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Abstract

Healthcare-associated infections (HCAIs) remain a problem worldwide, and can cause

severe illness and death. It is estimated that 5-10% of acute-care patients are affected by

nosocomial infections in developed countries, with higher levels in developing coun-

tries. The increasing level of antibiotic resistance among bacteria that cause HCAIs

limits infection treatment options, and is a major concern. This only increases the im-

portance of infection control and prevention methods, particularly in healthcare in-

stitutions, where individuals are considerably more susceptible to infection. Hospital

infection control policies aim to restrict transmission routes as far as possible.

Statistical modelling is of great importance in increasing understanding of HCAI trans-

mission dynamics. In this thesis, stochastic epidemic models are developed and used

with the aim of investigating methicillin-resistant Staphylococcus aureus (MRSA) trans-

mission and intervention measures in hospital wards. Bayesian inference allows un-

observed transmission dynamics to be taken into account, using a data-augmented

Markov chain Monte Carlo algorithm. Using such an approach leads to improved

parameter estimation, and allows more flexible and complex models to be analysed.

Despite such advantages, much research is still required to develop and assess tech-

niques in this field. Methods to compare models in a Bayesian framework are not well

established, and are particularly complex in settings with missing data. Such meth-

ods are investigated in this thesis, and a systematic study of Bayesian model choice for

transmission models is conducted.

Until recently, large-scale studies which take into account the genetic diversity of the

pathogen have not been feasible. Technological advances have meant that the collec-

tion of whole genome sequence (WGS) data is now easier, faster and cheaper than

ever before, but statistical methods to utilize this information in transmission dynamic

models are still in the early stages of development. Analyses relying on routinely col-

lected epidemiological data can derive the rate and relative importance of transmission
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routes, but the specific transmission network remains unclear, since all MRSA isolates

are necessarily regarded as identical. In this thesis, new methods are developed to

model nosocomial MRSA transmission, using genetic information in addition to epi-

demiological data. Transmission models are constructed which incorporate genetic

information where available, where measures of genetic similarity allow us to estimate

who infected whom. MRSA transmission was analysed under various assumptions,

with the aim of reconstructing transmission networks. Outcomes are compared with a

model excluding genetic data, in order to assess the benefits of this new approach.

The collection of WGS data, in combination with new modelling approaches, allows

an unprecedented insight into individual level transmission dynamics. This is of much

interest to policy makers, as it may aid the investigation of heterogeneity in patient

infectiousness and the effectiveness of infection control methods. With WGS data likely

to become abundant in the near future, the development of sophisticated analytical

tools and models to exploit such genetic information is of great importance.
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CHAPTER 1

Modelling healthcare-associated

infections

1.1 Introduction

In this thesis, we explore and evaluate stochastic models to investigate transmission of

healthcare-associated infections (HCAIs) in hospitals, and introduce novel methods to

integrate whole genome sequence (WGS) data into such models.

We initially describe and work with a framework for the analysis of transmission dy-

namics using conventional screening data. We utilise Bayesian inference and Markov

chain Monte Carlo (MCMC) methods to account for missing data, a common issue

in the analysis of epidemics. We investigate the transmission of methicillin-resistant

Staphylococcus aureus (MRSA), and describe methods to evaluate the effectiveness of

infection control measures. It is often of interest to compare transmission models in

order to determine the relative support given to a set of candidate models by the data,

or to select a best-performing model. The performance of some important tools for

Bayesian model choice is investigated in detail. We finally consider the integration of

WGS data, with the aim of reconstructing transmission networks. Only recently has

the collection of WGS data become feasible on a large scale, and there is much demand

for methods to utilise this for the purpose of investigating epidemics and transmis-

sion dynamics. Existing methods have limitations and restrictions which make them

unsuitable for the analysis of MRSA transmission. Building on the model framework

used in earlier work, we develop new methods to estimate the transmission network

based on epidemiological and genetic data.
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CHAPTER 1: MODELLING HEALTHCARE-ASSOCIATED INFECTIONS

In this chapter, we begin by describing the problem posed by HCAIs, in particular

MRSA, in section 1.2. We discuss the important characteristics and transmission mech-

anisms of this pathogen, and describe infection control measures used by healthcare

facilities to reduce the risk of transmission. In section 1.3, a brief overview of the

molecular-level dynamics which generate genetic diversity is provided, and methods

of collecting genetic data for S. aureus are described. In section 1.4, we discuss the fun-

damental concepts of deterministic and stochastic epidemic models, with an empha-

sis on methods which account for partially-observed data. In section 1.5, we discuss

methods of parameter inference, initially describing likelihood optimisation methods,

before discussing Bayesian inference. We describe MCMC methods which will be used

throughout the thesis. An overview of Bayesian model selection methods is provided

in section 1.6. In section 1.7, we describe the existing literature for modelling HCAI

transmission, and review existing methods to integrate epidemiological and genetic

data into the analysis of pathogen transmission. We provide some concluding remarks

in section 1.8, before describing the aims and structure of the following chapters in

section 1.9.

1.2 Healthcare-associated infections

1.2.1 Background

Healthcare-associated infections are a major cause of increased morbidity and mortal-

ity in healthcare facilities, often requiring costly treatment and extended hospital stays

[1]. Hospital-associated bloodstream infections are the 10th most common cause of

death in the USA [2], while it has been estimated that there are in excess of four mil-

lion cases of HCAI each year in Europe, to which 37,000 deaths can be attributed [3].

HCAIs are estimated to affect 5-10% of hospital admissions in industrialised countries,

but are likely to be a larger problem in resource-limited nations, where infection rates

have been estimated to range between 6-27% [4]. Infections amongst newborns are

3-20 times more common than in industrialised countries, and are associated with a

mortality rate of 50% [5].

Antimicrobial resistance in HCAIs has been increasing over the last decades. Antibiotic

effectiveness has been likened to a finite natural resource, which is ‘used up’ through

the administration of antibiotic treatment [6]. As pathogens develop increasing drug-

resistance, treatment options become limited. The potential loss of effectiveness of an-
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tibiotics has enormous consequences, and it is therefore of great interest to fully under-

stand the dynamics of pathogen transmission, in order to focus on the prevention, as

well as the treatment, of infections.

1.2.2 Staphylococcus aureus

Staphylococcus aureus is a gram-positive bacterium, asymptomatically carried by around

20% of the population at most times (persistent carriers), and by around 60% intermit-

tently [7], with some geographic fluctuation [8]. The most common carriage site is the

anterior nares (nose), although S. aureus is also commonly found on the skin (particu-

larly broken skin/wounds), groin, perineum, urinary tract and pharynx [8–11]. S. au-

reus can also enter the bloodstream (bacteraemia), which can cause a number of com-

plications, and may put the individual at risk of severe illness or death. Around 20%

of bloodstream infections in US hospitals are caused by S. aureus [2].

1.2.2.1 Antibiotic resistance

After its discovery in 1928, penicillin was used to treat S. aureus infections, but resis-

tance emerged rapidly in the next decades. The first penicillinase-producing S. aureus

isolates (resistant to the effects of penicillin) were described in 1944, and within a few

years, most hospital isolates were penicillin-resistant [12].

Methicillin was introduced in 1959, and used to treat penicillin-resistant S. aureus in-

fections, but resistance developed rapidly, as with penicillin. Just two years later, the

first cases of methicillin resistance were reported in the UK [13]. The prevalence of me-

thicillin resistance increased in subsequent decades; in 2001, 47.3% of S. aureus samples

were resistant in the UK [14], and over 50% in the USA in 2003 [15]. Similarly, strains

resistant to other antibiotics and antiseptics commonly used to treat infections have

emerged [16–18]. With the emergence of resistance to vancomycin, [19, 20] an antibi-

otic often considered to be the drug of ‘last resort’ [13], the threat of pathogens resistant

to all available antibiotics has become clear. The careful administration of antibiotics

is necessary to slow the proliferation of multiply-resistant pathogens such as S. aureus

[21].

Methicillin-resistant Staphylococcus aureus (MRSA) encompasses S. aureus strains re-

sistant to methicillin, as well as practically all beta-lactam antibiotics [22]. Studies

into the differences in the epidemiology of MRSA and methicillin-susceptible S. au-
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reus (MSSA) revealed that the mortality rate in persons infected by the resistant type

is higher [23, 24]. The length of stay associated with a patient acquiring MRSA bac-

teraemia is significantly longer than that associated with MSSA bacteraemia, and has

a higher economical impact [6, 25]. However, this is not necessarily a causal effect —

compared to those with MSSA infections, patients with an MRSA infection are more

likely to have been hospitalised for longer, previously had surgery, or suffered from

other medical issues [26].

1.2.2.2 Transmission, carriage and infection

It is widely acknowledged that most S. aureus transmission between patients occurs in-

directly, via the hands of healthcare workers [27–29]. A systematic review of healthcare

worker colonisation concluded that healthcare workers (HCWs) played an important

role in the transmission of MRSA, as a vector, rather than a source [29]. Of the studies

included in this review which used genotyping to match patient carriage with HCW

carriage, 93% found evidence for the existence this transmission route.

Individuals vary in susceptibility to S. aureus carriage and infection. Risk increases with

age [30], which is also the most consistent predictor for S. aureus infection mortality [31,

32]. In addition, previous hospitalisation, skin lesions and use of indwelling devices are

risk factors associated with MRSA carriage [31, 33, 34].

A distinction can made between ‘colonisation’ and ‘infection’ for S. aureus carriage; the

former may indicate carriage without clinical symptoms of infection [35]. Throughout

this thesis, we define colonised patients to be carriers of MRSA, regardless of infection

symptoms.

S. aureus infections can vary in severity, from relatively minor skin and soft tissue infec-

tions, to potentially fatal bacteraemia [36], although carriage is most commonly asymp-

tomatic [12]. Infections may be the result of acquisition from another individual, or via

organisms which have been present on the host for some time. It has been shown that

asymptomatic nasal carriage of S. aureus can be a source of bacteraemia in hospitalised

patients [37]; indeed, it was found that 80% of patients with bacteraemia are infected

with a strain matching the type previously carried asymptomatically [38].
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1.2.2.3 MRSA outside of healthcare facilities

While MRSA is most commonly associated with hospitals (denoted hospital-acquired

MRSA (HA-MRSA) when a distinction should be made), there are several other sources

of colonization or infection which are of importance. MRSA outbreaks have been ob-

served amongst prisoners, athletes, homeless persons and intravenous drug users [39].

Outbreaks of MRSA occurring outside of a healthcare setting are termed community-

acquired MRSA (CA-MRSA). CA-MRSA has been found to cause infections in indi-

viduals lacking the risk factors associated with HA-MRSA infection [40–42], and is

frequently carried at different body sites [42]. While community strains are typically

susceptible to a wider range of antibiotics [40, 43], it is feared that strains are becoming

more resistant [44]. CA-MRSA is a growing problem, with few established infection

control guidelines [45].

1.2.3 Infection control measures

1.2.3.1 Hand hygiene

As HCW contact is widely believed to be the primary route of transmission, elimination

of transient carriage from HCWs between patient contacts is key to reducing transmis-

sion via this route. Simulation models have confirmed this effect [27], and increased

hand hygiene compliance has been shown to be associated with decreased MRSA in-

fection rates [46]. A systematic review revealed that the rate of compliance (that is,

hand washing before and after contact with patients) is typically low (overall median

of 40%), and that it was lower in an ICU setting than elsewhere in a hospital [47].

1.2.3.2 Screening on admission

While not a control measure itself, screening patients for presence of communicable

pathogens such as MRSA on admission to a hospital ward reduces the risk of asymp-

tomatic carriage going undetected. A patient is usually swabbed at one or more of

the typical carriage sites (nose, axilla, perineum, groin) for the presence of MRSA.

Screening enables the prompt implementation of reactive infection control measures

for MRSA positive patients, and in combination with an effective intervention, may in

theory contribute to the reduction in transmission. Mandatory screening was advised

by the Department of Health in England in 2009 for all elective patients on admission
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to hospital, extending to all emergency admissions by the end of 2010 [48]. However,

studies on the impact of screening have shown mixed results [49]. Screening has tra-

ditionally been carried out with the use of culture swabs, although polymerase chain

reaction (PCR) tests are becoming cheaper, and can provide results much more quickly.

PCR tests provide results within 24 hours, compared to the two to three days neces-

sary for culture methods, but are considerably more expensive [50, 51]. There has been

much debate surrounding the use of rapid detection methods as standard to screen

for MRSA carriage. While the introduction of PCR screening can reduce the number of

undetected positive patient days, a systematic review in 2009 concluded that the reduc-

tion in MRSA acquisition associated with the use of rapid screening was not significant

[51].

1.2.3.3 Patient isolation

Patient isolation of some form is a core component of most infection control policies

[52]. It has been recommended that patients are isolated in a single side room if re-

sources permit, or in a cohort with other positive patients [21, 53]. The implementation

of isolation precautions for MRSA carriers has been considered controversial due to the

lack of robust supporting evidence of its effectiveness [54], and the cost implementa-

tions associated with its use [55]. There has been little formal evidence to support the

use of barrier precautions and physical isolation in reducing MRSA transmission rates

[54, 56].

The systematic review of available evidence for isolation usage conducted by Cooper et

al. [56] in 2003 concluded that there was a lack of well designed studies in this area. The

authors developed a dynamic transmission model to theoretically evaluate isolation,

and demonstrated the importance of isolation capacity and timing to the success or

failure of isolation in reducing transmission. Since then, Cepeda et al. [57] undertook

a prospective trial during which MRSA positive patients were not physically isolated

for a period of six months in two intensive care units in London. This period was then

compared to a control phase in which isolation in a side room or cohort was used.

Standard precautions were maintained throughout. Acquisition rates were found to be

similar in both periods, and there was no evidence to suggest increased transmission

during the period with no isolation.

Forrester et al. published two studies on a dataset collected from an ICU in Brisbane,

using different model-based analyses, which both indicated a beneficial effect of isola-
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tion, albeit with a considerable degree of uncertainty [58, 59]. More recently, Kypraios

et al. [52] conducted another model-based evaluation of barrier precautions, using data

collected in several ICUs in Boston. They found some evidence to support the use of

isolation; a best estimate of 28% reduction in transmission was given, with a high de-

gree of uncertainty.

1.2.3.4 Contact pattern limitations

Since MRSA transmission is driven by patient-HCW interaction, a potential interven-

tion would be to limit the contact of susceptible patients with HCWs who have at-

tended colonised patients. Ueno and Masuda presented a model-based analysis of

contact limitation to reduce HCAI transmission [60]. The authors used an epidemic

model based on a contact network to determine the role of patient-HCW interaction

in transmission, and investigated different contact patters. They demonstrated that a

reduction may be achieved by assigning patients to a particular team of HCWs. Mi-

lazzo et al. performed a simulation-based study to determine the roles of spatial and

staff cohorting to reduce transmission of MRSA [61]. They concluded that changing

staff contact patterns had a large impact in reducing transmission events — physical

isolation/separation of patients alone may not be sufficient. While such contact pattern

restrictions may be theoretically advantageous, such an implementation in reality may

be infeasible and costly. Staff deficiencies, which result in a higher workload and con-

tact rate for HCWs, have also been identified as being associated with increased MRSA

transmission [62].

1.3 Whole genome sequence data

Until very recently, the collection of whole genome sequence (WGS) data has been pro-

hibitively complex and expensive. However, technological advances and falling costs

mean that DNA sequencing is now feasible on a larger scale, and it is likely that such

data will become abundant in the future. WGS data is of great interest in the study

of population dynamics and evolution [63, 64]. For disease-causing organisms, it can

provide an insight into the molecular-level mechanisms behind the development of

pathogenicity and drug resistance [38, 64]. Both within-host and between-host genetic

dynamics may be investigated [63–65]. From an epidemiological perspective, genetic

data can aid the analysis of the geographic propagation of a pathogen, as well pro-
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viding insight into competition between different strains [66]. Older molecular typ-

ing methods may differentiate between different strains of an organism, but lack the

resolution to analyse the genetic diversity occurring on an individual level; so-called

microevolution [66]. The ability to observe and quantify such diversity allows us to

estimate person-to-person transmission routes with unprecedented accuracy.

1.3.1 The analysis of genetic data

All organisms possess a genetic signature encoded in the genome. The genome of a

bacterium is typically a single, circular chromosome; a double-stranded DNA structure

[67]. DNA comprises a chain of components, known as base pairs (bp), each of which

is a pair of nucleotides; cytosine (C) and guanine (G), or adenine (A) and thymine

(T). Since each nucleotide may bond with only one other type to form a base pair (C

with G, and A with T), information is duplicated in the two strands, and it suffices

to consider only one when comparing two isolates. A full DNA sequence, or WGS,

may be represented as a vector X of length L, where each element Xi ∈ {C, A, G, T}

represents a nucleotide.

Genome length varies by species. Bacterial genomes range from 580-9105 kilobases (kb,

equal to 1000 bp) [67]. In comparison, viral genomes are typically much smaller [38];

for instance, human immunodeficiency virus (HIV) has a genome length of 2.5-9kb,

influenza A is 13.9kb [68]. Simpler genomes are easier and faster to sequence, and as

such, much of the earlier work using sequencing data examined viruses (eg. [69–71]).

Bacteria reproduce via binary fission, a process in which a cell’s DNA is replicated and

the cell divides. The replication of DNA is not always perfect. Single point mutations

cause a base pair to be incorrectly replicated in the ‘daughter’ cell. Point mutation can

be modelled as a Markov chain, with a rate matrix Q, where Qi,j gives the rate at which

a nucleotide i mutates to nucleotide j. The probabilities of particular changes may vary,

for instance, it is considered that transitions (A ↔ G or C ↔ T) are more likely than

transversions (any other nucleotide change). Various mutation models exist, such as

the Jukes-Cantor model, in which all mutation rates are identical, the Kimura model,

where transitions and transversions take different rates, and the generalised model in

which all substitution types may occur at different rates [72]. The overall rate of point

mutations may vary across different species.

Genetic changes on a larger scale may also occur. Insertion and deletion of genetic ma-

terial (usually a small number of base pairs) can occur during replication, and result in
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a larger or smaller genome respectively. Horizontal gene transfer is the acquisition of

genetic material from sources other than the parent (vertical transfer). In bacteria, this

can occur via processes called transformation, transduction and conjugation. Transfor-

mation is the uptake and incorporation of DNA from the environment (‘free DNA’).

Transduction is the acquisition of genetic material from a virus (bacteriophage). Con-

jugation occurs during the interaction between two cells, in which plasmids may be

exchanged [73]. A plasmid is a DNA molecule existing within a cell, but is not associ-

ated with the chromosome, and replicates independently [74].

Horizontal gene transfer can cause substantial changes in the DNA of an organism, and

can result in changes in characteristics and behaviour. It is considered likely that this

is of great importance to the development of antibiotic resistance in bacteria [75, 76].

Antibiotic resistance may be acquired via the transfer of such genes on plasmids, and

the speed of adoption of such complex traits has been found to be inconsistent with the

accumulation of single point mutations [77].

Genetic distance between isolates may be measured by the number of point differ-

ences, or single nucleotide polymorphisms (SNPs). This can be used as a measure of

relatedness, or similarity. Furthermore, this may indicate how recently two organisms

diverged. The molecular clock hypothesis states that SNPs accumulate at an approxi-

mately constant rate over time [78], allowing time since divergence to be estimated.

1.3.2 Molecular typing of Staphylococcus aureus

Methods to categorise and differentiate between strains of S. aureus based on molecular

typing methods have emerged and developed in the last two decades. Whole genome

sequencing is the identification of the complete genome, which in the case of S. aureus,

is 2.8-2.9 million base pairs (Mb) in length [79]. This, until recently, has been infeasible

due to high costs and the intensive processing required. Many existing studies on

the transmission of infectious diseases have used viral pathogens, which have a much

shorter genome length than bacteria.

Earlier methods in genetic typing of bacteria have been based on technologies which

target specific genes or regions of the DNA. Pulsed field gel electrophoresis (PFGE) was

first introduced as a method to discriminate between MRSA strains in 1991 [10, 80].

PFGE is a process by which a chromosome is broken down into large segments by an

enzyme. Since genetically identical strains are always broken down in the same way,

the lengths of the resulting DNA fragments can be used to discriminate between differ-
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ent types. PFGE was long considered to be the gold standard of bacterial typing [81].

spa typing is a method developed in the 1990s, in which a region of the protein A gene is

sequenced [82, 83], and has been used to identify over 7000 S. aureus types in total [84].

Multilocus sequence typing (MLST) involves the partial sequencing of the full DNA

sequence. DNA fragments from a small set of housekeeping genes are sequenced to

create an allelic profile for each S. aureus isolate [85]. While these methods allow us to

broadly categorise strain types, the resolution is not sufficient to investigate small-scale

genetic differences, or ‘microevolution’, which is required to study transmission over a

short period of time [66, 81].

1.4 Epidemic modelling

Statistical models may be used to estimate parameter values and uncertainty based on

observed data, as well as to predict the behaviour of a system under certain scenarios.

Modelling has been used for decades to gain insight to the transmission process of

communicable diseases.

1.4.1 Compartmental models

Epidemics are commonly described using compartmental models. In this approach,

we define a number of disease states and model how the number of individuals in

each state changes over time. Perhaps the most well-known epidemic model is the

susceptible-infectious-removed (SIR) model. The SIR model is characterised by three

disease states; susceptible (S), infected (I), and removed (R), the latter of which may be

interpreted as death, immunity, or physical isolation. An effective contact between an

infectious and a susceptible person results in a transmission event. The definition of

an effective contact can depend on the typical routes of transmission and contagious-

ness of a particular pathogen. Infectious individuals are removed from the population

through death or recovery and the development of immunity. These individuals play

no further role in the dynamics of the epidemic. A diagram of such a model is shown

in figure 1.1.

Pathogens have a diverse range of characteristics, meaning that many alternative mod-

els of this type have been created which may be more appropriate. Such models in-

clude:
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- -S I R
βI(t) γ

Figure 1.1: The individual-level SIR model for a closed population. A susceptible in-

dividual becomes infected at a rate βI(t) at time t, where I(t) is the num-

ber of infective individuals at time t. Infected individuals are removed,

through death or recovery, at rate γ.

• SI — infected individuals are not removed, and remain infectious.

• SIS — infected individuals recover, and are immediately susceptible again .

• SIRS — infected individuals recover, and are immune to infection for a period,

before becoming susceptible again due to waning/loss of immunity.

• SEIR — there exists a latent, or ‘exposed’, period between time of infection and

time of infectiousness (during which individuals are in compartment ‘E’). Infec-

tious individuals are eventually removed, and are not susceptible to infection

again.

1.4.2 Transmission

Transmission of a pathogen may occur via different mechanisms. For instance, proxim-

ity to an infected individual may be sufficient for transmission of an airborne pathogen,

whereas others require direct contact. Vector-borne diseases are those which typically

require the intermediate carriage of a third party to transmit the pathogen (for exam-

ple, mosquitoes in the case of malaria, and transiently-colonised healthcare workers in

the case of some nosocomial pathogens such as MRSA).

The rate of transmission also depends on the contact pattern of individuals within the

population, the susceptibility of individuals at risk of infection, and the infectiousness

of carriers. In the simplest case, we may assume that individuals mix homogeneously

(so that any pairs of individuals have the same chance of interaction), and that suscep-

tibility and infectiousness are the same for all susceptible and infectious individuals

respectively. The risk of infection in a fixed-size population is then proportional to

the number of infectious individuals at any given time, so that the rate of transmis-

sion at time t is q(t) = βS(t)I(t), where β is the transmission coefficient, incorporating

the contact rate and probability of transmission per contact, and S(t) and I(t) are the
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number of susceptible and infectious individuals at time t respectively. This follows

the law of mass action [86]. In a population of variable size (including, for example,

immigration and emigration), transmission may be dependent on the number, or pro-

portion, of infectious individuals in the population, representing density-dependent

(q(t) = βS(t)I(t)) or frequency-dependent mass action (q(t) = βS(t)I(t)/N(t)) re-

spectively. There has been some debate as to which formulation is more appropriate in

certain settings [87, 88]. Frequency dependent transmission is generally more appro-

priate for scenarios in which the contact rate does not increase with the population size

[89].

In reality, the assumption of homogeneous mixing may not be appropriate. Contact

patterns and contact types vary considerably between different age groups and so-

cial settings, which can impact model outcomes considerably if not taken into account

[90]. Heterogeneous mixing approaches have been developed, accommodating local

and global level transmission [91]. Such approaches demonstrate the importance of

accounting for heterogeneous mixing when appropriate.

Epidemic models can be described by either deterministic or stochastic dynamics. While

this thesis is primarily concerned with the construction and analysis of stochastic epi-

demic models, we briefly introduce both here.

1.4.3 Deterministic models

In a deterministic epidemic model, the number of individuals in each compartment

at any time is specified by the initial state of the model, and the model parameters

which describe transmission dynamics. The standard closed population deterministic

SIR model is governed by the system of differential equations,

dS(t)

dt
= −βS(t)I(t)

dI(t)

dt
= βS(t)I(t)− γI(t)

dR(t)

dt
= γI(t), (1.4.1)

where β is the effective contact rate between individuals, and γ is the rate of removal

of infected individuals. Initial conditions S(0) > 0, I(0) > 0, R(0) = 0 must also be de-

fined. This is a special case of the model described by Kermack and McKendrick [92],

who are widely considered to have laid the foundation for modern epidemic modelling

[93]. This deterministic model describes disease prevalence in a closed population of
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N individuals (S(t) + I(t) + R(t) = N), where individuals mix randomly and homoge-

neously, and there is no variation in susceptibility, or the expected duration of infection.

This model is easily adapted and extended to model more complex dynamics.

Models defined by a system of differential equations, such as the SIR model, describe

integer-valued population counts as continuously varying values. This has little impact

for large populations, however, this is inappropriate for small counts.

1.4.4 Stochastic models

Unlike the fixed values realised in a deterministic model, a stochastic model describes a

probability distribution for outcomes. In a compartmental model, the number of indi-

viduals in each compartment at a given time is modelled as a probability distribution.

Such a model allows random fluctuations to play a role in the structure of an epidemic

— under identical parameters and conditions, an epidemic could grow large, or die out

quickly.

The stochastic version of the SIR model is governed by the equations

P[S(t + δt) = s − 1, I(t + δt) = i + 1|S(t) = s, I(t) = i] = βsiδt + o(δt)

P[S(t + δt) = s, I(t + δt) = i − 1|S(t) = s, I(t) = i] = γiδt + o(δt)

P[S(t + δt) = s, I(t + δt) = i|S(t) = s, I(t) = i] = 1 − βsiδt − γiδt + o(δt),

(1.4.2)

which describe the probability of moving from the current state of the model, (S(t), I(t)),

to the state (S(t + δt), I(t + δt)) in the next short period of time δt, a period short

enough such that the probability of multiple transition events is small [94, 95].

1.4.4.1 Likelihood for the SIR model

Parameter estimation is of central importance throughout this thesis, so we now con-

sider the likelihood function for a realisation of the SIR model. We suppose the SIR

epidemic is perfectly observed, so that the sets of n ordered infection times τ I =

{τ I
1 , . . . , τ I

n}, and m removal times τR = {τR
1 , . . . , τR

m} are known with certainty. We

suppose that individuals mix homogeneously, and we define the rate of infection, as

q(t) = βS(t)I(t). For an epidemic to occur, we must begin with at least one infected

individual in a population containing susceptible individuals. We assume here that

there is initially one infective person, with an infection time at τ I
1 = t0.
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We partition the time interval [t0, T] by the infection and removal event times t0 = e1 <

· · · < em+n ≤ T, such that on each interval [ej, ej+1), the rate of infection is constant.

The probability of infection occurring at time t depends only on the time of the previous

event t′, and the number of susceptible and infected individuals at that time S(t′), I(t′).

We use results from survival analysis to construct the likelihood function. We define

the hazard rate, h(t), as the rate at which events (either infection events or removal

events) occur. This is the sum of the infection rate and the rate of removal at time t, that

is

h(t) = βS(t)I(t) + γI(t). (1.4.3)

The survival function, A(t0, t), is the probability that no such events occur in the in-

terval (t0, t). It has been shown (eg. [96]) that this may be expressed in terms of the

hazard rate as

A(t0, t) = exp(−
∫ t

t0

h(u)du). (1.4.4)

The hazard rate is piecewise constant on the intervals between each of the events

[e1, e2), . . . , [em+n−1, em+n), which means that for all j,

∫ ej+1

ej

h(u)du = h(ej)(ej+1 − ej). (1.4.5)

The likelihood of observing the set of infection times τ I
2 , . . . , τ I

n and removal times

τR
1 , . . . , τR

m can then be considered to be the product of contributions representing each

infection or removal event, and the preceding interval in which no event occurred.

Each event is dependent only on the previous event time. Given the initial conditions

S(t0) and I(t0) = 1, the likelihood is then

π(τ I , τR|β, γ, S(t0), τ I
1 ) =

m+n−1

∏
i=1

A(ei, ei+1)

︸ ︷︷ ︸
no events occur

n

∏
j=2

q(τ I
j−)

︸ ︷︷ ︸
infection events

m

∏
k=1

γI(τR
k−)

︸ ︷︷ ︸
removal events

=
m+n−1

∏
i=1

exp
(
−
∫ ei+1

ei

h(u)du
) n

∏
j=2

q(τ I
j−)

m

∏
k=1

γI(τR
k−)

= exp
(
−

m+n−1

∑
i=1

(βS(ei)I(ei) + γI(ei))(ei+1 − ei)
)

·
n

∏
j=2

βS(τ I
j−)I(τ I

j−)
m

∏
k=1

γI(τR
k−)

= exp
(
−
∫ T

t0

βS(t)I(t) + γI(t)dt
) n

∏
j=2

βS(τ I
j−)I(τ I

j−)
m

∏
k=1

γI(τR
k−),

(1.4.6)
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where τ I
j− = lim

t↑tI
j

t, the time just prior to τ I
j [94, 95].

In the above case, infection and removal times are observed, but not linked to par-

ticular individuals. Under the Markov assumption that the probability of each event

depends only on the last, it suffices to know only the infection times and removal times,

without this link. However, if infection times and removal times are known for each

individual, the likelihood may be rewritten as the product of contributions for each in-

dividual. This can be useful when considering heterogeneity in terms of infectiousness

or susceptibility. We denote the infection time for individual j as tI
j . If the individual

does not become infected, we set tI
j = ∞. Similarly, tR

j is the removal time of individual

j, and is set to tR
j = ∞ if no removal event takes place. We define tI and tR to be the

vectors of infection times and removal times respectively. In this case, we consider the

rate of infection for a given susceptible individual, which is q(t) = βI(t). Suppose we

have a closed population of N individuals. Let the first infected person be labelled 1,

tI
1 = t0. The likelihood of observing infection and removal times tI and tR in a closed

population, given the first infection time, is then

π(tI , tR|β, γ, t0) =
m+n−1

∏
i=1

[
∏

j:tI
j>ei

exp(−βI(ei)(ei+1 − ei)) ∏
k:tI

k≤ei<tR
k

exp(−γ(ei+1 − ei))
]

·
n

∏
j=2

βI(tI
j−)

m

∏
k=1

γ

=
N

∏
j=1

[
∏

i:ei<tI
j

exp(−βI(ei)(ei+1 − ei))

·
(

1tI
j=∞ + 1tI

j 6=∞ ∏
k:tI

j<ek≤tR
j

exp{−γ(ek+1 − ek)}βI(tI
j−)
)

γ
1

tR
j
6=∞
]

=
N

∏
j=1

[
exp

(
−
∫ min(tI

j ,T)

t0

βI(u)du
)

·
(

1tI
j=∞ + 1tI

j 6=∞ exp{−γ(min(T, tR
j )− tI

j )}βI(tI
j−)
)

γ
1

tR
j
6=∞
]
, (1.4.7)

where 1x is the indicator function, equal to 1 if x holds, and zero otherwise.

1.4.4.2 Discrete-time

The likelihood for a perfectly observed SIR epidemic is easily adapted for the discrete-

time case. Infections occurring in a given time interval (which we define as a day here,

for convenience) are assumed to be independent, and the newly-infected individual

does not contribute to the number of infectious individuals until the start of the subse-
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quent interval, that is,

I(t + 1) = No. infected on day t or earlier − No. removed on day t or earlier.

Furthermore, susceptibles are independent in terms of the avoidance of infection. The

probability of a given susceptible individual avoiding infection on day d is exp(−βI(d)),

where I(d) is the number of infective individuals on day d. Newly infected individuals

contribute to the infective population from the day after infection. Similarly, a given

susceptible acquires infection on day d with probability 1 − exp(−βI(d)).

The discrete case can be derived from the continuous version by supposing that events

occur at the start/end of each day, so that the hazard rate is piecewise-constant for each

day.

Using discrete time is a reasonable approximation when the rate of infection is low and

the time intervals are short. Evaluation of the likelihood is also less computationally

expensive than in the continuous-time case.

1.4.4.3 Chain binomial models

In the discrete-time framework above, the number of infected individuals on day t + 1

is

I(t + 1) = I(t) + Xt − Yt,

where Xt is the number of new infections on day t, and Yt is the number of infectious

individuals removed on day t. Further, given the number of susceptible individuals on

day t, Xt follows a binomial distribution

Xt|S(t) ∼ Bin(S(t), 1 − exp(−βI(t))).

If the infectious period is of a fixed length, then the infectious dynamics are completely

specified by this binomial distribution.

Such a model is an example of a chain binomial epidemic model. The Reed-Frost model

is a simple, well-known chain binomial model, in which the number of susceptible

individuals at time t + 1 is dependent only on the number of susceptible and infected

individuals at time t [86]. In this model, the latent period and duration of infectiousness

are assumed to last one unit of time, or one ‘generation’, and the probability of effective

contact between an infectious and susceptible individual is p. As such, each susceptible

avoids infection with probability (1 − p)I(t), and the number of susceptibles at time
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t + 1 is modelled as a binomially distributed random variable

S(t + 1) ∼ Bin(S(t), (1 − p)I(t)),

while the number of infectious individuals is simply I(t + 1) = S(t)− S(t + 1).

1.4.5 Basic reproduction number, R0

The transmission potential of a pathogen can be represented by the basic reproduction

number of the pathogen, R0. This is the expected number of secondary infections from

a typical infected individual in a large, completely susceptible, population [89, 97, 98].

This dimensionless value depends on both the pathogen (infectiousness, infectious pe-

riod, etc.) and population (susceptibility, contact pattern, etc.) under consideration.

R0 is a key quantity in identifying epidemic control measures and optimal vaccination

strategies.

For a deterministic SIR model, epidemic dynamics can be determined by the value of

R0. An epidemic will occur, that is, the number of infectives increases, if R0 > 1, other-

wise the epidemic will die out. In a stochastic implementation of the SIR model, with

an infinite initial susceptible population, there is a positive probability that infinitely

many susceptibles become infected if R0 > 1, otherwise, the outbreak is certain to be

finite. In a finite population, roughly speaking, an outbreak is expected to be small if

R0 ≤ 1, while a large outbreak can occur if R0 > 1. If the transmissibility of a pathogen

remains constant during the infectious period (of mean length L) and the chance of in-

fectious contact is homogeneous throughout the population (at rate β), then R0 = βL.

In a hospital outbreak setting, this measure is difficult to evaluate, since the population

is small, not entirely susceptible, and, in the case of MRSA, individuals are typically

discharged before loss of carriage. Cooper et al. described the net single admission

reproduction number as a more suitable measure of the transmissibility of a nosocomial

pathogen, and defined it as the average number of secondary cases generated during a

single ward admission (episode), where not everyone is necessarily susceptible [99].

1.5 Parameter inference

There are several statistical techniques to derive parameter estimates from observed

data under a given model. In this thesis, we primarily employ Bayesian inference tech-

niques. However, we now provide an overview of some of the important tools for
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parameter inference from both classical and Bayesian statistics.

1.5.1 Likelihood-based inference

The likelihood of observed data x, given a model specified by parameters θ ∈ Θ, is

denoted π(x|θ). The maximum likelihood estimate θ̂ is derived through maximisation

of the likelihood function (or, equivalently, the log-likelihood function). The maximum

likelihood estimate (MLE) of a likelihood π(x|θ) is then

θ̂ = arg max
θ∈Θ

π(x|θ).

1.5.1.1 Optimisation

While in simple cases, maximum likelihood estimates may be derived analytically, this

is not generally possible — instead, iterative optimisation procedures must be used to

approximate maximal points.

The Newton-Raphson method sequentially approaches optimal points where the deriva-

tive is equal to zero, and requires the first and second derivatives (or numerical ap-

proximations). Alternatively, the Nelder-Mead simplex algorithm is a derivative-free

method, in which a simplex is repeatedly moved around the parameter space, using

expansion, contraction and reflection moves to approach a maximum point [100]. This

method is advantageous when derivatives are complex or not calculable, but, as with

the Newton-Raphson approach, may get stuck in local maxima. Repeating the algo-

rithm with several different starting points can reduce the risk of this. An alternative

method is simulated annealing, which incorporates moves to ‘worse’ (lower likelihood)

points while exploring the parameter space, allowing the possibility to leave local max-

ima [101].

The likelihood function for the fully-observed SIR model described earlier (equation

(1.4.6)) may be maximised in order to derive estimates for β (transmission rate) and γ

(removal rate);

β̂ =
n − 1

∫ T
t0

S(u)I(u)du
,

γ̂ =
m

∫ T
t0

I(u)du
,

where n and m are the total number of infections and recoveries respectively. However,

if transmission and recovery times are not perfectly observed, the likelihood becomes
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intractable, and an alternative approach must be used to derive estimates.

1.5.1.2 EM algorithm

The expectation-maximisation (EM) algorithm allows parameters to be estimated in

a situation where the likelihood, π(x|θ), is intractable due to unobserved data. The

method, introduced by Dempster et al. [102], may be applied in cases where the in-

corporation of a set of latent data z, in addition to the observed data x, makes the full

likelihood π(x, z|θ) tractable. The algorithm is described below:

Expectation-Maximisation algorithm

1. Set initial parameter values, θ(0).

2. Calculate the expectation of the log likelihood of the

full data, log π(x, z|θ), with respect to z, conditional

on the data x and current parameter estimates θ(i),

E(log π(x, z|θ)|x, θ(i)). (1.5.1)

3. Maximise this expectation with respect to θ, to obtain

θ(i+1)

4. Repeat steps 2 and 3 until subsequent iterations are

below a given similarity threshold.

While the likelihood π(x|θ) cannot be assessed directly, it can be shown that repeat-

edly maximising the expectation shown in (1.5.1) with respect to θ generates a chain of

estimates which have increasing likelihoods [102, 103]. The algorithm may be alterna-

tively reformulated as two repeated maximisation steps, firstly over the parameters θ,

and then over the latent data z [104].

The EM algorithm has been criticised for slow convergence [103], but accelerated ver-

sions have been described (eg. [105]). In addition, convergence to saddle points or local

maxima is also possible. As with other optimisation techniques, repeating the process

with different starting points can reduce the risk of this.

This approach can be useful in the study of epidemics, as data are typically only par-

tially observed. Becker provided an application of the EM algorithm, using a simple
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example of a household disease outbreak, described by a chain binomial model [106].

This approach becomes complex for large households, and for more sophisticated mod-

els.

1.5.1.3 Uncertainty

Likelihood optimisation returns a point estimate for parameters, but does not indicate

a level of uncertainty. Confidence intervals can be calculated in various ways.

Consider a model with parameters θ, with a log-likelihood function of ℓ(θ). Denote θ−i

to be the set of parameters excluding θi. The profile log-likelihood of a parameter θi is

given as

ℓ(θi) = max
θ−i

(ℓ(θi, θ−i)),

that is, the maximised likelihood where θi is fixed [107]. The profile likelihood describes

a submodel nested within the full model. The log ratio of the maximised likelihood to

the profile likelihood at a point θ∗ asymptotically follows a χ2 distribution under the

null hypothesis that θi = θ∗. This fact may be used to construct profile likelihood

confidence intervals [108].

The Hessian matrix H( f ) for a function f (θ1, . . . , θm) is defined as the m × m matrix of

second order partial derivatives of f , such that

H( f )i,j =
∂2 f (θ1, . . . , θm)

∂θi∂θj
.

The Hessian matrix evaluated at x describes the multidimensional curvature of the

function at that point. Intuitively, low curvature of a likelihood surface at the MLE

corresponds to a large degree of uncertainty surrounding the estimate.

Asymptotic normality of the MLE θ̂ means the covariance matrix is given by the inverse

of the negative Hessian matrix, evaluated at the MLE [109].

