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Abstract 

This Ph.D. thesis considers making some contributions to the asset pricing and financial risk 

management literature. First of all it offers some dynamics in the area of asset pricing which 

are practically implement able for pricing European style options. More precisely it consid-

ers blending GARCH type non-Markovian dynamics with Levy type Markovian innovations 

to offer analytic valuation of European style derivatives(at this initial stage). Revealing 

the mathematical underpinnings-required to replace conditional Gaussian innovations in 

G ARCH option pricing models by innovations coming from some Levy processes( with one 

sided and both sided jumps)-is the main focus. The necessity for this arises from the fact 

that the non-normal(Levy) innovations are crucial as heteroskedasticity alone doesn't suffice 

to capture the option smirk and the analytic valuation is highly expected because it makes 

the model practically implementable. Thus besides incorporating non-normality particular 

attention is paid to analytic valuation as well; though the Monte Carlo techniques can be 

readily applied for the proposed dynamics. However an approximation is required to uphold 

the analytic pricing, especially for innovations coming from Levy processes which are not 

Subordinator. These dynamics are capable of overcoming many deficiencies of benchmark 

Black-Scholes model and can be used to price other derivatives such as Credit, Interest rate, 

Commodity, Weather etc. The approach is built on a discrete time continuous state space 

and upholds the no-arbitrage principle of derivative pricing through the use of conditional 

Esscher transform to configure Equivalent :tviartingale Measure(EMl'vI). Similar to the exist-

ing literature, established for GARCH with normal innovations, existence of EMM provides 

de-facto evidence in support of no-arbitrage argument. Besides the main focus this research 

has made some complementary contributions to the option pricing literature. 

Since J.P.Morgan introduced RiskMetrics in 1994, the normal quantile based VaR has 



been considered as industry standard for risk management. However VaR itself has inher-

ent inconsistencies which are exacerbated under the assumption of normality. The second 

part of this thesis considers two frequently referred approaches to non-normality in risk 

management : extreme value(EV) approach and Levy approach. The idea is to reveal the 

relative performance of various risk measures under full density based Levy approach and 

solely tail observation based EV approach. We provide empirical evidence which confirms 

that though purely tail based risk measures value-at-risk(VaR) and its coherent version 

expected shortfall(ES) are well comparable under both approaches, entire spectrum based 

spectral risk measure(SRM) is misleading for EV approach. Backtesting risk measure VaR 

is considered under both approaches. We plan to improve the computational efficiency of 

estimation of Levy coherent risk measures through application of characteristic function 

based FRFT. Our ultimate goal is to see whether the conditional moment generating func-

tions -developed for GARCH-Levy models in the first part of this thesis-can be adapted 

to the characteristic function based FRFT technique in order to estimate the risk measures 

in analytic fashion. 
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Introd uction 

This introduction is in two sections, addressing respectively the motivation and the organ-

isation of the thesis. 

Motivation 

In continuous time stochastic differential equation approaches it is often felt necessary to 

assume that the price process is Markovian, otherwise the equations may fail to produce 

any solution. However the no-memory property of a Markov process is not a good reflection 

of reality, and there is strong empirical evidence supporting the claim that stock price and 

interest rate processes are non-Markovian. For example, asset returns exhibit volatility 

clustering and strong time series structure, implying they are non-Markovian. Some critics 

even go to the length of saying that it is inappropriate to assume an unrealistic model 

in order to apply a theory which requires a Markovian modeling. A potential solution is 

the use of hybrid models which have been a mainstay in the time series literature since 

the CARCH model with student-t innovations was first proposed by Bollerslev(1987)[21]. 

However the latest time series analysis suggests that even these models may be inadequate 

to describe patterns in volatility evolution. Volatility estimates from intraday returns and 

high-low returns indicate long- lasting volatility shifts than are typically estimated in the 

ARCH framework, and suggest either a long-memory or multifactor volatility process. 

The latest developments in the literature of hybrid models explore discrete time models 

but replace normal innovations to address skewness and kurtosis related deficiencies. Affine 

CARCH type models are appealing in this regard: conditional normal innovations can be 

replaced by innovations coming from Levy family. In other words such approach blends 
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Markovian type innovations to non-Markovian type dynamics. GARCH type affine mod-

els with normal innovations, see Heston and Nandi(2000)[70], have two major advantages 

for econometric work. First European call and put options with any maturity T can be 

computed rapidly conditional upon the observed underlying asset price Sti the value of 

relevant underlying latent variable O"ti various model parameters and the market price of 

risk(A) which determines the risk-neutral probability measure. Also the joint characteris-

tic function associated with the joint conditional transition density P(SHT, O"t+TISt, O"t, 8) 

has an analytic solution, implying objective transition densities can also be evaluated via 

Fourier inversion or other fast methods. As a result it becomes relatively straightforward 

to infer O"t values from observed option prices and to test whether the observed time series 

properties of asset and/or option prices conditional on those values of O"t are consistent 

with the predicted properties. Under this backdrops researchers developing pricing models 

along this mixture approach aspires to enrich the dynamics with useful stochastic proper-

ties of Levy processes as innovations. After pioneering work of Heston and Nandi(2000) [70] 

some researchers tried some simple non-normal(Levy) innovations in GARCH framework 

to analytically price European style options. This research attempts to answer: 

• How the analytic GARCH approach with normal innovations fares among different 

approaches which are developed as alternatives to Black and Scholes model? As 

alternatives we consider Gram Charlier, jump-diffusion, pure jump and continuous 

time stochastic volatility approaches. Moreover we answer this question in a more 

realistic set-up where potential investors in derivatives market prefer using only the 

most recent information. 

• Is it possible to mathematically trace GARCH option pricing, with innovations coming 

from standard both sided Levy processes, in analytic fashion? If "yes" , does their exist 

explicit relationship between statistical and risk-neutral dynamics? 

• How to characterize the market price of risk under such dynamics? 

• Is there any improved empirical evidence of pricing across various information aggre-

gations which benefits from analytic valuations? 
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A research attempting these questions shed lights on improved pricing of other derivatives-

e.g. credit, foreign exchange, interest rate etc-where rich stochastic properties blended with 

time series structures of the dynamics are expected to remove the sources of mispricing. 

The relatively recent literature of financial risk management also offers nice scopes for 

contributions. One such scopes is the accurate quantification of VaR and coherent risk 

measures (expected shortfall, ES, and spectral risk measure, SRM). Implementing coherent 

risk measures ES and SRM for Levy models in a comparative fashion, across leading indices, 

is not available in the literature. Moreover in case of SRM there are some issues to address. 

In this part we attempt to answer the question: 

• Do the observations discarded by extreme value(EV) model and incorporated by Levy 

models play any role in the performance of tail based risk measures VaR and ES? How 

about SRM? 

Then the GARCH- Levy dynamics come into the scenario which are expected to produce 

some improved empirical results in risk management, in addition to their improved pricing 

performance for derivatives. Moreover it will be of considerable practical help if analytic 

estimation of risk measures can be obtained for these rich dynamics. 

Organisation of the Thesis 

This thesis is organized as follows. 

Chapter 1 is an intuitive overview of GARCH features. Different characterizations of 

GARCH dynamics are studied, and some limitations of GARCH models are reported. 

Chapter2 revisits the basics of Levy modeling and is contributory in nature. This chap-

ter makes a reformulation which demonstrates how the standard Levy-Kintchine formula 

may be interpreted as a series of shocks superimposed on a normal distribution. This 

reformulation gives clear idea about how jumps come into the scenario and distort the ba-

sic path structures of Brownian motions in describing the returns of some financial asset. 

Considering the Variance-Gamma (VG) process as an example it then reveals the detailed 

mathematical intuitions which underlie the notion of time changing in finance. This in 

essence helps us recognize and correct a misspecification in Geman(2002) [62] . 

xxii 



Chapter3 is basically an empirical study based on chapter two. Recently Chourdakis 

(2005)[29] introduces fractional FFT(FRFT) in option pricing which is superior to tradi-

tional FFT. Using S&P500 index options we empirically focus on exposition of trade-off 

between models fitting performance and required calibration time for week by week dy-

namic calibration with FFT and FRFT specifications. In doing so we further investigate 

whether FRFT exhibits any distinctive features in addition to its substantial reduction in 

required computational time. More precisely for Black-Scholes and its time changed version 

the Variance Gamma model we investigate cross-maturity and cross-strike features of FRFT 

compared to those of FFT. 

Chapter4 is another contributory chapter. In this chapter we consider number of avail-

able models which are developed as alternatives to the Black-Scholes model. The models 

considered in this chapter include Black-Scholes (1973)[19], the Gram-Charlier (GC) ap-

proach of Backus et al. (1997)[9], the stochastic volatility (HS) model of Heston (1993)[69], 

the closed-form GARCH process of Heston and Nandi (2000)[70] and a variety of Levy pro-

cesses including the Variance Gamma (VG), Normal Inverse Gaussian (NIG), CGMY and 

Kou(2002) [75] jump-diffusion models. While most of the individual studies in the litera-

ture consider a cross-section of these models, we compare all these models using a common 

point-in-time data that reflects the perspective of a new investor who wishes to choose 

between models using only the most minimal recent data set. Moreover we compute the 

hedge factors delta and gamma for each of these models and then examine the accuracy of 

delta and delta-gamma approximations to the valuation of both individual options and an 

illustrative option portfolio. Based on the relative performance of Heston Nandi(2000)[70] 

model (CFG henceforth), in both pricing and approximation, we emphasize the necessity 

of exploring closed form GARCH approach with non-normal (Levy) innovations. 

Chapter5 is the main chapter of this thesis. In general for analytic derivative pricing the 

knowledge of the risk neutral distribution at maturity is essential. But the problem is that 

for the standard GARCH set up only the one step ahead distribution is available. Heston and 

Nandi(2000) [70] proposed a GARCH-like model with normal innovations where they were 

able to compute the characteristic function of the underlying using a recursive procedure 

and then used the Heston(1993) [69] approach to price option using Fourier inversion. For 
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short maturity options, Christoffersen (2006) [33] observed some pricing biases in Heston 

and Nandi's(2000) [70] model and conjectured that this is due to the fact that single period 

innovations are Normal. We reveal the mathematical underpinnings required to replace 

conditional Gaussian innovations in GARCH option pricing models by innovations coming 

from Levy processes with both one sided and two sided jumps. The necessity for this arises 

from the fact that the non-normal (Levy) innovations are crucial as heteroskedasticity alone 

doesn't suffice to capture the option smirk and an analytic valuation is important because 

it makes the model practically implementable. Though we didn't explore this further, 

it is obvious that like Heston and Nandi(2000)[70] our approach is built on a discrete 

time continuous state space and upholds the no-arbitrage principle of derivative pricing 

through the use of a conditional Esscher transform to configure a Equivalent Martingale 

Measure(EMM). Similar to the one in existing literature, established for GARCH with 

normal innovations, the existence of EMM provides de-facto evidence in support of no-

arbitrage argument. 

Naturally, we realize that the innovations coming from Levy processes with two sided 

jumps are mathematically cumbersome to deal with, as they require an approximation of 

volatility dynamics to uphold the analytic valuation methodology in GARCH-Levy frame-

work. All such cases considered are Brownian motions stochastically time changed by sub-

ordinators: VG-Brownian motion time changed by Gamma subordinator, NIG-Brownian 

motion time changed by inverse Gaussian subordinators, CGMY -Brownian motions time 

changed by tempered stable subordinators. We detailed the mathematical manipulations 

required to obtain semi-analytic option prices under GARCH dynamics with all these three 

innovations. However innovations coming from subordinated Levy processes which can ex-

hibit only positive jumps, are relatively easier to deal with. This is because in this case 

we do not require any approximation to obtain an analytic valuation. The case we exam-

ine most closely is "analytic GARCH option pricing with tempered stable innovations". 

The new GARCH-like processes with Levy innovations, GARCH-Levy model could be a 

plausible name, are capable of capturing the conditional skewness and conditional kurtosis. 

Moreover it is possible to obtain recursive relations for the evaluation of the charac-

teristic function multi-period ahead which can then yield the closed form prices, up to 
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numerical integration, for European Derivatives. We implement one of the four dynamics, 

namely those of the GARCH-NIG model, which we examine in detail. The scale of involve-

ment in implementation is the reason behind the selective implementation, especially as 

the coding involved requires enormous concentration and takes huge amount of calculation 

time. However once codes are developed and verified, procedures become implement able 

within manageable times. The point which we must stress here is that this is only possible 

because of the development of analytic valuation methodology coupled with application of 

FRFT. 

Chapter6 comprises the risk management part of this thesis. In this chapter we revisit 

the basics of financial risk management. We found that tail based risk measures VaR and 

ES often forecast the risk almost equally well for both tail based EV model and full density 

based Levy models; observations discarded by EV but incorporated by Levy models do not 

make for any significant improvement in the performance of tail-based risk measures. It 

then investigates Levy spectral risk measure as an alternative to Generalized Pareto spectral 

risk measure. In case of SRM, however, we observed that full density based Levy models 

perform consistently better than solely tail based EV model. To the best of our knowledge 

this work is the first in its kind where coherent risk measures ES and SRM are implemented 

for Levy models in comparative fashion for most of the leading indices over the world. As 

a consequence we provide clear empirical evidence against the use of SRM when investors 

prefer EV model to full density based models. On the other hand if for some or other 

reasons investors prefer to use SRM to quantify the underlying risk, it is better they use 

Levy models instead of EV. For the empirical work ofthis chapter we used the same data as 

used by Cotter and Dowd(2006) [39]1. This is because in Cotter and Dowd(2006) [39] they 

recommended using SRM with EV model to fix the margin requirement in clearing house, 

without noticing the subtle issue that extreme value model's calibration on few extreme 

observations often generate inconsistent values of quantiles outside the extreme tail. These 

quantiles, when used in estimation of SRM, provide a poor estimate of SRM. The idea 

behind using the same data as in Cotter and Dowd(2006) [39] is just to reveal how poor the 

EV SRM could be compare to Levy SRM. 

IThe indices considered are S&P500, FTSElOO, DAX, Hang-Seng and Nikkei225. 
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Chapter 1 

Basic Dynamics and G ARCH 

In quantitative Finance and Economics proper characterization of return dynamics is always 

a vibrant research topic. These dynamics are the fundamental tools for derivative research 

in general and option pricing in particular. Such dynamics playa pivotal role in currently 

much talked about financial risk management literature as well. The relative effectiveness 

of such dynamics is governed by stochastic characteristics of underlying process. 

1.1 Short Background on Development of Return Dynamics 

We start by referring to the very basic idea of Brownian perturbation: 

(1.1) 

where tk+l - tk = 6.t and k = 0, ... ,N with to = 0. Here Etk'S are independent and 

identically distributed random variables,(i.i.d henceforth), following Etk rv N(O,l). In the 

literature this is known as random walk. It follows that for j < k we have 

k-l 

Wtk - Wtj = ｌ ｅ ｴ ｩ ｾ Ｇ (1.2) 
i=j 

The right hand side is a sum of normal random variables, i.e. Wtk - Wtj is always a normal 

random variable for any j < k. It follows immediately that 

k-l 

Var(Wtk - Wtj ) = ｅ Ｈ ｌ ｅ ｴ ｩ ｾ Ｉ = (k - j)6.t = tk - tj. 
i=j 
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Also an immediate consequence of increments over non-overlapping intervals ti < tj ｾ

tj+l < tk, with i < j < k , is that Wtk - WtHl and Wtj - Wti are independent and hence 

uncorrelated. 

To see the intuitive relation of random walk and increments described in (1.2), consider 

partitioning [0,1] into "n" subintervals each having length Ｂ ｾ Ｎ Ｂ Then for t E [0,1] and fntl 

being the greatest integer part of its argument define: 

1 rntl 
Srntl = r;;; LEi. 

yn, 
t=l 

where Ei'S are defined as before. Then clearly 

which is a special form of (1.1) with b.t = ｾ and W t = Srntl' Furthermore for t = 1: 

(1.3) 

(1.4) 

(1.5) 

has a standard normal distribution. More importantly by central limit theorem, CLT hence-

forth, Sn tends in distribution to a standard normal variable even when "E/' 's are only i.i.d 

and not necessarily normally distributed. To rap things up the process S r ntl tends to a 

standard Brownian motion in distribution as n --+ 00. Equation (1.3) reveals the discrete 

time intuition behind simulating standard Brownian motion in continuous time: 

(1.6) 

The existence of such limit is well studied in the literature, see e.g. Billingsley(1999) [17]. 

Equation (1.6) plays an intuitive role in the derivation of celebrated Black-Schole-Merton's 

option pricing formula. 

Definition 1.1 A stochastic process Wt is said to be a standard Brownian motion, SBM 

henceforth, if it satisfies: 

[SBMi] for t < .., Wt - Ws = Wt - s rv N(O, t - s). i.e Wt is stationary. 

[SBM2] for ° ｾ tl < t2 ｾ t3 < t4, Wt4 - Wt3 is uncorrelated with Wt2 - Wtl · This is 

known as independent increments property. 
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[SBM3j Wto = O. 

The stationarity ,in particular in financial modeling, implies that the distribution of price 

appreciation doesn't depend on any particular time. As long as the length of the intervals, 

over which the the price appreciation is observed, remain same the distribution will remain 

same, no matter where it is observed. The independent increments property implies that 

the distribution governing such price fluctuations over non-overlapping observation periods 

are independent and hence uncorrelated. 

Standard Brownian motions are not able to model the average tendency or drift of a 

process governing the price fluctuation of assets, since over any time interval it models the 

fluctuations by a zero mean distribution. Arithmetic Brownian motions, ABM henceforth, 

are thus considered to overcome this limitation of SBM. Under ABM the price fluctuation on 

an interval of length dt is governed by the stochastic differential equation, SDE henceforth,: 

dSt = J1dt + (5dBt (1.7) 

where dBt is a SBM and J1 and (5 > 0 are constants. We will revisit the general structure 

of SDE. For the moment we just mention that SDE's describe the increments of a process, 

say X, which is driven by one or several governing random processes. When there is only 

one governing random process SDE's are, in general, described as: 

(1.8) 

where Bt is a SBM and J1&(5 are continuous functions of t&X. When J1&(5 are functions 

of t&Xt only and doesn't depend on any of Xt-h values for h > 0, X t in (1.8) is known 

as Markov process. So a diffusion process, represented by (1.8), is a Markov process. The 

drift rate and variance rate's are the limit's: 

[ X] 
- l' E[XHllt - X t I ｾ ｴ ｝

J1 t, t - 1m At 
ll--+O L.l 

(1.9) 

[ X ]
2 _ l' Var[Xt+ll t - X t I ｾ ｴ ｝

(5 t, t - 1m At 
ll--+O L.l 

(1.10) 

respectively, which are also known as instantaneous drift and instantaneous volatility. A 

diffusion processes, hence a Markov process also, is not a martingale, unless the drift J1[t, Xtl 
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is identically zero for all X t and t. The value space and the distribution of future values 

depend on the function f-t and 0". 

Hence ABM, described in (1. 7), is a diffusion process with f-t[t, Xtl = f-t and O"[t, Xtl = 0". 

Clearly it is a Markov process and is not a martingale as long as f-t =1= o. Its equivalent, and 

more intuitive, integral form is: 

(1.11) 

It now follows that 

(1.12) 

So 

and 

So mean and variance of price fluctuation over an interval of length t changes linearly with 

t. This model can be a suitable specification for an economic variable that grows, assuming 

f-t > 0, at a constant rate and is characterized by increasing uncertainty. But as the process 

can take negative values it is not suitable as a model for stock prices, since limited liability 

prevents stock prices from going negative. The remedy is what follows: Geometric Brownian 

Motion(GBM). 

GBM is a model for describing the price fluctuation dSt , on an interval of length dt, 

relative to the current value St. This proportional change, or rate of return, is modeled as 

an ABM. Consequently the governing SDE is: 

(1.13) 

where f-t and 0" > 0 are constants. Comparing with (1.8) it follows that GBM is a diffusion 

process with f-t[t, Stl = f-tSt and O"[t, STl = O"St. Hence St governed by (1.13) is a Markov 

process and is not a martingale as long as f-t =1= o. Drift co-efficient f-tSt and diffusion co-

efficient O"St are both proportional to the latest known value of the price process St, and 

thus continuously changes. The higher the latest St the greater the drift co-efficient and 
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the larger the perturbation. So a bigger random increment is more likely. Ito's formula, 

which we will discuss later, leads to the integral form of (1.13): 

(1.14) 

That is ｉ ｮ ｛ ｾ ｝ = [j.t - ｾ Ｐ Ｇ Ｒ ｝ ｴ + 0' B t . So log returns are normally distributed with parameters: 

E(ln[ ｾ ｴ ｝ Ｉ = E([j.t - ｾ Ｐ Ｇ Ｒ ｝ ｴ + 0' B t ) = [j.t - ｾ Ｐ Ｇ Ｒ ｝ ｴ
00 2 2 
St 1 2 

Var(ln[ So]) = Var([p, - 20' ]t + 0' B t ) = 0'2t. 

Thus return's ｾ are log-normally distributed: 

Having an exponential representation, St can never be negative. At St 

log-normal density: 

where 

and 

(1.15) 

(1.16) 

( 1.17) 

x it has the 

(1.18) 

So GBM can be a suitable specification for an economic process which can not assume 

negative values and whose variability depends linearly on the level of the variable. Thus 

GMB is the traditional model for the stock prices. Celebrated Black-Schole-Merton ,BSM 

henceforth, idea capitalizes on GBM for asset return. 

Theorem 1.1 Consider a European option with pay-off V(S) and expiration time T. As-

sume the continuously compounded rate of interest is r. Then the current European option 

price is determined by: 

1/(0, So) = e-rT E[V(ST)] (1.19) 

where E denotes the expectation under the risk neutral probability that is derived from the 

risk-neutral process: 
dSt 
- = rdt + O'dBt . 
St 

(1.20) 
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BSM call option pricing formula takes the explicit form: 

Theorem 1.2 Consider a European call option with strike price K and expiration time T. 

If the underlying option pays no dividends and continuously compounded risk-free rate is r, 

then the price of the contract at time t is given by: 

(1.21) 

where <1>(:r) denotes the cumulative distribution function of standard normal random variable 

evaluated at the point x dl = [InC it )+(r+4 )(T-t)] and 
, a-yT-t 

s 2 

d - [InC it )+(r-.y )(T-t)] with d2 = dl - avT - t. 
2 - a-yT-t 

1.2 Imperfections in Black-Schole's Model 

The seminal paper of Black-Schole was a break-through in option pricing literature. But 

empirical evidence suggests that the model is in conflicts with some of the stylized facts: 

• The scale invariance property of Brownian motion leads to the fact that Brownian motion 

doesn't distinguish itself between time scales where as real price behavior does. Prices 

move essentially by jumps at intraday scales, at the scale of months they still manifest 

discontinuous behavior and only after coarse graining their behavior over longer time 

scale we get something resembling Brownian motion. Though Black-Schole's model 

can be chosen to give the right variance of return on a given time horizon, it doesn't 

behave properly under time aggregation, i.e. accross time scale. Since it is difficult 

to model the behavior of asset treturns equally well across all time scales,ranging 

from several minutes to several years, it is crucial to make the time scale explicit 

in various applications from very onset. Thus Black-Scholes's model is certainly not 

outperforming one on various time scales of practical interest . 

• Looking into the early studies in literature, Mandelbrot(1963) [82] and Fama(1965) [55] 

had indicated that short-run returns in commodity and stock markets are not normally 

distributed but have fat tailes and are peaked i.e. they have leptokurtic distribution. 

However for longer investment horizons of a month or more the return distribution 

seems to converge to a normal distribution. 
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• Relatively recent evidence has suggested that the assumption of constant volatility is 

completely inconsistent in financial markets. See Fama(1976) [56]. 

• There is strong evidence in support of changes in stock prices being negatively correlated 

with changes in volatility. The phenomenon which is often termed as "leverage effect." 

Black-Schole , assuming constant volatility, completely fails to report such subtle 

effect. 

• The most resounding failure of Black-Scholes model is its inability to recognize the 

systematic pattern of impled volatilities exposed by market option prices. When 

the Black-Scholes formula is inverted to compute the implied volatilities from re-

ported market option prices volatility estimates differ across exercise prices and time 

to maturity. Two distinct patters are observed when implied volatilities are plotted 

against strike -prices ( or against moneyness, a function of strike price), see Cont and 

Tankov(2003) [38]. The patterns are "volatility smile" and "volatility skew". As time 

to maturity increases these curve typically flatten out. Volatility smile is associated 

with a "U" shaped pattern of impled volatilities where at the money options have the 

smallest implied volatility. This pattern is common with currency options and in stock 

index option this pattern has been reported in the period prior to '87 market crash,see 

Sheikh(1991) [107] and Rubinstein(1994) [96]. After the crash, however, skewed implied 

volatility patterns are often observed: using post crash S&P 500 index options and 

futures options Rubinstein(1994) [96] and Derman and Kani(1994) [41] showed that 

implied volatilities decreases monotonically as the exercise price rises relative to the 

index level. All these phenomena turn inconsistent with Black-Schole which suggests 

a flat volatility surface across strike and maturity. It has been conjectured that the 

underpricing by Black-Schole model, particularly in case of short-run options, is a 

consequence of disregarding skewness and kurtosis of the return distribution . 

• Recent research,see Cont and Tankov(2003) [38], has convincing evidence regarding the 

presence of jumps in equity price dynamics. In fact inability to trade continuously 

implies de facto jumps in return dynamics. These jumps contribute to (or may be 

a source of) stochastic volatilty when they lead to finite variation trajectories in the 
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absence of diffusion term, which is mostly the case in practice. Black-Schole assuming 

a continuous path with drift (and no other combination or superposition of processes 

with it) contradicts with de facto presence of jumps. 

1.3 Possible Remedies of the Imperfections 

Researchers already have substantial contributions to remedied the imperfections surround-

ing Black-Scholes model. As hinted above it is crucial to include jumps in the return to make 

the models more realistic across different time scales. As we will see, in this perspective, 

Levy process can yield some more realistic models for return dynamics. Approximation 

of densities considering skewness and Kurtosis are found to improve the performance of 

Black-Scholes model, see Backus et al(1997) [9]. We will revisit it later with some details. 

Smile-Skew related remedies are still a vibrant research in empirical finance. Black-Schole's 

model is not the only continuous time model built on Brownian motion. Considering in-

stantaneous volatility as a local function of price and time, the nonlinear Markov diffusion 

models are proposed in Dupire(1994) [49] and Derman et al(1994)[41]: 

dSt 
St = f.-ldt + CJ(t, St)dEt . (1.22) 

In the same line another proposal is the stochastic volatility model, see Heston(1993)[69] 

and Hull et al(1987) [71], where the price St is the component of a bivariate diffusion (St, CJt) 

driven by a two-dimensional Brownian motion (Et, E£): 

(1.23) 

(1.24) 

These models have more flexible statistical properties but as the uncertainty is modeled 

by Brownian motion the perennial problem of continuity is still there which doesn't seem 

to be evidenced by real prices over the time scales of interest. Since continuity of paths 

plays a crucial role in general properties of diffusion models question arises whether results 

obtained and conclusions drawn from by studying these models are robust to the removal 

of continuity hypothesis. Studies in quantitative finance in the framework of models with 

jumps reveal that many results obtained in diffusion models are actually not robust to the 
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presence of jumps in the prices and thus deserve to be considered anew when jumps are 

taken into account. Thus jumps added to diffusion models are shown to perform much 

better. It was first introduced in Merton(1976)[85] and a recent reference showing nice 

empirical performance is Kou(2002)[75]. It is shown that the dynamics: 

dSt Nt 

S = p,dt + 17dBt + d(I)Vi - 1)) 
t- i=l 

(1.25) 

where Vi is a sequence of independent and identically distributed non-negative random 

variables such that Y = log(V) has an asymmetric double exponential distribution and 

Nt is a Poissson process with rate A. With this jump incorporated dynamics, stochastic 

volatility can also be incorporated which leads to stochastic volatility jump diffusion model. 

This kind of models are found performing very well. However jump diffusion processes are 

Levy processes1 and Levy processes have much more flexibility of characterizing the jumps 

enhancing the performance of the model. 

1.4 What is GARCH? 

It has been observed for quite a long time that there are clustering in financial market volatil-

ity. A volatile period tends to persist for some time before the market returns to normality. 

Given that volatility is unlikely to remain constant over time, how could it be modeled so 

that it responds to time varying shocks? Engle answers this question in Engle(1982) [54] un-

der the name ARCH (Autoresgressive Conditional Heteroskedasticity)and its generalization, 

see Bollerslev(1986) [20], is what known as GARCH. The ARCH approach was later found 

to fit many financial time series and its widespread impact on finance has led to Nobel Com-

mittee's recognition of Rob Engles work in 2003. GARCH is just another way of modeling 

the volatility dynamics, specially in discrete time settings. Modeling conditional volatility 

by GARCH has recently shown to perform much better in capturing empirically observed 

characteristics in financial return, when option pricing is concerned, and is intuitively more 

realistic in its approach. GARCH has the elaboration "Generalized Autoregressive Con-

ditional Heteroscedasticity." Following the works Engle(1982) [54] and Bollerslev(1986) [20] 

a voluminous financial and econometric literature has developed on volatility estimation 

lSee Cont and Tankov(2003)[38J, Kyprianou(2006) [76]. 

10 



and forecasting. By now the GARCH volatility models have become an important tool-kit 

in empirical asset pricing and financial risk management. Most cited in this voluminous 

literature concerning empirical finance are Campbell et al(1992)[28]' French et al(1987) [58], 

Glosten et al(1993) [67], and Pagan et al(1990)[901. 

1.4.1 Intuition and Examples 

Engel's, see Engle(1982) [54], proposal to model the conditional variance a} as a linear 

function of p lagged squared innovations z; is what known in the literature as ARCH(p) 

model: 

Zt I ｾ ｴ Ｍ ｬ rv N(O, at) (1.26) 

(1.27) 

where (3i > 0 for all i, 2::;=1 (3i < 1 and ｾ ｴ Ｍ ｬ represents the information set of all information 

upto and including t - 1. That is given the information ｾ ｴ Ｍ ｬ Ｌ the next observation Zt has 

normal distribution with conditional mean lE(Zt I ｾ ｴ Ｍ ｬ Ｉ = 0, and conditional variance of 

V(Zt I ｾ ｴ Ｍ ｬ Ｉ = or Following the idea of general stochastic process we can think of these 

as the mean and variance of Zt, computed over all paths which agree with ｾ ｴ Ｍ ｬ Ｎ Equation 

(1.27), specifies the way in which the conditional variance at, is determined by the available 

information. Note that at, is defined in terms of square of past innovations. This together 

with the assumptions that (30 > 0 and CYi ?: 0 guarantees that (Jt > O. Some common 

features of ARCH models are: 

• Typically q is of high order because of persistence of volatility in financial markets. The 

way volatility (Jt is constructed in (1.27), it is known at time t - 1. So one-step-ahead 

forecast is readily available. Multi-step ahead forecasts can be formulated by assuming 

lE[z;+Tl = (Jt+T' 

• It is surprising that if instead of restricting to paths which agree with the available 

information ｾ ｴ Ｍ ｬ we consider all possible paths, we have lE[ztl = 0, V[ztl = I-tLl {3i' 

a finite constant. To see these consider ARCH(l) and observe that: 

lE[Ztl = lE[· .. [lE[lE(Zt I ｾ ｴ Ｍ ｬ Ｉ ｬ ｬ ｾ ｴ Ｍ Ｒ Ｑ Ｇ .. I ｾ ｯ ｬ = 0 (1.28) 
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since by definition IE(Zt I Jt-l) = O. Similarly, since 

IE(Z; I Jt-l) = a'; = f30 + f31z;-1, 

IE(f3o + f31z;_1 I Jt-2) = f30 + f31 (f3o + f31z;-2) 

repeatedly applying this argument we have: 

IE [z;] = IE[· .. [IE[IE(z; I Jt-l)] I Jt-2]' .. I Jo] 

= f3o(1 + f31 + f3f + ... + f3i- 1) + f3iz5 

That is for large t and f31 < 1, V[ztJ = IE[zrJ = ｬ ｾ ｾ ｬ . It then follows that COV(Zi, Zj) = 

0, if i =1= j. That is for an ARCH(q), V[Zt] = I-ttl(3i' hence unconditionally the 

process is stationary as long as ｉ Ｚ ｾ Ｚ ｩ f3i < 1, which is assumed in the definition of the 

model. It is only the conditional volatility which changes with time, not 

the overall volatility. 

• Though it is in the name ARCH model is not autoregressive. However if we add 

T}t = z; - a-;, (which, according to the definition of Zt is a zero mean white noise) to 

both sides of equation (1.27), we get: 

q 

z; = f30 + L f3i zZ- i + T}t· 
i=l 

That is the squared process z; is autoregressive with non-zero mean and au-

toregressive parameters f31, f32, ... , f3q. 

• The ARCH(q) model is nonlinear. If we could express Zt as Zt = ｉ Ｚ ｾ ｬ aiet-i, 

(for some independent white noise et), then we would have V(Zt I Jt-l) = V(Zt I 

et-l, et-2, .. ) = V(et), a constant. This contradicts equation (1.26). So Zt must be a 

non-linear process. 

• The observations Zt of an ARCH(q) model is not Gaussian though the con-

ditional one is. Roughly the reason for this is that the unconditional distribution 

is an average of the conditional distributions for each possible paths upto t - 1. Al-

though each of these conditional distribution is Gaussian, the variance crt'S are not 

equal across 't'. So unconditional distribution is the mixture of normal distribution 

with unequal variances, which is not normal. 
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• The distribution of Zt, tends to be more long-tailed than normal, which allows outliers 

to occur relatively often. The kurtosis in ARCH(l) process is shown, see Bera and 

Higgins(1993) [13], to be: 

lE[zt] = 3 ( 1 - (3r ) > 3. 
er4 1 - 3(32 z 1 

(1.29) 

This is very important since it reflects models leptokurtic behavior which is consistent 

with the short-run returns in financial data. Moreover once an outlier is included it , 

will increase the conditional volatility for some time to come. The reason is that any 

of the larger Zt-i, being squared, will make an increasing impact on ert as it is defined . 

• Since lE(Zt I Jt-1) = 0, we see that Zt are Martingale difference. Thus the best estimate 

of Zt, based on the available information is simply the trivial predictor, namely the 

series mean O. However although Zt is not forecastable, the squared series z; is: 

• Zt are not independent, though they are uncorrelated.This is because if Zt were 

independent they would form a linear process however as we saw ARCH( q) is not 

linear. 

In application of ARCH(p) type models it's often found that the required p is rather large 

and so for the shake of a parsimonious parametrization a generalized ARCH(p,q), known 

as GARCH(p,q), was introduced in Bollerslev(1986)[20] in such a way so that conditional 

variance is also a function of its own lags of all order upto q: 

(1.30) 

For GARCH(l,l), the constraints (}1 > 0 and (31 > 0 are needed to ensure positivity of err. 

For higher orders of GARCH the constraints on (}i and (3j are more complex, see Nelson 

and Cao(1992)[88]. Using the similar intuition as ARCH the unconditional variance can be 

shown to be: 
2 (30 

er = p q 
1 - I:i=1 (3i - I:i=i (}i 

(1.31) 

Hence the covariance stationarity in GARCH(p,q) model holds if and only if I:f=1 (3i + 
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Convergence of Conditional Variances 

Let us get some more insight of volatility forecast in GARCH(l,l) model. The one-step 

ahead forecast of conditional variance at time tis: 

(1.32) 

Making use of the fact that JE(zt+1 I ｾ ｴ Ｉ = llt+1' the forecast of llt+2 can be obtained as: 

(1.33) 

Similarly, 

&t+3 = (30 + ((31 + (1) ll;+2 

= (30 + (30((31 + (1) + ((31 + (1)2ll ;+1 

= (30 + (30((31 + (1) + (30((31 + (1)2 + ((31 + (1)2[(31z; + allltJ (1.34) 

Hence for a large arbitrary forecast horizon T , we get: 

ｾ Ｒ (30 ((3 )T-1[(32 2] 
llt+T = 1 ((3 ) + 1 + a1 1Zt + a1ll t ' 

- 1 + a1 
(1.35) 

If a1 + (31 < 1, as is assumed in the definition, and T gets larger and larger then the 

second term on the right hand side of (1.35) dies out eventually and &r+T converges to the 

d 't' I' /30 uncon IlOna vanance 1-Uh +0<1)' 

Exponential G ARCH or EGARCH 

To ensure positivity of conditional variance ARCH and GARCH models need to impose 

non-negativity restrictions on the ai's and (3/s, Moreover in this early characterization 

of innovations the GARCH model assumes that the impact of news on the conditional 

volatility depends only on the magnitude , but not on the sign, of the innovations, But as 

mentioned above stylized facts suggests that changes in stock prices are negatively correlated 

with changes in volatility; thus the primitive characterization can't capture the so called 

leverage effect, To overcome these drawbacks the exponential GARCH , or EGARCH 
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in short, was introduced in Nelson et al(1991)[87] such that logarithm of the conditional 

variance is specified as: 

lna-; = fJo + fJi Zt-l + fJi (I Zt-l I -IE [I Zt-l I]) + cqlna-;_I' 
a-t-l a-t-l a-t-l 

(1.36) 

with Zt rv N(O, a-;). Then;'; rv N(O,l) and consequently IE [lW] = Ii. It is easy to 

see that the leverage effect is captured by fJ1
1 • For "good news", i.e. for IZt-ll > 0 the 

O"t-l ' 

impact of the innovation ZL-l is (fJ1
2 + fJ1

1) IZt-ll and for "bad news" i.e. for IZt-ll < 0 it 
O"t-l 'O"t-l ' 

is (fJi - fJi) ｉ ［ Ｚ ］ ｾ ｉ Ｎ Hence if fJi = 0 , lna-; responds symmetrically to ｉ ［ Ｚ ］ ｾ ｉ Ｌ in other words 

non zero fJi captures the leverage effects. Furthermore, since conditional volatility, a-t, is 

characterized in terms of log it is always positive and consequently there is no restriction 

on the sign of the model parameters. 

Integrated GARCH or IGARCH 

For a GARCH(p,q) process, when 2.:f=1 ai + 2.:;=1 fJi = 1 the unconditional variance in 

(1.31) blows up and the convergence of conditional variances in (1.35) is no longer mean-

ingful. Conditional variance is then described as an integrated GARCH, or IGARCH, and 

there is no finite fourth moment. Conceptually an infinite variance is counter intuitive to 

real phenomena in Economics and Finance. However based on the empirical findings in 

support of GARCH(l,l) as the most popular model for many financial time series, a non-

stationary version of GARCH(l,l) (where the persistence parameters al and fJl sum to 1) 

was incorporated to EWMA (exponentially weighted moving average) by RiskmetricsT M. 

To see this incorporation first make repeated use of (1.30) to obtain: 

(1.37) 

So 
T T 

2 (.l ｾ i-I + (.l ｾ i-I 2 + T 2 
a-HT = 1-'0 L-t a 1 1-'1 L-t a 1 Zt+T-i al a-t · (1.38) 

i=1 i=1 

Thus for T ----t 00 and al < 1, we can infer that: 

(1.39) 
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We have the EWMA model for sample standard deviation such that: 

A2 _ ( 1 ) 2 2 n 2 
(}t - 1 + A + P + ... + An ((}t-1 + A(}t-2 + ... + A (}t-(n-1)) (1.40) 

If n --+ 00 and A < 1, we get: 

00 

0-; = (1 - A) L Ai -
1
(};_i' (1.41) 

i=l 

When z; is taken as proxy for (}r, (1.39) and (1.41) are both autoregressive series with long 

distributed lags, except that (1.39) has an additional constant term. 

Nonlinear G ARCH or NGARCH 

A simple modification of GARCH(l,l) process, defined in (1.30), makes it possible for 

innovations and volatilities to be negatively correlated,for e > 0, a phenomenon described 

as leverage effects: 

(1.42) 

In the literature this is known as nonlinear GARCH or NGARCH. The point here is that 

it is negative piece of news Zt < 0, which has more impact on variance than a positive piece 

of news Zt > 0 provided e > O. The persistence of variance in this model is /31 (1 + e2) + Q1 

and the long-run unconditional variance is (}2 = Ｑ Ｍ Ｌ Ｖ Ｑ Ｈ Ｑ ｾ Ｘ Ｒ Ｉ Ｍ ｡ ｬ Ｇ

GJR GARCH and TGARCH 

Another GARCH(p,q) model allowing for asymmetric dependencies, i.e. incorporating 

leverage effects, is Glosten-Jagannathan-Runkle GARCH or GJR-GARCH model: 

where, 

q p 

(); = /30 + L Qi(};-i + L (/3jZ;_j + IjIIj,t-jzr-j) . 

i=l j=l 

{ 

1 if Zt-j < 0 
IIj,t-j = 

o if Zt-j > 0 

(1.43) 

(1.44) 

The positivity of conditional variance is ensured by the restrictions /30 > 0, Qi ｾ 0, /3j ｾ 0 

and Qj + Ij ｾ 0 for i = 1· .. q and j = 1· .. p. Covariance stationarity holds if and only if: 

(1.45) 

16 



The TGARCH, i.e. threshold GARCH, is similar to GJR-GARCH except that it is 

formulated with absolute return: 

q p 

a; = /30 + I: G:ial-i + I: (/3j I Zt-j I +/'jIIj,t-j I Zt-j I) . (1.46) 
i=1 j=1 

Positivity of the conditional variance is ensured with the restriction on the parameters as 

before and restriction on covariance stationarity now becomes complicated and in case of 

p = q = 1 it takes the form: 

(1.47) 

1.5 GARCH Features for Derivative Pricing 

At times when deterministic volatility in classical models was leading poor fit for options 

data, researchers started thinking to capitalize on GARCH models to fit options data. This 

was motivated by the success story of GARCH to fit return data. For the first time in lite-

rature , Duan(1995)[45] characterizes the relationship between market and risk-neutral pro-

bability distributions when the derivative under consideration follows a GARCH dynamic. 

That was the foundation of pricing European option using GARCH process. Subsequently 

the theoretical aspects of hedging in the G ARCH option pricing model were considered in 

Garcia and Renault(1998) [61]. Jumps were incorporated in returns and volatility extending 

the GARCH option pricing model to give more realistic fit to real market option data. See 

Duan et al(2004) [46]. 

In scientifically developed time-continuous stochastic differential equation models the 

Markovian assumption of the underlying price process is required; otherwise the model 

may fail to produce a solution. See e.g. Shreve(2004) [104]' Fusai and Roncoroni(2008) [59]. 

However the Markov property, from realistic point of view, turns out to be too strong 

to justify. Strong empirical evidence suggests that stock price processes and interest rate 

processes are non-Markovian. See e.g. Poon(2005) [93], Jondeau et al(2007) [73]. In fact it is 

now unanimously accepted that asset returns display the feature of volatility clustering and 

are of strong time series structure, implying the non-Markovian property. In order to apply 

sophisticated theory, it seems inappropriate to assume an unrealistic modeling assumption 
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namely Markov structure of the dynamics. It is thus important to have a theory which, 

from practical point of view, allows non-Markovian modeling for asset prices. Discrete time 

G ARCH processes have strong appeal under such background and can be more realistic 

candidates for asset price modeling under no-arbitrage condition. 

1.5.1 GARCH Option Pricing 

The GARCH option pricing model assumes that the per unit expected return of the un-

derlying asset is equal to the risk free rate, r, plus a premium for taking the risk, A, and a 

convexity adjustment term. Under such a specification the observed daily return is equal 

to the expected return plus a innovation term. The most common and starting assumption 

for the noise term is the conditional Gaussian distribution with mean zero and variance 

following a GARCH(l,l) process with leverage. That is: 

(1.48) 

where ZHI r-..; N(O, 1) and the volatility dynamic is given by 

(1.49) 

With the assumption that specification (1.48) of the stock returns is under the physical, or 

market, measure P, the equation 

(1.50) 

signifies the role and meaning of A as price of volatility risk. This model assumes that returns 

are drawn from a normal distribution with time varying volatility accommodating leverage 

effects. Because of this conditional heteroscedasticity or non-stationarity the unconditional 

distribution is fat-tailed. To ensure covariance stationarity of the innovation process Zt it 

is required that the parameter's satisfy 

which in turn ensures the positivity and finiteness of long run unconditional variance of the 

process given by: 
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f30 
(1.51) 

1 - f32(1 + (12) - f31 

See Bollerslev(1986)[20]' Berkes et al(2003) [14] and George(2001) [64]. 

It is easy to see that GARCH process defined by (1.48) and (1.49) reduces to the standard 

homoskedastic lognormal process of the Black-Schole's model if f31 = 0 and f32 = O. That is 

Black-Schole's model is a special case of GARCH model. To utilize the GARCH approach 

for option pricing the conventional risk-neutral valuation relationship has to be considered 

in a local form( only one period ahead) which is known in the literature as local risk neutral 

valuation relationship, LRNVR, see Duan(1995)[45]. This essentially implies that under 

locally risk-neutral relationship we must have: 

RHI = In(SHd - In(St) = r - to"HI + JO"HI Z ;+1 

O"HI = f30 + f310"t + f320"dz; - (e + A)f 

(1.52) 

(1.53) 

where z; rv N(O, 1). This risk-neutral version, corresponding to Q (say), is characterized in 

such a way so that is ensures: 

JEQ[exp (RH l) I Jt] = exp {r} 

V P [RH I I Jt] = VQ[Rt+l I Jtl = O"Hl· 

(1.54) 

(1.55) 

Denoting the new non-centrality parameter by e* = e + A, and assuming the interest rate 

r is a given constant, the risk neutral pricing measure is determined by four parameters 

f30 ,(31 ,f32 and e*. 
From (1.52), with MG(Monte Carlo) number of simulated hypothetical risk neutral 

asset price paths on each time period from present to maturity, we can obtain hypothetical 

asset price at maturity for each simulated path as : 

Si,HT = St exp {t Ri,Hj} , i = 1, ... ,MG. 
J=1 

= St exp {r(T) - t {t O"i,t+j } + {t J O"i,t+jzi,t+j } } 
J=1 J=1 

(1.56) 
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Here St is the present value of the underlying which is known. The equality in (1.56) follows 

because it is the characterization of a general sample path and model assumption provides 

a return specification of the form (1.52) for each such sample path and for each of the "T" 

future time step. See Christoffersen (2003) [34]. Then the option price, say European call, is 

calculated by taking the average over the future hypothetical payoffs and discounting them 

to the present: 

eCH = exp{-rT}JEQ[max{S;+T - K,O}] 

1 Me 
::::; exp{-rT} Me ｌ ｭ ｡ ｸ ｻ ｓ ｾ ｴ Ｋ ｔ - K,O} 

i=l 

(1.57) 

Put option prices can also be obtained in the same way. As the number of Monte Carlo 

replication, MC, gets infinitely large, the average will converge to the expectation. In 

practice MC=10000 suffices to obtain a good enough estimate. In addition, control variate 

technique can be used to reduce the variance of the option prices. Similarly option can be 

priced for other characterization of GARCH processes such as EGARCH, TGARCH etc. 

1.5.2 Physical and Risk-neutral Measures 

Since switching between physical(or market) measure and risk-neutral measures will be a 

frequent task, it is better to get some insight into it driven by Christoffersen(2003) [31]. 

It was basically introduced in Duan(1995) [45], under the name local risk neutral valua-

tion relationship(LRNVR), and plays an important role in making GARCH theory more 

applicable. 

Consider a general innovation function! in (1.49). 

(1.58) 

The idea is that if ! represents some sort of quantitative effect of innovation Zt on an 

economy in which the volatility process is driven by (1.58), then that quantitative effects 

should remain same under both physical and risk-neutral measures. 

We notice that solving for Zt+l from risk-neutral dynamics (1.52) yields: 

R Ut+l 
t+I - r + -2-

y'CTHI 
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and solving from physical dynamics (1.49) yields: 

_ Rt+1 - r + C7tt - AVCJt+1 Rt+1 - r + (Jtf 
Zt+1 - = - A 

V CJt+1 VCJt+l 
(1.60) 

Thus using the intuition above about the role of f in the economy and assuming it is 

one-one, considering (1.59) and (1.60) we must have: 

VI. (1.61) 

So from now on we will switch between physical and risk-neutral measures by switching 

between their corresponding innovations according to (1.61), namely z;+l - A = Zt+1 or 

z;+l = A + Zt+1. 

1.6 Success and Limitations of GARCH Models 

A major contribution of the ARCH literature is the findings that apparent changes in the 

volatility of economic and financial time series may be predictable and possibly results from 

a specific type of non-linear dependence rather than exogenous structural changes in the 

variables, see e.g. Bera et al(1993)[13]. In case of financial data, however, large and small 

errors tend to occur in cluster i.e. large returns are followed by large returns and small 

by more small, see for example Christoffersen(2003) [34] for such empirical evidence. This 

suggests that returns are serially correlated. Thus it is logically inconsistent and statistically 

inefficient to use volatility measures that assume that volatility remains constant over some 

period when the resulting series moves through time. As argued earlier, unconditional 

distribution of Zt is always leptokurtic which makes the ARCH return dynamics consistent 

with the distributional properties of short-run returns in financial market. Furthermore 

ARCH type models are relatively simpler and easier to handle. They take care of clustered 

errors and non-linearities. Roughly speaking, such models can accommodate the changes in 

the econometricians ability to forecast. In Stock(1998) [109], ARCH approach is supported 

in an elegant way mentioning "any economic variable, in general, evolves on operational 

time scale, while in practice it is measured on a calender time scale. And this inappropriate 

use of calender time scale may lead to volatility clustering since relative to the calender 

time, the variable may evolve more quickly or slowly." 
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It has already been established that GARCH models consistently outperforms ｅ ｜ ｖ ｾ ｉ ａ in 

all subperiods and under all evaluation measures. In Pagan et al(1990) [90] it has been estab-

lished that EGARCH is best specially when compared with some non-parametric methods. 

To talk about limitation of GARCH approach it must be noted that since multi-period 

distribution can not be derived in closed form, asset prices must be simulated and parame-

ter estimation involving such simulation is often time consuming. GARCH model features 

an exponential decay in the autocorrelation, however it has been noted that squared and 

absolute returns of financial asset typically have serial correlations and decay slowly. Some 

findings indicated that GARCH superiority is confined to the stock market and for forecast-

ing volatility over shorter horizons only. In option pricing literature the simulation problem 

is tackled by Heston and N andi(2000) [70], for the first time in literature. They derived 

recursive relations which are required to obtain multi-period ahead distributions. However 

the recursions were possible solely because of a classic relation involving a standard normal 

variate. This research mainly focuses on upholding similar recursive approach required in 

closed form valuation but incorporates innovations from much richer stochastic processes 

known as Levy processes. In following chapters we study such processes with some details 

and find scopes in the relevant literature to make some complementary contributions. We 

consider relative performance of GARCH approach compare to other approaches to option 

pricing which justifies why further development in this approach should be of interest. 
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Chapter 2 

Levy Processes for Non-normality 

Starting from Markowitz frontier analysis and Capital Asset Pricing Model(CAPM) of early 

periods to until recently with Value-at-Risk(VAR) computations, assumption of normality 

for asset returns has been dominant. A natural companion to such assumption is the conti-

nuity of paths. As discussed in chapterl, such assumption clearly contradicts many empirical 

findings leading to serious imperfections of classical Black-Scholes model. In this chapter 

we discuss the basics of Levy modelling. In the following chapters some of these Levy pro-

cesses, which are well cited for considerable success in capturing more realistic and flexible 

modelling of real market data, will be investigated and compared with other approaches to 

option pricing. Later these models will be further explored to deal with risk-management 

issues. However some criticisms associated with Markov property of Levy models could be 

circumvented by considering GARCH-Levy type dynamics for even more realistic modelling 

of real market data. Such models blend the non-Markovian structure of GARCH dynamics 

with potentially non-normal innovation's coming from rich Levy processes. This provides 

remedy to imperfections around normal innovations and offers a way to get rid-off strong 

Markov assumption. We need a concrete section to introduce the underpinnings of Levy 

processes. However this literature on Levy processes has become very vast and is under 

continuous up-gradation. In introducing the basics of Levy processes our attention will be 

to gather working knowledge with some in depth intuitions of working tools. Even so we 

have to delve into some involved theoretical aspects. 
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2.1 Basics of Levy Modelling 

This section is intended to make an effective excursion into the theory of Levy processes. 

Levy processes belong to a particular family of stochastic processes with some natural 

properties giving them the flexibility to capture many important aspects inherent in time 

series data. 

Definition 2.1 A cadlag stochastic process X = {Xt;t 2': O}, on (Sl,.r,P) with values in 

IR is called a Levy process if it satisfies the following properties: 

{Ll j each Xo = 0 a.s. 

{L2 j X t has independent and stationary increments, i. e. 

(i) for every increasing sequence of times to < tl < t2 < ... < tn the random 

variables X to ' X h - X to ' ... ,Xtn - X tn_1 are independent. 

(00) X X D X X h d b 1 "" Hh - t = Hh-t = h, i. e. t e istri ution 0 Xt+h - X t does not depend 

on t. 

(L3 j X t is stochastically continuous, 'to e. 

lim P(IXHh - Xtl > E) = 0, 
h--+O 

'liE> O. 

In no way does condition [L3] imply that the sample paths are continuous, as we will see 

in the case of the Poisson process. The intuitive meaning of [L3] is that for a given time 

t (deterministic) the probability of seeing a jump at t is zero, i.e. discontinuities (jumps) 

do not occur at deterministic times and so occur at random times. It serves to exclude 

processes with jumps at fixed times which can be regarded as "calender effects" and are 

not interesting for our modeling purposes. All these facts together with the notion of jumps 

yield the following result. 

Proposition 2.1 If X = {X6 t 2': O} is a Levy process then for fixed t > 0, 6Xt = 0 a.s .. 

Proof. Consider a sequence {tn, n E N} in IR+ with tn / t as n --+ 00. Since X has 

cadlag paths 
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However by [L3] the sequence {Xtn ; n E N} converges in probability to X t and so has 

a subsequence which converges almost surely to X t . Hence the result follows from the 

definition of jumps and the uniqueness of the limits. o 

Remark 2.1 The above proposition shows that 6X is not a straightforward process to 

analyze. 

Many important intuitions in theory of Levy processes are direct consequence of infinite 

divisibility of the underlying probability measure. Next section explains how one is related 

with other. 

2.1.1 Notion of Infinitely Divisible Distributions(IDD) 

Increments of a Levy process are in one-to-one correspondence with infinitely divisible dis-

tributions. We present here a brief overview of this relation. For a more general discussion on 

IDD's we refer to Peter Major[81], Allun Gut(2005) [68] and Bulm and Rosenblat(1959) [24]. 

By sampling a Levy process at times 0,6,26,36, ...... we simply obtain a random 

walk 

where each Yk = X(k+l)L:. - XkL:., 
k=O 

are IID random variables whose distribution, by [L2], is the same as that of 

k = 0,1,··· . 

Since this can be done for any sampling interval 6 we say that by sampling a Levy 

process with different 6 we specify a whole family of random walks Sn(6). 

