

estimated gross margin (milk price – variable costs of production), that was
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drawn from a normal distribution with mean = 0.17 €/L, and standard deviation

= 0.03 €/L for each cow (Hennessy et al., 2011), to give the difference in

expected revenue associated with reductions in the prevalence of cows with

SCC1 ≥ 400,000 cells/mL. Posterior distributions of revenue change /heifer 

calved into the herd were plotted as a cumulative frequency distribution to

show the probability of different levels of financial return. An example of the

model code is given in the appendix.

Table 3.1. Frequency of 7,423 Irish dairy herds categorised by prevalence of cows with SCC1
24 д ヴヰヰがヰヰヰ 

cells/mL, and mean and (variance) for ln
25
SCC1 for 233,176 primiparous cows in these herds

 Herd level prevalence of cows with SCC1 ≥ 400,000 cells/mL 

≥ 10% ≥ 20% < 5% < 10% 
Percentage

of herds
55% 19% 25% 45%

ln SCC1 4.79 (1.52) 5.11 (1.78) 4.26 (0.80) 4.39 (1.04)

24 First test day milk somatic cell count record between 5 and 30 days in milk during parity 1.
25 Natural logarithm of.

3.3 Results

3.3.1 Descriptive results

Summary measures were similar in samp_1 and samp_2 (Table 3.2). In

samp_1, median LiMY (IQR) decreased from 23.8 tonnes (11.5 to 36.4) for

cows with SCC1 < 55,000 cells/mL, to 18.9 tonnes (8.7 to 31.9) for cows with

SCC1 > 400,000 cells/mL. Median FLMY (IQR) decreased from 5.5 tonnes

(4.5 to 6.9) for cows with SCC1 < 55,000 cells/mL, to 5.2 tonnes (4.2 to 6.5)

for cows with SCC1 > 400,000 cells/mL. There was a trend for decreased

proportions of cows surviving beyond the first, and fourth lactation with

increasing SCC1 (Table 3.2).
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Table 3.2. Descriptive results for sub-groups of eligible Irish primiparous dairy cows
26
based on somatic

cell count between 5 and 30 DIM (SCC1); medians and (interquartile range) of SCC1 and lifetime milk

yield, and proportions of cows surviving beyond the first and fourth lactation

Group Variable samp_1 samp_2

SCC1 < 55,000
cells/mL

SCC1 (‘000 cells/mL) 36 (26 to 45) 36 (26 to 45)
Lifetime milk yield (tonne) 23.8 (11.5 to 36.4) 22.4 (11.1 to 35.4)
First lactation milk yield
(tonne) 5.5 (4.5 to 6.9) 5.6 (4.5 to 7.0)
First lactation survival 0.81 0.80
Fourth lactation survival 0.16 0.15
Number of cows 6,481 8,807

SCC1 55,000
to 149,000
cells/mL

SCC1 (‘000 cells/mL) 85 (68 to 108) 86 (69 to 109)
Lifetime milk yield (tonne) 22.8 (11.1 to 35.2) 21.9 (10.7 to 35.1)
First lactation milk yield
(tonne) 5.3 (4.3 to 6.6) 5.4 (4.4 to 6.7)
First lactation survival 0.81 0.80
Fourth lactation survival 0.17 0.16
Number of cows 9,027 13,011

SCC1 150,000
to 400,000
cells/mL

SCC1 (‘000 cells/mL) 218 (176 to 286) 218 (176 to 286)
Lifetime milk yield (tonne) 21.3 (10.2 to 34.0) 20.3 (10.0 to 33.9)
First lactation milk yield
(tonne) 5.4 (4.3 to 6.6) 5.4 (4.4 to 6.7)
First lactation survival 0.80 0.78
Fourth lactation survival 0.15 0.14
Number of cows 3,841 5,812

SCC1 >
400,000
cells/mL

SCC1 (‘000 cells/mL) 927 (570 to 1,725) 889 (571 to 1,704)
Lifetime milk yield (tonne) 18.9 (8.7 to 31.9) 19.2 (8.9 to 33.0)
First lactation milk yield
(tonne) 5.2 (4.2 to 6.5) 5.4 (4.3 to 6.6)
First lactation survival 0.76 0.75
Fourth lactation survival 0.13 0.14
Number of cows 2,674 3,999

26 Includes eligible cows from 2,500 herds used for model development (samp_1) and 3,422 herds used for cross
validation (samp_2).

3.3.2 Model results

Unit increase in ln SCC1 was associated with a median decrease in

LiMY of 864 kg (95% BCI 706 to 1,024), and in FLMY of 105 kg (95% BCI

77 to 133; Table 3.3). The final models adjust for month, and year of first

calving. Cows that first calved in June 2007, with mean ln SCC1 were the

baseline for comparison; although LiMY did not differ between the relatively
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few heifers that calved from April to August (95% BCI includes 0). Heifers

calving in January had the highest LiMY, and produced a median of 5,550 kg

(95% BCI 4,055 to 7,027) more milk than those calving in June. The next

highest month of first calving was October, and these heifers produced a

median of 4,695 kg (95% BCI 2,944 to 6,449) more milk than those calving in

June. In contrast FLMY was highest for heifers calving from August to

December (Table 3.3). LiMY and FLMY did not differ by year of first calving

(95% BCI includes 0). However, there was a trend for decrease in LiMY, and

increase in FLMY with year of first calving. Decrease in AFC, from 27 to 24

months was associated with a median increase in LiMY of 691 kg (95% CI 832

to 547). AFC was not associated with FLMY (95% BCI included 0).
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Table 3.3. Bayesian credible intervals from 10,000 simulations of the final models; outcomes cow level

lifetime and first lactation milk yields (kg)

Exposure (baseline)

Model 3.1; lifetime milk
yield (kg)

Model 3.2; first lactation
milk yield (kg)

Lower
2.5%

Median Upper
97.5%

Lower
2.5%

Median Upper
97.5%

Intercept -4,545 10,890 26,260 241 2,954 5,642

ln27 SCC128 (4.65) -1,024 -864 -760 -133 -105 -77

Month of first
calving (June)

January 4,055 5,550 7,027 370 640 900

February 2,978 4,396 5,786 -13 237 479

March 1,523 2,936 4,353 -334 -83 167

April -81 1,373 2,807 -568 -308 -55

May -815 801 2,397 -664 -380 -99

July -2,493 -19 2,400 446 876 1,307

August -1,096 1,306 3,972 930 1,358 1,780

September 1,315 3,147 4,948 946 1,270 1,586

October 2,944 4,695 6,449 1,141 1,449 1,752

November 1,973 3,827 5,750 904 1,226 1,551

December 1,317 3,477 5,721 887 1,263 1,642

Year of first
calving (2007)

2004 -3,865 11,790 27,520 -856 1,872 4,578

2005 -5,605 9,646 25,010 -186 2,487 5,180

2006 -8,010 7,305 22,660 -100 2,587 5,278

ln AFC29 (6.71) -8,320 -6,906 -5,470 NA30 NA NA

Random effect standard
deviation:

Lower
2.5%

Median Upper
97.5%

Lower
2.5%

Median Upper
97.5%

Cow level (x 106) 12,763 12,888 13,019 2,215 2,237 2,260

Herd level 6,752 7,053 7,372 1,226 1,318 1,374

27 Natural logarithm of.
28 First test day SCC record at 5 to 30 DIM during parity 1.
29 Age at first calving (days).
30 Not applicable.

3.3.3 Model checking

The posterior distribution of the mean residuals for samp_1were

normal with medians 6.0 kg (95% CI -270 to 277), and 0.3 kg (95% CI -48 to

50), with the outcomes LiMY, and FLMY respectively. Therefore, the final

models fitted the data on which they were developed. Predictions of LiMY for

cows in samp_1 aggregated by SCC1 group also indicated good fit and hence
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this model was adequate for predictions in these herds (Figure 3.1). The final

model for LiMY also appeared generalisable to other Irish dairy herds as the

observed mean LiMY for cows in samp_2 aggregated by SCC1 group was

within the 95% BCI of posterior predictions (Figure 3.1). There was ≤ 0.4% 

difference in the median, and 95% BCI limits of the ln SCC1 coefficient

distribution when a uniform prior distribution for the herd level random effect

variance was used, and this had no substantive impact on interpretation of the

final model results.

Figure 3.1. Final model predictions of lifetime milk yield from 10,000 simulations, and observed values in

2,500 Irish dairy herds used for model development, and 3,422 separate Irish dairy herds
31
used for

cross validation
32

31 Grouped by milk somatic cell count at 5 to 30 days in milk during parity1 (SCC1); group 1; < 50,000 cells/mL,
group 2; 50,000 to 99,000 cells/mL, group 3; 100,000  to 164,000 cells/mL, group 4; ≥ 164,000 cells/mL. 
32 The horizontal bold line is the median, the surrounding box contains 50% of the data, the vertical whiskers extend to
1.5 times the interquartile range, and outliers are shown beyond this.
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3.3.4 Micro-simulation results

Figure 3.2 shows the probability of different levels of potential revenue

change for every heifer in the herd attributable to increased LiMY, for various

herd level reductions in the prevalence of cows with SCC1 ≥ 400,000 cells/mL. 

For example there was 75% certainty of savings of at least €97, or €115 /heifer

calved into the herd, if the prevalence was reduced from ≥ 20%, to < 10%, or < 

5% respectively, and at least €71 /heifer calved into the herd if the prevalence

reduced from ≥ 10% to < 5% (Figure 3.2). Therefore for a herd that calves 20 

heifers /year; ≥ 4 of which have SCC1 ≥ 400,000 cells/mL, there would be 

75% certainty of saving at least €1,940 /year, if the number with SCC1 ≥ 

400,000 cells/mL could be reduced to ≤ 1. Table 3.4 gives savings in further 

scenarios, and at different levels of certainty for this example herd.

Figure 3.2. Micro-simulation over 10,000 simulations; minimum saving /heifer in the herd attributable to

increased lifetime milk yield associated with specific reductions in the herd level prevalence of parity 1

Iﾗ┘ゲ ┘ｷデｴ SCC д ヴヰヰがヰヰヰ IWﾉﾉゲっﾏL HWデ┘WWﾐ ヵ デﾗ ンヰ S;┞ゲ ｷﾐ ﾏｷﾉﾆ
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Table 3.4. Predictions for an example herd that calves 20 heifers /year; probability of annual savings

through increased lifetime milk yield associated with reductions in the number of primiparous cows with

SCC д ヴヰヰがヰヰヰ IWﾉﾉゲっﾏL HWデ┘WWﾐ ヵ ;ﾐS ンヰ S;┞ゲ ｷﾐ ﾏｷﾉﾆ 

Probability Change in number of parity 1 cows (/20)
≥ 4 to ≤ 1 ≥ 4 to 0 ≥ 2 to 0 

0.75   ≥ €1,940   ≥ €2,300   ≥ €1,060 
0.5   ≥ €2,100   ≥ €2,480   ≥ €1,560 
0.25   ≥ €2,280   ≥ €2,680   ≥ €1,680 

3.4 Discussion

This analysis in this chapter is the first to demonstrate large differences

in the LiMY of cows, depending on SCC early in the first lactation. The

median decrease in LiMY of 864 kg /unit increase in ln SCC early in the first

lactation (for example from 55,000 to 150,000 cells/mL, or 150,000 to 400,000

cells/mL), incorporated a milk loss of 105 kg in the first lactation. For

comparison, this is larger than the estimate made by De Vliegher et al. (2005a);

of approximately 47 kg within 365 days of the first calving /unit increase in ln

SCC at 5 to 14 DIM. Importantly, the analysis of De Vliegher et al. (2005a)

was conditional on cows surviving the first lactation, and hence showed the

milk loss in affected primiparous cows that survived; likely associated with

residual udder pathology, but excluding milk loss associated with premature

culling. Therefore, the potential decrease in LiMY was considerably more than

losses in the first lactation. This highlights the usefulness of using cumulative

measures of milk yield, rather than test day records alone; specifically to

account for how long cows actually remain productive, in addition to decreased

milk production per se. High SCC early in the first lactation has been

associated with premature culling of cows in both Irish (chapter 5), and

Belgian dairy herds (De Vliegher et al., 2005b), and this appears economically
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important, through an influence on LiMY, rather than through the additional

replacement costs incurred (chapter 5).

Gelman et al. (1996) have proposed that demonstrating the extent to

which models are useful, rather than absolute correctness is a rational approach

to model checking. Predictions of LiMY from the final model, for groups of

cows (based on SCC at 5 to 30 DIM) were shown to be reliable. This not only

demonstrated model fit, but that LiMY could also be predicted for cows from

separate herds, not used for model development, and therefore that the results

could be generalised to other Irish dairy herds, and justified the use of the

micro-simulation procedure (Figure 3.1). It was important in this research to

model LiMY, using only those parameters available by 30 DIM during parity

1; specifically to focus attention on potential ppp mastitis control measures for

heifers. In particular, adjustment was made for seasonal variation by including

month of first calving. The calving season for the majority of Irish dairy herds

is from January to April (chapter 2), to allow best use of pasture for milk

production. It can be hypothesised that calving earlier in spring allowed

optimal use of pasture (as herd energy requirements more closely matched feed

supply). Therefore, January calving heifers were possibly in better energy

balance, and easier to re-breed, increasing LiMY. A subset of Irish dairy herds

calves cows in autumn, to supply domestic winter milk; this could explain the

relatively high LiMY for heifers that calved in October, as such herds feed

more concentrates for higher milk yields. This system may be favourable for

first lactation milk yield. In contrast, spring-calving primiparous cows may not

have been able to make optimal use of pasture; particularly if stocking densities

were high, and they were competing with mature cows. The data indicate a
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trend for increased FLMY over time, and this could be due to improvements in

genetics and management. The trend for decrease in LiMY with increasing

year of first calving was likely due to time in the study.

The results of this chapter demonstrate that SCC1 is an economically

important predictor of future productivity; at the herd level this could provide

timely warning that interventions to improve management for ppp heifers are

required (Table 3.4). The udder health of ppp heifers appears important to the

Irish dairy industry, as the majority of herds (Table 3.1; 55%) have potential to

increase revenue through reduction in the prevalence of primiparous cows with

SCC1 ≥ 400,000 cells/mL. It was accepted in this research that not all ‘milk 

loss’ attributable to mastitis can be recovered; economic simulations have

focussed on achievable reductions in the prevalence of high SCC early in the

first lactation, based on observed values of herd prevalence (Table 3.1). With

all possible variability in parameters included in predictions, it is highly likely

there will be savings accrued in the majority of Irish dairy herds, through

improving udder health early in the first lactation (Figure 3.2, Table 3.4).

Additional increased revenue may be accrued through reduced incidence of

clinical mastitis, and decreased replacement costs and this has not been

included in the estimates. The savings presented do not account for the cost of

interventions to reduce the incidence of heifer mastitis; they should be

considered as ‘scope for investment’, and applied to aid decisions on how

much expenditure can be justified to control mastitis in ppp heifers (Green et

al., 2007b; 2008). Importantly for the simulated herd scenarios, it is very likely

that savings of at least €50 /heifer calved into the herd would be achieved

through reducing the prevalence of primiparous cows with high SCC1,
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although there appears to be upper limits on these savings (€140 /heifer calved

into the herd) for which the probability is close to 0, but the amount invested

ultimately depends on decision makers’ attitude to risk (Figure 3.2, Table 3.4).

This chapter therefore gives details on possible returns on investment,

assuming the target reduction is achieved.

Interventions are farm specific, but could aim to optimise the cleanliness

of ppp heifers (Compton et al., 2007a) through improvements to environmental

hygiene (De Vliegher et al., 2004b; Piepers et al., 2011). To aid decision

making in practice, it would be useful to know the probability of different

levels of revenue, associated with specific management interventions. This

would depend on knowing the likely impact of the intervention on the

prevalence of cows with SCC1 ≥ 400,000 cells/mL, and the intervention cost, 

and is explored further in chapter 7. For example, where ppp heifers are

housed, simply storing bedding materials inside rather than outside could

reduce the odds of high SCC within 30 days of calving by 21%, as occurred in

English and Welsh dairy herds (Green et al., 2008). The results from Green et

al. (2008) related to individual animals, and not the herd level prevalence;

however the intervention cost is unlikely to exceed potential savings for the

example herd (Table 3.4), and therefore could be cost effective if the

prevalence of cows with high SCC1 reduced. With permanent improvements to

farm infrastructure, savings may be ongoing, and accumulate as subsequent

cohorts of heifers calve. Despite knowledge of risk factors for heifer mastitis

(De Vliegher et al., 2012), information is lacking on the cost and efficacy of

specific interventions in terms of tangible outcomes for particular herds. This

information is important for the Irish dairy industry where herd expansion is
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anticipated. Investigation of differences in the management, and environment

of herds with varying prevalence of cows with high SCC early in the first

lactation under Irish conditions would be of use for identifying where herd

management changes should focus. Specific interventions could then be

suggested for further evaluation based on the potential savings shown.

3.5 Conclusions

This chapter demonstrated that for cows in Irish dairy herds, SCC

between 5 and 30 days in milk during parity 1 (SCC1) was negatively

associated with LiMY. For the majority of Irish dairy herds with ≥ 10% 

prevalence of cows with SCC1 ≥ 400,000 cells/mL, there are likely to be large 

savings associated with improving udder health for pre- and peri-partum

heifers.



66

Chapter 4: Association between somatic cell count early in

the first lactation and the cumulative milk yield of cows

in English andWelsh dairy herds

4.1 Introduction

Heifer mastitis has been recognised as a common problem of economic

importance throughout the developed dairy industry worldwide (De Vliegher et

al., 2012; Piepers et al., 2009). In chapter 3, the negative effect of elevated

somatic cell count between 5 and 30 days in milk during parity 1 (SCC1) on

the milk yield of Irish dairy cows persisted for their entire lifetime, and the

median decrease was 864 kg per unit increase in ln SCC1. This result

emphasised the importance of including milk production beyond the first

lactation to fully understand the true extent of accrued losses. Considering

impact on cumulative milk yield is therefore essential to evaluate the total cost

of high milk somatic cell count (SCC) early in the first lactation and aid

decision making around mastitis control measures for pre- and peri-partum

(ppp) heifers; this has not been evaluated for dairy herds in England and Wales.

The aim of this chapter was to assess the association between SCC1 and

cumulative milk yield over approximately 2 years for cows in English and

Welsh dairy herds, and to evaluate the economic impact of the results.



67

4.2 Materials andmethods

4.2.1 Data selection

English and Welsh dairy herds were selected according to the criteria

used by Madouasse (2009; chapter 2). To be eligible for inclusion, cows

required a first calving in 2004, followed by a record of SCC between 5 and 30

days in milk (DIM) during parity 1. There were 43,461 cows in 2,111 herds

(DATASET1) that met these criteria.

4.2.2 Data analysis

Cumulative milk yield for each cow lactation in DATASET1 was

calculated using the test interval method (ICAR, 2011), and these were

summed to give an estimate of cumulative milk yield for each cow from the

date of first calving in 2004 until the end of the study period on 31 December

2006. For the selected cows, ‘survival time’ was estimated as the number of

days between a first calving date in 2004, and their last recording date. Cows

were censored, if present at the final available recording date for their

respective herd; otherwise it was assumed that disposal occurred at the last

recording date for each cow. Kaplan-Meier survival curves were plotted using

R (R-Development-Core-Team, 2010), and summary statistics produced for

cows stratified by SCC1 (SCC1_gp; 1; < 55,000 cells/mL, 2; 55,000 to

149,000 cells/mL, 3; 150,000  to 400,000 cells/mL, 4; ≥ 400,000 cells/mL).  

4.2.3 Model development

The outcome of interest was the cumulative milk yield (yij), for the ith

cow, in the jth herd. The random effects model used for analysis took the form;
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yij = g+Xij く1 + Xj く2 + uj+ eij ,

uj ~ Normal (0, j2
u),

eij ~ Normal (0, j2
e),

where g = intercept value, Xij= matrix of exposure variables for each cow, く1 =

vector of coefficients for Xij, Xj= matrix of exposure variables for each herd,

く2 = vector of coefficients for Xj, uj = a random effect to account for residual

variation between herds (assumed to be normally distributed with mean = 0,

and variance = j2
u), and eij = residual cow level error (assumed to be normally

distributed with mean = 0, and variance = j2
e). SCC1 was included on a (ln)

linear scale. Potential confounding variables available by 30 DIM during parity

1 were investigated for inclusion; specifically to account for variables known at

this time that influence the relationship between SCC1 and cumulative milk

yield. Therefore, DIM at the first recording (polynomial terms), and month of

first calving (categorical terms) were the only confounding variables

investigated. Biologically plausible interactions, and herd level random slopes

(herd x fixed effect interactions) were assessed. Initial model exploration was

conducted in MLwiN 2.22 (Rasbash et al., 2009), using the iterative

generalized least squares procedure (Goldstein, 2003). To facilitate Bayesian

posterior predictions from the model that incorporated all uncertainty in

parameters, the model was further developed in WinBUGS 1.4.3 (Lunn et al.,

2000). Parameters were estimated from 10,000 Markov chain Monte Carlo

(MCMC) simulations, following a burn in of 1,000 simulations during which

time chain convergence had occurred. This was assessed by inspection of 3

chains run in parallel to ensure a stationary distribution had been reached
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(Gilks et al., 1996). Vague prior distributions were used for j-2
u ~ Gamma

(0.001, 0.001), j-2
e ~ Gamma (0.001, 0.001), and く ~ Normal (0, 106), to give

the major influence to the data in the estimation of parameters (Green et al.,

2004). Distributions of covariates, and interaction terms were inspected, and

these remained in the final model based on biological plausibility, and only if

the 95% Bayesian credible interval (BCI) excluded 0. Sensitivity of the results

to prior distributions for the herd level random effect variance (Spiegelhalter et

al., 2004) was evaluated by repeating simulations using the prior; j2
u ~

Uniform (10-7, 107).

