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Abstract

Most real-life problems involve the simultaneous optimisation of two or more, usu-

ally conflicting, objectives. Researchers have put a continuous effort into solving these

problems in many different areas, such as engineering, finance and computer science.

Over time, thanks to the increase in processing power, researchers have created meth-

ods which have become increasingly sophisticated. Most of these methods have been

based on the notion of Pareto dominance, which assumes, sometimes erroneously, that

the objectives have no known ranking of importance.

The Vehicle Routing Problem with Time Windows (VRPTW) is a logistics problem

which in real-life applications appears to be multi-objective. This problem consists of

designing the optimal set of routes to serve a number of customers within certain time

slots. Despite this problem’s high applicability to real-life domains (e.g. waste collec-

tion, fast-food delivery), most research in this area has been conducted with hand-made

datasets. These datasets sometimes have a number of unrealistic features (e.g. the as-

sumption that one unit of travel time corresponds to one unit of travel distance) and

are therefore not adequate for the assessment of optimisers. Furthermore, very few

studies have focused on the multi-objective nature of the VRPTW. That is, very few

have studied how the optimisation of one objective affects the others.

This thesis proposes a number of novel tools (methods + dataset) to address the above-

mentioned challenges: 1) an agent-based framework for cooperative search, 2) a novel

multi-objective ranking approach, 3) a new dataset for the VRPTW, 4) a study of the

pair-wise relationships between five common objectives in VRPTW, and 5) a simplified

Multi-objective Discrete Particle Swarm Optimisation for the VRPTW.
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CHAPTER 1

Introduction

1.1 Motivation

Most real-world problems are multi-objective in nature. Multi-objective optimisation

problems have a number of objectives that are usually in conflict, so that improving one

objective leads to worsening another. A large number of tools (methods + datasets)

have been proposed to tackle multi-objective optimisation problems. In particular, a

big effort has been put into creating elaborate solving methods. Several optimisation

frameworks have been put forward to address the design and implementation of such

tools. Thus, multi-objective optimisation frameworks, such as ParadiEO-MOEO [166]

or HeuristicLab [252], provide a toolbox upon which to create, test and compare dif-

ferent methods. Many solving methods for multi-objective optimisation involve the

notion of cooperation (e.g. Particle Swarm Optimisation [150], Ant Colony Optimisa-

tion [74]). Even though most successful multi-objective optimisation frameworks sup-

port cooperative algorithms, they do not seem to provide explicit mechanisms to work

with cooperative systems (e.g. full control over the communication topology, type of

information to be shared).

Another important topic in multi-objective optimisation is how to rank solutions with

multiple objectives. There is a variety of methods to discriminate solutions in multi-

objective spaces. Two well-known methods are Lexicographic ordering and Pareto

dominance. In the lexicographic approach, the decision maker assigns a priority to
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each objective. Solutions are then compared objective by objective according to these

priorities. A limitation of the lexicographic method is that the decision-maker must ex-

press preferences in order to establish the ordering and this is not always easy. Pareto

dominance gives the same importance to all objectives. A limitation of Pareto dom-

inance is therefore the lack of flexibility in the trade-off between improvements and

detriments to different objective values during the search process. The lack of flexibility

in Pareto dominance leads to scalability problems. In fact, some studies [138, 152, 203]

have concluded that Pareto dominance cannot succeed in dealing with optimisation

problems with more that three objectives.

Road transport problems are examples of multi-objective optimisation problems. These

problems have a serious impact on society. Research has shown that society is nega-

tively affected by inefficient road transport. In the EU a quarter of the final energy

consumption and 93% of greenhouse gas emissions comes from the road transport sec-

tor [137]. Congestion costs are estimated to be as high as approximately 1% of the

GDP in Western Europe, which is commonly accepted as too high [127]. In addition,

transport causes noise pollution and loss of biodiversity, which have become promi-

nent issues [170]. Transport route planning and control were identified as one of the

most effective policy actions to reach a sustainable transport system [127]. Road trans-

port problems are usually addressed as Vehicle Routing Problems (VRP). The VRP is

the problem of finding a set of least-cost routes to serve a number of customers. VRP

belongs to the most intensively studied problems in operations research. The most

well-known variant of the VRP is the Vehicle Routing Problem with Time Windows

(VRPTW) which considers a series of time slots in which customers must be served.

The VRPTW has many applications to real-life problems, such as waste collection [220],

fast-food routing [218] and many others [118]. Interestingly, most VRP and VRPTW

solving techniques have been assessed using hand-made datasets. These datasets some-

times present unrealistic features and are not entirely adequate for the assessment of

optimisers, especially when dealing with multiple objectives [36]. Furthermore, very

little research exists regarding the relationships between common objectives in VRP

and VRPTW. That is, there is not much information available on how the optimisation
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of a particular objective affects the others. This information might be useful to rule out

objectives when the relationship is positive, or to divide the problem into sub-problems

when the objectives are not related [204].

The work in this thesis presents a number of tools (methods + datasets) for multi-

objective optimisation. In particular, we focus on the application of these tools to the

Vehicle Routing Problem with Time Windows (VRPTW) with multiple objectives.

1.2 Thesis Structure

This thesis is organised as follows:

Chapter 2 provides the required background for this thesis. This chapter is divided into

four sections which provide relevant information about the Vehicle Routing Problem

with Time Windows (VRPTW), Multi-Objective Optimisation (MOO), Cooperation in

Multi-Agent Systems (MAS), and Particle Swarm Optimisation (PSO).

Chapter 3 introduces CODEA, a software framework to develop cooperative Multi-

Agent Systems (MAS) to tackle Multi-objective Optimisation Problems (MOP). This

chapter first provides an in-depth overview of some successful optimisation frame-

works for multi-objective optimisation. Secondly, it presents CODEA and describes

its structure and how each component works. Finally, it discusses four other studies

which have benefited from CODEA.

Chapter 4 presents the Dynamic Lexicographic Approach (DLA). DLA is a novel rank-

ing method to discriminate solutions with multiple objectives. This chapter describes

DLA and compares its performance to that of Pareto Dominance and Lexicographic ap-

proach. Experiments are carried out using a canonical Multi-Objective Discrete Particle

Swarm Optimisation (MOPSO) with eight objectives.

Chapter 5 examines a number of benchmarking dataset problems for the Vehicle Rout-

ing Problem with Time Windows. In particular, this chapter focuses on the Solomon’s

dataset by providing an in-depth study of its most important features. Special empha-

sis is put on the analysis of some unrealistic features of this dataset, and how these fea-
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tures might affect its suitability for the assessment of multi-objective optimisation algo-

rithms. This chapter also specifies a number of ways to overcome Solomon’s dataset’s

unrealistic features.

Chapter 6 presents MOVRPTW, a real-world based dataset for the assessment of the

Vehicle Routing Problem with Time Windows (VRPTW). This dataset is introduced as

an alternative to the Solomon’s dataset. This chapter details the characteristics of the

MOVRPTW dataset, and explains how its features might help to better assess multi-

objective optimisation methods.

Chapter 7 focuses on achieving a better understanding about the multi-objective nature

of the VRPTW. This chapter first studies the relationships that occur between pairs of

objectives throughout the optimisation process. It then compares the multi-objective

suitability of Solomon’s dataset to that of the MOVRPTW dataset. This comparison

is based on the correlation values in non-dominated sets found by a multi-objective

genetic algorithm using both datasets.

Chapter 8 presents a simplified Multi-objective Discrete Particle Swarm Optimisation

(MODPSO) to tackle the Vehicle Routing Problem with Time Windows (VRPTW). This

chapter first provides a brief overview of PSO algorithms related to our MODPSO.

It then presents a high-level description of our algorithm and the way it is applied

to VRPTW. The performance of this MODPSO is compared to that of NSGA-II using

Solomon’s and MOVRPTW datasets.

Chapter 9 addresses the conclusion of our research. We summarise the aim of our

investigation and state a conclusion for each chapter. Moreover, we specify the most

promising lines of investigation according to our experiences and results.

1.3 Contribution of this thesis

This thesis contributes to the field of multi-objective optimisation by providing:

• An object-oriented software framework to develop systems based on groups of

agents that cooperate to tackle complex multi-objective optimisation problems.
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Two versions of this framework are presented: CODEA v2 and CODEA v3. CODEA

v2 is the first version of CODEA that supports multi-objective optimisation. CODEA

v3 is the product of the hybridisation of CODEA v2 and ParadisEO-MOEO [166].

In particular, CODEA v3 presents a number of competitive features with respect

to those provided by state-of-the-art MOO frameworks.

• A new ranking approach to discriminate solutions with multiple objectives. The

Dynamic Lexicographic Approach (DLA) eliminates the need for the Decision-

Maker (DM) to establish fixed priorities among the competing objectives, which

is often difficult. At the same time, DLA offers more flexibility to navigate con-

strained combinatorial search spaces than Pareto dominance, which treats all ob-

jectives with no relative order of importance. Results in a Particle Swarm Op-

timisation (PSO) applied to the Vehicle Routing Problem with Time Windows

(VRPTW) with eight objectives indicate that DLA is superior to Pareto dominance

and the ordinary lexicographic approach.

• A novel and challenging real-world based dataset for the assessment of the VRPTW

with multiple-objectives. This dataset is based on a real test case of a distribution

company. The company provided the geographic locations, information about

time windows profiles and type of demands of more than 1000 customers. Cus-

tomers’ locations were used to calculate travel distances and travel times with the

Google Maps database. In addition to the MOVRPTW dataset, we provide a con-

figurable dataset generator. This generator allows the specification of a number

of parameters, such as the size of the instance, the demands profile and the time

windows profile.

• An in-depth study of the multi-objective nature of the Vehicle Routing Problem

with Time Windows (VRPTW), in particular the conflicting relationships between

5 common objectives: number of vehicles, total travel distance, makespan, total

waiting time, and total delay time. This study investigates the (conflicting) na-

ture of various objectives in the VRPTW and shows that some of the classic test

instances are not suitable for conducting a proper multi-objective study. It also
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shows that the MOVRPTW dataset is more adequate for the assessment of multi-

objective methods.

• A simplified Multi-Objective Discrete Particle Swarm Optimisation (MODPSO)

for the Vehicle Routing Problem with Time Windows (VRPTW). This algorithm

consists of only two components: 1) a Discrete Particle Swarm Optimisation [54],

and 2) the notion of Dominance Depth Fitness Assignment introduced by Gold-

berg [116]. No other mechanism is used to boost convergence or diversity. Results

show that this simplified MODPSO outperforms NSGA-II [65] in two VRPTW

datasets with 5 common objectives.

1.4 Articles resulting from this thesis

The following publications are related to the work presented in thesis:

1. J. Castro-Gutierrez, D. Landa-Silva, and J. Moreno-Perez. Exploring feasible and

infeasible regions in the vehicle routing problem with time windows using a

multi-objective particle swarm optimization approach. In N. Krasnogor, B. Melián-

Batista, J. Pérez, J. Moreno-Vega, and D. Pelta, editors, Nature Inspired Cooperative

Strategies for Optimization (NICSO 2008), volume 236 of Studies in Computational

Intelligence, pages 103–114. Springer Berlin / Heidelberg, 2009. ISBN 978-3-642-

03210-3

2. J. Castro-Gutierrez, D. Landa-Silva, and J. Moreno Perez. Dynamic lexicographic

approach for heuristic multi-objective optimization. In Proceedings of the Workshop

on Intelligent Metaheuristics for Logistic Planning (CAEPIA-TTIA 2009), pages 153–

163, Seville (Spain), 2009

3. J. Castro-Gutierrez, D. Landa-Silva, and J. Moreno-Perez. Codea - an agent based

multi-objective optimization framework. In VII Congreso Español sobre Metaheuris-

ticas, Algoritmos Evolutivos y Bioinspirados (MAEB 2010), pages 319–327, Valencia,

Spain, September 2010
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4. J. Castro-Gutierrez, D. Landa-Silva, and J. Moreno Perez. Improved dynamic

lexicographic ordering for multi-objective optimisation. In R. Schaefer, C. Cotta,

J. Kolodziej, and G. Rudolph, editors, Parallel Problem Solving from Nature – PPSN

XI, volume 6239 of Lecture Notes in Computer Science, pages 31–40. Springer Berlin

/ Heidelberg, 2011

5. J. Castro-Gutierrez, D. Landa-Silva, and J. Moreno Perez. Nature of real-world

multi-objective vehicle routing with evolutionary algorithms. In Systems, Man,

and Cybernetics (SMC), 2011 IEEE International Conference on, pages 257–264, 2011

6. R. Qu, Y. Xu, J. Castro-Gutierrez, and D. Landa-Silva. Particle swarm optimiza-

tion for the steiner tree in graph and delay-constrained multicast routing prob-

lems. Journal of Heuristics, pages 1–26, 2012

7. J. Castro-Gutierrez and D. Landa-Silva. Dynamic lexicographic approach for

many-objective combinatorial optimisation. Preparing for submission, 2012

8. J. Castro-Gutierrez and D. Landa-Silva. Investigating pair-wise relationships be-

tween objectives in the vehicle routing problem with time windows. Preparing for

submission, 2012

9. J. Castro-Gutierrez and D. Landa-Silva. A simplified multi-objective discrete par-

ticle swarm optimisation for the vehicle routing problem with time windows.

Preparing for submission, 2012

10. J. Castro-Gutierrez and D. Landa-Silva. Asynchronous cooperative multi-agent

search for the university course time tabling problem. Preparing for submission,

2012
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CHAPTER 2

Literature Review

Summary

This chapter introduces a number of background concepts related to these research

areas which frame our contribution. We introduce each topic and provide an in-depth

explanation and relevant citations.

2.1 Introduction

This chapter is organised as follows:

• Section 2.2 introduces the Vehicle Routing Problem (VRP) and one of its most

popular variants, the Vehicle Routing Problem with Time Windows (VRPTW).

We first introduce both VRP and VRPTW and then review some common solving

techniques.

• Section 2.3 presents a number of key concepts concerning Multi-Objective Op-

timisation (MOO). Besides, we provide an overview of the most common tech-

niques used in MOO.

• Section 2.4 briefly introduces the concept of cooperative search within the context

of multi-agent systems.

• Section 2.5 introduces Particle Swarm Optimisation (PSO). This sections covers
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the original PSO, and two variants: discrete PSO and Multi-Objective PSO.

2.2 Vehicle Routing Problem

The Vehicle Routing Problem (VRP) is a very well known combinatorial optimisation

problem. The goal is to design a least-cost route-plan to serve a number of customers.

The main interest in this problem resides on its applicability in the field of road trans-

port. This section presents the Vehicle Routing Problem (VRP), and one of its extension

the Vehicle Routing Problem with Time Windows (VRPTW).

The following defines a VRP instance [243]:

• There is a set of N + 1 vertices, V = {v0, v1, . . . , vN}. These vertices denote the

customers and depot geographic locations.

• There is a set of customers (which is a subset of the vertices) C = {v1, . . . , vN}.

Each customer vi ∈ C requires a certain amount of goods qi (demand) and has a

location given by (xi, yi).

• There is a depot, v0 ∈ V, from which goods are dispatched. It is assumed that

the depot has an unlimited amount of goods. The depot has location given by

(x0, y0), and has null demand, q0 = 0.

• There is a fleet of delivery vehicles with the same capacity, Q ≥ maxqi : i = 1, . . . , N.

The VRP is to find a set of K circuits or routes (each corresponding to a delivery vehicle)

to serve all customers at the minimum cost. The cost is usually given by the sum of

travel distances of all routes. The travel distance between a pair of customers (vertices)

vi, vj ∈ V is denoted by di,j and is often calculated using the Euclidean distance:

di,j =
√

(xi − xj)2 + (yi − yj)2 (2.2.1)

There are a number of hard constraints in the VRP:

• All K circuits must start and end at the depot.

9



CHAPTER 2: LITERATURE REVIEW

• Each customer must be served by exactly one delivery vehicle.

• The sum of demands of the customers in each route cannot exceed the maximum

capacity Q of a delivery vehicle.

The Vehicle Routing Problem (VRP) has a number of variants. Some of the most known

VRP variants are: Multi-Depot VRP (MDVRP), in which goods can be delivered from

more than one depot; Periodic VRP (PVRP) in which the planning period is more than

one day; Split Delivery VRP (SDVRP) where a single customer can be served by differ-

ent vehicles; Stochastic VRP (SVRP) in which one or several components of the prob-

lem are random; VRP with Backhauls (VRPB) where customers can demand or return

some commodities and VRP with Time Windows (VRPTW) in which customers must

be served within a time slot. An in-depth review of the VRP and its variants can be

found in [119]. The next sub-section focuses on the VRPTW as it is a central topic in

this thesis.

2.2.1 Vehicle Routing Problem with Time Windows

The Vehicle Routing Problem with Time Windows (VRPTW) is one of the most studied

extensions of the VRP. This extension considers the following:

• Each pair of customers (vertices) vi, vj ∈ V has a travel time. This is the time that

takes to go from customer vi to customer vj, and is denoted by ti,j.

• Each customer has a time window (time slot) [ai, bi]. This time window represents

the time by which each customer wants to be served.

• Each customer has a service time. This is the time that takes to unload the goods,

once the delivery vehicle has arrived at the customer’s location.

Time windows are hard constraints in the VRPTW. It is possible to arrive earlier to a

customer’s location, in which case the delivery vehicle must wait until the time win-

dow opens (waiting time), but it is not allowed to arrive after it closes. However, due

to the high applicability to real-world scenarios, many authors treat time windows as
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soft constraints. Thus, arriving late at a customer’s location is allowed, but a penalty is

introduced in the objective function.

2.2.2 Solution Techniques for VRP and VRPTW

In this section we discuss some solution techniques for both VRP and VRPTW. Most so-

lution techniques for VRP and VRPTW fall in three categories: exact methods, heuristics

and metaheuristics.

Exact Methods −

These methods provide optimal solutions but can be computationally expensive or

simply intractable. There are two main lines of research in relation to exact methods

for VRPTW [58]. One line concerns the generation of inequalities to make the LP relax-

ation stronger, and the other considers mathematical decomposition techniques. The

LP relaxation consists of replacing the constraint stating that each variable takes value

0 or 1 by a weaker constraint stating that each variable takes a value between 0 and 1.

There are three main exact methods to solve the VRPTW: Lagrangian relaxation, column

generation and branch-and-cut.

Lagrangian relaxation methods approximate problems by relaxing their hard constraints.

These methods place these hard constraints into the objective function and assign weights

(penalties) to them. These weights are known as Lagrangian multipliers. Some works

using Lagrangian relaxation for VRPTW are those by Fisher [96], Fisher et al. [98] and

Kohl and Madsen [154].

"Column generation is intimately related to Lagrangean relaxation and can be seen as

a special way to update the multipliers associated with the relaxed constraints" [58].

Some works using column generation include those by Desrochers et al. [70], Kohl et

al. [155], Cook and Rich [55], Kallehauge et al. [147], Danna and Le Pape [62], Feillet et

al. [90] and Chabrier [38].

A Branch-and-cut algorithm is an exact method that combines: 1) a cutting plane
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method [245], and 2) a branch-and-bound [157] algorithm. A cutting plane method

is a procedure to find integer solutions in linear programming problems. It first solves

the non-integer linear program, and then checks if the solution found is also an integer

solution. If the solution found is not integer, a new constraint that excludes the non-

integer solution is added to the program. The method repeats this process until the

optimal integer solution is found. Branch-and-bound is another technique for solving

integer linear programs. It systematically enumerates solutions in a search tree and

uses bounds to discard nodes that do not lead to the optimal solution. The first exact

method for the VRPTW was a branch-and-bound algorithm by Kolen et al. [156]. Some

works have been proposed in this area to address the VRPTW, such as Bard et al. [8]

and Lysgaard [174].

Reviews on formulations and exact algorithms for the VRPTW can be found in Cordeau

et al. [56, 59], Kallehauge [146], El-Sherbeny [85] and Baldacci et al. [7].

While realistic Travelling Salesman Problem (TSP) instances with several thousands of

nodes can be solved optimally [121], VRP instances with more than a hundred nodes

are currently impractical [108]. For this reason, we find an extensive amount of litera-

ture on Heuristic and Metaheuristic methods for the VRP. These solving techniques are

discussed in the next two subsections.

Heuristics −

Heuristic methods are solving techniques that produce good quality solutions with a

modest computing time. Most heuristic approaches in this area include constructive

and improvement steps.

Constructive heuristics build feasible routes step by step. Sequence of customers are

assigned to routes using the cost as the main criteria. The most commonly used con-

structive heuristics are:

• Pure constructive heuristics focus on the creation of routes producing results very

fast. We distinguish two types:

– Saving heuristics first assign a different route to each customer. At each
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iteration, two routes are merged into a single route using a saving mea-

sure. This process is then repeated until no merge is possible without in-

curring in a violation. This strategy was proposed by Clarke and Wright

in [45] and it is one of the most known heuristics for the VRP. This algo-

rithm works for both directed and undirected graphs. However, Vigo [247]

stated that the performance gets worse in the directed case. Another criti-

cism to this algorithm is its tendency to produce worse routes as the opti-

misation process progresses. A way to overcome this issue was proposed

by Gaskell [106] and Yellow [262]. They changed the equation of savings

stated in the original algorithm sij = ci0 + c0j − cij to a new one with a

route shape parameter sij = ci0 + c0j − λcij. This parameter λ attributes

the importance in the selection to the distance between nodes rather than

their distance respect to the depot. Another variation of this algorithm is the

Matching-based savings algorithm. This algorithm changes the saving func-

tion to spq = t(Sp) + t(Sq) − t(Sp
⋃

Sq), where Sx is the vertex set of the

route x and t(Sx) is the length of TSP optimal solution on Sx. More infor-

mation about Saving heuristics can be found in the works by Desrochers and

Verhoog [69], Altinkemer and Gavish [3] and Wark and Holt [256]. Exper-

iments in [59] indicate that the approach of Clarke and Wright [45] is, due

to its simplicity, the best constructive heuristic in terms of speed. However,

the best results in terms of the objective function value are obtained with the

approach by Wark and Holt [256]. The Saving heuristics was extended to

the VRPTW by Solomon [233]. This extension considered both the spatial

and temporal closeness of customers by setting a maximum waiting time

per route.

– Insertion heuristics are also very fast algorithms to build route-plans. Given a

set of unvisited customers C∗, a customer c ∈ C∗ is en-routed if the operation

produces a feasible route at least cost. Two well known algorithms using

this approach were proposed by Mole and Jameson [180] and Christofides

et al. [43]. The first approach expands a route step by step using a generali-
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sation of the Clarke and Wright [45] algorithm. The second method operates

in two steps. The first step uses a sequential insertion algorithm to find a

set of feasible routes. The second step uses a parallel insertion approach. As

the last step, these two insertion heuristics apply a 3-Opt [167] procedure to

improve the quality route-plan. Chrisofides et al. [43] carried out compar-

isons between these algorithms. According to their results, the algorithm

by Christofides et al. [43] gets better route-plans in less time compared to

the approach by Mole and Jameson [180]. Solomon [233] proposed a num-

ber of extensions of insertion heuristics for the VRPTW. For example, the

Solomon’s insertion algorithm consists of adding customers to a route ac-

cording to temporal closeness. This algorithm creates a new route when no

feasible insertion is possible. Another heuristic by Solomon [233], called I1,

first selects the farthest customer respect to the depot as a seed customer.

This customer is then assigned to an empty route and unvisited customers

are inserted into this route according to a saving measure. The saving mea-

sure takes into account the distance and the extra time required to visit a

customer. When a feasible insertion is no longer possible, the algorithm

creates a new route with a new seed customer. Dullaert and Bräysy [79]

presented a modification of this algorithm for routing problems with a few

customers per route (between 5 and 25). This modification is in fact an im-

provement that overcomes the Solomon’s I1 underestimation of additional

time required to insert a customer between the depot and the first customer

being served. This new proposal produces good results for problems with

up to 15-20 customers per route. Ioannou et al. [143] used a criteria selec-

tion that takes into account both visited and unvisited customers. Potvin

and Rousseau [198] proposed a parallel version of the Solomon’s I1. This

approach had a regret measure to chose the next customer to be en-routed.

This regret measure calculates the cost that occurs when a customer is not

chosen at each step in the route building process.

• Two phase construction heuristics. These techniques, as their name suggests, de-
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compose the problem in two phases. Depending on the order to execute them, we

find two approaches: Cluster-first, Route-second and Route-first, Cluster-second.

– Cluster-first, Route-second first creates groups of customers in clusters using

some criteria in the first step, and optimises the resulting routes in the sec-

ond. The optimisation carried out in the second part often uses methods

borrowed from TSP solving techniques. There are three main categories for

Cluster-first, Route-second methods: elementary clustering, truncated branch-

and-bound and petal algorithms.

Examples of elementary clustering methods are the sweep algorithm, generalised

assignment based algorithm and location based heuristics. Gillet and Miller [112]

proposed the sweep algorithm. This algorithm creates clusters of feasible

customers (or groups of customers which do not cause constraint violations)

by sweeping them using an angle translation centred at the depot. All cus-

tomers in the same cluster are assigned to the same route. Once the routes

are created, a post-optimisation process tries to improve the route-plan by

moving customers between routes. The Fisher and Jaikumar [97] (generalised

assignment based) algorithm is a modification of the Clarke and Wright’s [45]

algorithm. This method performs the clustering by solving the Generalised

Assignment Problem (GAP). GAP consists of assigning a number of tasks

(customers) to a number of agents (vehicles). Once the clusters are found

and a route is formed for each cluster, TSP-based algorithms are employed

to improve the routes. A known example of the location based heuristics is

the algorithm by Bramel and Simchi-Levi [16]. In this case, the clustering

process is done by creating a number of route seeds. Each seed is calculated

solving a capacitated location problem. The number of seeds created is equal

to the size of the fleet. This algorithm, together with the one by Fisher and

Jaikumar [97], requires the setting of the number of vehicles a priori. The ef-

fectiveness of these three algorithms is comparable to that of the insertion al-

gorithms. However, the approach proposed by Bramel and Simchi-Levi [16]
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produces better solutions at the cost of more computing time.

Another method in the Cluster-first, Route-second class is the truncated branch-

and-bound. This algorithm is a mere simplification of an exact algorithm

that solves the VRP. An example of this approach was proposed by Toth

et al. [43]. Compared to the proposal of the exact version described in [42],

Toth et al.’s method stores a single search tree with K (number of vehicles)

levels. This family of algorithms tends to produce better solutions than con-

structive methods. Other results indicate that these procedures are faster

and more effective than sweep algorithms [59].

Petal algorithms are the last type of algorithms in the Cluster-first, Route-second

family. This algorithm consists of a natural extension of the sweep algorithm

explained above. In the first part, it creates a long list of feasible routes

(called petals) with a very similar method to the sweep algorithm [112]. In

the second part, a set of final routes are selected by solving a set of partition-

ing problem. The use of this approach can be found in the work of Foster

and Ryan [101], Ryan et al. [219] and Renaud et al. [211]. Petals algorithms

usually perform better than the sweep algorithms [59].

– Route-first, Cluster-second methods relax the problem constraints, such as ve-

hicle capacities and/or time windows, to build a big tour (TSP tour). This

big tour is then split into feasible trips. Some relevant works in this topic are

those by Beasley [11], Haimovich and Kan [123] and Bertsimas and Shimchi-

Levi [16]. These methods were first applied to the VRPTW by Solomon [233].

This approach does not give remarkable results in comparison to others [59].

Improvement heuristics apply operators to find better neighbouring routes. These

operators work by moving nodes (customers) within the route-plan. There are basically

two types of moves: intra-route (if only a single route is considered) and inter-route (if

more than one route is considered at the same time). The operators that works in intra-
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route improvements are mainly inherited from those used for TSP. One of the most

general mechanisms was proposed by Lin [167] and is called the λ-operator (λ-opt).

The λ-opt eliminates λ edges from a route and creates other λ edges, usually after

trying all possible combinations. A number of alternatives to this operator appear in

the VRP literature. For example, a dynamic λ that reports on average the best results

was suggested by Lin and Kernighan [168]. Another alternative consists of moving

strings of consecutive nodes to other locations in the route, this approach is called Or-

opt and was proposed in [191]. It is worth noting that many of the heuristics already

explained in this chapter use these operators. The inter-route improvements have also

been well studied in the literature. Using the classification by Van Breedam [22], it

is possible to highlight four types of operators: string cross, string exchange, string

relocation and string mix. Given a route-plan R and two routes within R, r1, r2 ∈ R:

• The string cross operator exchanges two edges in two different routes r1 and r2.

That is, if (i − 1, j) and (m, n) are edges in r1 and r2 respectively, we first remove

two edges (i− 1, i) and (j, j+ 1) from the first route, and two edges (m− 1, m) and

(n, n + 1) from the second route. Then, four new edges are introduced (i − 1, m),

(n, j + 1), (m − 1, i) and (j, n + 1).

• The string exchange operator swaps a pair of nodes in different routes. In this case,

if i is a node in r1 and j is a node in r2, the edges (i − 1, i), (i, i + 1), (j − 1, j) and

(j, j + 1) are replaced by (i − 1, j), (j, i + 1), (j − 1, i) and (i, j + 1).

• The String relocation operator moves nodes from one to another route. Thus, if i is

the node in r1 to be relocated, and (j, j + 1) is the destination edge in r2, the edges

(i − 1, i), (i, i + 1) and (j, j + 1) are replaced by (i − 1, i + 1), (j, i) and (i, j + 1).

• The String mix operator selects the best move between string exchange and string

relocation.

Improvement movements for VRPTW are based on those used for TSP and VRP. These

operators concern edge-interchanges and are known as k-opt. The most common k-opt

are 2-opt, 3-opt and the inter-route improvements.
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• Replacements involving two edges (2-opt). These operators remove two edges

in a route-plan and replace them with another two. As a result, this process pro-

duces a new feasible solution. The 2-opt was proposed for the TSP by Croes [61].

This algorithm inverts sub-sequences of customers, thus it is sometimes diffi-

cult to obtain route-plans that satisfy time window constrains. A modified ver-

sion of this algorithm called 2-opt* was proposed for VRPTW by Potvin and

Rousseau [199]. This approach replaces two edges from two different routes but

with the aim of preserving the visiting order.

• Replacements involving three edges (3-opt). These operators remove three edges

in a route-plan and replace them with another three. The 3-opt was proposed for

the TSP by Lin [167]. This algorithm does not invert the order of customers in

the intervening edges. This makes it easier to find a feasible solution after each

interchange. A special case of this operator is the above-mentioned Or-opt [191].

Gendreau et al. [109] proposed the operator GENI. This operator relocates a cus-

tomer in another route in between the pair customers who are closest to it, even

if they are not consecutive.

• Inter-route improvements. This operator consists of interchanging two customers

on two different routes. Ejection chains [113] have produced the best results in

this area. These algorithms move a customer from one route to another. In case

of producing an infeasible route, a customer from the latter route is moved to

another route. This process continues until no customer needs to be ejected. The

cyclic k-transfers proposed by Thompson and Psaraftis [241] interchange a num-

ber of customers between routes on a cyclical basis. The CROSS interchanges

by Taillard et al. [236] interchange two sequences of customers on two different

routes.

As most real-life VRPTW problem instances require the use of heuristics [21], these

methods have drawn much attention from the OR community. A standard topic in this

area is the development of heuristic solutions to tackle larger and more realistic prob-

lems [108]. However, we find that most algorithms in the literature are assessed using
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hand-made datasets which might have unrealistic features [36]. In my opinion, some

effort should be put into the development of more realistic and challenging datasets

to further improve solution techniques in this area. This would enable better assess-

ment and thereby improve heuristic essential attributes such as flexibility and robust-

ness [21].

Metaheuristics −

These methods are general search strategies that promote a global exploration of prob-

lem search spaces. Many metaheuristics have been developed to tackle the Vehicle

Routing Problem and its variants for more than 15 years. In this subsection, we divide

the most common approaches into three classes as in [59]: Local search approaches, Popu-

lation Search approaches and Learning mechanism approaches. Note that many approaches

discussed in this subsection may be part of more than one class.

Local search approaches explore the search space of a problem by changing some at-

tributes of a solution systematically. Given a solution x, these methods explore the

neighbourhood of x, denoted as N(x) by moving from one to another solution until

a stop criterion is met. A number of local search based algorithms exist such as Sim-

ulated Annealing, Deterministic Annealing and Tabu Search. We will focus on these

three metaheuristics, since they have been widely applied to the VRP(TW).

• Variable Neighbourhood Search (VNS) is a well-established metaheuristic that sys-

tematically changes neighbourhoods in a local search. Rousseau et al. [215] pro-

posed three constraint programming based operators to perform a local search.

These operators were combined in a Variable Neighbourhood Descent (VND)

framework. The first operator (LNS-GENI - Large Neighbourhood Search - GENI)

removes a subset of customers and subsequently reintroduces it at better loca-

tions in partial solutions. The second operator (NEC - Naive Ejection Chain)

uses ejection chains to create new solutions. The third operator (SMART - SMAll

RouTing) removes arcs and subsequently solves smaller VRP instances. Bräysy [19]

presented a four-phase approach to tackle VRPTW. The first phase uses an heuris-

tic based on the Solomon’s insertion heuristic [233] to create set of initial solu-
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tions. The second phase uses an ejection-based approach to reduce the number

of routes. The third and fourth phases seek the improvement of the solutions in

terms of travel distance by using Variable Neighbourhood Decent (VND). In this

last phase, the waiting time is considered to avoid local optima. Results showed

that this approach outperforms other local search techniques and metaheuristics.

• Simulated Annealing (SA) is a well established metaheuristic that explores the

search space as a probabilistic local search. This algorithm randomly draws a so-

lution x′ from its neighbourhood N(x′). If its fitness value is not worse than the

one of the current solution x0, the current solution is updated with x′. Otherwise,

this new solution is accepted with probability p or rejected with 1− p. This prob-

ability p is calculated by means of a factor (temperature) that decreases throughout

the iterations. One of the best Simulated Annealing algorithms for the VRP was

proposed by Osman [192] in 1993. A 2 − Opt to define the neighbourhood and

a special rule to update the temperature were his major contributions. However,

this was not enough to beat the best contemporary tabu search.

• Deterministic Annealing (DA) is a very similar approach to Simulated Annealing,

but dropping the probabilistic acceptance component. There are two main ver-

sions which were introduced by Dueck in [78, 77]. The first accepts a new solu-

tion xnew = x, if f (x) < f (xold) + θ1 (assuming minisation), where θ1 is param-

eter specified by the user. The second approach will update the current solution

xnew = x, if f (x) < θ2 f (xold), where θ2 is also a user controlled parameter.

