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Abstract

Standard (type-1) fuzzy sets were introduced to resemble human reasoning in its use of

approximate information and uncertainty to generate decisions. Since knowledge can be

expressed in a more natural by using fuzzy sets, many decision problems can be greatly

simplified. However, standard type-1 fuzzy sets have limitations when it comes to mod-

elling human decision making.

In many applications involving the modelling of human decision making (expert sys-

tems) the more traditional membership functions do not provide a wide enough choice for

the system developer. They are therefore missing an opportunity to produce simpler or

better systems. The use of complex non-convex membership functions in the context of

human decision making systems were investigated. It was demonstrated that non-convex

membership functions are plausible, reasonable membership functions in the sense origi-

nally intended by Zadeh.

All humans, including ‘experts’, exhibit variation in their decision making. To date,

it has been an implicit assumption that expert systems, including fuzzy expert systems,

should not exhibit such variation. Type-2 fuzzy sets feature membership functions that are

themselves fuzzy sets. While type-2 fuzzy sets capture uncertainty by introducing a range

of membership values associated with each value of the base variable, but they do not cap-

ture the notion of variability. To overcome this limitation of type-2 fuzzy sets, Garibaldi

previously proposed the term ‘non-deterministic fuzzy reasoning’ in which variability is

introduced into the membership functions of a fuzzy system through the use of random

alterations to the parameters.

In this thesis, this notion is extended and formalised through the introduction of a no-

tion termed a non-stationary fuzzy set. The concept of random perturbations that can be

used for generating these non-stationary fuzzy sets is proposed. The footprint of varia-

tion (FOV) is introduced to describe the area covering the range from the minimum to

the maximum fuzzy sets which comprise the non-stationary fuzzy sets (this is similar

to the footprint of uncertainty of type-2 sets). Basic operators, i.e. union, intersection
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and complement, for non-stationary fuzzy sets are also proposed. Proofs of properties of

non-stationary fuzzy sets to satisfy the set theoretic laws are also given in this thesis.

It can be observed that, firstly, a non-stationary fuzzy set is a collection of type-1 fuzzy

sets in which there is an explicit, defined, relationship between the fuzzy sets. Specifically,

each of the instantiations (individual type-1 sets) is derived by a perturbation of (making

a small change to) a single underlying membership function. Secondly, a non-stationary

fuzzy set does not have secondary membership functions, and secondary membership

grades. Hence, there is no ‘direct’ equivalent to the embedded type-2 sets of a type-2

fuzzy sets. Lastly, the non-stationary inference process is quite different from type-2

inference, in that non-stationary inference is just a repeated type-1 inference.

Several case studies have been carried out in this research. Experiments have been

carried out to investigate the use of non-stationary fuzzy sets, and the relationship between

non-stationary and interval type-2 fuzzy sets. The results from these experiments are

compared with results produced by type-2 fuzzy systems. As an aside, experiments were

carried out to investigate the effect of the number of tunable parameters on performance

in type-1 and type-2 fuzzy systems. It was demonstrated that more tunable parameters

can improve the performance of a non-singleton type-1 fuzzy system to be as good as or

better than the equivalent type-2 fuzzy system.

Taken as a whole, the techniques presented in this thesis represent a valuable addition

to the tools available to a model designer for constructing fuzzy models of human decision

making.
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Chapter 1

Introduction

1.1 Background and Motivation

Fuzzy sets were first introduced by Zadeh [2] in order to model the imprecision and un-

certainty inherent in assigning memberships of elements to real-world sets, such as the

set of old people or the set of tall people. These fuzzy sets were specifically designed to

represent uncertainty and vagueness and provided formalised tools for dealing with the

imprecision in real world problems. Knowledge can often be expressed more naturally

by using (type-1) fuzzy sets and many complex decision making problems can be sig-

nificantly simplified. However, type-1 fuzzy sets still have limitations, in that they are

unable to model the effects of all uncertainties. Further, there is actually no fuzziness in

the standard type-1 membership grade, as has been pointed out by many people including

Klir and Folger [3]

“... it may seem problematical, if not paradoxical, that a representation of

fuzziness is made using membership grades that are themselves precise real

numbers”.

Zadeh addressed this problem originally in his seminal paper of 1975 [4] in which

he introduced the concept of linguistic variables. Zadeh proposed “fuzzy sets with fuzzy

membership functions” and went on to define fuzzy sets of type n, n = 2, 3, ..., for which

the membership function ranges over fuzzy sets of type n - 1. The use of type-2 fuzzy sets

was advocated many years ago by people including Dubois and Prade [5]

1
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“To make into account the imprecision of membership functions, we may

think of using a type-2 fuzzy set”,

and Yager [6]

“The usefulness of fuzzy subsets of type II [type-2] is that it enables us to

extend membership grades to linguistic values”.

However, the use of type-2 sets in practice has been limited due to the significant

increase in computational complexity involved in their implementation. Type-2 fuzzy

sets can model uncertainties better and minimize their effects. The use of type-2 sets was

advocated and extended by people: Dubois and Prade gave a formula for the composition

of type-2 relations as an extension of the type-1 sup-star composition for the minimum

t-norm [5], Mizumoto and Tanaka studied the set theoretic operations of type-2 sets and

properties of membership degrees of such sets [7] and examined type-2 sets under the

operations of algebraic product and algebraic sum [8], etc.

More recently, type-2 sets have received renewed interest mainly due to the effort of

Mendel [1] but also, possibly, by the increases in computational power over recent years.

Mendel has established a set of terms to be used when working with type-2 fuzzy sets and,

in particular, introduced a concept known as the footprint of uncertainty which provides

a useful verbal and graphical description of the uncertainty captured by any given type-2

set. The interested reader is particularly referred to [9] for a summary tutorial and/or [1]

for a more detailed treatment. Mendel has particularly concentrated on a restricted class

of general type-2 fuzzy sets know as interval valued type-2 fuzzy sets. Interval valued

fuzzy sets are characterised by having secondary membership functions which only take

the value in {0, 1}. This restriction greatly simplifies the computational requirements in-

volved in performing inference with type-2 sets and Mendel has provided closed formula

for intersection, union and complement, and computational algorithms for type reduction

(necessary for type-2 defuzzification).

It is well accepted that all humans including ‘experts’, exhibit variation in their de-

cision making. Variation may occur among the decisions of a panel of human experts

(inter-expert variability), as well as in the decisions of an individual expert over time

(intra-expert variability). Up to now it has been an implicit assumption that expert sys-

tems, including fuzzy expert systems, should not exhibit such variation. While type-2
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fuzzy sets capture the concept of introducing uncertainty into membership functions by

introducing a range of membership values associated with each value of the base vari-

able, they do not capture the notion of variability — as a type-2 fuzzy inference system

(FIS) will always produce the same output(s) (albeit a type-2 fuzzy set with an implicit

representation of uncertainty) given the same input(s). Garibaldi et al. [10–14] have been

investigating the incorporation of variability into decision making in the context of fuzzy

expert systems in a medical domain. In this work, Garibaldi proposed the notion of non-

deterministic fuzzy reasoning in which variability is introduced into the membership func-

tions of a fuzzy system through the use of random alterations to the parameters of the gen-

erating functions. This notion was later extended and formalised through the introduction

of a notion termed a non-stationary fuzzy set.

1.2 Aims of this Thesis

The ultimate goal of this research is to establish the techniques to model human decision

making, with a particular focus on modelling the variation apparent in all human decision

making. The project focuses on the development of a new type of fuzzy set and the

associated systems that are able to capture the concept of introducing uncertainty into

membership functions by introducing a range of membership values associated with each

value of the base variable. In this way, they are specifically able to capture the notion of

variability (current type-2 fuzzy sets are unable to do this).

In order to achieve this aim, the following objectives were identified:

• Investigate the use of a wider range of membership functions than often found in

fuzzy inference systems. Specifically, non-convex membership functions together

with traditional fuzzy sets were used in a case-study to build a fuzzy expert system

to predict energy demand.

• Investigate the type-1 and type-2 fuzzy systems for time-series forecasting to exam-

ine the relationship between the number of model parameters and the performance

of type-1 and type-2 fuzzy systems.

• Understand the notion of non-deterministic fuzzy reasoning in which variability is
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introduced into the membership functions of a fuzzy system through the use of ran-

dom alterations to the parameters of these functions. The objective is to determine,

extend, and formalise these through the introduction of notion term a non-stationary

fuzzy sets.

• Implement the fuzzy systems to illustrate the use of non-stationary fuzzy sets and to

investigate the relationships between interval type-2 and non-stationary fuzzy sets.

• Explore how the form of the primary membership function affects the inference

process within a non-stationary fuzzy system.

• Examine the relationship between the primary membership functions and output

uncertainties in non-stationary fuzzy sets compared with interval type-2 fuzzy sets.

1.3 Organisation of the Thesis

In this thesis, standard set theory, (type-1) fuzzy sets and systems, and then continues

to present the concept of type-2 fuzzy sets and systems. Chapter 3 examines the use of

non-convex membership functions for linguistic terms and presents a case-study. Chap-

ter 4 presents the investigations into the performance of type-1 and type-2 fuzzy systems

for time series forecasting. In Chapter 5, the new concept of non-stationary fuzzy sets

is proposed. In Chapter 6, the relationships between interval type-2 and non-stationary

fuzzy sets are presented. Chapter 7 presents the investigation of the primary member-

ship functions in non-stationary fuzzy sets by (i) exploring the outputs of Gaussian and

Triangular primary membership functions in non-stationary fuzzy sets, and (ii) investi-

gating the relationship between primary membership functions and output uncertainties

in interval type-2 and non-stationary fuzzy sets, and (iii) investigating and comparing the

performance of type-1, type-2, and non-stationary fuzzy systems through MacKey-Glass

Time-Series.. Finally, Chapter 8 draws conclusions, lists the contributions arising from

this work, mentions the limitations and suggests some interesting potential directions for

future research presented in this thesis.



Chapter 2

Theory of Fuzzy Sets and Systems

2.1 Sets Theory

A set is a collection of objects called elements of the set. The use of the word ‘set’ means

that there is also a method to determine whether or not a particular object belongs in the

set. An object contained by a set is called a member, or element. We then say that the set

is well-defined. For example, it is easy to decide that the number 6 is in the set consisting

of the integers 1 through 9. After all, there are nine objects to consider and it is clear that

6 is one of them by simply checking all nine.

In this section, capital letters denote sets, while members of a set are written in lower-

case. To indicate the universe of discourse, often referred to as the universal set, we use

U. All sets are members of the universal set. Additionally, a set with no elements is called

a null, or empty set and is denoted /0.

If we have an element x of set A, it can be represented as:

x ∈ A

while if x is not a member of A, it can be written as:

x /∈ A.

There are two methods used to describe the contents of a set, the list method and the

rule method. The list method defines the members of a set by listing each object in the set

A = {a1, a2, ..., an}.

5
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The rule method defines the rules that each member must adhere to in order to be consid-

ered a member of the set

A = {a | a has properties P1, P2, ..., Pn}.

When every element in the set A is also a member of set B, then A is a subset of B

A ⊆ B.

If every element in A is also in B and every element in B is also in A, i.e. A ⊆ B and

B ⊆ A, then A and B are equal

A = B.

If at least one element in A is not in B or at least one element in B is not in A, then A and

B are not equal

A 6= B.

Set A is a proper subset of B if A is a subset B but A and B are not equal, i.e. A ⊆ B and

A 6= B

A ⊂ B.

To present the notion that an object is a member of a set either fully or not at all,

we introduce the function µ. For every x ∈ U,µA(x) assigns a value that determines the

strength of membership of each x in the set A,

µA(x) =





1 if and only if x ∈ A,

0 if and only if x /∈ A.

Therefore, µA maps all elements of the universal set into the set A with values 0 and 1

µA : U→{0,1}.

Using the given notation, four basic operations that can be used on sets are shown in

Figure 2.1 using Venn diagrams and also written in set theoretic notation.

The operations shown in Figure 2.1 are routinely combined to produce more complex

functions. Note that these examples use only two sets, but union and intersection can be

defined for any number of sets. This is due to the properties of the basic operations shown

in Table 2.1. Preserving these behaviours is important as fuzzy sets are a generalisation

of classic sets and must able to reproduce exactly their behaviour [15].
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}|{ BxorAxxBA ∈∈=∪

BA

(a) Union

}|{ BxandAxxBA ∈∈=∩

BA

(b) Intersection

}|{ BxandAxxBABA ∉∈=∪=−

BA

(c) Difference

A

}|{ AxxA ∉=

(d) Complement

Figure 2.1: Basic crisp set operations: The shaded region indicates the result of applying

the given function
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Table 2.1: Summary of some crisp set properties

Set Property Description

Involution ¯̄A = A

Commutativity A∪B = B∪A

A∩B = B∩A

Associativity (A∪B)∪C = A∪ (B∪C)

(A∩B)∩C = A∩ (B∩C)

Idempotence A∪A = A

A∩A = A

Distributivity A∩ (B∪C) = (A∩B)∪ (A∩C)

A∪ (B∩C) = (A∪B)∩ (A∪C)

Absorption A∪ (A∩B) = A

A∩ (A∪B) = A
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2.2 Boolean Logic

The well known Boolean logic system includes only two values, true or 1 and false or

0, which make up the truth values of this system. These values can be combined using

operators to produce the vocabulary of Boolean logic [17]. The truth tables are used to

show the response of the various operators to different combinations of truth values, as

shown in Table 2.1. In the table, A and B are variables that can take on either of two

possible truth values. For a logic system with n possible truth values, there would be 2n

possible combinations of these values using two variables.

Table 2.2: Boolean logic truth tables. The Symbols ∧, ∨, ↔, → and, or, equivalence and

implication respectively

A B ∧ ∨ ↔ →

0 0 0 0 1 1

0 0 0 0 1 1

1 0 0 1 0 0

1 1 1 1 1 1

In this example, there are 16 possible truth values, each defining one operator. In

Table 2.2, four operators are shown, while there are 12 others left undefined. Each of these

can be interpreted with a meaning attached; in the table we have and, or, equivalence, and

implication, while those not listed may not be immediately obvious. There are other logic

systems that can be defined using similar systems. For instance, there have been a number

of three-valued logics defined that allow an in-between value such as that by Lukasiewicz

[16]. These three-valued logics would have a maximum of 332
= 729 different truth tables.

As more values are allowed, the number of truth tables grows and becomes extremely

unwieldy.

Reasoning in a particular logic system is carried out using the operators allowed in

the system. The reasoning procedure relies on tautologies, or rules that remain true in
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that logic system regardless of the values assigned to the variables involved. A tautology

is true due to the logic of its construction. Four examples are shown for Boolean logic in

Table 2.3. A contradiction is considered the opposite of a tautology, where the statement

made is always false. For more information on classical logic see Klir& Folger [3].

Table 2.3: Boolean logic tautologies

Name Definition

modus ponens (A∧ (A → B))→ B

modus tollens ((A ⇒ B)∧¬B)⇒¬A

hypothetical syllogism ((A ⇒ B)∧ (B ⇒C))⇒ (A ⇒C)

contraposition (A ⇒ B)⇒ (¬B ⇒¬A)

2.3 Fuzzy Sets and Systems

Although knowledge can be expressed more naturally by using (type-1) fuzzy sets and

many complex decision making problems can be sigificantly simplified. A fuzzy set is

a generalisation of a crisp set. It has been defined on a universe of discourse X and is

charecterised by a membership function, µ(x), that takes on values in the interval [0,1] [1].

2.3.1 Membership Functions

The new concept was based on a simple modification of the most basic and fundamental

of mathematical notions, that of set, by allowing elements to have a partial degree of

membership, expressed by a number between 0 and 1. The membership grade of an

element x in the set A is denoted by the function µA(x). µA maps all elements of the

universal set into the set A with values in the continuous interval 0 to 1 [2],

µA : U→ [0,1].
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As for crisp sets, a fuzzy set may be defined formally in two ways, each introduced by

Zadeh [2]. The list method for a fuzzy set lists the strength of membership of each element

of a discrete, countable universe of discourse (U) to the set in equation [2],

A =
n

∑
i=1

µi/xi (2.1)

A = {µ1/x1 + · · ·+µn/xn} (2.2)

where xi denotes the ith member of U and µi/xi is the strength of membership of element

xi. The use of the plus symbol to separate individual elements is a departure from standard

set theory notation, which uses the comma. To describe a fuzzy set on a continuous

universe we write [2],

A =
∫
U

µA(x)/x. (2.3)

In either case, µA(x) is a function that assigns membership to A from every element in

U. For example, if we wish to represent temperature close to 25 °C using a fuzzy set with

a continuous universal set we can define µA(x) to be

µA(x) = 1/(1+
(x−25)2

25
). (2.4)

The function shown in Figure 2.2, maps every real number into the set of temperatures

close to 25 °C. If the temperature was 10 °C, that would be assigned a valued of 0.05,

while 20 °C gets 0.33 and 25 °C, 1. Obviously, the closer number to 25 °C, the higher its

membership in the set.
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Figure 2.2: a fuzzy representation of the continuous definition for ‘Close to 25 °C’.
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Figure 2.3: fuzzy representation of the discrete definition for ‘Close to 25 °C’.

Alternatively, if we are dealing with a discrete universe of discourse, a similar function

can be defined in accordance with Equation 2.2 as:

A = {0.03/5+0.05/10+0.11/15+0.33/20+1.0/25 (2.5)

+0.33/30+0.11/35+0.05/40+0.03/45 } . (2.6)

which consists of points when plotted, as seen in Figure 2.3.
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(a) Triangular
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(b) Gaussian
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(c) Sigmoid
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(d) S-Shaped

Figure 2.4: Membership functions of shape (a) triangular, (b) Gaussian, (c) Sigmoid, and

(d) S-shaped.

In general the shape of the membership function can be any thing more precise, but

some of the more common shapes in practice are triangular, Gaussian, Sigmoid, or S-

shaped. Each of this is shown in Figures 2.4.

2.4 Fuzzy Operators

The three main operators on any set, whether crisp of fuzzy are complement, union, and

intersection. These three operations are capable of producing more complex ones when

used in combination. In the classical set theory these operations can be uniquely defined

as seen in [17]. In fuzzy set theory these operations are no longer uniquely defined, as

membership values are no longer restricted to {0,1} and can be in the range [0,1]. Any

definition of these operations on fuzzy sets must include the limiting case of crisp sets.

These operators are usually defined by the Zadeh [2] as follows:
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• Complement:- A′: µA′(x) = 1−µA(x)

• Intersection:- A∩B: µA∩B(x) = min[µA(x),µB(x)]

• Union:- A∪B: µA∪B(x) = max[µA(x),µB(x)]

Then, the complement corresponds to the not of multi-valued logic, the union corre-

sponds to or and the intersection corresponds to and.

2.4.1 Fuzzy intersection

The operation of fuzzy intersection takes two sets and returns a single set representing

their difference. There are an infinite number of ways to define the fuzzy intersection.

Intersection operators that adhere to specific requirements are considered to be a part

of the general class of aggregation operators called t-norms denoted by the symbol T.

These fuzzy intersection operators, which are usually referred to as T-norms operators,

meet the following basic requirements. A T-norm operator is a two-place function T (., .)

satisfying [2]

• boundary: T (0,0) = 0,T (a,1) = T (1,a) = a

• monotonicity: T (a,b)≤ T (c,d) if a ≤ c and b ≤ d

• commutativity: T (a,b) = T (b,a)

• associativity: T (a,T (b,c)) = T (T (a,b),c)

The first requirement imposes the correct generalisation to crisp sets. The second

requirement implies that a decrease in the membership values in A or B cannot produce

an increase in the membership value in A intersection B. The third requirement indicates

that the operator is indifferent of the order of the fuzzy sets to be combined. Finally, the

fourth requirement allows us to take the intersection of any number of sets in any order of

pairwise groupings. Additionally, there are two further requirements that are useful [2].

• T is continuous function

• idempotent: T (a,a) = a
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The fifth requirement deals with continuity while the sixth requirement ensures that the

fuzzy intersection of a set with itself returns the original set.

The classical intersection (∩) of ordinary subsets of X can be extended by the follow-

ing formula which was proposed by Zadeh [2]:

µA∩B(x) = min(µA(x),µB(x)),∀x ∈ X

where µA∩B(x) is the membership functions of A∩B. This formula gives the usual inter-

section when the valuation set is reduced to {0,1}. Obviously, there are other extensions

of ∩ coinciding with the binary operators. Alternatively, this may be shown as: [2]

T (A,B) = min(a,b),∀a ∈ A,∀b ∈ B.

It is easily shown that this function satisfies requirements 1 to 6. A pictorial of fuzzy

intersection is shown in Figure 2.5.

Figure 2.5: The classic intersection. The shaded region represents the intersection of sets

A and B.

An alternate definition is a member of the Yager class [18],

Tw(a,b) = 1−min(1,((1−a)w +(1−b)w)1/w),w ∈ (0,∞).

As w → ∞, this function behaves like the classic intersection.
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2.4.2 Fuzzy union

The operation of fuzzy union takes two sets and returns a single set representing their

union. For each element in U, the fuzzy union operator S takes the element’s member-

ship grade in set A and B and returns the new membership in the set A∪B. Like fuzzy

intersection, the fuzzy union operator is specified in general by a function S: [2]

µA∪B(x) = S(µA(x),µB(x)).

Fuzzy union operators which are often referred to as T-conorms or S-norms operators,

satisfy the following basic requirements. There are an infinite variety of definitions for

fuzzy union with the four axioms shown below. Such operators are considered to be a

part of the general class of aggregation operators called T-conorms or S-norms, denoted

by the symbol S below [2].

• boundary: S(1,1) = 1,S(a,0) = s(0,a) = a

• monotonicity: S(a,b)≤ S(c,d) if a ≤ c and b ≤ d

• commutativity: S(a,b) = S(b,a)

• associativity: S(a,S(b,c)) = S(S(a,b),c)

The justification of these basic requirement is similar to that of the requirements for the

T-norm operators. Additionally, there are two further requirements that can be useful:

• S is continuous function

• idempotent: S(a,a) = a

The fifth requirement deals with continuity while the sixth requirements ensures that the

fuzzy union of a set with itself returns the original set.

The classic fuzzy union is shown in Figure 2.6 and is defined as: [2]

S(A,B) = max(a,b)∀a ∈ A,∀b ∈ B.

It is easily shown that this operator satisfies requirements 1-6. However, this operator

makes intuitive sense. When two or more sets are joined together, the strongest mem-

bership of an element is used. The strength of membership is also equal to the element’s
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Figure 2.6: The classic fuzzy union. The Shaded region represents the union of set A and

B.

largest strength in either of the two sets. An alternate definition is a member of the Yager

class [18],

Sw(a,b) = min(1,(aw +bw)1/w),w ∈ (0,∞).

First introduced in a paper by Yager [18], this function behaves as the classic union as

w → ∞.

2.4.3 Complement

The least complex of the three operations, fuzzy complement, describes the difference

between an object and its opposite. There are two rules that every fuzzy complement

operator must follow to be compatible with crisp logic.

• C(0) = 1, C(1) = 0: This rule defines the boundary conditions, the bivalent case.

• If a < b then C(a)≥C(b); a,b ∈ (0,1): This rule defines the fuzzy complement to

be monotonic increasing.

In order to comply with the requirement that all fuzzy complements can mimic a crisp

complement, the first rule is needed. It makes sense that as the degree of membership
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A A

Figure 2.7: The classic fuzzy complement. The Shaded region represents the complement

of set A.

of an element in set A increases, its membership in the complement set should decrease,

and this is required by second rule. Operators that adhere to the first and second rules are

members of the general class of fuzzy complements. There are two further rules that are

not required for an operator to act as a fuzzy complement, but are nevertheless useful.

• C is a continuous function.

• C(C(a)) = a for all a ∈ [0,1]: The fuzzy complement is involutive.

A set that has been defined using the rule method is continuous and requires continuous

definitions for the complement. An additional restraint that can be imposed is involution.

It may be desirable for the complement of a set to be reversible, by a further use of the

complement function, as shown in the fourth rule. Although the first and second rules

must be satisfied, it is possible to produce an infinite number of definitions. Some of the

more popular are shown in Fig. 2.7.

The original fuzzy complement is shown in Figure 2.7 and was given by Zadeh [2] as

C(a) = 1− a. This definition follows rules 1-4 and is also shown in Figure 2.8 and 2.9

as the straight line. Later, Sugeno [19] introduced the λ-complement as Cλ(a) = 1−a
1+λa

,

λ ∈ (−1,∞). This is an alternative definition of fuzzy complement and follows rules 1-3
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and is shown in Figure 2.8.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.6

0.7

0.8

0.9

1.0

( )aC

0.1

0.2

0.3

0.4

0.5

0.7 0.8 0.9 1.0

→a

15=λ

5

1

0

50.−

750.−
90.−

Figure 2.8: The Sugeno complement: Each graph corresponds to a given value of λ. Note

that when λ = 0, this function behaves as the classic complement, C(a) = 1−a

In 1980 Yager [18] defined the Yager Class as Cw(a) = (1−aw)1/w, w ∈ (0,∞). This

definition follows rules 1-3 and is shown in Figure 2.9.

2.5 Fuzzy Logic

That there are only two truth values, true and false, is a property of classical logic that

has been challenged for some time [20]. Fuzzy logic is built upon fuzzy set theory which

contains an infinite number of truth values. Fuzzy sets do not have crisply defined mem-

bers and can contain elements with only a partial degree of membership. Similarly, in

fuzzy logic the truth of statements is a matter of degree. The construction of traditional

truth tables to express fuzzy logic is therefore impossible. A modified version of the truth

table can be created using continuous operators. In Table 2.4, we have a truth table for a

fuzzy logic used to compute the values, allowing the calculation of truth values using the

full range of possible truth values.
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Figure 2.9: The Yager complement: Each graph corresponds to a given value of w. Note

that when w = 1, this function behaves as the classic complement, C(a) = 1−a

2.5.1 Linguistic variables

A variable in the classic sense is a placeholder that can take on any value defined in its

universe of discourse. So for example, to describe the temperature of a room, the variable

would be temperature and the value would be a number, such as 25°C. The equivalent in

fuzzy logic is called a linguistic variable. A linguistic variable differs in that in addition

to accepting a crisp number as input, it also has any number of fuzzy terms defined over

its universe of discourse. To continue the temperature example, the linguistic variable

would be temperature while the terms are fuzzy sets such as, low, medium, high, etc.

A term, or linguistic label, is a fuzzy set that describes a fuzzy concept and is defined

on the universe of discourse of its parent linguistic variable, i.e.

{term1, term2, . . . , termn} ⊂ variable, (2.7)

where ⊂ indicates that terms are subsets of a variable.

If one wanted to capture the meaning of medium, a fuzzy set would be constructed

which maps temperatures to membership values using a membership function. Each

point in the graph would correspond to a specific temperature’s membership in the term

medium. The following is a possible definition, shown graphically in Figure 2.10.
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Table 2.4: Fuzzy logic truth tables

A B T (A,B) S(A,B)

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1
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Figure 2.10: Definition for the medium term
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Figure 2.11: Linguistic variable (Temperature) defined with terms low, medium, and high.

If one were to define more terms for temperature, the graph shown in Figure 2.11

could be produced. It can be seen that three terms have been defined; low, medium, and

High. Triangular and trapezoidal membership functions have been used in this example,

but are not by no means required for the definition of terms. Many other membership

functions can be used, including Gaussian and sigmoidal functions. For example, the

Gaussian function is defined as

f (σ,c) = e
−(x−c)2

2σ2 , (2.8)

where c and σ are the mean and variance of the function.

Figure 2.11 shows three terms that create a fuzzy partition on the variable Temper-

ature; the maximum value for a term is a zero value for all other terms and the sum of

membership for each temperature in each term is one. These two properties are generally

found in variables that use triangular and trapezoidal membership functions, but are not a

requirement. For Gaussian membership functions these properties do not hold.

2.5.2 Fuzzy Hedges

There are two ways to create the terms of a linguistic variable. The first is to simply

define them from the beginning. The second method is to modify an existing term and
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Figure 2.12: Hedge sample: very close to 25, the dash line is the definition for close while

the solid line is defined for very close.

is generally referred to as a hedge or linguistic modifier. For instance, if the term low

is already defined and the term very low is required, it is not necessary to create the

definition from scratch, rather the term low can be mathematically altered by the hedge

very to create the new term. This definition would depend on the situation; for example,

it could be quite different for temperature than distance. A possible definition for very is

to square the term being modified, i.e. very(A) = A2.

If A is the fuzzy set close to 25 °C from the example in Equation 2.9,

µA(x) =
1

1+ (x−25)2

25

, (2.9)

then the term very close to 25 would be

µvery(A)(x) =

(
1

1+ (x−25)2

25

)2

. (2.10)

This is shown graphically in Figure 2.12.

There are many different classes of hedges, such as powered hedges [21] and shifted

hedges [22]. Each has its own benefits and should be chosen to suit the task at hand.

Hedges are a useful tool in that a wide range of terms can be created in a standard way.

This allows an expansion of available terms with little extra effort.
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2.5.3 Fuzzy propositions

Once fuzzy variables and terms have been defined, a method which used to connect a

variable with an associated term is accomplished using a fuzzy proposition representing

a statement such as temperature is cold where cold is a term defined on the universe

of discourse of variable temperature. The method used to evaluate this proposition is

reviewed in Section 2.5.5. Fuzzy propositions are the structure that all fuzzy reasoning is

built.

2.5.4 Logical connectives

Fuzzy propositions can be strung together to form more complex statements. When this

occurs with propositions on different universes, a relation is formed. Consider the propo-

sition p:

P : x1 is A1 and x2 is A2, (2.11)

where A1 and A2 have membership functions µA1
(x1) and µA2

(x2), respectively. A fuzzy

relation P can represent this proposition with the membership function

µP(x1,x2) = T (µA1
(x1),µA2

(x2)), (2.12)

where T is any general T-norm that represents the and connective. A T-conorm is used to

implement the or connective and must be compatible with the T-norm selected, i.e. they

must be T-dual. The three most used operators are from Zadeh [2], Lukasiewicz [16] and

the probabilistic functions (in Table 2.5):
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Table 2.5: Three most used operators (and and or connectives) from Zadeh, Lukasiewicz,

and Probabilistic

Source and or

Zadeh min(a,b) max(a,b)

Lukasiewicz max(a+b−1,0) min(a+b,1)

Probabilistic ab a+b−ab

When the propositions are related to the same universe of discourse, the relation re-

duces to a one dimensional fuzzy set.

2.5.5 Fuzzy rules

Fuzzy rules are used to create the conditional statements that form the backbone of fuzzy

logic and approximate reasoning. A simple fuzzy rule has the form

if A then B

or using classical logic notation,

A → B.

Either way, this denotes an implication operation from the antecedent or premise A to

the consequent B. This is shorthand for the more specific,

if x is A then y is B,

which is a fuzzy rule made up of two propositions. It is possible to fashion a rule from

multiple premises and consequents, resulting in a form similar to

if x1 is A1 and . . . xn is An then y1 is B1 and . . . ym is Bm,

where the connective used is and but could be any valid connective operator. More

detail can be obtained from the comprehensive text by Zadeh [23]).

A fuzzy rule is by nature a relation between the premise and consequent. As such, a

fuzzy rule

if x1 is A1 and x2 is A2 then y is B,
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can be written in another form as the relation R:

R = I(T (A1,A2),B), (2.13)

where T is any T-norm and I is the implication function.

Classical logic allows only one implication function (Table 2.2), but for fuzzy sets and

logic an infinite number of implications are possible. Zadeh [23] defined the implication

as

A → B = A×B, (2.14)

where × indicates the Cartesian product of two fuzzy sets,

A×B =
∫

U×V
T (µA(u),µB(v))/(u,v), (2.15)

where U and V are crisp sets and U ×V denotes their Cartesian product,

U ×V = (u,v)|u ∈U,v ∈V . (2.16)

Therefore A → B results in a relation on the Cartesian product of the two universe A

and B where each tuple has a membership grade given by the T-norm applied to the given

inputs. There are a number of commonly used implication operators, such as S-, QL-,

and R-implications. Each of these can be classified as belonging to either of two classes

of implications: conjunction and disjunction. A thorough review of fuzzy implications is

given by Dubois & Prade [24]. When more than one rule has been defined, an additional

relation can be produced that defines an entire rulebase. Aggregation is the process by

which the relation is constructed. If we have n rules and m premises per rule given by [24]

r1 : if x1 is A1,1 and . . . xm is Am,1 then y is B1

rk : if x1 is A1,k and . . . xm is Am,k then y is Bk

rn : if x1 is A1,n and . . . xm is Am,n then y is Bn

then the relation for the rulebase can be given as an aggregation,

R =
⋃
k

Rk. (2.17)
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Figure 2.13: The region for fuzzy output which is to be defuzzified.

Here the implication used is a classical conjunction. If the implication function is a dis-

junction, the relation becomes a conjunction given by

R =
⋂
k

Rk. (2.18)

Equation 2.17 and 2.18 show that the aggregation of fuzzy rules is dependent on the class

of implication used to create the relation.

2.5.6 Defuzzification

The term defuzzification is a process to present the output of the reasoning in human un-

derstandable form of the fuzzy system. There are two principal classes of defuzzification,

arithmetic defuzzification and linguistic approximation. Suppose we have a region to be

defuzzified as shown in Figure 2.13.

