
Blackwell, Paul Gavin (1990) The stochastic modelling 
of social and territorial behaviour. PhD thesis, University 
of Nottingham. 

Access from the University of Nottingham repository: 
http://eprints.nottingham.ac.uk/13594/1/277805.pdf

Copyright and reuse: 

The Nottingham ePrints service makes this work by researchers of the University of 
Nottingham available open access under the following conditions.

· Copyright and all moral rights to the version of the paper presented here belong to 

the individual author(s) and/or other copyright owners.

· To the extent reasonable and practicable the material made available in Nottingham 

ePrints has been checked for eligibility before being made available.

· Copies of full items can be used for personal research or study, educational, or not-

for-profit purposes without prior permission or charge provided that the authors, title 
and full bibliographic details are credited, a hyperlink and/or URL is given for the 
original metadata page and the content is not changed in any way.

· Quotations or similar reproductions must be sufficiently acknowledged.

Please see our full end user licence at: 
http://eprints.nottingham.ac.uk/end_user_agreement.pdf 

A note on versions: 

The version presented here may differ from the published version or from the version of 
record. If you wish to cite this item you are advised to consult the publisher’s version. Please 
see the repository url above for details on accessing the published version and note that 
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

http://eprints.nottingham.ac.uk/Etheses%20end%20user%20agreement.pdf
mailto:eprints@nottingham.ac.uk


The Stochastic Modelling of

Social and Territorial Behaviour

by Paul Gavin Blackwell

A Thesis Submitted

to the University of Nottingham

for the Degree of

Doctor of Philosophy

September 1990



ACKNOWLEDGEMENTS

I would like to thank Frank Ball, my supervisor, for all his advice and support, and Philip

Bacon for the valuable help and motivation he has provided. I am grateful to Hans Kruuk and

David Macdonald for their willingness to discuss the biological background to the models in this

thesis. I would also like to thank Caitlin Buck, Jon Forster, Sue Hills, Cliff Litton, Nick Polson,

Gareth Roberts, Adrian Smith, David Stephens and Jon Wakefield for their help and encourage-

ment at various stages of this work, and Jacqui Pate for putting up with so much.

This work was supported by an SERC research studentship.

WORK REPORTED ELSEWHERE

Some of the work in Chapters 2, 3 and 6 of this thesis has been accepted for publication as

follows:

Bacon, P. J., Ball, F. G., and Blackwell, P. G. (1990). Analysis of a Model of Group Territoriality

based on the Resource Dispersion Hypothesis.J. Theor. Biology, to appear.

Bacon, P. J., Ball, F. G., and Blackwell, P. G. (1990). A Model for Territory and Group Formation

in a Heterogeneous Habitat.J. Theor. Biology, to appear.

Blackwell, P. G. (1990). Deterministic and Stochastic Models of Social Behaviour Based on the

Resource Dispersion Hypothesis.IMAJ. Math. Appl. Med. Biol., to appear.



To Jacqui and my family.



Table of Contents

Chapter 1 Introduction 1

1.1 Territorial Behaviour 1

1.2 Sociality in Territorial Species 1

1.3 The Resource Dispersion Hypothesis 1

1.4 The Carr and Macdonald Model 2

1.5 Outline of the Thesis 4

Chapter 2 Analysing the Carr and Macdonald Model 5

2.1 Behaviour of the Basic Model 5

2.1.1 Analytic Results 5

2.1.1.1 Changing the amount of food required by a secondary,RfJ • • • • • • • • • • • • 7

2.1.1.2 Changing the required primary food security, Ca 8

2.1.1.3 Changing the patch richness,k • • • • • • • • .• • • • • ..• • • • • ....• • • • • • • ..• ...... .• ..• ..8

2.1.1.4 Changing the probability of patch availability,p • • ......... ......• 9

2.1.1.5 Summary of the effects of changes of parameter values 9

2.1.2 Numerical Results 10

2.2 Alternatives to the Binomial Distribution of Yield 14

2.2.1 The Poisson Distribution 14

2.2.2 The Normal Distribution 15

2.2.3 Interdependent Patches :..... 16

2.3 Discussion 20

Chapter 3 Simple Models based on a Continuous Distribution of Yield 21

3.1 Criteria based on a continuous distribution of yield 21

3.1.1 A Single Time Period 21

3.1.2 Long-term Territories 23

3.1.3 Naive Simulation 25

3.1.4 Conditional Simulation 27

3.1.5 Approximation 30



3.1.6 Comparison of Simulation and Approximation Methods 32

3.2 A Simple Model with a Continuous Distribution of Yield 33

3.2.1 Description of the Model 33

3.2.2 Renewal Theory 37

3.2.3 Numerical Results forp .........• .................................................................... 39

3.2.4 Analytic results forp ....• ..• ..• .....................• .• ............................................... 52

3.2.5 Territory Size and Group Size 55

3.2.6 Rate of Convergence ofE(m) • • • • • • • • • .• • • • • • • • • ..• • .• .....• .• • .....• • • • • • • • • .• .............• • ..• • .59

3.3 Generalisations of the Model 62

3.3.1 Constant Coefficient of Variation for Patches 62

3.3.2 More Than One Resource Type 63

Chapter 4 Spatial Models for Individual Territories 66,

4.1 Introduction 66

4.1.1 Motivation 66

4.1.2 Existing Models 66

4.1.3 Mathematical Background 67

4.1.4 Defining a Territory 68

4.1.5 The Quality Of A Territory 69

4.1.6 Searching for a Territory 70

4.1.6.1 Constrained Choice of Points 70

4.1.6.2 Local optimality 71

.'
4.1.7 Overview of the chapter 71

4.2 A Model with Simultaneous Choice of Points 71

4.3 Sequential Choice of Points 74

4.4 A Nearest-Neighbour Model 78

4.4.1 The Model 78

4.4.2 The Unit Disc 79

4.4.3 Using the Results from the Unit Disc 82

4.4.4 Numerical Results 84

4.4.5 Calculating the Expected Value ofPn 85

4.5 A Model using Local Optimality 86



4.6 Comparison of the models 88

4.7 Computation 89

Chapter 5 Models for Multiple Territories 94

5.1 Introduction 94

5.1.1 Existing Models 94

5.1.2 Modelling Interacting Territories 95

5.1.3 Overview of the chapter 98

5.2 Simultaneous Choice of Points 98

5.3 Sequential Choice of Points 100

5.4 The Nearest-Neighbour Model 102

5.5 The Local Optimisation Model 104

5.6 Comparison of the Models 106,

5.7 Computation 108

Chapter 6 Evolutionary Models 111

6.1 Introduction 111

6.1.1 Motivation 111

6.1.2 Modelling Individual Behaviour 111

6.1.3 Modelling the Evolutionary Process lIZ

6.1.4 Genetics 113

6.1.5 Biological Concepts: the Dynamics of Social Groups 114

6.2 Previous Work 116

6.3 A Deterministic Haploid Model 119

6.4 A Stochastic Model 128

6.5 Diploid Models 136

6.5.1 Introduction 136

6.5.2 Secondary Animals of Either Sex 137

6.5.3 Secondary Animals of Only One Sex 142

6.5.4 Comparison with Other Models 143

6.6 Discussion 145

Chapter 7 Conclusions 144

7.1 Summary of results 147



7.2 Further Work 148

7.2.1 Non-Spatial Models 148

7.2.2 Spatial Models 148

7.2.3 Evolutionary Models 149

References 150

Appendix: The REDUCE program from Section 4.4.5 154



ABSTRACT

This thesis considers mathematical models of the interaction between social and terri-

torial behaviour in animals, mainly by probabilistic methods.

Chapter 1 introduces the Resource Dispersion Hypothesis, which suggests that territorial

behaviour plus dispersed food resources can explain the existence of social groups, and

describes an existing model of the process, due to Carr and Macdonald.

In Chapter 2 the model of Carr and Macdonald is analysed, and in Chapter 3 an

improved model is suggested and its main properties derived, primarily using renewal theory.

Chapters 4 and5 consider various spatial models for territory formation, and the effect,

of spatial factors on social behaviour, using analytic and simulation-based methods.

Chapter 6 considers the evolution of social behaviour using both discrete-time deter-

ministic models and branching processes to investigate the viability of different strategies of

social behaviour in the presence of dispersed resources.
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Chapter 1 Introduction

1.1 Territorial Behaviour

A territory, for the purposes of this thesis, is an area which, along with the resources

such as food that it contains, is monopolised by one or more members of a particular species,

to the exclusion of other members of that species. Territorial behaviour, the setting up and

holding of territories, is found in a wide range of different species, including insects, birds,

fish and mammals (see for example Holldobler and Lumsden (1980), Maynard Smith (1974),

Noakes and McNicol (1982) and Macdonald (1983) respectively). Furthermore,

"Territorial behaviour, in any animal which displays it, may well be the most

important factor stabilising population numbers." (Maynard Smith, 1974).

As a consequence, territorial behaviour has been extensively studied, primarily by means of

models of territory size: see for example Davies and Houston (1984), Maynard Smith (1974)

and Schoener (1983).

1.2 Sociality in Territorial Species

The territories used by most territorial species are held by individual animals or mated

pairs (Carr and Macdonald, 1986). In other species, territories may be held by larger groups.

Usually there are clear advantages to such group living. Typical examples include co-

operative hunting in wolves (Fox, 1970) and co-operative defence against predatorsin

mongooses (Rood, 1975). However, in some species, such advantages are absent. Examples

include foxes (Macdonald, 1981) and badgers (Kruuk, 1978a,b). In these species, an alterna-

tive explanation is needed for the existence of social groups.

1.3 The Resource Dispersion Hypothesis

It has been suggested for some territorial species which live in groups, but in which

there are no obvious advantages from such grouping, that the existence of the groups, and

more generally the sizes of the groups and the territories themselves, can be explained in

terms of the distribution in space and time of resources, usually food, e.g. Bradbury and

Vehrencamp (1976), Krouk and Parish (1982), Macdonald (1981). In particular, in some of

these cases, it has been suggested that the spatial dispersion of resources determines territory

size, and the richness of the resources independently determines group size.
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Horn (1968) put forward a related model for nesting colonies in birds, but his model is

not related to territorial behaviour since it does not incorporate the monopolisation of

resources, and it will not be considered further.

Macdonald (1983; see also Kruuk and Macdonald, 1985) has put forward a hypothesis

which generalises the above ideas, and which is intended to explain the existence of group

living, even in the absence of obvious benefits. This "Resource Dispersion Hypothesis"

(R.D.H.) proposes that

"groups may develop where resources are dispersed such that the smallest econom-

ically defensible territory for a pair ... can also sustain additional animals" (Carr

and Macdonald, 1986).

Note that once territorial groups are formed in accordance with the R.D.H., it is relatively easy

for a species to develop more sophisticated forms of social interaction and co-operation. which

might not otherwise arise (Macdonald and Carr, 1989). Thus the R.D.H. may also be an

explanation of the evolutionary origins of social behaviour even in species where other advan-

tages of grouping are now present.

The R.D.H. may apply for many different reasons. For example, the smallest viable

territory for a hyaena might be one which is just large enough for the hyaena to chase and

catch its prey in. The amount of resources in such a minimum territory mightbe sufficient to

support a group of hyaena (Kruuk and Macdonald, 1985). A more general case in which the

R.D.H. might apply is when resource availability is spatially and temporally heterogeneous,

and Macdonald (1983) goes on to suggest that in this case, the R.D.H. may lead to the

independence between territory size and group size mentioned above.

A recent paper by Carr and Macdonald (1986) presents an explicit model for the process

of territory and group formation, concentrating on the heterogeneous case. The paper includes

examples to show that groups can be formed, given such heterogeneity, but does not determine

the predictions of the model in general. In this thesis we will explore their model. develop

related models which consider more general types of habitat and extend these models to cover

spatial and evolutionary factors. The aim is to understand the applicability and consequences

of the R.D.H. in the general case in which resources are spatially and temporally heterogene-

ous.

1.4 The Carr and Macdonald Model

The model presented by Carr and Macdonald (1986), with minor changes in notation, is

as follows. Food availability is assumedto be heterogeneous in both space and time:

specifically, food is assumed to occur in discrete patches, each of which mayor may not be

available at a given time. So, dividing time into discrete "feeding periods", the total amount of
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food available in each period is a random variable,R. A territory is set up by a primary

group, taken to be the "smallest, reproductively viable social unit"- typically a monogamous

pair. These primary animals each have food requirements ofRa per period. For a given terri-

tory, the food security of the primaries in that territory,Sa, is defined to be the probability of

achieving these requirements, i.e.

The primary pair are assumed to need food security at least equal to some critical levelCa;

and they will choose the smallest territory that will provide this, because of the costs of terri-

tory defence.

A potential secondary animal similarly has food requirementsRp, and critical level of

food security Cp. Hence, if the territory set up by the primary pair satisfies

where

(1.1)

then a secondary animal can also obtain its food requirement from the territory, even if it

accepts subordinate status and never competes with the primary pair for food. So in these

circumstances, a secondary animal can share the territory at no cost to the primaries.

Let k be the amount of resources in a patch when it is available, which we call its rich-

ness. Let X be a random variable with a Bemoulli(p) distribution, i.e. X takes the value 1 with

probability p, and the value 0 with probability 1-p. Then the yield from a patch with rich-

nessk and probability of availabilityp is the random variablekX. If a territory consists ofn

patches, independent and identical, then the yield will be R= kY, where Y has a
.'

Binomial(n, p) distribution. Thus the primaries will set up a territory consisting ofn patches,

where n is the smallest number such that

R/k - Binomial(n,p) => Pr(R ~ 2Ra) ~ Sa.

For example, consider the caseRa = Rp = k = I, for simplicity, and Ca = 0.9S,Cp =
0.9, as suggested by Carr and Macdonald (1986).If p = 0.8, thenn = 4 is the smallest terri-

tory which will satisfy the primary pair, givingSa= Pr(R ~ 2) = 0.97. In this case,

Sp = Pr(R ~ 3) = 0.82, so no secondary animal canbe accommodated. Similarly, ifp = 0.9,

then n = 3 is the smallest satisfactory territory, givingSa= 0.97,Sp = 0.73, so again there is

no secondary. However, ifp = 0.86, the primaries still requiren = 4, but now Sp = 0.903,

which means the territory will also support a secondary animal.
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1.S Outline of the Thesis

In Chapter 2, we will analyse the Carr and Macdonald model in some depth, and in

Chapter 3 we consider a modified version. In subsequent chapters, we consider extensions of

our modified version of the model to cover spatial location of resources (Chapters 4 and 5)

and the evolution of group behaviour in the presence of resource heterogeneity (Chapter 6).
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Chapter 2 Analysing the Carr and Macdonald Model

The examples given by Carr and Macdonald (1986) show that their model proves that in

some circumstances, spatial discreteness and temporal variability of resources can lead to the

formation of groups occupying territories, without assuming any social interaction. However,

the overall behaviour and predictions of the model are not explored in that paper. In this

chapter, we consider their model in more detail, to determine how widely it is applicable, in

what cases it predicts the formation of groups, and the relationships it implies between group

size, territory size, and resource richness.

2.1 Behaviour or the Basic Model.

In this section we examine the behaviour of the main model described by Carr and Mac-

donald (1986), in which the total yieldR from a territory in a given period has a Binomial

distribution, scaled by some constant richnessk, as described in Section 1.4. In Section 2.1.1

we consider the qualitative behaviour of the model, and in Section 2.1.2 we give some numeri-

cal results, expressed in tabular and graphical form.

2.1.1 Analytic Results

The simplest case is that of "very rich" patches, by which we mean that anyone patch,

if available, provides more than enough resources for the primary pair and one or more secon-

daries, i.e.

In this case, since R can only take the values 0, k, 2k, ... we have

= Pr(R ~ 2Ra+Rp)

= Pr(R * 0)

= 1-(I-p)". (2.1)

If we also assume Cp ~ Ca' i.e. that the food security required by a secondary is no greater

than that required by the primary pair, then
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implies that

So in the case of very rich patches, providedCp ~ Ca' any territory set up by a primary pair

could support a secondary animal, regardless of the value ofp.

In fact, more than one secondary may sometimes be supported. The argument of the

previous paragraph is unchanged for any number of secondariess satisfying

So by just considering the probability of at least one patch being available, we see that the

number of secondaries which canbe supported is at least

-lk-2RaJs- ,
Rp

(2.2)'

where !.xJ is the largest integer not greater thanx, For certain parameter values, the probabil-

ity of at least two patches being available is also at leastCp, which will result in additional

secondaries being supported. This is discussed in Section 2.1.2. In most cases, however, the

predicted number of secondaries is given by equation (2.2). For example, ifk = 5.5, and

Ra = Rp = I, then provided Cp ~ Ca' any territory set up by a primary pair could support

three secondary animals.

On the other hand, from equation (2.1), the territory size, represented by the number of

patchesn, does not depend on the richness of the patches (as long as they remain "very rich"),

but is determined by Ca andp, and is given by

- rln(1-Ca)ln - ,
In(l-p)

where rxl is the smallest integer not less thanx.

So in the case of very rich patches, if we compare different habitats, represented by

different values ofk andp, the model predicts that territory size is a function of probability of

availability p, whereas group size is a function of richnessk; and is typically independent of

p, and so territory size and group size may appear independent.

Groups may also occur with lower values ofk; i.e. where patches are not "very rich".

This case is not so straightforward to analyse, since the various parameters can interact. In

general,Ra' Ca' kandp all affect territory size, and all the parameters affect group size.
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We need the following notation :

r= r~al
the smallest integer not less than2Ralk, i.e. the requirements of the primary pair in patches;

and

, - r2Ra
+

Rplr - ,
k

the requirements of the primary pair plus one secondary animal, in patches. Note that since

the patch richnessk is explicitly included in this formulation, we can takeRa = 1, without

loss of generality.

In this general case,n will be chosen by the primaries10 be the smallest integer such

that

Pr(Y ~ r) ~ Ca'

where Y has a Binomial(n,p) distribution, and son depends onk through r. The cases where

a group can be formed, and more generally the size of such a group, are more difficult10

determine. We need to look at the effect of the parametersRp, Ca, k and p on the food

security Sp of potential secondary animals.

For reference, the meanings of the various symbols we have defined are collected in

Table 2.1.

2.1.1.1 Changing tbe amount of food required by a secondary,Rp

Since equation (1.1) can be rewritten in the above notation as

Sp = Pr(Y ~ r'),

it can be seen thatRp only affects SfJ through r', and so changes inRp which do not changer'

have no effect. Changes inRp which do changer' will cause a discontinuous change inSp.

This will occur whenever(2Ra+Rp)/k is an integer, that is when

(2.3)

for some integerj. As Rp increases past each of these values,Sp will decrease: the exact

values before and after depend onk andp. Given a value forCp , and fixing k and p, this

means there will be some valueR* such that

Rp > R* ~ Sp < Cp;
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Table 2.1

Meanings of symbols

Symbol Meaning

The level of food security required by the primary pair

The level of food security required by a secondary animal

The richness of a patch i.e. the amount of resourcesit gives when it is

available

The number of patches in a territory

The probability of availability, in a given feeding period, of each patch

The total amount of food available in a given feeding period

The food requirements per period of a primary animal

The food requirements per period of a secondary animal

The food requirements of the primary pair expressed in patches

The food requirements of the primary pair plus one secondary animal

expressed in patches

Sa The food security of the primary pair in a given territory

Sp The food security of a potential secondary animal in a given territory

X A random variable indicating the availability (X= 1) or non-

availability (X = 0) of a particular patch in a given feeding period

Cp

k

n

p

R

Rp

r

r'

y The number of patches available in a given feeding period

andR* will be of the form given in equation (2.3).

2.1.1.2 Changing the required primary food security, Ca

Ca only affectsSp through the value ofn, although the values at which changes inn

OCcur are not as easily characterised as the values ofRp at which r' changes. When n

increases.Sp will increase, so there will be some value ofCa' C* say, below which secondary

animals are absent, and above which they are present. Of course, it is possible that for given

values ofRa,Rp, Cp,k andp, the valueC* might be unrealistically low, in which case secon-

dary animals will never be present with those parameter values.

2.1.1.3 Changing the patch richness,Ie

Similarly. k only has an effect onSp through r and r', Increasing k: only affects Sp

when r changes, at

k = 2Ra/i,
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for some integerj, when SfJ may decrease (if n increases), or when r' changes, at

k = (2Ra+RfJ)/j,

for some integerj, when SfJ will increase. Note that these two sets of critical values are inter-

spersed, so it is not generally possible to find a valuek* such that

and k > k* => SfJ" efJ;

or any similar simple relationship. Some examples are given in Section 2.1.2.

2.1.1.4 Changing the probability of patch availability,p

The effect of varyingp depends on whether this causesn to change or not. An increase

in p which reducesn, because it means the primaries are satisfied with fewer patches, will

obviously decreaseSfJ; whereas an increase inp which does not altern will increase SfJ.

Thus, as for the parameterk, it is not possible to summarise the effect ofp in any simple form

such as "secondary animals are present if and only if p ~ p*".

2.1.1.5 Summary of the effects of changes of parameter values

The complexity of these responses to changes in the parameters is largely due to discon-

tinuities, which are a consequence of the discrete distribution used for the yield from a terri-

tory. The parameterisation used both here and in Carr and Macdonald (1986), although

natural, also makes the effects of some parameters more complex. For example, changingp

affects the expected yield per patch, the coefficient of variation of yield, and the shape of the

distribution. If the change inp causes a change inn, the effect is even more complex.

These results show that this more general model does not conform to the simple relation-

ships which describe the case of "very rich" patches. In particular, the hypothesis that terri-

tory size is independent of richness and group size is an increasing function of richness,

independent of territory size, no longer holds. Territory size is now predicted to decrease with

richness. Group size can be increasing with richness at some values of richness, and decreas-

ing with richness at other values, even if all other parameters are held constant, i.e. group size

can vary non-monotonically with richness. If habitats of differing richness are compared,

almost any relationship between territory size and group size might be observed.
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2.1.2 Numerical Results

The relationship betweenSfJ' the secondary food security, andk; the patch richness, is

complicated, as mentioned above. Figure 2.1 shows the graph ofSfJ against k in the case

Ra = Rp = 1, Ca= 0.95, andp = 0.65. The critical valueSfJ = Cp = 0.9 is also shown for

comparison. SinceSp depends onk only through the integers randr', the graph has discon-

tinuities at the points wherer or r' changes, and is constant between these points.

Similarly, Figure 2.2 shows the graph ofSfJ againstp, the probability of patch availabil-

ity, in the case wherer = 4,r' = 5. Discontinuities occur in Fig. 2.2 at those values ofp that

cause n, the number of patches in the territory, to change. Except at these points,SfJ is

increasing withp, since with a given number of patches, a higher probability of availability

leads to higher food security.

As k or p varies, by comparingSfJ with Cp we can determine when secondary animals

will be present. This information, for all combinations ofp and k, is summarised in Figure

2.3. The shaded regions in the figure indicate those values ofp and k for which secondary'

animals are predicted. An important conclusionto be drawn from Fig. 2.3 is that apart from

the case whenr' = r, the parameters suggested in Carr and Macdonald (1986),Ca =
0.95, CfJ = 0.9, Ra = RfJ = 1, actually result in few cases where secondary animals are

present.

These results are further summarised in Table 2.2, which shows those values ofp for

which secondaries are predicted, given different values ofk,

Table 2.2

Values ofp giving secondary animals

."
k r r' p

0.50 ~k< 0.60 4 6 None

0.60 ~k< 0.67 4 5 Somep ~ 0.4

0.67 ~k< 0.75 3 5 None

0.75 ~k< 1.00 3 4 Somep ~ 0.65

1.00 ~k< 1.50 2 3 Somep ~ 0.75

1.50 ~k< 2.00 2 2 All

2.00 ~k< 3.00 1 2 Somep ~ 0.8

k ~ 3.00 1 1 All

"Some p" in the table means that secondaries are predicted for values ofp in part of the

region indicated, possibly only a small part, and not necessarily an interval, as can be seen



0.6

Secondary
Food

Security
Sp

- 11 -

1

........... :-:.~ .

0.8

0.4

0.2

O~--------~---------r---------r--------~
o 2

Patch Richness k
1 3 4

Figure 2.1

The graph of secondary food securitySp against patch richnessk when p = 0.65.

shown for the interval 0.4< k ~ 4.0. (solid); and the line corresponding to the

critical value Sp = Cp = 0.90. (dotted). Secondary animals will be present when

Sp ~ Cp. Values corresponding to 0.0 ~k ~ 0.4 are omitted for clarity. For all

k ~ 3.0. Sp is constant.
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Figure 2.2

The graph of secondary'food securitySp against probability of availabilityp when

r = 4, r' = 5, shown for the interval 0.08 ~p < 0.99, (solid); and the line

corresponding to the critical valueSp = CfJ = 0.90, (dotted). Secondary animals

will be present whenSfJ ~ Cp. For p < 0.08, the trend continues, but values ofSp

are omitted for clarity. For 0.99 ~p ~ LOO,Sp = 0.0 (not shown).
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o 1 2
Patch Richnessk

3 4

Figure 2.3

The combinations (shaded regions) of patch richnessk, and probability of availa-

bility, p, for which Sp ~ Cp = 0.9, i.e. for which secondary animals are present.

For k ~ 3.0, secondaries are always present.
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from Fig. 2.3. For k ~ 0.5. rand r' vary. but always satisfyr' -r ~ 2. and no secondaries are

predicted.

We are now in a position to reconsider briefly the case of "very rich" patches. In such a

case. additional secondaries. above the number given in equation (2.2). can be supported if

and only if the probability of at least two patches being available is at leastCp. But this

condition is equivalent to a single secondary being supported in the more general model. when

r = 1.r' = 2. From Table 2.2. for the given values ofCa and Cp. the latter event can only

occur for certain values ofP ~ 0.8. Hence. we can generally take the number of secondaries

in the case of "very rich" patches to be given by equation (2.2).

2.2 Alternatives to the Binomial Distribution of Yield.

The Binomial distribution for the total yield froma territory follows from the assump-

tion that a territory consists of a finite number of individual patches. with yields given by

independent and identical Bernoulli random variables. A different distribution for total yield,

might be obtained either by relaxing some of these assumptions. or as an approximation to the

Binomial case.

2.2.1 The Poisson Distribution

The Poisson distribution with rate parameterA. (A. ~ 0) is defined by:

Pr(R = J) = Aie-A/jl. j = 0.1.2 • ....

Its use to represent the distribution of total yield from a territory is discussed briefly in Carr

and Macdonald (1986). and can arise in two possible ways,'

Firstly. the Poisson may be used as an approximation to the Binomial with large nand

small p. More precisely. for.I = 1.2. 3.... let Y, have a Binomial distribution with parameters

n, and P,. and let lim n, = 00. lim PI = 0 and lim n,PI = A. > O. Then Y, ~ Y as I ~ 00.
1-+- 1-+_ 1-+-

where " ~ " denotes convergence in distribution. and Y is a Poisson random variable with

rate A.. Hence the Binomial distribution with parameters nandP. where n is large andP is

small can be approximated by the Poisson distribution with rateA. = np,

If R = kY represents the yield from a territory in the Carr and Macdonald model. the rate

A. will be determined by the primaries' choice of territory size. i.e.A. will take the smallest

value such thatSa ~ Ca. Since the Poisson approximation is only appropriate in cases where

P is small, it follows from the results in Table 2.2 that, ifCa = 0.95, Cp = 0.9. Ra = Rp = I,

a secondary will be present if and only ifr = r'.

Secondly. the Poisson distribution may occur in its own right in the case where equal-

sized patches of food appear at random in space and time. The simplest such model assumes
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that in each feeding period, patches occur as a two-dimensional homogeneous Poisson point

process (see e.g. Cox and Isham. 1980). Le. completely at random in space. and that all feed-

ing periods are independent In a territory of fixed area. it then follows that the numbers of

patches available in successive feeding periods are independent Poisson random variables.

with rate A. = qA. where q is the intensity of the point process. andA is the area of the terri-

tory. The calculation of the value ofA. chosen by the primaries will be the same as in the case

where the Poisson is used as an approximation to the Binomial. so again the presence of

secondary animals is not predicted for parameter values close to those suggested by Carr and

Macdonald.

Note that Figure 6 in Carr and Macdonald (1986) is incorrect. The two curves should be

smooth with bothSa and SfJ approaching 0 asR ~ 0 and approaching 1 asR ~ 00.

2.2.2 The Normal Distribution.

The Normal distribution can be used as an approximation to the Binomial. in the case,

when n is large andp is in the open interval (0.1). The precise result is DeMoivre's theorem

(see Seneta (1982) for a discussion of its history): if for1= 1.2.3 • ...•Y, has a Binomial dis-

tribution with parametersI andp (p e (0.1». then

Y,-lp D Y~ • asI ~ 00.

v1p(l-p)
(2.4)

where Y has a standard Normal distribution. Le. Y -N(O.I). Equation (2.4) is simply a spe-

cial case of the Central Limit Theorem. since a random variable with the Binomial(n.p) distri-

bution can be thought of as the sum ofn independent and identically distributed Bemoulli(p)

random variables. So. if n is large. andp is in (0; I). equation (2.4) implies that a

Binomial(n.p) distribution can be approximated by the Normal distribution with meannp and

variance np(l- p). Hence if R represents the yield from a territory. with R= kY~Y -.-.
Binomial(n.p) we can approximate the distribution ofR by a Normal distribution with meanJl

and variance(72. where

(2.5)

A·similar argument shows that the Normal distribution can also be used to approximate a Pois-

son distribution with large rateA. multiplied by some richnessk, with the Normal distribution

having mean and variance given by

(2.6)

Equations (2.5) and (2.6) restrict the range of Normal distributions which represent valid

approximations to Binomial or Poisson distributions. Although Carr and Macdonald (p_1541)

use Normal distributions to approximate Binomial or Poisson distributions of yield, they do
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not take into account these restrictions. For example, consider Figure 2 of Carr and Mac-

donald (1986). We haveRa = Rp = 1, Col = 0.95, Cp = 0.9, J.l = 6.9, Cl = 3, and n.p.k

unspecified. If this is a Normal approximation to a Binomial distribution scaled by some rich-

nessk, we have

k = (k2)np(l-p)/knp(l-p)

= 1.3.

But k ~ 1.3 means that the richness of individual patches is at least 1.3, so the Normal curve

shown will give inaccurate values forPr(R ~ 2) and Pr(R ~ 3). Hence the curve shown can-

not represent a useful Normal approximation to any scaled Binomial distribution.

Another way of looking at this restriction is that, for a good approximation, r and r"

must be reasonably large. From the numerical results in Section 2.1.2, this means that the

cases where the Normal approximation is valid do not result in secondaries being present, at

least when the parameters have values close to those suggested by Carr and Macdonald

(1986).

2.2.3 Interdependent Patches.

The distributions for total yield discussed so far are based on independent identically

distributed yields from distinct patches. The case where patches are not identical would be

extremely complicated within the current model, and is not pursued here, although differences

between patches are considered in the models of Chapter 3, where the mechanism for variation

over time is different. However, the assumption of independence between patches can be

relaxed, and we explore some alternatives in this section.

