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ABSTRACT 
Woven fabrics have found enormous application in our daily life and in industry 

because of their flexibility, strength and permeability. The aim of this work was to 

create a general model for through thickness air permeability and thermal conductivity 

for different types of textile fabrics because of their applications in industries and 

everyday life. An analytical model to predict through thickness air permeability was 

developed. The objective was to create a model which will take into consideration the 

two primary mechanisms of air flow in fabrics: through the gaps between yarns and 

through the yarns. Through thickness air permeability was measured according to 

British Standard BS EN ISO 9237: 1995. Several fabrics were tested including plain 

weave, twill weave and satin weave fabrics. The analytical model is a combination 

Kulichenko and Van Langenhove's analytical model which predicts the permeability 

through gaps between yams with Gebart's model to predict permeability within yams. 

Analytical predictions were compared to the experimental data. 

Computational modelling of through thickness air permeability using Computational 

Fluid Dynamics CFD software is presented in this thesis. The Polymer Composites 

Research Group in the University of Nottingham has created a textile schema, named 

TexGen. The prerequisites of this software were to be able to model various types of 

textile structures. A CFD model using CFX 11.0 was developed to be able to predict 

fabric permeability. 

In addition, an analytical model was developed for fabrics deformed by shear, 

compaction and tension. Experimental work for through thickness air permeability of 

sheared fabric was used to verify predicted results. 

An analytical model for thermal conductivity of fabrics was developed including the 

influence of moisture content on thermal conductivity. Two existing approaches for 

single-layer fabrics are described and compared: rule of mixtures and thermal 

resistance approach. A me6iod for thermal conductivity prediction for multiple layer 

fabrics is presented. The results are compared to the experimental data and analysed. 
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Some predicted results were in excellent and good agreement with experimental data 

whereas other predicted results were in poor agreement with experimental data as they 

were dramatically affected by the assumptions made in the analytical model. 
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NOMENCLATURE 

A Area mm2 

B Permeability m2 

d Yarn width mm 

dh Hydraulic pore diameter m 

dmax Maximum width reduction of warp yarn mm 

g Acceleration due to gravity m/s2 

k Thermal conductivity W/(m. K) 

kK Kozeny constant - 

Ldef Length of deformed gap mm 

L Looseness factors - 

me Number of yarns in warp direction ends 100mm 

MP Number of yams in weft direction picks/100mm 

Mf Fabric area density kg/m3 

p Pressure Pa 

OP Pressure drop Pa 

Q Flow rate mm3/s 

r Fibre radius mm 

R Thermal resistance K"m"W-' 

s Yarn spacing mm 

S Resistance to flow K- m" W-' 

t Thickness m 

T; ý Shear stresses Pa 

v Velocity m/s 

Vf Fibre volume fraction - 

V. Yarn packing fraction - 

1 of Width of deformed gap mm 
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GREEK SYMBOLS 

a Porosity - 

/3 Forchheimer coefficient - 

d Half of distance between two fibres mm 

Dynamic fluid viscosity Pa" s 

p Fibre density kg/m3 

BL Locking angle degrees 

BS Shear angle degrees 

w Water content - 

SUBSCRIPTS 

A Air 

e Warp 

f Fabric 

F Fibre 

g Gap 

h Hydraulic 

i i-th conduction element 

L Locking 

m Material 

p Weft 

s Spacing 

UC Unit cell 

w Width 

W Water 

x Along 

y Yarn 

z Perpendicular 

SUPERSCRIPTS 
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0 Initial 

an. Analytical 

CFD Computational Fluid Dynamics 

def After deformation 

exp. Experimental 

max Maximum value 

pred. Predicted 

GLOSSARY 
Bleaching Process which improves whiteness by removing 

natural colouration and remaining trace impurities 

from the cotton; the degree of bleaching necessary 

is determined by the required whiteness and 

absorbency. 

CFD Computational Fluid Dynamics. One of the ranches 

of fluid mechanics that uses numerical 

methods and algorithms to solve and analyze 

problems that involve fluid flows. 

CFX 11.0 A commercial Computational Fluid Dynamics 

(CFD) program, used to simulate fluid flow in a 

variety of applications. 

Compaction Process when the weight compresses the fabric, 

causing it to lose pore space. 

Desizing Process of removing the size material from the 

yarns in woven fabrics. 

Dyeing Process of imparting colors to a textile material in 

loose fibre, yarn, cloth or garment form by 

treatment with a dye often referred to as thread or 
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yam. 

Fabric A flexible material consisting of a network of 

natural or artificial fibres. 

Forchheimer equation Extended Darcy's law which applies for a 

sufficiently high flow velocity. 

Mercerizing Process during which the fabric is treated with 

caustic soda solution to cause swelling of the 

fibres. 

Moisture content Quantity of water contained in a material. 

Permeability A measure of the ability of a material to transmit 

fluids. 

Porosity A measure of the void spaces in a material. 

Scouring Chemical washing process carried out on cotton 

fabric to remove natural wax and non-fibrous 

impurities (eg the remains of seed fragments) from 

the fibres and any added soiling or dirt. 

Shear Occurrence of a shear strain, which is a 

deformation of a material substance in which 

parallel internal surfaces slide past one another. 

Shear angle The reduction in angle between the warp and weft 

yarns from their original configuration to their 

sheared configuration. 

TexGen Software which models the geometry of a fabric 
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unit cell. 

Thermal conductivity Property of a material that indicates its ability to 

conduct heat. 

Through thickness permeability Permeability in direction perpendicular to the 

yarns. 

Warp Set of lengthwise yarns. 

Weave A method of interlacing yarns or yarns to form a 

fabric. 

Weft Yam which is drawn under and over parallel warp 

yarns to create a fabric. 

Yarn An assembly of fibres to form a continuous length 

that is suitable for use in making textile fabrics. 
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CHAPTER 1 

INTRODUCTION 

1.1 TEXTILE FABRICS 

Textile fabrics are relatively thin, flexible, porous sheet materials. Most of them can 

bend and fold easily. Textile fabrics consist of yarns, which in turn consist of fibres. 

Textile fabrics can be loose or tight depending on the amount of pores in their 

structure. Woven fabrics are that in which yarns are interlaced at an angle to each 

other. 

Because of their flexibility, strength and permeability, woven fabrics have found 

enormous application in our daily lives and in industry for example, sports clothing, 

clothing protecting from rain, wind and heat, airbags for road vehicles, geotextiles etc. 

In the garment industry, fabric comfort is a most important property. Clothing comfort 

includes three main aspects: psychological, which is related to fashion, tactile which 

includes fabric surface and mechanical properties, and thermal comfort related to the 

ability of a fabric to control the temperature of the skin through heat and moisture 

transfer [1]. The comfort of fabrics depends on several factors: heat and water vapour 

transport, sweat absorption and drying, permeability or impermeability, weight etc. In 

addition, fabric comfort depends on the properties of each fabric layer and the 

combination of all the worn layers. To create a high performance fabric cloth, a 

designer considers fashion and other technical factors: fibre nature and size, surface 

modification of fibres, hydrophobic (repelling water) or hydrophilic (absorbs water) 

membranes fused to a textile layer, weaving pattern, and abrasion of the fabric 

surface. In addition, for technical fabrics like airbags, permeability and thermal 

conductivity properties are very important due to their application. During vehicle 

collision, airbags can experience a rapid rise in heat when they inflate. It is important 

to know how permeability changes with pressure as airbags fabrics may experience a 

very high pressure changes in a very short period of time. Inflating of the airbag 

happens in 0.04s with the force of 3.33x104N [84]. In addition, airbags fabrics will 

deform during inflation which leads to a change in permeability. 
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Experimental work as well as analytical and computational approaches have been 

used to predict different fabric comfort parameters. Permeability is one of the comfort 

factors which has been widely studied since last century. Permeability is the ability of 

a material to transmit fluids. It was first described by Darcy's law [2]. It is important 

for both clothing and airbag fabrics because in the case of clothing, permeability 

supports comfort of the person wearing it, keeping the body cool or warm whenever it 

is needed. In the case of airbags, permeability is important for the inflation and 

deflation of the airbag. Another important comfort parameter is thermal conductivity, 

which indicates the ability of material to conduct heat. It is important to be able to 

predict thermal conductivity of clothing fabrics as it will help to achieve optimal body 

temperature. For airbag fabrics it is important to know thermal conductivity as 

inflation can lead to a rise in temperature which may cause changes in properties of 

airbag fabrics. The first clothing model that described the mechanism of transient 

diffusion of heat and moisture transfer into an assembly of hygroscopic (attracts water 

from environment through absorption or adsorption) textile materials was introduced 

and analyzed by Henry in 1939 [61]. Recently CFD modelling has become more 

popular to predict fabric permeability and thermal conductivity as it can give good 

predictions without simplifying assumptions used in analytical models (more details 

see Chapter 2). 

1.2 PROJECT FRAMEWORK 

The work described in this thesis was performed within the Technology Strategy 

Board project "Materials modelling: Multi-Scale Integrated Modeling for High 

Performance Flexible Materials", which was supported by several industrial partners: 

Unilever UK Central Resources, OCF PLC, Croda Chemicals Europe Ltd, ScotCad 

Textiles Ltd, Carrington Career and Workwear Ltd, Moxon Ltd, Airbags 

International, Technitex Faraday Ltd. It also included three research groups from 

different universities: University of Nottingham, University of Manchester and 

Heriot-Watt University. The main objectives of the project related to this thesis are: 

develop `unit cell models' for a variety of weaves; generate computational models 

automatically using the Nottingham TexGen schema; develop a CFD model to predict 

through thickness air permeability; model thermal conductivity of fabrics; through 

thickness permeability, thermal conductivity and moisture content measurement and 

validation of the unit cell model; develop a model to predict permeability of deformed 
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fabrics; to model the behaviour of flexible materials in a 3D manner, taking into 

account the dynamic changes of performance related properties with physical changes 

during use; mechanical measurements and validations of yarn model; model 

mechanical properties of yarn and unit cell using Finite Element (FE) method. 

Following the project objectives, the aim of this thesis was to create a general model 
for through thickness air permeability and thermal conductivity including moisture 

content using analytical and computational methods for different types of textile 

fabrics. An analytical model for deformed (shear, compaction and tension) fabrics 

was developed. Experimental work was carried out for fabric permeability (air and 

oil) and thermal conductivity to verify predicted results. 

1.3 OVERVIEW OF THE THESIS 

This thesis presents research carried out into predicting through thickness 

permeability and thermal conductivity of textile structures. An analytical model to 

predict through thickness air permeability (which includes both permeability through 

yarns and permeability between yarns) has been developed. The objective was to 

create a model which will take into consideration these two mechanisms of air flow in 

fabrics. Analytical predictions were compared to experimental data. Several fabrics 

were tested including plain weave, twill weave and satin weave fabrics. A CFD model 

was also developed using TexGen and CFX 11.0. In addition, an analytical model was 

developed for deformed fabrics. The main deformation mechanisms included shear, 

compaction and tension. Experimental work for through thickness air permeability of 

sheared fabric was used to verify predicted results. An analytical model for thermal 

conductivity of fabrics was developed including the influence of moisture content. 

The structure of the thesis is outlined below. 

Chapter 2 provides a literature review on air permeability and thermal conductivity 

prediction. The fundamental theory relating to flow through porous media and the 

definition of permeability is presented. Experimental, theoretical and computational 

work on permeability of undeformed and deformed fabrics and thermal conductivity 

is presented. Gaps in previous research on the prediction of textile through thickness 

permeability and thermal conductivity are identified. 
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Chapter 3 describes the development of an analytical model to predict through 

thickness air permeability which takes into account the influence of both permeability 

through gaps and permeability through yarns on the overall fabric permeability. An 

experimental measurement technique is described and predicted results are compared 

to the experimental data. 

Chapter 4 presents computational modelling of through thickness air permeability 

using CFD (CFX 11.0 software). TexGen software is used for geometric modelling 

whereas CFX 11.0 is used to simulate through thickness permeability. The results of 

the simulation are compared to the analytical and experimental data. 

Chapter 5 discusses through thickness permeability for deformed fabrics. Shear, 

compaction and tension in two directions were chosen as deformation mechanisms. 

An analytical model is developed based on that presented in Chapter 2. Experimental 

verification is performed for sheared fabric. 

In Chapter 6, thermal conductivity of fabrics is discussed. A detailed description of 

experiments is provided. Analytical methods to predict thermal conductivity for one 

layer and for multiple layers are developed. The analytical method takes into account 

the influence of moisture content on the thermal conductivity of fabrics. Predicted 

results are compared to experimental data. 

Chapter 7 presents an overall discussion and conclusions of the work and 

recommendations for future work. 
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CHAPTER 2 

LITERATURE REVIEW ON PERMEABILITY AND THERMAL 

CONDUCTIVITY OF FABRICS 

2.1 INTRODUCTION 

In this thesis several different fabrics have been studied with different applications 

such as clothing, airbags etc. Comfort is a most important property of clothing. 

Comfort has been studied widely since last century [1]. Permeability and thermal 

conductivity are two main material parameters for clothing comfort characterisation. 

Literature regarding permeability and thermal conductivity prediction for textile 

fabrics is reviewed in this chapter. Darcy's law [2], which describes flow through 

porous media, is the central theory used to describe permeability. Predictive 

permeability models potentially offer an accurate and robust alternative to 

experimental methods. In order to predict fabric permeability, research has advanced 

into studies at the mesoscopic and microscopic levels. Research is based on 

understanding the influence of fundamental factors such as porosity, yam 

permeability and gap permeability on fabric permeability. For some simple cases, a 

mathematical model such as Gebart's equation [3], which shows the influence of 

porosity on permeability through an array of filaments, gives reasonably accurate 

results. Computational analysis is another approach adopted to predict permeability, 

usually based on the use of CFD software. A number of such models are reviewed in 

the following sections. 

Permeability prediction for deformed fabrics is of interest because of applications of 

some fabrics such as airbags. Airbags can be sheared and compacted during their use 

and it is very important to know how much their permeability changes due to 

deformation. Hence studies related to the effects of fabric deformation on 

permeability are reviewed. 

Thermal conductivity of fabrics is another important parameter of fabric comfort. 

Most of the work in this area consists of experimental studies. However, there is some 

research based on analytical prediction of fabric thermal conductivity, which is also 

described in this chapter. 
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2.2 MULTISCALE NATURE OF FABRICS 

Despite the tremendous amount of fabric permeability data published in the literature, 

the range of textile fabrics available on the market is too large for characterisation 

based on experiments alone. Reliable measurements of permeability are difficult even 

for relatively simple fabric geometry. It is even more difficult to accurately measure 

permeability of deformed fabrics. The variable nature of fabrics also means that a 

large number of measurements are needed to characterise just one fabric. Clearly, 

such an approach is highly time consuming and is not viable in the long term. There is 

a need for a predictive permeability model to complement experimental data. The key 

to permeability prediction is an understanding of the architecture of fabrics. There are 

three length scales. Firstly the microscopic scale which is concerned with individual 

fibres in a yarn, their geometric parameters such as diameter and shape as well as their 

arrangement inside the yam. The second scale is mesoscale which is concerned with 

unit cell behaviour. It takes into consideration the yarns' geometric parameters such 

as width, length and height, the geometry of gaps between yarns and their interlacing 

pattern. Finally, the macroscopic level scale describes a textile sheet or a garment 

taking into consideration the deformation of the fabric due to body shape or their 

application. Figure 2.1 presents the scales described above [4,5]. 

By studying the flow at different length scales individually, one can better understand 

the interaction between the flow and the fabric. For example, starting with 

microscopic flow between the fibres, one can relate flow behaviour to that at the 

mesoscale or unit cell level. At the mesoscopic level, permeability through pores 

influences the overall permeability of a unit cell, however, permeability through yarns 

must also be taken into consideration. Using unit cell analysis, one can than deduce a 

permeability value which is used in macroscopic simulations to account for the 

complicated interactions between the fluid and the fabric structure [6]. Similar 

considerations apply for prediction of thermal conductivity. 

Variability in textile permeability can be incorporated into the flow simulations for 

optimised prediction by using mesoscale analysis to deduce a range of permeability 

values for use in the macroscopic simulations. Essentially, a fabric is defined by its 

structure and the interaction between yarns is the main cause of variability of the 
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fabric. Only by looking at the mesoscopic level can one analyse the effect of fabric 

architecture on permeability variability [6]. 

Macro-scale 

(Garment) 

,a 

Meso-scale 

(Unit cell) 

I 

Micro-scale (Fibres) 

Figure 2.1 Three length scales of fabric architecture [4,51 
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Predictive permeability models can be separated into two general approaches: 

analytical and computational. The analytical approach leads to a closed form equation 

for calculating permeability, relating permeability to certain characteristics of the 

porous medium such as porosity or fibre diameter. These are usually derived by 

analysing the physical aspects of the flow process through the porous medium. Closed 

form solutions are invariably more suited to describe microscopic flow where it is 

easier to mathematically describe the arrangements of the fibres. The computational 

approach is based on equations for the flow through a unit cell that describes the 

architecture of the fabric. Such approaches are more adaptable than closed form 

solutions and can be used to study mesoscopic flow through fabrics. 

2.3 PERMEABILITY PREDICTION USING ANALYTICAL MODELS 

The ease or otherwise of the passage of fluid through a textile is of importance for a 

number of fabric end uses such as industrial filters, tents, sail cloths, parachutes, 

waterproof materials, clothing textiles, nappies and automobile airbags [7]. However, 

there are more studies related to composites manufacture than on textile fabrics in the 

literature. Permeability is of interest for composites researchers because of the 

methods which are using for composites production such as RTM (Resin Transfer 

Molding) and LCM (Liquid Composite Molding). 

As a result of studying flow through porous media, Darcy [2] established the linear 

dependence of velocity on pressure drop. The first studies of the air permeability of 

fabrics conducted by Rubner [2] were based on Darcy's law. It was based on the 

experimental results for the flow of water through beds of sand. Darcy's law is a 

simple mathematical statement which neatly summarizes several familiar properties 

of groundwater flowing in aquifers, including [2]: 

" if there is no pressure gradient over a distance, no flow occurs (this is the 

hydrostatic condition), 

" if there is a pressure gradient, flow will occur from high pressure towards low 

pressure (opposite the direction of increasing gradient-hence the negative 

sign in Darcy's law), 

" the greater the pressure gradient (through the same formation material), the 

greater the discharge rate, and 
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" the discharge rate of fluid will often be different - through different 

formation materials (or even through the same material, in a different 

direction) - even if the same pressure gradient exists in both cases. 

Darcy's law can be written as follows: 

-BAP (2.1) 

where v is the average fluid velocity, µ is the fluid viscosity, B is the permeability of 

the porous medium, AP is the pressure gradient. 

Darcy's law is only valid for slow, viscous flow; fortunately, most groundwater flow 

cases fall in this category. Typically any flow with a Reynolds number less than one is 

clearly laminar, and it would be valid to apply Darcy's law. Experimental tests have 

shown that flow regimes with values of Reynolds number up to 10 may still be 

Darcian [2]. However, Reynolds number for flow through textile fabrics is not always 

in the range of Darcy's law. In such situations it is reasonable to use Forchheimer 

equations, which is described later in this chapter. 

Many analytical models have been proposed to predict permeability. These can be 

divided according to flow going through different parts of fabrics. Flow through 

fabrics can be split into two main mechanisms: flow through gaps between yams and 

flow through yarns. 

One very well known equation which relates the permeability B to porous media 

properties was derived by Kozeny [2]. Kozeny viewed the porous bed as an 

assemblage of channels of various cross-sections and expressed the permeability as in 

equation (2.2) [2]: 

B= c- -- (2.2) 
S2 T 

where a is the porosity of the porous medium, S is the specific surface of the channel, 

T is the tortuosity factor and c is a proportionality parameter which depends on the 

shape of the channels (Kozeny constant). 
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Kozeny's equation has been used extensively and modified by other researchers. 

Carman introduced the specific surface exposed to the fluid So (So = S(1-a)) and 

experimentally determined a range of Kozeny constants for a variety of packing 

schemes and geometries of reinforcements. The result is known as the Kozeny- 

Carman equation [8]: 

3 

B=c 
2a 

(2.3) 
5S0(1-a)2 

where c is Kozeny constant, So is surface area, a is porosity and B is permeability. 

This equation holds for flow through packed beds with particle Reynolds numbers up 

to approximately 1.0, after which point frequent shifting of flow channels in the bed 

causes considerable kinetic energy losses. Their model was developed for in-plane 

flow parallel to the porous medium. 

Gebart [3] conducted 2-D simulations for the flow of Newtonian fluid perpendicular 

to and parallel with unidirectional filaments. Gebart looked at two types of packing 

array: quadratic and hexagonal (see Figure 2.2). Gebart obtained the following 

permeabilities [3]: 

o Quadratic packing: 

Permeability along the filament Bx is: 

8r2 (1-V 
B., = 57 

VZ 
(2.4) 

I 

Permeability perpendicular to the filaments BZ is: 

5/2 

. 16 VfX 
-1 r2 (2.5) BZ = 

9ý1 2 Vt 

o Hexagonally packing: 

Permeability along the filaments Bx is: 

BX -8r2 
(-V1)3 

(2.6) 
53 Vf2 
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Permeability perpendicular to the filaments BZ is: 

5/2 
, nma 

BZ = 
16 

Ff 
1 r2 (2.7) 

9/cV6 

where Vf and df are the yarn solid volume fraction (SVF) and the filament diameter, 

respectively, r is the radius. 

2A 2A 

CIDO O~ 
rD00 000 
000 00 

a) b) 

Figure 2.2 Idealized unidirectional reinforcement for quadratic (a) and hexagonal (b) 

fibre packing [3]. 

Gebart assumed the idealized unidirectional reinforcement with two types of packing 

(quadratic and hexagonal), whereas, in reality for textile fabrics fibres are in random 

order inside the yams. Gebart's model had good agreement with experimental results 

when fibre volume fraction was lower than 0.5 [3]. 

Studies by Kulichenko and Van Langenhove [7,10] to analyse through thickness air 

flow for textiles showed that their mathematical model for air permeability worked 

well when the flow goes through gaps between yarns only, for example, for loose 

fabrics. Kulichenko's analytical model [71 calculates velocity of the flow through 

gaps using the following equations: 

vg = 
Vf 

(2.8) 
a 

vf= 
gý 

d, 

t 

a 
(2.9) 
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where vg is the velocity through gaps, of is the velocity through entire system, dh is the 

hydraulic pore diameter and a is the through thickness porosity 

Kulichenko developed a model of the "ideal soil" pore system, a system of parallel 

capillaries. They assumed that the flow is laminar. The pore cross-section size and 

shape is constant over the entire length. His model alone cannot be used for textile 

fabrics as it does not take into account flow inside the yarns. 

Other closed-form modifications to Darcy's law have been developed to relate 

volume fraction and geometric or empirical constants such as the maximum packing 

fraction to the permeability of a periodic medium. Cai and Berdichevsky [11,12] used 

the self-consistent method and finite element simulations to estimate the permeability 

of an aligned fibre bundle. The self-consistent method gave formulae for both 

longitudinal and transverse permeabilities as a function of fibre volume fraction. The 

finite element simulation presented the solutions of various periodic fibre packings 

(Figure 2.3). They assumed that a circular insertion was placed into the homogeneous 

porous medium filled in space [11]. 

ýý "i : Sý : 
04 0 

00 0 
0 0 *0 

4ýý* 00000 .0" 000 "4". * 
40000 

Hexagonal Packing Square Packing "Hollow" Hexagonal "Hollow" Square 

Figure 2.3 Fibre assembly and representative unit cells for different packing structures 

[11] 

They came up with the following equations for longitudinal and transverse 

permeabilities [I I]: 

o Longitudinal permeability: 

Bx =1 lnvZ -(3-Vf)(1-Vf) (2.10) 
fs 
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o Transverse permeability: 

B-1 In 
1_ 1-Vf2 

(2.11) 
8Vf Vf 1+Vfz 

The results for square and hexagonal fibre packings were found to be in good 

agreement with the previous work described in the literature. It was shown that the 

permeability was not only related to the fibre volume fraction or porosity, but was 

also greatly influenced by the packing structure or micro-level disturbance. However, 

there was no comparison with experimental results. Later, they improved their model 
by assuming that an insertion was open space surrounded by densely packed fibres 

[121. This improvement allowed them to describe effectively the permeability of 
dense structures containing distributed voids. The insertion was placed in a 
homogeneous medium with an unknown permeability. They considered Stokes and 

Darcy flow for different regions. Boundary and interface conditions as well as two 

consistency conditions, including the total amount of the flow and the dissipation 

energy, were applied accordingly. This improved model captured the flow 

characteristics of a fibre bundle. In the longitudinal flow case, the openings within the 

bundle due to the disturbance dominated the flow path. In the transverse flow case, 

the gaps between neighbouring fibres governed the flow resistance. The derived 

expressions for the transverse permeability contained two variables, the average fibre 

volume fraction and the maximum packing efficiency as presented in Equation (2.12) 

[121. 

(I 
_ of /VQ )3/2 

BL = 0.231(1n VQ /V 
f) / 

(2.12) 

(Vj /Vn ) 

Predictions had good agreement with experimental data available in the literature 

[12]. However, their model was made for a bundle of fibres and was not applied to 

real fabrics. 