Parametric bootstrap methods provide a simulation-based approach to calculating con-

fidence intervals, as well as assessing functions of parameters [110]. Suppose data

x = {x1, . . . , xn} are a set of realisations from a distribution function F(x, θ). If θ̂ is

an estimate of model parameters θ, then we can draw parametric bootstrap samples

x̃(1), . . . , x̃(m) from the distribution F(x, θ̂). In doing so, we can obtain a set of estimates

θ̂(1), . . . θ̂(m), which may be used to approximate the distribution of θ for sufficiently

large m [111]. A version of the bootstrap procedure runs as follows:
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Parametric bootstrap

1. Derive a maximum likelihood estimate θ̂ using observed

data x.

2. Simulate a set of observations x̃(i) under the model,

given θ̂.

3. Derive a maximum likelihood estimate θ̃(i), using the

simulated data x̃(i) and θ̂.

4. Repeat steps 2 and 3 to obtain m samples from the

bootstrap distribution.

Having drawn samples from the bootstrap distribution, there are a number of ways to

derive a confidence interval. The percentile method is a simple approach to generating

a 100(1 − α)% confidence interval; this involves taking the 100α/2 and 100(1 − α/2)

percentiles of the sample [112]. This can result in a biased confidence interval if the

distribution is not symmetric about the true value θ [113]. Efron described a bias cor-

recting version to estimate confidence intervals [114]. A review of methods to create

confidence intervals is provided by DiCiccio and Efron [115].

1.5.2 Bayesian inference

1.5.2.1 Introduction

Bayesian inference provides a framework in which parameters are viewed as having

probability distributions rather than fixed values, as is the case in frequentist analyses

[116]. Such inference is based around Bayes’ theorem, which, for data x and parameters

θ ∈ Θ, is

π(θ|x) =
π(x|θ)π(θ)

π(x)
=

π(x|θ)π(θ)∫
Θ

π(x|θ)π(θ)dθ

∝ π(x|θ)π(θ), (1.5.2)

where π(θ|x) is the posterior density of θ, π(x|θ) is the likelihood of x, and π(θ) is the

prior density of θ.

Bayesian inference relies on the specification of prior distributions for parameters θ.

These should be selected carefully, as poorly chosen prior distributions can greatly af-
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fect the posterior estimates, as can be seen in Bayes’ theorem (1.5.2). Prior distributions

may be chosen to reflect the existing knowledge and uncertainty about the parame-

ters in question, and may be derived using previous studies or expert knowledge. Al-

ternatively, uninformative prior distributions are chosen when one requires estimates

driven almost entirely by the data rather than prior beliefs, either due to lack of exist-

ing evidence for parameter values, or to a desire to derive estimates based solely by the

observed data.

We aim to evaluate the posterior distribution of parameters θ. Features of this distri-

bution (mean, median, variance etc.) can be expressed as the posterior expectation of

functions of θ;

E( f (θ)|x) =

∫
Θ

f (θ)π(x|θ)π(θ)dθ∫
Θ

π(x|θ)π(θ)dθ
. (1.5.3)

However, the integration required to evaluate such distributions is often intractable

[117]. Markov chain Monte Carlo (MCMC) methods to generate samples from poste-

rior distributions had their origins in the 1950s, but until the development of computa-

tional technology towards the end of last century, such methods remained impractical

for most problems [117].

1.5.2.2 Markov chain Monte Carlo

Monte Carlo integration offers a method by which expectations may be approximated

by repeated sampling. For random samples X1, . . . , Xn from some distribution π(·),

the expectation Eπ( f (X)) may be approximated as

Eπ( f (X)) ≈
1

n

n

∑
i=1

f (Xi). (1.5.4)

However, if π is non-standard, as is typically the case with posterior densities, it is

not possible to draw independent samples. Instead, dependent samples may be drawn

from a Markov chain, with stationary distribution π(·) [118]. A Markov chain is a

sequence of random samples X1, . . . , Xn, where each sample Xj is generated from a

transition kernel, P(Xj|Xj−1), dependent only on the previous sample Xj−1. In order

to evaluate a posterior distribution π(θ|x), we desire a chain such that, after a number

of iterations k, subsequent points represent a sample from this distribution. Various

algorithms exist to generate such chains.
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1.5.2.3 Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is a method to generate a Markov chain θ(1), . . . , θ(N),

which, for large enough N, converges to a target distribution π(·). At each iteration,

a candidate point, θ∗ is sampled from a proposal density q(θ∗|θ(i)), which gives the

probability density of proposing θ∗, given the current, ith value. The algorithm runs as

follows:

Metropolis-Hastings algorithm

1. Set initial parameter values, θ(0), and number of

iterations, N.

2. Sample a new parameter value, θ∗ randomly from the

proposal probability density q(θ∗|θ(i)).

3. With probability

α(θ∗, θ(i)) = min

(
1,

q(θ(i)|θ∗)π(θ∗)

q(θ∗|θ(i))π(θ(i))

)
, (1.5.5)

accept the proposed point, and set θ(i+1) = θ∗, else set

θ(i+1) = θ(i).

4. If i < N, go to step 2.

From equation (1.5.5), it can be seen that

α(θ∗, θ(i))

α(θ(i), θ∗)
=

q(θ(i)|θ∗)π(θ∗)

q(θ∗|θ(i))π(θ(i))

q(θ∗|θ(i))α(θ∗, θ(i))π(θ(i)) = q(θ(i)|θ∗)α(θ(i), θ∗)π(θ∗),

which satisfies the detailed balance equation, so the stationary distribution of the Markov

chain, if it converges, is the target distribution π(θ) [118]. Full justification that the

Metropolis-Hastings algorithm produces a chain which converges to the target distri-

bution can be found, for example, in [119].

The Metropolis-Hastings algorithm will always eventually converge to the target dis-

tribution, provided all points in the support of this distribution may be proposed. The

choice of the proposal function is nevertheless of great importance to the speed of con-

vergence, and efficiency of the algorithm, which we look at in closer detail in section

1.5.2.4.
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The Metropolis algorithm is a special case of the Metropolis-Hastings algorithm, in

which the proposal distribution is symmetrical; that is, q(X|Y) = q(Y|X). This simpli-

fies the acceptance probability (1.5.5) to

α(θ∗, θ(i)) = min

(
1,

π(θ∗)

π(θ(i))

)
.

The Metropolis-Hastings algorithm is commonly used to estimate the posterior distri-

bution of parameters θ, given observed data x. In this case, the target distribution is

π(θ|x) ∝ π(x|θ)π(θ). The normalising constant in the posterior distribution cancels

in the acceptance ratio, meaning that it suffices to evaluate the likelihood and prior

functions for proposed points θ∗.

1.5.2.4 Convergence & mixing

The choice of proposal density q(·) in the Metropolis-Hastings algorithm is of great im-

portance, and affects the rate at which the samples converge to the target distribution,

as well as the rate at which the distribution is explored (mixing).

If the proposal samples are very close to the current value, then the acceptance rate

is likely to be high, but the chain will take longer to converge to the target distribu-

tion, and will only mix slowly (that is, the sampled points will only gradually move

around the parameter space). Conversely, if the proposal steps are too large, then a

move is unlikely, and the acceptance rate will be low. Figure 1.2 shows the effect of the

proposal distribution on the mixing and convergence of the algorithm, using a simple

example. We attempt to sample from a normal target distribution of N(1, 1), using a

normal proposal distribution centred on the current value, θ(i). The proposal variance

σ2 is assigned values of 0.01, 1, and 100. The lowest variance exhibits a high acceptance

rate (98%), but very slow convergence — we can see that the two independent chains

do not converge after 10000 iterations. With a variance of σ2 = 1, acceptance is 60%,

and convergence is quick. Running the algorithm with σ2 = 100 results in very slow

mixing and low acceptance (1%). While the Metropolis algorithm will converge for

any proposal distribution, it is clear that a careful choice of σ2 is important for efficient

sampling. The acceptance rate can be ‘tuned’ to give a desired rate of acceptance by al-

tering the variance of the proposal distribution. This may be specified before running

the algorithm, possibly via investigation of pilot runs to determine optimal acceptance

rates. Roberts et al. proposed an optimal acceptance rate of 0.234 for Metropolis al-

gorithms, under fairly general conditions [120]. The proposal distribution may also be
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adapted during the algorithm. For example, with a normal proposal distribution, the

acceptance rate over the last k iterations may be measured, and the variance adapted

as necessary, in order to increase or decrease the acceptance rate.

Figure 1.2: The effect of altering the variance of the proposal distribution on the mix-

ing and convergence of a Metropolis algorithm. Each trace plot shows

accepted points with a target distribution of N(1, 1). The proposal distri-

bution is N(θ(i), σ2), with σ2 equal to 0.01, 1 and 100 from top to bottom.

For each value, we run two independent chains (blue and red) with start-

ing points at -3 and 3.

It is important to ensure that the MCMC algorithm has converged to the target distri-

bution, and is mixing adequately. A simple and informal test is to run several inde-

pendent MCMC chains with various starting points, in order to ensure they appear to

sample from the same distribution after a burn-in period. This may identify potential

multiple modes, which may not be discovered by running a single chain. More for-

mally, Gelman and Rubin proposed a statistic to compare between-chain and within-
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chain variance [121]. If convergence has occurred, these variances should be approxi-

mately the same. Geweke proposed a hypothesis test for convergence [122]. Rejection

of the null hypothesis, that the first x percent and the final y percent of the MCMC

samples have the same mean, indicates lack of convergence. While diagnostics such as

these may indicate non-convergence, it is not possible to demonstrate conclusively that

convergence has been attained in a finite MCMC sample [123].

1.5.2.5 Gibbs sampler

The Metropolis-Hastings algorithm may be conducted by updating the vector of pa-

rameters θ simultaneously, or repeating for individual elements, or groups of elements.

Let

θcur
−j = {θ

(i+1)
1 , . . . , θ

(i+1)
j−1 , θ

(i)
j+1, . . . , θ

(i)
n }

be the current vector of accepted parameters excluding θj. Then the acceptance proba-

bility in equation (1.5.5) for a proposed single element θ∗j is

α = min


1,

q(θ
(i)
j |θcur

−j , θ∗j )π(x|θcur
−j , θ∗j )π(θcur

−j , θ∗j )

q(θ∗j |θ
cur
−j , θ

(i)
j )π(x|θcur

−j , θ
(i)
j )π(θcur

−j , θ
(i)
j )


 . (1.5.6)

The full conditional distribution of a parameter θj is given as π(θj|θ−j, x), where θ−j

denotes the parameter vector θ without the jth component. If the full conditional dis-

tribution is of a form from which we may conveniently draw samples, then we can set

the proposal distribution q(θ∗j |θ
cur
−j , θ

(i)
j ) to the full conditional distribution for θj. Sub-

stituting into equation (1.5.6), we find that α = 1 for all sampled θ∗j . This process, a

special case of the Metropolis-Hastings algorithm, is known as Gibbs sampling.

Gibbs Sampler

1. Set initial parameter values, θ(0) and number of

iterations, N.

2. For each element j, sample θ
(i+1)
j from full conditional

distribution π(θj|θ
cur
−j , x).

3. If i < N, go to step 2.

26



CHAPTER 1: MODELLING HEALTHCARE-ASSOCIATED INFECTIONS

1.5.2.6 Reversible jump Markov chain Monte Carlo

The reversible jump Markov chain Monte Carlo (RJMCMC) algorithm is a generalisa-

tion of the Metropolis-Hastings algorithm to a multiple model setting [124]. Suppose

we have data x, and assume that it has been generated under one of a set of competing

models m1, . . . , mk ∈ M, each associated with parameters θ1 ∈ Θ1, . . . , θk ∈ Θk. The

RJMCMC algorithm samples points across the space M =
⋃k

m=1{m} × Θm. Points are

proposed according to the current model and parameter values (m(i), θ(i)), and trans-

formation mechanisms to select a new model and to translate parameter values to a an

‘equivalent’ point in parameter space of the new model. Ideally, transformations are

chosen such that the algorithm typically proposes points in a region of high posterior

support, to encourage jumps between models.

The RJMCMC algorithm may be used to estimate within-model posterior densities, as

well as the posterior probability for each model, π(m|x). In this latter respect, it may

be used as a tool for model comparison. In chapter 3, we discuss in detail the imple-

mentation of the RJMCMC algorithm, and its performance as a model comparison tool

for transmission models.

1.5.2.7 Data augmentation

In many settings, we are faced with an intractable likelihood, π(x|θ). We aim to intro-

duce missing data, z such that the likelihood π(x, z|θ) is tractable, where

π(x|θ) =
∫

z
π(x, z|θ)dz.

By treating the missing data as a set of parameters to be estimated, we may use a data-

augmented MCMC algorithm to sample from the posterior density of θ.

In the analysis of epidemics, unobserved transmission dynamics can result in an in-

tractable likelihood. Augmenting the parameter space with infection times can result

in a tractable likelihood, and as such, data augmentation methods provide a suitable

framework to analyse epidemic models [52, 94, 125, 126].

To sample over missing data, a data-augmented MCMC algorithm is used, in which

the parameter space is augmented with missing data z, treated as a set of parameters

to be estimated. This vastly increases the parameter space, and often, the dimension of

this object is uncertain.

The data-augmentation algorithm we present here is a special case of the reversible
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jump MCMC algorithm, described in the previous section.

Data-augmented MCMC algorithm

1. Set initial parameter values, θ(0), z(0), and number of

iterations N.

2. Perform Metropolis-Hastings steps to update the set of

parameters of interest, θ.

3. With probability density g(z∗), propose to update the

augmented data to z∗.

4. Accept this move with probability

α = min

(
1,

π(x|z∗, θ)π(z∗|θ)π(θ)g(z)

π(x|z, θ)π(z|θ)π(θ)g(z∗)

)
,

and set z(i) = z∗, otherwise, set z(i) = z(i−1).

5. If i < N, go to step 2.

Here, we assume that the augmented data are generated by an independence sampler;

that is, the proposal function, g(z∗|z, θ) = g(z∗). The general form of the RJMCMC al-

gorithm acceptance rate includes the Jacobian determinant of the transformation func-

tion. The independence sampler results in a Jacobian value equal to 1.

1.5.2.8 Approximate Bayesian Computation

Approximate Bayesian Computation (ABC) is a likelihood-free method of parameter

estimation, in which data are repeatedly simulated under proposed parameter values,

with the aim of eventually simulating data which approximate the observed data to

within some defined threshold. This approach is of most use in cases where the likeli-

hood is complex or intractable, but data may be simulated relatively easily.

The simplest approach is the ABC rejection sampler algorithm, in which parameters θ∗

are successively drawn from their prior distribution, and data are simulated based on

θ∗. If the simulated dataset x∗ is similar to the observed data x, that is, δ(x, x∗) < ǫ for

some distance metric δ(·, ·) and threshold ǫ, the sampled parameters θ∗ are accepted

[127]. Unless the prior can be chosen to be similar to the posterior distribution, which
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is often not possible, this process is highly inefficient. This may be improved upon by

adopting a MCMC-based sampling algorithm, in which the acceptance rate depends on

both the similarity of the simulated dataset and the previous parameter sample [128].

1.5.2.9 Sequential Monte Carlo

Sisson et al. described an ABC algorithm based on sequential Monte Carlo (SMC)

methods [129]. In this approach, a number of ‘particles’, θ
(1)
1 , . . . , θ

(N)
1 , are initially

drawn from the prior distribution π(θ). At each step i of the algorithm, the parti-

cles are updated, such that θi represents a sample from an intermediate distribution

π(θ|δ(x, x∗) ≤ ǫi), where ǫ1 > · · · > ǫT > 0 is a sequence of decreasing thresholds

to ensure data simulated from particles come closer to approximating the observed

dataset. A version of the algorithm runs as follows:

ABC SMC

1. Set initial tolerances, ǫ0, . . . , ǫT, and set tolerance

level indicator t = 0.

2. Set particle indicator i = 1.

3. If t = 0, sample θ∗∗ ∼ π(θ), otherwise draw θ∗ from the

(t − 1)th sample, {θ
(j)
t−1}

N
j=1, according to weights

{w
(j)
t−1}

N
j=1. Generate θ∗∗ using a perturbation kernel,

Kt(θ|θ∗).

4. Simulate data x∗ under the proposed particle θ∗∗. If

δ(x, x∗) ≥ ǫt, then go to step 3.

5. Set θ
(i)
t = θ∗∗, and

w
(i)
t =





1 t = 0,

π(θ
(i)
t )

∑
N
j=0 w

(j)
t−1Kt(θ

(j)
t−1|θ

(i)
t )

t > 0.

If i < N, set i = i + 1, then go to step 3.

6. Normalise weights. If t < T, set t = t + 1 and go to

step 2.
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Clearly, the performance of SMC relies on the specification of the distance metric δ, as

well as the perturbation kernel and tolerance levels. For all but the simplest of cases, it

is difficult, if not impossible, to specify an adequate statistic with which to measure the

closeness, or similarity, of two datasets. Without careful calibration, the algorithm can

be inefficient, and can lead to poor estimates.

1.5.2.10 Posterior predictive distribution

Given data x, we fit a model and evaluate the posterior density for a set of parameters θ,

π(θ|x). Similarly, we can define the posterior predictive distribution of a hypothetical

future dataset X̃ as π(X̃|x), defined as

π(X̃|x, A(x)) =
∫

π(X̃|θ, A(x))π(θ|x)dθ, (1.5.7)

where A(x) are ‘auxiliary statistics’ which are matched when sampling replicated data,

so that A(X̃) = A(x) [130]. This may involve matching sample size, study duration,

etc.

The posterior predictive distribution can be used as a measure of goodness-of-fit in

a Bayesian setting. The posterior distribution of X̃ will generally be complex, and as

such, it is useful to derive a summary statistic T(X), which may be used to assess the

similarity of datasets. By repeatedly sampling datasets X̃ from the posterior predictive

distribution, we may approximate the distribution of T(·). The posterior predictive p-

value can then be calculated by comparing the realised value, T(X) to this distribution

[131], and is defined as

PPV = P(T(X̃) < T(x)|θ, x).

Care should be taken in the choice of T, in order to ensure it adequately summarises

any discrepancies between datasets. For instance, suppose we wish to compare two

sets of hospital surveillance data, comprising positive and negative results. If we were

to consider total number of positive and negative results as measures of similarity, this

would be insufficient, since the same results could arise from very different transmis-

sion dynamics. This could potentially generate misleading results.

1.6 Bayesian model choice

Given a set of possible models m1, . . . , mk, it is of interest to evaluate the relative sup-

port for each model given by the data x, and to determine a ‘best’ model. Many meth-
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ods exist to compare models in a Bayesian setting, but the performance and interpre-

tation of such methods are debated. Of fundamental interest is the posterior model

probability,

π(m|x) ∝

∫

Θm

π(x|θm, m)π(θm|m)dθmπ(m),

where π(x|θm, m) is the likelihood of the data under model m, π(θm|m) is the prior

density of parameters θm for model m, and π(m) is the prior probability of model m. As

described in section 1.5.2.6, the RJMCMC algorithm may be used to estimate posterior

model probabilities by sampling over the joint parameter space of all models. This

approach can, however, be difficult to implement, and requires careful calibration.

One of the most well known Bayesian model comparison tools is the Bayes factor. This

evaluates the evidence in favour of one model over another, conditional on one of the

models being true. Since its first publication in 1935 by Jeffreys [132] (then described

as a ‘significance test’), it has been widely used for Bayesian hypothesis testing and

model comparison, despite often being difficult to calculate and highly dependent on

the choice of model-specific prior distributions [133–135].

The Bayes factor of models l and m is the ratio of marginal likelihoods,

BF(l, m) =
π(x|l)

π(x|m)
=

∫
π(x|θl , l)π(θl |l)dθl∫

π(x|θm, m)π(θm|m)dθm
. (1.6.1)

The greater the value of the Bayes factor BF(l, m), the stronger the evidence in favour

of model l — an interpretation of the magnitude of the Bayes factor was provided by

Kass and Raftery [133], and is shown in table 1.1. Clearly, very small values correspond

to evidence in favour of model m, since BF(l, m) = 1/BF(m, l).

Bayes factor interpretation

BF(l, m) Evidence in favour of model l

1–3 Not worth more than a bare mention

3–20 Positive

20–150 Strong

> 150 Very strong

Table 1.1: An interpretation of Bayes factors, as given by Kass and Raftery [133].

The Bayes factor can also be rewritten as the ratio of the posterior model odds and the

prior model odds

BF(l, m) =
π(l|x)

π(m|x)

π(m)

π(l)
, (1.6.2)
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and as such, the Bayes factor represents the extent to which our beliefs about the rela-

tive probabilities of the models have altered, having observed the data x. Often, little is

known about the model prior to analysis, and as such, models are assigned equal prior

probability. In this case, the Bayes factor is simply equal to the posterior model odds.

The Bayes factor is often difficult to evaluate due to the intractability of the marginal

likelihood π(x|m). We discuss this in further detail in section 3.2.2.

Information criteria are scores which measure the relative adequacy of a given model.

This involves a trade-off between parsimony and relative fit, the aim being to select

a simple model which fits well, compared to alternative models. The deviance in-

formation criterion (DIC) is a generalised model comparison tool which can be used

in a Bayesian setting, and is analogous to Akaike’s Information Criterion (AIC) [136].

Model complexity is represented by the number of parameters in the AIC, but this con-

cept is poorly defined in a Bayesian setting. Suppose we have data x, and a model

defined by a likelihood function π(x|θ). Then the deviance is defined as

Dx(θ) = −2 log π(x|θ),

and the DIC is defined as

DIC = D(θ̃) + 2pD, (1.6.3)

where pD is the ‘effective number of parameters’, and θ̃ is a point estimate of θ, such as

the posterior mean. This represents a trade-off between model adequacy and complex-

ity. Models with a lower DIC value are considered to be a better fit to the data, although

it is not possible to quantify the improvement between models with this measure.

For models with missing data, the likelihood, and therefore the deviance, is not avail-

able in closed form. This means the DIC in this form cannot be implemented. Celeux et

al. proposed a range of alternative formulations of DIC to account for latent data [137].

We discuss the DIC, and a missing data variant of it, in greater detail in section 3.5.

1.7 Epidemic models for HCAIs

Modelling the spread of pathogens in a hospital setting gives rise to a specific set of

challenges. Firstly, the population is typically very small — at any given time, the

population is limited to the number of beds in the hospital ward. This means that

deterministic models are inappropriate, since random fluctuations in prevalence are

likely to play an extremely important role in transmission dynamics at a ward level
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[27, 94, 95]. Secondly, the ward population is dynamic; individuals regularly enter and

exit the population. MRSA outbreaks in hospitals are characterised by one or more

introductions of the pathogen to the ward from either another ward, or the commu-

nity. Transmission may then occur from this source to susceptible individuals on the

ward, and an outbreak is at an end when all positive patients have either been removed

from the population (death or discharge), or have received antibiotic treatment so that

their bacterial carriage is either removed, or reduced to levels at which transmission

may not occur. Thirdly, carriage of some nosocomial pathogens, including MRSA, is

often asymptomatic. This means that we cannot be certain of a patient’s status without

screening tests. Typically we do not know an individual’s disease state on admission

to the ward. Additionally, screening tests do not provide perfect observations, and

we must allow for the possibility of false negative results [138]. Finally, it is widely ac-

cepted that MRSA is spread indirectly between individuals, via contact with healthcare

workers. We consider an MRSA transmission event in this setting to be the temporary

colonisation of a HCW, via contact with an MRSA-positive individual, and a subse-

quent transmission of this bacterial colony to a susceptible individual. The probability

of such a series of events occurring depends on the type of HCW-patient contact, the

occurrence of hand washing between patient contacts, and the susceptibility of the

patient at risk of colonisation, according to risk factors such as those described in ear-

lier, in section 1.2.2.2. This indirect transmission mechanism requires consideration of

HCW-patient contact patterns, rather than mixing of patients themselves. While we

might assume homogeneous mixing in a standard SIR epidemic model, the equivalent

in this setting is the assumption that there is an equal probability of a HCW contacting

any two patients in succession. If two patients are at no point visited by the same HCW,

there is a low chance of transmission occurring between them.

1.7.1 Early approaches

The earliest HCAI transmission models were simulation-based and deterministic, such

as that created by Sébille et al. in 1997 [139]. This model allowed patients and HCWs

to be treated as two populations in a ward, and was created to assess various infection

control measures. This study supported the connection between colonised HCWs and

patient acquisition, and the reduction in transmission due to increased hand hygiene

compliance. D’Agata et al. similarly used a deterministic compartmental model to in-

vestigate transmission of vancomycin-resistant Enterococci (VRE) in 2002 [140]. While
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a deterministic model such as this can sufficiently assess the impact of interventions

for a large population, random fluctuations in prevalence and population play a much

more important role on a ward level, and as such, a stochastic model is a more appro-

priate way of modelling such a setting than a deterministic structure [27, 94, 141].

Recognising the limitations of deterministic modelling for a HCAI dynamics, Cooper

et al. conducted a simulation study, using a stochastic transmission model, to inves-

tigate the impact of hand hygiene compliance and surveillance on the transmission

of nosocomial pathogen transmission [27]. Similarly, Austin et al. investigated VRE

transmission using a simulation study [142]. Both studies emphasised the importance

of stochasticity in modelling transmission in a small population.

1.7.2 Markov models

A Markov model for the prevalence of nosocomial infections was introduced by Pelu-

pessy et al. in 2002 [143]. This was used to analyse longitudinal prevalence data for

VRE and Pseudomonas aeruginosa from hospital ICUs. In this analysis, cases are as-

sumed to be perfectly observed, and the ward is a fixed size, where discharged patients

are immediately replaced by admitted patients. Patients are all screened simultane-

ously at regular intervals. If A is a transition rate matrix, where Ai,j gives the rate of

moving from population level i to j, then the probability of moving from i to j colonised

patients in time δt is given by the (i, j)th entry of the matrix exponential exp(Aδt). Now

according to this model, the probability of a set of observed prevalences x1, . . . , xn at

times t1, . . . , tn is given by the product

n−1

∏
i=1

exp(A(ti+1 − ti))xi ,xi+1
.

Estimates for the parameters which govern the matrix A can then be derived through

the optimisation of this function.

This model was extended by Cooper and Lipsitch in 2004; a structured hidden Markov

model was introduced to describe unobserved transmission dynamics based on ob-

served monthly nosocomial incidence data [144]. Asymptomatic carriage means that

prevalence is likely to be higher than the number of observed cases presenting clinical

symptoms. The authors define a Poisson observation model of the underlying trans-

mission process, so that

P(Y(t) = y|X(t) = x) =
e−λx(λx)y

y!
,
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where X(t) is the true number of colonised patients at time t, and Y(t) is the number

of observed infected cases. Population counts are bounded by the ward size, nw. Like-

lihood optimisation is used to derive parameter estimates. As the state space increases

with population size nw, computation can become slow. Problems can arise with the

calculation of the MLE and confidence intervals, particularly with smaller amounts of

data.

This model was adapted for use in a Bayesian framework by McBryde et al. in 2007

[145]. Weekly VRE prevalence data taken from ICUs are assumed to have been imper-

fectly observed, and a binomial observation model is placed on the unobserved true

process, based on a fixed detection rate (sensitivity). The authors defined a transmis-

sion rate dependent on the number of carriers present in the ward, plus a constant rate

of ‘sporadic’ acquisition. A Markov chain Monte Carlo algorithm is used to sample

parameters from the posterior distribution. At each iteration, hidden states X(t) are

updated using a Gibbs sampler, based on the conditional probability

P[X(t)|X−(t), Y] ∝ P[Y(t)|X(t)]P[X(t + 1)|X(t)]P[X(t)|X(t − 1)],

where X−(t) denotes the set of true states, excluding that at observation time t.

McBryde et al. proposed a bivariate system, describing the changing number of colonised

patients and HCWs over time [146]. This was further adapted by Drovandi and Pettitt

[147], who considered a trivariate system by incorporating incidence data, building on

the model by Cooper and Lipsitch [144]. This can be simplified to a bivariate system

by assuming the HCW prevalence to be at an equilibrium. Maximum likelihood tech-

niques were used to obtain transmission parameter estimates. The authors reported

problems in estimating parameters in the trivariate system, potentially due to over-

parametrisation. The dimension of the state space for such a system is (n + 1)2(m + 1),

where n is the ward capacity, and m is the (arbitrarily chosen) maximum incidence.

The authors conducted a similar analysis using approximate Bayesian computation

(ABC) methods in 2012 [148]. Computing the likelihood of these joint processes is com-

putationally expensive, more so than simulating these dynamics, making ABC meth-

ods an attractive alternative to likelihood optimisation in this setting. However, as

mentioned earlier, ABC methods are very dependent on the distance metrics chosen to

measure similarity of datasets, and inappropriate threshold limits can lead to mislead-

ing results.

Aggregated daily or weekly prevalence counts, as often used in Markov models such as

those described in this section, are clearly less informative than individual-level data,
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but are more readily obtained from hospitals. Each of the methods described above re-

quires the estimation of a discharge rate for colonised individuals, and the assumption

that the ward is full to capacity at all times. The approach is unsuitable for large state

spaces, due to the requirement to calculate the matrix exponential in the likelihood.

A discrete-time Markov algorithm was introduced by Bootsma et al. to assess the role

of cephalosporin-resistant Enterobacteriaceae (CRE) transmission routes for hospital

pathogens [149]. This algorithm considers patients to have a status of ‘susceptible’,

‘colonised’ or ‘unknown’. A probability of carriage is calculated for each patient of

unknown status, based on screening results and observed prevalence. Maximum like-

lihood estimates are calculated for both endogenous and exogenous transmission rates.

The authors state that running the algorithm becomes problematic when the number

of patients with an unknown status is larger than 10. By assuming perfect sensitivity,

this number can be kept fairly low.

1.7.3 Data augmentation methods

MCMC methods lend themselves well to dealing with missing data, a common issue

in the analysis of epidemics. Some of the first Bayesian analysis for epidemic mod-

elling was published by Gibson and Renshaw in 1998 [150]. This study analysed simu-

lated data using an SIR model, and accounted for hidden events using RJMCMC meth-

ods. The study noted that this methodology would be applicable to real data, such

as Clostridium difficile hospital surveillance data. O’Neill and Roberts then introduced

an MCMC approach to estimate transmission parameters for a stochastic SIR epidemic

model [94]. Here, unobserved infection times were inferred using a data-augmented

MCMC algorithm. This method was tested using simulated data and then applied to

smallpox prevalence data collected from Nigeria.

Following this work, other similar approaches have been employed to tackle the prob-

lem of partially-observed data in the analysis of epidemics. Forrester et al. applied this

method to MRSA transmission in a hospital setting, using individual-level data, and

incorporating admission and discharge events, as well as importation and imperfect

test sensitivity [59]. This approach allows the investigation of heterogeneous transmis-

sion, which was used to measure the difference in the transmission rate from isolated

and unisolated patients. Cooper et al. conducted an analysis of VRE transmission in

a hematology unit, comparing transmission rates under differing antibiotic usage poli-

cies [126]. Kypraios et al. employed this method to determine the effect of isolation
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precautions on MRSA transmission rates in ICUs [52].

1.7.4 Utilising WGS data for transmission analysis

As yet, there have been no studies combining epidemiological data and genetic data

for the analysis of nosocomial transmission routes of which we are aware. There are,

however, some studies which have attempted to achieve this in different settings. Cot-

tam et al. utilised sequence data to create a set of plausible transmission trees, and

then calculate a likelihood of each of these trees based on the infectiousness of each

individual [151]. This approach was used to investigate the spread of foot-and-mouth

disease between 20 farms in the UK. This approach is likely to become computation-

ally expensive for larger datasets, and does not integrate genetic and epidemiological

data, instead using sequence data to produce a set of possible transmission networks,

for which a likelihood is provided, based on epidemiological data. Jombart et al. de-

scribed a network optimisation approach, in which edges represent infection routes be-

tween hosts (nodes), and are weighted by the genetic distance between isolates taken

from each individual [152]. This method assumes the minimal weight network is the

best reconstruction, with no indication of uncertainty. Furthermore, transmission times

are restricted by the collection times of isolates: individuals may not be infected prior

to observation. Ypma et al. provided a framework to investigate the transmission of

avian influenza in the Netherlands, using spatial, temporal and genetic data [65]. The

model assumes these data are independent, and the likelihood is simply the product of

contributions for each data type.

These methods do not take into account multiple sequences for each individual; as

such, within-host genetic diversity is ignored. These methods have limitations which

would make the analysis of MRSA transmission in hospitals impossible. Firstly, trans-

mission networks typically have multiple origins, representing the importation of an

MRSA carrier into the hospital or ward. Secondly, asymptomatic carriage and imper-

fect tests mean that colonisation times are uncertain, and it is important to account for

this if attempting to estimate a transmission source.

1.8 Conclusion

In this chapter, we have discussed the importance and impact of healthcare-associated

infections, in particular, MRSA. We described various interventions to curtail the spread
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of the pathogen in hospitals. In the next section, we introduced epidemic modelling,

and discussed the role of statistical analysis in the investigation of transmission dy-

namics. We outlined both frequentist and Bayesian methods of parameter inference,

describing in particular methods to deal with partially-observed/missing data, an is-

sue commonly encountered in epidemic modelling. Finally, we discussed the existing

literature on HCAI modelling, which sought to assess MRSA transmission dynamics,

and the success of interventions to reduce this. We described some of the existing liter-

ature in which genetic data is utilised to reconstruct transmission networks.

1.9 Aims and structure of the thesis

In this thesis, we aim to do the following:

1. Investigate the transmission dynamics of MRSA in hospital general wards and

evaluate the effectiveness of infection control measures, using a stochastic mod-

elling approach.

2. Systematically review the performance of different Bayesian model comparison

techniques, applied to HCAI transmission models.

3. Develop new methods to incorporate WGS data into the analysis of HCAI out-

breaks, in order to investigate routes of transmission.

In chapter 2, data augmentation methods are applied to individual-level patient data,

in order to model MRSA transmission in several general medical wards, accounting for

imperfect observations. Most studies of MRSA transmission have been set in intensive

care units (ICUs), and little is known about transmission dynamics in this setting, de-

spite the potential role of general medical wards as an MRSA reservoir to the rest of

the hospital. As discussed in section 1.2.3, the impact of interventions such as isolation

are of great interest in terms of infection control and cost-effectiveness evaluations of

hospital policy. A discrete-time data-augmented MCMC approach is used to estimate

the effectiveness of using patient isolation and decolonisation treatment to reduce the

spread of the pathogen. The performance of the MCMC analysis is compared with

a pseudolikelihood approach, which could potentially offer a less computationally-

intensive method to derive parameter estimates. Finally, the incorporation of an addi-

tional dataset of clinically informed observations is investigated.
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In chapter 3, we explore Bayesian model selection methods, with the aim of determin-

ing plausible underlying transmission models, given a set of individual-level patient

data. In section 1.6, Bayesian model choice was introduced, and some of the chal-

lenges faced in this field were briefly described. There are many approaches to model

choice in a Bayesian framework, each with advantages and disadvantages. We review

some of the existing literature on Bayesian model selection, before conducting a sys-

tematic simulation study on the performance of two of the more widely-used methods,

RJMCMC, and the DIC. We describe the conditions necessary for these approaches to

give reasonable results for HCAI transmission scenarios, and discuss limitations of the

two methods. There are few studies which systematically study the performance of

Bayesian model choice methods for a particular setting. Since it is of great interest to

compare different transmission models, this work provides an insight into situations

where RJMCMC and DIC can be useful tools. These methods are applied to compare

transmission models, using the MRSA carriage data described in the second chapter.

In chapter 4, we consider the incorporation of whole genome sequence data into a

hospital transmission model. A dataset collected from two ICUs in Thailand is used,

in which sequence data were collected from MRSA carriers. In section 1.7.4, existing

methods to integrate epidemiology with genetic data were reviewed. Such approaches

have many limitations and restrictions which would prevent the analysis of MRSA

transmission in hospitals. In chapter 4 we describe new methods which address some

of these limitations in order to analyse transmission in the Thai ICUs. We firstly inves-

tigate whether a difference in transmission may be detected between genetically differ-

ent groups. We then attempt to reconstruct the unobserved transmission routes in the

ICUs, examining two alternative models for genetic diversity. The models are tested

with a series of simulated datasets, before being applied to the Thai data. The increas-

ing availability of WGS data has created a demand for statistical methods to exploit

this additional information to gain a greater insight in the dynamics of communicable

pathogens, and we present here novel methods to do this.

Chapter 5 concludes the thesis with a summary of findings, and the contributions to

the study of nosocomial pathogen transmission made by this thesis are described.
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CHAPTER 2

The effectiveness of patient

isolation and decolonisation

treatment in reducing MRSA

transmission

This chapter forms the basis of a paper titled Estimating the effectiveness of isolation

and decolonisation measures in reducing MRSA transmission in hospital general wards, by

C. J. Worby, D. Jeyaratnam, J. V. Robotham, T. Kypraios, P. D. O’Neill, D. De Angelis,

G. French and B. S. Cooper, to appear in the American Journal of Epidemiology.

2.1 Introduction

Patient isolation plays a central role in many local and national infection control guide-

lines and policies [153–155], however, there is much debate concerning its effectiveness

at reducing MRSA transmission in healthcare facilities. Existing studies have investi-

gated the effectiveness of isolation in ICUs [52, 57, 156], and veterans affairs hospitals

[157], with mixed results. The study of MRSA transmission dynamics and evaluation

of intervention policies in general medical wards has been given considerably less at-

tention. In this chapter, data from ten general wards in a London hospital are analysed

with the aim of estimating the effectiveness of isolation and decolonization measures

in reducing MRSA transmission rates.

In section 2.2, we begin by discussing the role of patient isolation and decolonisation
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treatment in hospital policies, and the debate surrounding the use of isolation as a

component of infection control strategies. We also discuss the importance of assessing

MRSA transmission dynamics in a general ward setting, particularly to understand

the role of interventions. The dataset used in this study is described in section 2.3, as

well as the infection control policies used by the hospital. In section 2.4, we introduce

stochastic models to describe transmission dynamics in this setting. A data-augmented

MCMC algorithm is described which accounts for unobserved colonisation times, and

is used to derive model parameter estimates, as well as a measure of isolation and

decolonisation effectiveness. We also consider an alternative, less computationally-

intensive analysis of the data, using a pseudolikelihood approximation. The results

of this faster method are compared with those derived from the MCMC algorithm in

section 2.5. We discuss results and the implication of our findings in a wider context.

Finally, in section 2.7, we describe an additional dataset collected from the hospital,

comprising additional swabs from various body sites taken from individuals consid-

ered high risk of MRSA carriage. These are not included in the first analysis for reasons

of bias, but we develop methods which allow these data to be incorporated to the anal-

ysis, and discuss the loss of information due to their exclusion. We conclude the chapter

with a discussion of our findings.

2.2 Background

2.2.1 Patient isolation

The isolation of MRSA carriers in hospitals is employed as a means to protect suscep-

tible patients from the risk of colonisation or infection via cross-transmission. Isolation

measures take the form of single room confinement, patient cohorting (grouping car-

riers in one part of a ward), or simply enhanced contact precautions on the ward (the

use of gowns and gloves when dealing with known carriers). The level of isolation em-

ployed may depend on the availability of resources and the risk of transmission. It has

been recommended that carriers are isolated in a single side room if resources permit,

or in a cohort with other positive patients [21, 53]. Isolation is typically employed as

part of an infection control package, and the colonised patient may additionally receive

further interventions, such as decolonisation therapy.

Patient isolation is costly, and hospitals have a limited capacity for single-room isola-

tion. The question of if and when to employ isolation for suspected of confirmed MRSA
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positive patients is controversial [54]; there have been few studies which quantify the

effectiveness of isolation (or lack thereof) [158]. The systematic review of isolation us-

age conducted by Cooper et al. [144] in 2004 concluded that there was a lack of well

designed studies in this area. In addition, there are concerns that isolation measures

may actually have a negative impact on patient welfare. Isolated patients feel unhap-

pier and more neglected than unisolated patients [159, 160], and may be visited less

often by HCWs [161–163], potentially resulting in a lower quality of care.

2.2.2 Previous studies

Questionnaire-based studies at a hospital level have been conducted in order to de-

termine whether isolation precautions are associated with a lower MRSA prevalence

[164, 165], and while these have indicated a lower transmission rate amongst hospitals

which isolate MRSA positive patients, the number of confounding issues and potential

biases mean that these provide little evidence towards the effectiveness of isolation.

Jernigan et al. conducted a small study in which typing data were used to identify

probable sources of colonisation, in order to determine the relative transmission rates

from isolated and non-isolated MRSA carriers [166]. They found a significantly lower

rate of transmission for those under contact isolation; however, this study relies on

subjective assessment of transmission routes, which may bias results.

In 2005, Cepeda and et al. undertook a prospective trial during which positive patients

were not isolated for a period of six months in two intensive care units in London

[57]. This period was then compared to a control phase in which isolation in a side

room or cohort was used. Standard precautions were maintained throughout. Acqui-

sition rates were found to be similar in both periods, and there was no evidence to

suggest increased transmission during the period with no isolation. Potentially, the

long turnaround time for screening results (3 days) may have reduced the apparent

effectiveness of isolation, since this delayed its implementation.

