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Abstract

Optical microresonators can form the basis of all-optical switching and con-

trol devices. The presented study is an exploration of the Transmission Line

Modelling (TLM) method as a suitable candidate for designing optical mi-

croresonators. Chalcogenide glasses were identified as promising materials,

with which to fabricate optical microresonators.

The study presents the formulation of TLM in two dimensions to model

nonmagnetic dielectric materials and a suitable computationally efficient yet

flexible software design. Some methods for extracting spectral properties

of resonators are compared and the modified difference Prony method was

identified as a suitable tool to extract resonant frequencies and Q factors

from a limited time signal.

When applying TLM to microresonators of sub-wavelength dimensions it

was understood that the method of discretisation plays an important role in

accurately modelling microresonators. Two novel methods of discretisations

- the same area method and the anti-aliasing method - were used to improve

the accuracy significantly compared to existing mesh refinement techniques.

Perfect matched layers (PMLs) were implemented to improve reflections from

domain truncation using several methods. A Convolutional PML(CPML) was

identified as the best, but it does not reach the efficiency of PMLs in the Finite

Difference Time Domain (FDTD) method.

Several frequency dependent refractive index models were proposed and

implemented in TLM. A Tauc-Lorentz model was identified as the best fit to

the experimental refractive index of three chalcogenide glasses, but a Sellmeier

model with one term and a coefficient was efficient for TLM implementation.

The main concern in the use of these models within TLM was shown to be

the error arising due to mesh dispersion.

Kerr nonlinear models were formulated and implemented in TLM and the

models applied to the study of a waveguide junction. Compared to an equiva-

lent implementation in a time domain beam propagation method, TLM mod-

els better represent the waveguide junction reflections.
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1
Introduction

Light is without doubt the first encounter of our lives. In the past, many

philosophers have attempted to unravel the nature of light in belief of achiev-

ing control over light. It has been interpreted as rays, waves, electromagnetic

waves, photons progressively in order to better understand light’s behaviour.

All of these methods are applicable in their own domains and have been used

successfully to control light to some extent. But, why are we trying to control

light ?

Light is not only the first but the fastest ‘thing’ known to mankind. There-

fore, taking control of the fastest ‘thing’ is bound to have favourable outcomes.

As we have understood from the theories built upon classical and quantum

foundations, its speed and path depends only upon the material in which light

travels. Hence, by tailoring the material structure, we have been able to guide

light in designated paths according to our needs. Light signals guiding in op-

tical fibres has led to building a massive communication network all around

the world. Yet, the scientific community is not content with the amount of

control of light with guiding.

Even though light guiding structures make fast communication links, slow

electrical signals are used to control light switching through and in between

guides. This eventually slows down the communication to the speed of elec-
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Chapter 1 Introduction

trical signals. Therefore, photonic research is now steering towards forming

controllers actuated by optical signals. This new era is widely characterised

by ‘All Optical’ devices.

All optical devices require some essential building blocks similar to their

electrical counterparts. These include all optical oscillators, modulators, mix-

ers, amplifiers, filters, etc. In the electrical counterparts of these fundamental

devices, resonators perform an integral role. Resonators in the optical regime

are more than just a fundamental building block, deserving a study devoted

to their characteristics, theoretical modelling and fabrication.

1.1 Motivation

1.1.1 Optical Microresonators

Resonators in the optical regime were conceived first as Fabry Perot (FP)

interferometers. These devices contained two or more highly reflective very

low loss mirrors, facing each other. Light propagates back and forth after

reflecting from the mirrors, interfering each other, making a standing wave

pattern between the mirrors. Two mirror Fabry Perot resonators and three

mirror ring resonators were very popular. These have been extensively used

in lasers, and even in modern day semiconductor lasers. The performance of

these devices highly depend upon the reflectively of the mirrors. In a laser, the

medium between the mirrors contain a gain medium to support stimulated

emission. Hence, Fabry Perot resonators have been key devices in optical

research [1].

Despite wide adoptation of Fabry Perot resonators, they have some short-

comings when they are integrated. FP resonators with high Quality factors

(defined in chapter 3) tend to be bulky and large (≈ cm). Miniaturising FP

resonators yield either meagre resonator properties such as low Q factors or

become complex devices that are painstaking and expensive to fabricate [2].

Hence, FP devices with high Q factors have become impractical to be used

in integrated optics. Hence, research was sought to explore simpler devices

12



Chapter 1 Introduction

with high Q factors and tight optical confinement.