Bruschke and Advani studied fluid flow across regular arrays of cylinders [13]. A 

closed form solution was developed by matching the analytical solution using the 

lubrication approach for low porosities and the analytical cell model solution for high 

porosities. The results of the closed form solutions agreed well with the numerical 
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solution obtained by solving the Stokes equations in square and hexagonal 

arrangements of cylinders for Newtonian fluids. They assumed no-slip boundary 

conditions on the surface of the cylinder, symmetry conditions on the top and bottom 

surfaces and constant pressure boundary conditions on the left and right surfaces. 
Closed form expressions which they developed can be used only for low porosities up 
to about 40%. The cell model for high porosities, however, assumed that the 

disturbance in the fluid model by one cylinder does not affect the flow field of any of 

the surrounding cylinders. In addition, packing configuration does not have any 

influence in this model. As a conclusion, neither of their two models can predict the 

permeability over the full porosity range successfully [13]. 

Van der Westhuizen and Du Plessis [141 used phase-average Navier-Stokes equations 

to calculate the permeability of representative unit cells. Their model did not assume 

any particular arrangement of fibres for longitudinal permeability, but used the 

maximum packing capacity for different arrangements of fibres to create an effective 

volume fraction for transverse permeability. A simplistic extension of the solution 

was proposed to account for pinch-off effects during crossflow through the fibre bed. 

They assumed that the fibre bed was solid. The flow was assumed laminar. Their 

model found good agreement with the experimental data. However, they were 

modelling in-plane permeability without considering through thickness cases. 

Wang [15] developed a similar relation for an array of rectangularly-packed fibres. He 

assumed the slow viscous flow through an array of rectangular fibres. He solved it by 

the efficient method of Eigen function expansion and domain decomposition. The 

normalised permeability was determined for square fibres and strips in rectangular 

arrays. However, there was no comparison to any experimental results. Table 2.1 

summarises some of these semi-empirical models as compared by Senoguz et al. [2]. 
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Phelan and Wise [16] studied transverse flow in aligned fibrous porous media. They 

developed a semi-analytical model based on lubrication analysis to predict the effect 

of tow shape and infra-tow permeability on the overall bed permeability for flow 

through rectangular arrays of porous elliptical cylinders. The Brinkman equation was 

used to define flow inside the porous structures, and the Stokes equation to model 

flow between the structures. The model predictions were verified by comparing with 

finite element calculations. Their model showed that the influence of intra-tow 

permeability on overall bed permeability increases with inter-tow packing, and 

increasing degree of tow ellipticity. Their main assumption is that the transverse 

component of the velocity is negligible, which allowed them to simplify the 

governing equations. They compared intra-tow permeability predictions with the 

experimental data of Sadiq et al. [17] which used tows made of nylon rods to 

construct porous media. Their prediction found reasonable agreement with 

experimental data. Comparing predicted results to the computational model they 

obtained good agreement for the porous medium with a porosity of more than 25%. 

The research presented in Chapter 3 combines Kulichenko and Van Langenhove 

analytical model which predicts the permeability through gaps between yarns with 

Gebart's model to predict permeability within yarns. These two models have been 

chosen as a basis for the model developed in this thesis because they take into account 

all important fabric parameters and at the same time are simple and easy to use. The 

resulting analytical model is applied to ten textiles used for airbags and clothing 

application. 

2.4 PERMEABILITY PREDICTION USING COMPUTATIONAL MODELS 

The permeability of woven fabric has been studied extensively. Most of this work, 

however, is experimental and many of the studies are designed for specific 

applications, due to the complexity of the geometries of such fabrics. Conducting a 

computational study on woven fabrics, especially multifilament, requires considerable 

computing power even for idealized geometries. For this reason, there are many 

studies based on monofilament geometries made of porous materials. In such studies, 

the flow field is divided into two zones of infra-yarn and inter-yam, with different 

flow behaviour modelled in each zone. Assuming the yarn to be represented by a 
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porous domain greatly reduces computational requirements, but requires accurate 

information regarding the yarn's permeability [32]. 

High-volume applications require efficient software tools for process simulation and 

performance prediction. Such software tools are commercially available; for example, 

LCMflotTM [18] and LIMSTM [19] have been used for many years to predict filling 

patterns in Resin Transfer Molding (RTM) whilst ABAQUSTM [20] is used regularly 

to predict deformations under load. The difficulty lies in obtaining the required local 

material properties. The permeability data required by the above software is usually 

measured experimentally. Permeability can be also investigated using a CFD software 

package such as FLUENTTM [21] or CFX 11.0 [22]. Recently, TexGen software [23] 

has been used to create fabric geometry models suitable for different fabric structures 

such as plain weave or twill weave, which addresses the big issue of generating an 

accurate computational domain. 

Lomov et al. presented an integrated modelling and design tool for textile composites 

based on hierarchical principles of textile modelling [24]. They implemented this 

approach in the WiseTex software, which models the internal structure of textiles. The 

architecture of the code implementing the model corresponds to the hierarchical 

structure of textile materials. The model of the textile geometry serves as a base for 

meso-mecahnical and permeability models for composites. The Object Oriented 

Programming (OOP) technique is ideally suited to implement the hierarchical nature 

of textiles represented in Table 2.2 [28]. They predict the permeability of resin flow 

through the reinforcement during mould filling operation. However, they do not 

mention predictions for through thickness permeability. In addition, their model was 

very computationally expensive. 
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Table 2.2 Hierarchy of structure and models of textile composites [24] 

Structure Elements Models 

Yarn (tow) Fibres Fibre distribution in the yarn and its change 

under load/strain 

Mechanical properties of the yarn 
Fabric (woven, Yarns Geometry of yarns in the fabric and its change 

knitted) under load/strain 

Mechanical behaviour of the fabric repeat 

under complex loading 

Composite unit Fabric Mechanical properties 

cell Matrix Permeability tensor 

Robitaille et al. presented an algorithm that generates geometric descriptions of unit 

cells of textiles and composite materials [25]. The purpose of these geometric 

descriptions was to act as domains for calculations preformed at the scale of the unit 

cell. The algorithm defined both the volume of the tows and the empty volumes that 

extend between the tows within the calculation domain, for general textiles. Typical 

applications of the geometric definitions include the calculation of local permeability 

values for textile preforms and investigation of local stress distribution in textile 

composites. There are some restrictions in this model such as the boundaries of the 

calculation domain must form a rectangular volume with two faces parallel to the 

plane (x, y). The 3D algorithm consisted of two main operations: the creation of the 

basis volumes that present the empty volumes defined between tows and the creation 

of the basis volumes that represent the tows. Their tool was created to predict the 

properties at the unit cell scale, however there were no comparison of their model to 

any other computational models or experimental data. 

Belov et al. [26] developed an integrated design tool (IDT) for meso-scale analysis 

with the capability of linking to macro-scale simulation tools. This tool is used as a 

pre-processor for meso-mechanical and permeability models for textile composites. 

The core of the IDT was a model of textile geometry, which provides a generic 

description of a wide range of textile reinforcements. It is presented in Figure 2.4 
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[26]. The permeability analysis was carried out in a number of steps. The first step 

was characterising the reinforcement, which includes analysis of internal structure, 

data on fibre and yarns etc. This step culminated with creating the geometry using the 

WiseTex software. Next step was related to the deformability of the reinforcement. 

The compressibility and shear were of primary importance. This step was approached 

by the experimental evaluation of reinforcement behaviour in compression, extension 

and shear. All these data were linked to the flow simulation tool called FlowTex 

which calculates the permeability tensor. This used a numerical approach based on the 

lattice Boltzmann method. Assumptions included: creeping single-phase, isothermal, 

unidirectional saturated flow of a Newtonian fluid. The computational model found 

good agreement with experimental data of Phelan (161. However, their model was 

very slow. 

Sobera et al. [27] used CFD to study NBC (Nuclear-Biological-Chemical) protective 

clothes on different scales focusing on different aspects of flow, heat and mass 

transfer. The textile material was modelled as a porous material with particular 

macroscopic properties. They used the commercial CFD solver Fluent 6 for the 

simulations. The porous material was treated as a fluid zone, where the pressure drop 

was imposed as a sink in the momentum equation according to Darcy's law. They 

assumed laminar steady flow. They showed that the Reynolds Averaged Navier 

Stokes (RANS) approach used in CFD simulation is sufficiently accurate for 

engineering purposes, particularly when it is used to predict global heat and mass 

transfer. From meso-scale Direct Numerical Simulation, it was found that the flow 

underneath the clothing is laminar and periodic, with a magnitude much smaller than 
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the free stream velocity. Micro-scale Direct Numerical Simulation revealed a simple 

relation between textile porosity and permeability [27]. Although predicted results 
had satisfactory agreement with experimental data, they did not predict through 

thickness fabric permeability. 

Wang et al. [28] modelled a full 3-D geometry of an idealized multifilament woven 
fabric, wherein the filaments were packed in hexagonal arrangement, to predict 

permeability using the CFD code from Fluent Inc., and compared it to the 

homogeneous anisotropic lumped model of Gebart [3]. They assumed that the flow is 

steady state laminar, incompressible with very low velocity and Reynolds number. 
The finite volume method implemented in Fluent code was exploited to solve the 

continuity and the conservation of momentum around the filaments and yams within a 

unit cell model. Air flow was assumed normal to the fabric plane. They showed that 

Gebart's model slightly underestimate the permeability of multifilament fabrics even 

at high yarn's solid volume fraction. 

Lekakou et al. presented a model to predict in-plane permeability in non-crimp stitch 

bonded fabrics [291. The model was based on the combined flow through the multi- 

layer assembly in the non-crimp fabric. The permeability of each layer of the 

assembly was predicted on the basis of a meso-/micro-flow computer model. In this 

the meso-flow between fibre tow was considered as Stokes' flow. Darcy's law was 

employed to mode micro-flow through each fibre tow, taking into consideration 

injection and capillarity pressures in both types of flow. This model was tested in 

biaxial non-crimp stitch bonded fabrics with either chain or tricot stitch. The 

permeability predictions were very sensitive to the dimensions of the meso-channel 

cross-section and required input data from a detailed microstructural analysis for 

meso-channels with varying cross-sections. Tows were assumed to be rectangular and 

elliptical cross-section. Good agreement existed between predictions and experiments, 

although it is highly likely that this required empirical adjustments of certain fabric 

parameters. This model did not predict through thickness permeability. 

Nordlund et al. proposed a computational model for global permeability and applied it 

to biaxial non-crimp stitched fabrics (NCF) (30). This model focused on a detailed 
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meso-scale description of the fabric geometry, which takes into account the local 

permeability distribution in a fabric due to perturbations of geometry as well as 

geometrical features which arise from the stitching process. They showed that this 

significantly affected the global permeability. Steady, incompressible, laminar and 

Newtonian flow through the unit cell was solved with the commercial CFD code 

CFX5.6 from ANSYS Inc. The code is based on a finite volume method and uses a 

non-structured solver. They predicted in-plane permeability, which was very sensitive 

to the perturbation of the geometry. Permeability of the fabric can be increased by a 

more precise stitching process, which reduces the amount of crossings. It was shown 

that the global permeability was also very sensitive to the mean channel width. 

However, the proposed model did not show good agreement with experimental data. 

Wong et al. proposed two efficient numerical approaches to predict permeability 

based on fabric architecture [31]. The "Stream Surface" method reduces the 

complexity of the flow domain by representing the 3-D volumes with their 2-D 

curvilinear mid-surfaces while retaining the 3-D attributes. The second method, "Grid 

Average", discretises the 3-D domain into a 2-D regular grid with weighted average 

permeabilities for the individual elements. Flow equations were solved for the 

reduced meshes generated from these two approaches to calculate the effective 

permeability. These approaches were applied firstly to a single tow model, and then to 

2x2 twill weave fabric. TexGen software was used to create the unit cell geometry. He 

compared his two approaches to FLUENT TM CFD package. His simplified models 

showed the potential to predict permeability accurately and rapidly for practically any 

type of textiles. He studied the influence of four geometric parameters on in-plane 

permeability: tow aspect ratio (width/height), the shape of the tow, the cell fibre 

volume fraction, and, the cell aspect ratio. It was shown that permeability decreased 

with increase in tow aspect ratio; and permeability increased when the tow shape 

changed from a rectangular shape to an ellipse. His two approaches agreed well with 

the CFD results. He showed that his method is much faster than CFD simulations 

[3 11. However, there were no comparison with any experimental data, and these two 

approaches did not take into account through thickness permeability. 
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Verleye et al. presented the results of simulations with a Stokes solver, implemented 

in the permeability predicting software FlowTex [32]. They assumed that the flow is 

laminar. They were interested only in steady state solutions which lead to the 

incompressible Stokes equations. They used monofilament fabric Natte 2115 for 

experiments as it is a stable fabric close to actual textile reinforcements. They 

compared results to those of a Navier-Stokes solver and validated using theoretical 

results for model problems and with experimental data for real textiles. Predicted 

results were reasonably close to the experimental data and the computational time was 

reduced by using Stokes solver instead of Navier-Stokes. Later, Verleye et al. 

proposed a fast and accurate simulation method for the permeability of textile 

reinforcement based on a finite difference discretisation of the Stokes equations [33]. 

They used single layer, multi-layer and sheared models for the simulations. They took 

into consideration the influence of infra-yarn flow and different boundary conditions. 

A finite difference Navier-Stokes solver, NaSt3DGP, was used for simulations. They 

assumed that the yams are porous solids. Experiments were carried out using highly 

automated central injection rig, called the PIERS set-up (permeability identification 

using electrical resistance sensors). The experimental permeability values were higher 

than the numerical values. For woven fabrics, a relative difference of 40-50% between 

the experimental and numerical values was observed. The results were closer for the 

lower fibre volume fraction textiles. Computations based on a single layer model 

resulted in a small over-estimation of the experimental values, as nesting is neglected. 

For textiles with high volume fraction, infra-yarn flow has an important influence on 

the permeability values [33]. However, they studied in-plane permeability only 

without taking into consideration through thickness air permeability. 

Vakil et al. [34] described a novel method to model forming fabrics. The flow non- 

uniformity and its probable effect on particles were considered in their research. CFD 

package FLUENT was used to simulate flow through fabrics. The resistance of 

multilayer fabric was found to be nearly equal to the sum of the resistances of each 

layer considered in isolation. In addition, they considered the effect of jet-to-wire 

speed ratio on the flow. An angled approach flow to the fabric produced very little 

change in the average flow perpendicular to the fabric (for example, little change in 

fabric permeability), but it had marked effect on shear stress in the vicinity of the 
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paper-side filament. However, there was no comparison of their results with any 

experimental data. 

In this thesis a CFD model based on TexGen and CFX 11.0 as the most accurate and 

up-to-date computational software to predict through thickness air permeability of the 

unit cell of fabric is developed for plain weave and twill weave fabrics (Chapter 4). 

2.5 EXPERIMENTAL STUDIES OF AIR PERMEABILITY AND FORCHHEIMER 

EQUATION 

Several authors have studied permeability experimentally. Among them, Niu and Gu 

conducted research on an immersion-resistant and moisture-permeable smart fabric 

[35]. The fabric was formed when cotton fibres in the Polyester/Cotton fabric were 

grafted with acrylic acid (AAc) or acrylamide (AAm). A moisture permeability test 

was carried out according to Chinese National Standard GB/T12704-91, and air 

permeability according to GB/T 5434-1997. Their tests showed the average size of 

pores was affected by fabric tightness while the interspace was affected by fibres' 

fineness. The smaller the pores were, the lower the air permeability; the thicker the 

yarns, the more reliant the air permeability was on the condition that there was no 

much difference on fibre quantity and fibre fineness in the yams. They developed a 

mathematical model for water permeability of fabrics. It was built on Hagen- 

Poiseuille flow and based on the concept of hydraulic radius. They assumed that yarn 

diameters, cross sections and porosity were equal for warp and weft yarns, and the 

flow was laminar. However, their model did not take into account permeability 

through yarns. 

Jia, Wang and Liu studied a chemical method used for decreasing the permeability of 

polyester fabric [36). They used thin polyester fabric which was treated with m- 

cresol-tetrachloroethane to make compact the fabric to decrease its permeability. In 

the treatment process the different concentration of the m-cresol, processing 

temperature and processing time were selected. Using the chemical method can 

reduce the air permeability of the thin polyester fabric. The optimum processing 

temperature and time were determined to decrease the permeability of fabric 
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effectively. Their work is purely experimental and did not include any comparison to 

analytical or computational models. 

The use of the Forchheimer equation (see equation (2.13)) to describe through 

thickness permeability instead of Darcy's law has been discussed by several 

researchers. The linear term results from viscous effects, which are predominant at 
low Reynolds number. The quadratic term results from inertial effects. Huang et al. 

[37] made a literature review on non-Darcy flow in porous media. One of the aspects 

of the discussion concerned the inertia resistance factor 
,8 

(Forchheimer equation) and 

whether its value should be constant over the range of flow rates of practical interest. 

They suggested models for flow beyond the Forchheimer regime. At higher 

superficial fluid velocities vD, an additional quadratic term was proposed by Dupuit 

and Forchheimer [37]. For non-Darcy flow in porous media such as textiles the 

velocity becomes large enough so that it is more reasonable to use Forchheimer 

equation instead of Darcy's law. Forchheimer equation is presented below [37]: 

-AP=Lv+ßpv2 (2.13) 

The Forchheimer coefficient ,6 
is generally deduced experimentally from the slope of 

the plot of the inverse of the apparent permeability 1/kapp vs. the dimensional pseudo 

Reynolds numberpv/p (also known as the Forchheimer graph) [37]. 

A volume average study by Douglas and Huiping [38] indicates that microscopic 

inertial effects distort the velocity and the pressure fields, which in turn lead to 

Forchheimer effects. Non-dimensionalization for ID isotropic case yields: 

rj 
pg = -co - c, Red (2.14) 

where 11pg = Opd2/uvo is the dimensionless pressure gradient, d is a characteristic 

length-scale (usually the average or nominal pore diameter), and Red is the Reynolds 

number based on d. Hence, co is the inverse dimensionless permeability and cj is the 

dimensionless Forchheimer coefficient [38), 

co =- and c, = dF (2.15) 
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Wang and Liu [39] studied the Forchheimer equation and the inertial parameter Q 

based on solving Navier-Stokes equations in two-dimensional percolation porous 

media. The model of the pore connectivity was based on two-dimensional site 

perlocation. Void spaces occupied an LxL square lattice with the probability p. They 

assumed nonslip boundary conditions at the solid-fluid interface. The pressure drop 

was set to be AP. In the horizontal direction periodic conditions were used. SIMPLE 

method was used to solve the Navier-Stokes equations. They showed that the 

Forchheimer parameter is a function of the system size L and porosity a, ß=ß (a, L). 

The simulation results showed that the inertial parameter in the Forchheimer equation 

had larger scaling exponents than the permeability [39]. However, there was no 

comparison of their results to any other analytical models or experimental data. 

Clearman [401 used a CFD approach (Fluent) to study directional permeability and 

Forchheimer inertial coefficient of micro porous structures used in pulse-tube 

cryocoolers. He compared the equations which Fluent used to solve the simulation to 

the Forchheimer equation (Equation 2.13) and found that they are similar. Equation 

(2.16) is taken from Fluent code, it is general momentum equation: 

a(EP) aCp_ - (E p v. v. ) ++-vV 
ax 12443 12x312424 

(2.16) 
i ConvectiveAcceleration Viscous Stress 

Darcy Term 
ForchheimerTerm 

By comparing general momentum equation from Fluent with Forchheimer equation, it 

can be shown that the inertial resistance term is related to the permeability and the 

Forchheimer coefficient by: 

c- 26cf (2.17) 

In CFD simulation, boundary conditions were based on an assumed mass flow rate 

at inlet and the gate pressure at outlet based on experimental values; the flow was 

assumed as steady-state [401. The results had reasonable agreement with experimental 

data. However, additional testing was recommended for each porous structure at 

varying porosities. Based on the governing momentum equation, it is clear that 

increased porosity for any given sample will decrease the magnitude of the steady flow 
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pressure drop, but it is unclear whether varying the porosity for the same porous structure 

will significantly affect the permeability or Forchheimer coefficient. 

Petrasch et al. [411 studied the Forchheimer coefficient for reticulate porous ceramics 

(RPC) using computer tomography. A 3D digital representation of a 10-ppi RPC 

sample was generated by X-ray tomographic scans. Structural properties such as 

porosity, specific interfacial surface area, pore-size distribution, two-point correlation 

function and local geometry distribution of RPC sample were directly extracted from 

the tomographic data. A photograph of the scanned 10-ppi RPC sample is presented in 

Figure 2.5 [41 ]. 

Figure 2.5 Photograph of scanned 10-ppi RPC sample [411 

The permeability and Forchheimer coefficient were determined from direct pore-level 

numerical simulation (DPLS) and compared to the values predicted by selected 

porous media flow models, namely: conduit-flow, hydraulic radius theory, drag 

models, mean survival time bound, s2-bound, fibrous bed correlations, and local 

porosity theory-based models. A number of models for the prediction of permeability 

B and Forchheimer coefficient ß as functions of the effective porosity and specific 

surface area were examined. Tables 2.3 and 2.4 present model predictions for the 

Forchheimer coefficient and the permeability respectively [41 ]. 

Table 2.3 Model predictions for the Forchheimer coefficient ß [411 

Model Symbol Equation 

Ergun/MacDonald (3E 
1g1- P1 ßF 

- ; d 

Ward Qw 0.550 
ßw - /r 

ý ý s 

Empirical, cellular foams ßMo (1- E) 1.8x 1 0 
4 

YMo i 
d, -0.24 

E 

where e is the porosity, d is the pore diameter, B is the permeability. 
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Table 2.4 Model predictions for the permeability B [41 ] 

Model Symbol Equation 

Conduit flow Bc ed2 
Bý 

32 

Carman-Kozeny BCK e3 
_ BKK 

kK(1-e)2Ao 

Fibrous beds, Davis BDa d2 
B°n 

64(1-e)312(1+56(1-e)3) 

Fibrous beds, Chen Bch 2cdf 21n(ks /(1- e) 2) ¬ Bch 
4k4 I- e 

Fibrous beds, Kyan BKy (62.3Ne2(l - e) + 107.4)e3 
_ 

BKy 
16¬6(1-¬)4 

Cylinder, parallel flow B, 
p 2e3 

B 

e,, 
= 

1 
)-3+4(1-e)-(1-e)2) (1-e)(21n( 

1 e 

Empirical, cellular foams BMo E3dco. 264 
B"'° 

1.36x108(1-e)2 

Two-point correlation B52 
<2 

r(sz (r) - ¬2) 
ar 

2 
Bs2 

-3j bound (1 _C) 

Two-point correlation, Bs2, a 16 e3 
_ Z 

(1-E) B52 
Q approximation 9s ' 

Mean survival time Bm Bz <eDr 
- 

bound 

LPT, Ls BLpr 6 
2(e, s, L) u(e, s, L) 

(Ls) ý' f kK 
aeds =1 

00? e+4s2B LpT kx 

where c is the porosity, d is the pore diameter, B is the permeability, Ao is the specitic 

surface area based on the solid volume, kK is the Kozeny constant, df is the fibre 

2Z 
-2.5, ddis diameter, k4 = 6.1 and k5 = 0.64 are the empirical parameters, Ne = 1-e 

the cellular diameter, s2(r) is the two-point correlation function. 
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Sung-Min Kim investigated laminar pulsating flow through porous media [42]. He 

described the Forchheimer equation showing that there are three regimes in laminar 

flow (Figure 2.6). Region I presents low flow rates where surface-interactive force 

dominates. Regions II and III represent the laminar flow regime which consists of 

Darcy's flow (Region II) and Forchheimer flow (Region III). After Forchheimer 

flow, the turbulent regime starts. There is a critical Reynolds number for transition 

from Darcy's (viscous flow) to Forchheimer (inertia flow). Kim used CFD code 

FLUENT 6.3 to perform the simulations for pulsating flow. Two-dimensional structured 

meshes for five different porous geometries were created by using the Gambit 2.2 

software. He assumed that flow was in the x-direction, the no-slip boundary condition 

applied on the wall, the geometric boundaries and physical conditions were 

symmetric along the x-axis, the pulsating frequency was 40 Hz, the porosity range was 

0.64 to 0.84. For pulsating flow, similar to the case of steady flow, when the mean flow 

velocity is very small, the Forchheimer term can be neglected, and the permeability 

coefficient can be obtained. When the mean flow velocity is not small, then the 

permeability and Forchheimer coefficients both need to be considered. 

nary aow 1 
2 Farcx, neimer now region . 

Ra,, Re 

+---- LauunwNow. syfine 

Figure 2.6 Flow regions in a porous medium in terms of Reynolds number [42] 

The results confirmed that pulsating flow through porous media leads to phase shifts 

in velocity and pressure. The magnitudes of the phase shifts depended on the 

Reynolds number. However, the cycle-averaged Forchheimer coefficients decrease with 

increasing porosity, and were about two times larger than those for steady flow at the 

same porosity. Unfortunately, relevant experimental data which would verify the 

accuracy of the current simulation results for pulsating flow could were not available. 
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It is clear from the above, that Forchheimer coefficient must be considered in this 

work. Both experimental and CFD approaches to determine the Forchheimer 

coefficient will be described in the next chapters. 