• Tabu Search (TS) is another local search based algorithm that maintains a list of

solution features to avoid re-visiting solutions. The memory structure used by

this method is called tabu list and acts as a short-term memory. At iteration t,

the cycling is prevented by avoiding those solutions in N(xt) contained in the

tabu list. The first application of Tabu Search to VRPTW was proposed by Potvin

et al. [201]. This algorithm used the Solomon’s I1 in order to initialise route-

plans, and 2-opt* and Or-opt to improve them. One of the most successful im-

plementation of the Tabu Search is the one by Taillard et al. [236]. This Tabu

Search uses 1− interchange and a TSP-based periodic re-optimisation mechanism
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in the routes. Other important works for VRPTW involving Tabu Search are those

by Chiang et al. [41], Cordeau et al. [57], Bräysy and Gendreau [20] and Lau et

al. [159].

Population search approaches are search techniques that keep a set of individuals fol-

lowing some pre-established rules. Each member in the population holds a solution

that changes over the generations during the search process.

• Genetic Algorithm (GA) is population-based solving method that evolves a num-

ber of individuals mimicking natural evolution. Thangliah [239] proposed a GA

cluster-first route-second based method to tackle the VRPTW. This method used

an adaptive genetic based clustering method and a local post-optimisation pro-

cedure to move customers between clusters and enforce feasibility. Homberger

and Gehring [131] presented two evolutionary strategies for solving the VRPTW.

These strategies were based on the (µ, λ)-evolution strategy by Schwefel [226].

This strategy starts with a population of µ individuals. Some of these individu-

als are selected and recombined, producing an offspring with λ > µ individuals.

These new individuals are then mutated and the λ fittest individuals are kept in

the new population. The fitness of the individuals is assessed, first, according

to the number of vehicles and, second, to the total distance travelled. Both al-

gorithms used 2-opt, Or-opt and 1-interchange operators for the mutation of in-

dividuals. The same authors proposed two works involving a two-phase hybrid

algorithm consisting of GA+TS in [107, 132]. The first phase used an Evolutionary

Strategy to minimise the number of vehicles, and the second phase used a Tabu

Search to minimise the total distance traveled. Another hybrid was proposed by

Berger et al. [14]. That approach consists of evolving two populations simultane-

ously. Each population aimed at the minimisation of one of the two objectives:

total travel distance and temporal constraint violation. The initialisation of the

population was carried out by using a sequential insertion heuristic. This work

also introduces a number of operators based on key features of heuristics such as

Solomon’s I1 and large neighbourhood search [229]. Mester and Bräysy [177] pro-

posed a two-phase approach consisting of a Guided Local Search (GLS) [250] and
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evolution strategies metaheuristics. In the first phase, a guided local search used

a number of operators including 2-opt*, Or-opt and 1-interchange. In the second

phase, the evolution strategy local search removes a number of customers from

the current solution and re-inserts them in optimal positions within the route-

plan. Other important contributions in this area include the works by Alvarenga

et al. [4], Ghoseiri and Gehring [111], and Ursani et al. [246].

• Particle Swarm Optimisation (PSO) is a population-based algorithm that evolves

a number of individuals inspired by the movement of swarms such as flock of

birds or fish schooling. An in-depth review of PSO is provided in Section 2.5, as

this algorithm will be used in this research.

Learning mechanism approaches are all those algorithms that somehow benefit from

the experience gained from previous iterations. The two most remarkable approaches

in this class are Neural Networks and Ant Colony Optimisation.

• Neural Networks (NN) are models that simulate biological neural networks. It

consists of a network of processing units, referred as neurones, whose complexity

emerges as a result of the global interaction. A very limited number of publica-

tions has been carried out on the application of NN to the VRP. The most common

application to the VRP has been done by using Self-Organising Maps, see for in-

stance the work of Ghaziri [110].

• Ant Colony Optimisation (ACO) is a bio-inspired algorithm proposed by Dorigo [74].

This algorithm mimics the complex system that arises from an ant colony search-

ing for food. An example of a well-performing ACO-based algorithm for the VRP

is D-Ants [209]. D-Ants first applies a 2 − opt and a variant of the Clarke and

Wright’s [45] heuristic with a saving cost equation based on the reinforcement

given by the learning process. Another important contribution was proposed by

Potvin et al. [200] for the VRP with backhauls and time windows. This algorithm

produces solutions close to the optimum (1% gap) with up to 100 nodes instances.

Other publications using ACO applied to the VRPTW include the works by Gam-

bardella et al. [104], Tan et al. [259], Hu et al. [136] and Zhang et al. [264].
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Metaheuristic techniques usually provide solutions with much better quality than those

generated with heuristics. However, this improvement in the quality of solutions is at

the expense of: 1) higher CPU and memory consumption, 2) more complex develop-

ment, and 3) the need for tuning of parameters. The choice between using heuristics

or metaheuristics therefore, depends on the relative importance of time versus qual-

ity. The literature shows an increasing trend for creating more elaborate metaheuristic

methods. This raises three important questions:

1. Are all components in these algorithms necessary to achieve a good performance?

2. Is there a way to ease the development of all these solving techniques?

3. Are we using the right datasets to test our algorithms?

This PhD thesis aims to address these open questions throughout a series of studies:

1. It shows that a canonical Particle Swarm Optimiser (PSO) with very simple oper-

ators is able to evolve poor infeasible solutions to feasible regions (see Chapter 8).

2. It presents an object-oriented framework for the design of cooperative systems of

agents [33].

3. It analyses weaknesses in the characteristics of the most common dataset for as-

sessment of the VRPTW, and present a new dataset to overcome those weak-

nesses [36].

Researchers have addressed most transport routing problems as single-objective op-

timisation problems. However, the vast majority of real-world problems are multi-

objective in nature. Some important objectives found in real-world problems include:

minimising the total travel time and/or travel distance, minimising the number of

vehicles, maximising customers’ satisfaction with on-time deliveries and maximising

drivers’ satisfaction with workloads balancing. An excellent summary and classifi-

cation of these and other objectives are provided in [145]. New challenges in multi-

objective VRP include objectives related to environmentally friendly transportation [94],

and the use of real-time traffic information to avoid congestions [44].
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Detailed surveys on solving techniques for VRP and its variants can be found in the

works by Golden et al. [119], Pereira et al. [195] and El-Sherbeny [85].

2.3 Multi-objective Optimisation

Multi-objective optimisation is the process of simultaneously optimising two or more

conflicting objectives subject to a number of constraints.

In mathematical terms, a minimisation multi-objective optimisation problem (note that

we assume it is minimisation problem without loss of generality), can be written as:

minimise~y = f (~x) = ( f1(~x), f2(~x), . . . , fn(~x)) (2.3.1)

subject to:

~x = (x1, x2, . . . , xm) ∈ X. (2.3.2)

where ~x is the vector of decision variables, X is the decision feasible region and ℜm is

the decision space; ~x ∈ X ⊂ ℜm. The objective vector is denoted by ~y = (y1, y2, ..., yn),

Y = f (X) is the objective feasible region and ℜn is the objective space; ~y ∈ Y ⊂ ℜn.

Definition If there exists a solution ~x∗ ∈ X that minimises all objective functions si-

multaneously, ~x∗ is ideal vector.

In other words, a feasible solution ~x∗ ∈ X is ideal solution if there is no other ~x ∈ X and

i ∈ { 1, 2, . . . , n} such that:

fi(~x) < fi(~x∗). (2.3.3)

2.3.1 Pareto Efficiency

Usually, there is not a single solution that optimises all objectives at the same time;

i.e. an ideal solution. One way to address multi-objective optimisation problems is by

using the concept of Pareto Efficiency [83]. Mathematically:
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Definition Given two decision vectors ~x1, ~x2 ∈ X, ~x1 is said to dominate ~x2 (denoted as

~x1 ≺ ~x2) iff:

∀i ∈ {1, 2, . . . , n} : fi(~x1) ≤ fi(~x2),

∃j ∈ {1, 2, . . . , n} : f j(~x1) < f j(~x2).

Definition Given two decision vectors ~x1, ~x2 ∈ X, ~x1 is said to cover ~x2 (denoted as

~x1 � ~x2) iff ~x1 ≺ ~x2 or f (~x1) = f (~x2).

Definition A vector of decision variables ~x∗ ∈ X is non-dominated iff there is no other

~x ∈ X, such that ~x ≺ ~x∗.

Definition The Pareto optimal Set P∗ is described as:

P∗ = {~x ∈ X : ~x is Pareto Optimal}.

Definition The Pareto front PF ∗ is defined as: PF ∗ = {~y = f (~x) ∈ Y : ~x ∈ P∗}.

2.3.2 Multi-objective approaches

Theory in multi-objective optimisation has models to evaluate and establish a pref-

erence on the solutions in our Pareto optimal set. There are two main theories based

on [53]:

• Multi-attribute utility theory (MAUT) [148] focuses on the composition of math-

ematical functions to aid the process of selecting the best combination among

objectives in a set of solutions. Specifically, this technique enables the decision

maker to quantify the desirability of certain alternatives. The outcome will be a

function that represents the decision maker preference.

• Multi-criteria decision aid theory (MCDA) [217] is an alternative approach to study

multi-objective classification problems. MCDA approaches focuses on the model

development aspects that are related to the modelling and representation of the

decision makers preference, value and judgment policy [76].
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2.3.3 Methodologies for Multi-Objective Optimisation

A large number of methods have been proposed to tackle Multi-objective Optimisation

Problems (MOPs). This review does not attempt to provide an in-depth analysis of

all publications in this area because that is out of the scope of this thesis. We provide

instead a broad and concise overview of existing Multi-objective Approaches.

One way to categorise optimisation methods concerns the moment in which we estab-

lish the preference [84]. We can distinguish three families:

• Priori optimisation methods refer to selecting the preferred solutions a priori, that is,

before the execution of the optimisation method. The drawback of this methodol-

ogy is the high complexity involving the creation of a model to specify a desirable

trade-off.

• Progressive optimisation methods refer to asking the decision maker to direct the

search. This way, the algorithm prompts the user with questions in order to de-

cide how to search the space. The disadvantage of this procedure lies on the

requirement of the time of the decision maker. However, this might not be a

problem if the execution time is not long, but if that is not the case, this method

could be unaffordable.

• A posteriori optimisation methods aim at collecting a number of solutions regularly

spaced in the solution space to be post-processed. Given this set of solutions, the

decision maker is able to select the most preferred ones. The drawback of this

methodology is that finding those solutions might be difficult and computation-

ally impracticable.

Most multi-objective solution methods fall in one of these three families of methods.

Solution methods that do not fit in any of these categories are hybrid approaches (a

combination of techniques using above-mentioned families). We now briefly describe

a number of well-known multi-objective optimisation methods. For each method, we

specify to which of the above families they belong. According to the nature of the

method, we can find:
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Scalar methods: Most methods in this category fall in the first (A priori) and third (A

posteriori) families. Some well-known examples are the:

• Weighted sum of objective functions [47] involves the transformation of a multiple

objectives problem into a single-objective problem. This method is set a priori

when the decision maker establishes a preference by weighting objectives. All ob-

jectives are merged into a single one as a weighted composition. It must be noted

that the weighted-sum approach can be also used as a posteriori or as progressive so-

lution method. The main advantage of this technique is that is relatively easy to

implement and it is not computationally expensive. However, this method has a

number of drawbacks. For example, it can be difficult to determine the weights.

Besides, due to the transformation into a single-objective problem, the optimi-

sation method will only provide one solution. This problem can be overcome

by modifying the weights in the weighted function and re-running the algorithm

again (at a higher computational cost). The most serious pitfall of this approach is

that it cannot generate some portions of the Pareto Front when this is non-convex.

• Lexicographic ordering [95] is a similar model in which the decision maker provides

the order in which the objectives will be compared. Thus, when two solutions are

compared, the objective with the highest importance (priority) is used first. If

both solutions are indifferent for this objective, the algorithm proceeds to com-

pare the objective with the second higher priority. This process is repeated until:

1) one objective is better than another, 2) no objective is left to be compared. This

approach is very easy to implement, computationally cheap and easier to set up

compared to weighted approaches. The Lexicographic ordering is useful when there is

a clear precedence of importance among objectives. Furthermore, its performance

is good compared to other methods when the number of objectives is small (2 or

3 objectives).

• Target vector approaches require the decision maker to create a vector of goals for

each objective function. Thus, the search process is directed to approximate the

solutions to these goals imposed a priori. Unlike weighted sum approaches, target
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vector approaches are able to generate portions of concave Pareto front under cer-

tain conditions. Example of this class of techniques are Goal Programming [63],

Goal attainment [263] and the min-max algorithm [124].

• ǫ-constraint methods consists of selecting (a priori) a primary objective to min-

imise, while the rest of objectives are rewritten as constraints. This way, each

objective is bounded by a permitted quantity ǫ. It is worth noticing that it is

possible to generate the entire Pareto front by changing the ǫ bounds. Although

this technique is quite simple, depending on the number of objectives, it may be

computationally expensive.

Interactive methods belong to the progressive family. Decision makers operate these

methods to guide the search. The product of this interactive process is a single solution.

Examples of these methods are:

• Surrogate-Worth Trade-off method (SWT) is based on the above mentioned ǫ-constraint

method, but embedded in an interactive process. This method was developed

by Haimes and Hall [122] who conceived it to approximate an underlying func-

tion. The interaction takes place when the decision maker sets the direction of the

search based on a number of parameters that size trade-off levels. The drawback

of this method is related to the parameter setting.

• Step Method [13] (STEM) uses preference information given by the decision maker

to restrict the search space step by step. In this method, the DM has to specify

which objectives have an acceptable value and which do not. Then, in order to

improve the objectives with unacceptable values, the DM provides bounds by

which the objectives with acceptable values can be worsened. STEM was one of

the first iterative method proposed for multi-objective optimisation. One criti-

cism to this methods is that it does not capture the trade-off between objectives.

Another criticism is that the best-compromise solution does not exists if it is not

found in a certain number of steps [50].

Fuzzy methods are designed to deal with uncertainty and imprecision, characteristics
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of human knowledge. This class of methods tend to be placed in the a priori family.

Two well known examples of Fuzzy methods are those by Sakawa and Yano [221] and

Reardon [208]. The former method uses fuzzy logic at all levels (parameters of the

problems and constraints). The advantage of this method is that the DM’s preference

is taken into account in relation to the solution. Thus, the DM can obtain more or less

solutions depending on how demanding he/she is. The drawback of this method is

that uses complex mathematical rules that are hard to apply [53]. The latter method

(Reardon method) is an easier approach which uses a simple membership function to

penalise the objective function when it is out of certain bounds. This method is easy to

use and provides good results in some test functions.

Decision aid methods belong to a priori family, as the preference is established be-

fore the execution of the multi-objective optimisation method. Well known meth-

ods under this category are ELECTRE (ELimination and Choice Expressing REality) and

PROMETHEE (Preference Ranking Organisation METHod for Enrichment Evaluations). The

first method was introduced by Roy [216] when he was facing some problems applying

the weighted approach. Initially, it was proposed to select the best action from a set of

possible actions, but later on, it was extended to be applied to choosing, ranking and

sorting problems. PROMETHEE is another outranking method proposed by Brans [18]

which uses pair-wise comparisons to find the best action or decision . This method re-

quires a very low level of mathematical complexity what makes it transparent to both

decision makers and non experts (i.e. stakeholders).

Techniques based on metaheuristics fall in the a priori and a posteriori families. This

group of methods are eligible to separate the multi-objective optimisation treatment (i.e.

weighted approach) from the optimisation method. This explains why many single-objective

metaheuristics have been easily extended to deal with multi-objective decisional spaces.

Some of the first multi-objective optimisation algorithms proposed in this area are:

PASA (Pareto Archived Simulated Annealing) [86] and MOSA (Multi-Objective Simulated

Annealing) [244], VEGA (Vector Evaluated Genetic Algorithm)[225], MOGA (Multiple Ob-

jective Genetic Algorithm) [100], NSGA (Non-dominated Sorting Genetic Algorithm) [234]

and the NPGA (Niched Pareto Genetic Algorithm) [133]. However, in the literature, there
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now exist many more metaheuristic approaches to tackle multi-objective problems.

PASA [86] and MOSA [244] are based on the Simulated Annealing [24] algorithm.

PASA [86] uses an aggregation approach and an archive to store non-dominated so-

lutions. This algorithm only works with a solution at a time. Thus, in order to generate

the Pareto trade-off surface, it is necessary to re-run the search starting from solutions

within the non-dominated archive. MOSA [244] uses an acceptance probability for each

objective function to accept or reject solutions depending on the temperature. Then,

these probabilities are merged using weighting approaches.

Many approaches have been proposed to deal with multi-objective problems using

Genetic Algorithms. One of them is VEGA, proposed by Schaffer [225]. This algo-

rithm was the first evolutionary multi-objective algorithm. It extends GAs to tackle

multi-objective problems without merging the objective functions. The main differ-

ence with other GA lies in the selection step. At each generation, a number of groups

(sub-populations) are generated according to one objective function. This makes this

algorithm very simple to implement. However, since we are taking one objective at a

time, the population might end up with average values for all objectives.

MOGA was proposed by Fonseca and Fleming [100]. This approach uses Pareto dom-

inance in order to compute the efficiency of the individuals. Thus, individuals are

ranked according to the number of population members they dominate. This algo-

rithm is easy to implement, as well as efficient, but in some cases it does not provide a

diverse set of solutions.

NSGA was proposed by Srinivas and Deb [234]. NSGA is based on the above-mentioned

MOGA. This approach promotes diversity by using a different manner to compute the

individuals’ efficiency. This process is carried out by classifying the individuals with

a dummy efficiency value to normalise the likelihood of reproduction. This efficiency

parameter, to which all the objective function are reduced, is indeed what makes NSGA

efficient. A problem with this algorithm is its sensitiveness respect to the sharing factor

(θshare) that represents the crowdedness of each category. Another important feature in

the NSGA is the non-dominated sorting mechanism. This procedure ranks a population

of solutions using the concept of Pareto dominance. This approach consists of divid-
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ing the population in fronts according to non-domination relationships. When this

process is over, all solutions contained in the first front are said to belong to the best

non-dominated set. Each front is assigned with a fitness value according to its depth

or closeness to the Pareto front. The non-dominated sorting mechanism received some

criticism for its high complexity O(MN3), where M is the number of objectives and N

is the size of the population. In order to overcome this issue, a new version of this algo-

rithm with complexity O(MN2) was introduced in NSGA-II [65]. This new version is

more efficient in terms of computational time and avoids the use of the sharing factor

with elitism and crowded comparison operators.

NPGA was presented by Horn and Nafpliotis [133]. This algorithm is based on NSGA

differing only in the selection procedure. It starts by selecting two random members of

the population. Then, these two individuals are compared with a subset of the popula-

tion. In case of a tie, fitness sharing is used to break the deadlock. The advantage of this

method is the partial use of the Pareto ranking scheme. It makes the method run faster

comparisons. However, as NSGA, its performance relies in a number of parameters

that must be set.

A large number of publications have been put forward since the proposal of these

first algorithms. Evolutionary Multi-objective Optimisation Algorithms (EMOAs) have

caught the interest of many researchers due to their ability to find multiple Pareto

optimal solutions in a single run [65]. Some state-of-the-art EMOAs include: SMS-

EMOA [17], MO-CMA-ES [140] and ǫ-MOEA [66].

S-Metric Selection EMOA (SMS-EMOA) [17] combines the hypervolume metric [271]

as a selection criteria to discard the lesast fit individuals, and the non-dominated sort-

ing [65] as a ranking criterion. Thanks to the use of the hypervolume as a selection

criteria, the performance of this algorithm is independent to the number of objec-

tives. The Multi-Objective Covariance Matrix Adaptation Evolution Strategy (MO-

CMA-ES [140]) is another algorithm that uses the hypervolume and non-dominated

sorting mechanisms. However, in this case MO-CMA-ES employs a non-dominated

sorting that uses either the contributing hypervolume or the NSGA-II’s crowding dis-

tance [65]. The ǫ-MOEA [66] divides the search space in a number of hyper-boxes (grid)
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such that each section of the grid only contains one solution. This algorithm updates

an external archive for non-dominated solutions using the notion of ǫ-dominance [160].

All of the above mentioned EMOAs outperform the NSGA-II. In particular SMS-EMOA

not only outperforms NSGA-II, but also achieves better results than the other algo-

rithms respect to the hypervolume indicator.

Many successful state-of-the-art EMOAs, such as SMS-EMOA [17] or ǫ-MOEA [66], are

a combination of pre-existing components. In my opinion, a major advance in this area

could be the use of a unified framework upon which to develop and test these methods.

A number of frameworks have been proposed for this purpose, such as ParadisEO [25]

and HeuristicLab [252, 251]. The adoption of these frameworks could speed up the im-

provement of existing solving techniques, and thereby broaden the knowledge in this

area. This could provide, among other things, a common "arena" in which to compare

algorithms, a set of fine-grained tools that can be easily combined (e.g. non-dominated

sorting mechanism [65], hypervolume metric [271]), and a set of predefined benchmark

test problems.

2.3.4 Quality Metrics for Multi-Objective Optimisation

An active field of research in multi-objective optimisation focuses on how to assess

multi-objective algorithms. One methodology to assess the performance of multi-objective

algorithms is the quality metrics. Quality metrics (or quality indicators) usually help to

measure the performance of these algorithms according to their final non-dominated

solution set. However, one trend in the area of Multi-Objective Evolutionary Algo-

rithms (MOEA) concerns the adoption of quality indicators as selection mechanisms

(i.e. IBEA [270], or the more recent SPAM [276]). Some existing metrics that we have

used throughout our studies are:

Hypervolume Metric [271], also known as S-metric or Lebesgue metric, is one of the

most important unary indicators to assess the quality of Pareto front approximations.

The hypervolume measures the size of the space covered by a Pareto front approxima-

tion set A ⊂ Y and a reference (or nadir) point z ∈ Y. In a maximisation problem,

the reference point z is usually set to the origin. While in a minimisation problem, z is
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usually set to a point dominated by all solutions in the approximation set A.

Formally, given an objective space with n dimensions, the hypervolume of an approxi-

mation set A ∈ Y, denoted by MH(A) ∈ ℜ, can be calculated as [271]:

MH(A) = λ
( ⋃

(x1,...,xn)∈A

[x1, z1]× · · · × [xn, zn]
)

(2.3.4)

where λ(·) is the standard Lebesgue measure.

Figure 2.1 shows (on the left) the graphical representation of this metric for the minimi-

sation of two objectives: f1 and f2. In this example, the approximation set A contains

5 non-dominated solutions: {x1, x2, x3, x4, x5}. Since this is a minimisation problem, the

reference point z is set to point dominated by all solutions in A. This way, the hyper-

volume is represented by the grey region delimited by the non-dominated solutions

x1, x2, x3, x4, x5 and z.
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Figure 2.1: Graphical representation of the hypervolume metric (on the left) and
the coverage metric (on the right). In this coverage metric example,
MC(A,B) = 2/5 because Y1 and Y4 are covered and A has 5 solutions,
while MC(B,A) = 1/4 because X2 is covered and B has 4 solutions.

Coverage Metric [273] is a binary performance indicator that compares to what extent

a solution set B is covered by another solution set A. Given two Pareto front approxi-

mation sets A and B, the coverage of A over B, denoted by MC(A,B) ∈ ℜ, is equal to

the number of solutions in B that are covered by solutions in A to the cardinality of B.

Formally,
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MC(A,B) =
|{b ∈ B : ∃a ∈ A, a � b}|

|B|
(2.3.5)

This function maps the ordered pair (A,B) to [0, 1]. If MC(A,B) = 1, it means that

all solutions in B are covered by solutions in A. Conversely, MC(A,B) = 0 indicates

that no solution in B is covered by solutions in A. This metric therefore shows the

algorithm that provides the approximation set with the larger coverage to be better. It

should be noted that MC(A,B) is not necessarily equal to 1 − MC(B,A), and we must

therefore calculate both.

Figure 2.1 depicts (on the right) the graphical representation of this metric. In this case,

there are two approximation sets: {x1, x2, x3, x4, x5} ∈ A and {y1, y2, y3, y4} ∈ B. The

values for this metric are MC(A,B) = 2/5 and MC(B,A) = 1/4. Thus, according to

this metric the non-dominated set A is better than B.

A large number of reviews have been published explaining these and other quality

indicators. These reviews include the works by Knowles and Corne [153], Grosan et

al. [120], Lizarraga et al. [169] and Cheng at al. [40].

2.4 Cooperation

Multi-Agent Systems (MAS) [92] is a research area that studies systems of interacting

intelligent agents. These systems are useful to solve complex problems by cooperation.

Cooperation is a fundamental research topic within the context of multi-agent systems.

Figure 2.2 provides a high-level topology of cooperation in the context of MAS [73].

At the top of the hierarchy we have independent and cooperative systems. In independent

MAS each agent perform its own operations independently of the other agents. As

Figure 2.2 depicts, independent MAS can be of the type discrete and emergent cooperation.

Discrete MAS contain agents with no operations in common. Emergent cooperation

occurs when agents cooperate unintentionally. For example, RoboCup soccer [186] is a

MAS in which each agent pursues its own agenda. As a result of the global interaction
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Multi&Agent+Systems+(MAS)

Independent Cooperative

Discrete Emergent+

Cooperation
Communicative Non&Communicative

Deliberative Negotiating

Figure 2.2: Classification of Multi-Agent Systems (MAS) based on [73].

involving agent’s independent behaviours, a cooperative system emerges. Cooperative

systems (top of the topology in Figure 2.2) can be communicative and non-communicative

depending on wether or not an interchange of signals or information takes place. In

non-communicative schemes, cooperation occurs as the result of agent’s observations

(e.g. robots that observe each other’s behaviour [210]). Communicative cooperative

MAS can be deliberative and negotiating. In the former scheme, agents plan their actions

as a group. The latter is similar to deliberative schemes but it adds competition.

Cooperative MAS can be also categorised as centralised and decentralised [260]. A MAS

is centralised if there is an entity controlling and/or supervising what others agents

do. The complement of this scheme is a system in which agent run their operations

independently or in a decentralised way. Another classification for cooperative MAS

concerns the synchrony in their operations [237]. This way, MAS can be synchronous if

agents have to wait for one another to perform certain operations, or asynchronous if no

agent is forced to wait for the others.

This thesis contributes to the area of multi-agent systems with CODEA, a library of

classes that supports all of the above-mentioned schemes (see Chapter 3). However,

we have focused our research on the hybridisation of independent > emergent cooperation

and cooperative > communicative systems (Figure 2.2) and decentralised cooperation sys-

tems. That is, MAS in which agents are independent as they pursue their own agenda,

and cooperate using sending and receiving messages. An example of this system is

Swam Intelligence (SI) [72]. Swarm Intelligence is a MAS in which each agent per-

forms simple operations independently and in a decentralised fashion. In particular,

35



CHAPTER 2: LITERATURE REVIEW

we have focused part of our research on the development of a Particle Swarm Optimi-

sation (PSO) algorithm in CODEA. The next section discusses PSO existing variants,

and states our contribution to this field.

2.5 Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) is a stochastic swarm intelligence-based technique

developed by Kennedy and Eberhart [81, 150]. This algorithm is inspired by the social

behaviour of bird flocking or fish schooling.

PSO consists of a number of particles moving in the problem solution space. Each

particle knows its current position xid, its best position so far bid, the best positioned

particle in the neighbourhood gid, and the best location achieved by the whole swarm

up to this time g. Using this information, the particles in the swarm are able to update

their positions. This position is updated by applying the equations 2.5.1 and 2.5.2.

The first equation (2.5.1) updates the velocity of each particle vid and has four basic

components, each one indicated with an over-brace:

• The first component (vid) from the left encourages particles to move with the

same speed and direction as in the previous iteration (also called inertial compo-

nent).

• The second component (gid − xid) pushes particles towards the best location in

the neighbourhood at the current iteration. This component is responsible for

avoiding premature convergence.

• The third component (bid − xid) is called cognition and directs particles to their

own best locations.

• The fourth component (g − xid) keeps particles together by creating an attraction

force to the best position found by the whole swarm up to time.

Each of the four components in Equation 2.5.1 is multiplied by coefficients w, c1, c2 and

c3, respectively. These coefficients establish the weight or importance of each compo-
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nent. In addition, components 2 to 4 are multiplied by independent random numbers

r1, r2 and r3 ∈ U[0,1] respectively, to induce a stochastic behaviour in the individuals.

Once the velocity is updated using this equation, the new position of the particle is

calculated using Equation 2.5.2. This equation simply sums up the previous position

xid of the particle with the new velocity vid.

vid = w ·
︷︸︸︷

vid +c1 · r1 ·
︷ ︸︸ ︷

(gid − xid) +c2 · r2 ·
︷ ︸︸ ︷

(bid − xid) +c3 · r3 ·
︷ ︸︸ ︷

(g − xid) (2.5.1)

xid = xid + vid (2.5.2)

Although the behaviour of each particle might look quite simple, this is indeed the

main purpose of the algorithm. The particles are not intended to perform complex op-

erations, but it is the interaction within the individuals in the swarm what makes the

intelligence emerge. This simplicity has made PSO one of the most successful optimi-

sation algorithms. An extensive survey of PSO application can be found in [196].

2.5.1 Discrete Particle Swarm Optimisation

The original PSO throws particles that fly in continuous spaces. For this reason, we

cannot apply the algorithm as it is to discrete-based space problems. In a discrete space

the common concept of velocity loses its sense. This makes it necessary to redefine how

particles move.

In 1997, Kennedy and Eberhart proposed a discrete variant of the original Particle

Swarm Optimisation called DPSO [151]. This new algorithm, also known as Quantum-

PSO, used a binary codification to encode the position of a particle. The velocity was

reinterpreted by means of the binary digits flipped from one state to another. This way,

zero bits flipped means no move and all of them flipped alludes the opposite situation,

maximum velocity.

They related this concept of velocity to the position in terms of probabilities. Thereby, if

vid = 0.2, there is a 20% chance that xi takes value 1, and 80% chance for x1 to be 0. Since
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the velocity is a bitset, its real value could be out of the bounds of a probability measure

[0, 1]. To overcome this situation, the authors proposed to use a sigmoid function that

maps ℜ → [0, 1]. With all this, given a random number r in U[0, 1], if r < sigmoid(vid)

then xid = 1 or 0 otherwise. This first approach to the DPSO is limited to binary-valued

solutions elements. Furthermore, the introduction of a probability based velocity com-

bined with the sigmoid function makes it difficult to see how particles move from one

to another solution. The intuitiveness of the PSO in continuous spaces was sacrificed

in order to keep unchanged the velocity equation 2.5.1.

Since this first DPSO, a number of alternatives have been proposed to adapt the PSO to

discrete spaces. Most approaches differ in:

1. the way they encode the particles’ positions

2. the way the swarm moves

3. the application problem

This review provides an overview on those proposals applied to combinatorial prob-

lems related to the mainstream of this dissertation: Travelling Salesman Problem (TSP)

and Vehicle Routing Problem (VRP). This review identifies and contextualises publica-

tions based on the three above-mentioned criteria. Tables 2.1 and 2.2 summarise the

publications cited in this review for TSP and VRP problems, respectively. The works

in this table are in chronological order. The first column provides the reference to the

work. The second column specifies the type of encoding used to define a particle’s

position:

1. binary (if positions are defined as a bit set)

2. vector (if positions are defined as a sequence of integers that represent the turn in

which customers are served)

3. fuzzy matrices (if positions are defined as matrices in which each element repre-

sents the probability of choosing an edge in a directed graph)

4. set of edges (if positions are denoted by a number of edges of a directed graph)
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5. real-valued vector (if positions are described as a vector of real-valued numbers

that require of a transformation to obtain the resulting sequence)

6. a set of coordinates (if positions are defined as locations using Cartesian coordi-

nates)

The third column describes how particles move:

1. transformation (if some decoding process is needed to obtain the resulting solu-

tion)

2. customisation (if the utilised encoding requires of an accommodation of Equa-

tions 2.5.1 and / or 2.5.2)

3. operators (if Equations 2.5.1 and / or 2.5.2 are interpreted as a number of opera-

tions carried out on the chosen encoding)

Finally, the fourth column states to which problem the DPSO is applied.

Table 2.1: Classification of some existing DPSO applied to TSP publications according
to: 1) Encoding of each particle, 2) Movement of the particles move, and 3)
Application problem tackled. References are listed in chronological order.

Publication Encoding Movement Application

Clerc [46] vector customisation TSP

Onwubolu and Clerc [189] vector customisation TSP

Secrest [227] vector operators TSP

Pang et al. [193] fuzzy matrices transformation TSP

Wang et al. [255] vector operators TSP

Shi et al. [230] vector operators TSP

Goldbarg et al. [115] vector operators TSP

Zhong et al. [268] set of edges operators TSP

Shi et al. [231] vector operators Gen-TSP

Fan [88] vector operators TSP

Hoffmann et al. [130] vector operators TSP

TSP is the first combinatorial problem that was approached by DPSO. Clerc [46] pro-

posed a DPSO algorithm in which each particle’s position is defined as an array of cus-

tomers identifiers (customers ids). In that work, equations 2.5.1 and 2.5.2 are adapted
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Table 2.2: Classification of some existing DPSO applied to VRP publications according
to: 1) Encoding of each particle, 2) Movement of the particles move, and 3)
Application problem tackled. References are listed in chronological order.

Publication Encoding Movement Application

Chen et al. [39] binary transformation VRP

Ai and Kachitvichyanukul [1, 2] real-valued vector transformation VRP

Marinakis et al. [175] vector customisation VRP

Zhao et al. [266] vector operators VRPTW

Qing et al. [205] vector operators VRPTW

MirHassani and Abolghasemi [178] sets of coordinates transformation Open VRP

by redefining how each operator works for the proposed encoding. This approach

was tested on a 17 nodes TSP instance with different parameters. This DPSO was

also applied to a simplification of a real test case involving automated drilling op-

erations [189]. Another application to a real-world problem was carried out by Se-

crest [227]. This work presents a hybrid DPSO + Ant System approach to solve the TSP

in surveillance missions. In that application (as in the previous work), each particle

holds a solution (tour). The move of the swarm is carried out using a number of per-

mutation operators (e.g. swaps, 3-opts) and tour buildings operators (e.g. insertions)

based on the original PSO equations. Another proposal to the TSP was presented by

Pang et al. [193]. That work used binary fuzzy matrices to represent both position and

velocity. The velocity equation 2.5.1 was accommodated to work with matrices. Results

indicated that the proposed algorithm is a valuable alternative to the DPSO. Wang et

al. [255] designed a DPSO introducing the concepts: Swap Operator (SO) and Swap Se-

quence (SS). These Swap Sequences (SS) are chains of SOs to turn a solution (tour) into

another. That work inspired Fan [88] to create an extension of this algorithm by incor-

porating a crossover operator, a reverse operator and a noise factor to propel diversity.