4.2.4 Model checking

The posterior distribution of the mean residual was inspected to

determine if the 95% BCI included 0, suggesting adequate model fit. Based on

the methods proposed by Gelman and others (1996), model fit and usefulness

were evaluated using fixed and random effects to predict the cumulative milk

yield for each cow (y.predij) as follows;

y.predij ~ p(y.predij | く, DATASET1, uj),

where p represents a conditional probability distribution, y.predij are posterior

predictions of cumulative milk yield for the ith cow in the jth herd in

DATASET1, く is the vector of final model coefficient distributions, uj is the

random effect for the jth herd. Mean cumulative milk yield was predicted for

cows categorised by SCC1_gp; these categories were not used in the final

model. Posterior predicted distributions of mean cumulative milk yield for

cows in these groups were inspected to determine it the observed mean

cumulative milk yields were within the 95% BCI of the posterior predictions,
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indicating the extent of model usefulness for predictions based on SCC1

(Gelman et al., 1996).

4.2.5 Micro-simulation

The Bayesian model was extended and run simultaneously with a 1-step

micro-simulation of cumulative milk yield for 1,000 theoretical cows, in herds

with ≥ 10%, and ≥ 20% prevalence of cows with SCC1 ≥ 400,000 cells/mL (as 

in chapter 3). Herds in DATASET1 had a prevalence of cows with SCC1 ≥ 

400,000 cells/mL up to 100% (with 1 eligible cow), although < 1% of herds

had > 40% prevalence of cows with SCC1 ≥ 400,000 cells/mL. For each cow, 

simulated values for ln SCC1 were drawn from normal distributions

determined from DATASET1 for herds grouped by prevalence of cows with

SCC1 ≥ 400,000 cells/mL (Table 4.1). It was assumed that for herds with ≥ 

10% prevalence of cows with SCC1 ≥ 400,000 cells/mL this reduced this to < 

5%, and for herds with ≥ 20% prevalence of cows with SCC1 ≥ 400,000 

cells/mL this reduced to < 5%, or < 10%, in order to evaluate the impact of

achievable reductions in the prevalence of cows with SCC1 ≥ 400,000 cells/mL 

on cumulative milk yield at herd level (Table 4.1). For a straight forward

comparison between different herd scenarios, all simulated cows had a first

calving date in February 2004. At each of 10,000 MCMC simulations

(following a burn in of 1,000 simulations), final model coefficients were used

alongside data from the theoretical cows to generate predictions of cumulative

milk yield for the ith cow in the jth herd (y.predij);

y.predij ~ p(y.predij| く, Xsim),
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where く is the vector of final model coefficient distributions, and Xsim is a

matrix of data for simulated cows, including a simulated value for ln SCC1,

based on the herd level prevalence of cows with SCC1 ≥ 400,000 cells/mL 

(Table 4.1), and indicator variables to denote a first calving in February 2004.

An example of the model code is given in the appendix.

Table 4.1. Frequency of 2,111 English and Welsh dairy herds categorised by prevalence of cows with

SCC1
33 д ヴヰヰがヰヰヰ IWﾉﾉゲっﾏLが ;ﾐS ﾏW;ﾐ ;ﾐS ふ┗;ヴｷ;ﾐIWぶ aﾗヴ ﾉﾐ34

SCC1 for 43,461 parity 1 cows in these herds

 Herd level prevalence of cows with SCC1 ≥ 400,000 
cells/mL

≥ 10% ≥ 20% < 5% < 10% 
Percentage of

herds
42% 12% 33% 58%

ln SCC1 4.59 (1.75) 4.93 (2.08) 4.00 (0.83) 4.13 (1.05)

33 First test day milk somatic cell count record between 5 and 30 days in milk during parity 1.
34
Natural logarithm of.

4.2.6 Change in revenue from cumulative milk yield

At each simulation, mean cumulative milk yield for cows in each herd

scenario was predicted. Differences in mean cumulative milk yield associated

with changes in the herd level prevalence of cows with SCC1 ≥ 400,000 

cells/mL were multiplied by an estimated mean gross margin (Milk price –

variable costs of production) of £0.20 /L (Kingsay dairy costings, United

Kingdom, personal communication) to give the estimated difference in

revenue. Posterior distributions of predicted savings /heifer calved into the herd

were plotted as a cumulative frequency distribution to show the probability of

different levels of financial return that should be expected by reducing the

prevalence of cows with SCC1 ≥ 400,000 cells/mL. 



72

4.3 Results

4.3.1 Descriptive results

Summary statistics for variables in the dataset are shown in Table 4.2.

Cumulative milk yield decreased from 16.9 (interquartile range (IQR); 12.2 to

20.4) tonnes for cows with SCC1 < 55,000 cells/mL, to 15.8 (IQR; 8.9 to 19.8)

tonnes for cows with SCC1 > 400,000 cells/mL. Overall, the median survival

time was 791 (IQR; 607 to 888) days. No cows were censored within 700 days

of a first calving in 2004. Median survival time decreased from 796 (IQR; 660

to 883) days for cows with SCC1 < 55,000 cells/mL, to 767 (IQR; 432 to 882)

days for cows with SCC1 > 400,000 cells/mL (Table 4.2, Figure 4.1). The

overall median time in the study was 874 (IQR; 813 to 971) days. Median time

in the study varied from 868 (IQR; 812 to 959) days for cows with SCC1 <

55,000 cells/mL, to 881 (IQR; 814 to 979) for cows with SCC1 150,000

cells/mL to 400,000 cells/mL (Table 4.2).
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Table 4.2. Descriptive results for 43,461 eligible cows
35
in 2,111 English and Welsh dairy herds

Group Variable Median (interquartile
range)

SCC136 < 55,000
cells/mL

Cumulative milk yield37 (tonne) 16.9 (12.2 to 20.4)

Survival time38 (days) 796 (660 to 883)

Time in study39 (days) 868 (812 to 959)

SCC1 (‘000 cells/mL) 31 (22 to 42)

Number of cows 19,462

SCC1 55,000 to 149,000
cells/mL

Cumulative milk yield (tonne) 16.5 (11.5 to 20.3)

Survival time (days) 796 (614 to 892)

Time in study (days) 880 (815 to 974)

SCC1 (‘000 cells/mL) 83 (67 to 109)

Number of cows 13,878

SCC1 150,000 to
400,000 cells/mL

Cumulative milk yield (tonne) 16.3 (10.6 to 20.2)

Survival time (days) 782 (534 to 887)

Time in study (days) 881 (814 to 979)

SCC1 (‘000 cells/mL) 221 (177 to 284)

Number of cows 5,889

SCC1 > 400,000
cells/mL

Cumulative milk yield (tonne) 15.8 (8.9 to 19.8)

Survival time (days) 767 (432 to 882)

Time in study (days) 879 (805 to 997)

SCC1 (‘000 cells/mL) 845 (553 to 1,577)

Number of cows 4,232

35 Cows with an SCC record between 5 and 30 DIM during parity 1 during 2004.
36 SCC between 5 and 30 DIM during parity 1.
37 Estimated total milk yield from date of first calving to date of last recording up to 31 December 2006.
38 Number of days from date of first calving to date of last recording on or before 31 December 2006.
39 Number of days from date of first calving to 31 December 2006.
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Figure 4.1. Kaplan-Meier survival curves
40
for cows in 2,111 English and Welsh dairy herds grouped by

somatic cell count between 5 and 30 days in milk during parity 1

40 Cows were censored if present at the last available recording date for their respective herd.

4.3.2 Model results

The final model is presented in Table 4.3. Cows that calved in January

2004, with mean ln SCC1 (4.33) were the baseline for comparison. Cows that

calved from February to December 2004 had lower cumulative milk yields by

the end of the study period. Having accounted for month of calving (which also

adjusted for time in the study), a unit increase in ln SCC1 (for example from

55,000 to 150,000 cells/mL, or 150,000 to 400,000 cells/mL) was associated

with a median decrease in cumulative milk yield of 482 kg (95% BCI 431 to

534) over a median of 868 days (IQR; 812 to 959) in the study.
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Table 4.3. Bayesian credible intervals from 10,000 simulations of the final model; outcome cow level

cumulative milk yield (kg)

Exposure (baseline) Lower 2.5% Median Upper 97.5%

Intercept 17,740 17,980 18,230

ln41 SCC142 (4.33) -534 -482 -431

Month of first calving (January) February -813 -485 -175

March -1,367 -1,020 -676

April -1,901 -1,526 -1,153

May -1,916 -1,565 -1,218

June -2,478 -2,167 -1,858

July -2,610 -2,310 -2,019

August -3,308 -3,017 -2,732

September -3,633 -3,345 -3,064

October -4,240 -3,960 -3,676

November -4,625 -4,336 -4,045

December -5,270 -4,957 -4,636

Random effects standard deviation: Lower 2.5% Median Upper 97.5%

Cow level 6,173 6,215 6,286

Herd level 2,534 2,641 2,747

41 Natural logarithm.
42 First test day SCC record at 5 to 30 DIM during parity 1 (‘000 cells/mL).

4.3.3 Model checking

The posterior distribution of the mean residual was normal and included

0 kg (95% BCI -82 to 83), indicating the model fitted the data on which it was

developed. Predictions of cumulative milk yield for cows in DATASET1,

aggregated by SCC1 group also indicated good fit, and hence that the model

was suitable for predictions in these herds (Figure 4.2). There was < 0.5%

difference in the median, and 95% BCI limits of the ln SCC1 coefficient

distribution when a uniform prior distribution for the herd level random effect

variance was used, and this had no substantive impact on model interpretation.
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Figure 4.2. Model predictions of cumulative milk yield
43
from 10,000 simulations, and observed values in

2,111 English and Welsh dairy herds, for cows grouped by SCC at 5 to 30 days in milk during parity1

(SCC1)
44

43 From date of first calving in 2004 to date of last recording up to December 31, 2006.
44 Group 1; < 55,000 /mL, group 2; 55,000 to 149,000 /mL, group 3; 150,000 to 400,000 /mL, group 4; ≥ 400,000 /mL. 

4.3.4 Micro-simulation results

Figure 4.3 shows the estimated probability of different levels of potential

saving attributable to increased cumulative milk yield for various herd level

reductions in the prevalence of cows with SCC1 ≥ 400,000 cells/mL. For 

example there was 75% certainty of saving at least £73, or £85 /heifer calved

into the herd over approximately 2 years, if the prevalence of cows with SCC1

≥ 400,000 cells/mL reduced from ≥ 20%, to < 10%, or < 5% respectively, and 

at least £53 /heifer calved into the herd over approximately 2 years if the

prevalence of cows with SCC1 ≥ 400,000 cells/mL reduced from ≥ 10% to < 

5% (Figure 4.3). Therefore, for a herd that calves 20 heifers /year; ≥ 4 (≥ 20%) 

of which have SCC1 ≥ 400,000 cells/mL, there is 75% certainty of saving at 
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least £1,460 /year, if the number of heifers with SCC1 ≥ 400,000 cells/mL 

were reduced to ≤ 1 (≤ 10%) /year. Table 4.4 gives cost savings in further 

scenarios, and at different levels of certainty for this example herd.

Figure 4.3. Micro-simulation over 10,000 simulations; minimum saving per heifer calved into the herd

attributable to increased cumulative milk yield
45
associated with reduction in the herd level prevalence

of parity 1 cows with SCC
46 д ヴヰヰがヰヰヰ IWﾉﾉゲっﾏL HWデ┘WWﾐ ヵ ;ﾐS ンヰ S;┞ゲ ｷﾐ ﾏｷﾉﾆ S┌ヴｷﾐｪ ヮ;ヴｷデ┞ ヱ

45 From date of first calving in 2004 to date of last recording up to December 31, 2006.
46 Milk somatic cell count.

Table 4.4. Predictions for an example herd that calves 20 heifers /year; probability of annual savings

through increased cumulative milk yield
47
associated with reductions in the number of parity 1 cows

with SCC
48 д ヴヰヰがヰヰヰ IWﾉﾉゲっﾏL HWデ┘WWﾐ ヵ ;ﾐS ンヰ DIM 

Probability Change in number (/20) and proportion of parity 1 cows
≥ 4 to ≤ 1  
≥ 20% to ≤ 10%  

≥ 4 to 0  
≥ 20% to ≤ 5% 

≥ 2 to 0  
≥ 10% to ≤ 5% 

0.75 ≥ £1,460 ≥ £1,700 ≥ £1,060 
0.5 ≥ £1,540 ≥ £1,800 ≥ £1,140 
0.25 ≥ £1,640 ≥ £1,900 ≥ £1,220 

47 Over approximately 2 years.
48 Milk somatic cell count.
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4.4 Discussion

Important losses in lifetime milk yield associated with SCC between 5

and 30 DIM (SCC1) for cows in Irish dairy herds were identified in chapter 3.

In this chapter, differences in the milk yield of cows in English and Welsh

dairy herds associated with changes in SCC1 were also identified. Measures of

cumulative milk yield were different between these studies, however the

magnitude of losses are comparable. Unit increase in ln SCC1 in both studies

was associated with a 3% decrease in cumulative milk yield over

approximately 2 years, assuming proportional losses over time. The estimated

impact of SCC1 on cumulative milk yield for cows in English, and Welsh

herds over 1 year (482 kg /2 years) was 5 times larger than an estimate of milk

loss in Belgian cows of around 47 kg over 365 day /unit increase in ln SCC

shortly after the first calving (De Vliegher et al., 2005a). As discussed in

chapter 3, the analysis of De Vliegher et al. (2005a) included only cows that

survived the first lactation, and excluded cows that were culled. Therefore the

estimated milk loss is likely to be an underestimate of the true effect.

Cumulative milk yield is a composite of both decreased milk yield while alive,

and decreased longevity to give a realistic estimate of milk loss at cow level.

Decreased milk yield attributable to high SCC between 5 and 30 DIM during

parity 1 extended into subsequent lactations (as in chapter 3) and was

associated with a decrease in survival time as in chapters 5, and in previous

research (De Vliegher et al., 2005b).

In order to focus attention on the potential impact of mastitis control

measures for ppp heifers, only parameters available by 30 DIM during parity 1
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were used to model the cumulative milk yield of cows, and this could be

predicted by including SCC1. At herd level, the requirement for interventions

to improve the management of ppp heifers could therefore be based on the

prevalence of cows with high SCC1 (Table 4.4). The simulated reductions in

the herd level prevalence of cows with high SCC1 were based on observed data

(Table 4.1), and therefore realistically achievable in practice. Changes in

cumulative milk yield at the herd level, show that savings are very likely for

42% of English and Welsh herds with ≥ 10% prevalence of cows with SCC1 ≥ 

400,000 cells/mL (Table 4.1), if this prevalence could be reduced, although

upper limits on potential savings were identified (Figure 4.3, Table 4.4).

Investment in control measures for heifer mastitis depends on many factors,

such as the decision makers’ financial situation, willingness to pay, and attitude

to risk (Figure 4.3, Table 4.4). Assuming target reductions in the prevalence of

cows with high SCC1 can be achieved, this chapter gives details on possible

‘scope for investment’.

The savings presented do not include the costs of interventions, and they

should be applied to inform decisions on rational expenditure to control

mastitis in ppp heifers (Green et al., 2007b; 2008). Risk factors for heifer

mastitis have been identified (De Vliegher et al., 2012), however the relative

cost and efficacy of specific interventions on different farms to reduce the

prevalence of cows with high SCC early in the first lactation is unknown. This

information would be important to offset against the savings reported here, to

assess the cost effectiveness of interventions to control heifer mastitis. For

example, implementing a system of pasture rotation for pre-partum heifers and

dry cows kept at grass (allowing ≥ 4 weeks rest between grazing sessions of ≤ 
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2 weeks), reduced the odds of clinical mastitis, and high SCC within 30 days of

calving by 68%, and 46% respectively in 52 English and Welsh dairy herds

(Green et al., 2007a; 2008), but these results relate to individual animals, and

not herd level prevalence. However the cost (for example in fencing materials)

is unlikely to exceed potential savings (Figure 4.3, Table 4.4). Therefore the

intervention could be cost effective, if the prevalence of cows with high SCC in

early lactation reduced sufficiently. Ongoing savings can be expected for

subsequent cohorts of heifers calved into the herd if permanent changes to farm

infrastructure are made (for example improved field access, and water supply),

assuming target prevalence levels for high SCC early in the first lactation are

maintained. Additional savings may be accrued through reduced incidence of

clinical mastitis and replacement costs that have not been considered, however

the economic impact of the latter is expected to be small (chapter 5). Further

research is needed into possible interventions, and knowledge of differences in

the management, and environment of herds with varying prevalence of cows

with high SCC early in the first lactation would be of use in formulating

advice. In addition, there may have been further losses in milk production

beyond the time period considered in this research (chapters 3 and 6), and this

could make control of heifer mastitis even more economically favourable.
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4.5 Conclusion

This chapter demonstrated that for cows in English and Welsh dairy

herds, SCC between 5 and 30 DIM during parity 1 (SCC1) was negatively

associated with cumulative milk yield over approximately 2 years. For dairy

herds in England and Wales with ≥ 10% prevalence of cows with SCC1 ≥ 

400,000 cells/mL, there are likely to be financial savings associated with

improving the udder health of pre- and peri-partum heifers.
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Chapter 5: Association between somatic cell count early in

the first lactation and the longevity of cows in Irish

dairy herds

5.1 Introduction

Mastitis is well recognized as a costly disease of dairy cows, with losses

accrued mainly from decreased milk production, and discarded milk

(Kossaibati and Esslemont, 1997). However, mastitis has also been associated

with reduced longevity (Beaudeau et al., 1993; Seegers et al., 1998), and this

has been estimated as the next biggest cost (Heikkilä et al., 2012; Huijps et al.,

2008). Further losses such as the cost of drugs, veterinary services, diagnostic

costs, labour, decreased milk quality, capital investments, and impact on other

diseases (Halasa et al., 2007) are typically less, but may be important for

particular herds (Huijps et al., 2008). Premature disposal is of particular

relevance for heifers that develop mastitis (Heikkilä et al., 2012), as they must

typically reach the second lactation to produce sufficient milk to break even on

rearing costs (chapter 3). Increased longevity of cows reduces demand for

replacement heifers giving economic benefits at the farm level, such as the

opportunity costs of producing more beef calves, selling surplus heifers,

increasing the size of the milking herd, or leasing resources. Alternatively, a

surplus of replacement heifers creates the opportunity for increased voluntary

culling, and selective breeding to improve the genetic merit of the herd.

Premature culling in the first lactation has been associated with IMI at

calving in pasture-based herds in New Zealand (Compton et al., 2007b). In

Belgian herds, first lactation culling hazard increased by 11% per unit increase

in the natural logarithm of (ln) somatic cell count (SCC) for primiparous cows
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at 5 to 14 days in milk (DIM), and by 32% when only culling for udder health

reasons were considered (De Vliegher et al., 2005b). However, the impact of

SCC early in the first lactation on lifetime survival has not been evaluated and

this is important because the full repercussions of IMI in early life may not

become evident until later in life (chapter 3). As heifers make up the largest

parity group in many Irish herds (ICBF, 2011), especially following expansion

(a trend that may continue in anticipation of the abolition of European Union

milk quotas in 2015), understanding the repercussions of heifer IMI is of

particular importance.

The aim of this chapter was to assess the association between SCC1, and

survival over a 5 year period for cows in Irish dairy herds. A Bayesian

approach was taken, and posterior predictions were used to evaluate the

magnitude, and financial relevance of this effect, in the context of particular

herd scenarios.
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5.2 Materials andmethods

5.2.1 Data selection

To be eligible for inclusion in the analysis, cows in Irish dairy herds

required at least one SCC recording between 5 and 30 DIM during parity 1;

233,176 cows in 7,423 herds were included (DAT), as used in chapter 3. Two

random samples of 1,000 of these herds were taken, and all records for eligible

cows were extracted using R (R-Development-Core-Team, 2010). Not all herds

sampled had dates of birth available for cows. For those that did, minimum age

at first calving (AFC) was 371 days. Heifers with AFC < 700 days were

deemed at increased risk of culling independent of SCC1 because of dystocia

(Berry and Cromie, 2009), and individual cows with AFC < 700 days (6% of

the total population) were discarded to remove this effect. Following selection

there were 147,458 records from 7,537 cows in 812 herds in the first sample

dataset (sample_1), used for model development, and 144,113 records from

7,353 cows in 808 herds in the second (sample_2), used for cross validation.

5.2.2 Definition of disposal

Survival time was estimated as the number of days between the dates of

first calving and the last recording, and was aggregated into 50 day intervals.

Disposal (death or culling) was assumed to occur in the last 50 day interval for

each cow, in the absence of censoring. In survival analysis, censoring accounts

for those cows in the dataset for which disposal (the event of interest) may

occur when not under observation. This allows them to contribute to the

denominator population at risk during the study period (Dohoo et al., 2009).

There were 3 reasons for censoring in this analysis. Firstly, this related to the
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dataset structure; disposal is a terminal event, and could only occur in the last

50 day interval for each cow, therefore censoring occurred in every interval

survived until the last. Secondly, cows were censored at the last 50 day

interval, if identified at a later time in other herds (assumed sold). Thirdly,

cows were censored at the last 50 day interval if they were present at the last

available test date for the respective herd. Median and interquartile range (IQR)

for variables in sample_1, and sample_2 were determined.

5.2.3 Model development

Cow disposal was coded as a binary outcome. The discrete time logistic

survival model used for analysis took the form;

disposedijk ~ Bernoulli (probability = ヾijk),

logit (ヾijk) = g+ intijk + intijk
2 + intijk

3 +Xijk く1 + Xjk く2+ Xk く3 + vk + ujk,

vk ~ Normal (0, j2
v),

ujk ~ Normal (0, j2
u),

where the subscripts i, j, and k denote the ith 50 day interval, for jth cow, in the

kth herd respectively, g = intercept value, int = 50 day interval numbered from 

first calving (included on a ln scale centred on the mean interval number), Xijk

= matrix of exposure variables for each interval, く1 = vector of coefficients for

Xijk, Xjk= matrix of exposure variables for each cow, く2 = vector of

coefficients for Xjk, Xk= matrix of exposure variables for each herd, く3 =

vector of coefficients for Xk, vk = random effect to account for residual

variation between herds (assumed to be a normal distribution with mean = 0

and variance j2
v), ujl = random effect to account for residual variation between
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cows (assumed to be a normal distribution with mean 0 and variance j2
u).

