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Abstract 

 
One hallmark of embryonic stem cells (ES) is their ability to renew themselves indefinitely 

and still retain the potential to develop into any specialized cell type once triggered by 

specific exogenous signals. This very versatile nature has made them an attractive model to 

study developmental events occurring during embryogenesis and also to employ them for 

regenerative medicine. The idea to exploit their developmental potential for intended 

therapeutic applications requires a detailed knowledge of the molecular regulation of 

differentiation. Thus pluripotent embryonic stem cells can be employed to investigate the 

molecular framework regulating pluripotency. The major aim of this research endeavour is to 

explore the role of DNA methylation in regulation of endogenous Sox2 transcription factor in 

context of mouse ES cells following their transition from the pluripotent to a differentiated 

state. An insight into molecular regulatory mechanisms will shed light on developmental 

programming and also aid in refining of methodologies for differentiation and nuclear 

reprogramming increasing their chances of success and efficiency. 

 

Mouse embryonic stem cells were differentiated towards osteogenic and neural cell types 

through the formation of embryoid bodies (EBs) – cellular aggregates partially recapitulating 

the early embryonic development. These EBs were then disaggregated and single cells plated 

in medium containing supplements to promote osteogenic or neural differentiation while 

control cells were grown in medium lacking those factors. Cells were harvested 

undifferentiated and at different time points during differentiation. Molecular characterization 

was carried out by expression profiling of lineage specific genes and proteins using RT-PCR 

and immunofluorescence respectively. DNA methylation analysis of two regulatory regions 

of Sox2 i.e. SRR1 and SRR2 was carried out by MS-PCR and bisulphite sequencing. 
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Embryonic stem cells were observed to be differentiating as evidenced by changes in cellular 

morphologies and lineage-specific markers expression. Two regulatory regions of Sox2, 

namely SRR1 and SRR2, were found to be methylated by methylation sensitive PCR at all 

time-points chosen for analysis in differentiating cells. Three individual CpGs in SRR2 

region were then analysed further by bisulphite sequencing which appeared unmethylated in 

both undifferentiated and differentiated embryonic stem cells. This hints towards the possible 

role of DNA methylation in regulating the expression of Sox2 in differentiating embryonic 

stem cells and need further investigation. 
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1. Introduction 
 
 
Embryonic stem cells are master cells having the potential to develop into any of about 200 

different cells types a multicellular creature is composed of and, due to this very versatile 

nature, are an attractive candidate in regenerative medicine (Prelle et al., 2002). The first 

successful attempt of in vitro culture of embryonic stem cells with their subsequent 

maintenance and propagation outside a living system in undifferentiated state has opened a 

new arena for researchers to explore developmental pathways at one end, and a new hope for 

millions of those suffering from debilitating disorders at another (Evans and Kaufman, 1981; 

Martin, 1981). 

 

The reprogramming of somatic genomes to a pluripotent state at will using transcription 

factors now termed as “core regulatory circuitry” i.e. Oct3/4, Sox2, Myc-4 and Klf-4 

indicates the central role of transcription factors in the maintenance of differentiation 

potential. These transcription factors together with DNA methylation, chromatin 

modifications and regulatory RNAs result in interactive and extended epigenetic network of 

regulatory mechanisms (Jaenisch and Young, 2008). Thus pluripotent stem cells can be 

employed to understand epigenetic changes that accompany cell differentiation and how they 

contribute to the regulation of differentiation into multiple lineages.  

 

1.1. Stem Cells – Classification and Sources 
 
 
Stem cells can be broadly classified in to two categories: embryonic or adult (somatic) 

depending upon their origin of extraction. In mammals, the term “ES cell” refers to stem cells 

derived from mammalian embryo in general and was specifically coined to distinguish these 
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cells from “EC cells” – teratocarcinoma derived pluripotent embryonal carcinoma cells which 

are similar to them in morphology, growth behaviour and marker expression (Martin, 1981). 

ES cells are also able to produce teratocarcinoma but they tend to consists of well 

differentiated mesodermal, ectodermal and endodermal tissues and cell types in contrast to 

those derived from EC cells that are dominated by undifferentiated cells (Evans and 

Kaufman, 1983). 

 

Embryonic stem cells are derived from the inner cell mass (ICM) of the blastocyst stage of 

embryo. The surrounding tissues of the ICM form the trophoblast which ultimately froms into 

placenta and other supportive tissues required for fetal development (Wobus and Boheler, 

2005). Pluripotent stem cells give rise to somatic stem cells of limited differentiation 

potential and hence referred to as multipotent stem cells which can develop into specified cell 

types of a particular lineage such as haematopoietic stem cells, neural stem cells etc. as 

shown in Figure 1: 

 

 

Figure 1: Classification of stem cells based on their differentiation potential (Anderson et al., 2001) 
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Multipotent stem cells are localized to tissues or organs and are generally regarded as adult or 

somatic stem cells to differentiate them from their embryonic counterparts. These cell 

populations mainly act as an active or passive reservoir to renew depleting/dying/damaged 

cells based on their localization and therefore serve as a continuous source of cell renewal 

inside a living system (Anderson et al., 2001). It was believed that these cells could have 

limited differentiation potential restricted to one lineage but recent evidence indicates that 

under appropriate conditions they can differentiate across different lineages, a phenomenon 

known as transdifferenatiation (Blau et al., 2001). 

 

1.2. Mouse Embryonic Stem Cells - Derivation and Maintenance 

 

Mouse is an established animal model for experimental studies in mammals because of its 

genetic and physiological similarity with human beings (Fields and Johnston, 2005). Mouse 

embryonic stem cells are derived from inner cell mass of blastocyst stage embryo. Tissue 

culture medium enriched with 10-20% fetal calf serum and 2-mercaptoethanol is routinely 

used for their propagation either with or without feeders (Smith, 2001; Robertson, 1987). 

Mouse ES cells propagation and maintenance in an undifferentiated and pluripotent state is 

also dependent on the presence of LIF, Leukaemia inhibitory factor, so called because it was 

originally isolated as a haemopoietic regulator (Williams et al., 1988; Smith et al., 1988). LIF 

is a cytokine of the IL-6 family and acts through the gp130 receptor resulting in the activation 

of a series of signalling pathways involving STAT3, SHP-2, Hck, ERK1 and ERK2 (Burdon 

et al., 1999a, b). The exact role of every single factor and signalling pathway in keeping the 

self-renewal ability is not known yet (Smith, 2001). A pictorial representation of different 

stages of mouse embryogenesis and stem cells at different time points is shown in Figure 2: 
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Figure 2: Developmental pathway in mouse (upper panel) and ES cells at different stages (lower 
panel) in this context (Smith, 2001) 

 

 

One of the rationales for growing embryonic stem cells in vitro is to create an environment 

similar to that found inside the embryo to understand complex developmental events. But 

development is largely a context-dependent phenomenon involving cell-cell interactions at 

tissue and organ level besides various environmental stimuli. So functional assessment 

criteria are needed to interpret and validate the information obtained from in vitro studies to 

complement that with real physiological systems. The lowest level of this functional 

assessment regarding the validation of pluripotent state of embryonic stem cells is firstly 

achieved through in vitro differentiation of cultured cells. This is followed by teratoma 

formation after injection into host and then contribution to germ line by injected cells and 

chimera formation. The extreme level of control is exercised by injection of laboratory grown 

cells into 4n host blastocyst to get an animal composed only of injected donor cells (Jaenisch 

and Young, 2008; Eggan et al., 2001; Nagy et al., 1990). The ability to produce chimeras or 

http://arjournals.annualreviews.org/na101/home/literatum/publisher/ar/journals/production/cellbio/2001/17/1/annurev.cellbio.17.1.435/images/large/cb17_0435_1.jpeg
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to validate germ line contribution for humans is not possible due to ethical and technical 

reasons hence primate ES cell lines other than human are used as an accurate in vitro model 

to understand differentiation (Thomson et al., 1995; Thomson et al., 1998). Also the process 

of gastrulation and germ layer formation are difficult to characterize in vivo due to the small 

size of the embryo and rapid start of development after implantation in the uterus. Embryonic 

stem (ES) cells are derived from the inner cell mass of early blastocysts or from the epiblast 

of late blastocysts (human ES cells and mouse EpiES), and have been shown to be able to 

self-renew or differentiate in most tissues of an adult organism under specific culture 

conditions in vitro, therefore providing an attractive model to understand pluripotency and its 

regulation at a molecular level (Smith, 1992; Pesce et al., 1999). 

 

1.3. “Pluripotency” or “stemness” of mouse ES cells at molecular level 
 

 
Pluripotency is a cellular state of embryonic stem cells characterized by their potential to 

differentiate into cell types originating from all three germ layers of a developing embryo i.e. 

ectoderm, mesoderm and endoderm (Niwa, 2001). A complex and dynamic interplay 

mediumted by a diverse range of networks has been shown to contribute towards 

pluripotency rather than a single universal mechanism. It comprises of transcription factors, 

chromatin modifiers, regulatory RNAs and signalling pathways which are generally 

described together as epigenetic regulators of pluripotency (Jaenisch and Young, 2008). 

 

Conard Waddington (1905-1975) is credited for introducing the term epigenetic and he 

defined it as, “the branch of biology which studies the casual interactions between genes and 

their products, which bring the phenotype into being” (Waddington, 1942; Jablonka and 

Lamb, 2002). An updated and currently prevailing definition of epigenetic is, “the study of 

mitotically and/or meiotically heritable changes in gene function that cannot be explained by 



  14 
 

changes in DNA sequence” (Bird, 2007). Hence epigenetic in its true essence is a sort of 

bridge between genotype and phenotype to explain any observed disparity in terms of 

phenotypic outcome at a particular locus or chromosome but without associated DNA 

sequence changes (Goldberg et al., 2007). 

 

Epigenetic influences on cell fate decisions are inherited in a non-Mendalian way in contrast 

to genetic changes and are usually triggered by a signal event (Rassoulzadegan et al., 2006). 

There are many allowed combinations of epigenetic marks to be taken by a cell during 

differentiation and Figure 3 shows a visual representation of epigenetic landscape based on 

Waddington’s idea. 

 
Figure 3: A current view of the epigenetic molecular machinery. Known factors that regulate 

epigenetic phenomena are shown directing the complex movement of pinballs (cells) across the 
elegant landscape proposed by Waddington. No specific order of molecular events is implied; as such 

a sequence remains unknown. Effector proteins recognize specific histone modifications, while 
presenters are proposed to impart substrate specificity for histone-modifying enzymes (Ruthenburg et 

al., 2007). H3.3 and macroH2A are shown only as representative histone variants involved in 
transcriptional activation or repression, respectively. For simplicity, other histone (and non-histone) 

proteins are not shown. (Key: ChR, chromatin remodelers; DNMTs, DNA methyltransferases; HATs, 
histone acetyltransferases; HDACs, histone deacetylases; HMTs, histone methyltransferases; HDMs, 

histone demethylases; DDMs, DNA demethylases [unidentified in mammals to date]; and TFs, 
transcription factors [reflecting the genetic component of the epigenetic process]). Text and figure are 

from (Goldberg et al., 2007) 
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After the cell has decided to take on a specific differentiation pathway in response to an 

external stimulus, self-perpetuating epigenetic memory allow cells to maintain their identity 

through the involvement of polycomb proteins even in the absence of inducing signal 

(Ringrose and Paro, 2004). This is also true for those environments that are rich in signals 

favouring induction of other cell types, hence important in maintaining the identity of stem 

cells over time (Martin and Zhang, 2007). This epigenetic memory is a specific cell state 

comprised of selective expression of some transcription factors acting in conjunction with 

chromatin modifications – covalent modifications of histone tails, DNA methylation at CpG 

dinucleotides, and localization of chromatin to specialized nuclear domains (Li, 2002). 

 

1.3.1 Transcription Factors 
 
 
The process by which genetic information encoded in double helix of DNA is expressed 

through the mediumtion of mRNA is called transcription and is facilitated by transcription 

factors to a large extent (Watson et al., 2008). Transcription factors can be grouped into two 

categories based on their expression: basal transcription factors or general transcription 

factors which are expressed ubiquitously and, regulatory transcription factors expressed in 

tissue-specific manner (Lee and Young, 2000). Those associated with expression of tissue-

specific genes have been found to act via different interacting positive and negative feedback 

loops on their target to maintain irreversible cell differentiation. They act on multiple 

differentiation pathways in temporal order to control and co-ordinate their output through 

self-maintained nuclear networks (Schulaz and Hoffmann, 2007).  

 

The transcription factor network involved in the maintenance of pluripotent state in 

embryonic stem cells has been studied in detail (Boyer et al., 2005; Loh et al., 2006). This 

network is suggested to be ranked at higher position in a hierarchy of pluripotency controlling 
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elements (Silva and Smith, 2008) as only a trinity of factors, Oct4, Sox2 and Nanog referred 

to as “core regulatory circuitry”, are required to maintain that state (Chambers and Smith, 

2004; Niwa, 2007). 

 

Oct4 is a member of the POU-family of transcription factors, it is encoded by Pou5f1 and is 

shown to be expressed in totipotent and pluripotent cells in the mouse life cycle (Pesce et al., 

1998a). Targeted gene deletion experiments in mouse embryos have resulted in failure of 

fetal development indicating its importance in pluripotency as cells differentiated to 

trophectoderm lineage (Nichols et al., 1998). Oct4 can heterodimerize with Sox2 – an HMG 

box transcription factor which in turn regulates the Oct4 expression level (Masui et al., 

2007). Nanog has been shown to stabilize the pluripotent state rather than being essential for 

its maintenance (Chambers et al., 2007).    

 

These three factors bind together at their own promoters and form an interconnected auto-

regulatory loop besides co-occupying their target genes. They collectively target two sets of 

genes, one that is actively expressed and another that is silent in embryonic cells but remain 

poised for expression during differentiation (Boyer et al., 2005; Jaenisch and Young, 2008). 

The majority of genes occupied by these master regulators of pluripotency are those of 

transcription factors, signal transduction components and chromatin modifying enzymes that 

promote ES cell self-renewal. But they also co-occupy and silence genes whose products are 

required in lineage commitment and cellular differentiation hence maintaining stemness of 

ES cells (Boyer et al., 2006; Loh et al., 2006). 

 

Most of the developmentally silent promoters are also occupied by Polycomb group (PcG) 

proteins that maintain cell state through gene silencing and hence are epigenetic regulators 



  17 
 

(Bernstein et al., 2006; Lee et al., 2006). These proteins form multiple polycomb repressive 

complexes (PRCs) which mediumte gene silencing at the transcription level (Schuettengruber 

et al., 2007). The presence of stalled RNA polymerase at promoters of genes targeted by PcG 

and core transcription regulators involved in developmental regulations suggests that they are 

prone to transcription once differentiation is triggered (Mikkelson et al., 2007; Bernstein et 

al., 2006). The mechanisms triggering selective activation of genes encoding specific 

developmental regulators have not been revealed yet, but most likely involve signaling 

pathways leading to establishment of a specific signature event such as nucleosome 

modifications e.g. demethylation of core histone 3 at lysine 27 (Lan et al., 2007). 

 
 

1.3.2 Chromatin Modifications 
 
 
The majority of DNA in mammalian cells is found in a condensed state called chromatin 

which is composed of a basic repeating unit called the nucleosome. In all eukaryotic cells 

each individual nucleosome consists of an octamer of four core histone proteins (H2A, H2B, 

H3 and H4) around which 147 base pairs of DNA are wrapped. Nucleosomes are linked 

together by linker DNA whose length is species dependent but typically fall in the range of 

20-60 bps and can be bound by another histone protein H1 usually referred to as linker 

histone (Kornberg and Lorch, 1999). 

 

Histones are positively charged proteins rich in basic amino acids i.e. lysine and arginine, and 

heterodimerization of specific histone pairs is mediated by a conserved histone fold domain. 

Histone proteins pairs get an ordered structure only after binding to DNA in a sequential 

manner; first a H3.H4 tetramer binds DNA which is successively joined in by two dimers of 

H2A.H2B to form nucleosome. These core histones have amino-terminal extensions called 

“histone tails” which are not required for the formation of nucleosome (Luger et al., 1997), 
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but are indispensable for nucleosome remodelling and accessibility of DNA to replication and 

transcription machinery. These tails are targets for different type of dynamic covalent 

modifications which give the nucleosome an individual function and are mostly modified by 

phosphorylation, acetylation and methylation on serine, lysine and argininie residues (Strahl 

and Allis, 2000). These modifications appear in different combinations on a variety of target 

amino acids in histone tails depending on the set of conditions and they confer cells an 

enormous functional diversity to keep up with the changing cellular contexts (Kouzarides, 

2007). 

 

The observation that some combinatorial patterns of histone tail modifications have been 

shown to display identical phenotype (e.g. acetylation at certain specific amino acids is 

correlated with transcriptional upregualtion in most instances) has led to the emergence of the 

“Histone code” concept. This code symbolizes the extension of genetic code at post genetic 

level and the enzymes carrying out these reactions are highly specific for their target amino 

acids with respect to changes and positions thus generating interdependent series of 

modifications (Strahl and Allis, 2000). This concept has been further extended to 

“nucleosome code” whereby concentration and combination of differentially modified 

individual nucleosomes in higher order chromatin structure dictates multiple readouts of 

genetic information e.g. gene activation v/s silencing or cell proliferation v/s differentiation 

(Jenuwin and Allis, 2001). But discrepancies have been reported between combination of 

signal events and generated output limiting the use of the term code in a universal sense (Liu 

et al., 2005). A brief account of common histone modifications is detailed below. 

 

 

1.3.2.1 Acetylation at lysine (represented by K) residues has been the most studied 

modifications of histone tails so far. One possible reason might be the 
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concomitant discovery of enzymes maintaining a balance between acetylated 

and non-acetylated state of target residues namely histone acetyl transfersases 

(HATs) and histone deacetylases (HDACs) and also the observation that it is 

almost invariably associated with transcription activation (Gurnstein, 1997; 

Struhl, 1998). HAT is an enzyme that catalyses the acetylation of specific lysine 

residues in core histones resulting in changes in chromatin structure 

compactness and hence, effecting gene expression (Lee and Workman, 2007). 

Acetylation of lysine residues neutralizes the positive charge of histone tails 

leading to weak histone-DNA, nucleosome-nucleosome, histone-regulatory 

protein interactions making chromatin environment more permissive for 

transcription (Masumi, 2011; Roth et al., 2001). Most common sites observed 

being acetylated in histones are K9, K14, K18 and K23 in H3 and K5, K8, K12 

and K16 in H4 in most species (Thorne et al., 1990; Strahl and Allis, 2000).  

p300/CBP (CBP is phosphorylated form of cAMP-response-element-binding 

protein) is example of the two most studied HATs which were identified as 

separate protein factors initially but later grouped together due to structure and 

functional relatedness (Roth et al., 2001). Several distinct domains are present in 

p300/CBP including a bromodomain (a frequent feature of mammalian HATs), 

three histidine-cysteine rich domains (mediates protein-protein interactions) and 

two more domains that interact with different transcription factors e.g. c-Jun, 

nuclear hormone receptors, TFIID (a general transcription factor). p300/CBP are 

recruited to their target by interactions with DNA-bound transcription factors 

instead of directly binding to the DNA and regulate many different transcription 

and signalling pathways (Chan and Thangue, 2001; Roth et al., 2001). 
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1.3.2.2 Phosphorylation occurs at serine (represented by S) and sometimes on 

threonine (marked as T) residues and specifically this modification on H1 and 

H3 histone tails is associated with chromosome condensation during mitosis 

(Bradbury, 1992; Koshlan and Strunikov, 1996). H3S10 phosphorylation is 

specifically associated with upregualtion of “immediumte early” genes such as 

c-fos, c-jun and c-myc (Thomson et al., 1999; Chadee et al., 1999). This 

modification has been reported to have most significant influence on signalling 

pathways. The phosphorylation of cytoplasmic proteins initiates a cascade of 

signalling networks which in turn affects gene expression e.g. mitogen activated 

protein (MAP) kinase pathway which is linked with H3 phosphorylation 

(Thomson et al., 1999). 

 

1.3.2.3 Methylation has been shown to occur on arginine and lysine residues in histone 

N-terminal chains and output effects can be either activating or repressive on 

transcription based on location of residues methylated and groups of methyl 

added to target residue i.e. mono, di or tri (Bannister and Kouzardies, 2005). 

This metylation is catalyzed by three distinct families of proteins: protein 

arginine methyl transferase (PRMT1) family, SET domain containing proteins 

and DOT1/DOT1L histone methyl transferase family (Martin and Zhang, 2005). 

Methylation of H3K4, H3K36 and H3K79 is associated with active genes while 

H3K9, H3K27 and H4K20 are found to be related with transcription repression 

(Strahl et al., 1999). An interesting feature is differential marking of methylation 

pattern i.e. H3K4me3 associated with transcription start sites, H3K36me3 with 

gene sequences, H3K9me3 abundant on silent genes and H3K36me3 on exons 

but at lower levels on alternatively spliced exons (Kolasinska-Zwierz et al., 
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2009). The consequences of arginine methylations are not well understood so far 

and PRMTs – protein arginine methyl transferases have been found to be 

recruited to promoter by transcription factors (Lee et al., 2005a, b) but no 

protein has been identified to reverse arginine methylation (Kouzarides, 2007). 

 

1.3.2.4 Ubiquitylation has been shown to occur on H2AK119 and H2BK20. This 

modification is mediumted by the Bmi/Ring1A protein found in polycomb 

complexes and is associated with transcriptional repression (Wang et al., 2006). 

SUMO (small ubiquitin-related modifier) is a small protein having three 

dimensional structure similar to that of ubiquitin but distinct cellular functions 

(Hay, 2001). Sumolyation have been shown to modulate protein-protein 

interactions, nuclear localization of subcellular components, chromatin 

organization, protein-DNA interactions, enzyme activity, and as antagonist of 

ubiquitylation which marks proteins for degradation (Melchior, 2000; Verger et 

al., 2003; Johnson, 2004). It has also been shown that histone H4 modification 

by sumolyation lead to transcription repression through recruitment of histone 

deacetylases (HDACs) and heterochromatin protein 1 (HP1) both in vivo and in 

vitro (Shiio and Eisenman, 2003). HDACs catalyse the acetyl group removal 

from the histone tail residues, acetylation is a modification almost invariably 

associated with transcription activation as described above in section 1.3.2.1.  

HP1 is a known structural protein of heterochromatin that binds to methylated 

lysine (K) of H3 and leads to transcriptional repression (Nielsen et al., 2001). 

Histone sumolyation is also reported to act as negative regulator of transcription 

in Saccharomyces cerevisiae (Nathan et al., 2006). 

 



  22 
 

There are two proposed mechanisms by which histone modifications function: by disruption 

of nucleosomes-DNA contact in chromatin and/or by recruiting non histone proteins having 

enzymatic activities which depending upon the type of modifications that recruited them will 

facilitate the unfolding or the compaction of nucleosomes thus affecting downstream cellular 

processes (Kouzarides, 2007). The transcriptionally active chromatin is referred to as 

euchromatin and is characterized by high level of acetylation and trimetylation mainly at 

H3K4, H3K36 and H3K79. By contrast, the term heterochromatin is used to describe the 

chromatin with little or no transcription and associated with low levels of acetylation, 

increased methylation at residues associated with silent loci and phosphorylation (Strahl and 

Allis, 2000). These two regions are demarcated by boundary elements in mammals because 

each is associated with distinct modifications which are maintained to preserve identities of 

these domains. 

 

Boundary elements are cis-acting sequences in genomes of higher eukaryotes that define the 

distinct functional domains of genome by acting as a barrier to prevent spread of inactive 

heterochromatin into euchromatin and also restrict the action of regulatory elements to the 

appropriate target region (Mishra and Karch, 1999). Similar kind of elements are also 

proposed to be present in CpG islands that protect them from de novo DNA methylation and 

induce local demethylation during development. They are thought to contain binding sites for 

other proteins e.g. Sp1 and, together they form a physical barrier preventing the binding of 

other regulatory elements and methylating enzymes to the target sequence (Brandeis et al., 

1994; Macleod et al., 1994). Sp1 is a ubiquitous transcription factor that regulates a diverse 

set of genes involved in cell differentiation, signal transduction and apoptosis along with 

housekeeping genes. Binding sites for Sp1 and related transcription factors (GC/GT box is 

the consensus binding site) are frequent in regulatory sequences such as promoters, enhancers 
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and CpG islands of genes (Bouwman and Philipsen, 2002). The boundary elements also 

recruit enzymes to modify the associated chromatin e.g. PC2 is recruited by H3K27me to 

maintain inactive X chromosome (Plath et al., 2003; Umlauf et al., 2004). Furthermore, 

histone modifications are not static cis acting phenomena rather dynamic and co-operative 

process where many cross talks between histone tail residues facilitate binding of a target 

protein but can at same time disrupt the binding of another repressor /activator on adjacent 

residue due to steric hindrances (Kouzarides, 2007).  