The most popular defuzzification method used in applications is centroid (or centre of

gravity), height, and modified height defuzzification. Centroid returns the centre of area

under the curve. If we consider the area as a plate of equal density, the centroid is the

point along the x axis about which this shape would balance. The Bisector is the vertical

line that will divide the region into two sub-regions of equal area. It is sometimes, but
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Figure 2.14: The output crisp values defuzzified by SOM, MOM, LOM, bisector, and

centroid defuzzification methods.

not always same value as from the centroid. Middle of Maximum (MOM), Smallest of

Maximum (SOM), and Largest of Maximum (LOM) key off the maximum value assumed

by the aggregate membership function. In Figure 2.13 because there is a plateau at the

maximum value, they are distinct. If the aggregate membership function has a unique

maximum, then MOM, SOM, and LOM all take the same value. Examples of all of these

methods mentioned above are shown in Figure 2.14

2.6 Fuzzy Inferencing Systems (FIS)

Fuzzy inference systems (FIS) are also known as fuzzy models, fuzzy rule-based systems

and perhaps the more well known fuzzy controllers. There are two main types of FISs,

Mamdani and Takagi & Sugeno. The Mamdani method [25] expects the output member-

ship functions to be fuzzy sets that results in the possible need for a defuzzification stage

in the inference process to convert the fuzzy output into a crisp output. In the Takagi

& Sugeno method [26] the output membership functions are singletons, or spikes. This

method uses a combination of linear systems to approximate a nonlinear system. The
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entire input space is broken down into a number of partial fuzzy spaces with the output

space represented as a linear equation. The Takagi & Sugeno method greatly reduces the

computation required in defuzzification, which increases the efficiency of a fuzzy system.

The fuzzy logic inference process consists of fuzzifier, rules, inference engine, and

defuzzifier as shown in Figure 2.15. As shown in Figure 2.15, crisp inputs are first fuzzi-

Rules

Fuzzifier

Inference Engine

Defuzzifier
Crisp
Inputs

x

Crisp
Output

y

Fuzzy
Input sets

Fuzzy
Output sets

Figure 2.15: Machanism of type-1 fuzzy logic system

fied into fuzzy input sets. In inference engine, fuzzy logic principles are used to combine

fuzzy IF-THEN rules from the fuzzy rule base into a mapping from fuzzy input sets to

fuzzy output sets. Each rule is interpreted as a fuzzy implication. Finally, a defuzzifier

produces a crisp output for fuzzy system from the fuzzy output set(s) from the inference

engine.

2.7 Fuzzy Reasoning

Fuzzy reasoning is a body of procedures to represent various assertions about a system

of interest, quantify or qualify their validity, and derive the estimation decisions based

on imprecise data [23]. It has been used to perform well in situations where classical

tools have not, particularly when complexity and imprecision are vital. Fuzzy reasoning

is the process of deriving conclusions based on a set of fuzzy rules and given facts. There

are at least six different type of fuzzy reasoning and Li [27] provides an analysis of the

suitability of various methods.

In mathematical terms, the implication function defines a relation between a given
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premise and its consequent. What happens when a given premise is different from that

which the relation is specifically created for? Consider the following two statements:

x is very f ast (2.19)

and

i f x is f ast then y is large. (2.20)

This leads naturally to the question of how to determine the value for y given the state-

ment 2.19 and the relation in 2.20. Fuzzy and approximate reasoning are built upon such

inferences.

An alternative way of conceptualising fuzzy reasoning is as the application of expert

knowledge to decision making. Fuzzy reasoning is based on fuzzy if-then rules that con-

tain all the knowledge that is used to make decisions in fuzzy reasoning. For further infor-

mation, see the thorough review by Turksen [28] and additional material by Zadeh [29]

and Castro et al. [30].

2.7.1 Compositional rule of inference

The characterization of implication relations between statements about the values of sys-

tem variables are of particular importance is fuzzy reasoning application. In typical sys-

tem analysis applications, the relation between two variables, A and B, is expressed by a

function f mapping each value x of A into a value y of B. This situation is catered for by

the compositional rule of inference, introduced by Zadeh in 1973 [23]. If R is a relation

from A to B and x is a fuzzy subset of A, the fuzzy subset y of B that is induced by x is

given by

y = x◦R, (2.21)

which is the composition of R and x. If the max-min composition is being used, the

membership function for y in B is given by

µB(y) = maxx(min(µA(x),µR(x,y))). (2.22)
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2.7.2 Generalised modus ponens

The result of application of the compositional rule of inference to a fuzzy dependence

relation between two fuzzy propositions is called the generalised modus ponens [31]. The

generalised modus ponens is a generalised version of the modus ponens from classical

logic and is based on an if-then construct as follows,

if x is A then y is B

x is Á

———————

y is B́

where Á represents the input data and B́ the inferred result. This implies that given an

if-then rule and a premise, the outcome can be determined. As a simple example, con-

sider the saying what goes up must come down which can be written as if it goes up then

it will come down. Using modus ponens it is possible to make the observation it went up

and infer it will come down. This inference can be defined by the compositional rule of

inference but is not limited to it. Other inference schemes are possible using modus po-

nens but not the compositional rule of inference as shown by Jager [32]. ‘The generalised

modus ponens is one of the many inferential procedures that may be employed to derive

valid conclusions from valid premises in fuzzy logic. Depending on the particular notion

of validity being employed or on the scheme chosen to measure degrees of truth, related

expressions may be employed to proceed from premises to conclusions, Furthermore,

other valid inferential procedures have been developed generalizing the classical inferen-

tial methods known as generalized modus tollens and the resolution principle.’ stated by

E.H. Ruspini et al [31]. Further details on fuzzy reasoning can be found in many texts,

see for example in Fuzzy Logic and Fuzzy Reasoning by [33].

2.8 Type-2 Fuzzy Sets and Systems

As just discussed, fuzzy (type-1) logic was introduced by Lotfi Zadeh in 1965 [2] to

resemble human reasoning in its use of approximate information and uncertainty to gen-

erate decisions. It was specifically designed to mathematically represent uncertainty and

vagueness and provide formalised tools for dealing with the imprecision of many real
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problems. Since knowledge can be expressed in a more natural by using fuzzy sets, many

decision problems can be greatly simplified.

Although many applications have been found for type-1 fuzzy logic, it is its applica-

tion to rule-based systems that has most significantly shown its importance as a powerful

design methodology, but yet it is unable to model and minimize the effects of all uncer-

tainties. Thus, type-2 fuzzy logic should be introduced to handle uncertainties because

it can model them and minimize their effects. Figure 2.16 shows a type-2 fuzzy logic

system.

The concept of (general) type-2 fuzzy sets is also introduced by Lotfi Zadeh in 1975.

Zadeh [34] proposed ‘fuzzy sets with fuzzy membership functions’ as an extension of the

concept of an ordinary, i.e. type-1, fuzzy set and went on to define fuzzy sets of type n, n =

2, 3, ..., for which the membership function ranges over fuzzy sets of type n - 1 [4]. Type-

2 fuzzy sets can model uncertainties better and minimize their effects. The use of type-2

sets was advocated and extended by people: Dubois and Prade gave a formula for the

composition of type-2 relations as an extension of the type-1 sup-star composition for the

minimum t-norm [5], Mizumoto and Tanaka studied the set theoretic operations of type-

2 sets and properties of membership degrees of such sets [7] and examined type-2 sets

under the operations of algebraic product and algebraic sum [8], etc. However, their use

in practice has been limited due to the significant increase in computational complexity

involved in their implementation.
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Figure 2.16: Diagram of type-2 fuzzy logic system

Recently, Mendel has established a set of terms to be used when working with type-2

fuzzy sets and, in particular, introduced a concept known as the footprint of uncertainty

which provides a useful verbal and graphical description of the uncertainty captured by

any given type-2 set. Mendel has particularly concentrated on a restricted class of general
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type-2 fuzzy sets known as interval type-2 fuzzy sets [1]. Interval type-2 sets are charac-

terised by having secondary membership functions which only take the values in {0, 1}.

This restriction greatly simplifies the computational requirements involved in perform-

ing inference with type-2 sets. Mendel and John developed a simple method to derive

union, intersection, and complement, and computational algorithms for type reduction

(necessary for type-2 defuzzification) [9].

2.9 General (non-interval) Type-2 Fuzzy Logic Systems

The aim of the remainder of this chapter is to present an overview of the important con-

cepts in type-2 fuzzy logic systems. A type-2 FLS is constructed by the same structure

of type-1 IF-THEN rules, which is still dependent on the knowledge of experts. Expert

knowledge is always represented by linguistic terms and implied uncertainty, which leads

to the rules of type-2 FLSs having uncertain antecedent part and/or consequent part:,

which are then translated into uncertain antecedent or consequent MFs. The structure of

rules in the type-2 FLS and its inference engine is similar to those in type-1 FLSs [1]. The

inference engine combines rules and provides a mapping from input type-2 fuzzy sets to

output type-2 fuzzy sets. To achieve this process, we must find unions and intersections of

type-2 sets, as well as compositions of type-2 relations. The output of the type-2 inference

engine is a type-2 fuzzy set. Using Zadeh’s extension principle [34], type-1 defuzzifica-

tion can derive a crisp output from type-1 fuzzy set; similarly, for a higher type set as

type-2, this operation reduces the type-2 fuzzy sets to type-1 fuzzy sets. This process is

usually called ‘type reduction’. The complete type-2 fuzzy logic theory with the handling

of uncertainties, such as the operations on type-2 fuzzy sets, centroid of a type-2 fuzzy

sets, type-reduction, and etc., can be found in [9, 35–42].

2.9.1 General Type-2 Fuzzy Sets

Type-2 fuzzy sets were firstly defined by Zadeh [34]. A type-2 fuzzy set is characterized

by a fuzzy membership function, i.e. membership value or membership grade for each

element of this set is a fuzzy set in [0,1], whereas the membership grade of type-1 fuzzy

set is crisp value in [0,1]. Mendel [1] defines the definitions of type-2 fuzzy sets as:
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Definition 2.9.1 Ã denotes a type-2 fuzzy set; µÃ(x,u) denotes the membership function

in the type-2 fuzzy set Ã, where x ∈ X and u ∈ Jx ⊆U = [0,1], i.e. [1]

Ã = {((x,u),µÃ(x,u))|∀x ∈ X ,∀u ∈ Jx ⊆U = [0,1]} (2.23)

where 0 ≤ µÃ(x,u)≤ 1.

Ã can also be expressed as

Ã =
∫

x∈X

∫
u∈Jx

µÃ(x,u)/(x,u) Jx ⊆U = [0,1] (2.24)

where
∫

denotes union over all admissible x and u. For discrete universes of discourse,

use ∑ instead of
∫

.

Definition 2.9.2 At each value of x, say x = x′, the 2-D plane whose axes are u and

µÃ(x,u) is called a vertical slice of µÃ(x,u). A secondary membership function is vertical

slice of µÃ(x,u). It is µÃ(x = x′,u) for x ∈ X and u ∈ Jx ⊆U = [0,1], i.e. [1]

µÃ(x = x′,u) = µÃ(x
′) =

∫
u∈Jx′

fx′(u)/u Jx ⊆U = [0,1] (2.25)

Using Equation 2.25, we can also re-express Ã as a vertical slice manner, i.e.

Ã = {(x,µÃ(x,u)|∀x ∈ X} (2.26)

or,

Ã =
∫

x∈X
µÃ(x)/x =

∫
x∈X

[∫
u∈Jx′

fx(u)/u

]
/x Jx ⊆U = [0,1]

where
∫

denotes union over all admissible x and u. For discrete universes of discourse,

use ∑ instead of
∫

as:

Ã = ∑
x∈X

µÃ(x)/x = ∑
x∈X

⌊

∑
u∈Jx

fx(u)/u

⌋
/x Jx ⊆U = [0,1] (2.27)

Definition 2.9.3 The domain of a secondary membership function is called the primary

membership grade of x. In Equation 2.27, Jx is the primary membership function of x.

where Jx ⊆ [0,1] for ∀x ∈ x [1].

Again in Equation 2.27, fx(u) is called secondary membership grade, which is the

amplitude of the secondary membership function.
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2.9.2 The Footprint of Uncertainty

The use of type-2 fuzzy sets in practice has been limited due to the significant increase

in computational complexity involved in their implementation. Mendel introduced an

important concept related to uncertainty, called the term ‘footprint of uncertainty’ (FOU),

which consists of a bounded region with uncertainty in the primary membership of a

type-2 fuzzy set [1]. The FOU is the union of all primary memberships. i.e.,

FOU(Ã) =
⋃
x∈X

Jx (2.28)

The term FOU is very useful and was introduced to provide a very convenient verbal

description of the entire domain of support for all the secondary grades of a type-2 mem-

bership function.

As examples of a FOU is the shaded region in Figure 2.17 and 2.18. The FOU is

shaded uniformly to indicate that it is for an interval type-2 fuzzy set; thus, a uniformly

shaded FOU also represents the entire interval type-2 fuzzy set. Figure 2.17 represents

the FOU for Gaussian primary membership function with uncertain centre point, while

Figure 2.18 represents the FOU for Gaussian primary membership function with uncertain

standard deviation.

2.9.3 Embedded Type-1 and Embedded Type-2 Fuzzy Sets

Besides the FOU, there are two other important concepts to illustrate how to construct

type-2 fuzzy sets with embedded type-1 and type-2 fuzzy sets. Mendel [1] uses these to

help understand why it is so complicated to use type-2 fuzzy sets. A type-2 fuzzy set Ã can

be considered as a collection of type-2 fuzzy sets Ãe, where Ãe, is also called embedded

type-2 fuzzy set in Ã. Furthermore, an embedded type-1 set Ae can be thought of as the

union of all primary memberships of set Ãe.

For continuous universe of discourse X and U ,

• Embedded type-1 fuzzy set Ae, is [1]

Ae =
∫

x∈X
θ/x θ ∈ Jx ⊆U = [0,1] (2.29)
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Figure 2.17: Footprint of Uncertainty for Gaussian primary membership function with

uncertain centre point.
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Figure 2.18: Footprint of Uncertainty for Gaussian primary membership function with

uncertain standard deviation.
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• Embedded type-2 fuzzy set Ãe, is [1]

Ãe =
∫

x∈X
[ fx(θ)/θ]/x θ ∈ Jx ⊆U = [0,1] (2.30)

where only one primary membership θ ∈ Jx of Ãe each x has an associated secondary

membership function fx(θ).

For continuous domains, both Ae, and Ãe are an uncountable number. For discrete

universes of discourse X and U , use ∑ instead of
∫

. According to embedded type-1 and

type-2 definitions, there exist ⊓N
i=1MiAe and ⊓N

i=1MiÃe, respectively.

2.9.4 Inference Process of General Type-2 Fuzzy Logic Systems

The structure of the lth type-2 rule in a general type-2 system is: [1]

Rl : IF x1 is F̃ l
1 and x2 is F̃ l

2 , and, · · · , and xn is F̃ l
n T HEN y is G̃l (2.31)

where l = 1,2, · · · ,M and type-2 fuzzy relation Rl can be expressed by membership func-

tion as: [1]

µRl(
x
→,y) = µF̃ l

1×F̃ l
2×...F̃ l

n→G̃l(
x
→,y)

µRl(
x
→,y) = µF̃ l

1
(x1)⊓·· ·⊓µF̃ l

n
(xn)⊓µG̃l(y)

µRl(
x
→,y) =

[
⊓n

k=1µF̃ l
k
(xk

]
⊓µG̃l(y) (2.32)

where ⊓ denotes operation, whereas join and meet operations denoting by ⊔ and ⊓ will

be used in equations 2.35 and 2.36, respectively. They are defined and explained in detail

in [36, 43]. Type-2 union and intersection operations with their related join and meet

operations are briefly explained as follows. Let two type-2 fuzzy sets Ã and B̃ are: [1]

Ã =
∫

x∈X
µÃ(x)/x =

∫
x∈X

[∫
u∈Ju

x

fx(u)/u

]
/x Ju

x ⊆ [0,1] (2.33)

and

B̃ =
∫

x∈X
µB̃(x)/x =

∫
x∈X

[∫
u∈Ju

x

gx(u)/u

]
/x Ju

x ⊆ [0,1] (2.34)
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The union of secondary membership functions of Ã and B̃ are given by [1]

µÃ∪B̃(x) =
∫

u∈Ju
x

∫
w∈Jw

x

fx(u)•gx(w)/(u∨w) = µÃ(x)⊔µB̃(x), x ∈ X (2.35)

where ∨ means maximum, and • means minimum or product t-norm. The intersection of

secondary membership function of Ã and B̃, is: [1]

µÃ∩B̃(x) =
∫

u∈Ju
x

∫
w∈Jw

x

fx(u)•gx(w)/(u∧w) = µÃ(x)⊓µB̃(x), x ∈ X (2.36)

where ∧ means any kind of t-norm.

According to the two operations stated above, meet and join should be used between

two secondary membership function, i.e. µÃ(x) an µB̃(x); whereas u∨w or u∧w must be

computed between every possible pair of primary membership functions u and w, where

u ∈ Ju
x and w ∈ Jw

x .

Also the secondary membership of µÃ∪B̃(x) or µÃ∩B̃(x) must be computed as the t-

norm operation between the corresponding secondary memberships of µÃ(x) and µB̃(x),

fx(u) and gx(w), respectively.

The n-dimensional type-2 input fuzzy set µÃx
whose membership function is [1]

µÃx
= µX̃1

(x1)⊓·· ·⊓µX̃n
(xn) = ⊓n

k=1µX̃k
(xk) (2.37)

where X̃i · · · i = 1, · · · , n are the fuzzy inputs.

The output µB̃l of the type-2 fuzzy set can be derived from B̃l = Ãx ◦Rl , such that [1]

µB̃l(y) = µÃx◦Rl(y) = ⊔x∈X

[
µÃx

(
x
→)⊓µRl(

x
→,y)

]
(2.38)

where y ∈ Y, l = 1, · · · , M.

By substituting Equations 2.32 and 2.37 into 2.38, it can be shown that [1]

µB̃l(y) = µÃx◦Rl(y) = ⊔x∈X

[
µÃx

(
x
→)⊓µRl(

x
→,y)

]
(2.39)

where y ∈ Y . Let

µQ̃l
k
(xk) = µX̃k

⊓µF̃k
(xk). (2.40)

Then,

µB̃l(y) = µ
G̃l(y)⊓

{
⊔ x
→∈X

[
⊓n

k=1µQ̃l
k
(xk)

]}
, y ∈ Y. (2.41)
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Then let

F l = ⊔ x
→∈X

[
⊓n

k=1µQ̃l
k
(xk)

]
(2.42)

so that

µB̃l(y) = µ
G̃l(y)⊓F l, y ∈ Y (2.43)

Similar to a type-1 fuzzy logic system, F l is also referred to as the firing strength. For

singleton input, each µX̃i
(xi) is non-zero only at one point, xi = x́i, so that equation 2.43

can be expressed as [1]

µB̃l(y) = µ
G̃l(y)⊓

{[
⊔µX̃1

(x́1)⊓µF̃1
(x́1)

]
⊓·· ·⊓

[
⊔µX̃n

(x́n)⊓µF̃n
(x́n)

]}

µB̃l(y) = µ
G̃l(y)⊓

{[
(1/1)⊓µF̃1

(x́1)
]
⊓·· ·⊓

[
(1/1)⊓µF̃n

(x́n)
]}

µB̃l(y) = µ
G̃l(y)⊓

[
⊓n

k=1µF̃1
(x́1)

]
, y ∈ Y (2.44)

In practice, a fuzzy logic system is a type-2 system as soon as at least one of its

antecedent or consequent sets is a type-2 fuzzy set. Even a fuzzy logic system whose

type-2 rules are activated by type-2 input is also called a type-2 fuzzy logic system.

2.9.5 Type Reduction and Defuzzification in General Type-2 Fuzzy

Logic Systems

The defuzzifier of a type-1 FLS combines all fired output sets in some method to derive

a crisp output result to represent the combined output set [6, 37]. For type-1 defuzzifi-

cation methods, all the antecedent and consequent sets are type-1 sets; whereas for the

type-reduction methods for type-2 FLS in Figure 2 some or all of the antecedent and

consequent sets are type-2 fuzzy sets. The output set corresponding to each rule of the

general type-2 FLS is a type-2 fuzzy set. Similar to the defuzzifier of type-1 FLS, type-2

FLS performs a centroid computation on all these output type-2 sets. The results of this

process obtain a type-2 fuzzy set that is called the ‘type-reduced’ set. Consequently, each

element of the type-reduced set can be taken as the centroid of some type-1 set embed-

ded in the output set of the type-2 FLS. According to this concept, each of these type-1
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embedded sets can be thought of many different type-1 FLSs. Each of such type-1 FLSs

is embedded in the type-2 FLS, so the type-reduced set is a collection of the outputs of

all type-1 FLSs embedded in the type-2 FLSs. As a result, using a fuzzy set to represent

the output of the type-2 FLS is rather more complex than using a crisp number, i.e. the

type-reduced set (type-1) many possesses more important information than a single crisp

number.

The type-reduced output also can be interpreted as providing a measure of spread

about the defuzzified output (i.e. crisp output) and can be thought of as a linguistic con-

fidence interval, i.e. this confidence can be an interval supporting beliefs of different

experts. Due to uncertainties in the type-2 membership function, the type-reduced set of

the type-2 FLS can then be thought of as representing the uncertainty in the crisp output.

Some measure of the spread of the type-reduced set may be taken to indicate the possi-

ble variation to the crisp output due to variations in the membership function parameters.

Finally, the type-reduced set can be defuzzified to get a crisp output from the type-2 FLS

that is called defuzzification in type-2 FLS.

To derive its centroid CA from a type-1 set A in a discrete domain can be described

as: [1]

CA =
∑

N
i=1 xiuA(xi)

∑
N
i=1 uA(xi)

(2.45)

Similarly, to derive the centroid CÃ of type-2 fuzzy set Ã = {(x,µÃ(x,u)|∀x ∈ X}

whose x domain is also discretized into N points as: [1]

Ã =
N

∑
i=1

[∫
u∈Jxi

fxi
(u)/u

]
/xi (2.46)

Then CÃ can be a type-1 fuzzy set defined as follows: [1]

CÃ =
∫

θ1∈Jx1

...
∫

θN∈JxN

[ fx1
(θ1)∗ ...∗ fxN

(θN)]/
∑

N
i=1 xiθi

∑
N
i=1 xi

(2.47)

From the definition of an embedded type-2 fuzzy set in Equation 2.30, every com-

bination of θ1, · · · , θn and its associated secondary grade fx1
(θ1) ∗ · · · ∗ fx1

(θn) forms an

embedded type-2 set Ãe in Equation 2.46. Each element of CÃ is determined by com-

puting the centroid of the embedded type-1 fuzzy set Ae that is associated with Ãe and

computing the t-norm of the secondary membership functions with θ1, · · · , θn, namely
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fx1
(θ1)∗ · · · ∗ fx1

(θn). [1]

CÃ =
∑

N
i=1 xiθi

∑
N
i θi

(2.48)

Therefore by computing all this for all embedded type-2 sets in Ã, the complete cen-

troid CÃ can be derived [1]. A practical sequence of computations to derive CÃ is as

follows:

1. Discretise the x-domain into N points x1, · · · , xN .

2. Discretise each Jx j
(the primary memberships of x j) into a reasonable number of

points, M j, where j = 1, · · · , N.

3. Enumerate all embedded type-1 sets; there will be ⊓N
j=1M j of them to compute CÃ.

The computation in equation 2.45 of centroid of type-1 fuzzy set can be re-stated as

a general form (as shown in Equation 2.49), where vl ∈ ℜ (real numbers), and wi ∈ [0,1]

for l = 1, · · · , N [1].

y(v1, · · · ,vN w1, · · · ,wN) =
∑

N
l=1 vlwl

∑
N
l wl

(2.49)

For most of type-1 defuzzification, wl becomes a type-2 set and vl is crisp number,

and Equation 2.49 will be no problem to fit. Nevertheless, the centre-of-sets defuzzifier

of type-1 extends to centre-of-sets type reduction of type-2 set that requires both vl and

wl to become type-1 sets. Then the general form for computing this centroid is called

a generalised centroid [6, 38], and it is essential knowledge for type-2 to interpret type

reduction. The general centroid (GC) is

GC =
∫

vl∈Vl

· · ·
∫

vN∈VN

∫
wl∈Wl

· · ·
∫

wN∈WN

[
T N

l=1µvl
(vl)∗T N

l=1µwl
(wl)

]
/

∑
N
l=1 vlwl

∑
N
l wl

(2.50)

where T is short from of t-norm and ∗ is t-norm operator.

Compared to the practical sequence of centroid computations in Equation 2.45, GC

will be more complex in computing. It needs to discretise both vl and wl to the suitable

number of points, Ml and Nl , respectively. In total, the number of computations will be

⊓N
j=1M jN j. There are four major type reduction methods which are described as follows:
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• Centroid type reduction : Similar to the centroid defuzzifier to type-1, the union

of type-2 fuzzy sets in equation 2.35 firstly requires computing the join of their sec-

ondary membership functions; i.e. to compute the secondary membership function

µB̃(y) from B̃ =
⋃M

l=1 B̃l , as [1]:

µB̃(y) = ⊔M
l=1µB̃(y), ∀y ∈ Y (2.51)

where µB̃(y) is the secondary membership function for the lth rule, and it depends

on many factors such as join, meet, and embedded sets in equations 2.29 and 2.30,

respectively. The centroid type reduction calculates the centroid of B̃. Then ex-

tension from type-1 centroid defuzzifier to type-2 centroid type reduction can be

shown as:

µB̃(y) = ⊔M
l=1µB̃(y), ∀y ∈ Y (2.52)

where i = 1, · · · , N. For different fuzzy logic system inputs, different values of

yc(
x
→) will be derived. Similarly the sequence to compute this process, the y-

domain is discretized into N points y1, · · · , yN and then Jyi
, is discretized into a

suitable number of points Mi(i = 1, · · · , N). The total number of computations is

⊓N
i=1Mi. However, this process needs to compute µB̃(y) firstly (i.e. combined from

all output sets to form one B̃) that is high computationally intensively. Mendel [1]

notes that the centroid type-reduction here must use minimum t-norm to perform.

• Height type reduction: The extension from type-1 height defuzzifier to type-2

height type reduction can be described as [1]

µB̃(y) = ⊔M
l=1µB̃(y), ∀y ∈ Y (2.53)

where l = 1, · · · , M. The ȳl is the point having maximum membership in the lth

output set and θl, Jȳl and fȳl(∀l) are associated with µB̄l(ȳl). The sequence to ob-

tain yh(
x
→) is firstly to choose ȳl from each rule output, then discretise the primary

membership of each µB̄l(ȳl) into a suitable number of points Ml where l = 1, · · · , M,

i.e. rule number. In total there will be ⊓N
l=1Ml computations. Compared to centroid

type reduction, the difference is that the discretised number of points on the hori-

zontal axis uses the number of rules M instead of N.
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• Modified height type reduction: The extension from type-1 modified height de-

fuzzifier to type-2 modified height type reduction can be shown as: [1]

µB̃(y) = ⊔M
l=1µB̃(y), ∀y ∈ Y (2.54)

where all symbols denote the same things as in Equation 2.53. The only difference

between the modified height type-reduction and the height type-reduction is that

each output set secondary membership function, µB̄l(ȳl), in the modified height

type-reduction is scaled by 1/(δl)2.

• Centre-of-Sets type reduction: Similar to center-of-sets defuzzified of type-1 fuzzy

logic system, the extension to type-2 center-of-sets type reduction needs to replace

each type-2 consequent set, Ḡl , by its centroid, CG̃l (a type-1 set); and finds a

weighted average of these centroids. The firing strength corresponding to the lth

rule is ⊓N
i=1µF̄l

(xi), indicated by Wl , i.e. using meet operation for type-2 to replace

T n
i=1µF l

i
(xi) of type-1 center-of-sets defuzzified. Wl is also a type-1 fuzzy set. Then

the center-of-sets centroid can be described by a generalized centroid expression

as: [1]

ycos(
x
→) =

∫
vl∈C

G̃1

· · ·
∫

vM∈C
G̃M

∫
w1∈W1

· · ·
∫

wM∈WM

[
T M

l=1µvC
G̃1
(vl)∗T M

l=1µwl
(wl)

]
/

∑
M
l=1 vlwl

∑
M
l wl

(2.55)

To obtain ycos(
x
→), a practical sequence is described as below: [1]

1. Discretise its output space Y and compute its centroid CG̃l for each consequent

using Equation 2.47.

2. Compute the firing strength Wl for each rule.

3. Discretise the domain of each type-1 fuzzy set CG̃l and Wl into a suitable

number of points as Nl and Ml(l = 1, · · · , M), respectively.

4. Enumerate all the possible combinations. The total number of combinations

will be ⊓M
l=1MlNl .

5. Compute the centre-of-sets type reduction using Equation 2.55 with M, CG̃l ,

and Wl .
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2.10 Interval Type-2 Fuzzy Logic Systems

According to the process of Equations 2.35 and 2.36, the operations of general type-2

fuzzy sets become computationally intensive due to the necessity to perform every pair

of type-2 fuzzy sets. Especially, the number of its embedded type-1 fuzzy sets will be

massive while it is a continuous universe of discourse. In [1], [39], and [44], it is suggested

that there is good reason to implement type-2 fuzzy logic systems by using interval type-

2 sets, for which it is relatively easy to compute meet and join operations and perform

type-reduction. It also distributes the uncertainty evenly among all acceptable primary

memberships.

2.10.1 Interval Type-2 Fuzzy Sets

When fx(u) = 1, ∀u ∈ Jx ⊆ [0,1] in equation 2.27, then the secondary membership func-

tions are interval sets such that µÃ(x) can be called an interval type-2 membership func-

tion [1]. Therefore the type-2 fuzzy set Ã can be shown as: [35]

Ã =
∫

x∈X
µÃ(x)/x =

∫
x∈X

[∫
u∈Jx

1/u

]
/x Jx ⊆U = [0,1] (2.56)

A Gaussian primary membership function with uncertain mean and fixed standard de-

viation having an interval type-2 secondary membership function can be called an interval

type-2 Gaussian membership function as in equation 2.57. The interval type-2 Gaussian

membership function with an uncertain mean in [m1,m2] and fixed standard deviation, σ

is: [35]

µÃ(x) = exp

[
−

1

2

(
x−m

σ

)2
]
, m ∈ [m1,m2] (2.57)

It is obvious that the type-2 fuzzy set is in a region, called the footprint of uncertainty

(FOU), and bounded by an upper and lower membership function [44], which are denoted

as µÃ(x) and µ
Ã
(x), respectively. Both of these are type-1 membership functions. Hence

equation 2.56 can be re-expressed as: [35]

Ã =
∫

x∈X

[∫
u∈[µ

Ã
(x),µÃ(x)]

1/u

]
/x (2.58)
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2.10.2 Meet and Join for Interval Type-2 Fuzzy Sets

From general type-2 fuzzy sets in equations 2.33 and 2.34, let Ã and B̃ be two interval

sets F =
∫

u∈F 1/u and F =
∫

w∈F 1/w, respectively, with domains u ∈ [l f ,r f ]⊆ [0,1], and

w ∈ [lg,rg]⊆ [0,1]. The meet between F and G is Q = F ⊓G =
∫

q∈Q 1/q. Equation 2.36

can be re-stated for an interval type-2 fuzzy set as: [35]

Q = F ⊓G =
∫

q∈[l f ∗lg,r f∗rg]
1/q (2.59)

where ∗ denotes a t-norm. The join between F and G is Q = F ⊔G =
∫

q∈Q 1/q. Equa-

tion 2.35 can be re-expressed by interval type-2 fuzzy set as: [35]

Q = F ⊔G =
∫

q∈[l f ∗lg,r f∗rg]
1/q (2.60)

From equations 2.59 and 2.60, the meet and join operation of interval sets are deter-

mined just by the two end-points of each interval set, i.e. [l f ,r f ] and [lg,rg]. Also, the

two end-points are associated with type-1 membership functions referred to as upper and

lower membership functions.

2.10.3 Lower and Upper Membership Functions for Interval Type-2

Fuzzy Sets

The upper membership function is a subset that has the maximum membership grade of

the FOU and the lower membership function is a subset that has the minimum mem-

bership grade of the FOU. For interval type-2 sets, the µQ̃l
k
(xk) of equation 2.40 can be

re-described as its upper and lower membership functions as: [35]

µQ̃l
k
(xk) =

∫
ql∈

[
µ

Q̃l
k
(xk),µQ̃l

k
(xk)

] 1/q (2.61)

where µ
Q̃l

k

(xk) denotes the lower membership function, and µQ̃l
k
(xk) denotes the upper

membership function, as in equations 2.62 and 2.63, respectively [35].