Huskins et al. conducted a cluster-randomised trial over six months to assess the effect

of expanded barrier precautions (increased usage of gowns and gloves, improved hand

hygiene) in reducing MRSA and VRE incidence in ICUs [156]. No reduction was ob-

served, although the required compliance to intervention measures was not attained.

In addition, the study attracted much criticism for the turnaround time for swab results

— swabs were sent for processing offsite. Jain et al. conducted a trial with similar aims,

in veterans affairs healthcare facilities [157]. They assessed the impact of an ‘MRSA
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bundle’, which involved universal surveillance for nasal MRSA carriage and increased

contact precautions and hand hygiene when dealing with known carriers. The study,

conducted over a period of 32 months, found a reduction in MRSA infections of 62%

in ICUs and 45% in non-ICU wards associated with the introduction of the bundle.

However, it was later demonstrated that the transmission prevention component of

the bundle was likely to have played only a small part in the reduction [167].

There have also been model-based analyses of isolation effectiveness using regular car-

riage surveillance data. Cooper et al. developed a dynamic transmission model to

theoretically evaluate isolation, and demonstrated the importance of isolation capacity

and timing to the success or failure of isolation in reducing transmission [144]. For-

rester et al. described an interval-censored approach, in which the number of positive

patients in each interval was modelled as a binomial distribution, dependent on pa-

tient numbers in the previous interval [58]. This approach assumes colonisations in

each interval are independent. The authors used ICU patient surveillance data, and

found weak evidence to suggest the transmission rate from colonised and isolated pa-

tients was less than that of unisolated carriers. A later study on the same data, using

a data-augmented MCMC approach, confirmed the lower transmission rate associated

with isolated MRSA positive patients [59].

In 2010, Kypraios et al. conducted another model-based evaluation of barrier precau-

tions, using data collected in several ICUs in Boston [52]. They found some evidence

to support the use of isolation; a best estimate of 28% reduction in transmission was

given, with a relatively high degree of uncertainty.

2.2.3 Aims

The majority of analyses of MRSA transmission in hospitals use data collected in ICUs,

therefore little is known about transmission dynamics in general medical wards. Gen-

eral wards have a highly dynamic population with frequent readmissions and ward

transfers. While individuals in general wards typically have a lower antibiotic con-

sumption and are less susceptible to infection than those in intensive care, many more

patient days are spent in general wards, making them potentially important reservoirs

for MRSA and locations for MRSA transmission within the hospital.

We present an analysis of individual-level MRSA carriage data collected from a se-

lection of hospital general wards in 2007–08. In this study, our primary aim was to

estimate the combined effect of isolation and decolonisation treatment in reducing the
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Ward characteristics

Ward Specialty Location Patient Episode length

no. episodes median days (IQR) [mean]

1 Surgery (plastics) St. Thomas’ 1808 2.8 (1.4, 6.1) [5.5]

2 Elderly care St. Thomas’ 644 11.0 (6.2, 21.7) [16.5]

3 Surgery (urology) Guy’s 2249 2.2 (1.3, 4.0) [3.5]

4 Surgery Guy’s 2825 2.0 (1.1,3.3) [4.0]

(ear, nose & throat)

5 Surgery Guy’s 1619 4.3 (2.1, 7.1) [5.5]

(cardiothoracic)

6 Elderly care St. Thomas’ 641 10.2 (5.9, 21.8) [16.3]

7 Surgery (vascular) St. Thomas’ 1319 4.0 (1.9, 8.8) [7.7]

8 Surgery St. Thomas’ 1293 3.9 (1.7, 8.6) [6.9]

(gastrointestinal)

9 Oncology Guy’s 797 6.0 (3.4, 14.6) [11.0]

10 Oncology Guy’s 840 5.4 (2.3, 12.0) [9.3]

Table 2.1: Characteristics of the wards included in the study. Mean and median study

length is given, along with the interquartile range (IQR).

transmission rate of MRSA in hospital general wards, and to assess the importance

of different MRSA transmission routes. In order to do this, we constructed stochastic

epidemic models to describe the transmission dynamics within each ward, and fitted

these to patient data. By doing so, we could assess the importance of colonisation pres-

sure in determining MRSA transmission, and estimate how much transmission was

attributable to a constant background effect unrelated to colonisation pressure, due,

for example, to long-term staff carriers and environmental contamination. In addition,

we aimed to compare the effectiveness of single room isolation to isolation measures

on the open ward (both in combination with decolonisation treatment). Estimates for

the probability of being colonised on admission and the sensitivity of the screening test

were also derived.

2.3 Data

We used data collected between January 2006 and April 2007 at Guy’s and St. Thomas’

hospital (GST), a teaching hospital on two sites in London, as part of a prospective clus-
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ter randomised crossover trial to determine whether a policy of rapid screening (with

a polymerase chain reaction (PCR) test) for MRSA could reduce the rate of acquisition

compared with a policy of conventional culture screening (both combined with isola-

tion and decolonisation treatment for positive patients). This study found no evidence

to demonstrate a reduction in transmission associated with the use of rapid screening

[50]. Our analysis has fundamentally different aims to the original study, and the meth-

ods used are quite different. Furthermore, the data we used span a longer time period

than the data considered previously.

Data were collected across ten hospital general wards, comprising of surgery, elderly

care and oncology wards. Characteristics of the ten study wards are given in table 2.1.

All patients were culture screened within 48 hours of admission where possible, and

most patients were also culture screened on discharge. Table 2.2 provides a summary of

patient admissions and culture swab results for all ten study wards. Full details of data

collection, microbiological methods and ethical approval were reported by Jeyaratnam

et al. [50].

Patients considered high risk for MRSA carriage on admission were isolated where

possible prior to the admission swab result. A decision to implement this ‘pre-emptive

isolation’ was based on a previous MRSA positive swab or the presence of one or more

risk factors for MRSA carriage (living in a nursing or residential home, an inpatient

stay during the previous year, a direct transfer from another hospital, from abroad or

from a high risk area within GST). Patients found to be MRSA positive by the admis-

sion screen (by culture or PCR) were also isolated. A single side room was used if

available and appropriate; otherwise the positive patients were nursed on the open

ward with standard contact precautions (staff wore disposable gowns and gloves). The

isolation policies and practices were strictly enforced. When more than one MRSA pos-

itive patient had to be on the open ward, they were placed together in a separate bay

where possible (patient cohorting). Decolonisation treatment using chlorhexidine for

the skin, povidone iodine or silver sulphadiazine for colonised wounds, and, for sensi-

tive strains, mupirocin nasal ointment, was initiated for all patients found to be MRSA

positive.

We made use of the full set of culture swabs taken over the 16 month period, in contrast

to the original study by Jeyaratnam et al., where only data collected from two study

periods of five months within this time frame were used [50].
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2.4 Methods

2.4.1 Transmission model

Primarily, our interest lies in the dynamics of transmission. We supposed that each

patient present in the ward is in either a ‘susceptible’ (MRSA negative) or a ‘colonised’

(MRSA positive) state at any given time. This latter state includes patients with asymp-

tomatic carriage as well as those with MRSA infection. For any given susceptible pa-

tient, define q(t) to be the transmission rate at which they may become colonised, at

time t. This rate is dependent on the colonisation pressure in the ward at the time,

which we here consider to be the number of MRSA positive patients present in the

ward. Each susceptible patient is regarded as independent, and has the same probabil-

Patient screening statistics

Number of days 452

Number of unique patients 10845

Number of patient episodes 14035

Number of patient days 94747

Mean length of stay (days) 6.8

Number of patients not screened on admission 649

(of total admissions) (4.62%)

No. positive swabs on admission 649

(of those swabbed) (4.84%)

Discharge swab invalid/missing 2687

(of those with admission swab) (20.1%)

Stay <48hrs 2810

(of those with admission swab) (21.0%)

Number of eligible observation pairs 8595

(of total episodes) (61.2%)

Number of observed MRSA acquisitions 265

(of eligible observation pairs) (3.08%)

Table 2.2: Summary statistics on the culture swab based screening data collected from

the study wards. ‘Eligible’ pairs are defined as those in which both swabs

were taken at the correct time and the patient stayed for 48 hours or more.

This is for the purposes of counting acquisitions based purely on the obser-

vational data. Our analysis used all swab results to derive estimates.
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ity of acquisition at a given time t. We considered three different transmission models,

which differ by the formulation of the transmission rate. These are given below.

q1(t) = a0 + a1C(t) (m=1)

q2(t) = a0 + a1CN(t) + a2CI(t) (m=2)

q3(t) = a0 + a1CN(t) + a2CW(t) + a3CS(t) (m=3)

Constructing different models allows us to perform different analyses of MRSA trans-

mission dynamics. Model 1 has a transmission rate dependent on the number of pos-

itive patients (C(t)), and a background transmission effect (a0), which may arise from

long-term staff carriers, persistent environmental contamination, or the introduction of

the pathogen from elsewhere in the hospital. This model assumes all MRSA positive

patients to be equally transmissible.

More generally, we have a multiple population model, where g different groups of

colonized patients exist, and are associated with different transmission rates. For ex-

ample, one could partition positive patients by age group, or by the type of antibiotic

administered (if any). We assumed that individuals in each group are homogeneous

in terms of transmissibility; that is, each patient in each group has the same poten-

tial to transmit the pathogen to a susceptible individual. Each susceptible patient is

under colonisation pressure from each group independently. Since interest lies in the

effect of isolation, model 2 is defined to be a two-population model, in which the trans-

mission rate experienced by a susceptible patient may differ from isolated (CI(t)) and

non-isolated (CN(t)) colonised patients (CI(t) + CN(t) = C(t)). It is assumed that all

isolated colonised patients are equally transmissible. Similarly, all unisolated colonised

patients are assumed to have an equal potential to transmit.

Model 3 allows the effect of positive patients in a side room (CS(t)), and those receiv-

ing isolation precautions on the open ward (CW(t)), to be considered separately. We

defined ‘open ward isolation’ to cover the implementation of barrier precautions for

patients either in a regular ward bay, or part of a patient cohort.

We considered a discrete time model, and assumed events occur within daily intervals,

since data are not available at any greater resolution. On a given day t, susceptible

patients were assumed to be under colonisation pressure from those colonised on day

t− 1 or earlier, as well as importations on day t. Colonisation pressure remains constant

for the duration of day t. Any patients becoming colonised on day t were assumed to

remain colonised for the duration of their stay, and contribute to colonisation pressure

from day t+ 1 onwards. The probability of acquisition for any given susceptible patient
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on day d in model i is then 1 − e−qi(d).

The episodes of any patients who are discharged and then later readmitted were as-

sumed to be independent, and were assumed to be positive with probability p on any

subsequent episode.

2.4.2 Isolation effectiveness

In addition to estimating transmission parameters a0, . . . , am, we derived an estimate

for the effectiveness of isolation in combination with decolonisation treatment. Using

model 2 described previously, there are various different functions which may be used

to measure the effectiveness of isolation:

1. The relative risk

Eiso =
P(colonisation, given 1 col. patient in isolation)

P(colonisation, given 1 col. patient not in isolation)
=

1 − e−a0−a2

1 − e−a0−a1
.

A beneficial effect from isolation is indicated by Eiso < 1, with the approximate

reduction given by 100 × (1 − Eiso)%.

2. Similarly, we can consider the ratio B = a2/a1, which summarises the difference

in transmission potential between an unisolated colonised patient and one in iso-

lation. This is approximately similar to the relative risk when the background

transmission rate is low.

3. We can compare the probabilities of avoiding colonisation in each setting:

A =
P(avoid colonisation, given 1 col. patient in isolation)

P(avoid colonisation, given 1 col. patient not in isolation)

=
e−a0−a2

e−a0−a1
= ea1−a2 .

This represents the change in susceptibility as a result of isolation. A beneficial

effect is demonstrated with A > 1.

4. Since a0, a1 and a2 typically take small values, an approximation of A is given by

D = a1 − a2, the difference between the transmission rates.

5. The posterior probability P(a1 < a2) can easily be assessed from MCMC output,

and can indicate isolation effectiveness, but gives no indication about the magni-

tude of any potential reduction.

48



CHAPTER 2: THE EFFECTIVENESS OF PATIENT ISOLATION AND DECOLONISATION

TREATMENT IN REDUCING MRSA TRANSMISSION

0.96 0.98 1.00 1.02 1.04

0
50

15
0

25
0

Induced prior of Eiso

Eiso

D
en

si
ty

Prior λ
0.001
0.005
0.01

−1500 −500 0 500 1500

0.
00

0
0.

00
2

0.
00

4

Induced prior of a1 − a2

a1 − a2

D
en

si
ty

Prior λ
0.001
0.005
0.01

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Induced prior of a2 a1

a2 a1

D
en

si
ty

Prior

Exp
Unif

0.0 0.5 1.0 1.5 2.0

0.
0

0.
1

0.
2

0.
3

0.
4

Induced prior of exp(a1 − a2)

exp(a1 − a2)

D
en

si
ty

Prior λ
0.001
0.005
0.01

Figure 2.1: Induced priors for various isolation effectiveness functions, where trans-

mission parameters are exponentially distributed with rate λ a priori, un-

less otherwise stated. The black dashed line on each plot indicates the

‘no effect’ value of the statistic. Top left is the prior distribution of Eiso,

which becomes more informative as transmission priors become more dif-

fuse. Top right is the prior for B, where transmission parameters are expo-

nentially or uniformly distributed. This distribution is unaffected by the

specification of the Exponential (or uniform) transmission priors. Bottom

left is D, which has a Laplace distribution with exponentially distributed

transmission parameters. Bottom right is A, which has a log-Laplace dis-

tribution a priori.
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The study on isolation effectiveness by Kypraios et al. reported the ratio of transmis-

sion parameters, B, as well as the probability P(a1 < a2) [52], while Forrester et al.

reported the difference in parameter values, D [59].

A function of parameters f (θ) will have an induced prior distribution, dependent on

the prior distributions assigned to θ. While the prior distributions for θ may be un-

informative, the induced prior for f (θ), a function of these parameters, does not nec-

essarily inherit this property. Indeed, for some functions, the converse is true — the

more uninformative the priors for θ, the greater the a priori certainty of f (θ). Figure

2.1 shows the induced prior distributions of four of the isolation effectiveness func-

tions described above, for various prior assumptions for the transmission parameters.

Two of these functions are symmetrically distributed around the value indicating no

isolation effect — Eiso and D = a1 − a2. The other two exhibit a prior mode for either

positive or negative isolation effectiveness. The function B = a2/a1 is not affected by

the informativeness of a1 and a2; in figure 2.1 we show its prior distribution under ei-

ther exponentially or uniformly distributed transmission parameters. D appears to be

the least informative measure of isolation effectiveness, although it is of little use in

quantifying the effect.

While each of these measures provide some information on the presence of any effect,

we used the relative risk, Eiso, to report the percentage of transmission reduction asso-

ciated with isolation precautions. The induced prior of this function is informative, so

we additionally conducted a sensitivity analysis to determine the effect of λ on Eiso.

Since decolonisation treatment was almost always initiated at the same time as isola-

tion in this study, it was not possible to consider the effects of these two interventions

separately, so we calculated the combined effect.

2.4.3 Assumptions

A number of assumptions were made when running this analysis:

1. In constructing a discrete time model, it is assumed that colonised patients con-

tributed to the colonised population on the day after colonisation, or for impor-

tations, from the day of admission. For highly transmissible pathogens, this as-

sumption may be inappropriate, as we eliminate the possibility of onward trans-

mission in the initial period of colonisation. However, for bacterial pathogens

such as MRSA, onward transmission is less likely in the very early stages of
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colonisation, as the bacterial population is in a ‘lag phase’, during which the cells

adapt to a new environment, and little growth occurs [168].

2. For the purposes of calculating the daily population count, the admission and

isolation entry times are assumed to have occurred at the start of each day. Dis-

charge and isolation exit times are assumed to have occurred at the end of the day.

Discrete-time analysis means that colonisation events occurring on a particular

day are assumed to be independent. A negative result on the day of colonisation

is considered to be a false negative result.

3. Patients who were colonised with MRSA remained so for the remainder of their

stay on a study ward. Carriage time of MRSA is typically long; the median length

of carriage has been estimated at 8.5 months [169], while Robicsek et al. found

that 48% of patients colonised with MRSA were still colonised after a year, and

21% after four years [170]. Table 2.2 shows that the typical length of stay is short,

relative to such carriage times. This assumption is violated if carriage is cleared

during the colonised patient’s episode, or the transmission potential is reduced

through the use of decolonisation therapy or antibiotics. This may result in the

overestimation of colonisation pressure at any given time. No distinction was

made between patients with an MRSA infection, and asymptomatically colonised

patients, in terms of potential to transmit to susceptible individuals.

4. We did not explicitly model contact patterns between patients and HCWs, or

direct patient-to-patient interactions, assuming that all susceptible patients were

exposed to the same colonization pressure on a given day, and faced the same risk

of acquisition. Similarly, we assumed that compliance with barrier precautions

and the application of decolonisation treatment were the same for all patients

within a ward, regardless of isolation type.

5. Colonisation was judged to be the presence of bacteria at the screening sites used

in the clinical trial; nose, axilla, or groin. In this analysis, we did not account for

colonisation at other sites. In section 2.7, we investigate additional observations,

taken at various body sites from high-risk individuals suspected of carriage.

6. Test specificity was assumed to be 100%, meaning that false positive results were

assumed not to be possible. Incorporating both sensitivity and sensitivity param-

eters in a model may cause identifiability issues. Experimental results indicate

the specificity of screening tests to be close to 100% [138].
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2.4.4 Likelihood function

Suppose a total of n patient admissions to a hospital ward are observed over some

study period, labelled {1, . . . , n}. A patient j enters the hospital at time ta
j , and is dis-

charged at time td
j . An individual j receives a set of νj (positive or negative) screening

results Xj = Xj,1, . . . , Xj,νj
, taken at screening times tx = {tx

j,1, . . . , tx
j,νj
}. If νj = 0, pa-

tient j has no swab results, and there is no information on the disease status of this

individual.

Each patient is, independently of all other patients, admitted to the hospital in a colonised

state with probability p. Since MRSA carriage is asymptomatic, we rely on patient

screening tests to provide an insight as to an individual’s state. Screening tests detect

MRSA carriage in colonised patients with probability z (test sensitivity); that is, the

probability of a false negative result is 1 − z. It is assumed that there is no chance of

false positive results, that is, test specificity is 100%. We define the vector of parameters

associate with model m to be θm = {p, z, a0, am}.

Let tc = {tc
1, . . . , tc

n} be the set of unobserved colonisation times for patients, where tc
j ,

takes a value between ta
j and td

j for a patient j who is ever colonised, and tc
j = ∞ if the

patient remains susceptible throughout their stay. Let φ = {φ1, . . . , φn} be markers for

importation: if a patient j is positive on admission, we set φj = 1 and tc
j = ta

j , otherwise

φj = 0. Suppose that the status of all patients is known at all times, so that tc and

φ are also known. Let Z be the observed data which are not directly involved in the

stochastic model — that is, the admission and discharge times, and isolation entry and

exit times, as well as the status of patients at time t = 0. In our analysis, we assumed

that the initial population on day 1 is zero. The joint likelihood of the swab data (X)

and transmission dynamics (tc, φ) is

π(X, tc, φ|θm, Z) = π(X|tc, φ, θm, Z)π(φ|θm, Z)π(tc|φ, θm, Z). (2.4.1)

For convenience, Z is omitted from subsequent notation, but continue to condition on

these data. The first product term in the joint likelihood (2.4.1) describes the imperfect

observation of the transmission dynamics, given as

π(X|tc, φ, θm) = zTP(X)(1 − z)FN(X,tc), (2.4.2)

where TP(X) is the total number of true positive swab results, and FN(X, tc) is the total

number of false negative results given the colonisation times tc. Under the assumption

of no loss of carriage, any negative result occurring after the time of colonisation is con-

sidered a false negative. We assumed that false positives are not possible, so TP(X) is
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directly observable from the data, and is not dependent on tc. The second component in

equation (2.4.1) describes the probability of the set of importations, given importation

probability p:

π(φ|θ) = p∑i φi(1 − p)n−∑i φi . (2.4.3)

Finally, the transmission model is represented in the last term in the joint likelihood

(2.4.1);

π(tc|φ, θ) =
n

∏
i=1

[
1tc

i =ta
i
+ 1tc

i 6=ta
i

exp
(
−

min(tc
i −1,td

i )

∑
t=ta

i

qm(t)
)]

∏
j:tc

j 6=∞

φj=0

(1 − e
−qm(tc

j )), (2.4.4)

where tc
i is constrained to take a value in {ta

i , . . . , td
i } ∪ {∞}, and transmission param-

eters a0, . . . , am are constrained above zero. This represents the probability of avoiding

colonisation for each susceptible patient during their stay (while t < tc
i ), as well as

the probability of transmission for those individuals who acquire MRSA on the ward.

Equation (2.4.4) can be considered a product of contributions from each patient. The

contribution of patient j depends on to which of the following four cases they belong:

1. The patient remains susceptible throughout. As such, their contribution is

exp
(
−

td
j

∑
t=ta

j

qm(t)
)
.

2. The patient is admitted to the ward positive. In this case, the patient makes no

contribution to equation (2.4.4).

3. The patient acquires MRSA on their first day. Then the contribution is

1 − e
−qm(ta

j ).

4. The patient becomes colonised after their first day. Then the contribution is

exp
(
−

tc
j−1

∑
t=ta

j

qm(t)
)
(1 − e

−qm(tc
j )).

In the fully-observed scenario, this likelihood may be evaluated, however, transmis-

sion dynamics are typically unobserved. Summing over all possible colonisation times

results in intractability in all but the simplest cases. In order to overcome this, the pa-

rameter space was augmented with the unobserved colonisation times, and sampled

across this space using an MCMC algorithm.
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2.4.5 Bayesian framework

Patient screening data were analysed in a Bayesian framework, using a data-augmented

MCMC algorithm. The parameter space was augmented with the unobserved data

A = {tc, φ}, comprising the set of colonisation times and admission statuses. It is of

interest to explore the posterior density π(A, θ|X), which, by Bayes’ Theorem, is

π(A, θ|X) ∝ π(X|A, θ)π(A, θ) = π(X|A, θ)π(A|θ)π(θ),

where π(X|A, θ)π(A|θ) is the likelihood of the observed and augmented data given the

parameters θ, and π(θ) is the joint prior distribution of the parameters. With known

values for colonisation times, the likelihood becomes tractable, and so by treating the

augmented data as parameters to be estimated, we may explore the posterior distribu-

tion.

At each iteration, the data-augmented MCMC algorithm samples values of θ, as well

as the augmented data set A. This procedure is similar to previous data-augmentation

approaches [52, 94, 126], although we present here a discrete-time version. The data

augmentation procedure takes into account our uncertainty as to both the time and

number of colonisation events, by proposing to add, delete or move elements from the

set A. This design allows us to account for the unobserved patient colonisation times,

crucial to the calculation of the population of colonised patients at any given time.

2.4.5.1 Prior distributions

We aimed to sample from the posterior distribution of the parameters p (probability of

carriage on admission), z (culture swab sensitivity), and the transmission parameters

for model m, a0, . . . , am. Prior distributions for these parameters were set as follows:

p, z ∼ Beta(α, β),

a0, . . . , am ∼ Exp(λ),

where Exp(λ) is the exponential distribution, with probability density function

f (x; λ) = λe−λx,

and Beta(α, β) is the beta distribution with probability density function

f (x; α, β) =
1

B(α, β)
xα−1(1 − x)β−1,
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where B(α, β) = (α−1)!(β−1)!
(α+β−1)!

is the beta function. The prior distributions of our param-

eters were independent, and uninformative where possible; we set α = β = 1 for the

beta prior distributions, and λ = 10−3 for the exponential priors. In order to ensure

results were robust to the choice of priors, a sensitivity analysis was also conducted,

results of which are presented later, in section 2.5.1.3.

2.4.5.2 Sampling model parameters

We may derive the full conditional distribution for the parameter p as follows:

π(p|θ−p, A, X) ∝ π(θ−p, A, X|p)π(p)

∝ π(X|A, θ)π(A|θ)π(θ)

∝ π(X|A, θ)π(p)

∝ p∑i φi(1 − p)(n−∑i φi)π(p),

where θ−k indicates the vector θ without the element k. From this, it follows that the

probability of colonisation on admission, p, may be sampled directly from a beta dis-

tribution

p|θ−p ∼ Beta(α + ∑
i

φi, β + n − ∑
i

φi).

Similarly, the sensitivity, z, may be sampled from a beta distribution

z|θ−z ∼ Beta(α + TP(X), β + FN(X, A)).

Since the parameters p and z may be sampled directly from known distributions, we

used a Gibbs step to do this.

The posterior distributions for the transmission parameters a0, . . . , am are non-standard,

and we used a Metropolis algorithm to derive samples from these. We used a Normal

proposal distribution q(·|θ(i)) with mean θ(i) and variance σ. We ran a simple adap-

tive algorithm in which the acceptance rate is measured every 1000 iterations, and the

variance σ is adjusted if necessary to maintain an acceptance rate between 0.2 and 0.5.

In practice, after a few adjustments, the variances remained constant throughout the

algorithm.

2.4.5.3 Sampling augmented data

Having sampled a new set of parameters θ, we update the augmented data. In this

process, we update the importation marker, φ, and/or the time of colonisation, tc by
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choosing to add, move or delete a patient’s colonisation time. Let φ∗ and tc∗ be the pro-

posed new values for φ and tc, and define A∗ = {φ∗, tc∗}. We assign a move probability

ratio, qA,A∗ to each move,

qA,A∗ =
P(A∗ → A)

P(A → A∗)
,

where P(A → A∗) is the probability of proposing A∗, given the current dataset A.

Let vs be the number of patients with no positive swabs, va be the number of patients

for whom a colonisation time has been added by the algorithm, and vq be the number

of patients with a finite colonisation time. Note that vs is a fixed value independent of

the current value of A, whereas va and vq both depend on the augmented data, and are

updated each iteration of the algorithm. With equal probability, one of the following

three moves is made:

• Move a colonisation time. Select at random one of the vq patients who have

MRSA at some point during their ward episode. With probability w, assigned

pre-analysis, the patient is assumed to have been admitted positive. In this case,

we set φ∗
j = 1 and tc∗

j = ta
j . Otherwise, we set a new colonisation time during

the patient’s ward episode at random. Let lj be the the last point at which a

patient can become colonised — the time of the first positive swab, if applicable,

or the time of discharge if the patient never has a positive swab. We set φ∗
j = 0

and sample a value uniformly from {ta
j , . . . , lj} for the colonisation time tc∗

j . The

proposal probability ratio qA,A∗ is given as follows:

– Change acquisition time to new acquisition time: qA,A∗ = 1.

– Change acquisition time to importation: qA,A∗ = 1−w
w(lj−ta

j +1)
.

– Change importation to acquisition time: qA,A∗ =
w(lj−ta

j +1)

1−w .

– Remain an importation (no change): qA,A∗ = 1.

• Add a colonisation time. Choose at random one of the vs − va patients who

neither acquire nor import the pathogen. If vs − va = 0, no move is made. With

probability w an importation is added; in this case we set φ∗
j = 1. Otherwise,

draw a random sample from the discrete uniform distribution from admission to

discharge time, and assign this to the new colonisation time tc∗
j .

• Remove a colonisation time. Choose one of the va patients who have previously

had a colonisation time added. If va = 0, no move is made.
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Having established the augmented data move mechanisms, the probability ratios qA,A∗

for adding or removing colonisation times may be given as follows:

Importation Acquisition

Add vs−va

w(va+1)

(vs−va)(td
j −ta

j +1)

(1−w)(va+1)

Remove vaw
vs−va+1

va(1−w)

(td
j −ta

j +1)(vs−va+1)

Having proposed a new augmented dataset A∗ and calculated qA,A∗ , we accept the

proposed move with probability

min

(
1,

π(X|A∗, θ)π(A∗|θ)

π(X|A, θ)π(A|θ)
qA,A∗

)
. (2.4.5)

The data augmentation process here is a form of the reversible jump MCMC algorithm

[124]. As described in section 1.5.2.7, the augmented data transformation function

P(A → A∗) generates proposals A∗ independent to the current value A. This means

that the Jacobian determinant present in the RJMCMC acceptance rate is equal to 1, and

may be ignored.

The MCMC algorithm was run for 120,000 iterations, with a burn-in of 20,000, on the

data collected from each of the ten study wards. The augmented data sampling step of

the algorithm was repeated ten times per iteration to improve the speed of mixing. The

value of w was set to be 0.3 in the data augmentation step. The algorithm was written

in C, and the analysis of the output was performed in R 2.10.1 [171].

2.4.5.4 Pooled estimates

In order to obtain overall parameter estimates across the ten hospital general wards, a

random effects meta-analysis was used to pool the individual ward estimates.

Suppose estimates x1, . . . , xn of a parameter µ are derived from n different sources

(studies, datasets, etc.). A random effects meta-analysis assumes that each estimate

can be expressed as xi = αi + ǫi, where αi is the true value for study i, and ǫi is the

associated error, with variance σi. Furthermore, the true value for any given study or

dataset i, αi, is assumed to vary from the overall true value µ, due to random effects on

the study as a whole. This means that αi can be expressed as αi = µ + δi, where δi is the

between-study error, with variance τ. As a result, the estimates x1, . . . , xn can be con-

sidered as samples from a distribution with mean µ, and variance τ + σi. With known

within-study and between-study variances σ1, . . . , σn and τ respectively, a pooled esti-
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mate for µ incorporating the n sources, can be given as

µ̂ =
∑

n
i=1 Wixi

∑
n
i=1 Wi

,

where Wi = 1
σi+τ , in which each estimate xi is weighted by Wi, the reciprocal of the

combined within and between study variance. Typically, these variances are not ob-

served, and as such, estimates must be used instead. DerSimonian and Laird described

methods to calculate a pooled estimate µ̂ with estimated within-study and between-

study variances [172].

In this analysis, a random-effects meta-analysis was implemented to derive pooled pa-

rameter estimates using the rmeta package [173] in R [171], which utilises DerSimonian

and Laird’s method to calculate weights.

2.4.6 Goodness of fit

Model fit was assessed by analysing the posterior predictive distribution of specific

admission-discharge swab pairs (positive-positive, positive-negative, negative-positive,

negative-negative). A total of 5000 datasets X̃ were simulated, based on parameters

drawn from the posterior densities derived from the data-augmented MCMC algo-

rithm, counting the number of swab pairs generated each time. Let nxy be the observed

number of (x, y) swab pairs, and ñxy be the number of simulated swab pairs. For each

of the four possible swab pairs, we calculated the quantile qxy = P(ñxy < nxy), some-

times referred to as the posterior predictive p-value [130]. Any extreme values of qxy

(close to 0 or 1) are supportive of a lack of fit, indicating that the model would be un-

likely to predict the data we have observed. This analysis was repeated for each of the

ten study wards.

2.4.7 Pseudolikelihood approximation

While the Bayesian approach offers great benefits in terms of flexibility, the data-augmented

MCMC algorithm can be time-consuming and difficult to implement. It is certainly of

interest to know whether simpler methods can be employed to attain reasonable pa-

rameter estimates at considerably less computational expense.

Observing the transmission dynamics accurately is not possible, especially for asymp-

tomatic colonisations caused by pathogens such as MRSA, which results in an in-

tractable likelihood, requiring integration over all possible colonisation times. How-
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ever, by assuming patient episodes are independent, and that the colonised popula-

tion is fixed, the true likelihood may be approximated. The pseudolikelihood of data

X = {X1, . . . , Xn}, given parameters θ is

π∗(X|θ) =
n

∏
i=1

π(Xi|X−i, θ),

where π(Xi|X−i, θ) is the likelihood of observation Xi, given the remainder of the ob-

servations. The pseudolikelihood matches the likelihood function in the event that

X1, . . . , Xn are independent. The θ̃ that maximises π∗ is then the maximum pseudo-

likelihood estimate (MPE).

Hospital patient data typically comprises a set of patient episodes much shorter than

the overall data collection period, and therefore any given episode will coincide with

only a small subset of the other observations. Only overlapping patient episodes are

dependent, and a low degree of dependence may indicate that the pseudolikelihood is

a reasonable approximation.

2.4.7.1 Model & assumptions

The disease state of a patient depends on other individuals via the transmission rate,

q(t). In order to calculate the pseudolikelihood, each patient must be assumed to be

independent, and as such, we must assume that we know q(t) for all t. This can

be achieved by making an assumption about colonisation times, based on observed

swabs. For example:

1. Set the colonisation time to be the midpoint between the first positive result and

the previous negative result. If no such negative result exists, we adopt the ad-

mission time as the lower bound of this interval.

2. We can get a lower bound on the observed colonised population by assuming

colonisations occurred just before the first positive swab.

3. Similarly, we can get an observed upper bound by assuming any colonisation

observed was present on admission.

These assumptions — made only in order to fix colonisation population at all times,

and not used in modelling transmission — allow MPEs to be calculated. The more

frequent (and more accurate) the screening, the closer we approach to the true number

of colonised individuals at any given time. We used the first of the above assumptions
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to calculate q(t), but additionally ran the analysis for the alternative proposals, in order

to determine the sensitivity of the estimates to this assumption.

Let f j be the time of patient j’s first positive screen. If this patient has no positive results,

set f j = ∞. Using the same notation as previously, we suppose that the likelihood

contribution of patient i, given all other patients, can be written as

π(Xi|X−i, θ) =P(observed data, colonised on admission)

+

td
j

∑
t=ta

j

P(observed data, colonised on day t)

+ P(observed data, never colonised)

=pzTPi(1 − z)FNi(t
a
j )

+ 1 fi 6=∞(1 − p)
[
(1 − e−qm(ta

i ))zTPi(1 − z)FNi(t
a
i )+

min( fi ,t
d
i )

∑
t=ta

j

exp(−
t−1

∑
i=ta

i

qm(i))(1 − e−qm(t))zTPi(1 − z)FNi(t)
]

+ 1 fi=∞(1 − p) exp(−

td
j

∑
i=ta

i

qm(i)),

where TPi and FNi(t) are the number of true positive and false negative screening

results for patient i, given colonisation occurred on day t. The pseudolikelihood is then

equal to the product of the contribution from each patient.

2.4.7.2 Uncertainty

A Nelder-Mead optimisation algorithm [100, 101] was used, implemented using the

nlm function in R [171], to derive MPEs. Confidence intervals can be derived from

the Hessian matrix returned by this function. The inverse of the Hessian matrix is

asymptotically equal to the covariance matrix for MLEs, and may therefore be used

to estimate confidence intervals. This does not necessarily hold when optimising a

pseudolikelihood function, and may potentially provide a poor approximation of the

confidence interval.

Estimates of variance derived in this method should be treated with caution, as inac-

curate values may be returned if the parameter estimate is close to the boundary of the

support. This may be the case in our model, where transmission parameters a0, a1, a2

are constrained above zero, but take very low values. In order to avoid this issue, we

transformed the parameters and optimised the pseudolikelihood with respect to the
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log of the transmission parameters, in order to allow unconstrained numerical optimi-

sation.

An alternative method to generate confidence intervals is via parametric bootstrap

[110], described earlier in section 1.5.1.3. The maximum pseudolikelihood estimate θ̂ is

used to generate n datasets X̃1, . . . , X̃n, each of which is then used to derive n further

estimates θ̃1, . . . , θ̃n. A 95% bootstrap confidence interval may then be approximated

by taking the 2.5% and 97.5% quantiles of {θ̃1, . . . , θ̃n}.
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Figure 2.2: MCMC samples for the parameters θ using data from ward 1, under model

2. The burn-in period has been disregarded, and the samples thinned by a

factor of 10.
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2.5 Results

We now present results from the data-augmented MCMC analysis of MRSA transmis-

sion in the ten hospital general wards, followed by pseudolikelihood estimates. While

we present results for each of the three models described earlier, our primary interest

lies in model 2. It was found that estimates derived from the more complex model

(model 3, in which isolation is broken down by type) were associated with a great deal

of uncertainty, due to the sparsity of the data involved. Unless otherwise stated, results

presented here have been derived using model 2. Estimates for the non-transmission

parameters (p and z) remained similar between models.

2.5.1 MCMC approach

2.5.1.1 Model parameters

Convergence and mixing were monitored for each implementation of the MCMC al-

gorithm via visual inspection and comparison of chains with various starting points.

Trace plots for ward 1 are shown in figure 2.2.

Prevalence on admission, p, varied considerably between the wards (figure 2.3), as

might be expected due to the different patient types admitted to each ward. Estimates

ranged from 3% to 16%, with the highest importation rates estimated for the two el-

derly care wards (2 and 6). These wards also saw the highest rate of admission from

elsewhere in the hospital, and many of the patients positive on admission may have

previously been recorded as positive in other wards. Estimates for sensitivity, z, ranged

from 58% to 86% on individual wards (shown in figure 2.4). The pooled ward estimate,

derived from a random-effects meta-analysis, was 77% (95% CI: 72%, 82%). In addi-

tion, we estimated the proportion of colonised days spent out of isolation. This value

ranged from 40% to 65% between the wards, and we estimated the pooled value to be

54% (47%, 60%).
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Figure 2.3: Ward estimates for the parameter p, probability of colonisation at ad-

mission, together with 95% equitailed credible intervals calculated from

MCMC samples.

● ●

●

●

●

● ●

● ●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sensitivity
(estimates & 95% CI)

Ward

z

● ●

●

●

●

● ●

● ●

●

1 2 3 4 5 6 7 8 9 10

●

●

●

Ward Type

Surgery
Elderly
Oncology

Figure 2.4: Ward estimates for the parameter z, test sensitivity, together with 95% eq-

uitailed credible intervals calculated from MCMC samples.
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Pooled estimates for the transmission parameters for each of the models are shown in

table 2.3. Background transmission was found to have a relatively minor effect on the

MRSA acquisition rate in this setting. The pooled estimate of a0 indicates that an ex-

pected 0.23 colonisations per 1000 patient days occur due to a background effect. This

is a small fraction of the colonisations expected to arise due to transmission from other

patients (table 2.4). Transmission rates varied between the study wards, ranging be-

tween one and five expected acquisition events per 1000 patient days (table 2.4). High

rates were estimated for the elderly care wards, while oncology wards had the lowest

risk of transmission. Expected transmission rates were lowest according to model 1,

and highest in model 3, but were similar overall.

The posterior distributions for each parameter in model 2 are shown in figure 2.5, along

with scatter plots and correlation coefficients of MCMC samples between each pair of

parameters. Two wards are shown here; a high prevalence elderly care ward (ward 2)

and a surgical ward with average prevalence (ward 3). This illustrates the skewness of

the transmission parameter posterior distributions, but shows little correlation between

parameters. However, as expected, lower estimates for sensitivity, z, are associated

with higher estimates for the prevalence of carriage on admission, p. Furthermore, we

found that correlation in the log scale to not exceed ±0.3.

Pooled transmission parameter estimates for each model

Model Transmission rate, q(t) a0 a1 a2 a3

1 a0 + a1C(t) 0.000275 0.00066 — —

2 a0 + a1CN(t) + a2CI(t) 0.000230 0.00125 0.000275 —

3 a0 + a1CN(t) + a2CW(t) + a3CSR(t) 0.000229 0.00106 0.000737 0.000321

Table 2.3: Transmission parameter estimates derived from a meta-analysis of individ-

ual ward posterior median estimates, according to each model, where C(t)

is the number of colonised patients in total at time t, CI(t) of whom are iso-

lated, and CN(t) are not. Of the isolated patients, CSR(t) are in a side room,

and CW(t) are isolated on the open ward.

2.5.1.2 Isolation effect

Estimates for the effectiveness of isolation and decolonisation for each ward, derived

from model 2, are shown in table 2.5. All but two wards show a reduction in trans-

mission associated with isolation measures (ward 7, surgery and ward 9, oncology),

and the posterior probability that isolation is effective is over 90% in six wards. A
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Figure 2.5: Posterior densities and pairwise MCMC sample plots for two wards, under

model 2. Samples from the data-augmented MCMC algorithm are plotted

for each pair of parameters, along with correlation coefficients. Posterior

distributions are shown on the diagonal for each parameter. We use ward

2 (high prevalence, elderly care ward, plotted in blue) and ward 3 (average

prevalence, surgical ward, plotted in orange) as examples.

meta-analysis was conducted on the log of the relative risk function, as this provided

a better approximation to normality, which is assumed in the meta-analysis process.