Interdependence between patch yields seems likely in reality, and has been documented

in some specific cases. For example, the patches of earthworms on which badgers feed were

found by Kruuk (1978a) to have interdependent yields. Carr and Macdonald give other refer-

ences, and suggest possible reasons why either positive or negative correlation between

patches might occur. However, their discussion of the effects of interdependence on their

model is misleading, since they incorrectly assume that interdependence of patches is directly

linked to the skewness of the overall distribution. In fact, there is no such connection. The

Binomial distribution, which is based on independent patches, may be symmetric or skewed

depending on the value ofp. The shape of an interdependent distribution, conversely, need

not be skewed, as will be seen in the examples below.
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To discuss interdependence in more detail, we need to consider specific models. As

mentioned at the beginning of this section, we wish at this stage to retain the idea of a simple

unstructured environment, with indistinguishable food patches. This implies that the random

variables Xlt ... ,X" representing yields from individual patches not only have identical distri-

butions, but are exchangeable. That is to say, for any 1:lit; it < i2 < ... < i,,, the distribution

of (Xi' ",Xi ) depends only on the value ofk, and not on the choice ofilt ... ,il;' In addition,
1 •

since the Carr and Macdonald model involves choosing the value ofn to satisfy a particular

criterion, with no upper bound onn, it is necessary to write down a model for the environment

from which the patches come which does not involve a specific value forn. The natural

mathematical formulation of this condition is that it should be possible to embed Xt , ... ,X .. in

an infinite sequence of exchangeable binary random variables, (Kingman, 1978; Ball and Don-

nelly 1988, Section 5). De Finetti's theorem (de Finetti, 1937) then states that

Pr(Xt = Xh""X" = x..) = Lt p>'(I-p)"->' dF(p) for x..... ,X" = 0,1, (2.7)

..
wherey = L Xi' andF is the distribution of some random variableP on [0,1]. Hence

i = t

so the covariance (and correlation) between patch yields is non-negative whenever Xt , ... ,X ..

can be embedded in an infinite exchangeable sequence.

This suggests that models involving indistinguishable patches cannot adequately

represent negative correlation between patch yields. Such negative correlation can be incor-

porated into models where the environment has some explicit structure, e.g. where patch loca-

tions are modelled (see Besag, 1974, for a discussion of models of spatial interaction; his

Section 4.2.1 considers models for collections of binary random variables) or where patches

are labelled as being of different types, corresponding to resources likely to be available under

different conditions. (Multi-type models are discussed briefty in Section 3.3.2.) For present

purposes, however, we concentrate on models involving positive correlation between patches,

"satisfying equation (2.7). We are primarily interested in the distribution of Y= L Xi' and so
i - t

we can rewrite equation (2.7) as

Pr(Y = y) = (;)f p>'(I-p)"->' dF(p).

Hence the distribution of Y can be written as a mixture of Binomial(n,p) distributions, keeping

n constant, and mixing with respect top. Thinking of Y as such a mixture corresponds closely

to Carr and Macdonald's (1986) idea of "micro-climatic phenomena"(p. 1545), in that, in

each period,P is sampled once, representing the current local micro-climate, and the patch

yields are conditionally independent given thatP = p.
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We consider only the case whereP has a Beta(a,b) distribution, i.e. whereP has density

The resulting mixture distributions forY form the family of P6lya-Eggenberger or Binomial-

Beta distributions (Johnson and Kotz, 1969, pp. 78-79, 159, 189,229-232), given by

Pr(Y = y) = r(n+ 1) .r(y+a)r(n-y+b), y= O,l, ... .n.
r(y+ l)r(n-y-l) r(n+a+b)

This is a rich family, including bimodal, (discrete) uniform and unimodal distributions, and

including Binomial distributions as a limiting case.

Figure 2.4 shows some examples of the P6lya-Eggenberger distribution, withn = 10,

and with a= b to illustrate the point made above that interdependent distributions may be

symmetric rather than skewed. Note that the distribution in Fig. 2.4a, with a= b = 00, is just

the Binomial distribution withn = 10,p = 0.5. The effect of these P6lya-Eggenberger distri-

butions on the Carr and Macdonald model, when they are interpreted as distributions for total'

yield, is shown in Table 2.3. The parameters held constant arer = l,r' = 2, and Ca= 0.95.

The table shows the effect on the number of patchesn required for a territory, and the secon-

dary food securitySfJ' of different values of a= b.

Table 2.3

Territory Sizes and Values of Secondary Food

Security with Interdependent Patch Yields

a=b n SfJ

00 5 0.812

5 6 0.832

1 19 0.900

0.5 125 0.924

The table shows a clear trend: asa( =b) decreases, that is as the correlation between patch

yields increases and the variability of total yield increases, both the size of a territory

(expressed asa number of patches) and the food security of a potential secondary animal

increase.
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Figure 2.4d Beta-binomial Distribution with a= b = 0.5
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2.3 Discussion

The model presented by Carr and Macdonald (1986) shows that in some circumstances,

the minimum territory needed by a pair of animals may, because of heterogeneity of resources,

support one or more extra animals. However, the analysis in the current chapter shows that

except in the case of "very rich" patches, the range of circumstances in which such groups

will be formed is quite narrow. Another prediction of the model is that independence between

territory size and group size would only be expected to apply in the case of "very rich"

patches. Finally, the behaviour of the food security of secondaries as the parameters of the

model vary is generally complicated and non-monotonic.

However, the predictions from the model appear to be very dependent on the underlying

assumptions about the distribution of yield, in particular the assumption of identical patches,

each with yield following a scaled Bernoulli distribution. These assumptions also make the

model rather intractable, except in the simplest cases.

The Carr and Macdonald model therefore shows explicitly that the R.D.H. can explain'

the existence of groups, and, particularly in the case of "very rich" patches, indicates the rela-

tionships that might be expected to exist between territory size, group size, and richness. For

a more general analysis of the problem, however, it seems that a more flexible, tractable model

is needed. One possible way to achieve this would be to model the yield from an individual

patch as a continuous random variable, rather than as just available or not available. Such a

model might be more realistic in many cases, and would give a continuous distribution for the

total yield from a territory, which should be more amenable to analysis than a discrete distri-

bution. A continuous distribution of total yield might also make it possible to consider varia-

tions in richn~ss between patches, which again might be more appropriate but which, with a

Bernoulli distribution as the starting point, would lead to an even more complicated overall

distribution. In Chapter 3, we consider a model with a continuous distribution of yield.
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Chapter 3. Simple Models based on a Continuous Distribution of
Yield

The model described in Chapter 2 assumes that the yield from a territory in a given

feeding period is a discrete random variable, arising as the sum of a number of Bernoulli

random variables (independent or otherwise), multiplied by some scale factor representing the

richness of all patches in the habitat. While such a model may be realistic for some habitats,

there will clearly be cases where the distribution of yield will have a more general form. In

addition, the results of Section 2.1 show that models based on a discrete distribution are often

intractable, and that some of the results which can be obtained maybe artefacts of the precise

assumptions leading to the use of, for example, a Binomial distribution. We attemptto solve,

some of these problems in the current chapter by considering a continuous distribution for

yield. In Section 3.1 we look at criteria fora satisfactory territory in a habitat giving a con-

tinuous distribution of yield, in Section 3.2 we look at a specific simple model based on those

criteria, and in Section 3.3 we consider the effect of relaxing two of the simplifying assump-

tions: that the variance of total yield is proportionalto mean total yield, and that only a single

resource is important.

3.1 Criteria based on a continuous distribution or yield

3.1.1 A Single Time Period

We start by considering the criterion which determines whethera territory is large

enough to support aprimary pair of animals over a single feeding period. LetX be a continu-

ous random variable denoting the yield froma territory, let a be a constant representing the

required level of resources, and let cbe a constant representing the required "food security" of

the primary animals. Then, following closely the approach of Carr and Macdonald (1986),as

described in Chapter 1, we say that a territory is satisfactory for the primary group if and only

if

Pr(X ~ a) ~ c. (3.1.1)

Furthermore, let us assume that X has a Normal distribution with meanJI. and variancea2 (this

assumption is further discussed in Section 3.2). Then we have

X-JI. a-JI.
Pr(X~ a) = Pr(-- ~ -).

a a
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But by definition,

(X -/J)/(1 - N(O,l)

and hence

where

is the distribution function of the standard Normal distribution. Hence a territory is satisfac-

tory for the primaries if and only if

tb(Jl- a) ;!: c
(1

/J-a
¢:> -- ;!: w,

(1
(3.1.2)

where we define

w = tJ)-l(C).

Note that w is an increasing function ofc ; and is therefore another measure of required food

security. Similarly, definea' to be the total amount of resources required by a minimum-sized

group (typically a primary pair plus one secondary animal) andc' to be the food security

required by a potential secondary animal. Then a territory with yield X will be able to support

a secondary animal if and only if

Pr(X ;!: a') ;!: c'

/J-a' ,
¢:>--;!:w,

(1
(3.1.3)

by the same argument as before, where

Throughout the model, we ignore cases in which a secondary could only attain its

requirements by competing with the primaries, i.e. we assume that the primaries can and will

expel any secondary if it is in their interests to do so. We would generally expectc' ~ c,

since the requirements of a secondary animal would be expected to be no more stringent than

those of a primary animal, especially if the alternatives available to the secondary involve a

high risk. In addition, if we write
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r = a'{a

then we haver:;, 1. In addition. if the primary group is a breeding pair. then since the

requirement of the secondary is not likely to be greater than that of an individual primary. we

expectr~1.5. Other values ofr can be interpreted similarly.

3.1.2 Long-term Territories

The model described in Section 3.1.1 considers only a single feeding period. The

parameter c is effectively the minimum required probability that the territory yields sufficient

resources during that period. and its value is chosen by the primary pair to optimise the level

of risk to be taken in that period.

In general. however. a territory will be intended to support animals for a number of

feeding periods. LetX,.t = 1..... T be a sequence of continuous random variables represent-

ing the yields from a given territory over the sequence of feeding periods of interest. Let X

denote the vector of length T formed from Xl>....XT• and for any two vectorsu.v of equal

dimension. writeu ~ v to meanu, ~ Vi for all i. Then the territory is satisfactory during each

of T periods if and only if

Pr(X:;, al) :;,c·. (3.1.4)

where 1 is a vector of l 's, and c* is the critical value of the probability of having sufficient

resources in all T periods. AssumingXI. X2,,, '.XT to be independent and identically distri-

buted. we have

Pr(X:;, at) = Pr(X, :;,a.t = 1.2..... T)

T

= n Pr(X,:;, a)
,=1

Hence the criterion in equation (3.1.4) for a satisfactory territory becomes

(3.1.5)

which is clearly of the same form as (3.1.1). with

Hence if a number of independent periods are considered separately. the criterion given in

equation (3.1.2) is still appropriate.

In reality. however. a low yield in a given period is less likely to be unsatisfactory to the

territory holders than a number of consecutive periods with low yields. To incorporate this
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idea into the model. in a simple way. we define a moving average of the yields in individual

periods by

(3.1.6)

where I is the number of periods over which we wish to average. IfY is the vector ofY, 's, of

length T+ I -I. then the criterion for a satisfactory territory becomes

Pr(Y ~ bl) ~ c", (3.1.7)

for some constantb. and some probabilityc*. If Xt.X2 • • • • •Xr are independent and identically

distributed. each with the Normal distributionN(p..C12). then Y will have a multivariate Normal

distribution. which can be writtenasN(p.l. a2A). whereA is the (T + 1-l)x(T + 1-1) correla-
I

tion matrix given by

l/-,i-j,
Aij = I

o

if li-jl < I;

if li-jl ~I.

(3.1.8)

Furthermore. if we write

I
Z = -(Y-.ul).

C1
(3.1.9)

then Z also has a multivariate Normal distribution.

(3.1.10)

where 0 is the vector of zeroes. of lengthT+ 1-1. The parameters of the distribution of Z

depend only on / andT. and not on.u anda2. Hence we have

Pr(Y ~ bl) ~ c*

I
..» <=> Pr(Z ~ -(b-.u)l) ~ c*

C1

I
<=> -(b-.u) EO -v

C1

.u-b
<=>--~v

C1
(3.1.11)

where v is chosen such that

Pr(Z ~ -vl) = c*. (3.1.12)

The criterion for a satisfactory territory is therefore given by equation(3.1.11). which is

clearly of the same form as (3.1.2). withb = a.v = w. So considering a moving average of

yields simply affects the interpretation of the parametersv and b in our model. The analysis
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of this section can be repeatedto express the criterion for the presence of secondaries in a

similar form, thus giving corresponding relationships forv' andb',

Note that even if the individualX's are not Normally distributed, the distribution of the

Y's will be close to Normal, for moderate values ofl, by the Central Limit Theorem, provided

the distribution of theX's is unimodal and not too skewed. So this moving average formula-

tion provides some justification for the initial assumption of Normality.

To use the criterion (3.1.11), we need to know the value ofv. Unfortunately, the calcu-

lation of v involves the cumulative distribution function of a(T+ I-i)-dimensional Normal

distribution, and is analytically intractable. The following three sections describe ways in

which a suitable value ofv can be estimated, given the number of feeding periods of interest,

T, the number of periods over which resources are averaged,I, and the required long term

food security c*.

Note that, from the meaning ofT and c*, it can be seen that, providedT is large com-

pared with I, v depends on c* andT only through (c*)1/T, so different values ofT and c* can

give rise to the same value ofv. The values of T and c* used below were chosen for ease of

interpretation. We assume each feeding period is 1 day, and takeT = 365, so that c*

represents the probability of an adequate food supply for an entire year, and we take /= 6,

which means, roughly, that 6 consecutive days of low yield would be fatal. We take

c* = 0.99 for primary animals, and c*= 0.97 for secondary animals.

3.1.3 Naive Simulation

One way to estimatev is simply to simulate the multivariate Normal process

Zo, ... ,Zr-I' We have

1
Z, = -(Y,-J.l)

a

1 1 I
= -«- l: X'+i)-J.l)

a li .. 1

1 1 I
= -(-( l: X,+r/J.l»

a I i ..1

1 1 I
= -(-I (l: {X,+rJ.l}»

(f j.d

= !± {X,+rJ.l}
Ij=1 a

1 I

= I L W'+i'
i» I

(3.1.13)

where Wh ... , WT are independent standard Normal random variables. Hence it is straightfor-

ward to simulate W and calculate the corresponding vector Z. For any given valuev, we can
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then estimate the corresponding value of c* in equation (3.1.12) by the proportion of simula-

tions in which

min{Z,: t = O,... ,T-/} ~ -v. (3.1.14)

If we write Z," for the value of Z, in the kth ofn simulation runs, and

,,, = min{Z,": t = O,... ,T-/},

then the estimate ofc· is given by

(3.1.15)

where IA denotes the indicator random variable of the eventA. Clearly, c· can be estimated

with arbitrary accuracy by this method, and so it is also possible to determine the value ofv

corresponding to a specific value ofc·. This simulation has been implemented in a short com-

puter program, using routine GOSDDC from the N.A.G. Pascal library (Numerical Algorithms

Group, 1986) to generate pseudo-random Normal variates. Numerical results are shown in

Table 3.1.

Table 3.1

Estimates and standard errors for c* as a function ofv,

when T = 365,I = 6, based on 5000 simulation runs.

v C* S.E.

0.8 0.013 0.0016

0.9 0.075 0.0037

1.0 0.246 0.0061

1.1 0.469 0.0071

1.2 0.691 0.0065

1.3 0.845 0.0051

1.4 0.928 0.0037

1.5 0.974 0.0022

1.6 0.989 0.0015

1.7 0.996 0.0009
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3.1.4 Conditional Simulation.

The technique described in the previous section for estimating c* for a givenv uses only

a small amount of information from each simulation run. As can be seen from equation

(3.1.15), the estimate of c* depends only on the value of , from each run. It is, however,

possible to use more information from each simulation, as follows. From each simulation run,

instead of generating a single value" we generate the triple

(3.1.16)

where -r is the value of t such that Z, is a minimum over that run, and (' and1] are given by

e= min{Z,: t = O,... ,-r-l,-r+I, • .. ,T-/), (3.1.17)

and

1 1-1

1] = - L W'f+j'
I j = 1

(3.1.18)

Thus e is the minimum of those Z, 's which do not involve WH/, which is the last component

of ( = Z'f' and 11]is the sum of all the other components of (. Note that the actual value of (

is not included in the information we use from each simulation; instead, given the event

described by the triple (3.1.16), ( has a conditional distribution which we can write down

analytically, in terms of the distribution ofWH/• The marginal distributionofWHI is just the

standard Normal, andWUI is dependent on-r,(' and 1] only through the condition

,~ t'.

from the definition of ,. So for a particular valuev of interest we have

Pr«( ~ -v !-r,e, 1])

= Pr(Zr ~ -v!",1])

= Pr(Wul ~ -lu -11] !WUI ~ I" -17])

{
0 -v ~ "

= 1- til( =lu -/7]) Itll(1(' -/7]) - v < (,. (3.1.19)

The true probability c* could be written as

fff Pr('~ -vl-r,",1])!(-r,",1J) d-rd"d1]

'f.". 71
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if the densityf( -r,,,, TJ) were known. Instead, we estimate c* after n simulations by

(3.1.20)

The above method has been implemented using N.A.G. Pascal library routines (Numeri-

cal Algorithms Group, 1986) to generate random variates and to calculate values of<p(x).

Table 3.2 below shows some numerical results fort* as a function ofv, and also the reduc-

tion in variance achieved by using the "conditional" method described in this section instead

of the "naive" method of Section 3.1.3.

Table 3.2

Estimates and standard errors for c* as a function ofv,

and variance reduction compared with naive simulation (Table 3.1),

when T = 365,I = 6, based on conditional simulation with 5000 runs.

v t* S.E. Variance Reduction

0.8 0.013 0.0010 2.4

0.9 0.079 0.0027 1.9

1.0 0.224 0.0045 1.8

1.1 0.475 0.0053 1.8

1.2 0.690 0.0048 2.0

1.3 0.842 0.0036 2.2

1.4 0.928 0.0025 2.2

1.5 0.971 0.0015 2.2

1.6 0.989 0.0008 3.2

1.7 0.996 0.0005 3.5

The extra work involved in calculating

Pr('~ -vl-r,",71)

using equation (3.1.19) increases the time taken for simulation by a factor of approximately

1.1, so the net variance reduction obtained varies from 1.8/1.1 ... 1.6 to 3.5/1.1 .. 3.2. See

Ripley (1987) for a more general discussion of conditional simulation and other variance

reduction techniques.

The simulation technique described above generalises to apply to any series of the form

I

Z, = r 8iW,+i' t = 0, 1,... .r-t,
i-I

(3.1.21)
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where I ~ T and WI, • • • ,WT are independent and identically distributed, with common distribu-

tion function F(.). We choose an arbitrarym, 1 :EO m :EO I. Then let

,= min{Z,: t = O,... ,T-/},

let t be such that

and let

" = min{Z,: t = O,• • .,'r+m-l-l,'r+m, ... ,T-/},

11;= l: 9jW1'+",_;+j, i = 1,.• • ,1.
j"';

Then we wish to evaluate

Pr(, E; u I'r, ",11) (3.1.22)

Since we are only looking at the distribution of " the conditioning in equation (3.1.22)

reduces to

and

Rearranging each condition, we get

w. o!:: "-11m
1'+","" -9--'

'"

W1'+'"E; -(~:=::)fori: 9; < 9""

W1'+"'~-(~=::) fori:9;>9""

plus a trivial condition for anyi: 9; = 9",. Note that in the special case considered above,

9 1 , I' 1" , , I
;S /' so all conditions except the onemvo vmg '» were trivia,

Hence if we define

{ ( 11",-11;)'9 9Ja = m~ - --- . i > '" ,
I 9",-9;

'{ (11",-11;). 9 < 9 Jr = m,lD - --- <vs "',
I 9m-9;
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p = mint " ;",11'" ,rI,
then since

we have

Pr(' ~ulr,r,Tf}

u-11",
= Pr(w1'+'" ~ -8-1 a ~W1'+'" ~ {J)

'"

=
F(u-11"')_F(a)

8",

o u- n
--"'-'" ~ a

8",

F(fJ)-F(a)

(3.1.23)

1 u-11", R
-- ?s~

8",

Thus we can construct a simulation-based estimator,as in equation (3.1.20).

In addition to its use for variance reduction, it seems likely that the simulation technique

described in this section would be of use in estimating the extreme lower tail of the distribu-

tion of " when straightforward simulation would fail because of the extreme rarity of events

in the tail.

3.1.5 Approximation

When T is large compared withI, we can use an analytic approximation for the distribu-

tion of " instead of simulation. Using the results described in Leadbetter, Lindgren and

Rootzen (1983), Chapter 4, we can approximate

Pr(Z?s -v 1)

by

Pr(i ?s -v 1),

where io, ...,Z,-l have the same marginal distributionsas20, ...• Z,-l but are independent.

To use this approximation in a particular case, we need to know its accuracy, and this is inves-

tigated by Rootzen (1983). Rootzen gives bounds on the error involved in approximating a

stationary Normal sequence with an independent sequence: specifically, he shows that

R,,-(u) ~ Pr(M" ~ u) - tl>(u)" ~ R,,+(u). (3.1.24)
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where M" is the maximum of a stationary Normal sequence of lengthn, with zero mean. unit

variance. and covariancer, at lag t, and R-.R + are functions defined by Rootzen which

depend on n, u and the covariances of the sequence. (Equation (3.1.24) is a corrected version

of Rootzen's expression immediately preceeding his equation (4.1): note that the ""''' in

Rootzen's expression should be a"4>". as elsewhere in his paper.) The general forms ofR +

andR- are

"R,,+(u) = n I. r,+ ttr.. u)+R.
1- 1

"R,,-(u) = -n I. r,- nr.. u)-R.
1= 1

where

1 ')'}!(r. u) = {c'(r)e-W I(l+r _e-w •
2tru2r

r,+ = max(O. r,). r,- = max(O. - r,).

0" = supl>"lr,l.

(1 +r)3/2
c'(r) - ':"':_-!.,.-,so

- (l_r)1I2'

andk ~ 1 is "a suitably chosen integer" (Rootzen. 1983).

We can make use of equation (3.1.24) as follows. Let

~, = -Z,.If.

so that~O""'~T-l have zero mean. unit variance. and correlation matrixA (equation (3.1.8».

and hence satisfy the conditions of Rootzen's result. Then we have

c* = Pr(Z ~ -vI)

= Pr(~ ~ v.lfl)

= Pr(MT+1-1 ~ v.lf).

where

MT+1-1 = max{~,: t = O• • • • •r-r],

So from equation (3.1.24) we have
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where the covariance function used to calculateR - andR + is that implied by equation (3.1.8)

for A, i.e.

1

/-1
- if 1 < I;

r, = 1

o if 1 ~ I.

In this case, by taking k= 1- I, we can greatly simplify the expressions for R- and R ". We

have

,.
l: Ir,l = 0,

t .. k+ I

soR = 0, and we haver,-iII 0, soR- = O. Also r/s r, and so we have

k

R,.+(u) = n l: r'/(r" u)
, = I

I-I
~ 1 {'( ) -Il'/(I +T,) e-Il'}= n 4J p c r, e -

, = I nu

n
[
I-I, 'J= ~ l: {c'(r,)e-Il/(I+T')}_(/_l)e-1l ,

2nu ,=1
(3.1.25)

where we now have

c'(r,) = ~(2-!.)!-.
1 1

A short computer program has been written to evaluate the bounds

4J(v.,[ll+I-1 + RT+I_I(V{l) and 4J(v.,[ll+I-1 + RT++I_I(v.,[l) for c· in this special case. Some

numerical values of the bounds are shown in Table 3.3. Note that for some values ofv, the

bounds contain very little information, but in the cases currently of interest, i.e.c· ...0.99 and

c· ""0.97, they are informative.

3.1.6 Comparison o( Simulation and Approximation Methods

The variance reduction calculations in Section 3.1.4 clearly show that conditional simu-

lation is preferableto naive simulation for the current problem. The choice between condi-

tional simulation and the numerical approximation in Section 3.1.5 depend on the particular

parameter values of interest and the accuracy required. The numerical approximation should

be used in cases where the bounds are sufficiently narrow, since it is quicker to calculate.

Otherwise, simulation should be carried out, using the conditional method from Section 3.1.4.

In practice, we wishto estimatev using T = 365, 1 = 6, c· = 0.99 andv' using T = 365,

1 = 6, c" = 0.97. By interpolation, intervals forv corresponding to particular values ofc· can

be obtained from the numerical approximation. It can be shown that the true values forv and

v' lie in the intervals (1.58, 1.65) and (1.42, 1.54) respectively. These intervals are rather
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Table 3.3.

Upper and lower bounds forc* as a function ofv.

v Lower Bound Upper Bound

0.8 0.000 1.000

0.9 0.006 1.000

1.0 0.073 1.000

1.1 0.276 1.000

1.2 0.548 1.000

1.3 0.767 0.977

1.4 0.895 0.967

1.5 0.957 0.981

1.6 0.984 0.991

1.7 0.994 0.996

wide, but can nevertheless ensure that we use plausible parameter values. Thus for these par-

ticular cases, the numerical approximation is preferable to simulation. The values used in the

numerical examples in subsequent sections arev = 1.6 andv' = 1.5.

3.2 A Simple Model with a Continuous Distribution of Yield

3.2.1 Description of the Model

Having derived a criterion (3.1.11) for a satisfactory territory in terms ofp. and dl,
which we assume to completely characterise a territory, we must now specify the possible

combinations of these parameters which are available to the primary pair. In a given real

situation, one would expect some relationship, either deterministic or stochastic, between the

mean and the variance for different choices of territory, thus restricting the primaries' choice.

In addition, we need some "order of preference" between the different possibilities, so that the

primaries' choice of a minimum territory is well-defined.

As a simple case of the spatial heterogeneity mentioned in the introduction, we assume

that resources occur in discrete patches, which can only be incorporated into the territory in a

fixed sequence. The only decision available to the primary pair is when to truncate the

sequence. We assume that choosing a minimum territory corresponds to having as few

patches as possible in the territory, i.e. truncating the sequence as soon as possible, subject to

the condition that the territory must contain sufficient resources. This definition of a minimum
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territory follows from identifying the number of patches in a territory with some measure of

its size, and hence the cost of defending it.

Label the patches 1,2,3, ... as they become available to the primary pair. LetRj be the

mean yield over time of patchj, i.e. its richness, and let ~ be the variance over time of its

yield. Then, if we assume the yields from distinct patches to be independent, the distribution

of the total yield from a territory containingn patches will have mean and variance given by

II II

P. = r Rj and er = r ~,
j=l j=l

(3.2.1)

respectively. The territory set up by the primaries will then consist ofN patches, whereN

denotes the smallest value ofn such that the parameter values given in equation (3.2.1) satisfy

the condition (3.1.11).

In any given habitat, we would expect some relationship between the mean,Rj, and the

variance, ~, of the patch yield. Initially we assume that

(3.2.2)

whereI is the coefficient of variation of the yield from a patch of unit richness. This assump-

tion implies that the total mean,u, and the total variance,er,are functionally related, with

(3.2.3)

and hence the variability of yield from a territory is determined solely by its mean total yield,

u, and does not depend on, for example, the way the resources are divided into patches. The

effect of relaxing this assumption is considered in Section 3.3;1.

If we substitute equation (3.2.3) into the condition (3.1.11) for a satisfactory territory we

obtain the new criterion

p.-b--;. v.
lVit

(3.2.4)

Note that b and I are clearly non-negative from their respective definitions, andv can be

assumed tobe non-negative, as discussed in Section 3.1.2. Hence condition (3.2.4) is satisfied

if and only if

or equivalently if and only if

(3.2.5)

and also

(3.2.6)
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We can solve (3.2.5) to obtain

(3.2.7)

or

(3.2.8)

Hence we require (3.2.6) and either (3.2.7) or (3.2.8). But equation (3.2.8) implies

~ JJ. < b,

which contradicts (3.2.6); and equation (3.2.7) implies

and hence (3.2.7) implies (3.2.6). So providedb.f, v ~ 0, conditions (3.2.4) and (3.2.7) are

equivalent. Note that we can rewrite (3.2.7), our new criterion for a satisfactory territory, as

(3.2.9)

We denote the critical value ofJJ. on the right hand side of (3.2.9) bym. Similarly, we can

show that the territory can then support a secondary animal if and only if

, I 12rf2 '~'JJ.~m =b+-+ftj -+b.
2 4

(3.2.10)

Given the conditions above, whether or not secondary animals will be present depends

on the values ofR1, R2 ,... , the richnesses of the individual patches. The simplest case is when

the patches are all identical. Then theRj's are all equal, and without loss of generality we can

take Rj = 1 for all j (simply let the unit of yield be the yield of a single patch). So a territory

will contain exactly rm1patches (the smallest integer not less thanm), and a secondary animal

will be present if and only if

This condition is easy to evaluate in any specific case, but its dependence on the parametersb,

r, I, v and v' is complicated and discontinuous. Slight uncertainty about those parameter

values to which the model is most sensitive can result in complete ignorance about whether



- 36-

secondaries should be present in all territories or absent from all territories. In fact, the model

with Rj == 1 has many of the disadvantages of the model due to Carr and Macdonald (1986),

discussed in Chapter 2.

A more tractable alternative is to allow differences in mean richness between patches.

This is possibly more realistic: for example, it is true of the areas where badgers forage for

earthworms, as described in Kruuk (1978a). Formally, we assume thatRj, the mean richness,

over time, of patchj is a continuous random variable and thatRloR2, • • •are independent and

identically distributed. Again, we assume that the primaries decide when to truncate the ran-

dom sequence of patches to be included in their territory, but they may not choose between

individual patches. The number of patches in the territory will then be the random variable

"N = min(n: L Rj ~ m}.
j=l

Since the distribution ofRj is continuous, with probability 1 we have

N = I+N(m),

where

"N(t) = max(n: L Rj Ei t}.
j=l

(3.2.11)

The process{N(t);t ~ O} is a renewal process, so we can use results from renewal theory.

Full definitions, and the results we will need, are given in Section 3.2.2. Given the value of

N, a secondary animal will be present if and only if

In terms of renewal theory, this condition can be written as

l+N( ...)

E(m) = L Rrm ~ m' -m,
j=l

(3.2.12)

whereE(m) is the excess life atm of the renewal process.

Since the mean patch yields R1,R2, • • • are random, condition (3.2.12) will be satisfied

with some probabilityp. So, unlike the case of identical patches, the model in whichRloR2, • • •

are random variables predicts that a territory formed under given conditions will have a certain

probability of (permanently) supporting a secondary animal, and hence in a given habitat, a

certain proportion of territories will support secondary animals. We adopt the latter model

henceforth.

Note that since the distributions of R1,R2, • • • are continuous, and since
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I+N(m)

E(m) = r Rrm,
j=1

it follows that

Pr(E(m) = m'-m) = O.

Combining this result with the condition in equation (3.2.12), we can write the probability of

one or more secondary animals being present as

p = Pr(E(m) > m'-m), (3.2.13)

a form which will be used in Section 3.2.2.

Since the amount of resources required by the primaries is measured in arbitrary units,

we can, without loss of generality, assumeRI ,R2, ... to have unit mean. This means that we

regard b as measuring the requirements of the primary pair in terms of the mean patch rich-

ness. Hence differences in the spatial discreteness of food resources, i.e. in the mean patch

richness relativeto the requirements of the primary pair, are incorporated into the model by

considering different values ofb.