That new algorithm was successfully tested on instances ranging 14 − 51 nodes. Shi

et al. [230] proposed a DPSO aimed at tackling larger TSP instances. This DPSO also

used the concept of Swap Operator to redefine the velocity equation. In [231] the au-

thors added an uncertain strategy and extended it to tackle the generalised TSP. Other

approaches dealing with large instances are Golbarg et al. [115] (51 − 7397 nodes) and

Zhong et al. [268] (14 − 200 nodes). The work by Goldbarg et al. [115] uses a permu-

40



CHAPTER 2: LITERATURE REVIEW

tation based encoding and changes velocity equation operators by means of two local

searches and a path-relinking operator. Zhong et al. [268] propose a DPSO using an

encoding based on sets of edges. Velocity equation operators are redefined to suit this

new encoding and a new coefficient (mutation factor) is incorporated to avoid local

optima. In a recent work, Hoffmaan et al. [130] provide the first theoretical study of

DPSO for TSP. The authors analyse the work by Clerc [46] and Wang [255] and pro-

posed a new DPSO in which the difference between tours is based on edge exchanges.

That DPSO produces good results on several TSP instances ranging 52 − 105 nodes.

Discrete Particle Swarm Optimisation has been also applied to the Vehicle Routing

(VRP) family of problems many times. Chen et al. [39] proposed a hybrid approach

DPSO + Simulated Annealing (SA) to tackle the VRP. A quantum theory based DPSO

(previously presented in [197] and tested in benchmark test functions) was used to

assign customers to routes, and a SA was incorporated to avoid local optima. Ve-

locity was encoded as a vector in which each component has a value between [0, 1].

Each of these components denotes the probability of that element taking value 0. This

way, a binary encoding was used to describe the position of each particle. This ap-

proach provided the best performance compared to a GA with 2-opt and SA. Ai and

Kachitvichyanukul [2] presented another DPSO for the VRP. This proposal used two

real-valued encodings (SR-1 and SR-2). SR-1 has a length of n + 2m dimensions (n and

m are the number of customers and vehicles, respectively). SR-1 had already been pro-

posed in a previous work by the same authors in [1]. In that work, SR-1 is extended

using a 2-opt local search to improve the quality of solutions. SR-2 has a length of 3m

dimensions (m is the number of vehicles). That DPSO is compared to the one by Chen

et al. [39]. Results indicate that both encodings within that DPSO are better in terms of

solution quality and computational time. Zhao et al. [266] developed a DPSO for the

VRP with Time Windows (VRPTW) using a number of heuristics for the initialisation of

solutions and solution generations. Particle positions were encoded using vectors and

the movement of the swarm was done by means of operators. Experiments compared

two DPSOs (global and local) with three construct algorithms. Results indicated that

the best combination is a global DPSO with Solomon insertion heuristic which: 1) as-
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signs customers to the best feasible position (distance/time); and 2) selects customers

according to a maximum saving concept. A similar work was proposed by Qin Zu et

al. [205]. That work applied a very basic implementation of the DPSO to some short

made-up instances of the VRPTW. Marinakis et al. [175] proposed another alternative

to tackle the VRP. Their work consisted of the hybridisation of a DPSO with other three

algorithms. That hybrid approach uses a multiple neighbour search GRASP to initialise

the population. Both positions and velocities are represented as vectors with the same

length. Positions are encoded using a vector of real number in [0, 1]. The authors use

equation 2.5.2 to update positions and a Path Relinking strategy to calculate the posi-

tion of each particle. Finally, that hybrid DPSO uses a neighbourhood search strategy to

improve solutions. Results in Christofides dataset [75] produced very competitive re-

sults. MirHassani and Abolghasemi [178] has recently proposed two DPSOs for the

Open VRP with different neighbourhood sizes: nbest (if there are a number of small

neighbourhoods) and gbest (if the neighbourhood is the entire swarm). Positions are

encoded as a set of coordinates and Equation 2.5.2 is accommodated to this encoding

for each neighbourhood size. In order to improve the solutions, a one-point method is

used during the decoding process. Results revealed a fair performance in 15 instances

ranging 19 − 72 nodes.

Some contributions that describe applications of DPSO to other problem domains are:

Data Mining [60], n-Queen Problem [135], Steiner Tree Problem [54], Scheduling Prob-

lems [6].

Tables 2.1 and 2.2 show that most application of DPSO to TSP and VRP(TW) (VRP and

VRPTW) problems have used vector-based encodings and operator-based movements.

This is probably because vector-based encodings ease the re-utilisation of heuristic

methods (see Section 2.2.2). The literature also shows that some effort have been put

into solving large TSP instances (see for example [230, 115, 268]). However, we do

not find many works addressing large scale VRP(TW) instances. It is our belief that

this will be a new research avenue in DPSO applied to VRP(TW). For this purpose, we

think that the availability of a VRP(TW) instance generator could motivate the further

improvement in this area.
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2.5.2 Multi-Objective Particle Swarm Optimisation

Since the Particle Swarm Optimisation was proposed by Kennedy and Eberhart in 1995

[150], this algorithm has gained many adepts due to its simplicity and efficiency. This is

the reason many researchers are pursuing to extend this technique to use it in different

scenarios. This part of the literature review focuses on the multi-objective paradigm of

the Particle Swarm Optimisation.

In a Multi-Objective Particle Swam Optimisation (MOPSO), a number of difficulties

arise inherent to the multi-objectives paradigm. While in a single-objective PSO it is

remarkably easy to select the leader as the particle with the best fitness, in a multi-

dimensional objective space this is no longer possible. To begin with, it is necessary to

find a metric to classify solutions. However, this is not enough when our goal is to offer

a set of solutions to the decision maker. To be successful in dealing with multi-objective

problems, it is also important to control the diversity of the population. Without a

control of the diversity within swarm, our algorithm is likely to stagnate in local optima

very fast. This survey outlines a number of proposals explaining how scientists in this

area have overcome these difficulties in order to adapt PSO into MOPSO.

In this section, we will extend the survey of Reyes-Sierra and Coello [213] by includ-

ing later work, but using a different taxonomy. We will organise this survey around

the three key aspects of MOPSO: 1) selection of the leader, 2) archives and 3) diversity.

However, it is worth noticing that these three mechanisms have evolved in an intimate

relationship. This way, sometimes it is difficult to discern for each contribution what is

indeed related to a mechanism or another.

Selection of the leader

The first proposal in this area was by Moore and Chapman [181]. They emphasised

the importance of using Pareto dominance in the MOPSO paradigm. However, many

works between 2002 and 2004 focused on the most straightforward adaptation of PSO

to multi-objective decisional spaces. In order to avoid defining special mechanisms to

select leaders in multi-objective problems, these approaches resorted to other schemes
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different to Pareto dominance. For example, aggregating approaches such as the ones

proposed by Parsopoulos and Vrahatis [194] and Baumgartner et al. [10]. The first of

those works uses three types of aggregating functions, a conventional model and two

dynamic approaches. The second work divides the swarm in n sub-swarms according

to a number of special weights. Each of these sub-swarms have a different leader that

leads the group depending on the weights.

An example using lexicographic ordering was put forward by Hu and Eberhart [134].

Using a dynamic neighbourhood that changes at each iteration, the local leader (lBest)

is selected by fixing a number of objectives. In case of using two objectives, the first is

fixed, while the second is used to select the leader among the neighbouring particles.

In the context of Pareto dominance, the selection of leaders is an aspect that requires a

careful consideration. Most contributions dedicated to MOPSO redefine the concept of

leader given in the original version of the PSO. Since many particles within the swarm

might be in different non-dominated positions, new mechanisms have to be devel-

oped in order to chose the most appropriate ones to guide the population. The most

successful quality measures are related to density metrics. The density metrics provide

information about crowdedness, useful to know which particles are in the least pop-

ulated section of the objective space. Two well-known density metrics found in the

literature are the Nearest neighbour density estimator and the Kernel density estimator. The

first metric, proposed by Deb et al. [65], simply calculates the perimeter of the cuboid

of a given particle with respect to its nearest neighbours. The second was introduced

by Goldberg and Richarson in [117] and it consists of counting the number of particles

around a population member using a given radius.

Other works have relied on random selection of the leader from a repository of non-

dominated solutions. Toscano and Coello in [202] propose a multi-swarm MOPSO, so

that each sub-swarm has a set of leaders. These leaders are randomly selected to guide

the swarm. Alvarez-Benitez et al. [5] proposed three different techniques in order to

select the leaders: Rounds, Prob and Random and Rounds. The Rounds technique one was

intended to promote convergence, Prob to promote diversity, and Random and Rounds

to be a compromise between the first two. Another interesting approach using random
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selection was put forward by Li [164]. He proposed maximinPSO which uses a derived

function from the maximin strategy to compute the Pareto front. Thus, the leaders are

randomly selected from a special repository. Other previous works using pure random

schemes to select leader can be found in the survey by Reyes and Coello [213].

Some authors have used the Roulette-wheel selection mechanism to select the leader in

their algorithms. This selection technique is widely used in GA. It consists of building

a number of sub-segments spanned in [0, 1], so that the length of each sub-segment is

proportional to its probability. Then, a random number r is generated (from an uni-

form distribution U[0, 1]) and the attribute whose sub-segment spans r is selected. This

method tends to be supported by an aid-method that specifies the length of each sub-

segment. Coello et al. in [49] and [51] presented works using this technique. It was

based on dividing the fitness space in identical hypercubes and counting the number

of particle in each. This process was carried out in order to establish the probability of

each sub-segment. The same mechanism based on the fitness of the particles was used

by Ho et al. in [129]. Salazar-Lechuga and Row [222] and Yang et al. [261] based the

selection on the already mentioned kernel density estimator.

A number of methods have exclusively relied on density measures to select the leader

of the swarms. An interesting contribution is the one introduced by Mostaghim and

Teich [183] who suggested the sigma method. That method consists of dividing the ob-

jective space by using a number of concentric imaginary lines fired up from the origin

of coordinates. Although that method is efficient and relatively easy to implement, it

is limited to work only with objectives having positive values. Another work with a

similar aim was put forward by Villalobos-Arias et al. [248]. Their approach was based

on creating a number of stripes on the decision space using minimal points. There-

fore, the leader for each stripe is selected minimising the weighted sum of the minimal

points in the objective function. A very similar work was proposed by Toscano-Pulido

et al. [242] using a so-called Hyper-plane distribution. Recently, Zhao and Suganthan

[265] proposed a MOPSO that selects leaders: lbest (local best) and gbest (global best),

from the top fronts in a non-dominated external archive. The authors also introduce

a two-lbests based MOPSO. That algorithm assigns a bin to each solution according to
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the objective function range in the external archive. Thus, in order to intensify local

exploration, this MOPSO selects solutions located in neighbouring bins.

Another interesting approach using a completely different technique is the one by

Fieldsend and Singh [93]. A special structure called dominated tree is built to store

good quality (non-dominated) positions. Thus, the selection of the particles is based

on the structure itself. A composite point is first selected based on dominance rela-

tions. Secondly, its closest particle in the objective space is then selected as the leader.

Another recent line of research is the interactive MOPSO. Interactive MOPSOs select

lbest and gbest by means of user-interaction. Mostaghim and Teich [183] proposed the

first guiding MOPSO in which a number of predefined solutions are provided to be

gbest particles. Similarly, Wickramasinghe and Li [258] present a MOPSO that uses

user-preference solutions (feasible or infeasible) as an input for gbest. As a further

step towards usability, Hettenhausen et al. [128] proposed a heatmap-based visuali-

sation tool to aid the decision maker in choosing the leaders at each iteration. Recently,

Mostaghim et al. [184] studied an interactive MOPSO based on a Desirability Func-

tion (DF) to select gbest and pbest. Their MOPSO has a hybrid behaviour that alternates

between a normal MOPSO and DF-MOPSO when a desirability index within the pop-

ulation is achieved.

Archives

An important issue that must be addressed when solving multi-objective problems is

the storage of non-dominated solutions. The ideal case would be to store them all as

the search process moves forward. However, this is rarely possible computationally

speaking. In most scenarios, these repositories or archives of non-dominated points must

be stored in data structures of fixed sizes. This increases the complexity adding an

extra overhead when we have to decide what to do if the archive is full and a new

non-dominated solution is found. In the last 10 years, a number of methods have been

proposed to deal with these situations.

Most techniques to fix the size of the archive are intended to maintain a certain degree
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of diversity within the swarm. A well known technique consists of dividing the deci-

sion space in hypercubes with identical dimensions. Then, the algorithm that controls

the size of the archive counts the number of particles inside each hypercube. This den-

sity metric is then used to delete the particle in the archive whose hypercube is more

crowded. Examples of this approach can be found in the works of Coello et al. [49, 51]

and Bartz et al. [9].

Other authors relied on using well-known density estimators as the kernel density or

nearest neighbor. Examples of the first algorithm can be found in Srinivasan and Hou

[235] and Mostaghim and Teich [182]. The nearest neighbour estimator is used by Li [164]

on the hybridisation of a PSO with the known NSGA-II [64]. Raquel and Naval [207]

used a similar method called crowding distance in their approach to MOPSO. The crowd-

ing distance is equivalent to the nearest neighbour estimator, but calculating the volume

rather than the perimeter. Crowding distance is used together with ǫ-dominance [160] in

an improved version of the MOPSO presented by Sierra and Coello [212].

In a recent study, Helbig and Engelbrecht [126] propose three techniques to maintain an

archive for dynamic multi-objective optimisation problems (DMOOP). The first tech-

nique consists of clearing or reseting the archives, which might be inconvenient in case

of little changes in the Pareto optimal front. The second technique involves the re-

evaluation of solutions contained in the archive and removal of the least suitable. And

the third technique first re-evaluates all solutions in the archive. If a solution becomes

dominated, a hill-climbing method is applied. If the solution is still dominated, it is

removed from the archive. A number of benchmark functions are used to compare the

performance of these three archiving models. Results indicate that the one involving

the use of a hill-climbing method is superior.

Diversity

As it is stated in the survey by Reyes and Coello [213], diversity within the swarm has

proven to be one of the key aspects to a good multi-objective particle swarm optimiser.

Many factors related to this issue might affect the tendency of the particles to stag-

nate in a local minima. The selection of the leader and the way the algorithm manages
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the archive(s) have a direct impact on the convergence. Also, Hu and Eberhart [134]

highlighted the importance of selecting a larger population size for multi-objective en-

vironments. Other mechanisms rely on the inertial component [31] on the PSO (Eq.

2.5.1) or using different types of communication topologies [33].

Besides these mechanisms and more in the context of MOPSO, many authors have

opted to add turbulence or craziness factors to encourage the diversity among the

particles in the swarm. These factors are indeed operators that somehow modify the

velocity and/or position of particles. So far, the mutation operator has been usually

performed on the decision variables. Some examples are the works of Fieldsend and

Singh [93], Coello et al. [49], Ho et al. [129], Mostaghim and Teich [182], Ishida et al.

[144], Li [164] and Mohamed et al. [179]. In a more elaborated work on this topic by

Reyes and Sierra [212], two mutation techniques, borrowed from Evolutionary Algo-

rithms, are implemented: Uniform mutation and Non-uniform mutation. These operators

are used in order to create three sub-swarms that share leaders. One of them does not

implement any mutation and the other two implement the mutations proposed.

Another interesting contribution was introduced by Quintero et al. [223] who com-

bined PSO and SS (Scatter Search) [176] in order to achieve a good compromise be-

tween exploration (SS) and exploitation (PSO). Scatter Search is mainly embedded to

provide diversity, and PSO to speed up the convergence. Additionally, the authors im-

plemented a parameter-based mutation used in NSGA-II [64]. Their experiments show it

produces very competitive results compared to NSGA-II.

Some researchers have also used elitism in order to avoid using special operators to

promote diversity. Srinivasan and Seow [235] presented (PS-EA), a hybridisation of a

PSO algorithm and a Evolutionary Algorithm. This way, the issue of the diversity is

covered by the own nature of the EA using elitism.

A work introduced by Zheng and Liu [267] presents VMAPSO (A Hybrid Vertical Mu-

tation and self-Adaptation based MOPSO). That algorithm utilises a vertical mutation op-

erator that modifies one or several components of the current position along the it-

erations. This way, the mutation affects a particle vertically. That is, it does not only

operates on current position of a particle, but it also does on its previous positions.

48



CHAPTER 2: LITERATURE REVIEW

Summarising, we think that further research should be carried out on the study of

these key components (leader selection, archiving, diversity) separately. Most works

use more than one mechanism to tackle multi-objective problems. This makes it hard

to know which component is actually contributing the most in the effectiveness of the

algorithm.

Moreover, most papers surveyed here are for MOPSOs applied to continuous prob-

lems. Therefore, another important issue to be addressed is to prove if these elaborated

algorithms are equally successful on multi-objective combinatorial problems.
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CHAPTER 3

CODEA - An Agent Based

Multi-Objective Optimisation

Framework

Summary

This chapter introduces CODEA, a COoperative Decentralised Architecture for Multi-

Objective Optimisation (MOO). This is a C++ object-oriented framework for the cre-

ation of groups of agents that cooperate to tackle complex optimisation problems. Un-

like most multi-objective frameworks, CODEA provides explicit mechanisms to en-

able agents to send and receive information either synchronously and asynchronously.

Agents execute tasks in an autonomous fashion, so no entity controls agents’ opera-

tions. Besides, agents undergo communication phases in which they share informa-

tion. The interactions among agents can create complex cooperative behaviours, which

contribute to tackling complex problems as teamwork.

3.1 Introduction

Heuristic algorithms have become more elaborate in recent years. This means that the

time required for the design, debugging and testing of this kind of methods is consider-
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able. Source code re-utilisation emerges as a mean to re-use already coded algorithms

to solve different problems without starting a new development from scratch [68].

A number of frameworks and libraries have been proposed to facilitate the devel-

opment of heuristic algorithms in different programming languages. In particular

for multi-objective optimisation, some feature-rich multi-objective optimisation frame-

works and libraries are discussed in Section 3.2.

In this chapter, we introduce CODEA (COoperative DEcentralised Architecture). This

framework is designed to create flexible groups of agents to tackle multi-objective op-

timisation problems using the paradigm of cooperative problem solving. CODEA con-

sists of a number of classes developed in C++ that accelerate the development of coop-

erative metaheuristics.

The reminder of this chapter is organised as follows. Section 3.2 provides an overview

of existing feature-rich frameworks for multi-objective optimisation. Section 3.3 gives

a detailed description of CODEA and its components. This section also introduces the

lastest two major versions of this framework: CODEA v2 (Section 3.3.1) and CODEA

v3 (Section 3.3.5). Section 3.4 presents four contributions in which CODEA has been

used. Two of these contributions correspond to collaboration with other researchers,

and the other two correspond to minor developments, but still within the scope of this

PhD thesis. Finally, some conclusions and ongoing work are provided in Section 3.5.

3.2 Frameworks for Multi-objective Optimisation

This section provides a concise overview of some of the most relevant multi-objective

optimisation frameworks. This review focuses on mature and feature-rich frameworks.

In [165] a number of Evolutionary Multi-objective Optimisation (EMO) frameworks are

classified according to: type of multi-objective optimisation problems they are able to

tackle (combinatorial and/or continuous), availability of statistical tools (online and/or

offline), availability of hybridisation, availability of parallelisation mechanisms, type

of framework (whitebox or backbox), programming language and license (free or com-

mercial). We modify this classification in order to compare mature and feature-rich
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state-of-the-art multi-objective optimisation frameworks. Since most recent toolboxes

are able to deal with both continuous and combinatorial problems, and most of them

are open source, we do not compare these criteria. Instead, we add the following cri-

teria for the comparison: the starting date of the project, availability of a Graphical User

Interface (GUI), availability of cooperation and license agreement.

This review focuses on multi-objective optimisation frameworks which appear to be

still supported. We do not include frameworks which may be related to our research

but are either unavailable for downloading (e.g. pALS [15]), or no longer supported

(e.g. GAlib [254], Open-BEAGLE [103]). We also exclude toolboxes with limited fea-

tures for multi-objective optimisation such as Shark [141] or Opt4J [172]. For a general

overview of optimisation software class libraries, one can refer to [249].

Table 3.1 summarises the comparison of four optimisation frameworks according to the

following criteria. From left to right, the first column gives the name of the framework.

The second column states the publishing starting date of the project (a good indicator

of the maturity of the framework). The next column states the availability of statis-

tical tools. This criterion can be online (if statistic functions are available to analyse

information throughout the optimisation process), offline (if statistics can be run after

the optimisation process) or none (if no mechanisms are provided for this purpose).

The fourth column states to which extent a GUI is provided. GUIs facilitate the use of

frameworks by all types of users. We distinguish three possible values for this crite-

ria: basic (if a GUI is provided to set parameters and/or to present some basic graphic

information), yes (if the framework comes with a full-featured GUI) and none (if no

GUI is provided). The next column states if the framework supports cooperation. This

criteria can be: explicit (if the framework ships mechanisms to perform cooperation),

implicit (if cooperation can be achieved using non-specialised existing components) or

none (if no explicit or implicit cooperation mechanisms are available). Columns six and

seven state wether or not the framework supports Parallel schemes and their program-

ming language, respectively. Finally, we consider the end user license agreement for

each framework. While license agreements are typically not a concern for scientists,

they might be important from a business strategy point of view. Due to some terms
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in licence agreements, many companies may or may not contemplate the use of these

frameworks. In this review, we find three types of licences. GNU General Public Li-

cense (GPL) [240] is the most widely used free software licence. This licence allows the

free copy, modification and distribution of source code. GPL licence forces the distri-

bution of any derived work under the same license terms. GNU Lesser General Public

License (LGPL) [102] is a less restrictive licence in which only the code that uses LGPL

libraries is forced to be open source. This way, LGPL permits to use the library in pro-

prietary software. Academic Free License (AFL) [190] is similar to GPL, but it requires

the acknowledgement of the use in any derived work in publications.

Table 3.1: Classification of some existing frameworks based on [165].

Framework Started Statistics GUI Cooperation Parallel Language License

jMetal 2006 offline basic none none Java LGPL

HeuristicLab 2002 on/offline yes none yes C# GPL

ECJ 2001 none basic none yes Java AFL

ParadisEO 1999 on/offline none implicit yes C++ GPL

CODEA v3 2007 on/offline none explicit yes C++ GPL

In the following subsections, we provide a high-level overview of the four multi-objective

optimisation frameworks shown in Table 3.1 focusing on the above-mentioned criteria.

3.2.1 JMetal

JMetal [80] (Metaheuristics Algorithms in Java) is a LGPL Java-based framework for

Multi-objective optimisation. JMetal ships the most relevant multi-objective optimisa-

tion algorithms and quality indicators. A large set of statistics are available for offline

analysis, including the automatic generation of LaTeX tables and pair-wise comparison

in Wilcoxon tests. However, there do not seem to be online statistical analysis tools. In

terms of parallelisation, JMetal only supports multi-threading when performing sev-

eral experiments and analysis simultaneously in multi-core CPUs. JMetal comes with

a GUI that enables users to set parameters and perform several statistical operations.

This toolbox has a 70+ pages manual that provides a detailed overview of the most im-
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portant features. Regarding cooperation, JMetal does not provide implicit or explicit

mechanisms to create systems of cooperative agents.

Compared to the other three frameworks under review, JMetal ships the largest number

of multi-objective algorithms and quality indicators. Like ECJ, JMetal provides out-

of-the-box portability across operating systems thanks to its implementation in Java.

However, the use of Java makes both ECJ and JMetal slower than ParadisEO due to

the overhead produced by the Java Virtual Machine (JVM). JMetal is a good option

for those looking for portability, ready to use algorithms and quality indicators, high

quality offline statistical analysis. Another point in its favour is the license agreement.

JMetal’s LGPL is the most appealing licence in this review from a commercial point of

view. JMetal’s major disadvantage is the lack of support for parallelism. Its documen-

tation could be improved with more tutorials.

3.2.2 ECJ

ECJ [82] is an AFL (Academic Free License) Java-based Evolutionary Computation (EC)

research system. This framework is a robust and flexible library for the design of Evo-

lutionary Computation methods. Currently, it implements very few multi-objective

optimisation algorithms, but a number of hooks are provided for supporting the de-

velopment of other multi-objective optimisation methods. ECJ does not come with

pre-implemented statistics, but it also provides hooks for users to implement their

own. The authors indicate that this toolkit is designed for big projects and its learn-

ing curve can be steep [173]. This project was started more than 10 years ago, but it is

still quite active. Users have contributed a number of packages including a test-case

using Graphical Process Units (GPUs) support. ECJ has an exhaustive manual (200+

pages) that covers every supported feature by the system. Unlike JMetal, ECJ sup-

ports multithreaded evaluation and breading. It also supports parallel synchronous

and asynchronous Island Model on a grid of computers. Regarding cooperation, no

mechanisms seem to be available for this purpose. This toolkit comes with a very basic

GUI. This GUI can be used to set parameters, but the authors discourage its use and

recommend to operate with the command line.
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ECJ is a rich featured Java multi-objective framework alternative for the development

of big projects. It is highly flexible and has a large number of features to work with EC

methods. The two main disadvantages of ECJ are low performance and complexity.

Firstly, it suffers from the same problem as JMetal due to its use of the Java Virtual Ma-

chine (JVM). Plus, in ECJ almost all classes and parameters are determined at runtime

which creates an extra overhead. Secondly, in the author’s opinion, it is not easy to get

started with ECJ. More tutorials would be useful. ECJ’s strong points are portability

and community support.

3.2.3 HeuristicLab

HeuristicLab [252, 251] is a GPL C# graphic framework for the design and prototyping

of metaheuristics. HeuristicLab is easy to use and yet extensible thanks to its plug-in

based design. More than a toolkit, HeuristicLab is a software in itself. It comes with

a large number of algorithms and benchmarking problems. Moreover, a very high

featured user interface provides the means to modify pre-implemented problems and

algorithms and create new ones. HeuristicLab ships problems such as Vehicle Routing

Problem, Knapsack and Classification. New algorithms can be created and existing

ones can be extended using the GUI. Functionalities work as plugins: users can add

and modify plugins to get new functionalities. HeuristicLab supports parallelisation

through one of its components called Hive. This component enables the system to

perform experiments in parallel on a computer cluster. This software does not seem to

provide any mechanism to create cooperative systems of agents. The documentation of

this toolbox is not extensive and no instructions are provided on how to create plugins.

However, thanks to its simplicity and intuitive user interface, non-expert users can use

this software.

HeuristicLab is an easy to use environment and, unlike the other optimisation frame-

works in this review, it does not require programming knowledge to be operated. This

software is ideal to teach and prototype optimisation algorithms. HeuristicsLab’s major

flaws are performance, portability and documentation. The use of C# as programming

language is one factor that makes HeuristicLab the slowest optimisation platform in
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this review (for a comparison of performance of programming languages one can refer

to [162]). Besides, HeuristicLab runs only on Microsoft Windows, as C# is fully sup-

ported by this operating system only. Finally, very little documentation is provided.

More effort should be put into explaining how to develop additional plugins.

3.2.4 ParadisEO

ParadisEO [25] is a GPL-compatible C++ object-oriented framework for the design of

flexible optimisation algorithms. ParadisEO’s architecture consists of four intercon-

nected modules: EO, MOEO, MO and PEO (Figure 3.1).

• EO (Evolving Objects) [87, 149] is a C++ LGPL template based evolutionary com-

putation library. EO is a component-based framework that contains a large num-

ber of components such as selection, replacement, stopping criteria or command-

line interface. These mechanisms are designed to work with each other in order

to build up systems to solve problems.

• MO (Metaheuristics Objects) is a module that contains components to implement

single-objective metaheuristics such as Local Search or Tabu Search.

• MOEO (Multi-Objective Evolving Objects) is a component that provides a flexi-

ble platform for the design of Evolutionary Multi-objective Optimisation (EMO)

metaheuristics. The architecture of this module is based on the design of EO.

• PEO (Parallel Evolving Objects) provides a set of classes for the creation of paral-

lel and distributed systems.

ParadisEO is a flexible, fast and robust platform for the development of all types of

metaheuristics to tackle both continuous and combinatorial problems. ParadisEO in-

cludes a number of classes to perform online and offline statistical analysis. Besides

this, users can create new components for statistical analysis and monitors by extend-

ing some classes. ParadisEO-PEO is the component responsible for the parallelisation

of algorithms. It contains classes for the most common parallel and distributed models
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Figure 3.1: ParadisEO’s architecture consists of four interconnected component.

and hybridisation mechanisms such as the cooperative island model. Moreover, the lat-

est version of this optimisation platform (ParadisEO 1.3) provides Graphical Processor

Unit (GPU) acceleration support. In terms of speed, thanks to its C++ template-based

implementation, ParadisEO is the fastest framework in this review. ParadisEO is also

portable on Microsoft Windows, Unix and MacOS. Regarding cooperation, ParadisEO

does not provide explicit mechanisms for this. Instead, the user needs to extend some

base classes in order to provide mechanisms for communication between components.

ParadisEO does not come with any GUI by default. Some attempts have been made to

provide ParadisEO with a basic GUI. An example is GUIMOO [125], a graphic software

for the analysis of results in multi-objective optimisation.

ParadisEO’s project website provides a basic API documentation and a large number

of tutorials. However, the learning curve can be very steep. A fine-grained structure of

components comes at a price of a high level of complexity. The poor API documenta-

tion together with the high level of complexity is the major weakness of this optimisa-

tion framework. The use of ParadisEO is appropriate when looking for the best balance

between flexibility and efficiency.
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3.3 CODEA

The development of CODEA (COperative DEcentralised Architecture) started at the

University of La Laguna (Spain) by the Group of Intelligent Computing (GCI) in 2007.

The core idea of this project was to create a simple, flexible and fast framework to create

groups of cooperating agents for tackling complex optimisation problems. To this aim,

we designed CODEA using a number of modules with abstract functionalities. We put

special emphasis on the design and development of modules for communication tasks,

so that it does not require an in-depth knowledge of how the core of this MOO platform

works. In this sense, CODEA follows a similar approach as the one used in ParadisEO’s

architectures (Section 3.2.4). In the first version of CODEA, we used this framework

to create a number of synchronous agents, each with the same local search. Agents

performed two phases: solving and crossover. In the solving phase, each agent ran a

local search and the new resulting solution was sent to other agents. In the crossover

phase, each agent combined its own solution with the best solution received from the

other agents. This approach was tested using several communication topologies in a

number of Travelling Salesman Problem (TSP) instances and the results were presented

in [30].

The second version of CODEA (CODEA v2) was started at the University of Notting-

ham (UK) in 2008. CODEA was rewritten almost from scratch to support the optimisa-

tion of multiple objectives, but many structural components were kept. This new ver-

sion of CODEA included new features like the support for multi-objective optimisation

problems, various ranking schemes to discriminate solutions in multi-objective opti-

misation (aggregation approach, lexicographic ordering and Pareto dominance), paral-

lelisation supported by OpenMP (Open Multi-Processing), etc. CODEA v2 was used to

implement a Multi-Objective Discrete Particle Swarm Optimisation (MODPSO) algo-

rithm to tackle the Vehicle Routing Problem with Time Windows (VRPTW). In this im-

plementation, agents had to deal with eight minimisation objectives, from which four

were soft constraints. The aim of this research was to investigate whether the imple-

mented MODPSO was capable of evolving swarms from infeasible to feasible regions.

The results of this research were presented in [31]. A second investigation involved the
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creation of a new ranking scheme called the Dynamic Lexicographic Approach (DLA).

This ranking approach consists of comparing solutions according to random lexico-

graphic orderings generated with a certain probability distribution. The performance

of the DLA was compared to the common Lexicographic approach and Pareto Domi-

nance and the results were published in [32] and [37]. The next chapter discusses this

investigation in depth. Finally, we illustrated the use of CODEA v2 in [33] by apply-

ing the above-mentioned MODPSO algorithm to TSP instances with two objectives. In

this work, a number of experiments were conducted to test different communication

topologies.

In order to pursue our research in multi-objective optimisation, we had to implement

a number of new features in CODEA, such as MOO algorithms, archives and quality

indicators. However, most of these features have already been implemented in many

other MOO frameworks such as those discussed in Section 3.2. Instead of develop-

ing all these new features in CODEA v2, we decided to implement our framework

as an extension of ParadisEO (Section 3.2.4). ParadisEO was the best alternative as it

provides the best balance between flexibility and efficiency. In 2011, CODEA v3 was

released as the result of the hybridisation between CODEA v2 and ParadisEO-MOEO,

the component to deal with multi-objective problems (Figure 3.1).

Since the contribution of this PhD thesis covers CODEA v2 and v3, the next two subsec-

tions will explain the characteristics of both in detail. In order to keep this explanation

as simple as possible, these characteristics are explained at a high level. For more tech-

nical documentation of the API with UML diagrams, please refer to [35].

3.3.1 CODEA v2

Figure 3.2 shows the basic scheme of CODEA v2. We note the element system at the

top of the structure, which contains a number of agents and some properties. This

class stores the data structure that hosts the agents and orchestrates their operations.

It is worth noting that even if system holds the group of agents, it does not know the

operations that agents perform (phases), nor their relationships (neighbourhood). The

element system is merely intended to store general properties like elapsed time or up-
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time, the number of the current iteration, the best solution found by the agents, and the

stop criterion used to stop the agents.

The next element in the figure represents the agent as an individual who is able to com-

municate with other agents and operate on its own. This cell shows the sub-elements:

neighbourhood, core and phases. These components give agents special abilities to share

information (neighbourhood), to hold the information needed to solve problems (core),

and to carry out their operations (phase). An agent also has a number of parameters to

control its state such as isActive or id.

3.3.2 Neighbourhood

The neighbourhood component manages the list of population members with whom

agents communicate. The component neighbourhood is implemented as an interface

so users can develop their own rules to establish new neighbourhoods. By default,

CODEA v2 allows the use of three types of neighbourhoods: star topology (all to all

communication), ring topology (each individual receives and sends from/to two other

individuals) and k-random topology (each individual shares its information with k ran-

dom individuals). Although these topologies are static, CODEA v2 does not limit the

creation of dynamic systems of cooperation. It is fairly easy to implement dynamic co-

operation schemes based on scores or rules. In CODEA v2, the cooperation is based on

the interchange of messages. For this purpose, this framework uses special containers

which can store not only solutions, but any type of information. A message consists of

a number of adjacent cells. Each cell has two compartments: an id describing the type

of information and the actual information. This mechanism is so flexible that agents

could even send themselves within a message. Each agent has a container to store

messages called mailbox.

3.3.3 Core

The core element is responsible for manipulating the information of the problem, its

solution and the solution process. In order to re-utilise code as much as possible, the
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Figure 3.2: CODEA v2 - Diagram of the architecture implementing a Multi-objective
Discrete Particle Swarm Optimisation (MODPSO) (see Chapter 8) applied
to the VRPTW with three objectives: number of vehicles, travel distance and
travel time.
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core has three main components: multiobjective problem, multiobjective solution and solver

(which in Figure 3.2 is represented by PSOAgent). By using this methodology, changing

the solution or the problem does not affect the rest of the structure. For example, we

might want to change the manner we evaluate solutions, but without modifying the

solutions themselves. Or just the opposite, keep the evaluators unchanged, while the

solutions have a different encoding. The same is designed to happen with the solver.