 

The pluripotent state of embryonic stem cells is maintained mainly by polycomb proteins and 

trithorax proteins which are involved in mitotic inheritance of lineage specific genes and, 

have been shown to catalyse H3K27 and H3K4 methylation respectively (Ringrose and Paro, 

2004). H3K4 trimethylation has been reported as a signature event resulting in recruiting 

histone acetylases signalling up regulation of transcription while H3K27 has been found to 

down regulate transcription by compacting chromatin (Bernstein et al., 2005). These two 

contrasting signatures have been shown to coexist in highly conserved non coding elements 

(HCNEs) in the mammalian genome and so named “bivalent domains”. These regions encode 

transcription factors required for embryonic development and their existence as bivalent 

domains keeps expression of these TFs at low level yet prone to transcription if ES cells 

differentiate. Once ES cells have taken any differentiation pathway, only one of the mark is 

perpetuated either repressive H3K27 or activating H3K4 (Bernstein et al., 2006). This finding 

has opened up a possibility for manipulating the pluripotent state of embryonic stem cells by 

altering the regulatory balance of these modifications. However, the overall structure of 

chromatin in ES cells and how it is linked to pluripotency maintenance have not been detailed 

yet (Szutorisz and Dollin, 2005). 
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1.3.3 DNA Methylation and CpG Islands 

 

DNA methylation is an epigenetic modification associated with repression of tissue specific 

genes, genomic imprinting, X chromosome inactivation and transposon silencing, and in 

mammals occurs almost invariably at position 5 of the Cytosine ring found in CG 

dinucleotides (Bester and Bourc’his, 2004; Bortvin et al., 2003; Li, 2002). CpG islands refers 

to those GC rich regions ( 65%) of about 1kb length that are methylation free and found to be 

associated with promoters of 50% of all mammalian genes (Antequera and Burd., 1993), 

making them a reliable feature for promoter prediction in mammalian genome (Hannenhalli 

and Levy, 2001; Ioshikhes and Zhang, 2000). CpG islands are enriched in transcription factor 

binding sites, have an open chromatin conformation and are different from the rest of the 

genome which is GC poor (40% on average) and heavily methylated at CpG dinucleotide 

(Bird, 1986; Delgado et al., 1998). 

 

These islands were originally referred to as “HTF islands” – “HpaII tiny fragment fraction” 

owing to their sensitivity to the HpaII (CCpGG) restriction enzyme. HpaII cuts at methylated 

CpG and sensitivity to this enzyme was found to be associated with promoters of 

housekeeping genes and some of tissue specific genes in digested fragments (Bird et al., 

1985). The distribution of CG dinucleotide in terms of frequency ratio is 1 in CpG islands in 

contrast to 0.2 observed in the rest of the genomic DNA. This disparity points towards a 

direct consequence of methylation in CpG islands. Unmodified cytosine is prone to 

deamination which converts it to uracil and is removed by uracil-glycosylation by the DNA 

repair machinery (Lindahl, 1982). By contrast, deamination of methylated cytosines converts 

them to thymines and results in C to T transition mutations that remain fixed as TpG (or CpA 

on the complimentary strand) by the DNA repair system thus accounting for the high 
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frequency of mutation rates observed at CpGs (Bird, 1980). That explains why CpG islands 

have displayed a more stable existence over the course of evolution as the U:G mismatch is 

removed far more efficiently and generation of new CpG sites by point mutations counter 

balance to maintain 20% of the expected frequency (Sved and Bird, 1990). 

 

Methylation of CpG islands is found to be associated with transcription repression 

highlighting the importance of methylation and its maintenance at those sites (Keshet et al., 

1985). Enzymes mediumting methylation of CpG islands are generally classified in two 

categories: de novo methyltransferase (DNMT3a and DNMT3b) which adds a methyl moiety 

at a cytosine residue and maintenance methyltransfersase (DNMT1) which copies the 

existing methylation pattern onto newly replicated DNA molecule hence keeping the 

methylated status over successive cell divisions (Klose and Bird, 2006).  

 

De novo methylation activity has been shown to occur mainly in ES cells, embryonic 

carcinoma cells, early post implantation embryo and developing germ cells and is absent in 

differentiated somatic cells (Chen et al., 2003). How de novo methyltransferases are recruited 

to their target during germ line development to establish methylation patterns has not been 

characterized in detail due to unavailability of biological material at that stage (Reik et al., 

2001). Cell culture systems therefore have been widely exploited to understand this 

mechanism and three possible explanations have been put forward: the DNMT3 enzymes 

might recognize targets via specific domains in their structure, or they may be recruited to 

their targets by protein-protein interactions, or through RNA interference mediumted 

mechanisms (Klose and Bird, 2006). Mouse embryonic stem cells lacking DNA methylation 

can survive and proliferate in an undifferentiated state but undergo apoptotic cell death upon 

differentiation. Therefore it remains to be determined whether this methylation is involved in 
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gene expression or maintenance of pluripotent state highlighting the importance of this event 

particularly if ES cells have to be employed in regenerative medicine (Fouse et al., 2008). 

 

Two mechanisms have been proposed for gene repression by methylation: either the 

modification of target sequence abolishes the target site of DNA binding factors (Watt and 

Molloy, 1988); or methylated sites recruit protein complexes that have transcription 

inhibitory activity (Handrich and Bird, 1998; Boyes and Bird, 1991). Methyl-CpG-binding 

proteins (MBPs) are associated with transcriptional repressor molecules that repress 

transcription with concomitant modification of surrounding chromatin linking DNA 

metylation and chromatin modification (Klose and Bird, 2006). Histone metylation at H3K4 

has been implicated in promoter protection from de novo methylation in somatic cells (Weber 

et al., 2007) and maternal imprinting control regions (ICRs) are rich in H3K4me2 which 

become methylated during oogenesis (Delaval et al., 2007). Figure 4 illustrates the possible 

gene repression mechanism by DNA methylation and how DNA methylation pattern is 

faithfully copied during replication. 
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Figure 4: a) DNA methylation of promoters inhibits transcription by several molecular strategies. More 
commonly, methylated CpGs are recognized by methyl-binding domain proteins (MBP)

 
that can 

recruit histone deacetylase (HDAC) and histone methyl transferase (HMT)
 
and in this way bring about 

histone deacetylation and H3K9 methylation that alters the local chromatin environment. 
b) During replication, the newly made DNA strand (green) is generated using unmodified cytosine. 
DNA methyltransferase (cytosine 5) 1 (DNMT1) then progressively modifies only those sites that 

already have a methyl moiety on the parental DNA strand
. 
In this way, the pattern of methylation is 

faithfully copied to the daughter cells, where it then contributes to reconstructing the chromatin 
structure

 
and factor composition at the promoter (Text and Figure from Land-Diner and Cedar, 2005). 

[Ac, acetylation; Me, methylation.] 
 

 

1.3.4 Regulatory RNAs 

 

RNA interference is a vast and newly discovered regulatory network of gene expression in 

eukaryotes sharing functional similarities with prokaryotes (Cerutti and Casas-Mollano, 

2006). This is a method by which small non-protein coding RNA molecules of about 21-22 

nucleotides interact with mRNA and modulate the expression repertoire of eukaryotic cells 

(He and Hannon, 2004; Chapman and Carrington, 2007). These non-coding RNAs have been 

shown to modulate various epigenetic regulatory mechanisms such as chromatin 

modifications, RNAi-directed DNA methylation leading to silencing of genes, imprinting 

mainly dosage compensation, cellular decision making and differentiation (Bernstain and 

Allis, 2005). RNA interference can be classified into three branches based on type of 

regulatory RNA pathway involved (Matranga and Zamore, 2007): 



  28 
 

a) Small interfering RNA (siRNA) pathway providing defense against viruses and 

transposable elements. 

b) Micro RNA (miRNA) pathway which regulates gene expression. 

c) Piwi-interacting RNA (piRNA) involved in retrotransposon and germ line gene silencing. 

 

miRNA and siRNA mediumted pathways have some underlying differences. For instance 

miRNAs are endogenous non-protein coding RNA encoded by genes present in genome 

while siRNAs are degradation product of exogenous (e.g. virus) double stranded RNAs or 

transcribed from transposable elements integrated in genome or from inverted repeats or from 

overlapping and oppositely transcribed gene pairs. siRNAs show absolute complementarity to 

their target sequence in contrast to miRNAs where complementarity to target is partial 

particularly in animals (Shabalina and Koonin, 2008). And among these complementary 

sequence 2-8 residues of miRNA are most conserved among homologous miRNAs (Lim et al 

2003).  

 

The mechanism by which transcription and/or post transcriptional regulation of gene 

expression can be mediumted by miRNA or siRNA depends on the level of complementarity: 

miRNA or siRNA with high level of complementarity can recruit RNA-induced silencing 

complex (RISC) and thus direct mRNA degradation; partial complimentary will lead instead 

to translational repression (Hutvagner and Zamore, 2002; Zeng et al., 2002, 2003; Doench et 

al., 2003). The choice of the post transcriptional mechanism is therefore independent of the 

identity of the RNA; rather the sequence similarity to target is the major determinant (Bartel, 

2004). After cleavage of mRNA, the miRNA or siRNA remains intact and can further 

undergo similar cycles of target recognition and destruction (Tang et al., 2003). Figure 5 

represents the mode of action of different type of regulatory microRNAs either at 
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transcription or post transcription level. Endogenous miR-145 has been shown to directly 

target 3裁-untranslated regions of SOX2, OCT4 and KLF4 in embryonic stem cells and switch 

the cell fate from undifferentiated state to a differentiated state i.e. increase expression of 

miR-145 represses the expression of these core pluripotency associated genes and induce 

differentiation (Xu et al., 2009). Another example whereby gene expression is controlled by 

regulatory RNAs in stem cell is miR-124 which directly target the Sox9 gene, whose down 

regulation is the key for neural differentiation (Cheng et al., 2009). 

 

 
Figure 5: The Actions of Small Silencing RNAs(A) Messenger RNA cleavage specified by a miRNA or 
siRNA. Black arrowhead indicates site of cleavage.(B) Translational repression specified by miRNAs 

or siRNAs (Bartel, 2004). 

 

 

Eukaryotes also express another class of non-protein coding RNAs greater than 200 

nucleotides in size known as large non-coding RNAs (lncRNAs) (Kapranov et al., 2007). 

These lncRNAs can be cytosolic, nuclear, spliced, polyadenylated and originate from either 

strand within a protein coding locus (Ponting et al., 2009). These lncRNAs have been 

reported to be playing diverse functional and regulatory roles (summarized in Figure 6) such 

as chromatin remodeling, telomere biology, subcellular structural organization, 

transcriptional and post-transcriptional gene regulation (Mercer et al., 2009). Given their 

diverse roles and cell and tissue specific expression, they are considered to be having crucial 

roles in development and cellular differentiation and their aberrant expression can also lead to 

different diseases including cancer (Caley et al., 2010). The most notable example of gene 

regulation by lncRNA is X chromosome inactivation (XCI) in female cells by Xist lncRNA 
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that coats one of the X chromosome making it transcriptionally inactive in a phenomenon 

called dosage compensation (Lee, 2010). Evx1as and Hoxb5/6as ncRNAs have been shown 

to have a role in epigenetic regulation of homoeotic loci during differentiation of ES cells 

where both found to be associated with trimethylated H3K4 histones and histone 

methyltransferase MLL1 (Dinger et al., 2008). 

 

 

Figure 6: Paradigms for how long ncRNAs function. Recent studies have identified a variety of 
regulatory paradigms for how long ncRNAs function, many of which are highlighted here. 

Transcription from an upstream noncoding promoter (orange) can negatively (1) or positively (2) affect 
expression of the downstream gene (blue) by inhibiting RNA polymerase II recruitment or inducing 
chromatin remodeling, respectively. (3) An antisense transcript (purple) is able to hybridize to the 

overlapping sense transcript (blue) and block recognition of the splice sites by the spliceosome, thus 
resulting in an alternatively spliced transcript. (4) Alternatively, hybridization of the sense and 

antisense transcripts can allow Dicer to generate endogenous siRNAs. By binding to specific protein 
partners, a noncoding transcript (green) can modulate the activity of the protein (5), serve as a 

structural component that allows a larger RNA–protein complex to form (6), or alter where the protein 
localizes in the cell (7). (8) Long ncRNAs (pink) can be processed to yield small RNAs, such as 

miRNAs, piRNAs, and other less well-characterized classes of small transcripts. (Text and figure from 
Wilusz et al., 2009) 
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1.4 Development and Cellular Differentiation 

 

Development is a sequential process resulting in cellular specification through the process of 

cellular differentiation i.e. cells become specific in their function and localized in the 

developing animal body (Davidson et al., 2002). The key of this process is differential 

control of gene expression mediated mainly by transcription factors and their interactions 

with cis-regulatory DNA sequence elements e.g. enhancers, silencers, insulators and locus 

control regions that can be found either upstream, downstream or in introns of a gene (Istrail 

and Davidson, 2004; Maston et al., 2006). Cis-acting elements are DNA sequences that lie in 

physical vicinity of the target gene being regulated mostly found in promoters, upstream or 

downstream regions while trans-acting elements can diffuse to their target and may be a 

product of a gene locating several base pairs away from the target site (Albert et al., 2002). It 

is the combinatorial action of these cis-regulatory DNA elements with transcription factors 

that produces a specific gene expression pattern and/or multiple patterns in spatial and 

temporal manner corresponding to specific cell type giving its identity (Levine and Davidson, 

2005). These complex interactions can be regarded as gene regulatory networks (GRNs) 

consisting of hierarchy of interactions among transcription factors, cis acting regulatory 

sequences and signalling molecules (Davidson et al., 2003). A regulatory gene with its 

multiple control elements is the central hub of these networks that receive inputs and generate 

output signals in the form of transcription factors and signalling molecules received from and, 

directed to these interacting regulatory networks as shown below in Figure 7 (Leon and 

Davidson, 2007). 
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Figure 7: The gene regulatory hierarchy: (a) An individual cis-regulatory module contains a cluster of 

several transcription factor binding sites, indicated in red and blue boxes. (b) A gene contains a 
number of cis-regulatory modules (pink boxes) that control its expression at different times and 
lineages in the developing embryo. The exons are indicated in light green boxes. (c) The inter-

regulating transcription factors and signalling molecules form a network that is essentially the genomic 
program for specification. In this diagram the colour codes of the three levels match, so panel a 
presents the cis-regulatory module of gene B (see panels b and c), which has binding sites of 

transcription factors A (blue) and C (red ) (Text and figure from Leon and Davidson, 2007). 
 
 
 
 

Transcription regulation is mostly done by enhancers, DNA sequences having multiple 

binding sites for variety of transcription factors and can activate transcription independent of 

their location, distance and orientation to that of their target genes’ promoters and even for 

genes located in other chromosomes (Ong and Corces, 2011). A typical gene regulatory 

region is shown schematically in Figure 8. Silencers are sequences that negatively affect the 

rate of transcription and share most of the structural features with enhancers (Ogbourne and 

Antalis, 1998). Insulators or boundary elements limit the transcriptional activity of adjacent 

region of DNA so as to create pockets of expression domain within the genome (Maston et 

al., 2006). Locus control regions (LCRs) regulate the transcriptional activity of whole gene 

cluster in tissue specific and position independent manner and are composed of multiple cis 
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acting elements including enhancers, silencers and insulators (Q et al., 2002; Maston et al., 

2006).  

 

 
Figure 8: Schematic of a typical gene regulatory region. The promoter, which is composed of a core 

promoter and proximal promoter elements, typically spans less than 1 kb pairs. Distal (upstream) 
regulatory elements, which can include enhancers, silencers, insulators, and locus control regions, 

can be located up to 1 Mb pairs from the promoter. These distal elements may contact the core 
promoter or proximal promoter through a mechanism that involves looping out the intervening DNA 

(Text and Figure form Maston et al., 2006). 
 

 

Enhancers have been shown to carry epigenetic signatures e.g. specific histone marks that are 

usually established early in development and keep changing as cells differentiate hence 

modulating gene expression with and without non-coding RNAs (Ong and Corces, 2011). As 

already detailed in section 1.3.2 that distinct histone modification act sequentially or in 

combination to give specific downstream signals according to histone code hypothesis. For 

example specific histone marks that have been shown to be associated with increased gene 

activity are H3K4 and H3K36 trimethylation, H3 and H4 acetylation while H3K9 and H3K27 

trimethylation, H4K20 di and trimethylation signals the transcriptionally repressed chromatin 

(Bernstein et al., 2006; Van Leeuwen and Steensel., 2005; Meshorer and Misteli, 2006). 

These all are the modifications occurring in histone tails, similarly modification in core 
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histone sequences have also been shown to effect nucleosome structure e.g. phosphorylation 

of H3T45 particularly in apoptotic cells (Hurd et al., 2009). Further these histone 

modification mainly methylation and acetylation have been shown to cross talk with DNA 

methylation (Fuks et al., 2005).  Hence a complex and co-ordinated interplay of these 

epigenetic and genetic control elements coordinates the cellular differentiation during 

vertebrate development making it irreversible and error free (Meissner, 2010).  

 

It has been now well established that Sox2, an endogenous transcription factor in 

combination with Oct3/4 and Nanog, maintains the differentiation potential of embryonic 

stem cells, and forced expression of these factors can even reprogram somatic genomes to 

undifferentiated state (Takahashi et al., 2006; 2007; Park et al., 2008). As described above, 

development and differentiation are achieved by a precise and tight control of gene 

expression, it is therefore very important to understand the regulatory mechanisms being used 

by cells to control expression of these transcription factors and how they become altered 

during the course of differentiation. The aim of this study was to gain the deeper 

understanding of the role of different epigenetic regulatory mechanisms during differentiation 

of mouse embryonic stem cells. The work presented in this thesis has mainly focused on 

DNA methylation of regulatory regions of Sox2 in mouse embryonic stem cells and a 

transformed mesenchymal stem cell line to determine whether DNA methylation patterns at 

these regions could play any role in maintaining differentiation potential or in regulating their 

differentiation.  
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1.5 Sox2 

 

Sox proteins have been implicated as crucial players of embryonic development mainly due 

to their regulatory roles in cellular differentiation pathways hence influencing cell 

specification by functioning as both transcriptional factors and architectural component of 

chromatin (Pevny and Lovell-Badge, 1997). They initially came under investigation by 

identification of their DNA binding domain highly homologous to the Sry box – a sex 

determining factor located on Y-chromosome in mouse and human (Sinclair et al., 1990; 

Gubbay et al., 1990). This Sry box encodes a 70-80 amino acid motif highly similar to DNA-

binding domain of HMG (high mobility group proteins – so called because of their high 

electrophoretic mobility due to their small molecular mass <30KDa) box superfamily and 

hence named Sox (Laudet et al., 1993). HMG box proteins are an extended family of proteins 

and classified in to two subgroups based on their DNA-binding sequence specificity and 

number of HMG domains present within a single protein (Laudet et al., 1993). The Sox 

family of proteins is categorized as having a HMG-box sharing at least 50% sequence 

similarity with mouse Sry and at present consists of 20 different proteins which are grouped 

together as subfamilies based on homology within and outside the HMG-box of same family 

members (Bowles et al., 2000; Schepers et al., 2002). 

 

The HMG domain of Sox factors mediumtes their binding with their target DNA in a 

sequence specific manner which is unique to Sox proteins and the consensus sequence for 

them has been identified as the heptameric sequence 5'-(A/T)(A/T)CAA(A/T)G-3' (Harley et 

al., 1994). The structure of Sry-related HMG domain has been reported both with and 

without DNA binding and consists of three alpha helices arranged in twisted L-shape 

whereby helix I and helix II forming a long arm in an antiparallel arrangement and helix III 
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forms the short arm of L-shape in association with N-terminal extension (van Houte et al., 

1995; Werner et al., 1995). The overall structure is maintained by a hydrophobic core whose 

constituent amino acids are highly conserved among Sox proteins as base specific DNA 

contacts. HMG domain conformation remains unaffected after binding with target DNA, 

however a large conformational change is induced into the target DNA structure forcing 

minor groove towards the concave binding domain of HMG and introducing an overall 70-

85˚ bend thus helically unwinding it (Wegner, 1999; Ferrari et al., 1992). The binding in to 

the minor groove of DNA by Sox proteins is sterically more feasible in its close proximity 

and is distinct from other transcription factors which bind in the major groove of DNA (van 

de Watering et al., 1993). This feature of Sox proteins in combination with their ability to 

bend DNA has led to the speculation that they also serve as architectural component by 

organizing chromatin structure and assembling other DNA bound transcription factors in to 

biologically active and sterically defined multiprotien complexes (Wegner, 1999; Werner and 

Burley, 1997; Wolffe, 1994). 

 

It has been shown by Sox binding sites analysis in the regulatory regions of target genes 

identified for Sox2 and Sox9 that a partner protein is required to bind with a nearby sequence 

to enable Sox proteins to act (Kamachi et al., 1995, 2000; Pevny and Lovell-Badge, 1997). 

Figure 8 illustrates the general structure of a Sox protein and how their binding to their target 

DNA is stabilized when the target DNA is bound by an additional protein factor able to 

interact with Sox protein as well. 

 

Sox2 is a transcription factor belonging to the Sox family of proteins described above. Sox2 

expression is subjected to both temporal and spatial regulation in mouse: it is first expressed 

throughout the inner cell mass and later on its expression is restricted to primitive ectoderm, 
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developing CNS, the lens and primordial gut (Collingnon et al., 1996; Que et al., 2007; 

Wiebe et al., 2000). Murine Sox2 maps to 3 A2-B locus and is an intronless gene of 2.4 Kb 

encoding a 319 amino acids protein which shares an overall 98% similarity with human 

SOX2 (Collington et al., 1996). It belongs to Group B1 of Sox proteins – a subgroup of 

Group B which is broadly considered as activating members of Sox gene family (Uchikawa 

et al., 1999).  

 

 

Figure 8: Sox proteins bind with their target stably only in presence of co-factor (Kamachi et al., 2000) 
 
 
 

1.5.1 Sox2 – targets 

 

A lens specific gene h-crystallin was the first described target for Sox2 in chicken which gets 

activated upon binding with Sox2 in its minimal enhancer element DC5 (Kamachi et al., 

1995; 1998). Two important genes for maintaining the pluripotent state of embryonic stem 
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cells i.e. fibroblast growth factor 4(FGF-4) and undifferentiated embryonic cell transcription 

factor 1 (UTF1), were later shown to be activated by Sox2/Oct-3/4 complex (Yuan et al., 

1995; Ambrosseti et al., 1997; Nishimoto et al., 1999). Now many gene networks targeted by 

Sox2 alone or in complex with other core transcriptional regulatory circuitry members have 

been reported (Avillio et al., 2003; Boyer et al., 2005; 2007). Sox2 has also been reported to 

act as transcriptional repressor, for example as observed at the osteopontin gene (Botquin et 

al., 1998). It is therefore possible that activating or repressive activity of Sox2 at different 

regulatory regions is dependent on its surrounding sequences which might recruit different 

partners. Also depending on which protein it is interacting in specific differentiation pathway, 

it can act as either activator or repressor. 

 

1.5.2 Sox2 – functions 

 

Different roles have been ascribed to Sox2 so far by different research studies, including 

maintenance of pluripotent state of embryonic stem cells, specification and maintenance of 

neural stem cell identity, induction of lens fibre cell differentiation, regulation of various 

anterior pituitary hormones and taste bud development by endodermal progenitor cell 

differentiation (Lefebvre et al., 2007). 

 

1.5.3  Sox2 – regulation 

 

Identification of regulatory regions in the genome is quite a complex endeavour given the 

redundancy of consensus sequence of TFs, compactness of chromatin, concentration of TFs 

in cell at the given moment, competitive or synergistic binding of TFs to the same or 

neighbouring region and hence leading to transcription up regulation or down regulation (Pan 
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et al., 2010). A common method for the study of gene regulation is to first use computational 

approaches to identify TF binding sites and then to validate them experimentally (Kolchanov 

et al., 2007). Phylogenetic foot printing is an extensively used approach for the prediction of 

regulatory sites. Evolutionary conserved non-coding sequence elements of single gene found 

through cross-species alignment of homologues sequences are thought to be involved in 

regulation (Pavesi et al., 2007). Affinity data, conformational and physic- chemical properties 

of TF in complex with its regulatory sequences aid in refining the target prediction (Pan et 

al., 2010). ECR browser (Ovcharenko et al., 2004) is an extensively used tool to compare 

genomes (available at http://ecrbrowser.dcode.org/) and Figure 9 is a screen shot showing 

Sox2 DNA sequence across different vertebrates in coding regions (blue and brown), 

upstream and downstream non-coding elements (red). 

 

 
Figure 9: A screenshot from ECR browser. ECR is widely used to compare genomes and here in this 

screen shot genome sequences coding for Sox2 gene are compared across different vertebrates. 
Blue and yellow regions indicate the coding sequences of the gene and red regions are non-coding 

elements found upstream and downstream of the coding region. SRR1 and SRR2 regulatory regions 
of Sox2 gene are present about 4Kb upstream and downstream of the transcription start site and 

have been shown to be evolutionary conserved among different species as shown here by genome 
comparison. 