In subsequent sections we look at the behaviour of the model described here. Firstly, in

Section 3.2.2, we review the ideas and results from renewal theory that we will need, and

make some extensions to known results. Secondly, we look at the probability,p, of one or

more secondaries being present, i.e. of a spatial group being formed.It is difficult to obtain

exact, general results for this probability, but we can make progress in two ways. For some

choices of the distribution of the patch richnessRj, exact values forp can be obtained. Some

numerical results in these cases are discussed in Section 3.2.3. More generally, we obtain

some analytic results based on the limiting distribution of the excess lifetime,E(m), for large

m, in Section 3.2.4. As well as the probabilityp of group formation, we are interested in the

size of the group, and the number of food patches in a territory. In Section 3.2.5, we look at

group size, territory size, and the relationship between them. Finally Section 3.2.6 is aimed at

understanding the accuracy of the limiting approximation used in Section 3.2.4.

3.2.2 Renewal Theory

In this section, we collect together the definitions and results from renewal theory which

we will need. These results are well known: see for example Cox (1967), and Grimmett and

Stirzaker (1982). Proofs are generally omitted.

A renewal process is a random process of the form

II

N(t) = max{n: l: Xi lilt t),
i==1

(3.2.14)
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where Xt>X2• • • •are independent and identically distributed non-negative random variables.

We will sometimes refer to XI.X2 • • • •as inter-arrival times or as lifetimes. Within the current

section.f,(.) andF,(.) will represent the probability density function and cumulative distribu-,
tion function respectively ofl: Xi> withf(.) == fl(.).F(.) • FI(.). We define the renewal func-

;=1

tion to be

H(/) = E(N(/». (3.2.15)

and the renewal density to be

h(/) = dH(/).
dl

(3.2.16)

,
By considering events of the form{l: Xi ~ I}. we can write

i=1

- \
H(/) = l: F,(/). (3.2.17)

'=1

and hence

-
h(/) = l: f,(/). (3.2.18)

'-I
Alternatively. by conditioning on the value of XI. we obtain what is known as the renewal

equation.

H(/) = F(/)+ l' H(/-x)f(x) dx. (3.2.19)

Taking Laplace transforms gives

(3.2.20)

and hence

• f·(s)
h (s) = 1-t"(s) (3.2.21)

where ,,*" denotes Laplace transforms. Equations (3.2.20) and (3.2.21) may sometimes be of

use in calculatingH(.) and h(.).

If we further define

G(/) = E[N(/)2]. (3.2.22)

then conditioning on XI gives

G(t) = F(t)+2f H(t-X)f(X)dxf G(t-x)f(x)dx. (3.2.23)
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and taking Laplace transforms gives

G*( ) = f*(s) (! 2H*(»)
s I-/(s) s + s. (3.2.24)

The excess life of a renewal process, or the time to the next event, is

N(t)+ 1

E(I) = r Xi-I.
i=1

(3.2.25)

Again, by conditioning onXI' we obtain an integral equation:

Pr(E(I) ~ y) = F(I+y)+ f h(x)(I-F(t+y-x)} <Ix (y > 0), (3.2.26)

Although the distribution ofE(.) generally depends onI, in most cases the distribution

approaches a limit asI -+ 00. To state the result precisely, we need the following definition.

A random variable X is arithmetic if, for some A.> 0, we always have

X E (nA.: n = 0, ± I, ... ). (3.2.27)

Theorem 3.1

If E(.) is the excess lifetime of a renewal process with interarrival timesR1,R2, • • • ,and

RI is non-arithmetic with cumulative distribution functionF(.) and finite expectation, then

Pr(E(I) ~ y) -+ (E[Rd}-IL' {I-F(x)} dr as I -+ 00. (3.2.28)

A particularly simple renewal process is one in which the lifetimes have an Exponen-

tial(A.)distribution, i.e.

F(x) = I-e-h. (3.2.29)

The renewal process is then simply a Poisson process, and

Mile-At
Pr(N(I) = n) = , n = 0, I, ....

nl
(3.2.30)

By the "lack of memory" property of the exponential distribution, the excess lifetimeE(I) of

such a process is itself Exponential(A.), for anyI ~ o.

3.2.3 Numerical Results (orp

In this section, we look at two types of distribution for the patch richnessRj for which

exact results can be obtained: Erlang distributions and mixtures of two exponential distribu-

tions.
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The Erlang distribution with parametersl and k is the distribution of the sum ofk

independent and identically distributed random variables. each having the Exponcntial(l) dis-

tribution. It is a special case of the Gamma distribution. and in tum contains the exponential

distribution as a special case. whenk = 1; (see e.g. Johnson and Kotz, (1970». Its probability

density is

f(x) = l"x"-Ie-Ax/(k-I)!. z > O.l > O. k = 1.2.3 • .... (3.2.31)

It is always positive-valued and unimodal: its exact shape depends on the parameterk, which

also determines its coefficient of variation.I/...{k. It has meankll. and so. since we require Rj

to have unit mean. we always takel = k.

A mixture of two exponential distributions (or just a mixture distribution. as we shall

refer to it within the current section) has probability density

(3.2.32)

where al. a2 ~ 0 are the proportions of the two components of the mixture. andPI.P2 ~ 0 are

the rate parameters of the two components. We requireal + a2 = I. and in addition. to ensure

has uni al ~ 1that Rj as unit mean. - + - = .
PI P2

From equation (3.2.13). the probability of at least one secondary being present is given

by

p = Pr(E(m) > m' - m)

= I-Pr(E(m) =EO m' -m). (3.2.33)

A standard result from renewal theory. as given in equation (3.2.26). states that the cumulative

distribution function of the excessE(m) is given by

Pr(E(m) =EO y) = F(m+y)+ 10
m

h(x)(I-F(m+y-x») dx (y > 0). (3.2.34)

In the Erlang case. ifk = 1.so that Rj has the exponential distribution. we can calculateh(.)- '
directly. From equation (3.2.18). h(u)= L fi(u). and then the integral in equation (3.2.34) is

'=1
straightforward. We find that

{
e-<m'-m>

p=
I

if m' > m
if m' =EO m.

(3.2.35)

If k = 2. similarly.

{
e-2(m'-m>(1 +(m' -m)(1 +e-4m» if m' > m

p=
I if m' =EO m.

(3.2.36)

For general values ofk; the integral (3.2.34) is hard to evaluate. but we can make progress by
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exploiting the interpretation of a random variable with an Erlang(A..k) distribution as the sum

of k independent Exponential(A.)random variables.

Let Xl.X2 • • • •be independent and identically distributed Exponential(k) random vari-

ables. so that

kj

s,= I. Xi
i = l+k(j-l)

(3.2.37)

and

II Ilk

I. Rj = I. x;
j_1 i-I

(3.2.38)

Let

II

C(/) = max{n: I. Xi ~ I}
i..1

(3.2.39)

be the renewal process with lifetimes given byXI.X 2'.... Then E(m). the excess atm of the

renewal process{N(/);I ~ O}defined in equation (3.2.11), is given by

N(",)+ I

E(m) = I. Rrm
j=1

k(N(",)+l)

= I. Xi-m
i ~ I

h krC(m)+ 11
w ere L = k

C(",)+l L
= I. xi+ I. Xi-m

i ,. I i - C(",) +2

L

= Edm)+ I. Xi-m,
i = q",)+2

(3.2.40)

where Ed.) represents the excess of{C(/);I ~ O} . The first term of equation (3.2.40) is the

excess of an Exponential(k) renewal process, which as stated in Section 3.2.2 also has the

Exponential(k) distribution. The second term is independent of the first, and is the sum of

independent Exponential(k) random variables. Hence the excessE(m) has a distribution given

by a mixture of Erlang distributions. with common rate parameterk, The mixture is over the

second parameter of the Erlang distribution. corresponding to the number of exponential

terms. which is given by the random variable
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(3.2.41)

obtained by combining both terms of (3.2.40).

We can uniquely write

C(m) = A+Bk, 0 ~ A < k, B ~ 0, (3.2.42)

to give

S = kf A+~k+ Il-A-Bk

=krA;Il- A

= k-A.

HenceSE (I, ... ,k), and

Pr(S = k-a) = Pr«C(m) modk) = a), a = O, ... ,k-I, (3.2.43)

where i mod j denotes the remainder wheni is divided by j. Now C(m) is just the value at a

certain pointm of a renewal process with Exponential(k) inter-arrival times, so

C(m) - Poisson(km).

Hence C(m) mod k has the wrapped Poisson distribution on(O, • • •,k-I) (see e.g. Mardia,

1972). The probabilities in equation (3.2.43) can readily be written as infinite sums, but the

following finite form appears to be new.

Theorem 3.2

Let A have the Poisson(A.) distribution. The corresponding wrapped Poisson distribution

on (0, I, ... ,k-I) has probabilities given by

1 k-t lA
Pr«A modk) = a) = _e-A L em. OJk-aj,

k j=O

1 k-l
= _e-A L exp(A.cos(8})cos(8aj+A.sin(8j»,

k j=O

for a = O,... ,k-I, where 8 = ~, andOJk is the complex kth root of unity cos(8)+isin(8).

(3.2.44)

(3.2.45)
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Proof

Consider the continuous-time Markov chain(X(t): t ~ o} which cycles through the states

(O,... ,k-I), so that the only permissible transitions are from state j to state j+l,

j = 0,... ,k-2, and from state k-l to state 0. Let all permissible transitions have transition

rates equal to A, and let X(O)= 0. Since the number of transitions upto time t has the

Poisson(At) distribution, the distribution of X(l) is just the wrapped Poisson distribution on

(O,... ,k-l) with rate A.

The Markov chain X has generator

-A A ° °
°

Q=

°A ° .
°A

° -A

(3.2.46)

and transition probabilities

Piit) = Pr(X(t) = jIX(O) = i)

given by

P, = exp(tQ).

Writing ",(I) for the probability distribution ofX(t), we know that",(0) = (1,0, ... ,0), and we

are interested in

(3.2.47)

The matrix Q is circulant (Bellman, 1960; Lancaster, 1969) Le. it is of the form

Thus Q has distinct eigenvalues

Aj = A(ro/-l), j = O,... ,k-l,

with right eigenvectors
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Vo = • ...• Vi_1=

(Bellman. 1960; Lancaster. 1969). Definen to be the symmetric kxk. matrix (with indices

running from 0 tok-l) with columns vO • • • • •Vi-h so that

(3.2.48)

It can be shown by direct calculation that the inverse ofn is given by

(3.2.49)

From the results in. for example. Chapter 2 of Lancaster (1969). the rows ofn-I• which we

denote by Wj.j = O• ...• k-I. are left eigenvectors ofQ.

where A = diag{A.o• ...• A.i_tl. and

i-I

Q = ~ A.jEj•
j=O

(3.2.50)

the spectral decomposition ofQ. where

(3.2.51)

Furthermore. the matricesEo • • • .•Ei_1 have the properties

i-I

~ Ej = I.
j=O

Thus

i-I
exp(tQ) = = ~ exp(tA.j)Ej•

j=O

From equations (3.2.48). (3.2.49) and (3.2.51). we have

So from equation (3.2.47). the distribution of X{l) is given by
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A:-l

= %(0) I. exp(A.j)Ej•
j ..o

giving

Pr(X(l) = i) = %P)

A:-l ~
= I. e J(Ej )Oi

j ..o

A:-l

= I. exp(A.(coi-l»k-1
COA:-

ij

j-O

1 A:-l J
-~ '(" Il).~ -ij= -e L. e COA: •

k j=O
(3.2.52)

as required. Using the fact that these probabilities are real. they can readily be rewritten. as

shown in the statement of the theorem. in a form which is less concise but which is more

useful for calculation. since it only involves real functions (3.2.45).

The following trivial corollary will be useful later on in this section. Define

tJ - A.tJ+b.t
JA:(A.) = L )1' a = D• ...• k-I.

o (a+bk.
(3.2.53)

Corollary to Theorem 3.2

(3.2.54)

Proof

The corollary follows immediately from the obvious infinite expression for the wrapped

Poisson distribution in the theorem:

- A.tJ+b.t
Pr«Alk) = a) = e-~~ .1:0 (a+bk)!

The result in equation (3.2.5 ) is in fact known: the functionsJ:(.) are known askth

order hyperbolic functions. and arise in the solution of the differential equation

See Kaufman (1955) for a bibliography. Clearly equation(3.205"') can be used to give an

alternative, non-probabilistic proof of Theorem 3.2. but in fact the connection between the
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wrapped Poisson distribution and the higher order hyperbolic functions does not appearto

have been made before.

We can now evaluate the right hand side of equation (3.2.43). that is

(3.2.55)

Thus we have evaluated the proportions in the mixture of Erlang distributions which gives the

distribution of the excessE(m). Each component of the mixture has an Erlang(k.s) distribu-

tion. for someSE [I • ...•kl. and so has a cumulative distribution of the form

1-1 .

F(x) = l-e-uI, (~y.
. 0 J.J=

(3.2.56)

Hence ifRI has the Erlang(k.k) distribution. the probability of secondary animals is

Pr(E(m) > m' -m) = t e-luttJf-'(km)/l-e-k<""-III)~1 (k(m~~m)"Yl

,=1 J=O

= l-e-lutt'i: /Jf-'(km)f (k(m~~m)Yl·

,.1 J=O

(3.2.57)

In the case where the distribution ofRI is a mixture of two exponential distributions. the

cumulative distribution function ofRI is

The renewal densityh(.) can be obtained from equation (3.2.21). as follows. The probability

density function forRI is given by equation (3.2.32). and thus

/'(z) = alPI + a2P2
PI +z P2+z

h..( ) _ PIP2+z(aIPI +a2P2)::::) z - ~2r---:-,--="":;__';;''--:'-
z + z(a2PI + a1P2)

PIP2 ala2(P1- P2)2= + .
z(a2PI +a1P2) (a2PI + aIP2)(z+ a2PI + a1P2)

Hence

h(x) = PIP2 + ala2(PI-P2l e-<a"p,+a,P.)%

a2Pl + alP2 a2PI + alP2

= 1+ ala2(PI_P2)2e -P,P.%.
PIP2

(3.2.58)

since we have
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al + a2 = 1
PI P2

Thus

p = Pr(E(m) > m' - m)

= I-F(m')+ lift h(x)(I-F(m' -x»dx

which after integration and rearranging gives

p = e-p,Ift'(al + al (d',Ift_I)+ ~ (PI-P2)2 (eP,(1-P.)Ift_I»
PI PIP2 (I-P2)

+e-P.Ift'(a2+ a2(ePo"'_I)+ ~ (P2-PI)2 (eP.(1-P,)Ift_I».
P2 P2PI (I-pt)

(3.2.59)

We now wish to look at some actual numerical values forp. We start with a standard

set of parameters, as follows:b = 1.0, chosen to represent the case where the mean yield of an

average patch is equal to the requirements of the primary pair;r = 1.5, implying that the

amount of resources needed by a secondary is equal to that of a single primary;v = 1.6, v' =
1.5, values which were derived in Section 3.1; andf = 0.5, meaning that the standard devia-

tion of the yield from a patch over time is equal to half its mean yield.If R I has an Exponen-

tial distribution with parameter 1, these standard parameters lead top = 0.57. The effect onp

when the distribution ofR I is a mixture of two exponential distributions is shown in Table

3.4. Note that for our purposes, the family of mixtures of two exponentials is two-

dimensional, defined by the four parametersab a2,Pl and P2 and the two constraints

(3.2.60)

Table 3.4 also shows 6, the coefficient of variation of the distribution of RI' in each case. For

particular cases selected from those in Table 3.4, the effect onp of varying the parameters

v, r,band f is explored in Table 3.5, and compared with the exponential casco Values form

and m' are also given.

Similarly, Table 3.6 shows the effect onp of different values of the parameter k of the

Erlang distribution, for different values ofv, r,b and f. For reference, the definitions of these

parameters are collected in Table 3.7.

An immediate conclusion from Tables 3.5 and 3.6 is that the probability of supporting a

secondary animal is reasonably high over a wide range of parameter values and distributions
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Table 3.4

Values ofp and coefficients of variation 6 ofRI

for different values ofalta2,PI andP2

satisfying equations (3.2.60)

PI :pz

al :a2 2: 1 I 5: 1 10: 1

p 6 p 6 p 6

1: 20 0.57 1.01 0.58 1.03 0.58 1.04

1 : 10 0.57 1.02 0.59 1.06 0.59 1.08

1 : 5 0.58 1.04 0.60 1.11 0.61 1.15

1 : 2 0.58 1.08 0.61 1.24 0.64 1.32

1 : 1 0.58 1.11 0.62 1.37 0.67 1.53

2: 1 0.58 1.12 0.61 1.52 0.67 1.80

5: 1 0.57 1.10 0.57 1.61 0.58 2.15

10: 1 0.57 1.07 0.55 1.56 0.52 2.25

20: 1 0.57 1.04 0.56 1.42 0.52 2.15

of RI' which suggests that spatial groups couldbe formed in this way over a broad range of

different resource patterns.

Table 3.6 shows that, within the Erlang family, the probabilityp decreases withk, This

is explained by the decreasing variability of the Erlang distribution ask decreases. When

patch size is less variable, the chance of an excess large enough to accommodate a secondary

is reduced.

Within the family of mixture distributions, however, there is no clear pattern to the

effect of the parametersaba2,PI andP2 on p, either directly or in terms of 6, the coefficient

of variation of R I' With a few exceptions, mentioned below, values ofp within the mixture

family are closer to the exponential case than the values in the Erlang case.

The effect of varyingv, the required primary food security (cases I, 2 and 3 in Tables

3.5 and 3.6), is that in all cases,p is an increasing function ofv. Such an effect is intuitively
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Table 3.5

Selected combinations of parameter values, and corresponding exact

values for the probabilityp of a secondary animal being present

Parameters Probability p

Case (all values PI = 1 al = 1 al = 2 al = 10 al = 20
t%z al al al

are asin m m'

case 1 except Pl = 1 PI = 10 PI = 10 PI = 10 PI = 10
Pl Pl Pl Pl

where noted)

b = 1.0,
r= 1.5,

1 v = 1.6, 2.18 2.74 0.57 0.67 0.67 0.52 0.52

v' = 1.5,
1= 0.5

2 v = 1.5 2.08 2.74 0.52 0.63 0.64 0.47 0.47

3 v = 1.8 2.39 2.74 0.70 0.76 0.76 0.66 0.66

4 r = 1.25 2.18 2.42 0.79 0.82 0.82 0.75 0.75

5 r= 2.00 2.18 3.38 0.30 0.47 0.51 0.32 0.28

6 b = 0.10 0.83 0.84 0.99 0.99 0.99 0.99 0.99

7 b = 0.50 1.47 1.74 0.76 0.80 0.78 0.70 0.72

8 b = 2.00 3.50 4.61 0.33 0.49 0.53 0.39 0.33

9 b = 10.00 12.87 18.20 0.00 0.05 0.10 0.19 0.15

10 1=0.0 1.00 1.50 0.61 0.68 0.64 0.51 0.53

11 1= 1.0 4.33 4.78 0.64 0.72 0.72 0.63 0.61

6 - - - 1.00 1.53 1.80 2.25 2.15

clear, since increasingv means that the total yieldm required by the primaries will be greater,

and the requirements of a potential secondary are unchanged, so it is more likely that a secon-

dary can be accommodated.

The effect of varyingr (cases 1,4 and 5), which measures the amount of extra resources

required by a secondary animal, is again intuitively clear. Increasingr means that the amount

of resources m' required by a secondary is greater, and so the probability of a secondary being
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Table 3.6

Selected combinations of parameter values, and corresponding exact

values for the probabilityp of a secondary animal being present

Parameters Probability p

Case (all values are as m'm
in case 1 except k = 1 k=2 k=5 k = 10

where noted)

b = 1.0, r= 1.5,
1 v = 1.6,v' = 1.5, 2.18 2.74 0.57 0.51 0.38 0.18

I= 0.5
2 v = 1.5 2.08 2.74 0.52 0.44 0.30 0.15

3 v = 1.8 2.39 2.74 0.70 0.67 0.59 0.34

4 r = 1.25 2.18 2.42 0.79 0.77 0.70 0.49

5 r= 2.00 2.18 3.38 0.30 0.20 0.08 0.03

6 b = 0.10 0.83 0.84 0.99 0.99 0.99 0.97

7 b = 0.50 1.47 1.74 0.76 0.74 0.63 0.42

8 b = 2.00 3.50 4.61 0.33 0.23 0.12 0.02

9 b = 10.00 12.87 18.20 0.00 0.00 0.00 0.00

10 /= 0.0 1.00 1.50 0.61 0.56 0.46 0.38

11 /= 1.0 4.33 4.78 0.64 0.59 0.57 0.42

accommodated is smaller. Hencep is a decreasing function ofr. Low values ofr might be

relevant if the amount of food required by a secondary is small compared with the amount

required by the primaries, for example because the primaries are breeding. A high value ofr
is relevant if the amount of food required by a secondary is comparable with that required by

the primaries, for example in the case where there is only a single primary, or where we con-

sider a secondary pair.

The effect of varyingb (cases 1,6, 7, 8 and9) is of particular importance, sinceb can

be regarded as measuring the scale of spatial patchiness of the resource distribution, and may

well vary between the different habitats of a given species. For this reason, a wide range of

numerical values of b is considered. It can be seen that low values of b give rise to high

values ofp, Such low values ofb represent those cases where the requirements of the
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Table 3.7

Definitions of main parameters

Parameters Meaning

b The resource requirements of the primary pair, in units in

which the mean patch richness is 1

c The food security required by the primary pair

c' The food security required by an individual secondary

r The ratio of (amount of resources needed by primaries

plus one secondary) to (amount of resources needed by

primaries)

f The coefficient of variation of the yield from a patch of

unit richness i.e. the standard deviation of its yield over

time divided by its mean yield

k The shape parameter of the Erlang distribution describing

the distribution of mean richness of individual patches

m The total mean yield which a territory must have to support

the primary pair

m' The total mean yield which a territory must have to

support a secondary animal in addition to the primary pair

p The probability that a territory formed in given conditions

will support a secondary animal

v (j)-l(c); a measure of required primary food security

Vi f/J-1(c/); a measure of required secondary food security

al,a2 The weights of the components in a mixture distribution

Pl,P2 The rate parameters of the components in a mixture distribution

0 The coefficient of variation of the distribution of mean richness
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primary pair are small compared with the average patch richness, i.e. cases of high spatial

patchiness. Hence the numerical results support the intuitive idea that greater spatial patchi-

ness gives a greater chance for secondaries to be accommodated. For small values of b

(b = 0.1, case 9), the probabilityp is very small (p < 0.005), except where the distribution of

R t is a mixture of exponentials, in which casep may be much greater. This suggests that in

an environment where the variability of patch means is great, spatial groups may occur even

though the overall mean patch richness is small.

Finally we consider the effect off (cases 1, 10 and 11), which measures the variability

over time of the yield from a resource patch, and hence from a territory. Whenf = 0, all

yields are constant over time, i.e. there is no temporal heterogeneity. However, secondary

animals can still sometimesbe accommodated (case 10 in the tables), because of the spatial

heterogeneity in the model.If f is now increased, the effect initially is to decrease the proba-

bility p (case I), for most distributions ofRt (Exponential, Erlang, and some mixtures). This

result is highly counter-intuitive, since it means that in some cases, increased temporal hetero-

geneity results in a reduced chance of secondary animals being present.If f is further

increased, then the value ofp increases again (case 11). Hence, for many distributions of Rh

there is some level of temporal heterogeneity (here close tof = 0.5) which gives a minimum

value for the probability of a secondary, and either higher or lower values off give increased

values forp. A partial explanation for this is given in Section 3.2.4. For some mixture distri-

butions, p is simply an increasing function off.

All these changes, apart from the effect off on p when R t has certain mixture distribu-

tions, can be qualitatively explained by regarding the probability of at least one secondary

being present,p, as a function of the additional mean yield required to support a secondary

animal, m' -m. Such an approach is explored in Section 3.2.4.

3.2.4 Analytic resultsfor p

As well as numerical results forp, we can obtain some analytic results which do not

depend on the exact distribution of Rt. We need to use a result from renewal theory which

gives the limiting distribution of the excess lifetime,E(m), as defined in equation (3.2.25).

From Theorem 3.1 in Section 3.2.2, we know that, under certain regularity conditions,

Pr(E(m) "y) ~ (E[RdttI: (I-F(x)} dx asm ~ 00.

For our purposes,R t will always have a continuous distribution and expectation I, so the

theorem will apply. The theorem states that for largem, the excess lifetime,E(m), has a limit-

ing distribution which is independent ofm. Thus p the probability of a secondary animal

being supported, is a decreasing function ofm' -m, the additional mean yield required to
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support the secondary animal. For many distributions ofRI, not necessarily within the fami-

lies described in Section 3.2.2, this limiting distribution is a good approximation even for

quite small values of m, so we can determine the behaviour of the model in many cases from

the behaviour of the differencem' -m. Hence, in this section, we examine the behaviour of

m' -m analytically. The accuracy of this approximation is discussed in Section 3.2.6.

From equations (3.2.4) and (3.2.9), we have

m+b
f..Jm = v, (3.2.61)

or equivalently

(3.2.62)

and similar equations for m': We want to investigate the effects of the parameters v, v' ,r,b,

and j',

The effect of changingv or v' is straightforward. Increasingv increasesm, decreasing

m' -m, and increasingp; increasing v' increases m', increasing m' -m, and decreasingp.

The magnitude of the effect depends mainly onf. This can be seen by differentiating equation

(3.2.61) and rearranging to obtain

dv

f..Jm
/V1--

2..Jm

dm
-=

Note that since m> f2v2, the denominator is always between! and 1, so dmldv is positive.

Similarly, increasingr increases m' and so decreasesp, since

dm' b
-=---
d /V'r 1---

2..J;?

is positive.

The effect of changingb is less obvious, but it can be shown that provided

(3.2.63)

m' - m is an increasing function ofb. Condition (3.2.63) is always true if v= v', and is true

for most of the parameter sets considered here.

The behaviour asf changes, however, is not monotonic. No global analytic results have

been obtained, but limiting cases can be considered. The exact expression for the derivative is
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/
22 /23/22

_V(_V_ +b)t __ V_(_V_ +b)-t
4 4 4 .

For smallt.

d(m' -m) = (v'fY-v)..Jb + 0(/).
d/

So near / = 0, m' -m is increasing with / if and only if the inequality (3.2.63) holds. Since

condition (3.2.63) will normally hold for realistic parameter values, this means that if variabil-

ity of yield is low, increasing it will reduce the probability of forming spatial groups, which

seems counter-intuitive.

For largef, on the other hand, we have

and

From the definition of v and v', we expect v' ~ v.If v' = v, then for large /

m' -m - 2(r-1)b > 0,

so p approaches a limit, satisfying° < p < 1, as / tends to infinity. In this case,p may be

decreasing with / for allf, In the more usual case ofv' < v, m' - m is decreasing for

sufficiently largeI,and

m' -m -+ -00 as / -+ 00.

Thusp = 1 for sufficiently largef-

The results for large / are sufficient to show that the behaviour ofp as / changes is not

necessarily monotonic. In fact, as has been seen in Section 3.2.2, numerical results show that

the value of / at whichp is a minimum can be quite low, say!, which is clearly a meaningful

value for this parameter.

To try to understand these results, we can make a crude approximation to d(m' - m)/d/.

We differentiate equation (3.2.61), to get

dm v..Jm-=-~-
d/ 1-_E_

2..Jm
and then assume that the second term in the denominator is small compared with1, i.e. that
dm
d/ - vVrn. Combining this with a similar result form' gives
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d(m' -m) ,_,-", _C
dl .. v "'4m -V"'4m.

For given values of v and v', the sign of this expression depends on m'Im. At low values of

I, m' is clearly larger than m; in fact m'lm ..r. As I increases, both m and m' increase, but

the ratio m' 1mdecreases. Eventually, for largeI, we reach a point wherev'..fn? - vf,ii < O. In

fact, it can be shown that the true expression for d(m' -m)/dl changes sign earlier, i.e. for

lower values ofI.

3.2.S Territory Size and Group Size

As well asp, the probability of a spatial group being formed, we are interested in the

size of the group. To calculate the mean number of secondaries, we need to take into account

the probability of more than one secondary in a territory. This can be done by considering

increasing values ofr. For simplicity, if we assume that all individuals have the same

requirements, and the primary group is just a pair, then we have to considerr taking the

sequence of values 1.5, 2.0, 2.5, ... and calculate the corresponding sequence of values ofp.

By a standard result of probability theory (see e.g. DeGroot (1986), p. 192), since the number

of secondaries is a non-negative integer, its expectation is

1: Pr(s or more secondaries)
I. 1

-
= L P(I+~),

1-1

wherep(x) is the value ofp whenr= x. So the mean number is just the sum of this series of

values ofp, which can be easily approximated since the terms approach zero quite quickly.

We are also interested in territory size, represented in this model by the number of

patches. This isN = 1+N(m), as given above, and its expectation can be calculated from

renewal theory. For example, in the Erlang case, ifk = 1, the mean number of patches per

territory is

EN = l+H(m) = l+m,

and if k = 2,

EN = l+H(m) = m+i+ie-4",.

Such results can be combined with the expected group sizes to give the population density,

and hence the overall efficiency of resource use, predicted by the model. Examples for k= 2,

andI = 0.0, 0.5, and 1.0 are given in Table 3.8 below.
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Table 3.8

Territory Sizes and Group Sizes

/=0.0 /=0.5 /=1.0

Expected territory size

in patches 1.75 2.93 5.08

Expected number of

secondaries per territory 1.05 0.82 0.88

Total expected number of

individuals per territory 3.05 2.82 2.88

Expected number of

individuals per patch 1.74 1.78 0.57

Note that the theoretical maximum value for the total number of (primary and secon-

dary) individuals per patch is 2, since in theory the average resource requirement would be 1

patch for every 2 animals (sinceb=I), if there were no variability between patches or over

time. From the figures for mean group size, it can be seen that, in these cases, the model

predicts that secondary animals may make up roughly a third of the adult population (ignoring

any individuals who are completely non-territorial).

For generalk ; the techniques given in Section 3.2.2 for the calculation of/1(.) are rather

difficult. As in Section 3.2.3, we use an alternative method which exploits the special proper-

ties of the Erlang distribution. Let(C(t): t ~ O}be as in equation (3.2.39). Then

C(m) - Poisson(.t),

where we write .t= km for brevity. Now

say, so

.ttJ+bA:e-Ara+bk+ 11
LL (a+bk)! k

a+bA: ~ 0

.ta+bA:

= e-
A LL (a+bk)! (b+ 1)

a+bA: ~ 0
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-ta+bA: a+bk k=a
= e-'\ LL (a+bk)!(-k-+T)

a+bA: ~ 0

(3.2.64)

In the mixture case, we have already obtained the renewal densityh(.), in equation

(3.2.58), so we can write down

EN = I+H(m)

= 1+Lift h(x) dx

(3.2.65)

Thus we have exact expressions for mean territory sizes for the distributions introduced in

Section 3.2.3.

So far, we have looked at differences in probabilities and mean sizes of spatial groups

between different sets of parameter values, representing different habitats or different species.

We are also interested in variations within a habitat, which arise from the stochastic nature of

our model. Macdonald (1983) discusses field data which enables both within and between

habitat relationships tobe explored.

The variance of the number of patches in a territory in the Erlang case can be calculated

in the same way as the expectation E[N). Firstly, we write

1
(b+ 1)2 = ~{(a+bk)(a+bk-l)+(2k-2a+ 1)(a+bk)+(k-a)2).