Covariates tested in the model were ln SCC1, together with milk, fat and

protein proportions recorded between 5 and 30 DIM in parity 1 (TDY1, TDF1,

and TDP1 respectively); these continuous variables were centred on their mean

value. DIM at the first recording was also tested, and this was centred on 5

DIM. Month and year of first calving, and month of final recording were

investigated as categorical variables.

Time-varying covariates are those that can take different values

depending on the 50 day interval they refer to for a particular cow, and are an

important consideration in survival analyses (Gröhn et al., 1997). To

investigate the impact of time-varying covariates on disposal from the herd,

categorical variables were constructed such that missing values in particular 50

day intervals could be included as categories, to maintain the structure of the

dataset, and hence represent time at risk of disposal for each cow. Lagged time-

varying covariates from the 2 previous 50 day intervals were investigated for

inclusion in the model. The time-varying covariates were; SCC group (1; <

55,000 cells/mL, 2, 55,000 to 147,000 cells/mL  3; ≥ 148,000 cells/mL, and 

missing), TDY group (1; < 20 kg, 2; 20 to < 30 kg, 3; ≥ 30 kg, and missing), 

and DIM group (1; < 100 d, 2; 100 to 199 d, 3; 200 to 399 d, 4; > 399 d, and

missing).

To avoid biased parameters associated with likelihood methods (Browne

and Draper, 2006), the final model was estimated in WinBUGS 1.4.3 (Lunn et

al., 2000), using 10,000 Markov chain Monte Carlo (MCMC) simulations for

parameter estimation, following a burn in of 1,000 MCMC simulations during

which time chain convergence occurred. Initial values for all covariates were
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generated in MLwiN 2.22 using penalised quasi-likelihood (Rasbash et al.,

2009).  Vague prior distributions were used for j-2
v ~ Gamma (0.001, 0.001),

j-2
u ~ Gamma (0.001, 0.001), and く ~ Normal (0, 106), which meant the data

had overriding influence for estimation of parameters (Green et al., 2004).

Covariates and interaction terms were selected based on biological plausibility,

and when the 95% Bayesian credible interval (BCI) for the posterior odds ratio

distribution excluded 1. Sensitivity of the results to prior distributions for the

random effect variances (Spiegelhalter et al., 2004) was evaluated by repeating

simulations using the following priors; j2
v ~ Uniform (10-6, 106), and j2

u ~

Uniform (10-6, 106).

5.2.4 Model assessment

In order to assess model fit (Green et al., 2009), and usefulness (Gelman

et al., 1996), posterior predicted distributions of disposal risk for sub-sets of

cows from sample_1 and sample_2, were generated during the MCMC

simulation. The posterior predictive binomial distribution for the occurrence of

disposal in each interval for each cow (yijk) can be summarized as;

yijk ~ p(yijk| く, sample_1, vk, ujk),

where p represents a conditional probability distribution, く is the vector of

coefficient distributions, sample_1 is the data in the first sample dataset, vk and

ujk are conditional probability distributions;

vk ~ p(vk| j2
v),

ujk ~ p(ujk| j2
u),
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and j2
v, and j2

u, are posterior predictive distributions for herd, and cow level

random effect variances respectively. To assess model fit, the sub-sets of

sample_1 used for posterior predictions were data relating to parameters from

the final model; 50 day interval from first calving, calendar month of first

calving, and calendar month of last recording. To assess model usefulness, the

sub-sets of sample_1 used for posterior predictions were data that were not

used for parameter estimation in the final model, these were; SCC1 group (1; <

50,000 /mL, 2; 50,000 to 99,000 /mL, 3; 100,000  to 164,000 /mL, 4; ≥ 

164,000 /mL), estimated bulk milk SCC (BMSCC) group (geometric mean

BMSCC estimated from all cow test day SCC records available for each herd,

weighted by all TDY records in the full dataset; 1; < 200,000 /mL, 2; 200,000

/mL to 249,000 /mL, 3; 250,000 /mL to 399,000 /mL, 4; > 399,000 /mL), and

AFC group (1; < 730 days, 2; 730 to 759 days, 3; 760 to 849 days, 4; > 849

days). To investigate whether results could potentially be generalised to other

Irish herds, prediction of the conditional binomial distribution for the

occurrence of disposal (yijk
xval), for cows in sub-sets based on SCC1 and

BMSCC in sample_2, were made thus;

yijk
xval ~ p(yijk

xval | く, sample_2),

where く is the vector of coefficient distributions, and sample_2 is the data in

the second sample dataset, which was not used for estimating parameters in the

final model.

5.2.5 Micro-simulation of herd scenarios

To illustrate the impact of SCC1 on survival at herd level, and to

demonstrate financial relevance micro-simulation was used as in chapters 3 and
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4. Therefore, the Bayesian model was extended to include a one-step micro-

simulation of disposal risk for 1,000 theoretical cows with different

characteristics, in herds with ≥ 10%, or ≥ 20% initial prevalence of cows with 

SCC1 ≥ 400,000 cells/mL. Initial herd level prevalence group cut offs were 

selected based on the observed distributions of cows with SCC1 ≥ 400,000 

cells/mL in DAT (Table 5.1), and data from the first milk recording at 5 to 30

DIM for heifers in these groups were simulated from normal distributions

determined from DAT (Table 5.1). Scenarios were used such that for herds

with ≥ 10% of cows with SCC1 ≥ 400,000 cells /mL this was reduced this to < 

5%, and for herds with ≥ 20% of cows with SCC1 ≥ 400,000 cells/mL this was 

reduced to < 5%, or < 10%. To model these changes, distributions for ln SCC1

were used as shown in Table 5.1. Distributions for TDY1, and TDF1 remained

unchanged in order to demonstrate solely the impact on disposal risk of

achievable reductions in the herd level prevalence of cows with SCC1 ≥ 

400,000 cells/mL. For a straight forward comparison between different herd

scenarios, all simulated heifers had a first calving in February aged 24 months,

and a final recording in December. The conditional predicted binomial

distribution for the occurrence of disposal (predij), in each 50 day interval (i),

for each cow (j) was;

predij ~ p(predij| く, Xsim),

where く is the vector of coefficient distributions in the final model, and Xsim is

a matrix of simulated exposure variables for the cows; which included ln

SCC1, TDY1, and TDF1 that were drawn from the distributions in Table 5.1,

50 day interval, month of last recording, and DIM category. Risk of disposal

from the herd within the 350, 700, 1,050, 1,400, and 1,750 days after first
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calving was calculated from the conditional probability of each cow surviving

subsequent 50 day intervals, thus;

n

j ij

i 1

disposal risk within n 50 day intervals = 1 ( 1 pred ),


 

where predij is the probability of disposal in the ith interval for the jth cow. An

example of this calculation is given in Figure 5.1 for disposal risk within 350

days from first calving (n = 7). The calculated disposal risk for each cow (j)

was then used to draw from a Bernoulli distribution if each cow would be

disposed (as a binary outcome) within n 50 day intervals (i) from first calving,

thus;

disposed within n intervalsj ~ Bernoulli (probability =
n

ij

i 1

1 ( 1 pred )


  ).

The difference in the number of cows disposed over time in the simulated

herds following reductions in the prevalence of cows with SCC1 ≥ 400,000 

cells/mL was multiplied by a replacement cost of €1,451 /cow (Kennedy et al.,

2011) to give an estimated reduction in herd disposal cost attributable to

changes in herd level prevalence of cows with SCC1 ≥ 400,000 cells/mL, and 

this was expressed as the cost (€) /heifer calved in the herd. Following 10,000

MCMC simulations, the posterior probabilities of magnitudes of saving within

1,750 days of first calving were plotted as a cumulative frequency distribution

to illustrate the likelihood of different cost benefits. The posterior probability

(Bayesian p value (Gelman et al., 1995)) that disposal risk was higher for cows

in herds with ≥ 20% initial prevalence of cows with SCC1 ≥ 400,000 cells/mL, 
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compared to the same herds following reduction in prevalence to < 5% was

determined.

5.2.6 Micro-simulation of baseline disposal risk

In order to aid interpretation, the impact of SCC1 on disposal risk was

investigated on a continuous scale with ln SCC1SIM defined as uniform (0, 9.2),

to include the full range of possible values. Predictions were based on draws

from this distribution for baseline cows (base; February calving, AFC = 24

months, last recording in December, < 100 DIM, TDY1; 23 kg/d, TDF1; 0.04,

at 450 to 500 days from first calving), thus;

base ~ p(base| く, XSIM2),

where p represents a conditional probability distribution, く is the vector of

coefficient distributions, and XSIM2 is a matrix of data for the simulated cows.

Simulations were repeated for groups of cows that were 100 to 199, and 200 to

304 DIM. Regression lines were estimated for the posterior relationship

between ln SCC1SIM, and risk of disposal in each group. Examples of the

model code are given in the appendix.
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Table 5.1. Frequency of 7,423 Irish herds categorised by prevalence of cows with SCC1
49 д ヴヰヰがヰヰヰ 

cells/mL, and mean and (variance) for normally distributed variables measured at 5 to 30 days in milk in

233,176 parity 1 cows in these herds; values were used to simulate economic impact of herd level

ヴWS┌Iデｷﾗﾐゲ ｷﾐ デｴW ヮヴW┗;ﾉWﾐIW ﾗa Iﾗ┘ゲ ┘ｷデｴ SCCヱ д ヴヰヰがヰヰヰ IWﾉﾉゲっﾏL 

 Herd level prevalence of cows with SCC1 ≥ 400,000 cells/mL 

 ≥ 10% ≥ 20% < 5% < 10% 
Percentage of

herds
55% 19% 25% 45%

SCC1
50

(cells/mL)
120,000 170,000 71,000 81,000

ln SCC1 4.79 (1.52) 5.11 (1.78) 4.26 (0.80) 4.39 (1.04)

Milk1
51

22.4 (30.0) 21.6 (32.3)
Unchanged

Fat1
52

0.041 (0.00007)

49 First test day somatic cell count record between 5 and 30 days in milk during parity 1.
50 Geometric mean.
51 First test day milk yield record (kg) between 5 and 30 days in milk during parity 1.
52First test day fat record (proportion) between 5 and 30 days in milk during parity 1.
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Figure 5.1. Diagram to represent calculation of the probability
53
of cow disposal within 350 days (d) from

first calving
54

53 Probability of disposal in the ith interval for the jth cow = predij.
54 Probability of disposal within 350 days from first calving = 1 – (probability of surviving 350 days).

First calving

Survive 50 d

Disposed

pred1j

1- pred1j

Survive 100 d

Disposed

pred2j

1- pred2j

Survive 150 d

Disposed

pred4j
1- pred3j

Survive 200 d

Disposed

pred5j

1- pred4j

Survive 250 d

Disposed

pred6j

1- pred5j

Survive 300 d

Disposed

pred7j

1- pred6j

Survive 350 d

Disposed

pred3j

1- pred7j
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5.3 Results

5.3.1 Descriptive results

Descriptive statistics for sample_1 and sample_2 were similar (Table

5.2). In sample_1, median (IQR) SCC1 was 86,000 (51,000 to 172,000)

cells/mL, and 54% of cows were disposed of during the study period after a

median (IQR) time at risk of 3.7 (2.8 to 4.5) years. Distributions of SCC1, time

at risk, and AFC were right skewed. Distributions of other variables from the

first recording (TDY1, TDF1, and TDP1) were normal. Four per cent of cows

moved to other herds and were censored.

Table 5.2. Descriptive statistics for cows with a recording 5 to 30 days in milk from first calving in

random samples of 812, and 808 Irish dairy herds
55

812 herds used for model
56

development

808 herds used for cross
validation of model

Number of cows 7,537 7,353

Number of cows disposed 4,101 3,944
Median month of first

calving (IQR
57
)

April 2005 (February 2005 to

February 2006)

April 2005 (February 2005 to
February 2006)

Median age at first calving

(IQR)

2.1 (2.0 to 2.3) years 2.1 (2.0 to 2.4) years

Median SCC
58
(IQR) 86,000 (51,000 to 172,000)

cells/mL

85,000 (49,000 to 176,000)

cells/mL

Median test day milk

yield2 (IQR)

23 (19 to 26) kg 23 (19 to 26) kg

Median test day fat

proportion2 (IQR)

0.040 (0.036 to 0.045) 0.040 (0.036 to 0.045)

Median test day protein

proportion2 (IQR)

0.032 (0.030 to 0.034) 0.032 (0.030 to 0.034)

Median time at risk
59

(IQR)

3.7 (2.8 to 4.5) years 3.7 (2.8 to 4.5) years

55 Based on herd test day data from 2005 to 2009.
56 Discrete time logistic survival model for cow disposal in any 50 day interval from first calving.
57 Interquartile range.
58 At the first recording between 5 and 30 days in milk during parity 1.
59 Time between date of first calving and date of last recording.
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5.3.2 Model results

The final models are presented in Table 5.3. For Model 5.1, that focussed

on SCC1 as the exposure of interest, the median odds of a cow disposal in any

50 day interval increased by 5% (median odds ratio (MOR) = 1.05 (95% BCI;

1.02 to 1.09)), with every unit increase in SCC1 (as a ln linear score). Increased

milk and fat proportions (TDY1 and TDF1), were negatively associated with

disposal; unit and 0.01 unit increases were associated with 2% (MOR = 0.98

(95% BCI; 0.97 to 0.98)), and 7% (MOR = 0.93 (95% BCI; 0.89 to 0.98))

reductions in the odds of disposal in each interval respectively. Decrease in

AFC from 27 to 24 months was associated with a 10% reduction in the odds of

disposal (MOR = 0.90 (95% BCI; 0.93 to 0.88)). Cows with a first calving in

November had the highest odds of disposal, 39% (MOR = 1.39 (95% BCI;

1.12 to 1.73)) greater than those calving in February, and cows with their last

recording in March had the highest odds of disposal, this was 10 times higher

(MOR = 9.90, (95% BCI 8.04 to 12.16)) than in December. Random effect

variance was greater at herd level than cow level (Table 5.4), indicating there

was more variation in cow disposal between herds, than between cows within

herds. There was < 3% difference in the MOR, and limits of the 95% BCI

when the uniform prior distribution for the random effect variances was used,

and this had no substantive impact on model interpretation.
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Table 5.3. Model 5.1
60
; 95% Bayesian credible intervals for the odds ratios for cow disposal from 812 Irish dairy herds

Exposure (baseline) Lower
2.5%

Median Upper
97.5%

Exposure (baseline) Lower
2.5%

Median Upper
97.5%

Intercept 0.002 0.002 0.003 Month of last recording
(December)

January 6.514 7.973 9.786

ln SCC1
61
(4.64) 1.020 1.052 1.085 February 6.234 7.691 9.450

TDY1
62
(23 kg) 0.968 0.976 0.983 March 8.045 9.905 12.158

TDF1
63
(0.04) 0.000 0.001 0.081 April 7.207 8.962 11.090

Month of first calving
(February)

January 0.896 1.010 1.135 May 6.315 7.885 9.786
March 1.106 1.222 1.343 June 5.140 6.398 7.885
April 1.132 1.287 1.460 July 4.595 5.568 6.686
May 1.187 1.436 1.720 August 4.154 4.968 5.918
June 0.885 1.160 1.503 September 2.214 2.625 3.096
July 0.909 1.398 2.073 October 2.140 2.479 2.875
August 0.967 1.486 2.187 November 1.539 1.791 2.080
September 1.176 1.465 1.802 ln AFC

64
(6.70) 1.753 2.275 2.927

October 1.069 1.317 1.603 [ln interval
65
]^1 (2.28) 1.260 1.363 1.473

November 1.121 1.393 1.728 [ln interval]^2 (2.28) 1.849 1.972 2.102
December 0.927 1.164 1.442 [ln interval]^3 (2.28) 1.198 1.247 1.299

DIM
66
(< 100 days (d)) 100 to 199 d 2.654 2.939 3.267

200 to 304 d 5.291 5.900 6.567

60 Discrete time logistic survival models for cow disposal in any 50 day interval from first calving including SCC1 only. Estimates based on 10,000 simulations.
61 First test day somatic cell count record between 5 and 30 days in milk (DIM) in parity 1.
62 First test day milk yield record (kg) between 5 and 30 DIM in parity 1.
63First test day fat record (proportion) between 5 and 30 DIM in parity 1.
64 Age at first calving (days).
65 50 day intervals from first calving. Included as polynomials.
66Days in milk (DIM) category in the penultimate interval for each cow. Missing category not shown.
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Table 5.3 continued. Model 5.2
67
; 95% Bayesian credible intervals for the odds ratios for cow disposal from 812 Irish dairy herds

Exposure (baseline) Lower
2.5%

Median Upper
97.5%

Exposure (baseline) Lower
2.5%

Median Upper
97.5%

Intercept 0.002 0.002 0.003 Month of last recording
(December)

January 6.554 8.037 9.885
ln SCC1 (4.64) 1.010 1.043 1.075 February 6.284 7.714 9.516
TDY1 (23 kg) 0.971 0.978 0.986 March 8.125 9.924 12.170
TDF1 (0.04) 0.000 0.001 0.126 April 7.272 8.971 11.067
Month of first calving
(February)

January 0.897 1.010 1.138 May 11.067 7.846 9.757
March 1.106 1.213 1.337 June 5.155 6.398 7.909
April 1.110 1.264 1.433 July 4.641 5.590 6.746
May 1.176 1.417 1.699 August 4.233 5.033 5.983
June 0.873 1.137 1.459 September 2.235 2.636 3.114
July 0.911 1.400 2.086 October 2.157 2.485 2.883
August 1.021 1.535 2.270 November 1.558 1.801 2.083
September 1.197 1.490 1.848 DIM (< 100 d) 100 to 199 d 2.336 2.615 2.907
October 1.075 1.319 1.611 200 to 304 d 4.250 4.811 5.452
November 1.134 1.405 1.737 ln SCC (< 4 /mL) 4 to < 5 /mL 0.993 1.101 1.223
December 0.935 1.166 1.458   ≥ 5 /mL 1.132 1.258 1.401 

ln AFC (6.70) 1.752 2.263 2.907 TDY (< 20 kg) 20 to < 30 kg 0.897 0.976 1.062
ln SCC (< 4 /mL) 4 to < 5 /mL 0.993 1.101 1.223

      ≥ 5 /mL 1.132 1.258 1.401 
[ln interval

68
]^1 (2.28) 1.299 1.412 1.526

[ln interval]^2 (2.28) 1.809 1.923 2.057
[ln interval]^3 (2.28) 1.182 1.229 1.282

67 Discrete time logistic survival models for cow disposal in any 50 day interval from first calving including SCC1 and further time-varying covariates. Estimates based on 10,000 simulations
68 50 day intervals from first calving. Included as polynomials.
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Table 5.4. Random effect variances from final models
69
; 95% Bayesian credible intervals for ln

70
odds of

cow disposal from 812 Irish dairy herds, based on 10,000 simulations

Model 5.1 Model 5.2

Lower
2.5%

Median Upper
97.5%

Lower
2.5%

Median Upper
97.5%

Cow level 0.0003 0.0009 0.009 0.0005 0.001 0.003
Herd level 0.225 0.284 0.352 0.233 0.291 0.356

69
Discrete time logistic survival model for cow disposal in any 50 day interval from first calving.

70
Natural logarithm of.

5.3.3 Inclusion of time-varying covariates

Cows in late lactation had higher median odds of disposal in the

subsequent 50 day interval (Table 5.3); median odds ratios were 2.9 (95% BCI;

2.65 to 3.27), and 5.9 (95% BCI; 5.29 to 6.57) for those cows 100 to 199 DIM,

and over 199 DIM respectively, compared to those < 100 DIM (Model 5.1;

Table 5.3). With the other time-varying covariates added (Model 5.2; Table

5.3), results were similar, and cows in late lactation also had higher odds of

disposal in the subsequent 50 day interval; median odds ratios were 2.6 (95%

BCI; 2.34 to 2.91), and 4.8 (95% BCI; 4.25 to 5.45) for those cows 100 to 199

DIM, and over 199 DIM respectively, compared to those < 100 DIM. In Model

5.2, the time-varying SCC categories; 55,000 to 147,000 cells/mL, and ≥ 

148,000 cells/mL were associated with 10% (MOR = 1.10, (95% BCI; 1.00 to

1.22)) and 26% (MOR = 1.26, (95% BCI; 1.13 to 1.40)) increased odds of

disposal in the subsequent 50 day interval respectively, compared to cows with

SCC < 55,000 cells/mL. With these time-varying SCC categories added, the

strength of association (MOR) between ln SCC1 and disposal decreased by

0.9% compared to Model 5.1, indicating that part of this impact is mediated

through an association with SCC at later recordings (Table 5.3). Time-varying

covariates for TDY were associated with 2% (MOR = 0.98 (95% BCI; 0.90 to



99

1.82)) and 38% (MOR = 0.62 (95% BCI; 0.53 to 0.73) decreased odds of

disposal in the subsequent 50 day interval for cows with test day milk yield

(TDY) of 20 to < 30 kg, and ≥ 30 kg respectively, compared to cows with TDY 

< 20 kg. Association of TDY1 with disposal from the herd was unchanged.

Two models are presented, because the impact of time-varying covariates in

Model 5.2 is useful to identify possible reasons for disposal of particular cows

(Table 5.3). However, the main aim of the research was to evaluate the impact

of SCC1 on cow disposal risk, specifically to focus on information available by

30 DIM in parity 1. It was therefore decided that further predictions and

simulations would be based on Model 5.1.

5.3.4 Model assessment

To demonstrate the internal fit of Model 5.1 (Table 5.3) to sample_1,

posterior predicted risk of disposal by interval, is shown in Figure 5.2. The

observed data had a cyclical pattern, with higher risk of disposal in particular

intervals. Although the 50 day time intervals relate to cow-time from the date

of first calving, the majority of cows in the dataset calved in spring (February

to April), and thus cyclicity occurred because of an increased risk of disposal

each autumn, when cows were in late lactation. A time-varying term for DIM

was required to improve model fit to the observed data, although small

discrepancies remained for certain intervals. Categorical terms for 7 intervals

were added to the model which improved the fit, shown as the alternative

model (Figure 5.2); however odds ratio distributions were not deemed to

change by a meaningful extent (< 1% difference in MOR and limits of the 95%

BCI), and the parsimonious model was retained. Predictions of disposal risk by
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month of first calving, and month of last recording in sample_1 indicated good

model fit (not shown).