µ
Q̃l

k

(xk) =
∫

Xk

[
µ

X̃k
(xk)∗µ

F̃k
(xk)

]
/xk (2.62)

µQ̃l
k
(xk) =

∫
Xk

[
µX̃k

(xk)∗µF̃k
(xk)

]
/xk (2.63)
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In the same way, the µX̃k
(xk) and µF̃k

(xk) of equation 2.40 can also be re-stated as its

upper and lower membership functions, respectively, such as: [35]

µF̃ l
k
(xk) =

∫
ul∈

[
µ

X̃ l
k
(xk),µF̃l

k
(xk)

] 1/ul (2.64)

and

µF̃ l
k
(xk) =

∫
wl∈

[
µ

F̃l
k
(xk),µF̃l

k
(xk)

] 1/wl (2.65)

2.10.4 Inference Process of Interval Type-2 Fuzzy Logic Systems

The meet operation in Equation 2.42 just involves the t-norm operation between the points

in two upper and lower membership functions, µ
Q̃l

k

(xk) and µQ̃l
k
(xk), i.e. equation 2.62

and 2.63. For all points x ∈ Xk, k = 1, · · · , n, the result can be shown as µ
Q̃l

k

(
→
x ) and

µQ̃l
k
(
→
x ),

→
x is vector for all points. The join operation in Equation 2.42 leads to join the

result from the meet operation above using the maximum value. The result F l can be an

interval type-1 set [3] as following:

F l = ⊔→
x∈X

[
⊓n

k=1µF̃ l
k
(xk)

]
=
[

f l, f
l
]

(2.66)

where

f l =
∫

X1

· · ·
∫

Xn

[
µ

X̃1
(x1)∗µ

F̃ l
1

(x1)
]
∗

...∗
[
µ

X̃n
(xn)∗µ

F̃ l
n
(xn)

]
/
→
x (2.67)

and

f
l
=

∫
X1

· · ·
∫

Xn

[
µX̃1

(x1)∗µF̃ l
1
(x1)

]
∗

...∗
[
µX̃n

(xn)∗µF̃ l
n
(xn)

]
/
→
x (2.68)

Consequently, for inference of interval type-2 fuzzy logic systems using the relation

Rl to fire consequent fuzzy sets, the output result set µB̃l(y) in equation 2.43 can be derived

as: [35]

µB̃l(y) = µ
G̃l(y)⊓F l = µ

G̃l(y)⊓
∫

f l∈
[

f l , f
l
] 1/ f l

µB̃l(y) =
∫

bl∈
[

f l∗µ
G̃l (y), f

l
∗µ

G̃l (y)
] (2.69)
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where µ
G̃l(y) and µG̃l(y) are the lower and upper membership grades of µG̃l(y). According

to equation 2.60 the join of these n interval output sets can be obtained straightforwardly

as: [35]

µB̃l(y) =
∫

b∈
[
[ f 1∗µ

G̃l (y)]∨···∨[ f N∗µ
G̃N (y)],

[
f

1
∗µ

G̃l (y)
]
∨···∨

[
f

N
∗µ

G̃N (y)
]] 1/b. (2.70)

For a singleton input, f l and f
l

in Equations 2.67 and 2.68 can be simplified as: [35]

f l = µ
F̃ l

1

(x1)∗ · · · ∗µ
F̃ l

n
(xn) (2.71)

and

f
l
= µF̃ l

1
(x1)∗ · · · ∗µF̃ l

n
(xn) (2.72)

2.10.5 Type Reduction for Interval Type-2 Fuzzy Logic Systems

• Centre-of-Sets type reduction: For Gaussian interval type-2 fuzzy sets, the upper

membership function is a subset that has the maximum membership grade and the

lower membership function is a subset that has the minimum membership grade.

The join operation leads to join the result from meet operations using the supremum

(i.e., maximum value), the result F i can be interval type-1 set as follows: [35]

F i =
[

f i, f
i
]

(2.73)

where f i = µ
F̃ l

1

(x1)∗ · · · ∗µ
F̃ l

n
(xn) and f

l
= µF̃ l

1
(x1)∗ · · · ∗µF̃ l

n
(xn)

In order to simplify the notation, we consider only a single output here. Then we

have the centre-of-set type reduction method as follows: [35]

ycos(
→
x ) = [yl,yr] =

∫
w1∈[w1

l ,w
1
r ]
· · ·

∫
wM∈[wM

l ,wM
r ]

∫
f 1∈
[

f 1, f
1
] · · ·

∫
f M∈

[
f M , f

1M
]

ycos(
→
x ) = [yl,yr] = 1/

M

∑
i=1

f iwi/
M

∑
i=1

f i (2.74)

where ycos(
→
x ) is an interval type-1 set determined by left and right end points

(yl and yr), which can be derived from consequent centroid set [wi
l wi

r] and firing
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strengths f i ∈ F i = [ f i, f
i
]. The interval set [wi

l wi
r] (l = 1, · · · ,M) should be com-

puted or set first before the computation of ycos(
→
x ). For any value y ∈ ycos, y can be

stated as: [35]

y =
∑

M
i=1 f iwi

∑
M
i=1 f i

(2.75)

where y is a monotonic increasing function with respect to wi. Also, yl in equa-

tion 2.74 is the minimum associated only with wi
l and yr is the maximum associated

only with wi
r. Note that yl and yr depend on a mixture of f i or f

i
values. There-

fore, left-most point yl and right-most point yr can be shown as in Equations 2.76

and 2.77, respectively [35].

yl =
∑

M
i=1 f i

l wi
l

∑
M
i=1 f i

l

(2.76)

yr =
∑

M
i=1 f i

rwi
r

∑
M
i=1 f i

r

(2.77)

2.10.6 Type Reduction Algorithm for Interval Type-2 Fuzzy Logic

Systems

Without loss of generality [44], assume the wi
r will be arranged in ascending order, i.e.

w1
l ≤ w2

r ≤ ·· · ≤ wM
r .

1. Compute yr in equation 2.77 by initially using f i
r = ( f i + f

i
)/2 for i = 1, · · · ,M,

where f i and f
i

are pre-computed by equations 2.71 and 2.72; and let ýr = yr.

2. Find R(1 ≤ R ≤ M−1) such that wR
r ≤ ýr ≤ wR+1

r .

3. Compute yr in equation 2.77 with f i
r = f i for i ≤ R and f i

r = f
i

for i > R, then set

yn
r = yr.

4. If yn
r 6= ýr, then go to step 5. If yn

r = ýr, then set yr = yn
r and go to step 6.

5. Let ýr = yn
r and return to step 2.

6. Stop.
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This algorithm decides the point to separate two sides by the number R, one side using

lower firing strengths f i’s and another side using upper firing strengths f
i
’s Therefore, the

yr in equation 2.77 can be re-stated as: [44]

yr = yr( f 1, · · · , f R, f
R+1

, · · · , f
M
,w1

r , · · · ,w
M
r )

yr =
∑

R
i=1 f iwi

r +∑
M
i=R+1 f

i
wi

r

∑
R
i=1 f i +∑

M
i=R+1 f

i

yr =
∑

R
i=1 f iwi

r

∑
R
i=1 f i +∑

M
i=R+1 f

i
+

∑
M
i=R+1 f

i
wi

r

∑
R
i=1 f i +∑

M
i=R+1 f

i

yr =
R

∑
i=1

f i

Dr
wi

r +
M

∑
i=R+1

f
i

Dr
wi

r

yr =
R

∑
i=1

qi

b
wi

r +
M

∑
i=R+1

qi
bwi

r (2.78)

where Dr = (∑R
i=1 f i +∑

M
i=R+1 f

i
), qi

b
= f i/Dr and qi

b = f
i
/Dr.

The procedure to compute yl is similar to compute yr. In step 2, it only needs to find

L(1 ≤ L ≤ M − 1), such that wL
l ≤ ýl ≤ wL+1

l in step 3, let f i
l = f

i
for i ≤ L and f i

l = f
i

for i > L. yl in equation 2.76 can be also re-expressed as: [44]

yl = yl( f
1
, · · · , f

L
, f L+1, · · · , f M,w1

l , · · · ,w
M
l )

yr =
∑

L
i=1 f

i
wi

l +∑
M
i=L+1 f iwi

l

∑
L
i=1 f

i
+∑

M
i=L+1 f i

yr =
∑

L
i=1 f

i
wi

l

∑
L
i=1 f

i
+∑

M
i=L+1 f i

+
∑

M
i=L+1 f iwi

l

∑
L
i=1 f

i
+∑

M
i=L+1 f i

yr =
L

∑
i=1

f
i

Dl

wi
l +

M

∑
i=L+1

f i

Dl

wi
l

yr =
L

∑
i=1

qi
awi

l +
M

∑
i=L+1

qi

a
wi

l (2.79)

where Dl = (∑L
i=1 f

i
+∑

M
i=L+1 f i), qi

a = f
i
/Dl and qi

a
= f i/Dl .

The defuzzified crisp output from an interval type-2 fuzzy logic system is usually

taken as the average of yl and yr, i.e., [44]

yl + yr

2
.
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2.11 Recent Work on Type-2 Fuzzy Sets and Systems

Recently, research interest in type-2 fuzzy logic has seen significant growth. Most of

this research has only been concerned with interval type-2 fuzzy systems, in which the

membership grade of a fuzzy set is given as an interval set, because it simplifies the

complexity of generalised type-2 fuzzy sets. It is clear from the recent work that type-2

fuzzy logic should have a role to play in modeling uncertainty.

Type-2 fuzzy set has been first defined and discussed by Zadeh in [34, 45, 46]. Zadeh

concentrated on the notion of a fuzzy set where the membership functions of a fuzzy

set are measured with linguistic terms. Zadeh only explored the use of the minimum

and maximum operators t-norm and t-conorm. Later, Mizumoto and Tanaka [7, 8] and

Dubois and Prade [5] studied the logical connectives of what became known as a sec-

ondary membership functions. They also studied the join and meet under a variety of

t-norm and t-conorm operators.

The use of type-2 fuzzy sets, called interval valued or IV fuzzy sets, has been promoted

later by Turksen [47–49], Schwartz [50] and Klir and Folger [3] They discussed that

type-2 interval fuzzy sets should be employed when the linguistic uncertainty of a term

cannot be sufficiently modeled by the type-1 fuzzy sets. Zadeh [51, 52] claimed that

fuzzy logic equates to computing with words (CWW) and provides examples using fuzzy

granules (which is actually the FOU of an interval type-2 fuzzy set) to model words.

Mendel [1, 53, 54] and Turksen [55] also agreed that CWW requires type-2 fuzzy sets by

using the simpler interval type-2 representations. As “Words Mean Different Things to

Different People”, Mendel [53] demonstrated that human models of words as obtained

through a survey require at least interval representations. These ideas led to more work

on type-2 fuzzy sets and this has kept growing.

The technique used for defuzzifying type-2 fuzzy sets, called type-reduction, has been

defined by Karnik and Mendel [37–39,56] by applying the extension principle to a variety

of type-1 defuzzifiers. In those papers, Karnik and Mendel also provided a complete

description of the fuzzy inferencing process, which is allow work on the application of

type-2 fuzzy logic to proceed. John [42,57–59] also published a number of review papers

on type-2 fuzzy systems. In 2001, Mendel published the first, and only textbook on the

subject of type-2 fuzzy logic as Uncertain Rule-Based Fuzzy Logic System: Introduction
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and New Directions [1]. This greatly increased the interest in type-2 fuzzy logic and they

have since been widely used in many areas of application.

The representation theorem of type-2 fuzzy sets has been given by Mendel and John

[9]. They defined operations of type-2 fuzzy set without the use of the extension principle

by representing a type-2 fuzzy set as a collection of simpler type-2 embedded sets. An

example of their representation theorem for type-2 fuzzy sets is the definition of arithmetic

operators for type-2 fuzzy numbers, as proposed by Coupland and John [60].

As previously noted, the complexity of join and meet operations and type-reduction

of a type-2 fuzzy set limit the applicability of type-2 methods and, even though interval

type-2 fuzzy sets are simpler, type-reduction is still a problem because of the inherent

complexity and redundancies. The Karnik-Mendel [38] and Wu-Mendel [61,62] methods

have been developed to make the type-reduction of interval type-2 fuzzy sets more effi-

cient. The complexity of join and meet was resolved by those methods. This work has also

been discussed by other authors. e.g. Coupland et al. [63–65] discussed this issue with

some aspects of the geometric approach and Greenfield et al. [66] provided an efficient

method for approximating the type-reduced set of a type-2 fuzzy set using a stochastic

approach. Hisdal studied rules and interval sets for higher-than-type-1 FLS [67]. John

and Coupland continued to discussed in this issue in [68–73]. Additional discussions on

the use of interval sets in fuzzy logic can be found in [74–79].

2.11.1 Recent Applications of Type-2 Fuzzy Sets and Systems

2.11.1.1 Control Applications

To date, type-2 fuzzy logic has been widely used in control applications, and most appli-

cations are using type-2 interval fuzzy sets with the Karnik-Mendel iterative algorithms

and the Wu-Mendel minimax uncertainty bounds, allowing fast execution of type-2 fuzzy

systems.

Many researchers have begun to use type-2 fuzzy logic in control applications. For

example, Melin and Castillo [80, 81] and Castillo et al. [82] have used type-2 interval

systems in the context of plant control. Hagras [83] presented type-2 fuzzy logic control

application to three challenging domains including industrial, mobile robots, and ambient
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intelligent environments control. Lynch et al [84, 85] are continuing to build a type-2

interval control system for large marine diesel engines. Hagras et al. [86, 87] and Doctor

et al [88] used a type-2 interval system to model and adapt to the behaviour of people in

an intelligent dormitory room. Wu and Tan [89] applied type-2 interval systems to the

control of a complex multi-variable liquid level process and in [90] they simplified type-2

fuzzy logic control to real-time control applications. Melgarejo et al. [91] have developed

a limited hardware implementation of a type-2 interval controller. Lin et al. [92, 93]

designed type-2 fuzzy controller for buck DC-DC converters.

2.11.1.2 Time Series Forecasting Application

There are more researchers interested in using type-2 fuzzy sets to deal with forecasting

applications. Uncu et al. [94] proposed a system modelling approach based on type-2

fuzzy sets to predict the price of a stock. Baguley et al. [95] found that a model with

type-2 fuzzy sets can leverage design process knowledge and predict time to market from

performance measures is a potentially valuable tool for decision making and continuous

improvement. Kim and Park [96] used type-2 fuzzy logic system to forecast the Box-

Jenkin’s gas furnace time series and compare the results with type-1 fuzzy logic system.

Huarng and Yu [97] proposed the use of a type-2 fuzzy time series model to improve

the prediction performance by using the TAIEX, Taiwan stock index, as the forecasting

target.

Medina and Mendez [98] presented an application of the interval singleton type-2

fuzzy logic system to one-step-ahead prediction of the daily exchange rate between the

Mexican Peso and US dollar (MXNUSD). Mencattini et al. [99, 100] used type-2 fuzzy

systems for meteorological forecasting. Li et al. [101] proposed a new method for short-

term traffic forecasting using type-2 fuzzy logic.

Karnik and Mendel [102] used a type-2 interval system to predict the next value in a

chaotic time series. Musikasuwan et al. [103] investigated the effect of number of model

parameters on performance in type-1 and interval type-2 systems. Both systems were

designed to predict a Mackey-Glass time series.

Liang and Wang [104] presented a new approach for sensed signal strength forecast-

ing in wireless sensors using interval type-2 fuzzy system and compare with type-1 fuzzy
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system. Pareek and Kar [105] demonstrated an application of type-2 fuzzy system to

predict a critical parameter of Gas Turbine in a power plant, that is the compressor dis-

charge pressure. Mendez et al. [106] presented the experimental results of the application

of type-2 fuzzy systems for scale breaker entry temperature prediction in a real hot strip

mill.

2.11.1.3 Medical Applications

There are researchers using type-2 fuzzy logic to model in medical application. John et

al. [107–109] used type-2 fuzzy sets to assist in the pre-processing of tibia radiographic

images, while John and Lake investigated the use of type-2 fuzzy sets in modelling nurs-

ing intuition. Innocent et al. [110–112] represented the perceptions of lung scan images

by experts in order to predict pulmonary emboli by using type-2 fuzzy relations. Garibaldi

et al. [10–14] have done extensive work on assessing the health of a new born baby us-

ing knowledge of acid-base balance in the blood from the umbilical cord. Di Lascio et

al. [113] presented a model of differential medical diagnosis for the pathologies based

on type-2 fuzzy sets to indicate the elements needs to have more precise diagnosis and it

can control its same accuracy. Finally, Herman et al. [114] examined the potential of the

type-2 fuzzy system methodology in devising an EEG-based brain-computer interface to

classify imaginary left and right hand movements.

2.11.1.4 Mobile Robot Applications

Type-2 fuzzy systems were successfully applied in mobile robot controllers. Phokharatkul

and Phaiboon [115] implemented the type-2 fuzzy logic controller to process the data out-

put to control the direction of the mobile robot movement. Hagras [116,117] implemented

the type-2 fuzzy logic controller in different types of mobile robots navigating in indoor

and outdoor unstructured and challenging environments. Coupland et al. [118] designed

and compared three fuzzy logic control using type-1 , interval type-2 and general type-2

fuzzy logic to the robot control for completing the task of following the edge of a curved

wall, and found that both type-2 fuzzy systems outperformed the type-1 system. Figueroa

et al. [119] explored how the type-2 fuzzy logic controller, in the context of robot soccer

games, overcomes uncertainty in the control loop without increasing the computational
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cost of the application. Finally, Wu [120] designed and implemented type-2 fuzzy logic

control on Motorola 68HC11 8-bit micro-controllers to navigate a miniature robot in an

unknown maze without touching the walls.

2.11.1.5 Others Applications

The others areas of application that type-2 fuzzy sets and systems have been successfully

implemented. For examples, Gu and Zhang [121] created the web shopping expert based

on the interval type-2 fuzzy inference system to provide a reasonable decision for online

users. Tang et al. [122] constructed an online system ‘hotstore.com’ using type-2 fuzzy

reasoning.

Lee and Lee introduced a ranking method for type-2 fuzzy values and used this result

in solving the shortest path problem in a type-2 weighted graph [123, 124].

2.12 Summary

This chapter has described crisp set theory and the concepts of fuzzy sets. A fuzzy set can

be defined using either the list or rule methods when the universe of discourse is count-

able and continuous, respectively. The classical union, intersection, and complement set

theoretic operations of fuzzy sets have also presented in this chapter.

Since Zadeh first introduced the concept of a fuzzy set [2] and subsequently went on

to extend the notion via the concept of linguistic variables [4] the popularity and use of

fuzzy logic has been extraordinary. Fuzzy principles have been applied to a huge and

diverse range of problems such as aircraft flight control, robot control, car speed control,

power systems, nuclear reactor control, fuzzy memory devices and the fuzzy computer,

control of a cement kiln, focusing of a camcorder, climate control for buildings, shower

control and mobile robots [125, 126].

The use of fuzzy logic is not limited to control. Other successful applications include,

for example, stock tracking on the Nikkei stock exchange [126], and information retrieval

[127].

Then, the concept of type-2 fuzzy sets, both interval and non-interval (generalised),

have been described. The footprint of uncertainty (FOU) was introduced to provide a
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very convenient verbal description for the entire domain of support of all the secondary

grades of a type-2 membership function. The inferencing processes, type reduction and

defuzzifcation, and operators for both interval and generalised fuzzy systems are also

presented. Finally, recent work on type-2 fuzzy sets and systems and their applications

are discussed.

In next chapter, the use of non-standard membership functions to better model rea-

soning in a variety of complex domains, including when modelling human reasoning, has

been described.



Chapter 3

Non-Convex Fuzzy Sets

3.1 Introduction

This chapter presents the use of complex non-convex membership functions in the con-

text of human decision making systems. In particular, this chapter attempts are made to

address criticisms that were made as to whether the shapes being presented were really

‘true’, ‘allowable’ or in any way ‘meaningful’ membership functions.

It is suggested that in many applications involving the modelling of human decision

making (expert systems) the more traditional membership functions do not provide a wide

enough choice for the system developer. They are therefore missing an opportunity to,

potentially, produce simpler or better systems.

This case study highlights a number of membership functions outside the paradigm

of fuzzy control. In particular, the merits of non-convex fuzzy sets are discussed and a

case study is presented which investigates whether it is possible to build an expert system

featuring usual Mamdani style fuzzy inference in which a time-related non-convex fuzzy

set is used together with traditional fuzzy sets. It is shown that this is indeed possible

and an examination is made of the resultant output surface generated by four different

sub-classes of non-convex membership functions.

The rest of the case study is structured as follows. Sections 3.2 (conventions of fuzzy

terms) presents the discussion of membership functions and restates accepted definitions

for completeness. Section 3.2.1 (non-convex membership functions) describes the con-

cept and classes of non-convex membership functions. Notes that these two sections are

56
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abbreviated from the previous work [128] and are included for completeness. The new

case study of using a time-related non-convex membership function is presented in Sec-

tion 3.3. Finally, Section 3.4 and Section 3.5 present a discussion of the issues raised and

summarised of this chapter, respectively.

3.2 Conventions of Fuzzy Terms

To enable a discussion of membership functions, we need to formally define the terminol-

ogy used. In this Section, accepted definitions are restated for completeness.

Definition 3.2.1 (Linguistic variable) A linguistic variable is characterised by a quintu-

ple (X ,T (X),U,G,M) in which X is the name of the variable, T (X) is the term set, U is

a universe of discourse, G is a syntactic rule for generating the elements of T (X) and M

is a semantic rule for associating meaning with the linguistic values of X [129].

Definition 3.2.2 (Normal) A fuzzy set, A, is normal if ∃x′ such that µA(x
′) = 1 [129].

Definition 3.2.3 (Sub-normal) A fuzzy set, A, is sub-normal if it is not normal i.e. ∃ no

x′ such that µA(x
′) = 1 [129].

Definition 3.2.4 (Convex) A fuzzy set, A, is said to be convex if and only if all of its

α-cuts are convex in the classical sense. That is, for each α-cut, Aα, for any r,s ∈ Aα and

any λ ∈ [0,1] then λr+(1−λ)s ∈ Aα [129].

Definition 3.2.5 (Non-convex) A fuzzy set, A, is said to be non-convex if it is not convex

[129].

As well as being interested in sub-normal, non-convex fuzzy sets we also consider

fuzzy sets that are contained in, or included in, another fuzzy set(s). For clarity, we use

the term subsumed to describe a fuzzy set that is contained within another. We consider

that such fuzzy sets can play an important role in human decision making. A subsumed

fuzzy set is a special case of a non-distinct fuzzy set. In this chapter, we particularly

investigate the use of non-convex membership functions for linguistic terms which is

presented as a case study in section 3.3.
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Definition 3.2.6 (Distinct) A fuzzy set, A, for a particular linguistic variable L, on the

universe of discourse X is distinct from a fuzzy set, B (another term of L), on the universe

of discourse X if and only if for all x′ ∈ X when µA(x
′) > 0 then µB(x

′) = 0 and when

µB(x
′)> 0 then µA(x

′) = 0 [129].

Definition 3.2.7 (Non-distinct) A fuzzy set, A, for a particular linguistic variable L, is

non-distinct if ∃ a fuzzy set B (another term of L) such that A is not distinct from B [129].

Non-distinct fuzzy sets are also referred to as overlapping fuzzy sets. There are many

types of non-distinct fuzzy sets. For clarity, we further define partially overlapping and

subsumed fuzzy sets.

Definition 3.2.8 (Partially overlapping) A fuzzy set, A, on the universe of discourse X

is partially overlapping another fuzzy set, B, on the universe of discourse X if and only if

∃x′ where µA(x
′) = max(µA) but µB(x

′) 6= max(µB), and ∃x′′ where µB(x
′′) = max(µB) but

µA(x
′′) 6= max(µA) [129].

Definition 3.2.9 (Subsumed) A fuzzy set, A, on the universe of discourse X is subsumed

within a fuzzy set, B, on the universe of discourse X if and only if for all x′ ∈ X µB(x
′)≥

µA(x
′) [129].

Definition 3.2.10 (Regular) Fuzzy terms that are normal, convex and distinct using the

above definitions will be referred to as regular terms [129].

It is often implicitly accepted, and occasionally explicitly stated (e.g. [130,131]), that

the terms of a linguistic variable should be justifiable in number (5± 2), distinct, nor-

malised and covering the entire universe of discourse.

3.2.1 Non-Convex Membership Functions

It would appear that the class of fuzzy sets which might have non-convex membership

functions can be naturally split into three sub-classes:

• Those where the universe of discourse is not time-related. Such sets will be termed

elementary non-convex membership functions.
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• Those where the universe of discourse is time-related. Such sets will be termed

time-related non-convex membership functions.

• Those which result from the inferencing process in the Mamdani method. Such sets

are termed consequent non-convex membership functions.

3.2.2 Elementary Non-Convex Sets

Plausible discrete domain non-convex fuzzy sets which are not defined over a time-related

universe of discourse are quite easy to imagine. There are three ‘well-known’ principles

that govern the ideal number of people for forming a mountain rescue team:

1. there should be an odd number of people so that in any decision-making vote a

simple majority is possible (i.e. voting does not result in ties);

2. three is not a good number to have, because there is a tendency to end up with a 2-1

split which causes the single person to feel resentful; and

3. too many people cause too many arguments.

Hence a discrete fuzzy set expressing the compatibility of various numbers of people with

a suitable mountain-rescue team might look as in Figure 3.1.

0.00

0.50

1.00

0 2 4 6 8 10 12

Number of
people

Figure 3.1: A discrete non-convex set: suitability of number of people to comprise a

mountain rescue team

Continuous domain non-convex fuzzy sets may be less common. Consider though,

as an example, the desirability (drinkability) of a glass (cup) of milk according to the
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temperature of the milk. Most people (who like drinking milk) prefer it ‘ice-cold’ out of

the fridge as opposed to room temperature (although actually ‘ice-cold’ refers to several

degrees above freezing). Many people also agree that hot milk is also quite pleasant to

drink. Hence a fuzzy set expressing the drinkability of milk by temperature might look

like Figure 3.2.
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drinkability

Temperature
(oC)

Figure 3.2: Drinkability of milk by temperature

Alternatively, the representation of this concept could be transformed by defining a

variable temperature with perhaps four convex terms, icy, cold, medium, and hot (Fig-

ure 3.3), an output set drinkability with two convex terms, low and high (Figure 3.4), and

an associated set of rules of the form:

IF temp is cold THEN drinkability is high

IF temp is medium THEN drinkability is low

IF temp is high THEN drinkability is high

The drinkability for a given temperature could then be found by inputting the temperature

into the above set of fuzzy rules, executing the rules and then defuzzifying the consequent

set by, for example, the centroid method. A plot of the resultant drinkability obtained for

each temperature is shown in Figure 3.5. Note that the resultant set (Figure 3.5) is also

now sub-normal. Of course, it can be normalised to obtain a closer match to Figure 3.2.

But how should the rules and membership functions to obtain the precise shape re-

quired be determined? And why incur the additional time and effort of eliciting the 5-6

membership functions required when it is simpler to elicit the set shown in Figure 3.2

directly?
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Figure 3.3: Temperature as an input variable
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Figure 3.4: Drinkability as an output variable
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Figure 3.5: Drinkability of milk elicited from the rule base: c.f. Fig. 3.2

3.2.3 Time-Related Non-Convex Sets

As a plausible time-related fuzzy set, suppose that an energy-supply company is creating

an expert system to predict demand load. Amongst other factors that are considered may

be the time of day and the prevailing temperature outside. We want to capture the concept

that energy demand increases at mealtimes. Of course, mealtime is a fuzzy concept as

breakfasts, lunches and dinners occur at variable times and indeed may occur at any time.

Hence a non-convex fuzzy set for mealtime defined on time-of-day may be defined as

shown in Figure 3.6. Rules may then be created of the form:

IF time-of-day is mealtime AND temp is low

THEN energy-demand is high

Note that this fuzzy set is interesting as it is also sub-normal and never has a membership

of zero.
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Figure 3.6: Mealtime by time of day

Another example of a time-related fuzzy set is that of disposable income. By this

we mean the amount of money (as a percentage of salary) somebody has available after

paying out all their commitments (e.g. loan(s), electricity bill, etc.). It is well known that

if you are young you have more disposable income than if you are middle aged (typically

with a mortgage and children) and also as you get past middle age your disposable income

increases. Depending on the application we could look at high disposable income in

two ways. In the first case we might have a fuzzy set high for the linguistic variable

disposable income as in Figure 3.7 that has a domain which is the percentage of disposable

income. However we may not know this information but have someone’s age. In this case

the domain would be age and we would have, for example, the non-convex fuzzy set in

Figure 3.8, in which the domain is time but the fuzzy set relates to income.

3.2.4 Consequent Non-Convex Sets

In a rule-based fuzzy system the result of, for example, Mamdani fuzzy inferencing, is

a fuzzy set. Figure 3.9 provides an example of a typical result of Mamdani inferencing

(prior to defuzzification) where the antecedent and consequent fuzzy sets are triangular

and/or trapezoidal. In the context of fuzzy control, this is usually defuzzified to produce

the precise value required for the output variable. However, when modelling human deci-

sion making in a rule-based fuzzy system we might want to use the output directly as part

of a chained inference process or we might like the output to be defuzzified somehow to
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a linguistic term. If it is argued that sub-normal, non-convex sets have no meaning, then

what should be done with consequent sets? If, on the other hand, it is accepted that such

consequent sets are meaningful, so that they can be interpreted or chained in further pro-

cessing, then why should not the original inputs be similarly formed. Hence, we believe

we need to improve our understanding of sub-normal, non-convex sets in order to lead us

toward better ‘Computing with Words’ [51].
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Figure 3.7: A convex set high defined on the percentage of disposable income

0.00

0.50

1.00

0 15 30 45 60 75 90

high

Age of
person

Figure 3.8: A non-convex set high-disposable-income defined on the age
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Figure 3.9: An example of a typical non-convex, sub-normal consequent set

3.3 A Case Study to Illustrate the Use of Non-Convex

Membership Functions for Linguistic Terms

This section focuses on time related non-convex membership functions. It investigates

whether the generated expert systems would work properly or not when time related non-

convex membership functions are used together with normal membership functions. Sup-

pose that an energy supply company is developing an expert system to predict demand

load. Although there may be many factors that effect the demand load, time of the day

and the prevailing temperature outside are chosen as the two system inputs. A simple

model is more appropriate at this stage since it is only aimed to demonstrate the feasibil-

ity of the system.

3.3.1 Methodology

Firstly, 500 data sets of time and temperature are generated randomly where time is be-

tween 0 and 24 in the hh:mm format and temperature varies between 0°C and 40°C.

The illustrative system consists of two input variables, Time and Temperature, and one

output variable, Energy Demand as shown in Figure 3.10 - 3.15. In addition to other usual

membership functions, the Time variable is associated with the term MealTime which
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is a time-related non-convex membership function. In order to observe the influence

of MealTime on the performance, four systems are created by only changing the term

MealTime in each system. The four different shapes of MealTime membership functions

that are used are as follows:

Case 1: mf of MealTime is in [0,1]

Case 2: mf of MealTime is in [0.2,1]

Case 3: mf of MealTime is in [0,0.9]

Case 4: mf of MealTime is in [0.2,0.9]

Note that membership functions which never reach zero are also unconventional but,

once again, there appears no reason why this convention cannot be violated.
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Figure 3.10: Case 1: Time with MealTime mf in [0,1]
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Figure 3.11: Case 2: Time with MealTime mf in [0.2,1]
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Figure 3.12: Case 3: Time with MealTime mf in [0,0.9]
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Figure 3.13: Case 4: Time with MealTime mf in [0.2,0.9]

As seen in Figures 3.10 - 3.13, Time is an input variable which consists of four mem-

bership functions; Morning, DayTime, Evening, and MealTime where the membership

values of MealTime vary in the range of [0,1], [0.2,1], [0,0.9], and [0.2,0.9], for each

generated system respectively. The values of time is between 0 and 24.
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Figure 3.14: Temperature as an input variable with normal membership functions
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Figure 3.14 shows the input variable Temperature which consists of three membership

functions; Low, Medium, and High. The same linguistic variable, Temperature, is used in

all four systems. The values of temperature is between 0°C and 40°C.
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Figure 3.15: Energy Demand as an output variable with normal membership functions

Figure 3.15 shows the output variable Energy Demand which consists of three mem-

bership functions; Low, Medium, and High. The same linguistic variable, Energy De-

mand, is used in all four generated systems. The values of Energy Demand varies between

0 and 1.

The following 12 rules are used within the four expert systems. These rules are purely

illustrative at the moment and do not correspond to a real application. The rules are:

1. IF Time is Mealtime AND Temperature is Low

THEN Energy-Demand is High

2. IF Time is Mealtime AND Temperature is Medium

THEN Energy-Demand is High

3. IF Time is Mealtime AND Temperature is High

THEN Energy-Demand is Medium

4. IF Time is Evening AND Temperature is Low



3.3. A Case Study to Illustrate the Use of Non-Convex Membership Functions for

Linguistic Terms 70

THEN Energy-Demand is High

5. IF Time is Evening AND Temperature is Medium

THEN Energy-Demand is Medium

6. IF Time is Evening AND Temperature is High

THEN Energy-Demand is Medium

7. IF Time is DayTime AND Temperature is Low

THEN Energy-Demand is High

8. IF Time is DayTime AND Temperature is Medium

THEN Energy-Demand is Medium

9. IF Time is DayTime AND Temperature is High

THEN Energy-Demand is Low

10. IF Time is Morning AND Temperature is Low

THEN Energy-Demand is Medium

11. IF Time is Morning AND Temperature is Medium

THEN Energy-Demand is Medium

12. IF Time is Morning AND Temperature is High

THEN Energy-Demand is Low

3.3.2 Results

After time related non-convex membership function (MealTime) is applied into linguis-

tic variable Time, it is observed that all four systems work perfectly well (as expected).

The prediction results of energy demand are shown as three dimensional plots in Fig-

ures 3.16 - 3.19. Table 3.1 shows the summary of the results obtained from each system.