Distributed Bragg reflector (DBR) resonators have become a better alter-

native to FP resonators with a similar structure. DBR resonators replace the

two mirrors of the FP resonators by reflector structures composed of alterna-

tive thin layers of two dielectric materials with different refractive indices; the

interfaces between layers acting as frequency dependant partial mirrors. The

number of layers, the ratio of the two refractive indices (contrast ratio), and

the size of the cavity determine the transmission and reflection properties of

such a DBR resonator. High Q DBR resonators have also been integrated

as ridge waveguides in optical circuits. These intriguing features of DBR

resonators have made them very popular in modern solid state lasers [3].

Photonic Crystal (PhC) resonators takes the concept of DBR further by

increasing the periodicity of the mirrors to two or three dimensions. By

introducing a defect within a periodic structure, light can be confined at

the defect site achieving resonance [3]. The confinement region is usually

sub wavelength (nm). In addition, they are ideal for integrated optics as

multitude of devices can be made on a periodic structure by breaking the

periodicity. Since photonic crystals are relatively newer than other resonator

structures and favourable for all optical circuits, a lot of research effort is

being put into this area [4].

Monolithic resonators, which can be considered as open dielectric counter-

parts of metal microwave resonators, confine light by almost total internal

reflection. Within these resonators, light travels in closed contours near the

dielectric boundaries of the resonators. In circular resonators, these optical

paths (modes) are known as “Whispering Gallery Modes”. The name is given

on historical grounds, considering the studies carries out by Lord Rayleigh

and Debye [5]. Further, “whispering gallery like modes” such as “Bow tie” res-

onances occur in chaotic resonators such as square and spheroidal resonators,

where the circular symmetry is disturbed. Yet in all of these resonators,

light is mostly confined to the perimeter yielding a low modal volume even

though the total volume of the resonator is higher than that of PhC and DBR

resonators. In addition, the experimentally fabricated monolithic resonators

13



Chapter 1 Introduction

provide the highest Q factor available of all resonator types [2, 6]. Table 1.1

shows some high Q resonators and their properties according to the literature.

Due to high Q factor and low modal volume, monolithic resonators have been

at the forefront of optical resonator research.

Table 1.1: Various types of high Q and ultra high Q optical resonators present
in the literature.

Resonator Material Method Size Q factor Ref.
Fabry Perot BK7 Assembly 1.75m 5× 1011 [7]
Bragg Cavity AlAs/GaAs Ion etching 4µm 1.65× 105 [8]
PhC. Silicon 1− 2µm 4.5× 104 [9]
Ring SiliconNitride Chemical Vapour 20µm 3× 106 [10]

Deposition
Disk As2S3 Lithography 40µm 2× 105 [11]
Spheroidal CaF2 Polishing 1mm 2× 1010 [12]
Spherical As2Se3 Thermal Reflux 100µm 2× 106 [13]
Spherical As2Se3 laser fusing 2− 25µm 2× 104 [14]
Spherical GaLaSO Thermal Reflux 100µm 8× 104 [15]
Microtoroid Polymer Lithography 100µm 3× 105 [16]
Microtoroid Silica Lithography & 50µm 1.2× 108 [17]

Etching
Cylinder CaF2 Polishing 5mm 6.3× 1010 [18]

1.1.2 Applications

Open dielectric resonators mentioned previously such as rings, and disks are

already being used in wavelength division multiplexing devices as add drop

filters [19]. Further, use of resonators in light sources change the properties

of both spontaneous emission and stimulated emission yielding novel light

emitting diodes and ultra-low threshold lasers [20]. Due to the enhancement

of nonlinearities in the material within micoresonators, as an effect of high

Q and high confinement, Kerr and Raman nonlinear phenomena have been

14



Chapter 1 Introduction

observable at low optical powers [20, 21]. These advantages have become a

key in realising ultra low threshold Raman lasers and nonlinear mixers [20].

Hence, the microresonators have proven to be more advantages to telecom-

munication applications than was expected.

In addition to the applications in telecommunications, a new range of sens-

ing applications have evolved due to the sensitivity of the resonances of mi-

croresonators to surrounding materials. Adsorption of chemical compounds

or proteins is highly detectable via the resonance shifts of microresonators

[22]. Hence monolithic microresonators have been widely used in label free

biological and chemical sensing with high particle resolution.