A forest plot for the isolation relative risk is shown in figure 2.6, derived from model

2. The pooled estimate for the relative risk is 0.36 (0.21, 0.63), indicating that isola-

tion and decolonisation treatment are associated with a reduction in transmission of
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Estimated colonisation rate

Ward Type Expected acquisitions

per 1000 patient days (95% CrI)

1 Surgery (plastics) 1.7 (0.7, 3.0)

2 Elderly care 4.7 (2.5, 7.0)

3 Surgery (urology) 2.4 (0.8, 4.5)

4 Surgery (ear, nose & throat) 3.5 (2.1, 5.1)

5 Surgery (cardiothoracic) 2.0 (0.9, 3.6)

6 Elderly care 3.8 (2.0, 5.8)

7 Surgery (vascular) 2.3 (1.3, 3.6)

8 Surgery (gastrointestinal) 2.7 (1.6, 4.2)

9 Oncology 1.3 (0.5, 2.5)

10 Oncology 1.5 (0.6, 2.6)

Table 2.4: Posterior mean estimated rate of acquisition in each ward, calculated under

model 1.

approximately 64%.

The expected proportions of transmission events due to three sources (background, iso-

lated MRSA positive patients within the same ward, unisolated MRSA positive patients

within the same ward) and rate of transmission for each ward are shown in figure 2.7.

We estimate that, under model 2, approximately 75% (67%, 86%) of transmission in this

setting is attributable to MRSA positive patients under no isolation precautions. Uniso-

lated colonised patients are the source of the majority of ward transmission in all but

two wards (wards 7 and 9, for which we did not estimate a reduction in transmission).

Background transmission was estimated to account for 9% (3%, 14%) of within-ward

transmission.

Intervention effectiveness estimates were derived for each isolation type from model 3,

and a pooled estimate was again calculated by performing a meta-analysis on the log-

effect for each ward. The side room isolation relative risk, ESR, was estimated to be 0.41

(0.23, 0.72), and the estimate of EW, the effect of cohorting and contact precautions, was

1.47 (0.69, 3.13). Therefore, while we estimate side room isolation to be associated with

a reduction in transmission (of approximately 59%), the data do not suggest that open

ward isolation has a similar effect; however the uncertainty surrounding this estimate

is large. Open ward isolation was used infrequently (see table 2.6) compared to side

room isolation on most wards. Usage was highest in wards 2 and 6 (elderly care), and
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Figure 2.6: Isolation effectiveness. Estimates for the reduction in transmission rate due

to any kind of isolation, together with decolonisation treatment, compared

to an unisolated MRSA positive patient. These estimates were derived us-

ing model 2.

open ward isolation was estimated to have a beneficial effect in this setting; the pooled

effect for open ward isolation effectiveness in elderly care wards was estimated to be

0.44 (0.15, 0.95).

2.5.1.3 Model verification

In order to assess goodness of fit for model 2, the posterior predictive distribution was

estimated for the possible admission-discharge swab pairs for each of the ten wards,

and the posterior predictive p-value, qxy = P(ñxy < nxy), was derived. Figure 2.8

shows the four posterior predictive distributions for ward 3 as an example. No extreme

p-values were found; that is, all p-values were contained in the interval (0.025, 0.975).

A sensitivity analysis was performed to determine the impact of the transmission pa-

rameter prior rate λ on the estimate of isolation effectiveness. The prior rate was varied

from λ = 10−1 to λ = 10−6. As mentioned earlier, this affects the induced prior of Eiso,

and could potentially impact our results. However, it was found that found that the
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Figure 2.7: The estimated proportion and rate of transmission attributable to each

source. Each column represents the transmission from a particular study

ward. The widths of the columns are proportional to the estimated mean

rate of transmission. The transmission rate is then split into the propor-

tions expected from (top to bottom) background transmission, colonised

patients in isolation, and colonised patients not receiving isolation precau-

tions.

estimate was robust to changes in the prior distribution (see table 2.7).

We ran several simulation studies, in order to test the ability of the model to recover

and identify the parameters well. Datasets of a similar size to the study wards were

generated, and we tested scenarios with different transmission rates and importation

probabilities. In the majority of cases, we found that parameters were estimated ade-

quately. Transmission parameters were estimated less successfully in low transmission

scenarios, due to a lack of data. This was an issue for all models, but particularly for

model 3. In particular, we found that the parameter a0 was often underestimated. Fig-
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Isolation effectiveness estimates

Ward Eiso P(a1 > a2)

1 0.12 0.99

2 0.16 0.99

3 0.8 0.64

4 0.12 0.99

5 0.31 0.91

6 0.48 0.93

7 1.23 0.39

8 0.31 0.94

9 1.14 0.45

10 0.48 0.79

Table 2.5: Estimates for the effectiveness of isolation in combination with decolonisa-

tion treatment, Eiso, calculated from model 2, alongside the probability that

isolation measures are effective, P(a1 > a2). The reduction in transmission

is given as 100(1 − Eiso)%.

ure 2.5 also shows that a0 is slightly correlated with the other transmission parameters.

There may be a concern that the identifiability of a0, together with slight correlations to

other parameters, might impact our isolation effectiveness estimate. In order to verify

this, the analysis of model 2 was repeated, with a0 set to zero, such that the transmis-

sion rate was q(t) = a1CN(t) + a2CI(t). There was little difference in the estimates of

Eiso (pooled Eiso estimate 0.38, compared to 0.36 in the model including a0).

2.5.2 Pseudolikelihood

We analysed the pseudolikelihood for model 2, assuming, for the purposes of the pop-

ulation count, that colonisations occurred at the midpoint of the known susceptible

period. Optimisation using the Nelder-Mead algorithm in R took 30-120 seconds to pro-

duce point estimates and confidence intervals. This is much quicker than the MCMC

procedure described earlier, which took between 2 and 6 hours to run 100,000 itera-

tions. However, using a bootstrap approach to derive estimates of Eiso, or to generate

bootstrap confidence intervals, took much longer.

Results for the prevalence on admission (p) and swab sensitivity (z) were found to

be similar to those obtained in the Bayesian approach. In addition, the 95% confi-

69



CHAPTER 2: THE EFFECTIVENESS OF PATIENT ISOLATION AND DECOLONISATION

TREATMENT IN REDUCING MRSA TRANSMISSION

Isolation usage and effectiveness estimates

Ward Total patient SR isolation Open ward isolation

days (colonised) days (colonised) days (colonised)

1 9975 (652) 1446 (311) 246 (80)

2 10734 (2095) 1474 (636) 897 (454)

3 7907 (1793) 1027 (522) 236 (89)

4 11020 (1358) 2123 (783) 46 (19)

5 8685 (657) 1048 (222) 19 (5)

6 10539 (2792) 1392 (672) 1157 (616)

7 10264 (1991) 1440 (721) 331 (68)

8 8959 (1429) 1278 (402) 394 (120)

9 8797 (622) 3924 (263) 115 (9)

10 7867 (919) 1563 (463) 103 (39)

All 94747 (14308) 16715 (4995) 3544 (1499)

Table 2.6: Total number of patient days for all wards during the study period, along-

side the number of days spent in side room (SR) isolation, and open ward

isolation. The numbers in brackets indicate the posterior mean estimate of

the number of colonised patient days in each setting.

dence intervals, generated from the inverted Hessian matrix, were of a similar size

to 95% credible intervals obtained earlier. Figure 2.9 shows estimates obtained under

both approaches for each ward. There seemed to be no consistent pattern regarding

over/underestimation with the pseudolikelihood approach.

MPEs for transmission parameters exhibited greater deviation from the Bayesian esti-

mates. Several ward-level estimates, particularly for a0, were extremely close to zero.

Model parameter estimates are summarised in table 2.8.

The Nelder-Mead algorithm failed to converge when optimising the likelihood under

model 3, potentially indicating over-parametrisation for the amount of data available.

The analysis was run under the assumption that the colonised population was already

known, calculated by taking the time of colonisation to be the midpoint of the first ob-

served positive result and the previous negative swab, or admission. We additionally

ran the analysis assuming that colonisation occurred at the start, or the end, of this

interval, in order to assess the impact of this assumption. We found that this affected

our isolation effectiveness estimates, which were slightly lower when acquisition times
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Ward 3: Posterior predictive distributions

Figure 2.8: Posterior predictive distributions for given admission-discharge swab

pairs, with ward 3 as an example. The red line indicates the observed

number of each swab pairing, and the blue histogram represents the val-

ues obtained from 1000 simulated datasets.

were assumed to be at the start of the interval, and higher when at the end. This might

be explained by the fact that isolation is likely to occur only once carriage is detected,

and therefore assuming that acquisition takes place at the end of an interval is likely

to underestimate the unisolated colonised population. This may in turn inflate the es-

timate of a1, reducing the estimated isolation effect. The opposite effect may cause the

increase in isolation effect while assuming acquisition occurs at the start of the interval.

Sensitivity of Eiso to transmission parameter prior

Prior rate (λ) Pooled Eiso

10−1 0.37 (0.21,0.65)

10−3 0.36 (0.21,0.63)

10−6 0.39 (0.23,0.67)

Table 2.7: The sensitivity of the estimate for isolation effectiveness to the prior as-

signed to the transmission parameters. Parameters are exponentially dis-

tributed a priori with rate λ.
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Maximum pseudolikelihood parameter estimates

Ward a0 a1 a2 Eiso

1 1.5×10−8 0.0014 8.6×10−6 0.14

(0,0.0009) (0.0014,0.0015) (0,0.001) (0.03,0.64)

2 1.5×10−5 0.0032 1.4×10−8 0.02

(0,0.001) (0.0018,0.0045) (0,0.001) (0.01,0.06)

3 3.9×10−9 0.0016 0.00021 0.25

(0,0.0013) (0.0016,0.0017) (0,0.0015) (0.02,2.73)

4 0.0012 0.0008 7.2×10−11 0.60

(0.0012,0.0013) (0.0004,0.0013) (0,0.0004) (0.11,3.37)

5 4.4×10−9 0.0047 0.00011 0.06

(0,0.0017) (0.0005,0.0089) (0,0.0018) (0.01,0.36)

6 5.5×10−10 0.0019 0.00022 0.11

(0,0.0011) (0.0019,0.0020) (0,0.0013) (0.04,0.30)

7 1.7×10−8 0.0003 0.0013 4.29

(0,0.0007) (0,0.0010) (0.0012,0.0013) (0.33,51.82)

8 2.0×10−9 0.0016 0.00025 0.17

(0,0.0011) (0.0016,0.0017) (0,0.0014) (0.05,0.55)

9 3.5×10−8 0.0007 0.0010 1.51

(0,0.0010) (0,0.0017) (0.0010,0.0011) (0.07,34.91)

10 2.1×10−10 0.0014 0.00062 0.42

(0,0.0011) (0.0014,0.0015) (0,0.0017) (0.05,3.66)

Table 2.8: Maximum pseudolikelihood estimates for transmission parameters in

model 2 for each ward, along with 95% confidence intervals derived from

the inverted Hessian matrix. Estimates and 95% confidence intervals for

isolation effectiveness Eiso were obtained from the median value of 1000

bootstrap samples.

2.6 Discussion

2.6.1 Isolation and decolonisation effectiveness

Our analysis provides strong evidence that isolation precautions in combination with

decolonisation treatment are associated with a reduction in MRSA transmission in hos-

pital general wards. There have been few studies to provide evidence for a decline in

transmission associated with the use of these precautions, and indeed, little investiga-
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Figure 2.9: Maximum pseudolikelihood estimates alongside estimates from the

MCMC procedure for prevalence on admission (left) and swab sensitiv-

ity (right). Uncertainty shown with 95% confidence intervals derived from

the Hessian matrix and 95% credible intervals as appropriate.

tion into the transmission of MRSA in a general ward setting. Our analysis suggests

that most transmission within these wards was due to patient-to-patient spread from

unisolated MRSA positive patients.

We also investigated the separate effects of side room isolation and open ward isola-

tion on MRSA transmission. We found a reduction of approximately 59% (28%, 77%)

in transmission associated with side room isolation, but did not estimate any benefi-

cial effect from open ward isolation. This estimate is surrounded by great uncertainty,

due to the strong preference for using side room isolation whenever possible. Table

2.6 shows the number of patient days spent in each type of isolation for each ward. In

most wards, just a small fraction of the total number of colonised days were spent in

open ward isolation. The elderly care wards saw the highest usage of non side room

isolation, as a high prevalence of MRSA in the wards regularly caused the side rooms

to be full to capacity. This form of isolation was estimated to have a beneficial effect for

these wards, albeit a slightly lesser effect than side room isolation. The difference in the

estimates between isolation types might be explained by the fact that open ward isola-

tion was most commonly used when the side rooms were full, which often coincided

with times of high MRSA prevalence. It is possible that all forms of isolation could be

less effective during times of high prevalence, due to the extra burden this places on

hospital staff.
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Though we found isolation and decolonisation to be associated with considerably lower

transmission from MRSA carriers, our results do not tell us about the relative impor-

tance of the measures, or about the causal mechanisms responsible for the association.

It is possible for example that reduction was due to increased hand hygiene amongst

HCWs treating patients known to be positive. Since the majority of decolonisation

treatment was initiated at the same point as isolation, the data available for individuals

receiving only one intervention were sparse. A study in which interventions are stag-

gered may provide adequate data to analyse their independent effects. Alternatively,

we might consider the effect of decolonisation treatment to be non-linear. For example,

decolonisation treatment may not have an immediate effect, and could be assumed to

have a delayed effect in the reduction of transmissibility.

In one surgical ward and one oncology ward, isolation was estimated to have a detri-

mental effect on MRSA transmission, and one further surgical ward saw only a negli-

gible beneficial effect (figure 2.6). This could be due to chance variation, as in all cases

associated credible intervals are wide. However, other explanations are of course pos-

sible. For example, there are case reports of superspreading events [174] and recent

modelling work has highlighted the potential for a peripatetic healthcare worker with

poor hand hygiene compliance to influence the transmission dynamics greatly [175],

and this may reduce the effect of isolation.

Table 2.6 shows the number of patient days spent in each form of isolation for each

ward. We found over half of all colonised patient-days to be spent out of isolation. False

negative swab results and delays in screening (and the processing of results) contribute

to this. In most wards, just a small fraction of the total number of colonised patient-

days were spent in open ward isolation. The elderly care wards saw the highest usage

of non side room isolation, as a high prevalence of MRSA in these wards caused the

side rooms to be full to capacity for much of the study period. Interestingly, in these

two wards the effectiveness of open ward isolation was similar to that of side room

isolation.

2.6.2 Modelling assumptions

Several assumptions were made in order to perform the analysis. The decision to as-

sume positive patients remain positive during their stay was made because carriage

time of MRSA is typically long; the median length of carriage has been estimated at 8.5

months [169], while Robicsek et al. found that 48% of patients colonised with MRSA

74



CHAPTER 2: THE EFFECTIVENESS OF PATIENT ISOLATION AND DECOLONISATION

TREATMENT IN REDUCING MRSA TRANSMISSION

were still colonised after a year, and 21% after four years [170].

Specificity of the screening test to detect MRSA was assumed to be 100%, and inde-

pendent estimates have confirmed that that specificity closely approaches this value.

Two culture tests were used in the clinical trial; CHROMagar MRSA and an MRSA

selective broth, which were estimated by Perry et al. to have specificities of 99.3%

and 92.8% respectively, after 22-24 hours [138]. We found sensitivity estimates varied

slightly across the wards. Sensitivity can depend on swabbing techniques and the time

between taking the swab and testing, which may account for the differences between

ward estimates. Our estimate of sensitivity is an approximation of the clinical sensitiv-

ity of the test, based on the assumption that positive patients remain positive for the

duration of their stay. If individuals were actually cleared of carriage during their hos-

pital episode, then our model will underestimate sensitivity, as we assume subsequent

negative swabs must be false negatives.

Patients colonised and infected with MRSA were treated as equally likely to trans-

mit, in order to run a simple, two-state model. Differentiating between the two cases

would require additional data on the onset of clinical symptoms for infection, as well

as parametrisation of the transition from the colonised to infected states. It has been

shown that there is not a significant difference in transmission between these groups

[176].

Only routine pooled screening results were used to evaluate the presence of MRSA col-

lected at the start and end of a patient’s episode. It is certainly possible for patients

to be colonised at one site but not another [9], and patients who are colonised or in-

fected at a site other than the screening sites, such as wounds and surgical sites, may

potentially be missed. The colonisation pressure may be underestimated by consider-

ing only colonisation at these sites. In the next section, we investigate the incorporation

of additional screening results from clinical sites.

Compliance with contact barrier precautions or the use of decolonisation treatment was

not assessed. In reality, a healthcare worker may be reminded to adhere to precautions

by having to enter a side room. For the same reason, compliance with decolonisation

therapy may be increased. These factors could potentially result in a benefit to side

room isolation over open ward isolation under our model assumptions. Any additional

risk reduction from this psychological effect is incorporated into our estimates of Eiso.

We are not aware of a similar study estimating the effectiveness of isolation and de-

colonisation treatment in hospital general wards, so directly comparable results are not

75



CHAPTER 2: THE EFFECTIVENESS OF PATIENT ISOLATION AND DECOLONISATION

TREATMENT IN REDUCING MRSA TRANSMISSION

available. A model based analysis by Kypraios et al. was designed to assess the impact

of isolation on MRSA transmission, using data collected from eight ICUs in a Boston

hospital [52]. Isolation in this study was considered to be barrier precautions; that is,

the wearing of gowns and gloves. All ICU beds in this setting were in single rooms.

Bayesian inference was used to derive estimates for unisolated positive days and the

probability of isolation effectiveness. In this study, isolation effectiveness was assessed

with the measure a1/a2 (which approximates our measure Eiso), and this was estimated

to be 0.75 (95% CI: 0.25, 2.22), pooled across each of the ICUs.

The effect of decolonisation therapy on MRSA transmission rates is unclear. A system-

atic review on the effect of mupirocin nasal ointment on S. aureus infection rates in nasal

carriers found evidence to support its effectiveness, but reduction in transmission was

not investigated in any included study, and only one considered methicillin-resistant

strains separately [177].

2.6.3 Pseudolikelihood approach

The pseudolikelihood analysis was significantly faster than the MCMC approach, and

provides crude parameter estimates. The pseudolikelihood is calculated under addi-

tional assumptions, compared to the Bayesian approach, namely, that patient episodes

are independent, and that colonisation pressure is fixed. The colonisation pressure here

is likely to be underestimated, since undetected carriage is not taken into account. We

find that estimates for p and z compare quite well to the values attained in the Bayesian

analysis (figure 2.9), but transmission parameters a0 and a2 were often estimated to be

very close to zero.

In order to estimate the isolation effectiveness Eiso with the pseudolikelihood, we cal-

culated the median of the statistic from 1000 bootstrap samples. This is relatively time-

consuming, and performing this eliminates any time-saving advantages of the pseudo-

likelihood approach over the MCMC algorithm.

It appears that this approach does not offer many advantages over Bayesian methods,

and requires more restrictive assumptions. It may be useful to generate quick and

crude estimates of the parameters. These estimates could potentially be used as starting

points for the MCMC algorithm, and the estimated variance might be used to initially

calibrate the proposal distribution for the Metropolis-Hastings step.
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2.6.4 Summary

Our analysis indicates isolation in combination with decolonisation treatment is as-

sociated with a reduction in MRSA transmission of around 64% in hospital general

wards, and that approximately three-quarters of ward transmission is due to uniso-

lated colonised patients. We estimated that over 50% of colonised patient-days were

spent out of isolation. Therefore attempting to minimise this figure would be key to re-

ducing MRSA acquisitions in this setting. Further research into the separate effects of

decolonisation treatment and isolation, as well as a more informative estimation for the

difference between open ward and side room isolation would be required to provide

statistical evidence supporting the precise components of a package of interventions for

a newly-discovered positive patient. With appropriate data from a purpose-designed

trial, our model may be extended to consider these factors.

2.7 Clinical isolate data

In the previous analysis, one of our assumptions was that a patient with a ‘colonised’

status was colonised at one of the screening sites (nose, axillae, groin), and that this

was a sufficient measure to determine MRSA carriage. In reality, an individual may

be colonised at other sites, particularly in the case where a patient is intubated or has

an open wound. Such a patient may be colonised (or infected) at this site, and yet re-

main negative at the screening sites, resulting in a true negative swab result. Using the

surveillance screening data alone may therefore ignore a potentially significant source

of transmission.

Using additional positive clinical isolate results taken from high-risk patients or sus-

pected MRSA carriers during the clinical trial at GST, we investigate the validity of us-

ing surveillance screening alone, and the effect of incorporating these additional data

on the transmission parameters.

2.7.1 Data

In the study by Jeyaratnam et al. [50], patients were screened at the nose, axillae or

groin (which we define as ‘screening sites’) on admission and discharge, as well as at

skin breaks or clinically indicated sites (‘clinical isolates’) if applicable. All positive

(but not negative) clinical isolate results were recorded, but were not used in our initial
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Admission-discharge swab pairs

A Discharge

⊕ ⊖ NA

A
d

m
is

si
o

n ⊕ 316 134 189 639

⊖ 259 7520 4564 12343

NA 25 421 599 1045

600 8075 5352 14027

B Discharge

⊕ ⊖ NA

A
d

m
is

si
o

n ⊕ 125 75 247 447

⊖ 184 7388 4622 12194

NA 9 411 966 1396

318 7874 5835 14027

C Discharge

⊕ ⊖ NA

A
d

m
is

si
o

n ⊕ 595 75 153 823

⊖ 296 7388 4510 12194

NA 19 411 580 1010

910 7874 5243 14027

Table 2.9: Total admission-discharge swab pairs under different assumptions. Pos-

itive swabs are indicated by ⊕, while ⊖ denotes negative results. In all

settings, ‘NA’ covers missing swabs, or those which are invalid under

the conditions described in Jeyaratnam et al. A) Total swab pairs using

only surveillance swabs on admission and discharge. B) Swab pairs us-

ing surveillance swabs only, having deleted results occurring after a clinical

positive. This ‘override’ method is described below. C) Swab pairs using

surveillance swabs and positive clinical isolates. A patient is considered

positive if they have received a positive result from any body site.

analysis of MRSA transmission. The work by Jeyaratnam et al. assumed patients to be

positive on admission to a study ward if they were screened positive via any specimen

taken up to five days prior to hospital admission, or 48 hours after ward admission, or

were transferred from another hospital where they were screened positive. Tables 2.9a

and 2.9c show the differences between using screening swabs only versus additional

data. We see almost a 30% increase in patients observed to be positive on admission.

This indicates that a large amount of MRSA carriage is ignored when considering only
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surveillance swabs. Clearly, it is important to consider how these additional data affect

our analysis of MRSA transmission. However, certain difficulties arise in attempting

to incorporate the additional screens. While surveillance screens are taken routinely

for all patients, clinical isolates are taken only from high risk patients, suspected to

be MRSA carriers. Simply treating these results in the same way would introduce bias,

particularly as negative clinical isolates are not reported. Further, the location of coloni-

sation becomes important. Once a patient is known to be colonised at a wound site,

there is no reason to assume that a subsequent negative swab at the screening sites is

a false negative, and no information to suggest how likely it is for MRSA to be trans-

ferred from one body site to another. In fact, the notion of treating patients as simply

‘colonised’ or ‘susceptible’ becomes questionable. As such, we now explore different

methods to incorporate this additional data.

2.7.2 Methods

We consider the situation where patients either have a pair of surveillance swabs alone,

or these plus additional clinical isolates.

• Treat both sets of results equally. As previously mentioned, the methods and

reasons for collection of the two sets of results differ, meaning that treating them

identically will likely introduce important biases. Firstly, since colonisation can

occur at a single site, the relation between the result of two swabs taken at differ-

ent sites is complex, and a simple two-state Markov chain of patient status pro-

gression cannot suitably accommodate this. Secondly, using the same measure

of sensitivity for these results is likely to be unreasonable, due to the different

methods of collection. In any case, since no negative clinical isolate results are

recorded, there is no way to estimate the sensitivity of the clinical isolate.

To deal with the sensitivity issue, we could redefine the quantity z as

z = P(screened positive | positive at any site),

which is no longer a measure of sensitivity, and not a greatly informative or clin-

ically interesting quantity. Alternatively, we could remove the parameter z al-

together, and assume 100% sensitivity. In this case, we would need a method

to deal with a negative result following a positive result. The simplest solution

would be to exclude these results.
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• Override surveillance swabs with clinical isolates. This method would override

any surveillance swabs taken after the date of any positive clinical isolate. Once

this has occurred, the patient is treated as positive and subsequent surveillance

swabs are ignored. In particular, they are not considered in the calculation of sen-

sitivity. This means that the remaining surveillance swabs can be used to fairly

assess the sensitivity, and an individual is regarded as MRSA positive if they are

colonised at either the screening sites or elsewhere. Unfortunately, this involves

disregarding a large portion of the surveillance swabs, which will increase un-

certainty around the estimate of sensitivity. Since those with a clinical positive

screen are at a greater risk of colonisation at a screening site, we lose a signif-

icant proportion of positive swabs in particular. Since some wards had a very

low MRSA prevalence during the study, the information remaining to inform the

estimate of sensitivity is minimal.

• Introduce more patient states. We could expand the model beyond the current,

two-state model by allowing for colonisation at different sites. This allows pa-

tients with a positive clinical isolate to progress to a different state than those

who are positive at a screening site. This also allows patients with a positive

wound swab to be legitimately screened negative at the screening sites. We can

formulate different transmission rates to look at progression between the multi-

ple colonisation statuses (see figure 2.10). The drawback of this approach is its

considerably greater complexity than the current framework. The probability of

becoming colonised at a site other than the screening sites is heavily dependent

on whether the patient has a wound, or is intubated, and complete data regard-

ing a patient’s circumstances in this respect would be required. Even with these

data, since colonisation is relatively infrequent, there still may not be enough

MRSA positive patients to separate the ‘colonised’ state into multiple states and

derive meaningful estimates for transmission parameters. One would have to

take into account the fact that clinical isolates are not collected in the same man-

ner as surveillance swabs, and are taken from a selected subpopulation. More-

over, an assumption would have to be made about the sensitivity of the clinical

isolate swabs.

All the above methods either introduce bias, ignore data, or are potentially too complex

to derive meaningful results. We decided that the best way to proceed with analysis

would be to use the second method, overriding surveillance swabs with positive clin-
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Figure 2.10: Extended four-state model. This allows patients to be colonised at the

screening sites (Cs), at another site, determined by a clinical isolate,(Ci),

or both (Cb). Up to four different transmission rates can be associated with

this model (q·(t)). We would also require a parameter for the probability

of being admitted in each state.

ical isolate results. This should not unduly affect any of the parameters, and should

more accurately reflect the burden of MRSA in the ward. Note that estimates of sensi-

tivity are informed by the swab results in table 2.9b.

A crude estimate of sensitivity can be obtained by dividing the number of positive-

positive pairs by the total number of patients with a positive admission swab and a

valid discharge swab. This uses the assumption that positive patients remain posi-

tive, and that specificity is 100%, and so treats a negative result following a positive

screen as a false negative. This is the minimum number of false negatives; the actual

number may be higher, and is inferred with the data augmentation algorithm. Table

2.10 presents a summary of the data informing the estimation of z under the override

assumption. The upper bound for the parameter z is calculated as

1 −
Number of positive-negative pairs

Number of positive swabs
.

It is clear from table 2.10 that the information available to estimate z varies considerably

across the ten study wards, and is fairly minimal for some settings. Notably, ward 9

has only 22 positive swabs, and ward 5 has a crude estimate of sensitivity of just 0.2.

We repeated the analysis using the same methods as the previous analysis, using a

data-augmented MCMC algorithm to allow a patient’s colonisation time to vary be-

tween admission time, and time of any first positive result (or discharge when no

81



CHAPTER 2: THE EFFECTIVENESS OF PATIENT ISOLATION AND DECOLONISATION

TREATMENT IN REDUCING MRSA TRANSMISSION

Data available to inform sensitivity estimate

Ward 1 2 3 4 5 6 7 8 9 10

⊕ → ⊕ 6 10 33 27 3 12 11 9 3 11

⊕ → ⊖ 6 7 18 6 12 7 5 7 3 4

Total positive swabs 48 88 175 124 47 82 71 57 22 51

Crude estimate z 0.50 0.59 0.65 0.82 0.20 0.63 0.69 0.56 0.50 0.7

Upper bound z 0.89 0.93 0.91 0.95 0.8 0.92 0.93 0.89 0.88 0.93

Table 2.10: Analysis of remaining surveillance swabs for each ward, having removed

those overridden with a positive clinical specimen. The top row is the

number of patients who received a positive screen (⊕) on admission and

discharge, and the second row is the total number of patients with a pos-

itive admission swab, and a negative discharge swab (⊖). We can derive

an upper bound for sensitivity from the fixed total number of (true) pos-

itive swabs, and minimum number of false negative swabs (total number

of (⊕,⊖) pairs).

positive results), but surveillance swabs occurring after clinical positive swabs were

discarded.

2.7.3 Results

As anticipated, the prevalence on admission, p, is estimated to be higher when using

the additional clinical results. A pooled estimate of this parameter is 0.09 (95% CI: 0.07,

0.11), compared to 0.07 in the original analysis. The posterior mean of sensitivity, z,

is lower, and the variance quite a lot higher than previously. The sensitivity, z, was

estimated to be 0.57 (0.42, 0.71). The validity of this estimate is discussed later. We

found that the transmission parameters differed from the initial estimates; the uniso-

lated colonised parameter (a1) increased slightly, while the isolated and colonised pa-

rameter (a2) had decreased. As a consequence, the estimate of isolation effectiveness is

somewhat higher; we estimate Eiso to be 0.23 (0.13, 0.42), which corresponds to a reduc-

tion in transmission of 77% (58%, 87%), compared to the 64% previously. The estimates

are summarised in table 2.11.

We found that the data available for estimating sensitivity was limited, and the uncer-

tainty surrounding this parameter was high. For this reason we decided to investigate

the use of an informative prior for this parameter. A Beta(12,3) distribution was chosen,

which corresponds to a mean of 0.8 and a variance of 0.01. This is a reasonable prior
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estimate, given values found in the literature [138] and our own estimate of 0.77 from

the previous analysis.

Using this informative prior increased our posterior estimate of sensitivity to 0.66, and

reduced the estimate of p slightly, to 0.08. However, the effect of isolation remained

almost the same at 0.22 (0.12, 0.4).

Parameter estimates under varying prior sensitivity means

Prior mean Posterior estimates

z p z a0 a1 a2 Eiso

U∗ 0.091 0.57 2.6 × 10−4 20.8 × 10−4 1.90 × 10−4 0.23

0.6 0.086 0.60 2.5 × 10−4 21.0 × 10−4 1.83 × 10−4 0.22

0.7 0.085 0.63 3.1 × 10−4 21.0 × 10−4 1.82 × 10−4 0.25

0.8 0.084 0.66 2.6 × 10−4 20.7 × 10−4 1.80 × 10−4 0.22

0.9 0.084 0.65 2.6 × 10−4 20.8 × 10−4 1.87 × 10−4 0.23

Table 2.11: Posterior parameter estimates under different prior assumptions. Sensitiv-

ity, z, takes a Beta distribution with a mean varying between 0.6 and 0.9,

and variance 0.01. The table gives posterior means for the parameters θ,

and the median for Eiso. U∗ indicates that a uniform prior distribution on

(0,1) was used for z.

Table 2.11 shows how parameter estimates change as we alter our prior assumptions

about sensitivity. The estimates are quite robust to the choice of sensitivity prior, and

the estimate for isolation effectiveness remains high under all prior means. In addition,

we ran an even more informative prior, Beta(127.8, 32.1), corresponding to a prior mean

and variance of 0.8 and 0.001 respectively. The prior information for z was such that

the posterior distribution remained similar to the prior for most wards. The pooled

posterior sensitivity was 0.78 (0.76, 0.80), and Eiso was 0.23 (0.15, 0.37). This seems to

confirm that this estimate does not depend on the prior of z.

For comparison, we also ran the analysis under the assumption that all swabs were the

same. As mentioned previously, this will unfairly increase the estimate of z, but we

might ignore this to see the effect this has on our main interest, the estimate of isolation

effectiveness. The results are summarised in table 2.12.
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Pooled posterior estimates, treating all swabs equally

Parameter Estimate

p 0.07 (0.05, 0.09)

z 0.92 (0.89, 0.94)

a0 2.6 (0.9, 4.2)×10−4

a1 22.7 (16.3, 29.1)×10−4

a2 1.7 (0.6, 2.7)×10−4

Eiso 0.20 (0.11, 0.35)

Table 2.12: Pooled parameter estimates, treating clinical isolates and surveillance

swabs as the same. This corresponds to table 2.9c.
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Figure 2.11: Inferred and observed colonised population. We plot the population

count of patients observed to be positive by the screening only (black),

as well as the number observed to be positive via either a screening test

or a clinical isolate (purple). The colonised population inferred from

the surveillance screens is shown in red (95% credible interval shaded

in pink).
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2.7.4 Discussion

Repeating this analysis with additional clinical isolate data has revealed additional

colonisation pressure that was otherwise undetected by surveillance swabs alone. The

majority of ‘extra’ patients will have been in isolation, as hospital staff were aware of

their colonisation/infection status. This means that the number of colonised patients in

isolation (CI(t)) is greater than previously thought, while the transmission rate is sim-

ilar or lower than we had previously estimated. The result of this is that the parameter

a2 has decreased, while a1 is increased to accommodate the fewer inferred colonised pa-

tients out of isolation. This results in a similar transmission rate, but a higher estimate

of isolation effectiveness.

The initial analysis is believed to be a slightly conservative estimate of prevalence and

transmission, given that many MRSA positive patients are undetected by using only

surveillance swabs, and these patients are most likely to contribute to the colonised and

isolated population count. In this investigation, we have shown that by including the

positive clinical isolates, the effect of isolation and decolonisation treatment is higher.

It was estimated that while few positive patients are unisolated, these patients have

a much larger effect on the transmission rate. However, we have acknowledged that

the methods used to incorporate this additional data are imperfect, and may introduce

uncertainty and bias.

With only positive clinical isolate results available, it is not possible to estimate the sen-

sitivity of this set of swabs, which must therefore be treated the same as the screening

results, or used only to inform the colonised population count. Due to the nature of the

additional data, we could find no method to fully incorporate this information without

introducing bias or having to ignore parts of the dataset. We found that overriding the

surveillance data with clinical isolates removed a large proportion of positive swabs,

which are required to inform the sensitivity estimate. This meant that the estimate of

sensitivity was much more uncertain than previously. We found that lower sensitivity

values than we might expect are estimated, unless a very informative prior distribution

is used for z.

Incorporating this additional data has given us a better idea of the true prevalence of

MRSA at any given time. We compared the total observed MRSA prevalence using

all available swab data to the mean inferred colonised population estimated from the

MCMC algorithm in figure 2.11. The estimated prevalence, derived using only the

surveillance screening results approximates the total observed prevalence reasonably
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well, providing some confidence in our original method.

We have shown how the additional burden of MRSA positive patients affects our pa-

rameter estimates, under certain conditions. We consider the initial analysis to be

more reliable, but this additional investigation supports our claim that isolation and

decolonisation treatment reduce the MRSA transmission rate in this setting.
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CHAPTER 3

Bayesian model selection

3.1 Introduction

In statistical modelling, one is often faced with a system that may be modelled in sev-

eral different ways. Having derived estimates from a particular model, it is impor-

tant to consider how plausible this model is, relative to other alternative formulations.

Model selection might be performed to either select a ‘best’ model (eg. [59]), to in-

vestigate the dynamics generating observed data [178], or to derive weightings for a

model averaging procedure [179]. Many studies on healthcare-associated infections

have derived estimates for transmission parameters (eg. [145, 149]), however, few

have attempted to compare alternative underlying models. While models are often

constructed with the aim of providing answers to specific questions (such as estimat-

ing the effectiveness of isolation in the previous chapter), there may well be a model

which describes the fundamental dynamics of the observed (or indirectly observed)

system better. It is of interest to consider the support for a range of alternatives to see

how much, if at all, the data support the use of a particular model.

While the Bayesian methods described in the previous chapter provide a convenient

and flexible framework in which to derive parameter estimates, the procedures to eval-

uate and compare models in this setting are not as universally accepted or as straight-

forward as those in a classical framework. While the Bayes factor is a well-known tool

which may be used to compare pairs of (not necessarily nested) models in a Bayesian

framework, computation can be difficult, and there is a dependency on the specification

of the prior distributions which can be troublesome, especially for models of differing

dimension, as we discuss later. Furthermore, models which account for missing data

introduce additional difficulty in the definition of model complexity.
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Much research has been undertaken in the past decades to develop sophisticated tools

to evaluate Bayesian models, and while often computationally expensive, these have

been shown to perform well. There are, however, few studies evaluating systematically

the performances of Bayesian model selection methods, and for the particular case of

epidemic models, a lack of analyses which consider multiple model comparison tech-

niques. In this chapter, we propose to compare a set of transmission models, in order to

assess the performance of two important Bayesian model selection methods: reversible

jump Markov chain Monte Carlo (RJMCMC), and the deviance information criterion

(DIC). We perform a systematic study using both real and simulated data to investigate

the effect of several factors on the outcome of the two methods.

In section 3.2 of this chapter, we provide an overview of Bayesian model choice meth-

ods, firstly discussing the calculation and interpretation of Bayes factors. We describe

the difficulty of estimating the marginal likelihood, key to finding estimates of posterior

model probabilities. We then introduce the DIC and RJMCMC, as well as alternative

MCMC-based model choice methods, and lastly describe an ABC approach.

Section 3.3 describes existing analyses of epidemics which have used Bayesian model

selection methods. We discuss the additional complexities which arise in the case of

models with missing data, and the particular case of analysing transmission of hospital

pathogens. We then define the models which we intend to compare in our study.

The main components of this chapter are detailed assessments of the performance of

two widely-used Bayesian model choice approaches, RJMCMC and the DIC. In section

3.4 we consider the application of the RJMCMC algorithm to a series of transmission

models, with the aim of calculating posterior model probabilities. We then conduct a

series of simulation studies, exploring some of the issues which affect its performance

in this setting. These include the specification of prior distributions, the choice of trans-

formation function allowing between-model jumps, and the true transmission rates of

the system. We report our findings, and then estimate posterior model probabilities us-

ing real hospital data, examining the results in light of the findings from our simulation

studies.

In section 3.5, we investigate a version of DIC for missing data models, evaluating its

performance in choosing between a set of transmission models. Once again, we per-

form a systematic analysis, determining where the DIC can identify the correct model

under various simulated datasets. We finally calculate the DIC for each transmission

model, using real hospital data.
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Section 3.6 concludes the chapter with a discussion of our results for both approaches.

We discuss the advantages and disadvantages of both methods, and under which con-

ditions we might expect reasonable results.

3.2 Background

3.2.1 Bayesian model selection methods

Suppose we have data x, which we assume have been generated under one of a set

of k candidate models, M = {m1, . . . , mk}. We suppose that m is an indicator of the

model, which is characterised by a set of parameters θm ∈ Θm. Of fundamental interest

in Bayesian model selection is the evaluation of the posterior model probability

π(m|x) ∝

∫

Θm

π(x|θm, m)π(θm|m)dθmπ(m), (3.2.1)

where π(x|θm, m) is the likelihood of the data under model m, π(θm|m) is the prior

density of parameters θm for model m, and π(m) is the prior probability of model m.

Evaluation of the posterior model probability is often achieved via within and between

model sampling using MCMC-based methods. Such approaches aim to provide a rel-

ative measure of fit, and quantify evidence in favour of a particular model, rather than

providing a ‘best’ model. Alternatively, information criteria provide models with a

score, based on the relative model fit (how closely the model fits the observed data

compared to competing models), and penalising by model complexity (often consid-

ered equivalent to the number of parameters in the model). Such measures are more

commonly used to select one model from a set of candidates, and do not provide a

straightforward way to assess relative fit of models.

3.2.2 Bayes factors and the marginal likelihood

The Bayes factor may be used to assess the evidence in favour of one model over an-

other, conditional on one of the models being true. The Bayes factor has been widely

used for Bayesian hypothesis testing and model comparison, despite complexities of

calculation and its dependency on the choice of model-specific prior distributions [133–

135].

The Bayes factor of models l and m is the ratio of marginal likelihoods,

BF(l, m) =
π(x|l)

π(x|m)
=

∫
π(x|θl , l)π(θl |l)dθl∫

π(x|θm, m)π(θm|m)dθm
. (3.2.2)
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The Bayes factor is often used for model selection purposes, although has been criti-

cised for its dependence on the prior distributions of the model parameters. Lindley

discussed the paradoxical support exhibited by posterior odds for models with an in-

formative prior distribution over models with a diffuse prior, in the case of point hy-

pothesis testing [180]. In many cases, a parameter’s prior distribution is desired to

have as little impact on the posterior estimate as possible. However, as a prior distribu-

tion becomes more diffuse, the preference shown by the Bayes factor for the alternative

model becomes larger, due to the smaller expected likelihood. This has become known

as Lindley’s paradox. Comparing models of different dimensions is of particular in-

terest in our study. If uninformative prior distributions are assigned to the model pa-

rameters, increasing dimensionality will tend to reduce the expected likelihood under

the priors, and the same effect is observed — that is, the Bayes factor will support the

model with fewer parameters.