2.6 PERMEABILITY PREDICTION FOR DEFORMED FABRICS 

During the last decades there have been many studies of permeability of deformed 

fabrics such as sheared or compacted fabric to predict the behaviour of textiles during 

manufacturing techniques such as resin transfer moulding (RTM), during which resin 

is injected into a mold cavity filled with a fibrous reinforcing preform [43]. Both 

experimental and analytical work has been done to predict permeability behaviour of 

fabrics. It is relevant to this thesis because airbags go through deformation during 

inflation. 

Smith, Rudd and Long [44] investigated a model for simple shear of woven fabrics 

and its influence on fabric permeability and elastic properties of engineered and 

woven glass fabrics. In order to measure the effect of shear on fabrics, simple shear 

deformation was isolated from any other deformation mode. This was achieved by 

using a four-bar linkage, shown in Figure 2.7, which clamped the reinforcement along 

two edges [44). One edge was connected to the laboratory bench and force was 

applied to the opposite edge. Five commercially available glass-fibre fabrics were 

tested. 

Sheared rig 

Force 
Apobed 

ReiMoroemen' 

Figure 2.7 Four-bar linkage inter-fibre shear isolation rig [44] 

For in-plane permeability experiments they used a radial flow rig which consisted of a 

thin radial cavity with Newtonian test fluid injected through a central port [441. They 
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applied a semi-empirical method to characterise the effect of shear on reinforcement 

permeability. Predicted results were in reasonable agreement with experimental data, 

showing the importance of in-plane shear on permeability and hence infusion 

behaviour. 

Bickerton et al. [45] investigated the effect of draping on mould filling processes 

during manufacturing of compound curved composite parts. An experimental study 

was designed to show the effect of draping preforms on mould filling. Flow 

visualization experiments were performed using a conical component. Experimental 

results showed that draping does significantly change fibre orientation, fibre volume 

fraction, permeability and injection pressure. Data were compared with numerical 

predictions for preform deformation and mould filling. They assumed Stokes flow in 

preform channels and Darcy flow in the preform itself. They considered only in-plane 

permeability. Mold filling simulations were completed using a code developed at 

University of Delaware, called LIMS (Liquid Injection Molding Simulation). Preform 

deformation predictions were found to overpredict in areas of high deformation, due 

to the assumptions made by the numerical algorithm used. Predictions of injection 

pressure and flow rate histories were good, while predicted flow front shapes failed to 

capture some experimental features [45]. 

Chen and Chou published a series of papers concerned with the study of compaction 

of woven fabric preforms in liquid composite moulding. Their first paper described a 

theoretical study of elastic deformation during the compaction of woven fabric 

preforms in liquid composite moulding for a single layer of fabric [46]. The analysis 

focused on the unit cell of an orthogonal plain-weave fibrous preform, which was 

composed of two sets of mutually orthogonal yams. A 3D model was proposed and 

was used to predict compressive behaviour of yarns. The assumptions were: the unit 

cell repeated in the plane of the fabric, which was infinite in extent; the yarn was 

treated as a transversely isotropic solid (the fibres in the yarns were highly 

compacted); the external compressive force was applied uniformly on the fabric 

preform; the elastic deformation of the fabric took place only in its thickness 

direction, neglecting in-plane deformation; during the compaction process, the yarn 

shape deformed but the yarn cross-section area remained unchanged. On the basis of 
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their model based on beam theory, analytical expressions for relations between the 
fibre volume fraction, the applied compressive force and preform thickness were 

established. The analyses focused on a unit cell of an orthogonal plain-weave fabric 

preform. Later, the same authors published a study of compaction of woven fabric 

preforms for multiple layer fabrics taking nesting into account [47]. They presented 

the analytical results for the nesting and elastic deformation during compaction of 

multi-layer woven-fabric preforms. A 3D model of the unit cell for multi-layer fabrics 

was proposed with the same assumptions as in their previous paper, and was adopted 

to predict the compressive behaviour of yarns. They proposed an analytical 

relationship between the applied compressive force and thickness for non-nesting and 

maximum nesting cases. For the general nesting cases, an empirical relationship 
between the compressive force and the thickness reduction was proposed. 

Later, Chen, Chou and Lang studied fabric compaction behaviour in resin transfer 

moulding experimentally and theoretically [48]. Compaction experiments were 

carried out for three types of preforms: continuous strand mats, plain woven fabric, 

and unidirectional knitted materials. In-situ contact pressure between adjacent fabric 

layers during compaction was measured using a TekScan (pressure mat) system. The 

results of pressure measurements motivated the improvement to the compaction 

model. The theoretical part of their study focused on modelling compaction behaviour 

of woven-fabric preforms with uniform, linear and sinusoidal inter-layer contact 

pressure distribution. The improved model was applied to predict the geometry of the 

resin channels of the preform under compaction. They used the same assumptions as 

proposed in previous papers. They found from experimental work that, as expected, a 

longer time was needed to infuse more compacted preforms because of the lower 

resulting permeability. The infiltration time increased with fibre volume fraction, due 

to the decrease in preform permeability. The permeability prediction model was based 

upon approximated two-dimensional lubrication flow in open spaces between yarns, 

and one-dimensional Darcy's flow within fibre bundles. The basic input data for 

permeability calculations were the thickness of all fabric layers and all resin channels 

between fabric layers. The permeability was obtained as a function of fibre volume 

fraction, as well as thickness reduction, and therefore, the externally applied pressure. 

This knowledge can be readily used for evaluating the permeability as a function of 
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applied pressure in the resin transfer moulding process [48]. However, there were no 

results for through thickness permeability. 
Takano et al. [49] used a microstructure-based computational approach to predict the 

permeability tensor of woven fabrics for resin transfer molding simulation. An 

asymptotic homogenisation theory was employed to evaluate the permeability from 

both macro- and microscopic standpoints with the help of the finite element method 

(FEM). This theory allowed them to study the relationship between mesoscopic 

woven architecture and macroscopic permeability based on the method of two-scale 

asymptotic expansions. They presented a typical numerical example to discuss the 

permeability characteristics of plain weave fabrics undergoing shear deformation in 

comparison with the undeformed material. They considered a porous medium with 

periodic microstructures saturated with viscous fluid. They also assumed that all 

models had the same fibre volume fraction and the cross-sectional area of the yarn, so 

that only geometrical configurations would be reflected in the values of permeability. 

Moreover, microscopic flow inside the yarns was not considered as only saturated 

flow was studied. Comparison to the experimental data was in planed for future 

works, and the study only considered in-plane flow [49]. 

Louis and Huber studied the effect of shear on permeability of woven fabrics during 

resin infusion [50]. They investigated permeability of four- and five-layer carbon 

fabric. The investigated fabric was increasingly sheared and the corresponding 

permeability was determined. The experiments were performed using a twill weave 

fabric. Three different shearing angles were investigated: 10,20 and 300. In order to 

achieve consistent shearing, fabric layers were stacked first and then sheared 

manually. The experimental set-up is shown in Figure 2.8 [50]. Vacuum was applied 

at the edges of the tool and the fluid (vegetable oil) was forced by atmosphere 

pressure to fill the cavity. 
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Figure 2.8 Experimental set-up for determination of flow behaviour [50] 

The measured material behaviour was imported into commercially available LCM- 

simulation software which was verified first using a simple plate with sheared fabric, 

and then using a double curved structure (hemisphere) with draped fabric. Forming 

simulations were carried out using Pam-Form software from ESI ltd. Two main 

effects were found. It was found that permeability decreases exponentially depending 

upon the fibre volume fraction of fabric changed by shearing [50]. This behaviour was 

expected from the compaction of fibre preforms. Additionally the main axes of the 

permeability rotated. The rotation angle thereby was dependent on the absolute fibre 

volume content of the sheared material [50]. However, they did not model through 

thickness permeability of sheared fabrics. 

Endruweit and Ermanni [51] studied in-plane permeability of sheared textiles both 

experimentally and theoretically. Two-dimensional flow experiments with radial 

liquid injection were carried out to determine the principal permeability values and 

the orientation of the permeability principal axes of various glass- fibre fabrics as a 

function of the fibre angle. Based on experimental results, a basic model to predict the 

in-plane permeability of sheared initially isotropic fabrics was developed. The 

principal permeability values were determined based on geometrical considerations, 

describing initially anisotropic material as a pre-sheared virtual isotropic fabric. The 

orientation of the principal permeability axes was described by an empirical formula, 

deduced from experimental observations. Resin flow in both fibre directions was 

considered as identical. They modelled their fabrics as non-crimp (as shown in Figure 

2.9). The deformation modes scissor drape and slide drape were considered (Figure 

2.10) [51]. 
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1a, 

Figure 2.9 Unit cell non-crimp textile with identical fibre material for both fibre 
directions [51 ] 

of 

(1%' U 

a) b) 

Figure 2.10 Scissor drape (a) and slide drape (b) textile deformation modes [511 

For slide drape, the mobility of the fibres was higher than for scissor drape, causing a 

higher significance of the fibre reorientation compared to the decrease in porosity than 

for scissor drape. The normalised permeability values for scissor drape showed 

qualitatively good agreement with the data of normalised permeability values as a 

function of the ply angle as published previously. For slide drape, the normalised 

permeability as function of the angle between the fibre orientations deviated 

significantly from the one for scissor drape [511. 

Loix et al. [52] proposed a computational model of the macroscopic flow of non- 

Newtonian fluids through highly deformed woven fabrics. Their method consisted of 

two steps. Firstly, the shear deformation of textile reinforcement was studied from 

meso-scale numerical analysis. Secondly, simulation of meso-scale flow of the 

polymer through the as-deformed woven fabrics was presented. They considered a 

periodic balanced glass plain. A schematic of the periodic solid REV (Representative 

Elementary Volume) of such microstructure is presented in Figure 2.11 [52]. 
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Figure 2.1 1 Solid REV of the studied plain weave: a) before deformation; b) after a 

pre-shear angle of 53° [52] 

They used the FE code ABAQUS to simulate the shear deformation. The following 

assumptions were made: very large transformations were taken into account; 

consistent yarn-yarn contact were assumed; yarns were assumed to behave like 

transversely isotropic hypoelastic continua; calculations were achieved by subjecting 

the whole REV to a mean macroscopic displacement gradient corresponding to an in- 

plane shear. Numerical results emphasised the drastic changes of the permeability 

when the fabric was sheared. The influence of fluid rheology was also studied in case 

of generalised Newtonian fluids. A method was proposed to formulate the 

macroscopic flow law [52]. However, there was no comparison to experimental data. 

Based on the literature survey, it is of interest to model permeability through 

deformed fabrics. Both Darcy and Gebart equations will be used to predict air 

permeability of deformed fabrics taking into account Chen and Chou's [46,47,48] 

work to calculate thickness reduction and fibre volume fraction after deformation. 

This is very important for such application as airbags because airbag is going through 

deformation during inflation. 

2.7 THERMAL CONDUCTIVITY PREDICTION USING ANALYTICAL 

MODELS 

The comfort of a garment is dependant on several factors: heat and vapour transfer, 

lightness, sweat absorption, drying and permeability to moisture and air. Heat transfer 

continues to be a field of major interest to engineering and scientific researchers as 

well as designers, developers and manufacturers. Considerable effort has been 

devoted to research in traditional applications such as chemical processing, general 
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manufacturing, energy devices etc. In addition, a significant number of papers address 

topics that are at the frontiers of both fundamental research and important emerging 

applications, such as aerospace, military and sport clothing, insulating textiles 

materials and so on [53). Many models are highly specific, whilst others have more 

general applicability. However, there is still a lack of published studies about through 

thickness thermal conductivity or heat transfer in textile fabrics. 

The earliest model that describes the mechanism of transient diffusion of heat and 

moisture transfer into an assembly of hygroscopic textile materials was introduced by 

Henry [54] in 1939. He developed two coupled differential governing equations for 

the mass and heat transfer in a small flat piece of clothing material. He made several 

assumptions including that the amount of vapour absorbed by a given quantity of the 

solid in equilibrium varied in a linear manner with the concentration of vapour and 

with temperature. It was also assumed that the diffusion constants were independent 

of the amount of vapour which was absorbed, and of the temperature. Neither of these 

assumptions will be always true in practice, since the porous solid may swell as it 

absorbs vapour. Also the rate of diffusion of one gas into another is known to vary as 

a power of the absolute temperature between 1.5 and 2. The proposed equation for 

vapour diffusion is the following [54]: 

ac 
=D , V, C - 

1-a 
ps 

am 
(2.18) 

at a at 
The equation for thermal diffusion is [60]: 

cp at = kV 2T+ xp' 
aä 

(2.19) 

However, Henry's work was purely analytical and did not contain any comparison to 

experimental data. 

Brailsford and Major studied thermal conductivity for two-phase media for various 

types of structure [55]. They showed that for porous media, such as sandstone, the 

structure plays a vital part in the determination of thermal conductivity. They derived 

an equation for two-phase media from simple physical models corresponding to 

various types of structure. For sandstone they assumed that porosity of the solid and 

fluid region to be the same, and thus equal to the overall porosity. They also assumed 

that the proportion of the fluid continuous phase was related simply to the true 
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porosity. For natural porous media it had become obvious that the fluid component 

can play a more important role at low porosities than would be expected for purely 

random assemblies. Experimental results had reasonable agreement with theoretical 

work although more experimental work had to be done on the effect of structure on 
thermal conductivity. 

Watt and Darcy [56] performed gravimetrical experiments to describe wool-water- 

vapour adsorption isotherms in the temperature range 20-100°C by using a quartz 
helical spring mounted in an evacuable apparatus. The wool samples used were pen- 

grown and degreased by six washes with cold petroleum ether and many changes of 
distilled water until the pH of the water was unchanged by the contact with the wool. 
The samples were vacuum-dried in the apparatus. Major factors affecting the 

measured water content of the wool samples were identified as the previous history of 

the sample, the amount by which the vapour pressure was changed, and the time 

allowed for equilibrium to be established; the influence of these factors became more 

marked at higher temperatures. At higher temperature there were increased water 

contents at high humidities and decreased water contents at lower humidities. 

Complete adsorption isotherms were determined over a wider range of temperatures 

than was previously possible; however, there was no comparison to any analytical 

model [56]. 

There are various heat transfer mechanisms for fabrics: conduction by the solid 

material of the fibres; conduction by the intervening air; thermal radiation and 

convection [57]. In the absence of radiative heat transfer, the 1-D heat flow at a 

position x is given by 

Q(x) = -k (2.20) 

where T is the temperature and k is the thermal conductivity. 

Thermal conductivity k can be calculated using a rule of mixtures which combines 

thermal conductivities of the air (kA) and of the fibre (kF) as shown in equation (2.21): 

k=(1 - Vf)kA+VfkF (2.21) 

where Vfis the fibre volume fraction. 
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The radiative heat transfer is usually expressed as "radiative conductivity" multiplied 

by the temperature gradient (see Table 2.5): 

QRAD =-kRAD 
dT 

(2.22) 

Table 2.5 Equations for different heat transfer modes and their thermal resistances 

[57) 

Transfer mode Amount of heat transferred Thermal resistance 

Conduction T. - TZ Ll kA 
_ Q 

LIkA 

Convection Tsurf - T'. 1/ hconvAsurf 

_ Q 
1/hconvAsurf 

Radiation Tsurf 
- 

TS. 
" /hA 1r 

_ Q 
1/hrAsuf 

Farnworth studied the mechanisms of heat flow through clothing insulation [obj. His 

model described combined conductive and radiative heat flow through fibrous 

insulating materials assuming that there was no convective heat flow. It was 

compared to experimental values of thermal resistance for several synthetic fibre 

battings and of a down and feather mixture. It was shown that the difference in 

resistance per unit thickness among the various materials may be attributed to their 

different absorption constants. They assumed that a 10-mm thick sample of a I% fibre 

batting is held between plates of 90% emissivity at temperatures of 25 and 35°C. The 

experimental results agreed well with the theory over the region 5 to 8 mm thickness. 

They explained experimental data by a simple radiative conductivity model. They 

showed that a high absorption constant will be obtained if the sample has a high fibre 

volume fraction or small fibre diameter. However, they did not look at the thermal 

conductivity of very thin fabrics. 

Li and Holcombe [59] introduced an extended mathematical model that takes into 

account the water vapour sorption kinetics of wool fibres to better describe the 

coupled heat and moisture transport in fabrics. They assumed that the water vapour 

uptake rate of the fibre consisted of two stages of sorption. The first stage was 

represented by a Fickian diffusion with constant diffusion coefficient. The second- 

stage sorption followed an exponential relationship. They used a Crank-Nicholson 
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implicit finite difference technique to generate the solutions. The predictions from the 

two-stage model were compared with those from a Nordon-David model and a simple 
Fickian diffusion model, and with experimental observations on a sorption cell. The 

two-stage model showed good agreement with the experimental data. However, their 

model was used for wool fabrics only. There is no evidence that this model would 

work for other kinds of fabrics. 

Yasuda et al. [60] measured the surface temperature of the first-layer of fabric during 

nonsteady-state transport of water vapour through layered fabrics. The mass of the 

first layer was changed by tightly stacking the same fabrics, and surface temperature 

rise was measured as a function of the mass and the kind of polymers. The rise in 

surface temperature was proportional to the mass of fabrics and the water absorption 

characteristics of the polymers. They confirmed that the temperature rise that occurs 

in the space between layered fabrics is due mainly to the heat of absorption of water 

vapour. 

Le and Ly [61] developed a model for the interactive heat and mass transfer that 

occurs in the forced convection of steam through an absorbing fibrous textile 

assembly. Application of the model to the steaming of a wool fabric bed revealed a 

fast front which was associated with condensation and a sharp rise in temperature, and 

a slow and much broader front which brings equilibrium to the moisture content of the 

bed. For the initial conditions it was assumed that the textile assembly was uniform in 

temperature and moisture content and in equilibrium with the moist air surrounding it. 

The fibres and absorbed moisture were assumed to form a homogenous solid whose 

properties were specified by the moisture content. The model assumed no movement 

of liquid water. The pressure difference between the two sides of the bed caused the 

steam to flow and displace air as it penetrates the bed. The velocity of the steam-flow 

through the fabric bed was small and the flow was assumed to be Darcian. 

Experiments carried out on a specially built steaming apparatus gave good agreement 

on the fabric temperature and regain [641. However, more work is needed to account 

for the variation of the diffusivity of a liquid in absorbent material with temperature 

and concentration. 

E Saldaeva Literature review 39 



Through thickness air permeability and thermal conductivity analysis for textile 
materials 

Ghali, Jones and Tracy [62] developed a numerical model for simulating the heat and 

mass transfer in fabrics during wicking. The model was applied to two different 

knitted fabrics: cotton and polypropylene. There were several assumptions: the 

fibrous system is represented by an ideal continuum divided into volume fractions of 

liquid, solid and liquid vapour and air mixture at particular locations; the solid phase 

was considered to be non-deformable which means that mechanical swelling and 

shrinkage were not included; Darcy's law was used to describe the transient flow 

through the saturated and unsaturated regions in the fibrous medium; there was no 

convective flow of the vapour-air mixture; the liquid components were 
incompressible and the vapour-air mixture was an ideal gas. The model showed that 

as the water wicked through the fabric specimens, two temperature zones were 

formed. Within each region the temperature gradient is small, but between the regions 

it is more significant. The variation of the fractional saturation is continuous along the 

specimens. Experiments were conducted to obtain the temperature distribution during 

wicking for the two fabrics. The model had good agreement with the experimental 

results. However, there were no results for woven fabrics [62]. 

Fohr, Couton and Treguier [63] developed a model of heat and water transfer through 

layered fabrics, such as clothing. The considered hydrophilic and hydrophobic 

treatments, membranes glued onto a layer, and surface modification of the textile 

(abrading). Physical phenomena taken into account were sorption and desorption; free 

water condensation or evaporation; liquid, vapour, and adsorbed water diffusion; and 

heat conduction and contact resistance between layers. Their model was dynamic for 

one-dimensional transfers. It showed that there was a presence of liquid in certain 

places in textile layers due to liquid diffusion as well as vapour sorption. In a small 

average volume, a local thermodynamic equilibrium between solid, liquid and gas 

phases was assumed. This hypothesis, which seems satisfactory for a thick layer of 

fibrous insulation such as rockwool, is questionable when dealing with thin textile 

layers. Fabrics have two scales of pores generated by the manufacturing process - 

interfibre and interyarn pores, and the diffusion properties of heat and water in liquid 

and vapour form are determined from this pore network. They assumed that: each 

layer acts as a homogeneous one with physical parameters which were determined 

experimentally; contact resistance should occur between the layers; transfer through 
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layers is one-dimensional, from the skin to the outer environment; heat and water 
transfers were associated with adsorbed (regain) or free water condensation or 

evaporation. Air filtration through fabric layers was not considered. Radiation was 
taken into account outside the layers. They compared their model to experimental data 

presented in the literature [63]. However, more experimental work has to be done to 

measure the diffusion coefficient for water and contact resistance. 

Ghali et al. [64] experimentally investigated the effect of the coupled convection heat 

and mass exchange within clothing. They also created a model to determine the heat 

and mass transfer coefficients between the air penetrating the void space and the solid 
fibre as a function of the velocity of penetrating air. Experiments were conducted 
inside environmentally controlled chambers to measure the transient moisture uptake 

of untreated cotton fabric samples as well as the outer fabric temperature using an 
infrared pyrometer. Moisture uptake was measured at three different volumetric flow 

rates to represent airflow penetration that could result form slow, medium and 

vigorous walking. The theoretical analysis was based on a two-node adsorption model 

of the fibrous medium. An outer node represented the exposed surface of the yarns 

which was in direct contact with the penetrating air in the void space between the 

yarns. The inner node represented the inner portion of the solid yarn which was 

completely surrounded by the outer node. The outer node exchanged the heat and 

moisture with the flowing air and the inner node, while the inner node exchanged heat 

and moisture by diffusion only with the outer node. A set of four coupled differential 

equations were derived describing time-dependent convective heat and mass transfer 

between the penetrating air and the solid fibre in terms of relevant unknown transport 

coefficients. The unknown model parameters were adjusted to fit the experimental 

data. The outer heat and mass transfer coefficients were found to increase with the air 

penetration flow rate. The physical model of the system as a cross flow of air over a 

group of cylinders (yarns) had given higher coefficients than the empirical values of 

the two-node model as expected [64]. 

The above-mentioned models ignored the effect of the atmospheric pressure on heat 

and moisture transfer of hygroscopic fabrics. Luo et al. [651 developed a model that 

takes into account the effect of atmospheric pressure on the heat transfer of fabrics. A 
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dynamic model of simultaneous heat and mass transfer in hygroscopic porous 

materials was developed. In the model, evaporation/condensation and movement of 

water, sorption/desorption of fibre and the effect of atmospheric pressure on mass 
transfer in porous media were considered. They assumed that the moisture sorption at 
the fibre surface was instantaneously in equilibrium with the surrounding air. They 

also assumed that the diffusion coefficient was concentration-dependent and a 

quadratic function of the water content when sorption was less than 540s. In order to 
be able to generate a solution they had to specify initial and boundary conditions on 
the fabric surface in terms of density, saturation, temperature and atmospheric 

pressure. To derive a numerical solution, they used a finite volume method. They 

compared the theoretical model to experimental results reported in the literature. It 

was concluded that atmospheric pressure had a significant impact on heat and mass 

transport processes in hygroscopic porous materials [65]. Their model can be applied 
in functional clothing design and other engineering and scientific fields involving heat 

and mass transfer in porous media. 

Sobera et al. [66] studied the performance of protective clothing by coupling various 

types of numerical simulation of flow, heat and mass transfer. They aimed to develop 

predictive models for the performance of protective clothing at full body scale. For 

meso scale Direct Numerical Simulation they used the commercial CFD solver Fluent 

6 which is based on an unstructured finite volume formulation. The porous material 

was treated as a fluid zone where the pressure drop was imposed as a sink in the 

momentum equation according to Darcy's law. For micro-scale simulations of the 

flow around the textile fibres they again used Fluent. Due to the low fibre diameter 

and low velocity; the flow remained laminar and steady. From meso-scale Direct 

Numerical Simulation it was found that the flow underneath the clothing is laminar 

and periodic, with the magnitude much smaller than the free stream velocity. It 

showed that for free flow velocities, the flow underneath the clothing is laminar and 

periodic. Micro-scale Direct Numerical Simulation revealed a simple relation between 

textile porosity and permeability. A good agreement was found between flow and heat 

transfer predictions of Direct Numerical Simulation and Reynolds Average 

Simulation [66]. However, model did not predict global heat and mass transfer 

accurately. 
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Wang et al. [67] proposed a new model of effective thermal conductivity for 

heterogeneous materials with co-continuous phases. In their approach three methods 

have been combined to predict thermal conductivity. Their model has significant 

difference from the conventional five fundamental structural models (Series, Parallel, 

two forms of Maxwell-Eucken (ME), Effective medium theory (EMT)) which are 

presented in Table 2.6 [67]. The series and parallel models represent a laminate 

(layered) structure of phases. The other three models are based on the phases being 

continuous or dispersed: The ME model represents one continuous phase and one or 

more dispersed phases and in the EMT model all phases are mutually dispersed. 