The very high Q factors achievable as large as 109 in silica microspheres

[3], enhances various optical phenomena, which would otherwise be unrecog-

nisable in FP resonators. This optical phenomenon is not only confined to

previously mentioned Kerr, Raman, and stimulated effects, but spreads out

to photon, phonon, exciton interactions. Hence, these resonators have found

themselves as the subject of fundamental physics experiments [3].

According to the discussion led so far, it is evident that the applications

of microresonators are immense and fascinating. They are very much bound

to define their territories on all optical devices. However, as one should no-

tice, these structures have been limited to simple canonical geometries. It is

unarguably for the fabrication simplicity; But is that it? We must explore

the challenges that lie upon us, in order to tailor the microresonators in our

applications.

1.2 Background

As mentioned previously, optical microresonators are promising components

for all optical switching, but have been limited to simple canonical shapes such

as spheres, disks, rings, spheroidals, etc. More than for simplicity, the lack of

accurate and efficient design methodologies has hindered the progression in

this research area [23].
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Chapter 1 Introduction

1.2.1 Simulation Techniques

Analytical studies for some canonical structures are available to help design

resonators, especially spherical microresonators [5]. These studies allow iden-

tification of the Q factors and resonating frequencies in terms of the whisper-

ing gallery modes of the spherical resonators. In addition to these analytical

studies, the boundary integral equation (BIE) method in the frequency do-

main has been able to extract the resonant modes of resonators of arbitrary

shapes in 2 dimensions [24]. In most of these methods, the studies have been

undertaken in the frequency domain, limiting the materials to have only fre-

quency dependent properties. In addition, frequency domain methods do not

model transients of temporal incidents, such as a state change of an optical

switch or an optical memory. These require the sophistication of time domain

analysis.

Comprehensive time domain methods based on Maxwell’s equations, such

as finite difference time domain (FDTD)[25] and transmission line modelling

(TLM) method[26] have proven to be time consuming in most optical prob-

lems such as waveguides and fibres. Eventhough microresonators are small in

the spacial domain, the discretisation must be high in order to avoid spuri-

ous resonances and apparent low Q factors appearing due to artificial surface

roughness imparted by the discretisation. Since, resonators confine light for a

long time (high Q), the simulation time must be sufficiently large aggravating

the problem of already heavy computation time, even in 2 dimensions [27].

1.2.2 Chalcogenide Glasses

In search for materials suitable for microresonators, it has been vaguely pos-

sible to define characteristics of materials or limit ourselves to a set of ground

rules. As a matter of fact, crystals, semiconductors, polymers, glasses and

even liquids have been suggested over the past two decades as possible can-

didates for resonator materials [2], [28].

Chalcogenide glasses are amorphous glasses based on the group VI elements
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Chapter 1 Introduction

(except oxygen and polonium in the periodic table) sulphur (S), selenium

(Se), tellurium (Te), as the characteristic elements. Most of the glasses are

opaque to visible light and have better characteristics in the infrared region.

The characteristics can be modified by using group V or IV elements such

as germanium (Ge), gallium (Ga), arsenic (As), etc. According to this broad

definition, chalcogenide glasses refer to a wide range of glass compositions

which are being currently investigated [29, 30].

Chalcogenide glasses have higher refractive index almost double that of sil-

ica. In terms of microresonators, this improves the light confinement. Further,

nonlinearities of Chalcogenides are up to 3 orders higher in magnitude than

that of silica nearing the nonlinearity range of gallium arsenides (GaAs) [30].

This implies that the optical intensity required to observe a given nonlinear

change in refractive index could be 3 orders or magnitude lower for chalco-

genide glasses than silica. Therefore, chalcogenide glasses are potentially in-

teresting candidates for realising microresonators as existing nonlinear effects

in the material can be enhanced further by optical confinement supported by

resonators.

1.3 Thesis Outline

Having discussed the background of optical microresonators and their appli-

cations in this introductory first chapter, the main time domain simulation

technique used to model these resonators are briefly discussed along with some

software implementation details in chapter 2. The next chapter introduces

resonator spectral properties and discusses some techniques for extracting

spectral properties from time domain numerical simulations. This involves

comparing several techniques along with a Fourier transform based method

to identify an accurate method to determine closely spaced high Q resonances

in the context of optical resonators in chapter 3.

Once a resonance identification method is established, the limitations of

time domain numerical methods particularly TLM, in accurately modelling
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high Q optical resonators are presented in chapter 4. Some solutions to over-

come these limitations from within the numerical technique are also discussed

in this chapter.