The way the solver is implemented should not depend on the solution encoding nor

on the data structure of the problem. For this purpose, both Multiobjective problem and

Multiobjective solution have an independent design.

Multiobjective problem

The Multiobjective problem component has two parts: score criterion and problems (func-

tion evaluators). These function evaluators are related to the problem. In Figure 3.2

there are three evaluators: number of vehicles, travel distance and travel time. The score

criterion is another interface that enables the user to create criteria to rank solutions

in multi-objective scenarios. Some ranking criteria implemented include Pareto dom-

inance, aggregation and lexicographic ordering. The Multiobjective problem also holds

the data of the problem and the set of evaluation functions.

For each objective that the agents are optimising, there is an associated function to cal-

culate its value. This function is represented in the structure as a simple file that speci-

fies how to assess a certain objective. In the example shown in Figure 3.2, there are three

objectives: number of vehicles, travel distance and travel time. Each objective is coded in a

different file, so that adding a new objective is as easy as creating a new file describing

how to compute that objective. Moreover, this provides the means for enabling and

disabling objectives on line. Regarding the score criterion, one may consider that, since

the system compares two solutions, this sub-component should be contained within

Multiobjective solution rather than within Multiobjective problem. However, it must be

noted that many ranking schemes require to know whether we are maximising or min-

imising objectives. This characteristic is inherent to the evaluation of objective function

and therefore, must be placed within Multiobjective problem.
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Multiobjective solution

The Multiobjective solution component has two basic units: a vector of objective values

and the subjacent solution. The latter unit simply stores the solution using the encoding

provided for the problem and the user preference. The evaluation of this solution in

the set of objectives described in Multiobjective problem is always saved to the vector

of objectives. Thus, the system avoids the re-evaluation of all the objective functions

every time we want to compare two solutions.

Solver

The solver component handles both Multiobjective solution and Multiobjective problem.

This part of the core contains atomic operations creating an abstraction of the behaviour

of the agent. For example, in order to develop the Multi-objective Discrete Particle

Swarm Optimisation (MODPSO), we designed a class that coordinates the operations

without direct relation to the problem or the solution being used. Beneath in the struc-

ture, it is where we make the connection to our problem and solution design. Therefore,

the core of the solver does not depend on the problem tackled by the system.

3.3.4 Phases

The atomic operations contained in the core are orchestrated by the Resolutory phase

component within the phases class in agent. This part of the agent acts as an interface for

users to provide a standard to implement their own phases. The flow of CODEA starts

with the system invoking the agent’s phases. The agents then take the control coordi-

nating their operations using the phases. There is not a limited number of phases and

they do not have to be synchronous (all agents doing the same task simultaneously).

In addition, agents are able to delete, add or modify phases in real time. The use of

this feature allows the creation of complex and very dynamic systems. For example,

we can create systems of evolving agents who change their phases in real-time.
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3.3.5 CODEA v3

CODEA v3 is the framework resulting from the implementation of CODEA v2 as an

extension of ParadisEO-MOEO. Thanks to this hybridisation, systems of agents within

CODEA have access to all features available in ParadisEO at all levels. This way,

CODEA v3 inherits all features of ParadisEO, plus explicit mechanisms inherited from

CODEA v2 to work with cooperative schemes as stated in Table 3.1.

Figure 3.3 depicts the architecture of CODEA v3. At the highest level, CODEA pre-

serves its structure so that the system remains unchanged with respect to the previous

version. The structure of the element agent is almost the same. The element core is no

longer needed as this new version of CODEA uses specialised objects inherited from

ParadisEO-MOEO. Components neighbourhood and phases keep the same structure and

behaviour as before. CODEA v3 adds a new layer of abstraction in the element phases.

This abstraction allows an agent to be both one of the ParadisEO’s pre-implemented

algorithms and a single individual of a system of agents. In practice, this new feature

enables CODEA v3 to work with groups of cooperating heterogeneous multi-objective

algorithms with just a few lines of code.

In order to illustrate how this new version of CODEA works, Figure 3.3 shows the

implementation of a Multi-objective Discrete Particle Swarm Optimisation (MODPSO)

applied to the Vehicle Routing Problem with Time Windows (VRPTW) with five objec-

tives (see Chapter 8).

The MOPDSO depicted in Figure 3.3 contains two phases:

1. The defaultCommunicationPhase is responsible for sending the particle’s position

to all the other particles within the swarm.

2. The moeoJFOPhaseAlgorithm holds specific data and operations related to this MODPSO

for each particle.

In bold letters we note the components inherited from ParadisEO such as fitnessAssig-

ment, diversityAssigment and archive. The component that stores the actual solution of

the VRPTW is moeoVRP. This is a problem-dependent object that holds the routePlan as
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Figure 3.3: CODEA v3 - Diagram of the architecture implementing a MODPSO ap-
plied to the VRPTW with five objectives: number of vehicles, travel distance,
makespan (or travel time of the longest route), waiting time and delay time.
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the abstraction of the position of a particle. The element moeoVRP inherits properties

from objects in ParadisEO (objective vector and internal representation) and from the

component agent (ability to cooperate and perform phases). Using this fine-grained

approach, it is fairly easy to add and modify components to extend the system. In

order to have access to an abstraction of the operators at the phases level, we had to

create the interfaces eoMonSingleGenOp and eoQuadSingleGenOp. Both interfaces act as

containers inherited from ParadisEO’s eoGenOp. The interfaces eoMonSingleGenOp and

eoQuadSingleGenOp hold the mutation and crossover operators, respectively. In this

example, there are four mutation operators: swapMutation, insertionOperator, inversion-

Mutation and displacementMutation, and three crossover operators: onePointCrossover,

edgeCrossover and genericCrossover. Finally, the element eoEvalFunc in moeoJFOPhaseAl-

gorithm contains the interface for the evaluation functions. In the above-mentioned

figure there are five evaluators: numberOfVehicles, travelDistance, makespan, waitingTime

and delayTime.

As a result of the hybridisation of CODEA v2 and ParadisEO, CODEA v3 combines a

number of new features. In this way, ParadisEO-MOEO has contributed to CODEA

with several sets of new components:

• Solution representations and operators. Multi-objective Optimisation Problems (MOP)

require a solution representation in the decision space and in the objective space.

The solution representation in the objective space is problem-independent. How-

ever, the representation in the decision space is related to the tackled problem.

ParadisEO provides a number of standard vector-based solution representations,

including those composed of bits, of integers and of real-coded values. Further-

more, ParadisEO provides the most common variation operators for these repre-

sentations.

• Ready-to-use metaheuristics. ParadisEO comes with a number of ready-to-use solv-

ing methods, such as Tabu Search [114], Simulated Annealing [228], Particle Swarm

Optimisation [81] and NSGA-II [64].

• Fitness Assignment methods guide the search in multi-objective optimisation prob-
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lems towards Pareto optimal solutions. ParadisEO provides a number of fit-

ness assignment schemes, such as achievement scalarising functions, dominance

count [272] and dominance depth [116].

• Diversity Assignment aims at providing well spread non-dominated solutions over

the objective space. ParadisEO provides a number of standard diversity assign-

ment schemes including sharing [117], crowding [64] and a nearest neighbour

scheme [274].

• Statistics. ParadisEO provides a number of tools to run statistics as the search

progresses. It also allows the generation of plots of variables, statistics and/or

results in real-time.

• Parallelisation mechanisms can speed up the search process significantly. ParadisEO

provides a layer of abstraction to use MPI (Message Passing Interface) and OpenMP

(Open Multi-Processing). This layer of abstraction eases the process of paralleli-

sation of components within any solving algorithm.

CODEA has also contributed to ParadisEO in a number of ways:

• Cooperation. CODEA provides several mechanisms to create groups of coopera-

tive agents. Two essential mechanisms are: messages and topologies. Agents share

information by using messages. Messages are containers of virtually any type of

information. Thus, agents can share not only their current solution, but also vari-

ables, structures and even themselves (an agent can also be sent within a mes-

sage). Agents exchange messages according to a certain communication topol-

ogy. CODEA provides a number of static communication topologies which can

be assigned to any agent. Agents do not need to have the same topology, and this

topology can be dynamic.

• Autonomous agents. In CODEA, agents are autonomous and can operate asyn-

chronously. No entity controls the way agents work. In addition, thanks to the

use of the component mailbox (See Figure 3.3), agents do not have to process mes-

sages as they receive them.
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• Organic groups. Agents within CODEA can also perform three special actions

in real time: 1) clonation which allows agents to duplicate themselves, 2) self-

deletation which allows agents to remove themselves from the system, and 3) mu-

tation which allows agents to change their behaviour (subjacent algorithm).

CODEA v3 combines all the features provided by ParadisEO and CODEA v2. In fact,

CODEA v3 takes a step ahead providing mechanisms to create special types of agents.

In CODEA v3, agents can be ParadisEO algorithms, sub-components of ParadisEO al-

gorithms or both at the same time. For example, we can create a group of agents in

which each agent is a particle, each agent is a swarm, or the group is a combination

of both. We can also create groups of hybrid agents with other solving methods such

as Variable Neighbourhood Search (VNS), all running at the same time. CODEA v3

also allows to embed ParadisEO statistical tools in some agents to control diversity of

convergence among the whole group.

CODEA v2 and v3 are free GPL-licensed software and are available in [35].

3.4 Other uses of CODEA

This section presents four contributions which have directly or indirectly benefited

from CODEA. These contributions are presented in chronological order. For each, we

provide a short introduction about the work and results results. We then provide more

details about the methodology and the way CODEA contributed to the research. Fi-

nally, some important findings of each work are briefly discussed. In the reminder of

this chapter we explain each contribution in a subsection as follows:

• Subsection 3.4.1 presents the first work implemented in CODEA, a Multi-Objective

Discrete Particle Swarm Optimisation (MODPSO) for the Vehicle Routing Prob-

lem with Time Windows (VRPTW).

• Subsection 3.4.2 presents an adaptation of the algorithm in Section 3.4.1 to the

Steiner Tree in Graph and Delay Constrained Multicast Routing Problem.
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• Section 3.4.3 presents CODEA v2, and introduces it as a framework to create

groups of cooperative agents to solve multi-objective optimisation (MOO) prob-

lems.

• Subsection 3.4.4 presents an adaptation of the algorithm in Section 3.4.1 to the

University Course Timetabling Problem (UCTTP).

• Subsection 3.5 draws some conclusions and raises a series of key considerations

for other uses of CODEA.

3.4.1 Exploring feasible and infeasible regions in the Vehicle Routing Prob-

lem with Time Windows using a Multi-Objective Particle Swarm Op-

timisation Approach

This project presents an approach to the Multi-Objective Discrete Particle Swarm Op-

timisation (MODPSO) applied to the Vehicle Routing Problem with Time Windows

(VRPTW). The purpose of this investigation was to determine the ability of the pro-

posed MODPSO to evolve very infeasible solutions (large number of constraints vio-

lated) to feasible regions. The results of this work were presented in the 2008 Workshop

on Nature Inspired Cooperative Strategies for Optimisation (NICSO 2008) [31].

Our MODPSO was based on a single-objective DPSO applied to the Minimum La-

belling Steiner Tree Problem [54]. This DPSO algorithm is explained in Chapter 8 -

Section 8.2. This algorithm was intentionally simple. All particles within the swarm

were initialised with random solutions (route-plans). Besides, only two operators were

implemented: 1) an inter-route operator that exchanges pairs of customers within a

route-plan (for inertial moves) and 2) an operator that copies an entire sub-route from

one to another route-plan and then removes duplicates (for all other moves). Besides,

our algorithm performed a simple local search after each move to encourage local ex-

ploration. In order to promote the move of the swarm towards feasible areas, we forced

the minimisation of hard constraint violations in the objective function. In total, the al-

gorithm dealt with the minimisation of 8 objectives (4 of which were hard constraints

turned into soft constraints). These minimisation objectives were: 1) number of vehi-
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cles, 2) travel distance, 3) travel time, 4) waiting time, and the soft constraints: 1) time

window violation, 2) number of time window violations, 3) capacity violation and 4)

number of capacity violations. Pareto dominance was used in order to select the leader

of the swarm: local-best (lbest) and global-best (gbest).

The proposed MODPSO was tested on 6 instance from the Solomon’s dataset. This

dataset is explained in-depth in Chapter 5. Results showed that this basic MOPSO was

able to evolve very poor quality infeasible solutions (randomly initialised) to feasible

ones which are also reasonably close to the known optima.

3.4.2 Particle Swarm Optimisation for the Steiner Tree in Graph and Delay

Constrained Multicast Routing Problems

In this work, we collaborated in the implementation of the first MODPSO proposed

to tackle both the Steiner Tree in Graph and the Delay Constrained Multicast Routing

Problems. CODEA was not used for this implementation. Instead, we developed a

DPSO (called JPSOMR) with all the features that worked for VRPTW (Section 3.4.1)

in a simulator to test these problems. This work has been accepted in the Journal of

Heuristics, and to appear in 2012.

Given an undirected graph G = (V, E), where V is a set of nodes and E is a set of

links which interconnects the nodes in V. Each link eij ∈ E has a weight associated

that represents the cost to go from node i to node j. The Steiner Tree Problem (STP)

consists of finding the least-cost tree T ∈ G, T ⊆ E to go from a source node s ∈ V to

a number of destination nodes R, such that V = R
⋃
{s} and s /∈ R. Multicast Routing

Problems concerns the search of optimal routing trees to go from the source node s to

the destination nodes in R while meeting all QoS (Quality of Service) requirements.

The two most common QoS requirements are: delay and cost. The delay is denoted by

the sum of total delays from the source node s to all destination nodes in R. The cost is

calculated as the sum of the weights associated to all links to go from the source node

s to all destination nodes in R.

JPSOMR initialises the swarm with randomly generated trees. A path replacement op-
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erator was implemented to recombine particles which move towards one another. This

operator consists of the replacement of a path in the follower according to the cheap-

est path found in the attractor. Another operator was introduced to promote the local

exploration of each particle. This operator randomly removes a superpath in the cur-

rent solution structure and reconnects the resulting two sub-trees by using a random

link. A local search was also implemented in order to improve the solutions found by

the swarm in each generation. This local search was powered by a simple operator

that removes a non-destination node and creates a new spanning tree using the Prim’s

spanning tree algorithm. The local search used two criteria to accept solutions: first im-

provement (the first solution that improves the current solution is accepted) and best

improvement or greedy (the best neighbouring solution is accepted).

A number of experiments were carried out to find the optimal size for the popula-

tion, as well as the best strategy to accept new solutions (first improvement / best

improvement). Using this configuration, our JPSOMR was compared to an extensive

number of algorithms using four different sets of instances. In the first set, we com-

pared the performance of JPSOMR to the one of a GRASP algorithm tailored for STP

(GRASP-CST). The tests were carried out on small instances and showed that JPSOMR

got better results minimising the tree cost. However, our algorithm seemed to be worse

than GRASP-ST in terms of speed. For this reason, the second set of experiments was

executed on the same instances, but limiting the execution time to 60 seconds. With

this configuration, GRASP-CST got slightly better results. JPSOMR was also compared

to another DPSO (DPSO-ST) tailored for STP. In this third set of experiments, with

larger and harder instances, we compared the performance of JPSOMR, GRASP-CST

and DPSO-ST. According to the results, DPSO-ST is the best performing algorithm,

followed by JPSOMR and GRASP-CST. In the last set of experiments, a number of

algorithms were compared to JPSOMR in random networks. This set of algorithms

included Heuristics, GA-based and TS-based algorithms, Path Relinking, VNS and

GRASP-CST. In these tests, JPSOMR produced the best average tree cost.
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3.4.3 CODEA - An Agent Based Multi-Objective Optimisation Framework

This paper introduces CODEA as a framework to create flexible groups of agents to

tackle multi-objective optimisation problems using the paradigm of cooperation. This

work provides an overview of how the core components in CODEA v2 work. Fur-

thermore, we explain how to implement the MODPSO presented in Section 3.4.1 and

the Travelling Salesman Problem (TSP) with two objectives. In order to demonstrate

the communication capabilities of CODEA, we test our MODPSO applied to TSP with

three communication topologies: 1) start topology (all agents send and receive infor-

mation (solutions) of all other agents), 2) ring topology (each agent sends information

to two neighbouring agents), and 3) k-random topology (each agent sends information

to k random number of agents). This work was presented at the 2010 Spanish Congress

on Metaheuristics, Evolutionary and Bio-inspired Algorithms (MAEB 2010) [33].

Given a graph G = (V, E), where V is a set of nodes and E is a set of links which in-

terconnects the nodes in V. Each link eij ∈ E has a weight associated that represents

the cost (travel distance) to go from node i to node j, denoted as d[vi, vj]. The Travel-

ling Salesman Problem (TSP) consists of finding the permutation (travel-plan) P = [v0,

v1,. . .,vN−1], v ∈ V, such that, Length[P] = d[vN−1, v0] + ∑
N
i=1 d[vi−1, vi] is minimum.

This paper goes through the key steps to implement our MODPSO and TSP with two

objectives in CODEA. The implementation process is split in two sections, one for the

problem (TSP) and another for the solving method (MODPSO). The problem section

consists of four classes: TSPDataProblem (container of data for the TSP instance), TSP-

Operator Lib (contains a mutation operator, a crossover operator and a local search),

TSPSolution (contains the data structure of the travel-plan) and matrixSumObjective

(generic evaluator for TSP objective functions). Regarding the TSPOperator class, we

implemented: 1) a mutation operator which swaps pairs of randomly selected cus-

tomers square root times the size of the travel-plan, 2) a crossover operator which cre-

ates an offspring (travel-plan) out of the interchange of a random section of the parents,

and 3) a local search which explores the neighbourhood of each travel-plan by swap-

ping pairs of customers iteratively. The solving method section consists of two classes:

DPSOResolutorPhase (models the behaviour of the DPSO agent) and DPSOAgent (in-
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terfaces DPSOResolutorPhase and TSPOperator).

In order to test this implementation, we evaluate the performance of the three above-

mentioned communication topologies. These tests are carried out on 20 bi-objective

TSP instances, half of them with 50 customers, and the other half with 100. We use

the S-metric [275] for the assessment of the results. This quality metric computes the

hyper-volume covered by the approximation set of non-dominated solutions obtained

by using each topology and a reference point. According to this metric, the k random

topology is the best strategy to communicate information. However, the ring topology

offered the best compromise between speed and performance.

3.4.4 Developing Asynchronous Cooperative Multi-agent Search

This research is another collaborative work. In this case CODEA was applied to the

University Course Timetabling Problem (UCTTP) [214]. Two novel asynchronous co-

operative search approaches were developed in CODEA. These two approaches were

based on the DPSO presented in Section 3.4.1. The first approach is an Asynchronous

Cooperative Multi-heuristic (ACMH), and the second is an Asynchronous Cooperative

Multi-hyper-heuristic (ACMHH). Both approaches were fairly similar, the only differ-

ence being that agents in ACMHH could choose from three low-level heuristics. This

work is discussed in the PhD thesis by Joe Obit [187].

The UCTTP consists of assigning a number of events E = {e1, e2, . . . , en} to be sched-

uled in a set of 45 time-slots T = {t1, t2, . . . , t45} (9 time-slots a day, 5 days a week).

There is a set of m available rooms R = {r1, r2, . . . , rm} in which the events take place,

a set of k students S = {s1, s2, . . . , sk} who attend the events, and a set of l features

F = { f1, f2, . . . , fl} which are provided by rooms and required by events. Besides,

there are number of hard constraints and soft constraints. A solution is considered fea-

sible if it does not violate any hard constraint. The goal of this problem is to find the

feasible solution with the least number of soft constraint violations.

ACMH and ACMHH algorithms used an initialisation heuristic to create a feasible

solution. Three low-level heuristics were introduced to improve the quality of agents
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positions: 1) a heuristic that selects one event randomly and assigns it to a randomly se-

lected feasible pair time-slot/room, 2) a heuristic that selects two events randomly and

swaps their time-slots and room forcing feasibility, and 3) a heuristic that selects three

events randomly and exchanges their time-slots and room randomly forcing feasibility.

Furthermore, two acceptance criteria were implemented to enable agents to accept new

candidate solutions: 1) a non-linear great deluge, and 2) a simulated annealing.

A number of simulations were carried out on a standard UCTTP dataset. Accord-

ing to the results, the two algorithms proposed found better results outperforming all

other existing approaches, both in the literature and previously discussed by Obit [187].

For small instances and in all runs, both algorithms found the optimal solutions. For

medium instances and in comparison to other algorithm in the literature discussed by

the author, ACMH and ACMHH algorithms produced better results in four instances

which reached reduction of penalties up to 70%. In large instances there was also a

reduction of penalties by 6%. Summarising, ACMH and ACMHH algorithms found

new best solutions for 6 out of the 11 problem instances in the chosen dataset.

3.5 Conclusions

In this chapter we introduce CODEA, a COoperative DEcentralised Architecture for

the development of cooperative agent systems. We also discuss four other feature-rich

frameworks for multi-objective optimisation: JMetal, ECJ, HeuristicLab and ParadisEO.

None of these frameworks seem to provide explicit mechanisms to create cooperative

systems of agents to tackle multi-objective optimisation problems. We present CODEA

as a multi-objective optimisation framework to fill this gap. We provide a high-level

overview of the main features of the last two versions of CODEA: CODEA v2 and

CODEA v3. CODEA v2 is an evolution of the first version that provides a number of

features to deal with multi-objective optimisation problems. CODEA v3 is the result of

the hybridisation of CODEA v2 and ParadisEO-MOEO. Instead of implementing more

multi-objective algorithms on CODEA, we built CODEA v2 on ParadisEO. This exten-

sion enables ParadisEO to work with cooperative agent systems, and allows CODEA
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v3 to use ParadisEO’s objects at all levels. The product of this hybridisation brings up

a number of new ready-to-use features which are not present in state-of-the-art multi-

objective optimisation frameworks, such as cooperation and organic groups.

This chapter also presents four research works related to CODEA v2. These works con-

cern four different combinatorial optimisation problems: 1) Vehicle Routing Problem

with Time Windows (VRPTW), 2) Travelling Salesman Problem (TSP), 3) Steiner Tree

Problem (STP) and Multicast Routing Problem, and 4) University Course Time Tabling

Problem (UCTTP). These problems have been tackled with a MODPSO-based algo-

rithm. Our MODSPO has been adapted to each problem domain by specifying three

problem-dependent components: 1) a set of operators, 2) evaluation function(s) and 3)

a solution data structure. The only work that has not been implemented in CODEA is

the one concerning the Steiner Tree Problem and Multicast Routing Problem (Section

3.4.2). The other three research projects have been directly benefited from CODEA. This

has shown the potential of CODEA for applying agent-based solving methodologies to

other problem domains.

The following chapters discuss a number of studies in which CODEA has been in-

volved. The next chapter presents the Dynamic Lexicographic Approach (DLA). DLA

is a multi-objective ranking approach to discriminate solutions using random lexico-

graphic orderings based on certain probability distributions.

Currently, we are focusing our efforts on the development of new algorithms and the

generation of documentation of the API. Further work should include the incorpora-

tion a number of tutorials explaining basic uses of CODEA. Once the documentation is

ready, we plan to submit CODEA to ParadisEO’s project webpage.
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Dynamic Lexicographic Approach

for Multi-objective Optimisation

Summary

There is a variety of methods for ranking objectives in multi-objective optimisation

and some are difficult to define because they require information a priori (e.g. es-

tablishing weights in a weighted approach or setting the ordering in a lexicographic

approach) [52]. In many-objective optimisation problems, those methods may exhibit

poor diversification and intensification performance. We propose the Dynamic Lex-

icographic Approach (DLA). In this ranking method, the priorities are not fixed, but

they change throughout the search process. As a result, the search process is less liable

to get stuck in local optima and therefore, DLA offers wider exploration ability in the

objective space.

DLA is one of the novel features introduced in CODEA v2. This ranking scheme was

implemented in order to study alternative ranking methods in multi-objective optimi-

sation. This chapter compares the performance of DLA to that of Pareto dominance and

lexicographic ordering according to the hypervolume [271]. These methods are tested

on a Multi-Objective Discrete Particle Swarm Optimisation (MODPSO) algorithm tack-

ling the Vehicle Routing Problem with Time Windows.
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4.1 Introduction and motivation

Multi-objective Optimisation Problems (MOPs) have a number of objectives that are

usually in conflict, so improving one objective leads to worsen another. In particular,

many-objective optimisation problems involve the optimisation of four or more objectives,

presenting a considerable challenge for some solution methods. Most research in this

area has focused on the study of MOPs with two or three objectives. This is due to the

assumption that the scalability of multi-objective methods to many objectives would

be straightforward. Recently, several papers have investigated this issue. Khare et

al. [152] investigated the scalability of a number of Multi-Objective Evolutionary Algo-

rithms (MOEA) with respect to 2 to 8 objectives. Results were assessed according to

three criteria: 1) ability to converge to Pareto front, 2) diversity in the obtained non-

dominated solution set, and 3) running time. The authors concluded that the results

obtained with 2 or 3 objectives cannot be generalised to a larger number of objectives.

Hughes [138] compared the performance of NSGA-II [65] to that of multiple single ob-

jective optimisers in both MOPs and many objectives optimisation problems. Results

indicated that NSGA-II looses efficiency as the number of objectives increases. Similar

results were found by Wagner et al. [253]. That study concluded that a Pareto-based

approach cannot succeed in dealing with many-objective problem instances.

Pareto dominance (Section 2.3.1) uses a strict ranking scheme that sometimes fails to

discriminate between solutions, as it only accepts improvements in all objectives at the

same time. Other methods like the lexicographic approach (Section 2.3.3) impose a

static behaviour, as objectives are ranked according to a fixed relative importance.

Two main alternatives have been proposed to deal with the scalability problem in many

objectives optimisation problems [48]. One is the relaxation of the form of Pareto opti-

mality, so that it is possible to accept solutions which worsen some objectives in certain

quantity, if others witness an improvement [224]. Another one considers the reduc-

tion of objectives of the original MOP [23]. However, due to the difficulty involved

in reducing the dimensionality of the MOP, the first alternative is more popular in the

literature [171].
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Dynamic Lexicographic Approach (DLA) is an alternative ranking approach for many-

objective optimisation. DLA presents a relaxation, not of the form of Pareto dominance,

but of the form of the lexicographic approach. DLA offers an intuitive approach to

establish a dynamic ranking among objectives. Rather than establishing a fixed priority

among the objectives, the decision maker establishes a preference. This preference is

then used with a probability mass function (pmf ) to generate a vector of priorities that

changes dynamically throughout the search process.

This chapter is organised as follows. The algorithm for the Dynamic Lexicographic

Approach is detailed and exemplified in Section 4.2. We describe our experiments in

Section 4.3 and discuss results in Section 4.4. Finally, our contribution and proposed

further research are summarised in Section 6.9.

4.2 Dynamic Lexicographic Approach

The Dynamic Lexicographic Approach (DLA) offers an intuitive mechanism to estab-

lish a dynamic ranking among objectives. DLA allows decision makers to establish

preferences among objectives rather than fixed priorities as in the lexicographic ap-

proach. Decision makers also define a probability mass function (pmf ) which associates

a probability to each preference. These probabilities are used to create different prior-

ity vectors which are later used by a standard lexicographic ranking technique. DLA

does not rule out any preference. Thus preferences with a low probability still have a

chance to appear in the first position of the vector of priorities. Additionally, the con-

tinuous change of priorities makes it possible to avoid premature convergence as the

exploration is broader.

Figure 4.1 shows the pseudo-code of the algorithm that generates the vector of pri-

orities. First, this algorithm initialises the vector of priorities v with an empty vector

(Figure 4.1 - line 1). This vector will hold the final ordering that will be used by the lex-

icographic ranking approach. A temporary vector P is then assigned with the output

of the procedure generateProbVector(pmf, N), where pm f is the probability mass function

and N the number of objectives to operate (Figure 4.1 - line 2). The actual generation
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of the final vector of priorities v is carried out using roulette-wheel selection on the

vector P. The roulette-wheel selection procedure interprets the probability vector P as

a segment spanned in [0, 1]. This segment has N sub-segments, so that the size of each

sub-segment corresponds to each probability value in P. The roulette-wheel selection

mechanism is performed in four steps which are repeated N times (Figure 4.1 - line 3).

The first step is to generate a random number r with uniform distribution in [0, 1] (Fig-

ure 4.1 - line 5). This random number is then passed to the procedure selectPriority(r,

P) (Figure 4.1 - line 6), which selects the preference p associated to the sub-segment in

which the random number r falls. In the third step, p is pushed back in the vector of

priorities v (Figure 4.1 - line 7). The fourth step is to re-scale P (Figure 4.1 - line 8). The

re-scaling procedure removes p from P and re-normalise P by dividing the remaining

probability values by their sum.

The procedure generateProbVector(pmf, N) takes two steps: 1) it calculates the probabil-

ity values evaluating pm f for all preferences in {1, ..., N} , and 2) it normalises these

probabilities before returning the resulting vector. The normalisation process consists

of dividing each probability value by the sum of all probabilities. Thus, the sum of

probability values in P equals 1.

1 v = [ ]

2 P = generateProbVector(pmf, N)

3 for x = 1 to N

4 {

5 r = rand() // "r" is a random number in U[0,1]

6 p = selectPriority(r, P)

7 v.pushBack(p)

8 re-scale(P, p)

9 }

Figure 4.1: Pseudo-code of the algorithm that generates the lexicographic sequence

To clarify how DLA works, we provide an example for N = 4 objectives. Let us assume

that objective i is assigned preference i, that is, pre f (oi) = i for i = 1, . . . , N, where N

is the number of objectives. Suppose the decision maker provides the function p(i) =

0.8exp(−0.4 ∗ (i − 1)). Firstly, we evaluate this function for i = 1, . . . , N. Since N =

4, we calculate the probabilities as p(1) = 0.8, p(2) = 0.54, p(3) = 0.36 and p(4) =
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Figure 4.2: Distribution of probabilities according to three probability mass functions
for N = 4 objectives. The resulting distribution of a linear function is
depicted on the left - p(i) = −3(i − 1) + 10, a quadratic function in the
middle - p(i) = −(i − 1)2 + 10, and an exponential function on the right -
p(i) = e−1.7(i−1), for i = 1, . . . , N

0.24. Secondly, these probabilities are normalised as p′(i) = p(i)/ ∑
N
k=1 p(k), obtaining

the values 0.41, 0.28, 0.19, 0.12. In a third step, we split the segment [0, 1] into sub-

segments, such that the length of each sub-segment is equal to each of the the above-

mentioned probability values. Therefore, we obtain P = [0, 0.41, 0.69, 0.88, 1] (Figure

4.1 - line 2), in which each preference has a sub-interval assigned. The first preference

has interval [0, 0.41), the second [0.41, 0.69), the third [0.69, 0.88) and the fourth [0.88, 1].

The algorithm goes through the above steps only once. Regarding the generation of

priority vectors, roulette-wheel selection is applied N = 4 times using this segment

(Figure 4.1 - line 3). First, a random number r is generated with uniform distribution

in [0, 1] (Figure 4.1 - line 5). Lets suppose that r = 0.70. As r falls in the sub-interval

[0.69, 0.88), the third objective (p = 3) will be selected (Figure 4.1 - line 6) and pushed

back in the vector of priority v = [3] (Figure 4.1 - line 7). After this operation, we

remove the selected sub-interval and the segment is re-scaled (Figure 4.1 - line 8), so

we obtain P = [0, 0.51, 0.85, 1]. The loop then starts over and a new random number is

generated. When this loop is over, v contains the priority vector that can be used in a

lexicographic approach to discriminate solutions.

The probability mass function (pmf ) plays a fundamental role in the performance of the

DLA. Depending on the shape of this function, different probability values are assigned

to each objective producing different lexicographic orderings (Figure 4.2). Therefore,

assuming that the decision maker establishes decreasing preferences (as in the exam-

ple above), there are three main types of functions: linear, quadratic and exponen-
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tial. Linear functions assign probabilities with a constant step among them. Quadratic

functions assign a similar probability to those objectives with the highest preferences

and zero or close to zero to those with the lowest. Finally, an exponential function as-

signs high and distinct probabilities to objectives with high preference and assigns low

but non-zero probability to those with low preference. Furthermore, decision makers

can fine tune the shape of pmfs by setting coefficients. Figure 4.2 presents the distri-

bution of probabilities according to three pmfs for N = 4 objectives. The linear pmf

p(i) = −3(i − 1) + 10, (i = 1, . . . , N) uses: 1) −3 as slope, and 2) 10 as the y-intercept

of the line. Similarly, the quadratic pmf p(i) = −(i − 1)2 + 10, (i = 1, . . . , N) uses: 1)

−1 to set the direction of the curve, and 2) 10 as the y-intercept of the curve. Finally, the

exponential pmf p(i) = e−1.7(i−1), (i = 1, . . . , N) uses −1.7 to set the curvature.

4.3 Experiments

In this section, we describe the settings used in our experiments. Our efforts focus on

comparing different ranking approaches. For this purpose, we implemented a canoni-

cal Discrete Particle Swarm Optimisation (DPSO) inspired by [54]. This algorithm was

intentionally simple. Particles could only perform one out of four types of moves at

each generation. These four moves included one inertial move (only the moving parti-

cle was involved), and three follower-attractor moves (two particles involved). While

in the inertial move only the moving particle was involved in a mutation operation, the

follower-attractor moves involved the crossover operation between the moving particle

(follower) and one of the three particles/positions (attractor): 1) best personal position

bi, 2) the best position achieved by the swarm so far g, and 3) the best position in the

neighbourhood of the moving particle at the current generation gi.

All particles within the swarm were initialised with random solutions (route-plans).

Besides, only two operators were implemented: 1) an inter-route operator that ex-

changes pairs of customers within a route-plan (for inertial moves), and 2) an oper-

ator that copies an entire sub-route from one to another route-plan and then removes

duplicates (for all other moves).
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The probability of all attractors were set to 0.25. In our simulations, the swarm was

formed by 50 particles evolving for 2000 iterations. This algorithm was applied to the

Vehicle Routing Problem with Time Windows (VRPTW) using the Solomon’s dataset [75].

These instances are divided in three classes: C1XX (customers positioned in clusters),

R1XX (customers randomly spread) and RC1XX (some customers forming clusters and

others randomly positioned). Regarding the DPSO implementation, two operators are

used to move the particles within the swarm. A crossover operator is used to move

particles towards other particles’ locations. This operator copies a random route from

an attractor to the moving particle. A mutation operator is used to encourage the local

exploration within route-plans. In the experiments, this operator exchanges customers

from one route to another within the route-plan in the solution of the moving particle.