These models are very difficult to implement into fabric thermal conductivity 

calculations. In his structural model Wang assumed an isotropic material with two 

continuous phases A and B and one dispersed phase C (Figure 2.12). He used series 

and parallel models to predict the effective thermal conductivity of material with co- 

continuous phases [67]. 
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Figure 2.12 A structural model with two continuous (A and B) and one dispersed (C) 

phase [67] 

Using the thermal field model, Wang considered an anisotropic spherical inclusion 

inserted into an isotropic material with effective thermal conductivity subjected to a 

uniform temperature gradient as shown in Figure 2.13 [67]. 
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Figure 2.13 A single spherical inclusion dispersed in an infinite medium with heat 

transfer in one direction: a) thermal field; b) elementary unit; c) unit structure [67] 

Wang's model had two applications: to produce composite models using the 

combinatory rules and to narrow the bounds of the effective thermal conductivity for 

heterogeneous materials where physical structure can be characterised into general 

classes. However, there was no comparison with experimental data, only with other 

theories [67]. It did not take into account textile fabrics' structures. 

Table 2.6 The five fundamental structural effective thermal conductivity models for 

two phase materials [67] 

Model Structure 

schematic 

Effective thermal conductivity 

equation 

Ref. 

Parallel model 
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There is a lot of research on thermal conductivity and heat transfer applying to 

particular clothing applications. Among them, Luo and Xu [72] presented a new 

algorithm to simulate 2D transient heat and moisture transport behaviour through 

fabric. They established a 3D geometric fibre model first with anisotropic fibres. The 

model was deduced by mass and energy conservation. Assumptions included: fibrous 

porous media volume change was neglected in the simulation process; the inertial 

force was ignored due to the relatively low velocities for liquid transfer; forced 

convection such as the effect of wind penetration was neglected; radiation in the 

process was neglected. They used a finite-difference time-domain approach to solve 

the partial differential equations. It described the physical mechanisms of heat and 

moisture transfer in fabric, providing detailed information of the transferring process 

in fibrous media. The simulation results demonstrated that the new method was 

relatively accurate and easily implemented. However, the effect of radiation and 

convection in the 2D transient model needed to be added. 

Dias and Delkumburewatte [73] created a theoretical model to predict the thermal 

conductivity of knitted structures in terms of porosity, thickness and moisture content. 

The theoretical model consisted of two parts: the porosity model demonstrated the 
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variation of porosity with fabric thickness, width of wales, and width of courses, fibre 

density and yarn count; the thermal conductivity model showed the variation of the 

thermal conductivity with thermal conductivity of fibre, the porosity and the moisture 

content. The pattern of the plain knitted structure and the heat flow model are shown 

in Figure 2.14 [73]. They considered only thermal conductivity through fabric, 

assuming that heat entered from one surface and that flow to another surface was 

normal to the fabric. They assumed that the heat energy losses from the boundaries 

were negligible. It was assumed that the heat energy passed sections of air, water and 

fibrous material on its way from the heated surface to the ambient surface. They 

developed that following equation to connect thermal conductivity with porosity and 

moisture content: 

k= 
k,, kýký 

(2.23) 
(1- a)k0 k, + (a - aw)kn, k, + awkn, ka 

where a is the porosity and w is the moisture content 

Tn - Tempcraturc of exit 

vv- .. 
L- Thick us of the fabric 

Tl Incident temperalurc dH" Heat flux passing thtnttgh AA (small area) 
Figure 2.1-1 Schematic diagram of heat flow through structure and stitch diagram of a 

plain knitted structure [73] 

The validity of the model was examined by comparison with results of experiments 

conducted using different knitted fabrics, in which the porosity, thickness and fibre 

and water content were different. They showed that the thermal conductivity of a dry 

plain knitted fabric decreases with increase of porosity, however, with increased water 

content, an increase in porosity contributes to an increase in thermal conductivity 

[73]. However, there was no example for woven fabrics in their theoretical model or 

experimental data. It would be interesting to see whether their model works as well 

for woven fabrics as for knitted ones. 
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Min et al. [74] studied the heat and moisture transfer from skin to environment 

through fabrics. A mathematical model was set up to simulate the heat and moisture 

transfer from skin to environment through fabrics by including the radiation heat 

transfer between surfaces and the surface diffusion along fibres. The pathway of the 

heat and moisture transfer from skin to environment through fabric described in their 

model is presented in Figure 2.15 [74]. The heat transfer within the fabric was 

composed of conduction and heat transfer due to the transport of vapour. The 

conduction is composed of the conduction through solid fibres and through the air 

filling the interstices between fibres. In the fabric, moisture is transferred by two 

independent mechanisms of pore diffusion through the interstices between fibres and 

surface diffusion along the surface of fibres. Temperature and humidity were assumed 

to be uniform except at the boundary layer adjacent to the fabric. Since it was 

assumed that the temperature of the fabric surface is higher than the temperature of 

the environment, there should be a natural convection. In addition, it was assumed 

that at the skin and in the environment the temperature and relative humidity were 

constant. For their simulations they had chosen cotton, wool and PET fabrics. 

The results showed that the contributions of radiation and conduction through air are 

approximately 20% each of the total heat flux. Surface diffusion does not play a 

significant role in the total moisture transport if the surface diffusion is restricted to 

the chemisorption of water molecules onto fibre surfaces. It was concluded that the 

microclimate played the most significant role in the heat and moisture transfer from 

skin to environment [74]. In the case of a vertical system, heat and moisture transfer 

coefficients are dependent on the length of the channel. 
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Figure 2.15 Pathway of the heat and moisture transfer from skin to environment 

through fabric [74] 

Total heat flux was 10% larger in the vertical system than in the horizontal system 

and the fabric surface temperature was 0.2°C lower [74]. However, there was no 

comparison of predicted results with any experimental data. 

Lin and Jou [751 who studied heat transfer and thermal protective properties of 

clothing materials for firefighters' protective clothing. A firefighter's garment should 

protect the wearer against the negative effect of either direct flame contact or the 

radiant and convective heat emitted by fires. On the other hand, the flow of heat and 

moisture from skin to the environment is impeded by the clothing materials. As a 

result firefighters may suffer from heat stress when wearing protective clothing in 

different environmental conditions. The purpose of their study was to investigate the 

heat transfer capability and the thermal protective property of the clothing materials 

on firefighter's garment performance. A comprehensive experimental work was 

conducted on a series of fabric combinations for different layers of firefighter's 

garments to examine their thermal resistance, evaporative resistance, total heat loss, 

and thermal protective performance. A sweating torso was also used to simulate 

physiological behaviour. It was found that the high thermal resistance of a clothing 

system showed good results in thermal protective performance tests but was 

problematic in physiological tests. Besides, a water vapour permeable moisture barrier 
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reduced the amount of moisture in firefighter's protective clothing systems when low 

to moderate physical activities were undertaken [75]. 

Comfort of clothing material is one of the most important aspects for sport apparel. 

Little and Liu evaluated and determined thermal and moisture properties of elastic 

athletic clothing [76]. Different types of athletic wear with different fibres, fibre 

content and fabric structures were studied by conducting 3D manikin garment testing 

under controlled environmental conditions. Their paper showed how a clothing 

system can affect the performance of the athlete when using form-fitted competition 

garments. To investigate the thermal and moisture properties of elastic athleticswear, 

eight sets of commercial male athleticswear products were selected. Each set of 

sample included one long-sleeved top and long tights. The testing parameter included 

thermal insulation, moisture vapour resistance and percentage of moisture 

accumulation within athleticswear. Temperature and moisture sensors were placed on 

the skin surface at head, chest, waist line, arm, leg and thigh. Their study helped to 

develop an understanding of the thermal and moisture properties of elastic fabrics 

used in athletics wear, and built up a basis for further engineered design for 

optimizing the comfort of competition athletic wear. However, more research is 

needed to compare the sweating manikin trails with both human subject trials and 

further physical testing [76]. 

Havelka and Kus [77] described a theoretical analysis of physiological comfort which 

is influenced by moisture of air under clothing, skin moisture, and temperature of air 

under clothing, skin temperature and the content of carbon dioxide under clothing. 

This contribution deals with the comparison of basic measurable physiological 

properties of sandwich materials as they were used in real clothing made from smart- 

barrier textiles, with applications in sports clothing. They focused on the theoretical 

analysis of transport by diffusion of water vapour through porous semi-permeable- 

barrier material. The area of comfort for men is quite small and for temperature well- 

being under clothing must be 32±1°C, relative humidity 50±10%, air stream 

25±15cm/s, as shown in Figure 2.16 [77]. 
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Figure 2.16 Area of clothing comfort [77] 

The water transport behaviour of various textile materials has a significant effect on 

the comfort properties of the wearer. Sarkar, Fan and Chen [78] introduced the novel 

Transplanar Water Transport Tester (TWTT) for measuring the water transport 

behaviour in the trans-planner direction for various types of nonwoven fabrics and 

paper materials. Apart from measuring the initial absorption and surface evaporation, 

this instrument successfully measured a new parameter named maximum water 

absorption. In addition, the general trend of the absorption curve was thoroughly 

investigated and a model was developed using Matlab Software. The instrument 

comprises two main sections (Figure 2.17) [78]. The first section consists of a 

horizontal perforated sample podium fitted above a water container, which is placed 

on a sensitive electronics balance. This water container is connected to a water 

reservoir, which is fitted on another section of this instrument. The level of water 

under the perforated plate is kept constant by maintaining a constant height of water 

in the reservoir. Unlike the existing instruments for water transport behaviour of 

fabrics or papers, the new instrument has this unique mechanism to control the water 

level underneath the fabric sample (which is placed on the perforated plate) at a 

constant level. As a result, the measurements are not affected by the changes in the 

hydrostatic water pressure during testing. In order to reduce the manual error, a 

mechanical device is used to place the fabric sample on the sample podium. 

Automatic data transfer to the computer during testing is another feature of this 

instrument. Repeated tests on various nonwoven fabric samples and paper materials 
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showed that the measurements from the instrument are accurate, sensitive and 

reproducible [78]. 
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Figure 2.17 Schematic diagram of the Transplanar Water Transport Tester [781 

I- Level Adjusting feet. 2- Electronic Balance. 3- Water Pump. 4- Lower water 

reservoir. 5- Pipe. 6- Drainage. 7- Drainage taps. 8- Upper water reservoir. 

9- Height adjustable wall. 10 - Height adjusting screw. 11 - Cover of the upper 

reservoir. 12 - Pipe. 13 - Perforated plate for placing the sample. 14 - Water 

Temperature sensor. 15 - Water container under the sample podium. 16 - Tap for 

Drainage. 17 - Drainage pipe. 18 - Support frame. 19 - Heater. 20 - Soft pipe. 

The study showed that the novel Transplanar Water Transport Tester can accurately 

measure the water transport behaviour of nonwoven fabrics and papers. The main 

advantage of this instrument is that, it has a unique mechanism to control the water 

level underneath the absorbing sample at a constant level (i. e. the water level is not 

reduced with the water transport into or through the fabric sample), as a result the 

measurements were not affected by the changes of hydrostatic water pressure during 

testing. Using this instrument it was possible to measure precisely the Maximum 

Water Absorption (MWA) properties of various materials apart from the initial 

absorption and surface evaporation, simulating a realistic end use condition [78]. 

Dasgupta et al. [79] presented effective thermo-mechanical and thermal properties of 

plain-weave fabric-reinforced composite laminates obtained from micromechanical 

analyses and a two-scale asymptotic homogenization theory. A unit cell, enclosing the 
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characteristic periodic repeat pattern in the fabric weave, was isolated and modelled. 

The orthotropic tensor for effective mechanical stiffness, coefficient of thermal 

expansion and thermal conductivity were obtained by numerically solving appropriate 

microscale boundary value problems in the unit cell by the use of three-dimensional 

finite element analyses. Analytical models consisting of series-parallel thermal 

resistance networks were developed in order to obtain orthotropic thermal 

conductivity. The numerical and analytical models are explicitly based on the 

properties of the constituent materials and three-dimensional features of the weave 

style. Unit cell model is shown in Figure 2.18 [79]. In the analysis the following was 

assumed: the laminate is not only orthotropic but also the warp and the fill directions 

are identical, giving a balanced-ply construction and cubic symmetry; yarn fibre 

bundles impregnated with resin can be modelled as transversely isotropic 

unidirectional composites; contact between dissimilar materials is perfect. 

Yarn 

dimensional parameters [79] 

Z 
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They proposed two different thermal models: one for in-plane and another for out-of- 

plane effective thermal conductivities. In both models, the domain of the mesoscale 

boundary value problem is a quarter of the unit cell. Equivalent thermal resistances 

were selectively assembled in series and parallel to form three-dimensional networks 

in order to simulate the actual heat conduction through the domain. Parametric studies 

were conducted to examine the effect of varying fibre volume fraction on the effective 

thermal properties. The thermal conduction properties of low conductivity resin and 

low fibre volume fraction laminates were dominated by the resin conductivity. Results 

showed good agreement with experimental data [79]. However, there was no study on 

transverse thermal conductivity of unbalanced composites or fabrics. 

There are many papers containing models for predicting the thermal conductivity of 

composites or heterogeneous materials based on composition. For instance, Ning and 

Chou [80] developed a micromechanics model to predict the in-plane effective 

thermal conductivities of plain-weave fabric composites based on a thermal-electrical 

analogy. They modelled in-plane thermal conductivity in warp and fill directions for 

S-glass, E-glass, graphite and Kevlar-49 plain weave fabric-reinforced epoxy 

composites. Their study focused on non-hybrid plain-weave fabric laminae. The fibre 

materials of warp and weft yarns were identical, yet their width and thickness were 

assumed to be different. In addition, it was assumed that thermal contact resistance 

between the fibre and matrix was negligible; heat flux was along the x direction and 

the flux lines were straight and parallel to one another; the in-plane effective thermal 

conductivity of a plain-weave fabric lamina in the warp direction was the same as that 

of the unit cell in the same direction. Their idealized unit cell is presented in Figure 

2.19 [801. 

Y 

Figure 2.19 The idealized unit cell [801 
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They described the relationship between the effective thermal resistance, R and the in- 

plane effective thermal conductivity, ken., of the half unit cell in the warp direction as 

presented in Equation (2.24) [80]. 

2(af +g1) 
R= (2.24) 

kP14, (a,,, + gW )h 

where of a, are yam width of fill and warp yarns respectively, gfand gW are gap width 

between two neighbouring yarns in fill and warp directions respectively, h is the 

thickness of lamina. 

There was good agreement between their predicted results and published analytical, 

numerical and experimental models. The model for the plain-weave fabric can be 

extended to satin-weave composites. 

Recently FE modelling became more popular to predict thermal conductivity of 

composites. Woo and Goo [811 studied thermal conductivity of a carbon-phenolic 8- 

harness satin woven composite using FE modelling and compared experimental 

results with predictions. In the analysis, the satin weave unit cell was identified and 

modelled discretely by 3-dimentional finite elements, considering the interlaced fibre 

tow architecture. At the unit cell boundary, the corresponding periodic boundary 

conditions were applied. They investigated the effect of microstructural parameters 

and boundary conditions on thermal conductivity. The experimental apparatus and the 

model unit cell are presented in Figure 2.20 [81 ]. They used a comparative method in 

which the conductivity is obtained by comparing the temperature difference between 

a reference specimen with a known thermal conductivity and the test specimen in 

steady-state conditions [81]. 
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20 Measurement apparatus and Unit cell mesh for a two-layer 8-harness satin 

weave composite [81 ] 
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The effective thermal conductivity predicted by finite element analysis agreed 

reasonably well with the experimental results. The transverse conductivity varied as 

the phase shift changed, however the amount of variation was not significant. It was 
found that higher and lower transverse conductivities resulted when temperature and 

flux boundary conditions were applied. Transverse conductivities converged as the 

number of layers increased. In relation to fibre volume fraction, conductivity 

increased almost linearly. It was also found out that conductivity was dependent on 

the waviness ratio [81 ]. 

Hind, Robitaille and Raizenne [82] worked on a model which describes heat transfer 

through woven composites at the unit cell level. Parameters included yarn section, 

width, thickness and spacing, fibre volume fraction and thermal conductivities of 

yarns. The materials modelled were plain woven orthotropic carbon fibre yarns in 

epoxy. Models and meshes were created using TexGen and Gambit and the solver 

was Nastran. Boundary conditions were defined by imposing uniform temperature at 

all nodes of the top and bottom surfaces of the unit cell. Unit cell sidewalls were set as 

adiabatic. Simulated effective transverse thermal conductivity of the composite 

material ranged from 0.43 to 1.14 W/m°C. This compared with 0.57 W/m C 

(measured) for 2/2 twill carbon fibre composite. The parametric study showed that in 

addition to modifying the overall fibre volume fraction, geometric parameters also 

affect thermal conductivity for the unit cell with constant fibre volume fraction. The 

simulations showed that crimp geometry had a major effect on thermal conductivity. 

It showed the influence of the weave pattern on thermal conductivity. It predicted that 

thermal conductivity decreased as yarn aspect ratio increased, and as yarn section 

shape power increased. In addition, thermal conductivity increased as the ratio of yarn 

width to spacing increased for both in-plane and through-thickness directions; and as 

yarn or resin conductivity increased [82]. 

Schuster et al. [83] studied the effect of three-dimensional fibre reinforcement on the 

out-of-plane thermal conductivity of composite materials. Composite performs were 

based on 3D orthogonally woven carbon yarns and plied copper wires in the thickness 

direction. After infusion, using a vacuum-assisted resin transfer molding process, the 

measured out-of-plane thermal conductivities of the resultant composites showed 
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significant increase compared to a typical laminated uniaxially or biaxially reinforced 

composites. They showed that although the through thickness thermal conductivity of 
the sample increased with fibre volume fraction, the values did not match those 

predicted by the rule of mixtures. Using finite element models to better understand the 
behaviour of the composite material, improvements to an existing analytical model 

were implemented to predict the effective thermal conductivity as a function of the 

composite material properties. Thermal conductivity measurements were conducted 

according to ASTM E 1225-04 allowing measurements of circular samples with a 
diameter of 50.8mm at thickness from 2 to 50 mm. For finite element analyses 
COSMOSWorks software was chosen. Although the development of a purely 

analytical thermal conduction model for a complex system is unlikely due to the 

three-dimensional nature of heat flux, the introduction of two factors to the simple 

rule of mixtures estimation led to reasonably accurate model predictions for the 

sample tested. Experimental data showed that with a copper fibre volume content of 

about 6% the maximum possible out-of-plane thermal conductivity can be increased 

by a factor of eight over that of a traditional uniaxial or biaxial laminated composite 

[83]. 

Summarising all research described above, the rule of mixtures and Ning and Chou 

[80] analytical model were chosen for our study for one-layered fabrics as reasonably 

simple approaches which include known parameters. For multiple-layered fabrics a 

unique method will be developed as there was no approach which was reasonable to 

apply for textile fabrics. For the influence of moisture content on thermal 

conductivity, the Dias and Delkumburewatte [73] approach was used due to its 

accuracy and simplicity. 

2.8 CURRENT DEVELOPMENTS 

There is much research work on permeability and thermal conductivity which has 

been published during the last century. There is a better understanding now about 

factors which influence fabric permeability and thermal conductivity and how these 

factors can be adjusted to the benefit of a manufacturer. Fabric permeability is 

influenced by fabric structure, number of gaps and their orientation within the fabric. 

Yarn permeability can have a significant influence on fabric permeability, especially 
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for very tight fabrics when almost all flow goes through the yarns. Fibre orientation 

and fibre volume fraction are two of the main factors influencing fabric permeability. 
Deformation such as shear or compaction can change fabric permeability 
dramatically. Thermal conductivity is influenced by fabric structure, fibre 

conductivity and moisture content. 

While research interest has continued to grow in numerical simulation and analytical 
description of flow through fabrics, its application in industry is still limited. There is 

still a large dependence on experimental data. The reason for this is that simulations 
for fabric permeability require accurate data on the fabric structure. Another problem 
is the simulation time. For complicated structures simulation time can be between 

several hours to several days. Cost considerations dictate that for a successful 

industrial simulation, the software must be easy to use, cover a large variety of fabric 

structures, and be reliable and fast. So far, no model fits all these criteria. 

A significant observation is that permeability through gaps in textiles and 

permeability through yams have been developed separately by many researchers. 

Only a few authors tried to connect these two mechanisms together. In addition, there 

is a lack of information regarding permeability through deformed fabrics. Thermal 

conductivity was studied by many authors, however, there is only limited work 

describing thermal conductivity of textile fabrics, taking into consideration moisture 

content. 

The focus of this work is to develop a generic model which can describe various types 

of fabrics and account for the effects on permeability of factors such as fabric 

structure (yarn width and yarn spacing, gaps between yarns and inside yarns, 

thickness, and interlacing pattern), fabric finishing, nesting in multi-layer fabrics, 

fabric shear and compression. It also aims at predicting thermal conductivity of 

fabrics taking into consideration the influence of moisture. A suite of models with 

these capabilities would be able to predict both permeability and thermal conductivity 

for arbitrary fabrics. These approaches are described in the next chapters. 
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CHAPTER 3 

PERMEABILITY PREDICTION OF TEXTILES USING 

ANALYTICAL METHODS 

3.1 INTRODUCTION 

One of the core aims of developing a textile permeability model is to predict 

permeability taking into account different factors such as fabric structure, porosity, 

fibre properties etc. This would complement experimental data by allowing the 

prediction of fabric permeability before doing experiments and could help 

manufacturers to produce fabrics with improved properties. Engineers will be able to 

predict how fabric will behave under different conditions and modify the 

configuration to suit the specific application. This chapter describes the development 

of a predictive through thickness air permeability model for different types of fabrics. 

An accurate description of the fabric structure is critical to a successful prediction. 

The issues regarding creating an accurate geometrical model are discussed. 

The analytical model described in this chapter is a combination of Darcy's [2] 

analytical model and Kulichenko model [7] which predicts the permeability through 

gaps between yarns, with Gebart's model [3] to predict permeability within yarns. 

These models were chosen based on the literature review described in Chapter 2. 

Experimental measurements of through thickness permeability are briefly described in 

the second part of this chapter. Ten fabrics with different weave styles and materials 

were investigated. Fabric specification and experimental results are provided. 

In the third part, predicted results are compared to the experimental data and analysed. 

The conclusions are presented at the end of this chapter. 
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3.2 DEVELOPMENT OF ANALYTICAL MODEL FOR THROUGH THICKNESS 

PERMEABILITY OF FABRICS 

A fluid passes through a fabric according to two different mechanisms: flow through 

the gaps between yams and flow through yarns. The nature of these two mechanisms 
is different. The two mechanisms are illustrated in Figure 3.1: the velocity of air flow 

through gaps is denoted vg, through yarns as v,, and average velocity through the whole 
fabric as of. 

Vg Vg V8 

Vy Vy Vy Vy 

OP 

Vf Vf Vf of Vf 

Figure 3.1 Mechanism of air flow of through fabric thickness 

3.2.1 Analytical model of air flow through gaps 
For many practical approaches, most of the fluid will travel through the gaps rather 

than through the yarns, particularly for loose textiles (those with relatively large 

gaps). Hence, as a first approximation, the secondary flow through yarns is ignored 

and yarns are assumed impervious to flow. The approach is to replace the irregular 

gaps between yarns with narrow hollow cylinders with equivalent hydraulic pore 

diameter. By assuming laminar flow (pressure drop is small), the velocity of fluid in 

the gaps can be calculated and hence textile permeability can be estimated. 

According to Darcy's law [2] air permeability through gaps between yarns can be 

described as follows: 

Bg ='uAPg (3.1) 

where Bg is the permeability through gaps, u is the gas/liquid viscosity, t is fabric 

thickness, vg is the velocity through gaps and OP is the pressure drop. 
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Kulichenko's analytical model [7] can be used to calculate the velocity of the flow 

through gaps. Kulichenko developed a model of the "ideal soil" pore system, a system 

of parallel capillaries. It was assumed that the flow is laminar. The pore cross-section 

size and shape is constant over the entire length as was described in Chapter 2. 

vg = 
of 

R 
(3.2) 

of =gý 
d, 

(3.3) 

where vg is the velocity through gaps, vfis the velocity through entire system, dh is the 

hydraulic pore diameter and L is the looseness factor. 

It was assumed that the pore is of rectangular shape. The following equation is used to 

calculate the hydraulic pore diameter [931: 

dh 
2(se - de)(sp -d o) (3.4) 

" (se -de)+(sp -do) 

where se is the warp spacing and sD is the weft spacing in mm. 

Combining equations (3.1) and (3.3) gives the following equation to calculate textile 

permeability assuming that all the flow is through the gaps: 

Bg = 
goz 

(3.5) 

The looseness factor is used to calculate the porosity of the fabric. It represents the 

ratio of the width of the pores in the fabric to the yarn width. Hence s=0... 1, where 

low values of s represent tight fabrics, and high values of s represent loose fabrics. 

Looseness factor can be calculated as follows [101: 

s -d L=d (3.6) 

where s is the spacing of the yarns, mm; d is the yarn width, mm. 

For an unbalanced fabric where se sp and de t dp, the looseness factor is calculated 

as follows: 

LQ + Lo 
L= (3.7) 

2 

where Le and Lp are looseness factors in warp and weft direction respectively. 
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For loose fabrics, ignoring the flow through yarns might be a reasonable assumption, 
but for tight fabrics and for composites applications where yarns are impregnated by 

resin flow, it is necessary to consider the flow of fluid through yams. 

3.2.2 Analytical model of air flow through yarns 
Gebart's [3] analytical model is used to calculate yarn permeability according to the 
literature review made in Chapter 2. It has two expressions as shown in Equations 3.8 

and 3.9 for in-plane and transverse permeabilities respectively. It was assumed that 

flow goes perpendicular to the fibres, taking into account only transverse permeability 
(equation 3.9). 