In terms of the usefulness of Model 5.1, there was close agreement

between predicted and observed disposal risk for cows grouped by SCC1, by

BMSCC (Figure 5.3), and by AFC (not shown). Within model fit was good, as

observed values were within the 95% BCI of predictions. This was also the

case on cross validation, and these results indicate that in terms of SCC1,

BMSCC, and AFC, Model 5.1 appeared to be generalisable to other Irish herds.

Figure 5.2. Predictions from 10,000 simulations of the final and alternative
71
versions of Model 5.1

72
to

assess internal fit; disposal risk in each 50 day (d) interval from first calving, and observed values in 812

Irish dairy herds used for model development

71 The alternative model includes 7 additional categorical terms to improve fit to observed data.
72 Discrete time logistic survival model for cow disposal in any 50 day interval from first calving.
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Figure 5.3. Model 5.1
73
predictions of disposal risk from 10,000 simulations, and observed values in 812

Irish dairy herds used for model development to assess model fit, and in 808 separate Irish dairy herds

used for cross validation
74
, grouped by milk somatic cell count at 5 to 30 days in milk during parity 1

(SCC1)
75
and estimated bulk milk somatic cell count (BMSCC) group

76

73 Discrete time logistic survival model for cow disposal in any 50 day interval from first calving.
74 Using fixed effects from the model. Indicates results can be generalized to other Irish dairy herds.
75 Group 1; < 50,000 cells/mL, group 2; 50,000 to 99,000 cells/mL, group 3; 100,000 to 164,000 cells/mL, group 4; ≥ 
164,000 cells/mL.
76 Geometric mean BMSCC estimated from cow test day SCC, and milk records. Group 1; < 200,000 cells/mL, group
2; 200,000 to 249,000 cells/mL, group 3; 250,000 to 399,000 cells/mL, group 4; > 399,000 cells/mL.
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5.3.5 Micro-simulation of baseline disposal risks

Results based on Model 5.1 are presented graphically; the relationship

between risk of disposal from the herd, and SCC1 is shown for cows in

different stages of lactation (Figure 5.4). Regression lines (on a ln scale), had

slopes of 0.0011, 0.00061, and 0.0031, and intercepts of 0.0022, 0.013, and

0.0064 for cows that were < 100, 100 to 199, and 200 to 304 DIM respectively.

Figure 5.4. Scatter plot and regression lines from 1,000 simulations of Model 5.1
77
; posterior predicted

risk of disposal between 450 and 500 days from first calving, against milk somatic cell count at 5 to 30

days in milk (SCC1)
78
for cows at different stages of lactation

77 Discrete time logistic survival model for cow disposal in any 50 day interval from first calving.
78 For cows with a first calving in February, aged 24 months, that produced 23 kg/day of milk with 4% fat between 5
and 30 days in milk, and had their last recording in December.
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5.3.6 Micro-simulation of herd scenarios

The posterior probability of disposal was greater for cows in herds ≥ 

20% initial prevalence of cows with SCC1 ≥ 400,000 cells/mL, compared to 

the same herds after a reduction in prevalence to < 5%, for 65%, 68%, 74%,

75%, and 73% of simulations within 350, 700, 1,050, 1,400, and 1,750 days

from first calving respectively (Figure 5.5). Figure 5.6 shows the estimated

probability of different levels of potential savings /heifer in the herd

attributable to reduced replacement costs within 1,750 days of first calving, for

various herd level reductions in the prevalence of cows with SCC1 ≥ 400,000 

cells/mL. Herds with ≥ 20% prevalence of heifers with SCC1 ≥ 400,000 

cells/mL had 54% probability of a cost saving ≥ €10 / heifer in the herd 

through reducing the prevalence of heifers with SCC1 ≥ 400,000 cells/mL to < 

10% (Figure 5.6). For an example herd that calves 20 heifers /year, this equates

to a saving of €200 /year through decreased replacement rate; further scenarios

for the example herd are given in Table 5.5. When only the first 350 days from

first calving (first lactation) are included in the economic simulation, the results

are ostensibly the same, indicating that at herd level, the impact of SCC1 on

disposal risk is greater over a shorter time period, or conversely, other reasons

for disposal become more important as the time period considered increases.
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Figure 5.5. Micro-simulation over 10,000 simulations of Model 5.1
79
; cow disposal risk within 350, 700,

1,050, and 1,400 days from first calving in herds with an initial prevalence of cows with milk somatic cell

Iﾗ┌ﾐデ ;デ ヵ デﾗ ンヰ S;┞ゲ ｷﾐ ﾏｷﾉﾆ S┌ヴｷﾐｪ ヮ;ヴｷデ┞ ヱ ふSCCヱぶ д ヴヰヰがヰヰヰ IWﾉﾉゲっﾏL ﾗa д ヲヰХ ;ﾐS aﾗﾉﾉﾗ┘ｷﾐｪ ; 
reduction to < 5%

79 Discrete time logistic survival model for cow disposal in any 50 day interval from first calving.
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Figure 5.6. Micro-simulation over 10,000 simulations of Model 5.1
80
; minimum cost saving per heifer

calved attributable to reduction in replacement costs
81
over 1,750 days from first calving, for changes in

デｴW ｴWヴS ﾉW┗Wﾉ ヮヴW┗;ﾉWﾐIW ﾗa Iﾗ┘ゲ ┘ｷデｴ SCC ;デ ヵ デﾗ ンヰ S;┞ゲ ｷﾐ ﾏｷﾉﾆ S┌ヴｷﾐｪ ヮ;ヴｷデ┞ ヱ д ヴヰヰがヰヰヰ IWﾉﾉゲっﾏL

80 Discrete time logistic survival model for cow disposal in any 50 day interval from first calving.
81 At €1,451 /cow replaced.

Table 5.5. Model 5.1
82
predictions for an example herd that calves 20 heifers /year; probability of annual

savings through decreased replacement costs within 1,750 days of first calving associated with

ヴWS┌Iデｷﾗﾐゲ ｷﾐ デｴW ﾐ┌ﾏHWヴ ﾗa ｴWｷaWヴゲ ┘ｷデｴ ﾏｷﾉﾆ ゲﾗﾏ;デｷI IWﾉﾉ Iﾗ┌ﾐデ д ヴヰヰがヰヰヰ IWﾉﾉゲっﾏL HWデ┘WWﾐ ヵ ;ﾐS ンヰ 
days in milk

Saving (€) Change in number of parity 1 cows (/20)
≥ 4 to ≤ 1 ≥ 4 to 0 ≥ 2 to 0 

≥ 0 0.68 0.70 0.52 
≥ 200 0.54 0.55 0.38 
≥ 400 0.40 0.41 0.24 

82
Discrete time logistic survival model for cow disposal in any 50 day interval from first calving.
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5.4 Discussion

SCC in the first month of lactation during parity 1 was positively

associated with risk of disposal from the herd, although the size of this effect

appeared relatively small, and was therefore of limited financial importance. A

possible reason for this is that in practice other considerations have an

overriding influence on cow disposal decisions. The impact of time-varying

covariates in explaining cow disposal risk was demonstrated (Model 5.2), and

this emphasises the importance of recent health, and production records in

making disposal decisions. In seasonally calving herds, those cows not

pregnant at the end of the breeding season may be at higher disposal risk at the

end of lactation (Pinedo et al., 2010), and in some herds this may limit the

number of cows that can be removed for other reasons. Herd circumstances,

such as the availability of replacement heifers, and space in the dairy unit may

also influence disposal decisions (Lehenbauer and Oltjen, 1998), and for

European Union herds, milk quota availability may also require consideration.

In this research more variation in cow disposal risk was identified between

herds, than within herds, indicating that decisions on cow disposal do appear to

be herd specific (Weigel et al., 2003), and may therefore reflect the underlying

management objectives, or other farm factors such as disease incidence.

When the cost of potential interventions are considered, as a result of the

small effect size, and uncertainty in the outcome, reductions in the prevalence

of cows with SCC1 ≥ 400,000 cells/mL appear only marginally beneficial in 

terms of reduced disposal costs for less than 1 in 5 Irish dairy herds with a

prevalence ≥ 20% (Table 5.1). However this judgement depends on decision 
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makers’ attitude to risk (Figure 5.6), and hence how much uncertainty in a

particular outcome they are comfortable with. If control measures to reduce

SCC1 were to be considered, they should focus on the pre- and peri-partum

period (Green et al., 2007b; 2008). However, chapter 3 shows the importance

of considering the impact of SCC1 on lifetime milk yield before the cost-

effectiveness of specific interventions can be properly evaluated. There may

also be additional benefit through reduced incidence of clinical mastitis in

particular herds.

This chapter highlights the usefulness, and importance of generating

predictions from statistical models to show the impact of results, because

‘significant’ findings may not be biologically, or economically meaningful

when considered in context. Use of MCMC for predictions allows variability in

parameters to be included, and therefore the full uncertainty in possible

outcomes, as well as the central tendency can be explored. For example, a

conventional approach may base conclusions on the mean effect of SCC in

early lactation on culling risk (De Vliegher et al., 2005b), but variation in

model parameters can affect the inference from these results (Green et al.,

2010). The mean association of SCC early in the first lactation, and disposal in

this research (Table 5.3) was less than that previously observed based on

recorded culling dates over the first lactation (De Vliegher et al., 2005b).

However cows in our study were followed up for over 5 years, and up to a

maximum of 6 lactations, and therefore the impact of SCC1 on disposal risk

over a longer time period was less. This was also shown by introducing time-

varying covariates for SCC (Table 5.3), and the associated reduction in the
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coefficient for SCC1, which was consistent with previous work (De Vliegher et

al., 2005b).

With a more specific outcome definition (culling for udder health reasons

only), strength of association with SCC early in the first lactation increased 3

fold (De Vliegher et al., 2005b), emphasising the importance of how an

outcome is defined, although definitions, and reliability of recording may also

vary between herds. In the current study it was assumed that cows were

disposed when recordings ceased (unless censored), although in reality it

would likely be after this, because of the logistics of economic carcase salvage.

Despite this, trends in cow disposal appeared consistent with previous studies,

indicating this was a reasonable proxy for culling. Specifically, cows in late

lactation were at higher risk of disposal (Rajala-Schultz and Gröhn, 1999),

which varied seasonally (Anderson, 1985; Crosse and O' Donovan, 1989), and

this could relate to an overall increased risk of disposal in the autumn for those

cows in spring-calving herds that failed to conceive (Pinedo et al., 2010).

Despite this, increasing milk yield decreased disposal risk (Beaudeau et al.,

1994; Rajala-Schultz and Gröhn, 1999).

Assessment of model fit, for logistic regression models is not straight

forward, and is often neglected (Green et al., 2009). Demonstrating the extent

to which models are useful, rather than simply ‘correctness’ has been proposed

as a rational approach to model assessment (Gelman et al., 1996). In this

research, assessments of Model 5.1 based on aggregated predictions in groups

of magnitude of SCC1 suggested that predictions were reliable, and were likely

generalisable to other Irish herds. This permitted use of a micro-simulation

procedure in order to present the study results in a meaningful context.
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5.5 Conclusions

Despite negative association of SCC between 5 and 30 DIM during

parity 1 (SCC1) and longevity, the effect was small, and therefore unlikely to

be economically important when considered in isolation. Economic evaluation

of potential savings attributable to reducing the prevalence of cows with high

SCC1 should also therefore consider lifetime milk yield as shown in chapter 3.
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Chapter 6: Association between somatic cell count during

the first lactation and the cumulative milk yield of cows

in Irish dairy herds

6.1 Introduction

In chapters 3 and 5, increased somatic cell count between 5 and 30 days

in milk during parity 1 (SCC1) was reported to have a negative impact on both

cumulative milk yield, and risk of disposal for cows in Irish dairy herds. Early

lactation milk somatic cell count (SCC) in heifers is considered a reflection of

the adequacy of control measures during the ppp period (De Vliegher et al.,

2012), and improving management for ppp heifers to reduce the prevalence of

cows with SCC1 ≥ 400,000 cells/mL would be expected to have an 

economically important impact on lifetime milk yield (chapter 3). In Belgian

heifers, increased SCC early in the first lactation has been associated with

increased SCC at subsequent test days throughout the first lactation (De

Vliegher et al., 2004a). For cows that survive, SCC beyond ‘early lactation’

therefore gives information on the legacy of intramammary infection (IMI)

from the ppp period, as well as IMI originating while heifers are in milk. A

negative relationship between geometric mean first lactation SCC, and

cumulative first lactation milk yield has been reported (Hortet and Seegers,

1998; Raubertas and Shook, 1982). However no studies have investigated the

association between numeric summaries of first lactation SCC, and cumulative

milk yield beyond the first lactation. Furthermore, the impact of SCC1 and

SCC over the entire first lactation on cumulative milk yield has not been

compared in the same study, and the association between SCC1 and SCC
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throughout the entire first lactation has not been investigated for cows in Irish

dairy herds. These relationships will help understand the relative importance of

the ppp, and lactating period for the control of heifer mastitis.

The aims of this chapter were twofold. Firstly, to compare associations

between SCC1, and SCC throughout the entire first lactation, on cumulative

milk yield over both the first lactation and the subsequent lifetime of cows in

Irish dairy herds. Micro-simulation was then used to show the financial impact

of herd level reductions in the prevalence of cows with high SCC during the

first lactation in terms of lifetime milk yield. The second aim was to assess the

association between SCC1 and SCC throughout the entire first lactation of

cows in Irish dairy herds.

6.2 Materials andmethods

6.2.1 Data selection

The data selection procedure used in chapter 3 was extended to include

only cows with ≥ 2 SCC recordings during parity 1 (the first at 5 to 30 days in 

milk (DIM) between January 2005 and March 2007); 51,483 cows in 5,900

Irish dairy herds were therefore available for analysis. Cumulative milk yields

for all lactations up to July 25, 2012 were calculated using a recognised method

(Olori et al., 1999), and provided by ICBF. Lactation milk yields were summed

for each cow to give an estimate of ‘lifetime milk yield’ from the date of first

calving, to the end of the study period. Number of cows, first lactation SCC

parameters, proportion of cows with SCC1 ≥ 400,000 cells/mL, number of 

recordings in the first lactation, proportion of cows surviving the first and
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fourth lactation, and first lactation and lifetime milk yield were summarised for

a subset of 5,413 herds (with ≥ 2 eligible cows /herd) that was split into 

quartiles based on herd level geometric mean first lactation SCC

(herd_gSCC_p1; quartile 1; < 72,000 cells/mL, quartile 2; 72,000 to 93,000

cells/mL, quartile 3; 94,000 to 119,000 cells/mL, quartile 4; ≥ 120,000 

cells/mL).

6.2.2 First lactation somatic cell count and cumulative milk yield;

statistical analysis

For comparison, the outcomes of interest (yij) were 1) First lactation milk

yield (FLMY), or 2) Lifetime milk yield (LiMY), for the ith cow, in the jth

herd. Random effects models were developed that took the form;

yij = g+Xij く1 + Xj く2 + uj+ eij ,

uj ~ Normal (0, j2
u),

eij ~ Normal (0, j2
e),

where g = intercept value, Xij= matrix of exposure variables for each cow, く1 =

vector of coefficients for Xij, Xj= matrix of exposure variables for each herd,

く2 = vector of coefficients for Xj, uj = a random effect to account for residual

variation between herds (assumed to be normally distributed with mean = 0,

and variance = j2
u), and eij = residual level 1 error (assumed to be normally

distributed with mean = 0, and variance = j2
e). To determine the relative

importance of SCC early in the first lactation, compared to SCC over the entire

first lactation in terms of future milk yield, separate models for FLMY and

LiMY were developed in which the exposure of interest was ln SCC1. SCC

variables and age at first calving (AFC) were investigated for inclusion as
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polynomial terms (to powers of 5) on a ln scale to account for non-linear

associations with cumulative milk yield. Month and year of first calving were

investigated for inclusion as linear or categorical terms. Biologically plausible

interactions, and herd level random slopes (herd x fixed effect interactions)

were assessed. Initial values for all covariates were generated in MLwiN

(Rasbash et al., 2009), with the iterative generalized least squares procedure

(Goldstein, 2003). To facilitate posterior predictions from the models that

incorporated all uncertainty in parameters, the models for FLMY and LiMY

were developed in a Bayesian framework using WinBUGS 1.4.3 (Lunn et al.,

2000). Parameters were estimated from 10,000 MCMC simulations, following

a burn in of 1,000 simulations during which time chain convergence occurred,

determined by visual inspection of 3 chains to ensure a stationary distribution

had been reached (Gilks et al., 1996). Vague prior distributions were used for

the random effect variances; j-2
u ~ Gamma (0.001, 0.001), j-2

e ~ Gamma

(0.001, 0.001), and く ~ Normal (0, 106), to give the major influence to the data

in the estimation of parameters (Green et al., 2004). Distributions of covariates,

and interaction terms were inspected; these remained in the model based on

biological plausibility, and if the 95% Bayesian credible interval (BCI)

excluded 0. Sensitivity of the results to prior distributions for the herd level

random effect variance (Spiegelhalter et al., 2004) was evaluated by repeating

simulations using the prior; j2
u ~ Uniform (10-9, 109).

6.2.2.1 Model checking

To evaluate model fit and usefulness, fixed and random effects were used

to predict cow FLMY and LiMY (y.predij) thus (Gelman et al., 1996);
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y.predij ~ p(y.predij | く, data, uj)

where p represents a conditional probability distribution, y.predij are posterior

predictions of cumulative milk yield for the ith cow in the jth herd, く is the

vector of model coefficient distributions, and uj is the random effect for the jth

herd. Predicted and observed mean FLMY and LiMY were calculated at the

cow level for quartiles of cows categorized by geometric mean of first lactation

SCC (quartile 1; < 55,000 cells/mL, quartile 2; 55,000 to 90,000 cells/mL,

quartile 3; 91,000 to 149,000 cells/mL, quartile 4 ≥ 150,000 cells/mL), or 

grouped by SCC1 (group 1; < 55,000 cells/mL, group 2; 55,000 to 149,000

cells/mL, group 3; 150,000 to 399,000 cells/mL, group 4; ≥ 400,000 cells/mL); 

these categories were not in the final models. Posterior predicted distributions

of mean cumulative milk yield for cows in these groups were inspected to

determine if the observed values were within the 95% BCI of the posterior

predictions, as an indication of internal model fit and usefulness (Gelman et al.,

1996).

6.2.2.2 Micro-simulation

Management changes to improve mastitis have an impact on the whole

herd rather than individual cows. Therefore, to illustrate the potential impact of

reductions in herd_gSCC_p1 on the mean LiMY of cows, and to demonstrate

financial relevance micro-simulation was carried out as was conducted in

chapters 3 to 5 for herd level reductions in the prevalence of cows with high

SCC1. The Bayesian model was therefore extended to include a one-step

micro-simulation of LiMY for 1,000 simulated cows with different

characteristics, based on herd_gSCC_p1 quartile. Increase in the mean and
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variance of ln SCC for first lactation cows by herd was associated with

increase in the between herd variance of these parameters. For each simulated

cow, values for the mean and variance of ln SCC over the first lactation were

therefore drawn from normal distributions based on the observed data, to give a

realistic distribution of values. In order to demonstrate the impact of an

achievable reduction in herd_gSCC_p1 on LiMY, herds with herd_gSCC_p1 in

quartile 4 were assumed to move to quartiles 1 or 2, and herds in quartile 3

were assumed to move to quartile 1. For ease of comparison, all simulated

cows were assumed to have a first calving date in February 2007. At each of

10,000 MCMC simulations (following a burn in of 1,000), final model

coefficients were combined with data from the simulated cows to generate

predictions of lifetime milk yield for the ith cow in the jth herd (y.predij);

y.predij ~ p(y.predij| く, Xsim),

where く is a vector of model coefficient distributions, and Xsim is a matrix of

data for simulated cows, including simulated values for the mean and variance

of ln SCC over the first lactation, based on herd_gSCC_p1 quartile, and

indicator variables to denote a first calving in February 2007.

The mean LiMY for simulated cows in each herd scenario was calculated

following each MCMC simulation. Differences in mean LiMY were multiplied

by an estimated gross margin (milk price – variable costs of production), that

was drawn from a normal distribution with mean = 0.17 €/L, and standard

deviation = 0.03 €/L for each cow (Hennessy et al., 2011), to give the

difference in expected revenue associated with reductions in herd_gSCC_p1.

Posterior distributions of mean savings /heifer calved into the herd were plotted
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as a cumulative probability distribution to show the probability of different

levels of financial return for changes in herd_gSCC_p1. An example of the

model code is given in the appendix.

6.2.3 Somatic cell count legacy during the first lactation; statistical

analysis

Proportions of cows in each SCC1 group and first lactation geometric

mean quartile were determined. The association between ln SCC1, and the

subsequent mean and variance of ln SCC during the first lactation was of

interest, to determine the possible legacy of IMI in early lactation. As the mean

and variance of ln SCC during the first lactation were positively associated, the

related responses; mean and variance of ln SCC during the entire first lactation,

for the jth cow in the kth herd (Respijk) were analysed in the following bivariate

linear model (Rasbash et al., 2009);

Respijk = (く0 + v0k+ u0jk).z0jk + (く1 + v1k + u1jk).z1jk

+ (く2 + v2k).z0jk.Xjk+ (く3 + v3k).z1jk.Xjk
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where z0jk, and z1jk are binary response indicator variables for mean and

variance of ln SCC during the first lactation respectively for the jth cow in the

kth herd. The model intercepts く0, and く1 for the mean and variance of first

lactation ln SCC respectively, were allowed to vary randomly to account for
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lack of independence between cows (u0k, and u1k), and herds (v0k, and v1k).