In order to assess the performance of each ranking approach, a number of minimisation

objectives were considered: Number of vehicles (Znv), Travel Time (Ztt) or elapsed time of

the route-plan, Waiting Time (Zwt) or sum of all time the drivers need to wait in case of

an early arrival, Travel Distance (Ztd) or length of the whole route-plan, Time Window Vi-

olation (Ztwv) or sum of lateness of all arrivals, Number of Time Window Violations (Zntwv)

or number of customers not served within the appropriate time, Capacity Violation (Zcv)

or amount of exceeding capacity on vehicles and Number of Capacity Violations (Zncv)

or number of vehicles whose capacity is being exceeded. Reducing violations are con-

sidered as objectives in this study. In this way, we entitle the decision maker to decide

on the convenience of serving customers out of their time windows or exceeding the

capacity of some vehicles.

Regarding the coefficients for the ranking schemes, DLA is presented in two versions for

selecting leaders and updating best particle’s positions (e.g. the best personal position

bi and the best position achieved by the swarm so far g).

The first version of DLA uses a greedier approach to establish the probability for each

preference using Equation 4.3.1. The first coefficient (0.9) increases its curvature and

the second moves it up by 0.05. We set these coefficients according to some preliminary
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Figure 4.3: Distribution of probabilities used by DLA and DLA2 for N = 8 objectives.
The resulting distribution according to the probability mass functions: 1)
p(x) = 0.9∗ e−x + 0.05 is depicted on the left, and 2) p(x) = 0.6∗ cos(0.7x+
0.1) + 0.3 with x = {0, 1} is depicted on the right.

tests (Figure 4.3 - on the left).

p(x) = 0.9 ∗ e−x + 0.05 (4.3.1)

The second version of the DLA (DLA2) splits the ranking process into two phases

(Equation 4.3.2). If the current number of iterations is less or equal than a given k,

a probability mass function is used to encourage intensification. Otherwise, a differ-

ent probability mass function is employed to encourage diversification. To this aim,

the first phase only takes into account the first two highest preferences using the pmf

p(x) = 0.6 ∗ cos(0.7x + 0.1) + 0.3, with x = {0, 1}. For values including x = 0 and

x = 1, this function (equivalent to a quadratic expression in the given range) assigns

high and similar probabilities to the two objectives with the highest preference (Fig-

ure 4.3 - on the right). The coefficients were set, as in the previous pmf, using prelim-

inary computational experiments. This intensification phase lasts k iterations. In our

experiments k is set to 500 which corresponds to 25% of the total number of iterations

that the algorithm runs. The diversification phase runs for the remaining iterations us-

ing the pmf p(x) = 0.9 ∗ exp(−x) + 0.05, working with the whole set of preferences

(Figure 4.3 - on the left).
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p(x) =







0.6 ∗ cos(0.7x + 0.1) + 0.3, x = {0, 1} k ≤ 500

0.9 ∗ e−x + 0.05 k > 500
(4.3.2)

Summarising, the success of DLA2 strives to provide a good compromise between in-

tensification and diversification. For this purpose, Equation 4.3.2 splits the ranking

process in two phases. In the first phase, as shown in Figure 4.3 - on the right, the two

objectives with highest preference have probabilities 56% and 44%, respectively. Thus,

the search focuses on the optimisation of these two objectives only. This speeds up the

convergence, but it might lead to local optima. The second phase changes the distri-

bution of probabilities to avoid this side effect. This diversification phase, as shown in

Figure 4.3 - on the left, assigns the descending probabilities 52%, 21%, 9%, 5%, 4%, 3%,

3% and 3% to each preference from the highest to the lowest.

In a preliminary study, we tested a number of different combinations of objectives us-

ing Pareto dominance and Lexicographic ordering. This study compared the average

hypervolume (Section 2.3.4) values obtained by using each combination. We ran exper-

iments with Pareto dominance involving 2 to 8 objectives. We found the best results

working with pairs of objectives. With three or more objectives, Pareto dominance

produced the premature convergence of the swarm. Furthermore, these experiments

also showed that the best setting for Pareto dominance was to discriminate solutions

using (Ztd, Ztwv). For the lexicographic approach, the study involved finding the best

sequence (ordering) of objectives. We found that the best sequence of objectives was

(Zntwv, Ztd, Zwt, Ztt, Ztwv, Zcv,Zncv, Znv).

With respect to the DLA and DLA2, they both used the same sequence for preferences

as the lexicographic for priorities. But, for DLA2 this sequence was used after 500

generations as explained above.

4.4 Results

In order to analyse the performance of the proposed DLA variants, we present the re-

sults in two modes, qualitative and quantitative. Firstly, we depict the approximated
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Figure 4.4: Approximation sets from different ranking techniques on the Solomon’s
instance R101. Time Window Violations (Ztwv) vs Travel Distance (Ztd).

non-dominated sets obtained by each strategy using two objectives. Secondly, we show

a table containing the normalised average hypervolume values for each instance fam-

ily and technique. Figures 4.4 and 4.5 show the approximated non-dominated sets

obtained when using Pareto dominance, lexicographic ordering, DLA and DLA2 on

instances R101, RC101 respectively. The results are presented using two pairs of ob-

jectives. We only show the most meaningful combinations of pairs of objectives: 1)

Time Window Violations (Ztwv) vs Travel Distance (Ztd) (for both the plots and the hyper-

volume), and 2) Travel Time (Ztt) vs Travel Distance (Ztd) (for the hypervolume). Thus,

we do not consider those pair-wise relationships in which the hypervolume was zero.

Note that we use pair-wise comparisons as this was the best scenario for Pareto domi-

nance. In order to provide a fair comparison, we filtered out the non-dominated solu-

tions with respect to only the objectives under study. For example in the comparison

(Ztwv) vs (Ztd), the non-dominated solutions obtained by using the other methods (i.e.

the lexicographic ordering, DLA and DLA2) are classified with respect to this pair of

objectives only.
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Figure 4.5: Approximation sets from different ranking techniques on the Solomon’s
instance RC101. Time Window Violations (Ztwv) vs Travel Distance (Ztd).

4.4.1 Qualitative analysis

Time window violations (Ztwv) vs Travel distance (Ztd)

With respect to the Ztwv vs Ztd comparison, DLA2 is clearly superior in both intensifi-

cation and diversification. The approximation sets obtained by DLA2 on R101 (Figure

4.4) and RC101 (Figure 4.5) have solutions with closer values to the origin, revealing

better intensification behaviour. Additionally, these solutions, compared to those of

other ranking methods, seem to be more spread along both axes, showing better diver-

sification. Moreover, DLA2 seems to get better results as the difficulty of the instances

increases.

In Solomon’s instances, time windows are much more restrictive on instance sets R1XX

and RC1XX. Moreover, the geographical location of customers in these two sets of

instances make the problem grow in complexity. This complexity is due to the fact

that optimising the distance does not guarantee to obtain a good set of solutions. This

improvement can be seen on the results for instances R101 and RC101 where the dif-

ference in performance between DLA2 and the other ranking methods is much more

noticeable. For this comparison, DLA gets a slightly better performance than that of
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lexicographic approach. This is because DLA uses a greedy function to assign proba-

bilities to each preference. Therefore, the priority vectors were generated within a short

distance with the one used for the Lexicographic ordering. Pareto shows a reasonable

performance in instances R101 and RC101.

4.4.2 Quantitative analysis

Table 4.1 shows the performance of each ranking approach on each instance, calculated

according to the hypervolume. This metric computes the size of the space limited by

the solutions in an approximation set and a reference point. The larger the value of

the hypervolume, the higher the quality of the approximation set. We calculated the

hypervolume using the same pairs of comparisons used for the previous graphs. So,

these results extend the information conveyed by the plots. All values were normalised

in relation to 1 according to the highest hyper-volume value obtained in each case.

Table 4.1 is divided in three sections. The first section identifies the instances used. The

second and third sections show the hypervolume value comparing Ztwv against Ztd and

Ztt against Ztd respectively.

For the first comparison, Time Window Violations (Ztwv) vs Travel Distance (Ztd), DLA2

gets the best hypervolume value for all instances. On average, it obtains an improve-

ment of 60% over lexicographic ordering which is the second best ranking method

almost in a tie with the DLA. Pareto dominance gives the worst performance with an

average of 0.18 across all instances. In the second comparison, Travel Time (Ztt) vs Travel

Distance (Ztd), DLA2 is not the best in only one instance: C108. However, it is very close

to that value with a distance of only 0.5%. In general and across all instances, DLA2

presents an improvement of about 25% over the lexicographic ordering, which is again

the second best ranking technique. Very close to the lexicographic approach, the DLA

gets better results in some instances and worse in others, but on average the former

outperforms the latter by about 5%. Pareto dominance comes last with an overall per-

formance of 0.60.

Table 4.2 provides average values across all instance in Solomon’s subsets C1XX, R1XX

and RC1XX. This table has the same structure as the one described before. It is di-
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Table 4.1: Performance of different ranking approaches on Solomon’s instances ac-
cording to the hypervolume quality measure. The hypervolume is calcu-
lated over two comparisons: Time Window Violations (Ztwv) Vs Travel Dis-
tance (Ztd) - on the left, and Travel Time (Ztt) Vs Travel Distance (Ztd) - on the
right. Best values are in bold face.

Ztwv vs Ztd Ztt vs Ztd

Instance Pareto Lex DLA DLA2 Pareto Lex DLA DLA2

C101 0.1170 0.6128 0.7190 1.0000 0.5467 0.8473 0.9052 1.0000

C102 0.2167 0.7936 0.6162 1.0000 0.4729 0.9512 0.8054 1.0000

C103 0.1407 0.7988 0.3852 1.0000 0.3671 0.8991 0.4910 1.0000

C104 0.2813 0.7111 0.2247 1.0000 0.5204 0.8294 0.3501 1.0000

C105 0.1707 0.7388 0.7779 1.0000 0.4015 0.9004 0.9090 1.0000

C106 0.1712 0.6759 0.4818 1.0000 0.4235 0.8482 0.7004 1.0000

C107 0.6065 0.5958 0.3778 1.0000 0.8407 0.8403 0.6738 1.0000

C108 0.0580 0.6313 0.6128 1.0000 0.4982 1.0000 0.9826 0.9947

C109 0.0793 0.6271 0.5875 1.0000 0.4670 0.8838 0.8511 1.0000

R101 0.1212 0.0571 0.1182 1.0000 0.6385 0.5017 0.5714 1.0000

R102 0.1304 0.1306 0.1413 1.0000 0.7226 0.6339 0.6064 1.0000

R103 0.3395 0.2387 0.2276 1.0000 0.8931 0.7139 0.6804 1.0000

R104 0.1953 0.2579 0.2530 1.0000 0.7578 0.7443 0.7946 1.0000

R105 0.2265 0.2108 0.2843 1.0000 0.8286 0.7686 0.8226 1.0000

R106 0.2636 0.1880 0.1813 1.0000 0.8074 0.6511 0.6525 1.0000

R107 0.1708 0.2964 0.2179 1.0000 0.6766 0.6749 0.5988 1.0000

R108 0.2866 0.3597 0.3544 1.0000 0.7296 0.7672 0.7510 1.0000

R109 0.3666 0.3186 0.3125 1.0000 0.8853 0.8185 0.7724 1.0000

R110 0.1885 0.3749 0.3069 1.0000 0.5713 0.7450 0.6579 1.0000

R111 0.1361 0.4660 0.4376 1.0000 0.4760 0.8457 0.8244 1.0000

R112 0.1468 0.4163 0.4043 1.0000 0.5984 0.7920 0.7976 1.0000

RC101 0.1399 0.1529 0.2562 1.0000 0.6493 0.5765 0.6892 1.0000

RC102 0.1186 0.1331 0.1085 1.0000 0.5671 0.5582 0.4900 1.0000

RC103 0.0787 0.2687 0.2389 1.0000 0.5615 0.7196 0.6696 1.0000

RC104 0.0795 0.3235 0.3014 1.0000 0.5211 0.7029 0.7289 1.0000

RC105 0.1235 0.1844 0.1729 1.0000 0.5581 0.6048 0.5779 1.0000

RC106 0.1915 0.1900 0.2660 1.0000 0.5853 0.5534 0.6164 1.0000

RC107 0.0912 0.2747 0.2789 1.0000 0.6664 0.7554 0.7444 1.0000

RC108 0.0903 0.4350 0.5918 1.0000 0.4303 0.7250 0.8049 1.0000

88



CHAPTER 4: DYNAMIC LEXICOGRAPHIC APPROACH FOR MULTI-OBJECTIVE

OPTIMISATION

Table 4.2: Performance of different ranking approaches on Solomon’s instances ac-
cording to the hypervolume quality measure calculated over two compar-
isons: Time Window Violations (Ztwv) vs Travel Distance (Ztd) - on the left, and
Travel Time (Ztt) vs Travel Distance (Ztd) - on the right. Average values and
their respective standard deviations are shown for each subset of Solomon’s
instances (C1XX, R1XX and RC1XX).

Ztwv vs Ztd Ztt vs Ztd

Instance set Pareto Lex DLA DLA2 Pareto Lex DLA DLA2

C1XX .20(.17) .69(.08) .53(.18) 1(.0) .50(.14) .89(.06) .74(.21) 1(.0)

R1XX .21(.08) .28(.12) .27(.10) 1(.0) .72(.13) .72(.09) .71(.09) 1(.0)

RC1XX .11(.04) .25(.10) .2(.14) 1(.0) .57(.07) .65(.88) .67(.10) 1(.0)

vided in three sections: the first states the instance subset, and the second and third

show the average hypervolume value comparing Ztwv against Ztd and Ztt against Ztd

respectively. We state the standard deviation in parenthesis.

The Frieman test was used to analyse the global differences in the hypervolume values

obtained for each method in both comparisons. There are significant differences at

0.01 significance level. In order to find out where these differences are, we carried

out a number of pair-wise comparisons using the four ranking approaches with the

Wilcoxon test. According to this test, there is a significant difference between DLA2

and lexicographic ordering at 0.01 significance level. The normalised values for the

statistic were 4.70 and 4.68, respectively. So, we can safely say that DLA2 is superior to

lexicographic ordering in this scenario. Similarly, we compared DLA and lexicographic

ordering obtaining the two-way p-values 0.1236 and 0.1285, respectively. This reveals

that there is not significant difference between these two ranking approaches at 0.10

significance level. Finally, DLA and Pareto dominance were compared obtaining the

two way p-values 0.0007 and 0.0434, respectively. Thus, their results are significantly

different at 0.05 significance level.

4.5 Conclusions

Standard ranking schemes such as Pareto dominance have been proven to have scala-

bility problems in dealing with many-objective optimisation problems [152, 138, 253].

Two main alternatives have been proposed to overcome this issue. The one that has
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drawn more attention from researchers consists of relaxing the form of Pareto optimal-

ity (see [89, 71, 224]).

This chapter presents the study of a novel approach to rank solutions in many-objective

optimisation problems. This approach, called Dynamic Lexicographic Approach (DLA),

uses a relaxed form of the Lexicographic ordering. DLA does not fix the priorities, but

they change throughout the search process by using a probability mass function (pmf ).

As a result, the search process is less liable to get stuck in local optima and therefore,

DLA offers a wider exploration in objective spaces with high dimensionality. DLA2 is

variant of the DLA that uses double pmf. This double pmf combines a phase of intensi-

fication and a phase of diversification.

A number of experiments were conducted on a canonical Discrete Particle Swarm

Optimisation (DPSO) applied to the Vehicle Routing Problem with Time Windows

(VRPTW) with 8 objectives. The analysis of results is carried out using two pairs of

objectives as this is the best scenario for Pareto dominance. Our simulations show

that under this scenario, DLA is a valuable technique to discriminate solutions. In

particular DLA2 exhibits much better performance than lexicographic ordering, Pareto

dominance and DLA.

According to the results, the best performing ranking scheme is DLA2, and the worst is

Pareto dominance. Results also revealed that there is not significant difference between

the performance of DLA and Lexicographic ordering. This might be due to DLA does

not focus on the convergence of the search, but it starts diversifying too soon.

The poor performance of Pareto dominance in this study also corroborates the find-

ings of other researchers regarding the scalability problems of this technique in many-

objective optimisation problems [152, 138, 253].

DLA is an alternative ranking technique which is easy to implement and intuitive for

the decision maker. Future research should include:

• Investigate the effectiveness of this approach in other many-objective optimisa-

tion problems and algorithms. The results that we have obtained in our simula-

tions might be biased by the problem, by the solving technique, or by both.
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• Investigate the effectiveness of this approach in comparison to that of other rank-

ing techniques such as ǫ-dominance [161].

• Investigate the adaptability of the DLA with respect to the probability mass func-

tion (pmf ), including setting the parameter k to switch between intensification

and diversification.

In order to pursue these lines of research, we plan to implement DLA in CODEA v3.

This will allows us to compare the performance of this technique to that of other rank-

ing schemes inherited from ParadisEO. We will also extend these experiments to other

MOPs such as the multi-objective Travelling Salesman Problem (TSP).

In this study we use the Solomon’s dataset for the assessment of three ranking meth-

ods. However, as we briefly discussed in Section ??, this instance-set was not designed

for multi-objective optimisation. In the next chapter we carry out an in-depth study

on the characteristics and multi-objective suitability of the 100 customers Solomon’s

instances. The purpose of the next three chapters is to deepen the findings of other

research works [105, 238] on the multi-objective suitability of this dataset.
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Overview of Solomon’s dataset

Summary

A large number of test datasets have been proposed for the Vehicle Routing Problem

(VRP) and its variants. One important variant of the VRP takes into account the time

slots in which customers want to be served: VRP with Time Windows (VRPTW). For

this problem, several datasets have been introduced in order to assess the performance

of routing algorithms. One of the most famous datasets for the VRPTW is the 100

customers Solomon’s dataset. Results in this set of benchmark problems is the most

common way to compare heuristics [20].

In the previous chapter, we used this dataset to test the performance of different multi-

objective ranking schemes. However, we found that this dataset might not be suitable

for the assessment of the VRPTW with multiple objectives. This chapter discusses the

most important characteristics of this dataset. Based on these characteristics, we study

the suitability of this dataset for investigating the multi-objective aspect of the VRPTW.

5.1 Introduction

A number of test datasets have been proposed for the VRPTW. Some benchmark prob-

lems and their characteristics are:

• Breedam’s instances (Breedam, 1994 [75]) are organised in two sets: T1 and T2,

92



CHAPTER 5: OVERVIEW OF SOLOMON’S DATASET

each with 60 instances. Each instance has 100 customers. Each customer has

a fixed demand (10 units) and an unlimited number of vehicles is available to

serve them, each with capacity 100. In set T1, all customers have the same time

window [0, 60]. In T2, all customers have two time windows [0, 30] and [50, 80].

For both sets T1 and T2, the time window for the depot is [0, 960].

• Russell’s instances (Russell et al. 1995 [218]) consist of two pairs of real-world

instances with data taken from a fast food delivery company in the USA. The first

pair of instances {D249, E249} have 249 customers, with vehicle capacities of 50

and 100, respectively. For both of these instances, the travel time was calculated

by a linear function that allows velocity to vary as a function of distance. The

second pair of instances {D417, E417} have 417 customers. Instance D417 has

wider time windows than E417. For both of these instances, it is assumed that a

unit of time is equal to a unit of distance.

• Homberger’s instances (Homberger, 1999 [75]) are an extension of Solomon’s

instances. For each Solomon’s subset, new instances are provided with 200, 400,

600, 800 and 1000 customers. These instances have the same specifications as

Solomon’s except that customers are located in different positions.

• Cordeau’s instances (Cordeau, 2003 [75]) are also based on Solomon’s instances.

This dataset is divided in three subsets according to the position of customers:

clustered CXXX, random RXXX and mixed RCXXX. Each subset contains two

smaller sets, that is, there are six subsets in total: C1XX, C2XX, R1XX, R2XX,

RC1XX and RC2XX. Customers in each of these subsets share the same data

with the exception of the time windows. All instances have 100 customers with

individual demand equal to 1 in all cases. Customers must be served by one of

a limited set of specific vehicles which varies according to the instance. Vehicles

capacities also take different discrete values depending on the problem instance

{200, 700, 1000}.

• Solomon’s instances (Solomon, 1987 [233]) is perhaps the most widely used VRPTW

dataset in the literature. It consists of 56 instances in which 100 customers must
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be served. According to the geographical distribution of customers, the dataset

is divided into three subsets: CXXX (customers are grouped in clusters) 17 in-

stances, RXXX (customers are uniformly distributed) 23 instances, and RCXXX

(some customers are located in clusters while others are uniformly distributed)

16 instances. Each of these three subsets consists of two subsets. The clustered in-

stances are in subsets: C1XX and C2XX. The subset C1XX has a different layout

for customer locations and narrower time windows than subset C2XX. For both

RXXX and RCXXX, their two subsets share the same layout, but customers in

the first subset have narrower time windows like in CXXX. The service time for

customers is 90 time units for subsets CXXX and RCXXX, and 10 time units for

subset RXXX. The demand varies depending on the customer and instance, but

it takes a discrete values in {10, 20, 30, 40}. More information about Solomon’s

instances, link to download and optimal solutions can be found at [75].

In the next sections, we analyse the main characteristics of this dataset. In section 5.2,

we give an overview of the structure of the dataset files. Section 5.3 discusses the layout

of the customers’ locations. Section 5.4 explores the shape of the time windows and

service times of customers across all instances. Section 5.5 is focused on the study of the

demands and the vehicles capacities. Section 5.6 discusses the suitability of this dataset

for VRPTW according to the characteristics under review. Finally, the complexity of this

dataset is discussed in Section 5.7.

5.2 Structure of the data files

All the Solomon’s dataset files share the same structure (Figure 6.1). The first line states

the name of the instance {C|R|RC}XXX. The second line is always a blank space. The

third and the fourth lines contain the keywords ’VEHICLE’ and ’NUMBER CAPACITY’

respectively. The following line specifies the maximum number of vehicles available

and the maximum capacity of each of those vehicles. The sixth line is another blank

space. The next line contains the keyword ’CUSTOMER’. The eighth line contains the

keywords: ’CUST.NO.’, ’XCOORD.’, ’YCOORD.’, ’DEMAND’, ’READY TIME’, ’DUE
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DATE’ and ’SERVICE TIME’. The next line is blank. The tenth line specify the details

of the depot according to the keywords stated in the eighth line. The ’CUST.NO.’,

’DEMAND’, ’READY TIME’ and ’SERVICE TIME’ of the depot are always 0. From

the eleventh line and onwards, we find the details of the customers according to the

keywords stated in the eighth line.

1 <name of the instance>

2 <blank>

3 <keyword: VEHICLE>

4 <keyword: NUMBER> <keyword: CAPACITY>

5 <number of available vehicles> <capacity of each vehicle>

6 <blank>

7 <keyword: CUSTOMER>

8 <keywords for each column>

9 <blank>

10 <id_{0}> <X coord_{0}> <Y coord_{0}> <demand_{0}> <a_{0}> <b_{0}> <service time_{0}>

11 <id_{1}> <X coord_{1}> <Y coord_{1}> <demand_{1}> <a_{1}> <b_{1}> <service time_{1}>

12 ...

13 <id_{n}> <X coord_{n}> <Y coord_{n}> <demand_{n}> <a_{n}> <b_{n}> <service time_{n}>

Figure 5.1: Structure of Solomon’s datafiles.

5.3 Geographical distribution of customers

Solomon’s instances are divided in three subsets according to the geographical loca-

tion of the customers: CXXX (clustered), RXXX (uniformly distributed) and RCXXX

(mixed). Figure 5.2 shows the position of the customers located in clusters. On the top

of this figure, we see the location of customers in instances within subsets C1XX. This

sub-set shows 10 clear customer cluster patterns. The optimal solution for each of these

instances have 10 routes.

Figure 5.2 also shows the location pattern for customers in the instance subset C2XX. In

this pattern, clusters are not so clear, as some customers are mid-way among different

groups. For both subsets positions (x, y) range in x : [0, 100] and y : [0, 90].

Figure 5.3 shows the location of randomly spread customers in subset RXXX. Both

subsets R1XX and R2XX have the same layout and only time windows are different.

Positions (x, y) are in the range x : [0, 70] and y : [0, 80].

Figure 5.4 depicts the layout of customers in the subset RCXXX. This subset presents

customers in cluster and randomly spread. Like in subset RXXX, customers in RC1XX
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Figure 5.2: Geographic representation of Solomon’s clustered datasets - C1XX (above)
and C2XX (bellow) both with 100 customers. The red square represents the
depot.
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Figure 5.3: Geographic representation of Solomon’s datasets - RXXX with 100 cus-
tomers. The red square represents the depot.
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Figure 5.4: Geographic representation of Solomon’s datasets - RCXXX with 100 cus-
tomers. The red square represents the depot.
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and RC2XX have the customers located the same the positions. These positions (x, y)

are in the range for x : [0, 100] and y : [0, 90].

Solomon’s instances cover several possible realistic scenarios with respect to the loca-

tion and distribution of customers: clustered (C), randomly spread (R) and a combina-

tion of both (RC). However, two unrealistic features in these instances are:

• The travel distance (or just distance) between each pair of customers are not given.

Euclidean distances are often used to calculate these distances. Given two cus-

tomers ci located at (xi, yi), and cj located at (xj, yj), the distance between ci and

cj is calculated with l2 norm (Equation 5.3.1).

lp = p
√

∣
∣xi − xj

∣
∣p
+

∣
∣yi − yj

∣
∣p (5.3.1)

This assumes that: 1) there is a way to go from ci to cj in a straight line, and 2)

the distance from ci to cj is the same as from cj to ci, that is, dij = dji. These

two assumptions are unrealistic. Alternatives could be to: 1) use another way to

measure distances (e.g. the city block distance), and 2) multiply dij, dji or both

by random numbers greater than 1, respectively. The city block distance (also

known as Manhattan distance) corresponds to the l1 norm (Equation 5.3.1). This

is similar to the way one moves in a city, and is therefore more realistic. The lp

norms with p between 1 and 2 have been shown to be more realistic than the

Euclidean distance. For these values of p, lp produces length values halfway the

Manhattan distance (the distance in x plus the distance in y) and the Euclidean

distance (the distance in straight line).

In addition, if we multiply any of the distances or both by random number greater

than 0, then we can get dij 6= dji. It is worth mentioning that this multiplication

step must consider the triangular inequality. The triangular inequality states that

for any three customers ci, cj and ck, the sum of the distances corresponding to

any two pair of customers must be greater than or equal to the distance between

the remaining pair of customers, that is, dij + djk ≥ dik.
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• Solomon’s datasets have all customers located within an area that forms an al-

most perfect squares. Customers are located in 1) x : [0, 100] and y : [0, 90] in

CXXX dataset, and in 2) x : [0, 70] and y : [0, 90] in RXXX and RCXXX datasets.

Besides, the depot is located near the centre of the square in all instances. A more

realistic scenario should consider not only different layouts in the distribution of

customers but also different shapes of the enclosing geographic areas. For ex-

ample, customers could be spread in diagonal and the depot could be located at

(0, 0). This could represent a more challenging scenario regarding the customers

location.

5.4 Time Windows and Service Times

Time windows are periods of time in which the delivery vehicles must serve the cus-

tomers. Service times indicate the duration of the actual delivery, once the vehicle has

arrived at a customer’s location. In this section, we discuss the main characteristics of

time windows and service times in the Solomon’s instances.

Solomon’s dataset does not provide the travel times. Instead, it is assumed that a unit

of distance is equal to a unit of time. This assumption is unrealistic due to many fac-

tors, such as traffic jams and low-speed roads. A way to overcome this problem is to

generate a travel time matrix by using the previously calculated travel distance matrix.

Thus, the travel time between each pair of customers ci and cj, denoted as tij, could be

equal to tij = dij ∗ r (where dij is the travel distance from ci to cj, and r is a random

number greater than 0). A similar procedure was carried out by Russell et at. [218].

The authors calculated the travel time by using a linear function that allows the ve-

locity to vary in function of distance. The new generated travel time matrix must also

satisfy the triangular inequality explained in Section 5.3. We believe that having travel

distance and travel time matrices not equal between them but also non-symmetric for

each pair of customers would present a more challenging and realistic scenario for the

assessment of VRPTW solving techniques.

Regarding service times, all customers in the subset CXXX have 90 units of time. While
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customers in subsets RXXX and RCXXX have 10 units of time.

We show the representation of the time windows for each customer in a number of

figures where the x-axis denotes the customer id and the y-axis represents the length

of the time window. The first customer is always the depot, with the largest time win-

dow. Figures A.1, A.2 and A.3 (see Appendix) depict the time windows for three pairs

of instances with 100 customers in Solomon’s dataset. Solomon’s instances subsets

C1XX, R1XX and RC1XX have short scheduling horizons, C1XX ranging in (0, 1300)

(see Solomon’s C101 in Figure A.1 on the left) while R1XX and RC1XX ranging in

(0, 250) (see Solomon’s R101 and RC101 in Figures A.2 and A.3 on the left). Subsets

C2XX, R2XX and RC2XX have longer scheduling horizons, C2XX ranging in (0, 3400)

(see Solomon’s C201 in Figure A.1 on the right) while R2XX and RC2XX ranging in

(0, 1000) (see Solomon’s R201 and RC201 in Figure A.3 on the right).

We calculated a number of statistics to analyse the time windows across all instances.

We computed means and standard deviations for the opening times, closing times, time

window amplitudes and time window centres. However, we did not find a pattern in these

features. Even in the same subset, there is a high variability across time windows from

one instance to another.

We observe that in general, time windows are narrower in instances in subsets C1XX,

R1XX and RC1XX than those in C2XX, R2XX and RC2XX. Instances with narrow

time windows have fewer feasible solutions and waiting times can be high. This is

because time windows are so restrictive that feasible solutions can be only archived

if customers are visited in a certain sequence. The extreme case is that of customers

with such narrow time slots that only one sequence leads to a feasible solution. The

opposite occurs in instances with wide time windows. These instances have customers

with more flexible time windows, and therefore there is a larger number of feasible so-

lutions. We find three types of time windows across all instances in Solomon’s dataset:

1) instances with only narrow time windows, 2) instances with only wide time win-

dows, and 3) instances with a combination of narrow and wide time windows. Some

instances with only narrow time windows are: C101, C201, R101, R201, RC101 and

RC201. In these instances, the feasible solution space is so restricted that the problem
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can be often reduced to a scheduling problem. Some instances with only wide time

windows are: C109, C208, R109, R211, RC108 and RC208. Instances with wide time

windows can be often tackled by using Capacitated VRP solution methods. Other in-

stances that combine narrow and wide time windows include: C103, C104, C203, C204,

R103, R104, RC203, RC204. These instances are interesting as most customers have

time-slots with the same length as the depot. This way, they can be scheduled on any

position of the service sequence.

The information regarding the time windows of customers provides valuable knowl-

edge. According to the type of instance (narrow/wide/mixed time windows), different

techniques could be applied to produce better results. This information can be used to

develop search methods that not only take into account the travel distance, but also the

setting of time windows in the problem instance.

5.5 Demands and Vehicles Capacities

In Solomon’s dataset, each customers demand takes a discrete value within {10, 20, 30, 40}.

All instances have a maximum number of available vehicles available equal to 25. Ta-

ble 5.1 summarises the value of demands for Solomon’s subsets: C1XX, C2XX, R1XX,

R2XX, RC1XX and RC2XX. The first column shows the name of the subset. The

second column specifies the Total Demand or sum of demands across all customers in

the same instance. The third column states the Vehicle Capacity. The fourth column

shows the Ratio between Total Demand and Vehicle Capacity. This ratio represents the

minimum number of vehicles needed to serve all customers if we do not take into con-

sideration their time windows. The maximum capacity of the delivery vehicles is 200

for instances in subsets C1XX, R1XX and RC1XX; 1000 for R2XX and RC2XX; and

700 for instances in subset C2XX. Summing up customers’ demands of individual in-

stances, we find a total demand of 1080 in C1XX and C2XX, 1458 in R1XX and R2XX,

and 1724 in RC1XX and RC2XX. The ratio between the total demand and the vehicle

capacity provides some good approximations to the optimum number of vehicles in

the solution for each instance. For example, the average optimum number of vehicles
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Table 5.1: For subsets C1XX, C2XX, R1XX, R2XX, RC1XX and RC2XX, this table
shows the maximum capacity of each vehicle, total demand or sum of demands
of all customers and ratio between the Total Demand and Vehicle Capacity..

Subset Total Demand Vehicle Capacity Ratio

C1XX 1080 200 9.05

C2XX 1080 700 2.58

R1XX 1458 200 7.29

R2XX 1458 1000 1.46

RC1XX 1724 200 8.62

RC2XX 1724 1000 1.74

in instances in subset C1XX is 10, and the ratio is 9.05. The same occurs in C2XX, in

which the average optimal value is 3 and the ratio is 2.58. We find larger differences

between the ratio and the actual optimal number of vehicles for instances in subsets

R1XX and RC1XX, with average optimal values 13 and 12, while ratios ratios 7.29 and

8.62, respectively. Mid-way gap values are found in instances in subsets R2XX and

RC2XX, with average optimal values of 3 vehicles in both, and ratios of 1.46 and 1.74,

respectively.

5.6 Multi-objective Suitability

We define the multi-objective suitability of a dataset for the VRPTW based on the works

proposed by Purshouse and Fleming [204], Wegman [257] and Li et al. [163]. Given two

datasets: D1 and D2, we say that D1 is more multi-objective suitable compared to D2, if

the correlation values between pairs of objectives obtained by a standard Evolutionary

Multi-Objective Algorithm (EMOA) are closer to −1 or 1 for D1 than for D2. In this case,

D1 would present a more realistic and challenging scenario, and the multi-objective

assessment using this dataset would be therefore more reliable.

In the literature, the vast majority of algorithms proposed to tackle the multi-objective

variant of VRPTW have been assessed using Solomon’s dataset. However, this dataset

was not designed to test multi-objective algorithms and its suitability has been recently
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questioned by Garcia-Najera and Bullinaria [105] and Tan et al. [238]. Aspects that

might make this dataset inappropriate for multi-objective assessment are:

• Equality between distance and time matrices. Since Solomon’s dataset only pro-

vides the position of the customers (x, y), Euclidean distance must be used to cal-

culate travel distances and travel times. This way, for instances with wide time

windows, the only difference between the total travel time and the total travel

distance is the sum of service times to the travel time. For instances with narrow

time windows, the difference relies on the interaction between the waiting time

and travel time. Other objectives related to the travel time, such as makespan (or

travel time of the longest route), might be also affected for the same reasons.

• Symmetry in distance and time matrices. In Solomon’s benchmark problems, it

is assumed that both the travel time and travel distance from a customer A to

another customer B is the same no matter in which order they appear. This might

also affect the difficulty of the problem because changing the order of a pair of

customers (which might be beneficial to improve another objective - (e.g. waiting

time)) does not affect the travel distance. This may occur if, for example, the

customers in the route (c1, c2, c3) are visited in the opposite order (c3, c2, c1). The

travel distance of both sequences are equal, yet the value of other objective (e.g.

waiting time) might be different.