 

http://ecrbrowser.dcode.org/
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The Sox2 gene has been reported to contain several regulatory regions i.e. core promoter 

(Wiebe et al., 2000), an ambiguous 5' flanking region (Zappone et al., 2000), and the 

evolutionary conserved upstream and downstream (~4kb from transcription start sites) 

enhancers which are designated Sox Regulatory Region 1 and 2 (SRR1 and SRR2) in mouse 

and humans (Tomioka et al., 2002; Sikorska et al., 2008). SRR1 contains binding site for 

POU transcription factor and direct neural-specific Sox2 expression while SRR2 binds Oct4-

Sox2 and is essential for Sox2 expression both in ES cells and neural stem cells. These 

enhancers have been shown to exhibit differential DNA methylation and histone H3 

acetylation during human neural progenitor’s differentiation in astrocytes and neurons 

making Sox2 permanently or transiently silenced (Sikorska et al., 2008). It is therefore 

feasible to propose that regulatory mechanisms might have been conserved in mouse and 

humans, making mouse embryonic stem cells a good model system to study regulation of 

Sox2 during in vitro differentiation. 

 

1.6. Aims of the research 
 
 
This study was aimed to understand the molecular regulation of endogenous Sox2 in mouse 

embryonic stem cells. As described above, Sox2 is a key transcription factor required for 

maintenance of stem cell like state i.e. their ability to self-renew whilst retaining their 

differentiation potential. The major focus was on the analysis of DNA methylation of two 

regulatory regions of Sox2 namely SRR1 and SRR2, in undifferentiated and differentiated 

mouse embryonic stem cells and mesenchymal stem cells (a transformed cell line). These 

regulatory regions of Sox2 were analysed at different time points following transition of 

embryonic stem cells from an undifferentiated state to differentiated state to identify potential 

onset of DNA methylation changes and how this is correlated with cellular decision making. 
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In order to determine whether potential differences in methylation were specific to individual 

lineages and if different level of regulation were observed as cells differentiated towards a 

lineage in which Sox2 expression is required, similar analyses were performed in mouse ES 

cells as they differentiate towards the osteogenic lineage (Chapter 3) or neural lineage 

(Chapter 4). 

 

Bone marrow derived MSCs are the physiological precursors of osteoblasts. MSCs are shown 

to be readily differentiated in vitro towards the osteogenic lineage and they are currently in 

use in the clinic. As the protocol used for osteogenic differentiation of MSCs and ES cells in 

this study are similar, it was thought possible to compare and contrast DNA methylation 

changes occurring at this gene locus in embryonic and adult stem cell types. It was thus 

hoped that further insights could be gained on whether there are conserved gene regulatory 

differentiation systems, among different kinds of stem cells. 
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Chapter 2 - Methods and Materials 
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2. Methods and Materials 
 
 
 

2.1.Chemicals, reagents and medium 

 

All medium, chemicals and reagent used in this study are listed in Appendix 7.1 detailing 

suppliers and catalogue numbers. The composition of various medium, solutions and reagents 

prepared for use in experiments are detailed in Appendix 7.2. 

 

2.2.Cell Culture 

 

2.2.1. Mouse ES cell culture 

 

A frozen aliquot of mouse embryonic stem cells - E14Tg2a cell line created from mouse 

strain 129/Ola (Hooper et al., 1987) was taken out from liquid nitrogen and defrosted in 

water bath at 37˚C and quickly resuspended in complete mES medium. Cells were 

centrifuged at 180g for 5 minutes and during this time a T-25 cell culture flask was 

gelatinized (0.1% (v/v) gelatine in 1X PBS). Cells were collected after centrifugation, 

resuspended in 5ml medium and plated in gelatinized flask and incubated at 37˚C in 5% CO2. 

Medium was changed the next day and cells were passaged when cells had reached to about 

70-80% confluence or after 48 hours at the latest. 

 

For passaging of mES, medium was aspirated and cells washed with 1X PBS. 0.5ml of 0.25% 

trypsin-EDTA (TE) added per T-25 flask and incubated at 37˚C for 4 minutes. TE activity 

was inhibited by addition of complete medium in cells which were then passed through 19G 

needle for no more than four times to disaggregate cell clumps. An aliquot of cell suspension 
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was taken (about 20µl) to count the cells. Meanwhile, cells were centrifuged and then 

resuspeneded in complete ES medium at a concentration of 1×106 cells per ml. 1ml of cell 

suspension again seeded in to a new gelatinized T-25 in 5ml of ES medium and cells 

incubated to grow. This passaging of ES cells continued to get enough cells to set up 

osteogenic and neural differentiation besides making some aliquots to freeze cells in liquid 

nitrogen. 

 

For freezing mES cells, cells were trypsinized, passed through needle, counted and 

resuspeneded in freezing medium at a concentration of 4×106 cells/ml and quickly transferred 

to Styrofoam box containing many layers of tissue to protect cells from temperature shock 

and stored in -80˚C freezer. After two or three days, cells were transferred to liquid nitrogen. 

 

2.2.2. Embryo Body formation 

 

In order to differentiate mES cells towards the osteogneic and neural lineages, first mES were 

grown as embryo bodies (EB) in suspension in non-adherent bacterial culture dishes. For this 

purpose, cells growing in adherent monolayer were trypsinized and counted. 4×106 cells were 

seeded in to 15ml EB medium (medium used was of same composition as complete ES 

medium except LIF) in non-adherent bacterial culture dishes (90mm) and incubated at 37˚C 

in 5% CO2 for three days. Bacterial dishes were occasionally shaken during EB formation to 

prevent their attachment with surface. 

 

After three days EBs was disaggregated by trypsinization to set up osteogenic differentiation 

(section 2.2.3). For neural differentiation some of the petri dishes were allowed to remain in 

suspension for an additional day, and at day four all-trans-retinoic acid (0.5µM) was added in 
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the EB medium and incubated for a further four days to induce neural precursors formation 

for setting up neural differentiation (section 2.24). 

 

2.2.3. Osteogenic Differentiation 

 

EBs were collected in 50ml falcon tube after three days of incubation in suspension and 

trypsinized. First EBs were collected after centrifugation, medium aspirated and added 2ml of 

trypsin-EDTA and incubated at 37˚C in water bath. EB medium was then added to inhibit TE 

activity and cells passed through syringe to ensure single cell population. An aliquot was 

removed for counting and cells were collected by centrifugation at 180g for 5 minutes. Cells 

obtained after dissociation of EBs were plated in osteogenic medium (differentiation 

medium) at a concentration of 5×105 cells in 3ml of medium per well of six-well tissue 

culture plate. Four plates were seeded to harvest cells at different time points for gene 

expression studies, DNA methylation analysis, alizarin red staining and quantification and 

immunofluorescence for protein markers i.e. 7, 14, 21 and 28 days respectively. 

 

Similarly cells were seeded in control medium which lacks additional factors responsible for 

osteogneic induction i.e. dexamethasone, betaglycerol phosphate and ascorbic acid. All the 

controls and osteogenic treated cells were incubated in 5% CO2 at 37˚C and medium 

regularly changed every two days. Cells were harvested at day 7, 14, 21 and 28 days of 

differentiation for RNA and DNA extraction. Also two well of cells were fixed with 4% 

parafomaldeyde (w/v) for alizarin red staining and DNA quantification and one well for 

immunofluorescence staining (section 2.7.2) having sterile cover slips placed in them. 
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2.2.4. Neural Differentiation 

 

At day eight EBs were collected, disaggregated and counted as described above for 

osteogenic differentiation (2.2.3). 4×106 cells were plated in 3ml of N2/F12 medium per well 

of six-well tissue culture plate. Medium was changed after 2hrs, 24 hrs and 48 hrs from 

plating. Then N2 medium was replaced with neurobasal medium supplemented with B27 and 

cells were grown for 28 days, harvesting samples at day 12, 21 and 28 for RNA, DNA 

extraction and immunofluorescence staining (section 2.7.2). 

 

2.2.5. Mouse MSC culture and osteogenic differentiation 

 

D1 – a mouse mesenchymal stem cells line (Diduch et al., 1993) was retrieved from liquid 

nitrogen and defrosted in water bath at 37˚C and quickly resuspended in MSC medium. Cells 

were centrifuged at 180g for 5 minutes, collected after centrifugation, resuspended in 5ml 

medium and plated in T25 tissue culture flask and incubated at 37˚C in 5% CO2. Medium 

was changed the next day and cells were passaged when reached to about 80-85% 

confluence. 

 

For passaging of MSCs, same protocol was used as described above for ESC (section 2.2.1) 

except that cells were not passed through syringe. This passaging of MSCs continued to get 

enough cells to set up osteogenic differentiation besides making some aliquots to 

cryopreserve. Then MSCs were plated in four tissue culture plates (six-well plates) in the 

same way as described above for ESC (section 2.2.3) to set up osteogeinc differentiation and 

harvest cells at specified time points for RNA, DNA and markers protein analysis. 
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2.3.Molecular Analysis 

 

2.3.1. Reverse Transcription PCR 

 

2.3.1.1.RNA Extraction 

 

mES cells were collected after trypsinzation, washed with 1X PBS and resuspended in TRI-

reagent, 5ml per 108 cells. After 5 minutes incubation at room temperature, chloroform 

(0.2ml per ml of TRI reagent) was added to cell lysate and then centrifuged at 12000g in 

refrigerated centrifuge at 4˚C for 15 minutes. The supernatant was transferred to a fresh 

RNase free tubes and RNA grade isopropanol (0.5ml per ml of TRI reagent) added and left at 

-20˚C for an hour. After centrifugation at 12000g for 30 minutes at 4˚C, the aqueous phase 

was collected in new tube and RNA pellet was washed with 70% ethanol (v/v) and 

resuspended in RNA grade water. Quantification was then performed by taking absorbance at 

260nm using Nanodrop (Thermo scientific). 

 

After RNA extraction, DNase treatment was done to remove contaminating DNA. 200U of 

DNase added to RNA solution (2µg) with 40U of RNasin and incubated at 15˚C for 45 

minutes. Then 1:1 mixed phenol-chloroform was added (120µl/100µl of RNA) and 

centrifuged at 13000g at 4˚C for 5 minutes to remove degraded DNA. Aqueous phase was 

transferred to a fresh RNA grade tube and two volumes of chloroform added and again 

centrifuged and supernatant collected in new tube. 3M sodium acetate was added (1/10th 

volume of supernatant) with 2 volumes of 100% ethanol to precipitate RNA and centrifuged 

at 13000g for 5 minutes at 4˚C. Supernatant was discarded and pellet washed with 70% 
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ethanol (v/v), air dried and finally RNA resuspeneded in water and concentration was 

measured using Nanodrop. 

 

2.3.1.2.Reverse Transcription 

 

RNA extracted from mES cells at different time points during osteogenic and neural 

differentiation was reverse transcribed to cDNA for gene expression analysis. cDNA was 

synthesized using Expand RT from Roche according to their protocol with slight 

modifications with random primers. First 100ng/µl RNA was incubated with random primers 

for 10 minutes at 70ºC and then after cooling at room temperature reverse transcriptase, 

RNasin, dNTPs and enzyme buffer were added and left at 42ºC for 1 hour. Reaction was 

stopped by placing tubes in ice and then stored at -20ºC. This cDNA was then used as 

template for PCR using different gene specific primers. 

 

2.3.1.3.Primers 

 

Primer pairs were designed using published genome sequences available on NCBI website 

and later checked for primer dimer formation, hairpin structures, and cross reactivity using 

Mac Vector software (MacVector Inc.). All primers were being synthesized from Eurofins 

MWG Operon and then optimized using temperature gradients and altering other PCR 

parameters sequentially. List of primer pairs and their optimal annealing and amplification 

conditions is given in Appendix 7.3 and regions of genes being amplified and primer 

optimization figures are shown in Appendix 7.4. 
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2.3.1.4.Polymerase Chain Reaction (PCR) on cDNA 

 

PCR was carried out in 15µl reaction volume which contained 1X Thermopol buffer, 250mM 

dNTPs, 25µM forward and reverse primers and 0.5U/µl Thermopol Taq Polymerase (NEB). 

PCR cycle used for amplification was: 95˚C for 3 minutes, 40 cycles of 95˚C for 30 seconds, 

annealing temperature (optimal annealing temperatures vary for different primer pairs, 

Appendix 3) for 30 seconds, 72˚C for 30 seconds; a final extension step at 72˚C for 5 

minutes. 

 

2.3.1.5.Agarose gel electrophoresis 

 

Amplified DNA subsequent to PCR was loaded on to 2% (w/v) agarose gel after mixing with 

6X (final concentration 1X) Orange G (0.15% Orange G, 60% glycerol, 60mM EDTA) 

loading dye. The gel was run at constant voltage based on size of gel tank in 1X TAE (tris-

acetate EDTA) buffer. DNA was stained with ethidium bromide (added in agarose solution 

prior to solidification at a final concentration of 1.5µg/ml) and following electrophoresis 

visualization and analysis was performed using Gel documentation system of FujiFilms. 

 

2.3.2. Methylation sensitive PCR 

 

2.3.2.1.DNA Extraction 

 

mES cells were collected after trypsinization, washed with 1X PBS and resuspended in 2ml 

of cell lysis buffer and incubated at 37˚C overnight. DNA was extracted following the cell 

lysis method (Sambrook et al., 1989). DNA was extracted from the cell lysate by 
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phenol/chloroform extraction using phase lock tubes (Qiagen). First phase lock tubes were 

prepared by centrifugation at 1500g for 2 minutes at room temperature. Then cell lysate was 

loaded onto phase lock tubes and subsequently equal volume of 1:1 phenol-chloroform added 

and centrifuged at 1500g for 5 minutes. Without removing the aqueous phase, phenol-

chloroform extraction was repeated and finally 2 volumes of chloroform added to the cell 

lysate and centrifuged. The aqueous phase obtained after this step was transferred to a new 

15ml falcon tube and DNA precipitated using 1/10th volume of 4M NaCl and two volumes of 

absolute ethanol. Precipitated DNA was washed with 70% ethanol (v/v) and resuspended in 

appropriate amount of Tris-EDTA (TE) buffer pH 8.0 and stored at -20˚C. 

 

2.3.2.2.Restriction Digest of genomic DNA 

 

1000ng genomic DNA was digested with MspI and HpaII using the buffer supplied in a 50µl 

total reaction volume with 40Units of enzyme. The digestion was performed at 37˚C and 

stopped by heat inactivation of enzyme as recommended by supplier. Afterwards samples 

were cleaned using phenol-choloroform as described in section 2.3.2.1 for DNA extraction 

with one exception that DNA was precipitated with 3M sodium acetate instead of sodium 

chloride. Samples were centrifuged at 13000rpm for 30 minutes, supernatant removed and 

DNA pellets washed with 70% ethanol (v/v) and air dried. DNA pellets were then 

resuspended in 50µl of deionised water and quantified using Nanodrop. Then 50ng was used 

for polymerase chain reaction (PCR) or based on quantification of amount of DNA present 

template volume altered accordingly. 
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PCR on genomic DNA was carried out as described in section 2.3.1.4 with annealing 

temperatures chosen according to primer pair being used. Primer pairs used and their optimal 

conditions are described in Appendix 3. 

 

PCR products were visualized by running on 2% agarose gels (w/v) as described in section 

2.3.1.5 and then photographed using FujiFilms (LAS 4000) and quantified using AIDA 

image analysis software. 

 

2.3.3. Bisulphite Conversion of genomic DNA 

 

EZ DNA Methylation-Gold kit from Zymo research was used for bisulphite conversion of 

genomic DNA for methylation analysis following their protocol. First CT conversion reagent 

was prepared by adding 900µl water, 300µl M dilution buffer and 50µl dissolving buffer to 

solid reagent, all supplied with the kit and mixed at room temperature for 10 minutes to 

dissolve conversion reagent. Then 130µl of this CT conversion reagent was added to 20µl 

(1000ng) genomic DNA extracted from differentiation time points and samples were placed 

in PCR machine using cycling parameters recommended by manufacturer. After bisulphite 

treatment, samples were loaded on Zymo spin column, washed and desulphonated using 

reagents and protocol provided with kit. Finally treated DNA was eluted in eppendorf using 

deionized water and quantified using Nanodrop. This was then used for PCR using primers 

specific for regulatory regions of Sox2 and amplified product excised from agarose using 

Qiagen gel extraction kit and reagents following their protocol. After extraction amplified 

product was quantified using Nanodrop and Sanger-sequencing was outsourced to Source 

Biosciences by providing samples and appropriate sequencing primers according to their 
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guidelines. DNA sequences were analysed using Chromas software (Technelysium Pty Ltd.) 

and methylation analysis was done using BiQ analyser (Bock et al., 2005). 

 

2.4.Biochemical Analysis 

 

2.4.1. Alizarin Red Staining and Quantification 

 

Alizarin red staining was performed on cells after osteogneic differentiation (section 2.2.3) 

using this method (Gregory et al., 2004). Following fixation with 4% (w/v) 

Paraformaldehyde (PFA) cells were stored in Phosphate buffer saline (PBS) pH 7.4 at 4˚C. 

To perform the staining PBS was removed from the fixed monolayers of cells and cells 

washed three times 5 minutes each with distilled water at room temperature with shaking. 

After washing enough 40mM alizarin red dye solution (about 1ml) was added to each well of 

the plate to cover the cells and then left for 20 minutes at room temperature with shaking to 

develop the colour. Then the unincorporated dye was removed by thoroughly washing wells 

with water four times with shaking for 5 minutes before taking pictures under the 

microscope. 

 

For quantification of dye incorporated into the cells 800µl acetic acid (10% v/v) was added to 

each well and incubated at room temperature while shaking for 30 minutes. After incubation, 

monolayer was scraped from plates with the help of cell scraper and transferred to 1.5ml 

eppendorf tube with 10% acetic acid. Tubes were then vigorously vortexed for 10 seconds 

and heated at 85ºC for 10 minutes. After heating tubes were incubated in ice for 5 minutes to 

allow them to cool and then centrifugation was done at 15000g for 30 minutes. An aliquot of 

supernatant (about 500µl) was then taken in new eppendorf tube and pH tested so as to be in 
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the range of 4.1-4.5. Then 150µl of supernatant was transferred in three wells of a 96 well 

plate for each time point and absorbance was measured using Tecan (infinite M200) plate 

reader at 405nm. Standards of alizarin red were prepared in the range of 1000µM to 7.8µM 

by sequential two fold dilutions and read in the same plate at 405nm to create a standard 

curve for quantification of alizarin red amount extracted from stained monolayers. 

 

2.4.2. DNA Quantification 

 

In order to normalize the amount of alizarin red dye extracted from cells to cell count, DNA 

was quantified at each time point using method described here (Rago et al., 1990). PBS was 

removed form fixed monolayers and plates were subjected to three freeze/thaw cycles at -

80ºC for about 30 minutes each. Subsequent to this freeze/thawing, cells were scratched from 

plates and transferred to 1.5ml eppendorf with TNE buffer and centrifuged at 1000rpm for 5 

minutes to get rid of cell debris. An aliquot of 75µl supernatant was then transferred to three 

wells of a 96 well plate and 75µl of Hoechst stain added. Samples were then read using 

Tecan plate reader with excitation 360nm/Emission 460nm. DNA standards were prepared 

using mouse genomic DNA in the range of 10000pg to 78.12pg with two fold dilution in 

TNE buffer and standard curve generated to quantify DNA. 

 

2.4.3. Immunocytochemistry 

 

To perform immunocytochemistry experiments, cells were seeded on cover slips which were 

placed in the wells of a six well plate (four cover slips per well) while setting up 

differentiation (section 2.2.3, 2.2.4. 2.2.5). Cultured cells were fixed on cover slips by 

addition of 4% (w/v) paraformaldehyde at room temperature and then kept in PBS pH 7.4 at 
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4ºC. In order to stain the cells for the presence of proteins of interest using fluorescent 

labelled antibody,  cells were washed 10 minutes with PBS containing 0.1% Tween-20 (v/v) 

with shaking to make them permeable. Cells on cover slips were then blocked using block 

solution (PBS, 0.1% (v/v) Tween-20, 0.2% (v/v) serum) at room temperature for 1 hour and 

then incubated with primary antibody diluted in blocking solution over night at 4ºC. Next day 

cover slips were washed with PBS containing Tween-20 three times for 15 minutes each with 

shaking and then incubated with secondary antibody for one hour diluted in same block as 

that of primary antibody in dark at room temperature. From this point on wards, care was 

taken to minimize exposure to light. After incubation with secondary antibodies, again cover 

slips were washed with PBS containing Tween-20 three times for 15 minutes each and finally 

mounted on glass slide using Vectra shield. Cover slides were kept in dark at 4ºC until 

observation and then cells were visualized using Nikon Eclipse 90i fluorescent microscope 

and images were taken using Volocity 3D image analysis software (PerkinElmer). 
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Chapter 3 - DNA methylation analysis of Sox2 regulatory regions in 

mouse embryonic stem cells (E14Tg2a) cultured in osteoblast 

differentiation medium 
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3.1.Introduction 

 

As explained in section 1.2, mouse ES cells are now used as a model to study developmental 

events and understand molecular regulation of varied differentiation pathways. This study 

aimed (section 1.6) to understand if DNA methylation, a major epigenetic mechanism of gene 

regulation, of Sox2 regulatory regions in embryonic stem cells gets altered as cells 

differentiate to osteogenic and neural lineages derived from germinal ectoderm and 

mesoderm respectively. This chapter summarizes the findings of experiments about mouse 

embryonic stem cells grown in medium known to promote differentiation to osteoblasts (bone 

cells). Neural differentiation results are detailed in chapter 4.  

 

3.1.1. Bone Formation/Osteogenesis 

 

Bone is a specialized connective tissue under constant formation and resorption by 

osteoblasts and osteoclasts respectively throughout the life span of a vertebrate to maintain 

bone mass and calcium homeostasis (Aubin and Triffitt, 2002). Bone tissues are made up of 

hydroxyapatite crystals and an extracellular matrix consisting of type I collagen, osteocalcin, 

osteopontin, bone sialoprotein and proteoglycans (Young et al., 1992; Robey et al., 1993). 

Osteoblasts are cells that secrete and deposit most of these proteins, participate in the 

formation of hydroxyapatite crystals and have been shown to display high alkaline 

phosphatase activity besides responding to osteotropic hormones and cytokines (Mundlos and 

Olson, 1997). 

 

In mammals bone tissue has been reported to form through two independent pathways: 

intramembranous ossification and endochondral ossification. During intramembranous 
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ossification, osteoblasts differentiate directly from mesenchymal cells (detailed in Figure 

3.1).  

 

Figure 3.1: Schematic diagram of intramembranous ossification. (A) Mesenchymal cells condense to 
produce osteoblasts, which deposit osteoid matrix. These osteoblasts become arrayed along the 

calcified region of the matrix. Osteoblasts that are trapped within the bone matrix become osteocytes. 
(Text and figure taken from Gilbert, 2000) 

 

 

In endochondral ossification, chondrocytes arise first from mesenchymal condensations and 

form a cartilaginous template. This template is subsequently mineralized by osteoblasts 

derived from surrounding mesenchymal stem cells once hypertrophic chondrocytes mature. 

The matrix around hypertrophic chondrocytes becomes calcified and invaded by blood 

vessels (shown in Figure 3.2). Bone marrows forms after the deposition of a bone matrix and 

then osteoclasts differentiation proceeds (Karsenty, 1999). 
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Figure 3.2: Schematic diagram of endochondral ossification. (A, B) Mesenchymal cells condense and 
differentiate into chondrocytes to form the cartilaginous model of the bone. (C) Chondrocytes in the 

center of the shaft undergo hypertrophy and apoptosis while they change and mineralize their 
extracellular matrix. Their deaths allow blood vessels to enter. (D, E) Blood vessels bring in 

osteoblasts, which bind to the degenerating cartilaginous matrix and deposit bone matrix. (F-H) Bone 
formation and growth consist of ordered arrays of proliferating, hypertrophic, and mineralizing 

chondrocytes. Secondary ossification centers also form as blood vessels enter near the tips of the 
bone. (Figure and its description are taken from Gilbert, 2000) 

 

 

Mesenchymal stem cells or stromal stem cells are physiological precursors of osteoblasts and 

by definition are bone marrow derived fibroblasts that can differentiate in osteoblastic, 

adipogenic and chondrocytic lineages given the suitable stimuli (Pittenger et al., 1999). The 

process of bone formation is under complex regulatory control of myriad of signalling 

cascades such as fibroblast growth factors (FGFs), bone morphogenic protiens (BMPs), Wnt, 

Notch and, transcription factors but the exact molecular framework of genetic regulation is 

still elusive (Kozhevnokova et al., 2008; Karsentay et al., 2009). 