Choosing n6 = t, we see that for any t > 0 and any n ｾ 1 , 

n-l 

LYk 
k=O 
(XL:. - Xo) + (X2L:. - XL:.) + ... 

That is, X
t 

can be represented as the sum of n iid random variables whose distribution is 

that of XL:. = X t / n . Otherwise said, X t is divided into n iid parts. A distribution having this 

property is said to be infinitely divisible. Formally: 
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Definition 2.2 A distribution function F (or an F distributed random variable X) is said 

to be infinitely divisible if for any positive integer n there exists independent and identically 

distributed random variables Yi, Y2, . .. , Y;I such that Yl + Y2 + ... + Yn is F distributed. 

"Equivalently" a distribution function F is infinitely divisible if and only if its characteristic 

function 

s E IR, 

can be written for any integer n in the form 

such that W is also a characteristic function of some distribution. 

The following result characterizes IDD's. 

Theorem 2.1 The following are equivalent: 

[1) X is infinitely divisible. 

[2) Fx has a convolution nth root, for any n, that itself is the distribution function of a 

random variable. 

[3) <I> F has an nth root, for any n, that itself is the characteristic function of a random 

variable. 

For a detailed proof we refer to David Applebeum(2004)[2] and Sato(1999)[lOO]. If Ml(IR) 

denotes the set of all Borel probability measures on IR, a natural extension of the above the-

orem suggests us to generalize the definition of IDD to distributions that have a convolution 

nth root in Ml(IR). 

Proposition 2.2 F E Ml (IR) is infinitely divisible if and only if for each n E N there exists 

for which 

for all s E R 

For a detailed intuitive proof see Mozumder(2007) [86]. 
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Remark 2.2 In general the convolution nth root of a probability measure is not unique. However 

it is always unique when the measure is infinitely divisible. See Feller(1971 )[S7j. Thus if 

some IDD is used in modelling the random shocks of returns over a fixed time interval, 

then the infinite divisibility of the underlying probability measure implies that those shocks 

to returns are the convoluted sums of other shocks to returns over smaller subintervals of 

that particular interval. Furthermore the shocks to returns over the smaller subintervals are 

guaranteed to have unique distribution. The important fact is that those numerous shocks to 

returns over smaller subintervals, resulting the shocks to returns on the larger time interval, 

do not have to have the same distribution as the resulting one. In other words ｾ Fl/n (s) 

doesn't have to represent the same distribution as ｾ F( s), a condition required when F 1/ n are 

said to be closed under convolution. In fact we will see that a class of the extremely useful 

Levy process, known as generalized hyperbolic Levy process, is not closed under convolution, 

though many of its useful subclasses are. Also see example 2.6. 

Examples of IDD's 

Example 2.1 Gaussian random variables 

A standard result about random variables, see Huynh et al(2008)[72j, states that if F has 

the underlying random variable X rv N(T), 0-
2

) then 

s ER 

So we can write 

;r.. ( ) is!l--s -
[ 

1 2,,2] n 
'¥F S = e n 2 n , s E JR, 

and hence we can recognize F 1/ n as the distribution with underlying random variable Y rv 

N ( ｾ Ｌ ｾ Ｉ having the characteristic function 

. n 1 2,,2 
;r.. () tS:..L--s -'¥lS=en2 n 

FTi ' 
s ER 

Then ｾ ｆ Ｈ ｓ Ｉ = ｛ ｾ ｆ ｬ Ｏ ｮ Ｈ ｓ Ｉ ｴ and hence F = (Fl/n)*n, which implies by Proposition 

2.2, that Gaussian random variables are infinitely divisible. 
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Example 2.2 Gamma random variables 

If F has the underlying random variable X rv G( 0'.,13) then 

<I> p(s) = laoo 

eisx ｾ Ｚ Ｉ xo<-le-,Bxdx. 

That is 

<I>F(S) = ( 13.)0< [( 13 Ｉ ｾ ｬ ｮ
13 - 1,S 13 - is 

s ER (2.1) 

Since Ｈ ｾ Ｉ ｾ is the characteristic function of F1/n rv Gamma(;, 13) , we get 

implying that 

So gamma random variables are infinitely divisible. 

Example 2.3 Poisson random variables 

In the univariate case, as shown in Appendix A, if F is from underlying random variable 

X rv Poisson()..) its characteristic function is then 

s E IR, 

so we can write 

<I>F(S) = ｛ ･ ｾ Ｈ ･ ｩ ｓ Ｍ ｬ Ｉ ｲ ' s ER 

Thus we recognize F1/n as the distribution of a Poisson Ｈ ｾ Ｉ random variable with charac-
A . 

teristic function <I> Ff;; (s) = en:(etS-l). Hence we get 

<I>F(S) = [<I>Fl/n(s)f implying that 

So Poisson random variables are infinitely divisible. 

Example 2.4 Compound Poisson (CP) random variables 

Definition 2.3 Suppose that {Zn' n E N} is a sequence of iid random variables taking 

values in IR with common law Fz and let N rv Poisson()..) be independent of all Zn· Then 

the compound Poisson random variable X, denoted C P()", Fz), is defined to be X = Zl + 

Z2 + ... + ZN, with Z = 0 if N = 0, so that we can think of X as a random walk with a 

random number of steps (jumps), controlled by a Poisson()..) random variable N and with 

random step sizes Zi. 
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Proposition 2.3 For X rv CP().., Fz ) and each s E IR 

Proof. Let <I> z be the common characteristic function of Zn. By conditioning on the number 

of jumps and then using independence we get for any s E IR, 

<I> x (s) = IE [e iS ｉ Ｚ ｾ Ｑ Zi] 
00 

LIE [e iS(Zl+.+ ZN ) IN = n] P(N = n) 
n=O 

fIE [eiS(Zl+Z2+ .. + Zn)] ･ Ｍ ａ Ｉ Ｎ Ｎ ｾ = e-A f ｛ Ｉ Ｂ ＼ ｉ ＾ ｺ ｾ ｳ Ｉ ｝ ｮ Ｎ
O n. n. 

n= n=O 

That is 

<I>x(s) = exp [)..(<I>z(s) - 1)]. (2.2) 

Now with <I>z(s) = ｊ ｾ ｯ ｯ eisYFz(dy) it follows that 

<I> x(s) = exp [).. (I: eisy Fz(dy) - 1) ]. 
Using ｊ ｾ ｯ ｯ Fz(dy) = 1 we get that 

so the proof is complete. o 

Now from (2.2), above, it can be easily seen that 

<I> x ( s) = [exp ｛ ｾ (<I> z ( s) _ 1)]] n , s E IR, 

implying that the compound Poisson distribution is infinitely divisible with each division 

following a ｃ ｐ Ｈ ｾ Ｌ Fz). 

Example 2.5 Inverse Gaussian (IG) random variables 

If F has underlying random variable X rv IG(/1, a) then for its density given by 

/1 1 ｾf (x) = V27i exp {/1a} exp { - -2 (- + a2 x ) } 
27rX3/ 2 X 

x > 0, and /1, a > 0, 

the characteristic function can be obtained as: 

<I>p(s) 100 /1 1 /12 

eisx V27i / exp {/1a} exp { - -(- + a2x) }dx 
o 27rX3 2 2 x 

exp { -/1( J -2is + a2 - a)} s E R (2.3) 
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So we can write 

<Dp(s) = [eC-;Cv'-2iS+OLO»r s ER 

and hence we can recognize pl/n as the distribution with underlying random variable Y '" 

I G (;, 8) having the characteristic function 

<Dpl/n(S) = eC-;Cv'-2is+oL O» s ER 

Then <D p (s) = [<D pl/n (s)] n and hence P = (pl/n)*n, which implies by Proposition 2.2 that 

inverse Gaussian random variables are infinitely divisible. 

We close this section with the following example which shows that the original random 

variable and the divisor need not necessarily have the same distribution: 

Example 2.6 Infinite divisibility with different distributions 

Assume that G1, G2 rv Geo(p) are independent. Then 

lE{P(Gl + G2 = n I Gl = k)} 
n 

LP(G1 = k,G2 = n - k) 
k=O 

11, 

Lpk(l - p)pn-k(l - p) 

k=O 

(n ; 1) pn (1 _ p) 2 = (n; ｾ ｾ 1) pn (1 _ p) 2 . 

Here Gl and G2 have the same distribution it is Gl + G2 that is not geometric. 

For more details on the characteristic function and IDD's we refer to George Roussas(2005) [99] 

and Peter Major[81]. 

2.1.2 Important Results Concerning IDD's 

Now we intend to discuss various results concerning IDD's which are essential for gaining 

working knowledge on applications of Levy processes. The first result tells us what happen's 

when we add two IDD's (or consider the convolution of two IDD measures). 

Theorem 2.2 The sum of two infinitely divisible random variables is itself infinitely divis-

ible. 
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The proof results from a similar argument used for Levy processes. The result implies that 

a finite sum of IDD's is itself IDD. 

With this proposition and the examples of IDD's discussed above we now see how to 

construct a new IDD, which is in fact the corner stone of the application of Levy processes. 

Let X = Xl + X 2, where Xl rv N('T}, (]"2) and X 2 rv CP(>', Fz ) are independent. Then 

<I>x(s) = exp [i'T}S - ｾ ｳ Ｒ Ｈ ｝ Ｂ Ｒ + I: >.(eisy -l)Fz(dY)], s ER (2.4) 

By the above definition, Example 2.1, Proposition 2.3, and Theorem 2.1 X is infinitely 

divisible. So IDD's can be constructed by convolution of Gaussian and compound Poisson 

random variables. So for time indexed IDD's(Levy processes) sample paths can be seen as 

superposition of continuous Brownian motions and some jump processes. 

The expression in (2.4) is close to the expression in the celebrated Levy Kintchine 

formula. This is further explored in the following section. 

2.1.3 Levy-Kintchine formula 

Theorem 2.3 F E MI (IR) is infinitely divisible if there exists scalars a, b E IR and a mea-

sure v satisfying v( {O}) = 0 and flR\{o} (lxl2 1\ 1) v(dx) < 00 such that for all s E IR: 

<I>p(s) = exp [ias - ｾ ｳ Ｒ ｢ Ｒ + l [e iSX -1- isxIT{-I,I} (x)] V(dX)] (2.5) 

Conversely any mapping of the above form is the characteristic function of an infinitely 

divisible probability measure on IR. Thus the parameters "a", "b2" and the measure v char-

acterizes the distribution of the underlying infinitely divisible random variable and (a, b
2
, v) 

together is known as the characteristic triplet or Levy triplet of the underlying infinitely 

divisible random variable. 

A detailed proof can be found, for example, in Sato(1999) [100], David Applebeum(2004) [2], 

or Cont and Tankov(2004) [38]. We prefer the proof in David Applebeum(2004) [2] because 

of its constructive nature. As indicated in the proof, it is worth noting that all infinitely di-

visible distributions can be constructed as weak limits of the convolution between Gaussian 
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and independent compound Poisson variables. This is precisely the reason why the expres-

sion in (2.4) is close to the expression of this Levy Kintchine formula. As it is the central 

fact about versatility and predominant application of Levy processes, we would like to gain 

more insight about this fact. Consider the last term in (2.5), this can be written as: 

exp [L [eisx -1- isxIT{_l,l}(X)] V(dX)] 

exp [ r [e isx -1 - isx] V(dX)] exp [ r [e iSX - 1J V(dX)] (2.6) 
i lxl9 ilxl>l 

Now exploring the relation v(A) = AF(A), we can write the above equation as: 

exp [L [e isX -1- isxIT{_l,l}(X)] V(dX)] 

exp [L A [e iSX -1- isxIT{-l,l}(X)J F(dX)] 

exp [ r Asj [eisx - 1 - isxJ F(dX)] exp [r Abj [eisx -lJ F(dX)] (2.7) 
i lxl9 ilxl>l 

As we will see, here A = Abj + Asj. Considering proposition 2.3, we can conclude that the 

last part in (2.7) is the characteristic function of random jumps, satisfying 1 xl> 1, coming 

from compound Poisson distribution with intensity 

and distribution of jumps: 

Abj v(1 x I> 1) 

AF(I x I> 1) 

A r F(dx) 
ilxl>l 

v(dx)ITlxl>l 

A ｾ ｸ ｬ ＾ ｬ F(dx) 

(2.8) 

(2.9) 

1 
}) 

v({lxl>l}) 1 Th d . bI J( ) d ·b· Then clearly, FIJI>l ({ 1 x > 1 =.x f
l
xl>1 F(dx) =. e ran om vana e, say, escn mg 

the jumps of all sizes( with intensity of jumps of all sizes v(JR) = AF(JR) = A) has distribution 

F(x). Here "bj" stands for big jumps. That is the last part in (2.7) is the characteristic 

function of a "CP (Abj' FIJI>l(dx))". 
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However it is a bit tricky to get the idea of the first part in (2.7), which we now explore 

in full details. This part can be written as a limit corresponding to Ei ---t 0, as i ---t 00: 

exp ｛ ｾ { A:}IEF
" <1'19 [ei'J - 1] - iSA:}IEF"<",,, P]} ] (2.10) 

=exp ｛ ｌ ｻ ａ ｾ ｪ ｬ [e iSX -1-isxJF(dX)}] since J is F distributed 
i Ei<lxl9 

= exp ｛ ｾ { A:j J [ei" - 1 - isx] F',<IX1$1(dX)}] 

ｩ ｾ exp [ r Asj [eisx -1 - isxJ F(dX)] (2.11) 
Jlx l9 

where Asj = ａ ｾ ｪ + ａ ｾ ｪ + ... + ａ ｾ ｪ + ... is the overall intensity of small jumps. The limit in 

(2.11) is the characteristic function of a compensated (mean subtracted) square integrable 

random variable, see Kyprianou(2006) [76]. For a general n each ａ ｾ ｪ and F€n<1J19(dx) are 

given by: 

ａ ｾ ｪ V(En 1 x I::; 1) 

AF (En < 1 xl::; 1) 

Al F(dx) 
En<lxl9 

v(dx )ITEn<lxI9 v( dx )ITEn <Ixl :S1 

A Jen<lxl:S1 F(dx) 

Overall intensity of small jumps with magnitude less than one is given by: 

Asj v(ql x I:::; 1)+v(E21 x I:::; l)",+v(E n 1 x I:::; 1)+ .. · 

n---->oo 

v ( {E1 1 xl:::; 1} U {E2 1 xl::; 1} U ... U {En 1 xl:::; 1} U ... ) 

v(1 x I:::; 1) 

AF(I x I:::; 1) 

A r F(dx) 
Jlxl:S1 

Consider an arbitrary summand in (2.10): 

exp ｻ ａ ｾ ｪ ｬ ｅ ｆ ＼ ｩ ＼ ｬ ｊ ｬ Ｚ ｃ ［ ｬ [e isJ - 1J - ｩ ｓ ａ ｾ ｪ ｬ ｅ ｆ ＼ ｩ ＼ ｉ ｊ ｉ ｓ ｬ [J]} 

exp ｛ ａ ｾ ｪ ｬ ｅ ｆ ＼ ｩ ＼ ｉ ｊ ｉ Ｙ [e isJ - 1]] exp ｛ Ｍ ｩ ｓ ａ ｾ ｪ ｬ ｅ ｆ ＼ ｩ <IJI9 [J]] 
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Considering proposition 2.3, the first part of the expression in (2.15) corresponds to a 

random variable 2:f=l J j lI ti <lJk;l rv ｃ ｐ Ｈ ａ ｾ ｪ Ｌ Fti <IJI9(dx)), with ａ ｾ ｪ and Fti <IJI:::;l are 

given as (2.12) and (2.13) respectively. Here N f"V ｐ ｯ ｩ ｳ ｳ ｯ ｮ Ｈ ａ ｾ ｪ Ｉ and hence we obtain 

IE [2:,;':1 JjlI t <IJJI9] = IE[N]IEFfi<IJI$1 [J] = ａ ｾ ｪ ｉ ｅ ｆ ｦ ｩ ＼ ｉ ｊ ｉ Ｚ Ｙ [J], implying that the second part 

in (2.15) is the characteristic function of a constant which is the mean of ｃ ｐ Ｈ ａ ｾ ｪ Ｌ F
ti

<IJI:::;l (dx)). 

Thus (2.15) is the characteristic function of a compensated(mean subtracted) compound 

Poisson random variable of small jumps, which we denote as 2:,;':1 JjlI
ti

< IJj19 _IEFfi<IJI$1 [J] '" 

ｃ ｐ ｃ Ｈ ａ ｾ ｪ Ｌ F ti <1J19(dx)). 

Hence applying the similar argument to each summand in (2.10), we see that (2.10) is 

the characteristic function of the sum of possibly infinite number of compensated compound 

Poisson random variables: 

ｃ ｰ ｃ Ｈ ａ ｾ ｪ Ｌ F q <IJI:::;l (dx)) + ｃ ｰ ｃ Ｈ ａ ｾ ｪ Ｌ Ft2<IJI:::;1(dx)) + ... 

Ｋ ｃ ｰ ｃ Ｈ ａ ｾ ｪ Ｌ Fti <IJI9(dx)) + ... (2.16) 

The compensation is required to obtain the convergence of numerous small jumps des-

cribed by possibly infinite number of compensated compound Poisson random variables, as 

shown in (2.11), to a compensated square integrable random variable which characteristic 

function is exactly the first part of the expression in equation (2.7). 

Before we close the intuitive discussion on Levy-kintchine formula for IDD, we see how 

it generalizes the equation (2.4). When equation (2.4) characterizes the distribution of a 

random variable X = fJ + N(O, (1"2) + CP(A, Fz), equation (2.5) characterizes the limiting 

distribution of a sum of a+ N(O, b2
) +CP (Abj, FIJI>l (dx)) + 2:i { ｃ ｰ ｃ Ｈ ａ ｾ ｪ Ｌ Fti <IJI9 (dx)) } , 

where the rates and distribution of big and small jumps are as defined earlier. 

We will see in next section that Levy-Kintchine formula of Levy processes attaches such 

a limiting random variable at each time point constructing a general stochastic process, a 

general Levy process, which can be used to model random evolution of asset prices. In such 

modelling approach randomly evolved sample paths of asset prices are the superposition of 

four types of, but possibly infinitely many, randomly evolved sample paths:(i) a linear drift 

such that on an unit time interval its change is described by the constant "a" ,(ii) a diffusion 

process such that on unit time interval its distribution is described by a "N(O, b2
)" ,(iii) a 
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compound Poisson process of big jumps such that on unit time its distribution is described 

by a "CP (Abj' FiJJ>l(dx))" and finally (iv) a limiting process of possibly infinitely many 

compensated compound Poisson process of small jumps such at on unit time interval each 

of them is described by "CpC(A:j, FEi <lJl:Sl(dx))." 

We conclude that A in (2.7) leads to the following intuition: 

A Abj + Asj 

v(1 x I> 1) + v(1 x ｉ ｾ 1) 

AF(I x I> 1) + AF(I x ｉ ｾ 1) 

AF ( {I xl> 1} U {I x 1 ｾ 1}) 

AF (IR) 

v(IR) (2.17) 

As A is the intensity, i.e. expected number of jumps of all sizes, Equation (2.17) leads to 

the interpretation of Levy measure as the expected number of jumps whose sizes belong to 

a certain Borel set. For example v(A) is the expected number of jumps whose sizes belong 

to A. This intuition extends from IDD to for Levy processes. That is Levy measure of Borel 

set A is the expected number of jumps per unit time provided jump sizes belong to A. 

Mathematical Fact about Levy Measure 

As introduced in Levy-Kintchine formula v is a Borel measure defined on IR \ {O}. We say 

that v is a Levy measure if 

{ (I X 12 1\ 1) v ( dx) < 00 
JITf.\{O} 

(2.18) 

or equivalently 

1 IxI2V(dx) < 00 and 1 v(dx) < 00. 
Jxl9 ｉ ｸ ｬ ｾ ｬ

(2.19) 

Since (l x l2 1\ E) ｾ (lxl2 1\ 1) for all 0 < E ｾ 1 it follows that 

{ ( 1 X 12 1\ E) V ( dx) ｾ { ( 1 X 12 1\ 1) v ( dx ) , 
JITf.\{O} JITf.\{O} 

if 0 < E ｾ 1, 

and hence from (2.18) it follows that 

{ (l x l2 1\ E) v( dx) < 00 =:;. v [( -E, E)C] < 00 
JITf.\{O} 

for, ｏ ＼ ｅ ｾ ｬ Ｎ (2.20) 
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So we have 

/' v(dx) < 00, 

ｊ ｬ ｸ ｬ ｾ Ｈ
if ｏ ＼ ｅ ｾ Ｑ Ｎ (2.21) 

We will gain more insight on Levy measure when we will study the results for Levy 

process using those for IDD's. 

The Levy Exponent 

Theorem 2.3 shows that the Levy -Kintchine formula is related to the characteristic function 

of an infinitely divisible distribution F (or an F distributed random variable). It can be 

expressed, using two parameters "a", "b2" and a measure "v", as an exponential function 

with a complex exponent, i.e. 

<pp(s) = eW(s) where \[!: IR ---* ce. (2.22) 

The complex function \[! is known as the characteristic exponent or Levy exponent of F (or 

an F distributed random variable). 

Since we know that l<pp(s)1 ｾ 1 , see Allun Gut(2005) [68], then with the assumption 

that \[! = Re(\[!) + iIm(\[!) we have 

Ie w(s) I = I eRe(W)+ilm(w) I 

I eRe(w) II ei1m(W) I = eRe( 'I/J) 1 ｾ 1. 

Hence eRe(w) ｾ 1 implies that Re(\[!) ｾ 0, that is the characteristic exponent should always 

have a non positive real part. 

The following theorems enhance the appreciation of Levy processes in applications. 

Theorem 2.4 Any infinitely divisible probability measure can be constructed as the weak 

limit of a sequence of compound Poisson distributions. 

For a proof we refer to David Applebeum(2004) [2]. 

In a more general framework we have the following result. 

Proposition 2.4 If {Fn} is a sequence of infinitely divisible distributions and Fn ---* F, 

then F is infinitely divisible, i. e. weak limits of sequences of infinitely divisible probability 

measures are infinitely divisible. 

Again for an intuitive proof we refer to David Applebeum(2004) [2]. 
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2.2 IDD and Levy Processes 

The modeling intuitions described in section 2.1 needs to be incorporated into processes so 

the the richness of IDD can be extracted at each time point. As we described in subsection 

2.1.3, usefulness of such models-from practical point of view-is highly likely. In other 

words the main target is to extract the richness of modeling through IDD in describing the 

evolution of the Levy process at each time point. The first result is at the core of such 

possibility. 

Theorem 2.5 If X = {Xt; t ｾ O} is a Levy process, then X t is infinitely divisible for each 

t ｾ O. 

The proof is based on David Applebeum(2004)[2], and is reproduced as it illuminates the 

intuition. 

Proof. For each n EN, we can write 

where each 

k = 1,2"" ,n, 

by [L2]-(ii) of Definition 2.1, 

The last term in the above equality is independent of k, which shows that for all k, the 

Yt'(t)'s are iid with the common distribution ｘ ｾ Ｎ Hence 

s E IR, 

which shows that X t , for each t 2: 0, is infinitely divisible. o 

Theorem2.5 ensures that X t is infinitely divisible, for each t ｾ O. Hence by L6\'y-

Kintchine formula its distribution is described by a characteristic function of the form 

(2.5), through a set of parameters and a measure, at time t = 1. The following argument 

clarifies how to characterize the distribution for a general t, using the characterization at 

t = 1. This is one of the main facts about Levy processes which tells us that characterizing 
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the distribution of the whole process is equivalent to characterizing it at a single point in 

time t = 1. 

In subsection 2.1.3, we saw that Levy-Kintchine formula can be written in short as 

<I>xt(s) = eW(t,s), for each t 2: 0 and s E JR., where \[J(t,.) is a Levy exponent of Xt. The 

following theorem shows that \[J(t, s) = t\[J(s), for each t 2: 0 and s E R 

Theorem 2.6 If X is a Levy process then IE[eisXt] = <I>Xt(s) = etW(s), for each t 2: 0 and 

s E JR., where \[J is the Levy exponent of Xl. 

For a proof, again, we refer to David Applebeum(2004)[2]. We now have the expression of 

Levy Kintchine formula for the Levy process X = {Xt; t 2: a}: 

(2.23) 

Comparing (2.23) with (2.5) we observe that the former is simply a version of the latter 

corresponding to t = 1. This, together with our intuitive interpretation of Levy measure 

of an infinitely divisible distribution(in subsection 2.1.3 following equation (2.17)), leads to 

the following more convincing definition of the Levy measure of a Levy process. 

Definition 2.4 (Levy measure of a Levy process) For a Levy process X = {X t ; t 2: O} 

on JR. , the measure v on JR. defined by: 

v(A) = IE W{t E [0,1]1 b,.Xt =1= 0, b,.Xt E A}] , A E B(JR.), (2.24) 

is called the Levy measure of X. Here v(A) is the expected number, per unit time, of the 

jumps with sizes in the set A. 

We are now in a position to relate the mathematical fact about the Levy measure, as 

discussed in subsection 2.1.3, with its definition. With this definition, the fact in second 

part of (2.21) ensures that along any observation period the sample paths of Levy processes 

exhibit finite number of big jumps of magnitude greater than E, with 0 < E s: 1. However 

the first part of (2.21), together with the above definition of Levy measure, doesn't ensure 

anything about the finiteness of number of small jumps of magnitude less than E, with 

o < E s: 1. The first part in(2.21) ensures that even if it happens to be the case that 

2:i b,.Xi = 00, we will always have 2:i I b,.Xi 12< 00. 
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Remark 2.3 Characteristic triplet of the Levy process is just the characteristic triplet 

of the infinitely divisible random variable Xl. It can be shown that this correspondence is 

unique. Thus given a Levy process there corresponds a unique IDD which is the distribution 

of Xl. It follows that corresponding to every infinitely divisible distribution there exists a 

Levy process so that the characteristics of the process evaluated at t = 1 coincide with the 

characteristics of the IDD. 

Now let us get more insight into how characteristic triplet of a Levy process characterizes 

the distribution of innovations(and hence the distribution of return itself) in asset price 

models on an arbitrary interval, say [tI, t2J. When Brownian motion is replaced by an 

arbitrary Levy process X t in equation (1.13)(with (J = 1 for simplicity), we obtain: 

dSt 
St = f1dt + dXt (2.25) 

Integrating on [iI, t2J we obtain an infinitely divisible random variable describing the random 

evolution of log returns on [tI' t2J : 

by [L2]-(ii) of Definition 2.1 (2.26) 

According to the Levy-Kintchine formula for Levy process, see equation (2.23), the distri-

bution of XC t2- t l) is characterized by a characteristic function given by: 

Analogous to our intuitive development, from subsection 2.1.3, for (2.27), we can write 

(2.26) as: 

D f1(t2 - tI) + a(t2 - tI) + N(O, [V(t2 - tI)b]2) + c p [(t2 - tI)Abj, FiJI>I (dx)] 

+ .lim 2:= {Cpc [(t2 - ｴ ｉ Ｉ ａ ｾ ｾ Ｎ Ｌ ｆ Ｈ ｉ ＼ ｉ ｊ ｉ ｾ ｉ Ｈ ､ ｸ Ｉ ｝ ｽ
ｾ Ｍ ＾ ｯ ｯ

(i->O i 

D [f1 + a](t2 - tI) + N(O, [V(t2 - tI)bf) + CP [(t2 - iI)Abj, FIJI >1 (dx)] 

+ lim 2:= {Cpc [(t2 - ｴ Ｑ Ｉ ａ ｾ ｪ Ｌ F(i<IJI9(dx)]} (2.28) 
ｾ Ｍ ＾ ｯ ｯ

Ei->O i 
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The distributions and rates, e.g. Abj, F1J1>I(dx) and ａ ｾ ｪ Ｌ ｆ ｾ ｩ ＼ Ｑ ｊ Ｑ Ｙ Ｈ ､ ｸ Ｉ Ｌ for each i, are 

defined in subsection2.1.3. As we saw in (2.11), in terms of distribution the compensation 

in last term ensures that the resulting process from the superposition of all the processes 

involved(in last term) is an square integrable martingale. A resonably large i with a rea-

sonably small Ei, can lead to a good approximate modelling tool with a large number of 

compensated compound Poisson processes. We can obtain expected total number of jumps 

of all sizes on [t2' tIl: 

(t2 - tl)AbJ' + (t2 - tl) {ACI, + ａ ｾ Ｒ + '" + ａ ｾ ｩ Ｌ + ... } 
SJ SJ SJ 

(t2 - tl)Abj + (t2 - tdAsj 

(t2 - il) {l/([ x [> 1) + l/([ X I:::; I)} 

(t2 -tl)l/({[ x [> I}U{[ x I:::; I}) 

(t2 - tdl/(JR). (2.29) 

This is in agreement with the definition 2.4 of Levy measure of a Levy process. That is 

considering jumps of all sizes, in other words the Borel set being JR, the Levy measure is the 

expected number of jumps per unit time. Here Abj and Asj are as appeared in subsection 

2.1.3. 

So what equation (2.28) is all about? In terms of distribution it tells us that the 

random variable describing the log returns on [t2' ill is the sum of a constant and three 

different types of, but possibly infinitely many, random variables. The underlying Levy 

measure ensures that the infinite(possibly) sum of compensated compound Poisson random 

variables converges to a compensated square integrable random variable as shown in (2.11). 

So the distribution of log-returns on [t2, tIl is the convolution of the respective distributions 

of the summand random variables( considering the limiting one for the infinite sum). The 

characteristic function (2.27) characterizes such a convoluted distribution. However impor-

tant idea is in terms of sample paths. Equation (2.28) describes that each sample path 

of log returns on [t2' tIl is the superposition of four different types of but infinitely(possibly) 

many sample paths on [t2' ill : a linear drift path, a Brownian motion path, a compound 

Poisson process path of big jumps and infinitely(possibly) many compensated compound 

Poisson process paths of small jumps. The infinite(possibly) superposition of sample paths 
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of compensated compound Poisson processes converges to a sample paths of square inte-

grable martingale. So now one can see the significance of replacing the Brownian motion Bt 

by a Levy process X t in (2.25). With Levy process it can model the jumps of all sizes in the 

return paths, where as with Brownian motion it can only model the continuous evolution 

of returns. 

2.2.1 An Example 

Consider a compound poisson process with Poisson rate A and jump sizes following a normal 

distribution with density: 

(2.30) 

Let us consider jumps with sizes in A = (-00,5]. Then the compound Poisson process has 

the Levy measure: 

15 A 15 
(X-J.L)2 (5 -11) v(A) = A f(x)dx = -- ･ Ｍ ｾ ､ ｸ = AN --

-00 ｊ Ｒ ｮ ｾ -00 ｾ
(2.31) 

Thus in general Levy measure of jumps of sizes belonging to (-00, kJ, for k > -00, is 

v( {( -00, k)}) = AN Ｈ ｫ ｾ ｊ Ｍ ｌ ) , which we know is the expected number of jumps, per unit 

time, with sizes in (-oo,k]. Clearly for all jump sizes v({(-oo,oo)}) = AN (OO;J-L) = A, so 

A is the average rate of jumps of the process. Since v(lR.) = A < 00, this implies that the 

number of jumps on any time interval is finite, so expected number of jumps per unit time 

is finite. Here we use the fact that N(x) = vk ｲ ｾ ｯ ｯ ･ Ｍ ｾ ｺ Ｒ dz. Thus 

which, for a given set of parameters A, 11, ｾ Ｌ is a number. Similarly: 

A r f(x)dx 
J1xl>1 

-- 1- ･ Ｍ ｾ ､ ｸ
A ( 11 (X-J.L)2 ) 

ｊ Ｒ ｮ ｾ -1 

J1 

(2.32) 

(2.33) 



Distribution of big jumps can be obtained from (2.9). For example the probability of jumps 

in (1.5,2) is: 

FiJI>l ({ (1.5, 2)}) 
ｦ Ｑ ｾ Ｕ v(dx)ITlxl>l 

Abj 

A 2 Ｍ ｾ
ｾ f1.5 e 20- dx 

A ｾ ｸ ｬ ＾ ｬ F(dx) 

1 2 _(X-it 
ｾ f1.5 e 20- dx 

1 (x-J.,)2 
I--1-f ･ Ｍ ｾ ､ ｸ..j27rC1 -1 . 

(2.34) 

For a general summand under the sum in (2.28) the rate and distribution are respectively 

given by (2.12) and (2.13). For example for En = 0.05 the rate and the probability of jump 

sizes in [0.07,1] from the corresponding distribution are: 

AO.05 = 
SJ 

ｆ ｏ Ｎ Ｐ Ｕ ＼ ｉ ｊ ｉ ｾ Ｑ ({[0.07, In) 

A r F(dx) 
ｊ ｯ Ｎ Ｐ Ｕ ＼ ｬ ｸ ｬ ｾ Ｑ

-- e ｾ ､ ｸA (11 
_ (x-J-L)2 ) 

V27r(]" 0.05 

ｦ ｏ ｾ Ｐ Ｗ ｖ Ｈ ､ ｸ Ｉ ｉ ｔ ｬ ｸ ｬ ＼ Ｑ
AO . .o5 

sJ 

1 1 Ｍ ｾ
ｾ fO.07 e 20- dx 

1 1 - (x-i)2 

..j27rC1 fO.05 e 20- dx 
1 (x-J-L)2 

ｦ ｏ Ｎ Ｐ Ｗ ･ Ｍ ｾ ､ ｸ
1 (x-J-L)2 

ｦ ｏ Ｎ Ｐ Ｕ ･ Ｍ ｾ ､ ｸ

(2.35) 

(2.36) 

These kind of values for each summand, together with FJ(x) rv N(/-L, (]"2), can be used in 

(2.28) to simulate jumps in sample paths of log return on [t1' t2]( or on any other interval). 

As discussed in the above example Levy measure helps us decide whether the number 

of jumps of the underlying process is finite or infinite. It is in fact a general property of 

Levy process: 

Proposition 2.5 Let X t is a Levy process with Xl having characteristic triplet (a, b
2

, v). 

Then: 

• if v(JR) < 00 then almost all paths of X t have a finite number of jumps on every compact 

interval. In that case the Levy process is said to be of finite activity. 
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• if v(JR.) = 00 then almost all paths of X t have an infinite number of jumps on every 

compact interval. In that case the Levy process is said to be of infinite activity. 

A proof can be found e.g. in Sato(1999)[100]. 

Before we rap this section up, we need to further emphasize the usefulness of LKF 

for our study. In one sense LKF is the cornerstone of the entire thesis. Apart from it's 

intuitive appeal in revealing the path structure of general Levy process, as explained in 

section2.1.3, LKF has more significant use in option pricing and risk management. It pro-

vides the characterization of a particular Levy process through it's characteristic function. 

We then have the elementary result in Statistics which ensures the existence of a unique 

distribution function corresponding to a characteristic function. Since such a distribution 

is the fundamental tool used in estimation of risk measures, we revisit the technique of 

extracting the distribution from the characteristic function. This technique is known as 

Fourier inversion. Moreover the characteristic function of a model can be utilized to obtain 

the prices of European style derivatives, a technique frequently referred as Carr-1Iadan 

formula, see Carr and Madan(1999) [27]. 

We can obtain the probability density f (x) by inverting the characteristic function, see 

Whit and Abate(1992)[113]: 

1 100 

. f(x) = - e-tuX<I> (u)du 
2n -00 

(2.37) 

The probabilities can be expressed using Fourier integral theorem. For example: 

P(a < X < b) = lb f(x)dx 

_ ｾ lb {1OO 

e-iUX<I>(U)dU} dx 
2n a -00 

(2.38) 

Assuming the continuity of the underlying distribution, the Fubini's theorem allow's us to 

interchange the integrals: 

P(a < X < b) = ｾ 100 

ｻ ･ Ｍ ｾ ｕ ｢ Ｎ _ ･ Ｍ ｾ ｵ ｡ ｽ <I>(u)du 
2n -00 -w -'LU 

(2.39) 

A more simplified form of such a probability is given by Gil-Pelaez(1951)[66]: 

P(X ｾ a) = 
1 1 100 eiua<I> ( -u) - e-iua<I>(u) 
_ + - . du 
2 2n 0 m 

1 1 100 eiua<I> ( -u) 1 100 e-iua<I>(u) _ + - . du - - . du 
2 2n 0 171 2n 0 W 

(2.40) 
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We realize that for an arbitrary complex number z, z + Z = 2Re[z]. We know the charac-

teristic hmction is a hermitian function for which <I> ( -u) = <I>(u). 

ｾ 100 eiua<I> ( -u) 1 100 e-iua<I>(u) 
. du- - du 

21f 0 2U 21f 0 iu 

ｾ 100 e-iua<I>(u) 1 100 e-iua<I>(u) 
---. -'--"-du - - du 

21f 0 -2U 21f 0 iu 

1 i' oo 
{e-iUa<I>( u) e-iUa<I>(U)} -- . +. du 

21f 0 2U 2U 

-- Re du 1100 
[e-iUa<I>(U)] 

1f 0 iu 
since z + Z = 2Re[z]. (2.41) 

Using equation (2.41) into equation (2.40), we obtain the particular type of probability 

which we will use in our pricing: 

P(X > a) 1 - P(X :s; a) 

- + - Re . duo 1 1100 
[e-iUa<I>(u)] 

2 1f 0 2U 
(2.42) 

Thus probabilities can be extracted no matter how involved the expression of the char-

acteristic function is. Only requirement is to calibrate the parameters of the characteristic 

function using market data before applying (2.42). 

2.3 LKF: Jump Processes for Non-normality 

Theorem 2.5 shows that for a Levy process Xt, infinite divisibility allows us to write the 

random variable Xt(for each fixed t > 0) as the sum of n independent and identically 

distributed random variables. Remembering Central limit theorem, CLT henceforth, the 

infinite divisibility is the well-cited motivation for modeling stock return by the Gaussian 

distribution, namely that this distribution is the limiting distribution of sum of n indepen-

dent random variables, upon some scaling, which usually represents the effects of various 

shocks in the economy. More precisely, Levy processes are premised on similar argument of 

accommodating infinite economic shocks in the returns but not necessarily confining within 

the world of Gaussianity and continuous paths of return dynamics. Levy-Kintchine rep-

resentation ensures the infinite divisibility of the distribution of the underlying process at 

eacht > 0 but at the same time it lays a foundation where we can see a general return 



dynamics as the superposition of different processes;such that limiting distribution needn't 

necessarily be Gaussian and can have jumps, of both finite and infinite number, in the 

path. So this is easy to see how powerful this class of processes for modeling non-normality 

in option pricing and addressing various other imperfections surrounding the benchmark 

Black-Schole's model. More interestingly we will now see that LKF implies that deviation 

from normality, i.e. from the Brownian paths, makes it mandatory to consider jumpy paths 

for the return dynamics. 

We now revisit random measure oriented structural properties of Levy processes; this 

revisit is required to see another intuitive form of LKF. Also the ideas go into next sections 

where subordinators and time changing are considered as tools to report and correct a mis-

specification in a classic work of Geman(2002) [62]; which is the complementary contribution 

of this chapter. As discussed in proposition2.5 the infinite activity Levy process can exhibit 

infinite number of jumps per unit time along every sample path. At the same time proper-

ties of Levy measure ensure that the number of big jumps per unit time is finite along every 

sample path. So infinite activity Levy process ensures infinitely many small jumps per unit 

time along sample paths. This indicates that the small movements along the paths are so 

frequent that it adequately allows us to exclude the necessity of considering an additional 

and unrelated diffusion component. Thus along with finitely many big jumps (jumps larger 

than E in magnitude, for a very small E) the small jumps locally attribute to diffusion. And 

the continuity requirement of the diffusion process forces the rate of local arrival of jumps 

of all sizes to zero thus reduces the local variation of uncertainty in the price dimension 

to be explained with a single instantaneous volatility parameter. That is where the words 

pure jump find the justification: they are mutually exclusive of diffusion processes. 

In our intuitive development in section 2.1.3 we saw that any Levy process can be 

expressed as the sum of three processes: (i) a Brownian motion with drift, (ii) a com-

pound Poisson process of big jumps and (iii) a limiting process of compensated com-

pound Poisson processes of small jumps. Each of these processes being semimartingale, 

see Kyprianou(2006) [76] and Shiryaev(1999) [106], the superimposed resultant processes is 

again a semimartingale. Thus any Levy process is a semimartingale. We know stock price 

processes have to be semimartingale under real probability measure and Levy processes ap-
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pear as a wide natural class of candidates for stock price dynamics. Now clearly continuity 

of trajectories requires the components corresponding to the processes (ii) and (iii) above 

to be zero. According to our development in subsection 2.1.3 and Levy-Kintchine formula 

of a general Levy process (2.23) , this means that: 

X t = at + bBt. 

Thus we arrive to an important conclusion: The only Levy process with the continuous 

paths is the Brownian motion (with drift). The consequence is that if we use Levy process 

to describe the return or natural log of stock we obtain normality together with continu-

ity. In other words if the data exhibits deviation from normality we have no continuous 

process left for modelling (as Brownian motion is the only continuous Levy process). So 

non-normality needs to be modeled using discontinuous (jumpy) Levy processes. 

Furthermore to obtain a finite quadratic variation(which is a better representation of stock 

price dynamics) the diffusion component must be zero and the process must be a pure jump 

Levy process. 

2.4 Random Measure of Jumps 

We need this mathematical section for intuitive development in sections to follow. Since a 

Levy process is cadlag, the number of jumps ｾ ｘ ｳ such that ｉ ｾ ｘ ｳ ｬ 2': E, before some time 

t, has to be finite for all E > O. Hence if B E 8(JR), is bounded away from 0 (Le. 0 ¢: 13 , the 

closure of B), then for t 2': 0 

Nt = U{s E [O,f] : ｾ ｘ ｳ E B} = Jx([O,t] x B) (2.43) 

is well defined and a.s. finite. The process N B is clearly a counting process, called a counting 

process of B . It inherits the Levy properties from X . Since the Poisson process is the only 

non-trivial counting process which is Levy then Nf is a Poisson process with a certain 

intensity 1/x (B) < 00. If B is a disjoint union of Borel sets Bi , then Nt
B 

= Li NtBiHence 

considering (2.24), 1/x (B) = YlNIB = L YlNfi = L 1/(Bi) . 1/ is a Borel measure and as 

indicated in (2.20) it holds that 1/(JR \ (-E, E)) < 00 for all E > 0 . In particular 1/ is a-finite. 

Now to discuss the term Jx([O, t] x B) in (2.43) we need the idea of Poisson random 
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measure. However we keep our discussion about this measure at an introductory level. For 

more details see Bertoin(1996) [15] and Applebeum(2004) [2]. 

From the definition of the Poisson process we recall that the jump times TI, T2 . .. form 

a random configuration of points on [0,00) and that the Poisson process Nt counts the 

number of such points in the interval [0, t] see Cont and Tankov(2004)[38].This counting 

procedure defines a measure on [0,00) . 

Definition 2.5 For any measurable set A C lR+ a positive integer valued counting measure 

M(w,·) defined as 

M(w, A) = ｾ ｻ ｩ ｾ 1; Ti(W) E A}, wEst, (2.44) 

is a random measure. 

The very first property of a Poisson process ensures that M(A), for any bounded mea-

surable set A, is almost surely finite. The intensity A of the Poisson process determines the 

average value of the random measure M, i.e. lE[M(A)] = AlAI where IAI is the Lebesgue 

measure of A. M is also known as a random jump measure associated to the Poisson pro-

cess N. The Poisson process can be expressed in terms of the random measure M in the 

following way: 

Nt(w) = M(w, [0, t]) = r M(w, ds). 
J[O,tl 

The properties of the Poisson process, see Cont and Tankov(2004)[38], can be translated 

into properties of the measure M. Some of the important ones are as follows. 

[1] For disjoint intervals [h, ｴ ｾ ｝ ,'" ,[tn, ｴ ｾ ｝ Ｌ M([tk, tic]) is the number of jumps of the 

Poisson process in [tk, tk]' It is a Poisson random variable with parameter A(tic -

tk) . Generally for any measurable set A, M(A) follows a Poisson distribution with 

parameter AlAI, where IAI = fA dx is the Lebesgue measure of A. 

[2] For two disjoint intervals [ti' til and [tj, tj] where i i=- j, M([ti' ti]) and M([tj, tj]) are 

independent random variables. 

A natural extension of this notion of random measure is the Poisson random measure ,where 

jR+ is replaced by any E c lR and the Lebesgue measure by any Radon measure fJ, on E. 
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Definition 2.6 Let (!1, F, P) be a probability space, E c JR. and J-t a given positive Radon 

measure on (E, £). A Poisson random measure on E with intensity measure J-t is an integer 

valued random measure 

M:!1 x E --t N, (w,A) f-t M(w,A) 

such that: 

(1J for almost all w E !1, A1(w,') is an integer valued Radon measure on E, i.e. for any 

bounded measurable ACE, M (A) < 00 is an integer valued random variable. 

(2J for each measurable set AcE, M(., A) = M(A) is a Poisson random variable with 

parameter J-t(A) , i.e. 

Vk E N. (2.45) 

(3J for disjoint measurable sets AI,'" ,An E £, the corresponding random variables 

M(Ad,'" ,M(An) are independent. 

We state the following proposition, without proof, which ensures the existent of the Poisson 

random measure. 

Proposition 2.6 For any Radon measure J-t on E C JR., there exists a Poisson random 

measure M on E with intensity J-t . 

For a proof see see Cont and Tankov(2004) [38]. 

It can be shown that to every cadlag process and in particular to every compound Poisson 

process X = {Xt ; t ｾ O} on JR. we can associate a random measure on JR. x [0,00) describing 

the jumps of X. For every measurable set B C JR. x [0,00) 

Jx(B) = Jx(A x [tl, ｴ ｾ ｝ Ｉ = Ht E [tl' ｴ ｾ ｝ ［ 6.Xt E A}, (2.46) 

that is Jx(A x [tl' ｴ ｾ ｝ Ｉ Ｚ ］ ｮ ｵ ｭ ｢ ･ ｲ of jumps in X occurring between time tl to t'l whose 

amplitude belongs to A. 

The random measure Jx contains all information about the discontinuities (jumps) of 

X. It tells us when the jumps occur and how big they are. J x does not give any information 
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regarding the continuous part of X. It is easy to see that X has continuous sample paths if 

and only if J x = ° a.s. which implies that there are no jumps. 

The following proposition shows that J x is a Poisson random measure in the sense defined 

above. 

Proposition 2.7 Let X = {Xt; t ｾ o} be a compound Poisson process with intensity 

>. and jump size distribution F. Its jump measure Jx is a Poisson random measure on 

JR x [0,00) with intensity measure J-L(dx x dt) = v(dx)dt = >.dF(x)dt. 

For a proof see [38]. 

Equation (2.45) implies that, Jx(B) as defined in (2.46) satisfies: 

lE[J(dx x dt)] = J-L(dx x dt) = v(dx)dt = >.dF(x)dt. (2.47) 

Equation (2.47) bears important intuition. It extends the intuition of the definition 2.4 of 

Levy measure, as the expected number of jumps per unit time with jump sizes in a Borel 

set A E 8(JR) , to the arrival rates of jump sizes in a spatial domain. More precisely if 

B c JR x [0,00) is of the form A x [t2' tl], (2.47) means that integration of the Levy density 

over this spatial domain provides the arrival rate of jumps in this domain. 

We are now in a position to relate our intuitive development in subsection 2.1.3 to 

Levy-Ito decomposition. Levy-Ito decomposition states that every Levy process X t can be 

decomposed as: 

X t = at + B t + xi + lim .it, 
E-+O 

t ｾ 0, 

where 

corresponds to discontinuous large jump process and 

.if = tE[O,t] x{Jx(ds x dx) - v(dx)ds} 
E::;lxl::;1 

= r [ ] x{Jx(ds x dx)} JSE O,t 
E::;lxl::;1 

(2.48) 

corresponds to compensated small jump process.Clarly equation(2.48) bears the same intu-

ition as we developed in subsection2.1.3 for X t = log( ｓ ｾ Ｚ ｬ ). 
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2.5 Subordinator and Its Application in Finance 

Subordinators are essential tools to study the time changed processes in Finance. The 

definition as well as mathematical characterization of Subordinators rely on the idea of 

total variation of the process, among others. 

Definition 2.7 (Bounded and unbounded variation) The total variation of a right 

continuous function with left limit is defined as: 

j=n 

II f IITv:= sup {'L I f(tj) - f(tj-1) 1;0 = to < t1 < ... < tn = t, nEW}. 
j=l 

Clearly for an increasing function on [0, t] with f(O) = a this is just f(t) and for a difference 

f = g - h of two increasing functions with f(O) = g(O) = a the total variation is at most 

g(t) + h(t) < 00. We will see that finite variation in one of the recent option pricing model, 

namely Variance Gamma, is a direct consequence of this fact. Such functions are known as 

functions of finite or bounded variation. A finite variation process is one such that each of 

its sample paths are of finite variation. 

In case the total variation of a function is infinite, the function is known as "of unbounded 

variation". Brownian motion, which is the only Levy process with continuous sample paths, 

has unbounded variation though it has a finite quadratic variation. 

The variation of a Levy process is completely characterized as: 

Proposition 2.8 Let X t is a Levy process with Xl having characteristic triplet (a, b2
, v). 

Then: 

• if b2 = a and iJ
x

l:::;l I x I v(dx) < 00 then almost all paths of X t have finite variation. The 

converse is also true . 

• if b2 =1= a and iJ
x

l:::;l I x Iv( dx) = 00 then almost all paths of X t have unbounded variation. 

The converse is also true. 

For a proof we refer to Sato(1999) [100]. The first part of this proposition simply tells us 

that if the underlying process is not diffusive and if mathematical structure of the process 
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guarantees that the total contribution of the absolute movements caused by small jumps 

will be finite than almost all the sample paths of the process are guaranteed to be of finite 

variation. The second part of this proposition is rather more convincing. It tells us that 

if the paths of a process are observed to be of unbounded variation than there must be 

diffusion and absolute contribution of the small jumps will be infinite. This proposition 

implicitly implies that diffusion and total absolute contribution of the small jumps are 

closely associated with each other; which goes with our intuition. However in practice the 

compensated(mean subtracted) compound Poisson part in(2.28) yields the ground where 

unbounded variation from small jumps becomes less likely. 

In concise form this implies: 

1000 

(1/\ I x I)v(dx) = 10
1 

I x IV(dx) + 100 

v(dx) 

{

finite if X t is of finite variation(so b2 = 0). 

00 if XL is of unbounded variation. 
(2.49) 

Since by the property of Levy measure, see (2.21), ft v(dx) < 00, unbounded variation 

can be seen as resulting from diffusion and small jumps. 

Definition 2.8 (Subordinator) Let {Xt; t 2 o} be a Levy process such that Xl has the 

Levy triplet (a, b2, v). Then X t is an increasing process in t if and only if v( -00,0] = 

0, b2 = 0 fo1 xv(dx) < 00 and d = a - ｦ ｾ xv(dx) > O. Such an increasing process is known 

as Subordinator. 

In this case X t can be expressed as the sum of its jumps over times 0 to t and linear drift: 

X t = dt + f xl X (ds x dx) = dt + L ｾ ｘ ｳ Ｌ
J[O,tlxlR O<s<t 

ｬ Ｆ ｸ ｾ ｬ ｾ ｬ

t 2 0, (2.50) 

and its characteristic function can be expressed as 

(2.51) 

where d = a - ｾ ｸ ｬ ｾ ｬ x v(dx). 

The idea is that in case of Subordinator, jumps are the only source of randomness and 

finite variation ensures that small jumps are integrable. So usual compensation of small 
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jumps in Levy-Kintchine formula to ensure the integrability of Levy measure is not needed 

and the compensation part can be adjusted with the drift of the process yielding a new 

drift. 

We close this section with a proposition, putting all these facts together, which com-

pletely characterizes a Subordinator: 

Proposition 2.9 Let {X t ; t ;::: O} be a Levy process on JR. The following conditions are 

equivalent: 

[i] X t ;::: 0 a.s. for some t > O. 

Iii] X t ;::: 0 a.s. for every t > O. 

[iii] Sample paths of X t are almost surely non-decreasing: 

[iv] The characteristic triplet of X t satisfies b2 = 0, v( -00, OJ = 0, 

Jooo
(l A x)v(dx) < 00 and d = a - ｾ ｸ ｬ Ｚ Ｚ ［ ｬ xV(dx) ;::: 0, that is X t has no diffusion 

component, only positive jumps of finite variation and positive drift. 

For a proof see Cont and Tankov(2004) [38J. 

2.5.1 Time Change Through Subordinator 

The main application of subordinator in finance is the so called "time change" ,i.e. to model 

the change from "calender time" to "business time". Such time axis modeling by a positive 

Levy process(subordinators) has intuitive explanation in Finance. See Geman(2002) [62J. 

As we explained in section2.5 subordinator can only display positive jumps in positive 

direction. Thus in case of subordinator drift being positive and there being no negative 

jump, the diffusion component needs to be zero( otherwise there could be a negative change 

with positive probability). Hence positive jumps, positivity being required for time chang-

ing, are the only source of randomness and finite variation ensures that small jumps are 

summable. So usual compensation of small jumps in Levy-Kintchine formula to ensure 

52 



the integrability of Levy measure is not needed and the compensation part can be ad-

justed with the drift of the process to give a new drift. See Cont and Tankov02004[38], 

Sato(1999) [100] for details. The following theorem is very important in financial applica-

tion. It shows that when a Levy process(modelling return dynamics) is subordinated by a 

subordinator(modelling time change) the resulting process is still a Levy process. Moreover 

it shows how to get the characteristics of the resulting process. The proof of the theorem 

can be found in Sato(1999)[100]. 

Theorem 2.7 Let Tt be a subordinator with Levy measure V, drift d . Its distribution at 

time t, PTt is characterized by the equation (2.51) and let). = PTI' Further assume X t 

is a JR - valued Levy process with Levy triplet (a, b2 , v). Its distribution Pxp at t > 0 is 

characterized by equation (2.23) and let J-l = PXl' Then provided the processes X t and Tt 

are independent, the process defined as 

is also a Levy process. The distribution of yt is given by: 

The Levy triplet (ay , ｢ ｾ Ｌ vy ) of yt is given by: 

d.a + ()O v(ds) r XJ-lS(dx), 
Jo ｊ ｬ ｸ ｬ ｾ ｬ

d.b2
, 

d.v(B) + 100 

J-lS(B)V(ds), B E 23(JR \ {O}). 

(2.52) 

(2.53) 

(2.54) 

(2.55) 

(2.56) 

Remark 2.4 We will see in details how to make use of each of these equations. We must 

mention that all the time changed Levy processes in finance have to be analytically developed 

based on the above theorem. We would like to see such analytic development for one of the 

successful time changed Levy models in finance. 