5.7 Difficulty

Referring to difficulty as the time it takes to achieve optimal solutions, Solomon’s

dataset does not seem to present a high-complexity in modern computation. On one

hand, CPLEX 11.1 [139] finds optimal solutions for some Solomon’s instance in less

than an hour. On the other hand, using state-of-the-art algorithms like MACS-VRPTW,

optimal solutions are achieved in less than half an hour [104].
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5.8 Conclusions

This chapter provides an analysis of the most important characteristics of the Solomon’s

dataset. We have observed a number of unrealistic features regarding: 1) the position of

customers and depot, 2) the travel distances, and 3) the travel times. The first assump-

tion concerns the location of customers and depot. Customers are located in almost a

perfect square in which the depot is always close to its centre. Assumptions two and

three are related to the way travel distances and travel times are calculated. Solomon’s

dataset does not provide a matrix for travel distances and travel times. Instead, the

Euclidean distance measure is often used to calculate both using the customers’ posi-

tions (geographical coordinates). This assumes that: 1) there is a way to go from one

to another customer in straight line, and 2) travel distances and travel times between

a pair of customers are equal regardless of the moving direction. These assumptions

hardly occur in reality. Alternatives could be to: 1) create new instances with differ-

ent geographic distributions of customers, and 2) create non-equal and non-symmetric

travel distance and travel time matrices.

According to the characteristics observed in Solomon’s dataset and based on the study

by Purshouse and Fleming [204], we think this dataset might not be suitable for the

assessment of multi-objective algorithms. This hypothesis is based on 1) the lack of

differences between travel distances and travel times from one to another customer,

and 2) the assumption that travel distances and travel times between pairs of customers

are symmetric.

The next chapter proposes a novel dataset for the assessment of Multi-Objective Ve-

hicle Routing Problem with Time Windows (MOVRPTW). Unlike Solomon’s dataset,

MOVRPTW has different travel distances and travel times, and they are non-symmetric.

The next chapter analyses the characteristics of this dataset following a similar struc-

ture to the one in this chapter.
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A Dataset for the Multi-Objective

Vehicle Routing Problem with Time

Windows

Summary

This chapter introduces a new set of benchmark instances: MOVRPTW dataset. This

project has two aims:

• It provides a public dataset for the assessment of multi-objective algorithms for

the Vehicle Routing Problem with Time Windows (VRPTW).

• It presents a more challenging scenario in VRP(TW) benchmarks to motivate fur-

ther improvement in the development of solving methods.

This dataset is based on real information provided by a distribution company. The

structure of the test instances is similar to the one of Solomon’s but the MOVRPTW in-

stances provide travel distance and travel time matrices. This chapter gives an overview

of the main characteristics of the MOVRPTW dataset using the same organisation as the

previous chapter.
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6.1 Introduction

The previous chapter provides an overview of datasets proposed for the assessment

of the Vehicle Routing Problem with Time Windows (VRPTW). In particular, we anal-

ysed some important characteristics of the Solomon’s dataset. This dataset presents a

number of unrealistic features due to:

• Travel distance and travel time matrices are not provided. The positions of the

customers are used to calculate both. As a result, it is assumed that:

– There is a straight path that connects any pair of customers.

– A unit of time is equal to a unit of distance.

– Travel distances and travel times are the same regardless of the moving di-

rection.

• Customers are place within the boundaries of a square, and the depot is very

close to the centre.

This chapter presents a new set of problem instances which do not present the above-

mentioned issues. This new dataset is based on data from a distribution company in

Tenerife, Spain. The company delivers food products and serves more than 1000 cus-

tomers overall, with around 150 customers being served each day. Realistic data for

the travel distance and travel time between each pair of customers was obtained using

Google Maps database. Travel distance and travel time matrices are distinct and non-

symmetric, hence representing a realistic trade-off between travel distance and travel

time. For example, for pairs of customers located within an urban area, travel time

is high compared to the corresponding distance, reflecting the fact that travelling in

urban areas is more time consuming than travelling in rural areas. Moreover, higher

differences are found comparing travel times and travel distances due to difficult orog-

raphy in the island. Time windows specifications were generated according to some

information provided by the company. While demand specifications were established

using a number of parameters in order to present different scenarios. We believe that
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the features of this dataset make a better challenge for the assessment of multi-objective

algorithms.

The remaining of this chapter contains the following sections. Section 6.2 explains the

structure of the different files in each instance. Section 6.3 shows the details of cus-

tomers’ locations layouts. Time windows characterisation are stated in Section 6.4.

Section 6.5 explains the demands characterisations. The multi-objective suitability of

this dataset is discussed in Section 6.7. Finally, a brief in-sight on the difficulty of this

dataset is provided in 6.8.

6.2 Structure of data files

Each instance in the MOVRPTW dataset has three associated files:

• (instance name)DistanceMatrix.dat contains the travel distances between all

pairs of customers.

• (instance name)TimeMatrix.dat contains the travel times between all pairs of

customers.

• (instance name)Specs.dat contains other information of the instance: max size

of the fleet, capacity of the vehicles, location of the customers, etc. This file has

the same structure as the Solomon’s dataset files (Figure 6.1). The first line con-

tains the name. The second line is always a blank space. The third and the fourth

lines contain the keywords ’VEHICLE’ and ’NUMBER CAPACITY’ respectively.

The following line specifies the maximum number of vehicles available and the

maximum capacity of each of those vehicles. From 10th line onwards, the main

characteristics of customers are specified in several columns. The first line is al-

ways reserved for the depot. The first column states the id of the customers (0 for

the depot). The second and the third columns specify the location of customers

(latitude, longitude). The fourth column denotes the demand for each customer.

The fifth and sixth state the time windows and the last column the service times.
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1 <name of the instance>

2 <blank>

3 <keyword: VEHICLE>

4 <keyword: NUMBER> <keyword: CAPACITY>

5 <number of available vehicles> <capacity of each vehicle>

6 <blank>

7 <keyword: CUSTOMER>

8 <keywords for each column>

9 <blank>

10 <id_{0}> <X coord_{0}> <Y coord_{0}> <demand_{0}> <a_{0}> <b_{0}> <service time_{0}>

11 <id_{1}> <X coord_{1}> <Y coord_{1}> <demand_{1}> <a_{1}> <b_{1}> <service time_{1}>

12 ...

13 <id_{n}> <X coord_{n}> <Y coord_{n}> <demand_{n}> <a_{n}> <b_{n}> <service time_{n}>

Figure 6.1: Structure of MOVRPTW data files.

6.3 Geographical distribution of customers

Recall that Solomon’s instances are divided into three subsets according to the geo-

graphical location of customers: CXXX (clustered), RXXX (uniformly distributed) and

RCXXX (a combination of clusters and uniformly distributed). The MOVRPTW in-

stances have customers located in clusters and randomly spread (equivalent to Solomon’s

RCXXX).

Solomon’s dataset has customers located in four different layouts: {C1XX, C2XX,

RXXX, RCXXX}. The MOVRPTW dataset has customers located in two different

layouts (see Figure 6.2). From a pool of 1000 customers, we have randomly selected

100 for each layout, using two randomly chosen seeds: 0 and 10 in a custom dataset

generator [34].

Some important features of the MOVRPTW dataset regarding the location of the cus-

tomers are:

• Both layouts have two well-defined clusters and some customers randomly spread.

These two clusters correspond to (1) customers located in the capital (upper right

corner) and (2) customers located in touristic areas (lower left corner). In these

two areas, travel distances and travel times are different due to congestions and

low-speed roads.

• Customers are not located within a square geographic area, but they are un-

evenly located within the rectangle given by latitudes : [28, 28.6] and longitudes :

[−16.9,−16.2]. Besides the depot is not located at the centre of the layout, but at
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Figure 6.2: Layout of the costumers’ locations. Distribution of costumers using the
layout seed 0 (above) and using the layout seed 10 (bellow). Blue dots
indicate the customers while the red dot is the depot. Showing lines of
latitude (Y-axis) and longitude (X-axis).
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the position given by latitude / longitude: (−16.78, 28.07).

• Travel distances have been obtained using Google Maps database. These corre-

spond to the real road distances which, due to the complex orography of Tenerife,

are not equal to the length given by the Euclidean distance. Furthermore, the dis-

tances were calculated in both moving directions, so it is often the case that the

distance from a customer ci to a customer cj is not the same as from cj to ci, as

these values depend on factors, such as average transit vehicle speeds.

The above-mentioned features present a more realistic scenario to that of the Solomon’s

dataset. These features create a complex scenario which is more suitable for the assess-

ment of multi-objective algorithms.

6.4 Characterisation of Time Windows

The time window specifications for each customer have been designed to imitate what

the delivery company faces everyday. Customers have similar time windows profiles

as their commercial activities involve the same opening times. Examples of customers

are: restaurants, cafes, hotels, retailers, etc. The depot operates 8 hours (time window)

a day. In the first time windows profile (Profile 1 - Fig. 6.3), all customers are available

all day (8 hours = 480 minutes). In the following three profiles, we distinguish three

types of customers, early customers (those who want to be served in the morning),

midday customers (those who want to be served at midday) and late customers (those

who want to be served the latest). In order to cover the whole day with these three

types of customers, we create time windows with a length of: 8 hours (480 minutes)

divided into 3 types of customers = 160 minutes/type of customer, as seen in Profile

2 - Fig. 6.3. In this profile, early customers will be served in the time window [0, 160]

minutes. Midday customers will be served in the time window [160, 320] minutes.

Late customers will be served in the time window [320, 480] minutes. For the third

and fourth profiles, we follow a similar approach. However, we decrease the length of

each time window by 30 and 60 minutes respectively. Thus, in the third profile (Profile

4 - fig. 6.3), a time window has a length of 130 minutes. So, the opening hours will
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Figure 6.3: Four of the time windows profiles. This figure shows the opening times
and closing times for each profile.

be: early customers [0, 130], midday customers [175, 305] and late customers [350, 480].

Time windows of midday customers are symmetric with respect to the midday. For

example, if the length of a time window is 100, it will grow 50 to the left and 50 to the

right respect to the central point 240 (4th hour). The fourth profile (Profile 4 - Fig. 6.3)

has time windows with length of 100 minutes. Therefore, the time windows will be:

early customers [0, 100], midday customers [190, 290], and late customers [380, 480]. In

a fifth time windows profile (Profile 5), customers are given one of the 10 time windows

types in the previous profiles (see Fig. 6.3). That is, Profile 5 will contain the only time

window type of the Profile 1, three time window types of Profile 2, 3 and 4.

We suggest 5 time windows profiles for the dataset. Each profile, except the first one,

has three classes of time windows. Given a time window profile, a customer has the

same probability of having any of the time windows within that profile.

These time windows profiles are designed: 1) to cover a wide range of scenarios as

in Solomon’s dataset, and 2) to present a realistic scenario based on the information

provided by the company.

Regarding the travel times, Google Maps database was used to calculate the time that it

takes to go from any customer to another. These travel times are based on reliable data

provided by GPS device manufacturers. As with the travel distances, it is often the case

that the travel time from a customer ci to a customer cj is not the same as from cj to ci.

The travel time between a pair of customers depends on many factors, such as traffic

and road speed limits, and they might not be the same for both moving directions.

111



CHAPTER 6: A DATASET FOR THE MULTI-OBJECTIVE VEHICLE ROUTING PROBLEM

WITH TIME WINDOWS

6.5 Characterisation of Demands

Let pi be the demand of customer i and Q the capacity for each vehicle. This capacity

of each vehicle Q is bounded by D = maxi{pi} ≤ Q ≤ D = ∑
n
i=1 pi, where n is

the number of customers. The lower bound is the maximum demand D among the

customers. And the upper bound is the sum of all customers’ demands D. The closer

Q is to its lower bound, the more constraint each vehicle will be with respect to the total

demand. Conversely, the larger is Q, the more spare capacity each vehicle will have.

Parameter δ (delta) is used to modulate the slack margin of an instance, Q = D +

(δ/100)(D − D), where δ ∈ (0, 100]. If δ takes values close to 0, the capacity of the

vehicle Q will be very limited. On the other hand, for large values of δ, the vehicles

will have a capacity Q close to the total demand.

Regarding the fleet size, the maximum number of vehicles needed is equal to the total

customers’ demand divided by the vehicle capacity. However, since Q ≥ D , an upper

bound for the size of the fleet m would be: m ≤ D/D.

6.6 Dataset Settings

Based on the guidelines mentioned in this section, we have created our benchmark

dataset using the following combinations:

• Number of Customers: 100. MOVRPTW consists of instances with 100 customers,

similar to those of Breedam’s, Cordeau’s and Solomon’s datasets (see Section 5.1).

• Time Windows: Profiles {1, 2, 3, 4, 5}, within each profile, the same probability

was assigned to each time window type. For example, a probability of 1/3 was

assigned to each time window type in Profiles {2, 3, 4}. While a probability of

1/10 was used in Profile 5 for each type, since it has 10 time window types. In

order to create various problem scenarios, we assigned the same probability to

each time window type.

• Customer Demand: three values {10, 20, 30}, each with probability 1/3 and three
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types of δ = {60, 20, 5}. These values are not based on real data. We established

these values to have three standard scenarios in which the slack margin is high

(δ = 60), normal-low (δ = 20), and very tight (δ = 5).

• Service Times: three values {10, 20, 30} minutes, each with probability 1/3. These

values are based on real data provided by the company. The service time depends

on a number of factor such as the customer activity (hotel, cafe, etc), its location

and the time of the day. We assigned the same probability to all service time in

order to create general scenarios.

• Seeds: two groups of instances were created with two different sets of seeds

{0, 0, 0, 0} and {10, 7, 5, 1}. These seeds were randomly chosen.

Summing up, a total of 30 MOVRPTW instances were generated (1 size * 5 time win-

dows profiles * 3 deltas * 2 groups of seeds). This dataset and the configuration files

can be download from [34].

6.7 Multi-objective Suitability

As in the previous chapter, we consider that given two datasets: D1 and D2, D1 is

more multi-objective suitable compared to D2, if the correlation values between pairs

of objectives obtained by a standard Evolutionary Multi-Objective Algorithm (EMOA)

are closer to −1 or 1 for D1 than for D2.

Aspects that might make this dataset appropriate for multi-objective assessment are:

• No equality between travel distance and travel time matrices. Information about

travel distances and travel times have been obtained from a reliable source (Google

Maps database). This is important because conflicting pair wise relationships

may arise in comparisons involving travel distance and objectives related to travel

time (e.g. makespan − or travel time of the longest route). For example, consider

a route in which travel distance is minimum and the makespan is maximum be-

cause the delivery vehicle has to go through urban areas.
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• No symmetry in travel distance and travel time matrices. In this dataset, the

travel time and travel distance between a pair of customers A and B are not nec-

essarily the same in both directions. This might increase the difficulty of the

problem in several objectives, as changing a sequence of customers require the

re-calculation of the whole sub-route. For example, consider the route (c1, c2, c3)

are visited in the opposite order (c3, c2, c1). The travel distance of both sequences

are equal, yet the value of other objective (e.g. waiting time) might be different.

6.8 Difficulty

We refer to difficulty as the time that it takes to achieve optimal solutions. We ran a

number of experiments on CPLEX 11.1 [139] towards the optimisation of travel time or

travel distance. CPLEX failed to produce optimal solutions in all instances in a mod-

ern desktop PC (Core2Duo, 4GB). In all tests, CPLEX created over-sized search trees

exceeding the memory capacity of the machine. This is because these instances have

wide time windows which makes the feasible region larger.

due to the large feasible spaces as a consequence of the large time windows.

Some preliminary tests have been carried out with a Multi-Objective Particle Swarm

Optimisation and the Non-Dominated Genetic Algorithm-II (NSGA-II). Chapter 8 dis-

cusses the results obtained by both multi-objective optimisers in this new dataset.

6.9 Conclusions

This chapter presents the MOVPTW dataset, a new set of benchmark problems for

the Vehicle Routing Problem with Time Windows (VRPTW). This dataset is designed

to overcome unrealistic features found in Solomon’s dataset. Unrealistic features in

Solomon’s dataset are related to: 1) the location of the customers, and 2) the absence of

travel distances and travel times matrices.

The proposed MOVRPTW dataset is based on real data from a distribution company.

Some customers are located in two regional clusters and other in the vicinity of such
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clusters. The depot is not located at the centre of the layout (as many existing test in-

stances), but it is in the west-south region of the map. We calculated travel distances

and travel times matrices using Google Maps. These matrices are non-equal and non-

symmetric. Furthermore, based on realistic data we designed five time windows pro-

files from which specific time windows can be assigned to customers. The capacity of

the vehicles was characterised by using a slack margin parameter (δ). We used this pa-

rameter to create instances in three different scenarios: 1) high slack margin (δ = 60), 2)

normal-low slack margin (δ = 20), and 3) very tight slack margin (δ = 5). Summaris-

ing, the MOVRPTW dataset consists of 30 instances: 5 time windows profiles, 3 values

for δ and 2 groups of seeds. According to these criteria, we think that MOVRPTW

dataset presents a more realistic scenario than the one by Solomon’s dataset.

We also think that the MOVRPTW dataset might be suitable for the assessment of

multi-objective algorithms. This hypothesis is based on: 1) the differences between

travel distances and travel times from one to another customer, and 2) the non-symmetry

between travel distances and travel times between pairs of customers.

The next chapter provides an in-depth study on the multi-objective suitability of both

MOVRPTW and Solomon’s dataset based on the work by Purshouse and Fleming [204].

According to the authors, relationships can be of harmony (if the optimisation of one

objective leads to the improvement of the other), conflict (if the optimisation of one

objective leads to the worsening of the other) and independence (if the optimisation of

one objective does not affect the other). This way, we study the conflict, harmony and

independence of five common objectives among non-dominated solutions obtained by

NSGA-II in both datasets. This study provides the means to understand the relation-

ship between these five objectives, and to discern which benchmark dataset is better

for the assessment of multi-objective algorithms.
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Investigating the Multi-objective

Suitability of VRPTW datasets

Summary

Chapter 5 provides an overview of the characteristics of the Solomon’s dataset for

the Vehicle Routing Problem with Time Windows (VRPTW). Preliminary observations

seemed to indicate that these test instances might not be useful for multi-objective

benchmarking. The insights of this study led us to generate some problem instances

using data from a real-world distribution company. Chapter 6 presented the character-

istics of this new dataset. Features such as ‘distinct and non-symmetric travel distance

and travel time matrices’ support the hypothesis that this new dataset might be better

suited for the multi-objective assessment of the VRPTW.

This chapter presents an experimental study that compares the multi-objective suitabil-

ity of both datasets based on the work by Purshouse and Fleming [204]. Experiments

based on this work show that our dataset has stronger multi-objective features. This

chapter focuses on achieving a better understanding of the multi-objective nature of

the VRPTW. In particular, we study the conflicting relationships between 5 objectives:

number of vehicles, total travel distance, makespan, total waiting time, and total delay

time.
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7.1 Introduction

This chapter presents a study based on the work by Purshouse and Fleming [204]. They

indicate that three main relationships may occur between pairs of objectives: conflict,

harmony or independence. If there is a dependence between the objectives, they can be:

1) conflicting (if it is not possible to improve one without worsening the other), or 2)

harmonious (the improvement in one witnesses an enhancement in the other). Con-

versely, if the optimisation of one objective does not affect the other, the relationship

is of independence. When conducting multi-objective optimisation benchmarking, the

most important relationships are that of dependence. Multi-objective problems with

independent relationships among their objectives can be addressed by decomposing

the problem into sub-problems [204]. However, dependent relationships present a real

challenge to multi-objective algorithms. In general, the more conflicting objectives ex-

ist in a given problem, the more suitable this problem is for benchmarking this type of

algorithm. Purshouse and Fleming also state the importance of keeping harmonious

objectives in the optimisation process because, for example, this might provide addi-

tional knowledge to the decision maker.

The work by Purshouse and Fleming also provides an overview of qualitative and

quantitative methods for the analysis in multivariate studies. They mention two im-

portant qualitative methods: 1) Parallel coordinates plot (P-plots) and 2) Scatterplot

(S-plot). P-plots are a common way to analyse multivariate data. In order to show vec-

tors with n criteria, n parallel axes are drawn vertically and equally-spaced. A vector of

criteria is represented by a polyline with vertices on the axes. Thus, if lines connecting a

pair of axes cross, there is a conflict between the pair of criteria associated to those axes.

Conversely, those lines fail to cross if there is harmony. It is possible to visually esti-

mate the magnitude of conflict or harmony by observing the number of crossing lines

(conflict) or parallel lines (harmony). Some quantitative methods have been proposed

to calculate the magnitude of conflict and harmony based on P-plots. Wegman [257]

and Li et al. [163] related the P-plots notion of crossing lines to the concept of corre-

lation. This way, the magnitude of conflict or harmony between a pair of objectives is

related to their correlation value. If the correlation value is close to −1, then there will
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be many crossing lines and the conflict with be high. Conversely, if the correlation val-

ues is close to 1, then there will be many parallel lines, and the harmony will be high. If

the correlation takes values close to 0, P-plots will show very little interaction between

the pair of objectives, which can be interpreted as an independence relationship.

The use of Scatterplots is another method to visualise correlation. In order to show

vectors with n criteria, we generate a matrix with n columns and n rows: Mnxn. Each

element of this matrix represents the trade-off surface between a pair of objectives. For

example, M2,3 will depict the trade-off surface between the second and the third cri-

teria. Purshouse and Fleming [204] and Wegman [257] pointed out that, on occasions,

it is difficult to extract information using S-plots. However, Li et al. [163] conducted

two user studies comparing P-plots and S-plots. In these studies 25 participants had

to judge the degree of correlation in S-plots and P-plots under different conditions.

Results showed that the participants tended to under-estimate correlation in P-plots.

The authors concluded that S-plots are better tools than P-plots for visual correlation

analysis.

The purpose of this Chapter is twofold: firstly, to analyse the pair-wise relationships

that appear throughout the optimisation process, and secondly, to compare the pair-

wise relationships that appear in final non-dominated sets. The first part of our study

focuses on the analysis of the pair-wise relationships that appear as the search pro-

gresses. This part of the study uses correlation to investigate how the optimisation of

one objective affect the others. The second part of the study focuses on the understand-

ing of the pair-wise relationships that appear in final non-dominated solution archives

obtained by an Evolutionary Multi-objective Optimisation Algorithm (EMOA). We use

S-plots and correlation to calculate the magnitude of the pair-wise relationships in the

non-dominated sets found with the Solomon’s and MOVRPTW datasets. For both

studies we investigate the following five minimisation objectives: number of vehicles

(denoted as Z1) needed to serve all customers, total travel distance (Z2), makespan (Z3) or

travel time of the longest route (from/to depot), total waiting time (Z4) of the delivery

vehicles, and total delay time (Z5) or sum of tardiness for all deliveries. Note that this no-

tation is not the same than that of Chapter 4 because in this study we investigate other
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objectives. Furthermore, in this research we investigate only pair-wise relationships,

as relationships involving more objectives can be inferred from combined pair-wise

relationships [163, 204].

The reminder of this chapter is organised as follows. Section 8.4 describes the exper-

iments settings. Section 7.3 presents the discussion of the results. Conclusions and

further work is stated in Section 7.4.

7.2 Experimental Design

The two aims of this Chapter are explored in two studies. The first study uses a Vari-

able Neighbourhood Search (VNS) to investigate which pair-wise relationships appear

throughout the optimisation process across all instances in both datasets. We set the

VNS to optimise one of the five objectives each time, while monitoring the evolution

of the others. We chose to use VNS for this task as it systematically changes only one

solution at a time, so that we can track how the objectives change from one to another

solution. The second study uses NSGA-II [65] to find out which pair-wise relationships

appear in the approximation sets obtained with each dataset. In this case, we chose

NSGA-II because we wanted to obtain not one, but a set of non-dominated solutions.

7.2.1 VNS settings

We encode route-plans as sequences of customers identifiers (customers ids). Each

sequence represents a route within the route-plan. The first and last element of all

sequences is 0, meaning the depart and return from/to the depot. For example, the

route-plan (0 2 1 4 0 5 3 6 0 9 8 0) has three routes. The first route is (0 2 1 4 0), the

second route is (0 5 3 6 0) and the third route is (0 9 8 0). In the first route, the vehicle

departs from the depot 0, then visits customer 2, followed by customers 1 and 4 be-

fore returning to the depot 0. The other two sequences in the encoding have similar

interpretations.

We designed the VNS algorithm to explore neighbouring solutions by swapping pairs
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of customers with distance k within a route-plan. This distance k corresponds to the

number of elements in between two other elements. For example, the distance k be-

tween the customers with ids 2 and 5 in the route-plan (0 2 1 4 0 5 3 6 0 9 8 0) is 4.

Initially, a route-plan is randomly generated as a list (sequence) of customers ids. VNS

swaps pairs of customer ids from k = 1 (adjacent customers) to k = L − 1 (customers

in the extremes of the route-plan), where L is the number of elements (length) of the

route-plan. If a better solution is found for a given k, the process starts over by resetting

k to 1. This process finishes when no improvement occurs from k = 1 to k = L − 1. As

mentioned before, the improvement is tested according to the fitness value of only one

objective.

Figure 7.1 shows how VNS operates when using the route-plan (0 2 1 4 0 5 3 6 0 9 8

0). It first swaps customers with distance k equal to 1. That is, it will swap the pair of

customers in positions i = 1 and j = 2. Next, VNS will swap the pair of customers

in positions i = 2 and j = 3. This will continue until i and j take values 9 and 10,

respectively. The process will then start over with k equal to 2. VNS will therefore

swap the pair of customers in positions i = 1 and j = 3. The whole process will finish

when k is equal to its maximum value 9. If a better solution was found from k = 1 to

k = 9, the process will start over using this new solution as starting point. If no solution

was found, the process will be over.

In the experiments, VNS was run 20 times for each objective and instance of both

datasets with the same seeds.

7.2.2 NSGA-II settings

For the NSGA-II development we used the implementation of an Evolutionary Algo-

rithm (EA) for the VRPTW [158] as a starting point. This implementation is based on

the optimisation framework ParadisEO-MOEO [25]. We extended this implementation

to support multiple objectives, process our dataset and use the NSGA-II.

In this implementation we used a different encoding to that of the VNS. The encoding

of an individual for the NSGA-II is a list of routes (a list of lists). Each element in a
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i j
0 2 1 4 0 5 3 6 0 9 8 0 i: 1, j: 2 [k = 1]

0 1 2 4 0 5 3 6 0 9 8 0 swap i: 2, j: 3

0 2 4 1 0 5 3 6 0 9 8 0 swap i: 3, j: 4

0 2 1 0 4 5 3 6 0 9 8 0 swap i: 4, j: 5

...

0 2 1 4 0 5 3 6 0 8 9 0 swap i: 9, j: 10

i j
0 2 1 4 0 5 3 6 0 9 8 0 i: 1, j: 3 [k = 2]

0 4 1 2 0 5 3 6 0 9 8 0 swap i: 2, j: 4

0 2 0 4 1 5 3 6 0 9 8 0 swap i: 3, j: 5

...

0 2 1 4 0 5 3 6 8 9 0 0 swap i: 3, j: 5

...

i j
0 2 1 4 0 5 3 6 0 9 8 0 i: 1, j: 10 [k = 9]

0 8 1 4 0 5 3 6 0 9 2 0 swap i: 1, j: 10 [k = 9]

Figure 7.1: Example of VNS running using the route-plan (0 2 1 4 0 5 3 6 0 9 8 0)

list represents a customer. The position of a customer within a list specifies the turn in

which he/she will be served.

The population is initialised using a constructive method that aims at satisfying first

the customers farthest from the depot. After the initialisation process, all individuals

are evaluated. The fitness assignment procedure of NSGA-II is called non-dominated

sorting criterion [65]. It consists of dividing the population into non-dominated fronts.

This way, the fitness of an individual depends on the depth of its front.

Once the individuals are evaluated, a sub-group is selected for crossover. This pro-

cess recombines two parents (solutions) with certain probability γ, creating one or two

offsprings (new solutions). In this implementation, NSGA-II has 3 standard crossover

operators: (1) One-point crossover, (2) Edge crossover and (3) Generic crossover [21].

In the One-point crossover, a random number of consecutive customers are copied

from one parent to another, removing duplicates. The Edge crossover consists of (1)

constructing new intermediate solutions by joining edges from both route-plans (par-

ents) and (2) merging sub-tours creating feasible solutions. In the Generic crossover, an

entire route is copied from one route-plan to another, removing duplicates.

In order to promote diversity within the population, the offspring solutions undergo a

mutation operation with certain probability ν. NSGA-II was run using four standard
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mutation operators (Swap, Insertion, Inversion and Displacement) [21].

The Swap mutation interchanges the position of two customers within a route-plan.

The Insertion mutation consists of moving a random customer to a new position within

the route-plan. In the Inversion mutation, customers in a portion of the route-plan are

reversed. The Displacement mutation is a generalisation of the insertion mutation in

which a number of consecutive customers are moved.

In order to re-use the genetic operators of the previous implementation [158], route-

plans were forced to be feasible in terms of vehicle capacity constraints. This process

was carried out by splitting routes in which the vehicle capacity was exceeded.

In the experiments, NSGA-II evolved a population of 50 individuals for 10000 gen-

erations. We compared Solomon’s 100 customer dataset against our dataset with 100

customers. The algorithm is applied to each dataset 20 times (repetitions) with the

same parameters and seeds. This new implementation is open source and is available

at [34].

7.3 Discussion of Results

The results of the experiments stated in Section 7.2 will be discussed in two sections.

In the first subsection, we will analyse the causal relationships of pair of objectives

throughout the optimisation process carried out by the VNS (Sect. 7.2.1). In these ex-

periments, we study how the optimisation of a single objective affects the others as the

search progresses. In the second subsection, we will focus on the pair-wise relation-

ships among objectives in the non-dominated sets found by the NSGA-II (Sect. 7.2.2)

on each dataset.

7.3.1 Correlation Between Objectives throughout the Optimisation Process

As said before, our aim with the VNS was to study the relationships between pairs of

objectives throughout the optimisation process. It should be therefore noted that this

study does not compare the Solomon’s and MOVRPTW datasets.
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Table 7.1: Type of pair-wise casual relationships across Solomon’s and MOVRPTW
datasets. In the second row, conflict relationship is denoted by ⊖, harmony
is denoted by ⊕, and independence is denoted by NA or approx.0. In the
third row, ∼ indicates that causal relationships have the same sign in both
directions, while 6= is used to denote the opposite case. Causal relationships
with NA or ∼ 0 are denoted with −.

[Z1,Z2] [Z1,Z3] [Z1,Z4] [Z1,Z5] [Z2,Z3] [Z2,Z4] [Z2,Z5] [Z3,Z4] [Z3,Z5] [Z4,Z5]

Sign: ⊕/⊕ ⊖/NA ⊕/⊕ ⊖/NA ⊖/⊕ ⊕/⊖,∼ 0 ⊕/⊖,∼ 0 ⊕/⊖ ⊕/⊕ ⊖/⊕

Rel: ∼ − ∼ − 6= − − 6= ∼ 6=

Table 7.2: Average C value obtained by VNS for all instances in Solomon’s subsets
{CXXX, RXXX, RCXXX} and MOVRPTW subsets {s0, s10} (20 runs). Re-
lationships from Z1→Z2 to Z3→Z2.

Instance Z1→Z2 Z1→Z3 Z1→Z4 Z1→Z5 Z2→Z1 Z2→Z3 Z2→Z4 Z2→Z5 Z3→Z1 Z3→Z2

C1XX 0.88 -0.77 0.97 -0.88 0.94 -0.61 0.89 -0.70 -0.54 0.91

C2XX 0.76 -0.78 0.98 -0.87 0.92 -0.37 0.89 -0.47 NA 0.83

R1XX 0.88 -0.70 0.93 -0.88 0.95 -0.04 0.69 -0.44 -0.53 0.95

R2XX 0.65 -0.79 0.97 -0.85 0.91 0.22 0.81 -0.24 NA 0.88

RC1XX 0.88 -0.76 0.93 -0.88 0.95 -0.04 0.67 -0.34 -0.61 0.96

RC2XX 0.66 -0.72 0.98 -0.86 0.92 0.05 0.84 -0.32 NA 0.89

s0 0.82 -0.75 0.99 -0.88 0.92 -0.75 0.92 -0.75 -0.71 0.57

s10 0.83 -0.74 0.99 -0.88 0.93 -0.73 0.91 -0.73 -0.73 0.43

We define C(Zx, Zy) as the correlation between the objectives Zx and Zy when the opti-

misation process is carried out only on Zx. It should be therefore noted that C(Zx, Zy)

= C(Zy, Zx) is not necessarily true, as the optimisation is carried out on different objec-

tives. Since this function represents the way the optimisation of one objective affects

the other, in this section we will refer to C(Zx, Zy) or C(Zy, Zx) as causal relationships

between a pair of objectives. We denote this causal relationship using an arrow, so

C(Zx, Zy) is the same as Zx → Zy.

We present a pair of tables which correspond to each type of Solomon’s 100 customers

dataset {CXXX, RXXX, RCXXX} and MOVRPTW dataset {s0, s10} (Tables 7.2 and

7.3). Each table shows in its first column the name of the subset. Each of the remaining

columns represent the average value of the causal relationship or (just relationship) across

all instances. As said before, we work with five objectives: Z1 is the number of vehicles,

Z2 is the travel distance, Z3 is the makespan, Z4 is the waiting time and Z5 is the delay

time. For example, the column Z1→Z2 shows the average C values between the number
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Table 7.3: Average C value obtained by VNS for all instances in Solomon’s subsets
{CXXX, RXXX, RCXXX} and MOVRPTW subsets {s0, s10} (20 runs). Re-
lationships from Z3→Z4 to Z5→Z4.

Instance Z3→Z4 Z3→Z5 Z4→Z1 Z4→Z2 Z4→Z3 Z4→Z5 Z5→Z1 Z5→Z2 Z5→Z3 Z5→Z4

C1XX 0.67 0.98 0.91 0.27 -0.59 -0.72 NA 0.68 0.97 0.79

C2XX 0.41 0.97 0.92 -0.43 -0.59 -0.57 NA 0.50 0.94 0.57

R1XX 0.64 0.98 0.87 0.25 -0.50 -0.68 NA 0.87 0.98 0.89

R2XX 0.54 0.83 0.93 -0.45 -0.48 -0.51 0.85 0.42 0.96 0.61

RC1XX 0.52 0.98 0.89 0.34 -0.63 -0.71 NA 0.88 0.98 0.85

RC2XX 0.53 0.98 0.92 -0.30 -0.56 -0.62 NA 0.46 0.96 0.53

s0 -0.39 0.94 0.94 -0.20 -0.67 -0.39 -0.64 -0.08 0.84 0.02

s10 -0.21 0.97 0.96 0.07 -0.53 -0.31 -0.68 -0.16 0.88 0.31

of vehicles and the travel distance, when optimising the number of vehicles. Correlation

values vary from −1 (conflict) to 1 (harmony). Entries NA in the table indicate that

one objective or both have the same value across all solutions during the optimisation

process. Correlation values close to zero (∼ 0) or (NA) indicate an independence re-

lationship. In these experiments, all values are averaged over the 20 runs and over all

instances within the same subset.