Exposure variables for each cow (matrix Xjk) had corresponding vectors of

coefficients く2 and く3 for the mean and variance of first lactation ln SCC

respectivelywhich could vary randomly at the herd level, as defined by v2k, and

v3k. Cow level random effects (u0k, and u1k) were assumed to have a

multivariate normal distribution with mean = 0, and covariance matrix = ∑u,

consisting of variances for the mean and variance of ln SCC throughout the

first lactation; j2
u0, and j2

u1 respectively, and their covariance j2
u01. The herd

level random effects covariance matrix (∑v) had an expanded structure to

include variances for random coefficients, in addition to the intercepts, and

hence additional covariance terms. The model was fitted using MCMC in

MLwiN (Browne, 2012), with vague prior distributions for j-2
vi ~ Gamma

(0.001, 0.001), j-2
ui ~ Gamma (0.001, 0.001), and く ~ Normal (0, 106). SCC1

was the exposure of interest and this was included as ln scale polynomials. In

order for the model to be useful for predictions of the mean and variance of

first lactation ln SCC by 30 DIM, only confounding variables deemed to be

operating by 30 DIM were assessed. These were month of first calving, AFC,

and DIM at the first recording. Biologically plausible interactions and herd

level random slopes (for SCC1) were investigated for inclusion. Parameters

were included in the model if the 95% BCI excluded 0, and there was a

reduction in the deviance information criteria (Spiegelhalter et al., 2002).

Convergence was assessed by inspection of chains to ensure a stationary

distribution had been reached (Browne, 2012), and model fit was assessed by

checking distributions of cow and herd level mean residuals for normality

(Goldstein, 2003).
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6.3 Results

6.3.1 Descriptive results

Lifetime milk yield (LiMY) for all 51,483 cows was evaluated over

maximum follow up times between 5.3 and 7.5 years. Descriptive statistics,

grouped by herd_gSCC_p1 quartile are shown in Table 6.1. There were trends

for decreased FLMY, LiMY, and proportions of cows surviving with

increasing herd_gSCC_p1. These changes were associated with an increase in

the herd level proportion of recordings with high SCC, both at 5 to 30 DIM (≥ 

400,000 cells/mL), and throughout the first lactation (≥ 400,000 and ≥ 200,000 

cells/mL), and also increased variability in these proportions between herds

(Table 6.1). Increasing herd_gSCC_p1 was associated with increasing variance

in the mean of ln SCC for cows over the first lactation both between and within

herds (Table 6.1). Forty six per cent of cows had SCC1 < 150,000 cells/mL and

geometric mean first lactation SCC ≤ 90,000 cells/mL, and only 5% of cows 

had SCC1 ≥ 150,000 cells/mL and geometric mean first lactation SCC ≤ 

90,000 cells/mL (Table 6.2). Twenty four per cent of cows had SCC1 <

150,000 cells/mL, and geometric mean first lactation SCC > 90,000 cells/mL

(Table 6.2). Similarly, 25% of cows had SCC1 ≥ 150,000 cells/mL, and 

geometric mean first lactation SCC > 90,000 cells/mL (Table 6.2).
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Table 6.1. Descriptive data from 5,413 Irish herds categorised by first lactation geometric mean SCC, and for 50,996 parity 1 cows in these herds

Herd level first lactation geometric mean SCC (cells/mL)

< 72,000
72,000 to
93,000

94,000 to
119,000

≥ 120,000  

Quartile of herds Best 25% Middle 50% Worst 25%
Total number of cows 11,709 14,172 13,516 11,599

Number of recordings in the first lactation (interquartile range
(IQR))

7 (5 to 9) 7 (5 to 9) 7 (5 to 9) 7 (5 to 8)

Proportion of cows that survive the first lactation 0.83 0.84 0.84 0.81

Proportion of cows that survive the fourth lactation 0.36 0.37 0.36 0.34

Median lifetime milk yield (IQR) (tonne) 24.0 (12.0 to
36.7)

23.2 (12.0 to
35.8)

23.1 (12.0 to
35.6)

21.0 (11.0 to
33.2)

Median first lactation milk yield (IQR) (tonne) 5.3 (4.2 to 7.3) 5.2 (4.1 to 6.9) 5.2 (4.0 to 7.0) 5.0 (3.8 to 6.8)

Mean of the natural logarithm of (ln) SCC over the first
lactation for cows in the mean herd (between herd variance)

4.01 (0.37) 4.42 (0.42) 4.67 (0.45) 5.07 (0.61)

Variance of ln SCC over the first lactation for cows in the
mean herd (between herd variance)

0.58 (0.96) 0.60 (0.96) 0.61 (1.22) 0.69 (1.49)

Proportion of recordings ≥ 200,000 cells/mL during the first 
lactation for cows in the median herd (interquartile range

between herds)

0.08 (0.04 to
0.12)

0.14 (0.10 to
0.19)

0.21 (0.16 to
0.25)

0.33 (0.27 to
0.41)

Proportion of recordings ≥ 400,000 cells/mL during the first 
lactation for cows in the median herd (interquartile range

between herds)

0.02 (0.00 to
0.05)

0.05 (0.02 to
0.08)

0.08 (0.04 to
0.11)

0.15 (0.10 to
0.21)

Proportion of cows with SCC1_hi83 in the median herd
(interquartile range between herds)

0.00 (0.00 to
0.10)

0.07 (0.00 to
0.17)

0.11 (0.00 to
0.20)

0.19 (0.00 to
0.31)

83 Somatic cell count (SCC) ≥ 400,000 cells/mL between 5 and 30 DIM during parity 1. 
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Table 6.2. Proportion of 51,483 Irish dairy cows in each SCC1 group
84
and first lactation geometric mean

somatic cell count (SCC) quartile

First lactation geometric mean SCC quartile
(thousand cells/mL)

< 55 55 to 90 91 to 149 ≥ 150 Total 
SCC1
group
(thousand
cells/mL)

< 55 0.15 0.09 0.04 0.01 0.29

55 to 149 0.07 0.15 0.13 0.06 0.41

150 to 399 0.01 0.03 0.06 0.08 0.18

≥ 400 0.00 0.01 0.03 0.08 0.12

Total 0.23 0.28 0.26 0.23 1.00

84
SCC between 5 and 30 days in milk during parity 1 (SCC1).

6.3.2 First lactation Somatic cell count and cumulative milk yield; model

results

6.3.2.1 Outcome 1; first lactation milk yield

The final models for FLMY (Models 6.1 and 6.2; Table 6.3) accounted

for month, and AFC. Cows that calved in June 2007, aged 27 months were

used as the baseline for comparison. In Model 6.1, a 1-unit increase in mean ln

SCC over the first lactation (for example an increase in first lactation geometric

mean SCC from 50,000 to 150,000 cells/mL, or 150,000 cells/ml to 400,000

cells/mL) was associated with a median decrease in FLMY of 135 kg (95%

BCI 108 to 163 kg). Variance in ln SCC over the first lactation was not

associated with changes in FLMY. There was an interaction between ln SCC

over the first lactation and AFC, and FLMY decreased with decreasing AFC

(Figure 6.1). In Model 6.2 a 1-unit increase in ln SCC1 was associated with a

median decrease in FLMY of 7l kg (95% BCI 54 to 88 kg). Decrease in AFC

from 27 to 24 months was associated with a median decrease in FLMY of 232

kg (95% BCI 217 to 247 kg; Table 6.3).
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Table 6.3. Bayesian credible intervals from 10,000 simulations of the final models; outcome cow level

first lactation milk yield (kg)

Exposure (baseline)

Model 6.1
85 Model 6.286

Lower
2.5% Median

Upper
97.5%

Lower
2.5% Median

Upper
97.5%

Intercept 954 3,068 5,228 974 3,127 5,268

Mean ln SCC
87
(4.54)^1 -163 -135 -108 NA NA NA

ln SCC1 (4.66) NA88 NA NA -88 -71 -54

ln AFC
89
(6.7)^1 1,976 2,169 2,362 1,991 2,181 2,374

ln AFC (6.7)^2 -1,569 -1,131 -695 -1,787 -1,377 -957

Mean ln SCC2 x ln AFC -440 -272 -110 NA NA NA

Month of first
calving (June)

January 623 784 942 640 800 961

February 269 428 580 293 445 598

March -51 106 258 -33 119 270

April -326 -170 -13 -323 -165 -6

May -494 -320 -150 -494 -322 -152

July 365 627 881 382 634 890

August 865 1,121 1,376 882 1,142 1,397

September 1,203 1,399 1,588 1,219 1,413 1,606

October 1,222 1,415 1,601 1,244 1,433 1,619

November 1,053 1,259 1,453 1,063 1,269 1,466

December 946 1,178 1,414 964 1,196 4,137
Year of first
calving
(2007)

2004 -124 2,039 4,164 -176 1,960 4,137

2005 182 2,335 4,448 142 2,269 4,424

2006 274 2,424 4,541 229 2,362 4,512

Random effect standard
deviation:

Lower
2.5% Median

Upper
97.5%

Lower
2.5% Median

Upper
97.5%

Cow level 2,037 2,051 2,064 2,038 2,052 2,065

Herd level 1,265 1,297 1,330 1,265 1,297 1,331

85 Impact of mean natural logarithm of (ln) milk somatic cell count (SCC) over the first lactation.
86 Impact of SCC at 5 to 30 days in milk during parity 1 (SCC1).
87 Over the entire first lactation, centred on the mean (4.54).
88 Not applicable.
89 Age at first calving (days); included as polynomial terms, centred on the mean (6.7)
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Figure 6.1. Median predictions of first lactation milk yield for specific cows
90
from Model 6.1

(exposure; mean ln
91
SCC

92
over the first lactation) to show the impact of age at first calving (AFC)

90 First calving in February 2007
91 Natural logarithm of.
92 Milk somatic cell count.

Figure 6.2. Median predictions of lifetime milk yield for specific cows
93
from Model 6.3 (exposure;

mean and variance of ln
94
SCC

95
over the first lactation) and Model 6.4 (exposure; ln SCC between

5 and 30 days in milk during the first lactation; SCC1)

93 First calving in February 2007, aged 27 months, variance in mean ln SCC during the first lactation = 0.62.
94 Natural logarithm of.
95 Milk somatic cell count.
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6.3.2.2 Outcome 2; lifetimemilk yield

The final models for LiMY (Models 6.3 and 6.4; Table 6.4) were

adjusted for month, and year of first calving, and AFC. The relationship

between geometric mean first lactation SCC and LiMY (Model 6.3) is shown

in Figure 6.2. A 1-unit increase in the mean of ln SCC over the first lactation

was associated with a median decrease in lifetime milk yield of 1,663 kg (95%

BCI 1,347 to 1,986 kg; calculated by adding the polynomial terms for ln SCC

over the first lactation from Model 6.3; Table 6.4). A 1-unit increase in the

variance of ln SCC over the first lactation was associated with a median

decrease in LiMY of 719 kg (95% BCI 553 to 888 kg; Figure 6.3). With SCC1

as the exposure of interest (Model 6.4; Table 6.4), a 1-unit increase in ln SCC1

was associated with a median decrease in LiMY of 633 kg (95% BCI 533 to

733 kg; Figure 6.2). In contrast to Models 6.1 and 6.2, decreased AFC was

associated with increased LiMY, and the impact differed between Models 6.3

and 6.4. In Model 6.3, AFC was included as a 4th order polynomial; decrease in

AFC, from 27 to 24 months was associated with a median increase in LiMY of

99 kg (95% BCI 33 to 160 kg). In Model 6.4, decrease in AFC from 27 to 24

months was associated with a median increase in LiMY of 574 kg (95% BCI

483 to 663 kg). No biologically plausible interactions, for example between ln

SCC1 and ln AFC were identified.
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Table 6.4. Bayesian credible intervals from 10,000 simulations of the final models; outcome cow level

lifetime milk yield (kg)

Exposure (baseline)

Model 6.3
96

Model 6.4
97

Lower
2.5% Median

Upper
97.5%

Lower
2.5% Median

Upper
97.5%

Intercept -3,378 9,770 22,460 -4,040 8,976 22,020

ln SCC1 (4.66) NA
98

NA NA -733 -633 -533

Mean ln SCC
99
(4.54)^1 -1,279 -1,090 -910 NA NA NA

Mean ln SCC95 (4.54)^2 -707 -573 -437 NA NA NA

Variance ln SCC95 (0.62) -888 -719 -553 NA NA NA

ln AFC
100

(6.7)^1 -4,798 -3,396 -1,976 -6,633 -5,735 -4,833

ln AFC (6.7)^2 -30,510 -21,240 -12,280 NA NA NA

ln AFC (6.7)^3 13,660 26,940 40,500 NA NA NA

ln AFC (6.7)^4 -12,730 -7,969 -3,273 NA NA NA

Month of first
calving (June)

January 5,448 6,446 7,386 5,295 6,245 7,220

February 4,225 5,171 6,060 4,079 4,992 5,937

March 2,694 3,626 4,513 2,593 3,505 4,434

April 886 1,845 2,771 825 1,756 2,719

May -222 813 1,854 -333 702 1,730

July -1,552 24 1,587 -1,572 -5 1,575

August 1,326 2,879 4,451 1,328 2,871 4,436

September 3,706 4,907 6,049 3,555 4,721 5,907

October 3,986 5,133 6,249 3,859 4,986 6,140

November 3,082 4,290 5,492 2,896 4,114 5,326

December 1,950 3,347 4,710 1,775 3,182 4,565
Year of first
calving
(2007)

2004 1,394 14,240 27,510 1,347 14,500 27,540

2005 -1,379 11,280 24,420 -1,480 11,500 24,390

2006 -3,757 8,894 22,060 -3,889 9,154 22,050

Random effect standard
deviation:

Lower
2.5% Median

Upper
97.5%

Lower
2.5% Median

Upper
97.5%

Cow level 12,418 12,498 12,578 12,458 12,538 12,621

Herd level 6,899 7,094 7,294 6,961 7,153 7,352

96 Impact of first lactation mean and variance in the natural logarithem of (ln) milk somatic cell count (SCC) over the
whole first lactation.
97 Impact of SCC at 5 to 30 days in milk during the first lactation (SCC1).
98 Not applicable.
99 Over the entire first lactation.
100 Age at first calving (days); included as polynomial terms.
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Figure 6.3. Median predictions of lifetime milk yield for specific cows
101

from Model 6.3 (exposure; mean

and variance of ln
102

SCC
103

over the first lactation)

101 First calving in February 2007, aged 27 months, and mean ln SCC during the first lactation = 4.54.
102 Natural logarithm of.
103 Milk somatic cell count.

6.3.2.3 Model checking

Predictions of FLMY or LiMY for cows aggregated in quartiles by

geometric mean first lactation SCC, indicated good fit, and hence that Models

6.1 and 6.3 were adequate for predictions in these herds (Figure 6.4). This was

also the case for predictions of lifetime and first lactation milk yield aggregated

by SCC1 group from Models 6.2 and 6.4 (not shown). There was < 1%

difference in the median, and 95% BCI limits of the coefficient distributions

for exposures of interest when a uniform prior distribution for the herd level

random effect variance was used, indicating that choice of prior distribution

had no substantive impact on model interpretation.
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Figure 6.4. Assessment of model fit and usefulness; predictions of first lactation and lifetime milk yield

from 10,000 simulations of Model 6.1
104

and Model 6.3
105

respectively
106

, and observed values in 5,900

Irish dairy herds grouped by first lactation geometric mean SCC
107

(Group 1; < 55,000 cells/mL, group 2;

ヵヵがヰヰヰ デﾗ ΒΓがヰヰヰ IWﾉﾉゲっﾏLが ｪヴﾗ┌ヮ ンき Γヰがヰヰヰ デﾗ ヱヴΓがヰヰヰ IWﾉﾉゲっﾏLが ｪヴﾗ┌ヮ ンき д ヱヵヰがヰヰヰ IWﾉﾉゲっﾏLぶく 

104 Outcome; first lactation milk yield. Exposures; First lactation mean of ln SCC over the first lactation.
105 Outcome; lifetime milk yield. Exposures; First lactation mean and variance of ln SCC over the first lactation.
106 The horizontal line is the median, the surrounding boxes contain 50% of the data, the vertical whiskers extend to 1.5
times the interquartile range, and outliers are shown beyond this.
107 Milk somatic cell count.

6.3.2.4 Micro-simulation

Figure 6.5 shows the cumulative probability distribution of potential cost

savings for every heifer in the herd attributable to increased LiMY, associated

with reductions in herd_gSCC_p1. Direct probabilities for different levels of

saving can be read from Figure 6.5. For example, there was 75% certainty of

cost savings of at least €199 /heifer in the herd, if herd_gSCC_p1 reduced from

≥ 120,000 cells/mL to ≤ 72,000 cells/mL. That would be equivalent to moving 

from the upper to the lower quartile for herd_gSCC_p1 (Table1). For a herd in
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which 20 heifers complete the first lactation, this is equivalent to a saving of

€3,980 associated with moving from the highest to the lowest herd_gSCC_p1

quartile. Further scenarios for the example herd are given in Table 6.5.

Figure 6.5. Micro-simulation over 10,000 simulations of Model 6.3
108
; minimum cost saving /heifer in the

herd attributable to increased lifetime milk yield associated with reduction in herd quartile
109

for first

lactation geometric mean SCC
110

108 Exposures; First lactation mean and variance in ln SCC over the first lactation.
109 1; ≤ 72,000 cells/mL, 2; 72,000 to 93,000 cells/mL, 3; 93,000 cells/mL to 120,000 cells/mL, 4; ≥ 120,000 cells/mL. 
110 Milk somatic cell count.

Table 6.5. Simulated cost savings through increased lifetime milk yield
111

associated with specific

reductions in herd level first lactation geometric mean SCC
112
, for an example herd in which 20 heifers

complete the first lactation

Probability Herd level geometric mean first lactation SCC (quartiles
113

)
4 to 1 4 to 2 3 to 1

0.75 ≥ €3,980 ≥ €3,100 ≥ €1,820 
0.5 ≥ €4,220 ≥ €3,260 ≥ €2,020 

0.25 ≥ €4,460 ≥ €3,420 ≥ €2,200 

111
Milk margin was drawn from a normal distribution with mean = 0.17 €/L, and standard deviation = 0.03 €/L for

each cow.
112 Milk somatic cell count.
113 1; ≤ 72,000 cells/mL, 2; 72,000 to 93,000 cells/mL, 3; 93,000 cells/mL to 120,000 cells/mL, 4; ≥ 120,000 cells/mL. 
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6.3.3 Somatic cell count legacy during the first lactation; model results

The association between ln SCC1 and both the mean, and variance of ln

SCC throughout the first lactation varied by herd (Model 6.5; Tables 6.6 and

6.7), and the between herd variation in the relationship between SCC1 and

geometric mean SCC during the first lactation was large (Table 6.7, Figure

6.6). For most herds, increase in SCC1 was associated with increase in

geometric mean first lactation SCC, but this was not always the case (Figure

6.6). The mean (baseline) AFC in Model 6.5 was 27 months, and this

interacted with SCC1 (Table 6.6). With SCC1 unchanged, a 3 month change in

AFC was positively associated with a 1.3% (95% BCI 0.5 to 2.1 %) change in

geometric mean SCC during the first lactation.

Figure 6.6. Predictions of median geometric mean SCC
114

during the first lactation from Model 6.5
115

for

different herds based on magnitude of relationship with SCC at 5 to 30 days in milk (SCC1)

114 Milk somatic cell count.
115

Multivariate normal model with mean and variance of ln SCC during the first lactation as outcomes, and herd level
random slopes for SCC1 (exposure of interest). The predictions refer to cows with a first calving during February aged
27 months.
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Table 6.6. Bayesian credible intervals for fixed effects following 10,000 simulations of the final model for

the mean and variance of ln
116

SCC
117

during the first lactation (Model 6.5).

Mean ln SCC during p1118 Variance ln SCC during p1
Fixed effects
(baseline)

Lower
2.5% Median

Upper
97.5%

Lower
2.5% Median

Upper
97.5%

Intercept 4.591 4.628 4.665 0.441 0.449 0.457
Month
of first
calving
(June)

January -0.106 -0.067 -0.028 NA119 NA NA

February -0.107 -0.069 -0.032 NA NA NA

March -0.081 -0.043 -0.006 NA NA NA

April -0.039 0 0.038 NA NA NA

May -0.02 0.023 0.065 NA NA NA

July -0.09 -0.026 0.038 NA NA NA

August -0.14 -0.077 -0.015 NA NA NA

September -0.122 -0.076 -0.028 NA NA NA

October -0.132 -0.085 -0.039 NA NA NA

November -0.081 -0.03 0.018 NA NA NA

December -0.113 -0.064 -0.015 NA NA NA

ln AFC120 (6.7) 0.12 0.161 0.205 0.06 0.104 0.148

ln SCC1121 (4.66)^1 0.406 0.413 0.419 0.044 0.051 0.058

ln SCC1 (4.66)^2 -0.033 -0.03 -0.026 0.132 0.137 0.141
ln SCC1 (4.66)^1.ln
AFC (6.7) -0.069 -0.036 -0.001 -0.097 -0.059 -0.023
ln SCC1 (4.66)^2.ln
AFC (6.7) 0.016 0.034 0.052 -0.048 -0.027 -0.006

116 Natural logarithm of.
117 Milk somatic cell count.
118 First lactation.
119 Not applicable.
120 Age at first calving.
121 SCC at 5 to 30 days in milk during parity 1.
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Table 6.7. Matrices of median (co)variances (95% Bayesian credible interval) following 10,000 simulations of the final model; outcomes mean and variance of ln
122

SCC
123

during the first

lactation (Model 6.5).