2.5.2 Analysis of Variance-Gamma Process 

Variance gamma process was first introduced by Madan and Senata(1990)[79]. Subsequently 

it was adapted to option pricing by Madan et al(1998)[80]. Brownian motion was time 
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changed by an increasing gamma process. We present the detailed derivations in VG model 

as a Brownian motion time changed by gamma subordinator. These derivations reveal the 

stochastic intuitions behind time changed processes. Furthermore we realize that Geman 

(2002) [62] had misspecified the expressions of some parameters in the paper when discussing 

variance gamma process. Since Geman (2002) [62] didn't go for the details derivation of the 

Levy measure of variance gamma process Geman (2002)[62] even didn't realize that the 

specification of the parameters do not yield the correct expression of the Levy measure used 

in the paper. We will go for the detailed derivations with the correct specification of those 

parameters and will show how our specification of the parameters yields the expression of the 

Levy measure used in the work Geman (2002)[62]. This is the reason why we considered VG 

model for illustration. However other Levy processes also have the facets of time changing 

embedded. e.g. Normal Inverse Gaussian(NIG) process has the mathematical treatment as 

Brownian motion time changed by IG subordinator; CGMY process has the mathematical 

illustration as Brownian motion time changed by tempered stable(TS) subordinators. 

We saw in example 2.2 that gamma random variable is infinitely divisible. Thus accord-

ing to the Levy-Kintnchine formula of Levy processes we can attach the gamma variable to 

get a gamma process such that: 

THs - Tt = f ( ｾ Ｌ ｾ Ｉ in general Tt = f ( ｾ Ｌ ｾ ) (2.57) 

where f(ex,,6) has the density: 

f(x) = ｾ Ｚ Ｉ xo<-le/3x; x > 0, ex > 0, ,6 > O. (2.58) 

We now show that gamma process is a subordinator. 

Lemma 2.1 The generating triplet for the f(ex,,6) distribution zs (0,0, VS), where Levy 

measure V S is given by: 

(2.59) 

It then follows that gamma process Tt , with ex = ｾ and ,6 = ｾ Ｌ in (2.57) is a subordinator 

with triplet (0,0, tvS
). 

Proof. If F is the probability measure with density (2.58), then (2.1) shows that: 

[ 
,6.] 0< = [,6 - is] -0< 

q,p(s) = JE[e
isx

] = ,6 -1,S ,6 (2.60) 
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However: 

So: 

<I>p(s) ｛ ｪ Ｑ ｾ ｩ ｓ ｝ Ｍ ｡

exp [100 

[e isx -lJ ;e-f3Xdx] (2.61) 

Comparing (2.61) with (2.23) the result follows. D 

The following results, about Bessel function of third kind, will be used in next derivation. 

Lemma 2.2 If Kp is the modified Bessel function of third kind, then: 

(2.62) 

(2.63) 

Proof's can be found in Watson(1944) [112]. 

Consider the process X t = (J Bt + Bt, where Bt is a standard Brownian motion and 

(J > 0, B E IR are volatility and drift parameters,respectively. The Variance Gamma, VG 

henceforth, process is defined as the process Yt subordinated to X by the r -subordinator 

T: 

(2.64) 

Gamma process is characterized as in (2.57) so that it ensures mean rate t and variance It 

with the probability density: 

(2.65) 
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With this parametrization, (2.60) ensures that the Laplace transform of this gamma sub-

ordinator is: 

(2.66) 

Equation (2.64) shows that conditional on a jump of size Tt = s in the time axis, the 

move of the process yt is normally distributed with mean Os and variance cr2 s. Applying 

conditioning we can now compute the characteristic function of compound random variable 

(here normal compounded by gamma): 

lE[ eis( aBTt +8Tt)] 

100 

lE [eis(aBTt+8Tt) ITt = u] fTt(u)du 

[using (2.66)] 

t 

( 1 - i.,8'{ ｾ ｾ ｳ Ｒ Ｌ Ｌ Ｒ Ｇ ｻ ) , 
(2.67) 

We now use theorem 2.7 to obtain the Levy triplet of VG process. 

From (2.54): 

avg = [drift subordinator].[drift subordinate] + (X) i/(dx). 11 ｹ ｐ ｾ ｂ ｉ Ｋ Ｘ Ｈ ､ ｹ Ｉ ＮJo -1 

O.[drift subordinate] + roo 0) ･ Ｍ ｾ ､ ｸ Ｎ 11 ｹ ｐ ｾ ｂ ｉ Ｋ Ｘ Ｈ ､ ｹ Ｉ Ｎ [using Lemma2.1] 
Jo x -1 

100 (
1) jl 1 Ｈ ｹ ｟ ｾ ｳ Ｉ Ｒ

-'-e Ｍ ｾ dx. y J21fSe - 2<7 S dy E R (2.68) 
o x -1 cr 27rs 

From (2.55): 

b;g = [drift subordinator]. [diffusion subordinate] = 0 [using lemma 2.1]. (2.69) 

From (2.56): 

vvg(dx) = [ drift subordinator]. [Levy measure subordinate] + roo ｰ ｾ BI +8 (dx) i/( ds ) 
./0 

0+ dx e- 20" s -e- sds [with a = -, f3 = - and usmg emma. 100 1 Ｈ ｸ ｟ ｾ ｳ Ｉ Ｒ a (3 1 1 . L 2 1] 

o (f'/27rs s r r 
a 100 

(x_lIs)2 3 (3 _ --dx ･ Ｍ ｾ ｓ Ｍ Ｒ ･ Sds 
cr..;27i 0 

(2.70) 

56 



Now: 

e ｾ e [- (f3+G) s-(1?x) ｾ ｝

So from (2.70) we obtain: 

(2.71) 

To evaluate the integral in (2.71) we need to use (2.62). Assume /'i, = (ex + ｾ Ｉ and s' = /'i,s. 

Thus rearranging the integrand in (2.71) we obtain: 

ds' 

(2.72) 

Thus (2.71) turns into: 

(2.73) 
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2.5.3 Geman's Misspecification and Our Correction 

We gathered enough knowledge to report that Geman's(2002) [62] identificationof the para-

meters of the VG model is wrong. Such identification do not yield the Levy measure 

mentioned in that paper. We identify the parameters correctly and show that our iden-

tification produces the expression of the Levy measure which Geman(2002) [62]used in the 

paper for numerical works. According to the theorem 2.7, the expression of Levy measure 

ought to be unique. 

Geman et al(2001)[63] show that the VG process may be expressed as the difference of 

two independent gamma processes: 

"\". - eP en -It- t- t (2.74) 

where ef and e? are interpreted as price changes from positive and negative shocks re-

spectively. This is clearly argued in Geman(2001) [63] and Geman(2002) [62]. The idea is 

simple: the difference of two positive jump processes can describe a general stock price 

path under the assumption that all possible movements in price are caused by frequent tiny 

and occasional big jumps of both positive and negative types. Positive moves are caused 

by a positive Gamma process and negative moves are caused by the negative of a positive 

Gamma process. For the validity of (2.74), according to (2.66) and (2.67), it suffices to 

have: 

This is equivalent to: 

1 

Tlp - Tln = B, 

(52, 
TlpTln = -2-

1 
(2.75) 

(2.76) 

(2.77) 

Equation (2.75) follows from the fact that VG process is characterized by VG characteristic 

function. Since VG has equivalent characterization involving two Gamma processes; it's 

characteristic function has equivalent characterization involving characteristic functions of 

corresponding Gamma processes. 
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Geman(2002)[62] specified the solutions of (2.76) and (2.77) as: 

1 
TIp = ----r====---

. / ()2,.y2 6 _ !Cr 
V 4 + 2 2 

1 
TIn = ----r====---

. /82]2 6 !Cr 
V 4 + 2 + 2 

(2.78) 

(2.79) 

Then Geman(2002) [62] mentioned that these specifications the Levy measure of the VG 

process can be written as: 

l/vg(dx) = x 

{

C e-
MX 

dx if x > 0, 

withC=l, G=...L, M=...l. 
ｾ ｾ ｮ ｾ ｰ

C e-Gxd f 0 --rxrx ix<, 

(2.80) 

However using our derived form of Levy measure, see (2.73), we checked that solutions 

(2.78) and (2.79) do not yield the expression of the Levy measure (2.80). Moreover (2.78) 

and (2.79) don't even satisfy (2.76) and (2.77). We now solve equations (2.76) and (2.77) 

separately for TIp and TIn. 

For Tlp we write (2.76) as TIp = TIn + e"j. Then from (2.77) we obtain: 

==} Tln 

Then again from (2.77) we obtain: 

(J2"j 

2 

- 2eTl ± J 4e2"j2 + 8(J2"j 

4 

For TIn we write (2.76) as TIn = Tlp - e"j. Then (2.77) implies: 

(J2"j 

2 
2eTl ± J 4e2"j2 + 8(J2"j 

==} TIp 4 
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Then again from (2.77) we obtain: 

1 
"7n = Ｍ ｉ ［ Ｍ Ｍ Ｍ ［ ］ ［ Ｚ ｾ ］ ］ ］ ］ Ｍ Ｍ Ｇ

2 (. Ｏ ｾ 6: {Ct.) 
ｾ V4+2+2 

(2.82) 

Our solutions satisfy (??) M . ( '" oreover usmg 2.73), we now prove that our solutions yield 

the form of Levy measure used by Geman(2002)[62]. 

From (4.14) for x > 0 we obtain: 

ｾ tx I exp [x (:2 - ｨ Ｏ ｲ Ｚ ｾ Ｉ ]dX 

_1 [2 (. /e2
,2 iJ2, e,)] 

,Ix 1 exp - x iJ2, Y-4- + "2 - 2" dx 

-Mx 
C_e __ x> O. 

x 

where C = ｾ and M = 7J
1
p with "7p given by (2.81). 

Similarly from (2.73), since for x < 0; 1 x 1= -x i.e. x = - 1 x I, we obtain: 

(2.83) 

(2.84) 

where C = ｾ and G = Ｗ ｊ ｾ with "7n given by (2.82). Equation (2.83) and (2.84) together 

imply (2.80). 

2.6 Choosing a Pricing Measure In Incomplete Market 

One of the downside of most of the otherwise sophisticated models is that these models 

render the market incomplete. See Schouten(2003) [102]. So for Levy models we need to 

choose a pricing(martingale) measure out of many possibilities. Existence of a martingale 

measure is related to the absence of arbitrage while uniqueness of a martingale measure is 

related to the market completeness i.e. perfect hedging. In Levy market there are many 

equivalent martingale measures under which discounted asset price process is a martingale; 
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so perfect hedging can not be obtained i.e. there always remain residual risk that can not be 

hedged. In this section we provide detailed technical analysis to show how to choose a risk-

neutral distribution(martingale measure) corresponding to a physical(statistical) measure 

underlying a Levy process. 

One approach to to find an equivalent martingale measure, which is analytically more 

tractable and hence frequently used in the literature, is premised on conditional Esscher 

transform proposed by Gerber and Shiu(1994) [65]. Given a statistical distribution P, de-

scribing the evolution of the true underlying return process ,the conditional Esscher trans-

form identifies an equivalent probability measure Q describing a corresponding martigale 

process. The Esscher parameter plays the prominent role in identifying the measure Q so 

that the discounted price process becomes martingale. 

We consider St = SoeXt , where X t is a Levy process which can be seen as a continuously 

compounded rate of return over a period of length t. According to section2.2 X t has an 

infinitely divisible distribution with probability density function given by f(x, t). Assuming 

that the moment generating function(mgf) of this density exists for each t, it is defined as: 

M(u, t) lE[euXt
] I: eUX f(x, t)dx. (2.85) 

Provided M(u, t) is continuous at t = 0 it follows from infinite divisibility, see section2.2, 

that M(u, t) = [M(u, 1)P. Let () be a real number such that M(()) = ｊ ｾ ｯ ｯ e()x f(x)dx exists, 

then the Esscher transform ( with parameter ()) of the process {Xd t:2:0 is defined to be a 

process with new probability density, for each t > 0, given by: 

e()X f(x, t) 
r(x, t; ()) = Joo e()Yf( t)d 

-00 y, y 

e()X f(x, t) 
M((), t) 

This implies that the Esscher equivalent measure is given by: 

dQ e()Xt 

dP lE[e()Xt] 
e()Xt 

M((), t) 
e()Xt 

[l\1((),1)]t 

exp(()Xt -tlog(M(()))) 
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The idea of equivalence comes through the fact that for a null event{}, when J{} f(x, t) = 0, 

(2.86) shows that J{} fq(x, t) = 0 too. Similarly for a whole event when ｊ ｾ ｯ ｯ f(x, t) = 1, 

(2.86) shows that ｊ ｾ ｯ ｯ r(x, t) = ｊ ｾ ｯ ｯ ･ ｾ ｻ Ｈ ｊ ｾ Ｏ = 1 too. Furthermore for all u E R, Ｑ ｅ ｛ Ｚ Ｚ ｾ ｴ ｬ

is a martingale with constant expectation of 1 for each t. Equation (2.86) is the core of all 

Esscher manipulation. 

The mgf corresponding to r is: 

Mq(u, t; 0) = Ｑ ｾ Ｐ Ｐ eUx r(x, t; 0) 

1-00 eUX e(Jx f(x, t) 

-00 M(e, t) 

1 1-00 

e(u+8)x f(x t)dx 
M(O, t) -00 ' 

M(u+O,t) 
M(O, t) 

[M(u + 0, 1)ji 
[M(O,l)]t 

[
M(U + 0, 1)] t 

M(O,l) 

[Mq(u, 1; oW (2.88) 

Esscher parameter 0 is selected in a way so that the modified(actually shifted) probability 

measure Q is a martingale measure which is equivalent to the statistical probability measure 

P. The idea is to find 0 = 0*, so that the discounted stock price process {e -rt St } ｴ ｾ ｏ is a 

martingale with respect to the probability measure corresponding to 0*. Since the martingale 

condition is So = JEQ[e-rtSt] = e-rtJEQ[St] this translates into finding 0* which is a solution 

to: 

So 

e-rtso 1: eX r(x, t; O)dx 

-rts 100 
X e(Jx f(x, t) d 

e 0 e M(O ) x 
-00 ,t 

-rt 100 e(fHl)x f(x, t) 
e So M(O) dx 

-00 ,t 

-rt M(O + 1, t) 
e So M(O, t) 

[using(2.86)] 

e-rtSo[l\JQ(l, 1; oW [using(2.88)] 
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The solution does not depend on t, so considering t = 1 we obtain: 

r _ q . _ 1\1 (e + 1, 1) 
e - M (1,1, e) - M(e,1) (2.90) 

Finally the solution e* of equation (2.90) provides the risk neutral density Jq of the log 

returns over an interval of length t through the real density J, as shown in (2.86). We will 

frequently use equation (2.90) to select a pricing measure in the thesis. 

2.7 Conel usion 

In this chapter we have revisited the basic aspects of Levy processes. We then demon-

strated how the standard Levy-Kintchine formula may be interpreted as a series of shocks 

superimposed on a normal distribution. Using this derivation we have been able to offer a 

correct solution to the mis-specification in the characterization of the Levy measure for the 

VG model derived by Geman (2002)[62]. We analyzed LKF to characterize the distribu-

tional aspects of log-returns in a way which is suitable to infer the time changing effects of 

return processes in finance. This requires revealing the detailed theoretical underpinnings 

in order to replace diffusion by jumps. In other words analytic development of VG process, 

time-changed version of Black-Scholes model, is revisited from the general theoretical per-

spective of time changing which is motivated by identifying and correcting a misspecification 

in Geman(2002) [62]. 
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Chapter 3 

Pricing with FFT and FRFT 

Dynamic Views 

• • 

Most of the processes in finance and economics belong to a rich family of stochastic processes 

known as Levy processes. As we saw in previous chapter these processes can essentially 

include jumps of various sizes, arriving at various rates, along randomly evolved paths 

and Brownian motion is the only continuous member of this family. Complete charac-

terization of processes in this family comes through the celebrated Levy -Kintchine for-

mula(LKF). Besides drift and diffusion components in such characterization, we saw that 

a measure( commonly known as Levy measure) plays pivotal role in suiting these processes 

to different needs e.g. modeling jump effects. We reformulated the underlying random 

variables, embedded in celebrated Levy-Kintchine formula, in a form which is suitable to 

infer time changing effects of Levy processes used in financial modeling. In addition we saw 

that this form of LKF clarifies the fact that Levy measure of a process alone characterizes 

both the rate and distribution of jumps of a particular size. Levy triplet of all the time 

changed processes can be characterized using a common theoretical framework and we ex-

plored this framework to revisit VG process as a time changed process. This recognizes a 

simple misspecification in an earlier work of Geman(2000) [62]. 

In this chapter we conduct an empirical investigation using the VG process, which we 

rigorously revisited in previous chapter. Recently Chourdakis(2005) [29] introduces frac-

tional FFT(FRFT) in option pricing. Chourdakis(2005) [29j presents detailed analysis to 
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show how the computational efficiency improves with respect to various FRFT parameters 

compare to those in FFT procedure. FRFT and FFT basically differ on required compu-

tational time as one has the flexibility to choose a parameter more than the other. In this 

empirical chapter we focus on exposition of trade-off between models fitting performance 

and required calibration time for week by week dynamic calibration with FFT and FRFT 

specifications. Parameters time-varying feature in dynamic calibration is investigated which 

provides information about the stability of the model across time. Furthermore we inves-

tigate whether FRFT exhibits any distinct feature in addition to substantial reduction in 

required computational time. Saying otherwise, for Black-Scholes and its time changed 

version Variance Gamma model we investigate cross-maturity and cross-strike features of 

FRFT compare to those of FFT. To distinguish the effects of time changing under FRFT 

and FFT we pretend that neither Black-Scholes nor VG model has closed form solutions 

and models under FRFT and FFT are different. We obtain the Black-Scholes values for 

both FRFT and FFT in the same way as we obtain for VG-FRFT and VG-FFT models. 

After all VG is a pure jump Brownian motion for a change of calender time to business time, 

as detailed in previous chapter. We consider weekly S&P500 index option, unlike most of 

the studies considering daily prices. 

The drifted Brownian motion, without time change, describes the assets log return 

through two parameters f1, and b as in (2.28)(without compound Poisson parts). As the 

equation (2.64) shows VG is a Brownian motion with a change of calender time to business 

time by a gamma process. Thus when Brownian motion encounters a time change, LKF 

through (2.28), exemplifies thats jumps come into scenario and diffusion disappears. The 

parameters avg and bvg play the same role for the VG process as a and b in (2.28) for 

a general Levy process. Thus bvg being zero, (2.28) shows that the dynamics of the log 

returns has no diffusion. That is how equation (2.28) establishes that Brownian motion 

is pure jump only in business time. Furthermore vvg completely describes the rate and 

distribution of both small and big jumps, as explained in section 2.1.3, when jumps come 

into the scenario as a consequence of time changing. 
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3.1 Risk-neutral Specifications 

The characteristic function of VG model under real measure if given by (2.67), which can 

be written as: 

(3.1) 

We can extract two parts from (3.1). One is the drift part /-l = 0 and another is the non-drift 

part ¢(s) = Ｍ ｾ ｬ ｮ (1 - isO, + !s2cr2,) .The drift part under risk-neutral measure can now 

be obtained, see Shiryaev(1999) [106], as: 

rn() . [¢(-i)] [1 ( 1 2 )] /-l s = '/, r - -t- st = i r + -;yl n 1 - 0, - "2 cr, st (3.2) 

Finally the risk-neutral characteristic function can be obtained as: 

exp {/-lTn(s) + ¢(s)} 

exp {i [r + ｾ ｬ ｮ (1 - fh - ｾ ｣ ｲ Ｒ Ｌ Ｉ ] st - ｾ ｬ ｮ (1 - isO, + ｾ ｳ Ｒ ｣ ｲ Ｒ Ｌ Ｉ } 

(3.3) 

Similarly the risk-neutral characteristic function of Black-Scholes model can be obtained 

as: 

ｱ ＾ ｂ ｾ Ｈ ｓ Ｉ = exp {i (r - ｾ ｣ ｲ Ｒ Ｉ st - ｾ ｳ Ｒ ｣ ｲ Ｒ ｴ ｽ (3.4) 

where the Brownian motion B t rv N(fJ,t, crt) has the following characteristic function under 

the real measure: 

q>Bt(s) = exp {iSfJ,t - ｾ ｳ Ｒ ｣ ｲ Ｒ ｴ ｽ Ｎ (3.5) 

Our empirical study is conducted under the risk-neutral measures utilizing the characteristic 

functions (3.3) and (3.4). 

3.2 Pricing with FFT and FRFT 

We consider logarithm of the prices, St = log(St) and k = log(K) where K is the strike 

price of the option. As in Carr and Madan(1999) [27] the value of an European call with 

maturity T can be expressed as a function of k: 

(3.6) 
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Here qT(S) is the risk-neutral density of the log prices. To ensure square integrability of 

CT(k), Carr and Madan(1999) [27J, introduced modified call prices: 

ex>O (3.7) 

where ex is known as the dampening factor. Following Carr and Madan(1999) [27] an analytic 

expression for the pricing formula (3.6) can be obtained as; 

CT(k) = _e_ e- iuk1/JT(U)du -ak ioo 
7r . 0 

where 1/JT ( u) has an analytic expression: 

1/JT(U) = ･ Ｍ ｔ ｔ ｾ ｔ Ｈ ｕ - (ex + l)i) 
ex2 + ex - u2 - i(2ex + l)u 

(3.8) 

(3.9) 

Here ｾ is the characteristic function of the model for which prices are computed. As 

mentioned earlier in our empirical study we will consider ｾ for Black-Scholes and VG 

models under risk-neutral dynamics, given by (3.4) and (3.3) respectively. 

U sing numerical integration technique, e.g. trapezoidal rule, the integral appearing in 

(3.8) can be approximated as: 

(3.10) 

where ｾ ｔ is same as 1/JT with weights attached by integration rule. T} is grid spacing such 

that Uj = T}j and upper limit of integration is T}N. 

For some integrable function j, the spirit of FFT lies in approximating the continuous 

Fourier Transform by its discrete version: 

(3.11) 

Usual approach in the literature is to fine-tune (3.10) to (3.11) and then obtain the option 

prices through (3.8). The technique is to consider only the useful log-strikes near log-spots: 

N)" 
kt::.. = -- Ｋ Ｉ Ｎ Ｎ ｾ + log(So) 

2 
ｾ = 0"" ,N-1. (3.12) 

For Levy models So = 1, and then assuming b = ';). equation (3.12) ensures that log-strikes 

range is -b to b. Here)" is the grid length of equidistant log-strikes. We can write the sum 
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in (3.10) as: 

N-l 

L e-iujkb.fT(Uj)T} 

j=O 

N-l L ･ Ｍ ｩ ｬ ｌ ｪ Ｈ Ｍ ｾ Ｚ Ｏ Ｇ Ｋ ａ ｬ ｬ Ｉ ｦ ｔ Ｈ ｕ ｪ Ｉ ｔ ｽ
j=O 
N-l L e-i7)jAll ei7)j';).. fT(Uj)T} (3.13) 
j=O 

With the following notation we obtain equation (3.13) in the form of (3.11) which is par-

ticularly suitable to apply FFT on the vector f with components f( Ui): 

f(Uj) 
. ·N)" -

et7)J 2'" '¢T (Uj)T} 

27r 

N 

(3.14) 

(3.15) 

So out of three parameters T}, A, N, two can be chosen arbitrarily and the other should satisfy 

(3.15), the so called FFT condition. For better accuracy both T} and A have to be small thus 

N is required to be large. So there is a trade-off between accuracy and number of strikes( 

hence computational time). In our empirical study we use FFT parameters as in Carr and 

Madan(1999) [27]. 

FRFT is developed to get rid of condition (3.15), providing the flexibility to choose all 

three parameters. So we can choose smaller N to consider only effective strikes around 

spots, significantly reducing the computational time, in addition to choosing appropri-

ate grid spacing parameters T} and A for satisfactory accuracy. It was first introduced 

in Bailey and Swartztrauber(1991) [6] and is recently incorporated into option pricing in 

Chourdakis(2005) [29]. FRFT is a fast and easy way to compute sums of the form: 

N-l L e-i27rkjE fj (3.16) 
j=o 

Here (: is the fractional parameter. Clearly (: = ｾ yields the usual FFT. Upon choice of 

the parameter N, upper integration limit a and log-strike bound b, the grid spacing and 

fractional parameters can be obtained as: 

T} 

(: 

a 

N 
2b 

N 
1 T}A 

N 27r 
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(3.17) 

(3.18) 

(3.19) 



In our empirical study we use a = 64, b = 0.3 and N = 32. Consistent way of choosing 

FRFT parameters and related issues are discussed in Lee(2004) [78]. To compute N -point 

FRFT for a vector x, the algorithm suggest, see Bailey and Swartztrauber(1991) [6], defining 

2N - point vectors as: 

z· J 

o ｾ ｪ < m 

m ｾ j < 2m 

where E is as given by (3.19). The FRFT is then computed as: 

(3.20) 

(3.21) 

(3.22) 

Here 8 stands for element wise multiplication, D j (.) is the discrete fourier transform com-

puted with the usual FFT procedure as in (3.11) and D-l is the inverse fourier transform. 

Our closed form Black-Scholes prices, used in comparison, are calculated under the 

risk-neutral measure using the following celebrated result, see Black and Scholes(1973) [19]: 

Theorem 3.1 Consider a European call option with strike price K and expiration time T. 

If the underlying option pays no dividends and continuously compounded risk-free rate is r, 

then the price of the contract at time t is given by: 

(3.23) 

where <I> (x) denotes the cumulative distribution function of standard normal random variable 

l t d t th 
. t d [InC if )+(r+4 )(T-t)] d d [In( 1t )+(r-4 )(T-t)] 

eva ua e a e pom x, 1 = O'vT-t an 2 = O'vT-t 

with d2 = d1 - ay'T - t. 

3.3 Empirical Study 

Chourdakis(2005) [29] used some selected values of parameters and didn't calibrate the mod-

els with real market data. We calibrate the models separately assuming FRFT and FFT as 

different models. For this we consider options traded on S&P500 for the sample period of 
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January'2007 to November'2007. For out-of-sample assessment we consider market prices 

of options traded on last week of December 071. Though we present our in-sample analysis 

only for one in-sample week, we investigate several other in-sample weeks as well. 

Calibration Results 

Specifications RMSE Average time (second) 0- S 11 

VG(FFT) 2.6931 20.97 0.1294 -0.1802 0.0786 

(0.0393) (0.0268) (0.0221) 

VG(FRFT) 2.7234 0.45 0.1232 -0.1837 0.0839 
(0.0505) (0.0313) (0.0276) 

BS(FFT) 3.1765 11.27 0.1320 
(0.0360) 

BS(FRFT) 3.2447 0.29 0.1308 
(0.0362) 

BS(closed form) 3.1764 0.063 0.1320 
(0.0360) 

Figure 3.1: Calibration results under different specifications of Black-Scholes and Variance-

Gamma. We consider weekly traded options on S8P500 from January '07 to November '07. 

The estimates reported are the average of dynamic weekly calibrations over this sample 

period. The standard error of each estimate appears in parenthesis. The average( over 44 

weeks )weekly calibration time is also reported. 

The parameters reported in table3.1 are the average of weekly estimates over the sample 

period. 

For in-sample prices figure3.2 shows the Black-Scholes fit and figure3.3 shows the VG 

fit both for FRFT and FFT. For out-of-sample prices the corresponding fits are presented 

in figure3.4 and figure3.5 respectively. 

IThough we present the out-sample fiton last week of December,2007; we investigate earlier weeks of 

December as well. We observe that as we move from 1st week to last week, the out-of-sample fits get worse. 
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Figure 3.2: In-sample Black-Scholes fit under FFT(left) and FRFT(right). O(market), 

*(model) and different colors are for different maturities as red (23dtm) , blue (58dtm), 

green (86dtm) , ceylon (149dtm), yellow(240dtm) and black(331dtm). 

3.3.1 Dynamic Distinction Between FFT and FRFT 

We focus whether specifications with FFT and FRFT exhibit any distinctive feature for 

dynamic weekly calibration over the sample period of January'07 to November'07. However 

in figures we present the case with third weeks of each month, i.e. mid month. Figure3.6 

presents the number of options used in such dynamic calibration. Volatility estimates at 

each week under different specifications are shown in figure3.7(left). It shows that it is not 

FFT and FRFT which cause difference in dynamic volatility estimation, rather it is time 

change which systematically estimates slightly higher level of volatility. On the right hand 

side, of figure3.7, we show that VG model exhibits better calibration performance than BS 

model. We conjecture that VG estimate of dynamic volatility is a better reflection of true 

volatility than the BS estimate, which possibly leaves a favorable calibration for the VG 

model. After all VG model captures the volatility through all its three parameters where 

as in case of BS model it is captured by its sole parameter. We see that for both BS and 

VG, FFT performs slightly better than FRFT throughout the months. However figure3.8 

shows the difference in time requirements for the dynamic calibrations with FFT and FRFT 
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Figure 3.3: In-sample Variance Gamma fit under FFT(left) and FRFT(right). o (mar-

ket)J *(model) and different colors are for different maturities as red(23dtm)J blue (58dtm)J 

green (86dtm)J ceylon(149dtm)J yellow(240dtm) and black(331dtm). 

specifications. It is now a trade-off between slightly favorable, often negligible, calibration 

performance and the requirement of significantly longer calibration time. 

For weekly dynamic calibration the average of estimates are found to reflect models 

inherent stability over the entire calibration period, for both FFT and FRFT specifications. 

More specifically parameters time-varying tendency are found to be negligible under both 

FFT and FRFT specifications, implying that the means of such estimates are rather a good 

"make-do" approach to decide on the final parameter values over a long period. Though we 

do not report, we observe that other choices such as median and mode of dynamic weekly 

estimates are found to undermine the potentiality of time change, namely for such choice it 

is observed that VG model is not necessarily performing better than Black-Scholes model. 

In figures3.9 and 3.10 we graphically argue in favor of using the average of weekly parameter 

estimates in pricing. For both BS and VG these figures show that mean deviation of the 

dynamic estimates are roughly close to zero throughout the months. 
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Figure 3.4: Out-oj-sample Black-Scholes fit under FFT(lejt) and FRFT(right). o (mar-

ket), *(model) and different colors are Jor different maturities as red(23dtm), blue(51dtm), 

green (86dtm), ceylon(114dtm), yellow{177dtm), black(268dtm), magenta(359dtm). 

3.3.2 Cross-maturity and Cross-strike investigation 

We investigate the pricing errors for four model specifications BS(FRFT), BS(FFT), VG(FRFT) 

and VG(FFT), across maturity and strike, relative to the closed form Black-Scholes prices. 

Our motivation is to examine the impact of the FRFT and FFT valuation methods and the 

impact of the underlying models(BS vs. VG) on the option prices. 

To reveal the cross-strike features of FRFT and FFT under time changed and original 

process we express pricing errors as function of strikes only, holding the maturity constant. 

We consider three different maturities observed in the market: minimum, mean and maxi-

mum corresponding to short, medium and long term options respectively: 

(3.24) 

Similarly to reveal cross-maturity features of FRFT and FFT we express pricing errors 

as function of maturities only, holding the strike constant. Three different strikes are con-

sidered: minimum, equal to asset and maximum of the observed strikes in the market; these 

correspond to ITM, ATM and OTM options respectively: 
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(3.25) 

We plot cross-strike (left) and cross-maturity(right) errors, for different specifications, in 

figure3.11 , using illustrative market data for the last week of July'07. Figure3.12 plots error 

surfaces across all ranges of strikes and maturities. 

The first empirical observation is that when Fractional parameter of FRFT induces 

some unsystematic price fluctuations across strike (left panel in figure3.11) across-strike, its 

influence across-maturity is rather systematic(right panel in figure3.11). For any fixed ma-

turity, across-strike prices under FRFT and FFT(for both BS and VG) eventually converge 

to closed form Black-Scholes prices. The higher the fixed maturity is, the slower the rate 

of convergence. For short term options FRFT fluctuations are closely around FFT fluc-

tuations; for medium and long term options they systematically get deviated from each 

other. Over all across-strike the effect of time changing is rather systematic. Considering 

equation(2.28) and the discussion following equation(2.73) this means that changing the 

source of randomness from diffusion to jumps causes the prices to be higher for ITM and 

lower for OTM options. This provides some remedy to the Black-Scholes models deficiency 
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Figure 3.6: Number of options used in dynamic calibration. The case presented is for third 

weeks of each month(mid-month}. However in calibration we considerd all 44 week's for the 

sample period of Jan'07 to Nov'07 

in 'under pricing the ITM' and 'over pricing the OTM' options. This remedy is apparently 

the reason behind the VG models superior performance over BS model. 

Across-maturity error patterns under VG model encounter a gradual reversal with re-

spect to moneyness criteria. For ITM options VG prices are ,on average, higher than BS 

prices; for ATM it is ,on average, lower for short term options and higher for long term 

options. Finally in case of OTM options it is lower than BS prices. FFT and FRFT prices 

increasingly differ with the change of moneyness criteria. The greatest deviation is observed 

in case of OTM options. See figures3.11 (right panel) and 3.12. 

3.4 Conclusion 

We calibrate the VG and BS models for weekly recorded option contracts using both FFT 

and FRFT methods. We observe that fractional parameter of FRFT causes some unsys-

tematic price fluctuation across-strike. For short maturities FRFT prices fluctuate closely 

around FFT prices. However as the maturities increases two specifications give deviated 

prices. Across maturities FFT and FRFT prices increasingly differ with the change in mon-
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Figure 3.7: Dynamic distinction in volatility{lejt) and RMSE{right) estimation with FFT 

and FRFT. The case presented is for third weeks of each month{mid-month). However in 

calibration we considerd all 44 week's for the sample period of Jan'07 to Nov '07. 

eyness status. These are related with characteristic function and moneyness grids in some 

complicated ways. More importantly like other studies we found that FRFT is much faster 

than FFT, economizing on 97-98% of the calculation time at a cost of small pricing errors. 

These findings have important implications for the calibration of options models and for 

options risk-management in general. We also observe that there are important differences 

between BS and VG option values, implying that inappropriate use of BS in the context 

where the true process was VG can lead to major pricing errors. Otherwise said, assuming 

the market is under regular diffusive shocks can lead to major pricing errors when the true 

market exhibits frequent small and big jump shocks. Models inherent stability in dynamic 

calibration is found to be similar for both FFT and FRFT specifications. Consequently 

mean values of dynamic weekly estimates are found to work well in out-of-sample as well. 
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Figure 3.9: Mean deviation of Variance Gamma parameter estimates under FFT and 

FRFT(v, 0', O;from top to bottom). The case presented is for third weeks of each month(mid-

month). However in calibration we consider all 44 week's for the sample period of Jan'07 

to Nov '07. 
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Figure 3.10: Mean deviation of Black-Scholes parameter estimate under FFT and FRFT. 

The case presented is for third weeks of each month(mid-month}. However in calibration 
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Figure 3.11: Cross strike(left) and cross-maturity(right) features of FRFT and FFT under 

Black-Scholes and Variance Gamma models. We used the market information of last week of 

July'07. The models are calibrated over the sample period of J an'07 to Nov '07. Cross strike 

features are presented for short(top), medium(middle) and long(bottom) term options. Cross 

maturity features are presented for ITM(top), ATM(middle) and OTM(bottom) options. 

The spot was 1518.09. 
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Figure 3.12: FRFT and FFT features under Black-Scholes and Variance Gamma models. 

We use last week of July '07 market information. The spot was 1518.09. The models are 

calibrated over the sample period of Jan'07 to Nov'07 
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Chapter 4 

Existing Approaches to 

N onnorrnality: Pricing and 

Approximation 

This chapter carries out a comparative analysis of the calibration and performance of a va-

riety of options pricing models. These include Black-Scholes (1973) [19], the Gram-Charlier 

(GC) approach of Backus et al. (1997)[9], the stochastic volatility (HS) model of Heston 

(1993)[69], the closed-form GARCH process of Heston and Nandi (2000)[70] and a variety 

of Lvy processes including the Variance Gamma (VG), Normal Inverse Gaussian (NIG), 

CGMY and Kou(2002)[75] jump-diffusion models. Unlike most studies of option pricing, 

we compare these models using a common point-in-time data that reflects the perspective 

of a new investor who wishes to choose between models using only the most minimal recent 

data set. For each of these models, we also examine the accuracy of delta and delta-gamma 

approximations to the valuation of both individual options and an illustrative option portfo-

lio. Based on the relative performance of Heston Nandi(2000)[70] model (CFG henceforth), 

in both pricing and approximation, we emphasize the necessity of exploring similar closed 

form GARCH approach with nonnormal(Levy) innovations. 
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4.1 Introduction 

Empirical performance of alternative option pricing models was systematically documented 

in Bakshi et al(1997) [7]. Authors alternative selections in Bakshi et al(1997) [7], were basi-

cally around continuous time stochastic volatility, with and without jumps, and stochastic 

interest rate characterization. It is concluded that simple stochastic volatility(SV) has more 

pronounced effect than stochastic volatility stochastic interest rate(SVSI) and its jump in-

cluded variant SVSI-J. However SV is just one way of incorporating skewness. We consider 

empirical assessment of SV with other approaches of incorporating skewness and kurtosis: 

Gram-Charlier approach, G ARCH approach, pure jump Levy approach and jump-diffusion 

approach. Unlike Bakshi et al. [7], we consider single day traded options of weekly data for 

our empirical investigation. 

Gram-Charlier is a continuous time approach which explicitly incorporates skewness and 

kurtosis to bench-mark Black-Schole(1973) [19] model. Since it doesn't incorporate market 

evidence of jumps into the return dynamics, it is a continuous path approach as well. 

Moreover this approach still considers volatility as constant. On the other hand GARCH 

is a discrete time approach which allows jumps to be incorporated in return dynamics. 

However most attractive feature of GARCH models is the realistic modelling of volatility, 

replacing the constant volatility phenomenon of the bench-mark model. Going with the 

frequent reference in recent literature we consider a GARCH version which does not include 

jumps in return dynamics. So our representative from the GARCH family is the Heston-

Nandi closed form GARCH model(CFG) with discrete time continuous path approach to 

incorporating skewness and kurtosis to return dynamics. This model uses a GARCH(l,l) 

structure to update daily volatilities. So when Gram-Charlier model incorporates skewness 

and kurtosis without incorporating stochastic volatility and jumps, CFG model incorporates 

skewness and kurtosis by incorporating stochastic volatility into the return dynamics. Since 

our GARCH representative is the discrete time stochastic volatility model, we consider the 

continuous time stochastic volatility model of Heston(HS) as well; given the fact that it is 

another commonly used model. In this continuous volatility adjustment approach, volatility 

is driven by a separate Stochastic Differential Equation(SDE) namely CIR process. 
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Our jump incorporating models are the frequently refereed Levy models in option pric-

ing literature, see Schouten(2003) [102], Kyprianou(2006) [76] and the references therein. 

So continuous time jumpy path approach to incorporating skewness and kurtosis is ex-

amined by Variance Gamma(VG), Normal Inverse Gaussin(NIG) and CGMY, a further 

extension of VG, models. All these Levy models are infinite activity pure jump (with 

suitable parametrization of CGMY), where small jumps are so frequent that it renders dif-

fusion redundant, see Geman(2002) [62]. Nonetheless we consider a sole representative of 

finite activity jump-diffusion Levy model, namely Kou's double exponential(DE) model, see 

Kou(2002) [75]. 

Some of the Levy models we consider(namely VG, NIG and CGMY) introduce skewness 

and kurtosis through stochastic time changing feature of asset pricing. Excess kurtosis in 

such models may result from the implicit stochastic volatility induced by time changing, see 

Geman(2002)[62]. We didn't consider Levy stochastic volatility models which incorporate 

stochastic volatility through separate dynamics. These models are rarely used in the market 

because of their involved mathematical manipulation for marginal improvement in pricing. 

So in this chapter by stochastic volatility we either mean Heston's stochastic volatility(SV) 

model or GARCH stochastic volatility(CFG) model. Stochastic time changing is believed to 

improve the pricing performance significantly as documented in Geman(2002)[62] for intra 

day tic data. This chapter assesses the time changed models compare to other common 

approaches to pricing subject to an investor's willingness to use most recent minimum 

market information contained in a single day traded options. 

The feasibility of approximating option portfolio and inherent pitfall in such appro-

ximation under BS pricing model, caused by non-linearity of realistic composition of the 

portfolio, was investigated in Britten and Schaefer(1999) [22]. It was further explored in 

Christoffersen(2003) [31]. It is concluded that from the standpoint of reality, there is hardly 

any alternative to the full valuation of the portfolio. However under normal market situ-

ation such approximation is justified in short period. We attempt to enrich the literature 

by exploring whether various approaches to incorporating skewness and kurtosis to pricing 

models discriminate the performance of such approximations. We consider complete pay-off 

profile of the portfolio instead of considering any particular risk measure. 
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The performance of approximation, under various models, depends on models pricing 

performance as well as their Delta and Gamma values. Though some models have closed 

form Greeks, most of the sophisticated models don't have any. There are several ways to 

numerically compute the Greeks for those models, namely tree based approach, Monte-

Carlo approach and finite-difference approach. However for uniformity in comparison we 

disregard the closed form formulas for Greeks, whenever available, and compute Greeks by 

finite difference approach for all the models under investigation. 

For empirical study we consider options traded on S&P500 index on Wednesday 23rd 

JanuarY,2008. We consider the immediate next Thursday data for out-of-sample assessment 

of the models. 

This chapter is structured in the following way. Section 4.2 provides short description 

of the models which consider different approaches to incorporating skewness and kurtosis. 

Risk-neutral dynamics are revisited which are required for pricing options. Then in section 

4.3 we discuss issues around the implementation of Greeks(D., r,) and approximation of 

option prices. Comparative look into approximation pitfall is presented in section 4.4. 

Section 4.5 deals with data and calibration issues. Our empirical findings are discussed 

in section 4.6. We present pricing and approximation analysis separately. Finally the last 

section concludes. 

4.2 The Models and the Dynamics 

Celebrated Black-Schole-Merton ,BS hereafter, idea capitalizes on Geometric Brownian mo-

tion(GBM) for asset return. BS provides a closed form solution to European option; a simple 

derivative with non-linear pay-off. The basic idea of European style derivative pricing is 

captured in the following central result, which proof can be found in any classic finance 

book, e.g. Shiryaev(1999) [106]: 

Theorem 4.1 Consider a European option with pay-off V(S) and expiration time T. As-

sume the continuously compounded rate of interest is r. Then the current European option 

price is determined by: 

1/(0, So) = e-rT E[V(ST)] (4.1) 
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where E denotes the expectation under the risk neutral probability that is derived from the 

risk-neutral process: 

dSt 
St = rdt + (J'dBI.' (4.2) 

BS considered normal distribution for log-returns and therefore fails to incorporate em-

pirical evidence of smile-skew effects resulting from skewness and kurtosis. Gram-Charlier 

explicitly incorporates skewness and kurtosis in BS framework therefore ensures substantial 

improvement in pricing performance. However more realistic pricing requires replacing the 

Brownian motion B t by characteristically more rich Levy processes. Levy processes can 

incorporate the empirical evidence of jumps in return in addition to structural feasibility 

of allowing the return distributions to have skewness and kurtosis. This could often im-

prove the pricing performance significantly. A comprehensive survey of Levy processes in 

finance can be found in Schouten(2003) [102]' Cont and Tankov(2004) [38], Liuren(2006) [77] 

and accessible theoretical treatment of Levy processes can be found in Kyprianou(2006) [76], 

Sato(1999) [100], Applebeum(2004) [2]. In practice for most ofthese Levy models prices have 

to be computed through numerical inversion of characteristic functions which is obviously 

time consuming. This introduces some kind of trade off between quick implementation of BS 

model obtaining more consistent prices from otherwise sophisticated models which require 

considerable time to implement. Nonetheless despite this obvious drawback a plethora of 

alternative option pricing models are developed in recent times and option pricing is still a 

vibrant research area in its own merit. Moreover these alternative approaches can possibly 

shed further lights on other aspects of the models e.g. hedging performance. 

We briefly revisit the pricing models which are premised on diverse approaches of de-

velopment. The skewness and kurtosis in these models are incorporated and characterized 

quite differently. For pricing the options we use risk-neutral characterization of each model. 

4.2.1 Gram-Charlier model 

The Gram-Charlier approach was first introduced in Backus et al(1997) [9]. An extension 

of BS density was considered allowing for skewness and kurtosis: 

(4.3) 
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where superscripts on ¢ indicate the order of derivative of BS density, (It = e+ and (2t = ｾ

are skewness and kurtosis on a horizon of t and (11 and (21 are per unit skewness and 

kurtosis. In Backus et al( 1997) [9] it was shown that with this density the call option price 

can be written as: 

Ceo 

(4.4) 

4.2.2 Heston Stochastic Volatility model 

Stochastic volatility model of Heston, see Heston(1993) [69], assumes a diffusion process for 

the stock price given by: 

J1dt + 0itdBl 

and a eIR process for the volatility ",fIJ; given by: 

dBt dBl pdt. 

(4.5) 

(4.6) 

(4.7) 

The SV model has flexible distributional structure in which the correlation(p) between 

volatility and asset returns serves to control the level of asymmetry and the volatility 

variation coefficient( (}) serves to control the level of kurtosis. The risk-neutral specification 

is similar to one given in (4.7) but '" and e replaced by ",* = '" + A and e* = ｋ Ｌ ｾ ＾ Ｂ see 

Heston(1993) [69], Rouah and Vainberg(2007) [97]. Here A is the market price of volatility 

risk. The closed form solution, up to numerical integration, in Heston model is given by: 

CHS = 

(4.8) 
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where fj = exp { Cj + Dj13 + iZX} with 

x 

C· J 

D· J 

gj 

d· J 

iJ t 

irz(T - t) + Ｏ Ｇ ｜ Ｚ ｾ {(b j - ipO'z + dj)(T - t) _ 2log [1- gjedj(T-t)]} 
a- Ｑ Ｍ ｾ

bj - izpO' + dj [ 1 - edj(T-t) 1 
0'2 1 - gjedj(T-t) 

bj - izpO' + dj 

bj - izpO' - dj 

V(izO'p - bj )2 - (2iUjz - z2)O'2 

1 1 
2' U2 =-2 

4.2.3 Heston-Nandi GARCH model 

Heston and Nandi(2000) provide a closed form pricing formula for a European option, where 

the underlying follows the non-linear GARCH process: 

From GARCH characterization (4.9) the variance persistence of return process can be 

derived to be {3 + 0:82 ; so the process will be mean-reverting if (3 + o:(p < 1. It is shown 

in Heston and N andi(2000) [70] that the risk-neutral characterization can be obtained by 

plugging A = Ｍ ｾ and 8* = 8 + A Ｋ ｾ Ｎ Furthermore Heston and Nandi(2000) [70] argued that 

in this model 0: determines kurtosis and 8 determines skewness. This model has a moment 

generating function(mgf) of the form: 

(4.10) 
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where A(t; t + T, z) and B(t; t + T, z) are given by the recursive relations: 

A(t;t+T,z) = 

B(t;t+T,z) 

A(t + 1; t + T, z) + zr + B(t + 1; t + T, z)w 

1 
-"2ln (1 - 2(};B(t + 1; t + T, z)) 

1 
z(>. + 0) - "202 + ,BB(t + 1; t + T, z) 

+ ｾ Ｈ ｺ Ｍ Ｐ Ｉ Ｒ

1- 2(};B(t + l;t + T, z) 
(4.11) 

Heston and Nandi(2000)[70] then shows that the closed form GARCH(CFG) price can be 

obtained as: 

CeFG St - + - Re dz (1 1100 [K-iZ j*(iz + 1)] ) 
2 7f 0 izj*(l) 

-Ke - + - Re dz -rt (1 1100 
[KiZj*(iZ)] ) 

2 7f 0 iz 
(4.12) 

Here j* is the risk-neutral version of f. 

4.2.4 Pure Jump Levy models 

The Levy models we consider in this section assume that all possible movements in stock 

price are caused by jumps. The Levy measure of such a process ensures frequent arrival of 

small jumps, so frequent that they render diffusion redundant, see Geman(2002) [62]. Hence 

they are known as pure jump processes. As an illustration in chapter2 and chapter3 we 

considered VG model to clarify how mathematics conforms with such an elegant intuition. 

According to the Levy-Kintchine formula the distribution of XCt2-tl) = ｬ ｯ ｧ Ｈ ｾ Ｉ is char-

acterized by the characteristic function of an infinitely divisible random variable given by: 

lE[eisX(t2- t l)] 

= exp {(t 2 - tl) [ias - ｾ ｳ Ｒ ｢ Ｒ + r [e iSX -1- isxlI{_l,l}(X)] I/(dx)]} 
2 ｊ ｾ ｜ ｻ ｏ ｽ

(4.13) 

where tl can naturally be zero. Scalars a, b E lR and the measure 1/ satisfies 1/( {O}) = 0 and 

flR\{o} (lxl2 1\ 1) I/(dx) < 00, which means that though numerous small jumps may not be 

integrable, square of those jumps are always integrable, a requirement which helps us extract 

a square integrable martingale process in the limit. In case of pure jump processes b is always 
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zero. For further details see chapter2 and Cont et al(2004)[38], Kyprianou(2006) [76]. For 

example the variance gamma process characterizes the random variable Xl through the 

parameters (a, 0, "y) and the Levy measure: 

1 (XO IXIfA,02) vvg(dx) = --exp - - - - + - dx 
"y I x I a2 a "y a2 (4.14) 

When integrated for jumps of all possible sizes (4.14) implies that the total rate is infinite,i.e. 

Jooo 
vvg(dx) = 00. However for any t: > 0, we have J(oo vvg(dx) < 00, implying that it is small 

jumps which are numerous and jumps exceeding any threshold t: > 0 are finite, arriving in 

compound Poisson fashion. The Levy measure when used in (4.13) with a = b = 0 yields 

the following closed form characteristic function of the process X t : 

(4.15) 

For this pure jump Levy model the skewness and Kurtosis of log returns over an interval of 

length one is given by: 

(4.16) 

(4.17) 

The risk-neutral version of the characteristic function (4.15) required in Carr Madan 

formula to price the options, see Carr and Madan(1999)[27], is given by: 

i[>\i,G;rn)(s) = exp {i [r + ｾ ｬ ｮ (1 -0"( - ｾ Ｌ Ｌ Ｒ Ｑ Ｇ Ｉ 1 st - ｾ ｬ ｮ (1 - isOl' + ｾ ｓ Ｒ Ｌ Ｌ Ｒ Ｑ Ｇ Ｉ } 
(4.18) 

This risk-neutral form basically results from mean-correction of drift part, or introducing a 

drift to a driftless process, see Schouten(2003) [102]. 

The VG model has alternative characterization as difference of two Gamma processes, 

see Geman(2002) [62]. Using this characterization, VG model is generalized in Carr et 

al(2002) [26] which introduces an additional parameter and is known as CGMY model. In 

Carr et al(2002)[26], it has been shown that the success of VG model in explaining the 

smile effect of the market is likely due to the fact that the underlying process is pure jump 
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with infinite activity and finite variation. The new parameter Y in CGMY model permits 

finite/infinite activity and finite/infinite variation. The CGMY process characterizes the 

distribution of Xl through the parameters (C, G, M, Y) and the Levy measure: 

ｻ
ｃ ｾ ｾ Ｇ Ｚ ［ dx if x> 0, 

vcgmy(dx) = 
-Gx 

ｃ ｉ ｾ ｉ Ｑ Ｋ ｹ ､ ｸ if x < 0, 

(4.19) 

Here C, G, M > 0 and Y < 2. Apparently Y = 0 implies the VG model characterized 

as difference of two Gamma process. This Levy measure when plugged in (4.13), with 

a = b = 0 provides a closed form characteristic function: 

(4.20) 

Skewness and kurtosis of log-returns over an interval of length one is characterized by: 

C(MY - 3 - GY - 3)f(3 - Y) 

(C(MY-2 + GY-2)f(2 - ｙ Ｉ Ｉ ｾ

C(GY- 4 + MY-4)f(4 - Y) 
3 + (C(MY-2 + GY-2)f(2 _ y))2 

(4.21) 

( 4.22) 

When G = lI1, CGMY provides a symmetric model. For G < M it provides a left skewed 

model often resembling features observed in market option data. Furthermore if Y < 0 

the paths have finite jumps in any finite interval, otherwise the paths have infinitely many 

jumps in any finite interval. For Y E [1,2) the process is of infinite variation. Finally the 

mean-corrected risk-neutral version, required for FFT based Carr Madan pricing, is given 

by: 

<]? ｾ ｇ ｬ ｜ ｊ ｙ ［ ｲ ｮ Ｉ (s) exp {i (r - Cf(-Y) ((M -l)Y - MY + (G + l)Y - GY)) st 

+Ctf( -Y) ((M - is)Y - MY + (G + is)Y - GY)} (4.23) 

Another model of our consideration in pure jump category is Normal Inverse Gaus-

sian(NIG). We saw that VG process can be interpreted as Brownian motion fluctuating 

not continuously but only at time points controlled by a Gamma Subordinator, so called 

business times. A similar interpretation holds for the NIG process that can be viewed as 

Brownian motion fluctuating only at Inverse Gaussian(IG) time. Intuitive interpretation 
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of such time axis modelling by a subordinator is well documented in Geman(2002)[62]' 

Clark(1973) [37]. 

The NI G process characterizes the random variable Xl through the parameters (a,;3, 6) 

and the Levy measure: 

(4.24) 

where IK1 is a modified Bessel function of third kind with index 1. Like VG, NIG is an 

infinite activity process with numerous arrival of small jumps. Plugging this Levy measure 

into (4.13) with a = b = 0; we obtain a closed form characteristic function: 

(4.25) 

For NIG model the skewness and kurtosis, of log returns over an interval of length one are 

characterized by: 

3;3 

We obtain the risk-neutral form of the characteristic function by mean correction: 

<I>r;:IG;Tn) (s) = exp {i (r + o( y' a2 - (;3 + 1)2 - y' a2 - ;32)) st 

-o( y'a2 - (;3 + is)2 - y'a2 - ;32)} 

4.2.5 A jump-diffusion model 

( 4.26) 

(4.27) 

( 4.28) 

We consider a jump diffusion model to examine the market response to diffusion combined 

with jumps in contrast to those with pure jump models. When jump diffusion models are 

a Levy models, they are not pure jump because of the presence of diffusion. The choice 

of Kou's(2002) [75] double exponential model is motivated by the findings in Ramezani and 

Zeng(1999) [94]' where it is suggested that double exponential jump-diffusion model fits the 

stock market data better than normal-diffusion model of Merton(1976)[85]. Kou assumes, 

see Kou(2002) [75], in addition to drifted diffusion the log-returns have occasional jumps 

following a double exponential distribution DE(p, 1]1, 1]2). Here p is the probability of an 
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upward jump and T}1 and TJ2 govern the decay of the tails for the distribution of negative 

and positive jumps respectively. The Levy measure is given by: 

(4.29) 

where>. = ｊ ｾ ｯ ｯ v(dx) < 00, so unlike pure jump processes Kou's jump diffusion model is a 

finite activity model. The Levy measure, through (4.13) (this time with non zero a and b), 

provides a closed form characteristic function: 

<I>xt(s) = exp {t (ias - ｾ ｢ Ｒ ｳ Ｒ + is>. [ prl1. + (1- ｐ ｾ ｔ ｊ Ｒ -1]) } 
2 'T}l + '[s 'T}2 + '[s 

( 4.30) 

The skewness in this model is not explicitly characterized. However Kou(2002) [75] suggests 

that the feature of heavier tails become more pronounced with the increase of either the 

jump size ･ ｸ ｰ ･ ｣ ｴ ｡ ｴ ｩ ｯ ｮ Ｈ Ｑ ｝ ｾ Ｉ or jump rate (>.). The mean-corrected characteristic function is 

obtained as: 

exp {i (r - ｾ ｢ Ｒ - >. [P'T}l + (1 - p)'T}2 - 1]) st 
2 'T}l + 1 'T}2 + 1 

｟ ｾ ｢ Ｒ ｳ Ｒ ｴ + is>.t [ P'T}l. + (1 - ｐ ｾ Ｇ ｔ ｽ Ｒ - 1] } 
2 'T}l + '[s 'T}2 + 2S 

(4.31) 

We consider logarithm of the prices, St = log(St) and k = log(K) where K is the strike 

price of the option. As in Carr et al(1999) [27] the value of an European call with maturity 

T can be expressed as a function of k: 

( 4.32) 

Here qT (s) is the risk-neutral density of the log prices. To ensure square integrability of 

GT(k) Carr and Madan, see Carr et al(1999) [27J, introduced modified call prices: 

ex>O ( 4.33) 

where ex is known as the dampening factor. Following Carr et al(1999)[27] an analytic 

expression for the pricing formula (4.32) can be obtained as: 

GT(k) = _e_ e-iuk'l/JT(U)du 
-ak j'oo 
7r 0 

where 'l/JT(U) has an analytic expression: 

e-rT<I>T(U - (ex + l)i) 
'l/JT(U) = ex2 + ex - u2 - i(2ex + l)u 
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Here cI> is the characteristic function of the model for which prices need to be computed. In 

our empirical study we will consider cI> under the risk-neutral dynamics for all the considered 

Levy models. 