Then

-ta+bA:

e"'k2E[N2
) = LL (a+bk)! {(a+bk)(a+bk-l +(2k-2a+ 1)(a+bk)+(k-a)2)

a+bA: ~ 0

But
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.1:-1 _
~a+b.l: ~a+b.I:-lL aL (a+bk)! (a+bk) = ~ L L a (a+bk-I)!

a=O b=O a+b.I: ;.0

.1:-2

= ~ L (a+ I)J.l:a(~)
a=O

.1:-1
= ~ L (a+ I)J:(~)-~kJf-l(~).

a=O

Hence

(3.2.66)

If k = I, then RI is distributed exponentially, and its variance is just equal tom. If k = 2, the

variance of the number of patches is

1m+ 1 me-4111 1 e-BIII,; n;- -n; .

Expressions for higher values ofk are increasingly complicated, but in general the variance

decreases withk, So, for case I of Table 3.5, withm = 2.18, the number of patches has mean

3.18, and standard deviation 1.48, ifk = I, and mean 2.73, and standard deviation 0.56, if

k = 10.

In the mixture case, we can use equation (3.2.24) to obtain an expression forG*(s),

where

G(t) = E[N2(t)].

Unfortunately, the expression obtained forG*(s) cannot readily be inverted to findG(t), and so

numerical results are difficult to obtain for the mixture case.

The variance of group size can be calculated in a similar way to the calculation of the

mean group size at the beginning of Section 3.2.5. For example, for case 1 of Table 3.5,

group size (including primary pair) has mean 3.23, standard deviation 1.60, ifk = I, and mean

2.21, standard deviation 0.48, ifk = 10.

It is also of interest to look at the correlationr between group size and territory size (in

patches) within a habitat. In general, the correlation is difficult to calculate, but we can make

some progress with special cases. In the whereRI has the Exponential distribution,r is zero,

as the distribution ofE(m), and hence the probability of a given number of secondaries, is
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independent of the number of patches. This follows from the "lack of memory" property of

the exponential distribution (see e.g. Grimmett and Stirzaker, 1982). In other cases, exact cal-

culations taking into account the possibility of more than one secondary animal are difficult.

However, in the Erlang case, it is possible to calculate the correlationT' between the presence

or absence of secondaries, and the number of patches in a territory. Whenk = 2, T' is found

to be

(3.2.67)

Numerical evaluation shows that withk = 2, T' is generally small, with a maximum value of

approximately 0.08. So in the casek = 2, group size and territory size will appear approxi-

mately uncorrelated. For higher values ofk, numerical results show thatT' increases

markedly, with values of up to approximately0.5 whenk = 10, for example. So in the case of

high values ofk; group size and territory size will be positively correlated.

An intuitive explanation for this correlation is that if a territory contains a large number

of patches, it is more probable that only a small part of the contribution made by the final

patch was needed to complete the territory. Hence it is more probable that the excess, i.e. the

rest of the contribution from the final patch, is large enough to support at least one secondary.

Note that this argument depends on the shape of the distribution ofRI, but is valid for any

Erlang distribution withk ~ 2.

The results here show that, provided the distribution ofRI is close to exponential, terri-

tory sizes (in patches) and group sizes within a habitat are highly variable, and approximately

independent. This is a possible explanation for the observed independence of these quantities

for some species, as summarised in Macdonald (1983). In contrast with territory size, the total

resource yield of a territory will always be highly correlated with group size. In fact, group

size is a monotonically increasing function of total yield, because of the basic criterion in the

model that a given number of secondaries will be present if and only if the total yield exceeds

a given level, as discussed in Section 3.1.

3.2.6 Rate or Convergence orE(m).

In Section 3.2.4, we used the fact thatE(m), the excess total mean yield in a territory, is

approximately independent of m, the total mean yield required by the primary pair, to study

the behaviour ofp, the probability of the territory supporting secondaries. For cases where we

have exact results, this approximation is very accurate. (In fact, for the exponential case it is

exact, but independence does not hold exactly for any other distribution - see e.g. Grimmett
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and Stirzaker (1982). p289.) But how accurate is it in general? We give a partial answer

here. by giving an analytic upper bound on the difference between the exact value ofp and the

approximation.

Theorem 3.3

Consider a renewal process with lifetimes Rt.R2 • • • • •satisfying the conditions of

Theorem 3.1. with E[Rd= 1. Let f(.) and F(.) denote the probability density function and

cumulative distribution function respectively ofRh and E(.) and h(.) denote the excess life-

time and renewal density respectively of the process. as in Section 3.2.2. WriteG(u) for

I-F(u). let

p",(x) = Pr(E(m) > x),

p.(x) = lim Pr(E(m) > x).
"' ....-

Then for any x,

Ip",(x)-p,,(x)I ~ 1'" Ih(u)-IIG(m-u) du+ L- It(u)-G(u)1 duo (3.2.68)

Proof.

From equation (3.2.26). the exact distribution of the excess atm is given by

p",(x) = G(m+x)+ 1'" h(u)G(m+x-u) du

and from Theorem 3.1. the equilibrium distribution. independent ofm, is given by

p,,(x) = Pr(E > x) = L- G(u) duo

Hence

Ip",(x)-p..{x)I = IG(m+x)+ 1'" h(u)G(m+x-u) du- L- G(u) dui

= IG(m+x)+ 1'" (h(u)-I)G(m+x-u) du- L~% G(u) dUi

~ 11'" (h(u)-I)G(m+x-u) dui + IG(m+x)- L~%G(u) dUi·

But

IG(m';x)- L:% G(u) dui

= 11- f(u) du-1- G(u) dui
"'+% "'+%
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= IL~%(f(u)-G(u» dui

~ 1.- If(u)-G(u)1 du
"'+%

~L- I/(u)-G(u)1 du; (3.2.69)

and

Il'" (h(u)-I)G~m+x-u) dui

~ L'" Ih(u)-IIG(m+x-u) du

~ l'" Ih(u)-IIG(m-u) duo (3.2.70)

So

Ip",(x)-p,,(x)1 ~ L- If(u)-G(u)1 du+ l'" Ih(u)-IIG(m-u) du,

as required.

The right hand side of equation (3.2.68) does not depend onx, so provided the renewal

density h(.) can be evaluated, a bound can be calculated on the difference between the exact

value of p and the approximation, which depends only onm. For values ofm for which this

bound is small, the approximation discussed at the beginning of Section 3, thatp is a decreas-

ing function ofm'<m, can be used.

For example, whenRI has the Erlang distribution withk = 2, we have from equation

(3.2.68) that

Ip",(x)-p,,(x)1 ~ 2me-2111 if m ~ i,

with a rather more complicated expression ifm < i. In this case the bound has maximum

value e-1 .. 0.368, whenm = i,and decreases rapidly withm, when m > i. For example, if

m = 2, the value of the bound is 0.073. So although we have calculated exact values in this

case, the approximation would have performed well.

The bound given in equation (3.2.68) is not tight, i.e. it is not the best possible such

bound. The bound is independent ofx but depends onm and F(.). Thus, writing B(m, F) for

the right hand side of equation (3.2.68), for the bound to be tight we would require

suplp",(x)-p,,(x)1 = B(m,F)
%

(3.2.71)

for all m and F(.). Clearly, under fairly weak regularity conditions, consideration of the ine-

qualities (3.2.69) and (3.2.70) shows that if equation (3.2.71) holds, the supremum mustbe
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attained at x= O. In such cases. we would therefore require. for tightness.

B(m.F) = IplII(O)-P ..(O)I = 0.

which is clearly not true in general. Thus the bound is not tight, in general. However the

method of proof of Theorem 3.3. which relies on constructing a bound which is a monotonic

function of x, and then eliminatingx as in the inequalities (3.2.69) and (3.2.70). does not

appear to extend to any improved bound. Thus the bound in Theorem 3.3 appears to be the

best which can be obtained by this approach. and possibly the best which is simple enoughto

be useful.

3.3 Generalisations or the Model

3.3.1 Constant Coerficient or Variation for Patches

In Section 3.2.1. equation (3.2.2). we assumed for simplicity that the means and vari-

ances of the yield from individual patches are related by

(3.3.1)

so that the total mean

and the total variance

N

a'-= 1: ~
j=l

satisfy the simple relationship

In practice. the relationship (3.3.1) may not always hold. A plausible alternative is

(3.3.2)

so that individual patches all have coefficient of variationI. regardless of richness. This may

be more realistic for certain types of resources. Since the variance in yield from a territory

now depends on the number and relative sizes of its component patches. as well as their total

richness. this model is harder to analyse. but it can be simulated.

Table 3.9 compares such simulated values ofP. the probability of secondary animals

being present. in the case where equation (3.3.2) holds (column A). with exact values in the

case where equation (3.3.1) holds (column B. copied from Table 3.6). in the casek = 1. The
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parameter values in case 1 areb = 1.0,r = 1.5, v = 1.6,v' = 1.5,/ = 0.5.

Table 3.9

Comparison of values forp, the probability of secondary

animals, using two different models for the variability

of resource yield, assuming (A) a constant coefficient

of variation, or (B) a variance proportionalto the mean.

Case Parameters A B

1 As in text 0.50 0.57

2 v = 1.5 0.40 0.52

3 v = 1.8 0.70 0.70

4 r = 1.25 0.77 0.79

5 r= 2.00 0.16 0.30

6 b = 0.10 0.91 0.99

7 b = 0.50 0.70 0.76

8 b = 2.00 0.23 0.33

9 b = 10.00 0.00 0.00

10 /=0.0 0.58 0.61

11 /= 1.0 0.67 0.64

The main conclusions are that the behaviour is broadly similar in the two models, but

the simulated model generally gives slightly lower probabilities, and is more sensitiveto the

values ofv and r. It appears that in most cases, the simpler model is likelyto be adequate.

3.3.2 More Than One Resource Type

Another generalisation of the model is to look at a territory which mustbe large enough

to give adequate supplies of more than one type of resource. A typical example might be

where the territory itself is fixed throughout the year, but food resources are strongly seasonal,

with different food types used at different times of the year.
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We assume that the requirements for different resource types canbe considered individu-

ally. Using suffices to indicate thes types, we definebi, for example, to be the amount of

resources of typei required by the primary pair, fori = 1, ... ,s. The meanings ofbE ,f;, Vi

etc. are similarly defined, by analogy with the parameters introduced in Section 3.2.1. Given

such a description of the requirement for each food type, we can calculate the required total

meansmi, i = 1, ... ,s, The territory is complete whenPi ;!!: m, for all i, i.e. when the territory

has sufficient mean yields ofeach food type.

We also assume that each patch contains resources of a single type, i.e. a patch oftype i

only affects the value ofPi' with each patch being of typei with probability qi, independently

of all other patches. Thus ql+q2+ • .• +q$= 1. Again, the patches are assumed tobe incor-

porated into the territory sequentially.If iN is the type of the final patch, then the amount of

resources of that type will be as in the single resource case, whereas in general other types

may have a greater excess than in the simple model, because some patches of typei, i :f. iN,

may be added afterPi ;!!: mi'

Exact calculations in this case are difficult, but we can obtain some crude bounds on the

probability of secondary animals being present. We define:

Ai to be the eventPi ;!!: mE in the single resource model, i.e.Pi ;!!: pE even if we ignore

patches added afterPi ;!!: mi;
$

to be the event thatAi occurs for alli = 1, ... .s (i.e. As = UAi);
i=1

A*

to be the eventPi ;!!: mE , i.e. the territory has sufficient resources of the type of the final
N N

patch to support at least one secondary; and

to be the event that for alli, the final value ofPi in the multiple resources model

satisfiesPi ;!!: mE, i.e. secondary animals are predicted in the multiple resources model.

Then we have

So, with the obvious notation for probabilities, we have

$

nPi ~ P* ~ . max (p;),
i=1 1=1• .• .•$

since the probability ofAN is a weighted sum of thePi'S, with the weights given by the

(unknown) probabilities thatiN = i, t = I,2, ... s.

These bounds maybe quite wide, especially ifs, the number of food types, is large, or if

Pi' the probability of a group being formed in the single resource model including only

patches of typei, varies greatly witht, Nevertheless, they may prove useful. For example, if

s = 2, PI = P2 = 0.5, then we know that 0.25 ~P* , 0.5, which is sufficient to make some
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prediction about behaviour. But ifPI = 0.1. P2 = 0.9. we can only say that 0.09lE; P* lE; 0.9.

which gives very little information.

These bounds also ignore the relative frequencies of patches of different types. deter-

mined by theqi 's. For example. if patches of typej are rare. i.e.qj is small. then it is likely

that in the completed territory. there willbe extra patches of typet, for all i =f. j. Hence we

expectu, > mE. for all i =f. I, and so the probability of secondaries in the multiple resources

model is close to the probability obtained by considering typej alone. i.e.p • .. Pj' However.

no analytic bounds forp. which take into account the probabilities of different food types.

qltq2 ..... qs. have been found.
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Chapter 4 Spatial Models for Individual Territories

4.1 Introduction

4.1.1 Motivation

The spatial discreteness of the distribution of resources was important in the models in

Chapters 2 and 3, but the spatial location of resources has so far been ignored. We will now

consider models which do take into account the spatial distribution of resources. In the

present chapter we consider the properties of individual territories, and in Chapter 5 we look

at interactions between territories.

Setting up a territory is clearly a spatial process. The location of resources affects the

cost, in time or energy, of defending a territory or feeding from it, which may in turn affect

the amount of resources needed for survival (Covich, 1976; Davies and Houston, 1984; May-

nard Smith, 1974). In particular, we wish to consider the effect 'of the spatial distribution of

resources on the models in Chapters 2 and 3. Spatial factors may affect both the setting up of

a territory by primary animals and the possibility of secondary animals sharing the territory.

4.1.2 Existing Models

There are a large number of existing models for territory shape and size. Almost all

assume a habitat with a uniform distribution of resources. Anyone of a wide range of optimi-

sation rules will then lead to a circular shape for a single isolated territory, with the radius of

the territory depending on the resource density in the habitat and the particular rule chosen.

Possible rules leading to circular territories in a uniform habitat include minimising perimeter

for a territory of a given area, minimising the total travelling time from a central point (e.g

Getty, 1981) to a territory of a given area, or maximising the weighted difference between

area and perimeter (e.g. Holldoblcr and Lumsden, 1980). Covich (1976) reviews many such

models. Clearly, we would expect circular territories whenever there is a uniform habitat and

any kind of isotropic, distance minimising criterion for evaluating a territory.

In reality, however, it is clear that not all animal territories are even approximately cir-

cular. Even ignoring the distortions due to neighbouring territories (the subject of Chapter 5),

an individual territory will often be far from symmetric. This is illustrated for foxes and badg-

ers, species for which the R.D.H. is thought to be particularly important, by Hersteinsson and
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Macdonald (1982) and Kruuk (l978a,b), respectively. Holldobler and Lumsden (1980) discuss

the strikingly non-circular territories of harvester ant colonies, which consist of a nest plus

l-dimensional trails to between I and 4 point sources of food. Ewer(1968) generalises this

idea, as follows:

..... if eyesight is relatively unimportant or if cover reduces visibility, the home range

may consist essentially of a number of places which are of importance - feeding places,

drinking places, resting places, sunning or wallowing spots and so on - linked by a series

of pathways. It is thus possible for neighbouring ranges to interpenetrate without

significant overlap." (p.64).

Finally, Covich (1976) mentions the idea of a territory which is the union of a small number

of discs, representing foraging areas, each centred on a burrow entrance or other refuge from

predation.

Despite this evidence that models with non-uniform habitats and non-circular territories

are necessary, there are few such existing models. Hdlldobler and Lumsden (1980) give a

simple model for the harvester ant territories described above, which is interesting, but rather

specialised, and not fully explored. Don and Rennolls (1983) also consider habitats with par-

ticular points which are important ('nuclei', in their terminology), but their aim is10 estimate

or model the distribution of the location of an individual animal, given the nuclei it uses,

rather than modelling the selection of the set of nuclei. Similarly, Getty (1981) considers a

continuous non-uniform habitat, from the point of view of space-use patterns. Noakes and

McNicol (1982) represent the territories of juveniles of a particular species of fish (brook

charr, Salvelinus foniinalis) as cardioid curves, but their model is purely empirical, and seems

to have little mechanistic or intuitive appeal.

Thus there are no satisfactory models for the formation of territories in non-uniform

habitats. In this chapter we will consider some possible models, concentrating on the case of a

single isolated territory. These models will represent generalisations, to a non-uniform habitat,

of models leading to circular territories in a uniform habitat.

4.1.3 Mathematical Background

The definitions and properties given in the current section are well-known: see for

example Stoyan et al. (1987).

A point process onIRd is a random variable taking values in a measurable space (N,!Jt),

where N is the family of subsets ofIRd which are locally finite, and!Jt is a sigma-algebra on N.

A set of points IJI in IRd is defined to be locally finite if any bounded subset ofIRd contains

only a finite number of the elements ofIJI.
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Given a locally finite set "', almost all pointsx E JRd have a unique nearest pointn(x) in

v, For a pointYE"', define the tile ofy

T(y) = (XE JRd: n(x) = y}. (4.1.1)

If every T is bounded, then each one is a polygon, and

!l3(",) = (T(y): YE",} (4.1.2)

is a tessellation ofJRd, known as the Voronoi tessellation, or sometimes, ifd = 2, the Dirichlet

or Thiessen tessellation.If '" is a realisation of a stationary point process of finite intensity,

then with probability 1, everyT is bounded, and the Voronoi tessellation exists.

Given the tessellation 18(",) based on a set "', we can define the Delaunay triangulation

D(",) which is its dual. Two pointsx,y E '" are saidto be connected, or to be neighbours, in

the Delaunay triangulation if their Voronoi tilesT(x), T(y) have a boundary segment in com-

mon.

The Delaunay triangulation can also be defined directly. Sibson (1978) shows that,

except for the arbitrary choices associated with degeneracies, the Delaunay triangulation is the

unique triangulation satisfying Lawson's (1972, 1977) criterion, which can be stated as fol-

lows (Sibson, 1978).

"If two triangles in the triangulation share a common edge, they define a quadrilateral

with that common edge as a diagonal.If that quadrilateral is strictly convex (that is,

each vertex is an extremal point of it) then replacement of the chosen diagonal by the

alternative one must not increase the minimum of the six angles in the two triangles

making up the quadrilateral, and this must hold for all such strictly convex quadrila-

terals. "

Less formally, the criterion seeks to divide the convex quadrilaterals occuring in the triangula-

tion in such a way as to make the resulting triangles as close as possible to equilateral. The

degeneracies mentioned above are not a problem in the current context: their handling is dis-

cussed in detail by Sibson (1978).

4.1.4 Defining a Territory

We shall represent the locations of resources by a point process 'Pin the plane1R2, or a

region of the plane. Such a model is the obvious formalisation of the patterns discussed by

Don and Rennolls (1983), Ewer (1968), and Holldobler and Lumsden (1980). It is also a

natural spatial version of the patch-based models of Carr and Macdonald (1986), Kruuk and

Parish (1982), and Chapter 3 of this thesis. It is natural to assign to each point of the process

some quantity of resources, thus forming a marked point process (Stoyan et al.• 1987). The
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marks will be taken to be independent of the point process, and identically distributed. (In

some cases the distribution will be degenerate, so that all marks are equal.) The point process

itself we will take to be a homogeneous Poisson process, representing complete spatial ran-

domness. While real resource distributions will generally not be Poisson, the actual pattern

depends on the type of resource in question. We will use the Poisson process as a simple,

well-understood starting point for spatial models. We will normally be concerned with only a

single realisation '" of'P, representing the fixed locations of resource patches. The quantity

of resources available at a point may, however, vary over time, i.e, we may interpret the mark

at a point as the mean of some process over time.

Given that resources are described by a point process'P, a territory will include some

subset of the points of the process. We think of the territory as a region of the plane contain-

ing a particular subset'r of "', the realisation of'P. For the models in this chapter, we only

consider a single territory, so the boundary between territories, and hence the total region

making up a territory, is ill-defined. Instead, as a summary of the geometry of a territory

containing a given subset of "', we use the convex hull of that subset. We can think of the

convex hull as corresponding to the "core area" of a territory (Ewer, 1968). In the absence of

information on neighbouring territories, it gives an indication of the shape of the territory of

interest. The use of the convex hull implies that territories, or at least their core areas, will

tend to be convex. This seems to be a reasonable assumption for species likely to be of

interest, such as foxes (Hersteinsson and Macdonald, 1982) and badgers (Kruuk, 1978b), and

in keeping with most existing models, though it does not apply to the Holldobler and Lumsden

(1980) model of harvester ant territories.

Given that we represent a territory by a set of points and their convex hull, we must

determine how these points will be chosen. The process can be modelled in two steps.

4.1.5 The Quality Of A Territory.

There has been considerable discussion in the biological literature of models of the net

value of a territory, usually aimed at determining territory size, and not taking into account

shape. Many of these models are discussed by Maynard Smith (1974), Covich (1976),

Schoener (1983) and Davies and Houston (1984). Other specific models are given by

Holldobler and Lumsden (1980) and Jones and Krummel (1985). The important factors in

such models are usually the area of the territory, representing total resources in a uniform

habitat, and some measure of the cost of occupying the territory, such as the defence cost or

travelling time for feeding. In our models, resources will be available at specific points rather

than uniformly, so we will consider the lotal of the marks of resource points in the territory

instead of the area of the territory. As a measure of the cost of holding a territory, we will use

the perimeter of the core area.It is an intuitively reasonable criterion, and is easily defined
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mathematically. Some existing models use perimeter as a measure of cost (e.g. Holldobler and

Lumsden, 1980), and in many others cost can be thought of as an increasing function of per-

imeter. The perimeter is related to the effort required for defence and, less directly, to travel

times within the territory. Most existing models could be generalised to a non-uniform habitat

by describing a territory in terms of its total resource content (sum of marks) and an increas-

ing, quadratic function of perimeter.

We will generally use a definition of the value of a territory which is a simple, natural

extension of the criterion used in Section 3.2.1. A territory-r with sum of marksJ.l(-r) and

perimeterp(-r) has quality

(r) = {- p(-r), J.l(r)~. m
q - 00, otherwise.

(4.1.3)

That is, the best territory is the one with smallest perimeter out of those withJ.l(-r) ~ m, and

territories withJ.l( -r) < m are regarded as untenable.

4.1.6 Searching for a Territory

Assuming that we can measure territory quality as above, we want to model the process

of choosing a territory. Recall that for the purposes of this chapter, we consider only a single

territory. Nevertheless, it is unreasonable to assume that a primary pair would choose the best

possible territory from a whole habitat. Such a choice would depend largely on the size of

habitat, and be undefined in the limiting case of an infinite habitat. Furthermore, in practice

animals will localise their search for a territory (P. J. Bacon, pers. comm.). We can model the

local nature of the search for an acceptable territory in two ways : by constraining the terri-

tory to contain particular resource points; or by choosing a locally optimal territory, in some

sense.

4.1.6.1 Constrained Choice of Points

If we are constraining the selection of points for the territory, the simplest, most natural

way to localise the search is to pick an initial resource point at random, and allow only terri-

tories including that point to be chosen. Since we only consider stationary processes, this

constraint is equivalent to conditioning on the existence of a point at the origin, and consider-

ing only territories which include the origin. In a model based on the Poisson process, this

constraint can easily be incorporated, since such conditioning does not affect the distribution

of points, except of course at the origin itself (see e.g. Diggle, 1983).



- 71 -

4.1.6.2 Local optimality

If the search is for a locally optimal territory, we need to define some spatial structure

on the set of possible territories. Firstly, we define two resource pointsX,Y E VI to be neigh-

bours if they are connected in the Delaunay triangulationD(VI) based onVI. Given a set of

points 1: C VI, we say thatx E VI is adjacent to1: if there exists some ye1: such thatx and y

are neighbours. Finally, two sets1:,v C VI ace said to be neighbours if one of the following

holds:

(i) v = 1:\ {x};

(ii) V = 1:U {y};

(iii) v = 1:U {y} \ {x};

where xE 1:, andy is adjacent to1:.

Condition (iii) seems slightly counter-intuitive, but is deliberately chosen to to allow the

possibility of two distinct sets with the same number of elements being neighbours. Note that

the definition allows a wide range of configurations to be reached, stepwise, from an initial

singleton set. In particular, even if1: is connected withinD(VI), a neighbouring set need not

be. The territory defined by a set of points1: is then said to be locally optimal if it is at least

as good, according to some given criterion, as the territory defined by any neighbouring setv.

4.1.7 Overview of the chapter

Having considered existing models and reviewed the mathematics which we will need,

we next look at some improved models. In Sections 4.2, 4.3 and 4.4, we explore three specific

models in which an initial random point must be retained in a territory. In Section 4.5, we

consider a model based on selecting a locally optimal territory. These four models are com-

pared in Section 4.6, while numerical and computational aspects are discussed in Section 4.7.

4.2 A Model with Simultaneous Choice of Points

The first way of localising the search for a territory, described in Section 4.1.6.1,

involves selecting the first pointXo of the territory at random. Clearly, to obtain the best

territory, subject to the constraint thatXo must be retained, the primary pair need to choose a

territory 1: such that

q(1:) = max{q(v): Xo Eve VI}.

Thus the remaining points in1: \ {xo} should be chosen simultaneously, to maximiseq(1:).

While such a choice will, by definition, give the best territory subject to the given con-

straints, it may not be a good model of the actual selection made by animals of a particular

species. Maximising q(1:) involves comparing territories which are of very different
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configurations, and in fact may have only the pointXo in common. Rules which are moread

hoc may correspond more closely to reality. Nevertheless, the optimal selection is of interest,

as an upper bound, a standard of comparison and perhaps an approximation for other rules.

Unfortunately, the properties of the optimum territory seemto be mathematically intract-

able. Even with the simplest measure of the quality of a territory, as defined in equation

(4.1.3), and with all pointsx E '" having the same mark, it does not seem possible to write

down the distribution ofmin{q(v»). The only exception is ifn, the number of points required

to make p.(-r) ~ m, is 1 or 2, in which case the process is trivial, and is subsumed in the

simpler model of Section 4.4.

In other cases, it is necessary to simulate the process. The program and techniques used

for the simulation are discussed in Section 4.7 below: in the current section, we concentrate

on describing the simulations undertaken, and the results obtained.It should be noted, how-

ever, that simulation of the current model is computationally expensive, which limits the trials

that can be carried out. In particular, only the simplest measure of territory quality, and only

territories requiring small numbers of resource points, are considered. Note that we have used

a point process with unit intensity Le.A. = 1 throughout: different values ofA. would simply

have the effect of scaling the values of the perimeter by a factor ofA. -to

Two models for the underlying pattern of resources are used. In the first, the marks

representing the mean yields of the resource points are all assumed to be equal, and the com-

mon value taken to be 1, without loss of generality. Since we are using the rule defined in

equation (4.1.3), a territory in such a habitat will contain a fixed number n of resource points,

with

and we can takemEN without loss of generality. Cases with constant marks are of theoreti-

cal interest, since there is no 'confounding' between the point process and the process of

marks in determining the perimeters of territories. Results can alsobe compared with the few

analytic results available, for this and other models.

The second model for the marks assumes that they all have the exponential distribution

with unit mean, independently of each other and of the point process itself. Clearly other

distributions could have been used, but the exponential was chosen for ease of comparison

with the non-spatial models of Chapter 3, and to give a contrast with the constant-marks

model. With random marks,m can take any positive real value. The values ofm used in the

simulations consist of integers, for comparison with the constant-marks case, along with

values obtained from Section 3.2.3 corresponding to particular cases already explored in non-

spatial models. Table 4.1 shows the details of the runs selected, and the results obtained.

Each case is defined by the choice of a value ofm, and of a distribution of marks (constant or
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exponential). For each case, the table gives estimates and standard errors for the first two

moments EP and EP2 of the perimeter of a territory, the effective sample size used, and the

c.p.u. time needed for each run (see Section 4.7 for details), and for some cases with random

marks, estimates and standard errors for the probability of group formation (i.e. Pr{J.l~m/»
for one or more values ofm'. Because the exponential distribution has been used for random

marks, the probabilities of group formation can be directly compared with the corresponding

values in the column labelled'k = I' in Table 3.6. In addition to the simulation runs, two

other cases, both with constant marks, are included in the table for the purpose of comparison:

the case m= 1, for which the perimeter is identically zero, and the case m= 2, for which

precise results are obtained in Section 4.4 below.

Table 4.1

Numerical Results for Simultaneous Choice of Points

"Canst" indicates marks which are constant;

"Exp" indicates marks which are exponentially distributed

Case Marks m EP S.E. EP2 S.E. Sample C.p.u. m' p S.B.

A Const 1 0.000 . 0.000 . . . · · ·

B Const 2 1.000 - 1.274 . . - · · ·

C Const 3 1.859 0.040 3.932 0.158 300 0.91 · · ·

D Const 4 2.645 0.049 7.641 0.270 270 2.8 · · ·

E Const 5 3.448 0.080 12.460 0.555 175 31 · · ·

H Exp 1 0.805 0.046 1.411 0.116 360 0.67 1.5 0.612 0.026

I Exp 2 1.449 0.074 3.110 0.241 190 1.6 · · ·

Q Exp 2.18 1.593 0.097 3.644 0.338 120 2.0 2.42 0.632 0.044

.. .. .. .. .. .. .. .. .. 2.74 0.420 0.046

.. .. " .. " " .. .. .. 3.38 0.260 0.040

The main conclusions from Table 4.1 are in accordance with intuition. BothEP and

EP2 increase with m, and the net effect is that the coefficient of variation ofP decreases with
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m, The coefficient of variation is higher in the case of exponentially distributed marks than

with constant marks. From comparison with Table 3.6, as mentioned above, it can be seen

that the current model gives values ofp that are approximately equal to (case 10 in Table 3.6

versus case H in Table 4.1; case 1 in Table 3.6 versus case Q, m'= 2.74, in Table 4.1) or

significantly lower than (cases 4 and 5 in Table 3.6 versus caseQ, m' = 2.42 and 3.38 respec-

tively, Table 4.1; significant at the 5% level) those in the non-spatial model.

Table 4.1 also shows that the c.p.u, time needed to simulate each territory increases

rapidly with m, For this reason. only small values of m have been used.

4.3 Sequential Choice of Points

A natural alternative to the simultaneous choice of the points of or\(Xol is to choose

those points sequentially. However. the naive procedure of adding, at each step. the pointX

giving the highest value ofq(.). will not in general give useful results. For instance, consider

the simple rule described in equation (4.1.3). Write'0.'1>'" for the marks ofXo.XI> .... Then

unless there exists someXl such that '0+'1 ~m, all choices of Xl give q(Xo.xd =
q(xol = -00. We could modifyq(.) to try to overcome this problem. though the modifications

necessary would depend on the nature of the particular functionq(.) with which we started.

Instead. for the remainder of Section 4.3. we concentrate on a particular sequential procedure.

aimed at giving high. though unavoidably sub-optimal. values of the simple functionq(.)

defined in equation (4.1.3). The procedure does not explicitly useq(.). but is tailored to the

particular structure ofq(.).

The procedure is simply described as follows. The initial pointXo is determined ran-

domly. as before (step 0). At thekth step,k ~ 1. the pointxle is added. such that

(4.3.1)

le
The procedure stops whenL rj ~ m. Although the above procedure will in general give a

j=O

lower value for q(or) than the simultaneous choice of or\(xol. the hope is that by minimising

perimeter at each stage. we will obtain something reasonably close to the optimum.