The difference in the predicted results of each system is due to the different time-related

non-convex MealTime term added to the variable time. It is clearly observed that the en-

ergy demand predictions have incorporated the information introduced by addition of the

MealTime term. The surface plots, particularly in Figures 3.16 and 3.18 exhibit a marked

increase in output at the peak meal times.
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Figure 3.16: Three dimensional plot of the result from Case 1
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Figure 3.17: Three dimensional plot of the result from Case 2
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Figure 3.18: Three dimensional plot of the result from Case 3
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Figure 3.19: Three dimensional plot of the result from Case 4

The maximum predicted result is the same for each system as seen in Table 3.1. This

is 0.8679 because it is produced when the consequents of the rules are High = 1, Low = 0,

and Medium = 0 and the COG method is used for defuzzification results in 0.8679.
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Table 3.1: Summary results from the outputs

System Mean STD Max Min

Case 1 0.5696 0.1690 0.8679 0.1334

Case 2 0.5822 0.1554 0.8679 0.2659

Case 3 0.5679 0.1688 0.8679 0.1334

Case 4 0.5808 0.1552 0.8679 0.2659

3.4 Discussion

This section has described the well-known properties normal, convex and distinct used

in the vast majority of terms implemented in fuzzy systems in the literature. It has been

argued that while these properties are undoubtedly useful in the context of fuzzy control,

they restrict the more general shapes of terms that might be used within linguistic variables

in fuzzy systems. Examples have been given in which potentially useful terms do not

adhere to each of these three properties, and a case study is presented to demonstrate the

use of such non-regular membership functions in a fuzzy expert system.

We repeat our assertion in our previous ideas [128] that we are not cognitive scientists

and are not arguing that the unusual membership shapes described in this work are how

such concepts are internally represented at a cognitive level. Whether concepts can be

non-convex at a cognitive level has been discussed by, for example, Gärdenfors [132], in

which he asserts that:

“most properties expressed by simple words in natural language can be anal-

ysed as convex regions of a domain in a conceptual space” (our italics)

However, while he supports this (rather hedged) assertion with some examples, it remains

far from proven. Whatever the reality at the cognitive level, we merely assert that non-

regular fuzzy sets may be useful to consider when modelling human reasoning in a fuzzy

system.

The results of the case study presented in this section has shown that non-regular
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terms can be used in a fuzzy logic system and they can perform together with regular

membership functions. From these illustrations, we firmly believe that non-convex mem-

bership functions such as MealTime featured in the Time (of day) variable are plausible,

reasonable membership functions in the sense originally intended by Zadeh.

We are particularly interested in the role of linguistic variables, and their associated

terms as used in the fuzzy inferencing process. Within the general category of inferencing

(rule-based) systems there are two broad aspects: control systems and expert systems

(emulating human reasoning). Although human reasoning has been investigated since

the inception of fuzzy logic (e.g. [4, 133]), by far the majority of published work has

been concerned with fuzzy control. Indeed, both the two main methods of implementing

fuzzy inferencing, namely the Mamdani method and the Takagi-Sugeno method, were

introduced to solve control applications [25, 26].

This historical bias towards the control domain has, we believe, led to a relative ne-

glect of aspects of inferencing in the context of human decision making. Thus, there has

been a tendency to restrict membership functions to well-known forms. Triangular, left-

shoulder, right-shoulder and trapezoidal, or more generally piecewise linear, functions are

common. Also used are standard Gaussian or Sigmoid type curves.

In the case study to illustrate the use of non-convex fuzzy sets, the shapes of terms

used in fuzzy systems have adopted several ‘conventions’. Terms are almost invariably

normalised (having a maximum membership value of 1), convex (having a single maxi-

mum or plateau maxima) and distinct (being restricted in their degree of overlap: often

expressed as some variation on the concept that all membership values at any point in

the universe of discourse sum to 1 across that universe). The shape of these terms are

generated by certain accepted membership functions: piecewise linear functions (with

restrictions), Gaussians or Sigmoids are almost exclusively used. As such these consti-

tute only a small subset of the total set of possible shapes of terms. These conventions

are largely empirical or are justified by arguments based on what might loosely be called

‘fuzzy control principles’. However, in many applications involving the modelling of hu-

man decision making (expert systems), these traditional membership functions may not

provide a wide enough choice for the system developer. They are therefore missing an

opportunity to, potentially, produce simpler or better systems. This work extends pre-
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vious work in which it was suggested that non-convex membership functions might be

considered for use in the context of fuzzy expert systems. In particular, the merits of non-

convex fuzzy sets are discussed and a case study is presented which investigates whether

is is possible to build an expert system featuring usual Mamdani style fuzzy inference in

which a time-related non-convex fuzzy set is used together with traditional fuzzy sets. It

is shown that this is indeed possible and an examination is made of the resultant output

surface generated by four different sub-classes of non-convex membership functions.

3.5 Summary

In this Chapter, the use of non-standard membership functions to better model reasoning

in a variety of complex domains, including when modelling human reasoning, has been

described. It has been shown that the use of such membership functions has been limited

in practice, for no good reason. It is concluded that non-convex membership functions

are useful and their further use is encouraged.

In next chapter, type-1 and type-2 fuzzy systems with a varying number of tunable

parameters are investigated. Their performance, in their ability to predict the Mackey-

Glass time series with various levels of added noise, was compared. The concept of non-

deterministic fuzzy reasoning is also presented and how to implement non-deterministic

fuzzy sets is described.



Chapter 4

Investigating the Performance of Type-1

and Type-2 Fuzzy Systems for

Time-Series Forecasting

4.1 Introduction

As we mentioned in Chapter 2, many decision-making and problem solving tasks are too

complex to be understood quantitatively, but by using knowledge that is imprecise rather

than precise [1] and [9] it is possible to overcome this. Fuzzy logic resembles human

reasoning in its use of approximate information and uncertainty to generate decisions. It

was specifically designed to represent uncertainty and vagueness and provide formalized

tools for dealing with the imprecision in many real problems. Since knowledge can be

expressed more naturally by using fuzzy sets, many complex decision problems can be

significantly simplified. Although many applications have been found for type-1 fuzzy

logic systems, it is its application to rule-based systems that has most significantly shown

its importance as a powerful design methodology, but yet it is unable to model and mini-

mize the effect of all uncertainties. To overcome this limitation, type-2 fuzzy systems can

be introduced as they can model uncertainties better and minimize their effects. Type-2

fuzzy systems are characterized by IF-THEN rules, but their antecedent or consequent

sets are type-1 or type-2. A type-2 fuzzy set can represent and handle uncertain informa-

tion effectively. More details about type-2 fuzzy sets and fuzzy systems can be found in

76
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Chapter 2.

The rest of this chapter has been organized as follow. Section 4.2 presents general in-

formation about fuzzy logic systems and Mackey-Glass Chaotic Time-Series. Section 4.3

presented about an investigation into the effect of number of model parameters on perfor-

mance in type-1 and type-2 fuzzy logic systems. SectionSection 4.4 stated an introduction

concept of non-deterministic fuzzy reasoning. Finally, Section 4.5 summarised all con-

tents presented in this chapter.

4.2 Time-Series Forecasting Using Type-1 Fuzzy Systems

Time-series forecasting is a forecasting method that uses a set of historical values to pre-

dict an outcome. These historic values, often referred to as a time series, are spaced

equally over time and can represent anything from any period of data such as: yearly,

monthly, daily, hourly, and so on call volumes.

Time-series forecasting assumes that a time series is a combination of a pattern and

some random error. The goal is to separate the pattern from the error by understanding the

pattern’s trend, its long-term increase or decrease, and its seasonality, the change caused

by seasonal factors such as fluctuations in use and demand.

4.2.1 Data Sets Preparation

Equation 4.1 has become known as the Mackey-Glass equation. It is a non-linear delay

differential equation [1]:

dx(t)

dt
=

0.2x(t − τ)

1+ x10(t − τ)
−0.1x(t) (4.1)

For τ > 17 is known to exhibit chaos. This equation is converted into a discrete time-

series equation by using Euler’s method as shown in Equation 4.2:

f (x, t) =
0.2x(t − τ)

1+ x10(t − τ)
−0.1x(t) (4.2)

Then
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x(t +1) = x(t)+h f (x, t) (4.3)

Where h = 1 and τ = 30. The initial values of x(t) where t ≤ 30 are set randomly. The

value of each data is in [0,1].
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Figure 4.1: Sample data sets which generated by Mackey-Glass time-series

The sample of data set after generated is shown in Figure 4.1. The 1200 data points

were generated and Figure 4.2 shows the simulation plot of time series.
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Figure 4.2: The time-series data plot with noise free

In this simulations, the sampled time series x(k) is corrupted by uniformly distributed

additive noise n(k) and only noisy measured values of s(k) = x(k)+n(k),k = 1,2, · · · ,N.

For this simulation, the random noise was applied to the previous data by the following

function.

S(k) = x(k)+ randn()

The sample generated noise is shown in Figure 4.3
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Figure 4.3: The sample generated noise to be added into the data sets

The 1200 noisy data sets were generated and Figure 4.4 shows the simulation plot of

time series with noise corrupted.

Figure 4.4: The time-series data plot with added noise

This experimental is based on N = 1000 points, s(125),s(126), · · · ,s(1124). The first

500 data series s(125),s(126), · · · ,s(624) are for training data set and the remaining 500
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data series s(625),s(626), · · · ,s(1124) are for testing data set.

4.2.2 Designing Type-1 Fuzzy Systems

In time series prediction we want to use known values of the time series up to the point

in the time, t, to predict the value at some point in the future, t +P. The standard method

for this type of the prediction is to create a mapping from D sample data points. Sampled

every P units in time,

[s(t − (D−1)P), · · · ,s(t −P),s(t)]

To predict future value s(t +P). we define D = 4 and P = 1. For each t, the input data

is a four dimensional vector of the following form.

I(t) = [s(t −3)s(t −2)s(t −1)s(t)]

The output data is agreed to be the trajectory prediction.

O(t) = s(t +1)

In Figure 4.5 shows sample training data sets.

1.9370    1.7471    2.9251    0.2807   -0.6397
2.1747    1.0506    4.5190    1.0084    1.4378
2.1067    0.4479    2.1470    2.0623    1.1803
0.7460    3.3930    0.5041   -0.2267    1.5298
0.4123    1.3342    0.2845    0.0062    0.0902
0.4979    1.3185    2.1646    1.9048    0.5808
1.7471    2.9251    0.2807   -0.6397    0.9331
1.0506    4.5190    1.0084    1.4378    2.9545
0.4479    2.1470    2.0623    1.1803    1.0094
3.3930    0.5041   -0.2267    1.5298    1.3769

… … … … …

Figure 4.5: Sample of the training data sets
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-0.1187 1.3142 2.5808 2.0849 1.8184
0.2340 1.2073 1.5794 1.0438 0.4313
1.9348 1.3365 0.0881 1.0777 -0.2672
0.8570 1.1163 0.6772 1.3750 0.0926
1.7157 1.2497 1.6080 2.3807 0.5720
1.4041 1.9959 1.5475 2.0937 1.1655
1.3142 2.5808 2.0849 1.8184 1.0890
1.2073 1.5794 1.0438 0.4313 0.6541
1.3365 0.0881 1.0777 -0.2672 1.4494
1.1163 0.6772 1.3750 0.0926 0.3657

… … … … …

Figure 4.6: Sample of the testing data sets

Where, The first 4 columns represent the inputs and the last column represents the

output. And the training data set has 500 records. Similar to the testing data set also has

500 records. In Figure 4.6 shows the sample of testing data sets.

we assign 4 antecedents for forecasting, i.e s(t−3),s(t−2),s(t−1), and s(t) to predict

s(t + 1), we use only two membership functions for each antecedent, so the number of

rule is 24 = 16 rules. The initial locations of antecedent membership functions are based

on the mean and standard deviation of the first 500 points, i.e., training data. The initial

membership functions are shown in Figure 4.7.
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Figure 4.7: Initial membership functions for 4 inputs

4.2.3 Results

After the type-1 fuzzy system has been constructed, the parameters of type-1 system have

been tuned to train the type-1 system by using the training data sets (500 records) and

tested by using the testing data sets (500 records). The root mean square error (RMSE)

has been calculated and recorded to compute the mean of RMSE. Figure 4.8 shows the

plot between the mean of RMSE and epochs for the data sets with noise free. In Figure 4.9

shows the plot between Mackey-Glass time-series and the ouputs from type-1 fuzzy sys-

tem obtained from the output of type-1 fuzzy system with noise free data sets and the plot

of the prediction errors.
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Figure 4.8: Plot of mean of RMSE vs epochs for the data sets with noise free
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Figure 4.9: Mackey-Glass time-series vs type-1 fuzzy system prediction for the data set

with noise free

Figure 4.10 shows the plot between the mean of RMSE and epochs for the data sets

with added noise. In Figure 4.11 shows the plot between Mackey-Glass time-series and

the ouputs from type-1 fuzzy system obtained from the output of type-1 fuzzy system

with additive noise data sets and the plot of prediction errors.
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Figure 4.10: Plot of mean of RMSE vs epoch for type-1 fuzzy system with additive noises

data sets
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Figure 4.11: Mackey-Glass time-series vs type-1 fuzzy system prediction for the data set

with noise added

As we seen from the results obtained from type-1 fuzzy systems, it is obvious that

type-1 fuzzy system can predict the time-series forecasting with effectively performance

for the data sets with noise free. In contrast, when the noise has been corrupted into

the data sets (uncertainty in data-series) the performance of the type-1 fuzzy system is

much larger errors. The type-2 fuzzy system has then been used to predict the time-series

forecasting for the the data sets with additive noises. The results have been shown in

Figure 4.12. It has been shown that the type-2 fuzzy system can perform much better

results than type-1 fuzzy system (Figure 4.10).
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Figure 4.12: Plot of mean of RMSE vs epoch for type-2 fuzzy system with additive noises

data sets

In Figure 4.13 shows the plot between Mackey-Glass time-series and the outputs from

type-1 and type-2 (including predicted upper and lower bounds) fuzzy systems. It can be

seen that the performance of type-2 fuzzy system is better than those in type-1 fuzzy

system. But when we carefully considered into the number of model parameters type-2

fuzzy system has much larger number of parameters than type-1 fuzzy system. This curi-

ous finding led us to investigate the effect of number of model parameters on performance

in type-1 and type-2 fuzzy systems which is shown in next section (section 4.3).
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Figure 4.13: Mackey-Glass time-series vs type-1 and type-2 prediction for the data set

with noise added

4.3 Investigation into the Effect of Number of Model Pa-

rameters on Performance in Type-1 and Type-2 Fuzzy

Logic Systems

In 1977, Mackey and Glass published a paper in which they associate the onset of disease

with bifurcations in the dynamics of first-order differential-delay equation, which model

physiological systems. The Mackey-Glass time series has become one of the benchmark

problems for time-series prediction in both the neural network and fuzzy logic areas.

Mendel and Karnik [1, 44] have carried out experiments into forecasting Mackey-Glass

Chaotic Time-series with noisy data by using type-1 and type-2 fuzzy systems. They

have suggested that an interval non-singleton type-2 fuzzy system with type-1 fuzzy sets

achieves the best performance and can be used in a real-time adaptive environment. Al-

though the authors noted that the type-2 fuzzy system used in their experiment featured

more internal tunable model parameters than the type-1 fuzzy system, they did not go on
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to investigate whether it was simply the number of model parameters that was responsible

for the performance gains achieved.

The purpose of this work was firstly to attempt to reproduce the results of Mendel

and Karnik and secondly to perform a careful analysis of whether the performance of the

type-2 fuzzy system could be matched or surpassed by type-1 models with a similar or

greater number of internal tunable model parameters. Four main classes of fuzzy systems

are considered:

(i) T1-SFLS - ’conventional’ fuzzy systems with singleton inputs and type-1 fuzzy

sets throughout;

(ii) T1-NFLS - type-1 fuzzy systems with non-singleton (type-1) fuzzy inputs and

type-1 fuzzy sets throughout;

(iii) T2-SLFS - fuzzy systems featuring interval type-2 sets with singleton inputs;

(iv) T2-NSLFS-T1 - fuzzy systems featuring interval type-2 sets with type-1 non-

singleton inputs.

This work has evolved from recent studies on modelling of non-deterministic reason-

ing using type-2 fuzzy systems [10]. The software used in this experiment is that provided

by Professor Mendel (at http://sipi.usc.edu/ mendel/software/).

4.3.1 Methodology

Five independent data sets with 5 different noise levels (in total 25 data sets 2200 series

each) were generated. These data sets were generated by using Mackey-Glass time-series

delay differential equation shown in Equation 4.1 above. After 5 data sets were generated,

5 different level of noise were generated as follows:

• Level 1: 0 noise (noise free)

• Level 2: 0.01 noise
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• Level 3: 0.05 noise

• Level 4: 0.10 noise

• Level 5: 0.20 noise

where noise was a uniformly distributed random number in [-1,1]. Then these 5 dif-

ferent levels of noise were added into the data sets.

Type-1 singleton fuzzy logic system (SFLS) and type-1 non-singleton fuzzy logic sys-

tem (NSFLS) have been designed with 4 antecedents, 2 and/or 3 membership functions for

each antecedent, the number of rules are 16 and/or 81 rules (24 and/or 34) respectively,

each rule is characterized by 8 antecedent MF parameters (means and standard devia-

tions), and 1 consequent parameter (ȳ). The initial location of each Gaussian antecedent

MF is based on the mean (mx) and standard deviation (σx) and the mean of membership

functions are:

• 2 MFs = [mx −2σx,mx +2σx]

• 3 MFs = [mx −2σx,mx,mx +2σx]

Initially all standard deviation parameters are tuned to σx or 2σx. Additionally the

height defuzzifier and initial centre of each consequent’s MF are random numbers in [0,1].

So, the total number of tunable parameter for Type-1 SFLS with 2 and 3 membership

functions are 144 and 729, respectively. For type-1 NSFLS each of the 4 noisy input

measurements are modelled using a Gaussian membership function, a different standard

deviation is used for each of the 4 input measurement membership functions (σn). So, the

total number of tunable parameters for Type-1 NSFLS with 2 and 3 membership functions

are 145 and 730 respectively. Finally, 4 different models were created for both type-1

SFLS and type-1 NSFLS for each data set (25 data sets).

Interval type-2 singleton FLS (Type-2 SFLS) and type-1 non-singleton type-2 FLS

(Type-2 NSFLS-T1) have been designed by using the partially dependent approach. First,

the best possible singleton and non-singleton type-1 fuzzy systems were designed by tun-

ing their parameters using back-propagation designs, and then some of those parameters

were used to initialise the parameters of the interval type-2 SFLS and type-2 NSFLS-T1.
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They consisted of 4 antecedents for forecasting, 2 membership functions for each an-

tecedent and 16 rules. The Gaussian primary membership functions of uncertain means

for the antecedents were chosen. The means of membership functions are:

• Mean of MF1 = [mx −2σx −0.25σn,mx −2σx +0.25σn]

• Mean of MF2 = [mx +2σx −0.25σn,mx +2σx +0.25σn]

where mx is the mean of the data in the training parts, and σn is the standard devi-

ation of the additive noise. Each rule of the type-2 SFLS and type-2 NSFLS-T1 were

characterized by 12 antecedent MF parameters: left and right bounds on the mean, and

the standard deviation for each of 4 Gaussian membership functions) and 2 consequent

parameters (left and right hand end-points for the centroid of the consequent type-2 fuzzy

set). So, in total the number of parameters tuned for type-2 SFLS is 224. Standard de-

viation for each of the 4 input measurement membership functions (σn) is used in type-2

NFLS-T1. So in total the number of parameters tuned for type-2 SFLS is 225.

Initially the final tuned results were used for the standard deviation of the input, σx

or 2σx, obtained from type-1 NSFLS design, and also ȳi was obtained from type-1 SFLS

and then initial ȳi
r and ȳi

l was chosen as:

ȳi
r = ȳi +σn

ȳi
l = ȳi −σn,

where i = 1, 2, ..., 16

Finally, two different models for both type-2 SFLS and type-2 NSFLS-T1 were cre-

ated for each data set (totally 25 data sets). All designs mentioned above were tuned using

steepest descent algorithm in which all of the learning parameters were set equal to the

same value, 0.2. Training and testing were carried out for ten epochs. After each epoch

the testing data was used to see how each fuzzy system performed, by computing root

mean square error (RMSE).

All designs above were also based on 1,000 noisy data points: x(501), x(502), ...,

x(1500). The First 500 noisy data, x(501), x(502), ..., x(1000) were used for training, and
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the remaining 500 , x(1001), x(1002), ..., x(1500), were used for testing the design. Four

antecedents: x(k-3), x(k-2), x(k-1), and x(k) were used to predict x(k+1).

The performance of all the designs was evaluated using the RMSE as shown below:

RMSE =

√√√√ 1

500

1499

∑
k=1000

[x(k+1)− f (x(k))]2 (4.4)

where x(k) = [x(k−3),x(k−2),x(k−1),x(k)]T .

4.3.2 Results

After all models had been constructed and run, the performances of the type-1 and type-2

fuzzy systems were compared. The results of performance of 12 different models are

shown as follows. Table 4.1 shows the number of parameters that were used in the exper-

iment for each of the 12 models. Table 4.2 shows the result obtained from the mean of

RMSE of the best model for 12 different fuzzy system models with five noise levels.

0.0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10
epoch

mean of rmse

Figure 4.14: Graph of mean of RMSE of 12 models for noise level 1
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Table 4.1: Number of parameters of each design

No. FLS No. of Parameters

M1 T1-SFLS-2mf-2σ 144

M2 T1-SFLS-2mf-σ 144

M3 T1-SFLS-3mf-2σ 729

M4 T1-SFLS-3mf-σ 729

M5 T1-NSFLS-2mf-2σ 145

M6 T1-NSFLS-2mf-σ 145

M7 T1-NSFLS-3mf-2σ 730

M8 T1-NSFLS-3mf-σ 730

M9 T2-SFLS-2mf-2σ 224

M10 T2-SFLS-2mf-σ 224

M11 T2-NSFLS-2mf-2σ 225

M12 T2-NSFLS-2mf-σ 225
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Table 4.2: The mean of RMSE of the best model for 12 different fuzzy system models

with 5 different noise levels

RMSE N1 N2 N3 N4 N5

M1 0.2143 0.2351 0.2236 0.1253 0.1745

M2 0.2864 0.2447 0.2009 0.2071 0.2636

M3 0.1348 0.1326 0.1353 0.1343 0.1364

M4 0.1618 0.1723 0.1860 0.1800 0.1349

M5 0.0243 0.0244 0.0274 0.0219 0.0226

M6 0.0353 0.0555 0.0530 0.0467 0.0350

M7 0.0469 0.0469 0.0468 0.0466 0.0468

M8 0.0189 0.0213 0.0239 0.0188 0.0211

M9 0.0508 0.0285 0.0700 0.0529 0.0427

M10 0.1537 0.0450 0.0664 0.1291 0.1239

M11 0.0264 0.0215 0.0243 0.0202 0.0216

M12 0.0489 0.0263 0.0640 0.0434 0.0834
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Figure 4.15: Graph of mean of RMSE of 12 models for noise level 2
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Figure 4.16: Graph of mean of RMSE of 12 models for noise level 3
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Figure 4.17: Graph of mean of RMSE of 12 models for noise level 4
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Figure 4.18: Graph of mean of RMSE of 12 models for noise level 5
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Figure 4.19: Key for figures 4.14- 4.18

Figures 4.14, 4.15, 4.16, 4.17, and 4.18 show the performance (RMSE) of 12 different

models for the 5 different noise levels averaged over five separate runs, while Figure 4.19

shows the key that applies to Figures 4.14 - 4.18. Figures 4.20, 4.21, 4.22, 4.23, and 4.24

show the performance of just models M5, M8, and M11 with the y-axis expanded for

more detail. From Figures 4.14 and 4.24, it can be seen that M5 and M8 show better

results after epoch 3 than M9 (T2-SFLS) and M11 (T2-NSFLS), probably because these

data sets are noise free and this finding agrees with Mendel’s result.
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Figure 4.20: Graph of mean of RMSE of M5, M8 and M11 for noise level 1
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Figure 4.21: Graph of mean of RMSE of M5, M8 and M11 for noise level 2
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Figure 4.22: Graph of mean of RMSE of M5, M8 and M11 for noise level 3
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Figure 4.23: Graph of mean of RMSE of M5, M8 and M11 for noise level 4
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Figure 4.24: Graph of mean of RMSE of M5, M8 and M11 for noise level 5

4.3.3 Discussion

All cases the performance of type-1 fuzzy systems with singleton (crisp) inputs (M1 -

M4), the most common found in practice, is worse than for the type-1 non-singleton fuzzy
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systems and the type-2 fuzzy systems. This is regardless of the number of parameters in

the systems. Particularly, it should be noted that M3 and M4, each featuring 729 tunable

parameters, whilst better than M1 and M2, achieve far worse performance than type-1

non-singleton or type-2 fuzzy systems with far fewer parameters (M5, M6, M9 and M10).

This suggests that a high number of model parameters is not in itself sufficient to produce

good performance.

With zero noise, M5 (with only 145 parameters) achieves better performance than

M11 or M12. This agrees with Mendel’s previous findings that in the absence of noise

a type-1 fuzzy system with non-singleton inputs is an adequate model for capturing the

uncertainty.

The best overall performance is achieved with M8. This is a type-1 fuzzy system

with non-singleton inputs and with 3 membership functions for each variable, leading to

a high number of tunable model parameters (730). From this, we may tentatively suggest

that while type-2 fuzzy systems may not strictly be necessary in order to achieve ’optimal’

performance, their benefit may lie more in achieving good performance in a more tractable

model. Note also that M5 (T1-NSFLS with ’only’ 145 tunable parameters) achieves very

good performance, albeit slightly worse than the best models.

The best 3 models, M5 M8 and M11, are captured as in figures 4.20, 4.21, 4.22, 4.23,

and 4.24. The comparison between the performances of M8 and M11 by using Mann-

Whitney U-test has been found that M8 performs better than M11 with statistical signif-

icant at 95% in noise level 1, 3, 4, and 5. In noise level 2, M8 also performs better M11

but not statistical significant at 95%. So, the conclusion can be made that more number

of parameters tuned can improve the T1-NSFLS’s performance to be as good as or better

than type-2 fuzzy systems.

Finally, we emphasise that these finding are for one particular data set (MG-Time

series) only and hence, no general conclusions can be made from them alone. In order to

reach more common conclusions it would be necessary to carry out similar experiments

on a wide variety of data sets. There is no evidence at present to suggest that the similar

results would necessarily be obtained for other kinds of data.
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4.4 Non-Deterministic Fuzzy Reasoning

The purpose of developing an expert systems (based on fuzzy logic or not) is to encapsu-

late knowledge and expertise and use it like a human expert. Type-1 fuzzy logic systems,

like a classical expert systems, are deterministic in the sense that for the same inputs

the outputs are always the same. However, human expert exhibit a non-deterministic be-

haviour in decision making. Variation may occur among the decisions of a panel of human

experts (inter-expert) as well as in the decision of an individual expert (intra-expert) for

the same inputs. Understanding the dynamics of the variation in human decision making

could allow the creation of truly intelligent systems that cannot be differentiated from

their human counterparts. Moreover, in application areas where having an expert con-

stantly available is not possible, such systems can produce a span of decisions that may

be arrived at by a panel of experts.

Recently, Garibaldi et al have studied non-determinism by enhancing the fuzzy logic

system developed in an earlier work [134]. The rule of the original fuzzy logic system

were elicited in conjunction with several experts who took part in its development. How-

ever, when presented with the same data although the fuzzy system produced the same

output each time, the same input was given. it was observed that the experts’s conclusions

varied both among themselves and from their previous conclusions.

For example, six expert clinicians who took part in the development of the earlier

system (type-1 fuzzy logic system) were ask to rank 5 UAB assessments in terms of

perceived likelihood of having suffered brain damage due to lack of oxygen. Figure 4.25

shows the rankings of 50 UAB assessments by six experts against the type-1 fuzzy logic

system. A perfect agreement, which would be a straight line from (0,0) to (50,50), is the

ideal desired result. However, as can be seen from Figure 4.25, there is neither perfect

agreement with the fuzzy logic system nor among the experts. It can also be observed

that at the extreme cases the experts tend to agree with each other and the fuzzy logic

system but in the cases that fall in the middle of the range, there is less agreement. The

distribution presents the characteristic of an elliptic envelope around the diagonal line

from (0,0) to (50,50).
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Figure 4.25: Variation in rankings of 50 assessments (original from [14])

The source of this non-determinism was suspected to be lying in the different inter-

pretations of the linguistic terms used is the rules. The original fuzzy logic system used

type-1 membership functions which are precise and cannot reflect the vagueness in the

terms that they represent. However, these terms have different meaning for different ex-

perts and their interpretations may also vary depending on the environmental conditions

or over time.

To explore the relationship between the vagueness of the terms used in an fuzzy logic

system and the variation in its decision making, Garibaldi have carried out the experiments

by introducing uncertainty to the membership functions associated with the linguistic

terms.

Garibaldi et al [10–14] have been investigating the incorporation of variability into de-

cision making in the context of fuzzy expert systems in the medical domain. In this work,

Garibaldi proposed the notion of ‘non-deterministic fuzzy reasoning’ in which variability

is introduced into the membership functions of a fuzzy system through the use of ran-

dom alterations to the parameters of the generating function(s). For examples, in case of

Gaussian membership functions — the primary membership functions are illustrated in

figure 4.26. There are three alternative kinds of non-determinism have been proposed:

• Introducing the variability into the centre of membership functions (variation in
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location)

• Introducing the variability into the width of membership functions (variation in

slope)

• Introducing the variability into the value of membership functions (noise variation)

Figure 4.26: Illustration of the primary membership functions (original from [14])

Figure 4.27 illustrates the non-determinism membership functions with centre varia-

tion by shifting the centre of the primary membership functions (C1, C2, and C3) by the

amount of ∆ (Ć1, Ć2, and Ć3).

Figure 4.27: Illustration of non-deterministic membership functions with centre variation

(original from [14])



4.4. Non-Deterministic Fuzzy Reasoning 105

Figure 4.28 illustrates the non-deterministic membership functions with width varia-

tion by shifting the standard deviation (width) of the primary membership functions (σ1,

σ2, and σ3) by the amount of ∆ (σ́1, σ́2, and σ́3).

Figure 4.28: Illustration of non-deterministic membership functions with width variation

(original from [14])

Figure 4.29 illustrates the non-deterministic membership functions by adding noise

into the value of primary membership functions by the amount of ∆ (ε1, ε2, and ε3).

Figure 4.29: Illustration of non-deterministic membership functions with white noise

(original from [14])
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4.5 Summary

In this chapter, an investigation was carried out in which the performance of type-1 and

type-2 fuzzy systems with varying number of tunable parameters were compared in their

ability to predict the Mackey-Glass time series with various levels of added noise. Each

of the fuzzy systems were tuned to achieve the best possible performance using a stan-

dardised gradient descent procedure. This experiments were repeated a number of times

in order to establish the mean performance of each fuzzy system. The results show that

the best performance was achieved with a type-1 fuzzy system, albeit featuring a high

number of tunable parameters. A type-2 fuzzy system with far fewer parameters achieved

performance very close to the best.

Finally, the concept of non-deterministic fuzzy reasoning has been presented and also

described how to implement non-deterministic fuzzy sets. As mentioned in this chap-

ter, Garibaldi et al have been investigating the incorporation of variability into decision

making in the context of fuzzy expert systems in a medical domain. In those papers,

Garibaldi proposed the notion of non-deterministic fuzzy reasoning in which variability is

introduced into the membership functions of a fuzzy system through the use of random al-

terations to the parameters of these functions. In the next chapter, this notion is extended

and formalised through the introduction of a notion that we will term a non-stationary

fuzzy sets.



Chapter 5

Non-stationary Fuzzy Sets

5.1 Introduction

According to the use of type-1 fuzzy sets in practice has been limited due to the sig-

nificant increase in computational complexity involved in their implementation. More

recently, type-2 sets have received renewed interest mainly due to the effort of Mendel [1]

but also, possibly, by the increases in computational power over recent years. Mendel

has established a set of terms to be used when working with type-2 fuzzy sets and, in

particular, introduced a concept known as the footprint of uncertainty which provides a

useful verbal and graphical description of the uncertainty captured by any given type-2

set. The interested reader is particularly referred to [9] for a summary tutorial and/or [1]

for a more detailed treatment. Mendel has particularly concentrated on restricted class

of general type-2 fuzzy sets know as interval valued type-2 fuzzy sets. Interval valued

fuzzy sets are characterised by having secondary membership functions which only take

the values in {0, 1}. This restriction greatly simplifies the computational requirements in-

volved in performing inference with type-2 sets and Mendel has provided close formulas

for intersection, union and complement, and computational algorithms for type reduction

(necessary for type-2 defuzzification).

As mentioned in Chapter 4, It is well accepted that all humans including ’experts’,

exhibit variation in their decision making. Variation may occur among the decisions of

a panel of human experts (inter-expert variability), as well as in the decisions of an in-

dividual expert over time (intra-expert variability). Up to now it has been an implicit

107
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assumption that expert systems, including fuzzy expert systems, should not exhibit such

variation. While type-2 fuzzy sets capture the concept of introducing uncertainty into

membership functions by introducing a range of membership values associated with each

value of the base variable, they do not capture the notion of variability — as a type-2

fuzzy inference system (FIS) will always produce the same output(s) given the same in-

put(s), although any output(s) will be a type-2 fuzzy set with an implicit representation of

uncertainty. Garibaldi et al. [10–14] have been investigating the incorporation of variabil-

ity into decision making in the context of fuzzy expert systems in a medical domain. In

those papers, Garibaldi proposed the notion of non-deterministic fuzzy reasoning in which

variability is introduced into the membership functions of a fuzzy system through the use

of random alterations to the parameters of these functions. In this chapter, this notion is

extended and formalised through the introduction of a notion that termed a non-stationary

fuzzy sets.