Brownian motion, being the simplest and the only continuous member of the Levy 

family, can provide a closed form solution for European options: 

Theorem 4.2 Consider a European call option with strike price K and expiration time T. 

If the underlying option pays no dividends and continuously compounded risk-free rate is r, 

then the price of the contract at time t is given by: 

(4.36) 

where cI> (x) denotes the cumulative distribution function of standard normal random variable 

[In(§.!.. )+(r+ ,,2 )(T-t)] 
evaluated at the point x d = K 2 and 

, 1 a-../T-t 

d = ｛ ｉ ｮ Ｈ ｩ Ｉ Ｋ Ｈ ｲ Ｍ ｾ Ｉ Ｈ ｔ Ｍ ｴ Ｉ ｝ 'th d = d - vT - t 
2 a-../T-t ｷ ｾ 2 1 (j . 

For a proof see Black and Scholes(1973) [19]. 

4.3 Option Pricing and Delta-Gamma Approximation 

For small fluctuations in underlying, option prices can be approximated using options Delta 

and Gamma. Inconsistency and pitfall in such approximations arise from big fluctuations of 

underlying, one point Delta and Gamma estimates, failure of Delta and Gamma to reflect 

true non-linearity in the pay-off of the option portfolio. Though Delta and Gamma are given 

in closed form only in few cases, Black-Scholes and Gram-Charlier in our case, in most cases 

we can obtain them upon numerical integration. Finite-difference technique can be applied 

to estimate all the Greeks reasonably quickly, see Duffy(2006) [48]. For the uniformity in 

comparison we will apply finite difference approach to all models of our consideration. Finite 

difference scheme of Greeks computation is extremely sensitive to the choice of amount of 

perturbation. For comparison this amount should remain same for all models. Perturbation 

chosen outside a particular range makes the Greek surfaces completely unstable and that 

range varies for different Greeks as well as models under consideration. To our knowledge 
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there is no working rule to choose perturbation which works for all the models. We basically 

use trial and error approach to find a perturbation which works for all the models. 

Suppose cmodel(St), for a particular model, be the price of an European option, when 

the price of the underlying is St. The Delta of that particular model can be obtained by 

finite difference method: 

ac cmodel(s + dS) - cmodel(s) 
5model = _ = Ｍ Ｍ Ｍ Ｍ Ｇ Ｍ Ｍ Ｍ ｾ Ｍ Ｍ Ｍ ｾ

as dS 
(4.37) 

where dS is a small perturbation to the price of the underlying. Similarly to obtain Gamma, 

which measures the sensitivity of Delta, we need to obtain two values of Delta. Let 51 be 

the 5 as defined in (4.37) and the 52 is: 

cmodel (S + 2dS) - cmodel (S + dS) 
52 = ----'------'-d-S----'------'-

Then the Gamma of a pricing model can be computed by finite difference: 

a25 
as2 

52 - 51 

dS 
cmodel(s + 2dS) - 2cmodel(s + dS) + cmodel(s) 

(dS)2 

(4.38) 

(4.39) 

In figure 4.7 we plot the Delta surfaces for all the models under considerations. Delta changes 

dramatically when the option is close to ATM. For OTM option the delta converges to zero 

and for ITM all the Delta surfaces converge to one. Similar surfaces for Gamma are plotted 

in figure 4.8. Again for a short maturity option the Gamma changes dramatically when the 

option is close to ATM. However in case of Gamma the surfaces converge to zero for both 

ITM and OTM options. 

The Delta Gamma approximations to model option prices for generic underlying asset 

price S, close to current price St, are given by: 

cmodel(s) 

cmodel(s) 

;::::: cmodel(St) + 5model(s - St) 

ｾ cmodel(St) + 5model(s - St) + ｾ Ｇ Ｉ Ｇ ｭ ｯ ､ ･ ｬ Ｈ ｳ - St)2 
2 

( 4.40) 

(4.41) 

See Dowd(2005)[42] and Christoffersen (2003) [31]. For any generic underlying asset price 

the option price is approximated using the same Delta and Gamma, which are calculated 
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once( only for the current value of the underlying) no matter how deviated the future un-

derlying asset prices are. The issue is though the continuity assumption of BS model can 

justify the fact that an ATM option will remain ATM for short maturity, in case of jumpy 

Levy models as well as stochastic volatility models this is hardly justified. For models us-

ing non-normal distributions, tail events have substantial mass. Thus even in short time 

underlying can move significantly because of jumps and/or higher level of volatility ren-

dering the approximation inconsistent. Since option portfolio is a linear combination of 

options, this inconsistency turns into pitfall in portfolio approximation. As mentioned in 

Christoffersen(2003)[31], in fact there is no alternative to the true valuation of the portfo-

lio even for BS model. We investigate relative extent of pitfall in such approximation for 

market models of our consideration. 

4.4 Comparative Look into Approximation Pitfall 

We consider a portfolio similar to one used in Britten and Schaefer(1999) [22J but constructed 

from our data set. While the call options in the portfolio are traded in the market, the 

put option is priced using put-call parity. The option portfolio is described in table4.4. 

The portfolio in Britten and Schaefer(1999) [22J is used in Christoffersen (2003) [31], as well, 

to investigate the pitfall in approximation but in case of Black-Schole-Merton model only. 

So this section is an extension of similar analysis for Gram-Charlier, closed form GARCH 

and various Levy option pricing models including Kou's(2002) [75J double exponential jump-

diffusion model. 

We consider a risk-management horizon of five trading days(seven calender days), which 

corresponds to the sampling interval for our weekly data. As in Christoffersen(2003) [31 J 

instead of computing the VaR's we will consider the complete pay-off profile of the portfolio-

under all considered models-for different future values of the underlying asset prices St+5' 

However given that we are dealing with jumpy Levy models as well as stochastic volatility 

models, we consider a wider range of possible future values of the underlying in five trading 

days. Let PI, and P(St+s) denote the portfolio value today and at the end of five trading 
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days respectively. We have: 

p 8(St+5) = Pt + <5P * (St+5 - St) 

p8'Y(St+5) = Pt + <5P * (St+5 - St) + ｾ * ,P * (St+5 - St)2 
2 

Here <5P and ,P are model dependent portfolio hedge factors defined as: 

( 4.42) 

( 4.43) 

(4.44) 

(4.45) 

( 4.46) 

m indicates the model dependence; i.e. <5P and ,P will be different for different models. 

True value of the portfolio is obtained through full-valuation of the option portfolio 

using model option prices: 

pexact ( S t+5) ml * putm(K = 1200, T = 23 - 7) 

+m2 * Call1(K = 1200, T = 23 - 7) 

+m3 * Call'2(K = 1550, T = 23 - 7) (4.4 7) 

Each model m will have its own parameters to be used in pricing the options and evaluating 

hedging co-efficient. The pattern of non-linearity exhibited in figure4.5 is basically caused 

by the difference in strikes considered in the portfolio. Though for all models the approxi-

mations appear to be almost similar, in fact there are significant differences. Propagation 

of important and apparently more consistent, compared to the stark non-linearity, portion 

of the approximation errors are presented in figure4.6. 

4.5 Data and Calibration 

We consider options on S&P500 index traded on Wednesday 23rd JanuarY,2008. These are 

daily traded options of weekly record. After cleaning the data, see Bakshi et al(1997) [7], we 

have 178 options on that particular day traded in the market. For calibration we minimize 

the RMSE defined as: 

1 
RMSE=----

mean price 

1 n ;, L (CYLaTket - cywdel)2 ( 4.48) 
i=l 
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For cross-sectional assessment we report APE, in addition to RMSE, which is defined as: 

1 n I cmarket _ cmodell 
APE = ｾ t t 

mean price ｾ n 
'i=l 

(4.49) 

Table4.1 reports the calibration result for all considered models. After calibration, mod-

els pricing performance is investigated for different types of options belonging to different 

moneyness and maturity criteria. For out-of-sample assessment we consider options traded 

in the market on immediately next day, 24th of January 2008. 

4.6 Empirical Analysis 

Option models relative performance order in pricing need not necessarily be preserved in 

option portfolio approximation based on pricing models Delta and Gamma. This is because 

the definitions of Delta and Gamma, of a particular model, consider models parameters as 

constant and generate perturbation in option prices for a small perturbation only in under-

lying. We separately investigate the empirical observations for pricing and approximation. 

4.6.1 Pricing performance with one day information 

We observe that for calibration with most recent minimal data, as in single day traded 

options, Levy models explicitly characterized by parameters modeling rate of decay on both 

tails fail to exhibit their true potential. e.g. four parameter CGMY and five parameter DE 

models are not performing better than three parameter VG and NIG models. Moreover 

we observe that when jump incorporating Levy models bring moderate improvements in 

pricing performance it is stochastic volatility which brings more poignant improvement. 

Specifically Heston's SV and Heston Nandi CFG models show significant improvement over 

constant volatility Levy models with jumps. This empirical comparison of time continuous 

Levy and stochastic volatility approaches with discrete time GARCH volatility approach is 

first, to the best of our knowledge, in the literature. 

Another relevant observation is that though GC model shows some improvement over 

BS model, it clearly falls behind the Levy, GARCH and stochastic volatility models of our 

consideration. GC model though explicitly incorporates skewness and kurtosis, thus exhibit-

ing pronounced smile-skew patterns, still embraces the assumption of constant volatility, a 
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characteristic strongly contradicted in the market. On the other hand though stochastic 

volatility and GARCH volatility models response to smile and skew are less pronounced, 

they significantly outperform the GC model. The same conclusion holds when we consider 

Levy models which exhibit pronounced smile skew patterns, e.g see CGMY and VG impled 

volatility graphs in figure4.3 and 4.4. This finding is in support of recent focus in the lite-

rature where Levy innovations are blended in GARCH volatility structure. The approach 

is in-line with Heston-Nandi GARCH volatility structure but it replaces conditional nor-

mal innovation by Levy innovations, or possibly GC innovation. Among other attractions 

this approach put together a remedy to volatility related imperfections with remedies to 

cross-maturity and cross-strike related biases. 

The empirical features observed are based on entire data set we consider. Table4.2 shows 

models in-sample pricing performance for various categories of maturity and moneyness. 

Models relative performance observed in in-sample case has overall satisfactory correspon-

dence in out-of sample pricing as well. In table4.3 we report RMSE and APE for different 

categories of options for out of sample assessment. In sample (left) and out-of-sample(right) 

APE for various categories are plotted in figure4.1. 

4.6.2 Approximation performance with one day information 

The non-linearity in approximation arises from particular choice of portfolio, namely the 

choice of strike of the options in option portfolio. Theoretical values of the portfolio(solid 

curves in figures4.5) exhibit little difference under different models. However the Delta and 

Delta-Gamma approximations to the portfolio exhibit various degree of proximity to the 

true portfolio valuation. These variation in approximations basically results from the use of 

Delta and Gamma which are estimated only current value of the underlying. It is partially 

caused by models response to true non-linearity of the portfolio as well as models sensitivity 

to ITM and OTM options in the portfolio . 

For call options, in the portfolio, with strike 1550 and maturity 16 days, 23 calender 

days, the Delta and Gamma surfaces are plotted in figures4.7 and 4.8 respectively. As the 

figure4.7 shows near ATM when Delta changes more dramatically for Levy and GC models, 

for stochastic volatility and GARCH models the changes are less dramatic. Consequently 
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any risk-management model for option portfolio(with significant amount of AT1I option), 

which relies on fixed Delta(and\or) Gamma estimates, are susceptible to be more misleading 

for Levy and GC pricing models than those of stochastic volatility and GARCH volatility 

models. Our empirical findings reported in figure4.6 and table4.5 reveal such magnitude of 

mislead for effective market models. 

Non-linearity of option prices is highest when the option is close to ATM. Figure4.8 

shows that for Levy and GC models the response to non-linearity is well captured by 

gamma, compare to stochastic volatility and GARCH models. We observed this evidence 

for other calibrations as well e.g. for calibrations not restricted to the use of minimal 

recent information. Consequently figure4.6 and table4.5 imply that in approximating option 

portfolio, pricing model's sensitivity to ITM and OTM options is more significant than it's 

response to non-linearity of the portfolio caused by ATM options in the portfolio. 

Finally in figure4.9 we plot the risk-neutral densities of all the pricing models derived 

by inverting the corresponding characteristic functions. We used the parameters presented 

in table4.1 which are calibrated from options traded on 23rd January, 2008. The tails and 

peaks appear separately in figure4.10. Clearly stochastic volatility and GARCH volatility 

models exhibit distinct features in tails and peaks respectively. 

4.7 Conclusion 

In this chapter we consider comparative investigation of Gram-Charlier, GARCH and Levy 

option pricing models from the perspective of a new investor willing to rely only on most 

recent minimum market information. Like other studies we found that pure jump Levy 

processes with infinite activity and finite variation price the options better than the classi-

cal diffusions or jump-diffusion models. However we further observe that their performance 

are far less appealing when compared with GARCH volatility model as well as diffusion 

model combined with stochastic volatility. Though pure jump Levy models can capture 

pronounced smile-skew patterns we observe that it is stochastic volatility model, even with 

less pronounced smile-skew patterns, which exhibits superior performance. Furthermore 

lllodel with less pronounced smile-skew patterns combined with jump and diffusion, instead 
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of stochastic volatility, performs much worse compare to pure jump Levy models. Thus pure 

jump approach clearly have a preferential edge over diffusion and jump-diffusion models but 

not over stochastic volatility and/or GARCH volatility models. Furthermore pronounced 

smile-skew model combined with diffusion alone(GC model), without jump and stochas-

tic volatility, exhibits worse performance compare to pure jump, stochastic volatility and 

GARCH volatility models. 

In practice an option portfolio composed of options with various strikes lead to an 

acute non-linearity in portfolio pay-off, so acute that it becomes imperative to rely on full 

valuation of the portfolio over long period, no matter how skewness and kurtosis are being 

incorporated into the model. Various models response to that non-linearity is far from prac-

tical and reliable. Nonetheless in short period approximation may be found useful. Models 

performance in approximating option portfolio more importantly rely on their sensitivity to 

ITM and OTM options in the portfolio than their ability to capture the non-linearity of the 

portfolio caused by ATM options. All the approaches considered to incorporate skewness 

and kurtosis provide significant improvement over benchmark model in such approximation. 

Our investigation indicates that blending conditional updates of volatility with con-

ditional skewness and kurtosis might reflect the market reality better, which is a recent 

approach in the literature. In this approach GARCH structure of volatility updates is aug-

mented with conditional Levy innovations replacing conditional normal one. This will be 

our main focus in next chapters. 
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Model RMSE Parameters 

VG 0.1398 
(0') (8 ) (v) 

0.1694 -0.6109 0.0343 

(0.0020) (0.0234) (0.0023) 

NIG 0.1392 
(a) ([3) (0) 

64.4954 -41.7570 1.1825 

(0.0262) (0.0243) (0.0182) 

DE 0.1464 
(0') (>. ) (p) (1'/1 ) (1'/2) 

0.1900 0.3644 0.1183 13.2284 13.6686 

(0.0017) (0.0499) (0.0768) (0.0916) (0.0679) 

CGMY 0.1452 
(C) (G) (M) (Y) 

0.0772 7.1106 29.9656 1.3534 

(0.0012) (0.0063) (0.0165) (0.0044) 

CFG 0.0919 
(a) ((3) (w) (8) (0'2 ) 

3.3794e-005 0.2500 2.2898e-005 0.500 0.0029 

(3.4e-06) (1.6e-04) (1.6e-04) (3.4e-06) (1.6e-04) 

GC 0.1418 
(0') bd b2 ) 

0.2036 -0.3103 0.157 

(0.0018) (0.0337) (0.5562) 

HS 0.0770 
(t;;) (8 ) (0' ) (p) (Va) 

6.5460 0.0393 0.9287 -0.4196 0.1955 

(0.0393) (0.0010) (0.0025) (0.0040) (0.0196) 

BS 0.1472 
(0') 

0.1974 

(0.0017) 

Table 4.1: Model Calibration on 23rd Jan, 2008. The standard error of each parameter 

appears in brackets. To obtain the standard errors we numerically compute the Jacobian 

of mean squaT'ed error function for each model. Finite difference scheme is adopted for 

calculating partial derivatives. 
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Model/rnoneyness dtm < 60 60 ｾ dtm ｾ 120 dtm> 120 

BS [0.9700,1.0023) 
(APE) (RMSE) (APE) (RMSE) (APE) (RMSE) 
14.7381 0.1761 5.4928 0.0640 8.5710 0.1069 

[1.0023,1.0670) 11.0965 0.1113 7.9715 0.0804 4.8842 0.0547 

[1.0670,1.1317) 3.5747 0.0396 4.3482 0.0450 2.7551 0.0343 

[1.1317,1.1640) 0.7634 0.0076 0.3480 0.0035 0.5749 0.0057 

VG [0.9700,1.0023) 23.6845 0.2508 6.9573 0.0744 9.2028 0.1197 

[1.0023,1.0670) 8.6847 0.0880 5.7726 0.0582 5.4350 0.0687 

[1.0670,1.1317) 1.8637 0.0215 2.3219 0.0258 4.0018 0.0488 

[1.1317,1.1640) 0.4273 0.0043 0.7177 0.0072 1.8879 0.0189 

NIG [0.9700,1.0023) 21.9036 0.2330 6.4282 0.0700 9.2617 0.1199 

[1.0023,1.0670) 8.8586 0.0896 5.8994 0.0595 5.4089 0.0679 

[1.0670,1.1317) 1.9946 0.0232 2.4824 0.0272 3.8766 0.0479 

[1.1317,1.1640) 0.3265 0.0033 0.6318 0.0063 1.7896 0.0179 

CGMY [0.9700,1.0023) 23.3115 0.2472 6.6727 0.0717 9.3591 0.1217 

[1.0023,1.0670) 8.5860 0.0870 5.6628 0.0572 5.4674 0.0696 

[1.0670,1.1317) 1.8451 0.0213 2.2825 0.0254 4.0690 0.0495 

[1.1317,1.1640) 0.4406 0.0044 0.7314 0.0073 1.9116 0.0191 

DE [0.9700,1.0023) 16.2895 0.1887 5.8654 0.0679 8.7540 0.1104 

[1.0023,1.0670) 10.9436 0.1099 7.7095 0.0777 5.1056 0.0585 

[1.0670,1.1317) 3.1877 0.0360 3.8732 0.0406 2.9592 0.0381 

[1.1317,1.1640) 0.3868 0.0039 0.0157 0.0002 1.0035 0.0100 

GC [0.9700,1.0023) 27.5277 0.2911 8.9009 0.0932 8.6363 0.1134 

[1.0023,1.0670) 9.1792 0.0944 6.2943 0.0635 5.4157 0.0670 

[1.0670,1.1317) 1.2034 0.0153 2.0068 0.0238 4.0332 0.0485 

[1.1317,1.1640) 0.8612 0.0086 1.0335 0.0103 2.1388 0.0214 

CPG [0.9700,1.0023) 25.3208 0.2764 3.9098 0.0451 2.2588 0.0266 

[1.0023,1.0670) 3.4560 0.0384 4.5257 0.0471 2.5114 0.0301 

[1.0670,1.1317) 1.1789 0.0134 3.1979 0.0333 1.3835 0.0140 

[1.1317,1.1640) 0.1284 0.0013 0.0177 0.0001 0.2878 0.0029 

HS [0.9700,1.0023) 10.4178 0.1165 5.3381 0.0606 3.4096 0.0399 

[1.0023,1.0670) 2.6392 0.0288 2.6525 0.0285 3.1102 0.0395 

[1.0670,1.1317) 1.1404 0.0133 2.1477 0.0228 4.2525 0.0489 

[1.1317,1.1640) 0.2377 0.0024 0.4194 0.0042 1.5825 0.0158 

Table 4.2: In-sample pricing performance on 23rd Jan, 2008. 
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Model / moneyness dtm < 60 60 s:; dtm s:; 120 dtm> 120 

BS [0.9700,0.9961) 
(APE) (RMSE) (APE) (RMSE) (APE) (RMSE) 
7.9965 0.0973 3.2136 0.0367 18.3521 0.3508 

[0.9961,1.0484) 8.4986 0.0856 5.1048 0.0522 5.0215 0.0640 

[1.0484,1.1006) 3.4449 0.0374 3.4104 0.0341 3.3697 0.0419 

[1.1006,1.1267) 0.7420 0.0099 0.9100 0.0091 

VG [0.9700,0.9961) 15.8791 0.1717 3.0316 0.0363 19.0302 0.3488 

[0.9961,1.0484) 6.3289 0.0657 3.0457 0.0316 6.1418 0.0808 

[1.0484,1.1006) 1.3961 0.0146 1.1089 0.0111 4.7069 0.0575 

[1.1006,1.1267) 1.8330 0.0189 0.7022 0.0070 

NIG [0.9700,0.9961) 13.9849 0.1526 2.7344 0.0337 19.0829 0.3488 

[0.9961,1.0484) 6.4431 0.0663 3.1385 0.0325 6.0429 0.0800 

[1.0484,1.1006) 1.5502 0.0163 1.2902 0.0129 4.5772 0.0565 

[1.1006,1.1267) 1.7210 0.0178 0.5739 0.0057 

CGMY [0.9700,0.9961) 15.4815 0.1681 2.8410 0.0345 19.1794 0.3485 

[0.9961,1.0484) 6.2042 0.0644 2.9172 0.0304 6.2677 0.0819 

[1.0484,1.1006) 1.3650 0.0143 1.0605 0.0106 4.7781 0.0582 

[1.1006,1.1267) 1.8456 0.0190 0.7276 0.0073 

DE [0.9700,0.9961) 9.0330 0.1084 3.1394 0.0366 18.4779 0.3501 

[0.9961,1.0484) 8.4755 0.0854 4.8477 0.0495 5.2692 0.0686 

[1.0484,1.1006) 3.0369 0.0336 2.9081 0.0291 3.6197 0.0462 

[1.1006,1.1267) 0.9516 0.0119 0.4501 0.0045 

GC [0.9700,0.9961) 20.0068 0.2136 4.4467 0.0525 18.4013 0.3496 

[0.9961,1.0484) 7.3136 0.0781 3.6779 0.0379 5.7994 0.0785 

[1.0484,1.1006) 1.2652 0.0152 0.8125 0.0081 4.7123 0.0573 

[1.1006,1.1267) 2.3124 0.0233 1.1224 0.0112 

CFG [0.9700,0.9961) 34.2457 0.3618 4.8611 0.0565 14.2848 0.3786 

[0.9961,1.0484) 7.1414 0.0857 2.9455 0.0314 2.2500 0.0230 

[1.0484,1.1006) 2.8828 0.0352 1.9730 0.0197 1.6160 0.0179 

[1.1006,1.1267) 2.1397 0.0228 0.2038 0.0020 

HS [0.9700,0.9961) 19.1544 0.1956 9.6450 0.0640 16.9233 0.3908 

[0.9961,1.0484) 2.3641 0.0272 0.8576 0.0804 4.3251 0.0481 

[1.0484,1.1006) 1.0421 0.0128 0.7610 0.0450 5.4854 0.0630 

[1.1006,1.1267) 1.8298 0.0189 0.4693 0.0035 

Table 4.3: Out-oj-sample perJormance Jor options traded on 24th January, 2008. 
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Figure 4.1: Models Pricing Performance for Options traded on Sf3P500 Index on January 

232008(In-sample, left) and January 24 2008(Out-of-sample, right) 
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Figure 4.2: Implied volatility surfaces of pricing models calibrated with the minimum infor-

mation contained in one day traded options on 23rd of January, 2008. 

Type of Option: Put CallI Call2 

Strike(Kj): 1200 1200 1550 

]Vl aturity( days): 23 23 23 

Option price: 4.2251 146.6 0.1750 

Position ( Tnj): -1 -1.5 2.5 

Table 4.4: Option portfolio constructed using the option traded on 23rd, January 2008. The 

current spot is 1338.6. 
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Figure 4,3: Smile-Skew patterns exhibited by pricing models calibrated to Sf3P500 index 

options traded on January 23 2008: Short Maturities. 
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Figure 4.4: Smile-Skew patterns exhibited by pricing models calibrated to Sf3P500 index 

options traded on January 23 2008: Long Maturities. 
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(a) Delta Approximations 

(b) Delta-Gamma Approximations 
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Asset Type 

(VG) (NIG) 

Delta 21.8 20.0 
1300.0 

Gamma 17.1 15.4 

Delta 19.8 18.0 
1315.4 

Gamma 18.2 16.4 

Delta 19.1 17.3 
1330.8 

Gamma 19.0 17.1 

Delta 19.7 17.7 
1346.2 

Gamma 19.5 17.5 

Delta 21.8 19.4 
1361.5 

Gamma 20.0 17.5 

Delta 25.3 22.5 
1376.9 

Gamma 20.1 17.6 

Table 4.5: Percentage(%) reduction 

model. Current asset is 1338.6. 

0.5 

Models 

(CGMY) (DE) (GC) (CFG) 

19.8 6.57 28.8 35.5 

18.0 6.75 20.0 33.0 

19.5 6.72 24.0 29.5 

18.9 6.79 21.0 29.0 

19.4 6.73 21.2 28.3 

19.3 6.74 21.0 28.2 

19.9 6.67 22.0 30.2 

19.9 6.68 21.7 30.1 

21.1 6.65 26.8 33.7 

20.4 6.72 23.2 33.0 

23.1 6.74 35.0 36.8 

21.1 6.90 25.0 34.0 
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Figure 4.9: Risk-neutral densities of pricing models calibrated with the minimum information 

contained in one day traded options on 23rd of January, 2008. 
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Chapter 5 

Levy Innovations to G ARCH 

Model 

In chapter two we discussed the main imperfections of Black-Scholes-Merton model. It 

is not able to capture the stylized facts such as skewness, heavy-tailedness and volatility 

clustering of real market data. As early as 1963 Mandelbrot(1963) [82] proposed to rely 

on a-stable distribution for modelling such stylized facts. But the infinite variance of this 

family of distributions is what makes the model questionable to researchers, as infinite 

variance yields a much heavier tail than one observed in the market. To circumvent this 

situation the density of the positively skewed a-stable distribution- corresponds to those 

values of a satisfying 0 < a < 1- is multiplied by an exponential function. This adaptation 

is know in the literature as tempered a-stable distribution, see Tweedie (1984)[111]. Such 

an adaptation makes the tail thinner than the a-stable distribution but heavier than the 

Gaussian one. This tempered stable family is again studied in recent time. It is applied 

by Kim et al.(2006)[74] to GARCH option pricing. However, as it is common for GARCH 

models, the price of an option needs to be computed using Monte-Carlo simulation. As 

discussed in chapter one, GARCH type models can capture the so called stylized facts. In 

general for derivative pricing what requires is the knowledge of the risk neutral distribution 

at maturity. But the problem is that for standard GARCH set up only one step ahead 

distribution is available. Heston and Nandi(2000) [70] proposed a way to overcome this dif-

ficulty. They proposed a GARCH-like model with normal innovation where they were able 
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to compute the characteristic function of the underlying using a recursive procedure and 

then used the Heston(1993) [69] approach to price option using fourier inversion. However 

their model is not flexible enough to explain some observed option biases, specially when 

short maturity options are considered. Christoffersen (2006) [33] conjectured that this is 

due to the fact that single period innovations are Normal in Heston and Nandi(2000)[70]. 

Recently Badescu and Kulperger(2008) [5] also report the impracticalities with normal in-

novations in GARCH. In their work they considered semi-parametric pricing. Badescu and 

Kulperger(2008) [5] proposed a method in which they estimate GARCH parameters from 

historical stock returns and calculate the historical residuals from these estimates. They 

then proposed to use a purely non-parametric kernel smooth density, estimated from the 

historical residuals, to predict future innovations. The problem with their approach is that 

they are using time consuming simulation approach to price derivatives. Furthermore they 

proposed to use information contained only in stock prices and are not using market values 

of options in their calibration. Information contained in stock prices are known to be ret-

rospective and are not forward looking where as information contained in option prices are 

know to be prospective, forward looking. This way their approach sounds contradictory 

to the usual approaches in the literature. As mentioned, they rely on simulation to price 

options; so they didn't find it feasible to apply their model on a long record of options and 

used only 120 records traded on a single day. 

So from the point of view of practical implementation it is crucial to consider ana-

lytic approximation while exploring non-normal innovations to GARCH model. The new 

GARCH-like processes with Levy innovations, GARCH-Levy model could be a plausible 

name, are capable of capturing the conditional skewness and conditional kurtosis. However 

the promising side is that it is possible to obtain a recursive procedure for the evaluation 

of the characteristic function multi-period ahead which then yields the closed form prices, 

up to numerical integration, for European Derivatives. 
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5.1 Choice of Innovations 

The GARCH-Levy approach, specially with closed form valuation, is a very recent addition 

to the vast literature of asset pricing and risk-management. Only very recently Christof-

fersen, Elkamhi and Jacobs(2010) [32] introduce the broad characterizations of these dy-

namics. However they didn't present any empirical findings in their paper. Furthermore 

though their characterizations establish the broader perspectives to this very recent ap-

proach nonetheless they didn't offer explicit derivations for Levy innovations which are 

recently much appreciated in derivative pricing literature. In a sequel Chyawat(2010) [89] 

considers affine GARCH dynamics with Levy innovations and found that no matter how 

sophisticated affine relation is considered, for innovations coming from Levy processes ex-

hibiting both positive and negative jumps closed form pricing formula is not tractable. In 

this chapter we, however, provide the detailed mathematical underpinnings to uphold the 

explicit closed form valuation techniques similar to those of Heston and Nandi(2000) [70]-

but we replace the conditional normal innovations by innovations coming from Levy pro-

cesses exhibiting both positive and negative jumps e.g. NIG, CGMY etc. For this we 

consider an approximation of the volatility dynamics. At first we, however, detailed the 

case with tempered stable(TS) Levy innovations which is defined only on the positive 

half of the real line. As mentioned earlier, literature in this approach is not that rich. 

Some cases with simpler Levy innovations, defined on positive half of the real line, are 

1 available: Christoffersen(2006) [33] introduced Inverse Gaussian innovations, Bellini and 

Mercuri(2007) [16] considered Gamma innovations. 

In chapter one we have discussed the GARCH feature and its pros and cons in derivative 

pricing. It incorporates time varying volatility and exhibits volatility clustering as observed 

in real market data. Furthermore it converges to stochastic volatility model of continuous 

time, see Duan(1995) [47]. This section revisits GARCH feature but not with conditional 

Gaussian innovations rather with innovations coming from those Levy processes which have 

track record of fitting market data pretty well. We start by considering that the stock price 

lSuch processes are known as Subordinator, see chapter two. 
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process follows: 

(5.1) 

5.1.1 GARCH with Tempered Stable Levy Innovations 

We begin with a characterization of a a-stable random variable. In the literature there 

are several characterizations available for this distribution, which respond to different com-

putational needs. This distribution does not have any closed form density and often sim-

ulation based approach is utilized for statistical inference. Some computational facilities 

are available to generate standard 0'- stable variates, so we start by linking a general 

a-stable variable with that of a standard a-stable variable. For a standard random vari-

able X ""'-' Sa:(l, {3, 0), the random variable 

0'=1 

is Sa: ((5, {3, f-l), where (5, f-l and {3 are respectively scaling, location and skewness parameters 

and 0' is usually known as index which appears in the characteristic exponent. This rescal-

ing property can be used for simulating general a-stable process. For general properties 

and different characterizations of stable distributions we refer to Zolotarev(1986) [115] and 

Zolotarev(1966) [116]. 

It is known that if {3 = 1 then the a-stable distribution is positively skewed and 

when both {3 = 1 & f-l = 0 the density is defined on [0,00), see Zolotarev(1986) [115]. 

Let us assume Sa:(x; (5, {3, f-l) denote the density function of the a-stable distribution with 

0' E (0,2]. Zolotarev(1986)[115] showed that in positively skewed case the Laplace transform 

is given by: 

(5.2) 

where sec( e) is the ordinary trigonometric function "Secant". 

Now with a particular scaling let Sa: (x; 2" J( ,,),1,0) be the density of a positively 
sec a:"2 

skewed central a-stable distribution for 0' E (0,1). Then the density of a tempered stable 

random variable, T Sa:h, 'TJ) for I > 0 and 'TJ 2': 0 is given by: 

f ( x; 0', I, 'TJ) = e 'Y1) Sa: (x; 2 a: I ( 7r)' 1, 0) e - ｾ 1) -&- x 
sec 0'2" 
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The parameter TJ is responsible for a tempered tail making it thinner than a-stable but 

heavier than Gaussian. For TJ = 0 tempering collapse and we recover the ordinary a-stable 

distribution, where as for increasing TJ the tails gradually become thinner than those of the 

ordinary a-stable. Making use of (5.2) with the density (5.3) we obtain the closed form 

characteristic function of the tempered stable random variable: 

JE(eisX
) = exp {'YTJ - 'Y(TJi - 2iS)0!} = exp {'YTJ (1 - { 1 - 2isTJ-i } O!) } (5.4) 

The unusual scaling of the a-stable density, by the factor 2 1( 7r)' is required to obtain 
a sec 0!2" 

this closed from characteristic function for the tempered a- stable random variable. 

Special Cases of Equation (5.4): 

• Specifying the parameters as TJ = (2TJl)0!' 'Y = ｾ we obtain Gamma("(1,TJ1) in the limit 

of a -t O. To see this we note that: 

Thus letting a -t 0 in (5.5), we obtain: 

JE(eisX ) = ( T}1. )1'1 
171 - ｾ ｳ

(5.5) 

(5.6) 

Comparing (5.6) with (2.1) we see that it is the characteristic function of a Gamma("(l, TJl)' 

Hence Gamma distribution is a special case of tempered stable distribution and so 

will be the innovations coming from them. 
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• In (5.4) if we set 0' = ｾ then we obtain: 

lE( eisX
) exp { Ｑ ｾ (1 _ v' b' ｾ 2is} ) } 

exp { 1 ( TJ - vi {TJ2 - 2is} ) } 

exp { -1 ( vi {TJ2 - 2is} - TJ) } (5.7) 

Comparing (5.7) with (2.3) we see that Inverse Gaussian distribution, 1Gh, TJ), is a 

special case of tempered stable distribution ans so will be the innovations coming from 

them. 

Let us now start by characterizing the log-return process Xt, appearing in equation (5.1) 

, with the follows the dynamics2: 

(5.8) 

Here the dynamic is under the real (physical) measure and the conditional distribution 

of innovations follows ｚ ｴ ｬ ｾ ｴ Ｍ ｬ rv T Sex hCYt , TJ) with the volatility processes following the 

G ARCH (1,1) specification: 

(5.9) 

The scaling of innovations ensures the unit variance. It can be shown that, see Schouten(2003) [102] 

and the references there in, for a X rv TSexh, TJ) the moments are given by: 

lE[X] 
<>-2 

(5.10) 2 0'1TJ ---;--

V[X] 
<>-2 

40'(1 - O'hTJ---;-- (5.11) 

§kew[X] 
0'-2 

(5.12) J 0'(1 - O'hTJ 

lKurt[X] 
40' - 6 - 0'(1 - 0') 

(5.13) - 3+ 
0'(1 - O'hTJ 

With these moment expressions for TS random variables, given ｚ ｴ ｬ ｾ ｴ Ｍ ｬ rv TSex hCYt , TJ) the 

2The way we scaled the innovation Zt ensures the unit variance of innovations. Requiring the innovations 

to have zero mean,in addition, will require the market price of risk>. to be adjusted accordingly. 

119 



corresponding conditional versions for the log-return process (5.36) can be obtained as: 

IE [r + ACYt - Zt I J ] 
2J a(l _ ahrJ "';;2 t-I 

(5.14) 

(5.15) 

Also since Xt, as in (5.36), is just a scaled and shifted version of ZtIJt-I rv TS(A"Wt, rJ), it's 

conditional skewness and kurtosis can be obtained as: 

a-2 

vi a(l - ahCYtrJ 

3 + _4a_-:-6_-_a:-,-(_1_-_a--,-) 
a(l - ahCYtrJ 

(5.16) 

(5.17) 

Thus the smile-skew patterns in implied volatilities, exhibited by market option prices could 

be modeled when we consider that the log return dynamics follow a GARCH with tempered 

stable innovations. Later we would like to explore similar settings for innovations coming 

from time changed Levy processes. We can then compare whether market behavior is better 

captured by time changed Levy innovations compare to the ordinary Levy innovations. 

Selecting GARCH-TS Equivalent Martingale Measure: 

The perennial problem of selecting an appropriate EMM is always a concern when develop-

ing new dynamics for return process. For option pricing such a problem is explicitly treated 

by Gerber and Shiu(1994) [65] and its extension, known as conditional Esscher transform, is 

proposed by Buhlmann et al(1996) [23]. However in discrete time settings, for incomplete 

market, Shiu,Tong and Yang(2004) [105] show how to explore Esscher transform to price 

derivatives when only the conditional Moment Generating Function(MGF) is available. We 
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start by recalling, see Gerber et al(1994) [65] and Shiu et al(2004)[105], that selecting an 

EMM basically depends on finding a solution of the conditional Esscher equation: 

MXtlJt-l (e t ｾ 1) = eTt 

MXtlJt-l (Bt) 

where MXtlJt-l (s) is the conditional moment generating function having definition: 

(5.18) 

(5.19) 

For our GARCH dynamics with tempered stable innovations, (5.36), conditional Esscher 

equation (5.18) becomes: 

IE t - 1 l /'+ {+ Am - ,J at' -:h" ｾ )] = e" 

IEt-l lee, ('+Aa,- Ｌ ｊ ｡ Ｂ Ｍ Ｚ ｨ Ｂ ｾ ) ] 

IEt - 1 le Ｍ Ｈ ･ Ｇ Ｋ Ｑ ｻ ｊ ｡ ｴ Ｇ ｟ Ｚ ｨ Ｂ ｾ )] = e-Ao, 

=<> IE
t
- 1 le -e, ('J ｡ Ｂ Ｍ Ｚ ｨ Ｂ ｾ ) ] 

Introducing the constant c = V -1 <>-2' (5.20) becomes: 
2 a(1-a)')'1«' 

lEt-1 [e(Bt+ 1)ZtC] 

lEt -1 [eBtZtC] 

Now applying equation (5.4) in (5.21) we obtain: 

1 A 

exp [,7] -,(7]a - 2(1 + {h)c)a] 
1 A 

exp [,17 -,(7]a - 2Btc)a] 
1 A 1 A 

exp [,((7]a - 2Btc)a - (7]a - 2(1 + Bt)c)a)] 

(5.20) 

(5.21) 

(5.22) 

Given a set of values of the parameters of Q-TS Levy process, , and 7], and the GARCH 

volatility estimate at, as in (5.9), the solution et of (5.22) can be used to describe the 
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distribution of log-returns under EMM through (5.18). Unfortunately equation (5.22) needs 

to be solved numerically. 

Now how to use 8t to describe the distribution of log returns? To answer this ques-

tion we need to be familiar with the application of Conditional Esscher Transform(CET). 

The main application of Esscher transform lies in the fact that the moment generating 

function(conditional) of the log returns under EMM can be derived, using et , as: 

(5.23) 

With our assumption of distribution for innovations and volatility structure, equation 

(5.23) becomes: 

lE
t
- 1 [e(Bt+l)(r+AO"t+Zt C)] 

lEt-l [eBt(r+AO"t+Zt C)] 

lEt-l [e(Bt+l)CZt ] 
e l ( r+ AO" t) __ -=-=,.------,=__=_ 

lEt-l [eOtCZt] 

exp [,TJ -,(TJi - 2(et + l)c)a] 
el (r+ AO" t) _----=.---= _______ --=--___=_ 

exp [,TJ -,(TJi - 2etc)a] 

el(r+AO"t) exp [,(TJi - 2etc)a -,(TJi - 2(et + l)c)a] 

el(r+AO"t) exp [,(TJi - 2et c)a -, [(TJi - 2et c) _ 2lc] a] 

el(r+AO"t) exp [,(TJi - 2et c)a {1- [1- .1 2lc A ] a}] 
(TJCf. - 28tc) 

e/('+Aq,) exp ｛ Ｌ Ｈ ｾ ｾ - 28/c)· { 1 -[1 - 21c [( ｾ ｾ - 28,c)· ｲ ｾ r} 1 
(5.24) 

Comparing equation (5.24) with equation (5.4) we recognize that under the EMM the 

innovations are again TS distributed but with a parameter having new characterization 

TJ' = (TJ i - 2et c) a. Because of this new characterization of a parameter of the model we 

need to check what other parameters of the entire settings require to be characterized anew. 
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Lets start with the dynamics of the volatility under the martingale measure: 

(5.25) 

Now that the market and real measures are related through a new characterization r/ = 

Ｈ ｔ ｊ ｾ - 28t cY" and market and real volatility processes are related through Ｈ ｔ ｾ = ｛ ｾ ｝ Ｈ ｡ ｾ Ｒ Ｉ (Tt, 

we need to figure out what other parameters need to be characterized newly keeping the 

dynamics equivalent. Under real measure we have: 

Zt 
r + X Ｈ ｔ ｾ - -r====== 

2va(1 - ahTJ ｣ ｸ ｾ Ｒ

introducing new characterization)" = ), ｛ ｾ Ｌ ｝[ 
Ｈ ｡ ｾ Ｒ Ｉ ｬ

(5.26) 

For the equivalent dynamics to be characterized by martingale measure we need to 

introduce TJ' replacing TJ which can be done equivalently in the following way: 

, ,0;-2 

a(l - ah TJ c;--

introducing new characterization'y' = 'Y ｛ ｾ Ｌ ｝[ 
Ｈ ｡ ｾ Ｒ Ｉ ｬ

(5.27) 
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Thus finally we have the equivalent dynamics of log-returns, from (5.26), under the 

martingale measure: 

X t = r + ).,' ｣ ｲ ｾ _ _ -;:===Z==t === 
2J 0.(1 - a),'r(';,2 

(5.28) 

where parameters of the martingale dynamics, which ensures equivalence, are related with 

those of the market dynamics as: 

, 
crt 

7]' -

"(' 

[ Ｗ ｊ Ｇ ｦ ｾ Ｇ Ｉ- crt 
7] 

1 ｾ

(7](; - 2Bt c)CX 

'Y [; 1 Ｈ ｏ ｾ Ｇ Ｉ

(5.29) 

(5.30) 

(5.31) 

Now lets see the essential changes in GARCH parameters. We have the GARCH dy-

namics: 

[

7]'] (":2) 
=} crt -

7] 

[ 
, (0;'2)] 

multiplying both sides by [ ｾ ] (5.32) 

Thus the equivalent GARCH volatility dynamics under the martingale measure can be 

written as: 

where: 

f3b 

ｦ Ｓ ｾ = 

[
7],](0;'2) 

f30 -
7] 

[
7]'] (a;,2) 

f31 -
7] 

GARCH-TS risk-neutral characterization through market price of risk: 

We have 
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(5.34) 

(5.35) 

(5.36) 



With U = V -1 a-2' equation (5.36) becomes: 
2 a(1-a)·yr«'-

(5.37) 

The m.gJ under risk-neutral dynamics can be obtained from the expression of the charac-

teristic function: 

Thus: 

exp {r,/ Ｈ ｪ ｾ Ｋ Ｑ r/ (1 - { 1 - 2i( -iu)r/-i } a) } 

(5.38) 

(5.39) 

･ ｔ Ｋ ＾ Ｂ Ｑ Ｗ ｾ Ｋ ｬ exp {,' Ｈ ｪ ｾ Ｋ Ｑ ｬ ｽ Ｇ (1 - { 1 - 2i( -iu)l}'-i } a) } (5.40) 

eT exp ｻ Ｈ ｪ ｾ Ｋ Ｑ [)/ -,'r/ ({ 1 - 2ur/-i } a - 1)]} (5.41) 

e
r 

exp {";+1 [),' -h' [(1+ ｶ Ｂ ｹ Ｇ ｾ Ｇ ｾ Ｈ Ｑ _ "J -1]]} (5.42) 

the last equality follows by plugging the value of u. 

We want to choose .\'(under Q) in terms of other parameters such that: 

(5.43) 

That is: 

(5.44) 

Since Ｈ ｪ ｾ Ｋ Ｑ can not be zero, we must have: 

1 

[( ) a 11 A' " l}' 1 + - 1 [ - ｶ Ｇ Ｇ ｙ Ｇ ｾ Ｇ Ｇ Ｇ Ｈ Ｑ - ,,) 
=0 (5.45) 

So 

[( )
a 1 ' , 1 >..'-'l} 1+ -1 

- v,'rJ'a(l - a) 
(5.46) 
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5.2 GARCH with Time Changed Levy Innovations 

After revisiting time changed Levy processes for option pricing, our focus in this section is 

to incorporate time changed Levy innovations to GARCH(l,l) dynamics for derivative pric-

ing. We will detail the mathematical underpinnings required to provide analytic GARCH 

dynamics for option pricing with innovations coming from tempered stable process, NIG pro-

cess, VG process & CGMY process. Developing analytic valuation techniques for GARCH 

models which innovations follow Levy processes with both sided jumps is the main focus of 

this chapter. However we will focus on the implementation of one of these models; namely 

one with GARCH-NIG dynamics. 

5.2.1 GARCH with NIG Levy Innovation 

We start with the essential tool for our modeling ,the characteristic function. The charac-

teristic function of a N J G (a, (3, 15) random variable is given by: 

(5.47) 

Using the intuitive development in section2.1.1 it follows that NJG(a,{3,t5) is infinitely 

divisible and the associated Levy process has the distribution of increments over [s, t + 

s] characterized by N JG( a, (3, tt5). Important moments of the X rv N JG( a, (3, 15) random 

variable are given by: 

JE[X] 
t5{3 

Ja2 - (32 

V[X] a2 t5( a2 - (32) -,} 

§kew[X] 3{3a-1t5-:/ (a2 - (32) 4
1 

( 
a2 + 4{32 ) 

][(urt[X] = 3 1 + 2. I 2 2 
t5a Va - {3 

(5.48) 

(5.49) 

(5.50) 

(5.51) 

(5.52) 

We refer to Schouten(2003) [102]. As usual we assume the stock price follows the dynamics 

(5.1), where, as in GARCH settings, the log return process now follows: 

(5.53) 
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Here Zt I Jt-l rv N IG(a, (3, OCTt) with the volatility processes,CTt, following the GARCH(l,l) 

specification: 

{3 (3 
Zt-l 

CTL = 0 + 1. / -3 + alCTt-l 
V a2o(a2 - (32)T 

(5.54) 

Again the scaling ensures unit variance for innovations. With the moments of the NIG 

random variable as in (5.48)-(5.52), the conditional moments of the log-returns become: 

(5.55) 

(5.56) 

Similar to the case with GARCH-TS dynamics, since Xt, as in (5.53), is just a scaled and 

shifted version of Zt I Jt-l rv NIG(a,{3,oCTt), it's conditional skewness and kurtosis can be 

obtained as: 

§kew[XtIJt-l] 

JI(urt[XtIJt-l] 

(5.57) 

(5.58) 

Existence of conditional skewness and conditional kurtosis ensures that smile-skew pat-

terns could be modeled when we consider log-return dynamics following a GARCH with 

NIG-Levy innovations, see Cfristoffersen(2003)[34]. 
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Selecting a GARCH-NIG Equivalent Martingale Measure: 

We follow exactly the same approach as explained in section 5.1.1 for TS Levy innovations. 

That is we are interested in finding a solution, et , from the conditional Esscher equation: 

MXtlJt_l (Ot ｾ 1) = eTt 

MXtlJt_l (Ot) 

where MXtlJt-l (8) is the conditional moment generating function defined as: 

(5.59) 

(5.60) 

In case of GARCH dynamics with NIG -Levy innovations (5.53), conditional Esscher 

equation (5.59) becomes: 

Introducing the constant c = ｾ -1 -3 ' (5.61) becomes: 
a 28(a2-,82)T 

lEt -1 [e(Ot+ 1)ZtC
] 

lE t-1 [eOtZtc] 

Using equation(5.47) in (5.62) we obtain: 

exp (-8 {)0<2 - (fJ + (Ii, + 1)c)2 - Vex2 - fJ2}) 

exp ( -5 { J a2 - ((3 + et c)2 - J a2 - (32 } ) 

exp ( -8 { ) exL (fJ + (0, + 1)c)2 - ) ex2 - (fJ + O,c), }) 
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Again we need a numerical solution. Given the parameters of the NIG Levy process, 0:, (3, 6 

and the GARCH volatility estimate tTt, as in (5.54), the solution ,Ot, of (5.63) can be used 

to describe the distribution of log-returns as: 

(5.64) 

With our assumption of distribution for innovations and the fact that one period ahead 

volatility is known in GARCH set up, equation (5.64) becomes: 

(5.62)&(5.63) 

lEt - 1 [e(8t+l)(r+AO't+ ZtC)] . 

lEt-l [e8t(r"+AO't+ ZtC)] , 

lEt-l [e(8t+l)CZt] 
el (r+ AO't) __ ...!:.......,,..--_=-=-

lEt-l [e8tCZt] 

el(r+AO't) exp ( -6 { J'-0:-2 ---(-{3-+-(-O-t +-Z)-c)-2 - J 0:2 - ({3 + Otc)2 } ) 

el(r+AO't) exp ( -6 { J 0:2 - (({3 + Ot C) + Zc)2 - J 0:2 - ({3 + Otc)2 } ) 

(5.65) 

Comparing equations (5.47) and (5.65) we recognize that under EMM innovations are 

again NIG-distributed with a new characterization {3' = {3 + Otc. 

As in TS-innovations, we would like to see what other parameters of the entire settings 

are influenced by this new characterization. Let us start with the dynamics of the volatility 

under the martingale measure: 

(5.66) 

So the market and real measures are related through a new characterization {3' = {3 + OtC 
-3 . . , [a2-{3/2]"'2 W d and market and real volatIlIty processes are related through tTt = aL {32 tTt· e nee to 

129 



figure out what other parameters require new characterization in order to keep the return 

dynamics equivalent. Under real measure we have: 

[ 

2 2 -3] 
introducing new characterizationA' = A [:2 = ;/2] 2 

(5.67) 

For the dynamics to be characterized by martingale measure we need to introduce 

0/, (3', 5' replacing a, (3, 5. Maintaining the equivalence this can be accomplished in 

the following way: 

25 L 2 L a2 _ (3'2 2 [ 
2] -3 ( 12 ) -3 

a (3'2 (32 

( 
2 (312) ( (31) ( (3'2 2 12) -/ 

a 7F 6 --g (32 a - (3 

a /2 5' (a/2 - (3'2) -,} 

[
. d' h t' t' I (31&£1 £(3/] mtro ucmg new c arac enza lOna = a--g u = u--g 

(5.68) 

Thus finally we have the equivalent dynamics for log-returns, from (5.67), under the 

martingale measure: 

I I Zt 
X t = T' + A at - ---;======= 

Va/2 5' (a/2 - (3'2) -,} 
with Zt I Jt-l. rv N JG( ai, (3',6' aD (5.69) 

where the parameters of the martingale dynamics, maintaining equivalence, are related with 
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those of the market dynamics through: 

{3' 

a' 

[
a2 - {3/2] -,} 

2 {32 (J t a -
(5.70) 

(5.71) 

(5.72) 

(5.73) 

As last step we need to figure out the essential changes in GARCH parameters. We 

have the GARCH dynamics: 

[
a2 - {3/2] -,} 

+al a2 _ {32 (Jt-l (5.74) 

a2 _ {3/2 ""2 

[ 
-3] 

multiplying both sides by [ a 2 _ (32 ] 

Thus the equivalent GARCH volatility dynamics under the martingale measure can be 

written as: 

with ｚ ｴ ｬ ｾ ｴ Ｍ ｬ rv NIG(a',{3', ｏ Ｇ Ｈ ｊ ｾ Ｉ (5.75) 

where: 

/3b 
[ ,,2 _ ,6'2 j" 

/30 a2 _ {32 (5.76) 

ｻ Ｓ ｾ -
[ ,,2 - ,6'2 j" 

{31 a2 _ {32 (5.77) 

GARCH-NIG risk-neutral characterization through market price of risk: 

With the scale factor u = - V 1 -3 equation (5.53) becomes: 
(l'28( (1'2 _,82) T 

(5.78) 
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The m.g.f under risk-neutral measure can be obtained from the expression of the NIG-

characteristic function of NIG distribution: 

Thus: 

EP [e i ( -iU)Zt+l] 

exp Ｈ Ｍ ｣ Ｕ Ｏ ｏ Ｂ ｾ Ｋ ｬ {Ja'2 - ((3' + i( _iu))2 - Jcl2 - (3/2}) 

exp ( - 0' ｏ Ｂ ｾ Ｋ 1 { J a'2 - ((3' + u) 2 - J 0/2 - (3/2 } ) 

We want to choose )..1, under Q, in terms of other risk-neutral parameters such that: 

(5.79) 

(5.80) 

(5.81) 

Since Ｐ Ｂ ｾ Ｋ Ｑ =1= 0, we must have: 

(5.82) 

This is the final characterization which we will be using in the expression of mgf, which in 

turn will be used in our pricing(and hence in calibration). 