 

Some of the key transcription factors regulating conversion of mesenchymal stem cells to 

mature osteoblasts and their interactions with each other are shown in Figure 3.3. 
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Figure 3.3: Determination of osteoblastic lineage by transcription factors. The differentiation of 

common mesenchymal progenitor cells into each skeletal component cells is determined by different 
transcription factors. In osteoblast differentiation, Runx2 directs mesenchymal progenitor cells to 

preosteoblasts, inhibiting adipocyte and chondrocyte differentiation. Runx2, く-catenin, and Osterix 
direct preosteoblasts to immature osteoblasts that express bone matrix protein genes and completely 

eliminating the potential to differentiate into chondrocytes (Text and figure from Komori, 2006). 
 
 
 

3.1.2. ES cells as a model to study osteogenesis 

 

Musculoskeletal and osteodegenerative disorders have been well documented as major 

sufferings of vast majority of aging population but still effective therapies to a large extent 

are not available (Alfred et al., 2010). Embryonic stem cells are harvested from inner cell 

mass of embryo and have been shown to develop into any cell type in vitro making them as a 

possible source for transplantation and other clinical applications (Smith, 1998). The ability 

of embryonic stem cells to renew themselves indefinitely and still retaining the multilineage 

differentiation potential gives them a competitive advantage over other stem cell types and 

hence can potentially serve as a limitless supply of any cell type.  
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Directed differentiation of ES cells to osteoblasts has been successfully attempted so far in 

either of two major ways: use of three dimensional spherical structures called embryoid 

bodies (EB) prior to culturing single cells in a defined culture milieu known to induce 

osteogensis, and direct culture of dissociated ES cells in conditioned medium avoiding EB 

formation (Hwang et al., 2008). Embryoid bodies are 3D near spherical structures containing 

cells of all three germinal layers namely ectoderm, mesoderm and endoderm and recapitulate 

the environment of early embryonic development (Itskovitz-Eldor et al., 2000). 

 

The major limitation in EB-mediated differentiation strategies is poor characterization of 

molecular and signalling networks governing the cell fate decisions and hence spontaneous 

differentiation to unwanted cell types may lower the efficiency in terms of yield and 

homogeneity (Hwang et al., 2008). Co-culture and conditioned medium can be employed to 

overcome this bottleneck but then the risk of pathogen transmission and undefined 

composition of medium limits the use of this approach in clinical setting (Heng et al., 2004). 

Also this can be more expensive than EB formation. Another strategy that has also been 

reported is through genetic manipulation for expression of some transcription factors known 

to induce osteogenesis such as osterix but that also involves potential risks associated with 

recombinant approaches if differentiated cells have to be used for treatment (Tai et al., 2004). 

 
 

3.1.3. Sox2 in Osteogenesis 

 

There are only limited studies so far investigating the role of Sox2 in osteoblast lineage in 

particular. Sox2 has been shown to be expressed at low levels in osteoprogenitors and 

induced by FGF signalling and, favours their proliferation potential over terminal differentiation 

to osteoblasts by activating Wnt signalling pathway (Ambrosetti et al., 2008; Mansukhani et al., 
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2005). Some recent studies have shown experimentally that Sox2 is required for self-renewal of 

osteoblast precursors and inhibit their differentiation (Roy et al., 2010). 

 

In order to identify the mechanisms that could possibly contribute to down regulation of Sox2 in 

mature osteoblasts, two regulatory regions namely SRR1 and SRR2 were analysed for DNA 

methylation changes in this study. This is the first study looking at DNA methylation changes of 

Sox2 regulatory regions in osteoblast lineage. It was hoped that this information would help to 

better understand the regulatory role of Sox2 in osteogenic differentiation. Also as described 

above that MSCs (section 3.1.1) are physiological precursors of osteoblasts so a parallel set of 

experiments were carried out with MSCs keeping differentiation protocol and other experimental 

parameters identical to compare and contrast the molecular changes occurring in both cell types. 

The results of these experiments are detailed in chapter 5.  
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3.2. A schematic representaiton of experimental work plan 

 

 

 

 

 

 

 



  63 
 

3.3.Results 

 

3.3.1. Cell Culture 

 

3.3.1.1.Revival and passage of E14Tg2A cells 

 

E14Tg2A (wild type embryonic stem cells line) were revived from liquid nitrogen and grown 

on gelatine-coated tissue culture flasks. They were passaged every other day by trypsinization 

until the majority of the cells in culture looked undifferentiated as described in methods 

section (2.2.1). The morphology of cells at different passages is shown in Figure 3.4. 

 

Figure 3.4: E14Tg2A growing on gelatinized flasks at different passages. (a) mES cells after bringing 
from liquid nitrogen. (b) mES cells with flatten and uniform morphology and then some were 
cryopreserved and some were used to set up differentiation (all pictures were taken at 10X 

magnification). 

 
 

 

 

 

 



  64 
 

3.3.1.2.In vitro differentiation of mES cells to osteoblasts 

 

ES cells were first grown in gelatinized flasks in undifferentiated state and then allowed to 

form aggregates, i.e. embroid bodies, in bacterial dishes (Figure 3.5) which were then 

disaggregated and plated in medium supplemented with osteogenic supplements as described 

in detail in methods section 2.2.2.  

 

 
Figure 3.5: (a-b) E14tg2a cells at day-3 in EB medium forming EBs (all pictures were taken at 10X 

magnification). 
 
 
 

Previous research work indicates that embryonic stem cells grown in presence of osteogenic 

supplements (OS) form colonies with mineral deposition. Mineralization can be observed as a 

black layer surrounding the cells by phase contrast microscopy when differentiating 

osteoblasts form calcified matrix and as shown in Figure 3.6 the majority of the cells by day-

14 had started to form a dense matrix which was further confirmed by alizarin red staining, 

stain extraction and quantification. Alizarin red staining has been used historically to 

demonstrate the presence of calcium-rich deposits in histology for staining bones and 

skeleton (Puchtler et al., 1969). The staining mechanism is thought to involve absorption of 

alizarin red molecule on calcium of calcium hydroxyapatite, a major component of calcified 



  65 
 

bone by chelate formation (Moriguchi et al., 2003).  Use of Alizarin red dye has an added 

advantage in particular that, it can be later extracted from the entrapped cells and then can be 

used as a quantitative index to access the extent of mineralization (Gregory et al., 2004).  

 

OS supplements used in medium were ascorbic acid, beta glycerol phosphate and 

dexamethasone. Beta glycerol phosphate has been reported to act as a source of phosphate 

ions for in vitro mineralization and ascorbic aicd is required for formation of collagenous 

matrix (Binderman et al., 1986; Chentoufi et al., 1993). As can be seen in Figure 3.6 and 3.7, 

the cell line E14tg2a when cultured under these conditions, displays a gradual differentiation 

towards the osteogenic lineage with increasing density of dark granules that stained red with 

Alizarin red dye. Cells grown in same medium but lacking osteogenic supplements i.e. beta 

glycerol phosphate, ascorbic acid and dexamethasone were taken as control and found to be 

of mixed morphology and to some extent showed mineral deposition towards the end of 

differentiation experiment which was further confirmed by alizarin red staining (Figure 3.7). 

 

However this also need to be pointed that this medium composition may also lead to 

nonspecific mineral deposition which may not be cell mediumted and so additional 

characterization for the presence of matrix associated proteins was also carried out to 

ascertain whether mineralization is cell mediumted or nonspecific. Osteocalcin as discussed 

in section 3.4 is one of the major and matrix specific protein in osteoblasts. Gene expression 

analysis and immunocytochemistry were employed to stain for the expression of osteocalcin 

at the levels of RNA and protein in differentiating cultures and results are shown in Figures 

3.22, 3.20 and 3.21 respectively. As is evident from these figures that expression of 

osteocalcin both at RNA and protein level coincided well with the pattern of  Alizarin red 
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staining strengthening the observation that cells grown under these culture conditions might 

be  mineralizing. 

 

 

 
Figure 3.6: E14tg2a cells at day-0 before starting differentiation treatment (a) and stained with alizarin 

red dye (b) (all pictures were taken at 10X magnification). 
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Figure 3.7: E14tg2a cells grown in medium supplemented without and with ascorbic acid, beta 

glycerol phosphate and dexamethasone i.e. control and OS respectively and analysed by microscopy 
(a) and alizarin red staining (b). Mineral deposition can be seen as densely dark areas as cells 
differentiate (a) and they stained dark red with alizarin red (b) (All pictures were taken at 10X 

magnification). It has been detailed earlier in section 3.3.1.2 that such a staining could also be 
possible due to non-specific calcium accumulation in culture and hence more data is presented in 

section 3.3.3 and 3.3.4 to support these results. 
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3.3.2. Alizarin red dye extraction and quantification 

 

Alizarin red dye was extracted after staining of cells and quantified as described in detail in 

chapter 2 (section 2.4.1) and normalized to cell count (section 2.4.2). Briefly the amount of 

alizarin red incorporated by cells after staining was calculated using a standard curve (Figure 

3.8). This amount of alizarin red was then normalized to cell count of that well measured by 

DNA quantification (Figure 3.9). Since technical limitation did not permit to perform both 

quantification assays using the same well, two wells of six-well plates were seeded at the 

time of setting up differentiation experiment with equal number of cells and treated alike in 

every respect except the quantification assay itself.  

 

 
Figure 3.8: Alizarin red standard curve generated to calculate the amount of alizarin red dye extracted 
from cells (data is collected from two plates and each analysed in triplicates so mean±SEM with n=2) 
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Figure 3.9: DNA calibration curve generated to normalize the amount of alizarin red dye relative to cell 

contents of plates (data is collected from two plates and each analysed in triplicates so mean±SEM 
with n=2) 

 
 

Cells grown in medium containing osteogenic supplements showed a marked increase in 

amount of alizarin red dye extracted in comparison to cells grown in medium devoid of them 

after two weeks of culturing as shown in Figure 3.10.  

 
Figure 3.10: Mineral deposition was detected by Alizarin red dye and then dye was acid extracted and 
quantified using a colourimetric assay. Data are collected from two plates, each analysed in triplicates 
and expressed as mean±SEM (n=2). There seems to be a marked difference in amount of alizarin red 

extracted from treated and untreated cells. 
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It needs to be emphasized here from statistical point of view that this particular assay was 

carried out twice in triplicates for time-course samples obtained from two independent 

biological replicates because only one well of 6-well plate was seeded with cells to perform 

Alizarin red staining when differentiation experiment was set up for the first time. As 

explained earlier that technically it was not possible to carry out both alizarin red staining and 

DNA quantification assays using one well from multi-well plate, hence this was corrected in 

subsequent experiments and data collated and documented here. 

 

3.3.3. Immunocytochemistry 

 

Immunocytochemistry was performed using antibodies against Sox2, Sox9, Osterix and 

Osteoclacin proteins to detect the localization and expression of these markers (antibody 

supplier details are in appendix 7.1). Mouse ES cells - E14tg2a (used in this study), mouse 

NSCs from lateral ventricle (kindly prepared and given by Stephanie Strouhbecker, a fellow 

student working with Dr Virginie Sottile), primary mouse calvaria and primary mouse 

osteoblasts cells (kindly given by Omar Qutachi, a fellow student working with Dr Lee 

Buttery) were used as positive control for Sox2, Sox9, Osterix and Osteocalcin antibodies 

respectively. And mouse primary calvaria cells were taken as negative control for Sox2 

antibody and mouse ES (E14tg2a) were used as negative controls for Sox9, Osterix and 

osteocalcin respectively (Figures 3.11-3.18). In addition all these cells were also stained with 

primary antibody only (Figure 3.21), secondary antibody only (Figure 3.21) and no antibody 

to account for nonspecific and/or background staining( Figure 3.19-3.20).  

 

Almost all of the cells in undifferentiated ESC culture were found to express Sox2 protein. 

Then only small population of the cells were found to express Sox2 protein at day-7, 14 and 
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21 in control cells and at day-28 no signal was detected (Figure 3.22). Similarly cells grown 

in medium containing OS supplements were found to express Sox2 at day-7 and day-14 and 

then no signal was detected as shown in Figure 3.23. 

 

Sox9 protein expression was not observed in ESCs at day-0. Cells grown in medium lacking 

OS supplements started to show Sox9 protein expression at day-7 which appeared to persist 

until day-28 (Figure 3.24). While cells grown in medium containing OS supplements were 

found to express Sox9 at day-7 which increased with time until day-21 and then fewer cells 

were found positive a day-28. Some representative fields are shown in Figure 3.25. Sox9 

expressing cells were more in number in OS-treated culture than non-treated cells.  

 

Osterix protein was not found to be expressed at any time points chosen for analysis in cells 

grown with and without OS promoting factors as shown in Figure 3.26 and Figure 3.27. 

 

Osteocalcin was not found to be expressed by ES cells at day-0. Cells were found be 

expressing osteocalcin starting from day-7 until day-28 grown in both kinds of medium with 

and without ostoegenic supplements where signal in treated cells was significantly stronger 

than control population as can be seen in Figure 3.28 and 3.29. 

 
An important consideration regarding all the figures shown on next few pages from Figure 

3.11-3.21 is that Day-0 refers to undifferentiated embryonic stem cells (E14tg2a) before 

subjecting them to any differentiation treatment and is the common experimental starting 

point before seeding cells derived from EBs into either control medium or OS medium from 

Day-7 to Day-28 (schematics of experimental design are elaborated in section 3.2). 
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Controls for Antibodies 
 

3.3.3.1.Sox2 Positive 
 

 
Figure 3.11: Mouse ES (E14tg2a) cells were used as positive control for Sox2 expression. ES cells 

were stained without any antibody, primary antibody only, secondary antibody only and both primary 
and secondary antibodies to account for auto fluorescence and/or nonspecific staining (Dapi was 

used to stain the nucleus and FITC conjugated secondary antibody against primary antibody Sox2).  
Only ES cells stained with both primary and secondary antibodies showed positive signal (All pictures 

were taken at 20X magnification and scale bar is 32µm). 
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3.3.3.2.Sox2 Negative 

 
Figure 3.12: Primary mouse calvaria cells (kindly given by a colleague Omar Qutachi from Dr Lee 
Buttery research group) were used as negative control for Sox2 expression. Calvaria cells were 

stained without any antibody, primary antibody only, secondary antibody only and both primary and 
secondary antibodies to account for auto fluorescence and/or nonspecific staining (Dapi was used to 

stain the nucleus and FITC conjugated secondary antibody against primary antibody Sox2).  No 
signal was detected (All pictures were taken at 20X magnification and scale bar is 32µm). 

 



  74 
 

3.3.3.3.Sox9 Positive 

 
Figure 3.13: Mouse NSC cells isolated from lateral ventricle (kindly given by fellow research student 
Stephanie Strouhbecker from Dr Virginie Sottile research group) were used as positive control for 

Sox9 expression. NSCs were stained without any antibody, primary antibody only, secondary 
antibody only and both primary and secondary antibodies to account for auto fluorescence and/or 
nonspecific staining (Dapi was used to stain the nucleus and FITC conjugated secondary antibody 
against primary antibody Sox9).  Only NSCs stained with both primary and secondary antibodies 

showed positive signal (All pictures were taken at 20X magnification and scale bar is 32µm). 
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3.3.3.4.Sox9 Negative 
 

 
Figure 3.14: Mouse ES (E14tg2a) cells were used as negative control for Sox9 expression. ES were 
stained without any antibody, primary antibody only, secondary antibody only and both primary and 

secondary antibodies to account for auto fluorescence and/or nonspecific staining (Dapi was used to 
stain the nucleus and FITC conjugated secondary antibody against primary antibody Sox9).  No 

positive signal was observed (All pictures were taken at 20X magnification and scale bar is 32µm). 

 



  76 
 

3.3.3.5.Osterix Positive 

 
Figure 3.15: Mouse calvaria cells were used as a positive control for Osterix expression. Calvaria 
cells were stained without any antibody, primary antibody only, secondary antibody only and both 

primary and secondary antibodies to account for auto fluorescence and/or nonspecific staining (Dapi 
was used to stain the nucleus and FITC conjugated secondary antibody against primary antibody 

Sox2).  Only few cells were found to be positively stained (All pictures were taken at 20X 
magnification and scale bar is 32µm). 

 



  77 
 

3.3.3.6.Osterix Negative 

 
Figure 3.16: Mouse NSC (from lateral ventricle) cells were used as negative control for Osterix 

expression. NSCs were stained without any antibody, primary antibody only, secondary antibody only 
and both primary and secondary antibodies to account for auto fluorescence and/or nonspecific 
staining (Dapi was used to stain the nucleus and FITC conjugated secondary antibody against 

primary antibody Sox9).  No signal was detected in any of the stained cells (All pictures were taken at 
20X magnification and scale bar is 32µm). 
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3.3.3.7.Osteocalcin Positive 

 
Figure 3.17: Primary mouse osteoblast cells (kindly given by a colleague Omar Qutachi) were used as 

a positive control for Osteocalcin expression. Osteoblast cells were stained without any antibody, 
primary antibody only, secondary antibody only and both primary and secondary antibodies to 

account for auto fluorescence and/or nonspecific staining (Dapi was used to stain the nucleus and 
FITC conjugated secondary antibody against primary antibody Sox2).  Cells showed a cytosolic 

expression without any background (All pictures were taken at 20X magnification and scale bar is 
32µm). 
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3.3.3.8.Osteocalcin Negative 

 
Figure 3.18: Mouse ES (E14tg2a) cells were used as negative control for Osteocalcin expression. ES 
were stained without any antibody, primary antibody only, secondary antibody only and both primary 

and secondary antibodies to account for auto fluorescence and/or nonspecific staining (Dapi was 
used to stain the nucleus and FITC conjugated secondary antibody against primary antibody 

Osteocalcin).  No positive signal was observed (All pictures were taken at 20X magnification and 
scale bar is 32µm). 
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Figure 3.19: Mouse ES (E14tg2a) cells grown in control medium were stained without primary and 

secondary antibodies to account for auto fluorescence and/or background staining (Dapi was used to 
stain the nucleus).  No fluorescence was observed (All pictures were taken at 20X magnification and 

scale bar is 32µm). 
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Figure 3.20: Mouse ES (E14tg2a) cells grown in OS medium were stained without primary and 

secondary antibodies to account for auto fluorescence and/or background staining (Dapi was used to 
stain the nucleus).  No fluorescence was observed (All pictures were taken at 20X magnification and 

scale bar is 32µm). 
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Figure 3.21: Mouse ES (E14tg2a) cells were stained with primary antibodies only and secondary 

antibody only to account for nonspecific fluorescence and/or background staining (Dapi was used to 
stain the nucleus).  No fluorescence was observed (All pictures were taken at 20X magnification and 

scale bar is 32µm). 
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Figure 3.22: ESCs grown in medium lacking oesteogenic supplements stained using antibody against 
Sox2 protein (Dapi was used to stain the nucleus and FITC conjugated secondary antibody to localize 

Sox2) and found to be expressive at day-0 with a decreased level at day-7, day-14 and day-21 in 
cells. No signal for Sox2 was observed at day-28 (All pictures were taken at 20X magnification). 
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Figure 3.23: ESCs grown in medium containing oesteogenic supplements stained using antibody 

against Sox2 protein (Dapi was used to stain the nucleus and FITC conjugated secondary antibody to 
localize Sox2) and found to be expressive at day-0 with a decreased level at day-7 and day-14 in 

cells. No signal for Sox2 was observed at day-21 and day-28 (All pictures were taken at 20X 
magnification). 
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 Figure 3.24: ESCs grown in medium lacking oesteogenic supplements stained using antibody against 
Sox9 protein (Dapi was used to stain the nucleus and FITC conjugated secondary antibody to localize 
Sox9). Expression of Sox9 was observed at all time points except at day-0 (All pictures were taken at 
20X magnification). More cells appear to express Sox9 at day-21 than day-28. 
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Figure 3.25: ESCs grown in medium containing oesteogenic supplements stained using antibody 

against Sox9 protein (Dapi was used to stain the nucleus and FITC conjugated secondary antibody to 
localize Sox9). Exprersion of Sox9 was observed at all time points except at day-0 (All pictures were 
taken at 20X magnification). It appears that number of Sox9 positive cells increased up to day-21 and 

then decreased at day-28. 
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Figure 3.26: ESCs grown in medium lacking oesteogenic supplements stained using antibody against 

Osterix protein (Dapi was used to stain the nucleus and FITC conjugated secondary antibody to 
localize Osterix). No expression was observed at any time points selected for analysis (All pictures 

were taken at 20X magnification). 
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Figure 3.27: ESCs grown in medium containing oesteogenic supplements stained using antibody 

against Osterix protein (Dapi was used to stain the nucleus and FITC conjugated secondary antibody 
to localize Osterix). No expression was observed at any time points selected for analysis (All pictures 

were taken at 20X magnification). 
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Figure 3.28: ESCs grown in medium lacking oesteogenic supplements stained using antibody against 
Osteocalcin protein (Dapi was used to stain the nucleus and FITC conjugated secondary antibody to 
localize Osterix). With the exception of day-0 and day-7, all time points showed cytosolic expression 

which increased with time (All pictures were taken at 20X magnification). 
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Figure 3.29: ESCs grown in medium containing oesteogenic supplements stained using antibody 
against Osteocalcin protein (Dapi was used to stain the nucleus and FITC conjugated secondary 

antibody to localize Osterix). With the exception of day-0 all time points showed cytosolic expression 
of osteocalcin which increased with time (All pictures were taken at 20X magnification). 
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3.3.4. Molecular Analysis 
 
 
 

3.3.4.1.Gene Expression Analysis by reverse transcription PCR (RT-PCR) 
 
 
 
Gene expression studies of Oct4, Nanog and Sox2 as marker of pluripotency and Sox9, 

Alkaline phosphatase, Runx2, Osterix, Osteopontin and Osteocalcin as osteo-specific markers 

were carried out on random primed cDNAs. cDNA was prepared using RNA extracted from 

ES cells undergoing differentiation at different time points as shown in Figure 3.22. A house 

keeping gene GAPDH (glyceraldehyde-3-phosphate-dehydrogenase) was used as endogenous 

control. GAPDH was selected as invariable control because this differentiation protocol is 

based on previous studies which had also employed the same for normalizing gene 

expression analysis data (Buttery et al., 2001; Bourne et al., 2004). In addition other separate 

studies carried out to specifically compare different housekeeping genes in differentiating 

mouse embryonic stem cells to select for best reference gene have also shown that GAPDH is 

more reliable choice as normalization control over other reference genes such as HPRT and 

beta tubulin (Murphy et al., 2002; Willems et al., 2006). It appears from Figure 3.30 that 

GAPDH expression levels did not remain same throughout the differentiation time course 

which could be more likely due to amount of input used for PCR reaction. All gene products 

after PCR reaction were loaded on to ethidium bromide containing agarose gels and intensity 

of DNA bands were then calculated using AIDA, an image analysis software (raytest, 

Germany). Semi-quantitative gene expression analysis was carried out by normalizing the 

DNA band intensities values to GAPDH and ratio of product intensities plotted against days 

of treatment to obtain an expression profile in differentiating cultures and shown in Figures 

3.31-3.39. 
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Figure 3.30: Gene expression analysis using random primed cDNAs of ESC osteogenic time-course. 
This analysis was carried out in triplicates for three independent biological replicates (n=3) and semi-

qunatitiative analysis is shown below (Figures 3.31-3.39). Note: + and – refers to RT and –RT 
respectively whereas C is Positive control, N is PCR Negative and L is 100bp DNA Ladder. 

 

     
Figure 3.31: Semi-quantitative gene 

expression analysis showing expression of 
Oct4 in mouse embryonic stem cells grown in 
Control and OS medium for 28 days. Results 

are presented as mean±SEM.  

Figure 3.32: Semi-quantitative gene 
expression analysis showing expression of 

Nanog in mouse embryonic stem cells grown 
in Control and OS medium for 28 days. 
Results are presented as mean±SEM. 
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Figure 3.33: Semi-quantitative gene 
expression analysis showing expression of 

Sox2 in mouse embryonic stem cells grown in 
Control and OS medium for 28 days. Results 

are presented as mean±SEM.  

Figure 3.34: Semi-quantitative gene 
expression analysis showing expression of 

Sox9 in mouse embryonic stem cells grown in 
Control and OS medium for 28 days. Results 

are presented as mean±SEM. 

 

 

   
Figure 3.35: Semi-quantitative gene 

expression analysis showing expression of 
Alkaline Phosphatse in mouse embryonic stem 
cells grown in Control and OS medium for 28 
days. Results are presented as mean±SEM. 

 

Figure 3.36: Semi-quantitative gene 
expression analysis showing expression of 

Runx2 in mouse embryonic stem cells grown 
in Control and OS medium for 28 days. 
Results are presented as mean±SEM.
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Figure 3.37: Semi-quantitative gene 

expression analysis showing expression of 
Osterix in mouse embryonic stem cells grown 

in Control and OS medium for 28 days. 
Results are presented as mean±SEM. 

Figure 3.38: Semi-quantitative gene 
expression analysis showing expression of 
Osteopontin in mouse embryonic stem cells 

grown in Control and OS medium for 28 days. 
Results are presented as mean±SEM. 