5.2 Non-stationary Fuzzy Sets and Systems

As mentioned in the section 5.1, Garibaldi previously proposed the notion of ‘non-deter-

ministic fuzzy reasoning’ in which variability is introduced into the membership func-

tions of a fuzzy system through the use of random alterations to the parameters of these

membership functions. In this section, this notion is extended and formalised through the

introduction of a concept termed a non-stationary fuzzy set. Informally, a non-stationary

fuzzy set is a set (collection) of type-1 fuzzy sets in which there is a connection between

(or restriction on) the membership functions of the fuzzy sets. This connection is ex-

pressed as a slight variation in the membership function over time. Figure 5.1 shows

pictorial representation of repeated instantiations of a non-stationary fuzzy set in which

the underlying Gaussian membership function has variation in its standard deviation. The

sets were obtained by repeatedly generating (30 times) a Gaussian membership function

with the centre of 0.5 and standard deviation that varies by ±0.05 (i.e. between 0.45 and

0.55). That is, the parameters of the non-stationary set have been chosen in this example

such that the extreme parameter values would match those used to generate the upper and

lower bounds of type-2 fuzzy set as shown in Figure 2.18. It is apparent from Figure 2.18
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Figure 5.1: Illustration of a Gaussian non-stationary fuzzy set featuring variation in stan-

dard deviation and instantiated 30 times.

and 5.1 that the union of all possible instantiations of the non-stationary set is reminiscent

of the FOU of the type-2 set. However, it is important to emphasize that non-stationary

fuzzy sets are not type-2 fuzzy sets. Essentially, type-2 fuzzy sets are ‘fuzzy sets with

fuzzy membership functions’ [34], while non-stationary fuzzy sets are collections of re-

lated fuzzy sets. From a formal point of view, non-stationary fuzzy sets are defined in a

different way than type-2 fuzzy sets, and have distinct properties (as will be discussed).

From a modelling point of view, they model different things: non-stationary fuzzy sets

model temporal variability in (type-1) membership functions, while type-2 fuzzy sets

model uncertain membership functions.

5.3 Non-stationary Fuzzy Sets

Let A denote a fuzzy set of a universe of discourse X characterised by a membership

function µA. Let T be a set of time points ti (possibly infinite) and f : T → ℜ denote a

perturbation function.

Definition 5.3.1 A non-stationary fuzzy set Ȧ of the universe of discourse X is charac-
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terised by a non-stationary membership function µȦ : X ×T → [0,1] that associates with

each element x of X and t of T a time-specific variation of µA(x). The non-stationary

fuzzy set Ȧ is denoted by:

Ȧ =
∫

t∈T

∫
x∈X

µȦ(x, t)/x/t. (5.1)

However, an additional restriction is imposed on µȦ. To formulate it in a coherent and

precise manner, let consider the first notice that µA(x) can be expressed as µA(x, p1, ..., pm),

where p1, ..., pm denote the parameters of µA(x). Now it is required that:

µȦ(x, t) = µA(x, p1(t), ..., pm(t)). (5.2)

where pi(t) = pi+ki f (t) and i = 1, ...,m. In this way, each parameter is varied in time

by a perturbation function multiplied by a constant.

This definition establishes a relationship between standard and non-stationary fuzzy

sets. Specifically, for a given standard fuzzy set A and a set of time points T , a non-

stationary fuzzy set Ȧ is a set of duplicates of A varied over time. A time duplicate of A

is termed an instantiation and denote it by Ȧt , so that Ȧt(x) = Ȧ(x, t). Thus, at any given

moment of time t ∈ T , the non-stationary fuzzy set Ȧ instantiates the standard fuzzy set Ȧt .

The standard fuzzy set, A, termed the underlying fuzzy set and its associated membership

function, µA(x), termed the underlying membership function.

Any membership function may be used for the underlying standard fuzzy set. In

practice. of course, only a few alternative membership functions are found in standard

fuzzy sets, namely: piecewise linear including Left-slope, Triangular, Right-slope, Left-

shoulder, Trapeziodal, and Right-shoulder; Gaussian; and Sigmoidal.

Example 5.3.1 As an example, consider a linguistic variable for height. Let the uni-

verse of discourse, X , be the interval [1,2], with x interpreted as height (in metres). A

non-stationary fuzzy set M of X , representing medium height, incorporating variability

in the underlying membership function over time, might be represented by a Gaussian

membership function where the standard deviation, σ, is a function of time:
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Ṁ =
∫

t∈T

∫ 2

1
e
−

(x−c)2

σ(t)2 /x/t. (5.3)

Example 5.3.2 As an example, let us formalise these three forms in the context of Gaus-

sian membership functions. A standard Gaussian membership function can be written in

the parameterised notation as:

µ(x,c,σ,ε) = e
−

(x−c)2

σ2 + ε. (5.4)

(Of course, normally ε is zero.) Now, the three forms of non-stationarity described

above can be expressed by , respectively:

µ(x,c(t),σ,ε) = e
−

(x−c(t))2

σ2 + ε. (5.5)

µ(x,c,σ(t),ε) = e
−

(x−c)2

σ(t)2 + ε. (5.6)

µ(x,c,σ,ε(t)) = e
−

(x−c)2

σ2 + ε(t). (5.7)

Note that for simplicity, (t) will be omitted from any parameter that does not vary over

time. Naturally, there is no reason why these three different kinds of variation could not

be combined together. In this case:

µ(x,c(t),σ(t),ε(t)) = e
−

(x−c(t))2

σ(t)2 + ε(t). (5.8)

but, for simplicity, at present such combined non-stationarity will not be considered.

5.4 Perturbation Functions

The original intention behind non-stationary fuzzy sets was to capture the notion of minor

variations of a membership function corresponding to subtle differences in opinion over
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time. Additionally, the intention was that a non-stationary fuzzy set remains close to the

underlying fuzzy set over time; that is , there is no permanent ‘drift’ or alteration of the

membership function which is characteristic of learning processes. Thus, the term per-

turbation function has been deliberately chosen to imply that parameter changes induced

by the function are ‘small’ or, more precisely, that parameter changes induce ‘small’ and

temporary alterations in µA(x).

Note that there is an interesting relationship between small variations over time that

are proposed here for non-stationary fuzzy sets and long-term changes in membership

functions that are seen in adaptive (or ‘learning’) fuzzy sets. Such relationships are outside

the scope of this thesis, and might require further research.

There are many ways in which an opinion may vary over time. However, three main

alternative forms of non-stationarity which might be more useful in practice can be for-

malised as follows:

• Variation in location — the membership function is shifted, as a whole, left or

right by small amounts along the universe of discourse, relative to the underlying

membership function.

• Variation in width — the width of the membership function is increased or de-

creased by small amounts, relative to the underlying membership function.

• Noise variation — the membership function is shifted upward or downward by a

small amount of ‘white noise’, relative to the underlying membership function.

The next issue to be addressed is the form of the perturbation function. In general, it

would be appear that any function of time might be used as a perturbation function, within

the formal restriction that the membership function remains in bounds (i.e. µA(x, t) ∈

[0,1]). In theory, a perturbation function could be a true random function. Given that any

measurement of time is arbitrary and relative, the actual set of functions that might be

useful in practice is more restrictive. Any units might be used for time, t, but the most

natural would be to express time in seconds, in the absence of any good reason not to.

Again, given that any physical notion of time is relative, any arbitrary point in time might

be chosen as zero. A few families of perturbation functions that might be used in practice

are:
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• periodic, e.g.:

f (t) = sin(ωt) (5.9)

• pseudo-random, e.g.:

f (t) =
s(t +1)−247

247
, (5.10)

where s(0) is the initial seed in [0,248] and

s(t +1) = (25,214,903,917s(t)+11)mod248.

• a differential time-series, such as the Mackey-Glass equation:

d f (t)

dt
=

0.2 f ∗ (t − τ)

1+ f 10(t − τ)
−0.1 f (t), (5.11)

where τ is a constant.

In last section, c(t), σ(t), and ε(t) can all be generated by using the following:

c(t) = c+ kf(t) (5.12)

σ(t) = σ+ kf(t) (5.13)

ε(t) = kf(t) (5.14)

where c and σ are the centre and width of the initially type-1 fuzzy set, respectively,

k is a constant value, and f (t) is the what will be termed the perturbation function. By

perturbation function, a function (of time), that will generate small changes in the under-

lying membership function. In theory, this could be a true random function — i.e. the

membership function parameter could be a true random variable: hence the terminology

of non-stationary fuzzy sets.
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5.5 Footprint of Variation (FOV)

As mentioned in section 2.8, the term ‘footprint of uncertainty’ (FOU) was introduced by

Mendel to provide ‘a very convenient verbal description of the entire domain of support

for all the secondary grades of a type-2 membership function’ [1], where uncertainty

in primary memberships of a type-2 fuzzy set consists of a bounded region that called

the footprint of uncertainty (FOU), e.g. pictorial in Figure 2.18. Each of the secondary

membership functions of interval type-2 fuzzy sets has only one secondary grade that

equal to 1.

A similar term, the ‘footprint of variation’ (FOV), has been introduced as a similar

verbal description of the area covering the range from the minimum to the maximum

fuzzy sets which comprise the non-stationary fuzzy sets as shown in Figure 5.1. For

non-stationary fuzzy sets which are generated by Uniformly distributed and Sinusoidal

perturbation functions (producing random values within [−1,1]), the maximum area of

FOV will be equivalent to the FOU of interval type-2 fuzzy sets with the same amount

of variation. Normally distributed perturbation functions generate random values within

[−∞,∞], and so an FOV defined as the union of all primary memberships would fill the

entire universe of discourse. This kind of FOV will need further investigation, and will be

left for the future works.

5.6 Non-stationary Fuzzy Inference Systems

Although this thesis is not focused on a complete description of the fuzzy inference pro-

cess, in order to clarify the difference between type-1, type-2, and non-stationary fuzzy

sets. An FIS consists of four main inter-connected components: the rules, the fuzzifier,

the inference engine, and an output processor. Type-1 FISs use only type-1 fuzzy sets,

whereas an FIS which uses at least one type-2 fuzzy set is called a type-2 FIS. Figure 5.2

shows the mechanisms of a type-2 FIS (adapted from [1]).

Figure 5.3 shows the mechanism of the inferencing process in an FIS consisting of

such non-stationary fuzzy sets. An FIS is naturally termed as a ‘non-stationary FIS’. It

should be emphasized that a non-stationary FIS is simply a repetition of a type-1 FIS

with slightly different instantiations of the membership functions over time. Thus, im-
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Figure 5.2: Mechanisms of a type-2 FLS (adapted from [1]).
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Figure 5.3: Proposed mechanisms of a non-stationary FLS.

plementing a non-stationary FIS is simply a matter of iterating over the required number

of instantiations while perturbing the membership functions. Neither the form of non-

stationarity (variation in location, variation in width, or noise variation) nor the form of

perturbation function (periodic, random, chaotic, etc.) has any effect on the inference

process. Hence, an inference with non-stationary fuzzy sets is clearly different from the

type-2 inference, and does not suffer the difficulties of type-2 inference (particularly the

inference using general type-2 fuzzy sets). A preliminary analysis of the relationship be-

tween non-stationary fuzzy sets and type-2 fuzzy sets will be explored in Chapter 6 and 7

in form of case studies.
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5.7 Operations on and Properties of Non-stationary Fuzzy

Sets

In this section, the operators of union, intersection, and complement of non-stationary

fuzzy sets are introduced.

At first, let recall the familiar properties of type-1 fuzzy sets. Suppose, there are two fuzzy

sets, A and B, that are characterised by membership functions µA(x) and µB(x):

A =
∫

x∈X
µA(x)/x. (5.15)

and

B =
∫

x∈X
µB(x)/x. (5.16)

Recall that:

µA∪B(x) =
∫

x∈X
µA(x)∪µB(x)/x, (5.17)

µA∩B(x) =
∫

x∈X
µA(x)∩µB(x)/x, (5.18)

µĀ(x) =
∫

x∈X
1−µA(x)/x, (5.19)

µB̄(x) =
∫

x∈X
1−µB(x)/x, (5.20)

The membership functions of the union and intersection of A and B, and the comple-

ment of A are, of course:

µA∪B(x) = µA(x)⊕µB(x), ∀x ∈ X , (5.21)

where ⊕ is a t-conorm,

Because A and B are type-1 fuzzy sets, their membership grades µA(x) and µB(x) are

crisp number and, at each x, µA∪B(x), µA∩B(x), µĀ(x) and µB̄(x) are also crisp numbers.

µA∩B(x) = µA(x)⊗µB(x), ∀x ∈ X , (5.22)
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where ⊗ is a t-norm, and

µĀ(x) = µA(x), ∀x ∈ X , (5.23)

where¯is a generic complement.

Using the maximum t-conorm, minimum t-norm and the standard complement, the

previous equations become:

µA∪B(x) = max[µA(x),µB(x)], ∀x ∈ X , (5.24)

µA∩B(x) = min[µA(x),µB(x)], ∀x ∈ X , (5.25)

µĀ(x) = 1−µA(x), ∀x ∈ X . (5.26)

Now, let T = {t1, ..., tn} be a set of time points ti, and let Ȧ and Ḃ be non-stationary

fuzzy sets of a universe of discourse X . Thus

Ȧ =
∫

t∈T

∫
x∈X

µȦ(x, t)/x/t

and

Ḃ =
∫

t∈T

∫
x∈X

µḂ(x, t)/x/t.

Definition 5.7.1 (Non-stationary Union Operator): The union of Ȧ and Ḃ, is a non-

stationary fuzzy sets Ȧ∪ Ḃ such that:

Ȧ∪ Ḃ =
∫

t∈T

∫
x∈X

µȦ∪Ḃ(x, t)/x/t,

where

µȦ∪Ḃ(x, t) = µȦ(x, t)⊕µḂ(x, t), ∀(x, t) ∈ X ×T.

Thus, using the maximum t-conorm, this becomes:

µȦ∪Ḃ(x, t) = max[µȦ(x, t),µḂ(x, t)], ∀(x, t) ∈ X ×T.
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Definition 5.7.2 (Non-stationary Intersection Operator): The intersection of Ȧ and Ḃ is

a non-stationary fuzzy set Ȧ∩ Ḃ such that:

Ȧ∩ Ḃ =
∫

t∈T

∫
x∈X

µȦ∩Ḃ(x, t)/x/t,

where

µȦ∩Ḃ(x, t) = µȦ(x, t)⊗µḂ(x, t), ∀(x, t) ∈ X ×T.

where, using the minimum t-norm, this becomes:

µȦ∩Ḃ(x, t) = min[µȦ(x, t),µḂ(x, t)], ∀(x, t) ∈ X ×T.

Definition 5.7.3 (Non-stationary Complement Operator): The complement of Ȧ is a non-

stationary fuzzy set, Ȧ, such that:

Ȧ =
∫

t∈T

∫
x∈X

µ
Ȧ
(x, t)/x/t,

where

µ
Ȧ
(x, t) = µȦ(x, t), ∀(x, t) ∈ X ×T.

which, of course, using the standard complement, this becomes:

µ
Ȧ
(x, t) = 1−µȦ(x, t), ∀(x, t) ∈ X ×T.

5.8 Proof of Properties of Non-stationary Fuzzy Sets

This section is dedicated to the proof of some of the fundamental properties of non-

stationary fuzzy set operators defined earlier. This proofs are derived directly from Zadeh’s

proofs for standard type-1 fuzzy sets; these are included for completeness. Table 5.1 sum-

marises the set theoretic laws that are satisfied by non-stationary fuzzy sets.

First, Let consider non-stationary fuzzy sets Ȧ, Ḃ, and Ċ:
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Table 5.1: Summary of some set theoretic laws satisfied by non-stationary fuzzy sets.

Set theoretic laws Maximum t-conorm Minimum t-norm

Involution

¯̇̄
A = Ȧ Yes Yes

Commutativity

Ȧ∪ Ḃ = Ḃ∪ Ȧ Yes yes

Ȧ∩ Ḃ = Ḃ∩ Ȧ Yes yes

Associativity

(Ȧ∪ Ḃ)∪Ċ = Ȧ∪ (Ḃ∪Ċ) Yes Yes

(Ȧ∩ Ḃ)∩Ċ = Ȧ∩ (Ḃ∩Ċ) Yes Yes

Idempotence

Ȧ∪ Ȧ = Ȧ Yes Yes

Ȧ∩ Ȧ = Ȧ Yes Yes

Distributivity

Ȧ∩ (Ḃ∪Ċ) = (Ȧ∩ Ḃ)∪ (Ȧ∩Ċ) Yes Yes

Ȧ∪ (Ḃ∩Ċ) = (Ȧ∪ Ḃ)∩ (Ȧ∪Ċ) Yes Yes
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Ȧ =
∫

t∈T

∫
x∈X

µȦ(x, t)/x/t,

Ḃ =
∫

t∈T

∫
x∈X

µḂ(x, t)/x/t,

and

Ċ =
∫

t∈T

∫
x∈X

µĊ(x, t)/x/t.

Note that, for the sake of brevity in the formula below, whenever a non-stationary

union, intersection or complement operator from the definitions given in Section 5.7 is

used in this section, then ∀(x, t) ∈ X ×T will be omitted.

5.8.1 Involution

Let us consider the complement of A, Ȧ:

Ȧ =
∫

t∈T

∫
x∈X

µ
Ȧ
(x, t)/x/t.

By the definition of the complement operation for non-stationary fuzzy sets (Defini-

tion 5.7.3), we have:

µ
Ȧ
(x, t) = 1−µȦ(x, t), ∀(x, t) ∈ X ×T. (5.27)

Thus, the complement of Ȧ can be expressed as:

Ȧ =
∫

t∈T

∫
x∈X

µ
Ȧ
(x, t)/x/t,

where

µ
Ȧ
(x, t) = 1−µ

Ȧ
(x, t).

By replacing µ
Ȧ
(x, t) with Equation 5.27, we obtain:

µ
Ȧ
(x, t) = 1− (1−µȦ(x, t)).
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It follows that:

µ
Ȧ
(x, t) = 0+µȦ(x, t).

Finally:

µ
Ȧ
(x, t) = µȦ(x, t).

So we can claim that Ȧ = Ȧ. We then can conclude that non-stationary fuzzy set has

an involution property.

5.8.2 Commutativity

Proof of commutativity for non-stationary fuzzy sets can be shown as following;

Let define a non-stationary fuzzy set, Ȧ and Ḃ

Ȧ =
∫

t∈T

∫
x∈X

µȦ(x, t)/x/t,

and

Ḃ =
∫

t∈T

∫
x∈X

µḂ(x, t)/x/t,

Union

By the definition of the union operation for non-stationary fuzzy sets, we have:

µȦ∪Ḃ(x, t) = µȦ(x, t)⊕µḂ(x, t).

As the t-conorm operator is commutative, we know that:

µȦ(x, t)⊕µḂ(x, t) = µḂ(x, t)⊕µȦ(x, t).

Again, by definition:

µḂ∪Ȧ(x, t) = µḂ(x, t)⊕µȦ(x, t).

thus:
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µȦ∪Ḃ(x, t) = µḂ∪Ȧ(x, t).

So we can claim that Ȧ∪ Ḃ = Ḃ∪ Ȧ.

We then can conclude that non-stationary fuzzy sets have an commutativity property for

union operator.

Intersection

By the definition of the intersection operation for non-stationary fuzzy sets, we have:

µȦ∩Ḃ(x, t) = µȦ(x, t)⊗µḂ(x, t).

As t-norm operator is commutative, we know that:

µȦ(x, t)⊗µḂ(x, t) = µḂ(x, t)⊗µȦ(x, t).

Again, by definition:

µḂ∩Ȧ(x, t) = µḂ(x, t)⊗µȦ(x, t).

thus:

µȦ∩Ḃ(x, t) = µḂ∩Ȧ(x, t).

So we can claim that Ȧ∩ Ḃ = Ḃ∩ Ȧ.

We then can conclude that non-stationary fuzzy sets have an commutativity property for

intersection operator.

5.8.3 Associativity

Proof of Associativity for non-stationary fuzzy sets can be shown as following;

Let define a non-stationary fuzzy set, Ȧ, Ḃ, and Ċ.

Ȧ =
∫

t∈T

∫
x∈X

µȦ(x, t)/x/t,

Ḃ =
∫

t∈T

∫
x∈X

µḂ(x, t)/x/t,
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and

Ċ =
∫

t∈T

∫
x∈X

µĊ(x, t)/x/t.

Union

By the definition of the union operation for non-stationary fuzzy sets, we have:

µȦ∪(Ḃ∪Ċ)(x, t) = µȦ(x, t)⊕ (µḂ(x, t)⊕µĊ(x, t)).

As the t-conorm operator is associative, we know that:

µȦ(x, t)⊕ (µḂ(x, t)⊕µĊ(x, t)) = (µȦ(x, t)⊕µḂ(x, t))⊕µĊ(x, t).

Again, by definition:

µ(Ȧ∪Ḃ)∪Ċ(x, t) = (µȦ(x, t)⊕µḂ(x, t))⊕µĊ(x, t).

And so:

µȦ∪(Ḃ∪Ċ(x, t)) = µ(Ȧ∪Ḃ)∪Ċ(x, t).

So we can claim that (Ȧ∪ Ḃ)∪Ċ = Ȧ∪ (Ḃ∪Ċ).

We then can conclude that non-stationary fuzzy sets have an associativity property for

union operator.

Intersection

By the definition of the intersection operation for non-stationary fuzzy sets, we have:

µȦ∩(Ḃ∩Ċ)(x, t) = µȦ(x, t)⊗ (µḂ(x, t)⊗µĊ(x, t)).

As the t-norm operator is associative, we know that:

µȦ(x, t)⊗ (µḂ(x, t)⊗µĊ(x, t)) = (µȦ(x, t)⊗µḂ(x, t))⊗µĊ(x, t).
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Again, by definition:

µ(Ȧ∩Ḃ)∩Ċ(x, t) = (µȦ(x, t)⊗µḂ(x, t))⊗µĊ(x, t).

And so:

µȦ∩(Ḃ∩Ċ(x, t)) = µ(Ȧ∩Ḃ)∩Ċ(x, t).

So we can claim that (Ȧ∩ Ḃ)∩Ċ = Ȧ∩ (Ḃ∩Ċ).

We then can conclude that non-stationary fuzzy sets have an associativity property for

intersection operator.

5.8.4 Distributivity

Proof of distributivity for non-stationary fuzzy sets can be shown as following;

Let define a non-stationary fuzzy set, Ȧ, Ḃ, and Ċ.

Ȧ =
∫

t∈T

∫
x∈X

µȦ(x, t)/x/t,

Ḃ =
∫

t∈T

∫
x∈X

µḂ(x, t)/x/t,

and

Ċ =
∫

t∈T

∫
x∈X

µĊ(x, t)/x/t.

Union

By the definition of the union operation for non-stationary fuzzy sets, we have:

µȦ∩(Ḃ∪Ċ)(x, t) = µȦ(x, t)⊗ (µḂ(x, t)⊕µĊ(x, t)).

As the t-conorm operator is distributive, we know that:

µȦ(x, t)⊗ (µḂ(x, t)⊕µĊ(x, t)) = (µȦ(x, t)⊗µḂ(x, t))⊕ (µȦ(x, t)⊗µĊ(x, t)).

Again, by definition:
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µ(Ȧ∩Ḃ)∪(Ȧ∩Ċ)(x, t) = ((µȦ(x, t)⊗µḂ(x, t))⊕ (µȦ(x, t)µĊ(x, t)).

And so:

µȦ∩(Ḃ∪Ċ)(x, t) = µ(Ȧ∩Ḃ)∪(Ȧ∩Ċ)(x, t).

So we can claim that Ȧ∩ (Ḃ∪Ċ) = (Ȧ∩ Ḃ)∪ (Ȧ∩Ċ).

We then can conclude that non-stationary fuzzy sets have an distributivity property for

union operator.

Intersection

By the definition of the intersection operation for non-stationary fuzzy sets, we have:

µȦ∪(Ḃ∩Ċ)(x, t) = µȦ(x, t)⊕ (µḂ(x, t)⊗µĊ(x, t)).

As the t-norm operator is distributive, we know that:

µȦ(x, t)⊕ (µḂ(x, t)⊗µĊ(x, t)) = (µȦ(x, t)⊕µḂ(x, t))⊗ (µȦ(x, t)⊕µĊ(x, t)).

Again, by definition:

µ(Ȧ∪Ḃ)∩(Ȧ∪Ċ)(x, t) = ((µȦ(x, t)⊕µḂ(x, t))⊗ (µȦ(x, t)⊕µĊ(x, t)).

And so:

µȦ∪(Ḃ∩Ċ)(x, t) = µ(Ȧ∪Ḃ)∩(Ȧ∪Ċ)(x, t).

So we can claim that Ȧ∪ (Ḃ∩Ċ) = (Ȧ∪ Ḃ)∩ (Ȧ∪Ċ).

We then can conclude that non-stationary fuzzy sets have an distributivity property for

intersection operator.
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5.8.5 Idempotence

It is well known that by restricting the t-conorm and t-norm operators to be idempotent,

the only possible operators are max and min respectively.

Union

By the definition of the union operation for non-stationary fuzzy sets, we have:

µȦ∪Ȧ(x, t) = max(µȦ(x, t),µȦ(x, t)).

As the max operator is idempotent, we know that:

max(µȦ(x, t),µȦ(x, t)) = µȦ(x, t).

and so

µȦ∪Ȧ(x, t) = µȦ(x, t).

so we can claim that Ȧ∪ Ȧ = Ȧ. We then can conclude that non-stationary fuzzy set

has an an idempotence property for union operator.

Intersection

By the definition of the intersection operation of non-stationary fuzzy sets, we have:

µȦ∩Ȧ(x, t) = min(µȦ(x, t),µȦ(x, t)).

As the min operator is idempotent, we know that:

min(µȦ(x, t),µȦ(x, t)) = µȦ(x, t).

and so

µȦ∩Ȧ(x, t) = µȦ(x, t).
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so we can claim that Ȧ∩ Ȧ = Ȧ. We then can conclude that non-stationary fuzzy set

has an an idempotance property for intersection operator.

5.9 Summary

In this chapter, a new concept termed non-stationary fuzzy set is defined. These have

been created with the specific intention of modelling the variation (over time) of opin-

ion, and then formalise the novel concept that previously proposed by Garibaldi [14] to

model the variation in expert opinion. While apparently similar to type-2 fuzzy sets in

some regards, non-stationary fuzzy sets possess some important distinguishing features.

A non-stationary fuzzy set is, effectively, a collection of type-1 fuzzy sets in which there

is an explicit, defined, relationship between the fuzzy set. Specifically, each of the instan-

tiations (type-1 fuzzy set) is derived by a perturbation of (making a small change to) a

single underlying membership function. While each instantiation is somewhat reminis-

cent of a embedded type-1 set of a type-2 fuzzy set, there is not a direct correspondence

between these two concepts. It is also possible to view a standard type-1 fuzzy set, either

as a single instantiation or as repeated instantiations of the underlying set with no pertur-

bation. Again, a non-stationary fuzzy set does not have secondary membership function.

Hence, there is no direct equivalent to the embedded type-2 sets of type-2 fuzzy set. Sim-

ilarly, there are no secondary grades. While it is true that distributions of membership

grades across ‘vertical slices’ are still not, formally, the same as secondary membership

functions. The inference process is quite different. The crucial point is that, at any in-

stant of time, a non-stationary fuzzy set is (instantiates) type-1 fuzzy set. Hence the

non-stationary inference is just a repeated type-1 inference (albeit with slightly different

type-1 sets at each time instant). In contrast, type-2 inference involves passing type-2

fuzzy sets through the process, resulting in type-2 output sets that require type reduction

prior to defuzzification.

Some possible functions that can be used as a perturbation function are provided. The

term , footprint of variation (FOV), is proposed to represent the area covering the range

from the minimum to the maximum fuzzy sets which comprise the non-stationary fuzzy

set. Operations on non-stationary fuzzy sets, i.e. union, intersection, complement are also
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introduced in this chapter. Finally, proof of some properties of non-stationary fuzzy sets,

i.e. involution, commutativity, associativity, idempotence, and distributivity are presented.

In the next chapters, the investigation onto performances of non-stationary fuzzy sets

comparing with interval type-2 fuzzy sets is proposed. The secondary membership func-

tions, the output’s interval, and the relationship between primary membership functions

and output uncertainties are considered for these investigations.



Chapter 6

Relationships between Interval Type-2

and Non-stationary Fuzzy Sets

6.1 Introduction

In this chapter, The relationships between interval type-2 and non-stationary fuzzy sets

is investigated, in terms of secondary membership functions. Two case studies were de-

scribed which were carried out in order to illustrate the use of non-stationary fuzzy sets

and to explore the relationship between the performance of non-stationary fuzzy infer-

ence systems (FISs) and interval type-2 FISs. All fuzzy inference systems were con-

structed to perform a fuzzy equivalent of the classical XOR operation, where Table 6.1

shows the classical XOR operation, where Input1 and Input2 are input variables and

xor(Input1,Input2) is the output variable for those inputs.

In this study, FISs were constructed to predict the truth value of the XOR output where

both input variables can take any value in the range of [0,1]. All FISs consist of two input

variables which are Input1 and Input2, one output variable which is Output, and four

rules. Each variable consist of 2 membership functions, corresponding to meaning of the

terms Low and High. The following four rules were used for all FISs. These rules are

constructed based on the standard XOR problem.

1. IF Input1 is Low AND Input2 is Low

THEN Output is Low

129
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Table 6.1: XOR Truth Table.

Input1 Input2 xor(Input1,Input2)

Case 1 0 0 0

Case 2 0 1 1

Case 3 1 0 1

Case 4 1 1 0

2. IF Input1 is Low AND Input2 is High

THEN Output is High

3. IF Input1 is High AND Input2 is Low

THEN Output is High

4. IF Input1 is High AND Input1 is High

THEN Output is Low

The four cases of input values used throughout these studies are shown in Table 6.2.

Table 6.2: Input Values for Fuzzy Systems.

Case Input1 Input2 Output

Case 1 0.25 0.25 ?

Case 2 0.25 0.75 ?

Case 3 0.75 0.25 ?

Case 4 0.75 0.75 ?
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6.2 Case Study 1: Gaussian Membership Functions

6.2.1 The Non-stationary FISs:

In the first case study, non-stationary FISs utilising Gaussians of the form:

µA(x,c,σ) = e
−

(x−c)2

σ2 (6.1)

as the underlying membership functions were investigated.

Note that the ε parameter has now been dropped, as noise variation was not considered

in this study. Two forms of non-stationary were implemented:

• Variation in location: only the centre , c, of the Gaussian (Equation 6.1) was varied

over time, yielding non-stationary membership functions of the form:

µȦ(x,c+ k1 f (t),σ) = e
−

(x−(c+k1 f (t)))2

σ2 (6.2)

• Variation in width: only the standard deviation, σ, of the Gaussian (Equation 6.1)

was varied over time, yielding non-stationary membership functions of the form:

µȦ(x,c,σ+ k2 f (t)) = e
−

(x−c)2

(σ+k2 f (t))2 (6.3)

The Low membership functions had centre 0.1, the High membership functions had

centre 0.9, and all had a standard deviation of 0.25. The underlying Gaussian membership

functions are shown in Figure 6.1.

Three different perturbation functions were used , as follows:

• a uniformly distributed pseudo-random function, e.g.:

f (t) =
s(t +1)−247

247
, (6.4)

where s(0) is the initial seed in [0,248] and

s(t +1) = (25,214,903,917s(t)+11)mod248,
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Figure 6.1: The underlying Gaussian membership functions for the terms Low and High

as used in the case study 1.

• a random function with Gaussian distribution (Matlab randn function),

• Sine function (where ω = 127), e.g.:

f (t) = sin(ωt). (6.5)

The first and third functions above returned values in the range [−1,1], while the sec-

ond (the Matlab randn function) returned real values sampled from a normalised Gaussian

distribution with mean zero and standard deviation one.

In all cases k1 = k2 = 0.05.

Four different non-stationary FISs for each of these three perturbation functions were

designed (12 non-stationary FISs in total). These were distinguished by the number of

instantiations (time points) used to construct the non-stationary fuzzy sets, as follows:

• 30 instantiations

• 100 instantiations

• 1,000 instantiations
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• 10,000 instantiations

These non-stationary systems are denoted by NS1-#$-&*. ‘#’ is either ’G’ to denote

Gaussian underlying membership functions or ‘T’ for Triangular ones (as used in the sec-

ond case study, below). ‘$’ is either ‘L’ to denote variation in location or ‘W’ for variation

in width. ‘&’ is either ‘U’ to denote uniform perturbation function, ‘G’ for Gaussian or

‘S’ for sinusoidal. Finally, ‘*’ denotes the number of instantiations. For example, NS1-

GL-G100 denotes a non-stationary system that utilises Gaussian underlying membership

functions featuring variation in location, with a Gaussian perturbation function, instanti-

ated 100 times.

6.2.2 The Type-2 FISs:

Two interval type-2 FISs were designed, featuring the same inputs and outputs, and the

same four rules. The footprints of uncertainty of the membership functions were created

by deviating the parameters of Equation 6.1 as follows. For the variation the location, the

lower and upper bounds of the FOU were generated by:

µ
Ã
(x,c,σ) = e

−
(x−(c±k1))

2

σ2 . (6.6)

For variation in width, the lower and upper bounds of the FOU were generated by:

µ
Ã
(x,c,σ) = e

−
(x−c)2

(σ±k2)
2 . (6.7)

In both cases, again, k1 = k2 = 0.05.