5.2.2 GARCH with CGMY innovation 

As in the case with NIG innovation. We start with characteristic function of the CGMY(C,G,M, Y) 

process: 

(5.83) 
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We recall the intuitive development in section2.1.1 which shows that CGMY(C G M Y) is , , , 

infinitely divisible and the associated Levy process has the distribution of increments over 

[s, t + s] characterized by CGMY(tC, G, M, Y): 

[exp {Cf( -Y)((M - iu)Y - MY + (G + iu)Y - GY)} r 
exp {tCf( -Y)((M - iu)Y - MY + (G + iu)Y - GY)} (5.84) 

For future reference we report the important moments of X rv CG MY (C, G, M, Y) random 

variable, see Schouten(2003 ) [102]: 

lE[X] 

V[X] 

§kew[X] 

lKurt[X] 

C(MY -1 - GY -1 )f(1 - Y) 

C(MY -2 + GY -2)f(2 - Y) 

C(MY -3 - GY -3)f(3 - Y) 
3 

{ C(MY -2 + GY -2)f(2 _ Y) }"2 
C(MY - 4 - GY - 4)f(4 - Y) 

3+ 2 
{C(MY-2 + GY-2)f(2 - Y)} 

(5.85) 

(5.86) 

(5.87) 

(5.88) 

Similar to GARCH-TS or GARCH-NIG cases, we assume the stock price follows the 

dynamics (5.1), where according to the GARCH settings, the log return process now follows: 

(5.89) 

Here Zt I Jt-l rv CGMY(CIJt, G, M, Y) with the volatility processeS,lJt, following the 

GARCH(I,l) specification: 

Zt-1 
IJt = (30 + (31 JC(MY-2 + GY-2)f(2 _ Y) + CY1IJt-1 (5.90) 

Similar to the volatility dynamics with GARCH-TS, GARCH-NIG cases here the scaling 

ensures unit variance for innovations. With the moments of the CGMY random variable as 

in (5.85)-(5.88), the conditional moments of the log-returns become: 
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lE [T + A(J" t - Zt I J 1 
JC(MY-2 + GY-2)f(2 _ Y) t-I 

C(J"t(MY -1 - GY -1 )f(l - Y) 
T + A(J" t - ｉ ｾ ｾ ｾ ［ ］ ］ Ｚ Ｚ Ｚ Ｚ Ｚ Ｚ Ｚ Ｚ Ｚ Ｚ Ｚ Ｚ ［ ｾ ［ Ｚ Ｚ Ｚ Ｚ Ｚ ］ ］ ］ ］ ］ ］

JC(MY-2 + GY-2)f(2 - Y) 

T+ A- (J" ( 
C(MY - I -GY - I )f(l-Y)) 

JC(MY-2 + GY-2)f(2 _ Y) t 

V [r + ),'" - y'C(MY -2 + ｾ ｙ -2)r(2 _ Y) I ｾ Ｇ Ｍ ｬ ｬ
C(J"t(MY -2 + GY -2)f(2 - Y) 
C(MY-2 + GY-2)f(2 - Y) 

(J"t 

(5.91) 

(5.92) 

Similar to the dynamics with other innovations since X t- as in (5.89)- is just a scaled and 

shifted version of Zt I Jt-l r..J CGMY(C(J"t, G, M, Y), it's conditional skewness and kurtosis 

can be obtained as: 

C(J"t(MY -3 - GY -3)f(3 - Y) 
3 

{ C(J"t(MY -2 + GY -2)f(2 _ Y) } '2 

C(MY -3 - GY -3)f(3 - Y) 
(5.93) 3 

va=t{ C(J"t(MY-2 + GY-2)f(2 _ Y)} '2 

C(J"t(MY- 4 - GY- 4)f(4 - Y) 
3+ 2 

{C(J"t(MY-2 + GY-2)f(2 - Y)} 

C(MY - 4 - GY - 4)f(4 - Y) 
- Ｓ Ｋ Ｍ Ｍ ｾ Ｍ Ｍ Ｍ Ｍ ｾ ｾ Ｍ ｾ Ｍ Ｍ Ｍ Ｍ ］

- (J"t{ C(J"t(MY-2 + GY-2)f(2 - Y) r (5.94) 

These conditional skewness and conditional kurtosis provide the essential tools neces-

sary to model smile-skew patterns when log-returns are modeled with GARCH adapted to 

CGMY Levy innovations. 

Selecting a GARCH-CGMY Equivalent Martingale Measure: 

Similar to the cases with other Levy innovations, we are interested in finding a solution, et , 

of the conditional Esscher equation: 

NIXtIJt_l (Ot + 1) r 
-"":'=':""""::"'--:-A - = e t 

MXtlJt-l (Ot) 
(5.95) 
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In case of GARCH dynamics (5.89) with CGMY -Levy innovations, conditional Esscher 

equation (5.95) becomes: 

IEt - 1 [e (8,+1) ('+AQ' ｶ Ｇ ｃ Ｈ ｍ ｙ Ｍ Ｇ Ｋ ｾ ｙ Ｍ Ｇ Ｉ ｲ Ｈ Ｇ Ｍ ｙ Ｉ Ｉ 1 
__ -=--_-;-__________ _____=_ = eTt 

[ 
Ot (T+AlTt Zt ) 1 lE t -

1 
e ..jC(MY 2+0Y-2)r(2-Y) 

IE t - 1 [e -(6,+ 1) (v'C(MY Ｇ Ｋ ｾ ｙ -, W(,-Y») 1 = e _Au< 

=* IE
t
- 1 [e -6, Ｈ ｶ Ｇ ｃ Ｈ ｍ ｙ Ｍ Ｇ Ｋ ｾ ｙ Ｍ Ｇ Ｉ ｲ Ｈ Ｇ Ｍ ｙ ﾻ Ｉ 1 

Introducing the constant c = V -1 , (5.96) becomes: 
C(MY -2+GY -2)r(2-Y) 

lEt - 1 [e(Ot+ 1)ZtC] 

lEt - 1 [eOtZtc] 

Using equation(5.83) in (5.97) we obtain: 

exp {Cf( -Y)((M - (Ot + l)c)Y - MY + (G + (Ot + l)c)Y - GY)} 

exp {Cf( -Y)((M - Otc)Y - MY + (G + Otc)Y - GY)} 

exp Cf( -Y) ((M - etc) - c) - (M - etc) { ( 
ｾ Y ｾ Y 

(5.96) 

(5.97) 

+((G + Otc) + c)Y - (G + Otc)Y)} (5.98) 

A numerical scheme is required to obtain the solution. Given the parameters of the CGMY 

Levy process, C, G, M, Y and the GARCH volatility estimate CJt, as in (5.90), the solution 

,ot, of (5.98) can be used to describe the distribution of log-returns as: 

(5.99) 

With our assumption of distribution for innovations and volatility structure, equation 
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(5.99) becomes: 

(5.97)&(5.98) 

lEt-l [e(Bt+1)(r+A£7t+ztC)] 

lEt-l [e Bt (r+A£7t+ZtC)] , 
Zt I Jt-l rv CGMY(CeJt, G, M, Y) 

lE t - 1 [e(Bt+l)CZt ] 

e1 (r+ A£7 t) __ ］ Ｍ Ｍ ］ Ｍ ｟ ｾ Ｍ ］

lEt - 1 [eBtCZt] 

e1(r+A£7t) exp { Cf( -Y) (((M - (hc) - lc)Y - (M - etc)Y 

+((G + etC) + lc)Y - (G + etc)Y)} (5.100) 

Comparing equations (5.83) and (5.100) we recognize that under EMM innovations are 

again CGMY-distributed with a new characterization M' = (M - etc) and G' = (G + etc). 

Similar to other GARCH-Levy dynamics we studied, we would like to see what other 

parameters of the entire settings are influenced by this new characterizations. Lets start 

with the dynamics of the volatility under the martingale measure: 

- [ ｾ 1 V r + AeJt - .jC(MY-2 + GY-2)f(2 _ Y) I Jt-l 

Zt I Jt-l rv CGMY(CeJt, G', M', Y) 

CeJt(M,Y-2 + G,Y-2)f(2 - Y) 
C(MY -2 + GY -2)f(2 - Y) 

(M,Y-2 + GtY- 2) 

(MY -2 + GY -2) eJt (5.101) 

So the market and real measures are related through new characterizations M' = (M -

etc), G' = (G + etc) and market and real volatility processes are related through eJi = 

(M,Y-2+G,Y-2) 
(MY-2+GY-2) eJt· We need to figure out what other parameters need to be characterized 
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newly keeping the dynamics equivalent. Under real measure we have: 

r + )".(jt _ Zt 
JC(J11Y- 2 + GY-2)r(2 - Y) 

[ 
(MY-2 + GY- 2)] [(M'Y-2 + GIY- 2)] Zt 

r + A (M,Y-2 + G,Y-2) (MY-2 + GY-2) (jt - JC(MY-2 + GY-2)r(2 _ Y) 

r + A (j' _ t 
[ 

(MY-2 + GY-2) ] Z 

(M,Y-2 + GIY-2) t JC(MY-2 + GY-2)r(2 _ Y) 

r + A' (j' _ Zt 
t JC(MY-2 + GY-2)r(2 _ Y) 

[ [
(MY-2+GY-2)]] 

introducing new characterizationA' =,\ (M'Y -2 + G'Y -2) 

(5.102) 

Furthermore we can write: 

C((MY - 2 + GY - 2))r(2 - Y) 
(MY -2 + GY -2) 

C (M'Y -2 + GIY -2)r(2 - Y) 
(MIY-2 + G,Y-2) 

C'(M,Y-2 + G,Y-2)r(2 - Y) 

[introdUCing new characterization c' = C Ｎ Ｎ Ｌ Ｎ Ｎ Ｚ Ｍ Ｍ Ｍ Ｍ ［ Ｍ ［ Ｍ Ｍ Ｍ Ｍ ］ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｚ Ｍ Ｚ Ｍ ｾ
(M Y

-
2 + GY

-
2

) ] 

(M,Y-2 + G,Y-2) 

(5.103) 

Thus finally we have the equivalent dynamics for log-returns, from (5.102), under the 

martingale measure: 

x = r+ A' (j' _ Zt 
t t JC'(MIY-2 + G'Y-2)r(2 _ Y) 

with Zt I ｾ ｴ Ｍ ｊ Ｎ f'V ｃ ｇ ｍ ｙ Ｈ ｃ Ｇ Ｈ ｪ ｾ Ｌ ｇ Ｇ Ｌ ｍ Ｇ Ｌ ｙ Ｉ

(5.104) 

where parameters of the martingale dynamics, maintaining equivalence, are related with 

those of the market dynamics through: 

M' 

G' -

c' 

, 
(jt 

(M - etc) 

(G + etc) 

(MY- 2 + GY- 2) 
C 

(MIY -2 + G'Y -2) 

(M,Y-2 + GIY- 2) 

(MY-2 + GY-2) (jt 

(5.105) 

(5.106) 

(5.107) 

(5.108) 

As a last step we need to figure out the essential changes in GARCH parameters. We 
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have the GARCH-CGMY dynamics: 

f3 f3 
Zt-l 

0+ 1 +alUt-l 
JC(MY-2 + GY-2)f(2 - Y) 

[
(1I1'Y-2 + GIY-2)] 

f30 (MY-2 + GY-2) 

+f3 Zt-l 
[ 
(M'Y -2 + G'Y -2)] 

1 (MY-2 + GY-2) JC(MY-2 + GY-2)f(2 _ Y) 

[ 
(M'Y -2 + G'Y -2)] 

+al (MY-2 + GY-2) Ut-l (5.109) 

[ [ 
(M'Y -2 + G'Y -2)]] 

multiplying both sides by (MY -2 + GY -2) 

Thus considering (5.103) the equivalent GARCH volatility dynamics under the martin-

gale measure can be written as: 

with ZtlJt-l r'-.) CGMY(C' ｵ ｾ Ｌ G', M', Y) 

(5.110) 

where: 

f3b (5.111) 

(5.112) 

GARCH-CGMY risk-neutral characterization through market price of risk: 

We recall that our scale factor is c = vi Y 2 -ly 2 . Thus from equation (5.89) we 
C(M - +G - )r(2-Y) 

have: 

(5.113) 

The mgf under risk-neutral measure can be obtained from the expression of the CGMY-

characteristic function: 

ｅ ｾ [e i ( -iC)Zt+l] 

･ ｸ ｰ ｻ ｃ Ｇ ｵ ｾ Ｋ ｬ ｦ Ｈ Ｍ ｙ Ｉ Ｈ Ｈ ｍ Ｇ Ｍ ｩ Ｈ Ｍ ｩ ｃ Ｉ Ｉ ｙ -M'Y + (G'+i(-ic))Y _cIY)} 

exp ｻ ｃ Ｇ Ｈ ｽ ｾ Ｋ ｬ ｦ Ｈ Ｍ ｙ Ｉ Ｈ Ｈ ｬ ｉ ｬ Ｇ - c)Y -lIl'Y + (C' + c)Y - C'Y)} (5.114) 
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Thus: 

e(T+'x' Ｈ Ｑ ｾ Ｋ Ｑ Ｉ exp { C' Ｐ Ｂ ｾ Ｋ Ｑ f( - Y) ((M' - c) Y - M'Y + (G' + c) Y - G'Y) } 

(5.115) 

We want to choose X, under Q, in terms of other risk-neutral parameters such that: 

ｅ ｾ [e Xt+1 ] = e(t+l-t)T 

:::} ･ Ｈ ｔ Ｋ Ｎ ａ Ｇ Ｈ Ｑ ｾ Ｋ ｬ Ｉ exp ｻ ｃ Ｇ ｏ Ｂ ｾ Ｋ ｬ ｦ Ｈ Ｍ ｙ Ｉ Ｈ Ｈ ｍ Ｇ - c)Y - M'Y + (G' + c)Y - G'Y)} = eT 

:::} eT exp ｻ Ｐ Ｂ ｾ Ｋ Ｑ (X - C'f( -Y)((M' - c)Y - M'Y + (G' + c)Y - G'Y))} = eT 

(5.116) 

Since Ｐ Ｂ ｾ Ｋ Ｑ i= 0, we must have: 

).,' C'f( -Y)((M' - c)Y - M'Y + (G' + c)Y - G'Y) 

C'f - Y M' + 1 - M'Y 
( )

y 

(){ JC'(MIY-2 + GIY-2)f(2 - Y) 

+ G' 1 G'Y 
( )

y 

- JC'(M,Y-2 + G,Y-2)f(2 - Y) - } 
(5.117) 

This is the final characterization which we will be using in the expression of m.g.f which in 

turn will be used in our pricing(and hence in calibration). 

5.2.3 GARCH with VG Levy Innovation 

Similar to other GARCH-Levy dynamics we start with the essential tool for modeling ,the 

characteristic function. The characteristic function of a VG(O", e, v) random variable is given 

by: 
-1 

JE[eisX] = (1 _ isev + ｾ Ｐ Ｂ Ｒ ｶ ｳ Ｒ Ｉ v (5.118) 

Considering the intuitive development in section2.1.1 it follows that VG(O", e, v) is infinitely 

divisible and the associated Levy process has the distribution of increments over [s, t + s] 

characterized by VG(O"y't, et, If;). Important moments of the VG(O", e, v) random variable 
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are given by: 

IE [X] 

V[X] 

§kew[X] 

IKurt[X] = 

8 (5.119) 

(5.120) 

(5.121) 

(5.122) 

See e.g. Schouten(2003) [102]. Similar to other GARCH-Levy dynamics we assume the stock 

price follows the dynamics (5.1), where, as in GARCH settings, the log return process now 

follows: 

Zt 
X t = r + AO't - Ｍ ｲ ］ ｾ ］ ］ ［ ［ ［ ＺV 0'2 + v82 (5.123) 

Here Zt I ｾ ｴ Ｍ ｬ rv VG(O'y'ai, 80't, :), with the volatility processes,O't, following the non-linear 

GARCH(l,l) specification: 

[ 

VG(O'VO't-l,80't-l,-V-) ]2 
/30 + /31 lTt-l - 'YVO't-l + CXIO't-l 

V(O'VO't-l)2 + (IT:-l)(80't-l)2 

[

VG(O' vO't-l, 80't-l, _V_) - J1 + J1 ] 2 
/30 + /31 lTt-l - 'YVO't-l + CXIO't-l 

V(O'VO't-l)2 + (IT:-l)(80't-l)2 

/30 + /31 [stdVG + J i' - "{J(7t_I] 2 + CXIO't-l 
(O'VO't-l)2 + (IT:-l)(8(Jt-l)2 

/30 + (3t [stdV G + { J (72 : vB2 - "{ } J (7t-I r + "1"t-I (5.124) 

Again the scaling ensures unit variance for innovations. With the moments of the NIG 

random variable, as in (5.119)-(5.122), the conditional moments of the log-returns become: 
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(5.125) 

(5.126) 

As in other CARCR-Levy dynamics since Xt, as in (5.123), is just a scaled and shifted 

version of Zt l.Jt-l ,....., VG(aylt, et, If), it's conditional skewness and kurtosis can be obtained 

as: 

(5.127) 

(5.128) 

Thus the smile-skew features can be incorporated when we consider log-return dynamics 

following a CARCR with VC-Levy innovations. Existence of conditional skewness and 

conditional kurtosis provides such feasibility, see Christoffersen(2003) [34]. 

Selecting a GARCH-VG Equivalent Martingale Measure: 

We follow exactly the same approach as explained in previous sections for TS, NIC and 

CCMY Levy innovations. That is we are interested in finding a solution, Bt , of the condi-

tional Esscher equation: 
MXtlJt-l ({h + 1) Tt 

ｾ = e 
MXtlJt-l (et ) 

(5.129) 

where MXtlJt-l (8) is the conditional moment generating function defined as: 

(5.130) 

In case of CARCR dynamics with VC -Levy innovations, as given by equation (5.123), 
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conditional Esscher equation (5.129) becomes: 

IE
t
-

1 
[e (8,+1) (r+"",- ｾ Ｉ 1 

Ｍ Ｍ Ｎ Ｎ Ｎ Ａ Ｚ Ｚ Ｎ Ｎ Ｎ Ｎ Ｍ ｟ ｾ _____ .,----=-- = eTt 

[ 
Bt (T+AO"t- Zt ) 1 lEt - 1 e '1'.,.2+1/92 

lE
t
-

1 
[e -(Bt+l) Ｈ ｾ Ｉ 1 

==} = e-AO"t 

IE t - 1 [e -8,( ｾ Ｉ 1 

Introducing the constant c = v' ;1 e2 ' (5.131) becomes: 
0" +1) 

lEt-l [e(Bt+1)ZtC] 

lE t - 1 [eBtZtC] 

Using equation(5.118) in (5.132) we obtain: 

-1 

{ 1 - ((fh + l)c)ev - ｾ ｡ Ｒ ｶ Ｈ Ｈ ･ ｴ + 1)c)2} 0it 
-1 

{ 1 - (etc)ev - ｾ ｡ Ｒ ｶ Ｈ ･ ｴ ｣ Ｉ Ｒ } I/j"'t 

(5.131) 

(5.132) 

(5.133) 

Similar to the case of GARCH-Levy dynamics with other Levy innovations we need a 

numerical solution. Given the parameters of the VG Levy process, a, e, v and the GARCH 

volatility estimate at, as in (5.124), the solution ,et , of (5.133) can be used to describe the 

distribution of log-returns as: 

(5.134) 

With our assumption of distribution for innovations and volatility structure, equation 
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(5.134) becomes: 

(5.132)&(5.133) 

where 

lEt-l [e(et+l)(r+).O"t+Zt C)] 

lEt-l [eet (r+AO"t+ZtC)] . 

lEt - 1 [e(et+l)CZt] 
e1 (r+ AO"t) __ -=--;:--_.,,---=... 

lE t-l [eetCzt] 

-1 

e1(r+AO"t) { 1 - ((et + l)c)8v - ｾ Ｐ Ｂ Ｒ ｶ Ｈ Ｈ ･ ｴ + l)c)2} vrat 
-1 

{ 1 - (etc)8v - ｾ Ｐ Ｂ Ｒ ｶ Ｈ ･ ｴ ｣ Ｉ Ｒ ｽ ｉ Ｏ Ｏ ｾ ｴ

e1(r+AO"t) [{ 1- (iitc)8v - ｾ ＼ ｔ Ｒ ｶ Ｈ ｩ ｩ Ｚ ｣ Ｉ Ｒ ｽ Ｍ ｬ ｾ cO +,<T
2iitc'}v - ｾ ＼ ｔ Ｒ ｖ ｉ Ｒ ｣ Ｇ ｬ ｬ Ｏ Ｏ Ｇ ［ ｴ

1 - (8tc)8v - 20"2v(8t c)2 
-1 

e1(r+AO"t) (1 -ze'v _ ｾ Ｐ Ｂ Ｇ Ｒ ｖ ｬ Ｒ Ｉ ｉ Ｏ Ｏ ｾ ｴ (5.135) 

8' 

k 

O"c 

(5.136) 

(5.137) 

Comparing equations (5.118) and (5.135) we recognize that under EMM innovations are 

again VG-distributed with new parameterizations, namely VG(0"'yICit,8'O"t, :t)' 

The new parameterizations influence the dynamics of the volatility under the martingale 

measure: 

(5.138) 

So the market and real volatility processes are related through ｏ Ｂ ｾ = ｛ Ｐ Ｂ ［ ｾ Ａ ｾ ｾ ［ Ｒ ｝ O"t· 
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GARCH-VG risk-neutral characterization through market price of risk: 

With the scale factor u = -1 we can write equation (5 123) as' Ja2+v82 " 

(5.139) 

The mgf under risk-neutral measure can be obtained from the expression of the VG-

characteristic function: 

-1 

( 
1 2 2) V/O"t+1 

1 - u(Jv - 2(} vu (5.140) 

Thus: 

(5.141) 

We want to choose A, under Q, in terms of other risk-neutral parameters such that: 

(5.142) 

Since (}H1 =f. 0, we must have: 

A = ｾ ｬ ｯ ｧ (1 + 1 (Jv _ ｾ ｟ Ｈ ｽ ｟ Ｒ ｟ ｶ ｟ Ｉ
V J (}2 + v(J2 2 (}2 + v(J2 

(5.143) 

This is the final characterization which we will be using in the expression of mgf which in 

turn will be used in our pricing(and hence in calibration). 

5.3 Closed form GARCH Option Pricing with Different Levy 

Innovations 

At this stage we have the dynamics of log-returns and GARCH volatility with different 

Levy innovations under risk neutral martingale measure. ｾ ow we need to consider fourier 
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inversion techniques, derived in details in chapter2, for pricing European options, see e.g. 

Heston(1993) [69]. The tool which is required for this is the characteristic function of the 

model. In previous sections we present the mathematical underpinnings to derive the fact 

that for GARCH-Levy dynamics one period ahead conditional distribution of the underlying 

asset again follow the GARCH dynamics with innovation coming from same Levy process. 

This fact leads to the characterization of the risk neutral martingale measure. But to price 

option the conditional distribution of underlying asset at multi period ahead maturity, say 

at 'T', is required. In this section we discuss and derive such a distribution following the 

recursive method developed by Heston and Nandi(2000) [70]. The idea of their recursive 

procedure lies in the fact that the general conditional moment generating function can be 

expressed as: 

IE[eu1og(ST) I Jt] = Sf exp [A(t, T, u) + B(t, T, U)O"t+l] (5.144) 

The goal is to solve for A(t, T, u) and B(t, T, u) for different Levy innovations characterizing 

different O"t. In this section we will provide the solutions for four Levy innovations, one from 

a much cited Levy process namely tempered stable Levy innovations(TS) and others from 

time changed Levy process namely Normal inverse Gaussian(NIG) ,Variance Gamma(VG) 

as well as CGMY processes. 

Following equation (5.144) we can write: 

IE[eu1og(ST) I Jt+l] = Sf+l exp [A(t + 1, T, u) + B(t + 1, T, U)0"t+2] (5.145) 

That is we assume that the general form of conditional mgf holds for time t + 1, and 

now using iterative property of conditional expectation(which is the central feature Heston 

Nandi(2000)[70] recursive approach) we can write the expression for the conditional mgf at 

time t : 

IE [IE[eU10g(ST) I Jt+l] I Jt] 

Ｈ Ｕ Ｎ ｾ Ｕ Ｉ IE [Sf+l exp [A(t + 1, T, u) + B(t + 1, T, U)0"t+2] I JtJ 

(5.146) 

Following equation (5.1) we have Sf+l = SfeUXt+l. Plugging this in equation (5.146) we 
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obtain: 

lE[eu1og(ST) [ J't] lE [SYeUXt+1 exp [A(t + 1, T, u) + B(t + 1, T, U)O"t+2] [ J'tJ 

SYlE [eUXt+1 exp [A(t + 1, T, u) + B(t + 1, T, U)0"t+2] [ J'tJ 

(5.147) 

This development is the central tool in the discrete time GARCR modeling. It was first 

put forward in Heston and Nandi(2000) [70] and subsequently used by Christoffersen et 

al(2006) [32]; which shows that this conditional MGF characterization can have distribu-

tional assumption other than normal one. This simply tells us that given the information 

available up until today the evolution of returns can be characterized, in discrete fashion, 

for any number of future period, through two well defined recursive relations of "A" and 

"B". Thus no matter how many steps are between t and T, one could use equations(5.145) 

and (5.146) recursively to derive the conditional mgf at any maturity T given the informa-

tion available up to t. Comparing (5.144) and (5.147) we can set up the recursive relations 

for the co-efficients A(t, T, u) and B(t, T, u). Corresponding to the choices of dynamics for 

X t and O"t for various Levy innovations we will have different expressions for such recur-

sive relations. In the following sections we will see four such relations, one for TS-Levy 

innovation and others are for NIG, VG and CGMY Levy innovations3 

30ne point worth mentioning here is that Heston and Nandi (2000) [70] didn't consider one day ahead 

volatility, O"t+l, as parameter of the model. They estimated this volatility exogenously and supplied it as 

constant while running the calibration. However they updated this constant at different time points at which 

their considered options were recorded. Considering one period ahead volatility as parameter is consistent 

when calibration considers only few days record; as each day adds one more parameter to be estimated. 
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5.3.1 The case of TS Levy innovations 

We replace X t+l and O"t+2 in equation (5.147), from equations (5.36) and (5.9), respectively, 

which are developed for the GARCH- TS dynamics4: 

(5.4) 

IE[eu1og(ST) I Jtl 
u (r+..\17t+l _ Zt+l ) 

ｓ ｾ ｌ ｉ ｅ [e 2V Ct(l-Ct)rr/J/;;/ exp [A( t + 1, T, u) 

+B(t+1,T,u)(,Bo+,LJt Zt+l a-2 +aIO"t+l)J IJt] 
2Va(1 - ahT}---a 

SrIE [ exp { ur + AUO"t+1 + A(t + 1, T, u) + ,BoB(t + 1, T, u) 

+aIO"t+IB(t + 1, T, u) + [,BIB(t + 1, T, u) - ｡ ｾ ｬ Ｒ ｚ ｴ Ｋ Ｑ } I Jt] 
2Va(1 - ahT}---a 

Sr exp {ur + AUO"t+1 + A(t + 1, T, u) + ,BoB(t + 1, T, u) 

Ｋ ｦ ｲ ｬ ｾ ｴ Ｋ Ｑ ｂ Ｈ ｴ Ｋ 1,T,u) Ｋ Ｇ ｗ ｴ Ｋ ｬ ｾ [1- (1- Ｒ Ｚ ｊ Ｚ ｾ ［ ［ ｾ Ｚ ｾ ) OJ } 

since Zt+IIJt '" T Sa hO"t+I, T}) 

Sr exp {ur + AUO"t+1 + A(t + 1, T, u) + ,BoB(t + 1, T, u) 

+aIO"t+IB(t + 1, T, u) + "'Wt+IT} [1 _ (1 _ ,BIB(t + 1, T, u) - u) a] } 
Ja(l - ahT} 

Sr exp {ur + A(t + 1, T, u) + ,BoB(t + 1, T, u) 

+ { AU + frlB(t + 1, T, u) + Ｑ ｾ [1 - (1 - ｉ ｨ ｂ ｪ ｾ Ｗ Ｑ Ｑ ｾ ｔ ｾ ｾ ｾ ｾ u) 0] } ｾ ｴ Ｋ ｬ } 

(5.148) 

4However one subtle issue is worth noting with TS innovations. This characterization is not suitable for 

risk-management because TS distribution is defined on positive half of the real line. In risk management we 

are particularly interested about downside of the distribution to estimate the risk measures e.g. VaR. So 

negative innovations are of particular interest. Off-course this can be circumvented by considering negative 

transformation of the TS distribution but that essentially complicates the model. Furthermore though 

VaR can be obtained by considering negative transformation of TS distribution, coherent risk measure like 

Spectral Risk Measure(SRM) can not be estimated for one sided distribution like TS. SRM considers entire 

spectrum of returns(both profit and losses). Thus naturally for risk management innovation from more 

flexible Levy process defined on the entire real line will be desired, e.g. KIG, CGMY etc. 
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Comparing equation (5.148) with equation (5.144) we obtain the following recursive 

relations: 

A(t, T, u) 

B(t, T, u) 

ur + A(t + 1, T, u) + f3oB(t + 1, T, u) 

- AU + ex1B(t + 1, T, u) + ''fTl 1 - 1 - ---;==;===:====--[ ( 
131 B (t + 1, T, u) - U) Q] 

y'ex(l- ex)'yTJ 

5.3.2 The case of NIG time changed Levy innovations 

(5.149) 

In this case we replace Xt+1 and CTt+2 in equation (5.147), from equations (5.53) and (5.54) 

respectively, which are developed for CARCR-NIC Levy dynamics: 

IE[eu1og(ST) I Jtl 

u (r+AcY t +1 Zt+l ) 

Sf IE [e J ｑ Ｒ ｊ Ｈ ｑ ｌ Ｈ Ｓ Ｒ Ｉ ｾ exp [A(t + 1, T, u) 

+ B(t + 1, T, u) ((30 + (31 J Zt+l _, + "1"'+1) 1 I ;>,] 
ex20(ex2 - (32)2 

Sf IE [ exp { ur + AUCTt+1 + A(t + 1, T, u) + f3oB(t + 1, T, u) 

+"I"t+1 B(t + 1, T, u) + [thB; + 1, T, u) - ui, Z'+1 } I;>,] 
ex20(ex2 - (32)2 

(5.:i
7
) Sf exp { ur + AUCTt+1 + A(t + 1, T, u) + f3oB(t + 1, T, u) 

+ex1CTt+1B(t + 1, T, u) 

(5.150) 

[ 

2 (13 [f31 B (t + 1, T, u) - Ul) 2 . / 2 f32]} -OCTt+1 ex - + - V ex -
Vex20(ex2 - (32) -,} 

since Zt+11Jt rv NIG(ex,f3,OCTt+l) 

Sf exp { ur + A(t + 1, T, u) + f3oB(t + 1, T, u) 

+{ AU + ex1B(t + 1, T, u) 

-0 [ ex2 _ (13 + [f31B(t + 1, T, u) ｾ Ｓ ｕ ｬ Ｉ 2 - y' ex2 - 132] }CTt+1} 

Vex20(ex2 - (32)2 

(5.151) 
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Comparing equation (5.150) with equation (5.144) we obtain the following recursive rela-

tions: 

A(t, T, u) 

B(t, T, u) 

ur + A(t + 1, T, u) + (3oB(t + 1, T, u) 

AU + QIB(t + 1, T, u) 
Ｎ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ

-6 [ Q2 _ ({3 + [(31B(t + 1, T, u) ｾ Ｓ ｕ ｬ Ｉ 2 _ vi Q2 _ (32] 

J Q28(Q2 - (32)"T 

(5.152) 

Unlike tempered stable(TS) Levy innovation, the dynamics with NIG Levy innovation 

has serious problem associated with it. Namely when TS Levy process is a subordinator, 

NIG process is not. Consequently the support of NIG distribution is the entire real line 

that is why NIG process can exhibit both positive as well as negative jumps. Thus from our 

calibration we realize that no matter how we restrict the parameters, the volatility often 

becomes negative, as Zt rv N JG( Q, (3, orJt) often assumes both positive as well as negative 

values. 

Hence for Levy innovations coming from Levy processes exhibiting both sided jumps 

we need to consider non-linear dynamics of Heston-Nandi type to ensure positivity. Let us 

assume the non-linear dynamics under risk neutral parameters as: 

(5.153) 

Here J-i is the expected value of a N JG( Q, (3, OrJt-l) random variable and is given by 

equation (5.48). Hence we can further simplify the above equation to: 

(5.154) 
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The problem with this characterization of volatility is that when CTt , as in equation 

(5.154), is plugged into equation (5.147), it does not yield explicit recursive relations for 

A(t, T, u) and B(t, T, u). Hence no closed form valuation of European option is possible 

without further approximation. Recently similar problem is encountered by Chayawat 

Ornthanalai 5(2010)[89] where component affine transformations are considered to incor-

porate Levy innovations to GARCH volatility dynamics. The conclusion in Chayawat 

Ornthanalai(2010)[89] is that no matter how sophisticated affine relation is considered, for 

truly potential Levy innovations-capable of exhibiting both positive and negative jumps-

there is no alternative to Monte-Carlo valuation of derivatives. Though compare to the 

affine transformation of Chayawat Ornthanalai(2010) [89] our volatility dynamics, described 

in equation (5.154), is apparently simpler, nonetheless like Chayawat Ornthanalai(2010) [89] 

we found that the simulated prices of European options are much appreciable compare to 

other available models. But the problem is that it requires long time to price even a sin-

gle option. To appreciate such pricing we need to consider large number of simulations6 

by the expense of huge computational time and that renders quick calibration practically 

infeasible. 

We apply approximation to the dynamics (5.154) to uphold the closed form valuation 

techniques similar to those of Heston and Nandi. When the dynamics (5.154) is character-

ized for NIG innovations we propose an approximation which preserves the characterization 

of dynamics but replaces the standard NIG innovations by standard Normal innovations7: 

CTt c::::: /30 + /31 [stdN ormal + { /3yfJ -1 - 'Y} Vlcrt- 1] 2 + alCTt-l 
a(a2 - (32)T 

(5.155) 

The idea behind such approximation is driven by the fact that Heston and Nandi's 

5Chayawat Ornthanalai is developing CARCR-Levy dynamics for asset pricing. In his work he considered 

Monte Carlo simulation for pricing European options when Levy innovations have entire real line as its 

support, thus the dynamics can demonstrate negative as well as positive jumps. 

6 Appreciation increases with the increase in number of paths. Less than 5000 paths are not usually that 

much appreciable. 
7We understand that it is a rough approximation. But we realize that the benefit achieved is enormous, 

as this offers a characterization yielding to analytic valuation. Also by plotting densities of Normal and 

Normal Inverse Caussian(NIC) random numbers with same mean and variance we realize that stochastically 

we loose very little. 
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closed form pricing was possible solely because of the following relation involving a standard 

Normal random variable: 

(5.156) 

where z rv N(O, 1). 

We now apply the volatility dynamics (5.155) (which is characterized for NIG innovation 

and approximated through the replacement of standard NIG variate by standard Normal 

variate) in general recursive relation (5.147) where scaled NIG innovations drive the returns: 

lE[eu1og(ST) I ｾ ｴ ｊ

u (r+>'O"t+l - J Zt+l ) 

SflE[e ｣ ＾ Ｒ Ｘ Ｈ ｣ ＾ ｌ Ｈ Ｓ Ｒ Ｉ ｾ exp[A(t+1,T,u) 

+B(t+ 1,T,u) (,60 +,61 [z+{ ,6yiJ =.l -'}Vo"t+1]2+a10"t+l)J ｉ ｾ ｴ ｝
a(a2 - ,62) 4 

(5.157) 

We apply the relation (5.156) to (5.157) and simplify it further: 

(5.47) 

lE[eu1og(ST) I ｾ ｴ ｊ

Sfexp {u(r+AO"t+l) -OO"t+l[ a2- (,6+ (-u) -3r -Ja2-,62]} Va20( a2 - ,62)"2 

exp {A(t + 1, T, u) + B(t + 1, T, u),6o - ｾ ｬ Ｐ Ｙ [1 - 2B(t + 1, T, U),61] 

( 
,6yiJ)2 1 

+B(t + 1, T, U),61 a( a2 _ ,62) -,/ -, O"t+l [1 - 2B(t + 1, T, U),61J 

+alB(t + 1, T, U)O"t+l } 

since ｺ ｴ Ｋ ｬ ｬ ｾ ｾ rv NIG(a,,6,oO"t+l) 

Sf exp { ur + A(t + 1, T, u) + ,6oB(t + 1, T, u) - ｾ ｬ Ｐ Ｙ [1 - 2B(t + 1, T, U),61] 

+ [AU + alB(t + 1, T, u) 

(5.158) 
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Comparing equation (5.158) with equation (5.144) we obtain the following recursive 

relations: 

A(t, T, u) ur + A(t + 1, T, u) + f3oB(t + 1, T, u) - ｾ ｬ ｏ ｧ [1 - 2B(t + 1, T, U)f3I] 

B(t, T, u) AU + alB(t + 1, T, u) - <5 [ a2 - (f3 + (-U) -3) 2 - J a2 - f32] Va2 <5(a2 - f32)'J: 

( 
f3V8 ) 2 1 +B(t+1,T,u)f31 1 -"/ -------

a(a2 - f32) 4 [1 - 2B(t + 1, T, U)f3I] 
(5.159) 

We will obtain the option prices through Fourier Inversion as in Heston(1993)[69] and 

Heston and Nandi(2000) [70]. For closed form (up to numerical integration) GARCH model 

with NIG innovations let us denote the model price by Ccfgnig. This model has seven 

parameters to be estimated: 8 [f3o,f3I,al,,,/,a,f3,<5]. Ccfgnig is obtained as in (4.12) but 

replacing A(t, T, u) and B(t, T, u) recursive relations in (4.11) by those in (5.159). 

Given the constraints on several parameters, from our empirical observation we realize 

that it is more effective to consider the calibration as a constrained optimization problem 

rather than a simple non-linear least square one. The constraints we need to consider arise 

from basic GARCH structure as well as usual NIG parametrization. Namely we need to 

ensure that f30 2: 0, f31 2: 0, al 2: 0, al + f31 < 1; a > 0 and I f3 I::; a i.e. -a - f3 < 0, <5 > O. 

80ne day ahead GARCH variance 0-;+1, as is required in (4.10), can also be treated as parameter. 

Considerable variation in 0-;+1 is usually observed when the calibration is carried out in day-by-day dynamic 

fashion. However treating one-day-ahead volatility as parameter the calibration may deem manageable only 

for market data of few days. This is because each new day increases a new parameter to be estimated. So for 

calibrations using option records over a long period we need to directly feed the one-day ahead volatilities in 

dynamic fashion. Heston and Nandi(2000)[70] feeded these values in calibration by estimating them through 

GARCH process. This force the calibration to heavily rely on long time series of asset returns, in addition 

to the market price of options. We implement the same approach for GARCH-NIG volatility dynamics. But 

we realize that though with GARCH-NIG volatility, our calibration often provides better fit than Heston 

Nandi's model, nonetheless if we proxy daily GARCH volatility by the average daily implied volatilities, 

the calibration systematically outperforms Heston Nandi's model. Thus we report the calibration results 

with the average implied volatilities. Another positive side with average implied volatilities, perhaps a very 

important one, is that it renders past asset returns redundant. 
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Thus to calibrate the model we consider the following optimization problem 9: 

[ 

1 n.. 2 

Minimize ｾ ｾ (C:narket - ｃ ｾ ｦ ｧ ｮ ｩ ｧ ｛ Ｌ Ｖ Ｐ Ｇ ,61, al,", a,,6, 6]) 
s.t. A.[,6o,,6l,al,", a,,6, 6]' ::; b. (5.160) 

Here 

-1 0 0 0 0 0 0 

0 -1 0 0 0 0 0 

0 0 -1 0 0 0 0 

A= 0 1 1 0 0 0 0 

0 0 0 0 -1 0 0 

0 0 0 0 -1 -1 0 

0 0 0 0 0 0 -1 

and 

b = [0 0 0 1 0 0 0]'. 

9We use Matlab function "fmincon" to implement such constrained optimization. 
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5.3.3 The case of CGMY time changed Levy Innovations: 

This time we replace Xt+l and CTt+2 in equation (5.147) from equations (5.89) and (5.90) 

respectively, for the GARCH with CGMY Levy dynamics: 

IE[eu1og(ST) I Jt] 

[ 
u (r+>.a- t+ 1 Zt+l ) Sf IE e v'C(MY-2+GY-2)r(2-Y) exp [A(t + 1, T, u) 

+B(t + 1, T, u) (,80 +,81 JC(MY-2 Ｚ ｴ ［ ｾ ｟ Ｒ Ｉ ｦ Ｈ Ｒ _ Y) + QI CTt+l)J I Jt] 

SrIE [ exp { ur + A'UCTt+l + A(t + 1, T, u) + ,8oB(t + 1, T, u) 

+Q CT B(t + 1 T u) + [,81B(t + 1, T, u) - u] Zt+l } I J] 
1 t+l " JC(MY-2 + GY-2)f(2 _ Y) t 

(5.83) Sf exp { ur + AUCTt+l + A(t + 1, T, u) + ,8oB(t + 1, T, u) 

+QICTt+lB(t + 1, T, u) 

+CCT f( _ Y) [( {Al _ [,81B(t + 1, T, u) - u] }Y _ lilY 
t+l JC(MY-2 + GY-2)r(2 _ Y) 

{
G [,81B(t + 1, T, u) - u] }Y GY)]} 

+ + JC(MY-2 + GY-2)f(2 - Y) -

since zt+llJt rv CGMY(CCTt+l, G, M, Y) 

Sr exp {ur + A(t + 1, T, u) + ,8oB(t + 1, T, u) 

+{ AU + QIB(t + 1, T, u) 

[( {
M _ [,81 B(t + 1, T, u) - u] }Y _ MY 

+Cf(-Y) JC(MY-2 + GY-2)f(2 _ Y) 

{ 
[,81B(t + 1, T, u) - u] }Y GY)] } } 

+ G + JC(MY-2 + GY-2)f(2 _ Y) - CTt+l 

(5.161) 
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Comparing equation (5.161) with equation (5.144) we obtain the following recursive rela-

tions: 

A(t, T, u) 

B(t, T, u) 

ur + A(t + 1, T, u) + !3oB(t + 1, T, u) 

AU + CilB(t + 1, T, u) 

+Cf( _Y) [( {M _ [!31B(t + 1, T, u) - u] }Y _ MY 
y'C(MY-2 + GY-2)f(2 - Y) 

+ {G + [!31B(t + 1, T, u) - u] }Y _ GY)] 
y'C(MY-2 + GY-2)f(2 - Y) 

(5.162) 

Similar to the case with NIG Levy innovations this dynamics with CGMY Levy inno-

vations has serious problem associated with it. Since CGMY process is not a subordinator, 

the volatility often becomes negative, as Zt rv CGMY(Cat-l, G, M, Y) often assumes both 

positive as well as negative values. 

Hence like NIG case we need to consider non-linear dynamics of Heston-Nandi type to 

ensure positivity. Let us assume the non-linear dynamics under risk neutral parameters as: 

CGfI,IY(Cat-l, G, M, Y) 
[ ]

2 

!3o +!31 y'Cat_l(MY-2 + GY-2)f(2 _ Y) - 'YVat-l + Cilat-l 

CGMY(Cat-l, G, M, Y) - J-L + J-L 

[ ]

2 

!3o +!31 y'Cat_l(MY-2 + GY-2)f(2 _ Y) - 'YVat-l + CilO"t-l 

!3o +!31 [stdCGMY + y' Y 2 J-L Y - 'YVO"t-l]

2 

+ CilO"t-l 
CO"t-l (M - + G -2)f(2 - Y) 

(5.163) 

Here J-L is the expected value of a CGA1Y(Cat-l, G, M, Y) random variable and is given 

by equation (5.85). Hence we can further simplify the above equation to: 

[ { 

C(MY-l_GY-l)f(l-Y) } ]2 
!3o +!31 stdCGA1Y + y'C(MY-2 + GY-2)f(2 _ Y) - 'Y VO"t-l + CilO"t-l 

(5.164) 

The problem with this characterization of volatility is that when O"t , as into equa-

tion (5.164), is plugged in equation (5.147) it doesn't yield explicit recursive relations for 
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A(t, T, u) and B(t, T, u). Hence no closed form valuation of European option is possible with-

out further approximation. Again we refer the findings in Chayawat Ornthanalai(2010)[89] 

which in essence implies that no matter how sophisticated affine relation is considered, for 

truly potential Levy innovations-capable of exhibiting both positive and negative jumps-

there is no alternative to Monte-Carlo valuation of options10. Our aim is to get rid off 

simulation to make the model practically implementable. 

We apply approximation to the dynamics (5.164) to uphold the analytic valuation tech-

niques similar to those of Heston and Nandi. When the dynamics (5.164) is characterized 

for CGMY innovations we propose an approximation which preserves the characterization 

of the dynamics but replaces the standard CGMY innovations by standard Normal innova-

tions: 

[ { } ]

2 
C(MY -1 - GY -1 )f(l - Y) 

O"t ｾ {30 + {31 stdN ormal + - "( VO"t-1 + Cl:10"t-1 
y'C(MY-2 + GY-2)f(2 - Y) 

(5.165) 

The idea behind such approximation is similar to that explained in case of NIG innova-

tions. 

We now apply the volatility dynamics (5.165) (which is characterized for CGMY inno-

vation and approximated though the replacement of standard CGMY variate by standard 

Normal variate.) in general recursive relation (5.147) where scaled CGMY innovation drives 

the return: 

lE[eu1og(ST) I ｾ ｴ ｝

[ 

U (r+ACTt+l- ..; Y SUlE e C(M 
t 

+ B (t + 1, T, u) ({30 + {31 [stdN ormal 

{ 
C ( MY -1 - G Y -1) f (1 - Y) } ] 2 ) l] 

+ y'C(MY-2 + GY-2)f(2 _ Y) - 'Y VO"t-1 + Cl:10"t-1 ] I ｾ ｴ

(5.166) 

We apply the relation (5.156) to (5.166) and simplify it further: 

lOChayawat Ornthanalai(2010)[89] considers a particular form of affine GARCH which in a way resembles 

jump-diffusion type approaches. Namely they considered two different components for innovations: one is 

normal and the other coming from some pure jump Levy process. 
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E[eu10g(ST) I ｾ ｴ ｬ

st exp { u (r + AO"t+l ) 

+ CJt+1 f (-Y){(M- (-u) )Y -MY 
ylC(MY-2 + GY-2)f(2 - Y) 

+(G+ (-u) )Y GY}} 
ylC(MY-2 + GY-2)r(2 - Y) -

exp {A(t + 1, T, u) + B(t + 1, T, u)(3o - ｾ ｬ ｯ ｧ [1 - 2B(t + 1, T, U)(31] 

( 
C(MY-l _ GY- 1)f(1- y))2 1 

+B(t + 1, T, U)(31 ylC(MY-2 + GY-2)r(2 _ Y) -, Jt+l [1 - 2B(t + 1, T, U)(31] 

+alB(t + 1, T, U)Jt+l } 

since ｺ ｴ Ｋ ｬ ｬ ｾ ｾ rv CGMY(CO"t+l, G, M, Y) 

st exp { ur + A(t + 1, T, u) + (3oB(t + 1, T, u) - ｾ ｬ ｯ ｧ [1 - 2B(t + 1, T, U)(31] 

+[Au+a 1B(t+1,T,u)+Cf(-Y){(M- (-u) )Y -MY 
ylC(MY-2 + GY-2)f(2 - Y) 

+(G + (-u) )Y - GY} 
ylC(MY-2 + GY-2)r(2 - Y) 

( 
C(MY-l - GY- 1)f(1- Y) 2 1 

+B(t+1,T,u)(31 ylC(MY-2+GY-2)f(2-Y) -I) [1-2B(t+1,T,U)(31]]0"t+l} 

(5.167) 

Comparing equation (5.158) with equation (5.144) we obtain the following recursive 

relations: 

A(t, T, u) 

B(t, T, u) 

ur + A(t + 1, T, u) + (3oB(t + 1, T, u) - ｾ ｬ ｯ ｧ [1 - 2B(t + 1, T, U)(31] 

Au+a1B(t+1,T,u)+Cf(-Y){(AI- (-u) )Y -MY 
ylC(MY-2 + GY-2)f(2 - Y) 

+ G+ -GY 
( 

(-u) )Y} 
ylC(MY-2 + GY-2)f(2 - Y) 

C(MY - 1 - GY - 1)f(1- Y) 2 1 
+B(t + 1, T, U)(31 (ylC(MY -2 + GY-2)r(2 _ Y) -,) [1 - 2B(t + 1, T, U)(31] 

(5.168) 

We will obtain the option prices through Fourier Inversion as in Heston(1993) [69] and 

Heston and Nandi(2000) [70]. For closed form (up to numerical integration) GARCH price 
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with CGMY innovations let us denote the model price by Ccfgcgmy. This model has eight 

parameters to be estimated: [,80,,81, QI, ,,(, C, G, M, Y]. Ccfgcgmy is obtained as in (4.12) but 

replacing A(t, T, u) and B(t, T, u) recursive relations in (4.11) by those in (5.168). 

Given the constraints on several parameters, from our empirical observation we realize 

that it is more effective to treat the calibration as a constrained optimization problem rather 

than a simple non-linear least square one. The constraints we need to consider are coming 

from basic GARCH structure as well as usual CGMY parametrization. Namely we need to 

ensure that ,80 ｾ 0,,81 ｾ 0, Q1 ｾ 0, Q1 +,81 < 1 ; C, G, M > 0 and Y < 2. Thus to calibrate 

the model we consider the following optimization problem on each dayll: 

[

In.. 2 
Minimize -; t; (C:narket - ｃ ｾ ｦ ｧ ｣ ｧ ｭ ｹ ｛ Ｌ Ｘ ｯ Ｌ ,81, Q1, ,,(, C, G, 111, Y]) 

s.t. A.[,8o, ,81, Q1, ,,(, C, G, Ai', y]f S b. (5.169) 

Here 

-1 0 0 0 0 0 0 0 

0 -1 0 0 0 0 0 0 

0 0 -1 0 0 0 0 0 

0 1 1 0 0 0 0 0 
A= 

0 0 0 0 -1 0 0 0 

0 0 0 0 0 -1 0 0 

0 0 0 0 0 0 -1 0 

0 0 0 0 0 0 0 1 

and 

b = [0 0 0 0 0 0 0 2 - elf; with e > O. 

5.3.4 The case of VG time changed Levy Innovations: 

We apply approximation to the dynamics (5.124) to uphold the closed form valuation tech-

niques similar to those of Heston and Nandi. When the dynamics (5.124) is characterized 

for VG innovations we propose an approximation which preserves the characterization of 

11 Again Matlab function "fmincon" can be used to carry out such constrained optimization. 
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dynamics but replaces the standard VG innovations by standard Normal innovations: 

Clt ':::: (30 + (31 [stdN ormal + { e - 'Y} y'Clt-1] 2 + Cl1 Clt-1 
y' Cl2 + ve2 

(5.170) 

Similar to other characterizations the idea behind such approximation is motivated by 

using the useful relation (5.156) yielding analytic valuation. 

We now apply the volatility dynamics (5.170) (which is characterized for VG innovation 

and approximated by standard Normal) in general recursive relation (5.147) where scaled 

VG innovations drive the returns 

lE[eu1og(ST) I Jt] 

[ 

U (r+.ACTt- Zt ) 
SflE e Va2+ve2 exp [A(t + 1, T, u) 

+ B(t + 1, T, u) ((:10 + f:h [stdN ormal + { V'', : v8' - "( } V"t-l r + "1"t-l) 1 I ;>t 1 
(5.171) 

We apply the relation (5.156) to (5.171) and simplify it further: 

(5.118) 

lE[eu1og(ST) I Jt] 

{ ( ) Clt+1 ( 1 2 2)} Sf exp u r + AClt+1 - -v-Zog 1 - uev - 2Cl vu 

exp { A(t + 1, T, u) + B(t + 1, T, u)(3o -lZOg [1 - 2B(t + 1, T, U)(31] 

( 
e)2 1 

+B(t + 1, T, U)(31 y'Cl2 + ve2 - 'Y Clt+1 [1 - 2B(t + 1, T, U)(31] 

+a1B(t + 1, T, U)Clt+1 } 

1 v 
since zt+1lJt rv VG((Jy'Clt+1 ,eClt+1, --) 

Clt+1 

Sf exp { ur + A(t + 1, T, u) + (3oB(t + 1, T, u) -lZOg [1 - 2B(t + 1, T, U)(31] 

+ [AU + Cl1B(t + 1, T, u) - tZOg (1 -uev -lCl 2vu2
) 

+B(t + 1, T, U)(31 (y' Cl2 : ve2 - 'Y) 2 [1 _ 2B(t ｾ 1, T, U)(31]] Clt+1 } (5.172) 

Comparing equation (5.172) with equation (5.144) we obtain the following recursive 
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relations: 

A(t, T, u) ur + A(t + 1, T, u) + (3oB(t + 1, T, u) - ｾ ｬ ｏ ｧ [1 - 2B(t + 1, T, U){31] 

B(t, T, u) AU + O'.1B(t + 1, T, u) - ｾ ｬ ｏ ｧ (1 - uev - ｾ ｡ Ｒ ｶ ｵ Ｒ Ｉ

( e )2 1 
+B(t + 1, T, U){31 J a2 + ve2 - "( [1 - 2B(t + 1, T, U){31J (5.173) 

We will obtain the option prices through Fourier Inversion as in Heston(1993) [69J and 

Heston and Nandi(2000) [70J. For closed form (up to numerical integration) GARCH price 

with VG innovation let us denote the model price by Ccjgvg. This model has seven para-

meters to be estimated: [(3o,{31,O'.1,"(,a,e,vJ. Ccjgvg is obtained as in (4.12) but replacing 

A(t, T, u) and B(t, T, u) recursive relations in (4.11) by those in (5.173). 

As is the case with other innovations we realize that it is more effective to treat the 

calibration as a constrained optimization problem rather than a simple non-linear least 

square one. The constraints we need to consider are coming from basic GARCH structure 

as well as usual VG parametrization. Namely we need to ensure that {3o ｾ 0, {31 ｾ 0, 0'.1 ｾ

0,0'.1 + {31 < 1; a > 0 and e E IR , v > O. Thus to calibrate the model we consider the 

following optimization problem on each day12; 

[

In.. 2 

Minimize ;;, ｾ (C::narket - ｃ ｾ ｪ ｧ ｖ ｧ ｛ ｻ Ｓ ｯ Ｌ {31, 0'.1, ,,(, a, e, vJ) 

s.t. A.[{3o, {31, 0'.1, ,,(, a, e, v]' ::; b. (5.174) 

Here 

-1 0 0 0 0 0 0 

0 -1 0 0 0 0 0 

0 0 -1 0 0 0 0 
A= 

0 1 1 0 0 0 0 

0 0 0 0 -1 0 0 

0 0 0 0 0 0 -1 

and 

b = [0 0 0 1 0 0]'. 

12We use Matlab function "fmincon" to implement such constrained optimization. 

160 



5.4 Empirical Results 

We use intraday records of options written on S&P500 index and traded at Chicago Board 

Options Exchange(CBOE). For this empirical part we only implement one of our closed 

form GARCH-Levy dynamics, namely GARCH with NIG innovation. We will study other 

dynamics in future. 