 

 

 
Figure 3.39: Semi-quantitative gene expression analysis showing expression of Osteocalcin in mouse 

embryonic stem cells grown in Control and OS medium for 28 days. Results are presented as 
mean±SEM. 
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In both control and OS treated cells the pattern of RNA expression seemed to be the same 

with a sharp reduction in level of expression after day-7 (levels beyond the resolution of this 

assay at day-14 and day-21) but seemingly up regulated at day-28 (Figures 3.30 and 3.31). 
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Nanog displayed a pattern of expression similar to Oct 4 in control cells, with high detectable 

levels in day3 and day7, no expression in day14 and day 21 cells and expression back on at 

day 28. Similarly, in OS-treated cells expression of Nanog is lost after day 7 as observed in 

control cells, but resumed at day21 and maintained in day28 cells (Figures 3.30 and 3.32).  

 

Sox2 expression was detected in undifferentiated E14Tg2A (day-0) and found to be down 

regulated in both control and OS cells after day-3 (Figures 3.30 and 3.33). Though Sox2 

protein was found to be present in cells grown in control medium at day-7, day-14 and day-

21 with fewer cells being positive past day-0 (Figure 3.22). Sox2 protein was not detected 

after day-14 in OS-treated population (Figure 3.23), and this correlates with lack of RNA 

detection at these time points by the RT-PCR (see discussion section 3.4 for further details). 

 

Sox9 expression at RNA level was observed by RT-PCR throughout the differentiation time 

course in E14Tg2A grown in medium with and without OS supplements (Figures 3.30 and 

3.34) except day-0 and day-3. These results are in agreement with those obtained by 

immunofluorescence where Sox9 protein was also found to be present at all time-points 

starting from day-7 to day-28 in both treated and untreated cells (Figures 3.24 and 3.25). 

 

Alkaline phosphatase was found to be present at all time-point examined with significant up 

regulation in second week of differentiation in OS treated cells as shown in Figures 3.30 and 

3.35.  

 

Runx2 expression was undetectable at day 0 and day 3 of differentiation and was found to be 

peaking up after two weeks of differentiation in both control and OS treated cell populations 

and then it appeared to be down regulated after day-21 (Figures 3.30 and 3.36). 
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Osterix expression was not detected at earlier time points in E14Tg2A growing in both kinds 

of medium, containing and lacking OS supplements as shown in Figures 3.30 and 3.37 

though a faint signal was observed at day-3 and very little at day-28 in OS cells. As 

previously described, osterix protein was not found to be present at any time point during 

differentiation of ES cells (Figure 3.26 and 3.27). 

 

Osteopontin was found to be present in undifferentiated as well as differentiated cells. There 

appeared to be a marked increase in expression at day-21 and day-28 in control cells whereas 

observed to be down regulating in OS cells past day-21 as is shown in Figures 3.30 and 3.38. 

 

Osteocalcin expression was first observed at day-7 in OS differentiated cells and then found 

at all time-points (Figures 3.30 and 3.39). This correlates well with osteoclacin protein 

expression detected by immunofluorescence as shown earlier in Figure 3.28 and 3.29. Protein 

expression was found to be enhanced at late stages of differentiation i.e. at day-21 and day-28 

in both control and OS cells. OS-treated cells were found to be expressing more osteocalcin 

protein than non-treated cell populations. 

 

 

3.3.4.2.Methylation sensitive PCR (MS-PCR) for methylation analysis 

 

In order to determine whether DNA methylation could play a role in regulating expression of 

Sox2 as E14Tg2A cells grow in medium prompting oesteogenic differentiation,  two 

regulatory regions of Sox2 (SRR1 and SRR2) were analysed by methylation sensitive PCR. 

For this first, genomic DNA is digested with MspI and HpaII restriction enzymes which are 
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isoschizomers but MspI activity is not affected by DNA methylation at its target site. HpaII  is 

unable to cleave its target sequence when it is methylated. This difference can be exploited to 

investigate the methylation status of the sequence in question, as a fragment containing Msp 

sites should never be amplified following digestion with MspI, but can be amplified after 

HpaII digestions if all the sites are methylated. Three PCR reactions were run in parallel for 

these three set of samples using primers specific for either control sequences, SRR1 and 

SRR2. Uncut (U) refers to mock digested genomic DNA which has not received any 

enzymatic treatment, M referes to genomic DNA digested with MspI and H is for gencomic 

DNA digested with HpaII restriction enzyme (Figures 3.40-3.43). 

 

To determine the quality of DNA, efficiency and success of restriction reaction, controls were 

included in PCR reaction that can selectively amplify the regions of digested DNA without 

any MspI/HpaII sites, sites that are always unmethylated and sites that are always methylated. 

For this purpose a region of DNA is selectively amplified using mAprt primers which have 

been reported to contain MspI/HpaII sites but remain unmethylated (Macleod et al., 1994). 

And a sequence of known methylation status namely insulin like growth factor receptor 

differentially methylated region 2 (Igf2R-DMR2) from mice was selected as a control since 

this region becomes methylated during oogenesis and remains methylated (Feil et al., 1994). 

 

As can be seen in Figure 3.40 that region of mAprt known to be unmethylated did not 

amplify in both MspI and HpaII digested DNA samples at any time point in both OS-treated 

and not treated cell populations. This indicates that digestion is not partial and any product 

obtained with primers specific for Sox2 regulatory regions would be due to their methylation. 
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Figure 3.40: mAprt promoter region used as control and showing that no amplified product was 

observed in MspI and HpaII digested samples so digestion is complete. 

 
 
Figure 3.41 shows the amplified product form mIgf2R region in HpaII digested samples and 

not in corresponding MspI digested samples. This also indicates that any product with 

primers specific to Sox2 regulatory regions in HpaII digested DNA samples would be due to 

methylation at Msp sites and not due to incomplete digestion. 

 
 
 

 
Figure 3.41: mIgf2R-DMR2 region used as control and showing that no amplified product was 

observed in MspI digested samples so digestion is complete. 
 
 

SRR1 and SRR2 as alreqady detailed in section 1.5.3 are two evolutionary conserved 

regualotry regions of Sox2. Both of these regions i.e. SRR1 and SRR2 were found to be 
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methylated at all time-points analysed in both non-treated and OS-treated cell populations 

except day-0 and day-3 as shown in Figure 3.42 and Figure 3.43. 

 
Figure 3.42: SRR1 region of Sox2 was found to be methylated at all time-points examined by MS-

PCR (day-7 of control could be due to less amount of DNA input in PCR reaction) 
 
 
 

 
Figure 3.43: SRR2 region of Sox2 was found to be methylated at all time-points examined by MS-

PCR (Key: U – Uncut Sample of DNA; M – MspI digested DNA; H - HpaII digested DNA; P – Positive 
Control; N – PCR Negative Control; L – 100bp DNA Ladder) 

 
 
 
 

3.3.4.3.Bisulphite Sequencing of SRR2 region 
 
 
 

In order to further confirm and analyse the methylation status at each individual CpG 

dinucleotide in the SRR1 and SRR2 region of Sox2, DNA collected at each differentiation 
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time point was treated with bisulphite, then PCR amplified and sequenced. Unfortunately 

SRR1 did not yield good quality sequence results and due to limitations of time only the 

region of SRR2 which gave readable sequence data was further analysed.   

 

The region analysed by sequencing contained three CpG dinucleotide which were found to be 

completely unmethylated at day-0, day-7, day-14, day-21 and day-28 in both population of 

cells i.e. control and OS as shown in Figure 3.44 (see section 3.4 for detailed explanation). 

This data was obtained by direct sequencing of amplified product using DNA prepared from 

cells collected from two independent biological replicates (sequencing chromatograms are 

given in Appendix 7.5). 

Figure 3.44: Lollipop diagram showing DNA methylation status of CpG dinucleotides in SRR2 region 
of Sox2. These three sites analysed by direct DNA sequencing of amplified product of SRR2 region 

showed no methylation at any of time-points chosen for analysis. 
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3.4.Discussion 
 

 
The work presented in this chapter described the differentiation of mouse embryonic stem 

cells (E14Tg2A) into osteoblast though the formation of embryoid bodies in medium 

supplemented with factors known to induce osteogenesis (Buttery et al., 2001). Different 

studies attempting in vitro osteogenesis have used mineralization capacity of cells undergoing 

differentiation and expression of osteoblast specific marker at RNA and protein level to 

characterize the ososteoblasts (Duplomb et al., 2007). 

 

So the cells grown in osteoblast differentiation medium were first analysed by staining with 

Alizarin red dye which has been historically used to characterize the calcified mineral 

depositions in bone matrix (Gregory et al., 2004). The cells grown in osteogenic 

differentiation medium showed mineralization in a time dependent manner i.e. increased with 

culture time as is evident in Figure 3.7 (microscopy) and Figure 3.10 (quantitative analysis). 

 

Osteoblast differentiation is a multistep complex process under the control of a myriad of 

transcription factors and signalling pathways (Lian et al., 2006). The different stages of bone 

development are proliferation of osteoprogenitors, deposition of extracellular matrix and 

mineralization (Aubin, 1998). So the expression pattern of markers associated with 

osteoblasts is organized temporally and sequentially (Nieden et al., 2003). Type I collagen, 

Alk-P and osteonectin have been reported to appear at the end of proliferation phase; 

osteopontin followed by bone sialoproten and Runx2 at the start of mineralization phase and 

finally osteoclacin at high level during mineralization and they can have varying times of 

onset in culture dependent on cell line and methods of differentiation (Duplomab et al., 

2007). 
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Runt related transcription factor 2 (Runx2 / Cbfa1 / Osf2) is thought to be a central gene co-

ordinating signals from BMP and Wnt pathways for cellular commitment and osteogenesis 

(Lian et al., 2006). It is one of the earlier markers and required for the formation of 

preosteoblast and Runx2 null mutant have been reported to show no endochondral and 

membranous bone formation (Komori et al., 2006). Down regulation of Runx2 has been 

shown to be associated with chondrocyte commitment (Lengner et al., 2005). As reported by 

earlier studies, Runx2 mRNA was detectable at earlier stages and remained present 

throughout the differentiation time course peaking at day-14 in OS cells and then down 

regulating compared to control/non treated cells (Kawaguchi et al., 2005; Hwang et al., 

2008). As shown in Figure 3.30, similar pattern of RNA expression was observed in this 

study where reduction in expression level was seen after day-21 in both OS-treated and non-

treated cell populations. 

 

Osterix is osteoblast specific transcription factor acting downstream of Runx2 and lack of 

Osterix has been shown to associate with no bone formation (Nakashima et al., 2002). It has 

been shown to be up regulated at later stages of differentiation by an early study (Woll and 

Bronson, 2006). Here in this experiment no osterix expression was detected at any point of 

time course either at RNA level or protein level. As cells lacking osterix would not form bone 

and fail to express osteoblast specific marker genes, it could be possible that PCR reaction 

was not efficient enough, RNA transcript was not abundant and/or short lived and could not 

be detected at time points chosen for analysis. As for protein expression, it is possible that 

antibody used needed further optimization to detect osterix protein since known cell line 

expressing osterix was not available to use as a control and verify. 
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Sox9 has been reported to act on Collagen II (col2a1) to ensue chondrogenesis and persistent 

expression of this has been reported to block osteogenesis (Mori-Akiyama et al., 2003). Here 

Sox9 expression was found to be induced in cells grown in medium with and without 

osteogenic supplements at day-7 and RNA observed to be lasted until day-28. Sox9 protein 

was also observed to be present at these time points with majority of cells positive at day-21 

in OS cells and then only few retained expression of that at day-28. It could mean that all of 

the cells in culture are not undergoing differentiation and some progenitor type cells are still 

present. 

 

Alkaline phosphatase has been reported to be expressed in large amounts in osteoblasts 

(Zernik et al., 1990) and is an established marker for mineralization and osteoblast 

characterization (Benayahu et al., 1989). Also it’s an established marker of undifferentiated 

ES cells (Phillips et al., 2001). Alk-P was found to be peaking up in expression at day-14 in 

OS cells compared to control and then down regulated as very faint product can be seen at 

day-28. 

 

Osteopontin is a glycophosphoprotein that binds with calcified matrices to provide adhesion 

and secreted by osteoblasts at early stage of development (McKee and Nanci, 1996). It has 

been shown to express at the start of mineralization phase during bone formation and found 

to be upreglated in cultures upon induction with osteogenic supplements (Nieden et al., 2003; 

Kawaguchi et al., 2005). Here OPN expression was found to be down regulated after day-21 

in OS cells compared to control cells. 

 

Osteocalcin is considered to be an osteoblast-specific gene (Lian et al., 1989) and its 

expression is associated with matrix synthesis and mineralization (Ryoo et al., 1997; Nieden 
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et al., 2003). OCN was strongly up regulated after day-14 in OS cells compared to control 

cells both at RNA level and protein level. 

 

Oct4, Nanog and Sox2 were included as markers of pluripotency and it has been well 

established now that down regulation of these factors leads to the differentiation of 

embryonic stem cells (Boyer et al., 2006). Oct 4 is down regulated when stem cells 

differentiate during gastrulation and subsequently it becomes localized to germ cell lineage 

(Yeom et al., 1996). Furthermore target gene deletion experiments of Oct4 have resulted in 

failure of fetal development and differentiation to trophectoderm lieage (Nicholas et al., 

1998).  

 

Lack of Nanog in ES cells favours differentiation towards endeoderm lineage (Chambers et 

al, 2003). Nanog has been reported to inhibit BMP induced mesoderm differentiation of ES 

cells by interacting with Smad1 pathway (Suzuki et al., 2006). Sox2 has been reported to 

repress osteoblast differentiation by down regulating Wnt target genes through FGF 

signalling (Mansukhani et al., 2005). Also Sox2 has been reported to act as repressor of 

osteopontin gene which is a middle stage marker of osteoblasts (Botquin et al., 1998). Sox2 

has been shown to be present in osteoprogenitors stimulating their proliferation over 

differentiation (Basu-Roy et al., 2010). 

 

As expected all three genes showed significant down regulation upon differentiation at day-3 

stage but seemed to be again up regulated after day-21. It is possible that only RNA is present 

in cells while no functional protein is there. Post transcriptional gene silencing involving long 

non coding RNAs and small interfering RNAs is now considered important regulatory 

phenomenon particularly with reference to their role in embryonic stem cell differentiation 
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(Tay et al., 2008; Dinger et al., 2008). Sox2 protein was seen until day-14 in OS treated cells 

while no expression was detected at RNA level past day-3 which could be due to transcript 

having short half-life than protein. It has been shown by some previous studies that mRNA 

stability is related to molecular function of encoded protein and transcription factor mRNAs 

are fast degrading transcripts compared to other transcripts (Yang et al., 2003). 

 

Taken together this data suggests that cells are undergoing differentiation as markers 

associated with osteoblast phenotype are upregulating after two weeks in culture i.e. Sox9, 

Alk-P, Runx2 and osteocalcin at around the third week with down regulation of pluripotency-

related markers particularly, Sox2, after day-14 which would otherwise has been known to 

favour the maintenance of osteoprogenitors over differentiated cell types. Sox9 expression 

was seen until day-28 at both RNA and protein level which could mean that not all of the 

cells are terminally differentiating and some progenitors like cells still exist in culture. Since 

Sox9 expressing cells can still differentiae to either chondrocytes or osteoblasts. Given the 

fact that cells are indeed differentiating, it is a good model for looking at down regulation of 

Sox2 as ES cells differentiate. 

 

Methylation of DNA cytosine residues at the carbon 5 position (5meC) is a predominant 

epigenetic mark in many eukaryotes found in the sequence context of CpG and most often 

leads to silencing of a gene if found at a promoter sequence. However, increased CpG DNA 

methylation is associated with gene bodies of actively transcribed regions in mammals and 

plants (Laird, 2010). Two regulatory regions of Sox2 (SRR1 and SRR2) chosen for DNA 

methylation analysis were found to be methylated when examined by MS-PCR at all time-

points except day-0 and day-3. As this technique only tests the CpGs within Msp restriction 
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enzyme recognition site, bisulphite sequencing analysis was also carried out to better 

understand the extent to which methylation occurred within these regions.  

 

Different approaches can be used to study DNA methylation depending on the objective of 

analysis i.e. genome wide/global or locus specific/single gene (Laird, 2010; Shen and 

Waterland, 2007). Methylation-sensitive restriction enzymes are primarily used to identify 

the regions of DNA methylation in chromosome and then depending on goal of analysis 

either affinity enrichment strategies (MeDIP based) are used or bisulphite conversion is 

chosen (Laird, 2010). Methylated immunoprecipitation (MeDIP) allows the efficient 

enrichment of methylated DNA and assay depends on the use of an antibody specific for 

methylated cytosines to immunocapture methylated genomic fragments (Weber et al., 2005). 

Methylation profiles obtained by MeDIP approach are not base-pair specific even when 

combined with arrays (MeDIP-ChIP) or next-generation sequencing (MeDIP-seq) since 

resolution is restricted by the size of sonicated DNA fragments (Chavez et al., 2010; Laird, 

2010). Hence MeDIP based approaches are chosen when the objective is to create genome-

wide methylation profiles. Bisulphite conversion and sequencing is the sensitive and 

preferred method of choice to resolve DNA methylation at single base-pair level (Laird, 

2010). This study aimed to screen DNA methylation status at each individual CpG site in 

SRR1 and SRR2 regions of Sox2, hence methylation-sensitive restriction enzymes were used 

as a first step to screen for presence or absence of DNA methylation and then bisulphite 

conversion was used to study each CpG site. 

 

Unfortunately the whole regions of both SRR1 and SRR2 could not be sequenced as direct 

DNA sequencing attempts after bisulphite treatment were unsuccessful and time limitation 

did not allow attempting cloning of the fragment and subsequent clonal analysis. Only a part 
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of SRR2 region could be resolved at individual CpGs which fortunately contains the 

sequence which is core SRR2 sequence and contains an enhancer site which is under the 

control of Sox2/Oct4 complex (Tomioka et al., 2002) and has been reported as neural stem 

cell specific enhancer in telencephalon (Miyagi et al., 2006). Three CpGs located in this 

enhancer region in SRR2 were analysed by direct sequencing and they all were found to be 

unmethylated in both undifferentiated and differentiated cells as shown in Figure 3.44. This 

region has been reported to exert its enhancer activity in embryonic stem cells and neural 

stem cells but do not function when cells differentiate (Miyagi et al., 2004). 

 

So it would be of interest to profile DNA methylation status of these regions in other 

differentiation pathways too. This study has also looked into DNA methylation status of 

SRR2 region in ES cells when they were grown in neural differentiation medium and the next 

chapter (Chapter 4) summarizes the results of those analyses. This region has not been yet 

investigated for DNA methylation profiling in differentiating mouse embryonic stem cells 

particularly when they are grown in osteogenic differentiation cocktail. The data presented 

here points towards an interesting and important finding that this region could possibly get 

methylated at other CpG sites in SRR2 than those analysed here as cells undergo 

differentiation though still preliminary and need further work. 

 

 

 



 109 
 

Chapter 4 - DNA methylation analysis of Sox2 regulatory regions 

during in vitro differentiation of mouse embryonic stem cells in 

neurogenic medium 
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4.1. Introduction 

 

This chapter summarizes the findings of experiments about mouse embryonic stem cells 

(E14tg2a) grown in media known to promote neural differentiation. 

 

4.1.1. Neurogenesis 

 

Neurogenesis is an on-going and continuous process in the brain resulting in differentiation, 

maturation, localization and functional incorporation of new cells into neuronal networks 

from neural progenitors (Ming and Song, 2005). The adult brain and spinal cord contains a 

population of stem cells that can generate three major cell types of the central nervous system 

i.e. astrocytes, oligodendrocytes and neurons and are referred to as neural stem cells - NSCs 

(Clarke et al., 2000). Neuron, are the functional component of the nervous system and are 

involved in information processing and transmission, while oligodendrocytes and astrocytes, 

collectively known as glia, are supportive cells required for nervous system maintenance 

(Zhao et al., 2008). 

 

NSCs have been shown to be spatially heterogeneous and temporally specified generating 

progressively restricted cell types (Merkle and Alvarez-Buylla, 2006). The most active 

regions of an adult brain in terms of neurogenesis are the sub-ventricular zone (SVZ) of the 

lateral ventricle in the olfactory bulb and subgranular zone (SGZ) of the dentate gyrus in the 

hippocampus (Duan et al., 2008). Figure 4.1 is a schematic illustration of NSCs localization 

in adult brain and different cell types originating from them. 
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Figure 4.1. Models on the identities of potential quiescent neural stem cells in the adult brain. (a) Two 

neurogenic regions in the adult brain: the subgranular zone (SGZ) in the dentate gyurs (DG) of the 
hippocampus and the subventricular zone (SVZ) of the lateral ventricles (LV). (b) Potential lineage 

relationships in the adult SVZ. (c) Potential lineage relationships in the adult SGZ (text and figure from 
Duan et al., 2008) 

 
 

4.1.2. ES cells as a model to study neurogenesis 

 

Neurogenesis is a complex process and much of the current knowledge about vertebrate 

embryogenesis has been obtained through studies in animal embryos. But the heterogeneity 

of the cell types involved in neurogenesis and difficulties in obtaining sufficient number of 

cells for detailed molecular and signalling cascades analysis have limited their regional and 

temporal characterization (Suter and Karause, 2008).  Embryonic stem cells, being harvested 

from the inner cell mass of embryos and maintaining the multilineage development potential 

in cultures have become an attractive system to study gene functions and gene regulations 

during directed differentiation experiments and also understand developmental events 

(Murrey and Keller, 2008). Hence mechanistic characterization of complex regulatory 

networks involved in neurogenesis obtained using embryonic stem cell systems would aid in 

understanding normal brain development and eventually, to develop cell-based therapies for 
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central nervous system disorders that affect significant sections of population (Schwartz et 

al., 2008). 

 

ES cells are normally maintained in culture in an undifferentiated state by addition of a 

cytokine, leukaemia inhibitory factor (LIF) in culture media. When this LIF is removed from 

the culture medium, ES cells can be made to differentiate into different cell types (Smith, 

2001). In the absence of LIF in suspension culture, ES cells form cellular aggregates called 

embryoid bodies (EBs) which have been shown to recapitulate events of early mammalian 

embryogenesis and form derivatives of all three germinal layers in vitro (Doetschman et al., 

1985; Guan et al., 1999). EBs are initially (within 2-4 days) an outer layer of hypoblast like 

cells (extra embryonic visceral endoderm) surrounding an epiblast like core (shown 

schematically in Figure 4.2). At this stage EBs are able to generate derivatives of all three 

germ layers; definitive endoderm, mesoderm and ectoderm. Between day 6 and 8, the core 

undergoes cavitation and forms an inner epithelial layer where cells can be committed to 

definitive ectoderm which subsequently assumes a morphology resembling to neural tube 

(Coucouvanis and Martin, 1995; Rathjen and Rathjen, 2001; Rajthen et al., 2002). 

 
Figure 4.2: Schematic representation of ES cell differentiation into EBs (Rathjen and Rathjen, 2001). 
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Thus EB mediated differentiations potentially provide a model system for characterization of 

early embryogenesis and by using varying culture condition various cell types can be 

generated in vitro by lineage induction and/or lineage selection. However, lack of positional 

and organizational information coupled with poor characterization of molecular and 

signalling networks governing the cell fate decisions within EBs also lead to spontaneous 

differentiation to unwanted cell types resulting in heterogeneous cultures (Nishikawa et al., 

2007). This can be overcome by using optimal differentiation protocols using defined media 

supplemented with specific inductive factors and/or lineage selection if appropriate marker is 

available to achieve highly enriched desired cell types (Keller, 2005). Non EB approaches of 

directed ES differentiation in monolayer cultures using serum free, defined culture conditions 

have also been documented but with little success compared to EB mediated differentiation 

(Yin et al., 2003; Tada et al., 2005; Yasunaga et al., 2005; Cai et al., 2007). The cell types 

obtained through these directed differentiation experiments are routinely characterized and 

analysed by cellular morphology, cell surface markers, gene expression patterns, marker 

proteins and functional characterization of cell phenotypes (Wobus and Boheler, 2005). 

 

Neural differentiation from ES cells has been documented using variety of protocols. Most of 

these protocols employ formation of EBs which are enriched using retinoic acid to form 

neural progenitors which can then be made to differentiate into any of neural lineages: 

neurons, astrocytes or oligodendrocytes using appropriate culture conditions (Stavridis and 

Smith, 2003; Cai and Grabel, 2007). Retinoic acid (RA) has been reported to influence 

nervous system development and maintenance (Maden, 2007) and has been shown to 

enhance neural gene expression and repress mesodermal specification (Bain et al., 1996). 

Many differentiation protocols make use of RA at different stages of EB formation in varying 

concentrations depending on the neural subtype needed (Okada et al., 2004). 
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Earlier studies reporting the in vitro differentiation of mouse embryonic stem cells to neural 

cell types applied RA at different time intervals to EBs and then subsequently plated them as 

intact aggregates in serum containing media using different attachment substrates (Bain et al., 

1995; Strubing et al., 1995; Fraichard et al., 1995; Finlay et al., 1996). Later studies 

combined this approach of initial treatment of EBs with RA, disaggregated and plated them 

in serum free media where specific growth factors were added to favour differentiation 

towards a particular neural subtype and have reported to achieve purity up to 90% (Li et al., 

1998; Bible et al., 2004; Bible et al., 2007). Neural differentiation has also been reported in 

monolayer culture without EB formation and RA treatment (Ying et al., 2003). Extent of 

neural differentiation was studied in every study by observing typical neuronal morphology 

using phase contrast microscopy, expression of neural specific genes and/or response of those 

cells to neurotransmitters by electrophysiology. 