We now wish to derive some of the properties of the territory obtained by the above

sequential procedure. The final number of pointsN will be a random variable which is

independent of the locations of the points. In fact the process determiningN. depending only

on the marks of the resource points, will be identical to the corresponding process for the

non-spatial model in Chapter 3. Thus. the total amount of resourcesJl in the territory, and the

probability p of forming groups. will be the same as in Chapter 3. However. the distribution

of the perimeterp{XO ..... xN-d is difficult to write down.
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If we have constant marks, however, thenN will also be a constant, and we can make

some analytic progress.If n, the number of points required to make/J.(-r) ;?: m, is 1 or 2, then

as with the model of the previous section, the process is trivial, and is subsumed in the

simpler model of Section 4.4. If n=3, however, the selection of the final point,X2, is non-

trivial. The first point, selected at random, isXo. The next pointXl is clearly the nearest

neighbour ofXo. We write R for the random distance fromXo to Xl. The distribution ofR is

given by

Pr(R " r) = FR(r) = 1- e-,'In,· (r > 0), (4.3.2)

where A. is the intensity of the resource point processIJI (see e.g. Diggle, 1983, Section 3.3),

and thus we have

IR(r) = 2A.nre -,'In'' (r > 0). (4.3.3)

To investigate the location of the nextpoint, X2' we will redefine the problem as follows. We

condition on R = r , and transform the plane isometrically so thatXo = (0,0) and Xl = (r,O).

We write (x,y) for X2. Clearly sinceXI is the element of '" nearest toxo, no other point of '"

can lie in the disc centred at(0,0), with radius r. Subject to that condition, the remaining

points of '" are independent ofXo andXl.

We want to find that pointX2 which gives the smallest value of the perimeter of the

convex hull ofXO,XI,X2. But since we have only three points, the perimeter is

where d(.,.) simply denotes the distance between two points. We knowd(XO,XI) = r, so we

wish to minimise

(4.3.4)

which we denote by the random variable C, say. Note that the points(x,y) with a given value

of C lie on an ellipse, with foci (0,0) and(r ,0). Thus

Pr(C" clR = r) = I-Pr(IJI(Ec \D) = 0),

whereEc is the region contained by the ellipse

(4.3.5)

andD is the disc of radiusr centred at the origin. Thus

I -'loAPr(C" c R = r) = l-e " (4.3.6)
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where Ac is the area ofEc \ D.

The calculation ofAc is straightforward. and depends only on£.. After considerable
r

calculation. we can write

and hence

-.t,·a( ~)
Pr(C =iii clR = r) = FCIR(clr) = I-e r , (4.3.7)

where

a(s) =

o s =iii 1

- ~+v...f1=U! +sin-IV

+!~(!-~-sin-Iw) 1 < s < 3
(4.3.8)

n(!s...[s'Cl- I) s~3

and

w = 2-s.

Thus

• (C)C -.t, a -

!CIR(c Ir) = A.ra'(;: )e r , (4.3.9)

where

a'(s) =

o s =iii 1

2(I-s)...f1=U!+ !~~
+!<~-w~-sin-Iw)(2s2_1)/..J.?'=l 1< s < 3 (4.3.10)

s~3

Thus when n = 3. we know the joint distribution ofRand C, and thus the distribution of the

total perimeter

P = R+C. (4.3.11)

In particular. for comparison with other models, we calculate
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EP = J J u!R(r)!CIR(U-rlr) dr du

14>0 !!>r>O
2

(
u - r) -.tr2(If+a(!!::!.»= J J 2,i.2nr2ua' -r- e r dr du,

14>0 !!>r>O
2

(4.3.12)

and similarly,

(4.3.13)

The integrals above can be evaluated numerically: the values obtained when,i. = 1 are

included in Table 4.2 below.

If we have constant marks with n> 3, or random marks, the moments of the perimeter

in the sequential model can only be determined by simulation. The organisation of these

simulations is similar to that used in Section 4.2. We take,i. = 1 throughout, we consider the

cases of constant marks and exponential marks, and we consider a range of values ofm. Note

however that the current model is less costly to simulate than the model of Section 4.2, so a

wider range of cases can be considered. As in Table 4.1, we give estimates and standard

errors for the first two moments of the perimeter, plus the effective sample size of the simula-

tion and the c.p.u. time required. As well as results from simulation, the table includes three

other cases, with constant marks: the trivial casem = 1; the casem = 2, for which results are

obtained in Section 4.4 below; and the casem = 3, for which EP and EP2 have been obtained

more directly, from equations 4.3.12 and 4.3.13. Table 4.2 also includes values of

p = Pr(J.l ~ m'), for selected cases. As noted above, these probabilities are the same in the

current model as in the non-spatial model in Chapter 3. The values ofp are thus the same as

in Table 3.6, and are included in Table 4.2 for ease of comparison with the other models in the

current chapter.

Not included in the table are simulation results for case C, carried out to check the

agreement between simulation and exact results. These simulations give EP= 1.920 (S.E.

0.043) and EP2= 4.245 (S .E. 0.182), so they are consistent with the exact results. The effec-

tive sample size for these simulations is 300, at a c.p.u. time of Us per territory.

The definition of the sequential model means that the values of EP and EP2 it gives are

equal to the corresponding values for the simultaneous model (Section 4.2) in cases A and B

in the table, and not less than the values for the simultaneous model in other cases. Intui-

tively, we would expect the values for the sequential model to be strictly greater (except in

cases A and B), and the simulations provide evidence for this (statistically significant differ-

ences for EP in cases C, H,J and Q, at the 2~% level). These differences appear to be quite
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Table 4.2

Numerical Results for the Sequential Choice of Points

"Canst" indicates marks which are constant;

"Exp" indicates marks which are exponentially distributed

Case Marks m EP S.E. EP2 S.E. Sample C.p.u. m' p

A Canst 1 0.000 - 0.000 - - - - -

B Canst 2 1.000 - 1.274 - - - - -

C Canst 3 1.940 - 4.283 - - - - -

D Canst 4 2.774 0.055 8.510 0.328 275 1.4 - -

E Canst 5 3.526 0.065 13.484 0.476 250 1.8 - -

H Exp 1 0.976 0.049 1.951 0.153 340 0.39 1.5 0.607

J Exp 2 2.001 0.093 6.514 0.497 280 0.72 - -

K Exp 3 2.483 0.100 8.231 0.629 210 1.5 - -

L Exp 4 3.517 0.109 15.564 0.901 270 3.0 - -

Q Exp 2.18 2.012 0.090 6.226 0.449 270 0.76 2.42 0.791

" " " " " " " " " 2.74 0.571

" " " " " " " " " 3.38 0.302

small in cases with constant marks, but larger in cases with exponential marks (2%-5% and

21%-38% respectively, based on the ratjos of values of EP in Tables 4.1 and 4.2).

The c.p.u. time per simulated territory increases withm, but the rate of increase is rela-

tively low compared with the rate in the simultaneous model.

4.4 A Nearest-Neighbour Model.

4.4.1 The Model

The sequential model described above can be further simplified, and hopefully made

more tractable, by replacing the minimisation of perimeter at each stage with a simpler rule.

One possibility, which we consider in some detail, is to choose the nearest neighbours ofXo to
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make upr, giving the following procedure.

Firstly, Xo is chosen at random, as before. We will refer toXo as the centre of the terri-

tory. Secondly, the point in'II \ Xo which is nearest toXo is chosen as the next resource point

in the territory. Thirdly, continue adding resource points, in order of their proximity to the

centre, until there are sufficient resources in the territory. Note that under this rule, the number

of points N needed to supply a given amount of resources is again independent of the locations

of the points, provided the marks are independent of the point locations. Thus, without loss of

generality, we can condition on some value,N=n, say. Note that all resource points in the

territory lie in the closed discDn-1 centred on the first point chosen, with radius equal to the

(n -I)th nearest neighbour distance from that centre, and all other resource points lie outside

the open discD ; with the same centre, and radius given by thenth nearest neighbour distance

from the centre.

4.4.2 The Unit Disc

Since the resources form a Poisson point process, the n points in the territory can be

thought of as a uniform random sample ofn - 1 points on the discD n plus a single point at the

centre of the disc, independently of the location and radius ofDn. So it is sufficient to con-

sider the characteristics, and in particular the perimeter of the convex hull, of such a set of

points on the unit disc.

Let Pn be the perimeter of the convex hullfin of the set of n points consisting of the

origin plus a uniform random sample of n-I points on the open disc with radius 1 centred at

the origin. The distribution ofPn seems intractable, but it is possible to make progress in

evaluating its moments.

Efron (1965) considers the related case in which all n points form a random uniform

sample, and obtains an integral expression for the expected perimeter. We adopt a similar

approach. For any line in the plane, let(p, 0), 0 :;;0 < 1&, be the signed length and direction of

the normal from the line to the origin. Within the infinite strip defined by-00 <

p < 00,0 :;;0 < 1&, consider the region of pairs(p,O) corresponding to lines which intersect

fin, and let 'n be the area of that region. Then it is well known (e.g. Kendall and Moran,

1963, p. 58) thatPn = In.

A given line (p,O) will intersect /I II unless all then -I random points are on the same

side of (p, 0) as the origin. Thus the probability that(p,O) intersectsfin is

(4.4.1)

where A(p, 0) is the probability that a given random point is on the same side of(p,O) as the

origin. Since the distribution of the points is isotropic, we can writeA(p) for A(p,O), with
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A(p) = A( - p), and since all points lie on the unit disc we haveA(p) = 1 for all p ~ 1. Then

we can write

= J_~1on: (1-A,,-1(p,8)}d8dp

= 2nf (I-A,,-l(p)}dp. (4.4.2)

The probability A(p) is just the cumulative distribution function of the marginal distribution

along any diameter of the uniform distribution on the unit disc, and is given by

(4.4.3)

(c.f. Efron (1965), equation 7.8). Thus we have

BP" = 2n(1 l-{.!.+.!.(~+sin-lp)}"-ldp
lo 2 n

= 2n-2n2-"L1
(~+p{f=pz+sin-lp»,,-ldP. (4.4.4)

Substituting x= ~ +sin-1p gives

EP" = 2nLI-n1-"j: (x-sinxcosx),,-lsinxdx]
2

(4.4.5)

To evaluate the integral in (4.4.5), we proceed as follows. Define

[(n,/) = J!!.n: (x-sinxcosx)"sin21+1xdx
2

(4.4.6)

so that we require an expression for[(n,O). Using results from Gradshteyn and Ryzhik

(1980), we can write forn ~ 2, after considerable algebra,

I

[(n,/) = A(n,/)+4n(n-l) L a(/,m) [(n-2,m+2)
m=O 2m+3

(4.4.7)

where

I

A(n,/) = n"b(/)+2n(!)"-1 L a(l,m),
2 m=O 2m+3

(I ) __ zi-m I(/-I) ... (m+ I)
a m - -- ~__;:,__-=-_..:.-___;,--

, 21+ 1 .(2/-1)(2/-3) ... (2m+ I)'
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ill
b(/) = (21+ 1)(2/- 1)... 1

In addition, we have

1(0,1) = A(O, I) = b(/), (4.4.8)

1(1,1) = A(1,/), (4.4.9)

by direct calculation. Using equations (4.4.5) to (4.4.9), we can get exact values forEPn•

Further details are given, for completeness, in Section 4.4.5.

Similarly, we can calculate

= II Jf Pr( Both (p, e) and (q.¢) intersectHn) de d¢ dp dq
P.q ~ 0 8._& [O,21r)

= 4n II I f(p,q,l{I)dl{ldp dq
p,q & [0,1)'1'6 [O,21r)

(4.4.10)

by symmetry (and the fact that Un lies within the unit disc). wheref(p, q,l{I) is the probability

that any two lines(p.e) and (q,¢). satisfying min(le-¢I,2n-le-¢1J = I{I. both intersectHn.

By considering the locations of then -1 random points relativeto the two lines, we eventually

obtain

(4.4.11)

where A(.) is defined as in equation 4.4.3,

K(p, q.l{I) =

A(min(p,q)) o :£: I{I:£: lco-xl

A(cosp) + 2n-
1
sin

2
p

cot(p- x)+ cot(p- co)
(4.4.12)

A(p)+A(q)-1

and

1{I+'Y+co
p = -'--=""'-2 .

The integral (4.4.10) can then be evaluated numerically.
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4.4.3 Using the Results from the Unit Disc.

Having obtained values forEPn and EP;, we need to relate them to the perimeter of the

core are of the model described at the beginning of Section 4.4.

Let Ro, ... ,Rn-1 denote the ranked distances from the origin to each of then points in

the unit disc described in Section 4.4.2. Then we have

Ro = 0,

by definition, and we can write

R/ = U(J)' j = I,... ,n-I, (4.4.13)

where U(1)~ U(2) ~ ... ~ U(n-l) are the order statistics of a sample ofn-l independent and

identically distributed uniform random variables on [0, I]. We let

- -2
Aj = trRj, j = O, ... ,n-l. (4.4.14)

Define 'J)n(.,.) to be the deterministic function which takes as arguments a vector of

areas,a = ao,... , an-I' and a vector of angles0 = 0o,,,,, On-I' and gives the perimeter of the

convex hull of the points having polar co-ordinates(~,Oo), ... , (~,On_I)' We will

always take 00,...,On_1 to be independent and identically distributed random variables on

[O,2n), and so we defineiJ) n(.), with the second argument omitted, to be the corresponding

random function. Thus we can write

(4.4.15)

using relations (4.4.13) and (4.4.14).

Now consider the model in Section 4.4.1, and letRi' j = 0, ... ,n-I,n be the distance

from the initial point, or centre, of the 'ierruory to the jth nearest neighbour of that point (so

that Ro == 0). Let

(4.4.16)

From the basic properties of the Poisson process (see e.g. Diggle, 1983),

(4.4.17)

where A. is the intensity of the Poisson process, andF denotes the gamma distribution. Furth-

ermore, from the independence properties of the Poisson process, we can write

(4.4.18)
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where U(1)' ... ' U(n-l) are as in equation (4.4.13) above, and are independent ofAn. Clearly,

Ao == O. Thus the perimeter of the core area of the territory in the current model is

(4.4.19)

Now for any scalara,

(4.4.20)

so

Pn = A!SJ)n«O,U(I)' ..• ' U(n-l))

= (~n rSJ)n(n(O,U(l)'···' U(n-l))

(4.4.21)

We can use (4.4.21) to relate the first two moments ofP; to the corresponding moments ofPn•

From (4.4.17),

(4.4.22)

where Xv represents the chi-distribution withv degrees of freedom, i.e. the distribution of the

positive square root of a random variable with the chi-square distribution withv degrees of

freedom (sec e.g. Johnson and Kotz (l?70), Chapter 17, Section 8.3). Hence from e.g. John-

son and Welch (1939) (or from Johnson and Kotz (1970), Chapter 17, equation (10); but note

that equation (63) of the same chapter gives an incorrect version of the same result), we have

rO,(2n+ 1»
E[(2nA.)iR ] = h .2i.

n r(n)

Hence

r(H2n+ 1»
ERn = (nA.)Ir(n)

=
!xix...x¥

A\n-l)!
(4.4.23)

So from (4.4.21), by independence,
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EP" = ER"E?"

IX3X X2yl! ! ... 1
= I" ·210[1-10 -"I(n-l,O)],

A. (n-l)!
(4.4.24)

from Section 4.4.2. Also

2 2-2
EP" = ER" EP", (4.4.25)

where Eft: can be obtained numerically from equation 4.4.10.

4.4.4 Numerical Results

We collect here numerical results for the nearest-neighbour model, considering essen-

tially the same cases as in Sections 4.2 and 4.3. In cases with constant marks, results can be

taken directly from Section 4.4.3. In cases with random marks, we can think of the results in

Section 4.4.3as being conditional on a particular valuen of the random variableN, represent-

ing the number of resource points in the territory. The distribution ofN is known, from

Chapter 3: in the case of exponential marks,

N - 1 - Poisson(m).

Thus we can obtain the overall distribution of the perimeter from the conditional distributions.

As with the model in Section 4.3, the values of

p = Pr{j.L~ m')

are the same for the current model as for the non-spatial model in Chapter 3. They are

repeated here for convenience.

Table 4.3 gives values for EP and Ep2, for constant and exponential marks and for vari-

ous values of m, and in some cases values forp. All values are exact (i.e. a closed form is

available) or have been determined by ~umerical integration with much greater precision than

the simulation results in other sections of this chapter.

Intuitively, the nearest-neighbour model should, from its definition, give expected perim-

eters strictly greater than those given by the sequential model (Section 4.3), except in cases A

and B when the two models are equivalent. Table 4.3 shows that the intuitive relationship

does hold in case C, for which exact results are available for both models, and appears to hold

in most other cases, when the exact results in Table 4.3 are compared with the simulations in

Table 4.2 (statistically significant differences in cases D, E, K, L,Q and R, at the 2!% level).

The differences, based on ratios of the values for EP in the tables, vary considerably (from 3%

to 22%); the only case known exactly, case C, gives an increase of 8% inEP going from the

sequential to the nearest-neighbour model.
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Table 4.3

Numerical Results for the Nearest-Neighbour Model

Case Marks m EP EP2 m' p

A Constant 1 0.000 0.000 - -

B Constant 2 1.000 1.274 - -

C Constant 3 2.099 5.185 - -

D Constant 4 3.144 11.105 - -

E Constant 5 4.104 18.399 - -

F Constant 10 7.871 64.302 - -

G Constant 20 12.951 170.35 - -

H Exponential 1 1.028 2.489 1.5 0.607

J Exponential 2 2.056 7.015 - -

K Exponential 3 3.038 13.067 - -

L Exponential 4 3.958 20.246 - -

M Exponential 5 4.814 28.259 - -

N Exponential 10 8.323 75.209 - -

Q Exponential 2.18 2.237 8.005 2.42 0.791

" " " " " 2.74 0.571

" " " " " 3.38 0.302

R Exponential 4.33 4.247 22.810 4.78 0.638

4.4.5 Calculating the Expected Value ofPII.

For very small n, we can calculate EPII easily from equations (4.4.5) to (4.4.9). How-

ever, the complexity of the expression forEP" increases rapidly withn, Thus for moderate

values of n, we use computer algebrato obtain exact expressions forEP". A computer alge-

bra package manipulates algebraic expressions, unlike a conventional computing language, in

which only numerical values are used. Using the package REDUCE 3.3, exact expressions for

EP", n ~ 20, have been obtained. A listing of the simple program used is given in the



- 86-

appendix. Thus we obtain for example,

- 4EPl = ~,

BP _ (4(15n+ 32»
2 - (45n) ,

BP _ (1575n2+ 13440n-13088)
3 - (1575n2) ,

EP _ (2(55125n3+ 1411200n2-1374240n-2768896»
4 - (165375n3) ,

BP _ (63669375n4 +4346496000n3
- 3174494400n2

- 25584599040n+ 25516279808)
5 - (152806500n4)

The REDUCE package can also produce its output in a format suitable for immediate inclu-

sion in a FORTRAN program, which can then be used to obtain very precise numerical values.

4.5 A Model using Local Optimality

In this section, we consider a model in which the territory chosen is locally optimal, as

defined in Section 4.1.6. As in the previous three sections, we consider only the simple meas-

ure q(.) of territory quality defined in equation (4.1.3), although other criteria could be used.

The procedure for selecting a territory is as follows. Firstly, select a resource point at

random, xo. Let the 'current' territory be1"0 = (xol. Note that Xo need not be an element of

the final territory, unlike in previous models. Secondly, if the current territory is1"A;t consider

all sets v which are neighbours of1"", in the sense defined in Section 4.1.6.If there are no

neighbours v which are better than1"k' then the process stops, with1" = Tk as the chosen terri-

tory. If there is a neighbouring setv which is better than1"k' then choose1"k+l' the new

'current territory', to be the best of the neighbouring territories, and repeat the second step.

Within the above procedure, we have to define carefully what we mean by one territory

being better than another. Clearly if'Z'.t or any neighbourv has J.l ~ m, then we can choose

the best set to be the one with the highest value ofq(.). But typically 1"0 = (xol will have

q(1"o) = -00, and possibly q(v} = -00 for all neighbours v of 1"0. So clearly some other way

of choosing between territories is needed in the initial stages of the search. The problem is

similar to that encountered in Section 4.3. However, since we are comparing territories with

differing numbers of points, the minimisation of perimeter, used in Section 4.3, is not useful

here. Instead, when choosing between territories withJ.l < m (and hence q= -00), we prefer

the territory with the larger value ofu, (Note that such a criterion would not have worked in

Section 4.3: in that model, with random marks, it would lead to very large perimeters, since

the search was over the whole habitat.) Of two territories which have equal values ofu, as

will happen frequently when all points have unit mark, or which both haveJ.l ~ m, we prefer

the one with the smaller perimeter.



- 87 -

The above procedure will eventually select a territory'f satisfying

q('r) > -00 and q('f);?; q(v)

for any v which is a neighbour oft. except in the pathological case in which the sum of

marks in the whole habitat is less thanm. Unfortunately, the properties of the resulting terri-

tory are difficult to determine.

Table 4.4

Numerical Results for Locally Optimal Territories

"Const" indicates marks which are constant;

"Exp" indicates marks which are exponentially distributed

Case Marks m EP S.E. Epl S.E. Sample C.p.u. In' p S.E.

A Const 1 0.000 - 0.000 - - - - - -

B Const 2 0.720 0.023 0.687 0.041 330 0.83 - - -

C Const 3 1.552 0.037 2.818 0.133 300 2.9 - - -

D Const 4 2.395 0.052 6.450 0.275 270 8.1 - - -

E Const 5 3.198 0.058 10.85 0.392 185 14.3 - - -

H Exp 1 0.031 0.011 0.044 0.018 380 0.32 1.5 0.583 0.031

J Exp 2 0.367 0.039 0.586 0.087 330 0.82 - - -

K Exp 3 1.083 0.064 2.390 0.201 300 1.9 - - -

L Exp 4 1.892 0.091 ~ 5.817 0.475 270 3.7 - - -

M Exp 5 2.641 0.109 9.937 0.687 250 4.2 - - -

Q Exp 2.18 0.514 0.043 0.874 0.112 330 0.97 2.42 0.809 0.022

" " .. .. " .. .. " " 2.74 0.584 0.027
.. .. .. " .. .. .. .. .. 3.38 0.265 0.025

R Exp 4.33 2.120 0.093 6.754 0.456 260 4.7 4.78 0.503 0.031

In the absence of any analytic results, Table 4.4 shows simulation results for the local optimi-

sation model, covering a similar range of cases to the tables in previous sections of this
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chapter.

An initial look at the values of EP in Table 4.4 shows that they are all lower than the

corresponding values in Table 4.1 (the simultaneous choice model) and hence lower than the

values for either of the other two models. The differences are statistically significant for all

cases occuring in both Tables 4.1 and 4.4 (except the trivial case A), and are quite large,

particularly in cases with exponential marks and small m (cases H, ],Q).

The probabilities p of group formation in the local optimisation model are surprisingly

similar to those in the non-spatial model (and hence in the sequential and nearest-neighbour

models) in cases H andQ. In case R, the probability in the local optimisation model (0.503,

S.E. 0.031) is significantly lower than in the non-spatial model (0.638), but the difference is

still fairly small considering the difference in expected perimeter.

4.6 Comparison of the models.

In this section, we discuss and summarise the comparisons between numerical results for

different models made in Sections 4.2 to 4.5.

All the numerical results are based on the functionq(.) in equation (4.1.3). An impor-

tant question is what quality of territories do the models produce, i.e for satisfactory terri-

tories, how small a perimeter can be obtained?

Firstly, consider cases with constant marks. These can be thought of as limiting cases as

the variation between the marks, which represent mean (over time) yields from patches,

decreases to zero. When m= 1 all the models give a perimeter which is identically zero. When

m=2 the first three models always agree, giving a territory consisting of the initial random

part and its nearest neighbour, while the local optimisation model gives a smaller expected

perimeter. For m= 3,4,5, the remaining cases for which full results are available, the local

optimisation model always gives the smallest perimeter. The order of the the values of EP for

the remaining three models is in accordance with intuition, so that the overall ordering forEP

in the different models is

local optimisation < simultaneous < sequential < nearest-neighbour.

Secondly, in the cases involving exponentially distributed marks, the same ordering

holds. The differences in these cases are much more pronounced, since with random marks,

the simultaneous and local optimisation models may well have fewer resource points than the

sequential and nearest neighbour models. The local optimisation model in particular does

much better than any of the other models, presumably since all the other models are con-

strained to include an initial random point which may contribute littleto the resource content

of the territory.
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So the local optimisation model clearly performs better than the others, in the sense of

giving territories with acceptable levels of resources and smaller perimeters, especially with

random marks. These results suggest that, if all the above procedures for selecting a territory

were feasible for animalsto actually use, there would be a definite advantage in using the

local optimisation procedure.

The other important characteristic, apart from perimeter, of the territories formed by

these models is the excess of the actual sum of marks (or mean yield of resources)J1. over the

required valuem. The distribution of that excess determines the probability of social groups

being formed in these territories. As noted above, for the sequential and nearest neighbour

models, the distribution of the excess is identical to the distribution in the non-spatial models

of Chapter 3. Comparing values forp = Pr(p. ~ m') in Tables 4.1 and 3.6 shows that the

excess is generally smaller, andp is generally larger, in the simultaneous choice model than in

the non-spatial model, at least in caseQ (m = 2.18). On the other hand comparing Table 4.4

with Table 3.6 shows that with the local optimisation model, the probability of forming groups

is very close to the corresponding probability in the non-spatial model, at least in casesH

(m=l) and Q (m = 2.18). In Case R, however, the local optimisation model shows a decrease

in the probability of group formation, compared with the non-spatial model, which is statisti-

cally significant (at the5% level).

Thus the main conclusions for these single-territory models are: the local optimisation

model (Section 4.5) gives the smallest perimeters, and gives probabilities of group formation

similar to those of the well-understood non-spatial model of Chapter 3; the simultaneous

choice model (Section 4.2) gives perimeters which are much higher than in the local optimisa-

tion model, and probabilities of group formation which are lower than in the non-spatial model

or any of the other spatial models; and the simplified models of Sections 4.3 and 4.4, while

somewhat more tractable, are limited in use because the territories they produce have much

higher perimeters than in either the local optimisation model or the simultaneous choice

model.

4.7 Computation.

The purpose of this section isto indicate briefly some of the important points about the

numerical computation required to obtain the results of the current chapter (algebraic comput-

ing has already been discussed in Section 4.4.5).

Where possible, standard numerical packages have been used. In particular, extensive

use has been made of the N.A.G. Library (Numerical Algorithms Group, 1986) for efficient

numerical integration and sorting. The results of Section 4.4 (the nearest-neighbour model)

could thus be obtained fairly easily. For the remaining models, extensive programming was

necessary. The programs used were actually written to enable the simulation of multiple,
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interacting territories (Chapter 5) and are rather less efficient at simulating single isolated ter-

ritories than a tailor-made program would be. The c.p.u. times (in seconds. per territory simu-

lated) given in Tables 4.1. 4.2. and 4.4 should only be interpreted as relative costs for simulat-

ing the different models.

For each of these three models (in Sections 4.2. 4.3. and 4.5). the simulation follows the

same basic steps.

(i) Simulate an area of habitat. i.e. a realisation over a finite area of a homogeneous Poisson

process. with marks which mayor may not be random. The area is taken to be circular.

to minimise the simulated area which is unavailable due to edge-effects. as described in

(ii) below.

(ii) Select a random point of the process from within the simulated area. to serve as the

initial resource point in a territory. To avoid edge-effects. this initial point should not

be too close to the edge of the simulated area. The minimum allowable distance from

the initial point to the edge was taken to be4t i.e. twice the diameter of a disc hav-

ing an expected resource content equal to the requirement for a territory. This value was

chosen so that the territory was very unlikely to reach the edge of the simulated region:

informal trials suggested that it was a large enough distance to make edge effects negli-

gible.

(iii) Given the initial point from (ii), choose a territory according to the "rules" for the

required model. and record its final resource content and the perimeter of its convex hull.

In practice. the simulated habitat can be used as the basis for many territories. so each

time step (i) is carried out. steps (ii) and(iii) are executed a number of times. The re-use of a

simulated area affects the inference from the simulation. and improves the overall efficiency of

simulation. In the simulation ofk territories letPj be the perimeter of the jth territory andIj

be the indicator random variable of the event

(p. ~ m' for territory j)

(for whatever m' is of interest). for j= 1..... k, If the simulated territories were independent.

we would estimate the mean perimeter by

le

P = k-1 L r,
j=1

with estimated standard error

le

L P/_kp2

k -l.j ;...""_1 _

k-l

and the probabilityp of group formation by
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k

1= k-1 L. Ij
j=l

with estimated standard error

However, since we are re-using the simulated habitat, our observations are not independent.

Instead, they constitute a random sub-sample (with replacement, because of the structure of

the program) from a finite random sample determined by the simulated habitat. Since the

models for territory formation are deterministic (once the habitat and the starting point are

chosen), the size of the latter sample (determined by the habitat) is just the number of resource

points in the simulated habitat which satisfy the requirement in(ii) above, sayK. The inter-

dependence between observations increases the variances ofP and 1 by a factor of

1+ (k-I)K-1, giving estimated standard errors of

k

L. Pf-kp 2

{
1+(k-l)K-l }i.J:.....=_l~J__

k k-I

and

{l+(k~I)K-l r1(I-l)

respectively. We can think of k i as the effective sample size, and values are given
1+(k-I)K-

in the tables of simulation results above.

The choices ofk and K affect the efficiency of the simulation. Initial trials showed that

in a wide range of cases, simulation is most efficient, as measured-by effective sample size

divided by c.p.u. time, whenk"" K, and so this relationship has been used throughout the

current chapter. The best value ofk and K to use for a given case and model, is determined
e-

by experimentation. In some cases, more than one set of simulations at the most efficient value

of k is necessary to give a sufficiently large effective sample size.

The above considerations apply to all the simulations in this chapter. There are also

specific techniques which can improve the efficiency of the simulation of a particular model.

With the simultaneous choice model (Section 4.2), the territory chosen will in theory be the

best possible from the whole, infinite habitat. In practice, as described above, we simulate a

finite part of the habitat, and assume that the optimum territory (based on an initial point not

too close to the boundary) lies within the simulated area. Nevertheless, the number of potential

territories which need to be evaluated may be very large. In the simplest case, with constant

marks and m an integer, the number of potential territories increases approximately as the

(m-I)th power of the number of points in the simulated habitat. However, most of these
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potential territories canbe eliminated without the computationally expensive step of calculat-

ing the perimeters of their convex hulls.

The key is to note that. since (in this model) the territory is constrained to contain the

initial point xo. the perimeter of any territory containing another pointX cannot be less than

2d(Xo.x). So provided a viable territory1'0 containing Xo exists. we can disregard any pointX

such that

The procedure actually used can be outlined as follows.

(a) Select an initial pointXo.

(b) Select a "reasonable" territory1'0. containing Xo. quickly (by using the nearest neigh-

bours ofXo).

(c) Definep* to be the lowest perimeter so far. initially equal top(1'o).

(d) Define (1 to be the set of resource pointsX with

d(Xo.x) ~ !JJ*.

(e) Consider each subsetl' of (1 which contains xo. which has /J.(1') ~ m, and which is

minimal in the sense that there is no strict subsetv of l' with Xo E v./J.(v) ~ m. If

p( 1') < p*. then setp* equal top( 1'). and eliminate from further consideration any pointX

with

d(Xo.x) > !p*.

and thus any subset of(1 containing x.