After Rubinstein's(1994) [95] suggestions to S&P500 data to test European option pricing 

models, most of the studies in option pricing literature consider Options traded on this 

index. In terms of open interest in Options, S&P 500 is the most active index options 

market and in general it is the second most active index options market in United States.For 

this index the minimum tick is 1/16 for those series which trades below $3 and the tick is 

1/8 for all other series. Strike price spacing are 5 points for near months and 25 points for 

far away months. The options expire in three near terms months in addition to the months 

from the quarterly cycle of March, June, September and December. 

The intraday data is sampled on every Wednesday. We consider assessing our model's 

performance with most of the otherwise sophisticated models which we studied in earlier 

chapters. We accomplish this investigation using various cross-sections of option records. 

First of all we carry out a pilot survey using the options recorded on the last day in our 

data set, which is 29th October 2008. Since the discrete time models take considerable 

time in calibration, Heston and Nandi(2000)[70] didn't consider more than six months at 

a time. They carry out year-by-year calibrations, considering first six months as in-sample 

period and the second six months as out-of-sample. So to have similar views of pricing 

performance as Heston and Nandi(2000)[70], we carry out some year by year calibrations. 

Like Heston and Nandi(2000) [70] we will also consider first six months records for in-sample 

calibration and will use the second six months records to assess the models out-of-sample 

performance in case of year-by-year calibrations. We further consider two years aggregation 

of option records. Finally we consider long three years recent option records, all together, 

to calibrate the models. We mention here that such a calibration is possible only because 

we adapt FRFT approach to pricing. 
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5.4.1 Data Cleaning Issues 

To clean the data we use the same rules as applied by Heston and Nandi(2000)[70]: 

• We do not represent an option, with a particular moneyness or maturity criteria, more 

than once in our sample. This removes quite a good number of options. When records 

get repeated with same moneyness and maturity corresponding to same or different 

index levels, we just consider the first record. 

• We exclude very deep out-of-the-money and deep in-the-money options. We do that 

because these options are either infrequently traded and/or have low enough prices 

as for the bid-ask spread to constitute a major portion of the price. Only the records 

having index to strike ratio somewhere between 0.9 and 1.1 are included in our sample. 

• Heston and Nandi(2000) [70] applied the maturity filtering based on the criteria that 

options should have days to expiration somewhere between 6 and 100. Their argument 

goes with the fact that very long term options are not actively traded and are prone 

to be mispriced. Similarly they argued that very short term options have substantial 

time decay and create trouble in isolating volatility parameters. However we notice 

that Bakshi, Cao and Chen(1997) [7] used options with all available maturities in the 

sample and perhaps it helps them recognize the models performance rather distinctly. 

However for this research we will consider only options with 6-100 days to maturity. 

5.4.2 Practical Issues in Implementation 

We calibrate all the models-except Gram-Charlier-that we studied for one day traded op-

tions in chapter four. There are many practical issues, around the calibration of different 

models, which are worth reporting. A number of those issues are reported here: 

• For any continuous (in time not in path) model for a given set of parameters the pric-

ing involves one evaluation of characteristic function. e.g. if the option has maturity 

t=150 days then for continuous time models the prices come through Carr-Madan 

formula which uses the characteristic function values only for t=150/252. However if 

we consider a discrete time GARCH model ,say Heston-Nandi model, prices still use 
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only the characteristic function values corresponding to t=150. However to obtain 

these characteristic function values at t=150, we need to encounter similar evalua-

tion of characteristic function on every previous day and update the CF values as 

suggested by model dynamics. Thus when a continuous time model involves just 

one evaluation, the discrete time model involves 150 evaluations. This clarifies why 

discrete time models calibration is so time consuming compare to continuous time 

models. Furthermore underlying this fact there is another subtle issue. Calibration 

on a longer horizon naturally includes options of various maturities thus can update 

the true characteristics of the discrete time models. In other words to realize the true 

potential of discrete time models, models parameters should be calibrated on options 

recorded on a longer horizon. In case discrete time models need to be calibrated on 

a short horizon e.g. few options traded on a single day, nothing will be surprising if 

we see discrete time models are performing worse compare to continuous time mod-

els, though on a reasonably longer time record it is typically the opposite. e.g. we 

typically observe that for calibration with one day traded options Heston93 model 

outperforms Heston-Nandi model where as for calibration with options traded over 

a horizon of a year or so it is typically the opposite. This can be particularly so if 

significant number of single day options do not have higher days to maturity . 

• Another relevant observation is that it is possible to encounter situations where four 

parameter CGMY model performs better than three parameter VG and NIG models 

but it is not necessarily always the case . 

• We observe that calibration of CGMY model using option prices is very tricky indeed. 

In particular the calibration is heavily dependent on the initial choice of 'Y' and its 

range of variability. We found it is worth trying this range as : (-N, -t ), (-N, 2-t ), (t 

,l-t),(t,2-t),(1+t,2-t) or even (1.5+t,2-t); where N > 2. Allowing 'Y' to vary on any 

of these ranges could yield significantly different calibration result. So for a particular 

set of data in hand it is more like applying trial and error method to decide which 

range provides best calibration. We recall that 'Y' alone characterizes the nature of 

the underlying CGMY process, i.e. whether the process is of finite variation, infinite 
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variation, finite activity, or infinite activity. 

• The reason for DE models RMSE sometimes getting even slightly worse than BS mod-

els RMSE goes with the fact that BS model is calibrated using its standard formula( 

with no numerical approximation) where as DE model is calibrated by approximating 

the pricing integrals using FRFT. We typically observed that shall we use FRFT for 

BS as well, DE RMSE gets slightly better. However we further typically observed that 

DE jump diffusion model hardly ever performed significantly better than BS model. 

• We must note one subtle issue about computation of standard errors. We numerically 

calculate the Fishers information matrices to obtain the standard errors for various 

models. The information matrices are obtained for mean square error (MSE) func-

tions. Finite difference scheme is utilized to obtain the derivatives. However even 

with our best efforts we failed to apply the same perturbation for all the models 

when we apply the finite difference to MSE's. This is because for our GARCH type 

models some parameters are very small, often to the magnitude of lOe-5 or 10e-6. 

So when we consider a perturbation say 0.0005 or even 0.00005 this amounts are of 

magnitude much higher than the parameter themselves. Thus the total dynamics of 

the model collapse and often we obtain something bizarre. On the other hand if we 

apply a perturbation much smaller say 0.00000005 or even 0.00000005 then it works 

for GARCH type models but generates some sort of instability in other models for 

which a perturbation of 0.0005 or 0.00005 works well. Though theoretically we should 

apply same perturbation to all models to have the SE's comparable across models, we 

just couldn't do that at this stage. 

• There is an important point to remember here. There is no established literature 

which confirms that a particular model will perform better than others across all 

cross-sections of data. In fact, as mentioned in Wim Schoutens(2003) [102], a model 

performing best on a particular data set may perform worst once the data set is 

changed. Though Wim Schoutens made this comment while investigating the relative 

performance of Levy models, we empirically observed that this is true for all models 

of our investigation. Saying otherwise, there is no guarantee that models with more 
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parameters will always perform better than those with fewer parameters. e.g. re-

stricted non-updated version of Heston and Nandi's model has five parameters but it 

was shown that one parameter Black-Scholes model systematically outperformed this 

particular version of Heston and Nandi's model, see Heston and Nnadi(2000)[70] . 

• Another important point- perhaps a vital issue in terms of empirical comparison-is 

that though under statistical measure the innovations are normal in Heston-Nandis(2000) [70] 

CFG model, it turns into non-normal under the risk-neutral distribution. More pre-

cisely any value of ). other than -0.5 will lead to the case where innovations under 

risk-neutral dynamics in Heston-Nandi's 2000 model could potentially follow some 

kind of non-normal distribution. In this case it doesn't have any explicit distributional 

characterization: the best we can say is that for ). =I=- - ｾ the distribution of innova-

tions under risk-neutral dynamics is not guaranteed to be normal. See Heston and 

Nandi(2000) [70]. Now the relative performance of non-normal innovations induced 

through the measure change in Heston and Nandis(2000) [70] and the non-normal in-

novations explicitly incorporated explicitly by Levy processes is a nice empirical work 

left for future. For NIG Levy innovations, only, the following sections will carry out 

rigorous investigation compare to Heston and Nandi's(2000) [70] model. 

• Heston and Nandi considered four specifications in their paper. First in terms of 

volatility updates, they used the terms "non-updated" and "updated". By "non-

updated" they meant that the parameters used in predicting volatility are calibrated 

once only, using previous one years daily returns. However by "updated" they meant 

that the task of estimation is performed on every week, considering a rolling win-

dow of one year daily returns. For each of these specifications they further consid-

ered "restricted" and "unrestricted" versions of the model. In restricted version they 

didn't allow the risk neutral distribution to have skewness, so it yields a symmetric 

distribution. However in unrestricted version the risk neutral distribution could pos-

sibly exhibit skewness. Given the empirical findings in their paper, see Heston and 

N nadi(2000) [70], we consider restricted and unrestricted versions only for 'updated' 

specification. Heston and ;"\andi(2000) [70] demonstrated that non-updated restricted 
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version often performs worse than Black-Scholes . 

• The fact that some specifications of Heston and N andi's(2000) [70] model perform 

worse than Black Scholes model-when innovations under risk neutral dynamics are 

again restricted to follow some symmetric distribution-is very much uncomfortable 

from the modelling point of view. Recently Byan and Min(2010)[25] conjectured 

that this is because Heston and Nandi(2000) [70] used the volatility which is estimated 

under statistical measure and then feed this volatility directly into the pricing formula 

which requires the underlying to follow a risk-neutral dynamics. Despite the criticism 

it encounters we implement Heston and Nandi's(2000) [70] model as in their original 

paper. For our CFG-NIG model, however, we avoid this controversy and completely 

ignore estimation under statistical measure. We observe that the recursive version 

of the characteristic function in Heston and Nandi(2000)[70], and in other similar 

works, is a mathematically rich tool which implicitly accommodates the GARCH 

structure of the volatility and an specification of the return dynamics incorporating 

the effects of that volatility. In other words heteroskedasticity is embedded into the 

characteristic function itself. So it may not be that significant to ensure that the 

initial one period ahead volatility itself is predicted from a GARCH process under 

statistical measure. We further observe that this will help us reduce any adverse 

effect which could possibly arise from approximation of volatility dynamics. The 

approximation is required to uphold analytic pricing. In effect this initial one period 

ahead volatility is not a parameter in the calibration. It is a parameter which we 

directly feed into the model. So the more realistic this feeded value is, the better 

will be the performance of the model. Thus we realistically extract the volatilities 

from forward looking market option prices. In other words we completely ignore 

historical stock returns and proxy the one period ahead volatilities by the average 

implied volatilities of the options used in calibration on a given day. In addition to 

rendering the historical return series completely redundant this ensures that we are 

using only forward looking option information in calibration. In essence this approach 

is similar to ad-hoc Black-Scholes model. However in ad-hoc Black-Scholes model at 

first a volatility function of maturity and strike is fitted using a cross section of option 
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prices, then that functional relationship is used to obtain implied volatility for each 

particular option characterized by strike and maturity pair. The focus is similar : 

using only forward looking option information in calibration. However we leave this 

volatility function fitting issue, on top of implementation of our model, for a future 

work and simply use the average of daily implied volatilities to feed directly into the 

model as one-period ahead volatility. 13 

• Though we didn't report, we carried out similar calibration for Heston and Nandi's 

model as in CFG-NIG model. i.e. ignoring the time series of returns and using 

the average daily implied volatilities as a proxy to one period ahead volatility. We 

observed striking improvement in the performance of Heston Nandi(2000)[70] model. 

e.g. even the symmetric case of this model now performs robustly well compare to 

Back-Scholes model, which Heston and Nandi reported as always performing worse 

than Black-Scholes when volatilities are estimated from historical returns. See Heston 

and Nandi(2000) [70]. As reported in Heston and Nandi(2000) [70] the asymmetric case 

is obviously expected to perform even better and we found that it is the case. However 

we reported the case of Heston and Nandi exactly as it is reported in their paper, i.e. 

using the volatility which is filtered from the time series of historical returns . 

• When assessing out-of-sample performance we restrict to models which explicitly in-

corporates stochastic volatility. It is our observations that all otherwise sophisticated 

characterizations though could possibly perform robustly well for instantaneous fitting 

(e.g. one day or couple of days observations), for long time series of option records 

these models perform way poorer compare to models which consider explicit stochas-

tic volatility dynamics. For example models of pure-jump, Gram-Charlier type could 

fit the data well on a single day but for a long time series of option records they fail to 

outperform any model which considers explicit stochastic volatility dynamics. What 

13Though we report the results with average implied volatility as a proxy to one-step ahead GARCH 

volatility we, however, separately calibrate the models with one-day-ahead initial volatilities obtained from 

GARCH-NIG dynamics. We found that the results are overall promising even when the volatilities are 

estimated from historical asset returns. By promising we mean that overall the improvement achieved over 

Heston and Nandi(2000)[70] model is significant. 
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left seeing is how these models with explicit volatility dynamics fare with the so called 

Levy stochastic volatility models and will be considered in some future work. 

• For assessing in-sample goodness of fit we use the universal measure RMSE, as defined 

in equation(4.48). We apply two other measures to assess the out-of-sample goodness 

of fit. One of them is the most naive measure known as average absolute error(AAE) 

and is defined as: 

AAE = ｾ Imodel pricei - market priceil 

ｾ N 
t=1 

(5.175) 

The other measure we use in out-of-sample assessment is a special measure which is 

used to get the idea whether on an average the model exhibits overpricing or under-

pricing tendency. It is known as Mean-Outside-Error(MOE) 14: 

1 N 
MOE = N L [(model pricei-askSi.{model pricei>aski} +(model pricei-bidi)TI{model pricei<bidi}] 

i=1 
(5.176) 

5.4.3 A Pre-calibration Pilot Survey 

We consider the pilot calibration to empirically reinforce the necessity of models with 

stochastically richer innovations. Saying otherwise this pilot calibration focuses how disas-

trous the performance of otherwise sophisticated models could be. For this we consider the 

options traded on 29/10/2008, the last day records we have in our data set. We clean the 

data following the set rules mentioned earlier. The pilot calibration results are reported in 

table 5.1 15 and for three competing models the ARPE's for this pilot study are presented 

in figure 5.1. 

14RMSE considers quadratic deviations between model and market prices, AAE considers linear deviations 

and MOE is a special indicator of models pricing behavior. 
15For this as well as all other calibration we used FRFT with same parameter values, including the 

dampening factor. This is essential to compare models performance considering calibration using FRFT. 

The consistent way of choosing FRFT parameters are discussed in Lee(2004)[78]. In particular a uniformly 

suitable value of dampening factor could be one around two, see e.g. Chourdakis(2008) [30]. 
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5.4.4 Calibration Using Data from Janury'2005 to December'2007 

Our pilot survey exemplifies what can happen on a very rough day: available models can 

simply collapse. We need models with more sophisticated stochastic properties. In this 

section we carry out similar calibrations using different cross-sections of options recorded 

on a wider time frame: from January'2005 to December'2007. After applying the filtering 

rules, as described above, we have 8931 options to consider on this time window. We 

consider calibrating models under three information aggregation schemes. The first scheme 

corresponds to calibrating models using options traded on first six months of each year and 

then assessing models out-of-sample performance using options traded on the remaining 

six months of the year. This is exactly what Heston and Nandi(2000) [70] did in their 

work. However Heston and Nandi(2000) [70] considered the years: 1992,1993 and 1994. We 

consider the years: 2005,2006 and 2007. 

Table5.2 and figure5.3 report the in-sample and out-of-sample performance, respectively, 

for 2005 calibration. Similar results for 2006 contracts are reported in table5.3 and figure5.4 

where as table5.4 and figure5.5 report the results for 2007 contracts. Our second scheme 

considers calibration of models using information contained in option contracts traded over 

two year periods. More precisely, under this scheme, we calibrate the models using options 

traded on 2005-2006 and 2006-2007. In first case we use first six months contracts of 2007 

to assess models out-of-sample fitting performance and in second case the contracts of first 

three months of 2008 (these are the most recent option contracts recorded in our data set) 

are used for out-of-sample assessment. Table5.5 and figure5.6 report the in-sample and out-

of-sample results, respectively, for 2005-2006 calibration; where as table5.6 and figure5.7 

report the similar results for 2006-2007 calibration. Our third scheme considers all three 

years contracts at a time. Table5.7 reports the calibration results corresponding to this 

scheme, where as fugure5.8 presents the out-of-sample assessment for this scheme. 

A remaining puzzle in empirical option pricing literature, see Bates(2003) [11], is to ad-

dress the issue which will help us quantify the degree to which cross-sectional option pricing 

patterns are quantitatively consistent with the time series patterns of the underlying asset 

prices. An approach-though counterfactual to the standard martingale hypothesis of asset 

price dynamics-could be investigated in this regard. The risk neutral characteristic func-
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tions which are often considered to price options and to reveal cross-sectional option pricing 

patterns, could be used to reveal the time series properties of the underlying asset as well. 

As a tool empirical characteristic function method could be utilized. In particular under 

this setting cross-sectional patterns and time series properties should emerge to be similar. 

But in practice this issue is not that conforming. As noted by Bakshi et al(2000) [8], instan-

taneous option price evolution is not fully captured by underlying asset price movements. 

Furthermore time series properties premised on stationary Markov assumption are presum-

ably under regular bombardment through heteroscedasticity of GARCH model. The degree 

to which conformity could possibly be achieved should in principle rely on the characteristic 

functions of the model which could possibly be employed to both asset based time series 

estimation as well as option based cross-sectional estimation. Thus models risk-neutral 

characteristic functions, and the parameters there of, should partially explain the degree 

of conformity between the time series properties and cross-sectional patterns. In future 

we will investigate such conformity in relative sense, involving most of the apparently suc-

cessful and otherwise sophisticated alternatives to Black-Scholes model. With our schemes, 

however, we notice that cross-sectional calibration with gradually increasing amount of in-

formation aggregation systematically prefer the GARCH-NIG model: though for six month 

aggregation we can figure out an instance, at least, when unrestricted version of Heston and 

Nandi(2000) [70] model outperformed GARCH-NIG model, for two and three years infor-

mation aggregation GARCH-NIG model distinctly outperforms all otherwise sophisticated 

models.16 

There are several reasons for CFG-NIG model to perform robustly well. First of all 

given that CFG-NIG model has separate characterization to describe conditional evolu-

tion of skewness(equation (5.57)) and conditional evolution of kurtosis(equation (5.58)), 

the prices can accommodate the cross-strike and cross-maturity features better than other 

models. The main difference with Heston and Nandi's(2000) [70] model arises from the fact 

16 As we mentioned earlier, we implement GARCH-NIG model separately with one-day ahead volatility 

predicted from asset ｰ ｲ ｩ ｣ ･ ｳ ｾ ･ ｸ ｡ ｣ ｴ ｬ ｹ as Heston and Nandi(2000) [70] did for GARCH-Normal ｭ ｯ ､ ･ ｬ ｾ ｡ ｮ ､ found 

that overall the improvement achieved is substantial compare to Heston and Nandi's model. However, we 

did not report these results. 
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that in their model skewness and kurtosis are captured by structural parameters of GARCH 

model17 where as our characterization of CFG-NIG model captures the skewness and kurto-

sis in time varying fashion, with the variation generated by time varying volatility. We must 

mention that this richness is solely a feature of non-normal innovation. This reminds a con-

jecture made in Bates(2003) [11] regarding continuous time SVJ18(or SVJJ) model: "having 

jump components addresses moneyness biases, while having stochastic laten variables allow 

distributions to evolve stochastically overtime". Though this conjecture is made in con-

tinuous time SVJ(or SVJJ) models the features are consistent with our CFG-NIG model 

as well. However SVJ(or SVJJ) model faces the criticism of Markovian structure where 

as our CFG-NIG dynamics incorporates non-Markovian time series properties through het-

eroscedasticity. This added feature is expected to give CFG-NIG type models a preferential 

edge over SVJ(or SVJJ) model. An empirical work should be of interest to clarify the 

evidence and will be considered in future. 

17 e.g. III equation( 4.9) e determines skewness and a determines the kurtosis, see Heston and 

Nandi(2000) [70]. 
18It is standard in the literature to write SVJ for dynamics which include jumps only in return and SVJJ 

for dynamics which include jumps in both return and volatility. 
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Model RMSE Parameters 

BS 13.5886 
(a) 

0.5172 

(0.0048) 

VG 12.7437 
(a) ((J ) (v ) 

0.0899 -3.2635 0.0279 

(0.0008) (0.0009) (0.0006) 

NIG 12.8452 
(a) ((3) (0 ) 

418.3021 -409.7441 1.0347 

(0.0251) (0.0250) (0.0180) 

JD-DE 12.606 
(a) ('x ) (p ) (r/1 ) (1'/2) 

3. 1230e-4 33.4824 0.4741 14.8251 14.6700 

(0.0577) (0.2407) (0.2540) (0.2047) (0.1888) 

CGMY 12.209 
(0) (G) (M) (Y) 

1.7432e8 3.5792e1 9.652ge5 -6.0337 

(0.089) (0.087) (0.088) (0.006) 

HS 11.069 
(K:) ((J ) (a ) (p) (Va) 

0.2175 1.1198 0.6980 -0.9900 0.2992 

(0.0200) (0.0486) (0.0460) (0.0471) (0.0058) 

HN(R) 7.3703 
(aI) (f3d (130 ) b) (,x) 

0.5876 4.150e-6 9.318e-6 299.993 -300.493 

(0.151e-23) (0.082e-23) (0.152e-23) (0.181e-23) (0.292e-23) 

HN(U) 7.2563 
(aI) (f3d (130 ) b) (,x) 

0.957 2.567e-9 2.567e-9 3.6154 7.3960 

(0.001) (1.404e-7) (1.395e-7) (0.004) (0.005) 

CFGNIG 
(aI) (f3d (130) b) (a) (13) (0) 

7.0439 
0.9772 2.56e-9 2.56e-9 -4.3189 32.0734 30.3958 21.4260 

(8.57ge-4) (7.804e-7) (1. 124e-6) (0.0348) (0.0249) (0.0191) (0.0194) 

Table 5.1: Pilot calibration with Options written on SBP500 index traded at CBOE. We 

consider options traded on 29/10/2008. After all cleaning we have 69 records to consider, on 

that particular day, with mean option price of 77.4942. The mean annual implied volatility 

on 29/10/2008 was 0.5599. Standard errors are obtained by numerically computing the 

Fisher's information matrix for mean squared error(MSE) function. Calibration is carried 

out by applying FRFT approach to price options. 
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Average Relative Percentage Errors on 29/10/2008 
15 j---'-'--'-'-'-'-'-'-'-'-'-'-'-'-') , 
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Figure 5,1: Average Relative Percentage Errors of continuous time Heston's 93 stochas-

tic volatility model, discrete time Heston-Nandi 2000 GARCH model and CFG-NIG 

model(closed form GARCH with NIG innovations) on 29/10/2008. Both Heston's 93 

and Heston-Nandi 2000 models have stochastic properties governed by normal distribution. 

CFG-NIG replaces conditional normal innovations by conditional Normal Inverse Gaus-

sian(NIG) Levy innovations. 
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Figure 5.2: Weekly variability of Black-Scholes (J' (annual). This goes against one of the 

fundamental assumptions of the benchmark model: the volatility remains constant over time. 

In other words this gives the idea of how turbulent the market is with respect to the Black-

Scholes model. However for this observation period the variability is rather mild, specially 

until 2007. 
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Model RMSE Parameters 

BS 1.9993 
(0") 

0.0678 

(0.0059) 

VG 1.8104 
(0") (e ) (v ) 

0.0144 0.2319 0.0828 

(0.0148) (0.0132) (0.0119) 

NIG 1.8157 
(a) un (5 ) 

1621.6 1584.1 0.0743 

(0.0178) (0.0177) (0.0130) 

JD-DE 1.9995 
(0") (A ) (p ) (7)1 ) (7]2) 

0.0678 0.0813 0.9998 186.1660 215.3270 

(0.0063) (0.0190) (0.0166) (0.0178) (0.0702) 

CGMY 1.8088 
(C) (G) (M) (Y) 

43.5396 558.8773 57.5013 -0.2960 

(0.7759) (0.7200) (0.7389) (0.0493) 

HS 1.8386 
(K:) (e ) (0" ) (p) (Vo) 

0.1247 0.0427 0.1032 0.9900 0.0041 

(0.0897) (0.0482) (0.0823) (0.1212) (0.0010) 

HN(R) 1.9483 
(al) (,8d (,80 ) h) (A) 

2.2204e-16 2.5670e-9 1.8374e-5 419.0836 -419.5836 

(2.571ge-6) (5.2326e-7) (1.9018e-6) (1.0037e-5) (1.0037e-5) 

HN(U) 1.4275 
(al) (,8d (,80 ) h) (A) 

0.4583 2.5670e-9 1.4438e-5 419.1233 -3.5116 

(0.0058) (5.062ge-7) (2. 9606e-6) (0.0111) (0.0071) 

CFGNIG 1.5931 
(al) (,8d (,80) h) (a) (,8) (5) 

0.9937 2.5670e-15 2.5670e-15 -0.2690 98.6165 -67.0771 39.8413 

(0.0059) (1.192ge-7) (1.2268e-7) (5.5020) (0.0079) (0.0146) (0.0677) 

Table 5.2: Calibration with Options traded over the period January '2005-June '2005. We 

consider Options traded on every Wednesday. After all cleaning we have 1179 option con-

tracts with a mean option price of 17.8030 and average implied volatility of 0.0746. Standard 

errors are obtained by numerically computing the Jacobian of mean squared error(MSE) 

function. We applied F RFT approach to price options which significantly reduces the cali-

bration time. Discrete time Heston-Nandi (HN) closed form GARCH model requires longer 

time in calibration than any continuous time model and the requirement is even longer for 

our CFGNIG model. 
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Days to maturity<40 
RMSE AAE MOE 

0.95<=S/K<0.99 
BS 1..0405 0.6750 -0.3051. 
HS 1..2368 0.94l2 -0.0972 

HN(R) 1.2721 0.9784 -0.1.l65 
HN(U) 1..3889 l.0589 0.3753 

CFG-NIG 1..0334 0.8l46 0.3384 
0.99<=S/K<l.Ol 

BS 2.1.963 l.7863 -0.5754 
HS 2.3926 l.8329 0.6608 

HN (R) 2.4326 l.8367 0.8263 
HN(U) 2.5346 l.9334 0.9698 

CC'G-NIG 2.0258 1..3896 0.7578 
l.01.<=S/K<l.05 

BS 1..8l57 l.439l 0.l867 
HS 1..786l l.4695 -0.2292 

HN(R) 1..7380 1..3939 -0.0648 
HN(U) 2.l064 l.8227 -0.6l62 

CFG-NIG 1..5677 l.3433 -0.3082 

40=< Days to maturity<70 

0.95<=S/K<0.99 
BS 2.0020 l.5002 -0.8276 
HS 1..734l l.3281. -0.1.506 

HN (R) 1..81.20 1..3706 -0.4693 
HN(U) 1..7589 1..3837 0.l365 

CFG-NIG 1..0261. 0.751.9 -0.3082 
0.99<=S/K<1..01. 

BS 2.3768 1..96l2 -0.6544 
HS 2.3556 l.9295 -0.6386 

HN(R) 2.2228 1..8l44 -0.261.0 
HN(U) 2.3292 1..9080 -0.51.02 

CFG-NIG 2.0453 l.8278 -1..0576 
1..01.<=S/K<1..05 

BS 2.4496 l.938l 0.6805 
HS 2.l738 1..7432 -0.21.23 

HN (R) 2.2725 1..8l86 0.4496 
HN(U) 2.7070 2.2402 -1..l1.89 

CFG-NIG l.8276 l.5552 -0.5203 

70=< Days to maturity=<100 

0.95<=S/K<0.99 
BS 2.2828 l.8776 -1.1.226 
HS 1..9622 l.626l -0.3238 

HN (R) 2.0627 1..6884 -0.881.7
1 

HN(U) 1..9968 1..64l9 -0.6242' 
CFG-NIG 2.4701. 2.1.776 -l.5039 

0.99<=S/K<l.Ol 
BS 2.0780 l.7208 -0.5826 
HS 2.3804 2.0773 -1..0ll5 

HN (R) l.9467 l.5789 -0.4403 
HN(U) 2.8036 2.4672 -l.5063 

CFG-NIG 3.34l6 3. 192 6 -2.2256 
l.Ol<=S/K<l.05 

BS 2.3978 l.7040 0.7l37 
HS 2.260l l.9l77 -0.41.36 

HN(R) 2.3097 1..6734 0.5907 
HN(U) 3.8670 3.5808 -2.5468 

CFG-NIG 2.3657 2.1.428 -0.81.89 

Figure 5.3: Out-of-sample valuation errors for Call Options traded in second half of 2005. 

The models are calibrated on first half of the same year. Total number of contracts available 

for the second half is 1456. BS stands for Black-Scholes model, HS stands for Hestons'93 

stochastic volatility model, HN(R) stands for restricted version of Heston and Nandis 2000 

GARCH model, HN(U) stands for unrestricted version of Heston and Nandis 2000 GARCH 

model, CFG-NIG stands for closed form GARCH model with NIG innovations. RMSE is 

the root mean square error as defined in( 4.48), AAE is the average absolute error as defined 

in(5.175) and MOE is the mean outside error as defined in(5.176). 
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Model RMSE Parameters Ii 
(0") 

I 
I 

BS 2.9708 
0.0750 

(0.0050) 

VG 2.9603 
(0") (8 ) (1/ ) 

0.0410 0.9197 0.0046 

(0.0012) (0.0084) (0.0009) 

NIG 2.9622 
(ex) ((3) (8) 

96.1269 28.6945 0.4713 

(0.0893) (0.1018) (0.0629) 

JD-DE 2.9708 
(0") (>- ) (p ) (7]I ) (7)2) 

0.0750 0.0782 0.9998 202.6066 293.0997 

(0.0050) (17.2433) (28.8536) (18.3369) (28.4823) 

CGMY 2.9603 
(0) (G) (M) (Y) 

80.6780 1879.1 182.2822 0.1689 

(0.6236) (0.3425) (0.3419) (0.0272) 

HS 2.9284 
(/'i;) (8 ) (0" ) (p) (Vo) 

0.3451 0.0399 0.0255 0.9900 0.0042 

(0.0808) (0.0181) (0.0794) (0.1040) (0.0009) 

HN(R) 2.9794 
(exl) (131) (130 ) (r) (>-) 

2.2204e-16 2.5670e-9 2.2606e-5 419.1042 -419.6042 

(1.656ge-5) (3.0063e-6) (5.81165e-6) (1. 4440e-4 ) (2.0761e-4) 

HN(U) 
(exl) (131) (130 ) (r) (>-) 

2.9383 
0.6476 2.5670e-9 8.7016e-6 416.6406 -1.3804 

(0.0082) (2.4114e-7) (1.3053e-6) (0.0073) (0.0078) 

CFGNIG 
(exl) (131 ) (130) (r) (ex) (/3) (8) 

1.7388 
0.9999 2.567e-15 2.567e-15 -0.5123 42.6940 2.4246 28.4220 

(0.0039) (1.0508e-7) (1.0505e-7) (1.2015) (0.5236) (0.7626) (0.2833) 

Table 5.3: Calibration with Options traded over the period January '2006-June '2006. We 

consider Options traded on every Wednesday. After all cleaning we have 1607 option con-

tracts with a mean option price of 30. 0293 and average implied volatility of 0.0776. Standard 

errors are obtained by numerically computing the Jacobian of mean squared error(MSE) 

function. We applied FRFT approach to price options which significantly reduces the cali-

bration time. Discrete time Heston-Nandi (HN) closed form GARCH model requires longer 

time in calibration than any continuous time model and the requirement is even longer for 

our CFGNIG model. 
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Days to maturity<40 

RMSE AAE MOE 
Ｐ Ｎ Ｙ Ｕ ＼ ｾ ｓ Ｏ ｋ ＼ Ｐ Ｎ Ｙ Ｙ

BS J..3903 0.9944 0.3712 
HS J..76J.6 J..3949 0.2837 

HN (R) J..9296 1.5183 0.6264 
HN(U) 2.1056 J..6556 0.9438 

CFG-NIG J..4J.93 l..0394 0.2820 
Ｐ Ｎ Ｙ Ｙ ＼ ｾ ｓ Ｏ ｋ ＼ ｬ Ｎ Ｎ Ｐ ｊ Ｎ

BS 2.8850 2.0902 0.2575 
HS 3.4445 2.5600 J..2225 

HN(R) 3.66l.8 2.8J.88 1.6466 
HN(U) 3.8262 2.9776 1.870J. 

CFG-NIG 2.9867 J..8272 1.2864 
Ｑ Ｎ Ｐ Ｑ ＼ ｾ ｓ Ｏ ｋ ＼ ｊ Ｎ Ｎ Ｐ Ｕ

BS l..932J. J.. 4 097 -0.0241 
HS 2.2J.59 l..6252 -0.5075 

HN(R) 2.l.587 l..5720 -0.3456 
HN(U) 2.2J.J.7 l.6J.75 -0.3794 

CFG-NIG l..7697 l.3029 -0.2520 

40=< Days to maturity<70 

Ｐ Ｎ Ｙ Ｕ ＼ ｾ ｓ Ｏ ｋ ＼ Ｐ Ｎ Ｙ Ｙ

BS J..8624 J..576J. 0.4292 
HS 2.0J.28 J..738J. 0.7283 

HN (R) 2.0024 l. 7 J.4 J. 0.7559 
HN(U) 2.J.940 J..8767 J..059J. 

CFG-NIG 0.6285 0.4626 -0.0667 
Ｐ Ｎ Ｙ Ｙ ＼ ｾ ｓ Ｏ ｋ ＼ ｊ Ｎ Ｎ Ｐ ｊ Ｎ

BS 2.4526 J..9448 -0.4890 
HS 2.44J.6 l.9765 -0.35l.3 

HN(R) 2.427J. 2.0282 -0.J.633 
HN(U) 2.4347 2.0397 -0.J.486 

CFG-NIG J..599J. J..4484 -0.6J.53 
ｊ Ｎ Ｎ Ｐ ｊ Ｎ ＼ ｾ ｓ Ｏ ｋ ＼ ｊ Ｎ Ｎ Ｐ Ｕ

BS 2.0036 J..708J. -0.0488 
HS l..9943 l..5672 -0.3800 

HN(R) J..95l.3 J..6J.8J. -0.2J.84 
HN(U) 2.0288 l.6078 -0.5968 

CFG-NIG J..4420 J..2l.l2 -0.4J.86 

70=< Days to maturity=<100 

Ｐ Ｎ Ｙ Ｕ ＼ ｾ ｓ Ｏ ｋ ＼ Ｐ Ｎ Ｙ Ｙ

BS 2.l26l J..8366 0.2257 
HS 2.8275 2.5788 l.4J.05 

HN (R) 2.2ll0 l.97J.7 0.4555 
HN(U) 2.2935 2.0484 0.6292 

CFG-NIG J..J.4J.8 0.9538 -0.3438 
Ｐ Ｎ Ｙ Ｙ ＼ ｾ ｓ Ｏ ｋ ＼ ｬ Ｎ Ｐ ｊ Ｎ

BS 2.09J.9 J..5J.34 -0.3394 
HS 2.242J. J..8386 0.243J. 

HN (R) 2.0674 l.533J. -0.2288 
HN(U) 2.J.045 J..5383 -0.4J.78 

CFG-NIG J.. 9404 J..8672 -0.9284 
ｊ Ｎ Ｎ Ｐ ｊ Ｎ ＼ ｾ ｓ Ｏ ｋ ＼ ｬ Ｎ Ｎ Ｐ Ｕ

BS 2.0482 J..7353 -0.Ol87 
HS l..9405 l.645J. 0.0688 

HN(R) J..9937 J..6607 -0.J.3l3 
HN (U) 2.2474 J..658l -0.837l 

CFG-NIG l.4285 1.2307 -0.2448 

Figure 5.4: Out-of-sample valuation errors for Call Options traded in second half of 2006. 

The models are calibrated on first half of the same year. Total number of contracts available 

for the second half is 1606. BS stands for Black-Scholes model, HS stands for H estons '93 

stochastic volatility model, HN(R) stands for restricted version of Heston and Nandis 2000 

GARCH model, HN(U) stands for unrestricted version of Heston and Nandis 2000 GARCH 

model, CFG-NIG stands for closed form GARCH model with NIG innovations. RMSE is 

the root mean square error as defined in( 4.48), AAE is the average absolute error as defined 

in(5.175) and MOE is the mean outside error as defined in(5.176). 
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Model RMSE Parameters 

BS 3.7362 
(0") 

0.0775 

(0.0044) 

VG 3.7212 
(0") ((7) (v ) 

0.0185 -1.0296 0.0055 

(0.0009) (0.0023) (0.0007) 

NIG 3.7214 
(a) (0 ) (0 ) 

874.7253 -753.9378 0.6988 

(0.1114) (0.1092) (0.0787) 

JD-DE 3.7234 
(0") (), ) (p ) (7]1 ) (7]2) 

0.0623 9.7943 0.7093 97.5983 82.5284 

(0.0035) (3.0777) (0.9281) (17.9164) (26.8777) 

CGMY 3.7213 
(C) (G ) (M) (Y) 

97.3378 153.0980 620.8816 0.0700 

(0.0216) (0.0128) (0.0141) (0.0106) 

HS 3.6996 
(K:) (() ) (0" ) (p) (Vo) 

0.2971 0.0405 0.0343 -0.9900 0.0049 

(0.0716) (0.0195) (0.0698) (0.0800) (0.0008) 

HN(R) 3.7021 
(a1) (OI) (00 ) (-y) (),) 

2.2204e-16 2.5670e-9 2.2606e-5 419.1042 -419.6042 

(0.0040) ( 4.0221e-7) (1.361e-6) (0.0020) (0.0042) 

HN(U) 
(ad (OI) (00 ) (-y) (),) 

3.6702 
0.4992 2.0502e-6 1.8777e-6 419.2132 -1.4783 

(0.0055) (9.4270e-8) (5.4676e-7) (0.0054) (0.0059) 

CFGNIG 
(ad (01 ) (00) (-y) (a) (0) (0) 

2.2825 
0.9999 2.567e-15 7.5968e-8 -0.4985 35.2867 12.1942 26.4248 

(0.0035) (1.0341e-7) (1.0371e-7) (0.2071) (0.1800) (0.1616) (0.1162) 

Table 5.4: Calibration with Options traded over the period January '2007-June '2007. We 

consider Options traded on every Wednesday. After all cleaning we have 1578 option con-

tracts with a mean option price of 34·7010 and average implied volatility of 0.0793. Standard 

errors are obtained by numerically computing the Jacobian of mean squared error(MSE} 

function. We applied F RFT approach to price options which significantly reduces the cali-

bration time. Discrete time Heston-Nandi (HN) closed form GARCH model requires longer 

time in calibration than any continuous time model and the requirement is even longer for 

our CFGNIG model. 
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Days to maturity<40 

RMSE AAE MOE 
0.95<=S/K<0.99 

BS Ｘ ｾ Ｗ Ｒ Ｒ ｊ Ｎ 6.4323 -5.6875 

HS 8.7388 6.7399 -5.9302 
HN (R) 8.2805 6.2582 -5.4049 
HN(U) 7.7223 5.6501 -4.7166 

CFG-NIG 2.5545 1.7976 -0.7966 
0.99<=S/K<1.01 

BS 12.8775 11.1315 -9.4685 
HS 12.1883 10.3358 -8.2060 

HN(R) 11.5708 9.7200 -7.4205 
HN(U) 10.7019 8.8163 -6.2401 

CFG-NIG 5.3629 4.4576 -1.4436 
1.01<=S/K<1.05 

BS 10.0511 8.5113 -6.5124 
HS 10.3805 9.0247 -7.1032 

HN (R) 9.8502 8.5010 -6.5445 
HN(U) 9.0448 7.7015 -5.6951 

CFG-NIG 5.0601 4.2035 -1.8791 

40=<Days to maturlty<70 

0.95<=S/K<0.99 
BS J.5.4207 14.0656 -12.7740 
HS 15.3356 14.0274 -12.7358 

HN (R) 14.9604 13.6466 -12.3551 
HN(U) 14.3403 13.0507 -11.7591 

CFG-NIG 2.8560 2.4703 -J..2939 
0.99<=S/K<1.01 

BS 18.6359 17.5317 -16.0970 
HS 18.0890 16.951J. -15.5163 

HN(R) 17.6968 16.5706 -15.1359 
HN(U) 16.6766 15.5474 -14.1127 

CFG-NIG 4.7520 4.5271 -3.0955 
J..01.<=S/K<l.05 

BS J.7.8482 17.1204 -15.6441 
HS 17.5556 16.8205 -15.3442 

HN (R) J.7.3400 16.6J.59 -J.5.J.396 
HN(U) 16.6473 15.9286 -J.4.4522 

cFG-NIG 5.4025 5.153J. -3.7234 

70=<Days to matuJ'"ity=<l.OO 

0.95<=S/K<0.99 
BS J.9.6755 18.4333 -16.9416 
HS 18.8199 17.5918 -J.6.100J. 

HN(R) 19.2289 18.0J.64 -16.5248 
HN(U) J.8.7449 J.7.57J.l -16.0794 

CFG-NIG 3.0536 2.5260 -1.2674 
0.99<=S/K<1.0J. 

BS 20.1773 18.9623 -17.4236 
HS 18.6527 17.3661 -1.5.8274 

HN (R) J.9.370J. 1.8.1.232 -J.6.5845 
HN(U) J.8.7286 17.4827 -15.9439 

CFG-NIG 3.6980 3.5J.l0 -1.9893 
1.01<=S/K<1.05 

BS 18.2078 17.1253 -15.3467 
HS 16.7919 15.6281 -13.8495 

HN (R) 17.4633 16.3725 -14.5939 
HN(U) 17.1466 16.1349 -J.4.3563 

CFG-NIG 4.3736 3.8738 -2.3090 

Figure 5.5: Out-of-sample valuation errors for Call Options traded in second half of 2007. 

The models are calibrated on first half of the same year. Total number of contracts available 

for the second half is 1505. BS stands for Black-Scholes model, HS stands for Hestons'93 

stochastic volatility model, HN(R) stands for restricted version of Heston and Nandis 2000 

GARCH model, HN(U) stands for unrestricted version of Heston and Nandis 2000 GARCH 

model, CFG-NIG stands for closed form GARCH model with NIG innovations. RMSE is 

the root mean square error as defined in( 4.48), AAE is the average absolute error as defined 

in(5.175) and MOE is the mean outside error as defined in(5.176). 
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Model RMSE Parameters 

BS 2.3786 
(0') 

0.0716 

(0.0051 ) 

(0') (8 ) (1/ ) 
VG 2.3547 

0.0191 0.7082 0.0094 

(0.0020) (0.0044) (0.0014) 

(a) (3) (J ) 
NIG 2.3551 

928.6679 825.1195 0.4566 

(0.2445) (0.2841) (0.1729) 

(0') (A ) (p ) (7]1) (7]2) 
JD-DE 2.3786 

0.0716 3.7968 0.4730 1533.5 1533.5 

(0.0052) (0.2842) (0.1913) (0.2525) (0.3417) 

(0) (G) (M) (Y) 
CGMY 2.3685 

0.0272 94.9083 53.3706 1.3614 

(0.0039) (0.0355) (0.0219) (0.0257) 

(Ii:) (8 ) (0') (p) (Vo) 
HS 2.3405 

0.1870 0.0460 0.0379 0.9900 0.0042 

(0.0775) (0.0311) (0.0744) (0.1109) (0.0009) 

HN(R) 
(al) ((3I) ((30 ) b) (A) 

2.3647 
2.2204e-16 2.5670e-9 2.0504e-5 419.0868 -419.5868 

(1.9020e-4) (5.7663e-7) (2.2987e-6) (1.0363e-4) (1.1255e-4) 

HN(U) 
(al) ((3I) ((30 ) b) (A) 

2.2776 
2.2204e-16 2.5670e-9 2.3835e-5 419.9706 -1.7080 

(0.0137) (6.9763e-7) (3.6808e-6) (0.0070) (0.0146) 

(al) ((3I) ((30) b) (a) ((3) (J) 
CFGNIG 1.7013 

0.9980 2.567e-15 2.5670e-15 -0.5126 296.3627 -0.1393 312.6878 

(0.0045) (1. 0223e-7) (1.021ge-7) (0.1251 ) (0.0105) (0.0105) (0.0049) 

Table 5.5: Calibration with Options traded over the period January'2005-December'2006. 

We consider Options traded on every Wednesday. After all cleaning we have 5848 option 

contracts with a mean option price of 20.7565 and average implied volatility of 0.0774. 

Standard errors are obtained by numerically computing the Jacobian of mean squared er-

ror(MSE) function. We applied FRFT approach to price options which significantly reduces 

the calibration time. Discrete time Heston-Nandi (HN) closed form GARCH model requires 

longer time in calibration than any continuous time model and the requirement is even 

longer for our CFGNIG model. 
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Days to maturlty<40 

RMSE AAE MOE 
0.95<=S/K<0.99 

BS 2.2074 1..3461. -0.3481. 
HS 2.3409 1..7433 -0.2749 

HN (R) 2.331.6 1..7525 -0.0699 
HN(U) 2.3430 1..7792 0.201.2 

CFG-NIG 1..761.4 1..3704 0.51.46 
0.99<=S/K<1..01. 

BS 4.9975 3.6377 -1..1.269 
HS 5.1.21.2 3.901.2 0.0974 

HN(R) 5.0971. 3.9383 0.3924 
HN(U) 5.1.1.1.4 3.9686 0.4809 

CFG-NIG 3.7954 2.4969 Ｑ Ｎ ｾ Ｒ Ｖ Ｓ Ｖ

1..01.<=S/K<1..05 
BS 4.1.1.94 2.6545 -0.9448 
HS 4.4929 2.9341 -1..5443 

HN(R) 4.3820 2.8330 -1..3732 
HN(U) 4.5581. 3.0042 -1..5967 

CFG-NIG 2.751.6 1..9567 -0.6468 

40=< Days to maturlty<70 

0.95<=S/K<0.99 
BS 3.51.36 2.5294 -0.571.3 
HS 3.4392 2.5483 -0.1.206 

HN(R) 3.41.08 2.4899 -0.2603 
HN(U) 3.3997 2.5578 0.1.331. 

CFG-NIG 0.9670 0.5976 -0.0750 
0.99<=S/K<1.01 

BS 5.1.376 3.8793 -2.0494 
HS 5.0129 3.7564 -1.9327 

HN(R) 4.8939 3.6482 -1..6270 
HN(U) 4.9239 3.6647 -1.6895 

CFG-NIG 2.5060 1..9955 -1..0942 
1..01.<=S/K<1.05 

BS 4.5360 3.1.752 -0.8l24 
HS 4.7061. 3.2040 -1.3687 

HN (R) 4.5830 3.1361 -1..06l4 
HN(U) 4.9044 3.3l46 -1.803l 

CFG-NIG 2.8950 1.9977 -1.0025 

70=< Days to maturity=<100 

0.95<=S/K<0.99 
BS 6.0532 4.4878 -2.1437 
HS 5.6243 4.2398 -1.0760 

HN(R) 5.9557 4.4072 -1.8940 
HN(U) 5.963l 4.4374 -l.657l 

CFG-NIG l.9078 1..37l8 -0.5850 
0.99<=S/K<1.01. 

BS 7.81.54 5.9639 -4.3866 
HS 7.4242 5.61.76 -3.9375 

HN (R) 7.6899 5.9229 -4.21.1.0 
HN(U) 8.0528 6.1.289 -4.6553 

CFG-NIG 3.1.1.06 2.6789 -1..5454 
1..01.<=S/K<1..05 

BS 2.9609 2.2658 -0.3348 
HS 2.9403 2.3457 -0.6493 

HN(R) 2.8860 2.2934 -0.4853 
HN(U) 3.5061. 2.8174 -1..631.9 

CFG-NIG 1..9051. 1..521.2 -0.3290 

Figure 5.6: Out-of-sample valuation errors for Call Options traded in first half of 2007. The 

models are calibrated using 2005 and 2006 contracts. Total number of contracts available 

for the second half is 1578. BS stands for Black-Scholes model, HS stands for Hestons'93 

stochastic volatility model, HN(R) stands for restricted version of Heston and Nandis 2000 

GARCH model, HN(U) stands for unrestricted version of Heston and Nandis 2000 GARCH 

model, CFG-NIG stands for closed form GARCH model with NIG innovations. RMSE is 

the root mean square error as defined in( 4.48), AAE is the average absolute error as defined 

in(5.175) and MOE is the mean outside error as defined in(5.176). 
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Model RMSE Parameters 

BS 5.6804 
(0") 

0.0895 

(0.0044) 

VG 5.6785 
(0") (6 ) (v ) 

0.0900 -0.0603 0.0283 

(0.0045) (0.2097) (0.1193) 

NIG 5.6786 
( a) (/3 ) (8 ) 

70.5699 -8.0693 0.5663 

(0.0852) (0.2034) (0.0553) 

JD-DE 5.6804 
(0") (). ) (p ) (7]d (7]2) 

0.0892 0.0105 0.4473 13.7655 16.3763 

(0.0044) (0.1637) (0.7376) (0.8875) (0.9346) 

CGMY 5.6796 
(C) (G) (M) (Y) 

9.9238e-4 12.9536 90.5655 1.8597 

(0.0001) (0.0176) (0.0662) (0.0089) 

HS 5.6796 
(K) (e ) (0" ) (p) (Vo) 

8.8081e-4 0.0530 0.0097 -0.9900 0.0080 

(0.1341) (0.1491) (0.0650) (0.1491) (0.0009) 

HN(R) 4.8583 
(ad (/31) (/30 ) b) ().) 

0.9861 2.5670e-9 2.5670e-9 418.8949 -419.3949 

(2.2635e-5) (1.1691e-7) (1.1557e-6) (1.1373e-4) (2.4801e-5) 

HN(U) 
(al ) (/31) (/30 ) b) ().) 

4.8582 
0.9863 2.5670e-9 2.5670e-9 417.9965 -0.5434 

(0.0044) (1.8702e-8) (1.3887e-7) (0.0092) (0.0039) 

CFGNIG 
( al) (/31) (/30) b) (a) (/3) (8) 

2.38 
0.99999 8.7545e-8 2.567e-15 -0.5402 36.0597 10.2048 26.8947 

(0.0031) (1.1055e-7) (1.1071e-7) (0.0504) (0.2314) (0.0353) (0.0479) 

Table 5.6: Calibration with Options traded over the period January'2006-December'2007. 

We consider Options traded on every Wednesday. After all cleaning we have 5848 option 

contracts with a mean option price of 20.7565 and average implied volatility of 0.0774. 

Standard errors are obtained by numerically computing the Jacobian of mean squared er-

ror(MSE) function. We applied FRFT approach to price options which significantly reduces 

the calibration time. Discrete time Heston-Nandi (HN) closed form GARCH model requires 

longer time in calibration than any continuous time model and the requirement is even 

longer for our CFGNIG model. 
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Days to maturity<40 

RMSE AAE MOE 
Ｐ Ｎ Ｙ Ｕ ＼ ｾ ｳ Ｏ ｋ ＼ Ｐ Ｎ Ｙ Ｙ

as J.0.3605 9.3289 -8.53J.2 
HS J.0.0263 9.J.636 -8.3658 

HN(R) 5.80J.3 4.8923 -2.4570 
HN(U) 5.7983 4.8898 -2.4712 

CFG-NIG 2.J.664 J..9696 -J..2020 
Ｐ Ｎ Ｙ Ｙ ＼ ｾ ｳ Ｏ ｋ ＼ ｊ Ｎ Ｎ Ｐ ｊ Ｎ

BS J.4.8007 J.4.3488 -J.3.J.958 
HS J.3.676J. J.3.0478 -J.J..8948 

HN (R) 8.0J.83 7.0852 -5.0756 
HN(U) 8.0362 7.J.037 -5.J.078 

CFG-NIG 3.6698 3.5747 -2.42J.7 
ｊ Ｎ Ｎ Ｐ ｊ Ｎ ＼ ｾ ｓ Ｏ ｋ ＼ ｊ Ｎ Ｎ Ｐ Ｕ

BS J.J..7575 J.0.7682 -9.4563 
HS J.J..8J.49 J.0.9J.70 -9.6075 

HN(R) 7.4J.84 6.4J.84 -3.9779 
HN(U) 7.4499 6.4539 -4.0400 

CFG-NIG 3.3378 3.0J.89 -J..7456 

40=<Days to maturfty<70 

Ｐ Ｎ Ｙ Ｕ ＼ ｾ ｳ Ｏ ｋ ＼ Ｐ Ｎ Ｙ Ｙ

BS J.8.3695 J.7.9737 -J.6.7J.78 
HS J.8.2J.09 J.7.8298 -J.6.5739 

HN (R) J.0.4007 9.4663 -6.9594 
HN(U) J.0.4028 9.4638 -6.9749 

CFG-NIG 2.8379 2.6335 -J..5205 
Ｐ Ｎ Ｙ Ｙ ＼ ｾ ｳ Ｏ ｋ ＼ ｊ Ｎ Ｎ Ｐ ｊ Ｎ

BS 2J..J.6J.4 20.8998 -J.9.4607 
HS 20.83J.8 20.5660 -J.9.J.270 

HN (R) J.J..6669 J.0.6320 -7.76J.J. 
HN(U) J.J..6940 J.0.664J. -7.8236 

CFG-NIG 4.25J.0 4.J.823 -2.744J. 
ｊ Ｎ Ｎ Ｐ ｊ Ｎ ＼ ｾ ｓ Ｏ ｋ ＼ ｊ Ｎ Ｎ Ｐ Ｕ

BS J.9.2422 J.8.8390 -J.7.0J.46 
HS J.9.J.059 J.8.705J. -J.6.8808 

HN (R) J.J..2020 J.0.3059 -7.J.73J. 
HN(U) J.J..2735 J.0.3790 -7.2938 

CFG-NIG 4.02J.9 3.8536 -2.0767 

70=<Days to maturity=<100 

Ｐ Ｎ Ｙ Ｕ ＼ ｾ ｳ Ｏ ｋ ＼ Ｐ Ｎ Ｙ Ｙ

BS 22.5842 22.2782 -2J..0498 
HS 22.5329 22.2344 -2J..0060 

HN (R) J.5.0993 J.4.J.702 -J.2.5554 
HN(U) J.5.0953 J.4.J.672 -J.2.5578 

CFG-NIG J..789J. J..5078 -0.6658 
Ｐ Ｎ Ｙ Ｙ ＼ ｾ ｳ Ｏ ｋ ＼ ｊ Ｎ Ｎ Ｐ ｊ Ｎ

BS 23.6267 23.4J.09 -22.2609 
HS 23.3639 23.J.433 -2J..9933 

HN (R) J.6.J.73J. J.5.4553 -J.3.6298 
HN(U) J.6.2079 J.5.4896 -J.3.6857 

CFG-NIG 3.0466 2.9400 -J..8370 
ｊ Ｎ Ｎ Ｐ ｊ Ｎ ＼ ｾ ｓ Ｏ ｋ ＼ ｊ Ｎ Ｎ Ｐ Ｕ

BS 20.6092 20.2546 -J.8.9J.89 
HS 20.3539 J.9.9962 -J.8.6605 

HN(R) J.3.97J.6 J.3.J.9J.6 -J.J..3228 
HN(U) J.4.06J.3 J.3.282J. -J.J..4446 

CFG-NIG 2.9846 2.7656 -J..5236 

Figure 5.7: Out-of-sample valuation errors for Call Options traded in first half of 2008. The 

models are calibrated using 2006 and 2007 contracts. Total number of contracts available 

for the second half is 943. BS stands for Black-Scholes model, HS stands for Hestons'93 

stochastic volatility model, HN(R) stands for restricted version of Heston and Nandis 2000 

GARCH model, HN(U) stands for unrestricted version of Heston and Nandis 2000 GARCH 

model, CFG-NIG stands for closed form GARCH model with NIG innovations. RMSE is 

the root mean square error as defined in( 4.48), AAE is the average absolute error as defined 

in(5.175) and MOE is the mean outside error as defined in(5.176). 
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Model RMSE Parameters 

BS 5.0604 
(0") 

0.0846 

(0.0046) 

VG 5.0592 
(0") (e ) (!I ) 

0.0801 0.5579 0.0023 

(0.0028) (0.1206) (0.0022) 

NIG 5.0592 
(a) (/3) (5 ) 

252.3847 74.8615 1.5681 

(0.2445) (0.2841) (0.1729) 

5.0604 
(0-) (,\ ) (p ) (7]1 ) (7]2) 

JD-DE 
0.0845 0.1382 0.4519 155.8497 190.3719 

(0.0049) (0.0128) (0.0094) (0.0124) (0.0141) 

CGMY 5.0592 
(C) (G) (M) (Y) 

0.0240 94.9079 53.3726 1.4418 

(0.0026) (0.0264) (0.0201) (0.0185) 

HS 5.0590 
(Ii:) (e ) (0" ) (p) (Vo) 

0.0015 0.0543 0.0128 0.9900 0.0071 

(0.1244) (0.1419) (0.0683) (0.1419) (0.0009) 

HN(R) 4.9648 
(a1) ((31) ({30 ) (r) (,\) 

0.9348 2.5670e-9 1.3022e-6 355.1512 -355.6512 

(5.9897e-5) (2.2001e-7) (1.1262e-6) (5.9926e-5) (1. 3546e-4) 

HN(U) 
(a1) ((31) ((30 ) (r) (A) 

4.9543 
0.9494 2.5670e-9 1.0208e-6 419.0905 -1.0947 

(0.0067) (3.9161e-8) (2.6777e-7) (0.0139) (0.0072) 

CFGNIG 
(a1) ((31) ((30) (r) (a) ((3) (5) 

2.2553 
0.99999 2.1836e-8 2.6181e-8 -0.5406 38.5655 7.5215 26.4156 

(0.0034) (1. 0925e-7) (1. 0933e-7) (0.0518) (0.0412) (0.0375) (0.0380) 

Table 5.7: Calibration with Options traded over the period January'2005-December'2007. 