Since direct calculation of the Bayes factor requires the calculation of the marginal

likelihood, which is commonly analytically intractable, an alternative method is re-

quired. Numerical approximation methods have been suggested to derive estimates of

the marginal likelihood π(x|m). Chib proposed methods to approximate the marginal

likelihood using a Gibbs sampler, relying on the availability of full conditional distri-

butions in closed form [181]. Since the marginal likelihood can be expressed as

π(x|m) =
π(x|θm, m)π(θm|m)

π(θm|x, m)
,

it suffices to evaluate the likelihood and prior distribution at a point θ∗, as well as

provide an estimate of the posterior density at θ∗, π̂(θ∗|x, m). By partitioning the pa-

rameter vector into blocks θ = {θ1, . . . , θB} which may be updated using a Gibbs step,

the posterior density may be written as the product

π̂(θ∗|x, m) =
B

∏
i=2

π̂(θ∗i |θ
∗
i−1, . . . , θ∗1 , x, m).

Now, each component may be estimated as

π̂(θ∗i |θ
∗
i−1, . . . , θ∗1 , x, m) =

1

N

N

∑
j=1

π(θ∗i |θ
∗
1 , . . . , θ∗i−1, θ

(j)
i+1, . . . , θ

(j)
B , x, m),

where θ
(j)
i+1, . . . , θ

(j)
B are the jth samples from a Gibbs algorithm, using the full condi-

tional density with θ∗1 , . . . , θ∗i−1 fixed. This approach was later extended to estimation

of the marginal likelihood, based on Metropolis-Hastings output [182].

Friel and Pettitt proposed a method to estimate the marginal likelihood using ideas

from path sampling [134]. The authors consider the ‘power posterior’, πt(θ|x, m) ∝
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π(x|θ, m)tπ(θ|m); by allowing t to move from 0 to 1, the power posterior follows a

path from the prior to the posterior density. The authors show that

log(π(x|m)) =
∫ 1

0
Eθ|x,t,m(log(π(x|θ, m)))dt,

where the integrated term is the expectation of the log likelihood, with respect to the

power posterior, with power t. Partitioning t on the unit interval allows this to be ap-

proximated by numerical integration, and the expectation may be estimated by draw-

ing samples from πt(θ|x) for particular levels of t.

3.2.3 RJMCMC

3.2.3.1 Description

Rather than viewing competing models and their corresponding parameter sets sepa-

rately, it is convenient to consider a joint parameter space, spanning each model m ∈ M

and its individual parameter space θm ∈ Θm. The RJMCMC algorithm, proposed

by Green in 1995 [124], generates a chain of points (m(1), θ(1)), . . . , (m(N), θ(N)), where

θ(i) ∈ Θm(i) , which converges to the posterior distribution π(m, θ|x). Points are sam-

pled across the space M =
⋃k

m=1{m} × Θm, where proposal points are dependent on

the current state, allowing for moves between models of differing dimension.

The RJMCMC algorithm may be implemented in the following way:
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Reversible jump MCMC algorithm

1. Set initial model m(0), parameters θ(0) and number of

iterations N.

2. Let (m(i), θ(i)) indicate the current state. With

probability j(m(i), m∗), propose a move from the current

model m(i) to model m∗.

3. If m(i) = m∗, propose parameters θ∗ ∈ Θm∗ according to a

within model Metropolis-Hastings step. Otherwise, sample

a random vector u ∼ hm(i),m∗, and propose the candidate

parameter vector

gm(i),m∗(θ(i), u) = (θ∗, u′).

4. Set (m(i+1), θ(i+1)) = (m∗, θ∗) with probability min(1, α),

where

α =
π(x|m∗, θ∗)π(θ∗|m∗)π(m∗)hm∗,m(i)(u′)j(m∗, m(i))

π(x|m(i), θ(i))π(θ(i)|m(i))π(m(i))hm(i),m∗(u)j(m(i), m∗)
|J|,

and

J =

∣∣∣∣∣
∂gm(i),m∗(θ(i), u)

∂(θ(i), u)

∣∣∣∣∣ ,

otherwise (m(i+1), θ(i+1)) = (m(i), θ(i)).

5. If i < N, go to step 2.

This is a generalisation of the within-model Metropolis-Hastings algorithm (described

in section 1.5.2.3) to sample over a parameter space spanning all models. The number

of possible models is not required to be finite, and the algorithm may be implemented

without knowledge of the size of the model [183].

RJMCMC requires mechanisms to move between models and their associated param-

eters. In the above algorithm, the function gm(i),m∗(u, m(i), θ(i)) = (θ∗, u′) is a determin-

istic diffeomorphism which transforms parameters between models, given the current

state and a random variable u ∼ hm(i),m∗ . This is constructed such that

dim(u) + dim(θm(i)) = dim(u′) + dim(θm∗).
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Green showed that the RJMCMC algorithm generates a Markov chain satisfying the de-

tailed balance condition, and which converges to the posterior distribution π(m, θ|x)

[124]. One may estimate the posterior model probability, π(m|x), as the proportion

of accepted points in model m; that is, π(j|x) ≈ 1
N ∑

N
i=1 1(m(i) = j). Furthermore,

within-model parameter estimates for a given model j may be derived from the sam-

ple {θ
(i)

m(i) |m
(i) = j}, provided that this set is of a reasonable size. It is clear that the

behaviour of the algorithm depends on the choice of transformation function, g, the

random variable proposal density h, as well as prior information.

In jumping from model m to l, a sensible choice of transformation, g, would map the

current point θm to an ‘equivalent’ point θl in the parameter space of l, such that the

proposed point has similar posterior support as the current state [184]. Proposing a

point away from the region of high posterior probability density in a candidate model

will very likely result in rejection [185]. This may be avoided by using some form

of summary function S(·) which is applicable to all models, and choosing θl such that

S(θl) = S(θm). In the setting of epidemic models, where interest often lies in fitting var-

ious forms of transmission rate, matching these rates in a between-model move might

be attempted, by selecting appropriate candidate parameter values. This increases the

chance that the proposed point will be accepted.

3.2.3.2 Transdimensional independence sampler

If the within-model posterior distribution of the transmission parameters is known, or

can be fairly well approximated, it may be more efficient to sample from this distribu-

tion directly, independent of the current state of the algorithm. Although it is normally

difficult to approximate the posterior distribution of all within model parameters a

priori, by doing so, one can avoid having to specify an efficient proposal mechanism,

which can often be problematic.

We assume that θi|x ∼ hi for all i ∈ M, the set of all models. Given the current state

is (m(i), θ(i)), where θ(i) ∈ Θm(i) , a move to model m∗ is proposed with probability

j(m(i), m∗), and a random vector u is drawn from hm∗ . The transformation function is

given as gm(i),m∗(θ(i), u) = (v, u) = (v, θ∗), where dim(v) = dim(θ(i)). This move is

independent of θ(i), and the Jacobian will be equal to 1. The proposed point is now

accepted with probability min(1, α), where

π(x|m∗, θ∗)π(θ∗|m∗)π(m∗)j(m∗, m(i))hm(i)(θ(i))

π(x|m(i), θ(i))π(θ(i)|m(i))π(m(i))j(m(i), m∗)hm∗(θ∗)
.
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Clearly, the independence sampler is highly sensitive to the choice of proposal. The ac-

ceptance rate will depend on how closely the proposal relates to the posterior, and a dif-

fuse proposal distribution will lead to extremely low acceptance. Since little is usually

known about the form of the posterior, the independence sampler will be a very ineffi-

cient method of deriving estimates without pilot investigations into the within-model

posteriors. One possibility to improve the efficiency of this process would be to run

within-model MCMC algorithms to derive posterior distributions for each π(θm|m, x),

and use these to inform the choice of proposal distribution. If the number of potential

models is large, running separate within-model analyses for each will also be time-

consuming.

3.2.4 DIC

3.2.4.1 Description

Information criteria are statistics which measure the relative adequacy of a given model.

This typically involves a trade-off between parsimony and goodness-of-fit, the aim be-

ing to select a simple model which fits well. An example of this is Akaike’s information

Criterion (AIC), defined as

AIC = 2ν − 2 log L(θ̂),

where ν is the number of parameters in the model, and θ̂ is the maximum likelihood

estimate of the likelihood L [186]. In a system of hierarchical models, a more complex

model will always provide a better fit, and so the AIC measures model adequacy (given

here by the maximum likelihood), penalised by complexity (number of parameters).

The relative fit of Bayesian models may be checked informally via the posterior de-

viance, an approach suggested in 1974 by Dempster [187]. The posterior deviance is

defined as

Dx(θ) = −2 log(π(x|θ)).

The expected deviance, Dx(θ) = Eθ|x(Dx(θ)), takes lower values when values of θ

result in a higher posterior probability [188]. The expected deviance may be estimated

from samples of the posterior distribution;

Dx(θ) ≈
1

m

m

∑
i=1

Dx(θ
(i)),

where θ(1), . . . , θ(m) are posterior samples, which may be taken from the output of an

MCMC algorithm.
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Such a measure can therefore be used to informally compare two different models.

However, this alone does not take into account the relative complexity of the models,

and there is no straightforward way to penalise a model for this, since the concept

of model complexity is less clearly defined in a Bayesian setting. If we allow a prior

distribution to become ever more informative, until there is a point mass on a partic-

ular value, a model can be viewed as decreasing in degrees of freedom, and therefore

complexity, meaning that ‘number of parameters’, as used in the AIC, will not suffice.

Spiegelhalter et al. introduced the deviance information criterion (DIC) in 2002, as a

generalised model comparison tool which can be used in a Bayesian setting, and is

analogous to the AIC [136]. The authors describe the difficulty in defining complexity

in a Bayesian setting, highlighting the ‘level of focus’ as a key issue in determining this.

For instance, parameters relating to the specification of a prior distribution (hyperpa-

rameters) may or may not be of interest in an analysis, and their inclusion in the set of

focussed parameters alters the complexity of the model. To contend with these issues,

the authors proposed a complexity measure pD, the effective number of parameters,

which they define as

pD = Dx(θ)− Dx(θ̃)

= −2Eθ|x

[
log π(x|θ)

]
+ 2 log π(x|θ̃), (3.2.3)

where θ̃ is an estimator of θ, which was assumed in their paper to be the posterior mean.

This is the difference between the average posterior deviance, and the deviance at the

point θ̃, which can be viewed as the degree of improvement (reduction in deviance)

due to estimating θ̃, over a priori knowledge. As prior uncertainty reduces, then one

would expect this improvement to become smaller, corresponding to a reduction in

complexity.

The DIC is then given as

DIC = Dx(θ) + pD

= 2Dx(θ)− Dx(θ̃)

= −4Eθ|x(log π(x|θ)) + 2 log π(x|θ̃), (3.2.4)

the expected deviance plus the effective number of parameters, which, like the AIC,

represents a trade-off between model fit and complexity.

Gelman et al. suggested an alternative formulation for pD;

pD =
1

2
var(D(θ)|x),
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where the variance of the deviance can be estimated from posterior samples [188].

3.2.4.2 DIC for models incorporating missing data

In cases where the deviance, or indeed, the likelihood π(x|θ), is not available in closed

form, as is the case with missing data models (such as the MRSA transmission model

with missing colonisation times, described in chapter 2), we cannot calculate the DIC as

defined above. Suppose by introducing a set of unobserved data z, we may calculate

the complete likelihood π(x, z|θ). In such cases, it is not immediately clear how to

estimate the expected deviance Eθ|xDx(θ), due to the additional set of data z.

Celeux et al. discussed eight different formulations of the DIC for missing data models,

extending the original definition of DIC for a wider range of models [137]. The authors

discuss various interpretations of both θ̃ and Dx(θ), applicable when the likelihood

cannot be explicitly calculated. The choice of these depends on the role of the missing

data in the models to be compared; while in some cases they might be regarded as of no

interest to the analysis in hand, the missing data themselves may in other cases, such

as mixture models, be considered the focus of interest.

Consider the complete likelihood π(x, z|θ), where π(x|θ) =
∫

z π(x, z|θ)dz, and the

joint deviance, Dx,z(θ) = −2 log π(x, z|θ). We can consider the DIC for particular val-

ues of z to be

DIC(z) = 2Dx,z(θ)− Dx,z(θ̃)

= −4Eθ|z(log π(x, z|θ)) + 2 log π(x, z|θ̃). (3.2.5)

Now, by taking the expected posterior value of DIC(z) across the missing data z, we

get

DIC∗ = Ez(DIC(z))

= Ez[−4Eθ|z(log π(x, z|θ)) + 2 log π(x, z|θ̃)]

= −4Ez,θ(log π(x, z|θ)) + 2Ez(log π(x, z|θ̃)), (3.2.6)

which, with θ̃ = Eθ(θ|x), was described by Celeux et al. as DIC6, which is appropriate

in a setting such as this, where missing data are considered in order to make the com-

plete likelihood tractable, but are not themselves the focus of interest. This measure

performed adequately in their study, although the authors noted that it was possible to

calculate negative values for pD using this measure. The calculation of this measure is

described below;
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DIC for missing data models (DIC6)

1. Run data-augmented MCMC procedure (see section

1.5.2.7) on the data x to draw samples from the

posterior π(θ|x).

2. Derive the posterior mean θ̃ = Eθ(θ|x) and the expected

log-likelihood over θ and z;

Eθ,z(log π(x, z|θ)).

3. Run data-augmented MCMC procedure a second time, this

time with θ fixed at θ̃, allowing only the augmented

data to vary.

4. From the MCMC output, derive the expected

log-likelihood over z, given θ̃;

Ez(log π(x, z|θ̃)).

5. DIC6 is then given as

−4Eθ,z(log π(x, z|θ)) + 2Ez(log π(x, z|θ̃)).

3.2.5 Product space search

Carlin and Chib introduced the product space search to derive posterior model prob-

abilities, based on an MCMC approach to sample across the space of all models. In

contrast to the RJMCMC algorithm, which jumps between model parameter spaces of

potentially varying dimension, the product space search explores the full, fixed dimen-

sion space M× ∏j∈M Θj [189]. The authors proposed a Gibbs step to sample from this

space. This approach requires that the full conditional distribution for within-model

parameters θj and model m are available, and makes the assumption that the data x are

independent of {θj′}j′ 6=j under model j. The conditional distributions are then

π(θj|θj′ 6=j, m, x) ∝





π(x|θj, m = j)π(θj|m = j) m = j

π(θj|m 6= j) m 6= j,
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where π(θj|m 6= j) are ‘pseudopriors’, and

π(m = j|θ, X) =
π(x|θj, m = j)π(m = j)∏l∈M π(θl |m = j)

∑k∈M

[
π(x|θj, m = j)π(m = j)∏l∈M π(θl |m = k)

] . (3.2.7)

The posterior model probability for a given model j may then be estimated from the

proportion of the output samples where m = j. The pseudopriors have no impact

on the joint posterior π(θj, m = j|x), but are chosen to improve the efficiency of the

algorithm. Performance is best when pseudopriors are close to the posterior [189].

However, having to draw from every pseudoprior at each iteration is a computational

drawback for a large model space [190]. After a large number of iterations, the posterior

model probability for model j may be approximated by calculating the proportion of

samples m(1), . . . , m(n) for which m = j. When comparing two models using the Bayes

factor, the prior probabilities π(m = j) may be chosen arbitrarily, since they do not

affect this measure (see equation 3.2.2). This property means that they may be chosen

to improve the mixing of the chain, allowing each model to be visited roughly equally

[189]. This improves the efficiency in calculating the Bayes factor.

It is often not possible to sample from the full conditional distribution of parameters

θj. Dellaportas et al. described a ‘metropolised’ version of the product space search,

in which a Metropolis step is used to propose a model in each iteration, rather than

drawing from the full conditional distribution π(m = j|θ, x) [191].

Godsill described a framework which allows parameters to be shared between models,

generalising the product space search [192]. It can be shown that both Carlin and Chib’s

product space search and a version of RJMCMC are special cases within the framework.

3.2.6 ABC model choice

Toni et al. introduced a model choice procedure using approximate Bayesian com-

putation (ABC) method, based on sequential Monte Carlo (SMC) [127]. The authors

extend the within-model SMC algorithm [129] to include a model selection step. The

within-model ABC SMC algorithm is described in section 1.5.2.9. As before, particles

are sampled and passed through a series of filters, such that data simulated under par-

ticles from each generation approximate the observed data x ever more closely. For

decreasing threshold values ǫ1 > · · · > ǫT and a distance metric δ(·, ·), particles in

generation i represent a sample from π(θ|δ(x, x∗) < ǫi).

Prior to sampling a particle, a model is drawn according to the prior model probabil-
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ities, π(m). A model m particle is drawn from the set of weighted model m particles

in the previous sample, and is perturbed. The proposed particle is used to simulate a

new dataset x∗, and is accepted if the simulated data is close enough to the observed

dataset. The final output of this algorithm is a set of weighted particles from various

models, such that data simulated under these particles are sufficiently close the the ob-

served data x. The proportion of final particles from a particular model represents an

approximation to the posterior model probability. However, as pointed out by Robert

et al., this estimate is highly dependent on the choice of δ(·), even as ǫT approaches

zero [193]. They point out that even if a comparison statistic is sufficient within mod-

els, it is not necessarily so between models, and an estimate of the Bayes factor using

this approach will not necessarily converge to the true value.

3.2.7 Comparing model selection methods

There has been much debate surrounding the comparative performance of Bayesian

model selection methods. Both Han and Carlin [190] and Dellaportas et al. [191] con-

ducted studies into the performance of product space search methods and RJMCMC,

comparing estimates of posterior model probabilities. Han and Carlin compared two

linear regression models, in which exact posterior model probabilities had previously

been calculated via numerical integration, and provided a target for the Monte Carlo

methods. Dellaportas et al. compared a series of nested logistic regression models.

Both studies found that estimates were very similar across all methods, although it

has been suggested that the framework was not sufficiently complex to highlight poor

performance in any method [184].

3.3 Bayesian model comparison for epidemic studies

3.3.1 Previous work

There are a few published examples of epidemic modelling in a Bayesian framework

which have utilised model comparison techniques. A paper by Neal and Roberts in

2004 analysed data from a measles epidemic, and considered a series of nested models

to describe the transmission dynamics [194]. The authors described a ‘full’ model, and

four submodels, each of which was identical to the full model, with one parameter set

to zero. A RJMCMC procedure was devised to move between these models in order
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to explore the effect of school class and household spatial location on transmission.

Reversible jump was also used by O’Neill and Marks in 2005 to consider whether vom-

iting episodes increased Norovirus transmission in a school [178]. Two models were

compared, where one featured an additional parameter to account for the occurrence

of vomiting. In both papers, simulation studies were performed to assess the impact of

various assumptions made on the data.

Forrester and Pettitt conducted an analysis of MRSA transmission in ICUs, and used

the DIC measure to compare nested models [58]. The definition of the DIC involves the

calculation of the deviance of a model, which is typically not available in closed form

for missing data models, leading to alternative formulations being proposed for such

cases [137]. A later study by Cooper et al. in 2008 used an augmented data approach

to model VRE transmission, and used an adaptation of the DIC for model comparison

[126]. Since the posterior mean is not available over the missing dataset, the authors

instead use the measure pD = var(D)/2, an alternative measure of effective number of

parameters [188].

Toni et al. introduced an ABC SMC model selection algorithm, and used SIR models

to test its performance [127]. The authors created four competing deterministic mod-

els, and calculated posterior model probabilities for each model based on simulated

data, attempting to identify the correct one. Their investigation into the performance

of this method for SIR models was limited, but it was demonstrated that the basic

model was identified correctly 664 times out of 1000 iterations. The authors note that

larger simulated datasets result in stronger evidence for the correct model. The ABC

SMC approach is sensitive to many factors, including choice of prior distributions and

the choice of thresholds ǫ, which regulates which datasets simulated in the algorithm

are close enough to the original dataset.

3.3.2 Aims of current work

In this study, we are interested primarily in using Bayesian model selection methods

for the application to healthcare-associated infection data.

Throughout this chapter, three fairly simple and commonly used transmission models

are compared, in order to determine how well model selection techniques can differen-
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tiate between them. The models used are:

q0(t) = a0 (m=0)

q1(t) = a0 + a1C(t) (m=1)

q2(t) = a0 + a1CN(t) + a2CI(t). (m=2)

where C(t) is the number of colonised patients at time t, of whom CN(t) and CI(t) are

unisolated and isolated respectively. In this setting, model m = 0 assumes a constant

transmission rate, independent of any colonisation pressure. Model 1 assumes that the

transmission rate depends on the number of colonised patients present in the ward, but

the effect from these individuals is the same no matter where they are located. Finally,

model 2 separates the effect of isolated and unisolated colonised patients. In addition

to transmission parameters, we estimate the probability of colonisation on admission,

p, and the sensitivity of the MRSA carriage test, z, which are common to each model.

We work in discrete time, assuming that patients colonised on day t contribute to the

colonised populations from day t + 1 until their discharge. Patients considered to be

importations may transmit the pathogen from their day of admission.

As described in the previous chapter, we augment the model parameter space θ with

the set of colonisation times and admission statuses A in order to achieve a tractable

likelihood function. Within model m, we explore the posterior density

π(A, θm|X) ∝ π(X|A, θm)π(A|θm)π(θm),

where

π(X|A, θm) = zTP(X)(1 − z)FN(X,A),

and

π(A|θ) = p∑i φi(1 − p)n−∑i φi

·
n

∏
i=1

[
1tc

i =ta
i
+ 1tc

i 6=ta
i

exp
(
−

min(tc
i −1,td

i )

∑
t=ta

i

qm(t)
)]

∏
j:tc

j 6=∞

φj=0

(1 − e
−qm(tc

j )),

in which TP(X) is the total number of true positive swab results, FN(X, A) is the total

number of false negative results, and φi is an indicator of carriage on admission for

patient i. A full description of this model is given in section 2.4.
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3.4 Reversible jump Markov chain Monte Carlo

3.4.1 Framework

A RJMCMC algorithm was used to derive posterior model probabilities for the MRSA

transmission models described in the previous section. At each iteration, a move is

proposed between these models at random, allowing the model dimension to change

by one level of complexity, as shown in figure 3.1.

�
-

�
-

M0 M1 M2

m01 = 1
2 m12 = 1

3

m10 = 1
3 m21 = 1

2

Figure 3.1: Model jump probabilities, where mij is the probability of jumping from

model i to j.

From model 0 or model 2, a move to model 1 is made with probability 1
2 , otherwise

no move is made. From model 1, a move is made to model 0 or 2 with probability 1
3 ,

otherwise no move is made. For each between-model move, candidate values must

be resampled for the new parameter space, which may have increased or decreased in

dimension, but p or z are not altered, since they are not directly affected by changing

model. Similarly, the augmented data remains unchanged. Each model jump is now

presented in detail.

Between models 0 and 1: This move increases the dimension of the parameter space

by adding the parameter a1. A transformation function is chosen such that the trans-

mission rates for the current and proposed states are approximately equal. Candidate

values a∗0 = a0u and a∗1 = a0(1 − u)/CN are proposed, where u is a random variable

drawn from h, which we define here to be the Uniform(0,1) distribution, and CN is

the average colonised population in the ward. This transformation is equivalent to the

diffeomorphism g : [0, ∞)× [0, 1] → [0, ∞)× [0, ∞), where

g(a0, u) = (a0u, a0(1 − u)/CN) = (a∗0 , a∗1).

The Jacobian |J| of the transformation associated with the move from model 0 to model
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1 is

|J| =

∣∣∣∣∣∣
det


 u a0

1−u
CN

− a0
CN



∣∣∣∣∣∣

= a0/CN .

Suppose the current state is J = (θ0, m = 0), and we propose to move to K = (θ∗1 , m∗ =

1), then the acceptance probability for the move given by min(α(J, K), 1), where

α(J, K) =
π(X|A, θ∗1 , m∗ = 1)π(A|θ∗1 , m∗ = 1)π(θ∗1 |m

∗ = 1)π(m∗ = 1)h′(u′)m10

π(X|A, θ0, m = 0)π(A|θ0, m = 0)π(θ0|m = 0)π(m = 0)h(u)m01
|J|,

(3.4.1)

where π(θ|m = i) is the joint prior distribution of θ specific to model i. We assign ex-

ponential prior distributions with rate λ to the transmission parameters, and note that

the likelihood component π(X|A, θ, m) is not changed when moving from one model

to another, since this does not involve the transmission parameters. This simplifies the

acceptance ratio to

α(J, K) =
2

3

π(A|θ∗1 , m∗ = 1)λ2 exp(−λ(a∗0 + a∗1))

π(A|θ0, m = 0)λ exp(−λa0)

a0

CN
.

The reverse move is made by proposing a∗0 for model 0, given the current parameters

a0 and a1 in model 1. This is proposed with the inverse of the transformation function

g, which is

g−1(a0, a1) =
(

a0 + a1CN ,
a0

a0 + a1CN

)
= (a∗0 , u′).

The second component u′ is ignored, as the dimension of the parameter space is re-

duced. The Jacobian is then |J| = CN/(a0 + a1CN) = CN/a∗0 .

Between models 1 and 2: This time, the candidate values a∗1 = a1(1 + u) and a∗2 =

a1(1 − u) are proposed, where u is a random variable drawn from the Uniform(-1,1)

distribution. The parameter a0 is left unchanged. This transformation is equivalent to

the diffeomorphism g : [0, ∞)2 × [−1, 1] → [0, ∞)3, where

g(a0, a1, u) = (a0, a1(1 + u), a1(1 − u)) = (a∗0 , a∗1 , a∗2),

which has the Jacobian

|J| =

∣∣∣∣∣∣∣∣
det




1 0 0

0 1 + u a1

0 1 − u −a1




∣∣∣∣∣∣∣∣

= 2a1.
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Given states J = (M1, θ1), and K = (M2, θ2), then the acceptance probability for the

move is

α(J, K) =
π(X|A, θ∗2 , m∗ = 2)π(A|θ∗2 , m∗ = 2)π(θ∗2 |m

∗ = 2)π(m∗ = 1)h′(u′)m21

π(X|A, θ1, m = 1)π(A|θ1, m = 1)π(θ1|m = 1)π(m = 1)h(u)m12
|J|

=
3

2

π(A|θ∗2 , m∗ = 2)λ3 exp(−λ(a∗0 + a∗1 + a∗2))

π(A|θ1, m = 1)λ2 exp(−λa0 + a1)
2a1. (3.4.2)

The reverse move is made by proposing a∗0 , a∗1 for model 1, given the current parameters

a0, a1, a2 in model 2. This is proposed with the inverse of the transformation function

g, which is

g−1(a0, a1, a2) =
(

a0,
1

2
(a1 + a2),

a1 − a2

a1 + a2

)
= (a∗0 , a∗1 , u′).

The third component u′ is ignored, as the dimension of the parameter space is reduced.

The Jacobian is then |J| = 1/(a1 + a2) = 1/2a∗1 .

If the algorithm proposes to stay in the current model, a standard within-model Metropolis-

Hastings move is made. The Gibbs sampling step for p and z, as well as the data aug-

mentation step are unaffected by the trans-dimensional moves suggested here. The

efficiency of this algorithm depends on the transformation functions g, and the choice

of CN , which may be estimated prior to analysis, or the value at the current iteration

could be used.

Convergence and mixing were monitored using trace plots, and running multiple chains

from different starting points. Figures 3.2 and 3.3 show an examples of RJMCMC out-

put for data simulated under model 0 and model 2 respectively. Within-model param-

eter estimates were compared to those derived from a regular within-model MCMC

algorithm (such as those used in Chapter 2).

3.4.2 Factors affecting RJMCMC performance

A number of factors must be carefully considered before running the RJMCMC al-

gorithm, to ensure efficiency and accurate results. In addition to issues common to

RJMCMC analysis in all cases, certain properties relating to the transmission model

can affect the performance of the algorithm. In this study, a series of simulation ex-

periments were run to determine the impact of such factors on model selection. We

simulated data according to each of the three MRSA transmission models, and then

aimed to estimate the ‘correct’ model by assessing the posterior model probabilities.

Unless otherwise stated, we generated 1000 patient admissions over 500 days, where

p = 0.07, z = 0.8, and length of stay is drawn from a Poisson distribution with a mean
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Figure 3.2: Trace plots for 100,000 iterations of the RJMCMC algorithm, having disre-

garded a burn-in sample of 20,000. Model indicator samples are shown in

the upper plot, along with estimates for π(m|x) for m = 0, 1, 2. The lower

plots show samples for a0, a1 and a2, with red indicating the current model

m = 0, blue for m = 1 and green for m = 2. Data used here were simu-

lated under model 0 with a0 = 0.002. Exp(1) priors were assigned to the

transmission parameters.

of 6 days. Under each scenario, we simulated and analysed several datasets. In the

following presentation of results, we provide posterior model probabilities from one

representative simulated dataset for each scenario, such that within-model parameter

estimates were close to the values under which we simulated the data.
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Figure 3.3: Trace plots for 100,000 iterations of the RJMCMC algorithm, having disre-

garded a burn-in sample of 20,000. Model indicator samples are shown in

the upper plot, along with estimates for π(m|x) for m = 0, 1, 2. The lower

plots show samples for a0, a1 and a2, with red indicating the current model

m = 0, blue for m = 1 and green for m = 2. Data used here were simulated

under model 2 with a0 = 0.0005, a1 = 0.003, a2 = 0.002. Exp(1) priors were

assigned to the transmission parameters.

3.4.2.1 Choice of prior distribution

The reversible jump MCMC process is typically very sensitive to the choice of prior

distributions for the transmission parameters. Adding an additional parameter to a

model will tend to adjust the prior odds in favour of the less complex model; this effect

becomes greater as the prior distribution of this parameter becomes more diffuse. The

influence of the prior distributions on the posterior model probability should be taken
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into account. There are various measures that may be taken to avoid undue preference

for simpler models. The use of informative priors can reduce this problem, and ideally

a prior should be chosen which is informative enough to not affect the posterior model

probability, but diffuse enough to have minimal influence on the posterior parame-

ter estimates. Alternatively, prior matching may be used to minimise the discrepancy

between the posteriors of models of different dimensions. Having chosen prior dis-

tributions for one model, we may attempt to choose prior distributions for a second

model such that, a priori, the expected posteriors are as similar as possible.

We simulated data under the three alternative models described earlier. We generated

datasets and ran the RJMCMC algorithm, varying the informativeness of the trans-

mission parameter prior distributions, to determine the effect on the posterior model

probability. The results are shown in table 3.1.

Prior effect on model posterior probability

m Prior a0 a1 a2 π(m = 0|x) π(m = 1|x) π(m = 2|x)

0 Exp(10−3) 0.001 — — 1 0 0

0 Exp(10−1) 0.001 — — 0.98 0.01 0.01

0 Exp(1) 0.001 — — 0.7 0.04 0.26

1 Exp(10−3) 0.0005 0.001 — 0.98 0.02 0

1 Exp(10−1) 0.0005 0.001 — 0.51 0.48 0.01

1 Exp(1) 0.0005 0.001 — 0.09 0.77 0.14

2 Exp(10−3) 0.0005 0.003 0.002 0.97 0.03 0

2 Exp(10−1) 0.0005 0.003 0.002 0.29 0.45 0.26

2 Exp(1) 0.0005 0.003 0.002 0.1 0.24 0.66

Table 3.1: RJMCMC results using data simulated under the models indicated in the

first column. We generated 1000 patient admissions over 500 days, where

p = 0.07 and z = 0.8. For each analysis, transmission parameters were

assigned exponential prior distributions with rates 10−3, 10−1 and 1 to de-

termine the effect on the posterior model probability.

It is clear to see how simpler models are favoured while using diffuse priors. This

suggests that one should be very cautious when using uninformative priors in a trans-

dimensional setting. The impact of the informative prior on the posterior parameter

estimates may be assessed by comparing them to within-model estimates with a dif-

fuse prior. In this case, since the transmission rates are very small, Exp(1) is still fairly

uninformative in the range of plausible values, meaning that posterior estimates are
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only minimally affected. The posterior parameter estimates were compared to within-

model estimates and very little difference was found, indicating that an Exp(1) prior

distribution is not an unsuitable choice for these parameters.

3.4.2.2 Transformation functions

Transformation functions must be chosen carefully, in order to ensure that between-

model parameter proposals are typically made to regions of relative high posterior

probability density. This prevents the algorithm ‘getting stuck’ in one particular model,

or group of models, due to implausible proposals.

Figure 3.4: Within-model samples and transformation mappings between models 0

(red) and 1 (blue), for a simulated dataset. Darker points show samples

from the within-model posterior distribution of the transmission param-

eters, while lighter points indicate the points proposed when a between-

model jump is attempted.
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Figure 3.5: Within-model samples and transformation mappings between models 1

(blue) and 2 (green), for a simulated dataset. Darker points show samples

from the within-model posterior distribution of the transmission param-

eters, while lighter points indicate the points proposed when a between-

model jump is attempted.

The performance of the between-model parameter mappings proposed earlier was ex-

amined. Figures 3.4 and 3.5 show, for each model, within-model samples, and the pro-

posed mappings to that model from a higher or lower dimension. We can see that pro-

posals to a lower dimension model are very similar to accepted within-model points,

which corresponds to a region of higher posterior probability. In contrast, proposals

to a model of a higher dimension are frequently in regions associated with lower pos-
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terior probability density, and are therefore very unlikely to be accepted. Proposing

such redundant moves increases jump inefficiency, which causing the algorithm to get

‘stuck’ for large lengths of time. With such inefficiency, the algorithm must be run for

a large number of iterations to avoid unduly favouring a particular model.

In order to combat this effect, the use of alternative transformations functions could be

investigated, which more accurately reflect the relationship between the parameters in

different models. The choice of transformation function in RJMCMC has been the topic

of recent research [195–197]. The most successful (although perhaps not time-efficient)

approach involves analysing the posterior parameter distribution for each model via

pilot runs, and using this to inform the choice of proposal distribution. Clearly this

becomes prohibitively time-consuming for a large model space. However, for a situa-

tion such as our MRSA transmission study with three candidate models, this could be

performed relatively quickly — as noted in the previous chapter, within-model MCMC

took over 6 hours to run.

An independence sampler can be constructed, where the proposed point does not de-

pend on the current state of the Markov chain, but is drawn instead from a distribution

determined by the pilot runs — for example, a Normal distribution could be fitted

to the MCMC parameter samples, and a point proposed directly from this. Alterna-

tively, a non-parametric approach could be taken, using kernel density estimation or a

histogram fitted to the within-model parameter posterior, according to which across-

model moves may be proposed.

3.4.2.3 Missing data

Further complications arise with the use of a missing data model, where the set of la-

tent points A of unknown dimension is also being sampled. If the form of A is highly

dependent on the model, then between-model jumps will be rare. Consider the set of

colonisation times inferred during MCMC analysis of the MRSA transmission model.

Figure 3.6 shows accepted values of A for each of the three candidate models, expressed

as the count of acquisitions and importations. The areas of acceptance for each model

appear highly distinct; the ratio of importations to acquisitions is higher for simpler

models. These areas correspond closely to the region of high posterior probability for

within-model analyses. In order to accept a point with a considerably lower likeli-

hood than the current point, compensation must occur elsewhere in the acceptance

ratio (eg. equations 3.4.1 and 3.4.2). As shown in figure 3.6, only a small proportion
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Figure 3.6: Accepted samples of the augmented data from the RJMCMC output are

shown, where colours correspond to the associated model. Contour lines

indicate the frequency of accepted samples from within-model analyses.

of proposed between-model jumps have any chance of acceptance, occurring when the

value of A is in a region of high posterior probability for both the current and proposed

model. While it may be possible to propose between-model moves for A which main-

tain reversibility, this is likely to be an extremely complex construction which may only

marginally improve efficiency. One possibility is to allow the model jump probability

j(m, l) to depend on the ‘distance’ of the current state, A∗, from values of A associ-

ated with high posterior probability under model l. This should increase the number

of between-model jumps by balancing out the discrepancy in likelihood values in the

acceptance ratio, and the distance metric could be tuned to optimise the jump rate.
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3.4.2.4 Rate of transmission

Since the differences between the models are based on the formulation of the transmis-

sion rate, a certain amount of colonisation events are necessary to inform our estimates.

Datasets were simulated based upon the three candidate models, with varying levels

of transmission, to find out in which scenarios the correct model might be chosen by

the RJMCMC algorithm.

Effect of transmission rate on model posterior probability

Model, m a0 a1 a2 π(m = 0|x) π(m = 1|x) π(m = 2|x)

0 0.0005 — — 0.99 0.01 0

0 0.001 — — 0.7 0.04 0.26

0 0.005 — — 0.59 0.04 0.37

0 0.01 — — 0.68 0.02 0.3

1 0.0005 0.0005 — 0.99 0.01 0

1 0.0005 0.001 — 0.25 0.55 0.2

1 0.0005 0.002 — 0 0.47 0.53

1 0.0005 0.004 — 0 0.78 0.22

2 0.0005 0.001 0.0005 0.74 0.24 0.02

2 0.0005 0.002 0.001 0 0.8 0.2

2 0.0005 0.004 0.002 0 0.46 0.54

Table 3.2: RJMCMC results using data simulated based on models 0, 1 and 2, evalu-

ated after 100000 iterations. 1000 patient admissions were simulated over

500 days with p = 0.07 and z = 0.8, and transmission parameters taking the

values given in the table.

While a higher transmission rate seems to hinder the performance of the algorithm

to correctly identify model 0, we found that high rates resulted in increased posterior

probability of correctly choosing models 1 or 2. A very low transmission rate arising

from any of the models is likely to convey very little information about transmission

dynamics, and as such, a constant transmission rate is almost indistinguishable from

anything more complex. Even with a high transmission rate, it was found that model

2 was not identified particularly well, with a similar posterior probability to model 1.

The simulations under model 2 kept the ratio a2/a1 constant at 0.5, which might not

be extreme enough to identify the more complex model under the simulation condi-

tions. In order to determine if this is the case, a simulation experiment investigating
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the impact of isolation effectiveness was also performed.

3.4.2.5 Isolation effectiveness

The identifiability of model 2, which separates the transmission effect of isolated and

unisolated colonised patients, depends on the magnitude of this difference. In the case

where a2 = a1, model 2 is identical to model 1, so poor selection might be expected

when these parameters are very similar. To investigate this effect, datasets were simu-

lated under model 2 with varying transmission parameters. Table 3.3 summarises the

simulation results.

Effect of isolation effectiveness on model posterior probability

a0 a1 a2 a2/a1 π(m = 0|x) π(m = 1|x) π(m = 2|x)

0.0005 0.002 0.002 1 0 0.9 0.1

0.0005 0.0025 0.002 0.8 0 0.47 0.53

0.0005 0.003 0.002 0.67 0 0.58 0.42

0.0005 0.002 0.001 0.5 0.02 0.87 0.11

0.0005 0.003 0.001 0.33 0.01 0.57 0.42

0.0005 0.004 0.001 0.25 0 0.01 0.99

0.0005 0.0025 0.0005 0.2 0 0.02 0.98

Table 3.3: RJMCMC results using data simulated based on model 2, evaluated after

100000 iterations. 1000 patient admissions were simulated over 500 days

with p = 0.07 and z = 0.8, and transmission parameters taking the values

given in the table.

It can be seen that the algorithm does not favour model 2 unless the transmission rate

due to isolated patients is approximately four times less than that of unisolated pa-

tients. However, note that several interdependencies affect this performance, such as

average length of stay and transmission intensity. It is also likely that increasing the

study length will improve the correct identification of model 2 for smaller isolation

effects.

3.4.2.6 Study length

Since the transmission rate of MRSA is typically low, and colonisation events are typ-

ically rare, data collected over a large time period is required to be able to investigate

the underlying transmission model. Datasets were simulated for various parameter
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values under each model, and for differing time spans. The posterior model probabil-

ities were then analysed to determine how often the correct model was chosen; results

are shown in table 3.4.

Effect of study length on model posterior probability

Study Model Proportion where Proportion where

length (m∗) π(m∗|x) > 0.5 π(m∗|x) > 0.75

m = 0 0.6 0.55

250 m = 1 0.4 0.3

m = 2 0.25 0

m = 0 0.85 0.75

500 m = 1 0.65 0.4

m = 2 0.35 0.15

m = 0 0.85 0.7

1000 m = 1 0.7 0.65

m = 2 0.3 0.3

m = 0 0.95 0.85

2500 m = 1 0.8 0.7

m = 2 0.55 0.4

Table 3.4: Proportion of simulated datasets in which the posterior probability of the

correct model, m∗, was greater than 0.5 and 0.75. 20 datasets were simulated

with varying transmission rates for each level of study duration.

A general trend of increasing model identifiability associated with the increase in study

length is be observed. Model 2 datasets were less frequently identified correctly, even

for the longest study duration. Model 2 datasets simulated with similar values for a1

and a2 tended to have a higher posterior probability of model 1, as discussed earlier.