(t) When all subsets of(1 have been considered (or eliminated). the chosen territory is the

one giving the final value ofp*. .-

The method is further speeded up by labelling the elements of(1\ {xo} as x .. X2 • • • • • so

that d(xo.x.) ~ d(xo.x,.) ~ .... Then (at step (e) we consider the subsets of(1 in lexical order

so that: all subsets containingXl are examined before the subsets withoutXl; within each of

those categories. subsets that containx2 are examined before those that do not; and so forth.

Because the better territories are likely to be those consisting of points nearXo. this ordering

means that points in(1 are more likely to be eliminated early on. so less subsets will have to

be evaluated.

For the "sequential" model in Section 4.3. a similar approach is applied. at each stage in

the formation of a territory. to the choice of the next point to include in the territory. The

scope for saving processing time is not so great for the "sequential" model as for the "simul-

taneous" model. since the number of possibilities to be tried does not increase so quickly with
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the number of points in the habitat.

In the local optimisation model (Section 4.5). it is necessary to calculate the Delaunay

triangulation of the resource points. in order to determine which pairs of sets of points are

neighbours. Since the triangulation involves all the resource points, it is potentially expensive

to compute. To minimise the time spent. the highly efficient algorithm of Green and Sibson

(1978) is used.

Another potential problem is that the value.q( 'f) say. of a particular subset may be

needed at more than one stage in the search for a local optimum. If'fit 'f2• • • •is the sequence

of "current" territories (in the terminology and notation of Section 4.5). then'f may be a

neighbour of t, and 'fj (i ::I: j). and a naive approach would result inq('f) being calculated

twice. The method used to avoid this recalculation is to store known values ofq(.) in a tree-

like data structure which can be easily searched to find out whetherq('f) has been calculated.

and retrieve its value if so.
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Chapter 5 Models for Multiple Territories

5.1 Introduction

The models in Chapter 4 considered the random configuration of one isolated territory.

While such models give some tractability, and are directly comparable with many models

mentioned above (Sections 1.2, 3.2.1 and 4.1.2), it is clear that in reality, territories will

interact. In the current chapter, we will discuss some existing models for interacting terri-

tories, and then consider how the spatial models of Chapter 4 can be extended to include more

than one territory.

5.1.1 Existing Models

The existing models for multiple territories, like those for single territories, nearly all

assume a uniform habitat (Jones and Krummel, 1985; Maynard Smith, 1974; see also the

review by Covich, 1976). These models are typically stated to predict a pattern of equal-sized

regular hexagons as territories. A more accurate statement, at least for Jones and Krummel

(1985) and Maynard Smith (1974), is that a pattern of regular hexagons is clearly a stable

equilibrium of the model described, but not enough detail on dynamics and/or initial condi-

tions is given to determine whether, or with what probability, that particular equilibrium

would be obtained. In fact, Hasegawa and Tanemura (1976) show by simulation that, for a

simple, intuitive choice of the dynamics and initial conditions, a pattern of regular hexagons

does not occur. Instead, a stable pattern is reached in which territories are polygonal, and the

number of sides has some non-constant distribution, (the modal value, six, having a probabil-

ity of approximately a half). Their model is further discussed in Hasegawa and Tanemura

(1980) and Tanemura and Hasegawa (1980); the conclusion is essentially unchanged. The

same authors, Hasegawa and Tanemura (1980) and Tanemura and Hasegawa (1980), also give

an alternative model for territory formation, based on the Voronoi tessellation (Section 4.1.3)

of the centres of randomly packed circles. Again, a uniform habitat is assumed, and the model

is more concerned about the separation between centres than with any resource-based cri-

terion.

Thus all existing models seem to assume uniform habitats, and, with the exception of the

work of Hasegawa and Tanemura, are imprecisely defined.
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5.1.2 Modelling Interacting Territories

The models we will use are directly derived from those in Chapter 4. modified to allow

multiple territories to exist and interact. Most of the necessary changes apply equally to the

four models of Sections 4.2 to 4.5.

As before. we have a realisationIf! of a (marked) point process'P. representing

resources. Unlike the models in Chapter 4. we consider only a finite region A of the plane. for

simplicity. Now instead of determining a single territory. we form territories in sequence.

continuing until no more viable territories are possible. The initial point of each new territory

is selected at random from those points not already included in a territory. These models thus

have some features in common with "hard-core" sequential inhibition processes (see e.g. Dig-

gle, 1983. or Stoyan et. al., 1987). However the models described here are more complex. and

less tractable. since the final result is a collection of sets of points. rather than just a collection

of points.

The first territory 'fl generated by such a model will have the same properties as the

single territory formed in the corresponding model from Chapter 4. Denote the common distri-

bution by T(If!.A). and write

'fl - T(If!.A).

Note that 'fl takes values in the power set (O.I}". and since the process of selecting a territory

is deterministic once the initial point is specified. its distribution assigns probability _1_
lJI{A)

(where lJI{A) is the number of points ofIf! in the whole region) to each ofIf!(A) subsets oflJI.

corresponding to the equally likely choices of initial point. and probability 0 to any other sub-

set.

Clearly we wish to prohibit subsequent territories from containing points which have

already been used. Such points are thus excluded from selection as starting points for the

search for any further territory. and from membership of intermediate or final territories in the

search.

We could define the kth territory'Ck in a region A to have the same distribution as'CJ

except that the points of'CJ• • • • • 'Ck-Jare ignored. giving

However. simple examples show that configurations with positive probability in

T(If!' ('fJ U • • • U'fk_J),A) may, when thought of as territories, be biologically implausible

given the existence of territories represented by'f 10'" • 'fk -J.

For example, in the situation shown in Figure 5.1. given the prior existence of territories

'fJ and 'f2. a territory containing both the pointsx and y is unlikely.
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Figure 5.1 The Interaction of Territories

The process is modified in two ways to take account of these biological constraints.

Firstly. we avoid territories which are potentially divided into two or more parts by the pres-

ence of other territories. We wish a territory to be connected in some sense: the definition we

use is based on the Delaunay triangulation D(V'). as defined in Section 4.1.3. We require all

territories to be connected within D(V'); more precisely. givenx.y E -r c (V'nA). then for

some m there must existXl .... Xm E -r such that the pairs{x.xd. (xm.y) and (Xj,Xi+l)(i =

1• ..• • m-1) are all pairs of neighbours in D(V'). Any -r not satisfying the above criterion is

prohibited: we set its qualityq(-r) = -00. Note that. unlike the models in Chapter 4. models
e-

for multiple territories may result in all territories-r based on an initial pointXo having quality

q(-r) = -00. For example. consider the case where the pointXo has mark ro < m, and where

all the neighbours ofXo in the Delaunay triangulation already belong to other territories. Then

no territory -r containing Xo has q(-r) > -00. and the initial set(xo) has no neighbours in the

sense of Section 4.1.6.2.

Secondly. we wishthe cost of defending a territoryt;which affects q(-r). to reflect the

presence of other territories. For a single territorye, the core areaC(-r) coincides withH(-r).

the convex hull ofe,as discussed in Section 4.1.4. and we are interested inp('r). the perimeter

of l/(-r). Within a model for multiple territories. H('r) has the same definition. but the

definition of the core area depends on existing territories. say-rh 'r2 ..... 'rot. We will define the

core area. denoted byC(rl{'rl.'r2 ..... 'rot)). inductively.
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When k = 0, there are no previous territories, and the appropriate definition is

C(rI0) = H(r).

For k ~ 1, we proceed as follows.

(i) Determine D(r), the Delaunay triangulation of the points ofr.

(ii) Partition H(r) into a setoi) of line segments (the edges ofD(r» and open triangles (the

components of the set formed by deleting the edges ofD(r) from H(f».

(iii) Assume that core areas

have already been defined for existing territories. Then we can define IE, the set of ele-

ments ofof> which are disjoint from

k

C = UC(r;!(rt,..·,rj-tl),
j .. t

the combined core area of the existing territories.

(iv) Define C(r I(r 1> • • • 'rk}) to be the union of the elements of IE.

The perimeter relevant to the cost of defendingt,and used in determining the quality of

t; is p(rl(rt, ... ,fk}), the perimeter ofC(rl (rt, ..• ,rk}).

There is one case in which the core area defined by the above process is rather unrealis-

tic. It is possible for the perimeter of some existing territory,fj say, to separate

C(r I(r t , ... , fk)) into more than one component. The perimeter calculated forr is then just the

sum of the perimeters of the components, whereas it would be more reasonable to disallowr

completely. Normally, the above problem is prevented by the requirement thatr itself be

connected. Under that constraint, the .problem can only occur whenfj completely encircles

not only another territory, rj say, which existed beforerj' but also at least one unused

resource point which can then be included int, Even then, the configuration required for the

problem to occur is extremely unlikely. In view of the very high extra computational cost that

would be required to avoid the situation described, the low probability of it occurring, and the

minor effect that it is likely to have if it did occur, no allowance has been made for the possi-

bility.

Since we are considering a sequence of territories in a finite habitat, there will eventu-

ally come a stage at which no further territories can be added. Clearly this is the case if all

resource points have been included in territories, so that no initial point can be found for any

further territory. In addition, we also consider a habitat containing territoriesr t , r2, ... , r k to

be full, i.e. incapable of supporting any more territories, if the best territoryr which could be

formed with any remaining point xeVI' (ft u...urk) as initial point has qualityq(r) = -00.
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Thus the habitat is full when each component of the graph induced on '" \('Z'l U • • • U'Z'k) by

D(",), has total yield (sum of marks) less thanm, the yield needed for a viable territory.

5.1.3 Overview of the chapter

The remainder of the current chapter parallels Chapter 4. In Sections 5.2 to 5.5, we

consider the four models of territory formation from Chapter 4, each extended to allow for

multiple territories. In Section5.6 we summarise and compare the numerical results from

those models, and in Section5.7 we discuss computational aspects.

5.2 Simultaneous Choice of Points

The model based on the simultaneous choice of the points in a territory, introduced in

Section 4.2, generalises readily to the case of multiple territories, in the way described in Sec-

tions 5.1.2. Given an initial point xo, a territory'Z' is chosen such that

q('Z') = max(q(v): Xo Eve "'},

provided thatq( 'Z') > - 00. When no more such territories exist, the habitat is full.

The properties of the territories formed are even more difficult to obtain than in the

corresponding single territory model. Except in the most trivial case(m = I, constant marks),

simulation appears to be necessary, but it is computationally expensive. In only a few cases

can territories readily be simulated in sufficient quantities to give meaningful results, and

these are shown in Table5.1 below. For more computational details, see Section 5.7.

Table 5.1

Numerical Results for Territories based on Simultaneous Choice

"Canst" indicates marks which are constant;

"Exp" indicates marks which are exponentially distributed

Case Marks m EP S.E. EP2 S.E. Sample C.p.u. rn' p S.E.

A Const 1 0.000 - 0.000 - - - - - -

B Const 2 1.295 0.019 2.324 0.075 1720 0.26 - - -

H Exp 1 1.271 0.077 3.630 0.396 344 7.1 1.5 0.578 0.027

As with the single territory models in Chapter 4, case A is trivial, giving perimeters

which are identically zero. Case B, as in Chapter 4, has exactly the same properties for the
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three 'constrained choice' models (Section 4.1.6.1): simultaneous choice, sequential choice,

and nearest neighbour. However, with multiple territories, it seems that case B of these

models is no longer mathematically tractable. Instead, Table5.1 includes simulations of case

B, which show an increase in mean perimeter, as compared with the single territory case (e.g.

Table 4.1), which is statistically significant. Case H of the simultaneous choice model also

shows a higher value forEP in the multiple territory model (Table5.1) than in the single

territory model (Table 4.1). Such an increase is clearly to be expected, since many of the

territories, in any multiple territory model, will be forced by pre-existing nearby territories to

take shapes that are not optimal. In contrast, there is no evidence from case H in Table5.1

that the probability of group formation is any different in the multiple territory model from in

the single territory model in Section 4.2. Unfortunately, the range of cases of the current

model that can be simulated is severely restricted by the computation time required.

In addition to results analogous to those for single territory models, we can look at the

global properties of a multiple territory model. In particular, we can look at the density of

territories in a habitat which is full, which we callp. Note that since we use a resource point

process of unit intensity, the densityp can be thought of as representing both territories per

unit area and territories per resource point The density will depend on the expected number

of resource points in a territory (which if marks are random need not be the same as in a

non-spatial model) and on the amount of resources unused when no more connected territories

can be accommodated. Table5.2 shows the estimated densityp for each of the cases covered

in Table 5.1, with the associated standard error, and the sample size (number of areas of habi-

tat simulated, not number of territories) on which it is based. It also compares the density in

each case with{EN}-l, the number of territories per resource point in the non-spatial model

from Chapter 3, whereN is the number of points in a territory (see Section3.2.5).

Table 5.2

Estimated Densities of Territories based on Simultaneous Choice

Case Marks {EN}-I pEN ..
S.E. Sample sizem p

A Canst 1 1.000 1.00 1.000 - -

B Canst 2 0.500 0.95 0.477 0.011 SO

H Exp 1 0.500 0.95 0.476 0.024 20
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The figures forpEN represent in some sense the efficiency with which territories are

'packed' in the current model. relative to the non-spatial model. The values summarise both

the proportion of resource points left unused and the average number of resource points per

territory. which. if marks are random. may not be the same as in the non-spatial model. Note

that in principle. pEN could take a value greater than 1. if the number of points per territory

was smaller in the multiple territory model than in the non-spatial model.

Regardless of the model being used. case A will clearly havep = EN = 1; in a full habi-

tat. with exactly 1 point per territory. there is a one-to-one correspondence between resource

points and territories. Cases Band H in Table 5.2 havepEN close to 1. which means that the

density of territories is closeto that expected from the non-spatial model.

5.3 Sequential Choice of Points

The sequential model can also be adapted as a model for multiple territories. However.

as in Section 4.3. the choice of successive points cannot be based in a naive way onq(.). the

function defining the quality of a territory. Instead. givenxO • • • • • XA;-lt we add the pointXA;

which. taking into account the discussion in Section 5.1. minimisesp{xo.Xlt • • • • XA;}subject to

the constraints that

and {XO.Xt • • • • • XA;}is connected within the graph induced on",'UTj by D(",). where the

union is taken over any territories already established. As in the sequential model for a single

territory. the process starts with a single randomly chosen pointXo. and continues until
A;

L Tj ~ m, where Tj is the mark associated withXj'
j=o

As with the simultaneous choice model. it does not seem possible to make analytic pro-

gress in determining the properties of territories formed in the sequential choice model. How-

ever. simulation is not so computationally expensive. Table 5.3 gives numerical results for the

sequential choice model. for a range of cases. Case A in Table 5.3 is trivial. and case B.

included here for completeness. has already been discussed in Section 5.2. In all other cases.

the multiple territory model gives significantly higher mean perimeters (at the 2!% level) than

the corresponding single territory model (Table 4.2). as expected. In contrast. all the probabil-

ities of group formation in Table 5.3 are very closeto those in Table 4.2 (or equivalently. in

the non-spatial model). suggesting that interactions between territories will have little effect

on social structure. within the current model. Comparison of the sequential model with the

simultaneous model for multiple territories is difficult because the information on the latter (as

given in Table 5.1) is very limited. Only case H can be compared. and it does not show a

significant difference between values ofEP or between values ofp.
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Table 5.3

Numerical Results for Territories based on Sequential Choice

"Const" indicates marks which are constant;

"Exp" indicates marks which are exponentially distributed

Case Marks m EP S.E. EP2 S.E. Sample C.p.u. m' p S.E.

A Const 1 0.000 - 0.000 - - - - - -

B Const 2 1.295 0.019 2.324 0.075 1720 0.26 - - -

C Const 3 2.488 0.036 7.486 0.234 993 0.73 - - -

D Const 4 3.505 0.045 14.242 0.417 958 1.26 - - -

E Const 5 4.309 0.049 21.030 0.541 1007 2.00 - - -

H Exp 1 1.196 0.065 3.676 0.378 532 0.41 1.5 0.602 0.021

J Exp 2 2.257 0.073 8.778 0.519 684 0.89 - - -

Q Exp 2.18 2.403 0.073 9.685 0.578 735 0.77 2.42 0.792 0.015

" " " " " " " " " 2.74 0.577 0.018

" " " " " " " " " 3.38 0.302 0.017

Table 5.4

Estimated Densities of Territories based on Sequential Choice

Marks {EN}-l pEN
A

Case m p S.E. Sample size

A Const 1 1.000 1.00 1.0000 - -
B Const 2 0.500 0.95 0.4772 0.0109 50

C Const 3 0.333 0.92 0.3068 0.0061 30

D Const 4 0.250 0.89 0.2218 0.0046 30

E Const 5 0.200 0.93 0.1865 0.0038 30

H Exp 1 0.500 0.98 0.4912 0.0188 30

J Exp 2 0.333 0.95 0.3163 0.0097 30

Q Exp 2.18 0.314 0.99 0.3119 0.0076 30
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Table 5.4 summarises information on estimated territory density in the sequential multi-

ple territory model. As in the previous model. all the values ofpEN are close to 1. so that

territory density is always close to the value predicted by the simple non-spatial model.

5.4 The Nearest-Neighbour Model

The nearest-neighbour model. described in Section 4.4. is affected by the ideas in Sec-

tion 5.1 in a very similar way to the sequential model (Section 5.3). Given pointsXo • • • • • Xk-lo

the kth step in choosing a territory is to add the pointXk which minimises d(XO,Xk), Le. the

point closest to the nominal centre of the territory, subject to the constraints that

and {Xo,Xlo • • • ,Xk} is connected within the graph induced onl{I\ UTj by 1)(l{I), where the

union is over any territories already established. As with the sequential model,Xo is randomly
k

chosen, and the process continues untilI. fj ~ m, where fj is the mark associated withXj'
j=o

Note that because of the requirement of connectedness, the points are not necessarily the

nearest neighbours ofXo, even within the appropriate component of the graph. Nevertheless,

the model just described does seem to be the most appropriate generalisation to multiple terri-

tories of the nearest-neighbour model in Section 4.4.

Table 5.5 gives simulation results for the model described above. As expected, the

figures for mean perimeters in the multiple territory model, given in Table 5.5, are all

significantly higher (at the5% level) than in the corresponding single territory model (Table

4.3). The figures for EP are also significantly greater in Table 5:5 than in Table 5.3 (the

sequential model), in most cases. However, none of the probabilitiesp of group formation are

significantly different in Table 5.5 from in Tables 4.3 or 5.3. This suggests that the nearest

neighbour, multiple territory model leads to similar social behaviour to the sequential choice,

multiple territory model and the nearest neighbour, single territory model.

Table 5.6 gives estimated densities for territories according to the current model, As

with the previous multiple territory models. all values ofpEN are reasonably close to 1, so

that the density is close to that suggested by the non-spatial model.

Note that, as mentioned in Section 5.2, it is possible for pEn to be greater than 1, imply-

ing a higher density in the spatial model than predicted by the non-spatial model. However, as

can be seen from the S.E. forp, there is no evidence thatpEN> 1 in case K of Table5.6: the

simulation results are consistent withpEN ~ 1.
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Table 5.5

Numerical Results for Nearest Neighbour Territories

"Const" indicates marks which are constant;

"Exp" indicates marks which are exponentially distributed

Case Marks m BP S.E. BP" S.E. Sample C.p.u. rn' p S.E.

A Const 1 0.000 - 0.000 - - - - - -

B Const 2 1.295 0.019 2.324 0.075 1720 0.26 - - -

C Const 3 2.714 0.041 8.959 0.272 960 0.52 - - -

D Const 4 3.769 0.049 16.576 0.448 979 0.70 - - -

E Const 5 4.803 0.054 25.847 0.595 965 1.00 - - -

F Const 10 8.957 0.075 85.680 1.696 969 6.26 - - -

H Exp 1 1.299 0.062 4.337 0.372 688 0.29 1.5 0.624 0.018

J Exp 2 2.547 0.083 11.106 0.715 664 0.44 - - -

K Exp 3 3.306 0.081 16.274 0.734 818 0.66 - - -

L Exp 4 4.595 0.102 29.430 1.526 793 1.02 - - -

M Exp 5 5.552 0.108 40.653 1.702 841 1.54 - - -

Q Exp 2.18 2.601 0.085 11.765 0.745 698 0.47 2.42 0.784 0.016

" .. .. .. .. .. .. .. .. 2.74 0.567 0.019

.. .. .. .. .. .. .. ..
" 3.38 0.322 0.018

R Exp 4.33 4.953 0.100 32.476 1.308 793 1.10 4.78 0.629 0.Dl7
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Table 5.6

Estimated Densities of Nearest Neighbour Territories

(EN}-I pEN
..

S.E. Sample sizeCase Marks m p

A Const 1 1.000 1.00 1.0000 - -

B Const 2 0.500 0.95 0.4772 0.0109 50

C Const 3 0.333 0.89 0.2966 0.0070 30

D Const 4 0.250 0.91 0.2266 0.0040 30

E Const 5 0.200 0.89 0.1787 0.0026 30

F Const 10 0.100 0.90 0.0898 0.0010 30

H Exp 1 0.500 0.95 0.4764 0.0135 40

J Exp 2 0.333 0.92 0.3071 0.0073 30

K Exp 3 0.250 1.01 0.2527 0.0064 30

L Exp 4 0.200 0.92 0.1836 0.0033 30

M Exp 5 0.167 0.93 0.1557 0.0031 30

Q Exp 2.18 0.314 0.94 0.2962 0.0089 30

R Exp 4.33 0.188 0.91 0.1698 0.0035 30

5.5 The Local Optimisation Model

The local optimisation model in Section 4.5 adapts readily to multiple territories. The

key point to note is that the requirement that territories should be 'connected and should not

contain points in pre-existing territories applies to all sets considered in the search for a local

optimum: it is not merely a constraint on the territory finally selected.

Table 5.7 gives simulation results for the resulting model. In the discussion in this sec-

tion. all significance levels are5%. In both cases BandH. the mean perimeter in the local

optimisation model is significantly lower than in any of the other three models. The same

appears to hold in case C. although no value for the simultaneous choice model is available in

that case.
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Table 5.7

Numerical Results for Locally Optimal Territories

"Const" indicates marks which are constant;

"Exp" indicates marks which are exponentially distributed

Case Marks m. EP S.E. EP2 S.E. Sample C.p.u. rn' p S.E.

A Const 1 0.000 - 0.000 - - - - - -

B Const 2 1.170 0.021 1.960 0.074 1329 0.51 - - -

C Const 3 2.306 0.038 6.715 0.253 953 1.40 - - -

H Exp 1 0.946 0.112 4.070 0.746 256 2.07 1.5 0.426 0.031

The values of EP are, however, significantly greater than in the corresponding single

territory model, the difference being particularly marked in case H.

The only probability of group formation available for the current model is for case H,

and it is significantly lower than for any other model; the reason for this difference is not

clear.

Table 5.8

Estimated Densities of Locally Optimal Territories

Case Marks {ENr l pEN
A

S.E. Sample sizem p

A Const 1 1.000 1.00 1.0000 - -

B Const 2 0.500 0.92 0.4609 0.0086 40.
C Const 3 0.333 0.88 0.2945 0.0065 30

H Exp 1 0.500 1.05 0.5249 0.0309 40
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Territory densities for the current model are shown in Table 5.8. All values ofpEN are

close to I, as has been found for the other multiple territory models. Although the estimate in

case H seems rather high, it is consistent withpEN = I, pEN < 1 or pEN > 1.

5.6 Comparison of the Models

The aim of this section is to summarise the main comparisons which have been made in

the current chapter, between models and with the models in Chapter 4.

Firstly, consider the results obtained for the expected perimeter of a territory, EP. The

comparisons between multiple territory models are rather weak, largely because of the high

cost of simulating most such models. There are no significant differences between the simul-

taneous choice model and the sequential choice model. Both models appear to give larger

values than the local optimisation model, and smaller values than the nearest neighbour model,

in the sense that all estimated differences are in the given direction, and a number of them are

statistically significant (at the2i% level).

Comparing the multiple territory models of the current chapter with their respective sin-

gle territory versions in Chapter 4 gives a rather stronger, though unsurprising, conclusion. In

all cases for which information is available, multiple territory models give larger mean perim-

eters than the corresponding single territory models, with all differences being significant (at

the 2i% level).

These relationships are illustrated in a simple way by Tables 5.9 and 5.10, which give

values for EP in cases C and H respectively. These are the two cases for which the most

information is available. All values are taken from Tables 4.1, 4.2, 4.3, 4.4, 5.1, 5.3, 5.5 and

5.7, which contain more precise estimates and standard errors.

Table 5.9

Estimates of EP in case C (constant marks, m= 3); all models

Model Single Territory Multiple Territories

Simultaneous Choice 1.86 -

Sequential Choice 1.94 2.49

Nearest Neighbour 2.10 2.71

Local Optimisation 1.56 2.31
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Estimates in Table 5.9 (case C) have standard errors of approximately 0.04, except the

figures for the single territory, sequential choice / nearest neighbour models, which are exact.

Table 5.10

Estimates of EP in case H (exponential marks,m = 1); all models

Model Single Territory Multiple Territories

Simultaneous Choice 0.81 1.27

Sequential Choice 0.98 1.20

Nearest Neighbour l.03 1.30

Local Optimisation 0.03 0.95

Estimates in Table 5.10 (case H) have standard errors of between 0.05 and 0.08, except the

figure for the single territory, nearest neighbour model, which is exact, and the two figures for

the local optimisation model, which have standard errors of 0.01 and 0.11.

The other main feature of importance in these models is the probabilityp of group for-

mation. The relationships between values ofp in different models are not easily summarised;

we will present and discuss some examples. Tables 5.11 and 5.12 give the percentages of

territories which will contain social groups, according to each model, in cases H and Q, with

appropriate values ofm': Again, the figures are based on Tablesd.L, 4.2, 4.3, 4.4, 5.1, 5.3,

5.5 and 5.7.

Estimates in Table 5.11 (case H) have standard errors of 2-3%, except the figures for the
r

single territory, sequential choice / nearest neighbour models, which are exact.

Estimates in Table 5.12 (case Q) have standard errors of 2-5%, except the figures for the

single territory, sequential choice / nearest neighbour models, which are exact.

In each of the two tables of percentages above, all entries are similar (not significantly

different) except one (significantly different at the 1% level). However, the two values which

are different do not come from the same model in each case. In Table 5.11, the value from

the multiple territory, local optimisation model is lower than all other values, and in Table

5.12, the value from the single territory, simultaneous choice model is lower than the rest.

Note that interpretation of Table 5.12 is complicated by the fact that some figures are unavail-

able due to limitations on computing time.
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Table 5.11

Estimated percentages of territories containing social groups

in case H (exponential marks, m= I,m' = 1.5); all models

Model Single Territory Multiple Territories

Simultaneous Choice 61 58

Sequential Choice 61 60

Nearest Neighbour 61 62

Local Optimisation 58 43

Table 5.12

Estimated percentages of territories containing social groups

in case Q (exponential marks, m= 2.18,m' = 2.74); all models

Model Single Territory Multiple Territories

Simultaneous Choice 42 -

Sequential Choice 57 58

Nearest Neighbour 57 57

Local Optimisation 58 -

The general conclusion is therefore that the level of social behaviour, as indicated by the

probability p, is not greatly affected by the exact spatial model chosen, with a few exceptions

which seem difficult to predict.

5.7 Computation

As mentioned in Section 4.7, the main programs used in Chapter 4 were written to

enable multiple territories tobe simulated. Thus the same programs are used, in a rather dif-

ferent way, to produce the numerical results in the present chapter.
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The basic steps are as follows. regardless of the particular model being simulated.

(i) Generate a random habitat over a finite circular region. Initially all points are regarded

as 'available'.

(ii) Select a random resource point from those 'available' within the habitat to serve as the

initial point of a territory.

(iii) Choose a territory based on that initial point. according to the particular model required.

if possible. Flag any points included in a territory. or unsuccessfully tried as initial

points. as 'unavailable'.

(iv) Repeat steps (ii) and (iii) until no more points are available.

(v) To estimate expected perimeter etc. use only those territories with initial points at least a

distance of4t from the edge of the simulated region. Trials suggest that this

approach overcomes edge effects. and is more efficient than actually making points close

to the edge of the region unavailable as initial points.

Note that. for all models except the nearest-neighbour model. step (iii) requires the cal-

culation of the perimeter of many potential territories. taking into account any pre-existing

territories. These calculations would be computationally expensive if carried out naively.

since (denoting the potential territory by1") each one involves checking each line segment in

D(1"). and each triangle formed byD(1"). for intersection with the existing territories. Since

new territories cannot develop wholly inside old ones. because of the nature of the models

used. the existing territories can be represented by the resource points they contain and the

line segments forming their perimeters (not necessarily their convex hulls). All triangles

formed by D(1") must be checked for the presence of resource points belonging to existing

territories. A line segment inD(1") need only be checked for intersection with the perimeter of

existing territories if (a) it is on the perimeter of11(1"). (b) it is adjacent to a triangle contain-

ing points of an existing territory. or (c) it has an endpoint in common with a line segment
~

which does intersect existing territories. These checks together are sufficient to define the

core area of1" in a reasonably efficient way. provided the number of resource points in exist-

ing territories is not too large.

The approach is illustrated in Figure 5.2. in which1" = (xo.Xlt • • • • X6}. All six of the

triangles formed byD(1") are checked. andxO~X3 is found to containYo. a point of the exist-

ing territory v = (YO,J.!.Y2 • • • • }. The line segmentsxlx2.X2X3 .... XSX6.X6Xl are checked in

accordance with criterion (a) above. and the segmentxo~ is checked in accordance with (b).

Since Xl~ andXOX2 both intersect u, the segmentXOXI is also checked. in accordance with (c).

Thus the core areaCC1"1v) can be defined: it consists of the whole ofH(1") except the triangles

XoXlx2 and XOX2X3' and the line segmentsxo~ and XIX2. Its perimeter is given by
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note that the segmentX2X3 is counted twice. to give a closed curve.

\
\
\

\

\
\

\
\
\

Xs

Figure 5.2 Calculating the Perimeter of a Territory

If the number of resource points and perimeter line segments belonging to existing terri-

tories is large. then involving aU such points and lines in the above checks is computationally
e-

expensive. Instead. we can do some preliminary calculations to reduce the number of checks.

If T is the territory currently being considered. define ERto be the smallest rectangle. with

sides parallel to the co-ordinate axes being used. which containsT. Given a point x of a

pre-existing territory. it is straightforward to determine whether or not xE ER;and if not. then

clearly x cannot affect the core area or the perimeter ofT. Similarly. given a perimeter line

segment of a pre-existing territory. with end-points x.,x2 say. it is often straightforward to see

that Xlx2 does not intersectm. and therefore cannot affect the core area or the perimeter ofT.

These preliminary calculations decrease computing time considerably. especially when a large

area of habitat is being simulated.
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Chapter 6 Evolutionary Models

6.1 Introduction

6.1.1 Motivation

After the more general consideration of spatial heterogeneity and territoriality in

Chapters 4 and 5, we now return to the fundamental idea of the Resource Dispersion

Hypothesis, or R.D.H.. The models we have discussed so far have the following form.

Firstly, we describe how an individual animal or a mated pair of animals (referred to as pri-

mary animals) set up a territoryin a given habitat. Secondly, we ask if one or more further

animals (referred to as secondary animals) can share the territory, in such a way that there is

no extra cost to the primaries, and if so, what probability of survival do the secondaries have?

The true underlying question, however, is whether animals will actually behave in this way,

Le. whether groups will ever be formed in the manner suggested by the R.D.H ..