We consider Options traded on every Wednesday. After all cleaning we have 8931 option 

contracts with a mean option price of 22.7247 and average implied volatility of 0.0884. 

Standard errors are obtained by numerically computing the Jacobian of mean squared er-

ror(MSE) function. We applied FRFT approach to price options which significantly reduces 

the calibration time. Discrete time Heston-Nandi (HN) closed form GARCH model requires 

longer time in calibration than any continuous time model and the requirement is even 

longer for our CFGNIG model. 
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Ｐ Ｎ Ｙ Ｕ ＼ ｾ ｓ Ｏ ｋ ＼ Ｐ Ｎ Ｙ Ｙ

BS 
HS 

HN(R) 
HN(U) 

cFG-NIG 
Ｐ Ｎ Ｙ Ｙ ＼ ｾ ｓ Ｏ ｋ ＼ Ｑ Ｎ Ｐ Ｑ

BS 
HS 

HN (R) 
HN(U) 

CFG-NIG 
Ｑ Ｎ Ｐ Ｑ ＼ ｾ ｓ Ｏ ｋ ＼ Ｑ Ｎ Ｐ Ｕ

BS 
HS 

HN (R) 
HN(U) 

CFG-NIG 

Ｐ Ｎ Ｙ Ｕ ＼ ｾ ｓ Ｏ ｋ ＼ Ｐ Ｎ Ｙ Ｙ

BS 
HS 

HN (R) 

HN(U) 
CFG-NIG 

Ｐ Ｎ Ｙ Ｙ ＼ ｾ ｓ Ｏ ｋ ＼ Ｑ Ｎ Ｐ Ｑ

BS 
HS 

HN(R) 
HN(U) 

CFG-NIG 
Ｑ Ｎ Ｐ Ｑ ＼ ｾ ｓ Ｏ ｋ ＼ Ｑ Ｎ Ｐ Ｕ

BS 
HS 

HN(R) 
HN(U) 

CFG-NIG 

Days to maturlty<40 

RMSE 

10.8866 
10.4743 
8.9946 
8.7844 
1.9176 

ｾ Ｕ Ｎ Ｕ Ｔ Ｙ Ｗ

14.3446 
12.4475 
12.3749 
3.6057 

12.1693 
12.3755 
11.0409 
11.2772 
3.4930 

40=<Days to maturlty<70 

19.4016 
19.0720 
17.6176 
17.1889 
2.7134 

22.3122 
22.0745 
20.6600 
20.5368 
4.3538 

20.0306 
20.2490 
19.3674 
19.8140 

4.3167 

70=<Days to maturity=<100 

Ｐ Ｎ Ｙ Ｕ ＼ ｾ ｓ Ｏ ｋ ＼ Ｐ Ｎ Ｙ Ｙ

BS 24.0277 
HS 23.8118 

HN (R) 23.9746 
HN(U) 23.7480 

CFG-NIG 1.8936 
Ｐ Ｎ Ｙ Ｙ ＼ ｾ ｓ Ｏ ｋ ＼ Ｑ Ｎ Ｐ Ｑ

BS 25.0446 
HS 25.0835 

HN (R) 25.0379 
HN(U) 25.2600 

CFG-NIG 3.3625 
Ｑ Ｎ Ｐ Ｑ ＼ ｾ ｓ Ｏ ｋ ＼ Ｑ Ｎ Ｐ Ｕ

BS 21.6040 
HS 21.9060 

HN(R) 21.7753 
HN(U) 22.6029 

CFG-NIG 3.4187 

AAE MOE 

9.7935 -8.9957 
9.5769 -8.7791 
8.0134 -7.2156 
7.8147 -7.0169 
1..6728 -0.9335 

15.0953 -13.9423 
13.6969 -12.5439 
11.6801 -10.5272 
11.6219 -10.4690 
3.5051 -2.3521 

11.1507 -9.8386 
11.4623 -10.1511 
10.0724 -8.7675 
10.3377 -9.0292 
3.1862 -1.9139 

19.0076 -17.7517 
18.6809 -17.4250 
17.2845 -16.0286 
16.8431 -15.5872 
2.4753 -1.3712 

22.0660 -20.6269 
21.8246 -20.3856 
20.4276 -18.9885 
20.2986 -18.8595 

4.2914 -2.8523 

19.6221 -17.7978 
19.8550 -18.0307 
18.9695 -17.1451 
19.4397 -17.6153 
4.1733 -2.3606 

23.7262 -22.4978 
23.4998 -22.2714 
23.6832 -22.4548 
23.4377 -22.2093 
1.5875 -0.7416 

24.8383 -23.6883 
24.8767 -23.7267 
24.8427 -23.6927 
25.0650 -23.9150 
3.2757 -2.1603 

21.2467 -19.9110 
21.5565 -20.2208 
21.4382 -20.1025 
22.2926 -20.9569 
3.2422 -1.9301 

Figure 5.8: Out-of-sample valuation errors for Call Options traded in first half of 2008. The 

models are calibrated using options traded on 2005-2007. Total number of contracts available 

for the second half is 943. BS stands for Black-Scholes model, HS stands for Hestons'93 

stochastic volatility model, HN(R) stands for restricted version of Heston and Nandis 2000 

GARCH model, HN(U) stands for unrestricted version of Heston and Nandis 2000 GARCH 

model, CFG-NIG stands for closed form GARCH model with NIG innovations. RMSE is 

the root mean square error as defined in( 4.48), AAE is the average absolute error as defined 

in(5.175) and MOE is the mean outside error as defined in(5.176). 
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Part II 

Risk Management 
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Chapter 6 

Risk Measures: Extreme Value 

Versus Levy 

This chapter revisits the basics of risk management in financial context. It then investigates 

Levy spectral risk measure as coherent alternative to Generalized Pareto spectral risk mea-

sure. In particular we consider implementation of expected shortfall(ES) and spectral risk 

measure(SRM) for conditional distributions belonging to Generalized Hyperbolic family of 

Levy processes and compare their risk-management features with traditional unconditional 

extreme value(EV) approach. This reveals the relative performance of fitting the entire dis-

tributions and fitting only the tail; with their associated impact in risk-management. For 

frequently used risk measure VaR, backtesting performance of Levy and EV approaches is 

investigated. 

6.1 Introduction 

Risk is a factor which plays an important role in our everyday dealings. Risk in economic 

and financial dealings needs to be modeled by financial institutions.By now risk modeling 

has become an integral part of most, if not all, financial institutions. The purpose of such 

modeling is not always to eliminate the risk but to have a good perception of and control 

on it. The quantitative idea about risk, used in such modeling, is about the probability 

that an investments actual return will be different from its expected return. Parallel to 

188 



its definition as "subjective phenomena" involving exposure and uncertainty, the working 

idea about risk is captured in terms of changes in values, of some underlying, between two 

dates. Uncertainty and risk are very close in intuition, however, "uncertainty" can't be 

measured, in any form what soever, where as "risk" is a quantity which could possibly be 

measured. Since such a measure is closely related with the variability of the future value of 

position (or portfolio) due to the market changes or more generally due to uncertain events, 

the quantification of such a measure should naturally involve the future values only. Thus 

quantitatively the study of risk involves the study of random variables(underlying general 

stochastic process) on the set of the nature at a future date interpreted as possible future 

values of positions or portfolios currently held. 

If we count the parameters of a particular model under consideration there could possibly 

be a good number of parameters involved in risk management. However there are always 

some generic parameters independent of the choice of the model. A fixed duration over 

which a model's riskiness is assessed is always a parameter. This parameter is usually 

referred as time horizon or holding period. Another parameter is the level of acceptance 

of risk. Roughly this acceptance level indicates beyond what level of downward returns 

risk-management might be a real concern. However the central tool to take care of in 

risk management is the financial random variable. This is the random variable used in 

describing the return process of the underlings. As mentioned earlier it is the random 

variable on the set of the nature at a future date interpreted as possible future values of 

positions or portfolios currently held. 

6.1.1 Various Risk Measures 

In this section we discuss the traditional risk measure VaR and its coherent versions 

ES and SRM. A comprehensive practical survey of these risk measures can be found in 

Dowd(2005) [42], Christoffersen(2003) [34]. Cotter and Dowd(2006) [39] studied these risk 

measures with an application to fixing clearing house margin requirement. Cotter and 

Dowd(2006) [39] consider extreme value(EV) model particularly suitable in this context. 

More recently Sorwar and Kevin(201O)[llO] further studied these risk measures in option 

model framework under CEV dynamics. In this chapter we document that tail based risk 

189 



measures perform well under tail based model and SRM performs well with models which are 

calibrated on the entire data. Let us first explain the intuitions behind these risk measures. 

Val ue-at-Risk (VaR) 

Under the consideration of static version of risk measure, VaR-for a given fixed time period 

and coverage-provides us an estimate of the magnitude of the expected potential loss. In 

plain words it provides us, over an specific time interval and for a given confidence level, the 

worst expected loss under normal market condition. So clearly VaR has three parameters, 

as mentioned earlier; relatively high level of confidence (1 - G:)(typically 95% or 99%), the 

time period of projection T,(day, month, year) and the estimate of investment loss L. If Xo 

and XT denote the values of the investment at time 0 and T, respectively, the loss function 

is defined as follows. 

(6.1) 

where "r" is the constant rate of interest. Then formally VaR can be defined as: 

Definition 6.1 VaR of any risky investment at the confidence level 1 - G:, for G: E (0,1), 

is given by the smallest number "D" such that the probability that the loss "L" exceeds "D" 

is not greater than G:,' 

VaRT inf {D I P( L > D) < G:} 

inf {D I P(XoeTT - XT > D) < G:} (6.2) 

So according to Christofi'ersen(2003) [34], VaR answers the question "what dollar loss is such 

that it will only be exceeded G: x 100% of the time in next "T" trading days?" 

Similarly, in case of portfolio, if we denote the portfolio return as Rp F then we can 

write: $L= -Xo * RpF. Then equation (6.2) implies: 

P(-Xo * RpF > VaRT) = G: (6.3) 

That is: 
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--0: 

Thus defining VaR with respect to the current value of the portfolio, XQ, we write: VaRr = 

ｖ ｾ ｾ ｔ Ｎ Then from equation (6.3) we obtain: 

(6.4) 

As in [34], writing VaR relative to the current value of the portfolio makes it much easier to 

think about. e.g. knowing that the VaRT is equal to $50000 doesn't mean much unless we 
--0: 

know the current value of the portfolio. However knowing that VaRr is 50% of the value 

of the portfolio conveys much more information. 
--0: 

Let VaRT denote the 1%(0: = 0.01) VaR for the one day ahead return (T = 1). If 

returns are normally distributed with mean zero and standard deviation (JPFT then it can , 

be shown, see e.g. Dowd(2005)[42], Christofferse(2003)[34], that: 

--0: 

VaRT 
",,-I 

-(J P F,T x '±' 0: 

-(JPF,T x (-2.33) (6.5) 

So the only information we need to obtain the VaR is tomorrow's(T = 1) variance forecast. 

As ｾ ｾ ｉ is always negative for 0: < 0.5, the minus sign in front of the VaR formula ensures 

that the VaR itself is a positive number. Thus in precise terms considering one day ahead 
--0: 

uncertainty(T = 1), the one day VaR with 99% coverage gives us a number VaRr such that 

there is 1% chance of losing more than [(JPF,T x (-2.33)] x 100% of the today's portfolio 

value. However this simplicity is because of the assumption of normality in return and 

for non-normal models things are not so straightforward.ln this chapter we will deal with 

the difficulties in implementation of VaR and other risk measures for Levy models. In 

next chapter we will show how an engineering tool FRFT can help us overcome those 

difficulties. This will pave the path to a practical implementation of the risk measures 

expected shortfall(ES) and spectral risk measures(SRM) for the Levy models; which we 

believe is a contribution to the literature of risk management. 

However, VaR, has serious drawbacks. One of the remarkable drawbacks is that it ignores 

the extreme losses. According to equation (6.4), it only tells us that 1% of the time we will 
--0: 

get a return below the reported VaR number VaRT , but it says nothing about what will 

happen in those 1 % worst cases. Thus in theoretical terms, among others two key desirable 
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characteristics of a risk measure, namely coherence and subadditivity, are not satisfied by 

VaR. VaR fixes tail events corresponding to a given confidence level but leaves the tail 

completely unattended. Knowing an amount of possible loss to the occurrence of extreme 

event is important but what is more important is to have the idea of how catastrophic 

the loss could be once such an event occurs. Moreover VaR assumes that the portfolio is 

constant in next "T" trading days which is unrealistic in many cases when "T" is larger 

than a day or a week. Finally it may not be clear how one should choose "T" and" a". 

Despite all its limitations the tail based risk measure VaR has seen a great amount of 

applications in many stochastic environments where risk management makes a difference 

and undoubtedly becomes the industry benchmark for risk calculation. This is because 

it captures the important aspect of risk namely how bad things can get with a certain 

probability,a. Also it can be easily communicated and understood. 

We close the discussion on VaR with an obvious result which further reinforces the 

underlying intuition. 

Proposition 6.1 VaR of a risk free asset is zero. 

Proof. We know in case of risk free asset, say bond, we have: 

t E [O,T]. 

Since source of randomness "z" has no role to play in case of risk free asset, the loss function 

"L", as defined in (6.1), turns out to be: 

L(z) = EoerT - ET(Z) = O. 

Therefore without loss of generality we can assume that the constant random variable "L(z)" 

can be described by a distribution of the form: 

P(L(z) s: /) ｾ { : 
if l > 0 

(6.6) 

otherwise 

Now applying to the definition of VaR, we obtain: 
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VaRT inf {D I P (L > D) < a} 

inf {D I P( L ::::; D) > 1 - a} 

inf { {D ::::; 0 I P( L ::::; D) > 1 - a} U {D > 0 I P (L ::::; D) > 1 - a} } 

inf {{D ::::; 0 I 0> 1 - a} U {D > 0 11 > 1 - a} } [using(6.6)] 

inf { (0, 00 ) U 0 } 

inf (0, 00) 

o. 

The proof is complete. 

Expected Shortfall(ES) 

o 

Mathematically it can be argued that for quantile based estimate it is possible to have 

similar 1% VaR for two portfolios having completely different 0.1% or 0.01% VaR. See 

Christoffersen(2003) [34]. That is VaR estimate with 1 % coverage rate completely fails to 

reveal the fact that the tail shapes of the distribution may be completely different corres-

ponding to portfolios with different risk exposures. This translates into the great limitation 

of VaR namely it concerns only with number of losses exceeding the VaR but not the mag-

nitude of those losses. However the magnitude should be of serious concern to risk-manager 

as large VaR exceedence are much more likely to cause financial distress, such as bankruptcy 

, than those of small exceedence. Thus a risk measure accounting for both frequency and 

magnitude of large losses is very much expected. This is exactly what Expected shortfall 

does. Once modelled correctly the tail of the portfolio return distribution bears significant 

information to risk managers about the future losses. But with VaR, getting the idea of the 

shape of the entire tail of the return distribution is equivalent to computing it for various 

coverage levels, which is certainly less effective as a reporting tool. Expected shortfall bears 

this significance as a convenient reporting tool. It has the formal mathematical expression 

as: 

(6.7) 
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The negative sign in front of the VaR and expectation signifies that both VaR and expected 

shortfall are defined as positive numbers. Hence the underlying intuition is that expected 

shortfall represents the expected value of those future return's which are worse than VaR. 

The tail losses and its distribution can be thought of as a two dimensional object which gives 

us the information about the range of possible losses along x-axis and probability associated 

with each outcome along the y-axis. The measure expected shortfall aggregates these two 

dimensions into a single number by computing the average of the tail outcomes weighted by 

their probabilities. Thus when VaR gives us the loss such that only 1% of the extreme losses 

will be worse than it, ES gives us the expected value of those extreme losses exceeding the 

VaR. Thus the up-shoot is that though ES is not providing complete information about the 

shape of the tail, the shape beyond the VaR measure, however, is now being accounted in 

quantifying the risk. Expected shortfall, coherent version of VaR, is developed to provide 

the investors the idea of how severe the loss could be, on an average, once extreme event 

occurs. 

Corollary 6.1 The ES of a risk less investment is zero. 

The proof is obvious from the definition of ES and the Proposition6.1. 

Spectral Risk Measure(SRM) 

Expected Shortfall assigns equal weight to the losses in excess of VaR, which doesn't reflect 

investors relative risk appetite. Instead one can define more general risk measures Mrj; that 

are weighted averages of quantiles of the loss distribution: 

Mrj; = 10
1 

¢(p)VaR(p)dp (6.8) 

Here ¢ is a general weighting function which, in its general forms, assigns different weights 

to different quantiles reflecting investors appetite for underlying risk. The VaR and ES are 

the special cases of SRM. For the SRM to correspond to ES the weighting function ¢ is 

required to have the following form: 

¢(p) = { ｾ Ｍ Ｇ ｑ
p<O' 
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VaR being a single quantile corresponds to the SRM when ¢ is Dirac delta function putting 

all the mass to the particular event {p = a} and zero mass to all other events {p i= a}. So 

by it's very definition VaR ignores the quantiles in the tail as it assigns zero mass to all the 

quantiles other than VaR itself where as ES assigns equal mass of 120< to all quantiles in 

the tail specified by the VaR. 

Roughly speaking a coherent risk measure basically ensures that higher losses are as-

signed the weights which are at least not less than any weight assigned to lower losses. To 

ensure this the weighting function ¢ is required to satisfy the following conditions: 

• Non-negativity: ¢(p) ｾ 0, \;fp E [0,1] 

• Normalization: Jo1 
¢(p)dp = 1 

• Monotonicity: for any two Pl,P2 E [0,1]' with PI ｾ P2, ¢(Pl) ｾ ¢(P2) 

See e.g. Acerbi(2004) [1]. Clearly the monotonicity reflects the investors risk averse attitude. 

However if there is no risk, we have nothing to worry about: 

Corollary 6.2 For any risk less investment the SRM is identically zero for any choice of 

weighting function. 

The proof follows from the definition of SRM and the Proposition6.1. 

Kevin, Cotter and Sorwar(2008) [44] investigates spectral risk measure with respect to 

exponential risk aversion function and suggest using exponential risk aversion function in 

modelling financial risk. It provides investors the flexibility to choose their individual de-

gree of aversions to risk, in contrast to obtaining the estimates of other risk measures 

corresponding to a given coverage level. This generalization comes with a parameter and a 

function of it, known as "risk aversion function". Off course the computational hassle also 

increases and complexity discourages to seek a closed form formula. Even the numerical 

schemes to evaluate the associated integral exhibits different degrees of perfection. Cotter 

and Dowd(2006) [39] investigate this risk measure for extreme Value(EV) model and com-

pare its estimation performance with those of other risk measures such as VaR and ES. This 

chapter focllses on estimating SRM for Levy models and addresses the related subjectivity's 

of implementation. 
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Purely tail based EV model is frequently used to model extreme events in many appli-

cations such as weather extremes, reserve extreme, financial extreme etc. However recently 

conditional models of Levy type are also in extensive use. While EV is purely tail based, 

Levy models utilize the entire data to estimate the parameters of the models. These Levy 

models are also developed with a view towards improved tail modelling. We investigate the 

relative performance of tail modelling by these two categories of models and contrast one 

another on the basis of their tail based risk measures. Our approach is to fix the tail as it is 

used in EV calibration and then consider the similar tails obtained from Levy models with 

calibration based on entire data. This reveals the fact whether considering the observations 

discarded by EV does make any difference in performance, in other words we are interested 

in investigating whether extreme observations alone suffice modelling the extreme behavior 

or information does carry from the discarded observations as well. 

Levy approach mathematically appeals more than EV approach and provides plethora of 

alternatives to try for. However, Levy models have the obvious limitation of non-availability 

of closed form formulas for risk measures. As such even the relatively straightforward VaR 

looks cumbersome to implement. Naturally as other risk measures such as ES and SRM 

are some sort of compounded versions of VaR, their implementations become even more 

cumbersome. We enrich the literature by considering the implementations of ES and SRM 

for Levy models. Though requirement of huge computational times renders the use of 

these risk measures less appealing there is, however, positive side as well. Furthermore 

computational hassles so far discourages researchers to backtest Levy based VaR models. 

This paper, probably for the first time in literature, reveals the backtesting performance 

of Levy based VaR models. We contrast the backtesting performance of Levy and EV 

models. In doing so we consider a rolling window of long four years to calibrate the models 

and obtain VaR's in dynamic fashion. The long length of window is considered basically 

to obtain enough observations on tails corresponding to EV model. Even so we need to 

consider 30% of the observations to fix tail, in calibrating EV model. This is to ensure 

that in long eight year period of backtesting we are not having convergence problem in 

estimation even for a day. 
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6.2 Characterization and estimation in Levy Framework 

The general expression of characteristic function of a stochastically continuous process start-

ing at zero and having stationary independent increments is known in the literature as 

Levy-Kintchine formula. 

Equation (2.23) is the celebrated Levy-Khinchine representation of a Levy process. 

The theory of Levy process is well established (see Bertoin(1996)[15]' Sato(1999)[lOO]' or 

Kyprianou(2006) [76]) and recently has seen great applications both in finance and insurance. 

Given the transition density of a process on [tl, t2] ,say, the characteristic function (2.23) 

of the conditional distribution of the process at t2, given the information available up to 

iI, can be obtained by so called Fourier transform. However the transition density itself 

suffices the estimation of different risk measures. Availability of closed form transition 

density assumes the underlying process is closed under convolution. When processes are 

not closed under convolution and only density at t = 1 is available then infinite divisibility 

of Levy processes can be used to obtain the conditional characteristics of the process on an 

interval of length t: 

(6.9) 

Finally when even density at t = 1 is not available, inverse Fourier transform can be used 

to numerically obtain the transition density from the characteristic function (2.23) with a 

given Levy measure of a process, which is always available. Then these numerical transition 

densities can be utilized to estimate the risk measures under different model assumptions 

corresponding to different Levy measures. 

In this chapter our interest is limited to those members of Generalized Hyperbolic(GH) 

family of Levy processes which are extensively studied in recent time for financial model-

ing. See e.g. Fusai and Meucci(2008)[60], Schoutens and Cariboni(2009)[lOl], Fusai and 

Roncoroni(2008) [59] and the numerous references therein. The original introduction of 

GH family of Levy processes took place in modeling grain-size distribution of wind-blown 

sands, see Barndorff(1977) [12]. Later Eberlein and Prause(1998)[50] and Prause(1999)[91] 

studied the whole family of GH distributions as a tool to model log-returns of financial 

assets. Some of its subclasses were separately studied in financial context. Eberlien and 
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Keller(1995)[52]' Bingham and Kiesel(2001)[18] studied the Hyperbolic distribution and 

Barndorff(1995) [12] studied NIG for the first time in literature to model financial data. 

Seneta(2004) [103] separately studied VG subclass to model financial return. Eberlien and 

Hammerstein(2002) [51] provide a complete and useful overview of limiting cases for this rich 

family of processes. Our focus is concentrated on exploring this family of Levy processes 

for recently introduced spectral risk measures(SRM) in financial context, see Cotter and 

Dowd(2006) [39], Kevin, Cotter and Sorwar(2008) [44]. Recently SRM is further explored, 

see Sorwar and Dowd(2010) [110]. Confinement to the subclasses Variance Gamma(VG), 

Normal Inverse Gaussian(NIG), Hyperbolic(HYP) and Generalized Hyperbolic(GH), itself, 

allows us to obtain either the transition densities across time for processes closed under 

convolution or at least the densities at time t = 1 for those which are not closed under 

convolution. Furthermore in our empirical study we will be using daily return data for the 

indices under consideration and will be keeping the time scale in days so that t = 1 in 

equation(6.9) ensures that we are not required to use any inversion to obtain the transition 

densities numerically even when the process is not closed under convolution. 

For us Xl = log (Ssf ) , for any non-negative integer t and is characterized by Levy 

Kintchine Formula (2.23). For the models we consider, the equivalent processes are given, 

more effectively, by their densities. 

For VG: 

ｾ ( ) ｾ -ｾ (x. /2a
2 

+ 82
) vg 2eo- x V II 

Ix (x) = 1 Kl_l 2 
1 aV21Tvv.J Ｒ ｾ Ｒ + 82 1/ 2 a 

(6.10) 

with a > 0, 8 E lR and v > O. Here KIO is the modified Bessel function of third kind 

with index I. From the expressions of higher moments it become apparent that 8 controls 

the skewness in this model. In symmetric case a solely characterizes the volatility where as 

in case of asymmetry the volatility characterization involves other parameters as well. See 

Schoutens(2003) [102]. 

For NIG: 

(6.11) 

with (} > 0, 1 j3 1< (} and <5 > O. Expressions of higher moments show that j3 characterizes 
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the skewness in this model and 13 = 0 corresponds to the symmetric case. Restrictions 

on other parameters are obvious from the expression of density function of the model and 

property of Bessel function. 

For HYP: 

f1yp (x) = y' ex
2 

- 13
2 

e( Ｍ ｡ ｾ Ｋ Ｌ ｂ ｸ Ｉ
1 20exK1 (Oy'ex2 _j32) 

(6.12) 

with ex > 0, I 13 I < ex and 0 > O. Here the parameter restrictions are obvious. However in 

this case it is not obvious how and which parameter('s) characterize the higher moments. 

Finally for GH: 

(6.13) 

where 

ex 2 0, I 13 I < ex if v > 0 

ex > 0, I 13 I < ex if v = 0 

ex > 0, I 13 I ｾ ex if v < o. 

Here the parameter restrictions are a bit complicated and inequalities are basically required 

for the modified Bessel function to be well defined. However like Hyperbolic model it is not 

obvious how and which parameters characterize the higher moments. 

The availability of closed form densities make it relatively easier to obtain the standard 

errors of each parameter through Fishers information matix. 

The benchmark for this paper is the extreme value model which only considers extreme 

returns in calibration. Consequently only the extreme returns characterize the performance 

of risk measures in this model. As explained in Dowd(2005)[42] ,Embrechts(1997)[53]' and 

subsequently used in Cotter and Dowd(2006) [39], perhaps the most elegant approach to 

such purposes is to utilize the peaks-over-threshold(POT). The essence of POT approach 

lies in the fact that as the threshold u gets larger the distribution of exceedances converge 

to a two parameter Generalized Patero(GP) distribution: 
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Index Position u Prob Nu (3 ｾ

long 2 0.040 130 0.604(0.079) 0.182(0.099) 
S&P500 

short 2 0.035 118 0.759(0.130) 0.127(0.146) 

long 1.5 0.077 250 0.707(0.074) 0.097(0.084) 
FTSEI00 

short 1.5 0.085 276 0.727(0.065) 0.022(0.067) 

long 2 0.072 235 1.190(0.099) 0.012(0.052) 
DAX 

short 2 0.072 237 1.000(0.097) 0.048(0.072) 

long 2 0.111 353 1.184(0.096) 0.127(0.062) 
Hang Seng 

short 2 0.116 367 1.148(0.086) 0.143(0.055) 

long 2 0.088 277 0.891(0.074) -0.012(0.058) 
Nikkei225 

short 2 0.081 255 1.045(0.085) -0.068(0.052) 

Table 6.1: Maximum likelihood estimation for EV model using futures indexes. Estimated 

standard error of each parameter appears in bracket. 

GPE"j3(X) { 1-(1+5j)-t if ｾ 2: 0 
(6.14) 

1 - exp (-;) if ｾ < 0 

Here: 

{ [0,00) if ｾ 2: 0 
(6.15) x E 

[0, -t] if ｾ < 0 

The parameters ｾ and {3 > 0 are respectively shape and scale parameters, contingent 

upon the threshold u. 

Table6.1 shows the calibration results for EV model.Tables6.2-6.5 show the calibration 

results for various Levy models of our consideration. 

The very first observation is that when for EV, tail based calibration provides signifi-

cantly different estimates for long and short positions( obviously for having different number 

of tail observations corresponding to long and short positions), that is not the case for Levy 

based calibration on entire data sets. In this case long and short positions just alter the sign 

of the parameter characterizing the skewness of the model. This point could be explained 

further. For Levy models with calibration on complete data 'short' and 'long' positions 

just causes the densities to be reflected along y-axis. So for a particular model, e.g.'VG' 
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Index Position u Prob (J" () v 

long 2 0.034 1.094(0.020) -0.037(0.019) 0.834(0.055) 
S&P500 

short 2 0.040 1.094(0.020) 0.037(0.019) 0.834(0.055) 

long 1.5 0.084 1.164(0.019) -0.022(0.020) 0.474(0.048) 
FTSEI00 

short 1.5 0.090 1.164(0.019) 0.022(0.020) 0.474(0.048) 

long 2 0.076 1.505(0.026) -0.032(0.026) 0.736(0.053) 
DAX 

short 2 0.082 1.505(0.026) 0.032(0.026) 0.736(0.053) 

long 2 0.113 1.905(0.034) -0.046(0.034) 0.808(0.053) 
Hang Seng 

short 2 0.122 1.905(0.034) 0.046(0.034) 0.808(0.053) 

long 2 0.088 1.529(0.024) 0.026(0.027) 0.398(0.048) 
Nikkei225 

short 2 0.083 1.529(0.024) -0.026(0.027) 0.398(0.048) 

Table 6.2: Maximum likelihood estimation for VG model using futures indexes. Estimated 

standard error of each parameter appears in bracket. 

Index Position u Prob O! f3 8 

long 2 0.033 0.744(0.054) -0.030(0.016) 0.926(0.044) 
S&P500 

short 2 0.039 0.744(0.054) 0.030(0.016) 0.926(0.044) 

long 1.5 0.081 1.039(0.079) -0.016(0.015) 1.427(0.087) 
FTSEI00 

short 1.5 0.088 1.039(0.079) 0.016(0.015) 1.427(0.087) 

long 2 0.072 0.587(0.042) -0.014(0.011) 1.374(0.068) 
DAX 

short 2 0.077 0.587(0.042) 0.014(0.011) 1.374(0.068) 

long 2 0.106 0.428(0.031) -0.012(0.009) 1.622(0.077) 
Hang Seng 

short 2 0.116 0.428(0.031) 0.012(0.009) 1.622(0.077) 

long 2 0.086 0.907(0.079) 0.011(0.012) 2.136(0.157) 
Nikkei225 

short 2 0.081 0.907(0.079) -0.011(0.012) 2.136(0.157) 

Table 6.3: Maximum likelihood estimation for NIG model using futures indexes. Estimated 

standard error of each parameter appears in bracket. 
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Index Position u Prob a f3 8 

long 2 0.034 1.338(0.035) -0.031 (0.016) 0.238( 0.063) 
S&P500 

short 2 0.040 1.338(0.035) 0.031(0.016) 0.238( 0.063) 

long 1.5 0.083 1.475(0.063) -0.016(0.015) 0.874(0.116) 
FTSE100 

short 1.5 0.089 1.475(0.063) 0.016(0.015) 0.874(0.116) 

long 2 0.075 0.999(0.029) -0.014(0.011) 0.488(0.095) 
DAX 

short 2 0.081 0.999(0.029) 0.014(0.011) 0.488(0.095) 

long 2 0.111 0.773(0.021 ) -0.013(0.009) 0.465(0.108) 
Hang Seng 

short 2 0.121 0.773(0.021) 0.013(0.009) 0.465(0.108) 

long 2 0.087 1.189(0.063) 0.011 (0.012) 1.406(0.197) 
Nikkei225 

short 2 0.082 1.189( 0.063) -0.011(0.012) 1.406(0.197) 

Table 6.4: Maximum likelihood estimation for Hyperbolic model using futures indexes. 

timated standard error of each parameter appears in bracket. 
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Figure 6.1: Tail fit(EV} and total fit(Levy} for long position on FTSE100. The threshold 

for EV model(red} is 1.5. 
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long position in SandP500 

Excess loss 

long position in DAX 

long position in FTSEIOO 

• 
Excess loss 

long position in HangSeng 

, 10 

Excess loss 

Figure 6.2: Long positions in S&P500, FTSE100, DAX, and HangSeng. The thresholds are 

2(S&P500),1.5(FTSE100),2(DAX) and 2(HangSeng) . 
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Index Position u Prob a (3 8 J.L 

long 2 0.034 0.937(0.182) -0.030(0.016) 0.712(0.204) 0.005(0.460) 
S&P500 

short 2 0.040 0.937(0.181) 0.030(0.016) 0.712(0.204) 0.005(0.460) 

long 1.5 0.080 0.539(0.362) -0.016(0.015) 1.920(0.300) -1.956(0.848) 
FTSElOO 

short 1.5 0.086 0.539(0.362) 0.016(0.015) 1.920(0.300) -1.956(0.848) 

long 2 0.072 0.629(0.155) -0.014(0.011) 1.289(0.313) -0.345(0.553) 
DAX 

short 2 0.078 0.629(0.155) 0.014(0.011 ) 1.289(0.313) -0.345(0.553) 

long 2 0.106 0.347(0.132) -0.012(0.009) 1.872(0.387) -0.854(0.537) 
Hang Seng 

short 2 0.115 0.347(0.132) 0.012(0.009) 1.872(0.387) -0.854(0.537) 

long 2 0.087 1.031(0.317) 0.011 (0.012) 1.834(0.806) 0.152(1.648) 
Nikkei225 

short 2 0.081 1.031(0.349) -0.011 (0.012) 1.834(0.888) 0.152(1.824) 

Table 6.5: Maximum likelihood estimation for GH model using futures indexes. Estimated 

standard error of each parameter appears in bracket. 

" 

long position in Nikkei22G 
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Excess loss 

Figure 6.3: Long position in Nikkei225. The threshold is 2 (Nikkei225). 
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Figure 6.4: EV and Levy quantiles in excess of threshold(2}: long position zn Sf3P500. 
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Figure 6.5: EV and Levy quantiles in excess of threshold{1.5}: long position in FTSE100. 
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Figure 6.6: EV and Levy quantiles m excess of threshold(2}: long position m DAX. 
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Figure 6.7: EV and Levy quantiles zn excess of threshold(2}: long position zn Hang Seng. 
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Figure 6.8: EV and Levy quantiles m excess of threshold(2): long position m Nikkei225. 
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when 'long' position gives a left skewed density, for 'short' position the shape of the density 

remains same but becomes right skewed. Thus 'long' and 'short' positions just correspond 

to a sign change of the skewness characterizing parameter. On the other hand for tail based 

EV when the left skewed density become right skewed the tail observations for 'long' and 

'short' positions could be significantly different in numbers and hence the estimates. The 

asymmetry of the distributions, both for EV and all Levy, is further confirmed through 

difference in tail masses corresponding to long and short positions, see tables6.2-6.5. 

The tail masses, for observations in excess of thresholds, are observed to be different for 

extreme-value and Levy models. Also under different Levy models, corresponding to same 

threshold, the tail masses exhibit further difference. As a consequence the corresponding 

quantiles of extreme-value and Levy models, as well as those among different Levy models, 

do not lie along a vertical line. See figures6.4-6.8. For the sake of illustration with same 

number of tail observations we use the tail mass of EV model and obtain the QQ-plot of 

EV model with each of the Levy models separately. 

To visualize tail fits of the models we separately present the EV, that is Generalized 

Pareto, tail with the tail of each of our considered Levy model. We do this for all the indices 

under investigation. Figures6.4-6.8 show the tails for S&P500, FTSE100, DAX, HangSeng 

and Nikkei225 respectively. The VaR engines are used to obtain the quantiles. We obtain 

the EV quantiles in excess of thresholds and then obtain the corresponding quantiles from 

Levy models. In other words we do not fix the tail mass but fix the thresholds1. The 

consequence is that some of the Levy quantiles closed to EV thresholds are in fact slightly 

smaller than the threshold. This is due to the difference in tail masses covered by EV and 

Levy models as reported in tables6.1-6.5. 

In excess of extreme value thresholds, theoretical quantiles of EV appear to fare well 

with their empirical as well as Levy counterparts. In estimation of Levy models we do 

have some effects of observations which do not exceed the threshold and are discarded by 

EV model. This is what individually depicted in figures6.4-6.8 and is reflected in table6.6 

1 Cotter and Dowd(2006) [39] studied the rationale behind these fixations. The idea is to get enough 

observations on the tails so that the estimation deem credible. Since for this chapter we are using the same 

data as used by Cotter and Dowd(2006)[39] we simply use the same thresholds. 
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Index Model AD-stat l%CV 5%CV 10%CV p-value 

EV 0.253 2.953* 1.868* 1.490' 0.984 

VO 1.645 2.889' 1.727' 1.220 0.056 

S&P500 NIO 1.499 3.001* 1.689' 1.179 0.064 

RYP 1.527 2.902* 1.722* 1.212 0.065 

OR 1.461 I 2.989* 1.706' 1.188 0.069 

EV 0.738 3.095* 1.811' 1.317* 0.782 

VO 0.649 2.970' 1.875' 1.374* 0.251 

FTSE100 NIO 0.350 3.026* 1.855* 1.353* 0.353 

RYP 0.469 2.993' 1.867' 1.365' 0.309 

OR 0.239 3.027' 1.838* 1.346* 0.396 

EV 1.014 4.383' 2.440' 1.615' 0.646 

VO 1.410 3.971* 2.410* 1.719* 0.136 

DAX NIO 1.093 4.119' 2.364* 1.668* 0.180 

RYP 1.244 4.003* 2.402* 1. 707* 0.158 

OR 1.091 4.115' 2.370' 1.671 • 0.180 

EV 1.324 5.299' 2.966* 2.099* 0.682 

VO 0.713 5.057* 3.038* 2.153* 0.298 

RangSeng NIO 0.496 5.289* 2.979* 2.081 • 0.353 

RYP 0.565 5.084' 3.028* 2.138' 0.333 

OR 0.537 5.287' 2.954' 2.070' 0.344 

EV 0.798 3.885' 2.474* 1.858' 0.731 

VO 0.715 3.946* 2.537* 1.884' 0.300 

Nikkei225 NIO 0.633 3.996' 2.516' 1.864* 0.323 

RYP 0.650 3.980* 2.527* 1.871* 0.317 

OR 0.636 3.993* 2.522' 1.867* 0.321 

Table 6.6: Anderson Darling and left truncated Anderson Darling tests for Levy and EV 

models respectively. The p-value for left truncated Anderson Darling test is obtained by 

Bootstrapping with 1000 resampling. (*) implies that the model survives the test to the cor-

responding significance level. 

211 



where we produced the results for tail-emphasized Anderson-Darling goodness of fit test. 

This indicates that tail observations alone suffice tail modeling and observations outside 

tail do not necessarily carry any positive information for models tail behavior. Thus to 

grasp extreme nature of random outcome extreme observations alone contain sufficient 

information. However any statistic which takes other quantiles, in addition to those in the 

extreme tail, into consideration might loose the reliability in case of EV model. 

Among the Levy models, however, across the indices NIG and GH often show better 

fits than VG and HYP models which themselves are hardly distinguishable. 

6.3 Estimation of risk measures Methodology and Perfor-

mance 

Apart form few standard cases VaR, is obtained in general as the solution of quantile-integral 

equation: 

l
vaR 

Xmin f( u)du - 0: = 0 (6.16) 

where 0: is the coverage level. 

The perennial problem with VaR is that when it gives the magnitude of loss to a certain 

level it remains totally non-informative about the extent of losses which could possibly 

exceed the level.In other words VaR specifies the tail to a given level but leaves the tail 

completely unattended. On the other hand, in addition to specifying the tail to a given 

level, ES provides the average of those losses belonging to the specified tail. Thus ES does 

not consider only the exact quatile to the level but also those quantiles which exceed the 

exact one. 

As in Cotter and Dowd(2006) [39] significantly high o:th quantile in EV model, which is 

also VaR at high confidence level 0:, is given by: 

(6.17) 

and the expected shortfall(ES), in the same model, with a coverage to the level of 0: is: 

gP( ) _ VaR(o:) {3 - ｾ ｵ
ES 0: - 1 _ ｾ + 1 _ ｾ

(6.18) 
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In equation (6.17), n is the total number of observations and Nu is the number of observa-

tions which exceeds the threshold u. 

In general when VaR does not have any analytic expression estimating expected shortfall 

could be rather time consuming and is obtained as: 

ES(a) = 1 11 -- VaR(u)du 
I-a a 

(6.19) 

1 ｾ fr l {slfn f(x)dx = U} du (6.20) 

For Variance Gamma model ES can then be obtained from the equation: 

1 11 
I-a a 

dx = u du 

(6.21) 

Similarly for NIG model the ES is obtained as: 

(6.22) 

The density of hyperbolic(HYP) model gives the ES for HYP model: 

(6.23) 

Finally the ES of GH model is given as: 
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Spectral risk measure, however, does not consider any particular coverage level. Instead 

given a parameter characterizing the degree of investors risk aversion, SRM considers the 

whole spectrum of losses with weights obtained as a function of the investors risk aversion 

parameters. For our benchmark EV model, the closed form VaR formula provides relatively 

simple expression for SRM as well: 

(6.25) 

In case of Levy models, however, computation of SRM is very time consuming given we 

are not equipped with any closed form VaR measure: 

1
1 Re-R(l-u) 

lI1cp(R) = 1 -R VaR( u)du 
o -e 

(6.26) 

For Variance Gamma model SRM can then be obtained from the equation: 

1
1 Re-R(l-u) 

1 -R o - e 
dx = u du 

(6.27) 

Similarly for NIG model the SRM is obtained as: 
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The density of HYP model gives the expression of SRM for HYP model: 

(6.29) 

Finally the SRM of GH model is given by: 

The ¢ symbolizes that this version of SRM is contingent upon a particular choice of 

exponential risk aversion function ¢(R) = ｒ ｾ Ｍ ］ Ｍ Ｚ Ｈ ｬ ｾ ｐ Ｉ . Other choices ofrisk aversion functions 

are available in the literature, see for example Kevin, Cotter and Sorwar(2006) [44]. 

The parametric bootstrap is applied to obtain the standard error(SE) and confidence 

interval(CI) of each risk measure. However given the fact that we are dealing with Levy 

models which have no closed form expressions for risk measures, it is practically infeasible to 

implement bootstrap with large number of resampling.For each resample we draw the same 

number of uniform(O,l) random numbers as the size of the sample in hand. After sorting 

these uniform(O,l) numbers in ascending order we find the relevant quantile corresponding 

to the given coverage level of VaR. This quantile is then used as bootstrap coverage level 

corresponding to which we obtain the bootstrap VaR and bootstrap ES, for a particular 

resample, using equations(6.16) and (6.20). Since for any coverage level the VaR equation 

needs to be solved numerically, the corresponding ES computations takes huge time to find 

a converging value. This is because any numerical scheme applied to obtain the ES, search 

the converging limit by evaluating the integrand "vector by vector" and for each element 

of a vector the VaR needs to be obtained as a solution of the quantile integral equation 

(6.16).The same process is repeated for each res ample to obtain a bootstrap VaR and a 

bootstrap ES. 
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The variation in bootstrapped VaR and bootstrapped ES is caused by the variation in 

bootstrapped confidence level. Since SRM doesn't depend on any particular confidence level, 

to obtain bootstrapped estimates of SRM we need to randomize the whole spectrum. This 

forces us to approximate the integral in (6.26) by slicing the spectrum. The reason goes with 

the fact that because of randomization the integral often fails to converge under numerical 

routines available in standard softwares such as "quadl" in matlab or those available in 

"CompEcon" toolbox of Miranda and Fackler(2002)[84]. Thus to have things manageable 

we consider bootstrapping with 100 resampling.2 

6.4 VaR based goodness of fit tests 

Among different goodness of fit(GOF) tests Anderson Darling(AD) test is particularly 

suitable to assess the tail based performance of risk management models.3 Anderson 

and Darling(1952)[4]' Anderson and Darling(1954)[3] proposed a weighing rule in distance 

based Kolmogorov-Smirnov test which puts more emphasis on the tail observations. For 

a complete data this test is well established in the literature. Recently Anna,Rachev and 

Fabozzi(2005) [36] provide a formula for AD-test statistic when observations only on the 

extreme tail are available and distribution of the complete sample is unknown. It is re-

ferred as Anderson Darling test for left-truncated data. This is precisely the case with EV 

model. For the AD-test, corresponding to complete distributions with closed form densities 

(as is the case with our Levy models), the p-values can be obtained analytically. However 

p-values for the AD-test with left truncated data needs to be obtained either by Monte carlo 

2Even with 100 resampling we found that a machine with sophisticated configuration takes considerable 

time to provide SE and CI of ES for any Levy model, corresponding to a given coverage level. The same is 

true for SRM with each particular choice of risk aversion parameter. However as Cotter and Dowd(2006) 

reported SE and CI with 5000 resampling for EV model-which has closed form expressions both for VaR 

and ES and closed form VaR helps us calculate SRM as well in seconds-we can see that difference with 100 

and 5000 resampling is not necessarily significant for VaR and ES. However in case of SRl\.{ the difference is 

enormous. This is because in addition to considering small number of resampling, we evaluate the integral in 

SRl\I by considering only 100 slices. This makes the estimation performance of SRl\I comparable only among 

Levy models. 
30ther GOF tests such as Chi-square test is not comparable between Levy models which are calibrated 

on complete data and EV model which is calibrated on left truncated incomplete data. 
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simulation or Bootstrapping. We carry out Bootstrapping with 1000 resampling to obtain 

the p-values for the EV model. The critical values are obtained using the VaR engines of 

the respective models. In case of left truncated AD test, VaR still works as critical value 

because VaR is computed from left truncated density. 

2 ｾ (2i - 1) [ ] AD = -N - ｾ N log(F(Xi)) + log(l - F(XN+l-i)) 
i=l 

1 n 
-n + 2nlog(1 - F(u)) - - L (1 + 2(n - i)) log(l - F(xj))'" 

n. 
t=l 

(6.31) 

1 n 

+- L (1 - 2i) log(F(xj) - F(u)) (6.32) 
n. 

t=l 

Here u is the level of truncation and Xj is the jth observed value of the order statistic 

Xl ｾ X 2 ｾ ... ｾ Xn and n is the total number of observations available on the tail. 

Table6.6 provides evidence to the fact that EV model with calibration based on few 

extreme observations is well comparable to Levy models with calibration based on full den-

sity. Otherwise said for tail modeling or estimation of solely tail based statistic, full density 

based models may not deem essential. Thus observations outside the tail do not essentially 

bear any information which could necessarily improve models likelihood to describe the 

extreme events better. This point will become clear when we will investigate the tail based 

risk measures VaR and ES in next section. We will see that for estimating VaR and ES, EV 

model with calibration on few extreme observations compares pretty well with Levy models 

which are calibrated on entire data set. 