Since we are working with five objectives, we have 20 possible relationship pairs. In

these results, we find three types of pair-wise relationships.

• Zx ∼ Zy (1st type): if the casual relationship has the same sign in both ways.

That is, Zx → Zy and Zy → Zx are both positive or both negative. The pair-

wise relationships of this type found in our experiments are always positive. In

this case, as pointed out by Purshouse and Fleming [204], one of the two ob-

jectives is redundant and can therefore be removed. However, there might be

reasons to keep both: either because of Decision Maker (DM) preference, of for

completeness (given that the inclusion of both does not, necessarily, hinder the

search process [204]).

• Zx 6= Zy (2nd type): if the casual relationship has different sign in each way. That

is, Zx → Zy is positive and Zy → Zx is negative, or viceversa. In this pair-wise

relationship type it is important to identify which relationship pair is positive,

so that we can remove the criterion on the right hand side of the harmonious
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relationship. For example, results indicate that Z2 6= Z3, because Z2 → Z3 is

negative, and Z3 → Z2 is positive. Since Z3 → Z2 is positive, Z2 can be treated as

for positive Zx ∼ Zy.

• Zx − Zy (3rd type): if one of the casual relationships does not hold. That is,

Zx → Zy or Zy → Zx have average C values close to 0 or NA (null values). In

this pair-wise relationship type it is important to analyse the sign of the non-

null pair-wise relationship. For positive pair-wise relationships we can remove

the criteria on the right hand side of the relationship pair. For negative pair-

wise relationships we cannot separate the criteria on the left hand side of the

relationship pair, because this criterion is not independent.

An example of the first type of relationships is Z1 ∼ Z2. In Z1 → Z2 (Table 7.2 − col-

umn 2) , since all vehicles have to return to the depot, increasing the number of delivery

vehicles will lead to an increase of the travel distance. Between the two objectives we

find high and positive average C values (> 0.85) in subsets {C1XX, R1XX, RC1XX}, (>

0.80) in subsets {s0.dX.twX, s10.dX.twX}, and (approx. 0.70) in subsets {C2XX, R2XX,

RC2XX}. The opposite casual relationship Z2 → Z1 (travel distance → number of vehicles)

(Table 7.2 − column 6) produces the same behaviour. The total travel distance is re-

duced when the number of vehicles is minimised. High and positive average C values

(> 0.90) are found across all instances in both Solomon’s and MOVRPTW datasets.

Another example of this type of relationships is Z1 ∼ Z4 (number of vehicles Vs wait-

ing time). Reducing the number of vehicles might also reduce the waiting time. For

example, given a route-plan in which a given vehicle serves exactly one customer, the

waiting time is maximum. In the results (Table 7.2 − column 4) , we find a high and

positive average C (> 0.90) across all instances in both datasets. For the opposite ca-

sual relationship is Z4→Z1 (waiting time → number of vehicles) (Table 7.3 − column 4)

the effect is not so clear. According to the results, reducing the waiting time also im-

proves the use of the fleet. We find high and positive average C values (approx. 0.90)

across all instances in both datasets. This might be due to the way VNS works. VNS

swaps customers within the sequence in order to create new route-plans. In this case,

VNS guides the search towards the optimisation of the waiting time. In those routes
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with a few customers with late opening times, the waiting time will be high. Therefore,

moving these customers to other routes might result in an improvement of the waiting

time, as well as in a better the use of the fleet.

We find the second type of relationships comparing Z2 6= Z5 (travel distance Vs delay

time). In Z2 → Z5 (Table 7.2 − column 9) , we get negative average C values (ap-

prox. −0.4) across Solomon’s instances, and (< −0.70) across MOVRPTW instances.

The opposite relationship is Z5 → Z2. For this relationship, the average C values for

Solomon’s dataset are positive (> 0.60), and near 0 for the MOVRPTW dataset. The

difference between these results lies in the design of both datasets. In Solomon’s in-

stances, the layout of the customers and their time windows were carefully designed.

In MOVRPTW instances, the customers are randomly spread and their time windows

were randomly selected. Thus, in MOVRPTW instances, decreasing the travel distance

will lead to an increase of the delay time (Z2 → Z5) due to customers in same areas

might have different time slots. The results in the opposite relationship (Z5 → Z2)

(Table 7.3 − column 9) are explained using the same rationale, arriving earlier to the

customers does not affect the travel distance because customers with similar time slots

are not necessarily in the same areas.

Number of vehicles Vs makespan (Z1 − Z3) is an example of the third type of relationships.

On one hand, we have Z1 → Z3 (number of vehicles → makespan) (Table 7.2 − column

3) . As we increase the number of vehicles, the makespan should decrease. In the ex-

treme case of using as many vehicles as customers to be served, the makespan will be

minimum. A high and negative average C value (approx. −0.75) is found throughout

all instances in both datasets. The opposite relationship is Z3 → Z1 (makespan → num-

ber of vehicles) (Table 7.2 − column 10) . In this relationship, due to the effect of time

windows, minimising the makespan might not have a direct impact on the number of

vehicles used to serve the customers. Our results show that in most instances the num-

ber of vehicles is not affected by the minimisation of the makespan. In all instances

with NA, the number of vehicles did not change throughout the optimisation process.

However, we find low and negative average C values (approx. −0.50) in instances

{C107, C108, R101, R102, R104, R108, R109, R111, RC101, RC108} in Solomon’s dataset
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and {s0.d0.tw0, s0.d1.tw0, s0.d2.tw4, s10.d1.tw0, s10.d1.tw1, s10.d1.tw2, s10.d1.tw3}.

These values might be due to the effect of the waiting time. One possible scenario is

that of route-plan with many routes so that: 1) the first customer of one of these routes

has a late opening time, and 2) customers within the route are far from each other. This

scenario has a large number of vehicles and the makespan is high.

The type of casual pair-wise relationships are summarised in Table 7.1. The first row

shows all possible pair-wise relationships across the 20 causal relationships. The sec-

ond row shows all signs found in the average C values of all instances for each pair-

wise relationship. The third row indicates the resulting type of pair-wise relationship

according to the above mentioned classification. For example, [Z1,Z2] exhibits in both

Z1 → Z2 and Z2 → Z1 harmony (⊕/⊕ in the second row), thus the pair-wise rela-

tionship is of 1st type (∼ in the third row) which means that either Z1 or Z2 could be

omitted. However, the omission of one of these objective will usually depend on the

DM’s preference.

Most pair-wise relationships are of the same type of dependency across all instances.

However, in some cases the type of dependency changes between instances. The rela-

tionship Z3 → Z4 (makespan → waiting time) (Table 7.3 − column 2) (RCXXX)) presents

both types of dependency: harmony (⊕) and conflict (⊖). This discrepancy appears

between the results in Solomon’s and MOVRPTW instances. In Solomon’s instances,

the average C value is of 0.54. In MOVRPTW instances, the average C value is of −0.31.

We find independence (NA) and conflict ⊖ in the relationships Z3 → Z1 (makespan →

number of vehicles) and Z5 → Z1 (delay time → number of vehicles). In Z3 → Z1 (Table

7.2 − column 10) (RCXXX)) , NA is found in all instances in subsets {C2XX, R2XX,

RC2XX}. Probably due to the interaction with time windows, conflict ⊖ is found in

some instances in subsets {C1XX, R1XX, RC1XX} and in some MOVRPTW instances.

In Z5 → Z1 (Table 7.3 − column 8) (RCXXX)) , we also find independence and conflict.

In this case, conflict ⊖ is found in some instances of the MOVRPTW dataset. Inter-

dependence NA is found in all instances in Solomon’s dataset and most MOVRPTW

instances. Other relationships that present independence are Z4 → Z2 (waiting time →

travel time) and Z5 → Z2 (delay time → travel distance). In Z4 → Z2 (Table 7.2 − column
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8) (RCXXX)) , we find harmony ⊕ in all instances in subsets {C1XX, R1XX, RC1XX},

conflict ⊖ {C2XX, R2XX, RC2XX}, and independence (approx. 0) in all instances of

the MOVRPTW dataset. Finally, in Z5 → Z2, (Table 7.3 − column 9) (RCXXX)) we find

harmony ⊕ across all instances in Solomon’s dataset and independence (approx. 0) in

MOVRTW instances.

7.3.2 Correlation Between Objectives in Pareto Approximation Sets

In the previous section, we studied which causal relationships arise between pairs of

objectives as the search progresses. This second section of the experimental analysis

aims to address the following three questions:

1. Which pair-wise relationships do appear in final non-dominated solutions sets?

2. Are these relationship pairs consistent with those that occur throughout the opti-

misation process found by the VNS?

3. Is there any difference between the correlation values obtained with Solomon’s

dataset and MOVRPTW dataset?

Following the platform for the treatment of large number of criteria by Purshouse and

Fleming [204], we treated the results using Scatterplot matrices. Figure 7.2 shows 6 scat-

terplot matrices related to: three Solomon’s instance on the left, and three MOVPTW

instances on the right. Each scatterplot matrix shows a section of the trade-off surface

between a pair of objectives (below the main diagonal), and the correlation value as-

sociated to each pair (above the main diagonal) [257, 163]. The closer the correlation

value is to 1 or −1, the larger is the font type, and the stronger is the dependence re-

lationship between the corresponding pair of objectives. A positive correlation value

indicates a harmonious relationship. The opposite occurs when the correlation values

are negative. In each matrix the objectives Z1 to Z5 are shown in the main diagonal

of the matrix ( where Z1 is the number of vehicles, Z2 is the travel distance, Z3 is the

makespan, Z4 is the waiting time and Z5 is the delay time). Dots across the scatterplot

matrices represent non-dominated solutions.
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At first sight, the correlation values seem much larger for the three MOVRPTW in-

stances. An example of harmonious behaviour is seen in the instance s0.d0.tw4 (top -

right matrix Figure 7.2) when comparing Z1 vs. Z4. Its correlation value of 0.88 indi-

cates that, as we decrease the number of vehicles (Z1), the waiting time (Z4) for each of

them gets shorter, which is logical. In the same instance, an example of conflict arises

comparing Z1 vs. Z5. Here, the correlation value of −0.90 means that by decreas-

ing the number of vehicles Z1, the delay time Z5 gets longer and vice-versa. In the

Solomon’s R101 (middle - left), the pair-wise dependence relationships between ob-

jectives appears to be weaker. For example, Z1 seems not to be related to any of the

other objective under study. The bi-criterion shape sections of the trade-off surface are

plotted below the main diagonal for both instances. It is clearly seen that MOVRPTW

instances (on the right) presents more uniform shapes than those of Solomon (on the

left).

The scatterplot matrices depicted in Figure 7.2 aim to show the relationships between

the shape sections of trade-off surfaces and their correlation values. For this reason

we only show three pairs of scatterplot matrices. Similar values are obtained for other

instances. From this section onwards we discuss the results based only on the aver-

age correlation values. We first present a subsection with results for the Solomon’s

instances and then another with results for the MOVRPTW instances.

Solomon’s Dataset:

Table 7.4 shows the average correlation values obtained by NSGA-II for all Solomon’s

subsets {CXXX, RXXX, RCXXX} and MOVRPTW subsets {s0, s10}. Each table

shows in its first column the name of the subset. Each of the remaining columns shows

average the correlation value corresponding to a pair-wise comparison between objec-

tives. For example, Z1-Z2 compares the number of vehicles against the travel distance.

Correlation values vary from −1 (conflict) to 1 (harmony). Those correlations values

equal to NA indicate that one or both objectives have the same value across all the

non-dominated solutions found. All values are averaged over the 20 runs and over all

instances within the subset.
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Figure 7.2: Scatterplot matrix for Solomon’s C107 (top - on the left), R101 (middle - on
the left) and RC101 (bottom - on the left) and for MOVRPTW s0.d0.tw4 (top
- on the right), s0.d2.tw4 (middle - on the right) and s0.d1.tw3 (bottom - on
the right). In the main diagonal the objectives Z1 to Z5 are shown (where
Z1 is the number of vehicles, Z2 is the travel distance, Z3 is the makespan,
Z4 is the waiting time and Z5 is the delay time). Each scatterplot matrix
shows, below the main diagonal, a section of the trade-off surface between
a pair of objectives and, above the main diagonal, the correlation value
associated to each pair
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Table 7.4: Average correlation values obtained by NSGA-II for all instances in for all
instances in Solomon’s subsets {CXXX, RXXX, RCXXX} and MOVRPTW
subsets {s0, s10} (20 runs).

Instance Z1-Z2 Z1-Z3 Z1-Z4 Z1-Z5 Z2-Z3 Z2-Z4 Z2-Z5 Z3-Z4 Z3-Z5 Z4-Z5

C1XX 0.23 -0.12 0.28 -0.20 -0.62 0.18 -0.27 -0.56 -0.02 0.24

C2XX 0.69 -0.82 0.99 -0.88 -0.77 0.65 -0.77 -0.83 0.92 -0.86

R1XX NA NA NA NA -0.32 -0.48 -0.13 -0.26 -0.03 0.23

R2XX 0.72 -0.64 0.73 -0.30 -0.62 0.36 -0.41 -0.73 0.47 -0.29

RC1XX 0.09 -0.18 0.18 -0.59 -0.28 -0.47 -0.04 -0.31 0.05 -0.10

RC2XX 0.75 -0.69 0.70 -0.59 -0.72 0.30 -0.70 -0.66 0.68 -0.43

s0 0.66 -0.80 0.99 -0.90 -0.63 0.65 -0.63 -0.81 0.85 -0.94

s10 0.66 -0.78 0.99 -0.89 -0.56 0.64 -0.58 -0.81 0.94 -0.91

Table 7.4 shows in the first two rows the average correlation values across all instances

with customers in clusters (i.e. subsets C1XX and C2XX). Subset C1XX presents the

customers in well defined clusters and their time windows are narrow. Subset C2XX

has wider time windows. This might explain why the correlation values are so low in

the C1XX subset. Table 7.4 shows in the first row, as Tan et al. [238] and Garcia-Najera

and Bullinaria [105] previously stated, that no conflict exists between number of vehicles

(Z1) and travel distance (Z2). However, our results indicate that no dependency holds

for any objective against Z1 in almost all the instances in C1XX. The largest values for

this subset seem to appear in the comparison of travel time (Z2) against makespan (Z3),

with an average correlation value of −0.62. Conversely, in the second row of table 7.4,

the results for the subset C2XX seem to indicate clear pair-wise dependency relation-

ships. In this subset, the most conflicting objectives are number of vehicles (Z1) against

delay time (Z5), with an average correlation value of −0.88. And it is worth noting that

in this set, the improvement of makespan (Z3) is in harmony with the improvement of

delay time (Z5).

Table 7.4 shows in the second pair of rows the average correlation results for the ran-

domly spread customers RXXX. This subset is also divided into two subsets: R1XX

and R2XX. In this case, both share the same geographical distribution of their cus-

tomers. However, R1XX has narrower time windows than R2XX. The third row of

table 7.4 corresponding to R1XX subset, we appreciate a similar behaviour as in C1XX.

That is, Z1 (number of vehicles) seems not to have a pair-wise dependence relationship to
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any other objective under this study. The only considerable conflict relationship arises

in R103 (−0.62), R107 (−0.58) and R108 (−0, 58) comparing travel distance (Z2) against

waiting time (Z4). The fourth row of table 7.4 shows the results for the R2XX subset. In

a similar fashion to the CXXX instances, the subset R2XX presents average correlation

values closer to 1 and −1 with respect to R1XX. However, the average correlation val-

ues for R2XX do not seem to be as large as for C2XX. According to these results, the

most conflicting relationship is makespan (Z3) versus waiting time (Z4), with an average

correlation value of −0.73. Additionally, it is important to highlight that in the pair-

wise comparison of travel distance (Z2) versus waiting time (Z4), we have a conflicting

relationship in the subset R1XX and a harmonious one in R2XX. It is also interesting

to see that the instance R208 does not hold the same pair-wise relationship than the rest

of the comparisons involving delay time (Z5) in the R2XX group of instances.

The average correlation values for the random-cluster Solomon’s instances appear in

the third pair of rows in Table 7.4. Subset RCXXX includes two subsets: RC1XX and

RC2XX. The difference lies in that RC1XX has narrower time windows than RC2XX.

In the first subset, there seems to be very little interaction between the number of ve-

hicles (Z1) and most other objectives. However, unlike the subsets C1XX and R1XX,

in this subset the number of vehicles (Z1) presents a conflict relationship with the delay

time (Z5). We find a similar situation as in R2XX with comparing travel distance (Z2)

versus waiting time (Z4). The subset RC1XX shows a conflict relationship, while for the

RC2XX is harmonious.

MOVRPTW Dataset:

Table 7.4 shows in the last pair of rows the average correlation values for the MOVRPTW

subsets s0 and s10. For s0 (Table 7.4 - row 7), the strongest conflicting relationships are

found for number of vehicles (Z1) versus waiting time (Z5) with average correlation value

of −0.9, and for waiting time (Z4) versus delay time (Z5) with average correlation value

of −0.93. For s10 (Table 7.4 - row 8), the most conflicting relationships are, as in the

previous case, number of vehicles (Z1) versus waiting time (Z5) with −0.89, and waiting

time (Z4) versus delay time (Z5) with −0.91.
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At the beginning of this section, we listed three questions: (1) which pair-wise relation-

ships do appear in final non-dominated solutions sets?, (2) are these relationship pairs

consistent to those that occur throughout the optimisation process found by the VNS?,

and (3) is there any difference between the correlation values obtained with Solomon’s

dataset and MOVRPTW dataset?

1. Table 7.5 shows a summary of the pair-wise relationships that appear in the fi-

nal non-dominated solutions sets across all the Solomon’s instances in subsets:

(C2XX, R2XX, RC2XX) and all instances in the MOVRPTW Dataset. Note that

Solomon’s subsets: (C1XX, R1XX and RC1XX) (instances with narrow time

windows) are not considered as the pair-wise relationships within these sets are

weak or not consistent with the others. The pair-wise relationships found in non

dominated solutions sets across all instances excluding those with narrow time

windows are consistent and logical. For example, Z1-Z5 (number of vehicles - delay

time) presents a conflicting relationship. It seems logical that improving (reduc-

ing) the number of vehicles leads to the worsening of the delay time.

2. There is consistency in the pair-wise relationships found by: 1) VNS throughout

the optimisation of one criteria (Table 7.1), and 2) NSGA-II among non-dominated

solutions sets (Table 7.5). Table 7.1 shows that [Z1,Z2], [Z1,Z4] and [Z3,Z5] have

a bi-directional harmonious pair-wise relationship: ⊕/⊕. Similarly, Table 7.5

shows that Z1-Z2, Z1-Z4 and Z3-Z5 are all harmonious pair-wise relationships.

The rest of objective pairs shown in Table 7.1 have more than one pair-wise re-

lationship type. According to Table 7.1 [Z1,Z3] and [Z1,Z5] are ⊖/NA and their

pair-wise relationship is of the 1st type: Z1 − Z3 and Z1 − Z5. As previously

noted, for negative pair-wise relationships we cannot separate the criteria on the left hand

side of the relationship pair, because this criterion is not independent (Section 7.3.1). Ta-

ble 7.5 shows that the pair wise relationship between these pair of objectives is

indeed of conflict. Objective pairs [Z2,Z3], [Z2,Z5], [Z3,Z4] and [Z4,Z5] can be

analysed using the same rationale (using the 2nd type) (Section 7.3.1). The objec-

tive pair [Z2,Z4] is a special case due to the nature of the objectives. There is not

a clear pattern for neither average C values (VNS tables) nor correlation values
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Table 7.5: General dependency relationships across the Solomon’s instances subsets:
C2XX, R2XX, RC2XX and MOVRPTW Dataset. Conflict relationship is
denoted with ⊖, while harmony uses ⊕.

Z1-Z2 Z1-Z3 Z1-Z4 Z1-Z5 Z2-Z3 Z2-Z4 Z2-Z5 Z3-Z4 Z3-Z5 Z4-Z5

Relationship ⊕ ⊖ ⊕ ⊖ ⊖ ⊕ ⊖ ⊖ ⊕ ⊖

(NSGA-II tables) across all instances.

3. The proposed MOVRPTW dataset, which is designed based on real-world data

and with a multi-objective mindset, presents better dependency relationships us-

ing pair-wise comparisons of the objectives under consideration. We have seen

that the subset of Solomon’s instances containing narrow time windows (C1XX,

R1XX and RC1XX) might not be entirely adequate for the assessment of multi-

objective algorithms as the studied pair-wise relationships are weak. Solomon’s

instances with wider time windows present a sound but still not ideal benchmark

scenario for multi-objective VRPTW.

7.4 Conclusions

The main contribution of this chapter is a better understanding of the multi-objective

nature of the VRPTW. We conduct a twofold study to analyse which pair-wise relation-

ships appear: 1) throughout the optimisation process, and 2) among non dominated

solutions sets.

This investigation is carried out using five common objectives: number of vehicles (de-

noted as Z1) needed to serve all customers, total travel distance (Z2), makespan (Z3) or

travel time of the longest route (from/to depot), total waiting time (Z4) of the delivery

vehicles, and total delay time (Z5) or sum of tardiness for all deliveries.

This first study uses a Variable Neighbourhood Search (VNS) to investigate how the

optimisation of one objective affect the others. We find three types of pair-wise rela-

tionships: 1) Zx ∼ Zy (1st type) when the relationship has the same sign in both ways,

2) Zx 6= Zy (2nd type) when the relationships has a different sign, and 3) Zx − Zy (3rd

type) when one of the relationships does not hold. The type of pair-wise relationship
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provide information about the possibility of decomposing or reducing the problem at

hand in terms of number of objectives. For example, in harmonious pair-wise rela-

tionships of the 1st type, it is possible to leave out one of the two criteria because the

optimisation in one objective witnesses an improvement in the other. The same occurs

for those pair-wise relationships of the 3rd type in which the non-null relationship is

harmonious.

The second study uses a Non-dominated Sorting Genetic Algorithm (NSGA-II) to in-

vestigate the pair-wise relationships that appear close to the Pareto optimal front. We

highlight three findings: 1) pair-wise relationships found in non-dominated solution

sets across all instances (excluding Solomon’s instances with narrow time windows)

are consistent and logical, 2) pair-wise relationships found: a) throughout the optimi-

sation (using VNS), and b) in non-dominated solutions sets (using NSGA-II) are also

consistent, and 3) pair-wise relationships found in the MOVRPTW dataset seems to be

stronger that those found in the Solomon’s dataset.

The third finding above deeds us to think that the Solomon’s instances might not be

entirely adequate to investigate the multi-objective VRPTW. Our experiments also re-

vealed that there is a much clearer interaction between different objectives in our prob-

lem instances. This is potentially a very good thing because the multi-objective nature

of this important logistic problem can be better investigated using this realistic dataset.

It is our belief that the magnitude of pair-wise relationships present in Solomon’s dataset

might be improved by implementing the suggestion discussed in Chapter 5. For exam-

ple, the Manhattan distance notion could be used to calculate the distance between

each pair of customers instead of using the Euclidean distance. The resulting distance

could be also multiplied by a noise factor so that travel distance and travel time ma-

trices are non-equal and non-symmetric. This new set-up could be tested using the

same methodology to that applied in this study. We opted to create a real-world based

dataset in order to provide an as much close-to-real scenario as possible. A scenario

in which: travel distances and travel times are obtained from reliable sources, time

windows are based on realistic profiles, etcetera.

The next chapter presents a Multi-objective Discrete Particle Swarm Optimisation im-
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plemented in CODEAv3. This algorithm extends the Discrete Particle Swarm Opti-

misation proposed by Consoli et al. [54]. This implementation is applied to the Ve-

hicle Routing Problem with Time Windows (VRPTW) and tested with Solomon’s and

MOVRPTW datasets.

136



CHAPTER 8

A simplified MODPSO for VRPTW

Summary

Chapter 3 introduced CODEA, a software library to create systems of cooperative agents

to tackle combinatorial optimisation problems. Chapters 5 and 6 described and stud-

ied two datasets for the assessment of Multi-Objective Vehicle Routing Problems with

Time Windows (VRPTW): Solomon’s and MOVRPTW datasets. Chapter 7 showed that

MOVRPTW test instances are more suitable than those of Solomon for assessing multi-

objective aspects of the problem. These studies have provided a solid foundation upon

which to build and test a cooperative multi-objective optimiser in CODEA.

This chapter presents a simplified Multi-Objective Discrete Particle Swarm Optimisa-

tion (MODPSO) algorithm implemented in CODEA v3. We apply this implementa-

tion to the Solomon’s and MOVRPTW datasets. The results obtained by this algo-

rithm are compared to those obtained by NSGA-II. The performance of both algo-

rithms is assessed using three quality indicators: hypervolume, coverage and overall

non-dominated vector generations. According to experimental results, the proposed

MODPSO performs better than NSGA-II.
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8.1 Introduction

This chapter proposes a simplified Multi-objective Discrete Particle Swarm Optimisa-

tion (MODPSO) to tackle the Vehicle Routing Problem with Time Windows (VRPTW).

This algorithm has two main components: 1) a Multi-objective component to update

the leaders based on the notion of Dominance Depth Fitness Assignment introduced

by Goldberg [116], and 2) a Discrete Particle Swarm Optimisation (DPSO) algorithm

based on the work by Consoli et al. [54].

Dominance Depth Fitness Assignment [116] classifies solutions in different classes or

fronts according to Pareto non-domination relationships. A solution that belongs to

a class is not dominated and does not dominate any other solution in that class. The

fitness value assigned to each solution depends on the class they belong to. Thus, solu-

tions in the first class or front are assigned with the highest fitness value, whereas so-

lutions in the last class or front are assigned with the lowest. The Dominance Depth Fit-

ness Assignment is the underlying mechanism in the two versions of the non-dominated

sorting algorithm: NSGA [234] and NSGA-II [65]. The non-dominated sorting mech-

anism has also been included in MOPSO algorithms, yielding to the so-called Non-

dominated Sorting Particle Swarm Optimisation (NSPSO). Li [164] presented a NSPSO

which appears to be a hybrid between a PSO and NSGA-II. Li’s algorithm creates a

temporary population of 2N individuals (where N is the size of the main population)

and non-dominated sorting is employed to select the best N individuals. Furthermore,

two mechanisms were used to maintain diversity: niche count [99] and crowding dis-

tance [65]. The performance of Li’s approach was compared to that of NSGA-II in

four test functions the ZDT problems [67] with two objectives. Ongsakul and Saksin-

chai [188] successfully applied Li’s algorithm to the multi-objective strategic bidding

problem with two objectives: profit maximisation and risk minimisation. That ap-

proach was also compared to NSGA-II in three ZDT problems [67]. However, this com-

parison was qualitative (based on non-dominated solutions plots) and no many details

were provided. Benabid et al. [12] proposed a NSPSO to tackle the multi-objective

voltage stability problem. Their algorithm used an external archive to stored non-

dominated solutions. Non-dominated sorting was used to: 1) reduce the size of the
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external archive, and 2) to select the particle’s best personal solution. Results were suc-

cessfully indicating that NSGA-II and a standard PSO were less effective than NSPSO.

Another NSPSO was presented in the works by Feng et al. [91] and Li et al. [269]. Those

two similar algorithms used an external population to store non-dominated individu-

als. Non-dominated sorting was used to reduce the size of that external population

and to update the swarm’s global leader. The performance of the proposed NSPSO

was compared to NSGA-II [65] and SPEA2 [274] in six ZDT problems [67] with two

objectives. Results indicated that the proposed NSPSO outperformed the other two

algorithms in all instances.

All the above research works have the following three characteristics in common:

• They are validated using continuous problems.

• They do not consider problems with more than three objectives.

• They use specific mechanisms to boost convergence and maintain diversity (ex-

ternal archives / diversity mechanisms).

The literature on NSPSO shows that a signifficant effort has been made to imitate the

ideas in NSGA-II. Many authors have incorporated NSGA-II mechanisms, such as non-

dominated sorting and crowding distance into their NSPSO algorithms. However, no

research have been made towards a better understanding of which specific components

of NSGA-II improve the performance of NSPSOs. Besides, most NSPSO approaches

have been mainly validated using continuous problems (usually from the ZDT series

problem-set [67]), and not taking into consideration more than three objectives.

The research proposed in this chapter focuses on the design of a simplified MODPSO

that solely uses the concept of Dominance Depth Fitness Assignment [116]. Thus, our

MOPDSO does not employ any extra mechanism to promote convergence or diversity.

We validate our algorithm using the problem studied earlier in this thesis, that is, the

multi-objective VRPTW with five minimisation objectives: 1) number of vehicles needed

to serve all customers, 2) total travel distance, 3) makespan or travel time of the longest

route (from/to depot), 4) total waiting time, and 5) total delay time. Moreover, in a sim-

ilar fashion to other NSPSO studies, we compare the performance of our MODPSO
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algorithm to that of NSGA-II. Results in both Solomon’s and MOVRPTW datasets are

analysed using three standard quality indicators: hypervolume, coverage and overall

non-dominated vector generations.

To the best of our knowledge, NSPSO has not been applied to the VRPTW. However,

we can find other MODPSO based approaches to tackle the VRPTW, such as those by

Muñoz-Zavala et al. [185] and by Shurog et al. [232]. The former work [185] proposed

a MODPSO with two main features: 1) a perturbation operator to keep diversity, and

2) a ring topology to improve the exploration capacity. They also introduced a new

data mining technique (sector models) to create customer clusters according to their

geographical positions. Experiments were carried out on Solomon’s instances with

three objectives: 1) travel distance, 2) total waiting time and 3) number of vehicles. The

latter work [232] proposed a MODPSO that combines two features: 1) dynamic inertial

weights, and 2) an immunity concept. Experiments in that work were validated using

Solomon’s instances with two objectives: 1) travel time and 2) total delay time.

We noted that these two MODPSO algorithms: 1) do not consider more than three

objectives, and 2) use extra-mechanism to promote convergence and/or diversity.

Our MODPSO is an extension of a single-objective DPSO previously proposed by Con-

soli et al. [54] for the Minimum Labelling Steiner Tree Problem. The DPSO by Consoli

et al. was first applied to the VRPTW in [31]. In that implementation the swarm had to

deal with eight minimisation objectives: 1) number of vehicles, 2) total travel distance,

3) total travel time, 4) total waiting time, 5) total delay time, 6) number of time window

violations, 7) total capacity exceeded and 8) number of vehicles in which their capacity

is exceeded. The purpose of that investigation was to study the ability of an oversim-

plified MODPSO to evolve poor infeasible solutions (large number of constraints vio-

lated) to feasible regions. Results indicated that a simple MODPSO algorithm was able

to generate feasible solutions, in some cases with objective values close to the global

optimum (in terms of 1) number of vehicles, and/or 2) travel distance [75]). We used

that study as starting point to design a simplified MOPDSO algorithm capable of out-

performing the NSGA-II. The present chapter shows that a MODPSO with two com-

ponents: 1) Dominance Depth Fitness Assignment, and 2) a simple DSPO, produces
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better results than NSGA-II with the above mentioned settings.

The reminder of this chapter is organised as follows. Section 8.2 explains how the

Consoli’s Discrete Particle Swarm Optimisation works. Section 8.3 introduces our new

MODPSO approach. Sections 8.4 and 8.5 state experiment setup and results, respec-

tively. Section 8.6 discusses the performance of this algorithm in terms of computa-

tional speed. Finally, conclusions are presented in Section 8.7.

8.2 Discrete Particle Swarm Optimisation (DPSO)

The Jumping Frog Optimisation (JFO) is an approach to the Discrete Particle Swarm

Optimisation (DPSO) proposed by Consoli et al. [54]. The metaphor of JFO is that of

a group of frogs looking around for food while jumping from one lilypad to another.

Frogs compete for food by moving towards the best locations. Thus, if a frog is well-

placed, the others will tend to move towards its position. This DPSO drops the concept

of speed. Positions are updated using a follower-attractor mechanism. A follower is a

particle (frog) that is about to move to a new position. Conversely, the attractor is the

particle that the follower uses as a reference. This way, the follower copies some of the

attractor’s features in order to ‘look’ similar to its attractor. After this operation, the

follower is in a new location with a new structure. This new structure is the product of

combining his previous features with new ones copied from its attractor.

Figure 8.1 shows the pseudocode for this approach. First, initial positions (solutions)

are assigned to all particles in the swarm. Then, for k generations and for each particle

p in the swarm(lines 2 − 3), the following operations are repeated. A roulette-wheel

selection mechanism (lines 4 − 5) is used to select the attractor. There are four possible

attractors (lines 6− 9): no-attractor, best neighbour at the current generation p.g_k, best

particle’s previous location p.b_id, and best particle’s location found by the swarm so

far g. Attractors are assigned with certain probability c1 · · · c4, so that the sum of prob-

abilities equals 1. If r ∈ c1 (line 6) then no particle acts as attractor and the follower

makes a random move (mutation) with respect to its current position p.x_id. The

purpose of this Inertial Move is to explore the area around the follower’s (particle’s) po-
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sition. If r ∈ c2 (line 7) then the particle moves towards (crossover) the best positioned

particle in its neighbourhood at the current generation p.g_k. The aim of this Cognitive

Move is to influence an attraction force within the swarm. If r ∈ c3 (line 8) then the at-

tractor is the previous best location of the follower p.b_id (crossover). This Local Move

helps the particle to explore similar features to the ones in p.b_id. In case r ∈ c4 (line

9) then the attractor is the best position g found by the swarm so far (crossover). This

Global Move encourages the re-use parts of the overall best solution g on the design of

different structures. The result of the operation of mutation or crossover is stored is n.

Then, a local search is applied to improve the quality of this new position (solution) n

(line 11). Finally, n is evaluated and the values of p.x_id, p.b_id and g are updated if

necessary (lines 12 − 13).

8.3 Proposed MODPSO Algorithm

The Jumping Frog Optimisation algorithm introduced in Section 8.2 is quite simple and

flexible, and it can be applied to many combinatorial problems. The original version

was applied to the Minimum Labelling Steiner Tree Problem [54]. In that application, the

authors built the JFO algorithm towards the optimisation of the cost of trees created

throughout the search.

This work extends the JFO to the multi-objective scenario by incorporating the notion

of Dominance Depth Fitness Assignment introduced by Goldberg [116]. This fitness

assignment scheme is used when computing the quality of the new position (solution)

n (line 12, Figure 8.1). This fitness value is then used to decide wether or not to update

p.b_id and g (line 13, Figure 8.1).