Note that these formula were obtained by from Equation 6.2 and 6.3 by setting f (t) =

±1. This was purposefully chosen to establish a form of correspondence between the

non-stationary and the interval type-2 FISs. The interval type-2 systems are denotes by

IT2-#$. As before, ‘#’ is either ‘G’ to denote Gaussian underlying membership functions

or ‘T’ for Triangular ones (as used in the second case study, below), and ‘$’ is either ‘L’

to denote variation in location or ‘W’ for variation width.
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6.2.3 The Inference Process and Results:

For each FIS constructed, inference was performed and the results were obtained as fol-

lows. For the type-2 systems, the four input cases shown in Table 6.2 were presented to

the systems. Inference was performed using the rules given to obtain the type-2 output

sets. In each case, the usual Karnik-Mendel type reduction was used to obtain the lower

and upper bound of the centre of gravity of the output. The mean of the output was taken

as the average of the lower and upper bound.

For the non-stationary systems, each system was instantiated the specified number of

times to obtain the set of non-stationary output fuzzy sets. In each case, defuzzification

was applied to obtain the standard centre of gravity, g, As a result, a set of centres of

gravity, denoted G, was obtained (it is obvious that |G|= |T |).

For the case of uniform or sinusoidal perturbation functions (for which the range was

bounded to [−1,+1]), the minimum of G was taken as the lower bound, the maximum of

G as the upper bound, and the arithmetic mean was taken as the mean.

For the case of Gaussian perturbation functions (for which the range was unbounded),

the lower and upper bounds were derived by mG ±σG, where mG is the mean of G and

σG is the standard deviation of G.

The results obtained for variation in the centre of the underlying Gaussian membership

functions are given in Table 6.3, while the results obtained for variation in the standard

deviation of the underlying Gaussian membership functions are given in Table 6.4.

The non-stationary FISs featuring variation in centre were selected for further investi-

gation. Specifically, for those featuring Gaussian perturbation functions, the distribution

of membership values obtained over time was examined for specific values of x. As such a

distribution is , in fact, obtained by taking a ’vertical slice’ through a non-stationary fuzzy

set, it is in some way analogous to the secondary membership function of a type-2 fuzzy

set. The distributions obtained in the y-axis of the membership values, at x = 0.15 for the

Low term and x = 0.85 for the High term are shown in Figure 6.2. The non-stationary

fuzzy sets were each generated with 10,000 instantiations. Similar distributions obtained

at x = 0.20 and x = 0.30 for the Low term and those obtained at x = 0.70 and x = 0.80

for the High term are shown in Figure 6.3- 6.6 for centre variation and Figure 6.7- 6.10,

respectively.
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Table 6.3: Lower, Mean and Upper Bounds for Centre Variation.

Case 1 (0.25,0.25) Case 2 (0.25,0.75) Case 3 (0.75,0.25) Case 4 (0.75,0.75)

FIS Lower Mean Upper Lower Mean Upper Lower Mean Upper Lower Mean Upper

it2-GL 0.3687 0.3956 0.4224 0.5780 0.6050 0.6320 0.5780 0.6050 0.6320 0.3687 0.3956 0.4224

NS1-GL-U30 0.3829 0.3904 0.3979 0.5940 0.6023 0.6106 0.5960 0.6054 0.6148 0.3849 0.3937 0.4025

NS1-GL-U100 0.3842 0.3928 0.4014 0.5962 0.6046 0.6130 0.5953 0.6054 0.6155 0.3840 0.3943 0.4046

NS1-GL-U1000 0.3849 0.3936 0.4023 0.5965 0.6053 0.6141 0.5969 0.6060 0.6151 0.3851 0.3945 0.4039

NS1-GL-U10000 0.3850 0.3941 0.4032 0.5968 0.6057 0.6146 0.5968 0.6057 0.6146 0.3849 0.3941 0.4033

NS1-GL-G30 0.3853 0.3937 0.4024 0.5972 0.6067 0.6142 0.5969 0.6068 0.6139 0.3851 0.3938 0.4019

NS1-GL-G100 0.3850 0.3940 0.4028 0.5968 0.6069 0.6144 0.5969 0.6073 0.6144 0.3851 0.3944 0.4027

NS1-GL-G1000 0.3850 0.3937 0.4031 0.5967 0.6066 0.6146 0.5967 0.6063 0.6146 0.3850 0.3934 0.4031

NS1-GL-G10000 0.3850 0.3935 0.4031 0.5967 0.6064 0.6146 0.5967 0.6064 0.6146 0.3850 0.3935 0.4031

NS1-GL-S30 0.3853 0.3937 0.4024 0.5972 0.6067 0.6142 0.5969 0.6068 0.6139 0.3851 0.3938 0.4019

NS1-GL-S100 0.3856 0.3931 0.4032 0.5972 0.6060 0.6150 0.5973 0.6056 0.6146 0.3856 0.3927 0.4031

NS1-GL-S1000 0.3854 0.3934 0.4033 0.5969 0.6063 0.6150 0.5969 0.6066 0.6150 0.3854 0.3937 0.4033

NS1-GL-S10000 0.3850 0.3935 0.4031 0.5967 0.6064 0.6146 0.5967 0.6064 0.6146 0.3850 0.3935 0.4031
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Table 6.4: Lower, Mean and Upper Bounds for Width Variation.

Input 1 (0.25,0.25) Input 2 (0.25,0.75) Input 3 (0.75,0.25) Input 4 (0.75,0.75)

FLS Lower Mean Upper Lower Mean Upper Lower Mean Upper Lower Mean Upper

it2-GW 0.3836 0.3921 0.4007 0.5993 0.6079 0.6164 0.5993 0.6079 0.6164 0.3836 0.3921 0.4007

NS1-GW-U30 0.3716 0.3909 0.4102 0.5898 0.6091 0.6284 0.5986 0.6155 0.6324 0.3676 0.3845 0.4014

NS1-GW-U100 0.3697 0.3911 0.4125 0.5875 0.6089 0.6303 0.5932 0.6106 0.6280 0.3720 0.3894 0.4068

NS1-GW-U1000 0.3731 0.3922 0.4113 0.5887 0.6078 0.6303 0.5911 0.6098 0.6275 0.3725 0.3907 0.4089

NS1-GW-U10000 0.3730 0.3917 0.4104 0.5896 0.6083 0.6270 0.5898 0.6085 0.6272 0.3728 0.3915 0.4102

NS1-GW-G30 0.3742 0.3932 0.4088 0.5912 0.6068 0.6258 0.5920 0.6066 0.6264 0.3736 0.3934 0.4080

NS1-GW-G100 0.3734 0.3937 0.4093 0.5907 0.6063 0.6266 0.5908 0.6056 0.6264 0.3736 0.3944 0.4092

NS1-GW-G1000 0.3733 0.3931 0.4097 0.5903 0.6069 0.6267 0.5903 0.6075 0.6267 0.3733 0.3924 0.4097

NS1-GW-G10000 0.3732 0.3926 0.4098 0.5902 0.6074 0.6268 0.5902 0.6075 0.6268 0.3732 0.3925 0.4098

NS1-GW-S30 0.3736 0.3934 0.4080 0.5920 0.6066 0.6264 0.5912 0.6068 0.6258 0.3742 0.3932 0.4088

NS1-GW-S100 0.3736 0.3944 0.4092 0.5908 0.6056 0.6264 0.5907 0.6063 0.6266 0.3734 0.3937 0.4093

NS1-GW-S1000 0.3733 0.3925 0.4097 0.5903 0.6075 0.6267 0.5903 0.6069 0.6267 0.3733 0.3931 0.4097

NS1-GW-S10000 0.3732 0.3925 0.4098 0.5902 0.6075 0.6268 0.5902 0.6074 0.6268 0.3732 0.3926 0.4098
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Finally, the distribution of the centres of gravity, g, obtained for the NS1-GL-G10000

non-stationary FIS was also examined. The distributions obtained for the four input cases

are shown in Figure 6.11- 6.14, respectively.

6.3 Case Study 2: Triangular Membership Functions

6.3.1 The Non-stationary FISs:

In the second case study, the same experiments as described above were repeated. How-

ever, this time Triangular functions were used as the underlying membership functions.

That is, the underlying membership functions were of the form:

µA(x,a,b,c) =





0, x ≤ a

x−a
c−a

, a < x ≤ c

b−x
b−c

, c < x < b

0, x ≥ b

where a denotes the left-hand base-point of the triangle, b denotes the right-hand

base-point and c denotes the centre of the triangle. Only one form of non-stationary was

implemented in this case study, variation in location, yielding non-stationary membership

functions of the form:

µȦ(x,a(t),b(t),c(t)) =





0, x− k f (t)≤ a

x−(a+k f (t))
c−a

, a < x− k f (t)≤ c

(b+k f (t))−x

b−c
, c < x− k f (t)< b

0, x− k f (t)≥ b

so that the whole triangle was shifted left or right over time by the amount k f (t). Low

membership functions all had a = 0.10, b = 0.50, and c = 0.30, and High membership

functions all had a = 0.50, b = 0.90, and c = 0.70. The underlying type-1 membership

function are shown in Figure 6.15.

The same three different perturbation functions were used:

• uniformly distributed,
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Figure 6.2: Distributions of membership grades over time at x = 0.15 and x = 0.85, for

the non-stationary FIS NS1-GL-G10000.
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Figure 6.3: Distribution of MF values (centre variation-Gaussian MF) for x=0.20 and

c=0.10.
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Figure 6.4: Distribution of MF values (centre variation-Gaussian MF) for x=0.30 and

c=0.10.
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Figure 6.5: Distribution of MF values (centre variation-Gaussian MF) for x=0.70 and

c=0.90.
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Figure 6.6: Distribution of MF values (centre variation-Gaussian MF) for x=0.80 and

c=0.90.
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Figure 6.7: Distribution of MF values (width variation-Gaussian MF) for x=0.20 and

c=0.10.

0.905 0.91 0.915 0.92 0.925 0.93 0.935 0.94 0.945
0

200

400

600

800

1000

1200

1400

1600

Distribution of MF values (width variation−Gaussian) for x=0.30, c=0.10

Membership Grade

F
re

q
u

e
n

c
ie

s

Figure 6.8: Distribution of MF values (width variation-Gaussian MF) for x=0.30 and

c=0.10.



6.3. Case Study 2: Triangular Membership Functions 142

0.905 0.91 0.915 0.92 0.925 0.93 0.935 0.94 0.945
0

200

400

600

800

1000

1200

1400

1600

Distribution of MF values (width variation−Gaussian) for x=0.70, c=0.90

Membership Grade

F
re

q
u

e
n

c
ie

s

Figure 6.9: Distribution of MF values (width variation-Gaussian MF) for x=0.70 and

c=0.90.
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Figure 6.10: Distribution of MF values (width variation-Gaussian MF) for x=0.80 and

c=0.90.
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Figure 6.11: Distribution of centroid output (nsFLS-centre variation) for Input1= Input2

= 0.25.
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Figure 6.12: Distribution of centroid output (nsFLS-centre variation) for Input1= 0.25

Input2 = 0.75.
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Figure 6.13: Distribution of centroid output (nsFLS-centre variation) for Input1= 0.75

Input2 = 0.25.
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Figure 6.14: Distribution of centroid output (nsFLS-centre variation) for Input1= 0.75

Input2 = 0.75.
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Figure 6.15: The underlying type-1 Triangular membership functions for the terms Low

and High as used in the case study 2.

• Gaussian distributed,

• Sinusoidal.

In all case k = 0.05. Once again, four different non-stationary systems for each per-

turbation function were created, with:

• 30 instantiations

• 100 instantiations

• 1,000 instantiations

• 10,000 instantiations

6.3.2 The Type-2 FIS:

An interval type-2 system was generated using the same principle as described in 6.2.2.

So, the FOU was bounded by:
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µÃ(x,a,b,c) =





0, x− k ≤ a

x−(a+k)
c−a

, a < x− k ≤ c

(b+k)−x

b−c
, c < x− k < b

0, x− k ≥ b

where a denotes the left-hand base-point of the triangle, b denotes the right-hand base-

point and c denotes the centre of the triangle.

µÃ(x,a,b,c) =





0, x+ k ≤ a

x−(a−k)
c−a

, a < x+ k ≤ c

(b−k)−x

b−c
, c < x+ k < b

0, x+ k ≥ b

with again k = 0.05.

6.3.3 The Inference Process and Results:

Inference was performed using the 13 systems (12 non-stationary FISs and the type-2

FIS), and the methodology as described above was using to derive the outputs of each

FIS. The results obtained are shown in Table 6.5.
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Table 6.5: Lower, Mean and Upper Bounds for Variation in Location of Underlying Triangular Membership Functions.

Input 1 (0.25,0.25) Input 2 (0.25,0.75) Input 3 (0.75,0.25) Input 4 (0.75,0.75)

FIS Lower Mean Upper Lower Mean Upper Lower Mean Upper Lower Mean Upper

it2-TL 0.2500 0.3000 0.3500 0.6500 0.7000 0.7500 0.6500 0.7000 0.7500 0.2500 0.3000 0.3500

NS1-TL-G30 0.2506 0.2979 0.3453 0.6506 0.6980 0.7453 0.6506 0.6890 0.7453 0.2506 0.2980 0.3454

NS1-TL-G100 0.2505 0.2980 0.3481 0.6505 0.6979 0.7476 0.6505 0.6979 0.7476 0.2508 0.2980 0.3481

NS1-TL-G1000 0.2507 0.3001 0.3494 0.6501 0.6992 0.7483 0.6501 0.6992 0.7483 0.2511 0.3001 0.3490

NS1-TL-G10000 0.2505 0.3000 0.3494 0.6501 0.6996 0.7491 0.6501 0.6996 0.7491 0.2510 0.3004 0.3498

NS1-TL-S30 0.2500 0.2990 0.3500 0.6500 0.6990 0.7500 0.6501 0.6996 0.7496 0.2501 0.2996 0.3496

NS1-TL-S100 0.2500 0.3000 0.3500 0.6500 0.7000 0.7500 0.6500 0.6997 0.7500 0.2500 0.2997 0.3500

NS1-TL-S1000 0.2500 0.2999 0.3500 0.6500 0.6999 0.7500 0.6500 0.7000 0.7500 0.2500 0.3001 0.3500

NS1-TL-S10000 0.2500 0.3000 0.3500 0.6500 0.7000 0.7500 0.6500 0.7000 0.7500 0.2500 0.3000 0.3500

NS1-TL-U30 0.2509 0.3012 0.3466 0.6509 0.7012 0.7466 0.6505 0.7013 0.7497 0.2505 0.3013 0.3497

NS1-TL-U100 0.2503 0.3019 0.3485 0.6503 0.7019 0.7485 0.6504 0.7013 0.7497 0.2504 0.3013 0.3497

NS1-TL-U1000 0.2502 0.3011 0.3498 0.6502 0.7011 0.7498 0.6502 0.7008 0.7498 0.2502 0.3008 0.3498

NS1-TL-U10000 0.2500 0.2997 0.3500 0.6500 0.6998 0.7500 0.6500 0.6997 0.7500 0.2500 0.2997 0.3500
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Again, for non-stationary fuzzy sets featuring Gaussian perturbation functions, the

distribution of membership function of membership values obtained over time was exam-

ined for specific values of x. The distributions obtained at x = 0.40 and x = 0.80 for the

Low and High terms, respectively, are shown in Figure 6.16.

Further distributions obtained for a variety of values of x for the two terms are shown

in Figure 6.17- 6.22.

Finally, the distribution of the centres of gravity, g, obtained for the NS1-TL-G10000

non-stationary FIS was also examined. The distributions obtained for the four input cases

are shown in Figure 6.23- 6.26, respectively.

6.4 Discussion

Examination of the results of both case studies in Tables 6.3, 6.4, and 6.5 highlights a

number of interesting observations. Firstly, the results for input cases 1 and 2 are very

similar to the results for input cases 4 and 3, respectively. This applies to both variation in

location and variation in width, and is entirely as expected due to the symmetrical nature

of the Low and High terms and rules of the XOR problem.

For variation in centre of Gaussian underlying membership functions (the first case

study), the output interval of the type-2 FIS for input case 1 (0.25,0.25) is [0.3687,0.4224],

with mean 0.3956. For the non-stationary FIS featuring, for example, Gaussian distribu-

tion of the perturbation function instantiated 10,000 times, the corresponding interval is

[0.3850,0.4032], with mean 0.3941 — i.e. the mean is similar, but the interval is nar-

rower. This finding is, in fact, repeated across all the results obtained for variation in

centre. Similar results are observed for variation in standard deviation, except that in this

case the intervals obtained are slightly wider than the corresponding type-2 intervals (the

lower bounds are lower and the upper bounds are higher). Indeed, the same observation

holds for the case of variation in location of Triangular membership functions. These pre-

liminary finding need to be investigated further before any definitive conclusions can be

reached as to whether this finding is independent of the underlying membership function.

These results emphasise the fact that non-stationary systems are different from type-2

fuzzy systems. However, it is also clear that, in some sense, a non-stationary system mim-
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Figure 6.16: Membership grades (nsFLS) for X1=0.40, X2=0.80, where c=0.30 and 0.70.
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Figure 6.17: Distribution of MF values (centre variation-Triangular MF) for x=0.20 and

c=0.30.
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Figure 6.18: Distribution of MF values (centre variation-Triangular MF) for x=0.25 and

c=0.30.
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Figure 6.19: Distribution of MF values (centre variation-Triangular MF) for x=0.35 and

c=0.30.
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Figure 6.20: Distribution of MF values (centre variation-Triangular MF) for x=0.60 and

c=0.70.
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Figure 6.21: Distribution of MF values (centre variation-Triangular MF) for x=0.65 and

c=0.70.
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Figure 6.22: Distribution of MF values (centre variation-Triangular MF) for x=0.75 and

c=0.70.
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Figure 6.23: Distribution of Centroid Output (centre variation-Triangular MF) for Input1

= Input2 = 0.25.
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Figure 6.24: Distribution of Centroid Output (centre variation-Triangular MF) for Input1

= 0.25, Input2 = 0.75.
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Figure 6.25: Distribution of Centroid Output (centre variation-Triangular MF) for Input1

= 0.75, Input2 = 0.25.
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Figure 6.26: Distribution of Centroid Output (centre variation-Triangular MF) for Input1

= Input2 = 0.75.
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ics a type-2 system in that the union of all possible instantiations of a non-stationary fuzzy

set defines the region over which the underlying membership function varies, similar to

the concept to the concept of the footprint of uncertainty of a type-2 set. The work on

investigating and formalising this relationship is currently ongoing. At this stage, it can

be stated that non-stationary fuzzy sets do allow the representation of a form of uncer-

tainty in the membership function. In this way, they are moving away from the precise

membership functions of type-1 fuzzy sets and moving toward satisfying the intention of

type-2 sets.

Non-stationary systems do create an uncertainty in the output of inference. For non-

stationary FISs featuring perturbation functions that are not uniformly distributed, the

vertical slices (loosely analogous to the secondary membership functions of type-2 sys-

tems) of both the input sets and the output sets are not uniform. Furthermore, it is evident

that changing the distribution of the perturbation function alters the distributions of the

vertical slices. In essence, simply by switching the distribution of the perturbation func-

tion from a uniform distribution to a Gaussian one, the non-stationary FIS switches to

exhibiting non-uniform distributions of vertical slices.

The results obtained suggest that there is some correspondence between the inferenc-

ing of non-stationary FIS and that of an interval type-2 FIS. That is, the non-stationary

FIS is, in some sense, emulating the inferencing of a general type-2 FIS. Exactly estab-

lished but, nevertheless, it would appear that it may be reasonable close. It is well known

that, while interval type-2 fuzzy sets permit tractable inference and defuzzification, the

use of general type-2 fuzzy sets render the inferencing process intractable (although some

advances have been made recently in providing approximations [65]). On the other hand,

altering the perturbation function within a non-stationary FIS has no effect on the dif-

ficulty of the inferencing process. This observation means that, non-stationary systems

featuring non-uniformly distributed perturbation functions may allow approximations of

general type-2 fuzzy inference to be carried.
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6.5 Summary

In this chapter, two case studies has been carried out to illustrate the use of non-stationary

fuzzy sets and to explore the relationship between the performance of non-stationary and

interval type-2 fuzzy inferencing systems in terms of secondary membership functions. In

first case study, Gaussian membership functions were used as the underlying membership

function in all both non-stationary and interval type-2 fuzzy systems. There are two forms

of variation were implemented such as variation in location or centre and variation in

width or standard deviation. In second case study, Triangular functions were used as

the underlying membership function. Only one form of variation, variation in centre or

location, was implemented.

In summary, it is clearly that a non-stationary system mimics a type-2 system in that

the union of all possible instantiations of non-stationary fuzzy set defines the region over

which the underlying membership function varies, termed as footprint of variation (FOV),

similar to the concept of the footprint of uncertainty (FOU) of a type-2 set. It can be ob-

served that non-stationary fuzzy systems featuring non-uniformly distributed perturbation

functions may allow approximations of general type-2 fuzzy inference to be carried. Of

course, more work needs to be done on non-stationary fuzzy sets before any definitive

claim can be made in regard to the correspondence between them and type-2 sets but

it can be concluded that, even at this early stage, non-stationary fuzzy sets are a useful

addition to the range of fuzzy methods.

Research on understanding and modelling the dynamics of variation in human deci-

sion making is ongoing and issues surrounding the use of non-stationary fuzzy sets. In

next chapter, the relationships between the shape of the underlying membership func-

tions and the uncertainties obtained in the output sets for both non-stationary and interval

type-2 fuzzy systems will be explored.



Chapter 7

Investigate the Underlying Membership

Functions of Non-stationary Fuzzy Sets

7.1 Introduction

The aim of this study was to explore relationships between the shape of the underlying

membership functions (MFs) and the uncertainties obtained in the output sets for both

non-stationary and interval type-2 fuzzy systems. The study was carried out on a fuzzy

system implementing the standard XOR problem, in which either Gaussian or Triangular

membership functions were employed, using a range of input values and recording the

size of the output intervals obtained.

As mentioned in Chapter 6, Garibaldi et al. [10–14] have been investigating the incor-

poration of variability into decision making in the context of fuzzy expert systems (FESs)

in the medical domain. In this work, Garibaldi proposed the notion of ‘non-deterministic

fuzzy reasoning’ in which variability is introduced into the membership functions of a

fuzzy system through the use of random alterations to the parameters of the generat-

ing function(s). Later, Garibaldi and Musikasuwan [135, 136] extended and formalised

this notion through the introduction ‘non-stationary fuzzy sets’. Full details about non-

stationary fuzzy sets and systems are provided in Chapter 5.

The research presented here is continued from [135] and [137] (in Chapter 6) and di-

vided into 2 main sections (2 experiments). The experiments were designed by construct-

ing the interval type-2 and non-stationary fuzzy systems using Gaussian or Triangular

157
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MFs as the underlying MFs in a system to predict the results of the standard XOR prob-

lem, over a wide range of input values (21× 21 = 441 pairs). The lower bound, mean,

upper bound, and interval of the output for each system were computed and recorded.

7.2 Exploring Gaussian and Triangular Underlying Mem-

bership Functions

In the research presented here, in order to explore how the form of the underlying member-

ship function affects the inference process withing a non-stationary fuzzy system, a study

was carried out on a fuzzy system implementing the XOR problem, in which either Gaus-

sian or Triangular membership functions were employed. Investigations were carried out

onto different perturbation functions and different type of variation. This non-stationary

fuzzy systems were also compared to conventional type-2 fuzzy systems featuring equiva-

lent Footprints of Uncertainty. Non-stationary fuzzy systems using two difference shapes

of underlying membership functions, i.e., Gaussian and Triangular membership functions

are explored.

In order to investigate the effect of different underlying membership shapes in non-

stationary fuzzy sets, Gaussian and Triangular membership functions were compared with

interval type-2 sets. As stated earlier, this work is continued from [135] and this section

focuses on constructing fuzzy systems to solve the standard XOR problem.

In this study, fuzzy systems were constructed to predict the output of truth value where

both input variables can take any value in the range of [0,1]. All fuzzy systems consist

of two input variables which are Input1 and Input2, one output variable which is Output,

and four rules. Each variable consist of 2 Gaussian or Triangular membership functions

which are Low and High. The following 4 rules are used for all fuzzy systems. These

rules are constructed based on the standard XOR problem.

1. IF Input1 is Low AND Input2 is Low

THEN Output is Low

2. IF Input1 is Low AND Input2 is High

THEN Output is High
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3. IF Input1 is High AND Input2 is Low

THEN Output is High

4. IF Input1 is High AND Input2 is High

THEN Output is Low

There are three kinds of perturbation function that were used in this study, as follows:

• Sine based function (where ω = 127)

• Uniformly distributed function

• Normally distributed random function

Sine based and Uniformly distributed functions return numbers in the range [−1,1],

while the third (the Matlab randn function) returns real numbers sampled from a Normal

distribution with mean zero and standard deviation one.

7.2.1 Gaussian Underlying Membership Functions

In this study the underlying Gaussian membership functions as shown in Figure 7.1 were

used and two kinds of variation were investigated, i.e. centre variation and width varia-

tion.

7.2.1.1 The Non-stationary FISs:

In both case of centre and width variations, 3 different fuzzy systems (described by per-

turbation function used to generate membership functions, i.e.; Sine function, Uniformly

distributed, and Normally distributed) were designed with two inputs (antecedents), one

output (consequent), two Gaussian membership functions for each antecedents and con-

sequent, and four rules. All terms (two inputs and one output) had two Gaussian member-

ship functions, corresponding to meanings of Low and High. Low membership functions

all had centre 0.1, High membership functions all had centre 0.9. Finally, the initial

widths for all membership functions for all terms were 0.5. Note that the parameters of

the underlying membership functions were chosen completely arbitrarily, since their pre-

cise values to be of any importance are not considered. The purpose of the study is purely
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Figure 7.1: Gaussian underlying membership functions used in this case study.

to explore the similarities and differences between the non-stationary fuzzy systems and

the equivalent interval type-2 systems in each case.

The four input vectors, (0.25,0.25) (0.25,0.75) (0.75,0.25) and (0.75,0.75), were pre-

sented to the system and each time the non-stationary fuzzy sets were generated by re-

placing centre (c) or width (σ) with c = c+ 0.05 f (t) or σ = σ+ 0.05 f (t) (where f (t)

represents the chosen perturbation function), respectively. To clarify, the non-stationary

fuzzy sets were regenerated for each input vector. This process was repeated a fixed num-

ber of times (30 times for this study). As an aside, note that it would appear to be a

perfectly acceptable design choice to generate the fuzzy sets of the non-stationary sys-

tem once before presenting the four input vectors, and then to regenerate once again for

the next set of four input vectors. The investigation of alternative design choice will be

continued for the future work.

7.2.1.2 The Interval type-2 FISs:

Two interval type-2 systems were also designed with 2 inputs (antecedents), 1 output

(consequent), 2 Gaussian membership functions for each antecedent and consequent, and

four rules. The membership functions all had the same centre and width parameters as

described above.
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In the type-2 system, the footprint of uncertainty of the type-2 membership functions

were created by deviating the parameters of the original type-1 membership functions

by a percentage of the universe of discourse of the variables that they were associated

to. Two different methods were used to create these type-2 membership functions: by

varying the centre point, and varying the width around the original type-1 MF. In the

case of varying the centre, the centre of lower and upper bounds membership functions

were defined by shifting the initial centre point both left and right for 5% of universe of

discourse of variable that MF belongs to, respectively, as follows:

- Centre of lower MF = c±0.05

Similarly, in the case of varying the width, the width of lower and upper bounds

membership functions were defined by shifting the initial width both left and right for 5%

of universe of discourse of variable that MF belongs to, respectively, as follows:

- Width of lower MF = σ±0.05

7.2.2 Triangular Underlying Membership Functions

For the case of Triangular membership functions, four kinds of variation were investi-

gated, i.e. centre variation, begin-point variation, end-point variation, and begin & end

point variation.

7.2.2.1 The Non-stationary FISs:

The Triangular shapes used throughout this case study to represent membership functions

are shown in Figure 7.2.

The non-stationary fuzzy sets were then generated by replacing the begin-point a

and/or end-point b, or centre-point c in Figure 7.2 with a= a+0.05 f (t), b= b+0.05 f (t),

and c = c+ 0.05 f (t), where f (t) represents the chosen perturbation function. This pro-

cess was again repeated 30 times. In all cases of variation, 3 different fuzzy systems

(described by perturbation function used to generate membership functions, i.e.; Sine

function, Uniformly distributed, and Normally distributed) were designed with two in-

puts (antecedents), one output (consequent), two Triangular membership functions for
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Figure 7.2: Underlying Triangular membership function used in this case study.

each antecedents and consequent, and four rules. All terms (two inputs and one output)

had two Triangular membership functions, corresponding to meanings of Low and High.

Low membership functions all have ordinary centre c = 0.3, a = 0.1, and b = 0.5; High

membership functions all had ordinary centre c = 0.7, a = 0.5, and b = 0.9.

7.2.2.2 The Interval type-2 FISs:

Similarly, eight interval type-2 systems were also designed with 2 inputs (antecedents), 1

output (consequent), 2 Triangular membership functions for each antecedent and conse-

quent, and four rules. The membership functions all had the same parameters as described

above.

In the type-2 system, the footprints of uncertainty of the type-2 membership functions

were created by deviating the parameters of the original type-1 membership functions by

a percentage of the universe of discourse of the variables that they were associated with.

Four methods were used to create these type-2 membership functions, to match those of

the non-stationary systems.

(1) Varying the centre point of the original type-1 MF. The centre of lower and upper

bounds membership functions were defined by shifting the initial centre c both left and

right for 5% of the universe of discourse of the variable’s MF, as follows:
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- Centre of lower and upper MF = c±0.05

(2) Varying the begin-point of the original type-1 MF. The begin-point of lower and

upper bounds membership functions were defined by shifting the initial begin-point a

both left and right for 5% of the universe of discourse of the variable’s MF, as follows:

- begin-point of lower and upper MF = a±0.05

(3) Varying the end-point of the original type-1 MF. The end-point of lower and upper

bounds were defined by shifting the initial end-point b both left and right for 5% of the

universe of discourse of the variable’s MF, as follows:

- end-point of lower and upper MF = b±0.05

(4) Varying both begin and end points around the original type-1 MF. The begin and

end points of lower and upper bounds membership functions were defined by shifting the

initial begin and end points a and b both left and right for 2.5% of the variable’s MF, as

follows:

- begin-point of lower and upper MF = a±0.025

- end-point of lower and upper MF = b±0.025

7.2.3 Methods

After all systems had been constructed, they were used to predict the output of each of

the four input vectors ( (0.25,0.25) (0.25,0.75) (0.75,0.25) and (0.75,0.75) ). The lower,

mean, upper, and interval of the results were computed and recorded.

In the case of interval type-2 systems, the lower and upper outputs were obtained

directly [9], and the mean is simply the average of lower and upper bounds. In the case

of non-stationary systems, for Sine and Uniform perturbation functions, the lower bound

values were derived from minimum output value, the upper bound values were derived

from maximum output value, and the mean were derived from average of the output value

from 30 the repeated runs. Finally, the interval of the outputs were derived by computing

the length between the lower and upper output values.
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For the systems generated by Normally distributed random number (only), the lower

and upper bounds are derived from m±s, where m is the mean of the outputs over time and

s is the standard deviation. Finally, the outputs of four input sets ([(0.25,0.25) (0.25,0.75)

(0.75,0.25) (0.75,0.75)]) were presented in Section 7.2.4.

7.2.4 Results

In the case of Gaussian membership functions, with centre variation, the lower and upper

bounds of the obtained values and the final centroid output values for all 4 fuzzy systems

are shown in Table 7.1. The same information is also presented for width variation.

Similarly, in case of Triangular membership functions, the lower and upper bounds

predicted values and the final centroid output values for all systems are also shown in

Table 7.2 and 7.3 — for centre variation; begin point variation; for end point variation;

and for both begin and end points variation, respectively.
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Table 7.1: Lower, Mean and Upper Bounds for Gaussian Membership Functions.

Vari- Type Perturb- Input 1 (0.25,0.25) Input 2 (0.25,0.75) Input 3 (0.75,0.25) Input 4 (0.75,0.75)

ation ation Lower Mean Upper Lower Mean Upper Lower Mean Upper Lower Mean Upper

Type-2 Interval 0.3687 0.3956 0.4224 0.5780 0.6050 0.6320 0.5780 0.6050 0.6320 0.3687 0.3956 0.4224

Centre Non- Normal 0.3853 0.3937 0.4020 0.5970 0.6056 0.6141 0.5970 0.6056 0.6141 0.3853 0.3937 0.4020

Stationary Uniform 0.3932 0.3933 0.4033 0.5791 0.6061 0.6331 0.5791 0.6061 0.6331 0.3932 0.3933 0.4033

Sine 0.3854 0.3939 0.4033 0.5795 0.6065 0.6335 0.5795 0.6065 0.6335 0.3854 0.3939 0.4033

Type-2 Interval 0.3836 0.3921 0.4007 0.5993 0.6079 0.6164 0.5993 0.6079 0.6164 0.3836 0.3921 0.4007

Width Non- Normal 0.3735 0.3911 0.4088 0.5912 0.6089 0.6265 0.5912 0.6089 0.6265 0.3735 0.3911 0.4088

Stationary Uniform 0.3734 0.3933 0.4097 0.5903 0.6067 0.6267 0.5903 0.6067 0.6267 0.3734 0.3933 0.4097

Sine 0.3732 0.3923 0.4098 0.5902 0.6078 0.6268 0.5902 0.6078 0.6268 0.3732 0.3923 0.4098
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Table 7.2: Lower, Mean and Upper Bounds for Triangular Membership Functions with variation in centre point and begin point.