Even though limitations due to boundary reflections are not identified as

particularly problematic, it will be when modelling coupling mechanisms such

as waveguides. Therefore, perfect matched layers implemented in TLM are

presented to produce better reflection properties in chapter Perfect Matched

Layers for TLM.

Once TLM techniques are well established to accurately model optical res-

onators with linear constant dielectric materials, dispersive Chalcogenide ma-

terials are modelled in TLM and the associated limitations are discussed in

chapter 6. As a part of linear material properties, optical loss is also discussed

in the chapter to study its effects on Chalcogenide optical resonators.

As the last theoretical exploration, optical Kerr nonlinearity present in

Chalcogenide materials are modelled in TLM in chapter 7. The method

developed is compared with a nonlinear approximate frequency domain tech-

nique to identify the model’s strengths and weaknesses in modelling nonlinear

waveguides.
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2
Transmission Line Modelling

Method

The Transmission Line Modelling (TLM) technique is a time domain numer-

ical method that is mostly used to solve the differential form of Maxwell’s

equations with an electrical component analogy [1]. The analogy is drawn

from the similarity between the electric and magnetic field equations with

the voltage and current equations of an arrangement of transmission lines in

a unit cell.

This chapter briefly introduces the TLM method in the context of the two

dimensional modelling of E-type waves (defined below). The original loss-free

method [2] deriving from inductors and capacitors is presented as well as an

alternative z-domain model used extensively in this study. The second half

of this chapter presents the software design of TLM used to implement the

method to balance computational efficiency and flexibility in order to adapt

to various requirements of this study.
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Chapter 2 Transmission Line Modelling Method

2.1 TLM formulation

In this study two dimensional electromagnetic analysis is used almost through-

out in analytical closed form as well as in time domain numerical simula-

tions. In the numerical analysis in this study, Cartesian coordinates are im-

plied unless stated otherwise. In two dimensions, the electromagnetic fields

(Ex,y,z, Hx,y,z) are invariant in one direction, here taken to be the z-direction

(infinite dimension). Hence, three field components out of the six vanish cre-

ating two distinct sets [1]. Let E-type waves be denoted by non zero Ez, Hx,

Hy and H-type waves be denoted by non zero Hz, Ex, Ey. Even though these

are also noted as TE and TM formulations [1, 3], in this thesis, these names

are strictly limited to guided modes to avert probable confusion of existing

conventions.

2.1.1 Formulation

For E-type waves, Maxwell’s equations are given by [3],







(∇×H)z

−(∇× E)x

−(∇× E)y






−







Jefz

Jmfx

Jmfy






=

∂

∂t







ε0Ez

µ0Hx

µ0Hy






+







σe ∗ Ez

σm ∗Hx

σm ∗Hy






+
∂

∂t







ε0χe ∗ Ez

µ0χm ∗Hx

µ0χm ∗Hy







(2.1)

where, the last letter of superscipt x, y, z denotes the component and

Jef Electrical curent density Jmf Magnetic curent density

σe Electrical conductivity σm Magnetic conductivity

χe Electrical suceptibility χm Magnetic suceptibility
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Chapter 2 Transmission Line Modelling Method

For lossless, source-free region in space, the equations can be reduced to

[1],

∂Ez

∂y
= −µ∂Hx

∂t
(2.2)

−∂Ez

∂x
= −µ∂Hy

∂t
(2.3)

∂Hy

∂x
− ∂Hx

∂y
= ε

∂Ez

∂t
(2.4)

where, ε, µ are material permittivity and permeability respectively, and can

be combined by differentiating equation 2.2 with respect to y, equation 2.3

with respect to x and equation 2.4 with respect to t to produce,

∂2Ez

∂x2
+
∂2Ez

∂y2
= µε

∂2Ez

∂t2
(2.5)

By Kirchhoff’s current and voltage laws, the following electrical equation

can be written for the transmission line model shown in figure 2.1a [1].

∂2Vz
∂x2

(∆l)2

L
+
∂2Vz
∂y2

(∆l)2

L
= 2C

∂2Vz
∂t2

(2.6)

The equivalent transmission line model is shown in figure 2.1b.