8r2 (1-Vf)3 
(3.8) Bx = 

57 VfZ 

5/2 

16 
F2 

(3.9) 8,, =911Vo -1 r 

where Vf is fibre volume fraction and V f= t/(2'I3). 

A hexagonal arrangement of fibres is chosen because the results are closer to the 

experimental results than for a cubic arrangement as shown in the literature review in 

Chapter 2. In order to calculate yam permeability, microscopic images are used 

similar to the one in Figure 3.2. Fibre volume fraction Vf and fibre radius r are 

calculated using Image J software [94]. Fibre volume fraction and fibre radius for 

each fabric was taken as an average of 3 measurements (see Appendix B). Image J 

calculates the area of the yarn region and also the area of each fibre and number of 

fibres within the region. For each fabric three measurements in different places of 

images were made to obtain more accurate results. Then fibre volume fraction is 

calculated using Equation (3.10). Both fibre and yarn areas were calculated as the 

average of five yarns. 

Vf= 
Fibre area 

x Number of fibres (3.10) 
Yarn area 
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Figure 3 
.2 

Microscopic image of fibres for plain weave U2 fabric with 6517(-, k/%, PET 

fibres and 35%w/v Cotton fibres which have irregular shape. 

3.2.3 Analytical model of air flow through whole fabric 

To calculate permeability through a whole fabric, the following method is used: 

Suppose that air flows through gaps between yarns and through yarns. Let Bg, vg and 

AR be permeability, velocity through gaps and area of gaps respectively and BY, v, and 

Ay be permeability, velocity through yarns and area of yarns respectively. Then B1, Vf 

and Af are fabric permeability, average velocity through the fabric and the area of 

fabric respectively. Suppose that the thickness of the fabric is equal to the thickness of 

gaps, which is also equal to the thickness of yarns, tf= tR = ty.. 

Also: Af = AR + A,,. Then flow rate can be found as: Q= vfA f= vgAR + v, Ay 

B AP 
, tuv 

According to Darcy's law: B=' then vg = 
BR OP 

and v, = R AP 8 /nR ! 
'Uty 

Then v 
v. AR + v,. A,, 

_ 

BR APAQ 
+ 

B,, APA,. 

r= Af fttA 1 fttA f 

After simple rearrangement of the previous equation the following is obtained: 
B OP BA +B, A, 

t= -- 

[Bz AB + B,, A,, ] and Bf=Rg 
rA' r 

A, A 
where -' is the cover factor and s is the looseness factor. 

Af Af 

Air permeability through the fabric can then be calculated as: 
Bf =BRL+B,, (1-L) (3.11) 
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3.3 EXPERIMENTAL MEASUREMENT OF THROUGH THICKNESS 

PERMEABILITY 

3.3.1 Air permeability 

Through thickness air permeability was measured according to British Standard BS 

EN ISO 9237: 1995 [85]. According to this standard, air permeability is obtained by 

measuring the velocity of air passing perpendicularly through a test specimen under 

specified conditions of test area, pressure drop and time. Apparatus for testing is 

shown in Figure 3.3 [86]. The equipment which was used for these experiments is an 

air permeability tester FX 3300. The rate of the air flow passing perpendicularly 

through a given area of fabric is measured at a given pressure difference across the 

fabric test area over a given time period. Pressure drop across the specimen test area 

was set in a range from 100 to 2500Pa, with an accuracy of at least 2%. A suction fan 

forced the air through the test specimen and adjusted the flow of air gradually until a 

certain pressure drop was achieved across the test area of the fabric. Test surface area 

was set as 10cm2. Leakage near the edges of the fabric was taken into account by 

measuring it separately and subtracting from the test results. 

np 

Velocity measurement detector 

n 

Figure 3.3 Air permeability tester FX3300 [86] 

Ten fabrics with different weave styles and materials were investigated. The details of 

the fabrics are given in Table 3.1. The fabrics were analyzed and measured carefully 

before modelling. The yarn cross-sections were cut using a laser beam razor blade 

and the cross-section images were obtained using a TM - 1000 Tabletop microscope. 

The images were used to measure the yarn spacing and yarn widths. The fabric 

thickness was measured using the Kawabata Evaluation System for Fabrics (KES-F) 

(Kawabata, 1982) at a pressure of 0.05KPa [87] (for more details see Appendix Q. 

For each fabric the experiment was repeated three times with a fresh sample. 
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Table 3.1 Fabrics specification 

Fabric Description and composition 

code 

Structure Looseness 

factor 

Fibre radius 

r 

Yarn fibre 

volume 

Thickness 

(mm) 

Yarn spacing 

(mm) 

Yam width 

(mm) 

L pm fraction Vf Warp Weft Warp Weft 

U1 100%Cotton Plain 0.32 4.3 0.56 0.323 0.470 0.410 0.405 0.279 

U2 65135 PET/Cotton Plain 0.32 5.4 0.58 0.229 0.235 0.365 0.195 0.255 

U3 100% mercerised, bleached cotton poplin Plain 0.14 5.3 0.64 0.228 0.195 0.362 0.23 0.25 

Al 100% Nylon, Airbag fabric Plain 0.10 19.9 0.68 0.200 0.450 0.516 0.460 0.423 

A3 100% Nylon, Airbag fabric Plain 0.12 10.3 0.70 0.200 0.356 0.370 0.350 0.30 

CI 67PET/33Cotton 

Desized, scoured, bleached and mercerised 

2/1twill 0.32 5.9 0.56 0.419 0.340 0.480 0.310 0.310 

C2 67PET/33Cotton 

Dyed but not finished 

2/ltwill 0.17 5.9 0.63 0.425 0.33 0.532 0.300 0.430 

C3 67PETt33Cotton Finished 2/ltwill 0.33 5.5 0.57 0.427 0.300 0.510 0.270 0.330 

C7 67PET/ 33Cotton 

Desized, scoured, bleached and mercerised 

2/1twill 0.13 5.7 0.60 0.452 0.340 0.450 0.300 0.400 

C8 67PET/ 33Cotton Finished 2/ltwill 0.18 5.7 0.61 0.455 0.340 0.430 0.300 0.350 

C9 60Cotton/ 40PET 2/2twill 

Desized, scoured, bleached and mercerised 

0.11 5.6 0.67 0.560 0.356 0.520 0.332 0.450 

C10 60Cotton/ 40PET Finished 2l2twill 0.13 5.7 0.56 0.610 0.342 0.446 0.313 0.380 
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As seen from Table 3.1 fabrics Cl, C2 and C3 have similar 2/1 twill weave structure 
and geometric parameters. However, these fabrics are interesting due to different 

finishing. They are used to see the effect of finishing on fabric permeability. 

3.3.2 Oil permeability 
Oil permeability experiments were conducted to evaluate the effect of liquid viscosity 

on fabric permeability. In the following, experiments for permeability determination 

are discussed for a constant volume flow Q of the injected liquid. This can easily be 

adjusted accurately by using a piston pump and setting the piston velocity vp for a 

given diameter dp of the piston. For each location i in the injection system with cross- 

sectional area A;, the actual fluid velocity v; can be determined from the equation of 

continuity 

Ap vp = A; v; (3.11) 

with 

(d 2 
AP =I21 it (3.12) 

While setting the volume flow, the maximum applied injection pressure must not 

exceed 10 bar, since the allowable pressure is limited by the equipment (pressure 

transducers, tubes). A piston pump for the injection experiments is realised using an 
Instron testing machine for controlling the piston velocity. 

The viscosity p of the test fluid, which needs to be given for determination of the 

permeability, can either be measured simultaneously with the injection experiments or 

can be determined from viscosity data as a function of fluid temperature. In the latter 

case, the temperature of the fluid in the piston pump is relevant, since the retention 

period of the fluid in all other parts of the system is relatively short. The thickness h 

of the uncompressed textile specimens is to be determined prior to the experiments. 

The measurement cell for determination of the through-thickness permeability B3 is 

shown in Figure 3.4. The tool consists of a stiff cylindrical flow channel with liquid 
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inlet at bottom and liquid outlet on top. The inner diameter d of the flow channel is 80 

mm. The textile specimens are arranged horizontally. They are held in position by a 

perforated plate, which also allows a parallel flow perpendicular to the fabric plane. 
The influence of the perforated plate on the permeability measurements can be 

neglected [95]. Pressure transducers are mounted on both sides of the fabric specimen. 

outlet 

inlet 

4 

perforated 
plate 
fabric specimen, 
thicknesst 

Figure 3.4 Schemata, C nl Liiatwu o: slic U_ measurement cell and oil rig 

With the set-up described above, the pressure values measured by the transducers, 

which are mounted on both sides of the textile specimen, are determined for given 

volume flow rate Q, and the pressure drop OP is calculated. The saturated 

permeability 

A 
X3.13) B' 

OP9'U 
t 
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is determined from the ratio Q/Ap, which should be constant. From the set of values 
for Ap, the average value and the standard deviation are calculated. The cross- 

sectional area 

=(d )2, (3.14) 

is given by the diameter d of the flow channel. 
The acquisition and evaluation of experimental data is controlled via a LabVIEW 

Virtual Instrument (VI). The VI plots the acquired pressure values in real-time and, 

when the measurement is stopped, calculates the permeability value and generates a 

protocol file. Before the measurement can be started, it is to be made sure that the 

textile is completely wetted and no more air is entrapped in the cavity. To achieve 

this, a pre-experiment is run, until the indicated pressure values become stable. 

3.4 RESULTS AND ANALYSIS 

Experimental results for air permeability showed non-linear behaviour in fabric 

permeability under different pressure (see Figure 3.5). This can be explained by the 

Forchheimer effect (for more details see Chapter 2 [38], [39]). 

2.5E-1 1 

2E-11  - -- __ 
y'    

U1 

1.5E-11   

E" " 
U2 

u" 
1E-11 " 

u" 

cl '". "U3 
Gz' 5E-12 

0- - 
0 200 400 600 800 1000 1200 

Pressure drop Pa 

a) Cotton fabrics 
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Figure 3.5 Experimental results of non-linear behaviour of fabric permeability 

For the analytical method, to match the experimental set up, a pressure drop of 500 Pa 

was assumed as it was shown above that flow velocity and fabric permeability vary 

with pressure drop. Since the fluid used was air at 23°C, air viscosity µ=1.831.10-5 

Pas [28]. The velocity and permeability calculated using analytical method (equations 

3.1-3.4,3.6,3.9,3.11) was compared with experimental results for the fabrics (Table 

3.2). In Table 3.2 velocity and permeability through gaps and through yarns as well as 

overall velocity and permeability through fabrics is presented. 
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Table 3.2 Comparison between predicted and measured velocity and permeability 

through gaps yams and whole fabrics 

Fabric 

code 

Predicted 

permeability 

through 

fabric B/' 

pm 
2 

Measured 

permeability 

Bf `n 

pm` 

(±SD) 

Predicted/Measured 

permeability ratio 

Ul 30.209 12.135(±0.047) 2.5 

U2 13.807 8.031(±0.020) 1.7 

U3 0.1370 5.789(±0.016) 0.02 

Al 0.3027 0.182(±0.0024) 0.13 

A3 1.4228 0.240(±0.0047) 1.85 

Cl 10.5966 3.988(±0.0047) 2.6 

C2 4.6131 2.018(±0.0060) 2.3 

C3 10.9087 3.609(±0.0055) 3.0 

C7 3.1465 2.331(±0.0033) 1.3 

C8 4.8347 4.191(±0.0075) 1.6 

C9 2.6112 2.485(±0.0008) 1.05 

C10 3.7936 2.904(±0.0026) 1.3 

Comparison between through thickness air and oil permeabilities for two fabrics is 

presented in Figure 3.6. There is a good agreement between the two experimental 

techniques. 
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Figure 3.6 Comparison between experimental results for through thickness air and oil 

fabric permeabilities 
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Figure 3.7 Comparison between measured and predicted through thickness air 

permeability 

As seen from Figure 3.7 and Table 3.2 fabric permeability increases with increase of 

looseness factor which is expected as fabrics becomes looser and more permeable. All 

predicted results can be divided into four main groups according to the agreement 

with experimental results: 1)in very good agreement - C7, C9 and ClO fabrics; 2) in 

good agreement - U2, C8 and A3; 3) in average agreement - U1, C1, C2 and C3; 4)in 

poor agreement - U3 and Al. This might be due to the simplifying assumptions made 

in the analytical model. For example, fabrics with rectangular pore shape (C9, U2, 

C8) has very good and good agreement with experimental data, whereas very tight 

fabrics with overlapping yarns (U3, Al), where it is not clear what is the shape of the 

pore, have poor agreement (Figure 3.8). 
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Figure 3.8 Microscopic images of fabrics: a) rectangular pore shape; b) tight fabrics 

Figure 3.9 shows a comparison between fabric permeability of Cl, C2 and C3 fabrics 

which have the same structure but different finishing. As seen from the figure, 

finishing has significant influence on fabric permeability and on yarn permeability 

particularly. Yarn permeability decreases as fibres become close to each other during 

the finishing process as seen from Figure 3.10. Cl is a desized, scoured, bleached and 

mercerised woven fabric. Fibres inside its yarns are loose with large gaps between 

each other. C3 fabric is a finished woven fabric (including mechanical shrinkage). 

Fibres in C3 are very close to each other with almost no gap between them. Fabric 

permeability of these three fabrics becomes first lower than again increases as seen in 

Figure 3.9. That happens because first porosity decreases (C2 fabric) and then again 

increases (C3 fabric) as seen from Table 3.2. Figure 3.9 shows the same trend 

between predicted and experimental results. 
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Figure 3.9 Comparison between yarn and fabric permeabilities for Cl, C2 and C3 

fabrics 
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Influence of finishing has also been studied using 100%PET plain woven U4 fabric. 

Three types of finishing have been applied to it: U4A - Synperonic A7, U4B - 

Glycerol, U4C - Cirrasol PE 113. These fabrics contain both untwisted and twisted 

yams and overlapping regions which makes it more difficult to create and analyse 

their geometries. Figure 3.11 shows microscopic images of fibres within yarns for 

U4A, U4B and U4C fabrics. Figure 3.12 shows the influence of finishing on 

looseness factor L and fabric permeability Bf. As seen from Figure 3.12 finishing has 

significant influence on looseness factor as the gaps between yarns become larger. It 

also has an influence on yarn permeability. In U4A fibres are quite loose with 

significant gaps between each other. Fibres in U4B fabric become closer to each other 

making gaps smaller and yarn permeability decreases. U4C fabric contains fibres 
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which have significant gaps between each other. This results in an increase in yarn 

permeability. Predicted and measured fabric permeabilities have similar trend. 

Predicted results do not have good agreement with experimental data due to the 

complex geometry of these fabrics. However, the analytical model again shows the 

Figure 3.1 1 Microscopic images of obres Nilhin yarns for U4A, U4B and U4C fabrics 
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Figure 3.10 Influence of finishing on: a) Looseness factor L, b) Fabric permeability B1 

3.5 CONCLUSION 

Ten fabric permeabilities have been predicted by combining two existing analytical 

models. Air flow through gaps between yams is the dominant mechanism for loose 

fabrics such as U1 and U2. Three fabrics with the same geometry have been 
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compared to show the influence of finishing on fabric permeability. Predicted results 

have the same trend as experimental data. Both air and oil through thickness air 

permeability were measured. There is a good agreement between the two 

experimental techniques which shows that there is only a slight influence of liquid 

viscosity on permeability. However, the analytical model has some assumptions 

which influence the predicted results of the fabric permeability dramatically. Among 

them is that the pore is rectangular in shape whereas in the reality pore has a more 

complicated shape (see Appendix Q. Another problem in the analytical model is that 

it cannot model overlapped and very tight fabrics, such as U3 or A3 where predicted 

results are not in good agreement with experimental data. For almost all twill-weave 

fabrics the predictions are in good agreement with experiments except for Cl and C3 

which may be because weft yams are twisted and the current analytical model does 

not take this into account. To avoid these assumptions CFD modelling was used to 

predict through thickness air permeability of these fabrics, as described in the next 

chapter. 
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CHAPTER 4 

COMPUTATIONAL MODELLING OF THROUGH THICKNESS AIR 

PERMEABILITY USING TEXGEN AND CFX 11.0 

4.1 INTRODUCTION 

One of the main aims of developing a permeability model is to be able to predict 

permeability accurately and quickly. It was shown in Chapter 3 that the analytical 

model cannot always predict fabric permeability accurately particularly for very tight 

geometries such as U3 fabric. For this reason, it is useful to model fabric permeability 

computationally. With the development of computational systems, many software 

packages have been created which use fluid dynamics analysis to help engineers to 

flow through of different types of materials under various conditions. Among such 

software packages is CFX from ANSYS Inc. 

The development of a computational model using the TexGen software [23] to create 

fabric geometries and CFX 11.0 Computational Fluid Dynamics software [22] to 

simulate through thickness steady state air permeability of fabrics is described in this 

chapter. In the first part of this chapter, a modelling approach is described which 

includes geometric modelling of the unit cells using measured geometric parameters 

and simulation of through thickness permeability. 

The second part of this chapter includes a sensitivity study using the computational 

model. Dependence of number of nodes and elements on fabric permeability is 

presented and the influence of meshing on simulation results is discussed. 

The third part of this chapter contains a comparison between CFD results and 

experimental data for through thickness fabric permeability for several fabrics as well 

as analytically predicted results. Analysis of the results for permeability prediction 

using CFX 11.0 is presented. Finally, advantages and disadvantages of using CFX and 

TexGen for permeability prediction in comparison with the analytical approach are 

discussed. 
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4.2 MODELLING APPROACH 

To simulate through thickness air permeability the following modelling approach has 

been chosen (Figure 4.1). A unit cell geometry of the fabric was created and meshed 

in TexGen. CFX 11.0 was chosen for permeability modelling and included three 

steps: create boundary conditions in CFX-Pre processor, run the simulation in CFX- 

Solver and view and analyse modelling results in CFX-Post processor. 

Unit Cell Geometry 

TexGen-Mesh 
Mesh generation 

CFX-11.0 
Modelling permeability 

CFX-Pre processor 
Input boundary conditions 

CFX-Solver 

CFX-Post processor 
View modelling results 

Figure 4.1 CFD modelling approach 

4.2.1 Geometric modelling of textile unit cell using TexGen 

The Polymer Composites Research Group in the University of Nottingham has 

created a textile schema, named TexGen [27]. The requirements of this software were 

to be able to model various types of textile structures as well as export the model for 

use in a general CAE software package. More information about the workings of 

TexGen can be found in papers written by Sherburn et al. (2004) and Robitaille et at. 

(1999,2003). It is necessary to give a brief description of TexGen as it has been used 

in this project for geometrical modelling of the unit cell. 

TexGen begins with vectors describing the path taken by the yarns within a unit cell. 

These are then connected to create smoothed path lines, for which user-defined cross 

sections can be assigned individually to each path line to form yarn volumes. Finally, 

an analysis domain can be defined around the unit cell. Predefined types of cross- 

sections available in TexGen are circles, ellipses, shapes produced using a generalised 
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ellipse equation and lenticular shapes. It also allows the user to import self-defined 

yarn shapes. It is possible to change such properties as yarn width, yarn spacing, 

fabric thickness, yarn shape etc. 

Some of the built-in functions include yarn interference detection and correction 

algorithms, volume calculation and slice extraction. It is possible to create multiple- 

layered fabrics using TexGen. One of the recent features of TexGen is the ability to 

create yarns individually which is useful for very tight and overlapping fabric 

geometries (see Appendix Q. 

There are a variety of output options including IGES, STEP files and more recently, 

Surface Mesh and Volume Mesh files which allows the created geometry to be 

exported after meshing it in TexGen. The unit cell was meshed in TexGen and saved 

as vtu file. Microscopic images were used to measure textile thickness, width and 

length of weft and warp yarns to create the geometry of the unit cell in TexGen (for 

geometric parameters see Chapter 3). An example of geometry created in TexGen is 

repre, se iced in Figure 4.2 (more fahric in \i, n, c radix Q. 

Figure 4.2 Microscopic image of plain weave PET/Cotton U2 fabric and its model in 

TexGen 

Figure 4.3 shows meshed unit cell geometry for U2 fabric. In this case, the number of 

elements (tetrahedral) is 34600; the number of nodes is 8637. 

`ýý 
>; 
JY 

E Saldaeva Computational modelling of through thickness air permeability 78 



Through thickness air permeability and thermal conductivity analysis for textile materials 

Figure 4.3 Meshed unit cell geometry for U2 fabric 

4.2.2 Computational modelling of unit cell using CFX 11.0 

A commercial CFD software package, CFX 11.0, marketed by ANSYS Inc. was used 

in this project [26]. It includes CFX Pre-processor, CFX Solver and CFX Post- 

processor. The porous model is at once both a generalization of the Navier-Stokes 

equations and of Darcy's law commonly used for flow in porous regions. It has an 

extensive range of physical modelling and multiphysics capabilities, including 

permeability models, heat transfer, and multiphase models. 

In deriving the continuum equations, it is assumed that `infinitesimal' control volumes 

and surfaces are large relative to the interstitial spacing of the porous medium, though 

small relative to the scales that one wishes to resolve. Thus, given control cells and 

control surfaces are assumed to contain both solid and fluid regions. The general 

scalar advection-diffusion equation in a porous medium becomes [22]: 

at(ap41')+V0(PB"v(P)-V0(I'B"V 
)=aS (4.1) 

Hence, in the limit of large resistance, an anisotropic version of Darcy's law is 

obtained, with permeability proportional to the inverse of the resistance tensor. 

However, unlike Darcy's law, the software works with the actual fluid velocity 

components U, which are discontinuous at discontinuity in porosity [22]. 
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From the general momentum equation for a fluid domain: 

a(pv') a(py'. y. ) 
_ 

ap ar" 
M +-+ pg ++S (4.2) 

at ax; ax; axi 
the momentum source, Sim can be represented by: 

S. M 
=_CRIV, -CR2IVIV1 +S1spec (4.3) 

where CR' is a linear resistance coefficient; CR2 is a quadratic resistance coefficient; 

Sj'PeC contains other momentum sources (which may be directional); v is superficial 

velocity. 

A generalized form of Darcy's law is given by: 

-ip=Bv; + BIOSSPl vl v; (4.4) 
axi 

where u is the dynamic viscosity; B is the permeability; Bloss is the empirical loss 

coefficient. 

Implementation in ANSYS CFX [22]: 

Comparing equations (4.3) and (4.4), the following coefficients are set: 

CRI 
_ 

l1 
' 

CR2 
_ 

Bloss/ (4.5) 

B 

Data may sometimes be expressed in terms of the true velocity, whereas ANSYS CFX 

uses superficial velocity. If so, the coefficients are represented by: 

CRI _p CR2 = 
B, 

ossp (4.6) 
aB ' a2 

where a is the porosity. 

To download meshed geometries in to the CFX Pre-processor a bespoke interface was 

created which allows CFX to identify vtu files from TexGen correctly and download 

them without errors. In the CFX-Pre processor, the General Mode was chosen to 

define all types of CFX simulations because this is the main mode for all kinds of 

simulations and suited this type of simulation most. Steady state simulation type was 

chosen because it reflected experimental conditions. One domain was created as an air 

domain. Air at 25°C was used as a liquid material. Opening boundary conditions were 

chosen. An opening boundary condition allows the fluid to cross the boundary surface 

E Saldaeva Computational modelling of through thickness air permeability 80 



Through thickness air permeability and thermal conductivity analysis for textile materials 

in either direction. For example, all of the fluid might flow into the domain at the 

opening, or all of the fluid might flow out of the domain, or a mixture of the two 

might occur. Pressure difference for entrainment is 500 Pa according to the 

experimental test method. In addition, different pressure drops were used for 

simulation to show the influence of pressure drop on fabric permeability. Symmetric 

boundary conditions were input for the four side surfaces of the air domain. The yarn 

domain was created as porous with isotropic volume porosity and permeability 

calculated for each fabric using Gebart's equation (see equation (3.9) in Chapter 3). 

An interface boundary condition was created to connect the air domain with the yarn 

domains. Output control default values were chosen: iteration interval of 10; 

maximum number of iterations 500; timescale factor 1; residual type RMS; and 

residual target of 0.000001. An example of boundary conditions for the unit cell of U2 

fabric is represented in Figure 4.4. Here blue arrows represent opening boundary 

conditions for the upper and lower parts of the unit cell and red arrows represent 

symmetry boundary conditions for the sides of the unit cell. 

-i Figure 4.4 Boundary conditions for the unit cell of U2 fabric 

After all main parameters for simulation were defined, CFX-Solver started the 

simulation saving the results automatically in res files which can be viewed and 

analysed in CFX-Post processor (Figure 4.5). In the Post-processor average output 

velocity through the unit cell was calculated (see Appendix D). 
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Figure 4.6 Streamline average velocity for the unit cell of U2 fabric 

4.3 SENSITIVITY STUDY 

Sensitivity of simulation results to the mesh density were studied. Figure 4.7 

represents dependence of average outlet velocity on global number of elements for 

one fabric. It is seen that velocity is dependent on the global number of nodes. 