 

 
 

4.1.3. Sox2 in Neurogenesis 

 

A number of transcription factors of the SOX family have been shown to regulate pathways 

common to all neural stem cells regardless of their origin and state in the brain. They are 

mainly members of the Sox B1 subclass (Sox1, Sox2, Sox3); Sox E subclass (Sox8, Sox9, 

Sox10) and Sox B2 subclass (Sox21) (Pevny and Placzek, 2005). Sox2 is reported to be 

expressed throughout the mouse embryogenesis during initial phases of development and 

subsequently becomes localized to the neural progenitors (Wood et al., 1999). Loss of 

function of Sox2 has been shown to promote premature differentiation of neural progenitors 

to neuronal cell types (Graham et al., 2003). At the same time, high expression of Sox2 has 

also been found in some post mitotic neurons of the thalamus, medial-dorsal striatum and 
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septum of adult brain implying its role in neuronal function and maintenance (Ferri et al., 

2004).  

 

It has been shown that the expression of Sox2 is regulated by different enhancers during 

neurogenesis which are temporally and spatially specific and are significantly conserved 

among vertebrates (Kamachi et al., 2009; Uchikawa et al., 2003). This chapter summarizes 

the results of experiments aimed to look at DNA methylation changes of a regulatory region 

of Sox2 (SRR2) in ES cells grown in neural differentiate media. It was hoped that gaining an 

insight into regulatory mechanisms by which this enhancer act would possibly help to 

understand neural stem cell maintenance, differentiation and commitment in neurogenesis.  
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4.2.Experimental work plan 

 

 

 

 

 

 

 

 



 117 
 

4.3. Results 

 

4.3.1. In vitro Differentiation of mES cells towards neural lineage 

 

E14Tg2a cells were first grown in EB medium for 4 days and then for additional 4 days after 

adding all-trans-retinoic acid (RA) in medium using this protocol (Bibel et al., 2007). It has 

been shown that addition of RA during EB formation in media promotes formation of neural 

progenitors. These EBs were then disaggregated and cells plated in control and neural 

differentiation medium and, allowed to grow for about 28 days. Cells plated in neural 

differentiation medium started to show typical spindle shaped neuronal morphology after 24 

hours of plating. Neurites were then observed to extend from the cells and grew out over the 

differentiation time course (some representative pictures in Figure 4.3). By the end a dense 

network of neurons emerged and found to be distributed throughout the culture surface 

(Figure 4.3). In contrast, cells plated in control medium failed to grow and beyond day-14 no 

attached cells were observed in medium. Day-12, 21 and 28 were chosen for analysis 

(representing second, third and fourth week of culture) but the same analysis was not possible 

for cells seeded in control medium as no cells were found attached after day-14 (Figure 4.3 

shows pictures of cells dying at day-12 and day-14). 

 

4.3.2. Characterization of neural differentiation by Immunocytochemistry 

 

Immunocytochemistry was performed using antibodies against Sox2 and Sox9 to detect the 

localization and expression of these two proteins associated with neuronal cell types. Almost 

all of the cells in undifferentiated ES cultures found to express Sox2 (Figure 4.5 day-0) 

whereas no Sox9 expression was detected (Figure 4.5 day-0). There was no expression of 
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either Sox2 or Sox9 in cells cultured in neural differentiation medium at day-12, 21 and 28 

respectively (Figure 4.5 and 4.6). In order to account for auto fluorescence and/or nonspecific 

staining cells were fixed and stained in parallel set of experiment but without using primary 

and secondary antibodies (Figure 4.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 119 
 

 

Figure 4.3: Some representative pictures of cells grown in neural differentiation medium at time-points 
chosen for analysis. mES cells were first expanded in complete ES media and then seeded in 

bacterial culture dishes for EB formation. Cells were also seeded at this stage in 6 well plate as Day-0 
(starting population of ES cells for subsequent biochemical and molecular analysis). EBs were 

dissociated after 8 days and cells plated in medium containing and lacking neural supplements. Cells 
subjected to grow in control medium died while those seeded in neural medium grew and showed 

typical neuronal morphology under microscope.
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Figure 4.4: Mouse ES (E14tg2a) cells grown in neural medium were stained without primary and 

secondary antibodies to account for auto fluorescence and/or background staining (Dapi was used to 
stain the nucleus).  No fluorescence was observed (All pictures were taken at 20X magnification and 

scale bar is 32µm). 
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Figure 4.5: Images of E14Tg2a cells undergoing differentiation in neurogenic medium at day-0, 12, 21 
and 28 after performing immunofluorescence. Antibody against Sox2 was used to stain the cells and 
almost cells of undifferentiated ES cell colony were found positive and no expression was detected at 
day-12, 21 and 28 (Dapi was used to stain nucleus and FITC conjugated secondary antibody to stain 

Sox2; all pictures were taken at 20X magnification and scale bar is 32µm) 
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Figure 4.6: Images of E14Tg2a cells undergoing differentiation in neurogenic medium at day-0, 12, 21 
and 28 after performing immunofluorescence. Antibody against Sox9 was used to stain the cells and 

no expression was detected at day-0, 12, 21 and 28 (Dapi was used to stain nucleus and FITC 
conjugated secondary antibody to stain Sox2; all pictures were taken at 20X magnification and scale 

bar is 32µm) 
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4.3.3. Molecular characterization of differentiated cells 
 
 
 

4.3.3.1.Gene expression analysis by RT-PCR 
 
 
 

Gene expression profiling of embryonic stem cells pluripotency markers Oct4, Nanog, Sox2 

and some of neural-markers i.e. Sox9, Nestin, Pax6 and beta-tubulin III were carried out 

employing random primed cDNAs prepared from RNA extracted from cells undergoing 

differentiation at different time-points. A house keeping gene GAPDH was used as 

endogenous control (section 3.3.4.1 for using GAPDH as a normalization control). Products 

of PCR were visualized by ethidium bromide stained agarose gels using AIDA image 

analysis software (Figure 4.7) and semi-quantification of gene products was carried out by 

taking ratio of gel bands to that of GAPDH (Figure 4.8-4.9). 
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Figure 4.7: Gene expression profiling of mouse ES cells grown in neural differentiation medium using 
random primed cDNA prepared from cells harvested at day-0, 12, 21 and 28 following differentiation. 

 
 

 
Figure 4.8: Semi-quantitative gene expression analysis showing expression trends of Oct-4, Nanog 
and Sox9 genes in mouse embryonic stem cells grown in neural differentiation medium. Results are 

presented as mean±SEM. 
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Figure 4.9: Semi-quantitative gene expression analysis showing expression trends of Sox9, Pax6, 

Nestin and beta-tubulin III genes in mouse embryonic stem cells grown in neural differentiation 
medium. Results are presented as mean±SEM. 

 

 

Oct4, Nanog and Sox2 were used as markers of embryonic stem cells pluripotency and all 

were found to be expressed at day-0. Both Oct4 and Nanog were observed to be down 

regulated after day-0 as cells differentiate with a very small expression of Oct4 at day12. 

Sox2 was found to be expressed until day-12 and then beyond that no expression was found 

at RNA level (Figure 4.7 and 4.8). 

 

Sox9 was observed to be up regulated at day-8 EB stage and then down regulated and seemed 

to be again up regulated at day-28 stage following plating of dissociated EBs (Figure 4.7 and 

4.9). 

 

Nestin was found to be upregulated at day-8 EBs and then found to be expressed until day-

28. Pax6 expression was observed at day-8 and then appeared to be down regulated at day-12 
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post plating of dissociated EBs and no expression was detected at RNA level (Figure 4.7 and 

4.9).  

 

Beta tubulin III was included as neural specific marker and found to be expressed at all time-

points and apparently peaking in expression at day-12 and lasting until day-28 (Figure 4.7 

and 4.9). 

 

4.3.3.2. DNA methylation analysis of SRR2 by methylation sensitive PCR (MS-

PCR)  

 

MS-PCR was carried out in the similar way as already detailed in chapter 2 (section 2.3.2) 

and chapter 3 (section 3.3.4.2). SRR2 region of Sox2 was observed to be methylated at all 

time-points analysed i.e. day-8, 12, 21 and 28 (Figure 4.10). Controls shown in Figure 4.10 

are already detailed in section 3.3.4.2. Upper panel of Figure 4.10 shows the multiplex PCR 

reaction products for controls where top-band is methylated Igf2R (so band is seen in both 

Uncut and HpaII lanes), middle-band is DNA sequence lacking any MspI/HpaII sites  

(band in all three lanes) and lower band is unmethylated sequence of Aprt promoter (only 

presreent in Uncut lane).  

 
Figure 4.10: MS-PCR gels showing methylated product for Sox2-SRR2 at all time-points chosen for 
analysis. First the genomic DNA was extracted from ES cells at day-0, 12, 21 and 28, digested using 

MspI and HpaII restriction enzymes and then analysed by PCR. 
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4.3.3.3. DNA methylation analysis of SRR2 by Bisulphite Sequencing 

 

In order to further confirm the MS-PCR data and analyse the methylation status at each 

individual CpG dinucleotide in the SRR2 region of Sox2, DNA collected at each 

differentiation time point was treated with bisulphite, then PCR amplified and sequenced. 

The region analysed by direct sequencing contained three CpG dinucleotides that were found 

to be unmethylated at time-points selected for investigation (Figure 4.11).  

 
Figure 4.11: Bisulphite sequencing results of DNA methylation status of CpG sites in SRR2 region of 

Sox2. These three sites were found to be unmethylated in ES cells before differentiation and after 
culturing for 28 days in differentiation media at all time-points analysed. 
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4.4. Discussion 

 

Mouse ES cells (E14Tg2a) were first grown in non-adherent bacterial dishes in EB medium 

to form EBs for 4 days and then retinoic acid (RA) was added to the culture medium and EBs 

grown for further 4 days. It has been experimentally shown by numerous research studies that 

a homogenous population of ES cells when treated with RA becomes enriched in neural 

precursors which subsequently can be differentiated to different neuronal subtypes using 

various inductive signals and selective media (Bible et al., 2004; Bible et al., 2007; Bain et 

al., 1995; Strubing et al., 1995; Fraichard et al., 1995; Finlay et al., 1996; Okabe et al., 1996; 

Li et al., 1998; Stavridis and Smith, 2003; Cai and Geabel, 2007). EBs obtained after 8 days 

were disaggregated by trypsinization and plated in neural differentiation medium 

(DMEM/F12 supplemented with neural specific supplement N2) in gelatine coated plates. 

Cells obtained from the same EB pool were also plated in medium lacking N2 with the 

objective to use this cell population as control since this was the only additional component 

to basal medium that could be omitted in parallel set of experiments if they were to use as 

control in spirit. These EB derived cells when grown in defined medium suffers from a 

significant reduction in cell number at first since they are transferred from serum-containing 

medium to serum-free medium, but those that survive are mostly neural progenitors which 

can be expanded in culture and induced to differentiate into neurons (Bible et al., 2004; Bible 

et al., 2007; Okabe et al., 1996; Li et al., 1998; Stavridis and Smith, 2003; Ying and Smith, 

2003). 

 

Neural differentiation of E14tg2a was first analysed by examining the specific neural 

morphology under microscope and this was evident after 24 hours of plating dissociated EBs. 

By day-4 after plating neurites can be seen forming dense and tangled networks with typical 
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neuronal morphology in N2 media as shown in Figure 4.3 which became more denser with 

time in culture (by second and third week). This was consistent with the findings reported by 

studies from which this protocol was derived (Bible et al., 2004; Bible et al., 2007). In the 

control medium, as expected, very few cells were found to attach 4-days after plating with a 

morphology resembling that of cells undergoing senescence and by day-6 almost all of the 

cells had died (Figure 4.3 presents some representative pictures). Cell death could be 

attributed to the fact that DMEM/F12 is a basal medium (Dulbeco and Freeman, 1959; Ham, 

1965; complete composition Invitrogen Gibco 21331-020) and is unable to support growth of 

cells at its own unless supplemented with further additional supplements that aid in cell 

attachment, survival, proliferation and/or differentiation (Butler and Jenkins, 1989). And 

further augmenting the cell death was transfer of cells from serum-based medium to serum-

free medium which on top of that also lacked any growth factors to support growth of cells 

(Ying and Smith, 2003). And this could possibly by more exasperated by pre-treatment of 

cells to become neural progenitors which also needed specialized environment to grow and 

expand which was only provided in parallel culture medium supplemented with N2. Since 

cells seeded in control media all died, this merits explanation what is considered control in 

such differentiation studies. 

 

As detailed earlier in section 4.1.2 that for differentiation, ES cells are allowed to aggregate 

in the absence of LIF in suspension culture to form EBs for a defined time periods (in most 

cases 3-8 days), these EBs are then returned to serum-containing medium or serum-free 

medium either as aggregates or disaggregated to single cells, and allowed to further 

differentiate to produce terminally differentiated cell types.  Most of the ES cell derived 

differentiations have been optimized using serum-containing media. Serum is added in cell 

culture medium as an essential growth supplement where it serves a source of broad range of 
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macromolecules, hormones, growth factors and provides attachment and spreading factors. 

But undefined composition of serum, batch to batch variations which often lead to phenotypic 

differences in cell cultures and risk of spreading contamination are major drawbacks and 

hence studies are now focusing more towards the use of serum-free media (Bruner et al., 

2010; Keller, 2005). In the absence of serum, a large number of molecules need to be added 

in media that could maintain cell adhesion, proliferation, growth and survival. Defined media 

are optimized through empirical approaches such that growth of particular cell types is 

favoured over others. When cells are transferred to serum-free media, it takes some time for 

cells to adapt to this new environment particularly if they were originally maintained in 

serum-containing media (van der Valk et al., 2010). One way to overcome this is to seed cells 

in higher number, so here in this study (described in this chapter) cell seeding density used 

was adjusted according to original protocol keeping the same surface area to volume ratio as 

was optimized by them (Bible et al., 2007; Ying and Smith, 2003) 

 

Those differentiation studies that make use of serum-containing medium post EB stage use 

additional supplements to promote lineage induction/enrichment towards desired cell type. 

Because additional supplements are added in normal serum-containing basal medium, this 

necessitates setting up a parallel set of experiments using same EB derived cells under similar 

conditions but not receiving additional supplements which are then allowed to grow 

alongside the cells receiving additional supplements. Differentiation endpoint or enrichment 

of desired cell type is always studied using lineage specific markers (RNA, protein) and 

functional assaying of cells phenotype. Ultimate test of differentiated phenotype is achieved 

by transplanting these cells to appropriate animals models where they should retain their 

functionality (Keller, 2005; Wobus and Boheler, 2005). The idea behind setting up of these 

parallel set of experiments is to compare the enrichment of particular cell type in response to 
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added supplements compared to differentiation observed in serum only since serum itself 

contains inducing factors (undefined composition) as discussed above and is prone to batch to 

batch variations. In fact the pioneering study that demonstrated the differentiation potential of 

ES cells into derivative of all three germ layers when they removed the feeder layer 

maintaining undifferentiated state of cells in standard serum containing media did not use any 

additional factors (Doetschman et al., 1985). These control culture does not imply that they 

will have cell types of interest only or will not have cell types of interest at all. These are 

mixed cell populations derived from same EB pool from where the differentiated cell types of 

interest are generated. 

 

Traditionally cell populations grown in serum only medium where no additional supplements 

are added are called “controls”  presumably because this is the only constant factor in such 

experiments while the additional supplements (dose, duration, combination, time of 

application) added is experimental variable which can be altered according to needs/research 

question. It should be noted here that this additional control group only serves to compare 

enrichment of desired/required cell type in response to added growth factors in serum 

compared to differentiation seen in serum only medium without addition of exogenous 

factors and is not a control per se.  Differentiated cells are always analysed and characterized 

using features inherent to that particular cell type e.g. morphology, lineage specific markers, 

functional assessment of phenotype etc. Numerous studies that attempted directed 

differentiation of ES cells to other lineages using routine serum based media supplemented 

with some exogenous factors documented their findings in both serum only media and media 

supplemented with additional factors (an examples is chapter 3 of this study; few other 

examples are Buttery et al., 2001; Hamazaki et al., 2002).  
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In contrast studies that use serum-free defined media for directed differentiation towards cell 

type of interest make use of  selective nature of medium to specifically allow growth of 

desired cell types and hence do not need a de facto control group. As detailed above that such 

a control group is technically needed in studies that are attempting to achieve differentiation 

in response to added supplements to routine serum based media so as to compare the 

differentiation seen with and without applied experimental treatment. But here in these 

studies using defined media, medium composition is optimized such that only cells able to 

respond to those signals can survive hence acting as filter in its own against unwanted cell 

types and is the only experimental variable that can be altered where by definition, control is 

something that is fixed/same in all experimental conditions tested. 

 

For neural differentiation such protocols have become available which make use of defined 

media and hence not needing an inclusion of parallel set of experiments in contrast to 

differentiation studies making use of supplements in routine serum based media. As noted 

above that this control group only serves to compare the differentiation achieved under 

experimental conditions tested to what seen in serum only. Differentiated phenotype is 

always characterized by analysing the cell types generated. With use of defined media 

compositions such comparison is essentially not needed. Hence those preliminary studies that 

are aiming to screen for such defined milieu to get terminally differentiated cell types of 

interest use empirical combinations of different factors known form previous studies to 

determine the optimal media compositions. For example a study by Okabe et al., in 1996 

reported use of serum-free defined media for in vitro neural differentiation of mouse 

embryonic stem cells. This study aggregated ES cells as EBs for 4 days and then plated those 

aggregates in DMEM/F12 supplemented with insulin, transferrin, selenium and fibronectin 

(ITSFn) which was previously reported to be used for neural induction of embryonal 
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carcinoma cell line (Rizzino and Growley, 1990). They documented significant loss of cell 

viability at first when cultures were transferred from serum containing media to serum free 

formulation but ultimately they were able to get neural progenitors where more than 85% 

were nestin positive. Nestin has been a traditional marker associated with neural precursors 

that can subsequently give rise to neurons, glia and astrocytes (Landhal et al., 1990). These 

nestin positive cells were then subsequently differentiated to neuronal cell types with high 

efficiency using defined medium and differentiated cells were analysed by expression of 

lineage specific markers and electrophysiology. This study did not include an explicit control 

rather compared data obtained across different experimental conditions tested to conclude 

which was optimal. 

 

The principal objective of directed differentiation experiments is to identify conditions that 

would ideally favour the induction of particular lineage precursors (in EBs or monolayers of 

ES cells) and then use optimal selective media conditions to allow those precursors to 

proliferate and generate the pure cultures of terminally differentiated cell types. So eventually 

desired cell types can be produced in vitro under controlled conditions using defined media 

supplemented with inductive growth factors (Smith, 2001). For neural differentiation, which 

is one of the extensive studied in vitro differentiation, such two-step protocols are available. 

The study presented in this thesis used similar two step protocol of neural differentiation i.e. 

enrichment of neural progenitors in EBs using RA treatment and then selectively allowing 

neural precursors to proliferate in defined medium (DMEM/F12/N2) to differentiate towards 

neural cell types (Bible et al., 2007; Bible et al., 2004). Different studies have shown 

experimentally that a homogenous population of ES cells when treated with RA becomes 

enriched in neural precursors which subsequently can be differentiated to different neuronal 

subtypes using various inductive signals and selective media (Bible et al., 2004; Bible et al., 
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2007; Li et al., 1998; Stavridis and Smith, 2003; Cai and Grabel, 2007). And one study has 

experimentally demonstrated that neural precursors generated by RA treatment (similar to 

one used in this protocol) can form cells of motoneurons and interneurons in anterior spinal 

cord when transplanted to embryonic chick neural tube showing that such a treatment could 

lead to cells which retain functionality when transplanted (Plachta et al., 2004). As detailed 

above that such a study design which is biased towards enrichment of particular desired cell 

type using selective treatment does not have a bona fide control. And those studies from 

which this protocol was derived also did not include such an explicit control in their studies 

(Bible et al., 2004; Bible et al., 2007). Yet study documented in this chapter attempted to set 

up a parallel set of experiments as explicit control with the objective to compare 

differentiation seen with N2 and without N2 since N2 was the only additional component 

added to basal media. EBs grown for 8 days in suspension culture were disintegrated (section 

2.2.4) and seeded in differentiation media (DMEM/F12/N2) and control media (DMEM/F12 

alone). The idea to seed cells in DMEM/F12 was to use this group of cells as control but cells 

did not survive and reasons are discussed above. This step experimentally demonstrated that 

DMEM/F12 alone did not support growth of cells unless supplemented with additional 

growth factors/serum. 

 

The experimental set up described in this chapter is different to one described in Chapter 3 

(osteoblast differentiation) where differentiation was attempted by adding exogenous factors 

to serum based medium so control cultures were set up using supplements minus medium. 

This control contained the same pool of EB derived cells but not received additional 

supplements. While in neural differentiation experiment only additional supplement added in 

medium was N2 and so the only way to set up control cultures was to grow cells without N2. 

Such a step was redundant given that cells do not survive in DMEM/F12 alone as discussed 



 135 
 

above. The other way to set up parallel control culture could possibly be using cells grown in 

absence of RA. But there are already studies available that attempted successful in vitro 

neural differentiation of mouse ES cells without RA treatment (Okabe et al., 1996; Lee et al., 

2000; Rolletschek et al., 2001). They all used specific growth factors in combination with 

serum-free defined medium and achieved differentiation to different types of neurons. Hence 

if such a step was included, it would at best served as an alternate strategy to achieve 

differentiation and not a control culture. The reason why probably neural cell types can be 

achieved in culture with and without RA is that neural induction is considered a default 

differentiation pathway during vertebrate embryogenesis under repressive control of BMP 

signalling (Munoz-Sunjuan and Brivanlou, 2002). Studies have very early on reported that if 

ES cells are allowed to differentiate under chemically defined serum-free conditions they 

preferentially express markers of neuroectoderm without addition of any additional growth 

factors (Wiles and Johansson, 1999). The problem however is that differentiated culture 

almost always contain different types of neural cells i.e. neurons, astrocytes, 

oligodendorcytes and glia and that’s why variety of protocols are available to achieve 

enrichment of a particular cell type by addition of specific growth factors at different stage of 

differentiation subsequent to neural progenitors formation which is a common step in 

majority of differentiation protocols (Stavridis and Smith, 2003).  

 

Whether there is an explicit control group or not, cells grown in differentiated media are 

always analysed and characterized by using established markers and functional assays for 

such cell types.  In order to further characterize the differentiated cells beside morphology, a 

set of markers was selected for expression studies at RNA and protein level in accordance 

with the data reported for earlier studies reporting in vitro differentiation of embryonic stem 

cells in to neural lineage (Bain et al., 1995; Bible et al., 2004; Bible et al., 2007; Stavridis 
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and Smith, 2003). This included Sox2, Sox9, Nestin, Pax6 and beta-tubulin III. Sox2 along 

with other members of SoxB family has been reported to regulate and co-ordinate 

neuroectodermal specification and commitment (Pevny and Placzeck, 2005). More 

specifically, Sox2 has been reported to maintain neural progenitor identity (Graham et al., 

2003) with subsequent down regulation as these cells become committed. Here in this 

experiment Sox2 was found to be down regulated at day-8 EBs stage and then further 

reduction in expression level at day-12 and beyond that time point no expression was 

detected (Figure 4.7). 

 

In order to confirm the molecular expression data, protein expression of Sox2 was also 

analysed by immunocytochemistry and only undifferentiated ES cells were found to be 

positive (Figure 4.5). No Sox2 protein expression was observed at day-12 which could be due 

to cells still containing RNA but not transcribing it to functional protein product. Post 

transcriptional gene silencing involving long non coding RNAs and small interfering RNAs is 

now considered important regulatory phenomenon particularly with reference to their role in 

embryonic stem cell differentiation (Tay et al., 2008; Dinger et al., 2008). Indeed, Sox2 gene 

has been shown to embedded within an intron of long non-coding RNA which transcribes in 

the same orientation and has been documented to have regulatory roles during vertebrate 

development (Amaral et al., 2009). 

 

Sox9 showed marked up regulation at day-8 EB stage at RNA level (Figure 4.7) and it has 

been reported to be up regulated prior to gliogenesis shifting potential of neural progenitors 

from neurogenic to gliogenic and disappears from oligodendrocyte lineage once cells 

differentiate terminally (Stolt et al., 2003). It has been shown that retinoic acid treated ES 

cells form precursors cells with the characteristics of radial glial cells which eventually 
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differentiate into glutamatergic neurons (Bibel et al., 2007). Sox9 was down regulated after 

day-8 EB stage and seemed to be up regulated at day-28 after plating of cells in neural 

differentiation medium. However, no Sox9 protein expression was detected at any time point 

along the whole differentiation time course starting from day-0 to day-28 (Figure 4.6). As 

described earlier, microRNAs are known to play an important role in gene regulation and an 

earlier study has reported the role of miR-124 in Sox9 protein suppression but mRNA 

expression is unaffected in adult neurogenesis (Cheng et al., 2009). 