3.4.3 Analysis of GST data

The MRSA surveillance data collected at Guy’s and St. Thomas’ hospital, London

(GST), described previously in section 2.3, is now considered.

The RJMCMC algorithm was run for 100000 iterations using various priors for the

transmission parameters. The results are summarised in table 3.5. Transmission pa-

rameters were assigned an exponential prior distribution with rates 1 and 10−3, and

the strong effect of the uninformative prior distribution on the posterior model proba-
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GST posterior model probabilities

Exp(1) Exp(10−3)

Ward m = 0 m = 1 m = 2 m = 0 m = 1 m = 2

1 0.02 0.41 0.57 0.25 0.7 0.05

2 0 0.75 0.25 0.52 0.33 0.15

3 0.98 0.02 0 0.99 0.01 0

4 0.05 0.42 0.53 0.56 0.43 0.01

5 0.66 0.33 0.01 0.81 0.18 0.01

6 0.03 0.23 0.74 0.69 0.12 0.19

7 0.89 0.07 0.04 0.98 0.01 0

8 0.24 0.75 0 0.8 0.19 0.01

9 0.95 0.05 0 1 0 0

10 0.9 0.04 0.06 0.94 0.06 0

Table 3.5: The posterior model probabilities under different prior assumptions for the

transmission parameters. For each ward, the highest posterior probability

is shown in bold.

bility is observed again. The posterior probability of model 0 was found to be greater

than 0.5 in five of the ten study wards, even under the informative prior. On the whole,

these were the wards with the lowest acquisition rates, which, as discussed in the pre-

vious section, may lead to favouring the basic, constant rate model.

There was not a particularly high support for model 2 in general, the model incorpo-

rating isolation effect. The simulation studies showed that model 2 is only detectable

when isolation effect is clear — a reduction of approximately 75% was required to ob-

serve a high posterior probability for this model with a study length of 500 days. This

corresponds to the higher posterior probability of model 2 seen for wards 1 and 4,

which were also estimated to have a high isolation effectiveness in the previous chap-

ter.

The within-model analyses indicated that wards 2 and 6, the elderly care wards, were

similar in terms of demographics, transmission rate, and typical length of stay. How-

ever, the reversible jump model selection results for these two wards look quite differ-

ent. This suggests that the underlying model for each dataset is not the same, indicat-

ing model 1 is more likely for ward 2, and model 2 more likely for ward 6. Figures

3.7(a) and 3.7(b) shows the estimated isolated and unisolated colonised populations

for wards 2 and 6 respectively. These populations are typically similar in ward 2, but
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greater differences may be observed in ward 6. If these populations are the same, then

one cannot differentiate between models 1 and 2. This may partly explain the difference

in posterior model probability between these two datasets.

The GST study lasted for 16 months. Via simulation studies in the previous section, it

was found that model selection was not particularly successful for studies of a similar

length, especially where transmission was very low. A short study length and low

transmission rates may cause more complex models to appear indistinguishable from

simpler formulations. One should therefore be cautious in the interpretation of these

results. RJMCMC is likely to perform better on larger datasets than these, or in settings

with a greater rate of transmission.

Figure 3.7: Colonised populations for wards 2 and 6 (elderly care), showing number

of isolated (green) and unisolated (red) patients, with shaded 95% credible

intervals.

3.5 Deviance information criterion

We now consider the use of the DIC to select a model which fits the data best, in a

parsimonious manner. In our setting, we have missing data, and use of the DIC as

specified by Spiegehalter et al. [136] is not possible. Instead, we adopt the DIC6 mea-

sure described in section 3.2.4.2, and henceforth refer to this measure simply as the

DIC.

For this procedure, we initially run a within-model data-augmented MCMC algorithm

for each model for 100,000 iterations, in order to derive posterior mean values for p
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and z, and median values for transmission parameters. Transmission parameters were

assigned exponential prior distributions with rate 10−3. Having derived posterior esti-

mates θ̃, we ran the algorithm a second time for 100,000 iterations, with θ = θ̃, allowing

only the augmented data to vary. This allowed us to derive the DIC for a given model,

as described earlier in section 3.2.4.2. As with the RJMCMC procedure, there are a

number of factors which will affect the outcome of model selection via DIC. We con-

ducted simulation studies to determine the factors which affect the performance of the

DIC in identifying the ‘correct’ model. We denote DIC(m) to be the value of the DIC

for model m. We simulated data in the same manner as during the investigation of

RJMCMC performance. In the presentation of our results, we provide the DIC values

calculated from one representative simulated dataset for each scenario.

3.5.1 Factors affecting DIC outcomes

3.5.1.1 Choice of prior

The first simulation study was undertaken to analyse the performance of the DIC mea-

sure under different prior assumptions for the transmission parameters. Results are

displayed in table 3.6.

Prior effect on DIC outcome

Model, m Prior a0 a1 a2 DIC(0) DIC(1) DIC(2)

0 Exp(1) 0.001 — — 867.2 902.1 922.0

0 Exp(0.1) 0.001 — — 866.0 900.3 921.6

0 Exp(0.001) 0.001 — — 857.5 895.8 915.8

1 Exp(1) 0.0005 0.001 — 1376.4 1410.6 1400.2

1 Exp(0.1) 0.0005 0.001 — 1379.6 1408.8 1395.1

1 Exp(0.001) 0.0005 0.001 — 1344.8 1403.8 1390.1

2 Exp(1) 0.0005 0.002 0.003 3341.4 3170.3 3165.4

2 Exp(0.1) 0.0005 0.002 0.003 3338.2 3207.8 3164.7

2 Exp(0.001) 0.0005 0.002 0.003 3205.6 3167.8 3162.1

Table 3.6: DIC results using data simulated based on models 0, 1 and 2. For each anal-

ysis, transmission parameters were assigned prior distributions to varying

degrees of diffuseness to determine the effect on the posterior model prob-

ability.

It was found that increasing prior uncertainty of the transmission parameters reduced
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the value of the DIC under all models. While the value of the DIC is affected by the

choice of prior distribution, the conclusion remains the same — the simplest model

is supported under data generated from models 0 and 1, while model 2 is correctly

favoured in the dataset simulated under model 2. While the DIC clearly fails to cor-

rectly identify model 1 in all cases, it is observed that the selection of model 2 is unaf-

fected by the prior. The DIC measure avoids Lindley’s paradox, which is an advantage

over calculating posterior model probabilities.

3.5.1.2 Rate of transmission

The prevalence of carriers in the ward at any given time affects the expected number

of transmission events for all but the simplest model. This in turn drives the amount

of information available to estimate the transmission dynamics. A further simulation

study was conducted to determine the effect of the transmission rate on model selection

via the DIC measure.

Effect of transmission rate on DIC

Model, m a0 a1 a2 DIC(0) DIC(1) DIC(2)

0 0.0005 — — 806.1 849.8 861.8

0 0.001 — — 870.1 921.2 931.6

0 0.005 — — 1609.0 1643.4 1638.7

0 0.01 — — 2392.6 2471.3 2459.8

1 0.0005 0.0005 — 891.7 906.6 909.7

1 0.0005 0.001 — 1032.8 1093.6 1100.0

1 0.0005 0.002 — 2477.5 2395.4 2384.6

1 0.0005 0.004 — 4328.7 4290.9 4291.8

2 0.0005 0.001 0.0005 1178.2 1194.5 1197.6

2 0.0005 0.002 0.001 2130.4 2131.8 2128.8

2 0.0005 0.004 0.002 4146.6 4074.5 4067.3

Table 3.7: DIC results using data simulated based on models 0, 1 and 2. Data were

simulated using various transmission parameters, which are given in the

table.

Table 3.7 shows that model selection is generally more successful under higher trans-

mission rates. While model 1 was identified correctly in a high transmission scenario,

the DIC values under models 1 and 2 was very similar. While it is difficult to interpret
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the difference between DIC values, this seems to suggest that both models provide a

similar fit to data generated by model 1.

3.5.1.3 Isolation effectiveness

As mentioned previously, the degree to which models 1 and 2 differ is given by the

scale of isolation effectiveness, or the relative magnitude of a1 to a2.

Effect of isolation effectiveness on DIC

a0 a1 a2 a2/a1 DIC(0) DIC(1) DIC(2)

0.0005 0.002 0.002 1 2549.0 2517.4 2517.1

0.0005 0.0025 0.002 0.8 2774.3 2691.7 2681.7

0.0005 0.003 0.002 0.67 2696.8 2577.7 2548.1

0.0005 0.002 0.001 0.5 2200.1 2166.4 2179.7

0.0005 0.003 0.001 0.33 3120.4 3030.2 3029.1

0.0005 0.004 0.001 0.25 2538.8 2451.5 2427.5

0.0005 0.0025 0.0005 0.2 2163.0 2137.6 2108.7

Table 3.8: DIC results using data simulated based on model 2, under various values

of a1 and a2, as indicated in the table.

Table 3.8 seems to suggest that model selection via DIC is successful over a range of dif-

ferent transmission values for a1 and a2, as in most cases, model 2 is correctly selected.

However, it seems that datasets generated under model 1 also result in a DIC selection

of model 2. The previous simulation study demonstrated that selection of model 1 was

poor, and the results seen in this study seem to exhibit the same effect.

3.5.1.4 Study length

Since MRSA transmission rates are typically very low, and study populations are small,

we require data collected over a long period to observe a sufficient number of acqui-

sitions with which to investigate the underlying model. We ran a simulation study to

determine how much data we might have to collect in order to correctly determine the

model with the DIC.

Table 3.9 illustrates the need for a long period of data collection in order for correct

models to be identified by DIC, under plausible transmission rates. The proportion

of datasets generated under model 1 which were correctly identified (that is, had the
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Effect of study length on DIC outcome

Study Model Proportion where

length (m) DIC(m) is lowest

0 1

250 1 0

2 0.15

0 0.95

500 1 0.05

2 0.25

0 1

1000 1 0.1

2 0.45

0 0.95

2500 1 0.1

2 0.75

Table 3.9: Proportion of simulated datasets in which the correct model, m, was se-

lected (took the lowest DIC value). 20 datasets were simulated with varying

transmission rates for each level of study duration.

lowest DIC value under model 1) was particularly low, even for a study length of 2500

days.

3.5.2 Analysis of GST data

Having run several simulation studies on the model selection performance of DIC6, it

has been observed that unless transmission rates are very high (table 3.7), or that study

length is very long (table 3.9, it is not possible to make any distinction from the most

basic, constant rate model with this approach. Since the dataset collected from GST

spans approximately 500 days, it might be concluded that unless transmission rates are

particularly high, it is very likely that the simple model will be selected by DIC6. The

DIC was calculated with two MCMC runs of 100,000 iterations, the second run fixing

θ at the posterior means. Transmission parameters were assigned exponential prior

distributions with mean 1000. Results are summarised in table 3.10.

It was found that model 0 was the clear selection for all wards. This is almost certainly

due to the relatively short study length and low transmission rate of the observed data,
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DIC values for GST data

Ward DIC (m = 0) DIC (m = 1) DIC (m = 2)

1 750.6 821.4 830.2

2 861.5 934.8 945.9

3 1907.2 1975.2 2004.5

4 1862.3 1928.8 1931.7

5 477.2 824.3 760.0

6 982.3 1053.0 1083.9

7 925.4 1032.1 1049.7

8 700.0 750.8 771.3

9 351.4 387.7 397.9

10 590.3 621.5 622.4

Table 3.10: DIC values for GST data for each of the candidate models.

which were below the levels we found to be necessary via simulation studies to be able

to differentiate between models using the DIC.

3.6 Conclusion

We have shown that Bayesian model choice for hospital transmission models requires

careful use of model selection methods, which are sensitive to many different factors. It

seems clear that the power to detect a difference between models is strongly dependent

on the number of transmission events inferred from the data, and therefore, the study

length and transmission rate. Both RJMCMC and DIC approaches failed to identify

models when the dataset was collected over a shorter periods of time (250-500 days);

the performance of DIC was particularly poor. As pointed out in the original paper,

DIC is not applicable in all cases, and the epidemic models used here generate a highly

complex likelihood over parameters and missing data [136]. The measure pD is shown

to be a good approximation of effective number of parameters when there is a well-

behaved likelihood function, but may fail in a more complex setting. Indeed, some

of the simulation studies generated low and even negative values for pD, indicating

that using the DIC may not be entirely appropriate. This indicates that the expected

likelihood with θ fixed at the posterior mean θ̄ is lower than the expected likelihood

over the augmented data and the parameters.
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A major issue in RJMCMC is the selection of prior distributions for the model param-

eters, as the outcome is highly dependent on this choice. Lindley’s paradox means

that the more uninformative the parameter prior distributions, the greater the support

given to simpler models. This leads to a trade-off between within and between-model

estimation — an uninformative prior is desired to estimate the transmission parame-

ters, but will lead to posterior model probabilities weighted in favour of simple mod-

els. When using more informative priors, the sensitivity of the posterior parameter

estimates to this should be considered.

It would be of interest to explore techniques to mitigate the effect of uninformative

prior distributions. For instance, in our setting, we may attempt to specify prior dis-

tributions for the transmission parameters such that the induced prior distribution of

the overall transmission rate is approximately similar across each model. This might

be achieved by matching the prior expectation and variance across models. Consider

the a priori transmission rates for models 0 and 1:

E(q0(t)) := E(q1(t))

E(a
(0)
0 ) = E(a

(1)
0 ) + nCE(a

(1)
1 ),

where we indicate the model number as a superscript for clarity, and nC denotes the

average number of colonised patients. Similarly,

Var(a
(0)
0 ) := Var(a

(1)
0 ) + n2

CVar(a
(1)
1 ).

By specifying ‘equivalent’ prior distributions for parameters in each model, the algo-

rithm is less likely to reject moves to models of higher dimension.

An advantage of the RJMCMC procedure is that both posterior model probabilities

and within-model parameters are estimated in the same process. While the posterior

probability of a model is easily understood and compared, the DIC value provides

little information beyond one model being better than another to some degree. In a

Bayesian framework, it is natural to consider all models as possible, to varying degrees

of plausibility. It could be argued that DIC is considerably ‘less Bayesian’ for this rea-

son. Furthermore, the DIC uses point estimates (θ̃) in its calculation, which violates the

Bayesian paradigm.

The posterior model probabilities may be used in a Bayesian model averaging proce-

dure. For instance, in the setting we have been considering in this chapter, we may

easily derive a weighted average of the transmission rate, or number of acquisitions,

using the output from the RJMCMC algorithm. This allows us to provide estimates for
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quantities of interest using a range of possible models, rather than having to specify

one particular model.

In terms of ease of calculation, the DIC has some advantages. A RJMCMC analysis is

not a black-box procedure, and must be carefully tailored to the individual situation, in

order to monitor and optimise between-model jumps, and to assess the sensitivity to

prior information. As discussed earlier, one can avoid the issue of constructing efficient

transdimensional jumps by running within-model analyses to evaluate the regions of

high posterior probability. With a large model space, this becomes impractical, and the

DIC may become an attractive alternative.

Spiegelhalter et al. made it clear that the DIC is not universally applicable, and recom-

mend its use in cases with approximately normal likelihoods, where the posterior mean

provides a good estimate, pointing out that non-log-concave likelihoods could provide

negative values for pD. This paper generated controversy upon publication [136, dis-

cussion]. Alongside much praise for the development of such a model selection crite-

rion, criticism was aimed at the “arbitrary assumptions and approximations” (Brooks),

the non-Bayesian nature of using a point estimate (θ̃) in a supposedly Bayesian mea-

sure, and the lack of applicability of the process to more general modelling situations.

Additionally, since the DIC has no scale, it is not possible to estimate how much better

one model is than another, and one can do little more than select the model with the

lowest DIC value. However, in providing a model choice statistic which is, in many

cases, easier and quicker to calculate than calibrating and performing a RJMCMC anal-

ysis, the DIC is a useful model comparison tool, particularly when the set of models to

compare is large.

While it was found that model selection was fairly poor using either method on small

datasets, or those where transmission was typically low, RJMCMC proved to be the

more successful method, as long as fairly informative prior distributions are specified

(Exp(1), for example).

It is worth noting that models with lower posterior probability or higher DIC values

should not necessarily be cast aside, as they may still be used to provide useful or

informative estimates. It is, however, of great importance to determine that the chosen

model provides a good fit to the data. This is pertinent to model 2 described in this

chapter, as it provides estimates of clinical interest (isolation effectiveness), but seems

not to be selected for many of the wards via RJMCMC, or at all via DIC. We found in

the previous chapter that this model provided a good fit to the data, using the posterior
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predictive distribution. We must also bear in mind the limitations to both model choice

approaches, which have a large impact on the choice of model for small to medium-

sized datasets, such as those we have analysed.

Having systematically considered the performance of both RJMCMC and the DIC in

stochastic epidemic model selection, it is clear that the amount of transmission data

available is key to being able to differentiate between candidate models. Low trans-

mission rates mean that infection events are rare and often unclustered, and as such, it

is not possible to differentiate this activity from a constant rate Poisson process, with-

out very long studies. We found that with a longer average length of stay, there was a

greater chance of selecting the correct model.
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Inference of transmission using

whole genome sequence data

4.1 Introduction

While many studies have investigated the dynamics of MRSA transmission in hos-

pitals, estimating transmission rates and the effectiveness of various infection control

measures, uncertainty about the true routes of transmission remains. Using conven-

tional screening methods, it is difficult to predict the source of a given MRSA-positive

individual’s colonisation. The ability to estimate transmission routes may increase un-

derstanding of how a pathogen spreads in hospital wards, and could potentially reduce

the uncertainty of parameter estimates.

In section 4.2 we consider existing methods to analyse genetic data, and studies which

utilise such data to provide an insight into epidemic behaviour and transmission dy-

namics. Section 4.3 introduces a dataset collected from a hospital in Thailand, in which

MRSA isolates were taken from colonised patients and sequenced over a period of

three months. We describe some of the issues with analysing these data, in particular,

modelling the transmission process at a genetic level, and the within-host dynamics.

Following this, two methods are introduced to analyse this dataset, each with a dif-

ferent aim. The first method is described in section 4.4, in which we aim to estimate

any differences in transmissibility by grouping MRSA isolates into genetically simi-

lar groups, and considering each to have a different transmission rate. The second

approach is described in section 4.5, in which the aim is to estimate a transmission net-

work, while simultaneously estimating transmission parameters and other quantities
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of interest. We describe a simulation study to assess the performance of this method,

and consider methods to measure the accuracy of an estimated network. In section

4.6, the results of both of our analyses are presented. Finally, section 4.7 is a discus-

sion of the findings, and how our approach compares with previous studies, as well as

potential future extensions to this work.

4.2 Background

4.2.1 Transmission networks and phylogenetic trees

A transmission network is a graph representing the spread of a pathogen on an in-

dividual level. It comprises nodes, representing infected individuals, and directed

edges, representing transmission events. Edges may additionally be associated with

a transmission time. A transmission network may be composed of multiple uncon-

nected subnetworks, each representing independent outbreaks of a disease. Each con-

nected transmission subnetwork (or ‘transmission chain’) has an origin, representing

the original introduction of the pathogen into a population. In many epidemic studies

where the entire infected population is considered, it is sensible to regard the network

as fully connected (that is, only one origin exists). However, when considering dynam-

ics within a subpopulation, such as a hospital or ICU, it may be realistic to expect multi-

ple introductions of the pathogen from external sources. In this chapter, a transmission

network is regarded as one or more subnetworks, allowing for multiple introductions,

as is common in a healthcare setting.

A phylogenetic tree, or genealogy, describes the relatedness of a set of organisms, and

represents evolutionary divergence over time. The tips of the tree represent observed

individuals, and internal nodes represent divergences (sometimes called bifurcation or

speciation events), which are typically unobserved. These represent hypothetical an-

cestors of the observed organisms. Nodes directly linked by one internal node are said

to share an ancestor, and are genetically similar relative to the rest of the population.

Genetic distance between a node and its ancestor may be represented by the length of

the edge.

There are strong similarities between the transmission network and the phylogenetic

tree, or genealogy. After a transmission event between individuals A and B, the pathogen

found present on B can be thought of as a descendent of the pathogen colonizing

A. While ‘descendant’ is rather poorly defined when discussing colonies of several
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thousand organisms with a short generational time, the transmission network can be

thought of as a simplification of the genealogy, where the ancestors of individual B’s

colony were found colonizing individual A at the time of transmission.

Figure 4.1 shows a phylogenetic tree derived from MRSA isolates collected in an ICU

(data described later in section 4.3.1). The tree indicates clusters of genetically similar

isolates, which are additionally given similar colours. Horizontal branch lengths have

been scaled to indicate genetic distance. While phylogenetic trees might be used to rule

out transmission routes between genetically distant isolates, more information would

be required to estimate a transmission network. The tree in figure 4.1 was generated

by optimising a likelihood function of the sequence data, described in further detail in

the next section. The optimisation was performed using the ape package for R 2.12.1

[198].

Whether interest lies in the genealogy or the transmission network, the exact structure

is almost always unobserved, and the true structure must be inferred, based on a set of

observations. Over the past decade, attempts have been made to combine the analysis

of evolutionary dynamics with transmission dynamics, using genetic data.

4.2.2 Phylogenetic tree reconstruction

Some of the earliest work on phylogenetic reconstruction was done in the 1960s, prior

to the availability of genetic sequence data. Edwards and Cavalli-Sforza described the

method of minimum evolution, in which the most plausible tree is given as that which

represents the ‘least total evolution’, or genetic change [199]. This is somewhat loosely

defined, but can be applied to phenotypic traits — roughly speaking, an organism’s

ancestors are likely to share similar characteristics, and can be classified as such.

Genetic data provides a quantitative basis to demonstrate similarity. Using basic dis-

tance measures, there are various methods to reconstruct the phylogenetic tree. The

simplest approaches are clustering algorithms, which find and group genetically simi-

lar pairs, such as the unweighted pair group method with arithmetic mean (UPGMA)

and neighbour-joining method [200]. These methods iteratively find and combine the

most genetically similar pair of nodes/individuals, treat this pair as one node, and then

recalculate the distances from this new node to all others before repeating the process,

each time reducing dimensionality by one.

A maximum likelihood approach, incorporating methods to search tree topologies, was
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described by Felsenstein in 1981 [201]. Suppose a tree is composed of a set of nodes

X = {X1, . . . , Xn}. The edge function e(A, B) returns 1 if A and B are linked by an edge

on the tree, and 0 if not. Each node is associated with a time, which might represent

an observation or generation time. For each A, B ∈ X, τAB is the time elapsed between

the time associated with A and B. Each node is represented by a genome of length

N, and the ith nucleotide of the sequence A is given at A(i). Assuming that mutations

occur independently and at random, and that the sequences represented by all internal

and external nodes are known, then the model is defined by the joint probability mass

T358 N2
T358 N1

T341 T1

T322 N2

T230 C2

T225 N1

T270 U1

T249 N3
T249 T1

T10 N11

T9 N9

T21 N6

T20 N2
T20 N2

T12 N28

T12 N24

T12 N2

T9 N3

T223 A1

T183 N2

T182 N1

T178 N3

T197 N3

T197 N1

T194 N4
T194 N1

T188 N3
T188 N1

T183 N8

T56 H1

T241 N2

T353 N1
T59 N1
T59 N2
T59 N3

T40 N1

T159 N8

T159 N4

T156 W3

T137 N12
T137 N3

T107 U2

T105 N1
T65 N2

T35 N4

T35 N2

T69 N1

T65 N3

T73 N1

ML−optimised tree

Figure 4.1: An example of a phylogenetic tree, derived with a maximum-likelihood

approach. Horizontal branch length is proportional to genetic distance;

genetically similar observations have a similar label colour. The data used

to generate this tree were collected from a paediatric ICU in Thailand, de-

scribed in section 4.3.1.
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function

f (X|θ) = ∏
A,B∈X

e(A,B)=1

N

∏
l=1

[
1A(l) 6=B(l)P(mutation from A(l) to B(l) after time τAB|θ)

+1A(l)=B(l)P(no mutation at l after time τAB|θ)
]
.

However, since the sequences realised at the internal nodes are typically unobserved,

we must sum over all possible states at these points. Felsenstein proposed the ‘pruning

algorithm’ to calculate this sum, and proposed a topology searching method to estimate

an optimal tree [201].

4.2.3 Coalescent theory

Coalescent theory has been used extensively in the past decade to infer past popula-

tion dynamics from current observations. This method first requires a genealogy to

be determined, by one of the many methods of tree reconstruction. By doing this, the

reproduction times, or branching events, may be estimated. A genealogy describes

the generation of organisms from an origin individual at time 0, to n contemporary

individuals at some time T. It is typically assumed that the n sequences are a random

sample taken from a larger population. A total of n − 1 bifurcation events occur in the

interval [0, T], increasing the sample population by 1 each time. Coalescent theory con-

siders this process in reverse; we have a set of n contemporary sequences at time 0, and

suppose n − 1 coalescent events occur until there is one remaining current ancestor at

time T. Let A(t) be the number of lineages (number of ancestors in the sample popula-

tion) present at time t. The sequence {A(t)} may be modelled as a stochastic process,

decreasing from n to 1 [202]. According to a simple coalescent model, the probability

of a coalescent event occurring in a small time interval [t, t + δt] is given as

P(A(t + δt) = i − 1|A(t) = i) =

(
i

2

)
1

N(t)
δt + o(δt),

where N(t) is a relative size function, which may be assumed to be proportional to the

population size — as such it is commonly referred to as the effective population size

[202]. This may be defined as any demographic model reflecting the population over

time; for example, a constant rate, or exponential growth. In an epidemic setting, N(t)

may be thought of as the effective number of infectives at time t, since this population

is driving the rate of infections (coalescent events). The parameters of the demographic

model may be evaluated via the likelihood of observing a set of coalescent times, given

the underlying population model.
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Pybus et al. introduced a simple epidemic model structure to estimate the past pop-

ulation dynamics of the Hepatitis C virus (HCV) [203]. This method does not allow

transmission parameters to be estimated; primary interest in this study was in the past

population dynamics of the pathogen. However, the authors demonstrate how the

basic reproduction number R0 may be estimated with this approach.

Several papers since have used and extended this methodology to describe the past

population size and evolutionary dynamics of pathogens [202, 204, 205].

Rasmussen et al. described a method to analyse epidemiological data and phylogenetic

structure simultaneously [206]. The authors construct a likelihood function with two

components, one for each data type, which are assumed to be independent. Epidemi-

ological data are assumed to be in the form of imperfectly-observed infection counts

over time, while sequence data are used to construct a genealogy, from which one ob-

tains coalescent times. The authors describe a likelihood contribution from each of

these data sources. The coalescent rate with i ancestors present at time t is given as

(
i

2

)

(
I(t)

2

)β(t)
S(t)

N
I(t),

where β(t) is a transmission function, and I(t) is the imputed number of infective in-

dividuals at time t. The authors use a particle MCMC approach to sample approxi-

mately from the posterior distribution, thus avoiding computation of the intractable

likelihood. The analysis requires the phylogenetic tree to be estimated pre-analysis,

incorporating no uncertainty. In this study, interest lies primarily in the population

dynamics inferred from both data sources.

4.2.4 Reconstructing transmission networks

Cottam et al. provided a method to link the analysis of genetic and epidemiological

data, with the aim of providing a most likely transmission network [151]. The authors

define a gamma distribution describing the incubation period based on estimates from

existing literature, and a probability mass function for the time of infection, based on

observational data. These are used to calculate the probability that any given indi-

vidual was infectious at a particular time. The probability of a specific transmission

route is then dependent on the relative infectiousness of potential sources at the time

of infection. Sequence data are used to construct a set of plausible transmission trees,
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for which the likelihood may be calculated according to the probability functions de-

scribed above. Those with higher likelihoods may be selected as plausible transmis-

sion networks. This approach is applied to an outbreak of foot-and-mouth disease

in the UK, with data collected from 20 farms. In this approach, sequence data are

only used to generate a set of most plausible trees, narrowing down the vast set of all

trees. The likelihood of the epidemiological data is then calculated for each of these

trees. Clearly this method becomes much more computationally demanding for larger

datasets. Their findings are also dependent on the choice of distribution for incubation

periods.

Jombart et al. described methods to investigate emerging epidemics using sequenced

isolates collected at various times during the outbreak [152]. This approach optimises

a weighted transmission network constrained by possible transmission times. A net-

work is chosen such that the number of single nucleotide polymorphisms (SNPs) be-

tween nodes (individuals) is minimal. In the case of multiple edges representing equal

genetic distance, the edges are weighted to be time-dependent, and the number of

SNPs is assumed to follow a Poisson distribution with mean µL∆t, where µ is the pre-

specified mutation rate of the organism, L is the length of the genome, and ∆t is the

time between samples from the two connected nodes. This method allows the analy-

sis of sequence data collected during an epidemic, but does not take into account the

collection of multiple sequences from one individual over time. Furthermore, trans-

mission between person i and j is assumed to occur strictly after the sampled sequence

from i; thus, if the sample time of i is before that of j, j cannot be the source of infection

for i. The algorithm deterministically returns the most plausible network, and does not

indicate any degree of uncertainty associated with this structure.

Ypma et al. described a Bayesian approach to transmission network reconstruction [65].

Data were collected from Dutch poultry farms to study an outbreak of avian influenza,

including sequence data for selected genes. Between-farm transmission was modelled

according to farm infectiousness (which was constant until culling took place, at which

time it reduced exponentially), spatial distance and genetic similarity. These compo-

nents were assumed to be independent. Since transmission dynamics are unobserved,

the authors describe an MCMC algorithm to sample over transmission routes (infec-

tion trees), and model parameters. The resulting transmission network is assumed to

be fully connected.
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4.2.5 Aims

Previous studies have operated under assumptions which are restrictive and some-

times unrealistic, and are incompatible with the analysis of MRSA transmission in hos-

pital wards. We aimed to avoid these issues, and provide the following:

1. A flexible model describing within-host and between-host genetic behaviour, un-

der which we may simulate data in order to investigate the performance of the

model under various scenarios.

2. A model which incorporates multiple sequences collected over time from each

positive individual.

3. A model which allows for frequent introductions of the pathogen to the popula-

tion from newly admitted patients, which results in multiple unconnected trans-

mission subnetworks.

In this chapter, we aimed to use both whole genome sequence (WGS) data and epidemi-

ological data to address two different questions about MRSA transmission in hospital

wards. Firstly, we investigated heterogeneity in MRSA transmission rates according to

genetic type, using a clustering method. Secondly, we aimed to recover the unobserved

transmission network in the hospital ward. We present these methods in sections 4.4

and 4.5 respectively, but first, we introduce the data and notation which are used in

this chapter.

4.3 Analysis of genetic data in a hospital setting

4.3.1 Data

We used MRSA surveillance data1 collected from a hospital in North-East Thailand.

A study was conducted in two intensive care units (ICUs), specialising in paediatrics

(ICU 1) and surgery (ICU 2). ICU 1 recorded 170 admissions (169 unique patients),

while ICU 2 had 114 admissions (98 unique patients) over a period of three months,

during which time individuals were regularly screened at various body sites for car-

riage of MRSA. A total of 1640 patient days were recorded across both wards. In total,

1These data have not previously been published. Many thanks to S. Peacock, M. Holden, E. Nickerson,

M. Hongsuwan, J. Parkhill and others involved with data collection and processing for the provision of

this dataset.
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140 positive isolates were collected, of which 83 were sequenced — 51 different pa-

tients had at least one MRSA isolate sequenced. One patient in particular (T126) had 19

sequenced isolates taken at regular intervals. A summary of the patients participating

in the study is given in table 4.1, and details of colonised patients are shown in figures

4.2 and 4.3. Across all 83 sequenced isolates, polymorphisms were detected at 2591

different loci.

Summary of Thai ICU data

ICU 1 ICU 2

Ward type Paediatric Surgery

Number of patient episodes 170 114

Number of unique patients 169 98

Number of episodes with ≥ 1 positive swab 20 29

Total number of positive swabs collected 51 89

Total number of positive swabs sequenced 43 40

Mean length of stay (days) 4.6 7.8

Table 4.1: Summary of patients admitted during the ICUs during the three month

study.

4.3.2 Notation

Suppose there are a total of n patient admissions to a hospital, with admission days

ta
1, . . . , ta

n, and discharge days td
1, . . . , td

n. Multiple readmissions for one individual were

considered to be independent. Each patient j was screened for MRSA carriage νj times,

νj ≥ 0, on days tx
j,1, . . . , tx

j,νj
, with (positive or negative) results xj,1, . . . , xj,νj

. In addition,

MRSA positive patients have ρj (0 ≤ ρj ≤ νj) isolates taken for sequencing on days

t
y
j,1, . . . , t

y
j,ρj

, with whole genome sequences yj,1, . . . , yj,ρj
. Sequence times are a subset of

positive screen times, so that 0 ≤ ρj ≤ νj. A patient j has an (unobserved) colonisation

time given by tc
j , which takes a value of ∞ if the patient remains uncolonised. If pa-

tient j is colonised on admission, then tc
j = ta

j , and we set importation marker φj = 1;

otherwise, φj = 0.

Genetic similarity is measured by the number of SNPs between two isolates. The num-

ber of SNPs between isolates a and b is denoted ψ(a, b).

A full table of the notation used in this chapter is provided on page 179.
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4.4 Assessing heterogeneity in transmissibility of MRSA strains

In the first modelling method, we aimed to estimate transmission rates from genet-

ically distinct groups of MRSA isolates. We supposed that G groups of genetically

similar strains of MRSA are observed, each of which is associated with a certain level

of transmissibility. We supposed that each group of patients colonised by a particular
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Figure 4.2: Colonised (pink) and total (grey) population over time in ICU 1. Also plot-

ted are the patient episodes for individuals with at least one MRSA positive

swab at some point. White points are MRSA negative swabs, and coloured

points are positives. The colours indicates genetic distance; similar colours

represent genetically similar isolates. Untyped MRSA isolates are assigned

the same colour as the last typed isolate; those isolates of unknown type

are coloured black. The letter ‘N’ indicates a sequenced nasal swab, ‘A’

axilla, ‘T’ throat, ‘C’ trachea, ‘W’ wound.
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MRSA type exerts transmission pressure on each susceptible patient independently.

Susceptible patients are supposed to be homogeneous in terms of susceptibility. We

define the transmission rate for a given susceptible individual as

qG(t) =
G

∑
i=1

aiCi(t),
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Figure 4.3: Colonised (pink) and total (grey) population over time in ICU 2. Also plot-

ted are the patient episodes for individuals with at least one MRSA positive

swab at some point. White points are MRSA negative swabs, and coloured

points are positives. The colours indicates genetic distance; similar colours

represent genetically similar isolates. Untyped MRSA isolates are assigned

the same colour as the last typed isolate; those isolates of unknown type

are coloured black. The letter ‘N’ indicates a sequenced nasal swab, ‘A’

axilla, ‘T’ throat, ‘C’ trachea, ‘W’ wound.
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where Ci(t) is the number of patients present in the ward on day t, colonised by a strain

of MRSA in group i. Let C(t) = ∑j Cj(t) be the total number of colonised patients

present on day t. We worked in discrete time, and assumed that patients colonised on

day t contribute to the colonised population (of their MRSA type) from day t + 1 until

their discharge. Patients positive on admission join the colonised population on the

day of admission. The probability of a susceptible becoming colonised by an MRSA

carrier in group i on day t is then

P(colonised on day t) · P(first effective contact on day t with group i)

(1 − exp(−qG(t)) ·
aiCi(t)

qG(t)
.

We assumed that a patient colonised with MRSA of type i must have acquired this from

another type-i positive individual in the hospital, or imported this strain from outside

the ward. It was also assumed that once colonised, a patient remained colonised by

the same type of MRSA. This excludes the possibility of loss of carriage, large-scale

within-host mutations, concurrent carriage of multiple genetically diverse strains, or

reinfection by another type. It was found that few patients exhibited evidence for car-

riage of highly diverse types; this is investigated in more detail later, in section 4.5.2.

A similar model to those used in previous chapters is adopted — the framework is

described in section 2.4.4. Let p be the probability of being colonised on admission,

and z be the sensitivity of the swab test. Let gj be the MRSA group to which patient j

belongs, and g = {g1, . . . , gn}. If patient j is not colonised, set gj = 0. The parameter

space is augmented with the set of unobserved data A = {φ, tc, g}, consisting of the

unobserved colonisation times tc, admission statuses φ (φj = 1 if patient j positive

on admission, otherwise 0) and MRSA groupings g, where gj ∈ {1, . . . , G} for each

colonised patient. By doing so, the full likelihood π(X, A|θ) becomes tractable, and a

data-augmented MCMC process is used to sample from the posterior distribution of θ

and A.

4.4.1 Data augmentation

At each iteration of the MCMC algorithm, we choose uniformly at random to add,

delete or move a colonisation event, and propose new values φ∗, tc∗, g∗. We define

A∗ = {φ∗, tc∗, g∗} to be the new dataset proposed by this sampling step. We define

the proposal ratio qA,A∗ = P(A∗ → A)/P(A → A∗), which is the ratio of probabilities
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of making the reverse move and the proposed move. Patients inferred to be MRSA

positive without observed sequences are assigned an MRSA type at random. Let vs be

the number of patients never screened positive, vq be the number of patients who carry

MRSA at some point during their episode (either observed, or added by the algorithm),

and va be the number of patients for whom a colonisation time has been added by

the algorithm. We note that vs is fixed, while vq and va are updated as the algorithm

progresses. With equal probability, one of the following moves is selected:

• Change colonisation time. Select at random one of the vq patients with a coloni-

sation time. With probability w, propose the selected patient j was positive on

admission, otherwise sample a colonisation time tc∗
j from {ta

j , . . . , lj}, where lj is

the last potential day of colonisation (the earliest from day of discharge and day

of first positive screen). If Cgj
(tc∗

j ) = 0, no move is made. For this move we have

qA,A∗ =





1 acquisition - acquisition

1−w
w(lj−ta

j +1)
acquisition - importation

w(lj−ta
j +1)

(1−w)
importation - acquisition

1 importation - importation

MRSA groups remain unaffected by this move.

• Add colonisation. Select at random one of the vs − va patients who are currently

assumed to be negative. If vs − va = 0, then no move is made. With probability

w, add an importation, otherwise add an acquisition. If an importation is pro-

posed for the selected patient j, set φ∗
j = 1, tc

j = ta
j , and draw the MRSA group

uniformly at random from {1, . . . , G}. If an acquisition is proposed, then draw a

colonisation time tc∗
j from {ta

j , . . . , td
j }. Select an MRSA group g∗j at random with

probability Cg∗j
(tc∗

j )/C(tc∗
j ). If no colonised patients are present, then no move is

made.

• Remove colonisation. Choose at random one of the va patients who have had a

colonisation time added by the data augmentation process. If va = 0, no move is

made.

Having established the augmented data move mechanisms, the probability ratios qA,A∗

for adding or removing colonisation times may be given as follows:
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Importation Acquisition

Add (vs−va)G
w(va+1)

(vs−va)(td
j −ta

j +1)C(tc∗
j )

(1−w)(va+1)Cg∗
j
(tc∗

j )

Remove vaw
(vs−va+1)G

va(1−w)Cgj
(tc

j )

(td
j −ta

j +1)(vs−va+1)C(tc
j )

Having sampled a candidate colonisation time/source, the proposed augmented dataset

A∗ is accepted with probability

min

(
1,

π(X|A∗, θ)π(A∗|θ)

π(X|A, θ)π(A|θ)
qA,A∗

)
.

4.4.2 Assigning groups

Groups are determined by assigning membership to isolates in such a way as to min-

imise the total within-cluster genetic distance. Suppose we observe a total of ns se-

quences, y1, . . . , yns . Let AG be a set of clusters, K1 . . . , KG, where each cluster Ki con-

tains one or more isolates. We define the total within-group distance as

V(AG) =
G

∑
i=1

∑
0<j<k≤n

1yj,yk∈Ki
ψ(yj, yk),

where ψ(yj, yk) is the number of SNPs between isolates yj and yk. Then the optimal

clustering, A∗
G, is the grouping which minimises within-group distance:

A∗
G = arg min

K1,...,KG

V(AG).

This is a variation of the k-means clustering approach [104]. In order to achieve the

optimal grouping, the following algorithm is performed:

138



CHAPTER 4: INFERENCE OF TRANSMISSION USING WHOLE GENOME SEQUENCE DATA

k-means clustering algorithm for DNA sequences

1. Of the ns = ∑i ρi available sequences y1, . . . , yns, choose

randomly G sequences to be the representative (‘mean’)

sequences for clusters 1, . . . , G. These are denoted

x1, . . . , xG.

2. Assign each sequence yj a cluster membership gj by

choosing its closest cluster representative,

gj = arg min
i=1,...,G

ψ(yj, xi).