However, the run time increased dramatically with number of nodes or elements. If 

the mesh is very fine (900000 elements) it can take approximately 10 hours to run the 

simulation in comparison with a simulation of the unit cell with 34600 elements 

which takes approximately 1 to 2 hours to run. CFX 11.0 terminate the simulation 

with an error, if the number of elements was more than one million. Number of 

elements was chosen as approximately 34600 for the simulations described in this 

chapter as this gives accurate results and does not require too much time to run the 

simulation. 
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Figure 4.7 Dependence of average output velocity on global number of elements for 

U2 fabric 

Figure 4.8 presents influence of yarn spacing on fabric permeability for U2 fabric. 

Warp spacing was changed between 0.235mm and 0.535mm. It is noticeable that even 

small changes of yam spacing lead to an increase in fabric permeability. This means 

that geometric accuracy is very important and can be one of the main reasons for 

differences between measured and predicted results for fabric permeability. 
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Figure 4.8 Influence of change in yarn spacing on fabric permeability for U2 fabric 
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The permeabilities of Al fabric obtained using CFD are presented in Figure 4.9 with 

various yam porosities. It can be seen that in the case of textile Al the estimated 

permeability is highly sensitive to the yarn porosity and, therefore, yarn permeability 

which was calculated using Gebart's equation (3.9) from Chapter 3. This is to be 

expected as the textile geometry in Figure 4.9 clearly shows that the yarns are tightly 

packed with only small gaps between them. As a consequence, the resistance to flow 

through these small gaps is sufficient to force a significant proportion of the air flow 

through the yarns. 
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$2 
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CL 
= 1i 
a 
LL 0.5 
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Yarn porosity 

Figure 4.9 Textile permeability estimates obtained um (- JnfpWa[lo, ld 1 iUIU 

Dynamics (left) for Al fabric (right) 

In the case of textile Al it may be seen that the CFD model predicts a permeability of 

0.21pm2 when the yam porosity was calculated using Image J (Appendix B) as 0.25. 

This compares with a measured value of 0.18pm2. The sensitivity of permeability of 

textile Al to the yarn porosity and permeability underline the importance of 

accurately determining these parameters in trying to develop a predictive model. A 

doubling of the yarn porosity results in an order of magnitude increase in the 

estimated textile permeability. 

4.4 RESULTS AND ANALYSIS 

The velocity was taken from the CFX post-processor and the permeability was 

calculated using Darcy's law. Table 4.1 presents comparison between predicted 

results using both analytical and CFD methods and experimental data for through 

thickness air permeability. As seen from Table 4.1 both analytical and CFD methods 

did not give accurate predictions for U3 fabric due to its tighter structure with 
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overlapping yarns. For Al fabric both methods gave close predictions for fabric 

permeability but the CFD method is closer to the experimental data. For U1 and U2 

fabrics the analytical prediction gives results closer to the experimental data. 

However, for twill-weave fabrics C2, C3 and C8 there is no good agreement between 

predicted and measured results. For these fabrics there is much better agreement 

between analytical results and measured data. This is mostly because of difficulties in 

creating geometry close to the real fabrics. As seen from Appendix C, geometric 

models of the unit cell for these three fabrics are not very close to the real fabrics. 

This is due to limitations in the use of TexGen. More work should be done on air 

permeability prediction for fabrics using the CFD approach such as improving 

geometry model by writing a Python script rather than using TexGen interface. It is 

time consuming process and needs thorough study. 

Table 4.1 Comparison between fabric permeabilities at 500 Pa pressure using the 

different approaches 

Fabric 

code 

Measured permeability 

Bfx° pmt 

Predicted permeability 

using analytical approach 

""! " t By pm 

Predicted 

permeability 

using CFD 

approach 

BfCFOpm2 

U1 12.14(±0.047) 30.30 42.92 

U2 8.03(±0.020) 13.80 25.51 

U3 5.78(±0.016) 0.13 22.01 

C2 2.08(±0.006) 4.61 136.42 

C3 3.60(±0.0055) 10.90 101.08 

C8 4.19(±0.0075) 4.83 109.44 

Al. 0.18(±0.0024) 0.27 0.21 

Figure 4.10 presents a study showing the influence of pressure drop on through 

thickness air permeability for several fabrics using the CFD approach. During 

simulations pressure drop was changed in the range 50Pa to 16000Pa. Figure 4.10 

shows that fabric behaviour is non-linear when the pressure drop changes. This shows 

that it is reasonable to use an extended form of Darcy's law which includes the 
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Forchheimer coefficient (Equation (2.13) in Chapters 2). As seen from Figure 4.10 

CFD predicts non-linear behaviour of fabrics according to Equation (4.2). It is not 

possible to model this non-linear relationship using the analytical model from Chapter 

3. 
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Figure 4.10 Velocity versus pressure drop for several fabrics (CFD modelling). Data 

is plotted as discrete data points. A quadratic polynomial is fitted to each data set 

(solid lines). 
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From Figure 4.10 it is possible to predict fabric permeability and Forchheimer 

coefficient for each fabric using the equations for the solid lines using a least squares 

approach (Table 4.2). 

Table 4.2 Predicted fabric permeability and Forchheimer coefficient for variety of 

fabrics plotted in Figure 4.9 

Fabric code B nm ß 

U1 25.46 18.43 

U2 24.28 8.13 

U3 62.99 6.11 

U4 36.97 6.06 

A3 3.31 30.19 

Figure 4.11 shows the influence of changing the pressure drop on fabric permeability 

for Al fabric predicted using CFX 11.0. There are two regimes in laminar flow. 

Region I presents the low flow rate region where surface-interactive force dominates. 

Regions II and III present a laminar flow regime which consists of Darcy flow 

(Region H) and Forchheimer flow (Region III). After the Forchheimer flow regime, 

the turbulent regime starts [40]. There is a critical Reynolds number for the transition 

from Darcy's (viscous flow) to Forchheimer (inertia flow). It may vary depending on 

material. In this study the pressure drop for the transition regime is 1000Pa (as seen 

from Figure 4.11) which is relatively small compared to the real pressure drop of 

100000Pa which an airbag fabric might experience during car collision [96]. 

As seen from Figures 4.10 and 4.11 the CFD analysis suggests that fabrics behave 

according to the Forchheimer equation. In tighter fabrics like Al it is possible to see 

all three regions of laminar flow. Looser fabrics like U1, U2, U3, U4, and A3 

demonstrate behaviour in the Forchheimer flow region (Figure 4.10). 

E Saldaeva Computational modelling of through thickness air permeability 87 



00 
00 

v s 

auJ6ai fOU Waingnl 

------------------------------- ------- 

4 

mi 

EE 

m Öý 
Lm 

L2 

E 

1 

aUI&i Moy lueuwop 

Q 

luacpea omiSaad Feapw! svwn(T 

w 
Ui Cl) 

-¢-- - -- -- ------------ 

-_ _wE 'oo NE 
yam. 

oýý3 
No 

._... 
w 

------------vom--ý -------- 

w o aj 

-- -------------- 

ed dap aJnssaJd 

.0 

.. 

c 
0 

aý 
3 
C 

c 
c 

0 
-v c o 

V 
o 

03 

L) w cd y VCE 

ýv ý cd w° 
1_ri i 

>, 

U 

. 
L_ 

O 

w 
O 
bA 
C 

N 

cd 

O 
R 

7 
a. 

O 
U 

> 
l) 

b 

W 



Through thickness air permeability and thermal conductivity analysis for textile materials 

Figure 4.12 presents a comparison between experimental data and CFD simulation 

results at different pressures. The experimental results for permeability are generally 

much lower than predicted CFD results. This may be due to some imperfections in 

geometrical modelling of fabrics as discovered above. In this figure both experimental 

and predicted fabric permeability normalised by dividing by the corresponding value 

at a pressure drop of 500Pa. 
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Figure 4.12 Comparison between experimental data and CFD predictions for 

permeability versus pressure drop 
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4.5 ADVANTAGES AND DISADVANTAGES OF TEXGEN AND 

CFX 11.0 

Advantages: 

o TexGen can model a large range of geometries including plain-weave, twill- 

weave, and satin-weave; 

o TexGen can model key physical parameters such as warp/weft width, 

warp/weft spacing, yarn height and cross-section which helps to create 

accurate models for unbalanced fabrics; 

o TexGen can automatically generate meshes, saving time in analysis; 

o There is an existing support network for CFX (e. g. tutorial examples, research 

studies, website forum etc) to help to correct errors which may occur during 

simulations. 

o CFX is able to predict the non-linear dependence of flow rate on pressure, 

which is similar to experimental observations. 

Disadvantages: 

o In TexGen it is difficult to model very tight fabrics and fabrics with 

overlapping yarns, for example U4 fabric (see Appendix C); 

o In CFX the solution can take a long time for a large model. For example for a 

plain woven unit cell consisting of 900000 elements it takes approximately 10 

hours to run the simulation; 

4.6 CONCLUSIONS 

The results presented in this chapter showed that the CFD simulations are very 

sensitive to the yarn porosity and yarn permeability as well as the geometric 

parameters of fabrics. A small change in yarn porosity can lead to a dramatic change 

in the predicted through thickness air permeability. A sensitivity study has been 

presented showing the influence of number of nodes and elements on fabric 
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permeability. Using Al fabric, with a tight structure, the significant influence of yarn 

porosity on fabric permeability was shown. CFD results showed good agreement with 

measured data for Al fabric, as it was easy to model its unit cell. There was not good 

agreement for other fabrics, especially for twill-weaves as it was difficult to model the 

unit cell geometry close to the real fabric. The limitations of the TexGen/CFD 

approach are also presented, most notably is the difficulty in modelling very tight 

fabrics in TexGen. Current models assume an idealised shape of the yarn and use 

idealised yarn paths. In reality, there is a lot of mixing of fibres between the yarns 

within the fabric structure (see Appendix C) and often there are no distinct 

boundaries. The current fabric model cannot take this into consideration. 

Nevertheless the studies here have highlighted the strengths of using CFD simulations 

in comparison with the analytical approach presented in Chapter 3. It showed that 

TexGen can model a large range of geometries including plain-weave and twill- 

weave. TexGen is good at meshing the unit cell geometry. It showed that it is possible 

to provide a permeability prediction using CFD simulations for real fabrics in the 

same order of magnitude as experimental data with an accurate geometric model. 

While in theory CFX 11.0 should provide the most accurate solutions, it can be very 

difficult and time consuming to generate an accurate geometry in TexGen due to 

specific features such as overlapping yarns. However, CFD modelling can represent 

the Forchheimer effect whereas the analytical model from Chapter 3 cannot do this. 
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CHAPTER 5 

PERMEABILITY OF DEFORMED FABRICS 

5.1 INTRODUCTION 

The ability to accurately predict the permeability of deformed fabrics is very important 

in order to manufacture with techniques such as resin transfer molding (RTM) and 
liquid composite molding (LCM) as was shown in Chapter 2. However, it is also 

important for clothing and airbag fabrics because fabrics deform while wearing them or 

in the case of airbag fabrics, when they emerge during collision. During the past two 

decades experimental and analytical work was carried out to attempt to predict and 

measure the permeability of fabrics used in various manufacturing processes (for more 

details see Chapter 2). The aim of this chapter is to predict analytically the through 

thickness air permeability for various deformed fabrics using a similar analytical 

approach as for undeformed fabrics. In addition, experimental work was carried out to 

verify the predicted results. Three deformation mechanisms as the most common for the 

fabrics were chosen: shear, compaction and tension. 

The approach developed in Chapter 3 for undeformed fabrics is applied here to predict 

the permeability of deformed fabrics. The analytical. model described in this chapter is a 

combination of the Kulichenko model [7] which predicts the permeability through gaps 

between yarns, with Gebart's model [3] to predict permeability within yarns. The 

method to calculate fibre volume fraction and porosity for fabrics after shear 

deformation is described in the first part of this chapter. 

Experimental set-up and measurements of through thickness permeability for sheared 

fabric are presented in the second part of this chapter. Experimental results of through 

thickness permeability are compared between undeformed and deformed fabrics. 

In the third part of this chapter, predicted results for deformed fabrics are compared 

with experimental data. The results are analysed and discussed. Finally, some 

conclusions are made. 
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5.2 DEVELOPMENT OF AN ANALYTICAL MODEL FOR THROUGH 

THICKNESS PERMEABILITY OF DEFORMED FABRICS 

Three main fabric deformation mechanisms identified as the most common are 

described in this chapter: pure shear, compaction and tension. Pure shear is an 

occurrence of a shear strain, which is a deformation of a material substance in which 

parallel internal surfaces slide past one another. The permeability of the fabrics will 

change after shear as seen from the literature review in Chapter 2. It is very important 

to know how the permeability of the fabric will change after the shear for clothing 

fabrics, for example, to support the optimal comfort level for the person who is wearing 

it even after shear. Compaction is another important deformation mechanism for fabrics 

causing them to lose pore space, which leads to a decrease in fabric permeability. Later 

in this chapter, an analytical model to predict the permeability of compacted fabrics is 

presented. One more deformation mechanism which influences fabric permeability is 

tension. Both airbags and clothing fabrics could be under a certain amount of tension 

during their application. It is necessary to know how much tension a fabric can with 

stand successfully and how tension will influence permeability. 

5.2.1. Pure shear 

Pure shear is presented in Figure 5.1 [54]. 

Figure 5.1 Pure shear for bi-directional fabrics [54] 

Shear deformation is a complicated mechanism. In this thesis, a model for sheared 

fabric is presented taking into account two stages of shear deformation as seen from the 

literature review in Chapter 2: shear before yarns in the fabric reach the locking angle 

(the angle at which adjacent yarns come into contact) and shear after the locking angle. 

They are two completely different mechanisms. To calculate locking angle for each 

fabric the following method is used [97]: 
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OL =cos-'Ij (5.1) 
) 

where d is yarn width, s is yarn spacing after shear in mm. 

Firstly, the gaps between yarns reduce whilst yarns remains undeformed which means 

that fibre volume fraction within the yarns does not change at the beginning of the 

shear. Gap width and length start decreasing [46]. It is assumed that thickness stays 

constant during shear. Permeability through gaps can be calculated according to the 

modified equation of Darcy's law [2] described in more detail in Chapter 3: 

B d`f = 
'UtV9 

def 

(5.2) 8 AP 

where Bg°ef is permeability through deformed gaps, ,u 
is the gas/liquid viscosity, t is 

fabric thickness, vgdef is velocity through gaps and AP is the pressure drop. 

APdh def 2 
v8 °`f = 

80 t 
(5.3) 

fý 

where vgdef is velocity through deformed gaps, dh def is the hydraulic diameter of a 

deformed pore. 

The following equation is used to calculate the hydraulic diameter of deformed pore: 

def 
- 

2(Sedef 
- 

dedef )(SPdef A del 

dh 

(S 
def 

-d 
def) 

+ (S 
def 

-d 
defý 

ý5.4ý 

leepP 

where Sed`f is deformed warp spacing and Spdef is deformed weft spacing, dedef is 

deformed warp width in mm; d def is deformed weft width in mm. 

Permeability through the whole fabric in this case can be calculated using the following 

equation: 

Bfdel =B8°4JL" +B, °(I-&r) (5.5) 

where looseness factor Ld`f is calculated as L&f = ddef , and By is the initial 

permeability through the yarns. 

Secondly, when fabric is sheared until there is no gap remaining between yarns, yarns 

start to experience shear and compaction. Permeability through gaps becomes equal to 

zero and all flow goes through yarns. In this case, yarn fibre volume fraction Vf 
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increases during shear. Yarns are compressed by neighbouring yarn and their width 

decreases, however, it was assumed that yarns thickness does not change. Permeability 

through yarns can be calculated using Gebart's equation [3]: 

5/2 

-1 r2 (5.6) By °J = 
16ý o 'a 

9%ßy0 Vfdef 

where Bydef is the permeability of deformed yarns, V' is the maximum fibre volume 

fraction which is V; ' = 0.9065 (for hexagonal packing), Vf of is the fibre volume 

fraction of deformed yarns, and r is the fibre radius. 

Fibre volume fraction for deformed fabrics in warp direction Vf of can be calculated as 

follows [64]: 

vdef -2V (5.7) 
f nl-d" Ido ° 

where Va is yarn packing fraction, d' is maximum width reduction of warp yarn, and 

d° is warp width before deformation. 

d "ýx =(I - 2/, r)d 0 (5.8) 

d' °x is about 36% of the original width d°. 

f 
n2 

Reduction after shear for any shear angle can be calculated as follows: 

d'ed = do _ ddef (5.9) 

ddef =S *COSBS 

where s° is yarn spacing before shear; AS is the shear angle. 

Permeability through sheared fabric is equal to the permeability through deformed 

yarns: 

BI aet 
=Br 

net (g. 10) 

5.2.2 Compaction 

Another mechanism of deformation which is important for fabrics or airbags is 

compaction. During compaction the pore size reduces which leads to a reduction in 
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fabric permeability which, for clothing, may cause discomfort for the wearer. In this 

thesis, compaction was simulated with the use of software package Abaqus [24]. 

Abaqus software was chosen for this model as it was widely used in the Composites 

Research Group at Nottingham University and was known as the most convenient 

software to model fabric deformation accurately. The unit cell of the fabric was created 

and meshed using TexGen as described in Chapter 4 and then transferred to Abaqus for 

the simulations. The results of the simulations were used to calculate the deformed gap 

width and length as well as deformed yam width and thickness. These parameters were 

used to calculate velocity and fabric permeability. Compaction of U2 fabric modelled in 

Abaqus software package presented in Figure 5.2 [20], [98]. 

U, U3 
. 0.000e. 00 
. 0.000e. 00 
"0.000eý00 
"0.000e. 00 
+0.000e+00 
"0.000e. 00 
*0.00oero0 *0.000e+00 
*0,000e*0C 
"0.000e. 0: 
+0.000e. P: 

+0.006e. 0: 

a) before deformation 

U, U3 
4.897e-03 

-1.290e-02 
-2.090e-02 
-2.893e-02 
-3.691e-12 
-4.491e-02 
-5.291e-02 
6.092e-02 
-6.892e-0 
-7.692e-0ä 
8 492e-0_ r -'l 1 

2a3e-02__y? ' 
C"ý 11 

`I Vii( 

b) maximum compaction 

Figure 5.2 Compaction of U2 fabric modelled in Abaqus FE software [201 

Firstly, changes in permeability through gaps during compaction are described. 

Permeability can be calculated using: 
erl v 

BRdef 
_R 

ýJ. 11ý 

AP 

where thickness during compaction can be calculated as tdef = t° - tred, where to is 

original thickness, t, d is thickness reduction. 

Velocity of fluid through gaps can be calculated using equation (5.12) [71: 
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2 

def 
_ 

AP dh def 

V9 - göp tdef 

where dheef = 
2L"JW"' 

is hydraulic diameter of deformed pore, Ldef is the length of 
L"', +W°, 

deformed gap, Wdef is the width of deformed gap in mm. 

Secondly, permeability through yarns for deformed fabrics can be calculated using 

deformed fibre volume fraction Vf efas in Gebart's work [3] (equation (5.6)). 

Thirdly, fabric permeability during compaction can be calculated as follows: 

Bfdef 
- 

BgdefLdef + B, 
def(1-Ldef) 

(5.15) 

def 
- 

where looseness factor L' can be calculated as 
Sd del 

L°ef =d del 

5.2.3 Tension 

All fabrics may experience tension during wearing, whilst airbags are under tension 

during inflation. That is why it is important to be able to predict how much tension each 

fabric can stand before loosing its properties such as permeability. Tension can be in 

the warp or weft direction or in both directions at the same time. During tension yarn 

are stretched which decreases their width and increases yarn volume fraction. In 

addition, it increases the gap size which leads to an increase in fabric permeability. The 

effect of tension was simulated with the use of FE software package Abaqus [20]. The 

results of the simulations were used to calculate the deformed gap and yam width and 

length, and fibre volume fraction after tension. These parameters were used to calculate 

velocity and fabric permeability. In this model, the same approach as for sheared fabric 

was used. Equations (5.2-5.5) were applied to the tension mechanism. Tension for U2 

fabric in warp and weft directions modelled in Abaqus software package is presented in 

Figure 5.3 [20], [99]. 

Before tension Maximum tension 
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a) 

b) 

Figure 5.3 Tension for U2 fabric in: a) weft direction; b) warp direction [24] 

5.3 EXPERIMENTAL MEASUREMENT OF THROUGH THICKNESS 

PERMEABILITY OF DEFORMED FABRICS 

Through thickness air permeability of sheared fabric was measured according to British 

Standard BS EN ISO 9237: 1995 [85]. A picture frame shear rig was created according 

to the geometrical parameters of the permeability tester. The equipment which was used 

to these experiments was the air permeability tester FX 3300 (Figure 5.4 (a)) [86] as 

described in Chapter 3. Glass-fibre fabric Chomarat 800S4-Fl, with a specification as 

presented in Table 5.1, is shown in Figure 5.4 (b) after shear. This is the only fabric 

available for this work which was possible to shear without buckling due to the nature 

of glass fibres and the fact that the fibres in yarns were very loose, which means yarn 

fibre volume fraction was low although the whole fabric structure was very stable. 
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1$ 

a) fl 
Figure 5.4 Experimental set-up for through thickness air permeability of sheared 

Chomarat 800S4-F1 fabric (a) and after share to an angle of 400 (b) 

Table 5.1 Fabric specification 

Fabric code Description and Structure Thickness Yarn spacing Yarn width 

composition Omni) (mm) (mm) 

Waip Weft Warp Weft 

Chomarat Glass fibre Satin 1.16 3.16 3.16 3.16 3.16 

800S4-Fl 

5.4 RESULTS AND ANALYSIS 

5.4.1 Experimental results 

Experimental results for through thickness air permeability of sheared fabric is 

presented in Figure 5.5. During the experiment, fabric was parallel to the warp and weft 

directions by the same shear angle. Then fabric was placed on the permeability tester 

without taking it out of the shear rig to measure the fabric permeability. Fabric was 

sheared manually to 290,410 and 490. Fabric permeability was measured once for each 

sample as scatter was shown to be small from previous experimental work (see Chapter 

3). Although Chomarat fabric is very tight as seen from Table 5.1, it was possible to 

achieve a shear angle of 490 due to the fact that fibres inside yarns were loose. The 

theoretical locking angle for this fabric is 00 as there is no gap between the yarns (see 

Table 5.1). 
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Figure 5.5 Experimental results of fabric permeability versus shear angle for Chomarat 

800S4-Fl fabric sheared in warp and weft directions 

5.4.2 Predicted results using analytical model 

Locking angle for each fabric studied in Chapter 3 and 4 was calculated using equation 

(5.1) (Table 5.2). It is seen from Table 5.2 that for very tight fabrics like U3, Al or 

Chomarat 800S4-Fl locking angle is 00 because there is no any gap between yarns, so 

shear deformation occurs within yams from the beginning of deformation. 

Table 5.2 Locking angle 

fabric code warp width d (mm) warp spacings (mm) locking angle HL (degrees) 

Chomarat 3.16 3.16 0 

U1 0.405 0.47 30 

U2 0.195 0.235 34 

U3 0.195 0.195 0 

A1 0.513 0.45 0 

A3 0.35 0.356 11 

C1 0.34 0.38 26 

C2 0.3 0.33 25 

C3 0.27 0.3 26 

C7 0.3 0.34 28 

C8 0.3 0.34 28 

C9 0.332 0.356 21 

CIO 0.313 0.342 24 
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materials 

As seen from Table 5.2, U3, Al and Chomarat 800S4-F1 are very tight fabrics, their 

locking angle is 0°. Figure 5.7 presents predicted fabric permeability for sheared U3, 

Al and Chomarat fabric. 
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Figure 5.7 Predicted results for fabric permeability of sheared fabrics 
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Analytical work with the help of Abaqus software to model the compaction of the 

fabric was carried out for U2 fabric as this fabric has simple plain woven structure 

which is easy to model in TexGen (Appendix Q. Figure 5.8 presents predicted fabric 

permeability of U2 fabric during compaction calculated using equations (5.11-5.15). It 

is seen from Figure 5.8 that the maximum compaction achieved was 44% due to the 

Abaqus limitations. It is shown that there is some influence of compaction on fabric 

permeability for U2 fabric. It may be due to the fabric structure as U2 fabric has quite 

large gaps between the yarns (Appendix C) and even though the fabric was compacted 

by 44%, gap size did not decrease dramatically, leaving room for the flow to pass 

through. Due to tighter unit cell geometries of other fabrics (Appendix C) Abaqus 

software was not able to simulate their compaction to any significant degree before 

error occurred. 
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Figure 5.8 Predicted results for influence of compaction on fabric permeability of U2 

fabric 

The effect of in-plane tension was studied using the approach described earlier in this 

chapter. Tension in warp and weft directions firstly was modelled separately and then 

together. The predicted influence of in-plane tension on fabric permeability for U2 

fabric in warp and weft directions is presented in Figure 5.9. As seen from Figure 5.9 

tension in weft direction has much more influence on fabric permeability than tension 

in warp direction for U2 fabric. This can be explained as the gap size increases more 
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during tension in weft direction than in warp direction (as seen from Figure 5.3). In 

addition, weft yarns have more curvature and more spacing than warp yarns due to the 

weaving process that makes them stretch more easily, leading to a more significant 

increase in pore diameter and fabric permeability. 
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Figure 5.9 Influence of tension on fabric permeability for U2 fabric 
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Figure 5.10 shows the influence of biaxial tension (warp and weft simultaneously). It 

is noticeable that the graph is "random", which needs more study. 
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Figure 5.10 Analytical prediction of influence of biaxial tension for U2 fabric 

5.4.3 Comparison between predicted results and experimental data 

Figure 5.11 presents a comparison between measured data and predicted results for 

Chomarat 800S4-F1 fabric during shear. It was only possible to shear this fabric in a 

controlled manner as others tended to buckle during shear which did not give an 

accurate result. As seen from Figure 5.11 predicted results have poor agreement with 

the measured data for all shear angles. The analytical model under-predicts the 

reduction in permeability in comparison to experimental data. However, more 

experimental work should be done for permeability through sheared fabrics as there is 

not enough data to draw any firm conclusions. 