Cow level

j2
u0

124 j2
u1

125

0.278
(0.274 to 0.282)

0.065
(0.062 to 0.068)

0.310
(0.306 to 0.314)

Herd level

j2
v0

126 j2
v1

127 j2
v2

128 j2
v3
129 j2

v4
130 j2

v5
131

0.049
(0.045 to 0.052)

-0.007
(-0.009 to -0.004)

0.031
(0.028 to 0.034)

0.008
(0.006 to 0.01)

-0.008
(-0.01 to -0.006)

0.014
(0.012 to 0.015)

-0.001
(-0.002 to 0.000)

0.003
(0.002 to 0.004)

0.000
(0.00 to 0.001)

0.002
(0.002 to 0.002)

-0.023
(-0.025 to -0.021)

0.002
(0.000 to 0.004)

-0.001
(-0.003 to 0.000)

-0.002
(-0.003 to -0.002)

0.019
(0.017 to 0.022)

0.001
(0.000 to 0.003)

-0.004
(-0.005 to -0.003)

-0.004
(-0.005 to -0.003)

-0.002
(-0.002 to -0.001)

0.000
(-0.001 to 0.001

0.008
(0.008 to 0.009)

122 Natural logarithm of.
123 Milk somatic cell count.
124 Cow level variance in the intercept for mean of ln SCC during the first lactation.
125 Cow level variance in the intercept for variance of ln SCC during the first lactation.
126 Herd level variance in the intercept for mean of ln SCC during the first lactation.
127 Herd level variance in the intercept for variance of ln SCC during the first lactation.
128 Herd level variance in the coefficient for SCC at 5 to 30 DIM during parity 1 (SCC1) for the mean of ln SCC during the first lactation.
129 Herd level variance in the coefficient for SCC1 for the variance of ln SCC during the first lactation.
130 Herd level variance in the coefficient for SCC1^2 for the mean of ln SCC during the first lactation.
131 Herd level variance in the coefficient for SCC1^2 for the variance of ln SCC during the first lactation.
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6.4 Discussion

To the author’s knowledge, the analyses in this chapter is the first to

demonstrate large differences in both FLMY and subsequent LiMY of cows,

associated with the geometric mean and variance of SCC during the first

lactation. The results highlight that in addition to the importance of optimizing

the udder health of heifers in early lactation, as found in chapter 3 (De Vliegher

et al., 2005a), this is also vital throughout the remainder of the first lactation in

terms of lifetime productivity. The median decrease in LiMY of 1,663 kg /1-

unit increase in mean ln SCC over the first lactation in this chapter, was much

larger than the median first lactation milk loss of 135 kg associated with 1-unit

increase in mean ln SCC over the first lactation. This first lactation milk loss

was similar to the estimate made by Raubertas and Shook (1982), however it

exceeded estimates from higher yielding cows in more recent studies based on

test day recordings, in which 1-unit increase in mean ln SCC over the first

lactation was associated with losses of 85 to 120 kg over 305 d for primiparous

cows (Dürr et al., 2008; Halasa et al., 2009). Importantly, previous analyses

based on test day recordings only show the milk loss in affected cows that

survive; probably associated with residual udder pathology, but exclude milk

loss associated with premature culling. In contrast cumulative measures of milk

yield take cow longevity into account to give a more realistic estimate of milk

loss. The trend for higher FLMY with increased AFC was consistent with

previous research (Berry and Cromie, 2009). As seen in chapters 3 and 5, it

was also likely that decreased AFC was associated with increased longevity

(Berry and Cromie, 2009), and hence LiMY.
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A 1-unit increase in ln SCC1 was associated with median decreases in

FLMY and LiMY of 71 and 633 kg respectively. This was slightly less than

estimates for the reduction in FLMY and subsequent LiMY from chapter 3 of

105 and 864 kg respectively associated with 1-unit increase in SCC1, probably

because inclusion criteria for heifers were different. To enable mean and

variance in ln SCC over the first lactation to be calculated for all heifers, the

current study only included data for heifers that survived for at least 2

recordings in the first lactation. Therefore compared to chapter 3, the total

impact of mastitis early in the first lactation on cumulative milk yield has

probably been underestimated, because heifers that were culled soon after

calving were excluded. However, models for FLMY and LiMY with SCC1 as

the exposure of interest were included in this research to make valid

comparisons with the models that had mean ln SCC over the entire first

lactation as the exposure of interest, as the same dataset was used.

Heifers with high SCC in early lactation may have high geometric mean

SCC throughout the entire first lactation (De Vliegher et al., 2004a; Santman-

Berends et al., 2012), as a result of failure to cure from early lactation IMI or

subsequent new IMI. However, the association between cow level SCC1 and

geometric mean SCC over the first lactation in this chapter varied between

herds (Figure 6.6), suggesting that differences in the dynamics of IMI, and the

management of heifers between herds has an important impact on patterns of

SCC during the first lactation. High cow SCC early in the first lactation, and

throughout the whole of the first lactation were both associated with reduced

FLMY and LiMY. Therefore, control measures to reduce SCC in an individual

herd may be relatively more important during either the ppp period (Green et
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al., 2008), or the lactating period (Barkema et al., 2009). A rational approach to

managing heifer mastitis in herds with high first lactation geometric mean SCC

would be to identify if this may be a result of high SCC during the ppp or the

lactating period, and prioritize control measures accordingly, as both scenarios

appear equally likely in Irish dairy heifers (Table 6.2). Further investigations

should evaluate risk factors for heifer mastitis in terms of impact on SCC

throughout the entire first lactation in order to develop herd specific

management interventions to optimise the lifetime milk yield of dairy cows

6.5 Conclusions

This chapter demonstrated that for cows in Irish dairy herds, geometric

mean and variance of first lactation SCC, and SCC1 were negatively associated

with both first lactation and lifetime milk yield. The apparent legacy of SCC

early in the first lactation on SCC for the remainder of the first lactation was

highly herd dependent. Approximately 50% of Irish dairy herds have potential

to make savings through reducing SCC throughout the first lactation. This

could involve preferentially targeting mastitis control measures in a herd

specific manner towards the ppp period, or towards the lactating period,

depending on individual herd SCC patterns. Further research is needed to

define the most cost effective control measures in different circumstances.



134

Chapter 7: Bayesian evaluation of budgets for endemic

disease control; an example using management changes

to reduce milk somatic cell count early in the first

lactation of cows in Irish dairy herds

7.1 Introduction

Chapters 3 and 5 showed that for 50% of Irish dairy herds, reducing the

prevalence of cows with high somatic cell count at 5 to 30 days in milk during

parity 1 (SCC1) would be associated with savings through increased longevity,

and lifetime milk yield (LiMY). This reduction may be achieved through herd

level management interventions targeted at ppp heifers (Green et al., 2008).

Previous studies have identified risk factors for mastitis in primiparous cows

(De Vliegher et al., 2012), however the cost and efficacy of particular

management changes have yet to be evaluated in the field. Data on the likely

cost effectiveness of management interventions is therefore unavailable.

However, potentially effective interventions may not be deemed ‘cost

effective’ if they are too expensive to implement, or the desirable outcome is

too uncertain for particular decision makers (Spiegelhalter et al., 2004). It is

therefore unrealistic for economic analyses to assume an unlimited ‘willingness

to pay’ for each Euro saved through reduced disease costs. Rational budgets for

management interventions are unknown, and this information would facilitate

the development of practical advice to control heifer mastitis on Irish dairy

farms and elsewhere.
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Uncertainty and variability in parameters can be handled with Bayesian

analyses, which can be extended with micro-simulation to generate posterior

predictions for particular scenarios as used in chapters 3 to 6. Making

distributional assumptions can be avoided, with all uncertainty, and

relationships between variables propagated through to the final outcome by

using a 1-step procedure (Chessa et al., 1999; Spiegelhalter et al., 2004).

However, a 2-step micro-simulation procedure, where distributions for

parameters are obtained from other research or expert opinion is more

common, and has been used to estimate average costs of high milk somatic cell

count (SCC) in early lactation of €31 (range 0 to 220) / heifer in the herd

(Huijps et al., 2009a). The integrated 1-step procedure has been applied

previously to investigate the impact of management interventions in dairy

herds, with iterations propagated from a single model (Green et al., 2010).

However, the approach can be extended to synthesise evidence from multiple

sources, as used in cost effectiveness analyses for human medical treatments

(O' Hagan and Stevens, 2001; Spiegelhalter and Best, 2003). To the author’s

knowledge this extension of the methodology has not been applied in a

veterinary context, and control of heifer mastitis is taken as an example.

The aim of this chapter was to use 1-step Bayesian micro-simulation to

synthesise evidence, and determine budgets for specific management

interventions to control heifer mastitis in Irish dairy herds under different

circumstances.
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7.2 Materials andmethods

7.2.1 Overview

An overview of the 1-step micro-simulation procedure is provided in

Figure 7.1. This procedure was used to estimate the likely economic impact of

specific interventions to control heifer mastitis, in terms of changes in lifetime

milk yield and cow disposal risk. Therefore, models for lifetime milk yield

(chapter 3), and disposal risk (chapter 5) were run in parallel using their

respective data for 10,000 Markov chain Monte Carlo (MCMC) iterations

using WinBUGS 1.4.3 (Lunn et al., 2000). At each iteration after burn in,

coefficient estimates from the models were taken forward and combined with

simulated data for theoretical cows (based on ≥ 20%, and ≥ 30% herd level 

prevalence of cows with SCC1 ≥ 200,000 cells/mL) to predict lifetime milk 

yield and the occurrence of disposal within 1,750 days of first calving.

Management interventions thought to reduce SCC1 were assumed to be

implemented. Potential financial savings associated with applying the

interventions were determined from the mean difference in lifetime milk yield,

and disposal risk at herd level. The probability of cost effectiveness, and

maximum rational spend for implementing the management interventions was

estimated for different decision makers based on their expected minimum

return on investment and willingness to pay.
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decrease in lifetime milk yield of 865 kg (95% Bayesian credibility interval

(BCI) 702 to 1,025 kg).

Table 7.1. Lifetime milk yield model (Model 3.1; Chapter 3)
132
; parameters used in the micro-simulation

procedure

Exposure (baseline)

95% Bayesian credibility interval

Lower 2.5% Median Upper 97.5%

Intercept -4,819 10,950 26,260

ln133 SCC1134 (4.65) -1,025 -865 -702

First calving February 2007 2,979 4,418 5,832

ln AFC135 (6.71) -8,302 -6,906 -5,484

132 Only relevant parameters shown.
133 Natural logarithm of.
134First test day somatic cell count record at 5 to 30 days in milk during parity 1.
135 Age at first calving (days).

7.2.3 Cow disposal model (Model 5.1)

This model evaluated the association between SCC1, and survival over a

5 year period from 2005 to 2009, for cows in Irish dairy herds and is described

fully in chapter 5. The results used in the micro-simulation are shown in Table

7.2. Disposal odds increased by 5% (BCI 2 to 9%) per unit increase in ln

SCC1.
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Table 7.2. Cow disposal model (Model 5.1; chapter 5)
136
; parameters used in the micro-simulation

procedure

95% Bayesian credibility interval
(odds ratio)

Exposure (baseline) Lower
2.5%

Median Upper
97.5%

Intercept 0.002 0.002 0.003
ln137 SCC1138 (4.64) 1.020 1.052 1.085
TDY1139 (23 kg) 0.968 0.976 0.983
TDF1140 (0.04) 0.000 0.001 0.090
ln AFC141 (6.70) 1.770 2.263 2.930
[ln interval142]^1 (2.28) 1.260 1.361 1.473
[ln interval]^2 (2.28) 1.847 1.970 2.100
[ln interval]^3 (2.28) 1.198 1.247 1.298
DIM143 (< 100) 100 to 199 2.642 2.939 3.264

200 to 304 5.280 5.883 6.554

136 Only relevant parameters shown.
137Natural logarithm of.
138 First test day somatic cell count record between 5 and 30 days in milk (DIM) during parity 1.
139 First test day milk yield record (kg) between 5 and 30 DIM in parity 1.
140First test day fat record (proportion) between 5 and 30 DIM in parity 1.
141 Age at first calving (days).
142 50 day intervals from first calving. Included as polynomials.
143DIM category in the penultimate interval for each cow. Missing category not shown.

7.2.4 One-stepmicro-simulation

7.2.4.1 Simulation of individual cows

To account for the variability in parameters, coefficient values from

Models 3.1 and 5.1 were propagated onward (at each iteration) and applied to

1,000 simulated cows kept in herds that housed pre-partum heifers, and did not

apply the specific management interventions to be tested. At each of 10,000

MCMC simulations, coefficients from Models 3.1 and 5.1 were combined with

data from the theoretical cows to generate predictions of lifetime milk yield

and the occurrence of disposal within 1,750 days from first calving for the ith

cow in the jth herd (y.predij);

y.predij ~ p(y.predij| く, Xsim),
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where p represents a conditional probability distribution, く is a vector of

coefficient distributions from Model 3.1 or 5.1, and Xsim was a matrix of data

for simulated cows. This included an indicator variable to denote a first calving

in February 2007 (aged 24 months), and data from a first milk recording

(including ln SCC1) at 5 to 30 DIM simulated from observed normal

distributions based on the initial herd level prevalence of cows with SCC1 ≥ 

200,000 cells/mL (Table 7.3). Interval dependent indicator variables were used

for month of final recording and DIM category in the penultimate interval.

Table 7.3. Observed herd frequency
144
, and cow level

145
means (variances) categorised by high SCC1

146

prevalence

Herd level prevalence of cows with
SCC1 ≥ 200,000 cells/mL 

 ≥ 20% ≥ 30% 
Observed data Percentage of herds 59% 26%

ln147 SCC1 4.82 (1.47) 5.06 (1.56)
Milk1148 23 (30.0) 22 (33.3)

Fat1149 0.04 (0.00007) 0.04 (0.00007)

144 Based on 7,423 Irish dairy herds.
145 Based on 233,176 parity 1 cows in 7,423 Irish dairy herds.
146 First test day somatic cell count record (cells/mL) between 5 and 30 days in milk (DIM) during parity 1.
147 Natural logarithm of.
148 First test day milk yield record (kg) between 5 and 30 DIM during parity 1.
149First test day fat record (proportion) between 5 and 30 DIM during parity 1.

7.2.4.2 Economic simulation

At every iteration, the difference in lifetime milk yield for each cow in

these scenarios, before and after applying the management interventions, was

multiplied by the estimated gross margin (Milk price – variable costs of

production) ~ Normal (mean = 0.17, standard deviation = 0.03) €/L (Hennessy

et al., 2011), to give the predicted difference in milk revenue. In addition, at

every iteration, the difference in the number of cows disposed within 1,750

days from first calving for each scenario was multiplied by €1,451 (Kennedy et
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al., 2011), to estimate replacement costs. Following the assumed management

interventions, the cost differences associated with increased lifetime milk yield

and decreased cow disposal risk were expressed as a mean financial value per

heifer in the herd (Figure 7.1). Posterior distributions of total savings per heifer

in the herd were plotted as a cumulative frequency distribution to show the

probability of different levels of return in an intuitive form.

7.2.4.3 Simulation of management interventions

Three interventions applicable to mastitis control for housed ppp heifers

to improve environmental hygiene, and therefore reduce the risk of new

intramammary infections were selected from previous research based on farm

observations (Table 7.4, (Green et al., 2008)). The interventions were storage

of bedding inside, decreasing transition yard stocking density (from < 1.25 m2

to > 1.25 m2 /1,000 kg of annual mean milk production for the herd), and

spreading of bedding evenly in the calving area. Storage of bedding material

inside implies it is more likely to be dry when used, and therefore less able to

support microbial growth. Increase in transition yard area /cow implies the yard

has less contamination. Spreading of bedding material evenly in the calving

area provides a more hygienic environment compared to if the bedding

material is clumped. Normal distributions for change in ln SCC1 associated

with these interventions were assumed (Table 7.4); the mean was available,

and the variance was estimated given that the 95% BCIs reported were

equivalent to 2 standard deviations (Green et al., 2008). Draws from these

distributions were added to the simulated ln SCC1 for each cow (Figure 7.1), to

determine the impact of the 3 interventions when applied together for herds
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with ≥ 20%, or ≥ 30% initial prevalence of cows with SCC1 ≥ 200,000 

cells/mL.

Table 7.4. Change in Normal distribution parameters for ln SCC1 (natural logarithm of SCC1)
150

associated with management interventions (Green et al., 2008)

Management intervention Mean Variance

Storage of bedding material inside -0.15 0.02
Decreased transition yard151 stocking
density

-0.12 0.01

Even spreading of bedding in calving area -0.19 0.02

150
Somatic cell count at 5 to 30 days in milk during parity 1.

151 From < 1.25 m2 to > 1.25 m2 per 1,000 kg of herd annual mean milk production /cow.

Figure 7.2. A diagrammatic representation of a cost effectiveness plane. The horizontal and vertical axes

show differences in savings, and costs respectively. These axes are bisected by a line with slope (k),

representing willingness to pay / Φ1 of saving. Points below the willingness to pay line are cost effective,

and those above it are not. The outcome from economic models can be plotted on the cost

effectiveness plane, producing a density map over multiple iterations, to show the likelihood of cost

effectiveness for specific interventions (Spiegelhalter et al., 2004).
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7.2.5 Willingness to pay

A cost effectiveness plane is illustrated in Figure 7.2; position on the

plane is determined by the difference in costs and savings for a particular

intervention. The axes of Figure 7.2 are bisected by a line that divides the plane

into quadrants; the slope of the line (k) represents ‘willingness to pay’ for an

intervention. In the context of changes to dairy herd management in this

research, costs and savings are in monetary units. Therefore k represents the

amount that a particular decision maker is prepared to invest for every €1 of

saving, and hence the return on investment that would be acceptable for a

particular management change at a particular cost. Points above the

‘willingness to pay’ line would not be considered cost effective by the decision

maker (as costs are more than the acceptable savings). Conversely, points

below the ‘willingness to pay’ line are considered cost effective. The cost

effectiveness of interventions therefore depends on the slope k, which is

determined by the attitude of the decision maker. For example, if savings that

merely cover the intervention cost are acceptable; k = €1. Values of k ≥ €1, 

imply the decision maker is willing to pay more than the expected return on

saving. With a willingness to pay (k) of > €0 and < €1 /€1 of saving, the value

chosen reflects the minimum return on investment the decision maker expects

over and above the intervention cost in order that they would consider the

intervention to be cost effective, and therefore be a rational choice. The

relationship between willingness to pay, and the minimum expected return on

investment is shown in Figure 7.3; for example, if k = €0.5 /1€ saving, the

decision maker would not accept a return < €1 for every €1 invested.

‘Willingness to pay’, and hence the slope of the line that bisects Figure 7.2
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changes for different decision makers. Position on the plane of Figure 7.2

relative to this line determines if a particular intervention is likely to be deemed

‘cost effective’, and therefore a rational choice for a particular decision maker.

For example, an effective intervention could be to build additional housing to

increase space allowance for pre-partum heifers, however if the most likely

combination of costs and savings falls in the top right quadrant of Figure 7.2,

above the willingness to pay threshold, the intervention would be deemed too

expensive, and would not be implemented. Conversely, the most likely

economic outcome for a less effective but cheaper intervention, such as buying

a tarpaulin to keep bedding material dry could fall below the willingness to pay

threshold in the top right quadrant of Figure 7.2, and therefore be deemed cost

effective. Decision makers typically do not divulge their willingness to pay for

interventions; therefore, a sensitivity analysis is often required to evaluate how

the incremental net benefit (INB) varies with willingness to pay (k) /€1 of

potential saving (Spiegelhalter et al., 2004). This is equivalent to varying the

slope of the willingness to pay line in Figure 7.2, and assessing the impact on

likely cost effectiveness, where;

INB[k] = k x difference in savings – difference in costs, and

k = (0:10) x €0.1.

Appropriate levels of spending for the control of mastitis in heifers

during the ppp period are unknown. Therefore, posterior distributions for the

maximum intervention cost (when INB[k] = 0) were determined. The

maximum intervention cost determines the budget available for implementing
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the interventions in order that they are considered ‘cost effective’ by a

particular decision maker.

Figure 7.3. Relationship between �willingness to pay� and minimum acceptable return on investment.

With regard to management interventions to control heifer mastitis, �willingness to pay� (k) is the

maximum amount (Φ) a decision maker will pay / Φ1 of potential saving, in order that an intervention is

considered cost effective. If k = 1, it is acceptable to at least break even, cover the intervention cost only

and make no additional financial return for the intervention to be deemed cost effective. If k = 0.5, the

decision maker would not accept < 100% return on investment, after covering the intervention costs.

Values of k > 1 imply the decision maker is willing to pay more than the likely return.

7.3 Results

7.3.1 Potential savings

The prevalence of simulated cows with SCC1 ≥ 200,000 cells/mL 

reduced by between 12 and 14% following the interventions. This section

reports potential savings, through increased lifetime milk yield, and decreased

disposal risk following the management interventions, but before the expected

minimum return on investment of different decision makers is considered.

 For herds with ≥ 20%, or ≥ 30% of parity 1 cows with SCC1 ≥ 200,000 

cells/mL that applied all three interventions, there was 75% certainty of total
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savings of at least €24 or €61 /heifer calved into the herd respectively; the full

range of possibilities is shown in Figure 7.4. It follows that for an example herd

of 80 cows, that incorporates 20 new heifers /year, ≥ 6 of which with SCC1 ≥ 

200,000 cells/mL, there would be a 75% probability of saving at least €1,220

through these interventions; further scenarios for the example herd, and an

identical herd with ≥ 4 new heifers with SCC1 ≥ 200,000 cells/mL /year are 

shown in Table 7.5. Components of the savings are also shown in Table 7.5.

Importantly, most savings are through increased revenue from the higher

lifetime milk yield of cows following the interventions. There is 75% certainty

of a maximum expected loss ≤ €40 through change in cow disposal risk 

following the interventions tested (Table 7.5). To put potential savings through

decreased cow disposal risk in context; a herd in which 20 heifers calve /year,

≥ 6 of which with SCC1 ≥ 200,000 cells/mL has only 50% chance of avoiding 

the disposal of around 1 cow every 12 years (€1,451 / €120 (Section 1.3.4.2,

Table 7.5)) through applying the specific interventions to reduce the prevalence

of cows with SCC1 ≥ 200,000 cells/mL. However, there would be 50% 

probability of saving at least €1,360 through increased lifetime milk yield alone

through applying the specific interventions (Table 7.5).
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Figure 7.4. Posterior predictions of cost saving at herd level. Bayesian models for lifetime milk yield, and

the binomial occurrence of disposal of cows in any 50 day interval from first calving were run in parallel.