Vari- Type Perturb- Input 1 (0.25,0.25) Input 2 (0.25,0.75) Input 3 (0.75,0.25) Input 4 (0.75,0.75)

ation ation Lower Mean Upper Lower Mean Upper Lower Mean Upper Lower Mean Upper

Type-2 Interval 0.2833 0.2981 0.3129 0.6871 0.7000 0.7129 0.6871 0.7000 0.7129 0.2871 0.3019 0.3167

Centre Non- Normal 0.2843 0.2986 0.3130 0.6881 0.7002 0.7123 0.6881 0.7002 0.7123 0.2874 0.3017 0.3161

point Stationary Uniform 0.2835 0.2997 0.3124 0.6873 0.7004 0.7124 0.6873 0.7004 0.7124 0.2873 0.3009 0.3160

Sine 0.2846 0.2989 0.3129 0.6871 0.7000 0.7129 0.6871 0.7000 0.7129 0.2871 0.3010 0.3166

Type-2 Interval 0.2828 0.3004 0.3180 0.6825 0.7003 0.7180 0.6825 0.7003 0.7180 0.2825 0.3000 0.3175

Begin Non- Normal 0.2812 0.3007 0.3203 0.6806 0.7003 0.7201 0.6806 0.7003 0.7201 0.2819 0.3001 0.3183

point Stationary Uniform 0.2829 0.3006 0.3173 0.6826 0.7006 0.7173 0.6826 0.7006 0.7173 0.2826 0.3005 0.3168

Sine 0.2828 0.3001 0.3180 0.6825 0.7000 0.7180 0.6825 0.7000 0.7180 0.2825 0.2999 0.3175



7
.2

.
E

x
p

lo
rin

g
G

a
u

ssia
n

a
n

d
T

ria
n

g
u

la
r

U
n

d
erly

in
g

M
em

b
ersh

ip
F

u
n

ctio
n

s
1
6
7

Table 7.3: Lower, Mean and Upper Bounds for Triangular Membership Functions with variation in end point and begin & end point.

Vari- Type Perturb- Input 1 (0.25,0.25) Input 2 (0.25,0.75) Input 3 (0.75,0.25) Input 4 (0.75,0.75)

ation ation Lower Mean Upper Lower Mean Upper Lower Mean Upper Lower Mean Upper

Type-2 Interval 0.2825 0.3000 0.3175 0.6820 0.6998 0.7175 0.6820 0.6998 0.7175 0.2820 0.2996 0.3172

End Non- Normal 0.2819 0.3001 0.3184 0.6775 0.6992 0.7210 0.6775 0.6992 0.7210 0.2788 0.3004 0.3221

point Stationary Uniform 0.2826 0.3006 0.3169 0.6822 0.7005 0.7168 0.6822 0.7005 0.7168 0.2822 0.3004 0.3166

Sine 0.2825 0.2999 0.3175 0.6820 0.6998 0.7175 0.6820 0.6998 0.7175 0.2820 0.2998 0.3172

Begin Type-2 Interval 0.2827 0.3002 0.3177 0.6823 0.7000 0.7177 0.6823 0.7000 0.7177 0.2823 0.2998 0.3173

& Non- Normal 0.2819 0.3003 0.3187 0.6814 0.7001 0.7188 0.6814 0.7001 0.7188 0.2815 0.2999 0.3183

End Stationary Uniform 0.2828 0.3006 0.3170 0.6825 0.7005 0.7170 0.6825 0.7005 0.7170 0.2824 0.3005 0.3167

point Sine 0.2827 0.3000 0.3177 0.6823 0.7000 0.7177 0.6823 0.7000 0.7177 0.2823 0.2999 0.3173
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Figure 7.3: Means of the intervals of the outputs for Gaussian non-stationary and interval

type-2 fuzzy systems with centre variation.

The length of each results interval was calculated and recorded. In case of Gaus-

sian underlying MF, Figures 7.3 and 7.4 show the plots of mean of intervals for the

non-stationary systems together with interval type-2 fuzzy systems with centre and width

variation, respectively. Similarly, in case of Triangular underlying MF, the plots of mean

of intervals for the non-stationary systems together with interval type-2 fuzzy systems

with centre point, begin point, end point, and bengin & end points variation are shown in

Figures 7.5, 7.6, 7.7, and 7.8, respectively.

7.2.5 Discussion

The class of a type-2 fuzzy set is determined by the secondary membership function. That

is, if the secondary membership function simply takes the value zero outside the lower

and upper bounds and 1 inside the bounds, then interval type-2 fuzzy sets are obtained. If

(type-1) fuzzy sets are used for the secondary membership functions, then general type-2

fuzzy sets are obtained. In comparison, the class of a non-stationary fuzzy set is deter-

mined both by which kind of non-stationarity used (variation in location, variation in slope

or noise variation) and by the form of perturbation function used to deviate the underlying

membership function, in this study Normally distributed, Uniformly distributed, and Sine

based perturbation functions are used to applied in both variation in location and varia-

tion in slope. It should be noted, therefore, that herein lies a subtle difference between
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Figure 7.4: Means of the intervals of the outputs for Gaussian non-stationary and interval

type-2 fuzzy systems with width variation.
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Figure 7.5: Means of the intervals of the outputs for Triangular non-stationary and interval

type-2 systems with centre variation.
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Figure 7.6: Means of the intervals of the outputs for Triangular non-stationary and interval

type-2 systems with begin-point variation.
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Figure 7.7: Means of the intervals of the outputs for Triangular non-stationary and interval

type-2 systems with end-point variation.
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Figure 7.8: Means of the intervals of the outputs for Triangular non-stationary and interval

type-2 systems with begin & end points variation.

non-stationary fuzzy sets used in this work and type-2 fuzzy sets. In the non-stationary

fuzzy sets used here, the perturbation function acts horizontally across the universe of

discourse; in type-2 fuzzy sets the secondary membership functions are defined vertically

along the membership value µ.

For non-stationary fuzzy sets featuring ‘noise variation’, the perturbation function acts

vertically. Of course, different perturbation functions can still be used and, thus, such

non-stationary fuzzy sets might provide a more ‘direct’ comparison with type-2 fuzzy

sets. Again, further exploration on these areas is continued in the ongoing work.

Turning to the results obtained for the interval of outputs obtained in the experiments

carried out. In Figure 7.4 (Gaussian underlying membership functions with width varia-

tion), it can be seen that the output interval is constant for the type-2 system and for all

the non-stationary systems. However, all the non-stationary systems exhibit (the same)

larger output interval. This is a curious finding. In contrast, in Figure 7.3(Gaussian un-

derlying membership functions with centre variation), the picture is very much more

complex. The type-2 system has a constant output interval, as does the Normally dis-

tributed non-stationary system; however, the Normally distributed non-stationary system

now has a smaller output interval. Furthermore, the output interval of the Uniform and

Sine non-stationary system varies between that corresponding to the Normally distributed

non-stationary system for ‘symmetric’ inputs (0.25,0.25) and (0.75,0.75), and correspond-



7.2. Exploring Gaussian and Triangular Underlying Membership Functions 172

ing to the type-2 system for the non-symmetric inputs (0.25,0.75) and (0.75,0.25). Again,

these findings are curious.

In case of Triangular underlying membership functions, again the relationships are far

from straight-forward. For begin and end-point variation (Figures 7.6 and 7.7), the output

intervals appear to be non-symmetrical with the inputs. This is perhaps not surprising,

as the membership functions are being altered in a non-symmetrical manner. However,

the absolute value of output interval for the Normally distributed non-stationary systems

is larger and the non-symmetry is more exaggerated. For the case of centre variation

(Figure 7.5), all systems have approximately the same value of interval, which varies ac-

cording to the input values. For begin and end points (i.e. width) variation (Figure 7.8),

the interval of Normally distributed non-stationary systems are larger than all others. It

is unable to draw any definitive conclusions from the results obtained here. For all cases

except centre variation of Gaussian underlying membership functions, the Sine perturba-

tion function produces results which are very close to the interval type-2 systems. Why if

should be different for the one case, the answer for this question is needed to be find out

in future work.

One might expect Normally distributed non-stationary systems to be different due to

the fact that the variation is not hard-limited to the footprint of uncertainty of the corre-

sponding type-2 system. Using a Normally distributed perturbation function, it is theo-

retically possible for the membership value to be any value for any given input (in effect

the footprint of uncertainty is theoretically infinite). However, large deviations are both

extremely unlikely theoretically and probably unachievable practically.

Non-stationary fuzzy sets provide a relatively straight-forward mechanism for carry-

ing out inference with fuzzy sets that are uncertain in some way. Clearly, non-stationary

systems are not direct equivalents of type-2 systems. However, non-stationary fuzzy sys-

tems may provide a mechanism whereby a form of fuzzy reasoning which approximates

(in some meaning of the word) general type-2 fuzzy inference in a simple, fast and compu-

tationally efficient manner. An investigation into the relationship between the two frame-

works (non-stationary systems and type-2 systems) in order to explore this approximation

of interval and general type-2 inference is further explored.
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7.3 Underlying Membership Functions vs Output Uncer-

tainties in Type-2 and Non-stationary Fuzzy Sets

The aim of this study was to investigate the relationship between Gaussian and Triangular

underlying membership functions used in both non-stationary fuzzy sets and interval type-

2 fuzzy sets, and the uncertainties obtained in the outputs.

Fuzzy systems were constructed to predict the output of the XOR truth value where

both input variables can take any value in the range of [0,1]. All fuzzy systems consist

of two input variables which are Input1 and Input2, one output variable which is Output,

and four rules. Each variable consist of 2 Gaussian or Triangular membership functions

which are Low and High. In previous work only a restricted range of input values were

examined; specifically, the pairs (0.25,0.25), (0.25,0.75), (0.75,0.25) and (0.75,0.75). In

this work, each input is varied over the range [0,1] in increments of 0.05, giving a total

of 441 pairs of Input1 and Input2 as [(0,0),(0,0.05), ..., (1,0.95), (1,1)]. The following 4

rules were used for all FISs:

1. IF Input1 is Low AND Input2 is Low

THEN Output is Low

2. IF Input1 is Low AND Input2 is High

THEN Output is High

3. IF Input1 is High AND Input2 is Low

THEN Output is High

4. IF Input1 is High AND Input2 is High

THEN Output is Low

There are three kinds of perturbation function that were used in this study, as follows:

• Sinusoidal function (where ω = 127)

• Uniformly distributed function

• Normally distributed random function



7.3. Underlying Membership Functions vs Output Uncertainties in Type-2 and

Non-stationary Fuzzy Sets 174

0  0.2 0.4 0.6 0.8 1  
0

0.2

0.4

0.6

0.8

1

x

D
eg

re
e 

o
f 

m
em

b
er

sh
ip

Low High

c
Low

=0.1 c
High

=0.9 

σ
Low

=0.5 σ
High

=0.5 

Figure 7.9: Underlying Gaussian membership function used in this case study.

The sinusoidal and uniformly distributed functions return numbers in the range [−1,1],

while the third (the Matlab randn function) returns real numbers sampled from a Normal

distribution with mean zero and standard deviation one.

7.3.1 Gaussian Membership Functions

The underlying Gaussian membership functions as shown in Figure 7.9 were used and

two kinds of variation were investigated, i.e. centre variation and width variation.

7.3.1.1 The Non-stationary FISs:

The non-stationary fuzzy sets were generated by replacing centre (c) or width (σ) with

c = c+ 0.05 f (t) or σ = σ+ 0.05 f (t), where f (t) represents chosen perturbation func-

tion. The three different perturbation functions described above were used to generate

the membership functions. All terms (two inputs and one output) have two Gaussian

membership functions, corresponding to meanings of Low and High. Low membership

functions all have centre 0.1, High membership functions all have centre 0.9. Finally, the

initial widths for all membership functions for all terms were 0.5.
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7.3.1.2 The Interval Type-2 FISs:

Two interval type-2 FESs have also been designed, where the membership functions all

have the same centre and width parameters as described above. The footprints of uncer-

tainty of the type-2 membership functions were created by deviating the parameters of the

original type-1 membership functions by a percentage of the universe of discourse of the

variables that they are associated with. In the case of centre variation, the centre of lower

and upper bounds membership functions were defined by shifting the initial centre point

both left and right for 5% of universe of discourse, as follows:

- Centre of MF = c±0.05

Similarly, in the case of width variation, the width of lower and upper bounds membership

functions were defined by shifting the initial width both left and right for 5% as follows:

- Width of MF = σ±0.05

7.3.2 Triangular Membership Functions

In this study four kinds of variation were investigated, i.e. centre variation, begin-point

variation, end-point variation, and both begin and end points variation.

7.3.2.1 The Non-stationary FISs:

The Triangular underlying membership functions used throughout this case study to rep-

resent membership function are shown in Figure 7.10. The non-stationary fuzzy sets were

generated by replacing begin-point a and/or end-point b, or centre-point c in Figure 7.10

with a = a+0.05 f (t), b = b+0.05 f (t), and c = c+0.05 f (t), where f (t) represents the

chosen perturbation function). Once again, the same three perturbation functions were

used. Again, all terms (two inputs and one output) have two Triangular membership

functions, corresponding to meanings of Low and High. Low membership functions all

have ordinary centre (c) 0.3, a is 0.1, and b is 0.5; High membership functions all have

ordinary centre 0.7, a is 0.5, and b is 0.9.
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Figure 7.10: Underlying Triangular membership function used in this case study.

7.3.2.2 The Interval Type-2 FISs:

Similarly, four interval type-2 FISs were designed, where the membership functions all

have the same parameters as described above. In the type-2 FES, the footprint of uncer-

tainty of the membership functions are created by deviating the parameters of the original

type-1 membership functions by a percentage of the universe of discourse of the variables

that they are associated with. The four methods used to create these type-2 membership

functions were: by (i) varying the centre point around the original type-1 MF both left

and right for 5% of the universe of discourse of the variable, as follows:

- Centre of lower and upper MF = c±0.05

(ii) varying the begin-point (a) both left and right for 5% of the universe of discourse, as

follows:

- begin-point of lower and upper MF = a±0.05

(iii) varying the end-point (b) both left and right for 5% of the universe of discourse, as

follows:

- end-point of lower and upper MF = b±0.05

and (iv) varying both begin and end points (a and b) left and right for 2.5% of the universe

of discourse, as follows:

- begin-point of lower and upper MF = a±0.025
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- end-point of lower and upper MF = b±0.025

7.3.3 Methods

After all systems had been constructed, they were used to obtain the output of each pair

of data sets (in total 441 pairs). The lower bound, mean, upper bound, and interval of the

outputs were computed and recorded. In the case of interval type-2 systems, the lower and

upper output bounds are those obtained directly from the systems; the mean was simply

derived from the average of lower and upper outputs.

In the case of non-stationary systems, this process was repeated a fixed 30 times. For

the Uniform and Sinusoidal perturbation functions, the lower bound, upper bound and the

mean values were simply derived from minimum observed value, the maximum observed

value and the mean of the observed values obtained in the 30 repeats, respectively. For

the non-stationary systems utilising Normally distributed perturbation functions (only),

the lower and upper bounds are derived from m± s, where m is the mean of the outputs

over the 30 repeats and s is the standard deviation. Finally, the lower and upper bounds

of the outputs from 441 input data pairs ([(0,0), (0,0.05), ..., (1,0.95), (1,1)]) were used to

calculate the length of the interval of the outputs.

7.3.4 Results

Figures 7.11 and Figures 7.12 are surface plots showing the size of the interval obtained

for the output, as a function of the two inputs, of the various systems utilising Gaus-

sian membership functions. Figure 7.11 (a) shows the size of the output interval ob-

tained for the interval type-2 system with centre variation, (b) shows that obtained for

the non-stationary system utilising Normally distributed perturbation functions, (c) the

non-stationary system using sinusoidal perturbation functions, and (d) using uniformly

distributed perturbation functions. Figure 7.12 shows the similar surfaces obtained for

systems having width-variation.

Figures 7.13 – 7.16 show similar plots obtained for systems featuring Triangular un-

derlying membership functions exhibiting centre variation, begin-point variation, end-

point variation and begin-end-point variation, respectively. Again, in each case the sur-
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(c) NS system with Sinusoidal func-
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(d) NS system with Uniformly dis-

tributed function.

Figure 7.11: The output’s intervals for centre variation with Gaussian underlying mem-

bership function in type-2 and non-stationary (NS) fuzzy systems.
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(a) interval type-2 system.

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1
0   

0.01

0.02

0.03

0.04

Input1

Input2

In
te

rv
al

(b) NS system with Normally dis-

tributed function.
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(c) NS system with Sinusoidal func-
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Figure 7.12: The output’s intervals for width variation with Gaussian underlying mem-

bership function in type-2 and non-stationary (NS) fuzzy systems.
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(a) interval type-2 system.
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(c) NS system with Sinusoidal func-
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Figure 7.13: The output’s intervals for variation in centre point with Triangular underlying

membership function in type-2 and non-stationary (NS) fuzzy systems.

faces for (a) type-2, (b) Normally perturbed non-stationary, (c) sinusoidally perturbed

non-stationary and (d) uniformly perturbed non-stationary systems are shown.

It can be seen that, in general, the shape of the surface obtained is similar for each

of the different types of fuzzy system in each case (i.e. the shapes in Figures 7.11 (a) –

(d) are similar), although the magnitude varies. In order to explore this further, the dif-

ference between the intervals of the outputs of the interval type-2 fuzzy systems and the

non-stationary fuzzy system with uniformly distributed perturbation functions were plot-

ted. Figure 7.17 shows the differences for the case of (a) Gaussian underlying member-

ship functions with centre variation, (b) Gaussian underlying membership functions with

width variation, (c) Triangular underlying membership functions with centre variation,
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(c) NS system with Sinusoidal func-

tion.
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Figure 7.14: The output’s intervals for variation in begin point with Triangular underlying

membership function in type-2 and non-stationary (NS) fuzzy systems.
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(a) interval type-2 system.

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.05

0.1

0.15

0.2

0.25

Input1
Input2

In
te

rv
a
l

(b) NS system with Normally dis-

tributed function.
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(c) NS system with Sinusoidal func-

tion.
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Figure 7.15: The output’s intervals for variation in end point with Triangular underlying

membership function in type-2 and non-stationary (NS) fuzzy systems.
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(a) interval type-2 system.
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(b) NS system with Normally dis-

tributed function.
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(c) NS system with Sinusoidal func-

tion.
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(d) NS system with Uniformly dis-

tributed function.

Figure 7.16: The output’s intervals for variation in both begin-end point with Triangular

underlying membership function in type-2 and non-stationary (NS) fuzzy systems.
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(a) Centre variation with Gaussian un-
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(b) Width variation with Gaussian un-

derlying MF.
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(c) Centre variation with Triangular

underlying MF.
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(d) Begin-end point variation with

Triangular underlying MF.

Figure 7.17: The difference between the output’s intervals of interval type-2 fuzzy system

and non-stationary fuzzy system with Uniformly distributed function.

and (d) Triangular underlying membership functions with begin-end point (i.e. width)

variation. The sub-Figures (a) – (d) are all plotted with the same z-axis. It can be seen

that the differences for the systems with Gaussian underlying membership functions are

quite small, the differences for Triangular underlying membership functions with centre-

point variation are extremely small, whereas the differences for Triangular membership

functions with begin-end point variation are larger and non-symmetrical.

Finally Figure 7.18 shows similar plots for Triangular underlying membership func-

tions with begin-point variation and end-point variation. It should be noted that these have

been plotted on a different scale on the z-axis. The differences are all much larger than

those in Figure 7.17, and they are (as might be expected) non-symmetrical.
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(a) Begin point variation with Trian-

gular underlying MF.
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(b) End point variation with Triangu-

lar underlying MF.

Figure 7.18: The difference between the output’s intervals of interval type-2 fuzzy system

and non-stationary fuzzy system with Uniformly distributed function.

7.3.5 Discussion

The term ‘footprint of uncertainty’ (FOU) was introduced by Mendel to provide ‘a very

convenient verbal description of the entire domain of support for all the secondary grades

of a type-2 membership function’ [1]. A similar term, the ‘footprint of variation’ (FOV)

is introduced, as a similar verbal description of the area covering the range from the min-

imum to the maximum fuzzy sets which comprise the non-stationary fuzzy sets as shown

in Figure 7.19. For non-stationary fuzzy sets which are generated by Uniformly dis-

tributed and Sinusoidal perturbation functions (producing random values within [−1,1]),

the maximum area of FOV will be equivalent to the FOU of interval type-2 fuzzy sets

with the same amount of variation. Normally distributed perturbation functions generate

random values within [−∞,∞], and so an FOV defined as the union of all underlying mem-

berships would fill the entire universe of discourse. This kind of FOV will need further

investigation.

In Figure 7.11 and Figure 7.12 (both for systems with Gaussian underlying member-

ship functions) it can be observed that the surfaces are (very approximately) comprised of

four superimposed Gaussians. In the case of Figure 7.11 the Gaussian-like shapes are lo-

cated centrally on the x and y axes, while in Figure 7.12 they are located on the corners. It

would appear that there is some complex relationship between the FOV in non-stationary

or FOU in type-2 systems and the size of the interval in the output, although this rela-
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Figure 7.19: Non-stationary fuzzy set with width variation.

tionship cannot yet fully be explained. Again, it can be observed that the surfaces are

divided into four equivalent (symmetrical) parts. This might be expected because of the

symmetrical nature of the four rule XOR problem and this observation will be further

explored. Similarly, Figures 7.13, 7.14, 7.15, 7.16 (Triangular underlying membership

functions with centre variation) exhibits a similar four way symmetry, with vaguely Tri-

angular shapes almost appearing as projections of the underlying membership functions.

Figure 7.16 also appears to exhibit four way symmetry, but have a more complex form.

An interesting observation from Figures 7.14 and 7.15 is that Figure 7.14 (a) and

Figure 7.15 (a) are not reflections of each other, as might be expected from the fact that

varying the begin-point of the membership functions of all the variables is a reflection

of varying the end-point of the membership functions. On examination, it is found that

Figure 7.15 (a) can be obtained by rotating Figure 7.14 (a) through 90o and then rotating

each of the four quadrants through 90o separately. It is believed that this is due to the lack

of reflective symmetry in the rule set. That is, to obtain total reflection rule 1 would need

to be changed to ‘IF Input1 is Low AND Input2 is Low THEN Output is High’, and so

on.

There is an interested finding for the systems with Triangular underlying member-

ship functions with one-side slope variation (begin point and end point) as shown in
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Figures 7.14 and 7.15. It can be observed that there are plateau in the surface of the

intervals of the outputs for the interval type-2 systems only, but this observation does not

occur in the equivalent systems with centre and width (begin-end point) variation. At this

stage, It cannot be clearly explained the results obtained here, and more investigation and

exploration is needed.

It can be seen from Figure 7.17 that the difference of output’s interval between type-

2 system and non-stationary systems with uniformly distributed perturbation functions

is extremely small. Without performing a detailed mathematical analysis of the rela-

tionship between type-2 and non-stationary systems, it might be expected that uniformly

distributed non-stationary systems with the same FOV as FOU of interval type-2 systems

will match closely. It should be remembered that there is a stochastic element to the non-

stationary systems, such that after 30 repeats an exact match would not be expected. As

mentioned above, for the systems with one-side slope variation, Figures 7.18 (a) and (b),

there is a big difference between the output’s interval of type-2 system and non-stationary

system with uniformly distributed perturbations. Once again, there is unsure of the signif-

icance of this finding at present. Non-stationary fuzzy systems may provide a mechanism

for implementing a form of fuzzy reasoning which approximates general type-2 fuzzy

inference in a simple, fast and computationally efficient manner. We are continuing in-

vestigations into the relationship between the two frameworks (non-stationary and type-2

systems).

7.4 Comparison on the Performances of Type-1, Type-

2, and Non-stationary Fuzzy Systems for MacKey-

Glass Time-Series Prediction

In this section, an experiment was carried out in which the performances of type-1, type-

2, and non-stationary fuzzy logic systems (FLSs) were compared in their ability to predict

the Mackey-Glass time series with 5 levels of additive noises. Each of the FLSs was tuned

to achieve the best possible performance using a standardised gradient descent procedure.

These experiments were repeated a number of times in order to establish the mean per-
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formance of each FLS. The results show that the best performance was achieved with a

type-1 FLS, albeit featuring a high number of tunable parameters. A type-2 FLS with far

fewer parameters achieved performance very close to the best.

The purpose of this work was firstly to compare the performance of the type-1, type-2,

and non-stationary fuzzy systems. Seven main classes of fuzzy systems are considered:

• T1-SFLS - ’conventional’ fuzzy systems with singleton inputs and type-1 fuzzy

sets throughout;

• T1-NFLS - type-1 fuzzy systems with non-singleton (type-1) fuzzy inputs and type-

1 fuzzy sets throughout;

• T2-SLFS - fuzzy systems featuring interval type-2 sets with singleton inputs;

• T2-NSLFS-T1 - fuzzy systems featuring interval type-2 sets with type-1 non-singleton

inputs;

• NS-FLS-N - fuzzy systems featuring non-stationary fuzzy input sets with Normal

distribution pertubation;

• NS-FLS-S - fuzzy systems featuring non-stationary fuzzy input sets with Sine func-

tion distribution pertubation;

• NS-FLS-U - fuzzy systems featuring non-stationary fuzzy input sets with Uniform

distribution pertubation;

This work has evolved from recent studies in section 4.3. The software for producing

result of type-1 and type-2 fuzzy system those used in this experiment is that provided by

Professor Mendel (at http://sipi.usc.edu/ mendel/software/).

7.4.1 Methodology

Five independent data sets with 5 different noise levels (totally 25 data sets 2200 series

each) were generated. These data sets were generated by using Mackey-Glass time-series

delay differential equation shown in Equation 4.1. After 5 data sets were generated, 5

different level of noise were generated as follows:
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• Level 1: 0 noise (noise free)

• Level 2: 0.01 noise

• Level 3: 0.05 noise

• Level 4: 0.10 noise

• Level 5: 0.20 noise

where noise was a uniformly distributed random number in [-1,1]. Then these 5 dif-

ferent levels of noise were added into the data sets.

All designed models below were based on 1,000 noisy data points: x(501), x(502), ...,

x(1500). The First 500 noisy data, x(501), x(502), ..., x(1000) were used for training, and

the remaining 500 , x(1001), x(1002), ..., x(1500), were used for testing the design. Four

antecedents: x(k-3), x(k-2), x(k-1), and x(k) were used to predict x(k+1).

The performance of all the designs was evaluated using the RMSE as shown below:

RMSE =

√√√√ 1

500

1499

∑
k=1000

[x(k+1)− f (x(k))]2 (7.1)

where x(k) = [x(k−3),x(k−2),x(k−1),x(k)]T .

7.4.1.1 Type-1 FISs

Type-1 singleton fuzzy logic system (T1-SFLS) and type-1 non-singleton fuzzy logic

system (T1-NSFLS) have been designed with 4 antecedents, 2 membership functions for

each antecedent, the number of rules are 16 rules (24) respectively, each rule is character-

ized by 8 antecedent MF parameters (means and standard deviations), and 1 consequent

parameter (ȳ). The initial location of each Gaussian antecedent MF is based on the mean

(mx) and standard deviation (σx) and the mean of membership functions are:

• Mean of MF1 = mx −2σx

• Mean of MF2 = mx +2σx
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Initially all standard deviation parameters are tuned to σx or 2σx. Additionally the

height defuzzifier and initial centre of each consequent’s MF are random numbers in

[0,1]. For type-1 NSFLS each of the 4 noisy input measurements are modelled using

a Gaussian membership function, a different standard deviation is used for each of the

4 input measurement membership functions (σn). Finally, two models were created for

type-1 SFLS and type-1 NSFLS for each data set (25 data sets).

7.4.1.2 Type-2 FISs

Interval type-2 singleton FLS (Type-2 SFLS) and type-1 non-singleton type-2 FLS (Type-

2 NSFLS-T1) have been designed by using the partially dependent approach. First, the

best possible singleton and non-singleton type-1 fuzzy systems were designed by tuning

their parameters using back-propagation designs, and then some of those parameters were

used to initialise the parameters of the interval type-2 SFLS and type-2 NSFLS-T1. They

consisted of 4 antecedents for forecasting, 2 membership functions for each antecedent

and 16 rules. The Gaussian primary membership functions of uncertain means for the

antecedents were chosen. The means of membership functions are:

• Mean of MF1 = [mx −2σx −0.25σn,mx −2σx +0.25σn]

• Mean of MF2 = [mx +2σx −0.25σn,mx +2σx +0.25σn]

where mx is the mean of the data in the training parts, and σn is the standard devi-

ation of the additive noise. Each rule of the type-2 SFLS and type-2 NSFLS-T1 were

characterized by 12 antecedent MF parameters: left and right bounds on the mean, and

the standard deviation for each of 4 Gaussian membership functions) and 2 consequent

parameters (left and right hand end-points for the centroid of the consequent type-2 fuzzy

set). So, in total the number of parameters tuned for type-2 SFLS is 224. Standard de-

viation for each of the 4 input measurement membership functions (σn) is used in type-2

NFLS-T1. So in total the number of parameters tuned for type-2 SFLS is 225.

Initially the final tuned results were used for the standard deviation of the input, σx

or 2σx, obtained from type-1 NSFLS design, and also ȳi was obtained from type-1 SFLS

and then initial ȳi
r and ȳi

l was chosen as:
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ȳi
r = ȳi +σn

ȳi
l = ȳi −σn,

where i = 1, 2, ..., 16

Finally, two different models for both type-2 SFLS and type-2 NSFLS-T1 were cre-

ated for each data set (totally 25 data sets).

7.4.1.3 Non-stationary FISs

Non-stationary fuzzy systems has been initially designed same as type-1 FLSs men-

tioned above. Afer that, the non-stationary fuzzy sets were generated by replacing centre

(mx)mx = mx +0 : 05 f (t) , where f (t) represents chosen perturbation function.

There are three kinds of perturbation function that were used in this study, as follows:

• Sine based function (where ω = 127) ( for NS-FLS-S)

• Uniformly distributed function ( for NS-FLS-U)

• Normally distributed random function ( for NS-FLS-N)

In this experiments, there is only centre variation has been investigated. The three

different perturbation functions (normal distribution, sine, and uniform functions) were

used to generate the membership functions with 1000 iterations. All terms (four inputs

and one output) have two Gaussian membership functions, corresponding to meanings of

MF1 and MF2. The initial location of each Gaussian antecedent MF is based on the mean

(mx) and standard deviation (σx) and the mean of membership functions are:

• Mean of MF1 = mx −2σx

• Mean of MF2 = mx +2σx

Finally, three different models among NS-FLS-N, NS-FLS-S, and NS-FLS-U were

created for each data set (totally 25 data sets).



7.4. Comparison on the Performances of Type-1, Type-2, and Non-stationary Fuzzy

Systems for MacKey-Glass Time-Series Prediction 192

7.4.2 Results

After all models had been constructed and run, the performances of the type-1, type-2, and

non-stationary fuzzy systems were compared. The results of performance of 7 different

models are shown as follows. Table 7.4 shows the result obtained from the mean of RMSE

of the best model for 7 different fuzzy system models with five noise levels.

Table 7.4: The mean of RMSE of the best model for 7 different fuzzy system models with

5 different noise levels

FLS DataSet-1 DataSet-2 DataSet-3 DataSet-4 DataSet-5

Type-1-SFLS 0.2764 0.2544 0.2874 0.2920 0.2832

Type-1-NSFLS 0.2227 0.2296 0.2351 0.2322 0.2466

Type-2-SFLS 0.2206 0.2285 0.2374 0.2322 0.2522

T1-NS-T2-FLS 0.2204 0.2276 0.2354 0.2302 0.2433

NS-FLS-N 0.1816 0.1995 0.1687 0.1836 0.2064

NS-FLS-S 0.2348 0.2563 0.2220 0.2338 0.2590

NS-FLS-U 0.2326 0.2544 0.2198 0.2317 0.2570

Figure 7.20 shows the performance (RMSE) of 7 different models for the 5 different

noise levels averaged over five separate runs.
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Figure 7.20: Graph of mean of RMSE of 7 models for 5 noise levels

7.4.3 Discussion

All cases the performance of type-1 fuzzy systems with singleton inputs (Type-1-SFLS) as

shown in Table 7.4 and Figure 7.20, the most common found in practice, is worse than for

the type-1 non-singleton fuzzy systems (Type-1-NSFLS), the type-2 fuzzy systems (Type-

2-SFLS and T1-NS-T2-FLS), and non-stationary fuzzy systems (NS-FLS-N, NSFLS- S,

and NS-FLS-U).

Again, we found that, type-1 non-singletion fuzzy system (Type1-NSFLS), type-2

fuzzy systems (both Type-2-SFLS and T1-NS-T2-FLS) are performed as good as each

other for all data sets. Anyway, these systems were performed better than non-stationary

fuzzy systems (NS-FLS-S and NS-FLS-U) except data set 3 that these 2 non-stationary

fuzzy systems performed better.