In order to show the power of this DPSO in multi-objective combinatorial problems,

no extra mechanisms are incorporated to boost diversity or convergence. Thus, un-

like many other NSPSO algorithms, the proposed MODPSO does not use mechanisms,

such as niche count [99] and crowding distance [65]. Additionally unlike in our previ-

ous work [31], in order to further simplify our MODPSO we do not use any local search

for intensification purposes (line 11, Figure 8.1).
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1 initialise(swarm)

2 for (k in generations)

3 for (p in swarm) {

4 r = rand(0,1);

5 case (r) {

6 r is in c1: n = mutation(p.x_id) // Inertial Move

7 r is in c2: n = crossover(p.x_id, p.g_k) // Cognitive Move

8 r is in c3: n = crossover(p.b_id, p.x_id) // Local Move

9 r is in c4: n = crossover(g, p.x_id) // Social Move

10 }

11 localSearch(n)

12 computeFitness(n)

13 update(n, p.x_id, p.b_id, g)

14 }

Legend:

• c1 ... c4: probabilities assigned to each attractor.

• p.x_id: current position of the particle.

• p.b_id: best position found by the own particle.

• g_k: best position in the swarm/neighbourhood in the current generation k.

• g: best position found by the swarm up to the current iteration k.

• n: new position of the particle.

• mutation: unary operator that randomly modifies features of a particle.

• crossover: binary operator that crosses a pair of particles (parents) in order to
produce offsprings with a random combination of features.

Figure 8.1: JFO Algorithm Pseudo-code

8.3.1 Solution Representation and Initialisation

In this implementation, the encoding of an individual is a large sequence of customer

identifiers (customer ids). This sequence determines the order in which customers are

served. The resulting route-plan is obtained by decoding the individual. The decod-

ing process is a deterministic algorithm that splits the large sequence into smaller se-

quences (routes). The criterion used to split the sequence is the violation of the capacity

of the delivery vehicles.

For example, the encoded individual [ 2 1 7 4 5 3 6 9 8 ] could result in the route-plan [
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2 1 ][ 7 4 5 3 6 ][ 9 8 ], after the decoding process. This route-plan has three routes: 1) [

2 1 ], 2) [ 7 4 5 3 6 ], and 3) [ 9 8 ]. In the first route, the customer with id "2" is served

in the first place and the customer with id "1" in the second. The other two routes have

similar interpretations.

The population is initialised using a constructive method that aims at satisfying first the

customers farthest from the depot. The first customer of each route is selected trying

to maximise a function that takes into account the time windows and how far each

customer is from the depot. Each route is then created by selecting the best customer

(in terms of time windows) and then by adding the cheapest customers (in terms of

travel distance) until either time windows or capacity constraints are violated.

8.3.2 Constraints and Objectives

In order to provide a more realistic scenario, we treated the hard constraints derived

from the time windows as soft constraints.

Hence, the quality of route-plans are assessed according to five common objectives (see

Section 8.1). These objectives are: 1) number of vehicles needed to serve all customers, 2)

total travel distance, 3) makespan or travel time of the longest route (from/to depot), 4)

total waiting time, and 5) total delay time.

8.3.3 Operators: Mutation and Crossover

The crossover process recombines two parents (solutions) creating one or two offsprings

(new solutions). In this implementation, we worked with three standard crossover

operators: (1) Generic crossover, (2) Two-point crossover, and (3) Edge crossover. In the

One-point crossover (Fig. 8.2), a random number of consecutive customers are copied

from one parent to another, removing duplicates. The Edge crossover (Fig. 8.3) consists

of (1) constructing new intermediate solutions by joining edges from both route-plans

(parents) and (2) merging sub-tours creating feasible solutions. In the Generic crossover

(Fig. 8.4), an entire route is copied from one route-plan to another, removing duplicates.

The mutation mechanism is the only process that the proposed MODPSO uses to pro-
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mote diversity within the population. We used four basic mutation operators: Swap

(Fig. 8.5), Insertion (Fig. 8.6), Inversion (Fig. 8.7) and Displacement (Fig. 8.8).

The Swap mutation interchanges the position of two customers within a route-plan.

The Insertion mutation consists of moving a random customer to a new position within

the route-plan. In the Inversion mutation, customers in a portion of the route-plan

are reversed. The Displacement mutation is a generalisation of the insertion mutation

which moves not one but a number of consecutive customers.

Given two route-plans:

Route-plan #1: [4] [3 2 7] [8 6 1 5]

Route-plan #2: [7 1] [2 6] [3 5 4 8]

1) Select a random Route from a route-plan (e.g. Route-plan #1).

Route-plan #1: [4] [3 2 7] [8 6 1 5] => Route: [3 2 7]

2) Copy the nodes of the other route-plan (i.e. Route-plan #2) in the new route-plan

without the nodes contained in Route, that is:

Route-plan #2: [7 1] [2 6] [3 5 4 8] => [1] [6] [5 4 8]

3) Insert Route (selected in Step 1) in the new route-plan.

New route-plan: [1] [6] [5 4 8] [3 2 7]

Figure 8.2: Generic recombination operator.

Given two route-plans:

Route-plan #1: [4] [3 2 7] [8 6 1 5]

Route-plan #2: [7 1] [2 6] [3 5 4 8]

1) Select a random Sequence of nodes from one parent (e.g. Route-plan #1).

Route-plan #1: [4] [3 2 7] [8 6 1 5] => Sequence: 2 7 8

2) Copy the nodes of the other route-plan (i.e. Route-plan #2) in the new route-plan

without the nodes contained in Sequence, that is:

Route-plan #2: [7 1] [2 6] [3 5 4 8] => [1] [6] [3 5 4]

3) Place the Sequence (selected in Step 1) at a random place in the new route-plan.

New route-plan: [1] [6 2 7 8] [3 5 4]

Figure 8.3: Two-point recombination operator.

8.4 Experimental Design

We validate this approach performance using the Solomon’s dataset [233] and the

MOVRPTW dataset [37].

The development of the NSGA-II was carried out in CODEA v3. We used the imple-

mentation of an Evolutionary Algorithm (EA) for the VRPTW [158] as a starting point.
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Given two route-plans:

Route-plan #1: [4] [3 2 7] [8 6 1 5]

Route-plan #2: [7 1] [2 6] [3 5 4 8]

1) Create an edge-list with adjacent nodes to each node in both route-plans:

Node 1: edges to other nodes: 6 5 7

Node 2: edges to other nodes: 3 7 6

Node 3: edges to other nodes: 2 5

Node 4: edges to other nodes: 5 8

Node 5: edges to other nodes: 1 3 4

Node 6: edges to other nodes: 2 1

Node 7: edges to other nodes: 2 1

Node 8: edges to other nodes: 6 4

2) Select a random node - Current node (e.g. Current node = 4).

3) Create the new route-plan using the edge-list.

3a) Examine which nodes can be accessed from the Current node.

Node 4: edges to other nodes: 5 8
Candidate nodes are 5 and 8

3b) Examine the degree of the Candidate nodes:

Node 5: edges to other nodes: 1 3 4 => degree = 3
Node 8: edges to other nodes: 6 4 => degree = 2

3c) Insert the Candidate node with the lowest degree in the new route-plan (i.e. 8).
(in case of a tie, select a random Candidate node).

3d) Set Current node to the just inserted node (i.e. Current node = 8).
3e) Go to Step 3a if all nodes have not been yet inserted in new route-plan.

Figure 8.4: Edge recombination operator.

Given a route-plan:

Route-plan: [4] [3 2 7] [8 6 1 5]

1) Select two random nodes from the parent:

Route-plan: [4] [3 2 7] [8 6 1 5] => Selected nodes: 2 and 1

2) Interchange the positions of the selected nodes within the route-plan:

New route-plan: [4] [3 1 7] [8 6 2 5]

Figure 8.5: Swap operator.

Given a route-plan:

Route-plan: [4] [3 2 7] [8 6 1 5]

1) Select a random node from the parent:

Route-plan: [4] [3 7 7] [8 6 1 5] => Selected node: 7

2) Insert the selected node in a random position within the route-plan:

New route-plan: [7 4] [3 2] [8 6 2 5]

Figure 8.6: Insert operator.

Given a route-plan:

Route-plan: [4] [3 2 7] [8 6 1 5]

1) Select a random Sequence of nodes from the parent:

Route-plan: [4] [3 2 7] [8 6 1 5] => Sequence: 2 7 8

2) Invert the selected sequence:

New route-plan: [4] [3 8 7] [2 6 1 5]

Figure 8.7: Inversion operator.
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Given a route-plan:

Route-plan: [4] [3 2 7] [8 6 1 5]

1) Select a random Sequence of nodes from the parent:

Route-plan: [4] [3 2 7] [8 6 1 5] => Sequence: 2 7

2) Invert the selected sequence:

New route-plan: [4] [3] [8 2 7 6 1 5]

Figure 8.8: Displacement operator.

This implementation is based on the optimisation framework ParadisEO-MOEO [25].

We extended this implementation to support multiple objectives (Section 8.3.2), process

our dataset and use the NSGA-II.

The proposed MOPSO used the same probability for all attractors: cx = 0.25, x ∈

{1, 2, 3, 4}. All particles used the star communication topology. Thus each particle

knew the location of all the others at any time. No mechanisms were used to promote

diversity within the swarm.

In the experiments, NSGA-II and the proposed MODPSO evolved a population of 25

individuals for 1000 generations. Both algorithms run on each instance 20 times (repe-

titions), with the exact same operators, probabilities, parameters and seeds.

8.5 Discussion of Results

In order compare the performance of our MODPSO against that of NSGA-II, we use

three standard metrics: hypervolume, coverage and overall non-dominated vectors (see Sec-

tion 2.3.4). We calculate the value of these metrics using the approximation sets ob-

tained by the proposed MODPSO and NSGA-II on Solomon’s and MOVRPTW datasets.

Tables 8.1, 8.2 and 8.3 present these metric results averaged over 20 runs. These val-

ues are also averaged over instance categories for the Solomon’s instance sets {C1, C2,

R1, R2, RC1, RC2} and the MOVRPTW instance sets {s0, s10}. The second and fourth

rows of each table show the average values obtained by MODPSO and NSGA-II. The

third and fifth row show the number of instances for which the result is significantly

better than the other algorithm in brackets. We ran pair-wise comparisons using the

Mann-Whitney-Wilcoxon test to determine which algorithm is better for each instance

and metric.
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For clarity, we discuss the results obtained for each metric in three subsections. Ad-

ditionally, we provide an overview of the performance of both algorithms in terms of

speed in Section 8.6.

8.5.1 Hypervolume

The hypervolume (or S-metric) measures the portion of space delimited by a non-

dominated solutions set and a nadir point. This nadir point is a position in the space

dominated by all solutions in the non-dominated set. In these experiments, we set this

point to the position dominated by all solutions in the approximation sets obtained

by both algorithms in each instance and for all runs. Since this metric represents the

section of the objective hyper-space covered by each approximation set, the higher this

value is, the better the performance of the algorithm (see Section 2.3.4).

Table 8.1: Normalised hypervolume metric values, averaged over instance categories,
for solutions obtained with MODPSO and NSGA-II. The number of in-
stances for which the result is significantly better than the other approach is
shown in brackets.

Algorithm C1 C2 R1 R2 RC1 RC2 s0 s10

MODPSO 0.53 0.78 0.47 0.47 0.68 0.54 0.88 0.90

(5) (8) (7) (4) (3) (3) (12) (12)

NSGA-II 0.36 0.31 0.33 0.39 0.55 0.39 0.28 0.25

(0) (0) (2) (0) (0) (0) (0) (0)

Table 8.1 presents the average hypervolume values obtained by MODPSO and NSGA-

II. MODPSO obtains larger average hypervolume values across all categories in both

Solomon’s and MOVRPTW datasets. The largest differences are found in Solomon’s

C2 and MOVRPTW s0 and s10, for which MODPSO obtains 2.5, 3.1 and 3.6 times more

average hypervolume than NSGA-II. MODPSO achieves significantly better results in

30 of the 56 Solomon’s instances and 24 of the 30 MOVRPTW instances. NSGA-II pro-

duces significantly better results in only 2 instances of the Solomon’s dataset.

According to the average hypervolume values obtained in these experiments, the pro-

posed MODPSO performs better in all Solomon’s instances except C104, R204, R208
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and RC202. In the MOVRPTW dataset, MODPSO performs better in all instances.

Across all instances in Solomon’s dataset, MODPSO gets 2.62 times more average hy-

pervolume than NSGA-II. Moreover, the standard deviation in the MODPSO results is

almost half of that of the NSGA-II, which reveals its performance to be more stable. In

the MOVRPTW dataset, our MODPSO gets 3.25 times more average hypervolume than

NSGA-II. However, the standard deviation in the hypervolume values of MODPSO re-

sults is only 0.74 times lower than that of NSGA-II.

Overall, we observe that MODPSO consistently produces better results than NSGA-

II according to the hypervolume metric. MODPSO is therefore deemed to produce

approximation sets which are more well-spread and closer to the optimal set.

8.5.2 Coverage

The coverage metric measures the extent to which one solution set is covered by an-

other solution set. Thus, according to this metric, the algorithm with the best perfor-

mance is the one whose approximation solution sets obtain the largest coverage (see

Section 2.3.4).

Table 8.2: Coverage metric values, averaged over instance categories, for solutions ob-
tained with MODPSO and NSGA-II. The number of instances for which the
result is significantly better than the other approach is shown in brackets.

Algorithm C1 C2 R1 R2 RC1 RC2 s0 s10

MODPSO 0.48 0.47 0.61 0.39 0.61 0.47 0.75 0.83

(2) (7) (2) (3) (5) (6) (12) (12)

NSGA-II 0.17 0.07 0.17 0.15 0.25 0.17 0.10 0.08

(0) (0) (0) (0) (0) (0) (0) (0)

Table 8.2 presents the average coverage values obtained by MODPSO and NSGA-II.

The second row shows the extent to which the solution sets obtained by MODPSO

cover those of NSGA-II while the third row shows the opposite. It is clearly seen

that MODPSO obtains higher average coverage metric values across all categories.

MODPSO produces in the worst case average coverage values twice as good as NSGA-

II’s in all categories. The largest differences are found in Solomon’s C2 and MOVRPTW

149



CHAPTER 8: A SIMPLIFIED MODPSO FOR VRPTW

s0 and s10, for which MODPSO obtains 6.7, 7.5 and 10.4 times more average coverage

than NSGA-II. MODPSO achieves significantly better results in 25 of the 56 Solomon’s

instances and 24 of the 30 MOVRPTW instances, while NSGA-II does not produce any

significantly better result in any instance of either dataset.

Across all instances in both datasets, the proposed MODPSO gets higher average cov-

erage values, except in the Solomon’s instance: C107. On average, in the Solomon’s

dataset MODPSO gets 4 times more coverage than NSGA-II in the categories C1 and

C2, 3.1 times in the categories R1 and R2, and 2.5 in the categories RC1 and RC2. In

the MOVRPTW dataset, MOPSO produces up to 8 times more average coverage than

NSGA-II.

These results indicate that the proposed MODPSO produce solution sets that dominate

those obtained by NSGA-II, and are therefore closer to the optimal set.

8.5.3 Overall Non-Dominated Vector Generation

The Overall Non-dominated Vector Generation (ONDV) quality indicator measures the

number of distinct non-dominated solutions obtained by each algorithm. According to

this metric, the higher this number is, the better the algorithm. However, by itself

ONDV does not provide enough information to fully compare the quality of two non-

dominated sets (see Section 2.3.4).

Table 8.3: ONDV metric values, averaged over instance categories, averaged over in-
stance categories, for solutions obtained with MODPSO and NSGA-II. The
number of instances for which the result is significantly better than the other
approach is shown in brackets.

Algorithm C1 C2 R1 R2 RC1 RC2 s0 s10

MODPSO 222.04 897.65 186.53 331.40 273.38 403.78 1181.01 1073.88

(2) (8) (1) (5) (4) (3) (11) (11)

NSGA-II 225.09 555.93 207.47 221.87 228.08 326.18 858.60 780.05

(2) (0) (2) (0) (0) (0) (0) (0)

Table 8.3 presents the average number of non-dominated solution vectors obtained by

MODPSO and NSGA-II. MODPSO produces better results than NSGA-II in all cate-
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gories except C1 and R1. However, these differences are of only 1.01 and 1.11, respec-

tively. The largest differences are found again in Solomon’s C2 and MOVRPTW s0 and

s10, for which MODPSO obtains 1.6, 1.4 and 1.4 times more non-dominated solutions

than NSGA-II. MODPSO achieves significantly better results in 23 of the 56 Solomon’s

instances and 22 of the 30 MOVRPTW instances, while NSGA-II does not produce any

significantly better result in any instance of either dataset.

The proposed MODPSO gets higher average ONDV values in 41 of the 56 Solomon’s

instances, and in 27 of the 30 MOVRPTW instances. NSGA-II produces significantly

better results in only 4 instances of the Solomon’s dataset. Across all Solomon’s in-

stances, MODPSO produces an average metric value of 340.66, while NSGA-II reaches

277.12. In the MOVRPTW instances, the respective average values for this metric are

of 1152.23 for our MODPSO and of 819.32 for the NSGA-II.

Summarising, it is clear that MODPSO produces better results according to these three

quality indicators in both datasets. The overall non-dominated solution vectors metric

indicates that MODPSO produces more non-dominated solutions that NSGA-II. The

coverage metric shows that a large number of these solutions are not covered by NSGA-

II. Finally, the hypervolumen suggests that these solutions are better spread and closer

to the optimal set than those produced by the NSGA-II.

It is also worth mentioning that the largest differences in all quality metrics are found

in the MOVRPTW dataset. A recent study shows that MOVRPTW dataset provides a

more realistic and challenging scenario for the assessment of multi-objective optimisers

[37]. This suggests that the stronger (more conflicting) the pair-wise relationships are

between objectives, the bigger the advantage of MODPSO is likely to be over NSGA-II.

8.6 Speed Performance

The proposed MODPSO is implemented in CODEA v3. Our MODPSO suffers from

a high CPU overhead, due to the use of the communication and other mechanisms

provided by CODEA. The NSGA-II implementation that we used in these experiments,

on the contrary, is developed straight on Paradiseo. For this reason a comparison of
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computation time between our MODPSO and NSGA-II is difficult. Thus, rather than

comparing the running time of both algorithms, we compare the number of objective

functions evaluations. For both algorithms, we always get a number of evaluations

equal to: number of individuals * number of generations. For example, for the parameters

stated in Section 8.4, we always get 25 ∗ 1000 = 25000 evaluation in both algorithms.

Regarding the number of operations (crossovers and mutations), the proposed MOPSO

performs the exact same number of operations as evaluations. Across all instances in

both datasets, NSGA-II performs 1.09% less operations with a standard deviation of

0.002.

It is also worth noticing that, unlike the NSGA-II, the proposed MODPSO does not

use any mechanism to promote diversity. In terms of speed the performance of both

algorithms can therefore be considered equivalent.

8.7 Conclusions

This chapter presents a simplified MODPSO which consists of two components:

• A simple Discrete Particle Swarm Optimisation (DPSO) algorithm [54].

• Dominance Depth Fitness Assignment [116] to update the leaders of the swarm.

The development of this MODPSO was motivated by the number of research works

which use complex mechanisms to boost convergence and diversity. Some of these

mechanisms include crowding distance, niche count and archiving techniques (see Sec-

tion 2.5). Furthermore, most MOPSO based approaches deal with continuous problems

with few objectives (three or less).

Our MOPDSO only uses the key component of the non-dominated sorting [65], the

Dominance Depth Fitness Assignment [116]. This fitness assignment scheme in combi-

nation with a simple DPSO [54] seems to be enough to outperform NSGA-II in dealing

with the VRPTW with five objectives: 1) number of vehicles needed to serve all cus-

tomers, 2) total travel distance, 3) makespan or travel time of the longest route (from/to

depot), 4) total waiting time, and 5) total delay time. Results in the MOVRPTW and
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Solomon’s datasets are assessed by using three quality indicators: 1) hypervolume, 2)

coverage, and 3) overall non-dominated vector generations. Moreover, our MODPSO

seems to perform much better on the MOVRPTW instances which, as we showed in

the previous chapter, are more suitable for the multi-objective assessment than those

of Solomon’s. Regarding the speed performance, both the proposed MODPSO and

NSGA-II perform the same number of evaluations and almost the same number of op-

erations (mutations and crossovers).

All NSPSO algorithms presented in Section 8.1 provide a better performance than that

of NSGA-II. However, many of these algorithms include a number of specific mecha-

nisms to boost convergence and diversity. We proposed here a MODPSO that is very

simple and still produces much better results than NSGA-II. These results raise a series

of research questions: 1) which mechanisms are really contributing to improve the re-

sults in NSPSO and other MOPSO algorithms discussed in Section 8.1?, 2) what does

happen when these algorithms have to deal with more objectives?, 3) is the perfor-

mance of NSPSO algorithms better than the performance of NSGA-II in combinatorial

search spaces? In order to answer these questions, further research should be done to

find which components actually contribute to achieve better results, and how they af-

fect the performance. This could provide a better understanding on which components

are suitable to each type of problem. This information would then lead to the design of

better techniques for addressing multi-objective optimisation problems.
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Conclusions and future work

9.1 Conclusions

This thesis presents an investigation of different aspects of Multi-Objective Optimi-

sation (MOO) and the Vehicle Routing Problem with Time Windows (VRPTW), and

proposes four tools for the further development of this area:

1. CODEA − a COoperate DEcentralised Architecture for tackling multi-objective

optimisation problems (MOP).

2. DLA − a Dynamic Lexicographic Approach to discriminate solutions with mul-

tiple objectives using random lexicographic orderings.

3. MOVRPTW dataset − a realistic and challenging dataset for the Vehicle Routing

Problem with Time Windows (VRPTW), and a configurable dataset generator.

4. MODPSO algorithm − a simplified Multi-objective Optimisation Discrete Parti-

cle Swarm Optimiser to tackle the VRPTW. The following subsections provide a

brief description and results of each of these tools.

9.1.1 CODEA − COoperative DEcentralised Architecture

CODEA is an object-oriented framework for the creation of groups of agents to tackle

MOP problems by cooperative search. This cooperation is carried out without any in-

dividual controlling the cooperation nor the behaviour of the agents. Each agent works
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solely to improve itself and collaborates to improve the performance of the group by

sharing information.

A number of feature-rich frameworks have been proposed to tackle MOPs, such as

JMetal, ECJ, HeuristicLab and ParadisEO. These frameworks are studied in Chapter 3.

This study shows that none of these frameworks provides explicit mechanisms to cre-

ate cooperative groups of agents. CODEA has been evolving for almost five years to

fill this gap. We present CODEA in two versions: CODEA v2 and CODEA v3. CODEA

v2 is the first version of CODEA that supports MOPs. CODEA v3 is the product of

the hybridisation of CODEA v2 and ParadisEO-MOEO [166]. This new framework en-

ables the creation of groups of cooperative agents with all the features provided by

ParadisEO-MOEO. As a result, CODEA v3 presents a number of competitive features

with respect to those provided by state-of-the-art MOO frameworks as shown in Ta-

ble 3.1 in Chapter 3.

Most research in this thesis has been conducted using CODEA v2 or CODEA v3 as a

vehicle to test different multi-objective techniques. However, CODEA has also played

an important role in four other studies.

• The first study was the creation of a canonical MODPSO to tackle VRPTW with 8

objectives. Results showed that this basic MODPSO was able to evolve very poor

quality infeasible solutions (randomly initialised) to the feasible region.

• In the second study, the canonical MODPSO crafted for VRPTW was adapted to

solve the Steiner Tree in Graph and Delay Constrained Multicast Routing Prob-

lems. A large number of simulations showed that the resulting algorithms was

quite competitive with respect to state-of-the-art algorithms in the literature.

• The third study introduced CODEA v2. This work provided an overview of key

study of this version of CODEA. As a practical example, three communication

topologies (start, ring and k-random) were tested on bi-objective TSP instances.

According to the results, the k-random topology was the best strategy to commu-

nicate information, and the ring topology offered the best compromise between

speed and performance.
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• This fourth study adapted the canonical MODPSO crafted for VRPTW to the Uni-

versity Course Timetabling Problem (UCTTP). Two algorithms involving groups

of asynchronous agents were created within CODEA. Results in standard UCTTP

instances show that the proposed algorithms found better results outperforming

all other existing approaches in the literature of the problem.

9.1.2 DLA − Dynamic Lexicographic Approach

DLA is a new ranking approach to discriminate solutions with multiple objectives

(Chapter 4). DLA uses random lexicographic orderings based on certain probability

distribution set by the decision maker. This ranking scheme does not require to set

fix priorities among objectives, but merely a preference. This preference is used with a

probability mass function (pmf ) to generate vector of priorities which changes through-

out the search process. This ranking scheme was tested in a simple Discrete Particle

Swarm Optimisation (DPSO) to tackle the Vehicle Routing Problem with Time Win-

dows (VRPTW). The experiments were carried out on the Solomon’s 100 customers

instances [233]. We compared the performance of two variants of DLA to that of Pareto

dominance and Lexicographic ordering. One variant of the DLA used one pmf (de-

noted as DLA), and the other used a double pmf (denoted as DLA2). DLA2 combined

an intensification and diversification phase. For this purpose, DLA2 used a pmf which

only takes into account the two objectives with the highest preference for the first k

number of iterations (intensification), and another pmf which takes into account all ob-

jectives for the remainder iterations (diversification). The performance was assessed

using the hypervolume quality indicator [271]. This indicator was calculated using the

non-dominated archives obtained by each ranking scheme using 8 objectives. From the

results we draw the following conclusions:

• DLA2 produces much better results than Pareto dominance and Lexicographic

ordering across all instances of the Solomon’s dataset.

• The success of this new ranking approach calls into question the suitability of

standard ranking methods for dealing with certain problems, in particular those
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problems with a large number of objectives as pointed out by other authors in [138,

152, 203].

9.1.3 MOVRPTW dataset

We used Solomon’s dataset to test the DLA, because the most common way to compare

heuristics is by the use of these benchmark problems [20]. However, Solomon’s dataset

was not designed for the assessment of multi-objective solving techniques. Results in

the experiments conducted with DLA indicate that this dataset might not be appropri-

ate for comparing multi-objective algorithms. Chapter 5 provides an overview of the

main characteristics of the Solomon’s dataset. A special emphasis is drawn on several

unrealistic features which might affect its potential multi-objective suitability. Aspects

that might make this dataset inappropriate for multi-objective assessment are:

• Equality between distance and time matrices. Solomon’s dataset only provides

the customers geographic location. Thus, Euclidean distances must be used to

calculate both travel distance and travel times.

• Symmetry in distance and time matrices. In Solomon’s dataset, it is assumed that

for any two pair of customers, both travel time and travel distance between them

are the same regardless of who is visited first.

In order to overcome the limitations encountered with Solomon’s dataset, we presented

MOVRPTW in Chapter 6. MOVRPTW is a novel dataset based on data obtained from

a distribution company located in Spain. The company provided us information about

the geographic location, time windows profiles and type of demands of more than 1000

customers. We used Google Maps database to calculate travel time and travel distance

between each pair of customers. MOVRPTW consists of 30 instances of 100 customers

each. These instances have five time windows profiles, three types of demands and

three types of service times. As in Chapter 5, we analysed those aspects that might

make this dataset more suitable for the assessment of multi-objective algorithms. We

draw the following conclusions:
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• No equality and no symmetry between travel distances and travel times. For

each pair of customers, we calculated travel distances and travel times in both

directions using Google Maps database.

• Consideration of low speeds in urban areas. Due to the use of Google Maps

database, we have real-based travel distances and travel times. In populated ar-

eas in which traffic congestions are frequent, there might be a considerable gap

between travel distances and travel times. This gap might be an important factor

to create better trade-off surfaces between objectives.

Chapter 7 provided an in-depth study comparing the multi-objective suitability of the

Solomon’s and MOVRPTW datasets. This comparison was based on the work by Pur-

shouse and Fleming [204]. According to their study, there are three possible relation-

ships between pairs of objectives: 1) conflict (if the improvement in one objective leads

to worsen the other), 2) harmony (if the improvement in one objective witnesses an

enhancement in the other), and 3) interdependence (if the improvement in one objec-

tive does not affect the other). We were interested in the dependence relationships

as they present a real challenge to multi-objective algorithms. The work by Purshouse

and Fleming provides an overview of qualitative methods for the analysis in multivari-

ate studies. Two important qualitative methods are Parallel plots (P-plots) and Scatter

plots (S-plots). Wegman [257] and Li et al. [163] related the notion crossing lines in

P-plots with the correlation. We therefore use the correlation to study the relationships

that arise between pairs of objectives in non-dominated solution sets. The closer the

correlation values between pair of objectives are to 1 or −1, the stronger is their de-

pendence relationship. We calculated correlation values between pairs of five common

objectives using non-dominated sets obtained by NSGA-II [65] in both datasets. Re-

sults show that the MOVRPTW dataset presents more realistic and challenging multi-

objective scenarios compared to the Solomon’s dataset. This study also revealed that

Solomon’s instances with narrow time windows are not adequate for the assessment of

multi-objective algorithms. Solomon’s instances with wider time windows produced

better results but still not sufficient for multi-objective benchmarking purposes.
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9.1.4 A simplified MODPSO for the VRPTW

A simplified Multi-Objective Discrete Particle Swarm Optimisation (MODPSO) was in-

troduced in Chapter 8. This MODPSO was the first algorithm implemented in CODEA

v3: the product of the hybridisation of CODEA v2 and ParadisEO-MOEO. Our MODPSO

has two main components: 1) a Multi-objective component to update the leaders based

on the notion of Dominance Depth Fitness Assignment introduced in [116], and 2) a

Discrete Particle Swarm Optimisation (DPSO) algorithm based on the work by Consoli

et al. [54]. Our MOPDSO does not employ any extra mechanism to promote conver-

gence or diversity.

This simplified MODPSO was applied to VRPTW with 5 common minimisation objec-

tives. A number of simulations compared the performance of this MODPSO to that of

NSGA-II on Solomon’s and MOVRPTW datasets. In order to assess the performance

of both multi-objective optimisers, we used two standard quality indicators: hypervol-

ume [271] and coverage [273]. Results using these metrics indicated that:

• Hypervolume: MODPSO performs better in all Solomon’s instances except C104,

R204, R208 and RC202, and in all MOVRPTW instances. On average, MODPSO

gets 2.62 and 3.25 times more hypervolume than NSGA-II in the Solomon’s and

MOVRPTW datasets, respectively.

• Coverage: MODPSO gets higher average coverage values in all instances except

in the Solomon’s C107, and in all MOVRPTW instances. On average, MODPSO

gets 3.2 and up to 8 times more coverage than NSGA-II in Solomon’s and MOVRPTW

datasets, respectively.

Regarding speed performance, it was difficult to compare MODPSO and NSGA-II, as

MODPSO runs on CODEA v3 and NSGA-II runs on ParadisEO-MOEO. Thus, the pro-

posed MODPSO suffered from a hight CPU overhead. Rather than comparing the run-

ning time of both algorithms, we compared: 1) the number of evaluations of the objec-

tive functions, and 2) the number of operations (crossovers and mutations). For both

algorithms, and for a fixed number of iterations/generations, we always obtained the
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same number of evaluations. Regarding the number of operations, NSGA-II performs

1.09% less operations than the proposed MODPSO across all instances in both dataset.

9.2 Proposed Future work

The present thesis deepens into a number of trending topics related to both Multi-

Objective Optimisation (MOO) and the Vehicle Routing Problem with Time Windows

(VRPTW). It is our belief that the studies here presented opens new research avenues

concerning topics, such as multi-objective ranking methods, real-world based datasets

and software frameworks for multi-objectives optimisation.

The work presented in this thesis could be extended on in a number of ways. In this

section we summarise a number of research lines.

One important research line that we are willing to explore is the creation of more com-

plex groups of cooperative agents within CODEA. For this purpose, we could use

CODEA’s features, such us the creation/destruction of agents in real-time, complex

communication topologies and the use of rich-content messages.

Some effort should be made into the development of a detailed documentation of the

API. Both technical information and practical examples should be provided in order

to create a strong foundation for new users. ParadisEO has a number of tutorials

that explain how to use this framework with a learn-by-example methodology [142].

This methodology could be applied to CODEA by creating tutorials and providing the

source code of all test cases discussed in this thesis.

We plan to implement the Dynamic Lexicographic Approach (DLA) in CODEA v3, so

that we can compare DLA against other ranking methods (e.g. ǫ-dominance [161]).

Furthermore, a number of simulations on the MOVRPTW dataset could be used to test

the robustness of this ranking approach. The study of the probability mass functions

(pmf ) used within DLA is also worth an in-depth study. It might be interesting to study

how to change k (intensification/exploration switcher) dynamically during the search.

The study regarding the multi-objective suitability of Solomon’s and MOVRPTW datasets
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could also be extended. Further research could be done into finding which elements

contribute to producing higher correlation values between pairs of objectives. Based on

these findings, experimental analysis could be carried out in tailored instances created

with the MOVRPTW generator. Furthermore, Solomon’s dataset could be improved

by using the Manhattan distance notion to calculate the distance between pair of cus-

tomers instead of using the Euclidean distance. The resulting distance could also be

multiplied by a noise factor, so that travel distance and travel time matrices are non-

equal and non-symmetric.

Finally, there are some ways to extend the MODPSO algorithm proposed in Chapter 8.

Some enhancements for this MODPSO include mechanisms such as diversity preserv-

ing mechanisms, archives or more efficient communication topologies. Additionally,

this algorithm might be applied to other problem domains in order to test its robust-

ness.
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APPENDIX A

Solomon’s Dataset - Time Windows
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Figure A.1: Time window representation of Solomon’s instances: C101 and C201 with
100 customers. The X-axis denotes the ids for both the depot (0) and the
customers (1 − 100). The Y-axis denotes the time. Customer’s time win-
dows are depicted as vertical segments.

 0

 50

 100

 150

 200

 250

 0  20  40  60  80  100

T
im

e

CustomerID

R101 - Time Windows

 0

 200

 400

 600

 800

 1000

 0  20  40  60  80  100

T
im

e

CustomerID

R201 - Time Windows

Figure A.2: Time window representation of Solomon’s instances: R101 and R201 with
100 customers. The X-axis denotes the ids for both the depot (0) and the
customers (1 − 100). The Y-axis denotes the time. Customer’s time win-
dows are depicted as vertical segments.
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Figure A.3: Time window representation of Solomon’s instances: RC101 and RC201
with 100 customers. The X-axis denotes the ids for both the depot (0) and
the customers (1 − 100). The Y-axis denotes the time. Customer’s time
windows are depicted as vertical segments.
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