Vague prior distributions were used for all parameters, and the models were both run for 10,000

Markov chain Monte Carlo iterations following a burn-in of 1,000 iterations to allow chain convergence
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(change in ln SCC1 ~ Normal(-0.15, 0.02)), increasing transition yard area from < 1.25 m2 to > 1.25 m2 /

1,000 kg of milk production (change in ln SCC1 ~ Normal (-0.12, 0.01)), and ensuring that bedding in the

calving area was spread evenly, instead of unevenly (change in ln SCC1 ~ Normal (-0.19, 0.05)) were

simulated, assuming milk margin ~ Normal (mean 17, standard deviation = 0.03) Φ/L, and Φ1,451 /cow
disposal.
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Table 7.5. Components of savings associated with interventions
152

for an example herd that calves 20

heifers /year

Probability
of saving

Component of
saving

Initial number of parity 1 cows with
SCC1 ≥ 200,000 cells/mL (/20)

 ≥ 6 (≥ 30%) ≥ 4 (≥ 20%) 

0.75
Lifetime
milk153 ≥ €1,260 ≥ €520 
Disposal154 ≥ €-40 ≥ €-40 
Total ≥ €1,220 ≥ €480 

0.5 Lifetime milk ≥ €1,360 ≥ €640 
 Disposal ≥ €120 ≥ €120 

Total ≥ €1,480 ≥ €760 
0.25 Lifetime milk ≥ €1,440 ≥ €760 
 Disposal ≥ €300 ≥ €280 

Total ≥ €1,740 ≥ €1,040 

152
For housed pre-partum heifers the following interventions to improve environmental hygiene were implemented;

bedding material storage was inside instead of outside (change in the natural logarithm of (ln) somatic cell count
between 5 and 30 days in milk during parity 1 (SCC1) ~ Normal(-0.15, 0.02)), transition yard area increased from <
1.25 m2 to > 1.25 m2 / 1,000 kg of herd mean annual milk production (change in ln SCC1 ~ Normal(-0.12, 0.01)), and
bedding in the calving area was spread evenly, instead of unevenly (change in ln SCC1 ~ Normal(-0.19, 0.05)).
153 Minimum increase in revenue attributable to lifetime milk yield assuming a margin ~ Normal(0.17, 0.032) €/L
154 Minimum increase in revenue attributable to cow disposal assuming a cost of €1,451 / cow disposed. Negative

values indicate that increased cow disposal risk is possible following the interventions.

7.3.2 Cost effectiveness of interventions

This section presents the probability that interventions are ‘cost

effective’, in terms of the maximum amount that should be spent on

implementation, given the minimum expected return on investment of a

decision maker.

Table 7.6 shows that for a given probability of cost effectiveness, as the

minimum expected return on investment increases (decrease in willingness to

pay), the potential budget for all 3 management interventions for the control of

heifer mastitis decreases, and this appears more sensitive to the expected

minimum return of the decision maker, than to the desired level of probability

that the interventions would be cost effective. For example, in herds with ≥ 

30% of cows with high SCC1, and 70%, 80% or 90% required probability that
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the interventions would be ‘cost effective’, for a decision maker who would be

content to at least break even, the budget for implementing the management

changes should not exceed €64, €58, or €50 /heifer calved into the herd

respectively (Table 7.6). However for a decision maker who requires a return

on investment of at least 100%, after recovering intervention costs, the budget

for implementing the management changes should not exceed €32, €29, or €25

/heifer calved into the herd for 70%, 80%, and 90% probabilities respectively

of meeting this objective (Table 7.6). For herds with ≥ 20% of cows with high 

SCC early in the first lactation, the budget for implementing the interventions

would be less, due to lower potential savings (Table 7.5). The results in herds

with a lower prevalence cut off were also more sensitive to the expected

minimum return of the decision maker, than to the probability of ‘cost

effectiveness’ (Table 7.6). For 70%, 80%, and 90% probabilities that the

interventions would be ‘cost effective’, and for a decision maker who would be

content to at least break even, the budget for implementing the management

changes should not exceed €27, €21, or €12 /heifer calved into the herd

respectively (Table 7.6). However for a decision maker who requires a return

on investment of at least 100%, after recovering intervention costs, the budget

for implementing the management changes should not exceed €14, €11 or €6

/heifer calved into the herd for 70%, 80%, and 90% probabilities of ‘cost

effectiveness’ respectively.
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Table 7.6. Potential budgets
155

(Φ /heifer calved in the herd) for varying expected minimum returns
156

against probability of the cost effectiveness
157

for specific interventions
158

to reduce the

prevalence of cows with high milk somatic cell count between 5 and 30 days in milk during parity 1 (SCC1)

Initial herd
prevalence of cows
with SCC1 ≥ 
200,000 cells/mL

Willingness to pay (k) for
intervention
(€ / €1 of potential saving)

Minimum expected
return over intervention
cost to be deemed ‘cost
effective’ (%)

Probability of cost effectiveness

0.60 0.70 0.80 0.90

 ≥ 0.3 1.0 0 69.12 63.96 58.32 49.88 
0.9 11 62.21 57.57 52.49 44.82
0.8 25 55.30 51.17 46.66 39.90
0.7 43 48.38 44.77 40.82 34.92
0.6 67 41.47 38.38 34.99 29.93
0.5 100 34.56 31.98 29.16 24.94
0.4 150 27.65 25.58 23.33 19.95

≥ 0.2 1.0 0 32.96 27.41 21.04 12.07 
0.9 11 29.67 24.67 18.94 10.87
0.8 25 26.37 21.93 16.83 9.66
0.7 43 23.07 19.19 14.73 8.45
0.6 67 19.78 16.45 12.62 7.24
0.5 100 16.48 13.71 10.52 6.04
0.4 150 13.19 10.96 8.42 4.83

155 Determined from potential change in the lifetime milk yield and disposal risk of cows.
156 Where expected return over intervention cost = (1 – k)/k.
157 (k x Difference in savings) - Difference in costs ≥ €0. 
158 For housed pre-partum heifers the following interventions to improve environmental hygiene were implemented; bedding material storage was inside instead of outside (change in the natural logarithm of (ln)
somatic cell count between 5 and 30 days in milk during parity 1 (SCC1) ~ Normal(-0.15, 0.02)), transition yard area increased from < 1.25 m2 to > 1.25 m2 / 1,000 kg of herd mean annual milk production (change in ln
SCC1 ~ Normal(-0.12, 0.01)), and bedding in the calving area was spread evenly, instead of unevenly (change in ln SCC1 ~ Normal(-0.19, 0.05)).
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7.4 Discussion

This chapter has shown that the perceived ‘cost effectiveness’ of

interventions to control mastitis in heifers is highly dependent on decision

makers’ willingness to pay, and hence their minimum expected return on

investment. In addition, the efficacy of interventions is initially uncertain,

meaning they may not always be ‘cost effective’ on particular farms (Green et

al., 2010). Attitude to risk varies between individuals, and decisions about

implementing interventions to control disease must be made based on a level of

risk regarding the economic outcome that is deemed acceptable. However,

‘willingness to pay’ potentially has a larger impact on the intervention budget

than ‘attitude to risk’. The expectations of farmers when making decisions

around mastitis control are not well understood, and could be affected by their

psychological, physiological, and emotional state (Hastie and Dawes, 2001).

For instance, pride in keeping cows healthy was an important motivator for

mastitis control in Dutch dairy herds (Valeeva et al., 2007). It is hard to put an

economic value on emotions such as ‘pride’ attributable to controlling mastitis,

and this could mean ‘willingness to pay’ exceeds what seems rational based on

changes in lifetime milk yield and disposal risk alone, as the minimum

expected return is non-tangible. Farmers have cost preferences for mastitis

interventions which effectively weight costs based on factors such as the

practicality of implementing the changes (Huijps et al., 2009b). Decision

making is therefore complicated by variation in what is deemed ‘cost effective’

by different individuals and this may explain the low compliance seen with

voluntary mastitis control programmes (Green et al., 2007a; Valeeva et al.,
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2007). Importantly, advice on ‘effective’ interventions for mastitis control may

not be implemented if ‘cost effectiveness’ is ignored (Huijps et al., 2010).

Cost effectiveness analyses in human health economics often assess the

relative benefit of treatments for a particular condition based on improvements

in quality and quantity of life, measured subjectively as ‘quality adjusted life

years (QUALYs; NICE, 2010)’. Developing similar methods to assess non-

tangible benefits could help to better understand decision maker characteristics,

and refine budgets for endemic disease control in livestock. However, despite

use of complex modelling and sensitivity analysis in the human field (O' Hagan

and Stevens, 2001; Spiegelhalter and Best, 2003), a decision must still be made

on which treatment is most cost effective, determined by the maximum amount

the decision maker is willing to pay per additional QALY. Although this

threshold is subjective, where multiple decisions around new treatments for

multiple conditions have to be made by health-care providers, cost

effectiveness analyses can be used to maximise benefits from limited funds, by

informing decisions on where to invest (Spiegelhalter et al., 2004). Such an

economic decision tool would be invaluable to inform livestock farmers when

faced with making decisions around which endemic disease(s) are a priority for

investment in control measures, to maximise savings. This approach is

dependent on extensive future intervention studies and cost effective analyses.

Intervention studies for the control of heifer mastitis have so far mainly

focussed on individual animal treatments (Nickerson, 2009; Parker et al.,

2007b; 2008). However, these require the handling of heifers, which can be

dangerous for operators and animals, and there are public health risks

associated with the use of prophylactic antibiotics (Borm et al., 2006;
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Nickerson, 2009). These factors may limit cost effectiveness, and individual

treatments are best applied alongside herd management changes (Green et al.,

2007a). The majority of Irish dairy heifers calve in early spring (chapter 2),

meaning they are housed during the ppp period, and poor environmental

hygiene at this time is a risk factor for mastitis (De Vliegher et al., 2012).

Interventions to improve the environmental hygiene of housed heifers were

therefore selected for the example, from the limited available literature on the

effect of management changes on SCC in early lactation (Green et al., 2007a;

2008). As a multi-factorial approach to mastitis control is advised (Anon, 2013;

Green et al., 2007a), it was assumed that 3 management changes to improve

environmental hygiene were applied simultaneously for ppp heifers. In practice

the findings from this chapter only inform rational levels of expenditure for

mastitis control in heifers through the specific management changes tested.

However, even with considerable variation between decision makers, there was

still potential to invest €5 per heifer in the herd for the control of heifer mastitis

in a worst case scenario where the decision maker must be 90% certain of  ≥ 

150% return, in lower prevalence herds (Table 7.6); for example this could

cover the cost of basic protection to keep bedding dry. Potential budgets were

higher in herds with higher prevalence of cows with SCC1 ≥ 200,000 cells/mL, 

and in the best scenario investigated where the decision maker was content to

be 60% certain of at least breaking even, a budget of €69 per heifer in the herd

could make investment in improvements to buildings and facilities feasible

(Table 7.6). For interventions to be perceived as ‘cost effective’, farmers

should aim to implement changes for the least possible cost but within budget.

In addition to the importance of environmental hygiene for heifers housed
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during the ppp period, factors affecting host defences have also been identified

as risk factors for mastitis, including udder oedema, nutrition, and factors

relating to social integration into the herd following calving (De Vliegher et al.,

2012). Furthermore, contagious transmission of pathogens between heifers can

occur by cross suckling and via flies (McDougall et al., 2009). For a holistic

approach to the control of heifer mastitis, further research should consider the

efficacy, and hence likely budgets for different decision makers to implement

management changes based on all risk factors.

The Bayesian methods used in this research differ from the classical

statistical approach, which is based only on current data, and ignores any prior

information. The outcome from a classical analysis gives the probability of

obtaining particular study data, given a hypothesis, if the study were repeated

on many occasions. Importantly, probabilities from classical analyses do not

refer to parameters themselves, and therefore should not be applied in a

predictive sense to inform decisions (Berry and Stangl, 1996; Bolstad, 2007).

For example, a classical analysis may give a parameter mean and confidence

interval (for the mean). In contrast, a Bayesian analysis gives a probability

distribution for the parameter directly, that can be used for prediction and

onward simulation. In this chapter the micro-simulation procedure allowed

synthesis of evidence from different sources, to enable immediate predictions

of the likely impact of interventions over the lifetime of cows. It also facilitated

comparison between scenarios with and without an intervention over the same

time period to study the effect in isolation, as if a controlled trial had been

carried out. Micro-simulation is therefore a useful technique for investigation
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of scenarios that would be impractical or expensive in reality (Spiegelhalter et

al., 2004).

Although the underlying models have been shown to be useful and

generalisable in chapters 3 and 5, further work is needed to validate the cost

effectiveness analysis and budgets presented here. Ultimately, this requires

observed data from management intervention studies on Irish dairy farms to

compare with model predictions. In addition other costs should be considered,

for instance the impact of reducing the prevalence of heifers with high SCC in

early lactation on lifetime clinical mastitis costs, and milk quality. Impact on

clinical mastitis was included in the costs of high SCC early in the first

lactation estimated by Huijps et al. (2009a); although these were still lower

than some of the potential budgets in this chapter as follow up time was only 1

year. For the cost effectiveness analysis in this chapter to be useful for decision

support in practice, it should be extended to consider other endemic diseases so

the relative benefits of control can be compared. A quantitative approach to

determining priorities for investment would avoid reliance on subjective

opinion (More et al., 2010), and this would be particularly useful for Irish

farmers to inform decisions on disease control investments in conjunction with

national control plans for several endemic diseases (Anon, 2013). There may

be overlapping benefits of certain management changes on multiple endemic

diseases which would make them even more economically favourable. A

survey of Irish farmers would be useful to further evaluate their ‘risk aversion’

and ‘willingness to pay’ for disease control. This information would help refine

budgets, and therefore identify achievable farm management changes for

validation of efficacy in future studies.
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7.5 Conclusions

Potential budgets for specific management interventions to reduce the

herd level prevalence of cows with SCC between 5 and 30 DIM during parity 1

≥ 200,000 cells/mL increase with initial prevalence. Budgets appear more 

dependent on the expected minimum return on investment of decision makers,

than the probability of achieving the desired outcome, and hence perceived

‘cost effectiveness’ to the decision maker. Factors affecting the willingness of

decision makers to pay for control measures require further investigation, as

knowledge of rational spending limits is useful for the development of specific

interventions for particular farms to control heifer mastitis, and other endemic

diseases of livestock.
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Chapter 8: General discussion and conclusions

8.1 Data quality versus quantity

The emphasis of the analyses in this thesis was to consider data from as

many herds and cows in Ireland as possible, such that the results could

potentially be generalised widely. This decision was made to produce evidence

that could be applied to mastitis control on a national level (Anon, 2013).

However milk recording test days occur infrequently for many Irish herds, and

the raw datasets contained discrepancies. Judgements had to be made between

the quality and quantity of the data used for analysis. These decisions were

initially based on biological plausibility and inspection of frequency

distributions. For example, the proportion of cows per herd that were recorded

at each test day had a bimodal distribution that represented both routine herd

recording, and test days associated with purchased cows that occurred in the

herd of origin. Therefore, a graphical approach was used for selection. A herd

test day was deemed to occur when at least 10% of cows were recorded

(Section 2.2.1) to select a parametric distribution from the initial bimodal

shape. At the cow level, there were many ways in which to summarise milk

somatic cell count (SCC) during the first lactation. In order to be meaningful,

some of these are conditional on a fixed number of recordings, such as the

proportion of SCC recordings exceeding a threshold. In chapter 6 first lactation

SCC was summarised using the geometric mean and variance to account for

variable numbers of recordings, make use of the detail in continuous scales,

and to avoid omitting data. To validate this approach, analyses were repeated

with data that was conditional on cows having up to 8 recordings during the
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first lactation but this did not substantially alter the results compared to

selecting a minimum of 2 recordings. Cows with clinical mastitis were

probably absent at herd test days, and would have fewer SCC records, meaning

that even the large impact of high SCC during the first lactation on lifetime

milk yield reported in this thesis is likely to underestimate the true cost of

heifer mastitis. Inclusion of data for cases of clinical mastitis would therefore

reinforce the inference that mastitis control during the first lactation is

important. Additional data on cow fertility would potentially be useful to

further describe the relationship between first lactation SCC and lifetime milk

yield. However the focus of this thesis was to produce results that could be

generalised rather than investigate more detailed biology in a smaller subset of

herds with the necessary records.

8.2 Insights on aetiology

In previous research, heifers with intramammary infection (IMI)

attributable to Coagulase-Negative Staphylococcus spp. (CNS) had higher milk

yield during the first lactation than both uninfected heifers, and those infected

with major pathogens; partly through reduced incidence of clinical mastitis and

culling risk through the first lactation (Piepers et al., 2010). This observation

highlights a further limitation of using SCC data as a proxy for IMI, as high

SCC early in the first lactation may not have the same impact on milk yield for

all pathogens. One way to investigate this observation using SCC data would

be through considering the timing of high SCC early in the first lactation. This

was investigated between 5 and 30 days in milk (DIM), but did not influence



159

cumulative milk yield or disposal risk. However, in previous research the

impact of high SCC between 5 and 15 DIM on first lactation milk yield and

culling risk depended on when it was measured (De Vliegher et al., 2005a;

2005b). This is possibly because IMI associated with CNS in heifers is likely to

be present at calving, and would be relatively more prevalent before 10 DIM,

as self cure can be rapid (Barkema et al., 1999a). In contrast if major pathogens

are present at calving these are less likely to self cure and therefore persist

beyond 10 DIM, with a more severe negative influence of milk yield and

survival. When a longer early lactating period is considered, IMI are more

likely to have occurred after calving, compared to during the pre- and peri-

partum (ppp) period. Alternatively, the dynamics of IMI early in the first

lactation may differ between countries or over time and this could explain

differences between studies. In this thesis ‘early lactation’ for heifers was taken

as 5 to 30 DIM to facilitate the simulation of management interventions in

chapter 7 which was a primary aim.

8.3 Apparent prevalence of heifer mastitis

This research has used SCC as a proxy for IMI. Although this provides a

slightly biased assessment for the reasons highlighted in Section 1.1.2, the

approach has enabled data from thousands of farms to be evaluated. SCC

during the first lactation has been shown to be economically important in terms

of lifetime milk yield. Since SCC data are widely available for monitoring, and

in the absence of clinical mastitis records for many herds, there is value in

describing the prevalence of putative IMI in heifers throughout lactation based
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on SCC. This has been included in chapter 2, and is a first step in assessing the

importance of heifer mastitis in Ireland, England, and Wales. Figure 2.3

indicates a large range in the apparent herd level prevalence of heifer mastitis,

which generally appears high in the first month of lactation in Ireland, England,

and Wales, as has been indicated elsewhere (De Vliegher et al., 2012).

However for the Irish herds the median prevalence of primiparous cows with

high SCC appeared maximal and most variable towards the end of the first

lactation; this was not apparent for the English and Welsh herds (Figure 2.3;

Table 2.4). A possible explanation for the increased variability could be there

were fewer cows in late lactation for the Irish compared to the English and

Welsh herds at each milk recording date. The trend in the median prevalence

highlights the importance of mastitis monitoring and control throughout the

first lactation (chapter 6). Higher and more variable geometric mean SCC

through lactation for heifers and cows in the Irish, compared to the English and

Welsh herds (Figure 2.2; Table 2.3) may relate to differences in production

systems (chapters 1 and 2), and payment schemes for milk. In Ireland, bonuses

for low SCC milk are less common than in England and Wales, meaning the

economic importance of mastitis may be less tangible to farmers. Furthermore,

a derogation exists in Ireland that permits the 3 month rolling geometric mean

bulk milk SCC to exceed 400,000 cells/mL from November to February, if this

is deemed to have a ‘physiological’ basis (More, 2009). However there are no

clear guidelines around how a ‘physiological’ increase in bulk milk SCC

should be distinguished from a ‘pathological’ increase. The current pricing

structure for milk in Ireland therefore does little to encourage mastitis control,

and the subliminal message to farmers through milk pricing may be that SCC
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does not matter. However, given the economic importance of low SCC in

heifers identified in this thesis, it is possible that current policies are in fact

counterproductive to the Irish dairy industry.

8.4 Importance of monitoring mastitis

8.4.1 Seasonal variation in milk somatic cell count

The data analysis in chapter 2 highlighted the relationship of season with

individual cow SCC. After accounting for stage of lactation and milk yield,

SCC for cows in Irish, English, and Welsh herds was found to be higher during

spring and summer than during autumn and winter. This was consistent with

higher bulk milk SCC during spring and summer for the English and Welsh

herds (Green et al., 2006b), but was inconsistent with lower bulk milk SCC

during spring and summer for the Irish herds (Berry et al., 2006). Spring-

calving predominated in the Irish herds, whereas the English and Welsh herds

predominantly had year-round calving patterns, suggesting that the difference

between the datasets may be due to dilution of cells, as a result of increased

milk yield during spring and summer for the Irish herds. Importantly, a high

risk of new IMI during spring and summer may be overlooked if only bulk

milk SCC is monitored. Furthermore, increase in bulk milk SCC during winter

may be driven by IMI dynamics during spring and summer if the new IMI rate

exceeds the cure rate, and Irish farmers should therefore monitor data from

individual cows in addition to bulk milk SCC. This could include monitoring

proportions of cows with putative IMI based on SCC thresholds for cows and

heifers; both over time, and by stage of lactation. The association between
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season, and cow SCC varied between herds (chapter 2), therefore herd specific

target and interference levels are required. Clinical mastitis rates should be

monitored in a similar manner. For cows with 2 consecutive recordings in

lactation or spanning the dry period, monitoring can incorporate SCC

dynamics; such as proportions of cows moving from low to high SCC, high to

low SCC, remaining high, or remaining low. This approach has been applied in

UK herds where monthly recording is common (Bradley and Green, 2005), and

can be considered as supplementary to other monitoring methods as it is based

on a subset of cows. However at present, many Irish dairy farms do not milk

record frequently enough to make assessment of SCC dynamics useful for

early identification of problems (chapter 2). Monitoring mastitis is of limited

value unless prompt action is to be taken if herd specific targets are exceeded.