E Saldaeva Permeability of deformed fabrics 106 



Through thickness air permeability and thermal conductivity analysis for textile 
materials 

1E-10 

n 
1E-11 T H-- J 

E 

E-12 
_- 

ä 1E-13o 

ILL 
0 

1E-14 - -- 0 --- 0 
0 

1E-15 

0 10 20 30 40 50 60 70 

Shear angle (degrees) 

" Experimental 

o Analytical 

Figure 5.11 Comparison between experimental and analytical results for fabric 

permeability during shear for Chromarat 800S4-F1 fabric 

5.5 CONCLUSIONS 

Three common types of deformation of textile fabrics were analysed: shear, 

compaction and tension. An analytical model for fabric shear has been developed and 

coupled with the analytical model for permeability s described in Chapter 3. Locking 

angle for each fabric was calculated. Two mechanisms of shear have been described: 

shear before and after locking. If fabric has loose fibres inside the yarns, than shear 

changes the permeability significantly even after locking as seen from Chomarat 

800S4-F1 fabric. An experimental set up was designed to fit a shear rig around the air 

permeability tester to measure the through thickness air permeability of the fabric 

after shear. Unfortunately, only one glass-fibre fabric Chromarat 800S4-Fl was tested 

using the shear rig as others buckled when sheared. A more complicated rig could be 

developed which will include some pre-tension to prevent fabrics from buckling. 

Predicted results have poor agreement with measured data for all shear angles. An 

analytical model for compacted fabrics was demonstrated using U2 fabric as the 

easiest fabric to model both analytically and computationally. Abaqus software 

package was used to perform compaction simulations with results used later in the 

analytical model to calculate fabric permeability after compaction. There was no 

experimental work done for the permeability of compacted fabrics due to time 

limitations. Tension in warp and weft directions were also studied using U2 fabric. 

The analytical model included results from computational simulation of tension for 

U2 fabric performed in Abaqus. Tension was applied in three ways: in warp direction; 

in weft direction; and in both warp and weft directions. The analytical results showed 
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more significant influence of tension in weft direction than in warp direction on fabric 

permeability as there was more spacing between weft yarns than between warp yarns 

and the increase in gap under tension in weft direction was much larger as seen from 

Figure 5.3. More computational and experimental work should be done on all three 

mechanisms of deformations before firm conclusions can be drawn. 
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CHAPTER 6 

THERMAL CONDUCTIVITY OF FABRICS 

6.1 INTRODUCTION 

The comfort of a garment depends on many factors: heat and vapour transfer, 
lightness, sweat absorption, drying and permeability to moisture and air. Heat transfer 

continues to be a field of major interest to engineering and scientific research as well 

as designers, developers and manufacturers. Some models can take into account the 

moisture content in fabrics, which significantly affects thermal conductivity (Chapter 

2). In this chapter, an analytical model is developed to predict thermal conductivity of 

fabrics taking into consideration moisture content as it is important for textile fabrics 

during their application. 

The first part of this chapter describes experimental measurements of thermal 

conductivity. Fabric specific parameters such as specific heat capacity, thickness and 

fabric density are taken into account during experiments. 

The second part shows the development of an analytical model to predict thermal 

conductivity of fabrics. Two existing approaches for single-layer fabrics are described 

and compared: rule of mixtures and thermal resistance approach (Chapter 2). A 

method for thermal conductivity prediction for multi-layer fabrics is also presented. 

The results are analysed and compared to the experimental data. 

In the third part, moisture content experiments are described and experimental results 

are presented. A simple analytical model to predict thermal conductivity taking into 

consideration moisture content is developed, and predicted results are compared to 

experimental data. The influence of relative humidity on thermal conductivity is 

analysed. 
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6.2 EXPERIMENTAL MEASUREMENTS OF FABRIC THERMAL 

CONDUCTIVITY 

6.2.1 Experimental set-up 
Fabric thermal conductivity was measured according to ISO 8301 [88]. This standard 

determines mean thermal conductivity of a specimen under steady-state conditions in 

a body bounded by two parallel, flat isothermal faces and by adiabatic (when no heat 

is transferred to or from the working fluid) edges perpendicular to the faces. These are 

made for a thermally homogeneous, isotropic, and stable material [88]. Apparatus for 

testing is shown in Figure 6.1. A schematic of a thermal conductivity test is shown in 

Figure 6.2. 

The base section of the enclosure contains the heat flow meter and cold plate 

assembly. This is cooled using water at a stable temperature such that the plate is 

isothermal. The integral heat flow meter gives a millivolt output proportional to the 

heat flux into the cold plate. The hot plate is heated electrically. The hot plate is raised 

and lowered by a screw handle mechanism on top of the enclosure. A dial indicator 

within the hand wheel enables the thickness of the specimen under test to be 

determined in situ (as shown in Figure 6.2). 

The testing procedure was as follows. Fabrics were prepared (cut and kept in the 

environmental chamber) in advance. From each fabric three square samples 

200x200mm each were cut and labelled with the fabric code. According to the 

apparatus manual [89] very thin samples should be kept between two layers of rubber 

(thickness is smaller than 3 mm) to obtain an accurate results. Fabric parameters 

including the specimen dimensions, thickness (measured during the test using a dial 

gauge on the loading handwheel) and mass were measured each time before testing. 

Fabric thickness, density and specific heat capacity (taken from fabric specification) 

were used as input parameters for testing. Temperature difference for all samples was 

chosen at 20°C. 300 seconds was chosen as sample interval according to [89]. The 

steady state conditions were reached when five consecutive readings at this interval 

gave values of thermal resistance to within 3% without changing monotonically in 

one direction. The calibration constants with silicone rubber mats were the following: 
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ki = -31.7383, k2 = 0.4792. k3 = 6.6346, k4 = 0.0558, k5 = 0.0279 and k6 = -0.0005 

(see Equation (6.1)1. The<e con tants were used as default. 
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Figure 6.2 Schematic design of thermal conductivity tester unit B480 [891 

Six fabrics were tested: U1 and U3, A3 and A4; C3 and C9 which have similar 

composition and structure but different porosity. The details of fabrics are given in 

Chapter 3. Each fabric was tested with number of layers in a range between I to 12 to 

investigate how thermal conductivity changes due to nesting. All fabrics were held in 

an environmental chamber at 20°C and 50 % humidity before testing to exclude any 

influence of environment. 
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6.2.2 Experimental results and analysis 

Thermal conductivity results are compared between three pairs of fabrics and 

presented in Figure 6.3. Each pair of fabrics has similar composition but different 

porosity (see Chapter 3 for fabric details). Tighter fabrics like C9 and A4 had higher 

thermal conductivity in comparison to looser fabrics made of the same material like 

C3 and A3. However, fabric U3 is tighter than Ul but thermal conductivity for U3 is 

lower than for U1. This can be explained by the different finishing of the two fabrics. 

Ul is 100% cotton fabric but U3 is 100% mercerised, bleached cotton poplin fabric. 

For each pair of fabrics results for thermal conductivities are presented in Figure 6.3. 

Thermal conductivity was defined using the following equation [98]: 

ts[(k, +(k, T))+(k3 +(k, T)HFM)+(k5 +(k6T))HFM2] (6 1) 
dT 

where tS is the specimen thickness, T is mean temperature, dT is the temperature 

difference, HFM is heat flow meter reading. 
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Figure 6.3 Comparison between thermal conductivity values for: a) U1 and U3 plain 

weave 100% cotton fabrics, b) A3 and A4 plain weave 100% nylon fabrics, c) C3 and 

C9 twill weave PET/Cotton fabrics 

In Figure 6.3 thermal conductivity increases with the number of layers as expected 

[811. All graphs have a similar non-linear shape as expected from the literature review 

(Chapter 2). 

For all fabrics thickness during test was measured and compared to the number of 

layers (Figure 6.4). This is important for example for airbags fabrics because thermal 

conductivity changes with the number of layers or specimen thickness and if these 

parameters are chosen incorrectly, it may lead to very high thermal conductivity 
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which in its turn influences the fabrics during application. As seen from Figure 6.4 

fabrics experienced some compression during the test after they were mounted 

between hot and cold plates as they were pressed by the loading handwheel. A 

constant clamping force of 2.5kPa is applied during testing. Predicted thickness was 

calculated for the ideal case when thickness increases linearly with increased number 

of layers. 
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Figure 6.4 Comparison between predicted and measured thickness during test. 

6.3 DEVELOPMENT OF AN ANALYTICAL MODEL FOR 

THERMAL CONDUCTIVITY OF FABRICS 

Two simple methods to calculate thermal conductivity are introduced in this section. 

Predicted results are compared to the experimental results. The first method to 

calculate thermal conductivity is a rule of mixtures presented in the following 

equation [641: 

k =(I -Vf )kq +Vf kF (6.2) 

where k, kA and kF are fabric, air and fibre thermal conductivity respectively, Vf is the 

fibre volume fraction. 

Fibre thermal conductivity was found in the literature for cotton, nylon and PET fibres 

[64] - [66], [73] - [77]. It is stated for all samples later in this chapter. Fibre thermal 

conductivity for a mixture of PET/Cotton was calculated as follows: 

For example, C3 (67PET/33Cotton): 

0.67*kFPET + 0.33*kFC"""" = 0.67*0.24 + 0.33*0.243 =0.1608 + 0.08019 = 0.24 W/mK 

Fibre volume fraction Vfcan be calculated using equation (6.3): 

Vf = 
Mf 

(6.3) 
pt 

where Mf is fabric areal density, p is fibre density and t is thickness of fabric 

(presented later in this chapter for all samples). 
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Another method to predict thermal conductivity is based on thermal resistance as 

described by Ning and Chou [68]. Thermal resistance R; can be calculated using the 

following equation: 

R; = 
L' 

(6.4) 
k; S; 

where Li and k; are, respectively, the length and effective thermal conductivity of the 

ith conductive element in the direction of heat transfer, and Si is the area of the 

conduction element cross-section perpendicular to the direction of heat transfer. 

The thermal resistance R is related to the thermal conductivity k using the following 

equation: 

R=k (6.5) 

In this method the unit cell is divided into small sections, thermal resistance is 

calculated for each section and then the thermal resistance for the whole unit cell is 

computed. Example of unit cells for plain weave fabrics is presented in Figure 6.5. It 

is assumed that thermal resistance for equal sections of unit cells are also equal. Based 

on this for a plain weave fabric: there is one section of air gap with thermal resistance, 

Rgap = R1. There are four sections with thickness equal to one yarn height which 

means that the thermal resistance for these sections is also equal, Rj,, Q,,, = R2 = R3 = 

R4 =R5. There are four sections with thickness equal to two-yarns which means that 

R2varns = R6 = R7 = R8 = R9. Using a similar method, thermal resistance can be 

calculated for t%\ ill %\ ct%c fabrics. 

RI 
iarn 

RgÜP 

N\\\\ 
\t 

R2iarns 

Figure 6.5 Thermal resistances in unit cell of a plain weave fabric 
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Thermal resistance through unit cell Rug for plain or twill weave fabric can be 

calculated using equation (6.6): 

RUC =1+1+1 (6.6) 
4Rý, 

ý, ý 
4R2, 

ý, ý5 
R. 

gap 

Where R=t 
, vam kF ((Se -de)(so -do)) 

rf 
R2 

arcs = kFdedv 

_ 
tf 

RR 
° kn((Se -de)(S° -d°)) 

' 

ty is yarn height (calculated as half of fabric thickness), tf is fabric thickness, se and sp 

are warp and weft spacing respectively, de and dp are warp and weft width 

respectively, kF and kA are thermal conductivity of fibre and air respectively. 

The above method predicts thermal conductivity through one layer of fabric. 

Theoretical prediction of thermal conductivity for several layers is difficult because it 

is impossible to find out the thickness of air gap between fabric layers. An X-ray CT 

scan for multiple-layered plain weave fabric is shown in Figure 6.6. [90] The air gap 

can be anything between zero thickness for no nesting to the thickness of two yarns. 

In Figure 6.6 it is noticeable that in some parts there is no air gap, whereas in other 

areas there is a large gap between two neighbouring layers. 

Figure 6.6 X-ray CT scan for multiple-layered plain wcav e fabric [901 
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Taking this into consideration the following method was used to calculate thermal 

resistance through several layers, taking into account thermal resistance of the air gap 

between layers, partially based on experimental results. From experiments the thermal 

resistance was measured for one layer and for ten layer samples. The following 

equation was than used to calculate thermal resistance of the air gap between layers: 

R_ 

RIOlayers 
- 

lOR]layer 

ýý ýý 

8°0 9 

Equation (6.7) can be used to calculate thermal resistance for two, four, six etc. layers: 

R2(ayers = 2Rllaver + Rgap (6.8) 

6.4 COMPARISON BETWEEN MEASURED AND PREDICTED 

RESULTS 

A comparison between measured and predicted thermal conductivities using the rule 

of mixtures approach (equations (6.2) and (6.3)) for single layer fabrics is presented in 

Table 6.1. Thermal conductivity for air kA is taken as 0.025 W/mK [100]. 

Table 6.1 Comparison between measured and predicted (Equations 6.2-6.3) thermal 

conductivity for single layer fabric 

Fabric 

code 

Fabric 

area 

density 

Mf 

kg/m2 

Fibre 

density 

p 

kg/m3 

Fibre 

volume 

fraction 

Vf 

Fibre 

conductivity 

kF W/mK 

Predicted 

thermal 

conductivity 

k 

W/mK 

Measured 

thermal 

conductivity 

k 

W/mK 

U1 0.1428 1540 0.56 0.243 0.147 0.014 

U3 0.1215 1540 0.64 0.243 0.165 0.008 

A4 0.2137 1150 0.70 0.171 0.127 0.009 

A3 0.1448 1150 0.70 0.171 0.127 0.007 

C3 0.2542 918 0.57 0.250 0.153 0.026 

C9 0.3008 1478 0.67 0.250 0.175 0.022 

As seen from Table 6.1 the rule of mixtures approach does not give good agreement 

with experimental results. This might be because 
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Predicted thermal conductivity based on thermal resistance (equations (6.4) - (6.6)) is 

compared to experimental results in Table 6.2. It shows that predicted results are in 

reasonable agreement with measured ones for A3, A4, C3 and C9 fabrics. However, 

there is poor agreement with experimental data for UI and U3 plain woven fabrics. 

The results of calculation for thermal resistance for air gap using equation (6.7) are 

shown in Table 6.3. 

Table 6.2 Comparison between measured and predicted (using thermal resistance 

approach) thermal conductivity for single layer fabrics 

Fabric Predicted Measured Predicted using Measured 

code thermal thermal eqs. (6.4 - 6.6) thermal 

resistance of unit resistance of thermal conductivity of 

cell R. fabric Rf conductivity of fabric kf 

m2K/W m2K/W unit cell 1c W/mK 

W/mK 

U1 0.0036 0.023 0.087 0.014 

U3 0.0013 0.028 0.17 0.008 

A3 0.036 0.029 0.005 0.007 

A4 0.074 0.022 0.002 0.009 

C3 0.016 0.026 0.026 0.017 

C9 0.013 0.026 0.042 0.022 

Table 6.3 Thermal resistance for air gap based on experimental results (m2K/W) 

Fabric code 
R101ayers Riiayer Rgap 

Ul 0.050 0.023 -0.02 

U3 0.047 0.028 -0.026 

A3 0.046 0.029 -0.027 

A4 0.048 0.022 -0.019 

C3 0.065 0.026 -0.022 

C9 0.066 0.026 -0.022 

As seen from Table 6.3 thermal resistance for the air gap between layers for all fabrics 

is negative as fabrics were under pressure during experiments (see Figure 6.2), so 

there were no significant gaps between fabric layers. This means that there should be 

no influence of thermal resistance of gap between layers on the results. 
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6.5 EXPERIMENTAL MEASUREMENT OF MOISTURE CONTENT 

OF FABRICS 

6.5.1 Experimental set-up 

Moisture content in fabrics was measured according to British Standard BS EN ISO 

12571: 2000 "Hygrothermal performance of building materials and products - 
Determination of hygroscopic sorption properties" (921. According to the above 

standard, hygroscopic sorption is exchange of water vapour between ambient air and 

porous material until the point of equilibrium is reached. Experimental set-up is 

presented in Figure 6.7. 

Container 

Sample 

Metal frame to hold 

sample above the solution 

Saturated solution 

Figure 6.7 Experimental set-up for moisture content measurement 

For each fabric four specimens were placed in four different environments with a 

certain fixed relative humidity. The four environments were as follows: magnesium 

chloride MgC12 with relative humidity of 33.07%, magnesium nitrate Mg(N03)2 with 

relative humidity of 54.38%, sodium chloride NaCl with relative humidity of 75.47% 

and potassium sulphate K2SO4 with relative humidity of 97.59%. Each of these salts 

is dissolved in 50m1 of distilled water. All four containers with specimens were put 

inside an environmental chamber at 200C and 50% humidity. The moisture content 

was determined when equilibrium with the environment was reached. Equilibrium 

with environment was established by weighing the specimen until constant mass was 

reached and the wet mass was found. After that specimens were dried at 105°C for 24 

hours and weighed again to obtain dry mass. The same six fabrics as for thermal 

conductivity experiments were chosen (see Chapter 3 for fabric details). 
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6.5.2 Experimental results and analysis 

Results of moisture content experiments are presented in Figure 6.8. 
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Figure 6.8 Experimental results of moisture content for: a) U1 and U3, b) A3 and A4, 

c) C3 and C9 

As seen from Figure 6.8, for pure cotton fabrics (U1 and U3) moisture content is 

approximately twice of Nylon fabrics (A3 and A4), which in turn are similar to 

PET/Cotton fabrics (C3 and C9). The shape of the curves for different fabrics is also 

different. For pure cotton U1 and U3 fabrics and PET/Cotton fabrics C3 and C9, the 

shape is exponential whereas the curves for Nylon fabrics A3 and A4 are close to 

linear because cotton fabrics are hygroscopic (able to attract water molecules from the 

surrounding environment) and fibres tend to swell with increase of relative humidity 

absorbing more moisture. C9 fabric contains 60% of cotton fibres and 40% of PET 

fibres in comparison with C3, which has 33% cotton and 67%PET fibres, which 

makes moisture content in C9 higher than in C3 as seen from Figure 6.8 because 

cotton fibres absorb moisture more than PET fibres. 

6.5.3 Study of influence of moisture content on thermal conductivity of 

fabrics 

Moisture content influences the thermal conductivity of fabrics as seen from several 

studies described in the literature [60], [63], [73] [74], [76], and [78]. Thermal 

conductivity increases when porosity decreases. When the water content in pores is 
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increased, there is an increase in thermal conductivity, due to the higher thermal 

conductivity of water. Dias and Delkumburewatte [731 analysed influence of moisture 

content on thermal conductivity of knitted fabrics. Predicted results from their model 

found good agreement with experimental data. To calculate thermal conductivity 

taking into consideration moisture content, they used the following equation: 

k= 
kmkAkw 

(6.9) 
(1- a)kAkW + (a - aw)kmkw + awkmkA 

where k,,,, kA and kW are thermal conductivities of material, air and water respectively, 

a is porosity of fabric, w is water content. 

Table 6.4 shows the influence of moisture content on thermal conductivity. Thermal 

conductivity of air and water were taken as kA = 0.025W/mK and kw = 0.60W/mK 

respectively [1001. Thermal conductivity and moisture content of fabrics were taken 

from experimental data. Moisture content for fabrics was chosen at 54.38% humidity 

as closest to the moisture content during thermal conductivity experiments. Five 

fabrics presented in Table 6.4 were chosen because they had the full data to predict 

thermal conductivity with influence of moisture. As seen from Table 6.4 there is a 

good agreement between measured and predicted results for U3 and A3 fabrics, 

however, there is a poor agreement for U1, C3 and C9 fabrics. 

Table 6.4 Influence of moisture content on thermal conductivity of fabrics at 55% 

relative humidity 

Fabric 

code 

Porosity a Moisture 

content w 

Measured 

thermal 

conductivity 

kf W/mmK 

Predicted 

thermal 

conductivity 

kf W/mmK 

U1 0.32 0.0404 14.0 5.91 

U3 0.14 0.0623 8.0 9.53 

A3 0.12 0.0363 7.0 8.66 

C3 0.33 0.0258 17.0 5.79 

C9 0.11 0.0351 22.0 10.73 
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Figure 6.9 shows the predicted influence of relative humidity on thermal conductivity 

kf for selected fabrics. It is noticeable that there is no significant influence of moisture 

content on thermal conductivity for very some fabrics such as A3, C3; whereas for 

Ul, U3 and C9 fabrics there is a dramatic influence of relative humidity on thermal 

conductivity. This can be explained by the nature of fabrics: hygroscopic fabrics like 

cotton (U1, U3 and C9) show change in thermal conductivity to convective flow at 

higher humidities, due to fibre swelling and decrease in free air volume in the fabric, 

and possibly, some increase in fabric thickness. The fabrics which are much less 

hygroscopic, such as nylon (A3), showed much less variation with relative humidity. 

Other authors have described similar results (see Chapter 2). 
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Figure 6.9 Influence of relative humidity on thermal conductivity 

6.6 CONCLUSIONS 

-A- U1 

--9- U3 

)K A3 

C3 

ý- C9 

An analytical model for thermal conductivity prediction has been developed using two 

different approaches: a rule of mixtures and a thermal resistance approach. Rule of 

mixtures approach did not give good agreement with experimental results. The 

thermal resistance approach showed that predicted results are in good agreement with 

measured ones for A3, A4, C3 and C9 fabrics. However, there was not good 

agreement with experimental data for UI and U3 plain woven fabrics. Comparison 

between these two analytical methods and experimental results are presented in Figure 

6.10. 
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Figure 6.10 Comparison between two analytical approaches and experimental data for 

thermal conductivity for single layer fabrics 

It is noticeable that there is no significant influence of moisture content on thermal 

conductivity for very tight fabrics. This study showed that it is quite difficult to 

accurately predict the thermal conductivity of fabrics using existing models as they 

have many simplifying assumptions which influence the predicted results 

significantly. Fabric thermal conductivity needs more study to improve upon existing 

models. A CFD approach might improve predictions and avoid many of the 

assumptions. 

E Saldaeva Thermal Conductivity of fabrics 124 

U1 U3 A4 A3 

Fabric code 



Through thickness air permeability and thermal conductivity analysis for textile materials 

CHAPTER 7 

DISCUSSION AND CONCLUSIONS 

7.1 INTRODUCTION 

The work described in this thesis was performed within the Technology Strategy 

Board project "Materials modelling: Multi-Scale Integrated Modeling for High 

Performance Flexible Materials", which was supported by several partners: Unilever 

UK Central Resources, OCF PLC, Croda Chemicals Europe Ltd, ScotCad Textiles 

Ltd, Carrington Career and Workwear Ltd, Moxon Ltd, Airbags International, 

Technitex Faraday Ltd. It also included three research groups from different 

universities: University of Nottingham, University of Manchester and Heriot-Watt 

University. The main objectives of the project related to this thesis were: model yarn- 

fabric scale; develop `unit cells' for a variety of weaves; generate FE models 

automatically using the Nottingham TexGen schema; develop CFD model to predict 

through thickness air permeability; model thermal conductivity of fabrics; air and/or 

oil through thickness permeability, thermal conductivity and moisture content 

measurement; develop a model to predict permeability of deformed fabrics in yarn- 

fabric scale. 

According to the main objectives of the project, the aim of this thesis was to create a 

general model for through thickness air permeability and thermal conductivity 

including moisture content using analytical and computational methods for different 

types of textile fabrics. An analytical model for deformed (shear, compaction and 

tension) fabrics was developed. Experimental work was performed for fabric 

permeability (air and oil) and thermal conductivity to verify predicted results. The 

findings and achievements of the work are discussed in this final chapter. The 

recommendations for further work are made based on the limitations of the proposed 

approaches. Significant conclusions arising from this work are summarised at the end. 

7.2 GENERAL DISCUSSION 
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The main part of the thesis was dedicated to through thickness air permeability of 

fabrics. Both undeformed and deformed fabrics were of interest. For undeformed 
fabrics the following key points are highlighted based on the results from Chapters 3 

and 4: 

o Ten fabrics permeabilities were predicted by a combination of two existing 

analytical models. Air flow through gaps between yarns is the dominant 

mechanism for loose fabrics such as Ul and U2. For tight fabrics, air flow 

through gaps between yarns and within yarns both govern the fabric 

permeability. 

o Three fabrics with the same geometry have been compared to show the 

influence of finishing on fabric permeability. Predicted results have the same 

trend as experimental data. 

o Both air and oil through thickness permeability experiments were performed. 