6.5 Backtesting Risk Models Under Dynamic Calibration 

The simple promise of a daily VaR(a) measure is that under all possible extremity the loss 

from holding an asset for one day could possibly exceed VaR(a)-at most a x 100% of the 

times provided the VaR(a) is estimated on daily returns of the same asset. Given we have 

an indicator variable ,describing the so called hit sequence which identifies the days of VaR 

violation in next T trading days, we should not be able to predict on which particular day 

or days the VaR violation will occur (i.e. the indicator variable will assume '1'); but should 
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Model Risk Measures 0.99(or R=20) 0.995(or R=lOO) 0.999(or R=200) 

VaR 2.952 3.434 5.647 
empirical ES 3.902 4.613 7.246 

SRM 2.265 3.685 4.476 

2.919(0.138) 3.489(0.204) 5.125(0.659) 
VaR [0.935 1.075] [0.908 1.089] [0.797 1.189] 

GP 
3.862(0.162) 4.559(0.237) 6.558(0.802) 

ES [0.935 1.070] [0.905 1.093] [0.804 1.175] 

2.251 (0.153) 3.288(0.508) 3.703(0.773) 
SRM [0.898 1.097] [0.781 1.259] [0.690 1.292] 

VaR 
2.889(0.121 ) 3.384(0.165) 4.528(0.374) 

[0.935 1.072] [0.926 1.094] [0.870 1.145] 

VG ES 
3.604(0.121 ) 4.099(0.160) 5.243(0.313) 

[0.948 1.052] [0.943 1.073] [0.904 1.111] 

SRM 
2.274(0.952) 3.484(3.256) 4.001(5.080) 

[0.365 2.007] [0.063 2.819] [0.005 3.333] 

VaR 
3.001(0.146) 3.617(0.203) 5.139(0.547) 

[0.925 1.085] [0.883 1.086] [0.840 1.180] 

NIG ES 
3.920(0.155) 4.569(0.214) 6.154(0.445) 

[0.939 1.061] [0.932 1.087] [0.885 1.136] 

SRM 
2.353(1.056) 3.818(3.699) 4.500(5.899) 

[0.409 1.802] [0.057 2.832] [0.004 3.590] 

VaR 
2.902(0.123) 3.409(0.164) 4.587(0.371) 

[0.934 1.073] [0.898 1.073] [0.889 1.172] 

HYP ES 
3.634(0.122) 4.141(0.164) 5.318(0.321 ) 

[0.954 1.064] [0.942 1.073] [0.903 1.113] 

SRM 
2.282(0.973) 3.518(3.297) 4.049(5.155) 

[0.431 1.731] [0.063 2.830] [0.005 3.358] 

VaR 
2.989(0.139) 3.569(0.189) 4.967(0.454) 

[0.928 1.081] [0.888 1.081] [0.869 1.179] 

GH ES 
3.843(0.142) 4.440(0.195) 5.868(0.395) 

[0.949 1.071] [0.936 1.082] [0.892 1.126] 

SRM 
2.338(1.031) 3.729(3.567) 4.358(5.644) 

[0.416 1.764] [0.059 2.831] [0.004 3.525] 

Table 6.7: Performance of risk measures on extreme tail.·long position in S8P500. SE's are 

reported besides each estimate and 90% normalized (by means of bootstrapped estimates)CI's 

are reported right below. The parameters used are those obtained through calibrations. 
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Model Risk Measures 0.99(or R=20) 0.995(or R=100) 0.999(or R=200) 

VaR 3.307 3.738 5.118 
empirical ES 4.018 4.532 5.590 

SRM 2.338 3.739 4.377 

VaR 
3.058(0.147) 3.674(0.243) 5.273(0.556) 

[0.924 1.086] [0.908 1.119] [0.837 1.190] 

GP ES 
4.009(0.163) 4.689(0.259) 6.459(0.666) 

[0.940 1.071] [0.929 1.089] [0.8491.176] 

SRM 
2.234(0.147) 3.415(0.551) 3.848(0.808) 

[0.889 1.113] [0.766 1.232] [0.699 1.323] 

VaR 
2.969(0.111) 3.424(0.145) 4.453(0.324) 

[0.942 1.064] [0.938 1.078] [0.882 1.129] 

VG ES 
3.617(0.109) 4.062(0.143) 5.078(0.326) 

[0.953 1.052] [0.925 1.053] [0.904 1.102] 

SRM 
2.319(0.803) 3.423(3.147) 3.881(4.864) 

[0.529 1.685] [0.0672.738] [0.005 3.217] 

VaR 
3.026(0.124) 3.542(0.168) 4.772(0.452) 

[0.937 1.071] [0.931 1.088] [0.866 1.191] 

NIG ES 
3.782(0.127) 4.309(0.172) 5.565(0.414) 

[0.948 1.058] [0.916 1.060] [0.889 1.118] 

SRM 
2.352(0.832) 3.574(3.349) 4.112(5.245) 

[0.521 1.701] [0.063 2.824] [0.005 3.403] 

VaR 
2.993(0.116) 3.4 70(0.153) 4.569(0.300) 

[0.939 1.067] [0.935 1.082] [0.887 1.123] 

HYP ES 
3.679(0.115) 4.153(0.153) 5.249(0.359) 

[0.951 1.054] [0.922 1.056] [0.893 1.119] 

SRM 
2.331(0.814) 3.478(2.924) 3.964( 4.998) 

[0.525 1.694] [0.052 2.567] [0.005 3.279] 

VaR 
3.027(0.131) 3.579(0.184) 4.980(0.412) 

[0.933 1.075] [0.926 1.096] [0.863 1.156] 

GH ES 
3.865(0.140) 4.462(0.197) 5.966(0.523) 

[0.944 1.062] [0.908 1.067] [0.866 1.156] 

SRM 
2.363(0.846) 3.658(3.217) 4.262(5.539) 

[0.518 1.708] [0.049 2.616] [0.004 3.597] 

Table 6.8: Performance of risk measures on extreme tail:long position in FTSEI00. SE's are 

reported besides each estimate and 90% normalized (by means of bootstrapped estimates)CI's 

are reported right below. The parameters used are those obtained through calibrations. 
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Model Risk Measures 0.99(or R=20) 0.995(or R=100) 0.999(or R=200) 

VaR 4.397 4.940 6.594 

empirical ES 5.511 6.330 9.738 

SRM 3.185 5.219 6.276 

VaR 
4.330(0.195) 5.178(0.326) 7.174(0.659) 

[0.926 1.074] [0.914 1.115] [0.860 1.151] 

GP ES 
5.563(0.212) 6.421(0.276) 8.441(0.691) 

[0.939 1.063] [0.919 1.076] [0.858 1.116] 

SRM 
3.035(0.218) 4.761(0.684) 5.336(1.036) 

[0.889 1.103] [0.787 1.249] [0.692 1.255] 

VaR 
3.971(0.165) 4.634(0.257) 6.157(0.556) 

[0.919 1.063] [0.925 1.102] [0.872 1.165] 

VG ES 
4.922(0.160) 5.579(0.212) 7.096(0.411) 

[0.949 1.056] [0.919 1.057] [0.907 1.108] 

SRM 
3.072(1.292) 4.668(3.866) 5.345(5.831) 

[0.438 1.723] [0.104 2.434] [0.012 3.374] 

VaR 
4.119(0.206) 4.932(0.282) 6.928(0.709) 

[0.931 1.079] [0.909 1.085] [0.828 1.149] 

NIG ES 
5.328(0.204) 6.179(0.279) 8.248(0.581) 

[0.941 1.066] [0.905 1.069] [0.888 1.132] 

SRM 
3.162(1.398) 5.055( 4.388) 5.925(6.665) 

[0.417 1.776] [0.096 2.481] [0.011 3.447] 

VaR 
4.003(0.171) 4.690(0.240) 6.284(0.548) 

[0.917 1.065] [0.915 1.085] [0.851 1.126] 

HYP ES 
4.994(0.167) 5.680(0.222) 7.273(0.433) 

[0.948 1.058] [0.917 1.059] [0.9041.111] 

SRM 
3.088(1.310) 4.733(3.947) 5.440(5.962) 

[0.4341.727] [0.1032.441] [0.012 3.388] 

VaR 
4.115(0.203) 4.916(0.277) 6.865(0.689) 

[0.932 1.078] [0.910 1.084] [0.831 1.146] 

GH ES 
5.300(0.199) 6.133(0.272) 8.141(0.560) 

[0.942 1.065] [0.907 1.067] [0.890 1.129] 

SRM 
3.158(1.390) 5.027(4.341) 5.879(6.591) 

[0.418 1.766] [0.097 2.476] [0.011 3.441] 

Table 6.9: Performance of risk measures on extreme tail:long position in DAX. SE's are 

reported besides each estimate and 90% normalized (by means of bootstrapped estimates)CI's 

are reported right below. The parameters used are those obtained through calibrations. 
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Model Risk Measures 0.99(or R=20) 0.995(or R=100) 0.999(or R=200) 

VaR 5.269 6.273 9.169 

empirical ES 7.099 8.454 11.791 

SRM 3.974 6.682 8.169 

VaR 
5.230(0.279) 6.385(0.367) 9.494(1.083) 

[0.912 1.099] [0.907 1.092] [0.817 1.198] 

GP ES 
7.056(0.296) 8.379(0.515) 11.939(1.156) 

[0.932 1.079] [0.916 1.114] [0.818 1.154] 

SRM 
3.757(0.253) 5.943(1.026) 6.781(1.779) 

[0.899 1.110] [0.749 1.256] [0.685 1.346] 

VaR 
5.057(0.209) 5.917(0.278) 7.901(0.642) 

[0.936 1.071] [0.901 1.071] [0.878 1.129] 

VG ES 
6.302(0.209) 7.169(0.280) 9.221(0.697) 

[0.948 1.057] [0.918 1.059] [0.889 1.120] 

SRM 
3.919(1.659) 5.995( 4.984) 6.879(7.524) 

[0.435 1.727] [0.103 2.438] [0.012 3.382] 

VaR 
5.288(0.258) 6.372(0.356) 9.052(0.901) 

[0.925 1.084] [0.883 1.085] [0.853 1.159] 

NIG ES 
6.906(0.289) 8.048(0.395) 10.835(0.989) 

[0.942 1.066] [0.922 1.073] [0.846 1.133] 

SRM 
4.059(1.820) 6.581(5.769) 7.754(8.777) 

[0.409 1.800] [0.094 2.491] [0.010 3.459] 

VaR 
5.084(0.215) 5.968(0.286) 8.019(0.666) 

[0.935 1.073] [0.899 1.073] [0.876 1.132] 

HYP ES 
6.359(0.214) 7.243(0.286) 9.294(0.666) 

[0.948 1.058] [0.917 1.059] [0.893 1.113] 

SRM 
3.937(1.678) 6.064(5.067) 6.978(7.658) 

[0.431 1.730] [0.102 2.444] [0.011 3.393] 

VaR 
5.285(0.266) 6.413(0.374) 9.281(0.980) 

[0.923 1.087] [0.878 1.089] [0.845 1.169] 

6.997(0.306) 8.215(0.424) 11.266(1.102) 
GH ES [0.939 1.069] [0.918 1.077] [0.837 1.143] 

4.068(1.848) 6.678(5.957) 7.927(9.069) 
SRM [0.405 1.832] [0.092 2.543] [0.010 3.480] 

I 

Table 6.10: Performance of risk measures on extreme tail.·long position in HangSeng. SE's 

are reported besides each estimate and 90% normalized (by means of bootstrapped esti-

mates) CI's are reported right below. The parameters used are those obtained through cali-
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Model Risk Measures 0.99(or R=20) 0.995(or R=100) 0.999(or R=200) 

VaR 3.748 4.780 5.891 
empirical ES 4.856 5.536 6.614 

SRM 3.009 4.535 5.289 

VaR 
3.848(0.144) 4.447(0.223) 5.821(0.472) 

[0.946 1.062] [0.927 1.090] [0.882 1.134] 

GP ES 
4.706(0.153) 5.299(0.200) 6.657(0.466) 

[0.951 1.060] [0.938 1.055] [0.892 1.101] 

SRM 
2.892(0.206) 4.118(0.578) 4.500(0.946) 

[0.876 1.095] [0.772 1.243] [0.693 1.339] 

VaR 
3.946(0.158) 4.526(0.189) 5.833(0.382) 

[0.942 1.063] [0.937 1.069] [0.887 1.108] 

VG ES 
4.769(0.139) 5.336(0.182) 6.622(0.345) 

[0.955 1.050] [0.928 1.051] [0.916 1.097] 

SRM 
2.944(1.015) 4.317(2.889) 4.882(5.787) 

[0.532 1.679] [0.049 2.576] [0.003 3.370] 

VaR 
3.996(0.163) 4.636(0.206) 6.142(0.541) 

[0.928 1.064] [0.936 1.083] [0.879 1.159] 

NIG ES 
4.926(0.157) 5.574(0.210) 7.098(0.500) 

[0.951 1.055] [0.921 1.057] [0.895 1.112] 

SRM 
2.963(1.246) 4.427(4.112) 5.058(5.983) 

[0.396 1.692] [0.065 2.797] [0.010 3.058] 

VaR 
3.980(0.148) 4.592(0.180) 5.995(0.434) 

[0.931 1.057] [0.934 1.059] [0.877 1.135] 

HYP ES 
4.857(0.148) 5.463(0.195) 6.861 (0.457) 

[0.953 1.052] [0.948 1.066] [0.896 1.117] 

SRM 
2.956(1.134) 4.380(3.435) 4.979(6.260) 

[0.486 1.665] [0.045 2.382] [0.005 3.255] 

VaR 
3.993(0.160) 4.622(0.201) 6.083(0.520) 

[0.928 1.063] [0.937 1.081] [0.882 1.155] 

GH ES 
4.901(0.153) 5.531(0.204) 6.997(0.478) 

[0.952 1.054] [0.922 1.056] [0.898 1.108] 

2.962(1.241) 4.411(4.084) 5.029(5.917) 
SRM [0.397 1.689] [0.066 2.779] [0.010 3.032] 

, 

Table 6.11: Performance of risk measures on extreme tail:long position in Nikkei225. BE's 

are reported besides each estimate and 90% normalized (by means of bootstrapped esti-

mates)CI's are reported right below. The parameters used are those obtained through cali-

brations. 222 



just be able to say that only a x 100% of those T days VaR could possibly be violated. 

In other words the hit sequence is Bernoulli distributed with a probability a of assuming 

'1', see Christoffersen(2003)[34]' McNeil et al(2005)[83].This lays the foundation to verify 

the performance of any VaR model and is known in the literature as backtesting. In most 

applications a is very low usually 1% or 5% (or very high usually 99% or 95% if VaR is 

estimated on returns multiplied by -1). See Christoffersen(2003)[34]. 

There are three useful hypotheses used in backtesting risk models. The unconditional 

hypothesis does not have any assumption on today's violation status when it provides 

statistical evidence whether the likelihood that tomorrow will be a violation is significantly 

different from VaR models promised fraction a. This evidence is provided through the test 

statistic asymptotically following X2 with one degree of freedom: 

(6.33) 

Here T = Tl + To is assumed to be significantly large and To and Tl are the number of 

days with no violation(i.e. number of zeros in the hit sequence) and number of days with 

violation( i.e. number of ones in the hit sequence). 

The requirement that T needs to be large enough is hardly met in application which 

forces us to compute the Monte-Carlo(MC) p-value and rely on it more than X2 p-value. One 

frequently used technique to compute MC p-value is to simulate 999 test values {LR( i) ｈ ｾ ｉ Ｌ

each of which is based on a Bernoulli( a) sample of hit sequence having the same size as the 

original sample in hand: 

pm' ｾ 1;00 { 1+ ｾ II [LR(i»LRuo 1 } (6.34) 

That is the simulated p-value is the ratio of simulated test value, to the number of 

simulation, given that simulated test value is more significant than the test value associated 

with original sample. 

Independence test helps us verify whether VaR violations are truly occurring randomly 

and are not clustered over time. Assets exhibiting clustering of variance are highly likely 

to exhibit the clustering of VaR yiolations which is an indication of misspecification of risk 

model. This is because under such circumstances it is possible to predict with some certainty 
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that if today is a violation tomorrow is highly likely to be a violation too i.e. more than 

ex x 100% likely. If any forecast is available regarding high volatility then the risk model 

should use that information and adjust the VaR accordingly. This will ensure that if the 

risk model is correctly specified than the violation of VaR should remain an unpredictable 

event. As in Chriftoffersen(2003) [34] the test statistic associated with Independence test is 

given by : 

(6.35) 

where matrix of transitional probabilities of conditional violations is given by: 

A [TOO TOl 1 II = Too+Tol Too+Tol 

1 TIO Tn 
TIO+Tn TIO+Tn 

(6.36) 

Thus: 

L( ) - 00 01 10 11 A (Tt )TOO ( Tt )TOI ( T )TIO ( T )Tll 
II 1 - Too + TOl Too + TOl TlO + TIl TlO + TIl 

(6.37) 

and p is such that it characterizes the matrix of transitional probabilities of violation as-

suming there is no dependence between 0 and 1 in the hit sequence: 

(6.38) 

Consequently L(p) is similar to the one given for unconditional hypothesis in (6.33). Thus 

ｌ ｾ ｮ ､ provides statistical significance of likelihood of independence in hit sequence over the 

likelihood of dependence. As usual MC p-values are usually much more reliable than X2(1) 

p-values. 

Finally conditional coverage test helps us verify whether the average number of violations 

is consistent with the coverage level of risk model. However this test comes jointly with 

independence test. Conditional coverage test statistic has the similar expression as the 

independence test statistic with p = ¥ of independence statistic replaced by the coverage 

level ex of risk model: 

LRcc -2lo ｛ ｌ ｒ Ｈ ｾ Ｉ 1 
9 LR(I11) 

- LRuc + LR(ind) rv x2(2) 
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See Chiristoffersen(2003)[34], Dowd(2005)[42] e.g. Again MC p-values are often found 

reliable in application. 

Risk measures sensitivity to new observation can make significant difference in models 

backtesting performance. This section focuses on the risk measure VaR and its sensitivity 

to new observations for dynamic calibration with a rolling window of four business years, 

1008 trading days.The choice of length of a rolling look-back window is subjective.4 The 

significance of fixed-length look-back window goes with the fact that backtesting results 

remain equally decisive to the "news" in any given years observation. An window expanding 

from an initial fixed length one may seem easier and more comfortable to implement but 

the downside of doing so is that as time goes by the "news" contained in the most recent 

observations receives less weight relative to the increasing number of older observations in 

the look-back sample. The rolling approach is recently used in actuarial literature and is 

found providing respectable results, see e.g. Dowd et al(2010) [43]. For EV, extreme 30% 

observations are considered for calibration in a dynamic fashion and for Levy models all 

the observations available in a rolling window of four business years are considered. Given 

the fact that we would like to assess the Levy models on extreme tail with the EV model, 

we consider the usual coverage of 95% and 99%. The dynamic calibration starts at 1st 

January 1995 and ends at 31st December, 2003. On 31st December 1994 we calibrate all 

the models on the time series of returns for the period 1991-1994 and we use the calibrated 

parameters to predict the VaR for 1st January 1995. However on 1st Jan 1995 we have 

one new observation of return, so we remove the oldest observation to accommodate this 

new observation in our fixed length look-back window. We then calibrate the models with 

observations in new window and predict the VaR for 2nd Jan 1995. The same mechanism of 

calibrating the models and predicting the VaR's continues in dynamic fashion until the end 

of 2003. Figures6.9-6.13 show the VaR measures for long positions in S&P500, FTSE100, 

DAX, HangSeng, Nikkei225 respectively. In each figure we present the 95% coverage VaR on 

4We start with a two year look-back window and keep increasing the window length as long as we become 

satisfied with the performance of dynamic calibration. The problem arises basically with the convergence in 

calibration corresponding to EV model, as it considers only extreme observations. To overcome this problem, 

in addition to expanding the length of look-back window we increase the proportion of extreme observations 

(used in calibration) by adjusting the threshold. 
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top and the 99% coverage VaR at the bottom. Subsequently Unconditional, Independence 

and Conditional coverage hypotheses are implemented for 95% and 99% VaR's. Backtesting 

results appearing in tables6.12-6.16 are respectively for long positions in S&P500, FTSE100, 

DAX, HangSeng and Nikkei225. 

6.6 Estimation of Coherent Risk Measures Using FRFT 

This section is work in progress. It introduces an alternative technique to estimate risk 

measure VaR and coherent risk measures ES and SRM using models characteristic functions 

and FRFT engine. This approach is found much faster than the approach we used in previous 

sections where we used numerical root search technique to find VaR using complicated 

density expressions. The FRFT based estimation of risk measures becomes feasible because 

of the following relation involving the characteristic function and the CDF of an underlying 

processes. Some simple transformations applied to Fourier inversion formula yield the classic 

relation, see e.g.Roussas(2005) [99]: 

F(x) = eax 100 

e-iux<P(u+.ia)du 
21r -00 a - 1,U 

(6.41) 

Here a is a constant and is known as dampening factor. The role of a is to ensure that 

the integral converges indeed. Often this a takes a value in (0,5] depending on the data 

in hand. For a reasonably fine grid of <P, FRFT can be utilized to obtain a vector of 

values of F in seconds5 . Then for any arbitrary coverage of VaR it just remains to figure 

out between which two F nodes the coverage level falls, and to collect the corresponding 

x values. An interpolation will then yield the particular x, corresponding to the given 

coverage p(say), such that F(x) = p. This x is the value of our risk measure VaR. This 

way we are completely avoiding the complicated density expressions and are just using the 

discretized values of characteristic function.6 For a vector of coverage probabilities Matlab 

can perform such interpolation in fraction of a second. Performance of FRFT VaR compare 

to traditional root search VaR is presented in figure6.14. This figure also shows the grid 

size VaR as well as grid size computational time trade off. 

5Thc details on how to apply FRFT are discussed in chapter3. 

6For risk management we do not use risk neutralized dynamics, that is the characteristic function must 

not be risk-neutral one. 
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Figure 6.9: Dynamic VaR for Extreme Value and Levy Models: SE3P500 case. A rolling 

window of four years is considered. The top panel is for 95% coverage and the bottom panel 

is for 99% coverage. 
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Stat. l%CV 5%CV 10%CV P-X
2 p-MC PV 

GP UC(95%) 21.47 6.63 3.84 2.70 3.6e-6 1e-3 7.27 

Ind(95%) 0.12 6.63 3.84 2.70 0.723 0.738 7.27 

CC(95%) 21.59 9.21 5.99 4.60 2e-5 1e-3 7.27 

UC(99%) 0.89 6.63 3.84 2.70 0.346 0.358 1.20 

Ind(99%) 0.93 6.63 3.84 2.70 0.334 0.163 1.20 

CC(99%) 1.82 9.21 5.99 4.60 0.402 0.302 1.20 

VG UC(95%) 30.08 6.63 3.84 2.70 4e-8 1e-3 7.71 

Ind(95%) 1.08 6.63 3.84 2.70 0.296 0.318 7.71 

CC(95%) 31.17 9.21 5.99 4.60 2e-7 1e-3 7.71 

UC(99%) 23.78 6.63 3.84 2.70 1e-6 1e-3 2.18 

Ind(99%) 0.67 6.63 3.84 2.70 0.411 0.256 2.18 

CC(99%) 24.45 9.21 5.99 4.60 5e-6 1e-3 2.18 

NIG UC(95%) 33.89 6.63 3.84 2.70 6e-9 1e-3 7.89 

Ind(95%) 1.26 6.63 3.84 2.70 0.260 0.267 7.89 

CC(95%) 35.15 9.21 5.99 4.60 2e-8 1e-3 7.89 

UC(99%) 19.21 6.63 3.84 2.70 1e-5 1e-3 2.05 

Ind(99%) 0.94 6.63 3.84 2.70 0.332 0.192 2.05 

CC(99%) 20.15 9.21 5.99 4.60 4e-5 1e-3 2.05 

HYP UC(95%) 30.08 6.63 3.84 2.70 4e-8 1e-3 7.71 

Ind(95%) 1.08 6.63 3.84 2.70 0.296 0.297 7.71 

CC(95%) 31.17 9.21 5.99 4.60 2e-7 1e-3 7.71 

UC(99%) 20.69 6.63 3.84 2.70 5e-6 1e-3 2.09 

Ind(99%) 0.85 6.63 3.84 2.70 0.357 0.179 2.09 

CC(99%) 21.53 9.21 5.99 4.60 2e-5 1e-3 2.09 

GH UC(95%) 36.87 6.63 3.84 2.70 1e-9 1e-3 8.02 

Ind(95%) 1.56 6.63 3.84 2.70 0.211 0.223 8.02 

CC(95%) 38.43 9.21 5.99 4.60 4e-9 1e-3 8.02 

UC(99%) 20.69 6.63 3.84 2.70 5e-6 1e-3 2.10 

Ind(99%) 0.84 6.63 3.84 2.70 0.357 0.187 2.10 

CC(99%) 21.53 9.21 5.99 4.60 2e-5 1e-3 2.10 

Table 6.12: Backtesting results for conditional and unconditional models: Sf3P500. UC 

stands for Unconditional Coverage,Ind stands for Independence Test, CC stands for Con-

ditional Coverage. PV stands for proportion of VaR violation.p-values from both Chisquare 

and Monte-Carlo simulations are reported. 
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Figure 6.10: Dynamic VaR for Extreme Value and Levy Models: FTSE100 case. rl rolling 

window of four years is considered. The top panel is for 95% coverage and the bottom panel 

is for 99% coverage. 
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Stat. l%CV 5%CV 10%CV P-X
2 p-MC PV 

GP UC(95%) 4.96 6.63 3.84 2.70 0.025 0.027 6.06 

Ind(95%) 8.51 6.63 3.84 2.70 0.003 0.009 6.06 

CC(95%) 13.47 9.21 5.99 4.60 0.001 0.002 6.06 

UC(99%) 13.53 6.63 3.84 2.70 6e-4 1e-3 1.79 

Ind(99%) 1.61 6.63 3.84 2.70 0.203 0.082 1.79 

CC(99%) 13.15 9.21 5.99 4.60 0.001 1e-3 1.79 

VG UC(95%) 6.25 6.63 3.84 2.70 0.012 0.013 6.19 

Ind(95%) 9.34 6.63 3.84 2.70 0.002 0.004 6.19 

CC(95%) 15.60 9.21 5.99 4.60 4e-4 0.002 6.19 

UC(99%) 19.53 6.63 3.84 2.70 1e-6 1e-3 2.06 

Ind(99%) 2.98 6.63 3.84 2.70 0.083 0.026 2.06 

CC(99%) 12.52 9.21 5.99 4.60 1e-5 1e-3 2.06 

NIG UC(95%) 6.72 6.63 3.84 2.70 0.009 0.010 6.24 

Ind(95%) 9.02 6.63 3.84 2.70 0.002 0.004 6.24 

CC(95%) 15.74 9.21 5.99 4.60 4e-4 1e-3 6.24 

UC(99%) 18.08 6.63 3.84 2.70 2e-5 1e-3 2.02 

Ind(99%) 3.18 6.63 3.84 2.70 0.074 0.023 2.02 

CC(99%) 21.26 9.21 5.99 4.60 2e-5 1e-3 2.02 

HYP UC(95%) 6.25 6.63 3.84 2.70 0.012 0.015 6.19 

Ind(95%) 9.34 6.63 3.84 2.70 0.002 0.007 6.19 

CC(95%) 15.60 9.21 5.99 4.60 4e-4 1e-3 6.19 

UC(99%) 18.08 6.63 3.84 2.70 2e-5 1e-3 2.02 

Ind(99%) 3.18 6.63 3.84 2.70 0.074 0.023 2.02 

CC(99%) 21.26 9.21 5.99 4.60 2e-5 1e-3 2.02 

GH UC(95%) 5.81 6.63 3.84 2.70 0.015 0.014 6.15 

Ind(95%) 9.67 6.63 3.84 2.70 0.001 0.005 6.15 

CC(95%) 15.48 9.21 5.99 4.60 4e-4 1e-3 6.15 

UC(99%) 16.67 6.63 3.84 2.70 4e-5 1e-3 1.97 

Ind(99%) 3.38 6.63 3.84 2.70 0.066 0.017 1.97 

CC(99%) 20.06 9.21 5.99 4.60 4e-5 1e-3 1.97 

Table 6.13: Backtesting results for conditional and unconditional models: FTSE100. UC 

stands for Unconditional Coverage,Ind stands for Independence Test, CC stands for Con-

ditional Coverage. PV stands for proportion of VaR violation.p-values from both Chisquare 

and Monte-Carlo simulations are reported. 
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Figure 6.11: Dynamic VaR for Extreme Value and L evy Models: DAX case. A roll ing 

window of four years is considered. The top panel is for 95% coverage and the bottom panel 

is for 99% coverage. 
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Stat. l%GV 5%GV 10%GV P-X
2 p-MC PV 

GP UC(95%) 21.56 6.63 3.84 2.70 3e-6 1e-3 7.28 

Ind(95%) 17.38 6.63 3.84 2.70 3e-5 1e-3 7.28 

CC(95%) 38.94 9.21 5.99 4.60 3e-9 1e-3 7.28 

UC(99%) 9.07 6.63 3.84 2.70 0.003 0.002 1.69 

Ind(99%) 4.81 6.63 3.84 2.70 0.028 0.011 1.69 

CC(99%) 13.89 9.21 5.99 4.60 ge-4 1e-3 1.69 

VG UC(95%) 25.72 6.63 3.84 2.70 4e-7 1e-3 7.50 

Ind(95%) 17.18 6.63 3.84 2.70 3e-5 1e-3 7.50 

CC(95%) 42.90 9.21 5.99 4.60 5e-10 1e-3 7.50 

UC(99%) 25.44 6.63 3.84 2.70 4e-7 1e-3 2.23 

Ind(99%) 15.42 6.63 3.84 2.70 8e-5 1e-3 2.23 

CC(99%) 40.86 9.21 5.99 4.60 1e-9 1e-3 2.23 

NIG UC(95%) 27.47 6.63 3.84 2.70 1e-7 1e-3 7.58 

Ind(95%) 16.29 6.63 3.84 2.70 5e-5 1e-3 7.58 

CC(95%) 43.77 9.21 5.99 4.60 3e-1O 1e-3 7.58 

UC(99%) 20.73 6.63 3.84 2.70 5e-6 1e-3 2.09 

Ind(99%) 12.78 6.63 3.84 2.70 3e-4 0.002 2.09 

CC(99%) 33.51 9.21 5.99 4.60 5e-8 1e-3 2.09 

HYP UC(95%) 27.47 6.63 3.84 2.70 1e-7 1e-3 7.58 

Ind(95%) 16.29 6.63 3.84 2.70 5e-5 1e-3 7.58 

CC(95%) 43.77 9.21 5.99 4.60 3e-1O 1e-3 7.58 

UC(99%) 25.44 6.63 3.84 2.70 4e-7 1e-3 2.23 

Ind(99%) 15.45 6.63 3.84 2.70 8e-5 1e-3 2.23 

CC(99%) 40.86 9.21 5.99 4.60 1e-9 1e-3 2.23 

GH UC(95%) 29.28 6.63 3.84 2.70 6e-8 1e-3 7.67 

Ind(95%) 15.44 6.63 3.84 2.70 8e-5 0.002 7.67 

CC(95%) 44.72 9.21 5.99 4.60 2e-10 1e-3 7.67 

UC(99%) 22.26 6.63 3.84 2.70 2e-6 1e-3 2.14 

Ind(99%) 12.31 6.63 3.84 2.70 4e-4 1e-3 2.14 

CC(99%) 34.58 9.21 5.99 4.60 3e-8 1e-3 2.14 

Table 6.14: Backtesting results for conditional and unconditional models: DAX. UC stands 

for Unconditional Coverage,Ind stands for Independence Test, CC stands for Conditional 

Coverage. PV stands for proportion of VaR violation.p-values from both Chisquare and 

Monte-Carlo simulations are reported. 
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Figure 6.12: Dynamic VaR for Extreme Value and Levy Models: HangSeng case. A TOlling 

window offour years is considered. The top panel is for 95% coverage and the bottom panel 

is for' 99 % coverage. 
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Stat. I%CV 5%CV 10%CV P-X2 p-MC PV 
OP UC(95%) 1.79 6.63 3.84 2.70 0.180 0.154 4.39 

Ind(95%) 22.67 6.63 3.84 2.70 2e-6 le-3 4.39 

CC(95%) 24.46 9.21 5.99 4.60 5e-6 le-3 4.39 

UC(99%) 1.09 6.63 3.84 2.70 0.295 0.250 0.78 

Ind(99%) 7.52 6.63 3.84 2.70 0.006 0.003 0.78 

CC(99%) 8.61 9.21 5.99 4.60 0.013 0.006 0.78 

VO UC(95%) 2.07 6.63 3.84 2.70 0.149 0.140 4.34 

Ind(95%) 23.26 6.63 3.84 2.70 le-6 le-3 4.34 

CC(95%) 25.33 9.21 5.99 4.60 3e-6 le-3 4.34 

UC(99%) 0.49 6.63 3.84 2.70 0.481 0.461 1.15 

Ind(99%) 9.24 6.63 3.84 2.70 0.002 0.002 1.15 

CC(99%) 9.74 9.21 5.99 4.60 0.007 0.006 1.15 

NIO UC(95%) 1.52 6.63 3.84 2.70 0.216 0.202 4.43 

Ind(95%) 22.09 6.63 3.84 2.70 2e-6 le-3 4.43 

CC(95%) 23.62 9.21 5.99 4.60 7e-6 le-3 4.43 

UC(99%) 0.13 6.63 3.84 2.70 0.716 0.710 0.92 

Ind(99%) 11.93 6.63 3.84 2.70 5e-4 le-3 0.92 

CC(99%) 12.07 9.21 5.99 4.60 0.002 le-3 0.92 

RYP UC(95%) 1.79 6.63 3.84 2.70 0.180 0.175 4.39 

Ind(95%) 22.67 6.63 3.84 2.70 2e-6 le-3 4.39 

CC(95%) 24.46 9.21 5.99 4.60 5e-6 le-3 4.39 

UC(99%) 0.49 6.63 3.84 2.70 0.481 0.442 1.15 

Ind(99%) 9.24 6.63 3.84 2.70 0.002 le-3 1.15 

CC(99%) 9.74 9.21 5.99 4.60 0.008 0.006 1.15 

OR UC(95%) 0.86 6.63 3.84 2.70 0.352 0.330 4.57 

Ind(95%) 23.56 6.63 3.84 2.70 le-6 le-3 4.57 

CC(95%) 24.43 9.21 5.99 4.60 5e-6 le-3 4.57 

UC(99%) 0.13 6.63 3.84 2.70 0.716 0.670 0.92 

Ind(99%) 11.93 6.63 3.84 2.70 5e-4 le-3 0.92 

CC(99%) 12.07 9.21 5.99 4.60 0.002 0.003 0.92 

Table 6.15: Backtesting results for conditional and unconditional models: HangSeng. UC 

stands for Unconditional Coverage,Ind stands for Independence Test, CC stands for Con-

ditional Coverage. PV stands for proportion of VaR violation.p-values from both Chisquare 

and M onte-Carlo simulations are reported. 
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Stat. l%CV 5%CV lO%CV P-X
2 p-MO PV 

OP UO(95%) 1.23 6.63 3.84 2.70 0.267 0.227 5.53 

Ind(95%) 0.94 6.63 3.84 2.70 0.330 0.349 5.53 

00(95%) 2.17 9.21 5.99 4.60 0.336 0.333 5.53 

UO(99%) 0.60 6.63 3.84 2.70 0.437 0.375 1.17 

Ind(99%) 0.59 6.63 3.84 2.70 0.441 0.319 1.17 

00(99%) 1.19 9.21 5.99 4.60 0.549 0.499 1.17 

VO UC(95%) 0.67 6.63 3.84 2.70 0.412 0.424 5.39 

Ind(95%) 1.25 6.63 3.84 2.70 0.262 0.265 5.39 

00(95%) 1.93 9.21 5.99 4.60 0.381 0.408 5.39 

UC(99%) 0.60 6.63 3.84 2.70 0.436 0.389 1.17 

Ind(99%) 0.59 6.63 3.84 2.70 0.441 0.287 1.17 

00(99%) 1.19 9.21 5.99 4.60 0.549 0.492 1.17 

NIO UO(95%) 1.03 6.63 3.84 2.70 0.311 0.296 5.48 

Ind(95%) 1.04 6.63 3.84 2.70 0.306 0.296 5.48 

00(95%) 2.07 9.21 5.99 4.60 0.355 0.361 5.48 

UO(99%) 0.32 6.63 3.84 2.70 0.569 0.503 1.12 

Ind(99%) 0.546 6.63 3.84 2.70 0.459 0.360 1.12 

00(99%) 0.87 9.21 5.99 4.60 0.647 0.540 1.12 

RYP UO(95%) 1.02 6.63 3.84 2.70 0.311 0.310 5.48 

Ind(95%) 0.31 6.63 3.84 2.70 0.306 0.307 5.48 

00(95%) 2.07 9.21 5.99 4.60 0.355 0.375 5.48 

UO(99%) 0.32 6.63 3.84 2.70 0.568 0.513 1.12 

Ind(99%) 0.546 6.63 3.84 2.70 0.459 0.379 1.12 

0C(99%) 0.87 9.21 5.99 4.60 0.647 0.560 1.12 

OR UO(95%) 1.23 6.63 3.84 2.70 0.367 0.287 5.53 

Ind(95%) 0.95 6.63 3.84 2.70 0.330 0.373 5.53 

00(95%) 2.18 9.21 5.99 4.60 0.336 0.381 5.53 

UO(99%) 0.32 6.63 3.84 2.70 0.569 0.530 1.12 

Ind(99%) 0.546 6.63 3.84 2.70 0.459 0.356 1.12 

00(99%) 0.87 9.21 5.99 4.60 0.647 0.573 1.12 

Table 6.16: Backtesting results for conditional and unconditional models: Nikkei225. UC 

stands for Unconditional Coverage,Ind stands for Independence Test, CC stands for Con-

ditional Coverage. PV stands for proportion of VaR violation.p-values from both Chisquare 

and M onte-Carlo simulations are reported. 
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Figure 6.14: The top panel shows the time-grid size trade-off in FRFT VaR computation. 

The figure on the right hand side shows that the time required to compute the FRFT VaR 

with different coverage levels remains similar. For this figure we consider FRFT grid size of 

212. The bottom panel shows the performance-grid size trade-off· We consider grid size of 

29 to obtain the figure on the right hand side which shows that root search(RSj and FRFT 

approach provide very similar estimates, though one has excellent computational superiority 

over other. For this illustration we used the parameters reported in Schoutens (2003){102j. 
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Once the FRFT engine is ready it gives us a vector estimates of risk measure VaR-

corresponding to a vector of coverage probabilities-in fraction of a second. Thus estimation 

of coherent risk measures become computationally feasible. This feasibility arises from the 

fact that we can now avoid estimation of ES based on equations of the form(6.20) and can 

directly use equation of the form(6.19). This way quantile by quantile root search involving 

complicated density expressions is totally ignored. Similarly estimation of SRM can now be 

efficiently accomplished using equation (6.26), avoiding equations of the form (6.27). We 

leave the estimation of all three risk measures using the FRFT approach for near future. 

6.6.1 Risk Measures for GARCH-Levy Dynamics Using FRFT 

In discrete time GARCH area explicit modeling with non-normal innovations is still under-

developed. Academics are still confined to models with student-t, GED type innovations-at 

the best-under various GARCH specifications. Consequently GARCH dynamics with ex-

plicit Levy type innovations(VG, NIG,CGMY) are yet to be investigated for risk manage-

ment. Further attractions of such dynamics in risk management are apparent from chapter5. 

First of all for each of our GARCH-Levy dynamics we have analytic characteristic function. 

In first part of this chapter we implemented FRFT based quick estimation of risk measures 

which consider only characteristic function values as input. So with an explicit dynamic 

for GARCH-Levy volatility characterization-which is available for each of our proposed dy-

namics in chapter5-we can use characteristic function of the form(5.151), for GARCH-NIG 

model e.g., to estimate risk measures in semi analytic fashion. An apparent limitation is, 

however, fathomed from the recursive relations embedded in characteristic functions, e.g. 

from relations in(5.152) which are embedded in (5.151) in case of GARCH-NIG model. 

Namely the terminal conditions on 'A' and 'B,7 implies that structural parameters al and 

(30 will be ignored in predicting the risk measures one period ahead. This will be misleading. 

However for multi-period ahead forecast we can see the feasibility of estimating semi-analytic 

risk measures in GARCH-Levy settings; which we expect will be a breakthrough. 

In standard GARCH dynamics though innovations are often normal, the non-normality 

is not completely ignored. This is because structural GARCH parameters introduce skew-

7 A(T, T, u) = 0, B(T, T, u) = 0 as required for the development of the relations in (5.152). 
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ness and kurtosis even when innovations are normal. Perignon et al(2008) [92] applied 

GARCH(1,1) dynamics to see the efficiency of VaR forecast in commercial banks. They 

observed that GARCH(1,1) VaR, with normal innovations, performed better than those 

based on Black-Scholes model. However they found it necessary to explore more rich char-

acterization of return dynamics. The main difference our GARCH-Levy dynamics exhibit 

with respect to usual GARCH(1,1) dynamics is due to the fact that we have conditional 

characterization of skewness and kurtosis which is not the case with GARCH(1,1) dynamics. 

This allows us to expect that theoretical values of risk measures from our model will be 

more appreciable predictions of reality even when there are few outlier like observations. In 

our future works we will consider the estimated volatility from GARCH-Levy models and 

will use them to compute the characteristic function values to estimate the risk measures 

in semi-analytic fashion. 

One can in principle considers the risk neutral parameters calibrated from option prices 

and use the market price of risk characterization and switch back to statistical parameters 

to investigate the risk measures. However in practice it is important that parameters are 

calibrated directly from historical returns instead of risk-neutralizing those calibrated from 

forward looking option prices. The difference between "principle" and "practice" arises from 

the fact that the information contents of stocks and options could be significantly different. 

6.7 Discussion 

Some important observations stand out when we compare the risk measures with their 

empirical counterparts. Though VaR and ES depend only on extreme quantiles, EV and 

Levy models often fare similar to each other. Though these two risk measures consider 

only extreme quantiles of Levy densities, nonetheless, the Levy models are calibrated on 

the entire data. That is where EV differs from Levy: in addition to considering only 

extreme quantiles for estimating risk measures it's calibration as well considers only extreme 

observations. Thus tail based risk measures often fare similar no matter whether models are 

calibrated using few tail observations alone or using all observations i.e. discarded quantiles 

do not carry any information in modeling extreme quantiles. See tables6.7-6.11. However 
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for these tail based risk measures VaR and ES precision estimates bootstrapped SE's and 

bootstrapped CI's are overall more satisfactory for Levy models than EV model. This 

implies that full density based Levy estimates of VaR and ES are slightly more stable than 

their corresponding EV estimates. This is roughly true for all indices. See tables6.7-6.11. 

In case of SRM, however, estimation considers all the quantiles with corresponding 

probabilities covering the entire spectrum. Again comparing with corresponding empirical 

values it stands out that estimates of SRM for Levy models often outperform similar esti-

mates for EV model. See tables6.7-6.11 To look deep into this fact we recall that SRM is not 

a tail based risk measure but EV parameters are calibrated using only extreme quantiles. 

Such a calibration could yield highly misleading quantiles, especially those falling far outside 

extreme tail. On the other hand Levy models, considering entire data set in calibration, 

are expected to consistently generate the quantiles even when the quantiles fall far outside 

the extreme tail. These quantiles are in turn used in estimation of SRM.8 In terms of boot-

strapped precision estimates SE and CI for SRM; Levy models are much worse compare to 

EV model. This is more so with the increase of risk aversion parameter "R". This feature 

is observed across all indices. The reason goes with the fact that to have the computation 

manageable we approximate the SRM integral with 100 slices only. Furthermore VaR for 

EV model is given in closed form and VaR of Levy models are obtained through numerical 

search. These VaR numbers are directly feeded into SRM calculation. This adds to the loss 

of precision. 

On the basis of VaR and its backtesting information model's static calibrations( on entire 

data) and dynamic calibrations ( on a four year rolling window) often indicate similar prefer-

ence. Proportion of violation's(PV) indicate that often the frequency of EV VaR violations 

are closest to the promised fraction a across indexes, except Nikkei225. For Nikkei225, on 

our observation period Japanese economy was booming thus the return density is skewed 

8However we recall that we considerd only 100 slices in evaluating the integrals of SRM for Levy models. 

But then this is uniformly considered for all the models. Furthermore Cotter and Dowd(2006)[39] reports 

the SRM for EV model considering one million slices(which is almost impossible to apply for Levy models), 

see their table5 at page 3481. We can now compare SRM estimate of Levy models with 100 slicing for 

numerical integration and see that they are often fairly comparable with their EV counterparts. Moreover 

we clearly notice that even with 100 slicing NIG and GH estimates systematically outperform EV estimates. 
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towards profit and not towards loss. Hence extreme loss events being non-substantial, EV 

and Levy give similar backtesting evidence with comparable proportion of violation. Here 

we note that in static calibration for EV we used index-wise fixed threshold as studied and 

fixed by Cotter and Dowd(2006) [39] for the same data set. In case of dynamic calibration, 

however, we considerd fixed 30% of four years observations and didn't fix tails. 

Backtesting results are often found unrelated across indexes. When for DAX all the 

test of hypothesis of backtesting often fail, for Nikkei225 all the test of hypotheses often 

pass; again stronger Japanese economy in our sample period implies no unusual fall in their 

asset prices, so standard hypotheses of backtesting are supposed to exhibit expected evi-

dence. Other indices, however, provide mixed evidence with respect to different hypotheses 

of backtesting. Another evidence that stands out is that when to the 95% coverage Indepen-

dence test fails(i.e. VaR violations are clustered and to some extent becomes a predictable 

event) , to the 99% coverage the test often pass; which is pretty understandable. It is 

rare to see that the test of conditional coverage hypothesis passed; it requires both the 

test of Unconditional and the test of Independence hypotheses to pass which is very rare 

across indices. The failure of Unconditional coverage hypothesis test is often justifiably 

implied by significantly deviated observed fraction of violation(PV) from promised fraction 

of violation(complement of coverage level). 

The chi-square and simulated p-values are often very similar which further reinforce the 

effectiveness of all the test statistics under consideration. 

6.8 Conclusion 

We provide methodologies to estimate coherent risk measures ES and SRM for Levy mod-

els. Considering the empirical evidence from major indices our study suggests that extreme 

spectral risk measure has some inconsistencies. EV model's calibration on restricted tail 

alone, provides poor estimate of quantiles outside the fixed tail which in turn yields the 

poor estimates of spectral risk measure itself. Levy spectral risk measures, in contrast, are 

often found performing better than extreme spectral risk measure. This feature becomes in-

creasingly apparent as the investors become more and more risk averse. However tail-based 
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risk measures VaR and ES are often found similar for both tail based EV and Levy models; 

observations discarded by EV but incorporated by Levy models are not essentially making 

any improvement in the performance of tail-based risk measures. As a consequence we put 

forward a strong recommendation for the risk departments in financial establishments: if it 

is the strategy of the establishment to use EV model to measure the propensity of catas-

trophe, do not use SRM. Confine to the tail based coherent risk measure ES, if VaR deems 

non-informative; as it is often the case. However if attracted by the use of more realistic 

risk aversion functions the risk departments prefer using SRM, then do not use EV model 

to quantify the underlying risk and go for Levy models. 

For frequently used risk measure VaR (which is ,however, strongly criticized as not being 

"respectable") we present the backtesting results for Levy and EV risk models. 

One of the drawback of this estimation methodology is quite halting. Traditional root 

search method renders implementation of Levy-coherent risk measures, ES and SRM, virtu-

ally infeasible. There arise the necessity of quick VaR estimation method especially for Levy 

models. In this regard work in progress considers an innovative implementation using FRFT. 

This will facilitate practical implementation of ES and SRM for Levy models. The estimates 

of ES and SRM for Levy models reported in this chapter took huge computational times, 

so huge that it discourages us to report the computational times. Mathematically speaking 

FRFT approach skips computations delineated in equations(6.21)-(6.24) and (6.27)-(6.30). 

It just considers the characteristic function of the process and generates sufficiently fine 

cumulative distribution function(CDF) grids, from which a simple interpolation can give 

vector of VaR's corresponding to a vector of coverage probabilities. In a machine with 

sophisticated configuration the whole process can be accomplished in fraction of a second. 

The ultimate goal of this chapter is to capitalize on this characteristic function based FRFT 

VaR engine and use the conditional moment generating functions of GARCH-Levy models 

in place of characteristic function to obtain the VaR in semi-analytic fashion. This is an 

ongoing work. 
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Conclusion 

We conclude this thesis focusing on three important components, namely main contributions 

to the literature, limitations of the research and future works. 

Main Contributions 

Our first contribution is to have demonstrated how the standard Levy-Kintchine formula 

may be interpreted as a series of shocks superimposed on a normal distribution, and how 

it can be used to value options using an illustrative example of a Variance-Gamma process. 

Using this derivation we have also been able to offer a correct solution to the misspecifica-

tion in the Levy measure for the VG model derived by Geman(2002)[62]. We also calibrated 

the VG and BS models considering weekly options data using both FFT and FRFT me-

thods. We found that the FRFT is much faster than the FFT approach, saving 97-98% of 

calibration time. These findings have important implications for the calibration of options 

models and for options risk management in general. We observed that fractional param-

eter of FRFT generates some extra noise along the strike dimension and some systematic 

deviation along the maturity dimension which are, however, related with other parameters 

in not obvious ways. 

Our second contribution is have investigated a number of available approaches to non-

normality in option pricing as well as in option portfolio approximations. We compared 

the overall performance of a wide range of models - including Gram-Charlier, stochastic 

volatility, GARCR and Levy models, as well as BS - using a common data set. \Ye found 

a number of notable differences between them and in particular, that the BS and Gram-

Charlier models often perform less well than the GAReR, stochastic volatility and Levy 
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models. Of these the stochastic volatility model performs robustly well and the Levy models 

often perform well too. We have also shown that satisfactory estimates of these model's 

hedge ratio deltas and gammas can be obtained using traditional finite difference methods , 

and that these can be used to value portfolios of options. In this respect, our study extends 

the earlier work Britten and Schaefer(1999) [22], who only considered such problems in 

the context of Black-Scholes. We found that regardless of the model used, delta and delta-

gamma approaches can yield inaccurate approximations of option portfolio values, especially 

in the face of large swings in the price of the underlying. These findings suggest that 

delta and delta-gamma approximations can be very misleading and reinforce the need for 

full-valuation methods instead. They also remind us - as if we didn't need yet another 

reminder! - that even the most (otherwise) sophisticated models can be very inaccurate 

during times of financial market turbulence. Furthermore we found that GARCH models 

perform comparably well- both in pricing and approximations-with other approaches to 

non-normality. This is the case even when the innovations of GARCH model are normal. 

Thus GARCH with non-normal innovations will presumably take the lead among different 

approaches. 

Chapter5 includes our main contribution. In this, Levy innovations are incorporated 

into the GARCH noise structure-replacing the normally distributed one-with a view to-

wards analytic pricing of derivatives. Detailed mathematical developments provide complete 

GARCH characterizations with innovations from four frequently referred Levy processes. 

Three of these innovations are from Levy processes which are not subordinator thus having 

the potential to exhibit both positive and negative jumps. These are found to be mathemat-

ically cumbersome to deal with; as these require an approximation of volatility dynamics to 

uphold the analytic valuation methodology in GARCH-Levy framework. Such innovations 

are from Levy processes which are Brownian motion stochastically time changed by sub-

ordinators: VG-Brownian motion time changed by Gamma subordinator, NIG-Brownian 

motion time changed by inverse Gaussian subordinators, CGMY-Brownian motions time 

changed by tempered stable subordinators. The empirical part implements these three fre-

quently refereed Levy processes in highly volatile market; together with the implementation 

of only GARCH-NIG analytic option pricing model (CFG-NIG). Future empirical works will 
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consider analytic GARCH option pricing with other innovations. 

In addition to detailed theoretical developments, we also obtained some interesting em-

pirical results. First of all our pilot survey shows in turbulent market most of the otherwise 

sophisticated models may perform poorly and models with time varying volatility can pro-

vide a better response to market turbulence. Moreover a strong indication is there to suggest 

that non-normal innovations can make a huge difference. Some studies observed this lit-

tle earlier i.e. after Heston and Nandi's(2000)[70] model was proposed. But those studies 

were mostly based on Monte Carlo simulation to price options in GARCH model with 

non-normal innovations. GARCH-IG and GARCH-Gamma are two such models. Their 

appealing performance creates enough motivation to deal with "not-so-comfortable" math-

ematics in order to be free of reliance on simulations; this results in quick pricing and so 

makes it possible to consider options traded on long time windows. 

Our empirical study considers options traded on a three-year window of turbulent market 

performance: January 2005 to December 2007. Considering options on different cross-

sections we found that our semi-analytic GARCH-NIG model performs significantly well 

compare to Heston and Nandi's semi analytic GARCH-Normal model. Capitalizing on 

analytic valuation we are able to verify and compare GARCH-NIG model with GARCH-

Normal and Levy models on different information aggregation schemes. Overall we observed 

that the GARCH-NIG model performs better with an increasing amount of information 

aggregation. 

The reason for CFG-NIG model's excellent performance basically comes from its volatil-

ity characterization and time-varying higher moment features. The separate character-

izations to describe conditional evolution of skewness (equation (5.57)) and conditional 

evolution of kurtosis (equation (5.58)), help the model accommodate the cross-strike and 

cross-maturity features more consistently. That's where CFG-NIG basically differs from 

Heston and Nandi's(2000)[70] model. As reported by Bates(2003)[1l] equation regarding 

continuous time SVJ (or SVJJ) model: "having jump components addresses moneyness 

biases, while having stochastic variables allow distributions to evolve stochastically over 

time". This is precisely the same for our CFG-NIG model as well. 

The last chapter comprises the risk-management part of this research. In this chapter 
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we provide methodologies to estimate coherent risk measures ES and SRM for Levy models. 

For the first time in literature-to the best of our knowledge-we provide estimates of coherent 

risk measures ES and SRM for Levy models, using most of the leading indices over the world, 

and compare them with corresponding estimates from EV model. Based on such estimation , 

empirical evidence from major indices suggests that extreme spectral risk measure has some 

inconsistencies. Namely, extreme value model's calibration based on a few tail observations 

provides a poor estimate of quantiles beyond the tail which in turn yields poor estimates 

of spectral risk measure itself. In contrast we noticed that Levy spectral risk measures 

often perform better than the extreme spectral risk measure and this becomes increasingly 

apparent as the investors become more risk averse. We also present some backtesting results 

for Levy and EV risk models. 

The computational efficiency of the estimation routines in chapter6 could be signifi-

cantly improved. The traditional way of estimating VaR makes estimation of ES and SRM 

practically infeasible with Levy processes. However, as we discussed, we could tackle this 

problem through an application of FRFT which helps us obtain a vector of VaR's corres-

ponding to a vector of coverage levels in a fraction of a second. We, moreover, observed 

that it is possible to obtain similar estimates of VaR under both traditional root search and 

FRFT approaches by appropriately choosing FRFT parameters. But no matter how little 

the difference between two VaR estimates is, the errors will be aggregated when VaR's will 

be integrated on the tail for ES and along the entire spectrum for SRM. These will give us 

much faster FRFT estimates of ES and SRM with little price. That is after all there will be 

a trade-off between better estimation performance of the root search approach and much 

faster estimation obtained under the FRFT approach. 

Limitations of the Research 

Our study in chapter4 raises a pertinent question: how robust is our preferential ordering of 

alternative models ?Though we did report the results using options traded on a particular 

day, we calibrate all eight models on various other days as well. The evidence which stands 

out is the ordering of approaches we report: stochastic volatility model(Heston(1993) [69] 
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in this case) and GARCH volatility model(Heston and Nandi(2000)[70] in this case) al-

ways standing out as two best competing models; pure jump Levy as second preferred 

approach(VG, NIG, CGMY in this case, however we did observe within this approach indi-

vidual model's ordering is not robust); Gram-Charlier and Jump-diffusion models are found 

to be variable-on some days they are well comparable with Levy models but on other days 

they are performing much worse than Levy models. However we did not find any day when 

either of these two models outperformed Heston's (1993) [69] stochastic volatility model 

and/or the Heston and Nandi(2000)[70] GARCH volatility model; but on every single day 

both of the former outperform at least the benchmark Black-Scholes model. Of course this 

observation is contingent upon our primary focus: investors wish to choose between models 

using only the most minimal recent point-in-time data set. 

The limitations of our main contribution in chapter5 are well noted. First of all, from 

a computational point of view, or more precisely from programming point of view, it is 

a real challenge to implement the model. The results we reported require huge program-

ming concentrations; they also require sophisticated knowledge and patience to keep trying 

and checking for bugs until it was clear that all the programs are doing exactly what the 

derived mathematics expects them to do. Saying this it means that computational has-

sles might make the model less appealing at first instance but once functions are written 

(in any programming language) calculations become manageable in real time9
. Regarding 

other limitations we must say that the explanation of model's true potentials could have 

been more precise and this would require more econometric oriented interpretations of our 

results. Moreover we must agree that other related facets of the empirical investigations, 

e.g. empirical volatility related features, need to be carried out in due course. 

Possible Future Work 

Our study in chapter4 can be extended in a number of ways. To date there are no systematic 

comparisons of option risk measures (such as VaR or Expected Shortfall) based on all eight 

models: it would be useful to compare these on common data sets encompassing both stable 

9We used a machine with "Intel(R) Core(TM)2Duo CPU T5800" processor, 320 ROt--r and 3GB RAM. 
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and turbulent market conditions. Second, it would be useful to examine the performance 

of different numerical schemes to calculate the Greeks. Quick and accurate calculation of 

these would help in hedging and risk-managing the options involved. 

Following the evidence from chapter5, we are looking forward to conduct empirical 

studies with other GARCH-Levy dynamics, namely; GARCH-VG and GARCH-CG1IY 

models. Moreover an innovation from a positive Levy process (subordinator) is also math-

ematically detailed, GARCH-TS model, and we will consider empirical investigation with 

this GARCH-TS dynamics too. 

Though SV J (or SV J J) models of continuous time have some analogy to these discrete 

time GARCH-Levy models with jumps components, nonetheless they are premised on a 

rigid Markovian structure. Since CFG-NIG model incorporates non-Markovian time series 

properties through heteroskedasticity, presumably this will give CFG-NIG type models a 

preferential edge over SVJ (or SVJJ) model. We look forward to clarify this presumption 

in a future empirical work. 

To draw meaningful conclusion regarding GARCH-Levy models relative performance-

W.r.t. different Levy innovations-we need to consider other GARCH-Levy models which 

are by now available in the literature, e.g. GARCH-IG, GARCH-Gamma etc. From our 

experience we can see that it will be a computationally challenging work to consider all 

such dynamics on common data sets covering smooth and turbulent market conditions but 

it will be worth considering. Of course this future work will be a follow up work only after 

other dynamics (CFG-VG, CFG-CGMY, CFG-TS) have been be implemented. 

Regarding hoped for future engagement it is also our intention to implement the dynam-

ics in the credit derivatives area. Initial feasibility arises from the fact that credit derivatives 

are like option but the details need to be figured out. We do not rule out the application 

of the dynamics in other derivative pricing as well, e.g. weather derivatives, commodity 

derivatives and agricultural derivatives. 

From chapter6 we should see an article submitted soon. However another follow-up 

work from this chapter will include the immediate future work where we will consider 

FRFT estimation of ES and SRM for the Levy models which we believe will be practically 

implement able when estimated with appropriate choice of FRFT parameters. 'Ye will do all 
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the estimations using FRFT, parallel to what we have in chapter six. Then we will reveal 

the performance-speed trade-off for some illustrative cases. 

Another ambitious direction is to use the numerical CDF of Levy models in the peak-

over-threshold (POT) theory, introducing Levy-extreme value models in tail-based risk man-

agement. However it will be computationally burdensome and it is not clear whether that 

will compensate empirically. 

Finally our GARCH-Levy dynamics are ready to apply in risk management if we consider 

the usual Monte-Carlo approach to obtain VaR in a GARCH set up. Naturally, since 

conditional skewness and conditional kurtosis have time varying characterizations -with 

variation resulting from time varying volatility-the dynamics are expected to outperform 

those GARCH characterizations which do not have these features. However the possible 

breakthrough we are expecting to make is not through Monte Carlo approach; we are looking 

forward to capitalizing on the characteristic function based FRFT approach to analytically 

estimate the risk measures under GARCH-Levy set up. 
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