8.4.2 Herd expansion

Increase in the size of Irish, English, and Welsh dairy herds was

associated with increase in cow SCC. Higher stocking rates in larger herds, and

increased cow traffic could contribute to increased risk of IMI with

environmental mastitis pathogens. Alternatively, cows could be more

susceptible to IMI in larger herds due to stress through group changes and

bullying. Larger herds may also have increased risk of IMI with contagious

mastitis pathogens as more susceptible quarters could be exposed during

milking. More labour units are required by larger herds. As herd size increases

in line with industry trends, the number of labour units per cow decreases

which may limit attention to detail in the application of mastitis control
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measures. Therefore it is important that mastitis is monitored during expansion,

as outlined in section 8.2.1 in order to adapt control measures as risks change.

8.5 Somatic cell count early in the first lactation and lifetime

milk yield

8.5.1 Importance of heifer mastitis control

Trends for increase in herd size emphasise the importance of achieving

optimal milk production and longevity from replacement heifers. This thesis

has indicated that high SCC between 5 and 30 DIM during parity 1 (SCC1) had

a substantial negative impact on milk production beyond the first lactation, that

persisted for the entire lifetime of cows in Irish herds (chapter 3), and for at

least 2 years for cows in English and Welsh herds (chapter 4). Estimates of first

lactation milk loss were much larger than in previous research that considered

only the impact of SCC early in the first lactation on the test day milk yield of

cows that survived (De Vliegher et al., 2005a). In chapters 4 and 5, SCC1 was

also associated with increased risk of disposal of cows, in agreement with

previous research (De Vliegher et al., 2005b). Through the impact of SCC1 on

lifetime milk yield, control measures for mastitis in ppp heifers are likely to be

economically advantageous for many herds. These should involve both

decreasing the risk of new IMI from environmental and contagious pathogens,

as well as increasing host resistance, but further work is needed to define the

relative cost effectiveness of specific interventions in different circumstances

(chapter 7). Having raised awareness of the economic importance in this thesis,

proportions of heifers with high SCC1 (Table 2.4; Figure 2.3) can be used to
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set target and interference prevalence levels in herd monitoring schemes. This

will be particularly important in Irish dairy herds where expansion is

anticipated.

8.5.2 Reasons for change in lifetimemilk yield

Decreased lifetime milk yield attributable to high SCC1 could be due to

decreased daily milk yield while cows are alive, as a result of persistent fibrosis

of the mammary parenchyma, limiting its functional capacity. The impact of

high SCC1 may also be mediated through decreased longevity of cows related

to ongoing poor udder health (chapter 6), increased risk of other diseases, or

impaired fertility. This thesis did not identify when losses in lifetime milk yield

occur, or reasons for the loss. Lifetime milk yield is correlated with survival

time and in the English and Welsh herds, no differences in the relationship

between survival time and cumulative milk yield for cows grouped by SCC1

were identified (Figure 8.1). This assessment was not possible for cows in the

Irish herds, as test day milk recording data (required to estimate survival time)

were not available beyond 2009, whereas ‘lifetime milk yield’ was determined

up to 2012 using a separate dataset. Cow disposal depends on many factors in

addition to SCC1 such as the availability of replacements, and the likely

marginal profit from a replacement heifer compared to the culled cow. Herd

circumstances that may relate to milk quota constraints or expansion plans, and

the attitude of the decision maker are further considerations. Therefore, reasons

for the reduction in lifetime milk yield associated with high SCC1 would need

to be investigated in research herds to control disposal decisions. However this
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approach would mean the results could not be generalised to other herds, and

would be of limited use, as well as costly. Regardless of the causal pathway,

this thesis has identified adverse economic consequences of high SCC1 in

terms of lifetime milk yield, which emphasises the importance of heifer

mastitis control.

Figure 8.1. Bag plots
159

of the relationship between survival time
160

and cumulative milk yield
161

for

43,461 eligible cows
162

by SCC1
163

for in 2,111 English and Welsh dairy herds

159 The star is the bivariate median, the inner dark blue ‘bag’ contains 50% of the data, and the outer boundary contains
95% of the data with outliers marked beyond this.
160 Number of days between a first calving date in 2004, and last recording date.
161 Estimated from a first calving in 2004 until 31 December 2006.
162 Cows with an SCC record between 5 and 30 DIM during parity 1 during 2004.
163 Milk somatic cell count between 5 and 30 days in milk during parity 1.

0 200 400 600 800 1000

SCC1 < 50,000 cells/mL

Survival time (days)

C
u
m
u
la
ti
v
e
m
il
k
y
ie
ld

(t
o
n
n
e)

0
2
0

4
0

0 200 400 600 800 1000

SCC1 >= 50,000 to 149,000 cells/mL

Survival time (days)

C
u
m
u
la
ti
v
e
m
il
k
y
ie
ld

(t
o
n
n
e)

0
2
0

4
0

0 200 400 600 800 1000

SCC1 >= 150,000 to 400,000 cells/mL

Survival time (days)

C
u
m
u
la
ti
v
e
m
il
k
y
ie
ld

(t
o
n
n
e)

0
2
0

4
0

0 200 400 600 800 1000

SCC1 >= 400,000 cells/mL

Survival time (days)

C
u
m
u
la
ti
v
e
m
il
k
y
ie
ld

(t
o
n
n
e)

0
2
0

4
0



166

8.6 Somatic cell count legacy throughout the first lactation

In general cows with high SCC1 are more likely to have high than low

geometric mean first lactation SCC, but the relationship was herd dependent

(chapter 6). However, cows with high geometric mean first lactation SCC were

equally likely to have either high or low SCC1, indicating that heifer mastitis

may not always be associated with the ppp period. The findings from chapter 6

therefore highlight the importance of investigating patterns in first lactation

SCC on a herd specific basis, in order to ensure heifer mastitis control is

targeted at the appropriate risk period, being either the ppp period, or the

lactating period from the second month of lactation. Targeted mastitis control

throughout the first lactation is important as increases in both SCC1, and the

geometric mean and variance of first lactation SCC were associated with large

reductions in milk yield over the first lactation and the subsequent lifetime of

cows in Irish dairy herds (chapters 3 and 6). Potential savings through heifer

mastitis control give an indication of the ‘scope for investment’ in potential

control measures. This highlights the importance of monitoring proportions of

heifers with high SCC throughout the entire first lactation (Table 2.4; Figure

2.3) and setting target and interference prevalence levels.

8.7 Importance of low somatic cell count in heifers

In chapters 3, 4, and 6, relatively small changes in cow SCC during the

first lactation; for example from 50,000 cells/mL to 150,000 cells/mL had a

large impact on the cumulative milk yield of cows. This information can be
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used to guide decisions on thresholds for putative IMI in heifers. For example

as SCC1 is economically important, it may be advantageous to use low

diagnostic thresholds early in the first lactation (such as < 100,000 cells/mL) to

increase sensitivity, meaning more cows with IMI would be identified based on

SCC1. If this led to introducing control measures sooner at the start of an

‘outbreak’, savings through increased lifetime milk yield could be greater.

However, this decision depends on the cost effectiveness of control measures,

as the loss of specificity when using a lower threshold for putative IMI, may

overestimate the scale of a heifer mastitis problem and lead to unnecessary

investment. A relatively small increase in SCC1 could be due to IMI with

minor pathogens such as CNS in one or more quarters (Barkema et al., 1999a).

Control plans targeted at specific CNS species may be cost effective for herds

with heifer mastitis problems not associated with major pathogens.

8.8 Budgets for mastitis control in pre and peri-partum heifers

Rational budgets for specific interventions to control heifer mastitis are

useful to ensure cost-effectiveness is achieved according to the requirements of

the decision maker. The cost-effectiveness of interventions pertaining to the

ppp period were investigated for sub-sets of herds (chapter 7). Budgets for

specific management interventions to reduce the herd level prevalence of cows

with SCC1 ≥ 200,000 cells/mL increase with initial prevalence, and appear 

highly dependent on the willingness of the decision maker to pay and hence the

minimum return on investment that they would find acceptable.
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8.9 Further research

Given the economic importance of high SCC1, its contribution to

geometric mean SCC throughout the first lactation, and a paucity of knowledge

around the efficacy of management changes for Irish herds, or indeed those

elsewhere, defining ‘cost effective’ management interventions for heifer

mastitis, targeted at the ppp period in different herd scenarios should be a

priority for further research. Intervention studies are ultimately required to

determine efficacy in terms of SCC1 (and clinical mastitis risk), and micro-

simulation methods could then be applied (using models similar to those in

chapters 3 to 6) to determine ‘cost effectiveness’ over the lifetime of cows,

without having to wait a long period of time for results. However, an improved

understanding of farmers’ requirements in terms of their willingness to pay, or

minimum expected return on investment is required to complete this work.

This information could be collected at low cost in surveys, could be completed

in a short time frame and would be an important next step. A more complete

picture of the economic importance of SCC during the first lactation could be

gained by considering the impact on clinical mastitis and the resultant costs.

However, this would inevitably be based on a sub-set of herds with clinical

mastitis records available that may make the results less generalisable. The

contribution of clinical mastitis may be partially captured in this thesis as it is

likely to reduce cow longevity. However with no information on discarded

milk, the cumulative milk production of cows was all assumed to be saleable,

which could potentially underestimate potential savings through the control of

heifer mastitis, if clinical mastitis risk reduced alongside the prevalence of

cows with high SCC. Following chapter 2, the importance of mastitis control



169

during spring and summer should be investigated further in terms of

contribution to high bulk milk SCC during autumn and winter in Irish dairy

herds, which remains a problem for the milk processing industry, particularly

where herd expansion is planned.

8.10 Conclusions

8.10.1 Overview

Mastitis in dairy heifers appears to be a particular problem for the Irish

dairy industry. High SCC during the first lactation was shown to have an

economically important impact on the lifetime milk yield of cows. A herd

specific approach to identifying the major risk period for heifer mastitis is

required. Knowledge of decision maker characteristics is important to

determine budgets for disease control.

8.10.2 Chapter 2

After correcting for stage of lactation and milk yield, SCC for cows in

Irish, English and Welsh dairy herds was higher and more variable in spring

and summer, than autumn and winter. For Irish dairy herds, monitoring

individual cows is particularly important in spring and summer, despite low

bulk milk SCC, and farmers should not be complacent about udder health at

this time. Increasing herd size was associated with a non-linear increase in cow
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SCC, highlighting an important area that may influence cost effective dairy

herd expansion.

8.10.3 Chapter 3

For cows in Irish dairy herds, SCC1 was negatively associated with first

lactation and lifetime milk yield. For the majority of Irish dairy herds with ≥ 

10% prevalence of cows with SCC1 ≥ 400,000 cells/mL, there are likely to be 

large savings associated with improving udder health for pre- and peri-partum

heifers.

8.10.4 Chapter 4

For cows in English and Welsh dairy herds, SCC1 was negatively

associated with cumulative milk yield over approximately 2 years. For dairy

herds in England and Wales with ≥ 10% prevalence of cows with SCC1 ≥ 

400,000 cells/mL, there are likely to be financial savings associated with

improving the udder health of pre- and peri-partum heifers.

8.10.5 Chapter 5

Despite a negative association between SCC1 and longevity for cows in

Irish dairy herds, the apparent effect was small and was therefore unlikely to be

economically important when considered in isolation in terms of change in

replacement costs.
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8.10.6 Chapter 6

For cows in Irish dairy herds, geometric mean and variance of first

lactation SCC, and SCC1 were negatively associated with both first lactation

and lifetime milk yield. However, the apparent legacy of SCC early in the first

lactation on SCC for the remainder of the first lactation was highly herd

dependent. Approximately 50% of Irish dairy herds have potential to make

savings through reducing SCC throughout the first lactation. This could

involve preferentially targeting mastitis control measures in a herd specific

manner towards the pre- and peri-partum period, or the lactating period,

depending on individual herd SCC patterns.

8.10.7 Chapter 7

Suggested budgets for specific management interventions to reduce the

herd level prevalence of cows with SCC1 ≥ 200,000 cells/mL increase with 

initial prevalence, but appear more dependent on the expected minimum return

on investment of decision makers, than the probability of achieving the desired

outcome, and hence perceived ‘cost effectiveness’ to the decision maker.
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Appendix

Example code for a linear regression model including

predictions andmicro-simulation

The example is based on the WinBUGS 1.4.3 code for Model 3.1 with

the outcome; lifetime milk yield. Coefficients (beta[k]) are estimated from the

data at each simulation and used in predictions to check within-model fit (using

samp_1), for cross validation (using samp_2), and for micro-simulation.

model
{
for (k in 1:17) { beta[k] ~ dflat() } # Prior distribution for beta[k]
tau ~ dgamma(0.001000,0.001000) # Prior distribution for cow level precision (1/variance)
tau.u2 ~ dgamma(0.001000,0.001000) # Prior distribution for herd level precision (1/variance)

for(i in 1:N) {
lifetime_milk[i] ~ dnorm(mu[i],tau)
mu[i]<- beta[1] # Intercept
+ beta[2] * lnscc1_gm_[i] # ln SCC1 centred on mean
+ beta[3] * calv1_mo_1[i] # First calving in January
+ beta[4] * calv1_mo_2[i] # First calving in February
+ beta[5] * calv1_mo_3[i] # First calving in March
+ beta[6] * calv1_mo_4[i] # First calving in April
+ beta[7] * calv1_mo_5[i] # First calving in May
+ beta[8] * calv1_mo_7[i] # First calving in July
+ beta[9] * calv1_mo_8[i] # First calving in August
+ beta[10] * calv1_mo_9[i] # First calving in September
+ beta[11] * calv1_mo_10[i] # First calving in October
+ beta[12] * calv1_mo_11[i] # First calving in November
+ beta[13] * calv1_mo_12[i] # First calving in December
+ beta[14] * calv1_yr_2004[i] # First calving in 2004
+ beta[15] * calv1_yr_2005[i] # First calving in 2005
+ beta[16] * calv1_yr_2006[i] # First calving in 2006
+ beta[17] * ln_AFC_gm_[i] # ln AFC centred on mean
+ u2[herd_id[i]]

pred.milk[i] ~ dnorm(mu[i], tau)

resid[i] <- pred.milk[i] - lifetime_milk[i] # Residual

milk_gp1[i] <- lnscc1_gp1[i] * pred.milk[i]
milk_gp2[i] <- lnscc1_gp2[i] * pred.milk[i]
milk_gp3[i] <- lnscc1_gp3[i] * pred.milk[i]
milk_gp4[i] <- lnscc1_gp4[i] * pred.milk[i]

}

mean_resid <- sum(resid[])/ N # Mean residual

mean_milk_gp1<- sum(milk_gp1[]) / denom1
mean_milk_gp2<- sum(milk_gp2[]) / denom2
mean_milk_gp3 <- sum(milk_gp3[]) / denom3
mean_milk_gp4 <- sum(milk_gp4[]) / denom4

for (j in 1:n2) { # Herd level random effect
u2[j] ~ dnorm(0,tau.u2)}
for(m in 1:N2) {

Estimation of

‘beta[k]’ from

data in samp_1

Prediction of mean

residual and mean

lifetime milk yield

for cows in samp_1

grouped by ln SCC1.



185

xmu[m]<- beta[1]
+ beta[2] * (xlnscc1_gm_[m])
+ beta[3] * xcalv1_mo1[m]
+ beta[4] * xcalv1_mo2[m]
+ beta[5] * xcalv1_mo3[m]
+ beta[6] * xcalv1_mo4[m]
+ beta[7] * xcalv1_mo5[m]
+ beta[8] * xcalv1_mo7[m]
+ beta[9] * xcalv1_mo8[m]
+ beta[10] * xcalv1_mo9[m]
+ beta[11] * xcalv1_mo10[m]
+ beta[12] * xcalv1_mo11[m]
+ beta[13] * xcalv1_mo12[m]
+ beta[14] * xcalv1_yr2004[m]
+ beta[15] * xcalv1_yr2005[m]
+ beta[16] * xcalv1_yr2006[m]
+ beta[17] * ln_AFC_gm_[i]

xpred.milk[m] ~ dnorm(xmu[m], tau)

xmilk_gp1[m] <- xlnscc1_gp1[m] * xpred.milk[m]
xmilk_gp2[m] <- xlnscc1_gp2[m] * xpred.milk[m]
xmilk_gp3[m] <- xlnscc1_gp3[m] * xpred.milk[m]
xmilk_gp4[m] <- xlnscc1_gp4[m] * xpred.milk[m]

}
xmean_milk_gp1<- sum(xmilk_gp1[]) / xdenom1
xmean_milk_gp2<- sum(xmilk_gp2[]) / xdenom2
xmean_milk_gp3 <- sum(xmilk_gp3[]) / xdenom3
xmean_milk_gp4 <- sum(xmilk_gp4[]) / xdenom4

#Micro-simulation

for(m in 1:1000){

margin[m] ~ dnorm(0.17, 1111.1111) # Distribution of milk margin (€)

# For heifers in herds with a presumence of cows with high SCC1 >= 20%

lnscc1_sim1[m] ~ dnorm(0.47, 0.55) ## increase in mean lnscc1 centred on 0 from observed data

milk_20hi[m] <- beta[1] + ( lnscc1_sim1[m] * beta[2]) + beta[4] + beta[15]

milk_20hi_cost[m] <- milk_20hi[m] * margin[m]

# For heifers in herds with a presumence of cows with high SCC1 >= 10%

lnscc1_sim2[m] ~ dnorm(0.15, 0.65)

milk_10hi[m] <- beta[1] + (lnscc1_sim2[m] * beta[2]) + beta[4] + beta[15]

milk_10hi_cost[m] <- milk_10hi[m] * margin[m]

# For heifers in herds with a presumence of SCC1_hi < 5%

lnscc1_sim3[m] ~ dnorm(-0.38, 1.26)

milk_5lo[m] <- beta[1] + (lnscc1_sim3[m] * beta[2]) + beta[4] + beta[15]

milk_5lo_cost[m] <- milk_5lo[m] * margin[m]

# For heifers in herds with a presumence of SCC1_hi < 10%

lnscc1_sim4[m] ~ dnorm(-0.25, 0.96)

milk_10lo[m] <- beta[1] + (lnscc1_sim2[m] * beta[2]) + beta[4] + beta[15]

milk_10lo_cost[m] <- milk_10lo[m] * margin[m] }

Prediction of

lifetime milk yield

of cows in samp_2

Prediction of mean

residual and mean

lifetime milk yield

for cows in samp_2

grouped by ln SCC1



186

# Mean cost per heifer calved into the herd

milk_20hi_sum <- sum(milk_20hi_cost[])/1000

milk_5lo_sum <- sum(milk_5lo_cost[])/1000

milk_10lo_sum <- sum(milk_10lo_cost[])/1000

milk_10hi_sum <- sum(milk_10hi_cost[])/1000

# Differences in marginal costs for herd scenarios

diff_milk_20_5 <- milk_5lo_sum - milk_20hi_sum # >= 20% to <5%
diff_milk_20_10 <- milk_10lo_sum - milk_20hi_sum # >= 20% to <10%
diff_milk_10_5 <- milk_5lo_sum - milk_10hi_sum # >= 10% to < 5%

Example code for a logistic regression model

The example is based on the WinBUGS 1.4.3 code for Model 5.1 for

which the outcome is the binary occurrence of cow disposal in any 50 day

interval from first calving.

model{

for (k in 1:33)
{beta[k] ~ dflat() } # Prior distribution for beta[k]
tau.u2 ~ dgamma(0.001000,0.001000) # Prior distribution for cow level precision (1/variance)
tau.u3 ~ dgamma(0.001000,0.001000) # Prior distribution for herd level precision (1/variance)

for(i in 1:N) {
disposed[i] ~ dbern(p[i])

logit(p[i]) <- beta[1] # Intercept
+ beta[2] * lnscc1_gm_[i] # ln SCC1 centred on mean
+ beta[3] * milk1_gm_[i] # ln TDY1 centred on mean
+ beta[4] * fat1_gm_[i] # ln fat1 centred on mean
+ beta[5] * calv1_mo_1[i] # First calving in January
+ beta[6] * calv1_mo_3[i] # First calving in March
+ beta[7] * calv1_mo_4[i] # First calving in April
+ beta[8] * calv1_mo_5[i] # First calving in May
+ beta[9] * calv1_mo_6[i] # First calving in June
+ beta[10] * calv1_mo_7[i] # First calving in July
+ beta[11] * calv1_mo_8[i] # First calving in August
+ beta[12] * calv1_mo_9[i] # First calving in September
+ beta[13] * calv1_mo_10[i] # First calving in October
+ beta[14] * calv1_mo_11[i] # First calving in November
+ beta[15] * calv1_mo_12[i] # First calving in December
+ beta[16] * cull_mo_1[i] # Disposal in January
+ beta[17] * cull_mo_2[i] # Disposal in February
+ beta[18] * cull_mo_3[i] # Disposal in March
+ beta[19] * cull_mo_4[i] # Disposal in April
+ beta[20] * cull_mo_5[i] # Disposal in May
+ beta[21] * cull_mo_6[i] # Disposal in June
+ beta[22] * cull_mo_7[i] # Disposal in July
+ beta[23] * cull_mo_8[i] # Disposal in August
+ beta[24] * cull_mo_9[i] # Disposal in September
+ beta[25] * cull_mo_10[i] # Disposal in October
+ beta[26] * cull_mo_11[i] # Disposal in November
+ beta[27] * ln_afc_gm_[i] # ln AFC Centred on mean
+ beta[28] * ln_interval_gm[i] # ln int centred on mean (polynomial)
+ beta[29] * pow(ln_interval_gm[i], 2)
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+ beta[30] * pow(ln_interval_gm[i], 3)
+ beta[31] * DIM1_cat_2[i] # DIM 100 to 199 days
+ beta[32] * DIM1_cat_3[i] # DIM 200 to 304 days
+ beta[33] * DIM1_cat_999[i] # Missing data

+ u2[cow_id[i]] * cons[i]
}

for (j in 1:n2) {
u2[j] ~ dnorm(0,tau.u2) # Cow level random effect
}
for (j in 1:n3) { # Herd level random effect
u3[j] ~ dnorm(0,tau.u3)
}

}
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