There is a good agreement between the two experimental techniques which 

shows that there is little or no influence of liquid viscosity on permeability. 

o The analytical model has some assumptions which dramatically affect the 

predicted results of fabric permeability. Among them is that the pore is 

rectangular in shape whereas in reality pore has a more complicated shape. 

o Another problem with the analytical model is that it cannot model overlapping 

and very tight fabrics, such as U3 or A3 where predicted results are not in 

good agreement with experimental data. For almost all twill-weave fabrics the 

predictions are in good agreement with experiments except for Cl and C3 

which might be because of the shape of the gaps between yarns. Fabrics with 

rectangular pore shape have good agreement with experimental data, whereas 

fabrics with the non-clear shape gaps have poor agreement. 

o The results presented in Chapter 4 showed that the CFD simulations are very 

sensitive to the yarn porosity and yarn permeability as well as the geometric 
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modelling of fabrics. A small change in yarn porosity can lead to a dramatic 

change in the predicted through thickness air permeability of fabric. 

o Using Al fabric, with a tight structure, the significant influence of yam 

porosity on fabric permeability was shown. CFD results showed good 

agreement with measured data for Al fabric due to the fact that it was easy to 

model its unit cell. There is no good agreement for other fabrics especially for 

twill-weave fabrics as it was difficult to obtain an accurate unit cell geometry. 

o The limitations of the TexGen/CFD approach are also presented. The 

difficulty of modelling very tight fabrics in TexGen is of primary concern. 

Current models assume an idealised shape of the yarn and use an idealised 

yam path. In reality, there is a lot of mixing of fibres between the yarns within 

the fabric structure (see Appendix C) and often there are no distinct 

boundaries. The current fabric model cannot take this into consideration. 

o The studies here have highlighted the strengths of using CFD simulations in 

comparison with the analytical approach presented in Chapter 3. It showed 

that TexGen can model a large range of geometries including plain-weave and 

twill-weave. TexGen is good at meshing the unit cell geometry. It showed that 

it is possible to provide a permeability prediction using CFD simulations for 

real fabrics in the same order of magnitude as experimental with an accurate 

thorough geometric model. CFD modelling can demonstrate the Forchheimer 

effect (non-linear relationship between flow rate and pressure) whereas the 

analytical model cannot do this. 

Issues identified from the study of through thickness air permeability of deformed 

fabrics are the following based on the results from Chapter 5: 

o Three common types of deformation of textile fabrics were analysed: shear, 

compaction and tension. An analytical model for sheared fabrics has been 

developed using a modified model for permeability through unsheared fabrics 

which was described in Chapter 3. 
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o Locking angle for each fabric was calculated. Two mechanisms of shear have 

been described: shear before and after locking. If fabric has loose fibres inside 

the yarns, than shear changes the permeability significantly even after locking 

as seen from Chomarat 800S4-Fl fabric (Chapter 5). 

o An experimental set up was designed to fit the shear rig around the 

permeability tester to measure the through thickness air permeability of the 

fabric after shear. Unfortunately, only one glass-fibre fabric Chomarat 80OS4- 

Fl was tested using the shear rig as others buckled. A more suitable rig should 

be developed which will include some pre-tension to prevent fabrics from 

buckling. Predicted results have poor agreement with measured data for all 

shear angles. 

o Abaqus FE software was used to perform compaction simulations on U2 

fabric. Results were used in an analytical model to calculate the fabric 

permeability after compaction. There was no experimental work done for the 

permeability of compacted fabrics and effect of compaction on permeability. 

o Other types of deformation like tension in warp and weft directions were 

studied using U2 fabric. The analytical model included the results from FE 

simulations of tension for U2 fabric. Tension was applied in three ways: in 

warp direction; in weft direction; and in both warp and weft directions. The 

predictions showed a more significant influence of tension in the weft 

direction than in the warp direction on fabric permeability as there was more 

spacing between weft yarns than between warp yarns. More computational 

and experimental work should be done on all three deformation mechanisms. 

Another part of the study was to develop an analytical model for thermal conductivity 

for fabrics (single-layer and multiple-layers) taking into consideration moisture 

content: 

o Analytical models for thermal conductivity prediction were developed using 

two different approaches: rule of mixtures and thermal resistance. it was 

shown that the thermal resistance approach produced better agreement with 

experimental data than the rule of mixtures approach. 
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o Thermal conductivity predictions for multiple layers were shown in Chapter 6. 

Using experimental results, it was shown that there is little influence of 

thermal conductivity of the air gap on overall thermal conductivity of multiple 

layer fabrics. 

o The influence of moisture on thermal conductivity of fabrics was studied. It is 

noticeable that there is no significant influence of moisture content on thermal 

conductivity for very tight fabrics such as A3, C3 and C9; whereas for UI and 

U3 cotton fabrics there is an influence of relative humidity on thermal 

conductivity. This can be explained by the nature of fabrics: hygroscopic 

fabrics like cotton (U1 and U3) show change in thermal conductivity to 

convective flow at the higher humidities, due to fibre swelling and decrease in 

free air volume in the fabric, and possibly, some increase in fabric thickness. 

The fabrics which are less hygroscopic, such as polyester/cotton (C3, C9) or 

nylon (A3), showed much less variation with relative humidity. 

7.3 RECOMMENDATIONS FOR FURTHER WORK 

From the discussion of the work done, certain areas have been identified in which 

further research may be constructive. 

o More work should be done on accurate modelling fabric geometries using 

TexGen. It is very difficult to model real fabrics using only the programme 

interface. It is recommended to use a script to model very tight and 

overlapping fabrics, allowing (for example) yarn cross-section to vary along 

the yarn length. 

o There is a possibility to further develop an analytical model to predict through 

thickness air permeability. In the current work, gap geometry has been 

assumed as a straight capillary. In reality, the geometry of gap is far more 

complicated. More work can be done to study the real geometry of gaps 

between yarns. 

o More work can be done to study fabric behaviour using the Forchheimer 

equation. More analytical and CFD modelling should be done to characterise 
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and explain the non-linear changing of fabric permeability under changes in 

pressure drop. 

o Further CFD modelling could be performed to predict thermal conductivity. 

CFX 11.0 has several options to predict thermal conductivity of porous unit 

cells which need to be investigated thoroughly. 

o This work made a first step to measure permeability for deformed fabrics. 

More work can be done to improve the current shear rig, so that different types 

of fabrics can be sheared without buckling. 

o More analytical and CFD work should be done to predict through thickness air 

permeability of deformed fabrics such as compressed and sheared fabrics and 

fabrics under the tension. Currently there are some difficulties in transferring 

models of sheared or compressed fabrics back to TexGen or CFX 11.0. 

o Permeability prediction as well as thermal conductivity study for multiple 

layer fabrics could be further developed. This work has included an 

experimental study of air permeability and thermal conductivity for multiple 

layers. More analytical and CFD work needs to be done for multiple layer 

fabrics. 

7.4 CONCLUSIONS 
The conclusions gained from this thesis are summarised below. 

o Through thickness air permeability of different types of fabrics was studied 

using both analytical, experimental and CFD approaches. An analytical 

approach included two mechanisms: flow through gaps and through yarns. 

CFD predictions were developed using TexGen and CFX 11.0 software 

packages. Both analytical and CFD predictions had reasonable agreement with 

experimental data in some cases but they are very sensitive to the geometric 

modelling. 

oA number of sensitivity studies for air permeability predictions were carried 

out. The influence of pressure drop on fabric permeability was studied. All 
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fabrics showed non-linear behaviour under different pressure drops which is 

reflected in the Forchheimer equation. Studies showed that there was also a 

significant influence of fabric finishing on permeability. 

o Through thickness air permeability of deformed fabrics was studied. Different 

deformations were chosen such as shear, compression and tension. 

Experimental work was performed for shear deformation for glass-fibre fabric. 

Analytical predictions had good agreement with the experimental results. 

o Experimental work for thermal conductivity of single layer and multiple layer 

fabrics was carried out. An analytical model was developed taking into 

consideration the influence of moisture content on thermal conductivity of 

fabrics. Thermal conductivity predictions showed fair agreement with 

experimental data. There was no significant influence of moisture on thermal 

conductivity. 
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APPENDIX B IMAGE J 

Figure B. 1 shows Image J software window. It is possible to calculate fibre volume 

fraction using Image J by selecting a certain part of yarn on the image. Image J 

calculates the area of the yarn part and also the area of each fibre and number of 

fibres. For each fabric three measurements in different places of images were made to 

get more accurate results. Then fibre volume fraction is calculated using the following 

equation: 

Fibre area Vf = Number of fibres (B. 1) 
Yarn area 

U4 

Yarn area - 52530pixel 

Vf= 0.68 

U1 

Fibre area = 2174Opixel 
N unmber of fibres = 13 

F4 Ea imepe V, OClff MMJH PYýpins WIrOae neue 

Q4aß-. _s+ýI! A, 40Aas. n.... ý. 0 /Aa '»I 

burn area = ""voo I pi. xe 

V1= 0.57 

Fibre area = '-l7ýpixeý Number of fibres = 21 

E Saldaeva Appendices 144 

i. ... .. _. 
Hi . PM E'n i1 Pwoc s &af7e wJQ! t \tOO Help 

. 
ft fat Mope P? &fss MWYA Pkgfl WY rep 

.. 



Through thickness air permeability and thermal conductivity analysis for textile materials 

U2 

. 
Fit EER VnW Gmcnf M it MP^ý wmý+ . ei. 

Yarn area = 28224pixel 

Vf = 0.59 

U3 

) ai n urea = 30561 pixel 

Vj = 0.69 

A3 

Yarn area = 8969$pixel 

Vf = 0.69 

Fibre area = 1? 00pixel 

Fihre area = _2644pixel 

Fibre area = 77t4pi. xrl 

Number of fibres = 14 

Number of fibres =8 

. 'Number ul Iibres = 

E Saldaeva Appendices 145 

f 

F, 11 EMt mape -ess Malyt Rupins Edna,. Heb 

ö a5 
... ný.. o>_ý - 

C El .. R FIGee» Meý'¢ Wolf c*rO,. GeV 
ue Ea floe Process xiw8 %'ýW^s wlm HO 



Through thickness air permeability and thermal conductivity analysis for textile materials 

cl 

Yarn area = 52O3Opixel Fibre area = 2514pixel 

Vf= 0.57 

C2 

e Ebt Neer vroces, , výýrya aw9 wn yep 

Yarn area = ý7U lpi. ýel 

Vf = 0.60 

C3 

Fibre area = 2166pixel 

Number of fibres = 12 

Number of fibres = 15 

m P, Ma oý, -, 

Fibre area = 2014pixel Number of fibres =8 

E Saldaeva Appendices 146 

t 
Fit Ea tope c, vcne n/[e Migm $Ynu. rey 

.. 

9 
71, 

A 

Yarn . uc., 

Vf = 0.63 

. 
r4 ea fig. woxef Msym ar pfn M OG. HP 



Through thickness air permeability and thermal conductivity analysis for textile materials 

C8 
f 

k Ea mpe aroiev uuga vYgni wYen rtp 
,.. 

ý'na_-: 
tea A. nsýý Urin 

Vf = 0.54 

C9 

Yarn area = 49887pixel 

Vf = 0.64 

C10 

Ell -W I I'� Mai. of O 

Fibre area = 1885pixel Number of fibres = 18 

Fibre area = 2686pixcl \umber of fibres = 12 

Yarn area = 64491 pixel Fibre area = 2168pixel Number of fibres = 16 

Vf= 0.54 

Figure B. 1 Image J software for fibre volume fraction calculations for selected fabrics 
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Table B. 1 Fibre volume fraction and fibre radius for selected fabrics measured using 

Image J 

Fabric code Fibre volume fraction Vf Fibre radius r µm 

Ul 0.56 4.3 

U2 0.58 5.4 

U3 0.64 5.3 

U4 0.66 5.8 

A3 0.7 10.3 

Cl 0.56 5.9 

C2 0.63 5.9 

C3 0.57 5.5 

C8 0.61 5.7 

C9 0.67 5.6 

C10 0.56 5.7 

Fibre radius was obtained from as a half of fibre diameter measurements using Image 

J. 
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APPENDIX C TEXGEN MODELS 

TexGen is software which helps to create unit cell geometry using measured 

geometric parameters of real fabric. Figure C. 1 presents a step by step guide to create 

unit cell geometry based on geometric parameters for U2 fabric. 

Firstly, the number of warp and weft yarns, yarn spacing and yarn width, fabric 

thickness and gap size were input. 
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When all geometric parameters are input, TexGen generates the geometric model. 
_i: 1 Mw p'/ J 

Figure C. 1 Creating unit cell geometry for U2 fabric using TexGen 

Figure C. 2 compares unit cell geometries from microscopic images with ones created 

in TexGen as described above. 
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Figure C. 2 TexGen modelling of unit cell geometry for selected fabrics. 
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TexGen was used to mesh the unit cell geometries. Figure C. 3 shows meshed unit cell 

geometries with mesh statistics for selected fabrics. Because it is not possible to view 

meshed geometry in TexGen directly after meshing, CFX 11.0 is used to view the 

mesh quality and mesh statistics. 
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Figure C. 3 Meshed geometries of unit cells for selected fabrics 
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APPENDIX D CFX 11.0 SOFTWARE 

D. 1 CFX 11.0 PRE-PROCESSOR 

CFX 11.0 Pre-processor allows creating domains, input boundary condition, set up 

properties of liquid and porous regions. Figure D. 1 presents a step by step guide for 

creating boundary conditions for U2 fabric. 

Firstly, the air domain was created with all main parameters input. 
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In Fluid model options Isothermal condition with fluid temperature 25°C was input 

Turbulence was chosen as "none" which means laminar flow. 

ly I 14; f at'. 

61-iiid 0 QAx9: a6 fO0e06: X3k. ': t. 14 ib 

srýr 

ri. iom. n. v ! ewrý, 

4em lubýw J-__, 

rwev 

Ovum reehwv) ý. 

eemýa todmmýwe e. 

11ýrilleYrnn_-MUS a 

c 0.0007 Ua 

c . re:. 

J_fto ý 

Next yarn domains were created. 

I ti 

IN rý. l iy iý iý 8es3ýt lp 
ow 

rm 

"L= 

omi ca 

Yarn location and type were chosen. Yarn porosity and yarn permeability were input 

as calculated in Chapter 3 using Gebart's equation. Fluid model was chosen similar to 

the model for air domain with laminar flow. 
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Next step was to create boundary conditions for air domain. Opening boundary 

conditions were chosen for inlet and outlet of air domain, and symmetry boundary 

conditions for four walls. Inlet pressure was set to 500Pa and outlet pressure - OPa. 
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Then boundary conditions for the yarns were allocated as symmetry for two vertical 

sides of the yarns. 
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Finally, solver control conditions were input as default. Then the simulation was 

saved and run in CFX-Solver. 

E) SL" 5.... K ý+"ZC. 

arr. 

or 
E f`3rý i_ - 

, 

.__. 
ýý' ýý 

........ ýNýý. ýýý. ý.. ý ý_ ý, _ýý 
,ý 

tiv w.., 
so: 

.. 

t" 

.... a.. ýy.. .. o. 

f. w ii& -i" rie-9-41100 hO'.. hCh7 Y, 

a i... x 
.... m ; r-, ý.. as ý 

ep ýJ 
ate..,. ý . ºý ný_ 

n oýoýý 

ý fM 

E Saldaeva Appendices 164 



Through thickness air permeability and thermal conductivity analysis for textile materials 

D. 2 CFX 11.0 SOLVER 

CFX SOLVER opens in new window. Simulation time takes between 30minutes and 
10hours depends on number of elements. At the end of simulation solver shows if 

there is any errors and opens results in new window (CFX Post-processor). 
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II 

Solver I 

Job Information I 

---------------------------------------------------------------------- 

Run mode: serial run 

Most computer: PEMES I 

Job started: Fri Aug 07 12: 38: 09 2009 

+--------------------------------------------------------------------+ 

Memory Allocated for Run (Actual usage may be less) 

+------------------------------------------------------------------+ 

Data Type Kwords Words/Node Words/Elem Kbytes Bytes/Node 

Real 28095.4 3252.91 812.01 109747.7 13011.65 

Integer 7544.7 873.53 218.05 29471.4 3494.12 

Character 2886.6 334.21 83.43 2818.9 334.21 

Logical 65.0 7.53 1.88 253.9 30.10 

Double 115.8 13.41 3.35 904.7 107.26 

I Mesh Statistics 

Domain Name : Air domain 

Total Number of Nodes = 4739 

Total Number of Elements = 17966 

Total Number of Tetrahedrons = 17966 

Total Number of Faces = 6886 

Minimum Orthogonality Angle [degrees] = 6.5 

Maximum Aspect Ratio = 35.0 OK 

Maximum Mesh Expansion Factor = 62.1 

Domain Name : Yarn I 

Total Number of Nodes = 976 

Total Number of Elements = 4259 

Total Number of Tetrahedrons = 4259 
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Total Number of Faces = 932 

Minimum Orthogonality Angle [degrees] = 42.4 ok 

Maximum Aspect Ratio = 3.9 OK 

Maximum Mesh Expansion Factor = 4.7 OK 

Domain Name : Yarn2 

Total Number of Nodes = 959 

Total Number of Elements = 4174 

Total Number of Tetrahedrons = 4174 

Total Number of Faces = 916 

Minimum Orthogonality Angle [degrees] = 42.4 ok 

Maximum Aspect Ratio = 3.6 OK 

Maximum Mesh Expansion Factor = 4.4 OK 

Domain Name : Yam3 

Total Number of Nodes = 979 

Total Number of Elements = 4086 

Total Number of Tetrahedrons = 4086 

Total Number of Faces = 1034 

Minimum Orthogonality Angle [degrees] = 45.4 ok 

Maximum Aspect Ratio = 4.2 OK 

Maximum Mesh Expansion Factor = 4.1 OK 

Domain Name : Yam4 

Total Number of Nodes = 984 

Total Number of Elements = 4115 

Total Number of Tetrahedrons = 4115 

Total Number of Faces = 1036 

Minimum Orthogonality Angle [degrees) = 36.9 ok 

Maximum Aspect Ratio = 4.1 OK 

Maximum Mesh Expansion Factor = 4.6 OK 
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Gobal Statistics : 

Global Number of Nodes = 8637 

Global Number of Elements = 34600 

Total Number of Tetrahedrons = 34600 

Global Number of Faces = 10804 

Minimum Orthogonality Angle [degrees] = 6.5 

Maximum Aspect Ratio = 35.0 OK 

Maximum Mesh Expansion Factor = 62.1 

Domain Interface Name : Domain Interface I 

Non-overlap area fraction on side I=3.35E-01 

Non-overlap area fraction on side 2=3.35E-01 

CFD Solver started: Fri Aug 07 12: 39: 24 2009 

Convergence History 

I Timescale Information 

- ------------------------- 

I Equation I 

-------------------------------------------- 

Type I Timescale I 

+----------------------+------------------------+--------------------+ 

U-Mom-Air domain I Auto Timescale I 1.80845E-05 I 

I V-Mom-Air domain I Auto Timescale I 1.80845E-05 I 

I W-Mom-Air domain 1 Auto Timescale I 1.80845E-05 I 

U-Mom-Yarn1 I Auto Timescale I 1.80845E-05 I 

VIV-Mom-Yarni I Auto Timescale 1.80845E-05 I 

W-Mom-Yarn l I Auto Timescale I 1.80845E-05 I 

U-Mom-Yarn2 I Auto Timescale I 1.80845E-05 I 

I V-Mom-Yarn2 I Auto Timescale 1.80845E-05 I 

I W-Mom-Yarn2 I Auto Timescale I 1.80845E-05 I 

I U-Mom-Yarn3 I Auto Timescale I 1.80845E-05 I 

V-Mom-Yarn3 I Auto Timescale I 1.80845E-05 I 

I W-Mom-Yarn3 I Auto Timescale I 1.80845E-05 I 

I U-Mom-Yarn4 I Auto Timescale 1.80845E-05 I 

I V-Mom-Yarn4 I Auto Timescale I 1.80845E-05 I 

I W-Mom-Yam4 I Auto Timescale I 1.80845E-05 I 

E Saldaeva Appendices 168 



Through thickness air permeability and thermal conductivity analysis for textile materials 

OUTER LOOP ITERATION =1 CPU SECONDS = 8.281E+00 

I Equation I Rate I RMS Res I Max Res I Linear Solution I 

I U-Mom 10.0014.2E-08 13.5E-071 I. 4E+04 okl 

I V-Mom 10.0013.9E-0813.9E-07 I 1.4E+04 okl 
I W-Mom 10.0017.7E-01 13.9E+00I 3.7E-03 OKI 

I P-Mass 10.0014.1E-02 12.0E-01 19.1 2.4E-02 OKI 

OUTER LOOP ITERATION =2 CPU SECONDS = 1.053E+0l 

---------------------------------------------------------------------- 
I Equation I Rate I RMS Res I Max Res I Linear Solution I 

I U-Mom 199.99 13.2E-02 13.9E-01 I 1.3E-02 OKI 

I V-Mom 199.9912.1E-02 12.4E-0I I 3.9E-02 OKI 

I W-Mom 10.07 15.0E-02 15.9E-01 I 3.9E-02 OKI 

I P-Mass 10.77 13.1E-02 14.9E-OI 1 5.1 7.0E-02 OKI 

OUTER LOOP ITERATION =3 CPU SECONDS = 1.244E+01 

I Equation I Rate I RMS Res I Max Res I Linear Solution I 

I U-Mom 10.6612.1E-02 15.1E-01 I 2.2E-02 OKI 

I V-Mom 10.8711.8E-0212.5E-01 I 2.8E-02 OKI 

I W-Mom 1 1.01 15.0E-02 13.7E-0I I 2.6E-02 OKI 

I P-Mass 10.83 12.6E-0213.9E-01 15.1 6.5E-02 OKI 

.................... 

OUTER LOOP ITERATION = 63 CPU SECONDS = 1.234E+02 

I Equation I Rate I RMS Res I Max Res I Linear Solution 

I U-Mom 10,9915.0E-05 12.4E-03 I 2.8E-03 OKI 

I V-Mom 10.9811.9E-0516.9E-041 1.1E-02 OKI 

I W-Mom 11.00 11.0E-04 13.8E-031 1.4E-03 OKI 

P-Mass 10.9812.5E-0514.5E-041 5.1 1.6E-02 OKI 
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OUTER LOOP ITERATION = 64 CPU SECONDS = 1.253E+02 

I Equation I Rate I RMS Res I Max Res I Linear Solution I 

I U-Mom 10.99 14.9E-05 12.4E-03 I 2.7E-03 OKI 

I V-Mom 10.98 11.9E-05 16.8E-04 I 1.1E-02 OKI 

I W-Mom 11.001 I. OE-04 13.8E-031 1.3E-03 OKI 

I P-Mass 10.9812.4E-05 14.5E-041 5.1 1.6E-02 OKI 

CFD Solver finished: Fri Aug 07 12: 41: 24 2009 

CFD Solver wall clock seconds: 1.2000E+02 

I Average Scale Information 

Domain Name : Air domain 

Global Length = 3.4796E-04 

Minimum Extent = 2.5135E-04 

Maximum Extent = 7.3000E-04 

Density = 1.1850E+00 

Dynamic Viscosity = 1.8310E-05 

Velocity = 7.3744E+00 

Advection Time = 4.7185E-05 

Reynolds Number = 1.6607E+02 

Domain Name : Yarn I 

Global Length = 2.2388E-04 

Minimum Extent = 2.2586E-04 

Maximum Extent = 4.7000E-04 

Density = 1.1850E+00 

Dynamic Viscosity = 1.8310E-05 

Velocity = 9.0753E-03 

Advection Time = 2.4669E-02 

Reynolds Number = 1.3150E-01 

Domain Name : Yarn2 

Global Length = 2.2387E-04 

Minimum Extent = 2.2587E-04 

Maximum Extent = 4.7000E-04 

Density = 1.1850E+00 

Dynamic Viscosity = 1.8310E-05 

Velocity = 9.4740E-03 

Advection Time = 2.3630E-02 
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Reynolds Number = 1.3727E-01 

Domain Name : Yarn3 

Global Length = 2.2129E-04 

Minimum Extent = 1.9500E-04 

Maximum Extent = 7.3000E-04 

Density = 1.1850E+00 

Dynamic Viscosity = 1.8310E-05 

Velocity = 1.9107E-02 

Advection Time = 1.1582E-02 

Reynolds Number = 2.7363E-01 

Domain Name : Yarn4 

Global Length = 2.2125E-04 

Minimum Extent = 1.9500E-04 

Maximum Extent = 7.3000E-04 

Density = 1.1850E+00 

Dynamic Viscosity = 1.8310E-05 

Velocity = 1.7971E-02 

Advection Time = 1.2312E-02 

Reynolds Number = 2.5733E-01 

Job Information I 

Host computer: PEMES 1 

Job finished: Fri Aug 07 12: 41: 26 2009 

Total CPU time: 1.285E+02 seconds 

or: ( 0: 0: 2: 8.484) 

Days: Hours: Minutes: Seconds ) 

Total wall clock time: 1.970E+02 seconds 

or: ( 0: 0: 3: 17.000 ) 

Days: Hours: Minutes: Seconds) 

End of solution stage. 
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D. 3 CFX 11.0 POST-PROCESSOR 

The results of the simulation can be seen in CFX 11.0 Post processor. It is possible to 

create a streamline to see the behaviour of the flow. It is also possible to see the 

whole report of the current simulation and calculate velocity or pressure drop in the 

unit cell. 
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