The interesting finding from the experiments, we found that the best overall perfor-

mance is achieved with NS-FLS-N. This is a non-stationary fuzzy system uisng normal
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distribution function as a pertubation function. From this, we may tentatively suggest that

while type-2 fuzzy systems may not strictly be necessary in order to achieve optimal per-

formance, their benefit may lie more in achieving good performance in a more tractable

model.

Finally, we note that these finding are for one particular data set (Mackey-Glass Time-

Series) only and hence, no general conclusions can be made from them alone. In order

to reach general conclusions it would be necessary to carry out similar experiments on a

wide variety of data sets. There is no evidence at present to suggest that the similar results

would necessarily be obtained for other kinds of data.

With zero noise, M5 (with only 145 parameters) achieves better performance than

M11 or M12. This agrees with Mendel’s previous findings that in the absence of noise

a type-1 fuzzy system with non-singleton inputs is an adequate model for capturing the

uncertainty.

7.5 Summary

The class of a type-2 fuzzy set is determined by the secondary membership function. That

is, if the secondary membership function simply takes the value zero outside the lower

and upper bounds and 1 inside the bounds, then interval type-2 fuzzy sets are obtained. If

(type-1) fuzzy sets are used for the secondary membership functions, then general type-2

fuzzy sets are obtained. In comparison, the class of a non-stationary fuzzy set is deter-

mined both by which kind of non-stationarity used (variation in location, variation in slope

or noise variation) and by the form of perturbation function used to deviate the underlying

membership function, in this study Normally distributed, Uniformly distributed, and Sine

based perturbation functions are used to applied in both variation in location and variation

in slope. It should be noted, therefore, that herein lies a subtle difference between non-

stationary fuzzy sets used in this work and type-2 fuzzy sets. In the non-stationary fuzzy

sets used here, the perturbation function acts horizontally across the universe of discourse;

in type-2 fuzzy sets the secondary membership functions are defined vertically along the

membership value µ. For non-stationary fuzzy sets featuring ‘noise variation’, the per-

turbation function acts vertically. Of course, different perturbation functions can still be
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used and, thus, such non-stationary fuzzy sets might provide a more ‘direct’ comparison

with type-2 fuzzy sets.

In section 7.2 and 7.3, two case studies have been carried out (i) to explore output’s

interval of Gaussian and Triangular underlying membership functions in non-stationary

fuzzy sets and (ii) to investigate the relationship between underlying membership func-

tions and output uncertainties in interval type-2 and non-stationary fuzzy sets. From these

case studies, non-stationary fuzzy sets provide a relatively straight-forward mechanism

for carrying out inference with fuzzy sets that are uncertain in some way. Clearly, non-

stationary systems are not direct equivalents of type-2 systems. However, we believe that

non-stationary fuzzy systems can provide a mechanism whereby a form of fuzzy reason-

ing which approximates (in some meaning of the word) general type-2 fuzzy inference in

a simple, fast and computationally efficient manner. Of course, the further investigations

into the relationship between the two frameworks (non-stationary systems and type-2 sys-

tems) in order to explore this approximation of interval and general type-2 inference need

to be continued in the future work.

In section 7.4, we set up an experiments to compare the performance amongs type-1,

type-2, and non-stationary fuzzy systems. It can be found that, the best overall model is

non-stationary fuzzy system with normal distribution function used as perturbation func-

tion while the centre variation has been applied with 1000 iterations. Hence, we may

tentatively suggest that while type-2 fuzzy systems may not strictly be necessary in order

to achieve optimal performance, their benefit may lie more in achieving good performance

in a more tractable model.

In the next chapter, the conclusions, contributions of this thesis are presented including

limitations and direction of future works.
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Conclusions

It is well accepted that all humans including ’experts’, exhibit variation in their deci-

sion making. Variation may occur among the decisions of a panel of human experts

(inter-expert variability), as well as in the decisions of an individual expert over time

(intra-expert variability). Up to now it has been an implicit assumption that expert sys-

tems, including fuzzy expert systems, should not exhibit such variation. While type-2

fuzzy sets capture the concept of introducing uncertainty into membership functions by

introducing a range of membership values associated with each value of the base vari-

able, but they do not capture the notion of variability — as a type-2 fuzzy inference

system (FIS) will always produce the same output(s) (albeit a type-2 fuzzy set with an

implicit representation of uncertainty) given the same input(s). Garibaldi et al. [10–14]

have been investigating the incorporation of variability into decision making in the context

of fuzzy expert systems in a medical domain. In this work, Garibaldi proposed the notion

of non-deterministic fuzzy reasoning in which variability is introduced into the member-

ship functions of a fuzzy system through the use of random alterations to the parameters

of the generating functions.

In this thesis, a notion termed non-stationary fuzzy set is introduced and the con-

cept of random perturbations that can be used for generating these non-stationary fuzzy

sets is also presented. Basic operators, i.e. union, intersection and complement for

non-stationary fuzzy are also proposed. Some of properties of non-stationary fuzzy sets

has been proved. The uses of non-stationary fuzzy sets and relationship between non-

stationary and type-2 fuzzy sets was investigated through several case studies. In this

196
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Chapter, the contributions and conclusions of this thesis are summarised in the the next

Section. The limitations and the direction of possible future works of this thesis are also

discussed. Finally, the publications which have been produced from this research are

listed.

8.1 Contributions

To reach the goal and fulfill the objectives stated in Chapter 1, this thesis has made the

following contributions:

8.1.1 An Investigation of Non-convex Membership Functions

The objective of this research is to illustrate the use of non-convex membership func-

tions for linguistic terms. This research focuses on time-related non-convex membership

function. It investigates whether the generated expert systems would work properly or

not when time-related non-convex membership functions are used together with normal

membership functions. In Chapter 3, Fuzzy expert systems were developed to predict

demand load for an energy supply company (simulation data sets). Although there may

be many factors that affect demand load, in this research only two, Time and prevailing

Temperature outside, were chosen as the the fuzzy input variables.

In this case study, 500 data sets of time and temperature were generated randomly,

where time was between 0 and 24 in the hh:mm format and temperature varied between

0°C and 40°C. The system consisted of two input variables, Time and Temperature, and

one output, Energy Demand. In addition to other usual membership functions, the Time

variable was associated with the term MealTime which is a time-related non-convex mem-

bership function. In order to observe the influence of MealTime on the performance, four

systems were created by only changing the term MealTime in each system. Four fuzzy ex-

pert systems were generated, using four different shapes of MealTime membership func-

tions varying in the range of [0,1], [0.2,1], [0,0.9], and [0.2,0.9]. Twelve rules were used

within the four generated fuzzy expert systems.

The results of the case study presented in Chapter 3 have shown that non-regular

terms can be used in a fuzzy logic system and they can perform together with regular
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membership functions. The difference in the predicted results of each system is due to

the different time-related non-convex MealTime term added to the variable time. It can

be observed that the energy demand predictions have incorporated the information intro-

duced by addition of the MealTime term. From these illustrations, it can be stated that

non-convex membership functions such as MealTime featured in the Time (of day) vari-

able are plausible, reasonable membership functions in the sense originally intended by

Zadeh.

8.1.2 Investigation of Model Parameters in Type-2 Systems

The purpose of this work was to perform a careful analysis of whether the performance

of type-2 fuzzy system could be matched or surpassed by type-1 models with a similar or

greater number of internal tunable model parameters.

In Chapter 4, the data sets were generated by using Mackey-Glass time-series delay

differential equation. Five independent data sets were generated and five different levels

of noise were added to each data set. In total 25 data sets were generated with 1,000 time

points each; the first 500 points were used for training the systems and the rest for testing

the systems. Four antecedents, x(k−3), x(k−2), x(k−1), and x(k), were used to predict

x(k+1). Twelve fuzzy systems have been implemented for this experiment:

• Two type-1 singleton systems with 2 membership functions for input variables,

featuring 144 tunable parameters.

• Two type-1 singleton systems with 3 membership functions for input variables,

featuring 729 tunable parameters.

• Two type-1 non-singleton systems with 2 membership functions for input variables,

featuring 145 tunable parameters.

• Two type-1 non-singleton systems with 3 membership functions for input variables,

featuring 730 tunable parameters.

• Two type-2 singleton systems with 2 membership functions for input variables,

featuring 224 tunable parameters.
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• Two type-2 non-singleton systems with 3 membership functions for input variables,

featuring 225 tunable parameters.

The performance of all systems was evaluated by using root mean square error (RMSE).

In all cases, the performance of type-1 fuzzy systems with singleton inputs (the most com-

mon found in practice) was worse than for the type-1 non-singleton fuzzy systems and the

type-2 fuzzy systems. This is regardless of the number of parameters in the systems. Par-

ticularly, it should be noted that type-1 fuzzy systems with singleton inputs where each

input has 3 membership functions (featuring 729 tunable parameters), whilst better than

type-1 fuzzy systems with singleton inputs where each input has 2 membership functions,

achieve far worse performance than type-1 non-singleton or type-2 fuzzy systems with far

fewer parameters. This suggests that a high number of model parameters is not in itself

sufficient to produce good performance.

The best overall performance was achieved with a type-1 fuzzy system with non-

singleton inputs and with 3 membership functions for each variable, leading to a high

number of tunable model parameters (730). From this, it can be tentatively suggested

that while type-2 fuzzy systems may not strictly be necessary in order to achieve ‘opti-

mal’ performance, their benefit may lie more in achieving good performance in a more

tractable model. So, the conclusion can be made that, by increasing the number of tunable

parameters, a type-1 system’s performance can be as good as or better than type-2 fuzzy

systems.

8.1.3 The Introduction of Non-stationary Fuzzy Sets

In Chapter 5, a new concept termed non-stationary fuzzy set is defined. These have been

created with the specific intention of modelling the variation (over time) of opinion, and

then formalise the novel concept that previously proposed by Garibaldi [14] to model the

variation in expert opinion. While apparently similar to type-2 fuzzy sets in some re-

gards, non-stationary fuzzy sets possess some important distinguishing features. A non-

stationary fuzzy set is, effectively, a collection of type-1 fuzzy sets in which there is an

explicit, defined, relationship between the fuzzy set. Specifically, each of the instantia-

tions (type-1 fuzzy set) is derived by a perturbation of (making a small change to) a single
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underlying membership function. While each instantiation is somewhat reminiscent of a

embedded type-1 set of a type-2 fuzzy set, there is not a direct correspondence between

these two concepts. It is also possible to view a standard type-1 fuzzy set, either as a single

instantiation or as repeated instantiations of the underlying set with no perturbation.

In this work, some possible functions that can be used as a perturbation function are

suggested. The term footprint of variation (FOV) is proposed to represent the area cov-

ering the range from the minimum to the maximum fuzzy sets which comprise the non-

stationary fuzzy set. Operations on non-stationary fuzzy sets, i.e. union, intersection,

complement are also introduced in this Chapter. Finally, proof of some properties of

non-stationary fuzzy sets, i.e. involution, commutativity, associativity, idempotence, and

distributivity are presented.

8.1.4 The Use of Non-stationary Fuzzy Sets

The relationships between interval type-2 and non-stationary fuzzy sets were investigated,

in terms of secondary membership functions. In Chapter 6, Two case studies were carried

out in order to illustrate the use of non-stationary fuzzy sets and to examine the rela-

tionship between the performance of non-stationary and interval type-2 fuzzy inference

systems. In this study, all fuzzy inference systems were constructed to predict the truth

value of the XOR output where both input variables can take any value in the range of

[0,1].

All fuzzy inference systems consisted of two input variables, one output variable, and

four rules. These rules are constructed based on the standard XOR problem. Each variable

consists of two membership functions, corresponding to meaning of the terms Low and

High. The four cases of input values used throughout these studies are: (0.25,0.25),

(0.25,0.75), (0.75,0.25), and (0.75,0.75). Three different perturbation functions were used

to generate non-stationary fuzzy sets, namely a uniformly distributed function, Gaussian

distributed function, and a sinusoidal function.

In the first case study, Gaussian membership functions were used as the underlying

membership function in both non-stationary and interval type-1 fuzzy systems. Two forms

of variation were implemented such as variation in location and variation in width. In the

second case study, Triangular functions were used as the underlying membership function.
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Only one form of variation, variation in centre, was implemented.

For type-2 systems, inference was performed using the rules given to obtain the type-2

output sets. The usual Karnik-Mendel type reduction was used to obtain the lower and

upper bound of the centre of gravity of the output. The mean of the output was taken as

the average of the lower and upper bound. For non-stationary fuzzy systems, each system

was instantiated the specified number of times to obtain the output fuzzy sets. In each

case, defuzzification was applied to obtain the standard centre of gravity, g. As a result,

a set of centres of gravity, G, was obtained. The minimum of G was taken as the lower

bound, the maximum of G as the upper bound, and the arithmetic mean was taken as the

mean.

From the results of experiments, it is clear that a non-stationary system mimics a type-

2 system in that the union of all possible instantiations of non-stationary fuzzy set defines

the region over which the underlying membership function varies, termed the footprint

of variation (FOV). This is similar to the concept of the footprint of uncertainty of a

type-2 set. It can be observed that non-stationary fuzzy systems featuring non-uniformly

distributed perturbation functions may allow approximations of general type-2 fuzzy in-

ference to be carried out.

8.1.5 Comparison of Outputs of Non-stationary and Interval Type-2

Fuzzy Inference

The aim of the study was to explore relationship between the shape of the underlying

membership functions and the uncertainties obtained in the output sets for both non-

stationary and interval type-2 fuzzy systems. In Chapter 7, this work was carried out on

fuzzy systems implementing the standard XOR problem, in which either Gaussian or Tri-

angular membership functions were employed as the underlying membership functions,

using a range of input values and recording the size of the output intervals obtained.

The investigations were carried out onto three different perturbation functions (a uni-

formly distributed function, Gaussian distributed function, and sinusoidal function) and

different type of variations: in the case of Gaussian underlying membership functions

• variation in centre or location, and
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• variation in width or standard deviation;

in the case of Triangular underlying membership functions

• variation in centre point,

• variation in begin point,

• variation in end point, and

• variation in begin and end point.

Non-stationary fuzzy systems were compared to interval type-2 fuzzy system featur-

ing equivalent footprints of uncertainty. All fuzzy systems consisted of two input vari-

ables (Input1 and Input2), one output variable (Output), and four rules (constructed based

on the standard XOR problem). Each variable consisted of 2 Gaussian or Triangular

underlying membership functions (termed Low and High). Once the systems were im-

plemented, they were used to predict the output for four input vectors. Then the lower,

mean, upper, and interval of the results were computed and recorded, while these values

were obtained by using the same method used in Section 8.1.4.

In the case of Gaussian underlying membership functions with width variation, it was

found that the output interval was constant for both type-2 system and non-stationary

systems, but all the non-stationary systems exhibit larger output interval. In contrast, in

the case of Gaussian underlying membership function with centre variation, the type-2

system has the same constant output interval as in the normally distributed non-stationary

system, but the latter system has a smaller output interval. In the case of Triangular

underlying membership function with begin and end point variation, the output intervals

appeared to be non-symmetrical with the inputs. For the case of centre variation, all

systems had approximately the same value of interval, which varied according to the

input values. Of all systems, the ones with sine perturbation function produced results

which are very close to the type-2 systems.

From these results, it can be suggested that non-stationary fuzzy systems may pro-

duce roughly equivalent results to interval type-2 fuzzy systems. However, non-stationary

fuzzy systems may provide a mechanism whereby a form of fuzzy reasoning which ap-
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proximates general type-2 fuzzy inference in a simple, fast and computationally efficient

manner.

8.1.6 Detailed Investigation into Non-stationary Fuzzy Inference

The aim of this study was to investigate the relationship between Gaussian and Triangular

underlying membership function used in both non-stationary and interval type-2 fuzzy

sets, and the uncertainties obtained in the outputs.

In Chapter 7, in a second case study, the non-stationary and interval type-2 fuzzy sys-

tems were implemented exactly the same as described in Section 8.1.5. The work in Sec-

tion 8.1.5 restricted the range of input values examined; specifically, the pairs (0.25,0.25),

(0.25,0.75), (0.75,0.25), and (0.75,0.75). In this work, each input is varied over the range

[0,1] in increments of 0.05, giving a total of 441 pairs of Input1 and Input2 as [(0,0),

(0,0.05),..., (1,0.95), (1,1)]. After all systems had been constructed, they were used to ob-

tain the output of each pair of data sets (in total 441 pairs). The lower, mean, upper, and

interval of output were computed and recorded. Again, while these values were obtained

by using the same method used in Section 8.1.4.

From the experiments, it can be seen that the shape of the surface obtained is sim-

ilar for each of the different types of fuzzy system in each case. In order to explore

this further, the difference between the intervals of the outputs of the interval type-2 and

non-stationary fuzzy systems with uniformly distributed perturbation functions were cal-

culated and plotted. It can be observed that the differences for the systems with Gaussian

underlying membership functions are quite small, the differences for Triangular under-

lying membership functions with centre point variation are extremely small, whereas the

differences for Triangular underlying membership functions with begin-end point varia-

tion are lager and non-symmetrical.

In this work, the footprints of variation (FOV) of the non-stationary fuzzy sets was

examined by comparing with the footprints of uncertainty (FOU) of type-2 fuzzy sets.

For non-stationary fuzzy sets which are generated by uniformly distributed and sinusoidal

perturbation functions, the maximum area of FOV will be the same as that of the FOU

of an interval type-2 fuzzy sets with the same amount of variation. Normally distributed

perturbation functions generate random values within [−∞,∞], and so an FOV defined as
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the union of all underlying memberships would fill the entire universe of discourse.

From the experiments, it can be seen that the difference in the interval of output be-

tween the type-2 system and non-stationary systems with uniformly distributed perturba-

tion functions is extremely small. Without performing a detailed mathematical analysis of

the relationship between type-2 and non-stationary systems, it might be predicted that uni-

formly distributed non-stationary systems with the same FOV as FOU of interval type-2

systems will match closely.

8.1.7 Comparison on the Performances of Type-1, Type-2, and Non-

stationary Fuzzy Systems for Time-Series Prediction

The aim of this study was to investigate and compare the performance of type-1, type-2,

and non-stationary fuzzy systems for predicting MacKey-Glass Time-Series.

In Chapter 7, in a third case study, the type-1 and type-2 fuzzy systems were imple-

mented exactly the same as described in Section 8.1.2, while non-stationary fuzzy sytems

were initially constucted exactly the same as type-1 fuzzy systems and then using chosen

perturbation functions to generate non-stationary fuzzy sets for 1000 iterations. After all

systems had been constructed, they were used to obtain the prediction outputs and the

performance of all systems was evaluated by using root mean square error (RMSE).

In all cases, the performance of type-1 fuzzy systems with singleton inputs (the most

common found in practice) was worse than for the type-1 non-singleton, the type-2, and

the non-stationary fuzzy systems. In the mean while, type-1 non-singletion fuzzy system

(Type1-NSFLS), type-2 fuzzy systems (both Type-2-SFLS and T1-NS-T2-FLS) were per-

formed as good as each other for all data sets. Anyway, these systems were performed

better than non-stationary fuzzy systems (NS-FLS-S and NS-FLS-U).

The interesting finding from the experiments, we found that the best overall perfor-

mance is achieved with NS-FLS-N. This is a non-stationary fuzzy system uisng normal

distribution function as a pertubation function. From this, we may tentatively suggest that

while type-2 fuzzy systems may not strictly be necessary in order to achieve optimal per-

formance, their benefit may lie more in achieving good performance in a more tractable

model.
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8.1.8 Summary

In this thesis, the use of non-regular terms and non-convex membership function has

been investigated. It is shown that non-convex membership functions can be used in a

fuzzy system and they can perform together with regular membership functions. It is

suggested that non-convex membership functions are plausible, reasonable membership

functions in the sense originally intended by Zadeh. As the limitations of type-2 fuzzy

system is complexity and high cost of computational time, an investigation was carried

out to perform an analysis of whether the performance of type-2 fuzzy system could be

matched or surpassed by type-1 models with a similar o greater number of internal tunable

model parameters. From this investigation, the conclusion can be made that increasing

the number of tunable parameters can improve a type-1 non-singleton fuzzy system to be

as good as or better than type-2 fuzzy systems.

This thesis proposes the theoretical of the new type of fuzzy sets, termed non-stationary

fuzzy sets, and clearly defines the mathematical formulae that represent non-stationary

fuzzy sets. Perturbation functions used to altered the non-stationary fuzzy sets, opera-

tions on non-stationary fuzzy sets, and proof of some properties of non-stationary fuzzy

sets have been presented. The term that footprint of variation (FOV) has been proposed

to represent the region covering the range from the minimum to the maximum fuzzy sets

which comprise the non-stationary fuzzy sets. Non-stationary fuzzy sets possess some

important distinguishing features:

• A non-stationary fuzzy set is a collection of type-1 fuzzy sets in which there is

an explicit, defined, relationship between the fuzzy sets. Specifically, each of the

instantiations (individual type-1 sets) is derived by a perturbation of (making a small

change to) a single underlying membership function.

• A non-stationary fuzzy set does not have secondary membership functions, or sec-

ondary membership grades. Hence, there is no ‘direct’ equivalent to the embedded

type-2 sets of a type-2 fuzzy sets.

• The non-stationary inference process is quite different from type-2 FIS. That is at

any instant of time, a non-stationary fuzzy set is (instantiates) a type-1 fuzzy set.
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Therefore, the non-stationary inference is just a repeated type-1 inference (albeit

with slightly different type-1 sets at each time instant).

Experiments have been carried out to investigate the use of non-stationary fuzzy sets

through several case studies. The results from all of these experiments are compared

with results produced by type-2 fuzzy systems. From the results of these experiments,

conclusions can be drawn. Specifically:

• A non-stationary system mimics a type-2 system in that the union of all possible

instantiations of non-stationary fuzzy set defines the region over which the under-

lying membership function varies, termed the footprint of variation (FOV). This is

similar to the concept of the footprint of uncertainty of a type-2 set.

• Non-stationary fuzzy systems featuring non-uniformly distributed perturbation func-

tions may allow approximations of general type-2 fuzzy inference to be performed.

• Non-stationary system with sinusoidal perturbation functions may produce equiva-

lent results to interval type-2 fuzzy system.

• Uniformly distributed non-stationary systems with the same FOV as the FOU of an

interval type-2 system will match closely.

• Non-stationary fuzzy systems may provide a mechanism whereby a form of fuzzy

reasoning approximates general type-2 fuzzy inference in a simple, fast and com-

putationally efficient manner.

8.2 Limitations and Future Directions

In this section, in order to point out the limitations of this thesis and the possibly direction

for future work, four sub-sections are clearly catagorised as follows.

8.2.1 Operations on Non-stationary Fuzzy Sets

In Chapter 5, operations on non-stationary fuzzy sets, union, intersection, and comple-

ment, are only defined with maximum t-conorm, minimum t-norm, and standard com-

plement, respectively. Algebraic product is another popular t-norm, known as product
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t-norm. This may be very useful for some application domains, especially in engineer-

ing applications of fuzzy sets and logic i.e., fuzzy controller context. Work needs to be

done to formalise the concept of product t-norm for non-stationary fuzzy sets in terms of

mathematical formulae as follows. From the following equation

µȦ∩Ḃ(x, t) = µȦ(x, t)⊗µḂ(x, t), ∀(x, t) ∈ X ×T. (8.1)

where ⊗ denotes the product t-norm, this becomes

µȦ∩Ḃ(x, t) = [µȦ(x, t)×µḂ(x, t)], ∀(x, t) ∈ X ×T. (8.2)

A product t-norm operator on non-stationary fuzzy sets (in Equation 8.2) must be

proved to satisfy the set theoretic laws such as involution, commutativity, associativity,

idempotence, and distributivity. This can be continued in future work.

Some others operators (and and or connectives from Lukasiewicz and Probabilistic

logic) as shown in Chapter 2 (Table 2.5) may be needed to extend and formalise into a

collection of non-stationary fuzzy sets operators that can be used in the non-stationary

fuzzy systems. These ideas can also be continued in the future.

8.2.2 Relationship between Non-stationary and Type-2 Fuzzy Sets

The class of a type-2 fuzzy set is determined by the secondary membership function.

That is, if the secondary membership function simply takes the value zero outside the

lower and upper bounds and one inside the bounds, then interval type-2 fuzzy sets are

obtained. If (type-1) fuzzy sets are used for the secondary membership functions, then

general type-2 fuzzy sets are obtained. In comparison, the class of a non-stationary fuzzy

set is determined both by which kind of non-stationarity used (variation in location, vari-

ation in slope or noise variation) and by the form of perturbation function used to deviate

the underlying membership function.

In experiments carried out in this thesis, Normally distributed, uniformly distributed,

and sinusoidal perturbation functions were applied to variation in location and variation

in slope but not in noise variation. It should be noted, therefore, that herein lies a subtle

difference between non-stationary fuzzy sets used in this work and type-2 fuzzy sets. In

the non-stationary fuzzy sets used here, the perturbation function acts horizontally across
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the universe of discourse; in type-2 fuzzy sets the secondary membership functions are

defined vertically along the membership value µ. For non-stationary fuzzy sets featuring

‘noise variation’, the perturbation function acts vertically. Of course, different perturba-

tion functions can still be used and, thus, such non-stationary fuzzy sets might provide

a more direct comparison with type-2 fuzzy sets. According to the limitation of time,

further investigation in these contexts must be left for the future.

8.2.3 Perturbation Functions

For non-stationary fuzzy sets which are generated by uniformly distributed and sinusoidal

perturbation functions (producing random values within [−1,1]), the maximum area of

footprint of variation (FOV) will be the same size as the footprint of uncertainty (FOU)

of interval type-2 fuzzy sets with the same amount of variation. In contrast, Normally

distributed perturbation functions generate random values within [−∞,∞], and so an FOV

defined as the union of all underlying memberships would fill the entire universe of dis-

course. This kind of FOV will need further investigation. Also, other random functions

that can be used as perturbation functions to generate non-stationary fuzzy sets must be

further investigated. For example

• a differential time-series, such as the Mackey-Glass equation:

d f (t)

dt
=

0.2 f ∗ (t − τ)

1+ f 10(t − τ)
−0.1 f (t), (8.3)

where τ is a constant.

8.2.4 Non-stationary Fuzzy Sets in Real World Applications

In this thesis, all experiments carried out only used simulation data sets and hence no

general conclusions can be definitely claimed. In order to reach general conclusions it

would be necessary to carry out similar experiments on a wide variety of real world data

sets. Again, to reach general conclusions, the potential directions for future research of

non-stationary fuzzy sets in real world applications could be suggested (but not limited

to):
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• Medical applications: As mentioned earlier, all humans including ‘experts’, ex-

hibit variation in their decision making. Variation may occur among the decisions

of a panel of human experts (inter-expert variability), as well as in the decisions of

an individual expert over time (intra-expert variability). Up to now it has been an

implicit assumption that expert systems, including fuzzy expert systems, should not

exhibit such variation. Specifically in medical context, the experts (doctors) may

ask to provide their diagnosis on any cases. Each expert sometimes might provide a

difference decisions depending on situation and their experiences. It might be ten-

tatively suggested to employ non-stationary fuzzy sets in expert system to model

the variation in expert opinions (there may be a need to compare with type-1 and

type-2 fuzzy systems). These ideas are actually the focus of ongoing work.

• Time-series forecasting applications: In Chapter 4, an investigation was carried

out in which the performance of type-1 and type-2 fuzzy systems with varying

number of tunable parameters were compared in their ability to predict the Mackey-

Glass time series with various levels of added noise. Each of the fuzzy systems

were tuned to achieve the best possible performance using a standardised gradient

descent procedure. The results show that the best performance was achieved with

a type-1 fuzzy system, albeit featuring a high number of tunable parameters. A

type-2 fuzzy system with far fewer parameters achieved performance very close

to the best. As mentioned in Chapter 5, a non-stationary fuzzy inference system

(FIS) is simply a repetition of a type-1 FIS with slightly different instantiations

of the membership function over time. Hence, non-stationary inference does not

suffer the difficulties of type-2 inference (particularly the inference using general

type-2 fuzzy sets). It may be expected that non-stationary FIS with fewer tunable

parameters can perform as well as or better than type-1 and type-2 systems. To

determine this, further investigation need to be done in the context of time-series

forecasting applications, e.g. financial forecasting.

• Control applications: Non-stationary fuzzy sets have been investigated by Cou-

pland and John [138] to compare the performance of type-1, interval type-2 using

type-reduction, and non-stationary fuzzy systems in the context of control appli-
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cations. An interesting finding in their experiment was the performance of the

non-stationary fuzzy system. They observed that under the minimum t-norm, the

non-stationary system gave a much smoother surface than any of the other systems,

meaning that this system has a smoother control performance. Under the product

t-norm, the non-stationary system was as good as any of the other systems. In this

work, they conclude that the non-stationary system outperforms the other fuzzy

technologies.

Although, standard type-1 fuzzy sets have been greatly employed in many control

applications, it is not yet possible to model and minimize the effect of all uncertain-

ties (i.e., uncertainty in membership functions, and noisy data sets). To overcome

this limitation, type-2 fuzzy sets can be introduced into the systems. However, the

use of type-2 fuzzy sets in practice has been limited due to the significant increase

in computational complexity involved in their implementation. From this prelimi-

nary work, it is strongly believed that non-stationary fuzzy sets would be useful to

apply into the control systems.

8.3 Publications Produced

The research described in this thesis has been published through a number of journal and

in international conference papers. Most of the work presented in each of the main body

Chapters of this thesis has also been published in this manner. A formal list of publications

and presentations derived from this work follows.

8.3.1 Journal Publications

1. Garibaldi, J.M., Jaroszewski, M., Musikasuwan, S., Nonstationary Fuzzy Sets,

IEEE Transaction on Fuzzy System, V. 16, n. 4, August, 2008. (Chapter 5 and

6)
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8.3.2 Conference Publications

1. Ozen, T., Garibaldi, J.M., Musikasuwan, S., Modelling the Variation in Human

Decision Making, Proceeding of Fuzzy Sets in the Heart of Canadian Rockies

(NAFIPS 2004), Banff, Alberta, Canada, 27-30 June 2004.

2. Musikasuwan, S., Ozen, T., Garibaldi, J.M., An Investigation into the Effect of

Number of Model Parameters on Performance in Type-1 and Type-2 Fuzzy Logic

Systems, in Proceedings of Information Processing and Management of Uncer-

tainty in Knowledge Based Systems (IPMU 2004), Perugia, Italy, July 4-9, 2004.

(Chapter 4)

3. Ozen, T., Garibaldi, J.M., Musikasuwan, S., Preliminary Investigations into Mod-

elling the Variation in Human Decision Making, in Proceedings of Information

Processing and Management of Uncertainty in Knowledge Based Systems (IPMU

2004), Perugia, Italy, July 4-9, 2004.

4. Garibaldi, J.M., Musikasuwan, S., Ozen, T., John. R.I., A Case Study to Illus-

trate the Use of Non-Convex Membership Functions for Linguistic Terms, in Pro-

ceedings of IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2004),

Budapest, Hungary, July 25-29, 2004. (Chapter 3)

5. Garibaldi, J.M., Musikasuwan, S., Ozen, T., The Association between Non-Stationary

and Interval Type-2 Fuzzy Sets: A Case Study, in Proceeding of IEEE International

Conference on Fuzzy Systems (FUZZ-IEEE 2005), Reno, Nevada, USA, May 22-

25, 2005. (Chapter 6)

6. Musikasuwan, S., Garibaldi, J.M., Exploring Gaussian and Triangular Primary

Membership Functions in Non-Stationary Fuzzy Sets, in Proceeding of Information

Processing and Management of Uncertainty in Knowledge Based Systems (IPMU

2006), Paris, France, July 2-7, 2006. (Chapter 7)

7. Musikasuwan, S., Garibaldi, J.M., On Relationships between Primary Membership

Functions and Output Uncertainties in Interval Type-2 and Non-Stationary Fuzzy

Sets, in Proceeding of IEEE International Conference on Fuzzy Systems (FUZZ-

IEEE 2006), Vancouver, Canada, July 16-21, 2006. (Chapter 7)
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8.3.3 Presentations and conferences attended

• Fuzzy Expert Systems, Automated Scheduling, Optimisation, and Planning (ASAP)

Research Group seminar, School of Computer Science and IT, The University of

Nottingham, United Kingdom, April 9, 2003.

• Effect of Number of Model Parameters on Performance in Type-1 and Type-2 Fuzzy

Logic Systems, International Conference of IPMU 2004, Perugia, Italy, July 8,

2004.

• Modelling the Variation in Human Decision Making, International Conference of

NAFIPS 2004, Banff, Alberta, Canada, June 29, 2004.

• The Use of Non-Convex Membership Functions for Linguistic Terms, IEEE Inter-

national Conference of FUZZ-IEEE 2004, Budapest, Hungary, July 28, 2004.

• The Association between Non-Stationary and Interval Type-2 Fuzzy Sets, IEEE

International Conference of FUZZ-IEEE 2005, Reno, Nevada, USA, May 22-25,

2005.

• Exploring Gaussian and Triangular Primary Membership Functions in Non-Stationary

Fuzzy Sets, Information Processing and Management of Uncertainty in Knowledge

Based Systems (IPMU 2006), Paris, France, July 2-7, 2006.

• On Relationships between Primary Membership Functions and Output Uncertain-

ties in Interval Type-2 and Non-Stationary Fuzzy Sets, IEEE International Confer-

ence on Fuzzy Systems (FUZZ-IEEE 2006), Vancouver, Canada, July 16-21, 2006.
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