 

Nestin is a neuroepithelial stem cell intermediate filament protein and, a well-established 

marker of neural stem cells and has been widely employed as marker in studies exploring 

neural differentiation of ES cells (Landhal et al., 1990; Yaworsky and Kappan, 1999). It has 

been considered as a mutipotent neural lineage marker expressed both in neurons and glia 

(Lenka et al., 2002). It has been shown to be expressed in developing nervous system, neural 

stem cells from sub ventricular zone and to become down regulated when the cells 

differentiate (Wei et al., 2002). Here in these studies nestin was observed to be up regulated 

at day-8 (EBs) stage and found to be expressed until day-28. As protein expression studies 

were not carried out, mRNA expression at this late stage could possibly mean that RNA not 

transcribed into functional protein through mechanisms similar to those described above. 

Alternatively, this expression may be accounted for by a subpopulation of progenitor cells 

still present in culture. 

 

Pax6 has been reported to play an important role in neural precursor’s proliferation, cortical 

lamination, and development of basal ganglia, neuronal survival and neurogenic fate 

determination (Kallur et al., 2008). Pax6 has been shown to undergo dynamic changes in 

expression as ES cells become committed to neuronal differentiation (Gao et al., 2011). 



 138 
 

mRNA expression analysis in these experiments showed that Pax6 is up regulated in EBs 

after 8 days of differentiation which should be rich in neural precursors after RA treatment. 

Beyond day-8 no Pax6 expression was detected at RNA level (Figure 4.6). Earlier studies 

have shown that Pax6 mRNA was not detectable after day-12 in ES cells differentiated to 

neuronal cell types under similar conditions (Bible et al., 2007; Bible et al., 2004).  

 

Beta-tubulin III belongs to the tubulin class of proteins and shows expression specifically in 

post mitotic neurons (Lee et al., 1990), it is a classic marker to assess neural differentiation of 

embryonic stem cells (Bain et al., 1995). In this study beta tubulin III was found to be 

expressed starting from day-0. It has been shown that undifferentiated mouse ES cells express 

beta III tubulin (Ginis et al., 2004) though their role in undifferentiated cells has not been 

studied so far. Beta III tubulin was found be markedly upregulated after day-8 of 

differentiation and expression lasted until day-28. 

  

Taken together these morphological and molecular data shows that ES are differentiating in 

this neurogenic media and results obtained are comparable to studies reported earlier. All of 

the markers associated with neural progenitor’s identity tested in this study i.e. Sox2, Sox9, 

Pax6 and Nestin were found to be upregulated in day-8 EBs compared to no expression at 

day-0 undifferentiated cells. Then there appeared to be visible upregulation of beta-tubulin 

III , a marker extensively used to characterize differentiated neural cells. But it must be 

emphasized that no attempt to ascertain the purity of differentiated culture was made, hence it 

cannot be said with certainty that how much of differentiated population were neurons. 

Future work would be targeted to purify the differentiated cells and electrophysiology 

measurements would be carried out to determine whether neurons are actually forming active 

synaptic connections. It should also be noted here that the primary objective of the study 
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presented in this thesis was to study DNA methylation changes occurring in regulatory 

regions of Sox2 during differentiation of mouse ES cells when they are differentiated under 

different culture conditions. Hence differentiation was attempted using previously reported 

optimized protocols and no attempt was made to modify/refine them at this stage of analysis. 

But in future efforts would be made to compare and contrast different differentiation 

strategies to select the optimal one when repeating this experiment. 

 

Epigenetic mechanisms of gene regulation involving DNA methylation, histone 

modifications and regulatory RNAs have now started to emerge as important mechanisms 

governing the neural specification of neural stem cells (Sanosaka et al., 2010). The 

information about different regulatory regions of Sox2 and rationale for doing DNA 

methylation analysis has already been detailed in Chapter 1 section 1.5.3 and 1.6. Different 

regulatory regions of Sox2 have been implicated in directing region specific expression in 

cells of differing origin e.g. expression can be seen in telencephalon but not spinal cord stem 

cells (Zappone et al., 2000). 

 

SRR2, a regulatory region of Sox2 was found to be constitutively methylated at all time-

points in the differentiated population studied in this chapter when analysed by MS-PCR. 

Given the limitation of the technique to resolve methylation status at each individual CpG, 

bisulphite sequencing was then carried out (section 3.4 for discussion about various 

techniques to study DNA methylation) . Unfortunately the whole region of SRR2 could not 

be sequenced as direct sequencing attempts were unsuccessful and time limitation did not 

allow attempting cloning of the fragment and subsequent clonal analysis. But fortunately 

analysed region contains the sequence which is core SRR2 sequence and contains an 

enhancer site which is under the control of Sox2/Oct4 complex (Tomioka et al., 2002). This 
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enhancer has been reported as neural stem cell specific in telencephalon region (Miyagi et al., 

2006). 

 

Three CpGs located in this enhancer region in SRR2 were analysed by direct DNA 

sequencing after bisulphite conversion of genomic DNA and they all were found to be 

unmethylated in undifferentiated and differentiated cells as shown in Figure 4.8. It has been 

shown by another study that this region exerts its enhancer activity in embryonic stem cells 

and neural stem cells but do not function when cells differentiate (Miyagi et al., 2004). 

Furthermore an earlier study has shown the differential methylation at SRR2 in neurons v/s 

astrocytes generated from human neural precursors suggesting that terminally differentiated 

neurons use methylation of this region to silence the gene (Sikorska et al., 2008). Here no 

methylation was observed at analysed three CpG sites found in the enhancer region 

suggesting possible involvement of other gene silencing mechanisms independent of DNA 

methylation such as histone modifications. Also there is possibility that heterogeneous nature 

of culture did mask the low level of methylation. So in future experiments effort would be 

focused towards establishing a pure population of cell types of interest. It could also be 

possible that other CpG sites not analysed in this study could have become methylated during 

differentiation. Hence further work extending the analysis to all CpG sites and also 

investigating chromatin structure surrounding the region would help in understanding the role 

of this region in gene silencing once cells become committed and differentiate. 
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Chapter 5 - DNA methylation analysis of Sox2 regulatory regions SRR1 

and SRRR2 in mouse mesenchymal stem cells (MSCs) cultured in 

osteoblast differentiation medium 
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5.1.Introduction 

 

5.1.1. Mesenchymal stem cells (MSCs) as a model to study osteogenesis 

 

Mesenchymal stem cells are mainly derived from bone marrow though have been shown to 

exist in many other tissues such as hair follicles, muscles, liver etc. (Bianco et al., 2008). 

Bone marrow derived mesenchymal stem cells or also known as stromal stem cells; they are 

considered to be self-renewing and having multilineage differentiation potential forming 

different mesoderm derivatives including bones, cartilage and adipose tissues (Pittenger et 

al., 1999). Recently bone marrow derived MSCs been also shown to transdifferentiate into 

other lineages derived from both ectoderm and endoderm such as neurons and hepatocytes 

(Charbord, 2010). The most salient features of MSCs are their readiness to grow in culture; as 

they have displayed and suppression of immune response in vivo; MSCs have already been in 

use clinically to assess the safety and efficiency of bone marrow transplants in human 

subjects (Ghannam et al., 2010). 

 

Bone tissue engineering has become an active focus of research due to increased number of 

people being affected with osteodegenrative disorders including but not limited to 

osteoporosis, osteoarthritis, skeletal deficiencies (Heng et al., 2004). Thus in vitro 

differentiation of MSCs into bone tissues in a variety of experimental systems have made 

them a promising system to be used in cell based therapies for bone tissue engineering and 

regenerative medicine (Meijer et al., 2007). Besides being used for therapies, they offer a 

model system to study osteogensis which is under complex control of myriads of molecular 

mechanisms and signalling networks (Lian et al., 2006). 
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However, the low frequency of MSCs in bone marrow and limited self-renewal capacity has 

created a need to explore and exploit differentiation potential of pluripotent ES cells into 

bones which have been shown to regenerate themselves indefinitely under proper culture 

conditions (D’Ippolito et al., 1999; Duplomb et al., 2007). Furthermore bone formation has 

been thought to involve a hierarchy of precursor populations existing at various stages of 

bone development starting mainly from mesenchymal stem cells and going through 

osteoprogenitors, preosteoblasts and osteoblasts though their well-defined boundaries and 

compartmentalization are still under investigation (Long, 2001). It has been proposed that 

MSCs are osteoblastic precursors or pre-engaged cells originating from a primitive progenitor 

and hence might not allow investigating the early stages of bone development where ES 

could potentially overcome this issue (Duplomb et al., 2007; Long, 2001). Nevertheless, 

MSCs have been extensively investigated in vitro for bone formation (section 3.1.1 in chapter 

3 for detailed description of osteogenesis), so can also serve as positive control for ES 

derived osteoblast differentiation. 

 

5.1.2. Sox2 in MSCs 

 

There are only limited studies so far investigating the role of Sox2 in MSCs in general and in 

osteoblasts in particular. Sox2 has been shown to maintain expansion and differentiation 

potential of MSCs (Go et al., 2008). Though MSCs can renew themselves and have been 

used to repair bone disorders (Horwitz et al., 1999), but with time they tend to lose their 

differentiation potential (D’Ippolito et al., 1999). Hence understating the regulation of Sox2 

in MSCs and during their differentiation would aid in refining methodologies attempting to 

use these cells for therapeutic purposes.  
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The specific role of Sox2 in osteoblasts is already described in chapter 3 section 3.1.3. In 

short, data available to date has shown Sox2 to be present in osteoprogenitors favouring their 

proliferation their over terminal differentiation to osteoblasts. Given that MSCs are 

physiological precursors of osteoblasts, they were differentiated to osteoblasts in parallel with 

mouse ES cells using the same protocol and other experimental factors. The aim of these 

experiments was to study the molecular and biochemical changes occurring in both cell types 

when they are differentiated using identical experimental conditions. It was hoped that data 

obtained by this study could potentially help in understanding the regulatory role played by 

Sox2 in bone development, and conserved/shared gene regulatory pathways between these 

cell types. 
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5.2.Experimental work plan 
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5.3. Results 

 

5.3.1. Differentiation of mMSCs (D1 cell line) into osteoblasts 

 

5.3.1.1.Cell Culture 

 

D1 – a mouse mesenchymal stem cell line (Diduch et al., 1993) was retrieved from liquid 

nitrogen and cultured on tissue culture treated flasks with routine passaging on confluence to 

generate enough number of cells to set up differentiation and for cryopreservation. Some 

representative images of D1 stem cell line are shown in Figure 5.1. 

 

MSCs cells were first seeded in six-well tissue culture plates in an undifferentiated state and 

allowed to reach confluence before changing to medium containing OS supplements as 

described in chapter 2 section 2.1.5. Cells grown in medium lacking OS supplements were 

taken as control. It has been reported that MSCs grown in presence of OS supplements form 

colonies with mineral deposition which can be further confirmed by microscopy and Alizarin 

Red staining. As shown in Figure 5.2, the D1 cell line when cultured under similar 

conditions, displays a gradual differentiation towards the osteogenic lineage with increasing 

density of dark granules that stained red with alizarin red dye.  

 

5.3.1.2.Alizarin red extraction and quantification 

 

Alizarin red dye was extracted after staining and quantified as described in detail in chapter 2 

section 2.3.1. The amount of alizarin red dye extracted was normalized to DNA content of 

cells (section 2.3.2 and 3.3.1.2). Figure 5.3 and 5.4 shows digital images of the cells in a well 
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of six-well plate after staining with alizarin red dye. Cells grown in medium containing 

osteogenic supplements showed a significant increase in amount of alizarin red dye extracted 

in comparison to cells grown in medium devoid of them as shown in figure 5.5. Figure 5.6 is 

the DNA calibration curve used to normalize the amount of alizarin red dye. It needs to be 

highlighted here from data statistics point of view that all the measurements of alizarin red 

staining and quantification assays were made from two independent series of experiments 

done in triplicates due to same reasons discussed in Chapter 3 section 3.3.2. 

 

 
MSCs grown in medium with and without Osoteogenic Supplements 

 

 
Figure 5.1: MSCs at day-0 prior to starting differentiation treatment (a) and stained with alizarin red 

dye (b). (All pictures were taken at 10X magnification). 
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Figure 5.2: MSCs grown in medium containing and lacking osteogenic supplements for 4 weeks and 
then stained with Alizarin red dye. Dark areas surrounding cells are visible and stained red with dye 

(All pictures were taken at 10X magnification). It has been already detailed in section 3.3.1.2 in 
Chapter 3 that alizarin red stain in its own could not be taken as a measure of mineral deposition and 

so further data supplementing these observation is presented in section 5.3.1.3 and 5.3.2.  
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Figure 5.3: MSCs at day-0 prior to start of differentiation treatment and stained with alizarin red dye in 

six-well plates. No nonspecific staining was observed. 
 
 

 
Figure 5.4: MSCs subjected to osteogenic differentiation for four weeks and stained with alizarin red 

dye for mineral deposition in six-well plates at various time points. Significantly intense staining is 
apparent in treated cells after two weeks compared to non-treated cell population. 
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Figure 5.5: Mineral deposition was detected by alizarin red dye and then dye was acid extracted and 

quantified using a colourimetric assay. Data are collected from two plates, each analysed in triplicates 
and expressed as mean±SEM (n=2). There appeared to be a significant difference in amount of 

mineral deposition in treated and untreated cells. 
 
 
 

 

 

 
Figure 5.6: DNA calibration curve generated to normalize the amount of mineral deposition relative to 

cell contents of plates (data is collected from two plates and each analysed in triplicates so 
mean±SEM with n=2) 

 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Day-0 Day-4 Day-11 Day-18 Day-25

Alizarin Red (mM) Relative to DNA (ng/ȝl) 

Control OS

R
a
tio

 o
f A

liz
a
rin

 re
d

 a
m

o
u

n
t to

 th
a

t o
f D

N
A

 
c
o

n
te

n
t o

f c
e
lls

 

y = 1365.8x + 2982.6 
R² = 0.939 

0

5000

10000

15000

20000

25000

0 2 4 6 8 10 12 14

E
x
c
it

a
ti

o
n

 a
t 

3
6
0
n

m
  

Concentration (ng/ȝl) 

DNA Quantification Standard Curve 



 151 
 

5.3.1.3.Immunofluorescence 

 

Immunofluorescence was performed using antibodies against Sox2, Sox9, Osterix and 

Osteoclacin to detect the localization and expression of these marker proteins. Almost all of 

the cells in undifferentiated MSC culture were found to express Sox2 protein (Figure 5.10). 

Then only some of the cells were found to express Sox2 protein at day-4 in control cells and 

after wards no signal was detected (Figure 5.10). Cells grown in medium containing OS 

supplements did not show expression at any time point analysed beyond day-0 as shown in 

Figure 5.11. 

 

Sox9 was detected in MSCs at day-0 but not all of the cells were observed to be expressive. 

Cells grown in medium lacking OS supplements showed a low level of protein expression in 

nuclei at day-4, day-11 and very few cells at day-18. No signal was observed at day-25 

(Figure 5.12). While cells grown in medium containing OS supplements appeared to show 

gradual increase in positive signal with less positive cells at day-4 and day-11 and more at 

day-18 and day-25 (Figure 5.13).  

 

Osterix protein was not found to be expressed at any time points in cells grown with and 

without OS promoting factors (Figure 5.14 and 5.15). 

 

A strong cytosolic signal was observed for Osteocaclin starting from day-0 in 

undifferentiated MSCs and cells at later points i.e. day-18 and day-25 showed a high level of 

expression in both control (Figure 5.16) and OS populations (Figure 5.17). There was marked 

difference in level of expression in cells grown in OS medium. 
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Figure 5.7: Mouse MSC (D1) cells grown in control medium were stained without primary and 

secondary antibodies to account for auto fluorescence and/or background staining (Dapi was used to 
stain the nucleus).  No fluorescence was observed (All pictures were taken at 20X magnification and 

scale bar is 32µm). 
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Figure 5.8: Mouse MSC (D1) cells grown in OS medium were stained without primary and secondary 
antibodies to account for auto fluorescence and/or background staining (Dapi was used to stain the 

nucleus).  No fluorescence was observed (All pictures were taken at 20X magnification and scale bar 
is 32µm). 
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Figure 5.9: Mouse MSC (D1) cells stained without primary antibodies only and secondary antibody 

only to account for nonspecific fluorescence and/or background staining (Dapi was used to stain the 
nucleus).  No fluorescence was observed (All pictures were taken at 20X magnification and scale bar 

is 32µm). 
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Figure 5.10: MSCs grown in medium lacking oesteogenic supplements stained using antibody against 
Sox2 protein (Dapi was used to stain the nucleus and FITC conjugated secondary antibody to localize 

Sox2) and found to be expressive at day-0 with some expression at day-4. No expression was 
detected after that. (All pictures were taken at 20X magnification and scale bar is 32µm). 
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Figure 5.11: MSCs grown in medium containing oesteogenic supplements stained using antibody 

against Sox2 protein (Dapi was used to stain the nucleus and FITC conjugated secondary antibody to 
localize Sox2). Sox2 was found to be expressed by cells at day-0. No expression was detected 

beyond day-0 (All pictures were taken at 20X magnification and scale bar is 32µm). 
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Figure 5.12: MSCs grown in medium lacking oesteogenic supplements stained using antibody against 
Sox9 protein (Dapi was used to stain the nucleus and FITC conjugated secondary antibody to localize 

Sox9). Sox9 was found to be expressed by cells at day-0. Few cells were found to be positive for 
Sox9 at day-4, more at day-11 than day-18 and no expression at day-25 (All pictures were taken at 

20X magnification and scale bar is 32µm). 
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Figure 5.13: MSCs grown in medium containing oesteogenic supplements stained using antibody 

against Sox9 protein (Dapi was used to stain the nucleus and FITC conjugated secondary antibody to 
localize Sox9). Sox9 was found to be expressed by cells at day-0. Few cells were found to be positive 
for Sox9 at day-4 and then gradual increase at day-11, day-18 and day-25 (All pictures were taken at 

20X magnification and scale bar is 32µm). 
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Figure 5.14: MSCs grown in medium lacking oesteogenic supplements stained using antibody against 

Osterix protein (Dapi was used to stain the nucleus and FITC conjugated secondary antibody to 
localize Osterix). No signal was detected at any time point analysed (All pictures were taken at 20X 

magnification and scale bar is 32µm). 
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Figure 5.15: MSCs grown in medium containing oesteogenic supplements stained using antibody 

against Osterix protein (Dapi was used to stain the nucleus and FITC conjugated secondary antibody 
to localize Osterix). No positive signal was observed at day-0, 4, 11, 18 and 25 (All pictures were 

taken at 20X magnification and scale bar is 32µm). 

 

 



 161 
 

 
Figure 5.16: MSCs grown in medium lacking oesteogenic supplements stained using antibody against 
Osteoclacin protein (Dapi was used to stain the nucleus and FITC conjugated secondary antibody to 
localize Osteocalcin). Cell found to be positive starting at day-0 with gradual increase in intensity of 
signal at day-4, 11, 18 and 25 (All pictures were taken at 20X magnification and scale bar is 32µm). 
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Figure 5.17: MSCs grown in medium containing oesteogenic supplements stained using antibody 
against Osteoclacin protein (Dapi was used to stain the nucleus and FITC conjugated secondary 

antibody to localize Osteocalcin). A positive singal was first seen at day-0 with increased with time 
along the differentiation time course (All pictures were taken at 20X magnification and scale bar is 

32µm). 
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5.3.2. Molecular Analysis 
 
 
 

5.3.2.1.Gene Expression Analysis by reverse transcription PCR (RT-PCR) 
 

 
Gene expression studies with GAPDH as internal control and Sox9, Alkaline phosphatase, 

Runx2, Osteirx, Osteopontin, and Osteocalcin as osteo-specific markers were carried out on 

random primed cDNA synthesized from RNA, extracted from cells at different time-points 

during differentiation (section 2.2.3). Figure 5.18 displays representative results obtained 

from these analyses. 

 

 
Figure 5.18: Gene expression analysis using random primed cDNAs of MSC osteogenic time course. 
GAPDH was used as internal control. These are the results from experiments done in triplicates from 

three independent biological replicates (n=3). 
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Figure 5.19: Semi-quantitative gene 

expression analysis showing expression of 
Sox2 in mouse mesenchymal stem cells grown 

in Control and OS medium for 25 days. 
Results are presented as mean±SEM (n=3).  

Figure 5.20: Semi-quantitative gene 
expression analysis showing expression of 

Sox9 in mouse mesenchymal stem cells grown 
in Control and OS medium for 25 days. 

Results are presented as mean±SEM (n=3).  
 
 

 

       
Figure 5.21: Semi-quantitative gene 

expression analysis showing expression of 
Alkaline Phosphatase in mouse mesenchymal 
stem cells grown in Control and OS medium 

for 25 days. Results are presented as 
mean±SEM (n=3).  

Figure 5.22: Semi-quantitative gene 
expression analysis showing expression of 
Runx2 in mouse mesenchymal stem cells 

grown in Control and OS medium for 25 days. 
Results are presented as mean±SEM (n=3).  
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Figure 5.23: Semi-quantitative gene 

expression analysis showing expression of 
Osterix in mouse mesenchymal stem cells 

grown in Control and OS medium for 25 days. 
Results are presented as mean±SEM (n=3).  

Figure 5.24: Semi-quantitative gene 
expression analysis showing expression of 
Osteopontin in mouse mesenchymal stem 

cells grown in Control and OS medium for 25 
days. Results are presented as mean±SEM 

(n=3).  
 

 

 
Figure 5.25: Semi-quantitative gene expression analysis showing expression of Osteoclacin in mouse 

mesenchymal stem cells grown in Control and OS medium for 25 days. Results are presented as 
mean±SEM (n=3).  

 

 

 

Sox2 was found to be expressed at day-0 and then a very low level of expression was 

observed at day-4 in control cells which correlates well with the protein expression as 

observed by immunofluorescence (Figure 5.10). While cells grown in medium containing OS 

supplements did not show Sox2 expression at RNA level (Figure 5.18 and 5.19) and protein 

level (Figure 5.11) after day-0. 
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Sox9 seemed to be showing differential gene expression where expression appears to be 

stronger at day-18 and day-25 in OS cells in comparison to cells grown in control medium 

(Figure 5.18 and 5.20). The same was observed with Sox9 expression at protein level by 

immunofluorescence (Figure 5.12 and 5.13). 

 

Alkaline phosphatase appeared to be upregulated at day-4 in OS cells and then going down at 

day-18. Cells grown in control medium showed similar pattern of expression but less than OS 

treated cells (Figure 5.18 and 5.21). Similarly Runx2 found to be down regulating after day-4 

along differentiation time course in both treated and non-treated cell populations (Figure 5.18 

and 5.22). 

 

Osterix, Osteopontin and Osteocalcin were found to be expressed at all time-points examined 

where Osteoclain seems to be expressed in higher levels at later points of differentiation i.e. 

day-25 (Figure 5.18, 5.23-5.25). Osteocaclin protein was also found to be expressed at all 

time-points with stronger signal at day-18 and day-25 (Figure 5.16 and 5.17). 

 

5.3.2.2.Analysis of DNA methylation at SRR1 and SRR2 by  MS-PCR 

 

In order to look at DNA methylation changes occurring at SRR1 and SRR2, MS-PCR was 

carried out in the similar way as already detailed in chapter 2 section 2.3.2.4 and chapter 3 

section 3.2.3.2. Both SRR1 and SRR2 regions of Sox2 were observed to be methylated at all 

time-points i.e. day-0, 4, 11, 18 and 25 in both undifferentiated and differentiated cells grown 

in osteogenic differentiation medium (Figure 5.28-5.29). 
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Figure 5.26 shows the result of PCR carried out on DNA prepared from MSCs grown in 

control and OS medium at different time points and then digested with MspI and HpaII 

enzymes. A region of DNA containing Msp sites but reported to be unmethylated was used as 

control (section 3.2.3) 

 

 
Figure 5.26: mAprt promoter region used as control and showing that no amplified product was 

observed in MspI and HpaII digested samples so digestion is not partial. 
 
 
 

 

Figure 5.27 is the result of PCR carried out on same set of samples as described above. This 

is the genomic region known to be methylated and contains Msp sites. 

 
 
 

Figure 5.27: mIgf2R-DMR2 region used as control and showing that no amplified product was 
observed in MspI digested samples and only HpaII digested fragments amplified. 
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SRR1 and SRR2 regions of Sox2 were found to be methylated at time points selected for 

analysis in both control and OS treated cell populations (Figure 5.28 and 5.29). This 

technique only allows to study DNA methylation at any genomic region that contains Msp 

sites and when all of them are methylated. And if any of these in unmethylated or partially 

methylated then due to digestion of DNA amplified product won’t be seen.  