To answer this fundamental question, we need to model the decision making process of

the animals, or the mechanism which determines their behaviour. We must also determine the

consequences, for an individual, of alternative patterns of behaviour, bearing in mind that

those consequences will in general depend on the behaviour of other individuals, as well as on

environmental and random factors.

6.1.2 Modelling Individual Behaviour

In describing the behaviour of an individual animal, we will use the concept of a stra-

tegy, as used in game theory (see von Neumann and Morgenstern, 1944). A strategy is a

description of the actions which an individual would take (and their probabilities, if random

actions are allowed) in each possible situation in which the individual may find itself.

Different individuals might adopt different strategies for a variety of reasons: because of

environmental, genetic, or other, perhaps random, factors, or any combination of these. For

the purpo~es of this thesis, we will assume that an individual's strategy is inherited, through

some genetic mechanism. The details of some possible mechanisms are discussed in Section

6.1.4. Such an assumption is widespread in the literature concerning the theoretical basis of

behaviour. A number of references will be given in the course of this chapter.
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6.1.3 Modelling the Evolutionary Process

Given the assumption of inherited strategies. it follows that the consequences of dif-

ferent strategies. and the answer to the question which motivates this chapter. depend on the

long-term reproductive success of different members of the population. Determining these

levels of reproductive success is a major part of modelling any particular situation. and is

considered in Sections 6.3. 6.4 and6.5. Once these levels of success are known. we can

attempt to determine the final numbers of individuals adopting different strategies in a popula-

tion. and in particular to determine which strategy or strategies will be successful. and there-

fore present in the population. in the long term.

In our models. and in many other models concerned with behavioural questions. the

principal factors affecting an individual's success are its own strategy and the composition. by

strategy. of the population of which it is a member. The study of such systems is known as

evolutionary game theory.

One well-established approach to such problems is to use the concept of an evolu-

tionarily stable strategy. or E.S.S .• pioneered by Maynard Smith and Price (1973) (see also

Maynard Smith. 1982. and Hines. 1987. for reviews). We will use the notation of Taylor and

Jonker (1978) to describe the basic ideas of E.S.S. theory in the usual case where any strategy

can be expressed as a stochastic mixture of a finite number n of pure (i.e. non-random) stra-

tegies. The state of the population is described by a probability vectorP. with Pi being the

overall probability of strategy i being played by a randomly selected individual. The popula-

tion state space is then

n

K = {p: I. Pi = 1,Pi ~ O.i = 1..... n}.
i = 1

We measure the reproductive success of an individual playing pure strategyi in a population

in state p by its fitnessF(i Ip). We assume that the fitness of an individual playing a mixed

strategy q, i.e. playing strategyi with probability qi. is given by

n

F(f Ip) = I. qiF(i Ip)·
i = 1

The key concept is that of an E.S.S ..

Definition. A state p is called an E.S.S. if for every stateq E K \ {p}. if we let

P = (1-e)p+eq. then F(q Ip) < F(p Ip) for all sufficiently small e > O.

The definition of an E.S.S. contains no reference to the dynamics of the population.

Taylor and Jonker (1978) explored ways of defining a dynamic on the state spaceK. and com-

pared the stable equilibria of the resulting dynamical system with the corresponding E.S.S.s.

In particular. they considered two natural dynamics: the continuous time dynamic given by
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Si = si[F(ils)-F(sls)]; (6.1.1)

and the discrete time dynamic given by

.d _ [F(i Is)-F(s Is)]
Si - Si F(sls)+ 1 .

(6.1.2)

They found that under certain regularity conditions, E.S.S.s are stable points of the continuous

time dynamic system defined by equation (6.1.1), but that the result does not extend to the

discrete time system defined by equation (6.1.2). Perhaps more importantly, the converse does

not hold for either dynamic, so there generally may be stable equilibria which are not E.S.S.s.

These ideas were also explored by Rowe, Harvey and Hubbard (1985), and Zeeman (1979,

1981). .Several of these papers discuss the consequences of the difference between stable

points and E.S.S.s. In practice, however, the E.S.S. approach has become widely established.

For the purposes of this chapter, we do not use the E.S.S concept. The principal reason

is that the particular phenomenon of current interest is the social grouping of the population.

Social grouping can affect the reproduction and mortality of individuals in the population, and

so the state of the population must record such social grouping, as well as the numbers of

individuals inheriting different strategies. Furthermore, to determine the dynamics of such a

system, it is not sufficient to know the fitness of each strategy given a particular state: we

need to know the rates of formation and break-up of social groups. Thus an E.S.S. approach

would not give a complete description of the system of interest. In fact, we avoid the use of

any concept of fitness: instead, to define a model, we will directly write down a dynamic on

the extended state space in which both social grouping and individual strategy are recorded.

We will then look for stable equilibria of that dynamic, avoiding the uncertainty of interpreta-

tion of an E.S.S ..

6.1.4 Genetics

To describe the genetic mechanisms which we wish to consider, we need some basic

biological definitions (see for example King, 1972). A locus is a particular location on a chro-

mosome, i.e. the location of a particular gene. An allele is a particular form of a given gene.

The genotype of an individual refersto the alleles present in that individual, whereas the

phenotype of an individual refers to the observable properties of the individual, such as

behaviour, appearance, etc .. We will normally assume that a given aspect of phenotype is

controlled by a single locus or a small number of loci, so that, for example, which strategy an

individual uses is determined by which alleles are present at the relevant locus or loci. The

justification for such an assumption is discussed by Grafen (1984): in practice, it is a very

common assumption in theoretical studies, made either implicitly or explicitly (e.g. Feldman

and Eshel, 1982, Cressman and Dash, 1985, Thomas, 1985). New alleles, and hence new
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phenotypes, will occur as a result of rare mutations, independently of the current state of the

population.

There are two main ways in which alleles can determine phenotype, depending on the

number of alleles at each locus, which is essentially constant for any given species.

The simplest case is a haploid system. Each individual has a single allele at each locus,

so that if a particular behavioural feature is controlled by a single locus, an individual will

have a single allele, indicating one particular phenotype, at the relevant locus. In this system,

individuals are not classed into sexes: each individual reproduces separately, and in the

absence of mutation, passes on copies of all its allelesto each of its offspring. This is the

easiest genetic system to analyse, and for that reason is widely used in theoretical models. In

particular, it is an implicit assumption in the original work, and much of the subsequent work,

on E.S.S.s (Maynard Smith and Price, 1973, Maynard Smith, 1982, Hines, 1987). Grafen

(1984) gives an extensive discussion of the status of this assumption, with particular reference

to behavioural models.

The alternative is a diploid system. This is known to be the true underlying mechanism

in most species of behavioural interest, but it is more complicated than the haploid case. In a

diploid species, each individual has two alleles at each locus, and these both affect phenotypic

characteristics of the individual, such as strategy choice. The interaction of the alleles at a

locus may be completely general, although the alleles are not thought of as ordered, so thatn

possible alleles lead to n(n+ 1)/2 possible phenotypes (e.g. Rowe, 1988). Often there will be

fewer distinct phenotypes. For example, if there are two possible alleles A and a at a locus,

then the genotypesAa (=aA) and AA might lead to the same phenotype, distinct from that

given by aa, in which case allele A is said to be dominant, and allele a recessive. Diploid

species reproduce sexually: at a given locus, each offspring will have one allele from each of

its parents, each one chosen at random from the two alleles that the parent has at that locus.

The selections from the two parents are independent, but the selections at two different loci

from the same parent are not necessarily independent. Thus genetic systems in which the

important aspects of the phenotype are controlled by more than one locus in a diploid species

can be very complicated.

6.1.5 Biological Concepts: the Dynamics of Social Groups

Having discussed the general approach that we will adopt to evolutionary questions, we

now explain the additional biological ideas needed to define the required dynamical system.

Dispersal

In the absence of social behaviour, it is assumed that juvenile animals will disperse from

the territory in which they were born into the surrounding habitat, and will attempt to establish
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territories of their own, though their probability of success may not be very high.

Group Formation

We will assume that the social groups of interest are formed by juveniles remaining in

the territory of their birth, rather than dispersing. Potentially, the decision that this takes place

will be made jointly by parent(s) and young. Note that all groups formed by this mechanism

will consist of relatives. This reflects observations on a number of species (Macdonald, 1983),

and is a common assumption in the theoretical literature, for example in the models of Mac-

donald and Carr (1989), Lindstrom (1986) and Emlen (1982).

Breeding

If a territory is occupied by a primary mated pair of animals and one or more secon-

daries, the usual assumption is that only the primary pair take part in breeding. Under the

resource dispersion hypothesis, we are particularly interested in the case where the reproduc-

tive success of the primaries is unaffected by the secondaries, but we can also consider the

case where it is decreased (interference) or increased (helping) (Macdonald, 1983).

Mortality

We assume that once a group is formed, it remains as a group until the death of one or

more of its members. Mortality may be independent for all individuals (Macdonald and Carr,

1989), or it may reflect the different (and interdependent) mortality rates for primaries and

secondaries suggested by the Resource Dispersion Hypothesis (see Lindstrom (1986) for an

extreme version of this case, which will be discussed later).

Alternatives to this assumption are possible: for example, Emlen (1982) considers secon-

dary animals which automatically leave the group after one year, with an increased probability

of successful dispersion due to their experience.

Inheritance

The final stage in population dynamics concerns the surviving individuals froma group

in which one of the members has diego If a secondary has died, it can generally be replaced.

If one of a pair of primaries has died, and the survivor can remate, then the survivor and its

new mate will become the new primary pair.If a surviving primary does not remate, if both

primaries die or if we are considering a population in which only one sex is territorial (or a

haploid population in which there is only one sex), then the primary position in the territory

becomes vacant. In the absence of secondary animals, the territory would then be available

for settlement by a dispersing juvenile from another territory. If secondary animals are

present, however, one of them is assumed to inherit the territory, and is thus 'promoted' to

primary status. This concept of territory inheritance is used by Macdonald and Carr (1989),

and is the key concept in the model proposed by Lindstrom (1986) as an alternative to the

R.D.H ..
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6.2 Previous Work

Macdonald and Carr (1989) present a model which has the same objective as the present

work, but which uses a rather different approach. The authors assume a diploid population in

which only females can become secondaries, and only the female primary can influence the

behaviour of potential secondaries. They then calculate the fitness of both the primary and

secondary females, under the two possible strategies of remaining or dispersing available to

the secondary, and under different assumptions about the number of female offspring present.

However, for a decision by a secondary animal at a given time, Macdonald and Carr consider

only the fitness due to offspring born (to either the primary female or an inheriting or success-

fully dispersing juvenile) in the next breeding season: they do not consider the fitness due to

animals which may survive and breed again, even though the relevant probabilities may be

affected by strategy choices. Similarly, Macdonald and Carr consider only the formation, and

not the survival or dissolution, of groups. Thus they do not have any implicit or explicit

dynamic for the social organisation of the population. The models presented below are

intended to rectify that problem, and to avoid some of the technicalities involved in calculat-

ing fitness in a complex social structure (see the discussion in Grafen (1984) and Dawkins

(1982». Some specific conclusions from Macdonald and Carr (1989) are compared with

results from our dynamic model in Section6.5.

A closely related paper is that of Emlen (1982). As mentioned above, however, he

assumes that the two strategies available to a juvenile are to disperse immediately, or to

disperse after one year spent as a helper. Thus the groups in Emlen's model last only one

year, by assumption.

Finally, a paper by Lindstrom (1986) considers a possible alternative to the R.D.H.,

which Lindstrom calls the Territory Inheritance Hypothesis (T.I.H.). The T.I.H. states that

groups form because the fitness of a juvenile which remains in its natal territory, in the hope

of inheriting that territory, is higher than the fitness of a juvenile which disperses in the hope

of establishing a territory of its own. Lindstrom describes a mathematical model which for-

malises the T.I.H., studying only a single sex (as in Macdonald and Carr, 1989). He assumes

that exactly one juvenile is born in each territory in each year, and considers different popula-

tion growth rates, and two different sizes of territory. We consider separately the two cases

corresponding to these two territory types.

Single-territories.

Lindstrom defines a single-territory to be a "territory [which] is the optimal size for one

adult individual only, of the studied sex". Implicit in this definition seems to be the property

that if a juvenile chooses to remain in such a territory, it is not possible for both the juvenile

and the occupying adult to survive the subsequent 'winter' i.e. the mortality phase of the life-
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cycle. We will regard this property as the characterisation of a single-territory. Lindstrom

obtains two different results for such territories, depending on the overall growth rate in the

population. If the population is strictly increasing, i.e. new territories are becoming available,

then dispersal is the better strategy.If the population is non-increasing, then remaining and

dispersing are equally good strategies, The latter, rather surprising result is not further

explored by Lindstrom, but can be seen to be a (clearly unstable) consequence of two of his

assumptions, neither of which has any real justification. The first is that if a primary adult

dies, a juvenile which has remained in the territory will always inherit the territory, i.e.

Prtjuvenile diesIadult dies)= O.

Thus mortality is clearly not independent, but nor does it fit the pattern one would expect if

survival was resource-limited, nor even the idea of competition between the two individuals,

since the mortality probability of the adult is unaffected by the presence of the juvenile. The

second assumption byLindstrom that leads to the equivalence of the 'remaining' and 'dispers-

ing' strategies is that each territory produces exactly one juvenile of the studied sex each year.

Any change in the number produced would alter the survival probability of dispersing

juveniles, and thus give an advantage to one strategy or the other. In Section6.5, we will use

our model to explore the effect of these assumptions, in the particular case of a steady popula-

tion size.

Double-territories

A double-territory is a territory which is larger than those in the rest of the habitat, and

which is "the optimal size for two adult individuals of the same sex" (Lindstrom, 1986). The

key property of such a territory is that it gives some probability of two adults surviving in the

territory for one or more complete years.Lindstrom shows that in such a territory, remaining

is better thandispersing, provided adult survival is sufficiently high, and the population is not

increasing too quickly. ThusLindstrom's model predicts the formation of groups of two

adults in double-territories. Notehowever that this result is only obtained by assuming the

existence of a double-territory, i.e. a territory set up by a primary individual of the studied

sex, but which can support two adults of that sex over the whole year. There are two ways in

which this can arise.

Firstly, such a territory may arise naturally, i.e. it may be the smallest territory which is

viable for the primary. In this case, the T.I.H. exploits the existence of the double-territory,

but does not explain it. 'Note, however, that these are exactly the sort of territories described

by the R.D.H., and explored in the models presented by Carr and Macdonald (1986), and in

earlier chapters of this thesis. So Lindstrom's model with a double-territory which is a

minimum territory for a primary is equivalent to a model based on the R.D.H., with territory
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inheritance as a mechanism by which secondary animals may eventually reproduce. However,

models of the latter type, such as that of Macdonald and Carr (1989), have the advantage of

explaining, rather than assuming, the existence of a double-territory. Thus, given the first

interpretation of a double-territory, territory inheritance seems to be not an alternative to the

R.D.H., but a different stage of the same process. The T.I.H., in this version, needs some

explanation for double-territories, such as the R.D.H.; the R.D.H. needs some mechanism

whereby secondary animals contribute to the survival of their own genes, such as dispersing

after some time in a group (Emlen, 1982), 'helping' primary animals, territory inheritance, or

some combination of these.

A second, very different way in which Lindstrom's double-territories may arise is by

primaries deliberately occupying larger territories than necessary. In this case,

"it should ... be noted that the model does not take [into account] the cost of taking up a

territory large enough for a group" (Lindstrom, 1986).

In the absence of effects such as resource dispersion, the extra cost involved could be consid-

erable, and would act against the formation of groups under the T.I.H., making Lindstrom's

conclusions less plausible. It is also important to note that, under this second interpretation of

a double-territory, the two strategies being compared are not

"disperse as a juvenile"

versus

"remain in natal territory as a juvenile",

but rather

(i) "disperse as a juvenile, then occupy a single-territory as an adult"

versus

(ii) "remain in natal territory as a juvenile, then occupy a double-territory as an adult".

Strategy (ii) has a number of disadvantages. In the very early stages of the establishment of.
the strategy, juveniles following it may be selected against, if they are 'remaining' ina terri-

tory which is not a double-territory. The above argument only holds if the strategy(ii) is

thought of as a single step away from strategy(i), the default strategy, but if that is not the

case, then there must be some intermediate strategy, such as

"disperse as a juvenile, then occupy a double-territory as an adult"

or

"remain in natal territory as a juvenile, then occupy a single-territory as an adult".

But in general, either of these intermediate strategies would also be selected against.
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The complexity of the step from strategy (i) to strategy(ii) above indicates another

disadvantage of the second version of the T.I.H. as compared with the R.D.H .. The T.I.H.

requires that individuals defend larger than optimal territories, and immediately obtain

sufficient benefit, through territory inheritance by relatives,to outweigh the extra cost of

defence. The R.D.H., on the other hand, suggests that the minimum territories, which the

animals must defend, allow the formation of groups, in a single, simple evolutionary step,

serving as an "evolutionary catalyst for group living" (Macdonald, 1983). Such groups would

then be able to acquire naturally the other possible advantages of group living, perhaps, in a

separate evolutionary step, leading to larger than minimum territories (see Kruuk and Mac-

donald, 1985). The idea that the R.D.H. may form part of the evolutionary history of species

to which it does not currently apply is discussed at length by Macdonald (1983).

6.3 A Deterministic Haploid Model.

Having discussed the aims, results and problems of previous models, we wish to con-

struct an alternative model which can answer the questions of interest, but which avoids some

of the above problems. We start off by trying to formulate the simplest possible model which

incorporates all the essential features of resource-based social behaviour. Hence we initially

consider a haploid population, as defined in Section 6.1.4. We assume that there are two types

of animals, corresponding to two different strategies: the first type live exclusively as indivi-

duals, while the second type sometimes form rudimentary social groups, which have a max-

imum size of two (one primary animal and one secondary). It is assumed that such a group is

formed by a juvenile choosing to remain in its natal territory, and any potential parent-

offspring conflict is ignored. All animals are assumed to be territorial, and all territories

identical, notwithstanding the conclusions of Section 2.3 above. Finally, we assume an

infinitely large population, occupying a constant number of territories, with deterministic

dynamics. Although we may describe events at the level of the individual stochastically, we

shall simply take expectations when determining the behaviour of the whole system. The

corresponding stochastic model will be considered in Section 6.4. We consider the system in

discrete time, to correspond with the systems described by Macdonald and Carr (1989) and

Lindstrom (1986). We assume the existence of some initial population in which all animals

use the first strategy and live individually, and then consider whether a small number of indi-

viduals adopting the second strategy can establish themselves.

The initial individuals have the following life cycle.

(i) At time t, each individual reproduces, with the jth individual havinglJ" surviving

young, and withYo, =E[lJ.,] for all j, t.

(ii) Each adult then has probability m of dying, thus leaving a vacant territory.
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(iii) The territories vacated in stage (ii) are settled by randomly selected juveniles from stage

(i) (it is assumed that there are always enough juveniles to occupy all such vacancies).

All other juveniles die.

(iv) The surviving adults from stage(ii) and the juveniles which obtained territories in stage

(iii) go on to become the reproducing adults at timet+ 1.

Clearly such a system will be in equilibrium. We perturb the system by replacing a proportion

of animals with individuals of a second type, which have the following modified life cycle.

(i)' With probability nit a juvenile of this type will attempt to remain in its natal territory,

and will succeed in doing so provided that its presence does not increase the group size

in that territory above 2.

In a territory which is already occupied by a group of 2 animals at stage (i)' of the

cycle, only the elder of the animals reproduces, but because of possible interference or

helping from the younger animal, the expected number of young produced is nowYl'

(ii)' There are four possible outcomes for a group of 2 animals at the mortality stage in the

cycle, as follows:

(a) the juvenile dies but the adult survives, with probabilityPa;

(b) the adult dies, but the juvenile survives and inherits the territory, with probability

Pp;

(c) both animals survive, and retain the territory as a group, with probabilityPr; or

(d) both animals die and the territory is vacated, with probabilityPs-

(iii)' Those young which did not remain in their natal territories have the same chances of

settling vacant territories as young of the initial type.

(iv)' Surviving groups from (ii)'(c) go on to reproduce in the next period as described in (i)';

surviving individuals from (ii)'(a) and (ii)'(b), and successful juveniles from (iii)' go on

to reproduce in the next period in the same way as individuals of the initial type in (i).

We now wish to determine the dynamics of a population containing individuals of both.
types. DefineXl.t to be the proportion of territories occupied by individuals of the initial

type at time t, x2.t to be the proportion of territories occupied by individuals of the second

type at timet, and X3. t to be the proportion occupied by groups of two animals of the second

type.

Note: it is important to distinguish between the classifications of individuals (two types,

or strategies: type 1 is the initial type, with no grouping, and type 2 is the 'invading' type,

showing some grouping) and of territories (three types, corresponding to the definitions of

XtoX2, and X3)'
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At time t, the numbers of young produced, expressed likeXl etc., as proportions of the

total number of territories, are as shown in Table 6.1.

Table 6.1

Numbers of Young Produced

From territory type: 1 2 3

Young of type 1 XIYO 0 0

Young of type 2 0 X2YO X3YI

In type 2 territories, there is a chance that a juvenile will remain to form a group. Each

juvenile has probability nl of attempting to do so, and there arelj,t juveniles in the jth terri-

tory. We assume that exactly one of these will remain, unless none attempt to do so, in which

case none will remain. Hence the probability of exactly one juvenile remaining is

(6.3.1)

since lj,t is identically distributed for all j andt, Note that n depends on the distribution of

lj,t, not just on its expectation. However, sincenl only enters the model through the above

equation for n, we shall not use the exact form of their relationship, but instead ignorenl and

treat n as a parameter of the model. Since the number remaining cannot be greater than the

number attempting to do so, taking expectations gives

Thus, after stage (i), we have individuals and groups as shown in Table 6.2.

Table 6.2

Numbers of Individuals before Mortality

From territory jype: 1 2 3

Type 1 adults Xl 0 0

Type 2 adults 0 x2(I-n) 0

Type 2 groups 0 X2n X3

Type 1 young XIYO 0 0

Type 2 young
0 x2(Yo-n)

(dispersing) X3YI
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Next, we must consider the mortality of adults and groups in stage (ii) of the life cycle.

Bearing in mind the outcomes and probabilities given in(ii) and (ii)' above, we obtain the

expressions in Table 6.3.

Table 6.3

Numbers of Individuals after Mortality

Original type
1 2 3

of territory

Type 1 adults xl(1-m) 0 0

Type 2 adults 0 x2(I-n)(1-m)+n(Pa +pp») X3(Pa+Pp)

, Type 2 groups 0 x2nPr X3Pr

Type 1 young xIYO 0 0

Type 2 young 0 x2(Yo-n) X3Yl

Vacant territories xlm x2((l-n)m+np6) X3P6

Finally, we need to calculate the proportions of vacancies resettled by individuals of the

different types. We assume that there are always enough young to settle all vacant territories:

sufficient conditions would be

Assuming that some such condition holds, the numbers of vacancies settled by type 1 and type

2 individuals will be

and

respectively, where d1, d2 are the numbers of dispersing young of the two types, d is the total

number of dispersing young, andv is the total number of vacancies.

From Table 6.3 we have
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and clearly

Hence we have

Collecting together terms from stages(ii) and (iii), we have

(6.3.2)

(6.3.3)

and

(6.3.4)

Given equations (6.3.2), (6.3.3) and (6.3.4), what can we say about the behaviour of the

system? Firstly, consider a possible equilibrium point of the system,(Xt,X2,X3) say. From

equation (6.3.4) we must have

=> X3 = (.!!l!L)X2 = lex,.
I-Pr

say. The possible 'trivial' equilibria of the system, with only one type of individual present,

(6.3.5)

are
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(6.3.6)

and

k
X3 = --.

l+k
(6.3.7)

To find possible non-trivial equilibria, we substitute equation (6.3.5) into equations (6.3.2) and

(6.3.3), and then solve (6.3.2) and (6.3.3) simultaneously, subject to the conditions

XI,I+I = XI,I' ~,I+I = X2,1'

After substitution we obtain

XI(YOXI+ax2}
Xl = ,

xIYO+~(Yo-n+kYI)

X2(bxI +CX2}
X2 = ,

xlYO+~(Yo-n+kYI)

where

n(l-m)
a = Yo(l-m- +(l-n)m+npeS)+k«I-m)YI +PeSyo),

Yo

b = m(Yo-n)+Yo«(l-n)(l-m)+n(Pa+Pp»+k(Yo(Pa+Pp)+Ylm),

C = (Yo-n)(l-nPr) +k«Yo-n)(I-Pr) +YI(l-nPr»+k2YI(l- Pr)'

Since for a non-trivial equilibrium we requireXI'~ > 0, we have equilibrium if and only if

(6.3.8)

A necessary condition for non-trivial equilibrium is therefore

(6.3.9)

where we define

W = YI-Yo

to be the change in mean number of young produced dueto the presence of a secondary

animal. Clearly equation (6.3.9) will not generally be satisfied for a given set of parame-

ters m, Pr' PeS'Yo. YI' and so we conclude that generally there is no non-trivial equilibrium.
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When equation (6.3.9) is satisfied, we have

b-yo = 1~:r (yo{1- ~ } +p,,(1 +W)-I)

= O.

In addition, for any parameter values, we have

Hence from condition (6.3.8), whenever equation (6.3.9) is satisfied we have an equilibrium at

any point (Xl,X2,X3) satisfying equation (6.3.5),

From equation (6.3.9), however,it is clear that the equilibrium at any of these points could be

removed by an arbitrarily small change in the model parameters, i.e. these equilibria are not

structurally stable. For a formal definition and discussion of structural stability, see e.g.

Hirsch and Smale (1974) or Zeeman (1981), the latter paper being specifically concerned with

the dynamics of evolutionary systems.

On the other hand, the equilibria defined by equations (6.3.6) and (6.3.7) will always

exist, with the position of the latter depending on the model parameters through the expression

for k. Hence for the current system, we can confine our attention to these two equilibria.

We need to determine the stability of the equilibria defined by equations (6.3.6) and

(6.3.7). It is not sufficient to merely consider these points as equilibria of the 3-dimensional

system defined by equations (6.3.2), (6.3.3) and (6.3.4), since they might for instance be

unstable as equilibria of that 3-dimensional system, but stable within the state space currently

of interest, the simplex defined by

(6.3.10)

Hence we use a simple reparameterisation of the form

%J. = Xi'

which can be inverted by noting that

using equation (6.3.10), where(i,j,l) is some permutation of {I,2,3}. Such a reparameterisa-

tion maps the simplex defined by equation (6.3.10) onto the triangular region in the%1'%2-

plane with vertices at (0:0), (0, I), and (1,0).
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To consider the stability ofx = (I, 0, 0) we let

(6.3.11)

so that the equilibrium point is mappedto ; = O. Then a sufficient condition for stability of

the equilibrium is thatIAI < 1 for any eigenvalueA of A, and a sufficient condition for insta-

bility is that IA.I ~ 1 for some eigenvalueA. of A whose eigenspace intersects the state space

of the process, whereA is defined by

Q" = at; I
IJ a"', '

'l'J 0

and fi is such that

;i.,+1 = t;(;,), i = 1,2 (6.3.12)

The forms offlo f2 can be calculated from equations (6.3.2), (6.3.3) (6.3.4) and (6.3.12), recal-

ling that the reparameterisation (6.3.11) implies

Thus we can calculateA, obtaining

[

m(l- .!.)+n(Pa+pp)+(I-n)(I-m)
A = Yo

nPr

Pa+pp+m
YI

]
Yo

Pr

(6.3.13)

Except in the pathological case when n or Pr is zero, we can show thatA2 is strictly positive

(Le. all its elements are strictly positive). Hence we can apply the Perron-Frobenius theorem

(see e.g. Karlin and Taylor, 1975).

Theorem 6.1.

Let A be a matrix such that for some integerm, Am is strictly positive. Then there exists

a simple eigenvalue.to of A such that IAI < .to for any other eigenvalueA of A, and the eigen-

vector associated withAo may be taken to be strictly positive.

Proof: See Karlin and Taylor (1975).

Since the eigenvector associated withAo is positive, the eigenspace ofA.o always inter-

sects the state space of our process in the;1' ~ -plane. Hence, from the sufficient conditions

described above, and the fact thatIAI < A.o, we have:

.to < 1 => stable equilibrium, and .to ~ 1 => unstable equilibrium.

The characteristic equation of A is

IA-,ul = 0 <=> A2+hA+C = 0,
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where

b = -(I+Pr+n{Pa+pp+m-l- :})

C = Pr( I-n- ';:{l+Yl-YOJ).

So the Perron-Frobenius eigenvalue is

-bbJbZ-4c
,to = ,

2

and the condition for stability is

since b+ 2 ~ 0,

~c>-b-I

(6.3.14)

after some algebra.

At x = (0, _1_, _k_), we use the parameterisation
l+k I+k

so that the equilibrium is mapped to (0,__!_). Then the equilibrium is stable if and only if
I+k

l,tl < I for any eigenvalue ,t of B, where B is defined by

and each gi is such that

lJfi.l+l = gi(lJf,)·

Note that we need not consider the eigenvectors ofB, since the equilibrium point(o,~) is
I+k

not at a vertex of the process state space. We obtain

B = [ [Yo(l-m+(l-n)m+np6)-n(l-m)+k«(l-m)Yl+P6YO)](YO+kyl-n)-1 ° ]
-nPr Pr(l-n) ,

with the eigenvalues displayed on the diagonal. Clearly in non-pathological cases pyC,1-n) <

I, so the equilibrium is stable if and only if
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I[Yo(1- m+ (I-n)m+np.s) -n(I-m)+k«I-m)Yl +P.sYO)](YO+kYl_n)-ll < 1

~YO(I--::)+P~I+W) > 1 (6.3.15)

after rearranging.

Thus the behaviour of the deterministic model described in this section is summarised by

the parameter

If C > I, the point (I, 0, 0) is unstable, so users of the second strategy (forming social groups

in accordance with the R.D.H.) can invade, and the point(O,(I+k)-l,k(1+k)-l) is stable, so

a population consisting entirely of users of the second strategy cannot be invaded.If C < 1.

the first strategy(no social groups) can always invade, and cannot be re-invaded. Finally. if

C = I, there is an entire line of equilibrium points, but the system is structurally unstable. In

no case is there a structurally stable equilibrium in which both strategies are present.

The above results completely describe the dynamics of the system provided we assume

that the only attractors of the system are simple equilibria. While this assumption is difficult

to prove for such a discrete-time system. it is supported by the results of numerical investiga-

tion.

6.4 A Stochastic Model.

The model above assumes deterministic population dynamics. which will clearly not be

true of any real, finite population. We will now consider a stochastic model. In all other

respects, the model parallels the previous one, and so the description will be more concise.

We need one extra piece of information. which is the distribution of the numbers of

offspring for individuals and groups. The simplest choice in some respects wouldbe to

assume Poisson distributions. because of the extra independence it would give in the model.

However. this would mean that there was always a positive probability of some vacant terri-

tories remaining unfilled, and so the population would eventually become extinct. While such

a model might in some ways be realistic. its use in answering questions about strategy choice

would be difficult. Instead, we constrain the stochastic model. like the deterministic one. so

that all vacant territories are filled. The simplest way to do this is to makel}.t and YJ',t, the

numbers of young produced by solitary individuals and groups respectively, deterministic. so

that

Pr(l},t = Yo) = 1.