3. For each cluster i, reselect a representative strain

xi which minimises the total distance to all other

sequences in the group;

xi = arg min
x

∑
xk :gk=i

ψ(x, xk).

This may be achieved by minimising the distance

of each nucleotide to all members of the group

independently.

4. Repeat steps 2 and 3 until convergence.

This algorithm assigns each of the ns DNA sequences a group label, such that there are

G clusters with minimal within-cluster variation.

It is worth noting that this approach does not specifically require whole genome se-

quence data, and can be performed with lower resolution genetic data, such as that

generated by MLST or spa typing.

4.4.3 Number of clusters

It is not obvious what the most appropriate choice of G should be, as this depends on

the amount of available data, the amount of total variation existing across clusters, and

any genetic factors which may contribute to transmissibility. Ideally isolates should

be parsimoniously partitioned into groups which have low variation. It is clear that

V(A∗
G+1) ≤ V(A∗

G) for G = 1, . . . , n − 1. The minimised distance for between one and
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Figure 4.4: The average distance (number of SNPs) of each isolate from another mem-

ber of its cluster, where the number of clusters varies between 1 and 6.

six clusters using the Thai data is shown in figure 4.4. While increasing the number of

clusters reduces the variation within groups, this also increases the number of trans-

mission parameters to be estimated. A small number of isolates informing a parameter

estimate will typically result in a large degree of uncertainty of the estimate.

While any choice of G is to some degree arbitrary, we chose to explore different models

with G ranging from 1 to 4. Alternatively, one could specify a threshold level of genetic

similarity (in terms of SNPs) determining group membership.

4.5 Estimation of transmission networks

In the second modelling method, we aimed to estimate the transmission network within

each of the ICUs, while estimating key transmission parameters. We assumed the trans-

mission dynamics within the hospital are represented by a collection of one or more

trees, where nodes represent positive patients, and edges are transmission routes. Each

tree has a distinct origin, which is an importation from outside the hospital, since we

assume that background transmission is not possible. A transmission network is com-

pletely defined in this setting by T = {φ, tc, s}, where φ is the set of admission statuses

(tree origins), tc the set of colonisation times (branching times), and s the transmission

sources (directed edges) for all patients.

In this section, we firstly introduce some extra notation, which we require to discuss
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transmission networks based on sequence data. We discuss genetic diversity and how

we might attempt to model the diversity within-host and between individuals in 4.5.2.

We describe our modelling framework, and define the two models which we use for

our analysis in 4.5.3. We then describe the data augmentation process which we use to

sample over the unobserved transmission times and routes. We describe how we can

simulate data under our models, and how we can use this to assess the performance of

our methods in a variety of scenarios in 4.5.6.

4.5.1 Notation for genetic data

In addition to the definitions in section 4.3.2, we require some additional notation for

our network reconstruction approach.

For a positive patient j, a subset of ρj positive MRSA isolates are sequenced, at times

t
y
j,1, . . . , t

y
j,ρj

, resulting in a set of whole genome sequences yj = {yj,1, . . . , yj,ρj
} (an empty

set if ρj = 0). In total, a total of ∑i ρi = ns whole genome sequences are collected. For

convenience, all sequences are ranked according to date collected. Sequences collected

on the same day are ordered arbitrarily. We label the sequences 1, . . . , ns, and define

r(k) to be the patient ID associated with the kth sequence.

We denote the genetic distance between two sequences A and B in terms of the num-

ber of SNPs, by ψ(A, B). Let Ψ be the symmetric ns × ns matrix of pairwise genetic

distances, such that Ψi,j = ψ(i, j). Clearly Ψi,i = 0 for all i, and we have ns(ns − 1)/2

unique pairwise distances.

Each colonised patient j has a source sj equal to the ID of the patient from whom the

colonisation was acquired, or sj = 0 if the MRSA colonisation has not been acquired

from another patient in the ward (that is, an imported strain).

Let t(i, j) be the function which describes the length of the path between nodes i and j in

an unweighted network, ignoring edge direction. Since individuals can only have one

source of colonisation, transmission networks are acyclic and there exists one unique

path between any pair of nodes. We have that t(i, j) = t(j, i) for all nodes i and j.

Furthermore, if i and j belong to the same tree, then 0 ≤ t(i, j) < ∞, with t(i, j) = 0 if

and only if i = j. If i and j do not belong to the same tree, then we set t(i, j) = ∞. In

our setting, t(i, j) represents the number of transmission events between patients i and

j. If i is colonised by j, then t(i, j) = 1. An example is shown in figure 4.5.

A full table of the notation used in this chapter is provided on page 179.
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Figure 4.5: Transmission network, consisting of two subtrees, arrows denoting trans-

mission between patients (dots). Patient a0 and a4 are three transmission

events apart (t(a0, a4) = 3), as are patients a2 and a4. Expected genetic di-

versity grows as the number of transmission events in a chain increases.

Patients b1 and a1 are unrelated, so t(a1, b1) = ∞.

4.5.2 Modelling genetic variation

In order to successfully integrate genetic data into the analysis of pathogen transmis-

sion dynamics, it is important to consider the processes occurring at the molecular

level, as well as the individual and population level. WGS data provide an insight into

the genetic similarity between isolates at a much higher resolution to earlier typing

methods, such as spa typing and MLST. As such, it has only recently become possi-

ble to study in vivo bacterial microevolution, and the molecular level processes are still

incompletely understood [38].

4.5.2.1 Within-host variation

Two isolates taken from the same individual at times t1 and t2 may differ for numerous

possible reasons:

1. At the moment of colonisation, multiple genetic types have been transferred to

the individual, and these coexist within the same inoculum. At each swab time,

one isolate is sequenced, which is a sample from this diverse population.

2. The individual is originally colonised with a single genetic type of S. aureus, and

mutations occur within this population, resulting in either a stable mixed pop-

ulation of genetic types (so that repeated samples are effectively sampling from

the same population), or a population made up of genetic types, whose num-

ber and proportions change over time (a different population may be sampled at
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each time point). Populations may change due to genetic drift, or as a result of

fitness differences. These effects may be indistinguishable over short periods of

time. If a patient is positive on admission, they may have been colonised for a

long time prior to observation; as such, may potentially have a greater degree of

within-host diversity than a newly-colonised individual.

3. An individual may be colonised a second time between time t1 and t2, resulting

in a different bacterial population profile. This new type may replace or coexist

with the original colony.

4. Isolates may be taken from different body sites. Independent, genetically distinct

colonies may exist due to separate colonisation events.

5. Contamination or sequencing errors may lead to two genetically identical strains

appearing to differ.

The mutation rate for MRSA has been estimated to be 3.3 (2.5, 4) ×10−6 per site per

year [66], which corresponds to around 9-10 mutations per year with a genome length

of 2.8Mb [79]. Although it was once assumed that colonisation was typically due to a

single type, carriage of multiple strains of S. aureus has been detected using non-WGS

typing methods [207, 208], and variation is much more likely to be detected with higher

resolution sequence data. Young et al. conducted a study into evolutionary dynamics

of S. aureus, considering in particular the microevolution occurring within-host during

the progression from carriage to infection [38]. WGS data collected from three partici-

pants revealed a degree of within-host genetic diversity, which would not be detected

with conventional genetic typing methods. A total of 30 SNPs were observed from the

68 sequenced isolates taken from the participant acquiring S. aureus infection, while 42

and 39 SNPs were recorded from the asymptomatic carriers. Isolates were taken over

several months, and the rate of evolution was estimated to be 2.7 ×10−6 mutations

per site per year. This study indicated that large-scale mutations were unnecessary to

cause infection, and that individuals may be colonised by a several genetically similar

strains.

Figure 4.6 shows the observed genetic distance over time for within-host pairs of iso-

lates for the Thai datasets. For each individual i with two or more sequences, the ge-

netic distance between the jth and kth sequence (ψ(yi,j, yi,k)) is plotted against the time

between the collection of these sequences (|t
y
j − t

y
k |). There is no evidence for increas-

ing within-host diversity over the short period covered in this study, meaning that it
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Figure 4.6: For all patients with multiple isolates, the genetic distance of each isolate

pair is plotted against the time between samples. 19 isolates were avail-

able for patient T126 (resulting in 171 within-host swab pairs). All other

patients had fewer than 4 sequenced isolates each. Four outlying points

are represented by arrows subtitled with the corresponding SNP count.

is unlikely that the observed within-host genetic diversity is due to genetic drift alone.

Patient T126 had 19 sequenced isolates, and each pairwise genetic distance is indicated

in this plot. There appears to be a slightly greater diversity within this individual than

others, although the data available for other patients are limited. Note the outlying

points indicated in figure 4.6. These represent four individuals with highly dissimilar

isolates 5-10 days after an initial sample. Two of these individuals (patients T234 and

T271, see fig. 4.2) had isolates taken from different body sites, and the lack of genetic

similarity may be attributed to independent colonisations. The other two are pairs

taken from the same body site, but have a magnitude far greater than the large ma-

jority of pairs (> 500 SNPs compared to 10-20). This may point towards a subsequent

colonisation event between sample times, or possibly a large-scale genetic change in

the pre-existing colony. Bacterial recombination events result in large genetic distances

(in terms of SNPs) emerging in a short period of time. Any advantage in fitness of this

new type may lead to increasing prevalence, and possibly replacement of an older type.

Estimating the degree to which recombination affects genetic variation in bacteria, and
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detecting evidence for recombination events, is challenging [209]. Castillo-Ramı́rez re-

cently estimated that slightly over half of the variation found in MRSA ST239 caused

by mutation is due to recombination [210]. Croucher et al. estimated that a polymor-

phism was around seven times more likely to have been introduced through recom-

bination than point mutation in Streptococcus pneumoniae [211]. Methods for identify-

ing recombination have developed alongside the increasing resolution of genetic data.

Hein [212], and more recently Marttinen et al. [213] and Didelot et al. [214] described

methods for identifying recombination events; a similar approach was presented by

Lawson et al. [215] with the aim of inferring population structure.

Without multiple sequences for contemporaneous isolates, it is difficult, or perhaps

impossible, to estimate the genetic diversity across a bacterial colony, and indeed, how

this might change over time. Diversity due to sampling and due to mutation events

appear to be indistinguishable with these data, so we made no attempt to separate

these effects while pursuing the primary goal of estimating transmission networks.

4.5.2.2 Transmission chain diversity

In a typical transmission event, a small number of the bacteria cells hosted by a colonised

patient are transferred to another, often via the hands of a healthcare worker, possibly

attached to a flake of skin, or present in bodily fluid. The initial colony is likely to

be small. Upon colonisation, the bacteria enter a lag phase, as they adjust to a new

environment, before growing at an exponential rate [168]. Genetic diversity can es-

tablished in the new host during this growth period, resulting in a new colony which

has a different composition to that of the source. A transmission event is a population

bottleneck, in which only a small sample of a population survive and propagate (in

the newly-colonised individual). Genetic diversity is typically reduced as a result of

a population bottleneck [216]. However, we observed a similar degree of within-host

diversity amongst all patients in the Thai dataset, which could indicate that diversity

is acquired at the time of transmission, or that diversity is established shortly after

transmission (see figure 4.7).

In their study on avian flu in Dutch farms, Ypma et al. supposed that nucleotide substi-

tutions occur at different frequencies [65]. The number of transitions (dts) and transver-

sions (dtv) (see discussion in section 1.3.1) between an infected farm and its source were

recorded. In addition, the observance of a genetic deletion is denoted with the indica-

tor function ddel (equal to 1 if deletion occurs, 0 otherwise). They provide a likelihood

145



CHAPTER 4: INFERENCE OF TRANSMISSION USING WHOLE GENOME SEQUENCE DATA

Figure 4.7: Hypothetical population bottleneck as patient 1 colonises patient 2.

Coloured dots represent genetic diversity within patients (black circles).

Patient 2 is colonised by one bacterial strain, which subsequently grows

and diversifies into a different population to that seen in patient 1.

contribution of a genetic change as

P(dtv, dts, ddel |pts, ptv, pdel) = (pts/L)dts(1 − pts/L)L−dts

· (ptv/L)dtv(1 − ptv/L)L−dtv

· pddel

del (1 − pdel)
1−ddel ,

where L is the genome length, pts and ptv are the expected numbers of transitions and

transversions generated in an infection event, and pdel is the probability of a deletion

occurring during an infection event. This is a more complex model of mutation than

simply counting the number of SNPs, allowing certain mutations to occur at different

probabilities. This means that isolates separated by few SNPs may potentially be con-

sidered genetically distant by this measure, due to the accumulation of less probable

mutations.

4.5.2.3 Genetic diversity between transmission chains

We now consider the issue of genetic diversity between ‘unrelated’ strains — that is,

strains which are not assumed to be part of the same within-ward transmission chain.

Unlike many epidemic studies, we do not assume that all cases have a common origin,

since new, and possibly unrelated, cases enter the hospital over time. We now consider

two possibilities to account for this diversity.
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The simplest method to do this would be to assume that all distances between un-

related strains are drawn from the same distribution, representing ‘global’ variation.

However, figures 4.2 and 4.3 suggest that this may not be appropriate — it can be seen

that many patients who have a positive first swab appear to be colonised with a very

similar strain. This indicates two possibilities — either these strains are part of the

same transmission chain, becoming colonised on the first day or two in the ICU, or that

they are positive on admission: unrelated, but genetically similar. The second possibil-

ity suggests that global genetic variation is approximately bimodal, in which unrelated

strains are genetically similar (strains are of the same type), or distant (different type).

We considered introducing an additional layer of hierarchy to account for grouping of

similar strains. There is evidence to suspect that randomly-selected organisms would

be clustered into genetically similar types. Fraser et al., in their discussion of the clas-

sification of bacterial species, described how evolutionary and environmental forces

result in the clustering of related organisms [217].

4.5.3 Model framework

Our aim was to use the collected genetic data to inform our estimate of who colonised

whom, and construct the transmission network. With no genetic information or any

other indicators of transmission route, it is equally likely that any of the C(t) colonised

patients present at time t are the source of a colonisation on day t. We proposed that

the probability that a transmission occurred between patients i and j is dependent on

the genetic distances observed for the individuals in question. The principle behind our

method is quite simple: patients colonised by genetically similar strains are more likely

to belong to the same transmission chain than those colonised by dissimilar strains.

As in previous chapters, we supposed that patients are positive on admission to the

hospital with probability p. Any given susceptible patient is subject to a transmission

rate of q(t) = βC(t) at time t, that is, patients are homogeneous in terms of suscepti-

bility and propensity to transmit. We worked in discrete time, and assumed that the

colonised population on day t, C(t), includes present patients colonised prior to day t,

and those positive on admission. The probability of a given susceptible patient acquir-

ing MRSA from a given colonised patient on day t is

(1 − exp(−q(t))/C(t).

Under the model described here, a colonised patient is screened MRSA positive with
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probability z. Negative patients are always screened negative. A selection of positive

isolates are sequenced, generating a whole genome sequence. We suppose that when

an isolate is sequenced, a set of genetic distances are generated. The ith isolate to be

sequenced generates i − 1 genetic distances. Each genetic distance is drawn from a

probability distribution, which depends on the relationship between the individuals

(eg. within-host, same transmission chain, etc.) from whom they have been collected.

The first sequenced isolate generates no distances, since there are no previous isolates.

In this analysis, we considered the following two models, which both aim to describe

the genetic diversity arising from within-host dynamics, importation and transmission.

1. Importation structure model. This model specifies that each sequence belongs to

a group, where groups contain genetically similar sequences. In contrast to the

first modelling approach described in section 4.4, the MRSA groupings and the

number of groups are not pre-assigned. We supposed that any pair of isolates has

a genetic distance which is drawn from one of two possible distributions;

P(Ψi,j = x) =





µ(1 − µ)x if i and j are same type;

µG(1 − µG)
x otherwise,

where µ, µG ∈ [0, 1], and x is an integer value taking a value between zero and the

length of the genome, L. It was assumed that a patient acquires the same MRSA

type as their source. With probability c, a newly imported sequence is assumed to

belong to an existing group (‘clustered’), otherwise, the strain is considered new,

and not similar to any previously observed strain. Let gj to be the MRSA group

to which patient j’s carried strain belongs. If an imported strain is considered

new, and not clustered, we set gj = j. Under this model, any pair of isolates taken

from patients within the same transmission chain have the same expected genetic

distance. The parameter vector θ is defined to be {p, z, β, µ, µG, c}.

2. Transmission chain diversity model. This model allows genetic diversity to ac-

cumulate as transmission events occur. We supposed that

P(Ψi,j = x) =





µγt(r(i),r(j))(1 − µγt(r(i),r(j)))x if i and j are in same tree;

µG(1 − µG)
x otherwise,

where γ, the transmission diversity factor, takes a positive value; γ < 1 indicates

an increasing diversity associated with transmission events. r(k) is the patient

from whom the kth isolate was collected. Under this model, strains which do not
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belong to the same transmission chain are considered unrelated. As such, two

imported strains are necessarily unrelated. The parameter vector θ is defined in

this model to be {p, z, β, µ, µG, γ}.

For both models, we have adopted a geometric distribution to describe to genetic dis-

tances between isolates. The geometric distribution has previously been proposed to

model the accumulation of SNPs [218]; alternatively, a Poisson distribution has also

been suggested [152]. For two isolates taken from an individual, or individuals in the

same transmission chain, it is reasonable to expect little genetic difference, provided

the difference in time is not high. A decreasing probability mass function for number

of SNPs seems reasonable to describe such observations. Across greater time intervals,

a Poisson distribution may be more suitable, as we might expect a greater degree of

change, and the probability of the isolates being identical reduces. The distribution of

genetic distances between unrelated strains is difficult to determine, and depends on

the sample. Uniform, or bimodal (genetically similar, or dissimilar) distributions could

be used. We used a geometric distribution, which is fairly flat for a large expected

value, but places a higher probability density on smaller values. As unrelated organ-

isms might be expected to belong to genetically similar clusters [217], we believe this is

appropriate.

We considered the likelihood of observing the genetic distance matrix, Ψ, and screening

results, X. We believe this is a more natural framework to estimate the transmission

network than considering the likelihood of observing the set of sequences themselves,

Y, due to the complexity of working with the very small probabilities of observing any

particular sequence. This issue is discussed in further detail in section 4.7.3.

The likelihood function may be expressed as

π(X, Ψ|θ) = ∑
T

π(X, Ψ|T, θ)π(T|θ), (4.5.1)

where T = {tc, φ, s, g} is the set of unobserved data which completely specify the unob-

served transmission dynamics. In addition, we condition on Z, a set of observed data

which we do not incorporate directly in the stochastic model, consisting of admission,

discharge and screening times, and population levels at time 0. For convenience, this

is excluded from notation. The component π(X, Ψ|T, θ) is the probability of observing

the screening and genetic data, given colonisation times and sources. This accounts

for the sensitivity of the swab test, and the probabilities of observing particular genetic

distances, given the network structure.
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The joint conditional likelihood for the importation structure model π(X, Ψ|T, θ), the

first component in equation (4.5.1), can be written as

π(X, Ψ|T, θ) = zTP(X)(1 − z)FN(X,T)

·
ns

∏
j=2

j

∏
i=1

[
1gi=gj

µ(1 − µ)Ψi,j

︸ ︷︷ ︸
Same type

+ 1gi 6=gj
µG(1 − µG)

Ψi,j

︸ ︷︷ ︸
Different type

]

where TP(X) and FN(X, T) are the number of true positive and false negative screen-

ing results, given swab results X and inferred augmented data T. The MRSA group to

which an individual j belongs is denoted gj. Similarly, the likelihood component for

the transmission chain diversity model is

π(X, Ψ|T, θ) = P(observed swab results and sequences |inferred tree, θ)

= zTP(X)(1 − z)FN(X,T)

·
ns

∏
j=2

j

∏
i=1

[
1t(r(i),r(j))=0µ(1 − µ)Ψi,j

︸ ︷︷ ︸
Within-patient

+ 10<t(r(i),r(j))<∞µγt(r(i),r(j))(1 − µγt(r(i),r(j)))Ψi,j

︸ ︷︷ ︸
Same transmission chain

+ 1t(r(i),r(j))=∞µG(1 − µG)
Ψi,j

︸ ︷︷ ︸
Unrelated sequences

]

The second component of equation (4.5.1), π(T|θ), is the probability of a particular set

of colonisation times and sources, given the model parameters θ. For the importation

structure model, this is defined as

π(T|θ) = P( inferred transmission dynamics | θ)

= p∑i φi(1 − p)n−∑i φi cnc(1 − c)∑i φi−nc

n

∏
i=1

[
1tc

i =ta
i
+ 1tc

i 6=ta
i

exp
(
−

min(tc
i −1,td

i )

∑
t=ta

i

βC(t)
)]

· ∏
j:tc

j 6=∞

φj=0

(1 − e
−βC(tc

j )),

where nc is the number of importations belonging to a cluster. The component for the

transmission diversity model excludes the terms involving c, but is otherwise identical.
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The importation structure model requires the estimation of c, the clustering parameter.

The full conditional distribution for c may be derived as

π(c|θ−c, A, X) ∝ cnc(1 − c)∑i φi−nc π(c),

where ∑i φi is the number of importations according to current status of the augmented

data A, and π(c) is the prior density of c. If we assign c a Beta(αc, βc) distribution a

priori, it follows that c may be sampled directly from the Beta(αc + nc, βc + ∑i φi − nc)

distribution using a Gibbs step. In a similar fashion, p and z may be updated with a

Gibbs step. All other parameters are updated using Metropolis-Hastings steps.

4.5.4 Data augmentation

Since the full transmission process is typically unobserved, a data-augmented MCMC

process was used. Colonisation times were inferred, as in the algorithm described in

chapter 2, but in addition, we sampled over the infection network T by inferring the

source of colonisation sj for each carrier j. The data augmentation process allows pa-

tients with no observed sequences to be colonised. This means that we need to know

how genetically distant the bacteria colonising a proposed carrier (j, say) are to all ob-

served sequenced isolates. This allows a probability to be placed on transmission to,

and from, this individual. In order to do this, one ‘phantom observation’ is created

for this individual, creating a new row (or column) of the genetic distance matrix Ψ,

which we denote Ψc
j , when we propose to add a colonisation. This incorporates the

uncertainty of unobserved colonisations to estimates of genetic diversity (µ and µG).

Probability mass functions m(·) and mG(·) are defined, which are used to generate dis-

tances from this imputed sequence to isolates in the same group, and different groups,

respectively. Further, we define Yext(t) = {yi,1 : ta
i < t, si = 0} be the set of observed

imported sequences prior to time t.

4.5.4.1 Importation structure model

We describe here the data augmentation step for the importation structure model,

where the genetic distance between strains depends on their assigned type. Due to the

need to classify importations by MRSA type (g), the data augmentation step is more

complex than for the transmission chain diversity model. The aim of the data augmen-

tation process is to sample over the set of missing data T = {s, g, tc, φ, Ψc}, that is, the
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set of sources s, MRSA groups g, colonisation times tc, admission statuses φ, and a set

of unobserved genetic distances, Ψc.

At each iteration, a new dataset T∗ = {s∗, g∗, tc∗, φ∗, Ψc∗} is proposed. Any patient

who has a colonisation added by the algorithm is assigned a colonisation time and

source, and a set of genetic distances from all other observed and inferred isolates.

Let vs be the number of patients never screened positive, vq be the number of patients

who carry MRSA at some point during their episode (either observed, or added by

the algorithm), va be the number of patients for whom a colonisation time has been

added by the algorithm, v0 of whom have no ‘offspring’; that is, the inferred colonised

patients who infect no further individuals. Finally, let vn be the number of patients who

have a positive screen, but no sequenced isolates. We define the proposal ratio qA,A∗ =

P(T∗ → T)/P(T → T∗). At each iteration of the algorithm, one of the following moves

is made with equal probability:

• Change colonisation route/time. Select uniformly at random one of the vq pa-

tients (j, say) with a colonisation time. If vq = 0, no move is made. With probabil-

ity w, propose the patient was positive on admission (φ∗
j = 1), otherwise sample

a colonisation time tc∗
j from {ta

j , . . . , lj}, where lj is the last potential day of coloni-

sation (the earliest from day of discharge, day of first positive screen, and first

onward transmission). If an importation is proposed, then with probability w′,

we set g∗j to the same group of one of the Yext(ta
j ) already-observed imported pa-

tients, otherwise, set g∗j = j. If an acquisition has been proposed, we then select

one of the C(tc∗
j ) patients already colonised on the proposed transmission day

(excluding the chosen patient, if present on day tc∗
j ) to be the source of colonisa-

tion. If there are no other colonised patients on this day, the move is rejected. We

define qT,T∗ according to the following table, where the row denotes the current

state, and the column is the proposed state:

Acquisition Importation Importation

(g∗j 6= j) (g∗j = j)

Acquisition
C(tc∗

j )

C(tc
j )

|Yext(ta
j )|(1−w)

ww′(lj−ta
j +1)C(tc

j )
1−w

w(1−w′)(lj−ta
j +1)C(tc

j )

Importation (gj 6= j)
ww′(lj−ta

j +1)C(tc∗
j )

|Yext(ta
j )|(1−w)

1 w′

|Yext(ta
j )|(1−w′)

Importation (gj = j)
w(1−w′)(lj−ta

j +1)C(tc∗
j )

1−w

(1−w′)|Yext(ta
j )|

w′ 1

• Change genetic distances. Select one of the vn individuals with a positive screen,

but no genetic data (j, say). If vn = 0, no move is made. Update their set of ns + va
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genetic distances Ψc∗
j,1, . . . , Ψc∗

j,ns+va
. These distances are drawn at random accord-

ing to the probability mass function m and mG if the sequence being compared

is taken from a related or unrelated chain respectively. This move has proposal

ratio

qT,T∗ =
∏i 6=j(1gi=gj

m(Ψc
j,i) + 1gi 6=gj

mG(Ψ
c
j,i))

∏i 6=j(1gi=gj
m(Ψc∗

j,i ) + 1gi 6=gj
mG(Ψ

c∗
j,i ))

.

• Add colonisation. Select at random one of the vs − va patients (j, say) who is

currently assumed to be negative. If vs − va = 0, no move is made. With prob-

ability w, define this patient to be an importation, otherwise, an acquisition. If

an importation is proposed, set φ∗
j = 1, tc∗

j = ta
j . Now, we determine whether

the proposed importation is clustered (in which case a group must be chosen) or

not. With probability w′, propose the sequence is clustered, and select at random

one of the already-observed imported sequences Yext(ta
j ), setting the proposed

MRSA group g∗j to that of the chosen sequence. If |Yext(ta
j )| = 0, the move is re-

jected. Draw a set of ns + va genetic distances Ψc∗
j,1, . . . , Ψc∗

j,ns+va
from probability

mass functions m(·) and mG(·), for strains in the same group and different groups

respectively.

With probability 1 − w′, the sequence is not clustered, so the chosen individual

is assigned to a new group; g∗j = j. Draw a set of ns + va genetic distances

Ψc∗
j,1, . . . , Ψc∗

j,ns+va
from the probability mass functions mG(·) to all other sequences.

If an acquisition is proposed, then draw a colonisation time tc∗
j from {ta

j , . . . , td
j }.

Select with equal probability a transmission source s∗j from the C(tc∗
j ) colonised

patients on that day. If there are no colonised patients on this day, no move is

made. Finally, select a set of ns + va genetic distances, according to the relation-

ship between the chosen patient and other colonised patients.

• Remove colonisation. Choose at random one of the v0 patients who have had a

colonisation time added by the data augmentation process, and are not currently

assumed to be the source of infection for another individual. If v0 = 0, then no

move is made. Set φ∗
j = 0, tc∗

j = ∞, g∗j = 0 and s∗j = 0.

Having established the augmented data move mechanisms, the probability ratios qT,T∗

for adding or removing colonisation times may be given as follows:
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Importation Importation Acquisition

(clustered) (unclustered)

Add
(vs−va)|Yext(ta

j )|

ww′(v0+1)Ma

vs−va

w(1−w′)(v0+1)Ma

(vs−va)(td
j −ta

j +1)C(tc∗
j )

(1−w)(v0+1)Ma

Remove ww′v0 Mr

(vs−va+1)|Yext(tc
j )|

w(1−w′)v0 Mr

vs−va+1
v0(1−w)Mr

(td
j −ta

j +1)(vs−va+1)(C(tc
j )−1)

,

where

Ma =
ns+va

∏
i=1

(1gi=g∗j
m(Ψc∗

j,i ) + 1gi 6=g∗j
mG(Ψ

c∗
j,i ))

and

Mr = ∏
j:i 6=j

(1gi=gj
mC(Ψ

c∗
j,i ) + 1gi 6=gj

mG(Ψ
c∗
j,i )).

Having sampled a candidate colonisation time/source, the candidate augmented dataset

T∗ is accepted with probability

min

(
1,

π(X, Ψ|T∗, θ)π(T∗|θ)

π(X, Ψ|T, θ)π(T|θ)
qT,T∗

)
.

The proposal probability mass functions m and mG, which are used to generate unob-

served sequences related to a transmission source, an external imported strain, or the

reference strain respectively, should be specified pre-analysis. Similarly, one must set

w and w′, the probabilities of selecting an importation, and choosing an importation

cluster. These choices should not affect results, but will impact the convergence and

mixing rates of the algorithm.

Performing this process over a large number of iterations will allow us to calculate the

posterior probability that a particular transmission route exists; this can be calculated

as the proportion of iterations for which an inferred route is made.

4.5.4.2 Transmission chain diversity model

The data augmentation process is implemented similarly for the transmission chain di-

versity model. The same moves are proposed, but the imputation of groupings, g, is not

required. For reasons of brevity, we omit the full description of the data augmentation

process for the transmission chain diversity model.

4.5.5 Modelling assumptions

Having established the model framework, we now summarise the assumptions we

made to fit this model.
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1. It was assumed that once a patient has become colonised, they remain so for the

duration of their stay.

2. The specificity of the screening tests is 100%.

3. We did not differentiate between colonisation at different body sites; that is, we

assume a swab taken at any body site is representative of an individual’s status.

4. Patient readmissions were assumed to be independent to previous hospital episodes.

5. The specific biological processes occurring to generate genetic diversity were not

specifically modelled. The parameters µ and µG represent the observed diversity,

which account for diversity which may arise by sampling from a population of

multiple strains, single point mutations, and homologous recombination.

6. We assumed that genetic distances are generated independently. In reality, this is

not the case: for isolates A, B and C, the distance ψ(B, C) is bounded by the other

two distances;

|ψ(A, B)− ψ(A, C)| ≤ ψ(B, C) ≤ min(ψ(A, B) + ψ(A, C), L),

where L is the total genome length. Clearly, all observed distances are generated

from real DNA sequences, but imputed distances may be such that no actual

sequence can conform to them. Independently-drawn genetic distances may vio-

late these bounds, but this greatly simplifies the generation of new sequences in

the data augmentation process. Interest lies in the cloud of diversity associated

with within-host carriage and between-host transmission, rather than the exact

composition of DNA sequences, and we do not believe violations of the above

relationship for imputed sequences should affect the analysis greatly.

In this analysis, two models are considered in depth (the importation structure model,

and the transmission chain diversity model). The parameters p, z and β are common

to both models and have the same interpretation. In both models, we estimated µ and

µG, which have a slightly different interpretation in each model (within and between

MRSA type vs. within and between transmission chain). The importation structure

model further requires the estimation of c, the clustering parameter, while the trans-

mission chain diversity model includes g, the transmission diversity factor.

We chose uninformative prior distributions for the parameters. We assigned p, z, µ, µG,

and c flat prior distributions on the unit interval. The parameters γ and β were given

exponential distributions with rate 10−6 a priori.
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4.5.6 Simulated data

In order to assess the performance of our model, we simulated epidemiological and

genetic data for hospital wards according to each model. We now describe in detail

how data may be simulated under either of the models described.

Patient episodes are generated with probability p of carriage on admission, and a

length of stay is drawn from a Poisson distribution with mean D. Tests are generated

every k calendar days, and positive patients are observed to be negative with probabil-

ity (1 − z).

Patients positive on admission are assigned a set of genetic distances to all previously

observed sequences (if applicable) which are drawn from distributions according to the

relationship between isolates. For the transmission chain diversity model, genetic dis-

tances are generated by randomly drawing samples from a Geom(µG) distribution. For

the importation structure model, an importation sequence is defined to be unclustered

if no previous importation sequences have been recorded. If the sequence is not the

first to be observed, the strain is defined to be clustered with probability c, otherwise,

it is unclustered. For genetic distances to isolates of the same type, we draw genetic

distances at random according to the Geom(µ) distribution, while for sequences in a

different group, genetic distances are drawn from the Geom(µG) distribution.

Susceptible patients become colonised at a rate of βC(t) at time t. Colonised patients

contribute to the colonised population C(t) from the day after acquisition, or the day

of importation, until the day of discharge. For a newly colonised patient j, a transmis-

sion source sj is chosen uniformly at random from the C(tc
j ) positive patients present

at the start of the day of colonisation. A set of genetic distances are generated accord-

ing to the relationship between this patient and all previously observed patients with

sequenced isolates. Under the importation structure model, distances are drawn from

the Geom(µ) or Geom(µG) distributions, depending on whether the the isolates are of

the same type, or different type respectively. Under the transmission chain diversity

model, distances are drawn from the Geom(µγt) or Geom(µG) distributions, depend-

ing on whether the the isolates belong to the same transmission chain (t transmission

events apart), or are unrelated, respectively.

At subsequent observation times resulting in positive results, genetic distances are gen-

erated accordingly. The first observation is assigned the same distances generated for

the patient’s importation/acquisition. Subsequent sequenced isolates differ from pre-

156



CHAPTER 4: INFERENCE OF TRANSMISSION USING WHOLE GENOME SEQUENCE DATA

vious within-host sequences by x SNPs, where x ∼ Geom(µ).

4.5.7 Network distance metrics

To quantify the performance of network reconstruction, a measure to compare the true,

unobserved structure to the estimated network is required. We judged a reconstructed

network by two measures: firstly, the number of true transmission routes discovered,

and secondly, the number of false transmission routes estimated. However, the ap-

proaches described in section 4.5.3 do not provide one estimated ‘best’ network, but

rather a weighted network, in which each edge has an associated probability, corre-

sponding to our estimated posterior probability that transmission occurred from one

individual to another. In order to take this into account, two methods were used to

measure accuracy — calculation of tree resolution, and the receiver operating charac-

teristic (ROC) curve.

Tree resolution may be measured for a particular probability level pL by finding the

proportion of true transmission routes with a posterior probability greater than pL.

This method was used by Ypma et al. [65] to assess the performance of their transmis-

sion network reconstruction method, using simulated data. The authors plotted the

resolution against the probability level for scenarios in which either genetic or spatial

data were excluded, in order to demonstrate the improved accuracy of the reconstruc-

tion by including all information. While this measure shows how well true links have

been discovered, it does not account for how often false links are estimated.

For x ∈ [0, 1], the ROC curve plots the proportion of true edges against the proportion

of false edges with posterior probability greater than x. The curve represents the trade-

off between the correct identification of edges and the acceptance of false edges. The

area under the ROC curve indicates the accuracy of the network reconstruction — an

accurate reconstruction would lose very few true connections when accepting even a

low false positive rate [219]. The analysis of ROC curves has been used to assess the

accuracy of Bayesian networks estimating genetic regulatory interactions [220].

In order to assess the benefit of WGS data on network reconstruction, we compared the

inferred network to a naı̈ve approach, in which genetic data are ignored. In order to

plot resolution or ROC curves for this case, we created a transmission network exhibit-

ing our uncertainty of the source. For each patient j who has at least one positive swab,

we set their colonisation time tc
j to be the midpoint of the patient’s first positive swab

and the preceding negative swab. We then assumed that each positive patient present
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at time tc
j is equally likely to have transmitted MRSA to patient j. If patient j’s first

swab is positive, we supposed that with equal probability, either colonisation has been

imported, or has been acquired from one of the C(ta
j ) positive patients. This assumes

that sensitivity of the swab test is perfect. We note that there are more sophisticated

methods to estimate the transmission network with no available genetic data, based

on estimated exposure times to other infective individuals and realistic estimates of z.

Cooper et al. described a method to calculate the relative probabilities of acquisition

from particular sources in a hospital ward, based on exposure times and MRSA type

[99].

4.5.8 Single admission reproduction number

It is possible to derive estimates for a variant of the reproduction number, R0, of MRSA

in this setting from the our procedure. Cooper et al. introduced the measure Ra,t,

the net single admission reproduction number, defined as the average number of sec-

ondary cases generated during a single episode, where not everyone is necessarily sus-

ceptible [99]. A similar value may be estimated from our MCMC output. By recording

accepted network edges at each iteration, the mean outdegree of each node can be esti-

mated, which represents the number of secondary cases from each colonised patient.

4.6 Results

We now present results from the methods described earlier. We firstly investigate het-

erogeneity in transmission rates across the Thai isolates using the grouping technique

defined in section 4.4. Such multiple population models have been described and used

previously; as such, we did not conduct a large-scale simulation study to assess the

performance of this model. However, it is of much more interest to explore in depth

the performance of our network reconstruction method (described in section 4.5). As

such, we describe the results of simulation studies using this approach, before applying

it to the Thai data.

4.6.1 MRSA groups

We used the isolate grouping approach to estimate the transmission rate of genetically

similar strains of MRSA in the Thai ICUs. It was found that isolates in the first ICU
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Transmission rates for MRSA clusters, Thai data ICU 1

Transmission 1 group 2 groups 3 groups 4 groups

parameter

a1 0.011 0.016 0.017 0.015

(0.005,0.020) (0.006,0.023) (0.007,0.022) (0.005,0.023)

a2 — 0.0062 0.008 0.004

(0.001,0.025) (0.002,0.031) (0.001,0.030)

a3 — — 0.018 0.027

(0.001,0.045) (0,0.091)

a4 — — — 0.055

(0,0.317)

Table 4.2: Posterior median estimates of the transmission parameters using the clus-

tering approach, for up to four groups of genetically similar isolates in ICU

1. 95% equitailed credible intervals are given in parentheses.

could be grouped into at most four genetically distinct clusters with more than one

member in each, but could only form three groups for ICU 2. A greater number of

groups resulted in poor transmission estimates with a large amount of uncertainty.

The isolates were grouped into varying numbers of groups pre-analysis, before the

data-augmented MCMC algorithm was performed to derive parameter estimates. Trans-

mission parameter estimates for each grouping are given in tables 4.2 and 4.3.

In both wards, there was a large cluster of isolates for which the transmission rate could

be estimated with relatively low uncertainty (represented by a1 in each ICU). A great

deal of uncertainty surrounds the estimates for smaller groups. With only 43 and 40

sequenced isolates in wards 1 and 2 respectively, there was little information to provide

estimates of differing transmission rates.

4.6.2 Network reconstruction for simulated datasets

We now present results from the transmission network reconstruction method. Before

considering the Thai data, we analysed the performance of our methods using simu-

lated data.

We considered a baseline case of p = 0.05, z = 0.85, β = 0.005, values which we believe

to be typical for hospital wards (see for example Chapter 2, [59, 126, 221]). In addition,

we set µ = 0.03 and µG = 0.003 as baseline values. These values correspond to an
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Transmission rates for MRSA clusters, Thai data ICU 2

Transmission 1 group 2 groups 3 groups

parameter

a1 0.007 0.010 0.009

(0.004,0.016) (0.004,0.021) (0.003,0.019)

a2 — 0.007 0.011

(0.002,0.025) (0,0.252)

a3 — — 0.22

(0.003,0.540)

Table 4.3: Posterior median estimates of the transmission parameters using the clus-

tering approach, for up to three groups of genetically similar isolates in ICU

2. 95% equitailed credible intervals are given in parentheses.

expected 33 and 333 SNPs for within-group and between-group isolates respectively.

Within-host diversity on this scale has been demonstrated [38, 64], while between-type

diversity depends largely on the sample in question — preliminary examination of the

Thai data indicated 300 SNPs could be a reasonable expected genetic distance between

unrelated types. For the importation structure model, we set the clustering parameter

c = 0.3 as the default value, while the transmission diversity factor was set at γ = 0.9

in the second model. For each simulated dataset, 250 independent patient admissions

were generated over 150 days, with a mean length of stay of 8 days. Screening results

were taken every three days, and genetic information was generated for positive re-

sults. We investigated the impact of altering our default values on the accuracy of the

estimated transmission network, as well as our posterior estimates of the parameters.

The MCMC algorithm was run for 100,000 iterations for each simulated dataset. Figure

4.8 shows an example of a transmission network simulated under baseline assumptions

(top left), and our estimation of the same network (top right). The probability of an

edge, or transmission route, i → j existing is estimated by the proportion of iterations

for which the source of patient j is i. The ROC curve for the estimated network (bottom

left), and the resolution (bottom right) are also shown, comparing the estimation to the

random selection of colonised and present patients.