 

 Figure 5.28: SRR1 region of Sox2 was found to be methylated at every time point examined by MS-
PCR 

 
 
 
 
 
 
 
 

 
Figure 5.29: SRR2 region of Sox2 was found to be methylated at day-0, 4, 11, 18 and 25 in both 

control and OS cells by MS-PCR 
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5.4. Discussion 

 

Bone development in vitro has been traditionally analysed by the mineralized bone nodules 

formation (Heng et al., 2008). As is apparent is Figure 5.2, mineralization as black layer 

around the cells under the microscope can be clearly seen at day-11 of differentiation 

showing a gradual increase by day-25. Further staining with alizarin red dye showed the 

darkening of deposited granular matrix while control cells did not show such a strong 

staining. This dye was subsequently extracted and quantified using an already described 

assay to assess the extent of mineralization (Gregory et al., 2004). Figure 5.5 shows very 

clearly that treated population of MSCs have produced more stain than non-treated cells and 

the difference is really apparent after two weeks of culture. As detailed in the discussion 

section of the chapter 3 (section 3.4), medium used for oseteogenic fate induction could lead 

to non-specific mineralization. Therefore, further characterization of differentiating MSCs 

cells was carried out using cell surface and other molecular markers by 

immunocytochemistry and gene expression profiling. 

 

As described previously ostetogenesis is a complex process and the expression pattern of 

various markers associated with osteoblasts is organized temporally and sequentially (Zur 

Nieden et al., 2003). Type I collagen, Alk-P and osteonectin have been reported to appear at 

the end of the proliferation phase; osteopontin followed by bone sialoprotein and Runx2 at 

the start of mineralization phase; and finally osteoclacin at high level during mineralization. 

All these markers can have varying times of expression onset in culture dependent on cell 

line and methods of differentiation (Duplomab et al., 2007). 
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Sox2 has been reported to maintain self-renewing osteoprogenitor cell population and favours 

their maintenance over differentiation into mature osteoblasts (Roy et al., 2010). It has also 

been reported that cells impaired in osteogenic differentiation show high level of Sox2 

expression (Muraglia et al., 2008). Moreover, Sox2 has been reported to inhibit in vitro 

murine osteoblastic differentiation by inhibiting Wnt signalling (Mansukhain et al., 2005). 

Here Sox2 was observed both at RNA and protein level at day-0 in undifferentiated cells and 

then very small expression was detected at day-4 in control cells. Cells grown in OS medium 

did not show Sox2 expression neither at RNA level nor at protein level hinting at the 

possibility that cells could have become committed and are no longer in proliferative phase. 

 

Sox9 is known to be expressed in mesenchymal condensation during the deposition of 

cartilage and plays a central role in skeletogenesis (Wright et al., 1995). Based on the 

location of MSCs, they differentiate to form chondrocytes or osteoblasts and Sox9 is one of 

the important determining factor (Fujii et al., 2005). Here in these experiments Sox9 was 

found to be down regulated both at RNA and protein level after two weeks of MSC culture in 

differentiation medium compared to control cells. Cells maintained a lower level of RNA and 

protein expression at all time-points analysed except day-25 in control where no protein was 

detected. 

 

Runx2 and Osterix are two central transcription factors in determining the commitment of 

osteoprogenitors cells to osteoblasts where Osterix is thought to act downstream of Runx2 

(Komori et al., 2006). Runx2 was found to be upregulated at day-4 in OS cells and then down 

regulated by day-25. A significant expression of Osterix was detected starting from day-0 and 

at all time-points during differentiation while no protein expression was detected at any time 

point. A previous study has shown that Osteirx expression stimulates mesenchymal stem cell 
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proliferation in a partially committed stage of osteoblast precursor (Kim et al., 2005). 

Similarly alkaline phosphatase, osteopontin and osteoclacin which are reported to be 

expressed in higher amounts in osteoblasts as detailed in chapter 3 (section 3.4), were 

observed to be present at all time-points analysed in both control and OS treated population. 

  

Together these observations suggest that this MSC population seems to be already enriched 

in expression of markers associated with late stage of osteoblasts and at the same time 

expressing marker associated with early stages of osteoblast commitment at later stages i.e. in 

third and fourth week of culture. This could be due to the heterogeneity in starting population 

that some of the cells have already become committed to osteoprogenitors and hence are 

preosteogenic. There is also the possibility of asynchronous differentiation i.e. some cells 

have yet to start mineralizing so expressing early stage markers while others have 

mineralized. 

  

DNA methylation has been reported as a major mechanism of gene silencing (discussed in 

chapter 3 section 3.4). Two regulatory regions of Sox2 namely SRR1 and SRR2 were chosen 

for analysis (section 1.5 and 1.6) and found to be constitutively methylated at all time-points 

when analysed with MS-PCR. Given the limitation of the technique to resolve DNA 

methylation status at each CpG site, bisulphite sequencing was attempted. But unfortunately 

none of the region could be PCR amplified after bisulphite treatment which could then be 

analysed by DNA sequencing. Hence further work is needed to optimize the reaction 

conditions for PCR amplification. 

 

Adult stem cells have been now given focus regarding neoplastic transformation so that they 

could be exploited for their differentiation potential while keeping the self-renewing capacity 
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(Serakinci et al., 2004). Further work investigating the mechanisms regulating differentiation 

in this transformed cell line would be of interest to gain a molecular insight into induction of 

proosteogenic potential as is apparent by these observations. 
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Chapter 6 Ȃ Discussion 
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6. Discussion 

 

Development is a process resulting in sequential reduction of differentiation potential of 

pluripotent progenitors involving activation or repression of various gene networks as cells 

acquire more specialized characteristics. This differentiation into specialized tissues and 

organs proceeds without any changes in DNA sequences of genomes of the cells so can be 

regarded as under epigenetic control (Reik, 2007). Indeed it has been experimentally shown 

that genomes from differentiated cells of animals can be used to clone animals proving that 

cells do not lose their genetic material during differentiation; rather regulated and controlled 

gene expression determine and maintains cell fate (Gurdon et al., 1975; Wilmut et al., 1997). 

 

Regulation at the transcriptional level is central to the process because both spatial and 

temporal expression of transcribed proteins determines the identity of a cell, tissue or organ 

(Prior and Walter, 1996). An important component of transcriptional regulation is 

transcription factors which bind to DNA and co-ordinate the cellular decision making 

process, making it irreversible and free of errors which could potentially lead to 

developmental abnormalities and disorders. Lately, such transcription regulators have been 

identified that maintain the differentiation potential of embryonic stem cells, and forced 

expression of these factors can even reprogram somatic genomes to an undifferentiated state 

(Takahashi et al., 2006; 2007; Park et al., 2008). 

  

Epigenetic modifications such as DNA methylation of CpG dinucleotides, modification of 

histone tails mainly by acetylation and methylation, other non-histone proteins and regulatory 

RNAs affect and change gene expression patterns during cellular differentiation along with 

transcription factors (Jaenisch and Young, 2008). All of these factors acting together lead to 
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the generation of cell and tissue specific gene expression patterns reflected in their genotype 

under given circumstances and govern their phenotype (Morgan et al., 2005). So interplay 

between these factors at different stages of development regulates pluripotency of progenitors 

and their differentiation at the right time for example by maintaining reversible repressive 

expression of genes required at later stage of development at earlier stages and/or irreversible 

silencing of pluripotency associated genes after cellular commitment and differentiation 

(Reik, 2007). 

 

Embryonic stem cells have been shown to be able to differentiate into all lineages derived 

from embryos in vitro and hence can be used as a model system not only to study 

developmental programming and reprograming events but also, once these events are known 

can be used to create differentiated cell types for transplantation therapies in clinical 

applications (Solter and Gearhart, 1999). Sox2 has been reported to be indispensable for 

mouse embryonic stem cells self-renewal and also, is one of the transcription factors used to 

reprogram somatic cells. 

 

This study specifically looked at DNA methylation status of two evolutionary conserved 

regulatory regions of Sox2 namely SRR1 and SRR2 in undifferentiated mouse embryonic 

stem cells and after subjecting them to differentiation treatment leading to osteogenic and 

neural lineages that are derived from germinal ectoderm and mesoderm respectively. Mouse 

mesenchymal stem cells, the physiological precursor of osteoblasts were subjected to a 

similar differentiation treatment in parallel, so as to compare and contrast the changes in 

DNA methylation at these regions when same cell types are obtained from embryonic and 

adult origin stem cells. The objective was to examine the role of DNA methylation of 

regulatory regions of Sox2 in cell type specific expression pattern. 
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DNA sequences of short length often known as regulatory elements are basic components in 

gene regulation and can be found in promoter, enhancer, near the transcription start site (TSS) 

or far away from TSS and can be either cis or trans acting (Sikorski and Buratowski, 2009). 

The combinatorial action of a given set of regulatory elements for a particular gene would 

determine its expression in tissue specific and environmental specific manner (Latchman, 

2004; Levine and Tjian, 2003). The Sox2 gene has been reported to contain two evolutionary 

conserved upstream and downstream (~4kb from transcription start sites) enhancers 

designated as Sox2 Regulatory Region 1 and 2 (SRR1 and SRR2) in mouse and humans 

(Tomioka et al., 2002; Sikorska et al., 2008). 

 

SRR1 contains binding site for POU transcription factors while SRR2 binds Oct4-Sox2 and 

are essential for Sox2 expression both in ES cells and neural stem cells (Catena et al., 2004; 

Tomioka et al., 2002). It has been previously shown that these regulatory sequences control 

region specific expression of Sox2 in neural stem cells such that expression is seen in 

telencephalon but not spinal cord stem cells (Miyagi et al., 2006; Zappone et al., 2000). 

Another study has found that these enhancers exhibit differential DNA methylation and 

histone H3 acetylation during human neural progenitor’s differentiation into astrocytes and 

neurons affecting expression level of Sox2 in these different cell types (Sikorska et al., 2008). 

Their study has found that methylation of SRR2 enhancer particularly at highly conserved 

site +4250, correlated with silencing of Sox2 expression in neurons while SRR1 methylation 

in both astrocyte and neurons linked to gene silencing and cell cycle exit. They concluded 

that differential DNA methylation of these two enhancers of Sox2 in neural precursors and 

terminally differentiated cells mediumte neurodevelopment and regulate gene expression 

transiently and permanently. 
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Given that these sequences are highly conserved in mouse, this study looked at differentiating 

neuronal cells from embryonic stem cells and three individual CpGs analysed in core 

enhancer region of SRR2 were found to be unmethylated in both undifferentiated ES cells 

and differentiated cells. At the level of this analysis, it could not be concluded that all of the 

CpG sites remained unmethylated during differentiation. It is also possible that differentiated 

cells contained a smaller proportion of terminally differentiated neurons and presence of 

other cell types as cells were not sorted prior to analysis might, have potentially masked the 

low level of methylation (chapter 4). 

 

Both SRR1 and SRR2 appeared to be methylated in ES cells grown in medium promoting 

differentiation towards osteoblasts when analysed by MS-PCR except at day-0 

(undifferentiated state). As described above, these two enhancers contribute towards ES 

specific expression of Sox2 so could be unmethylated in undifferentiated cells. This could 

also be due to the fact that major epigenetic reprogramming events take place upon cell 

differentiation and commitment (Reik et al., 2001). So these regions might be unmethylated 

at all of CpG sites in undifferentiated ES cells and upon differentiation at the day-3 embryo 

bodies stage start setting up some methylation marks. 

 

MS-PCR analysis described in Chapter 2 section 2.3.3 showed that both SRR1 and SRR2 

became methylated at day-3 and then appeared to be methylated at all time-points analysed 

thereafter. No Sox2 expression was detected at the RNA level after seven days of treatment 

and after 14 days at both protein and RNA levels. The three CpGs in the SRR2 region that 

were analysed in detail were found unmethylated at every time point tested during 

differentiation suggesting that no changes in methylation status are taking place at these sites. 

However, it cannot be excluded that other CpG sites in SRR1 and SRR2 not tested in this 
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study might have become methylated upon differentiation. Hence further studies extending 

the analysis of DNA methylation to all CpG sites within this region are required to determine 

whether DNA methylation within these regions plays any role in silencing of Sox2 under the 

differentiation conditions used. 

 

MSCs are physiological precursors of bone cells and they were subjected to differentiate 

towards osteoblast lineage under similar conditions to that of ES cells with the objective to 

profile and then compare DNA methylation changes in cells derived from both adult and 

embryonic origin (chapter 5). Both SRR1 and SRR2 were found to be methylated at all time 

points in undifferentiated and differentiated MSCs when analysed by MS-PCR. 

Unfortunately it was not possible within the time frame of this study to analyse individual 

CpGs using bisulphite sequencing due to technical limitations (Chapter 5 section 5.3). As 

detailed earlier (chapter 3.4 and 4.4) that these regions have been studied and implicated in 

Sox2 expression in ESCs and neural stem cells so far, so could be possible that they are 

methylated in MSCs. Sox2 expression was detected only in undifferentiated MSCs and not in 

differentiated cells both at RNA and protein level so there is a possibility of DNA 

methylation leading to gene silencing. This seems quite interesting on one hand given that no 

data regarding DNA methylation is available about these regions in MSCs so far. But since 

this MSC cell line is immortalized hence, it cannot be excluded that methylation of these 

regions might be a consequence of cell line establishment and maintenance rather than actual 

physiological phenomena and hence need to be supplemented with data from primary cell 

types. Indeed some of the earlier studies have looked at and reported differences in gene 

expression patterns and DNA methylation in immortalized cell lines (Caliskan et al., 2011; 

Wild et al., 2010) 
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In summary, this is the first study looking at DNA methylation status of two regulatory 

regions of Sox2 i.e. SRR1 and SRR2 in undifferentiated mouse embryonic stem cells and 

upon their differentiation when grown in osteoblast and neural medium in a time course 

dependent manner. Similarly no study has so far described the DNA methylation profile of 

these regulatory regions of Sox2 in undifferentiated and differentiated mouse mesenchymal 

stem cells. Data obtained in this study hints towards the possible involvement of differential 

DNA methylation in regulating Sox2 expression in different cell types. There seems to be 

promising differences in methylation status of these two regulatory regions of Sox2 not only 

between cell types i.e. embryonic v/s adult but also lineages i.e. osteoblasts v/s neural though 

still preliminary and incomplete. Given the importance of epigenetic regulation in cell 

commitment and differentiation, analysis of these regulatory regions will provide a valuable 

insight into molecular mechanisms of gene regulation and how they contribute towards cell 

fate decisions and switch between different cell types. As these regions are highly conserved 

in mouse and humans, it could be proposed that regulatory mechanisms might also be shared 

hence making mouse embryonic stem cells a good model system to study regulation of Sox2 

during in vitro differentiation. 
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7. Appendices 
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7.1.Chemicals, Medium and Reagents 

 

Chemical Name Catalogue No. Supplier 

Gelatin G1393 Sigma 

Bacterial petri dishes 633102 Greiner 

Tri Reagent T9424 Sigma 

DNase 04536282001 Roche 

RNasin Promega N2511 Promega 

Reverse Transcriptase 11785826001 Roche 

Thermopol Buffer B9004S BioLabs 

dNTPs U1240 Promega 

Taq polymerase M0267L BioLabs (NEB) 

Orange G 03756 Fischer Scientific 

Glycerol G8773 Sigma 

Phase lock tubes 129025 Qiagen 

MspI R0106S BioLabs 

HpaII  R0171S BioLabs 

EZ DNA methylation 

kit 
D5006 Zymo Research 

DMEM + glutamax 61965-026 Invitrogen Gibco 

Fetal Calf Serum EU-000-FE SLI 

MEM Non essential 

amino acids 
11140-035 Invitrogen Gibco 

Sodium pyruvate 11360-039 Invitrogen Gibco 
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Penicillin/Streptomycin 15070-063 Invitrogen Gibco 

2-Betamercaptoethanol M6250 Sigma 

LIF ESG1107 Millipore Chemicon 

DMSO C6295 Sigma 

DMEM 21885-025 Invitrogen Gibco 

Fetal Bovine Serum 16170-07 Invitrogen Gibco 

Beta glycerol 

phosphate 
410990250 Acros Organics 

Ascorbic Acid 

Phosphate 
A8690-54 Sigma 

Dexamethasone D4902 Sigma 

Retinoic Acid R2625 Sigma 

DMEM:F12 21331-020 Invitrogen Gibco 

N2 Supplement 17502-048 Invitrogen Gibco 

Glutamax 35050-038 Invitrogen Gibco 

Neurobasal Medium 21103-049 Invitrogen Gibco 

B27 Supplement 17504-044 Invitrogen Gibco 

Alizarin Red S A5533 Sigma 

Phenol P4557 Sigma 

Chlorofrom C2432 Sigma 

Sodium Acetate 9740 Sigma 

Proteinase K P2308 Sigma 

Sox2 antibody ab97959 abcam 

Sox9 antibody AB5535 Millipore 
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Osterix antibody ab22522 abcam 

Osteocalcin antibody sc-30045 
Sant Cruz 

Biotechnology 

FITC conjugated anti 

rabbit anitbody 
DI-1488-1.5 Vector Laboratoreis 

Vectashield H-1200 Vector Laboratoreis 
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7.2.Medium and Buffer Compositions 

 

Complete ES medium 

DMEM + glutamax (4.5g/l D-glucose + GlutaMax) 

18% Fetal Calf Serum (v/v) (ES Grade) 

1X MEM Non essential amino acids (100X) 

1X Sodium pyruvate (100X) 

1X Penicillin/Streptomycin (100X) 

0.1mM 2-Betamercaptoethanol (100mM liquid) 

1000U/ml LIF (10000000 U/ml) 

 

Freezing Medium 

90% Fetal Calf Serum (v/v) 

10% DMSO (v/v) 

 

EB Medium 

DMEM (1g/l D-glucose + Pyruvate + GlutaMax) 

15% Serum (not ES Grade) 

1X Non essential amino acids (100X)  

1X Penicillin/Streptomycin (100X) 

0.1mM 2-Betamercapoethanol (100mM liquid) 

 

Osteogenic Differentiation Medium 

DMEM + glutamax (1g/l D-glucose + GlutaMax) 
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15% Fetal Calf Serum (v/v) (not ES Grade) 

10mM Beta glycerol phosphate (1M stock in DMEM, filter sterilise at 4oC for 1 month) 

50µM Ascorbic Acid Phosphate (50mM stock in DMEM, filter sterilise at 4oC for 1 month) 

10 uM Dexamethasone (1mM stock in EtOH, keep at -20oC)  

1X Penicillin/Streptomycin (100X) 

 

Retinoic Acid 

5mM stock in DMSO (light sensitive) 

 

N2 Medium 

DMEM:F12 

1X N2 Supplement (100X) 

0.5X Glutamax (100X) 

1X Penicillin/Streptomycin (100X) 

 

Neurobasal Medium 

Neurobasal Medium 

1X B27 Supplement (50X) 

1X Penicillin/Streptomycin (100X) 

 

Cell Lysis Buffer 

[Note: All chemicals were of analytical grade from Sigma, unless specified separately] 

10mM Tris-HCl pH 8.0 

10mM NaCl 

10mM EDTA pH 8.0 
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0.5% SDS (w/v) 

50µg/ml Protienase K (10mg/ml)  

 

2X DMSO Buffer 

20% DMSO (v/v) 

32mM Ammonium Sulphate 

20mM Betamercaptoethanol 

134mM Tris-HCl pH 8.8 
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7.3.Primers Sequences for RT-PCR and MS-PCR 

 

Gene Primer ID Primer Sequence Product 
(bps) 

Annealing 
Temperatur

e 

mAprt 

mAprt1 
(RT) 
 

GGTAGCTCACAAAGGTCACT 
 

  

mAprt2 
(F) 
mAprt3 
(R) 

GGAAATCCAGAAAGATGCCT 
TCTAGCCAGCTCCTCAGTCA 

227 60˚C 

Gapdh 

mGapdh(F
) 

CCCACTAACATCAAATGGGG 
275 

60˚C (Ying et 
al., 2008) mGapdh(

R) 
CCTTCCACAATGCCAAAGTT 

Sox2 
(cDNA) 

J11Sx2 
(cDF) 

CTGCGGAAAAAAACCACCAAT
C 

241 62˚C 
J12Sx2 
(cDR) 

TTTGCGAACTCCCTGCGAAG 

Sox9 
(cDNA) 

J13 Sx9cD 
F 

GAAGTCGGTGAAGAACGGACA
AG 

364 (973 
on 

genomic 
DNA) 

62˚C 
J14 Sx9cD 
R 

GGGTGGCAAGTATTGGTCAAA
CTC 

Igf2 – 
DMR2 

(MS-PCR) 

M115 (F) 
CGTGGCACTTTTGAGTTCATCT
CTC 

489 
65˚C 

 
M114 (R) 

ATTCTGGTTGTGCCGAGTTGCG
AG 

mAprt 
(MS-PCR) 

M116 (F) TCTTCCCCGACTTCCCAATC 
164 60˚C 

M117 (R) 
GAACAAGGACAGGAGAGTGAC
CC 

CSa (MS-
PCR) 

CSa_s (F) 
TGGTTGGCATTTTATCCCTAGA
AC 

133 
59˚C (Weber 
et al., 2007) CSa_as 

(R) 
GCAACATGGCAACTGGAAACA 

Runx2 
(cDNA) 

mRunx2_
F 

CCTGAACTCTGCACCAAGTC 
234 

64˚C 
(Kawaguchi 
et al., 2005) 

mRunx2_
R 

GAGGTGGCAGTGTCATCATC 

Osteoponti
n (cDNA) 

mOsteopo
ntin_F 

TGCACCCAGATCCTATAGCC 
186 64˚C 

mOsteopo
ntin_R 

CTCCATCGTCATCATCATCG 

Osteocalcin 
(cDNA) 

mOsteocla
cin_F 

CCCTGCTTGTGACGAGCTAT 170 52˚C 
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mOsteocal
cin_R 

ACTTGCAGGGCAGAGAGAGA 

Alk-P 
(cDNA) 

mAlp_F GAAGACGTGGCGGTCTTTGC 
457 

64˚C (Chen 
et al., 2006) mAlp_R GGGAATCTGTGCAGTCTGTG 

Osterix 
(cDNA) 

mOsterx_
F 

CCTCTGCGGGACTCAACAAC 
 

355 
64˚C 

(Kawaguchi 
et al., 2005) mOsterix_

R 
TGCCTGGACCTGGTGAGATG 

Nestin 
(cDNA) 

mNestin_
F 

TCCCTTTCTCCCCCTTAAAA 
198 52˚C 

mNestin_
R 

ACTGAGCAGCTGGTTCTGC 

Pax6 
(cDNA) 

mPax6_F GGCTTTGTGCAAGATTCTCC 
170 60˚C 

mPax6_R CTCGGCCTAGTGGCTTCTTT 

Beta III 
tubulin 

mくIIItubul
in_F 

AAGGTAGCCGTGTGTGACATC 
 

209 
60˚C (Ahn et 

al., 2004) mくIIItubul
in_R ACCAGGTCATTCATGTTGCTC 

Sox2 – 
SRR1 

Sox2 – 
SRR1 – F 

AAGTAACCCTGATGGTTTAAGC
TC 

536 62˚C 
Sox2 – 
SRR1 – R 

ACGCAGCGTTCTCAGGAT 

Sox2 – 
SRR2 

Sox2 – 
SRR2 – F 

AAGGCACCAAGAACCAGAAA 
419 62˚C 

Sox2 – 
SRR2 – R 

GCCCGGGAAATTCTTTTAGA 
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7.4.Primer Optimizations 
 

 
All primer pairs were first optimized using temperature gradient, varied PCR buffers and 

Mg2+ concentrations to find optimal annealing and amplification parameters for PCRs. Below 

are some gel pictures showing various optimization experiments results. 

 
 
 

 
Figure 7.1: Temperature gradient (58-65˚C) for Sox2 (241bps) primer pairs 

 
 
 
 
 

 
Figure 7.2: Temperature gradient (58-65˚C) for Sox9 (963bps) primer pairs 
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Figure 7.3: Temperature gradient (58-65˚C) for Alkaline phosphatase (457bps) primer pairs 

 
 
 
 
 

Figure 7.4: Temperature gradient (58-65˚C) for Ostetix (355bps) primer pairs 
 
 
 
 
 

Figure 7.5: Temperature gradient (58-65˚C) for Osteopontin (1.4Kb) primer pairs 
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Figure 7.6: Temperature gradient (58-65˚C) for Osteocalcin (170bps) primer pairs 

 
 
 
 

 
Figure 7.7: Temperature gradient (58-65˚C) for Nestin (198bps) primer pairs 

 
 
 
 

 
Figure 7.8: Temperature gradient (58-65˚C) for Pax6 (170bps) primer pairs 
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Figure 7.9: Temperature gradient (58-65˚C) for SRR1 (536bps) primer pairs 

 
 
 
 
 

 
Figure 7.10: Temperature gradient (58-65˚C) for SRR2 (419bps) primer pairs 
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7.5.Sequencing Chromatograms 
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