Pr(YJ',t = Yl) = 1.
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where Yo and Yl are now constrainedto be integers, with Yo ~ 2, Yl ~ 1. Note that we now

have

(6.4.1)

Having decided on the offspring distributions, we can now write down the dynamics of

the stochastic model. LetN be the fixed number of occupied territories. Letxt, be the

number of territories occupied by individuals using strategy 1, at timeI, xf., be the number

occupied by individuals using strategy 2, at timeI, andxf" be the number occupied by groups

of one primary and one secondary, using strategy 2, at timeI.

The total numbers of young produced by the territories in these three possible states are

Yoxf, YoX: and Ylxf, respectively (c.f. Table 6.1). Note: we will omit the subscript I and

superscriptN from some variables, for brevity.

Let R - Binomial (Xf, n) be the number of juveniles remaining to form groups. Then

after stage (i) of the life cycle, the population is as shown in Table 6.4.

Table 6.4

Numbers of Individuals before Mortality: Stochastic Model

From territory type: 1 2 3

Type 1 adults xf 0 0

Type 2 adults 0 Xf-R 0

Type 2 groups 0 R xf
Type 1 young Yoxi' 0 0

Type 2 young
0 YoXf-R y1Xf

(disDersing)

At stage (ii), mortality, let

A - Binomial (Xf,m)

B - Binomial (X: -R,m)

and
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Then after mortality, the state of the population is given by Table 6.5 (c.f. Table 6.3).

Table 6.5

Numbers of Individuals after Mortality: Stochastic Model

Original type
1 2 3

of territory

Type 1 adults Xt'-A 0 0

Type 2 adults 0 X,f-R-B+Kt L1

Type 2 groups 0 K2 L2

Type 1 young YoXt' 0 0

Type 2 young 0 YoXf-R YtXt'

Vacant territories A B+K3 L3

We now have a total number of vacancies given by

(6.4.2)

with D1, D2 dispersing young using strategies 1 and 2 respectively, where

Writing D = D1 +D2' the numbers of territories resettled by the two types,SI and S2 respec-

tively, are given by

SI - Hypergeometric (V,D1,D),

So the numbers at timet+ 1 are

XN XN SN N
1.'+1 = 1.,+ l"-A,, (6.4.3)

XN _XN RN BN KN LN SN
2,,+1 - 2,'- , - t + 1,,+ 1.,+ 2," (6.4.4)

(6.4.5)
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Clearly {X,N} forms a Markov chain. with state space

It has a single absorbing state atXl = N. and an irreducible closed set of states withXl = O.

All other states are transient. Starting from a transient state.{X,N} must eventually reach a

state withXl = 0 or the single state withXl = N. corresponding to the extinction of strategy 1

or strategy 2 respectively. We would like to know the probabilities of those 2 possible out-

comes. for largeN. and we are particularly interested in the case where the initial population

consists largely of type 1 individuals. sayxf,o = N -1. xf,o = 1.Xf.o = O.

Exact calculation of these probabilities for large finiteN. and for given model parame-

ters. is possible but unenlightening. Concise analytic expressions are not available. mainly

because of the many interdependencies in the model.

However. in the limit asN -+ 00. we can approximate{x,N} by a particular sort of

branching process. An r-type Galton-Watson process with ancestor of typek is defined by

(6.4.6)

(where elc is the vector with 1 in the kth place. and zeroes elsewhere). and

(6.4.7)

where Z,(i,J) are random vectors. independent of each other and ofXo ..... X,. identically distri-

buted for eachi, with

Pr(Zp,J) = z) = Pi(Z)

for any Z E Z~. See for example Jagers (1975) or Mode (1971).

Theorem 6.2.

For any finiteT. if X: = (N -1. 1.0) then

{(Xf".Xf,,): t = 0.1 • ...•T} ~ {X,: t = 0.1 ..... T}

as N -+ 00, where {X,} is a two-type Galton-Watson process. with ancestor of type 1. and
a.s,

~ denotes almost sure convergence.

Proof.

Let X: and Xo bedefined on the trivial probability space(n(O).S'(O).P(O» with sample

spacen(O) = (mol. For the purposes of the proof, we need to define random variables which

indicate the fate of each individual during the dispersal and mortality phases of the life cycle.

For i.], k, t E Z+. define independent random variablesR,{J) ,B,W .K,W .L~J) on (n,.S',.P,) with
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R,(i) - Bernoulli (n),

B,{j) - Bernoulli (m),

A~J) - Bernoulli (m),

QP,j,Ie) _ Bernoulli (m/yo),

S,(i,j,Ie) _ Hypergeometric (i,j,k).

We will construct {x,N} and {X,} inductively in terms of the random variables defined on

(D"[i,,P,), and of random variables, on a probability space(.Q"j"P,), having the same dis-

tributions as those defined on(D; ,:I; ,P;). The branching process{X,} will have the offspring

distribution defined by the following equations:

, _RVI

Z(1,J)-R(i)K(J)+(l R{J))(l-B(J))+ 0't'" Q(1,j,Ie)1,' -, l,t -, t ~,
Ie=1

(6.4.8)

(6.4.9)

"z(2,J) = L(J) + 't" Q (2,j,Ie) and
1,' 1, I 4. t ,

le-I
(6.4.10)

(6.4.11)

At time I = 0, we haveD(O) = {wo}, and

xf = (N-1, 1,0)

So the theorem is trivially true forT ~ O.

Now assume for induction that the theorem holds forT, i.e. that we haveX,N,X"I =
O,... ,T defined on (D(T),:I(T),P(T» say, where {x,N} is as described above, and{X,} is a

branching process with offspring distribution as defined in equations (6.4.8)to (6.4.11), and

{(xf."xf.,): 1= O,... ,T} ~ {X,: 1= O,... ,T}.

Define Z.p·J), i = 1,2, as in equations (6.4.8) to (6.4.11), and define
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SN _ S(D:r, V:,D:)
2,T - T . ,

where

and

(6.4.12)

(6.4.13)

Note that from equation (6.4.4), we can write

D

Xf.T+1 = UT+1+Sf.T' (6.4.14)

We also have

D X• .r

XT+1 = L L Z.jiJ),

i-1,2 i=1

(6.4.15)

Under the inductive hypothesis, we can take

(6,4.16)

for sufficiently largeN, with probability 1.

Then

. x• .r)l.
QP·J·k) + L' L Q.j..2,j,k),

j=1 k.=1
(6.4.17)

D

X2,T+1 = L L z1.:li = Kf.T+L~T'
i j

(6.4.18)

Now consider the terms

Sf.T and
X. r )lo-R:" x; T )I,t. L Qp,j,k) + t. L Q,f2,j,k).
j .. 1 k=1 j=1 k=1

Under the condition (6.4.16), and conditional on any fixed values ofR,fJ), XT, BtJ), KP), Lf,;J,

and henceUT+1, we have;
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and

(6.4.20)

By considering the parameters of the distributions in equations (6.4.19) and (6.4.20), we have

on (.ar, fir, Pr) as N ~ 00. Hence by the Skorokhod Representation Theorem (see for exam-

ple Grimmett and Stirzaker, 1982) there exists a probability space(Dr,9T,PT) and random

variables Q.}i,i,k),Sf.T defined on(nT,9T,PT) such that

X JI,

QP,i,k) + f L Q.J.2,i,k).
j-I k=1

Finally, define

(c.f. equations (6.4.12) to (6.4.14»,

and

X'.T JI.-RT
UI

XI,T+I = UT+I + L L
i..1 k-I

QP,i,k) + Xf ~Q.j.2,i,k),
i=1 k.. 1

(c.f. equations (6.4.17) and (6.4.18» to get processes which are defined on

(.a(T+ 1),fI(T+ 1),P(T+ 1», the product space of(.a(T),fi(T),P(T»,(.aT,fiT,PT) and

(nT,9T,PT), which satisfy the conditions of the theorem, and for which the result of the

theorem is true up to timeT + 1.

Hence by induction, the theorem is true for any finite timeT.

By applying Theorem 6.2, we can use the known results about multi-type Galton-

Watson processes to understand the behaviour of the stochastic model from this section, when
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N is large.

Consider an r-type Galton-Watson process with ancestor typek, as defined in equations

(6.4.6) and (6.4.7). Let

and define such a process to be positively regular if there is some powerM" of its matrix of

expected numbers of offspring which is strictly positive.

Define the probability generating function j'(s) for anySE [0,1]" by

and define a process to be singular if

r

/;(s) = L PijSj' 1 ~ i ~ r,
j .. 1

for some numbersPij.

Finally define qk to be the extinction probability of the process with ancestor typek, and

let q = (ql, ... ,q,.). Then we have the following result (see for example Jagers, 1975 or Mode,

1971).

Theorem 6.3.

Let {X,} be a positively regular, non-singular r-type Galton-Watson process, withM,I
and q defined as above, and letA. be the Perron-Frobenius eigenvalue of the matrixM. Then

q is the solution of the equation

I(s) = S

that lies closest to the origin in the unit cube.If A. ~ 1, then qk = 1 for all k, and if A. > 1,

then qk < 1 for all k,

Proof: See Mode (1971).

We wish to apply Theorem 6.3 to the process{X,} in Theorem 6.2. It is clear from

equations (6.4.8) to (6.4.11) that the matrixM of expectations of offspring distributions in

(X,) is equal to the matrixA (of partial derivatives at (0,0) of the reparameterised process ;,)

which occurred in the analysis of the deterministic model of Section 3. Thus we haveM = A,

where A is given by equation (6.3.13), and from the subsequent remarks we see immediately

that {X,} is positively regular. To see that{X,} is also non-singular, it is sufficient to note that

Pi(Z) > ° when for example i= 2, ZI = 2, and Z2 = 0, so fz includes a term in sf. So{X,}

satisfies the conditions of Theorem 6.3, and furthermore its Perron-Frobenius eigenvalue is

the same as that of the matrixA. Hence using equation (6.3.15), and writing
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(6.4.21)

as before, we have the result that if C ~ 1, thenq" = 1 for all k; and if C > 1, then q" < 1 for

all k. Thus the same criterion which determines the stability of the equilibria of our deter-

ministic model also determines whether the branching process{X,} has a positive probability

of survival.

The properties of{X,} carry over to{x,N}, to some extent, through Theorem 6.2. Clearly

if XT = 0, then for sufficiently largeN, xf = 0, and soq(N), the extinction probability for

{x,N} is at least as great asql, the relevant extinction probability for{X,}, No inequality in

the other direction has been proven, but comparison with the deterministic process of Section

3 strongly suggests that

ql < 1 => lim q(N) < 1.
N .......

In fact it is conjectured that

lim q(N) = ql'
N .......

Then the parameter C, which determines whether or notql = 1, would also determine whether

or not lim q(N) = 1, and hence whether social behaviour could become established. .
N .....-

Throughout the current section, we have assumed, for simplicity, that the number of

offspring is deterministic, but all the results given, including Theorem 6.2, generalise in an

obvious way to the more realistic case of stochastic family sizes, provided

Pr(lJ" ~ 2) = I,

Pr(lh, ~ 1)= 1,

so that all vacancies are always filled.

6.5 Diploid Models

6.5.1 Introduction

Although the models of Emlen (1982), Lindstrom (1986), and Macdonald and Carr

(1989) consider social behaviour within a single sex, the fact that the whole population has

two sexes, i.e. is diploid, is used explicitly in the calculation of relatedness, fitness etc.. Thus

for comparison with the above published models, we should use a diploid version of the

models in Sections 6.3 and 6.4.

We make the following assumptions, in addition to those mentioned in Section 6.3.1.

The population consists of two sexes, and individuals are identical apart from strategy and sex.
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All adults live either as secondary animals or as monogamous pairs; such pairings, once

formed, last until the death of one partner (or both), and any remaining partner takes no

further part in reproduction. At timei, the j th breeding pair produces Yf., male and Yf,
female young, orY/~"and Yf,· respectively if a secondary animal is present, where

E[Yl~] = E[yt,] = Yo (6.5.1)

and

(6.5.2)

for all j and t,

Grouping is caused by an allele at one particular locus, which has the effect of causing

the juvenile bearing it to remain in its natal territory, when possible, with some probabilityno.

We further assume that the allele responsible for grouping is dominant, giving the simplest

possible diploid model, as discussed in Section 6.1.4. Thus we assume two alleles, the reces-

sive allele a and the dominant alleleA say; three genotypes,aa,Aa (=aA), and AA; and two

phenotypes or strategies, the background, non-social type, corresponding to the genotypeaa,

and the type which may form groups, corresponding to genotypesAa andAA.

We concentrate on two deterministic models, incorporating different assumptions about

secondary animals, using similar techniques to those in Section 6.3. We assume that the popu-

lation initially has genotypeaa, except for a small proportion carrying the mutant alleleA.

6.5.2 Secondary Animals or Either Sex.

The first diploid model we consider allows a juvenile of either sex to remain in its natal

territory to form a rudimentary social group. Let

Xl" be the proportion of territories held at timet by mated pairs of animals, both of geno-

type aa,

x2" be the proportion of territories held at timet by mated pairs, with each pair having

exactly one copy of the alleleA,

X3" be the proportion of territories held at timet by groups, each consisting of a primary

pair with exactly one copy ofA, and a single secondary animal with genotypeAa, and

X4" be the proportion of territories held at timet by pairs or groups of other genotypes, i.e.

including individuals or pairs with more than one copy of the mutant alleleA.

Clearly

and we assume that alleleA is initially rare, i.e. at timet = 0, we have
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Xz = O(e), (6.5.3)

X3 = O(e), (6.5.4)

X4 = 0(e2), (6.5.5)

and hence

Xl = l-Xz-x3+ 0(e2), (6.5.6)

for sufficiently small e> O. We will show that if equations (6.5.3) to (6.5.6) hold at timet,

then they also hold at timet + 1. The dynamics of the system are similar to those of the model

in Section 6.3, and so the explanation here will be more concise. The numbers produced of

young of each sex are shown in Table 6.6.

Table 6.6

Numbers of Young of Each Sex: Diploid

Model with Secondaries of Either Sex

From territory type: 1 2 3 4

Young of genotypeaa XIYO !x2Yo fX3YI 0(e2
)

Young of genotypeAa 0 fX2Yo !X3Yt 0(e2)

Young of genotypeAA 0 0 0 0(e2
)

The probability of group formation in a territory of type 2 is now

no (Y"+Y')n = 1- E[(1- -) J,t J,t]
2

(6.5.7)

for any j and t. After the dispersion of juveniles, mortality takes place. Some care is needed

in defining the parameters of mortality. We define m to be the probability that in a given

territory of type 1 or 2, in a given time period, at least one of the occupying adults dies. By

assumption, this has the same effect as both adults dying. In a territory occupied by a group

of two primaries and one secondary, we have the following possibilities:

(a) the secondary dies but the primaries survive and retain the territory, with probabil-

ity Pa;

(b) at least one of the primaries dies, but the secondary survives and inherits the terri-

tory, with probability PP;

(c) all three anintals survive, and retain the territory as a group, with probabilityPr; or
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(d) the secondary and at least one of the primaries die, and the territory is vacated,

with probability P6.

The state of the population is then as shown in Table 6.7.

Table 6.7

Numbers of Individuals after Mortality:

Diploid Model with Secondaries of Either Sex

From territory type: 1 2 3 4

Type 1 pairs xl(l:"'m) 0 0 0

Type 2 pairs 0 x2(l-tr)(1-m)+x2trPa X3Pa 0(£2)

Type 3 groups 0 X2trPr X3Pr 0

Type4 0 0 0 0(£2)

Dispersers

of each sex

aa XIYO !X2YO !X3Yl 0(£2)

Aa 0 !X2(Yo-tr) !X3Yl 0(£2).

AA 0 0 0 0(£2)

Vacancies xlm ~(l-tr)m +X2trP6 X3P6 0(£2)

Inheriting

juveniles

Aa 0 X2trpp X3Pp 0(£2)

AA 0 0 0 0(£2)

Finally, we resettle the inherited and vacant territories, by assuming that each inheriting

secondary selects a mate at random from the dispersing juveniles of the opposite sex, and that

mated pairs form at random to occupy vacant territories. These calculations are relatively

straightforward because the mutant alleleA is rare. The final expressions for the numbers of

such resettled territories are given in Table 6.8.
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Table 6.8

Numbers of Territories: Diploid Model

with Secondaries of Either Sex

Inherited Newly Settled

Type 1 0
1 Yl 2

Xtm+x21r(p.s-m(1- -»+X3(p.s-m- )+O(e )
Yo Yo

Type 2 X21rPp+X3Pp+ 0(e2)
1r Yt 2

X2m(1- YO)+X3myO +O(e )

Type 3 0 0

Type 4 0(e2) 0(e2)

Note: as in Section 6.3.2, we have assumed that there are enough dispersing young; a

sufficient condition is that

Yo> m (6.5.8)

Thus we have:

(6.5.9)

m
Xz 1+1 = X2 ,(1 +1r(Pa+Pp+m-1- -».. Yo

(6.5.10)

(6.5.11)

(6.5.12).

Since we have assumed that equations (6.5.3) to (6.5.5) apply at timet, they clearly also hold

at time t+ 1.

Under these assumptions, the key question concerns the stability of the equilibrium

(6.5.13)

If x· is unstable, then the population be invaded by the mutant alleleA.

We wish to know ifx· is stable under biologically meaningful perturbations of the form
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where

for sufficiently smalle. Following Section 6.3.3, we reparameterise the system, defining

The variablesZI' Z2 are sufficient to describex up to 0(£2);

From equations (6.5.9) to (6.5.12), we then have

z, = O(e)

where

(

l+n(Pa+Pp+m-l- m) pa+pp+mY1)
A = Yo Yo .

nPr Pr

So the stability of the equilibrium z·= (0,0), and hence ofx· = (1,0,0,0), depends on the

eigenvalues ofA. But after rearrangement, it can be seen thatA is identical to the matrix of

partial derivatives obtained at the corresponding equilibrium of the haploid system in Section

6.3. Thus the equilibriumx· = (1,0,0,0) is stable if and only if

yo( 1-:) +p,.(1 +w) < I,
by equation (6.3.15).
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6.5.3 Secondary Animals of Only O~e Sex

The published models mentioned at the beginning of Section6.5.1 differ from the model

presented in Section6.5.2 in that they assume all secondary animalsto be of the same sex,

which without loss of generality we can take to be female. We will show, however, that if the

frequency of the mutant alleleA is of order 0(£), the assumption that all secondaries are

female has an effect that is of order0(£2). so the conclusions about the model are unchanged.

If all juveniles which remain to become secondaries are female, then instead of the situa-

tion shown in Table 6.7. we obtain that shown in Table 6.9 below.

Table 6.9

Numbers of Individuals after Mortality:

Diploid Model with Female Secondaries

From territory type: 1 2 3 4

Territories

Type 1 xl(l-m) 0 0 0

Type 2 0 x2(I-n)(l-m)+X2nPa X3Pa 0(£2)

Type 3 0 X2nPr X3Pr 0

Type4 0 0 0 0(£2)

Dispersers

Male aa Xl Yo ixzYo iX3Yl 0(£2)

MaleAa 0 !X2Yo !X3Yl 0(£2)

MaleAA 0 0 0 0(£2)

Femaleaa X1YO iX2YO !X3Yl 0(£2)

FemaleAa 0 Yo
!X3Yl 0(£2)X2( 2 -n)

FemaleAA 0 0 0 0(£2)

Vacancies xlm x2(l-n)m+x2npS X3PS 0(£2)

Inheriting females

Aa 0 X2npp X3Pp 0(£2)

AA 0 0 0 0(£2)

Assuming that inheriting females select random males as mates, and that the resettlement

of vacancies is random, the numbers of territories of different types obtained are the same as

in Table 6.8. Thus, up to order0(£2), the dynamics of the system are unaffected by the

assumption that all secondaries are of the same sex.
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6.5.4 Comparison with Other Models

The assumptions of the model of Section 6.5.3 are very close to those of Macdonald and

Carr (1989). In fact, we can find special cases of the two models which have essentially the

same assumptions.

Macdonald and Carr assume that mortality of primaries and secondaries is independent,

and unaffected by group size, with primaries having survival probabilityPa' ( fa Pa) and

secondaries having survival probabilityPi' Thus we will restrict our attention to the case

wherePr,Pt; and m satisfy

m = I-Pa,

for some choices ofPa'Pi' Then the criterion for the establishment of group behaviour in our

model becomes

The Macdonald and Carr model considers general group sizes, so for comparison with our

model we must restrict itto the case of a single secondary. This yields the condition

for 'remaining' to be optimal for a secondary, whereP, is Macdonald and Carr's notation for

the survival probability of dispersing juveniles. In order to give a constant number of occu-

pied territories,p. must be given by

P
_ I-Pa.- .

Y

Macdonald and Carr also aim to consider conflict between adult and juveniles, by allowing the

formation of groups to need the 'consent' of both adult and juvenile. Incorporating such

potential conflict into the models developed here would make them rather complicated, so

instead we restrict our parameter values so that the conflict is unimportant. With only one

secondary allowed, a sufficient condit~on for the absence of conflict, according to the criteria

in Macdonald and Carr, is

Yl ~ Yo·

Under the conditions given here, the criterion for the establishment of groups in the Mac-

donald and Carr model is
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or

Pa W}
Pi(Yo+ --·-2 > I,

I-Pa

whereas for our model it is

Clearly these two criteria are similar, but neither one implies the other, as is shown in Table

6.10.

Table 6.10

Comparison between the Female-Secondaries

and Macdonald and Carr Models

Groups predicted by:
Pa Pi Yo W

Section 6.5.3 Macdonald and Carr

0.9 0.6 2.0 0.0 Yes Yes

0.9 0.5 2.0 0.0 Yes No

0.9 0.4 2.0 0.0 Yes No

0.9 0.3 2.0 0.0 No No

0.9 0.3 2.0 1.0 Yes Yes

0.9 0.2 2.0 1.0 No Yes

0.9 0.1 2.0 1.0 No No

The differences between the conclusions of our explicitly dynamic model, and Macdonald and

Carr's (1989) fitness-based calculations, show that their model does not apply to groups last-

ing for more than one year.

The diploid model we have derived can also be compared with Lindstrom's (1986)

model. Our model assumes all territories in the habitat to be identical; so we will only con-

sider Lindstrom's single-territories (his double-territories have been discussed at length in

Section 6.2). As mentioned in Section 6.2, single-territories have the property that they can-

not support primary and secondary animals for the whole year, i.e.Pr = 0, in our notation.
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Our model also assumes a constant 'number of territories occupied, so we will restrict our

attention to that case of Lindstrom's model(R = 1 in his notation). With single-territories and

constant population size, Lindstrom predicted that the two strategies for a juvenile, 'remain'

and 'disperse' would have the same fitness. However, his conclusion depends critically on

two further assumptions, which in our notation are

Yo = 1 and P8 = O.

More generally, our model predicts that, in territories with no long-term groups, (i.e.Pa = 0),

remaining to form groups is advantageous if and only if

P8)yo(l- - > 1,
m

as can be seen by considering the form ofA whenPs = O. Thus it is clearly possible for the

strategy of forming groups to be strictly betteror strictly worse than that of dispersing,

depending onYo and P8, and Lindstrom's conclusion about single-territories is unjustified.
m

6.6 Discussion.

We have described four different models for the evolution of social behaviour in terri-

torial animals, based on the Resource Dispersion Hypothesis. The important qualitative

features of all four models are summarised in a single, simple expression,

(6.6.1)

The parameters in equation (6.6.1) are defined in Section 3, for haploid models, and in Section

5, for diploid models, the only differences in meaning being those that are natural in changing

between those two types of model. In the three deterministic models, we conclude that social

behaviour, as described here, can become established in a population if and only if C> 1. In

the case of the stochastic model, C> 1 is a necessary (and, it is conjectured, sufficient) condi-

tion for the probability of establishment to be positive.

Equation (6.6.1) shows the importance of the various parameters of the models. For

example, only the ratio, not the values, ofps and m is important, andYo, the expected number

of offspring, will be important unlessPs ... m. In addition, the parametern, the probability of

a juvenile actually electing to form a .group, given that it has the appropriate gene, doesnot

appear in equation (6.6.1). Thus it has no effect on whether social grouping can become esta-

blished (thoughit may affect the probability of establishment in a stochastic model).

As described in Section 4, equation (6.6.1) shows that Lindstrom's (1986) conclusion,

that social behaviour gives no advantage when groups cannot over-winter, is not generally

valid. Instead a simple (and easily attained) condition for social grouping to be advantageous,
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even when groups are necessarily transient, has been derived from equation (6.6.1).

In general, however, our models describe groups which potentially last for a number of

years. We can allow for such groups because the models are dynamic, with the state of the

population depending both on numbers of individuals and their social organisation. Defining a

dynamic on such a state-space enables us to model situations outside the usual range of evolu-

tionary game theory, and avoid some of the complexities of calculating fitness. Further work

is neededto extend these models to allow for larger groups and for parent-offspring conflict,

but the results here suggest that that the dynamic approach presented here can be useful.
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Chapter 7 Conclusions

7.1 Summary of results

We have seen in Chapter 2 that the model proposed by Carr and Macdonald (1986) for

the formation of territories and groups, in a habitat of identical food patches with randomly

varying yields, makes very strong assumptions, and leads to rather artificial results, which in

some cases differ from those stated by the original authors. In Chapter 3, we have shown that

by replacing Carr and Macdonald's discrete distribution of yield with a continuous distribu-

tion, and allowing random variation between food patches and hence between territories, we

can obtain a new model which is more mathematically tractable. The behaviour and predic-

tions of the new model are reasonably robust, in the sense that they are not too sensitive to

small changes in parameter values or in the structure of the model. The model leads to a

number of important conclusions: we mention some examples here. One is that groups of

animals will be formed under a wide range of conditions, lending strength to the key idea of

the Resource Dispersion Hypothesis. Another is that independence between grouP. size and

territory size, (measured in patches), which Carr and Macdonald suggested follows from the

R.D.H., only holds under a restricted range of conditions. Finally, increasing the variability

does not always increase the probability of groups being formed, contrary to intuition.

In Chapters 4 and 5, we looked at the effect of the spatial location of patches on the

above model. Four different spatial models were used, each one considered both with and

without interaction between territories. The models differed widely in the quality, i.e. in the

perimeter, of the territories that they produced, but in most cases the predicted probability of

group formation is fairly consistent, both between the spatial models and with the above non-

spatial model. Thus the most important conclusion of the non-spatial model, that groups will

be formed in a wide range of different stochastic environments, is robust to the introduction of

spatial aspects into the model, in a number of possible ways.

The above models, strictly speaking, do not show that groups will definitely be formed,

but only that opportunities for group formation occur. The aim of Chapter 6 was to determine

when these opportunities would be taken, by examining when such behaviour would be evolu-

tionarily successful. We considered four slightly different models (deterministic and stochas-

tic, and with varying assumptions about genetics) based on a simple, abstract model for identi-

cal territories. All four models agree in their main conclusions, which can be summarised by

a single simple equation that gives information on when group behaviour can actually occur.
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7.2 Further Work

There are a number of areas where it would be desirable to extend the work in this

thesis. Some of these are considered below, under the headings non-spatial models (related to

the material in Chapters 1,2 and 3), spatial models (Chapters 4 and 5) and evolutionary models

(Chapter 6).

7.2.1 Non-Spatlal Models

The models presented in Chapter 1 (due to Carr and Macdonald, 1986) and Chapter 3 are

rather simple models, and it is not clear that there is muchto be gained from much further

analysis beyond what is given here, apart from some places where the given results might be

superseded by more precise analytic results. One exception to this is if there were strong

interest in, or detailed data available for, a particular choice of species and habitat. There

might then be sufficient reason to further explore a specific case of the model in Chapter 3,

e.g. a particular choice of distribution of patch means, or a particular case of the seasonal

model mentioned in Section 3.3.2.If sufficiently detailed data were available, it would clearly

be desirableto formally test the predictions of the model.

7.2.2 Spatial Models

Since the simulations in Chapters 4 and 5 are in many cases limited by the computing

time required, there is clearly some scope for tryingto increase the efficiency of simulation,

and carrying out further simulation experiments in selected cases. As in Section 7.2.1 above,

this is especially true if there is particular interest in a given real case, to which simulations

can be tailored. However, a more important step would be to improve the realism of the

models by incorporating some notion of readjustment of the territories after the initial settle-

ment. There are two obvious approaches to adjustment. One isto allow each territory to

change its perimeter to include or exclude certain points, to achieve some type of local

optimality. Clearly this is a natural generalisation of the local optimisation model in Section

4.5, though not necessarily one which is easyto formalise and implement. The other approach

to adjustment is to introduce mortality, followed by resettlement, into the model, so that the

habitat is never filled permanently, but has vacancies continually occuring. Intuitively, the

process would be expected to reach a ~tochastic equilibrium. Mortality might be completely

random, or might vary according to territory quality. Readjustment through mortality seems

more natural than the local optimisation discussed above, for most of the spatial models we

have considered, and is likely to be easier to implement. More importantly, it suggests a

natural link with evolutionary models, which is pursued in Section 7.2.3 below.

•



- 149 -

7.2.3 Evolutionary Models

Although the evolutionary models in Chapter 6 give a useful insight into the existence of

groups sharing territories, they need to be extended to allow for the possibility of larger

groups, and to explore the possible conflicts mentioned in Section 6.5.4. For these purposes, it

is anticipated that the methods of Chapter 6 will continue to be useful. Some further work is

required to prove (or disprove) the conjecture at the end of Section 6.4.

However, perhaps the main limitation of the models considered is that they deal with

identical territories. It would be extremely interesting to explore the affect of stochastic terri-

tories, as in Chapters 3,4 and 5, on evolutionary models. If the pattern of territories is

selected randomly and then fixed, then some analytic progress might be possible, at least in

the limit for large numbers of territories. In the more general case, where new territories set

up need not correspond exactly to those vacated due to the death of a territory holder, the

distribution of territory quality etc. may change over time, and simulation is likely to be

necessary. Such simulation could incorporate the spatial models from Chapter 5, and could

then be used both to answer evolutionary questions and to investigate the idea of adjustment

through mortality mentioned in Section 7.2.2 above.
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Appendix: The REDUCE program from Section 4.4.5

nmax :» 20;

array a(nmax,nmax),i(nmax,nmax),b(nmax),p(nmax);

comment a(l,m);

FOR 1:=O:nmax DO (

FOR m:=O:1DO (

a(l,m):=(-2A(I-m)/(21+1»*(for j:=(m+l):1 PRODUCT j/(2j-l»

)

);

comment n = 0;

FOR 1:=O:nmax DO (

i(O,l) := b(l) := 2AI* (FOR m:=1:1 PRODUCT m)

/ (FPR m:=O:1PRODUCT (2m+l»

);

comment n = 1;

FOR 1:=O:nmaxDO (

i(l,l) := pi*b(l) + 2*(FOR m:=O:1SUM (a(l,m)/(2m+3)))

);

comment n> 1;

FOR n:=2:nmax DO (

FOR 1:=O:(nmax-n) DO (

i(n,l) := pi'n * b(l) + 2n*(pi/2r<n-l)*(FOR m:=O:1SUM (a(l,m)/(2m+3»)

+ 4n*(n-l)*(FOR m:=O:1SUM (a(l,m)*i(n-2,m+2)/(2m+3)))

)

);

FOR n:=O:nmax DO (

write( p(n) := 2pi*(1-i(n,0)/piAn»

);

on fort;

off period;

FOR n:=O:nmax DO (

write( p(n) := 2pi*(1-i(n,0)/piAn»

);

on numval.float;

pi;

off numval;

FOR n:=O:nmax DO (

write( p(n) := 2pi*(1-i(n,0)/piAn»

);

end;