Perhaps unsurprisingly, it was found that higher sensitivity values resulted in more

accurate network reconstruction for both models. Figure 4.9 shows the accuracy of es-

timated networks increases as z varies from 0.7 to 1. As false negative results occur

more frequently, we get less information (or even no information) about an individ-
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ICU 501: True transmission network
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ICU 501: Inferred transmission network
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Figure 4.8: Baseline scenario true transmission network (top left) and estimated net-

work (top right). Posterior probability of transmission routes is indicated

by arrow weighting and colour. The colour of each node is on a scale de-

pending on the probability of the individual being an importation (black)

or an acquisition (red). Accuracy is shown by the ROC curve (bottom

left). The dashed red line indicates theoretical random network construc-

tion. We compare the ROC curve of the estimate network (blue) to naı̈vely

choosing a transmission source at random (green). Network resolution

(bottom right) is shown, and is also compared to choosing sources ran-

domly.

ual’s MRSA type, resulting in a greater frequency of incorrect edges. Even with 100%

sensitivity, some positive patients did not have a positive screen, due to colonisation

and subsequent discharge occurring between swab times.

An increased transmission rate resulted in a reduction in accuracy for both models,
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Figure 4.9: ROC curves for estimated transmission networks under various values of

sensitivity for the importation structure model, restricted on the false pos-

itive rate interval [0, 0.25]. Ten datasets were simulated under each sensi-

tivity level; the mean ROC curve is shown in bold.

with a slightly larger impact on the importation structure model. Clearly, when little

transmission occurs, the majority of positive individuals are importations, and the net-

work is straightforward to reconstruct. Figure 4.10 shows ROC curves for estimated

networks, using data simulated under various transmission rates. Increased transmis-

sion of the same type results in the presence of several similar strains in the ward at

once, which makes it more difficult to ascertain the true source of a given colonisa-

tion. Under the importation structure model, a patient assumed to acquire MRSA on

a particular day will have an equal chance of having acquired the pathogen from any

colonised patient within a particular group at the time. The transmission diversity

model allows the transmission chain to have an impact on the expected genetic dis-

tances between two given isolates, and as such, allows greater discrimination between

the set of possible sources. However, as the number of transmission events between

two individuals (path length between nodes) becomes large, the expected genetic dis-

tance between isolates becomes closer to that expected under the assumption that they

are unrelated (µγt(i,j) ≈ µG), potentially resulting in the incorrect conclusion that the

sequences are unrelated. However, we found that as the number and length of trans-

mission chains increases, the level of uncertainty surrounding our estimate of γ re-

duces.

The scale of genetic diversity within MRSA type/transmission chain, compared to that
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Figure 4.10: ROC curves for estimated transmission networks under various trans-

mission rates for the importation structure model, restricted on the false

positive rate interval [0, 0.25]. Ten datasets were simulated under each

transmission rate; the mean ROC curve is shown in bold.

amongst unrelated strains, is clearly an important factor in the identification of trans-

mission routes. By varying values of µ and µG, we observed the impact of this on

recovering networks from simulated data. Figure 4.11 shows how accuracy reduces as

µG approaches the same level as µ (0.03), for the transmission diversity model.

Reassuringly, we found that in almost all cases, the ROC curve for estimated transmis-

sion networks indicated a considerably better performance than the naı̈ve approach of

assigning each of the present positive patients as the source of transmission with equal

probability. Only in the cases where diversity was defined to be similar for related and

unrelated isolates was accuracy not improved with the incorporation of WGS data.

The importation structure model performed best when the clustering parameter c was

low. When a newly observed strain is unlike anything previously observed, it is highly

probable that the origin of this strain are outside of the hospital. The more frequently

strains of the same type appear, the harder it becomes to differentiate between impor-

tations and acquisitions, particularly when the first observed strain is positive. In most

cases, the estimate of c was associated with a large amount of uncertainty, and was

poorly estimated in cases with few importations.

The performance of the transmission chain diversity model is affected by the value

of γ, the transmission diversity factor. Values approaching 1 indicate that one would

expect the same genetic distances from isolates taken from the same individual, as be-
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Figure 4.11: ROC curves for estimated transmission networks under various value of

µG, genetic diversity for unrelated strains, for the transmission chain di-

versity model, restricted on the false positive rate interval [0, 0.25]. Ten

datasets were simulated under each transmission rate; the mean ROC

curve is shown in bold.

tween individuals in the same transmission chain. When there are multiple patients

belonging to the same transmission chain present at any time, this means that genetic

distances between isolates taken from these individuals are all similar, and differenti-

ating the exact routes of transmission becomes difficult. Values of γ approaching zero

indicate that there is a considerable genetic shift when a transmission event occurs,

and the colony within the newly colonised individual is very different to that found

in the source. This results in uncertainty as to whether these individuals are related or

unrelated, as µγt(i,j) and µG reach similar values. As such, we found that this model

tended to perform poorly when γ was close to zero. Low values of γ were typically

overestimated.

4.6.3 Thai data network reconstruction

We next used the real data collected from the Thai paediatric and surgical ICUs (ICU

1 and ICU 2 respectively), and attempted to estimate the transmission network in each

ward. The data were analysed under both models by running the MCMC algorithm

for 500,000 iterations, with 10 data augmentation steps at each iteration.
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4.6.3.1 Importation structure

We first ran our analysis under the importation structure model, in which imported

strains were associated with an MRSA type. Subsequent transmissions pass on MRSA

of the same type. The distance between two strains was assumed to follow a geometric

distribution, with parameter µ or µG if the strains are of the same, or of different, types

respectively.

Parameter estimates are given in table 4.4. It was estimated that 6% of admissions

to the surgical ICU were already colonised, compared to 16% in the paediatric ward.

Estimates for test sensitivity were 74% and 83% in the two wards. Transmission rates

were slightly higher in the surgical ICU; a rate corresponding to 9.5 acquisitions per

1000 patient days per colonised patient was estimated, compared to 7.7 in the paediatric

ward.

Genetic diversity was estimated to be broadly similar in each ward. Any pair of MRSA

isolates imputed to belong to the same group were expected to differ by 46 SNPs in

ICU 1 and 38 SNPs in ICU 2. Isolates belonging to different groups were expected

to differ by 402 SNPs in ICU 1, and 377 SNPs in ICU 2. There was estimated to be a

greater diversity of genetic types amongst importations in ward 1 than ward 2, with

the clustering parameter c estimated to be 0.2 and 0.66 respectively.
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ICU 1: Inferred transmission network

● T234.1

●
T028.1

●

T2
32

.1

●

T0
71

.1

●

T
22

8.
1

●

T
335.1

●

T095.1

●

T087.1

●

T303.1

●
T301.1

●
T126.1

●

T102.1

●

T33
0.1

●

T0
92

.1 ●

T
09

2.
2

●

T
077.1

●

T327.1

●

T075.1

●
T271.1

● T099.1

● T192.1

●

●

Import
Acquisition

Transmission prob.

1
0.75
0.5
0.25

ICU 2: Inferred transmission network
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Figure 4.12: The inferred transmission networks for the surgical ICU (top) and

the paediatric ICU (bottom) under the importation structure model.

Colonised patients are arranged randomly on circles. The colours of the

points range from red to black; the darker the colour, the more likely the

patient was to have been admitted in a colonised state. Arrows represent

transmission routes, arrow weighting and colour represents the posterior

probability of that transmission route.

166



CHAPTER 4: INFERENCE OF TRANSMISSION USING WHOLE GENOME SEQUENCE DATA

Parameter estimates under importation structure model

Parameter ICU 1 ICU 2

Pr(importation) (p) 0.063 (0.029, 0.108) 0.164 (0.087,0.253)

Sensitivity (z) 0.735 (0.617, 0.839) 0.829 (0.746, 0.899)

Transmission rate (β) 0.0095 (0.0048, 0.0155) 0.0077 (0.0036, 0.0128)

Genetic variation (µ) 0.022 (0.019, 0.025) 0.026 (0.023,0.029)

Global genetic variation (µG) 0.0025 (0.0022, 0.0028) 0.0027 (0.0023, 0.0030)

Cluster parameter (c) 0.20 (0, 0.56) 0.66 (0.39, 0.86)

Table 4.4: Posterior mean estimates for model parameters under the importation

structure model for both ICUs, along with 95% equitailed credible intervals.

Estimated transmission networks for ICU 1 and 2 are shown in figure 4.12. Several

transmission events were linked to patient T126, in ICU 1, who was the source of an

estimated five colonisations (posterior mean outdegree of node T126, 5.1 (95% CrI: 3,

6)). Five transmission events can be attributed to this individual with greater than 50%

posterior probability. This patient’s high transmissibility is likely to be due to their

long stay in the ward (71 days), longer than any other colonised patient, although this

still exceeds the expected level of transmissibility, given the estimate of β. Patient T12

was estimated to have caused more transmission events than other individuals in ward

2; this patient stayed for a total of 85 days over two episodes, and was the source of

3.7 (95% CrI: 0, 6) transmission events. However, only one transmission event can be

linked to this patient with greater than 50% posterior probability.

The mean outdegree of nodes over time (secondary cases) was estimated to be 0.54

(95% CrI: 0.43, 0.62) in ICU 1, and 0.42 (0.26, 0.61) in ICU 2, suggesting a slightly higher

expected number of secondary cases in ICU 1.

4.6.3.2 Transmission chain diversity

Next, an analysis of the data under the transmission chain diversity model was per-

formed, in which strains were considered related if they belong to the same transmis-

sion chain, and unrelated if not. We supposed that the genetic distance between two

isolates follows a geometric distribution with mean 1/(µγt), where t is the shortest

number of edges between the two nodes associated with the sequences in the trans-

mission network. The distance between unrelated sequences was assumed to follow a

geometric distribution with mean 1/µG.
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ICU 1: Inferred transmission network
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ICU 2: Inferred transmission network
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Figure 4.13: The inferred transmission networks for the surgical ICU (top) and the

paediatric ICU (bottom) under the transmission chain diversity model.

Colonised patients are arranged randomly on circles. The colours of the

points range from red to black; the darker the colour, the more likely the

patient was to have been admitted in a colonised state. Arrows represent

transmission routes, arrow weighting and colour represents the posterior

probability of that transmission route.
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Parameter estimates for ICU 1 under this model were found to be broadly similar to

those estimated for the importation structure model. We estimated that γ, the param-

eter describing the change in genetic diversity due to transmission events was very

close to 1, indicating that between patient genetic distances differed very little from

the genetic distance seen from within-patient samples. Conversely, estimates for ICU

2 varied considerably under this model. A lower rate of importation was estimated

(estimated to be half of that found for the importation structure model), but the rate of

acquisition was found to be higher. Possible explanations for this are discussed later.

We again found that the estimate of γ was close to 1, indicating little change in diversity

due to transmission events.

Parameter estimates under transmission chain diversity model

Parameter ICU 1 ICU 2

Pr(importation) (p) 0.064 (0.032, 0.107) 0.083 (0.038,0.139)

Sensitivity (z) 0.754 (0.637, 0.856) 0.845 (0.765, 0.911)

Transmission rate (β) 0.0102 (0.0054, 0.0164) 0.0101 (0.0064, 0.0147)

Genetic variation (µ) 0.024 (0.021, 0.028) 0.029 (0.022,0.036)

Global genetic variation (µG) 0.0026 (0.0024, 0.0028) 0.0027 (0.0024, 0.0030)

Transmission diversity (γ) 1.03 (0.87, 1.21) 0.98 (0.92, 1.05)

Table 4.5: Posterior mean estimates for model parameters under the transmission

chain diversity model for both ICUs, along with 95% equitailed credible

intervals.

The estimated transmission networks for ICU 1 and 2 are shown in figure 4.13. No-

tably, while the estimated network for ICU 1 remained very similar under this model

compared to the importation structure model (figure 4.12), the network for ICU 2 is

quite distinct. This corresponds to the differences in parameter estimates under each

model, and is discussed later.

We found that patients typically had a higher outdegree in ICU 2 under this model

than the importation structure model, corresponding to the higher estimate for the

transmission rate. For instance, patient T12 was estimated to be the source of 8.6 (95%

CrI: 4, 13) transmission events, compared to 3.7 under the previous model.

Under the transmission chain diversity model, the mean outdegree of nodes was esti-

mated to be 0.56 in ICU 1, and 0.72 in ICU 2, indicating a higher expected number of

secondary cases in ICU 2.
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4.6.3.3 No WGS information

Finally, we ran an analysis without using the WGS data in order to compare results

and determine the impact of its incorporation. This was performed by augmenting

only colonisation times rather than sources and strain types, using the same method

described in chapter 2. This allowed estimates for p, z and β to be derived. Results are

given in table 4.6.

Estimated parameter values for separate ICUs (no WGS data))

Parameter ICU 1 estimates (95% CrI) ICU 2 estimates (95% CrI)

Pr(importation) (p) 0.046 (0.008, 0.105) 0.193 (0.112,0.286)

Sensitivity (z) 0.759 (0.626, 0.874) 0.862 (0.776,0.929)

Transmission rate (β) 0.0116 (0.0059, 0.0185) 0.0071 (0.0032,0.0123)

Table 4.6: Posterior mean parameter estimates for each ICU, without the use of genetic

data, along with 95% credible intervals.

Estimates of sensitivity were found to be similar to those obtained using WGS data.

However, estimates of p here vary compared to those found under the transmission

chain diversity model, and the importation structure model (lower for ICU 1, and

higher for ICU 2). These differences are discussed in the next section.

4.7 Discussion

We have described methods to analyse the transmissibility of MRSA types, by grouping

isolates according to genetic similarity. This analysis may be applied to WGS data, but

also lower resolution genetic data, sufficient to partition isolates according to similarity.

This method was applied to data collected from ICUs in Thailand, in order to detect

differences in transmissibility.

In addition, we have provided methods to unite the analysis of genetic and epidemio-

logical data for the transmission of MRSA in hospitals. More generally, the approaches

we have used can be applied to the analysis of disease transmission where multiple

importations can occur. We applied our methods to data collected from Thai ICUs, and

estimated a transmission network for each ward.
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4.7.1 MRSA grouping method

The MRSA grouping approach found fairly little difference in the transmissibility of ge-

netically distinct types in the Thai data. In both ICUs, there appears to be one dominant

group of isolates (see figure 4.14), which were identified as group 1 when partitioning

the isolates. The estimate of the transmission rate from these groups is similar to the

overall estimate of transmission, when treating all strains equally (tables 4.2 and 4.3).

Other groups appear to be less clearly defined, and the uncertainty surrounding the

estimates becomes very large when analysing three or more clusters. It seems likely

that the limited size of the dataset means that any actual difference in transmissibility

would not be estimated well. It is possible that some of the isolates outside the dom-

inant group belonged to a less common but more transmissible type, but this was not

evident due to lack of inferred transmission events.

Another concern with this approach is the assumption that genetic distance is related

to differences in transmissibility, and that isolates in the same groups are equally likely

to be transmitted. It is possible that a few SNPs could result in a more transmissible

type, but our measure of genetic similarity may put these isolates in the same group.

4.7.2 Network reconstruction

The methods described here are a novel approach to incorporating genetic data to the

study of pathogen transmission dynamics. This framework allows the simultaneous

estimation of model parameters and a transmission network. These methods offer flex-

ibility not available in previous approaches, allowing for multiple independent trans-

mission trees, unobserved colonisation times, and imperfect observations.

Simulation studies revealed that both models perform well in most scenarios, in terms

of recovering parameter values and reconstructing the transmission network. Both

may be appropriate in different settings. The importation structure model may be used

when it is believed that imported isolates belong to multiple genetically similar groups.

The transmission chain diversity model may be used to investigate the hypothesis that

a genetic shift occurs upon transmission from one individual to another.

We found that estimated parameter values differed considerably between the models

when examining ICU 2. The difference stems from the designation of importation or

acquisition to those individuals who are positive at their first screen. Figure 4.3 shows

several patients carrying a genetically similar strain fall into this category. The impor-
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tation structure model tends to assign such individuals as importations belonging to

the same group, since the probability of acquiring MRSA in the first day or two was

typically lower. In contrast, under the transmission chain diversity model, the proba-

bility of having such a similar strain, but being unrelated to other patients in this strain,

is considered unlikely.

An analysis of the Thai data excluding genetic data was additionally performed. Clearly,

it was impossible to estimate the genetic diversity or clustering parameters, but we

were able to compare our estimates of p, z and β to the models utilising genetic data.

While our estimates of sensitivity remained similar to those found under the trans-

mission chain diversity model and the importation structure model, our estimate of p

differed (lower for ICU 1, and higher for ICU 2). With no genetic data, the probability

of being colonised on admission is largely dependent on the time of the first positive

observation — if this is soon after admission, the probability of importation is relatively

high. As such, many of the individuals who appear to be positive on admission in ICU

2 (see figure 4.3) are determined to be importations. However, when genetic data are

available, it can be seen that many of these individuals carry a genetically similar type,

lending support to the hypothesis that these patients may have acquired colonisation

soon after admission.

It was assumed in our analyses that patient admission statuses (φ) were independent.

However, a small number of patients (1 in ICU 1 and 4 in ICU 2) were readmitted to the

ward, having been discharged at an earlier time. Readmission episodes were assumed

to be independent, the patient being positive on admission with probability p. In real-

ity, due to the typically lengthy carriage period for MRSA [169, 170], patients positive

during their first episode are likely to still be positive upon readmission within the

short study span. For this reason, we repeated our analysis, supposing that these pa-

tients could not be susceptible on admission. As expected, this resulted in an increase

in the estimate of p in both wards, and a slight reduction in transmission rate β. All

other parameters remained approximately the same. Other than the nodes restricted

to be positive on admission, there was little change in the estimated transmission net-

work.

We noted that there were a small number of individuals who appeared to be colonised

by extremely diverse MRSA strains at different times (see figure 4.6). Since the second

observed strain appears similar to other isolates present in the ward at time of obser-

vation, we believe that this within-host diversity arises from secondary colonisation,
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which either coexists with, or replaces, the initial bacterial colony. These isolates are

likely to increase the estimate of within-patient diversity, leading to a lower estimate

for µ. This could additionally impact the estimated transmission network. The anal-

ysis was repeated, excluding any isolates which differed by 100 SNPs or more from

the patient’s previous isolate (three cases in ICU 1, one in ICU 2). This resulted in an

increased estimate of µ (expected number of SNPs between isolates of the same type in

ICU 1: 34, down from 46). There was also a slight increase in estimates for µG.
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Figure 4.14: Genetic similarity of isolates sequenced in ICU 1 (top) and ICU 2 (bottom),

shown in relation to two dissimilar reference strains. All strains for each

ICU are shown in the left column, while the right column is zoomed in on

the largest cluster in each ICU.
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Our analyses indicated that there was no detectable change in genetic diversity as a

result of between-patient transmission, estimating the transmission diversity factor γ

to be very close to 1 in both wards (see table 4.5). However, the large amount of genetic

diversity within-patient (we expected over 20 SNPs between any two within-patient

isolates) might obscure any such effect.

We have assumed that related genetic distances are geometrically distributed. A his-

togram of observed genetic distances is given in figure 4.15. It would be of interest

to explore alternative distributions to describe genetic diversity, which may be more

appropriate.

Other studies have measured within-host genetic diversity over time. Young et al.

studied three S. aureus carriers in detail, and detected 30-42 SNPs within-host [38],

while Mwangi et al. observed 35 mutations from a colonised individual [64], both

broadly in line with our estimates. These studies were investigating in vivo evolution

of S. aureus during progression from carriage to disease, and during the development of

drug resistance. Mutations were analysed in detail to determine their role in particular

phases of carriage and disease. No estimates of the genetic diversity existing at any one

time were made. As yet, there have been few studies on within-host genetic diversity,

and these have investigated a very small sample of individuals. The Thai data had

few examples of patients sequenced multiple times during carriage, and as such, it

is difficult to draw many conclusions about the in vivo genetic behaviour or diversity

of S. aureus. A larger scale study with multiple sequenced isolates per carrier would

certainly shed more light on this.

Our aim is similar to that described by Jombart et al. in 2011 [152]. In this paper, the

authors developed a network optimisation algorithm called SeqTrack to reconstruct dis-

ease outbreaks. The authors consider a transmission network to be a partially-observed

weighted graph G = {S, E, w}, where S is the set of vertices, E is the set of edges, and

w : E → R is a weight function which assigns a weighting to each possible ancestry.

The algorithm determines the subset B ⊆ E which minimises ∑e∈B w(e), constrained by

observation times — that is, individuals may only be infected by previously-observed

infectious individuals. In our setting, there is no reason to suppose that transmission

events occur in the same order as positive swab results, and this approach would be in-

appropriate. Our methods have no such limitations, and do not attempt to recover the

optimal graph, returning instead graphs of a high posterior probability, which we may

use to give posterior probabilities for each edge. Furthermore, our approach allows
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Figure 4.15: Histograms for the pairwise SNP distances recorded from ICU 1 (left) and

ICU 2 (right).

individuals to have multiple strains, and within-host variation is incorporated.

Another study which aimed to reconstruct transmission networks was introduced by

Ypma et al. in 2012 [65], who investigated the outbreak of avian influenza, which in-

fected several Dutch poultry farms in 2003. The authors constructed a likelihood func-

tion with independent components representing infectiousness, genetic distance and

spatial location, and use a data-augmented MCMC approach to estimate a transmis-

sion network and associated parameters, accommodating missing data. Like many

other epidemic analyses, this approach assumes a single origin of disease in the pop-

ulation, excluding the possibility of multiple introductions. While this is certainly a

realistic assumption in this case, it would not be appropriate to a hospital setting, in

which introductions are frequent, and the transmission network is likely to be com-

posed of several subtrees. Multiple introductions complicate the analysis of transmis-

sion networks, as a mechanism to differentiate between related and unrelated isolates

is required. Furthermore, it is not possible to simulate data under the likelihood pro-

vided in this study, since genome sequences are utilised, but the likelihood is based

only on the genetic distance between strains.

It seems intuitive that the availability of genetic data to aid the estimation of trans-

mission routes should increase the precision of our transmission parameter estimates,

particularly in a multiple population scenario, where susceptible patients experience

independent colonisation pressure from different groups at different rates. However,

this is not necessarily the case. We conducted a short investigation into the change in
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information as transmission routes are observed. This indicated that we do not neces-

sarily get an increase in information for particular parameters by knowing transmis-

sion routes. However, unless transmission parameters take extreme values, an overall

increase in information is exhibited. Full details are given in appendix A.

4.7.3 Using nucleotide data directly

In this study, we have constructed a likelihood for observing the matrix of genetic dis-

tances, Ψ, rather than the set of genetic sequences, Y. Construction of a likelihood

for the observation of Y presents some problems due to the size of the sequences. The

Thai dataset contained 2591 polymorphic loci, so vectors representing sequences would

have to be at least this long, but generally, could be much longer. We are interested in

the change in sequences — we use the fact that sequences that are few SNPs apart are

likely to be closely related, and are more likely to be present in two patients due to a

transmission event, than two genetically distant sequences. Dealing with sequences,

rather than genetic distances, we ask the question that, given patient i transmits to

patient j, what is the probability that we observe sequence yj from patient j, given

we observed yi from patient i? If we assume that nucleotide substitutions are equally

likely, one solution is the following;

P(yi|yj, sj = i) = P(ψ(yi, yj) = x)P(x SNPs occur at loci observed)

= µ(1 − µ)x 1

(L
x)3

x
,

in which L is the genome length, and we consider number of SNPs observed to be

geometrically distributed with parameter µ. The 3x term arises from assuming a nu-

cleotide is replaced by one of the 3 other possibilities with equal probability. Clearly,

this function rapidly tails off as x increases. We found that performing a data augmen-

tation algorithm, in which we allow the source of colonisation to be updated at each

step, resulted in the minimal distance network to be selected, and further proposals

were almost always rejected. Since the difference in likelihood resulting from just a

small number of SNPs is so great, once the closest possible source has been chosen,

it is very unlikely to change. We do not believe that the minimal distance network is

necessarily the correct one, and certainly not with close to 100% posterior probability.

Since we are primarily interested in the distance between sequences alone, and not the

composition of sequences themselves, we believe it is convenient and reasonable to
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analyse the genetic distance matrix rather than whole genome sequences themselves.

4.7.4 Future work

There are many ways in which the framework provided in this chapter may be ex-

tended. We chose simple distributions to represent the genetic diversity both within

and between individuals, assuming the probability of each observed sequence was

time-homogeneous. Time dependency could be introduced, allowing the expected

number of SNPs to increase with time. This is approximated in the transmission chain

diversity model, where it is assumed that diversity increases with transmission events

(which could be assumed to be roughly proportional to time, given a relatively con-

stant transmission rate). Furthermore, rather than simply using the number of SNPs,

a more complex genetic distance function could be used, such as that used by Ypma et

al. in which transitions and transversions were considered separately [65].

An extension of much interest would be to separate the effect of sampling and genetic

drift. As described earlier, it seems likely that each sampled isolate is taken from a

colony of genetically similar, but distinct, bacteria. By only considering one sampled

isolate at each observation time, it is impossible to determine whether the distribution

of strain types is changing, or whether diversity is increasing. A dataset comprising

several sequenced isolates at each swab time would be ideal to study this.

We have assumed homogeneity in terms of susceptibility and transmissibility across

all patients. This model may be extended to consider heterogeneous transmission rates

of multiple subpopulations within the set of colonised patients. This could potentially

reduce the uncertainty in estimates of intervention effectiveness, compared to the set-

ting where no WGS data is available. This may also improve our reconstruction of the

transmission network. In appendix A, the impact of observing transmission routes on

the information for transmission parameters is investigated.

Incorporating mechanisms for reinfection or recombination could be of interest, and

potentially important in order to reduce the impact of patients with highly genetically-

distant isolates, such as those indicated in figure 4.6. In order to see the effect that these

individuals have on the estimates, each could be regarded as two individuals, where

each has one type of isolates. In doing this, the average genetic diversity observed

within patients will not be skewed by such large distances, which in turn should re-

duce the uncertainty in the reconstructed networks. However, establishing a threshold

above which an isolate is considered the result of a separate colonisation is likely to be
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arbitrary.

A future study over a longer time period, during which isolates are collected from

carriers and sequenced at regular intervals, would be of much interest. This could

shed more light on the in vivo behaviour of the pathogen. Multiple sequenced isolates

taken at each time point could clarify the extent of genetic diversity within-host at any

given time, and could help to describe its dynamics over time. Isolates taken on the day

of admission could reduce uncertainty around whether an individual has imported the

pathogen or acquired it on the ward. As costs and resource implications fall, such a

study could be feasible in the near future.
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Notation used in Chapter 4

n Number of admissions

Time observations

ta
j Admission time of patient j

td
j Discharge time of patient j

tx
j,k Time of patient j’s kth swab

t
y
j,k Time of patient j’s kth sequenced isolate

Screening data

xj,k Patient j’s kth swab result (positive/negative)

yj,k Patient j’s kth sequenced isolate (DNA sequence)

νj Number of swabs taken from patient j (νj ≥ 0)

ρj Number of sequenced isolates for patient j (0 ≤ ρj ≤ νj)

ns Total number of sequenced isolates (ns = ∑i ρi)

Ψ ns × ns matrix of pairwise distances between all sequenced isolates

Parameters

p Probability of colonisation on admission

z Test sensitivity

a1, . . . , a4 Transmission parameters1

β Transmission parameter2,3

µ Within-group2/within-chain3 genetic diversity

µG Between-group2/unrelated type3 genetic diversity

c Clustering parameter2

γ Transmission chain diversity parameter3

Functions

ψ(A, B) The number of SNPs between two sequences, A and B

t(j, k) Shortest path from node j to node k in a transmission network3

r(k) The patient ID associated with the kth ordered sequence2,3

Latent data

φj Admission state for patient j (1 if positive on admission, 0 otherwise)

tc
j Time of colonisation for patient j (tc

j = ∞ if always negative)

gj MRSA group for patient j (gj = 0 if always negative)1,2

sj Source of colonisation for patient j (sj = 0 if positive on admission)2,3

Ψc
j Set of genetic distances for a positive patient j with no sequenced isolates2,3

Table 4.7: 1 Notation relevant to the MRSA grouping approach (section 4.4)

2 Notation relevant to the importation structure model (section 4.5.3)

3 Notation relevant to the transmission chain diversity model (section 4.5.3)
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Conclusions

While numerous studies have investigated MRSA transmission in healthcare facilities,

transmission dynamics are still incompletely understood, and the benefits of many in-

terventions designed to reduce transmission are disputed. In the second chapter, we

demonstrated the effectiveness of patient isolation in combination with decolonisation

treatment in reducing MRSA transmission in a general ward setting. We found that the

majority of transmission was associated with unisolated positive patients, underlining

the importance of the detection of carriage and prompt implementation of infection

control policies. No similar study has explored transmission dynamics in the general

ward setting, despite the potential for such wards to act as an MRSA reservoir for the

hospital as a whole. Our results provide evidence which may contribute to the dis-

cussion of cost-effective infection control measures, and may aid decisions made by

policy-makers. While we provided estimates for the combination of decolonisation

and isolation as a package, it is certainly of interest to explore the role of each compo-

nent independently in the future. This may be achieved in a similar model framework,

with data collected from a purpose-designed study.

In chapter 3, Bayesian model selection methods were considered in detail for imper-

fectly observed transmission models in a hospital setting. Model selection is of great

importance to further knowledge of how exactly transmission dynamics work, and our

systematic simulation studies contribute towards a greater understanding of the per-

formance of reversible jump MCMC and the DIC for the particular case of transmission

models. We highlighted the need to have a dataset with a large number of transmission

events in order to discriminate between models. RJMCMC appeared to perform better

than the DIC in our studies, and in providing posterior model probability estimates,

offers an easily interpretable measure of relative model performance. These estimates
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could potentially be used to calculate Bayes factors, or used as weights in a Bayesian

model averaging procedure. Such procedures would be of interest when there are sev-

eral models which may adequately describe the data in question, with a common value

to be estimated. This investigation could be extended by considering some of the other

model comparison techniques discussed in 3.2, or incorporating the prior matching

techniques described in 3.6.

In chapter 4, we provided a framework with which to incorporate whole genome se-

quence data into the analysis of MRSA transmission. Such data are becoming increas-

ingly available as the involved costs and processing times fall. There have been few

studies utilising both genetic and epidemiological data to analyse pathogen transmis-

sion, and we believe our approach offers a new and flexible framework with which to

perform such analyses. Our framework allows for multiple disease origins, multiple

isolates per individual and imperfect observation, factors which complicate analysis,

but have not been considered in previous studies. Simulation studies demonstrated

that our methods performed well in many cases, and we estimated transmission net-

works based on two small datasets collected from Thai ICUs.

The models we described are relatively simple, and do not take into account many of

the biological processes occurring at the molecular level which cause the observed ge-

netic diversity. However, this provides a basis upon which more complex models may

be constructed. It may be worthwhile investigating various genetic distance functions,

rather than the number of SNPs, as used throughout chapter 4, or alternatives to the

geometric distribution to describe genetic distance probability. The datasets we use

here are insufficient to provide much insight into molecular level dynamics, but this

will become feasible as larger and more detailed datasets become available. In partic-

ular, it would be of great interest to investigate the changing genetic diversity which

exists within-host over time, and understand the processes behind the large amount

of genetic diversity we have observed within-host. It would also be of interest to ex-

tend this model to consider the effect of antibiotics on an MRSA carrier’s propensity to

transmit. This could provide a greater insight into the effectiveness of such treatments.

Furthermore, estimates derived under models including and excluding WGS data may

be compared, to investigate the potential gain in information we discussed in appendix

A.

While MRSA incidence rates are falling in many countries worldwide, it remains a ma-

jor problem in resource-limited nations. Furthermore, other nosocomial pathogens are
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of growing concern. Based on current trends, it is predicted that bloodstream infections

caused by multiply resistant E. coli are likely to outnumber those caused by MRSA in

the near future [222]. The threat of highly resistant gram-negative bacterial infections

has become apparent in the last few years [223, 224]. The models we have described

may be adapted to analyse the nosocomial transmission of such pathogens, which may

be of importance as the need to evaluate infection control policies increases.

Overall, this thesis provides new insights into MRSA transmission dynamics, and a

systematic study into statistical methods to compare transmission models. Finally, we

have provided a framework to incorporate genetic data into transmission models. As

sequence data become more abundant, the demand for such methods is likely to be-

come ever greater, and our work provides one possible novel approach to their analy-

sis.
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lence and risk factors for carriage of methicillin-resistant Staphylococcus aureus

at admission to the intensive care unit: results of a multicenter study. Archives of

Internal Medicine, 163(2):181–188, 2003.

[35] I. F. Chaberny, S. Ziesing, F. Mattner, S. Bärwolff, C. Brandt, T. Eckmanns,
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APPENDIX A

Impact of observing transmission

routes on parameter estimates

While there is certainly much to learn about transmission routes by incorporating ge-

netic data into our analysis, the effect that this additional information has on our trans-

mission parameter estimates is less clear. While one might think that an increase in

precision in parameter estimates would be likely, this is not necessarily the case. We

consider here how observing transmission routes can impact transmission parameter

estimates for a continuous-time, fully-observed epidemic.

Suppose we have a model with parameters θ = {θ1, . . . , θm} and a log-likelihood func-

tion ℓ(θ). The observed information matrix is defined as

J (θ) = −
[∂2ℓ(θ)

∂θ2
i,j

]
i,j≤m

,

the negative of the matrix of second derivatives of the log-likelihood function (Hessian

matrix). The observed information of parameter θk evaluated at θk = x is then

J (θk = x) = −
[∂2ℓ(θ; θk = x)

∂θ2
k

]
.

An increase in information corresponds to a reduction in uncertainty surrounding a

parameter estimate.

Suppose we observe a total of n individuals in a dynamic population, with a set of

entry times ta = {ta
1, . . . , ta

n} and exit times td = {td
1, . . . , td

n}. For those who become in-

fected, we assume the infection times, tI , are observed perfectly. Each individual who

is never infected (j say) is assigned an infection time tI
j = ∞. In this study, we are inter-

ested in the transmission parameters, and ignore any importation parameterisation for
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simplicity. The inclusion of such a structure would not impact our conclusions about

the transmission parameters. If we change entry and exit times so that all individuals

are present for the duration of the study, this model is equivalent to an SIR model with

deterministic recovery times.

Firstly, suppose we model the transmission rate as q(t) = aI(t), where I(t) is the num-

ber of infectious individuals in the population at time t. The likelihood of the infection

times tI , given the transmission model, is

L1(a) = π(tI |a)

= exp

(
−

n

∑
k=1

∫ min(td
k ,tI

k)

t=ta
k

aI(t)dt

)

∏
j:tI

j 6=∞

aI(tI
j−),

where tI
j− is the time immediately prior to tI

j . Now consider the case where all transmis-

sion routes, as well as infection times, are observed. We denote the set of transmission

routes s; if individual k is infected by individual j, we have sk = j. Each suscepti-

ble individual independently experiences a transmission rate of a from each infective

individual.

It follows that the likelihood of our observations of transmission routes and times is

then

L2(a) = π(tI , s|a)

= exp

(
−

n

∑
k=1

∫ min(td
k ,tI

k)

t=ta
k

aI(t)dt

)

∏
j:tI

j 6=∞

a

= L1(a) ∏
j:tI

j 6=∞

1

I(tI
j )

∝ L1(a).

Since L2 is proportional to L1, we can conclude that the maximum likelihood estimate

of a will be the same under both scenarios, and there will be no change in information

with known transmission routes.

Now consider a situation where transmission may occur from multiple population

groups 1, . . . , G (for example, MRSA positive patients taking different types of antibi-

otics, or those under isolation precautions compared to unisolated individuals). We

denote the number of infectious individuals in group k at time t as Ik(t). Let g(j) be

the group to which infectious individual j belongs, and g(j) = 0 if the individual is
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not infectious. We define the rate of transmission to any given susceptible individual

at time t as q(t) = ∑
G
j=1 aj Ij(t).

Suppose once again that we lack knowledge about the source of infection. Then the

likelihood of our observations, given this transmission model, is

L1(a1, . . . , ag) = π(tI |a1, . . . , aG)

= exp

(
−

n

∑
k=1

∫ min(td
k ,tI

k)

t=ta
k

q(t)dt

)

∏
j:tI

j 6=∞

q(tI
j−).

We then calculate the second derivative of the log-likelihood, with respect to a given

transmission parameter, am:

ℓ1(a1, . . . , aG) = −
n

∑
k=1

∫ min(td
k ,tI

k)

t=ta
k

q(t)dt

︸ ︷︷ ︸
:=K

+ ∑
j:tI

j 6=∞

log(q(tI
j−))

∂

∂am
ℓ1(a1, . . . , aG) =

∂K

∂am
+ ∑

j:tI
j 6=∞

Im(tI
j−)

q(tI
j−)

∂2

∂a2
m

ℓ1(a1, . . . , aG) =
∂2K

∂a2
m

− ∑
j:tI

j 6=∞

Im(tI
j−)

2

q(tI
j−)

2
.

Now consider the case where all transmission times and routes are observed. Each sus-

ceptible independently experiences infective pressure from all infectious individuals,

and is subject to a transmission rate of am from each infectious individual in group m.

It follows that the likelihood of our observations of transmission routes and times is

then

L2(a1, . . . , aG) = π(tI , s|a1, . . . , aG)

= exp

(
−

n

∑
k=1

∫ min(td
k ,tI

k)

t=ta
k

q(t)dt

)

∏
j:tI

j 6=∞

(
G

∑
m=1

1g(sj)=mam

)

= exp

(
−

n

∑
k=1

∫ min(td
k ,tI

k)

t=ta
k

q(t)dt

)
G

∏
m=1

(aNm
m ),

where Nm represents the total number of observed transmission events from individu-

als in group m, and 1x is the indicator function returning 1 when x is true, 0 otherwise.

We are interested in the change in observed information by observing transmission

routes, as opposed to treating each source of infection as equally likely. We derive the
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second derivative of ℓ2 = log(L2) with respect to a given transmission parameter, am:

ℓ2(a1, . . . , aG) = K +
G

∑
m=1

Nm log(am)

∂

∂am
ℓ2(a1, . . . , ag) =

∂K

∂am
+

Nm

am

∂2

∂a2
m

ℓ2(a1, . . . , ag) =
∂2K

∂a2
m

−
Nm

a2
m

.

It now follows that

∂2

∂a2
m

ℓ2(a1, . . . , aG) =
∂2

∂a2
m

ℓ1(a1, . . . , aG)−
Nm

a2
m

+ ∑
j:tI

j 6=∞

Im(tI
j−)

2

q(tI
j−)

2

J2(am) = J1(am) +
Nm

a2
m

− ∑
j:tI

j 6=∞

Im(tI
j−)

2

q(tI
j−)

2

J2(am) = J1(am) +
1

a2
m

(
Nm − ∑

j:tI
j 6=∞

[ am Im(tI
j−)

q(tI
j−)

]2

︸ ︷︷ ︸
x

)
,

for all am > 0, where J (ai) is i-th diagonal element in the observed information

matrix. Each component of the sum x takes a value in the interval [0, 1], therefore

0 ≤ x ≤ ∑
G
i=1 Ni = N. Clearly, we do not necessarily gain information about spe-

cific transmission parameters by incorporating observed transmission routes — for in-

stance, if Nm = 0, then J2(am) < J1(am).

To consider the change in information for the set of parameters as a whole, we now

examine the trace of the observed information matrix for both cases. In the case where

we observe transmission routes, we may express the trace of the observed information

matrix as

208



APPENDIX A: IMPACT OF OBSERVING TRANSMISSION ROUTES ON PARAMETER

ESTIMATES

tr(J2(a1, . . . , aG)) =
G

∑
m=1

J2(am)

=
G

∑
m=1

[
J1(am) +

1

a2
m

(
Nm − ∑

j:tI
j 6=∞

[ am Im(tI
j−)

q(tI
j−)

]2)
]

= tr(J1(a1, . . . , aG)) +
G

∑
m=1

Nm

a2
m

−
g

∑
m=1

∑
j:tI

j 6=∞

[ am Im(tI
j−)

q(tI
j−)

]2

= tr(J1(a1, . . . , aG)) +
G

∑
m=1

Nm

a2
m

− ∑
j:tI

j 6=∞

∑
g
m=1 a2

m Im(tI
j−)

2

q(tI
j−)

2

︸ ︷︷ ︸
≤1

≥ tr(J1(a1, . . . , aG)) +
G

∑
m=1

Nm

a2
m

−
g

∑
m=1

Nm,

and, if we make an additional assumption that transmission parameters take values

less than or equal to 1 (as is typically the case), it follows that

tr(J2(a1, . . . , aG)) ≥ tr(J1(a1, . . . , aG)),

indicating an overall gain in information associated with the observation of transmis-

sion routes. This is potentially beneficial in the estimation of transmission parameters

and functions of these, such as measures of intervention effectiveness, as described in

section 2.4.2.
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