Equation 2.6 can be transformed using the relationships,

L = µ∆l (2.7)

C = ε∆l (2.8)

Ez = − Vz
∆l

(2.9)

Hy = − Ix
∆l

(2.10)

Hx = − Iy
∆l

(2.11)

into
∂2Ez

∂x2
+
∂2Ez

∂y2
= 2εµ

∂2Ez

∂t2
(2.12)
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∆y

∆x

∆zVzL/2 L/2

L/2

L/2

2C

(a) TLM Shunt node electrical equivalent

V1 V2

V3

V4

VzZTL ZTL

ZTL

ZTL

x
y

z

∆l = ∆x = ∆y = ∆z

(b) TLM Shunt node TL equivalent

Figure 2.1: TLM 2D Shunt Node

The analogy of equation 2.6 with equation 2.12 is noted. However, in the RHS

of this equation 2εµ is found instead of the required εµ found in equation 2.5.

Usually but not necessarily, the background medium is chosen to be free

space and the inductances and capacitors in the basic shunt node correspond

to free space values. Additional inductances and capacitances can be added

to the shunt node structure to increase permeability and permittivity respec-

tively as required by the modelled material [1].

If each transmission line in figure 2.1a, is chosen to consist of inductance

L/2 and capacitance C/2, then the total inductance (LT ) will be L and total

capacitance (CT ) will be 2C from figure 2.1a. Therefore, the velocity of

propagation in the transmission line (uTL) and the characteristic impedance

of the transmission lines (ZTL) can be defined using L, C [1] as:

ZTL =

√

L

C
uTL =

∆l√
LC

LT = ZTL∆t CT = 2
∆t

ZTL

(2.13)
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In order to match the transmission lines representing the inductors and ca-

pacitors to free space (ε0, µ0), the velocity of propagation in the transmission

line (uTL) and the characteristic impedance of the transmission lines (ZTL)

are chosen to be [1],

uTL =

√
2√

µ0ε0
(2.14)

ZTL =
√
2

√

µ0

ε0
(2.15)

Hence, the modelled inductance per unit length (LT/∆l) and modelled ca-

pacitance per unit length (CT/∆l) are,

Ld =
ZTL∆t

∆l
= µ0 (2.16)

Cd =
2∆l

ZTL∆t
= ε0 (2.17)

Therefore, this model represents free space.

2.1.2 Stubs for Permittivity

The optical materials used in this study are non-magnetic in nature. For the

purpose of the current formulation, the materials are also assumed to be loss-

free. The loss is discussed in chapter 6 along with dispersion. The dielectric

permittivity can be modelled by an open terminated stub at the centre of the

shunt node representing a capacitor as shown in figure 2.2.

The formula for the total capacitance as given in equation 2.13 is modified

as,

CT = 2
∆t

ZTL

+
∆t

2
Ys (2.18)

where Ys is the characteristic admittance of the added stub [1].

Hence the capacitance per unit length must be equal to the permittivity of
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V1 V2

V3

V4

VzZTL ZTL

ZTL

ZTL

x
y

z

Vs

Ys

Figure 2.2: TLM Shunt node TL equivalent

the medium.

Cd =
2∆t

ZTL∆l

(

1 + Ys
ZTL

4

)

= ε0

(

ZTL

4

)

= ε0εr (2.19)

Therefore, to model a medium of relative permittivity εr = n2 where n is the

refractive index,

Ys = 4
εr − 1

ZTL
(2.20)

2.1.3 Field Calculation

The simulation domain modelled above can now be used to determine the

voltage at the node when voltages are incident from the links at a given time

step. Using the Thevenin equivalent of a lossless transmission line, which

is twice the incident voltage in series with its characteristic impedance, the

equivalent circuit can be presented as given in figure 2.3, [1].
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2V i
1

ZTL

2V i
2

ZTL

2V i
3

ZTL

2V i
4

ZTL

Vz

2V i
1

ZTL

2V i
2

ZTL

Ix

2V i
4

ZTL

2V i
3

ZTL

Iy

Figure 2.3: Equivalent circuits of 2D shunt transmission line network

Using Kirchhoff’s voltage and current laws [1],

Vz =
V i
1 + V i

2 + V i
3 + V i

4

2
(2.21)

Ix =
V i
2 − V i

1

ZTL

(2.22)

Iy =
V i
3 − V i

4

ZTL

(2.23)

When a stub is added for relative dielectric permittivity, another branch with

twice the stub voltage and characteristic impedance of 1/Ys is added to figure

2.3. Hence, equation 2.21 is modified into equation 2.24.

Vz =
2(V i

1 + V i
2 + V i

3 + V i
4 ) + 2V i

s YsZTL

4 + YsZTL

(2.24)

where V i
s is the stub incident voltage.

2.1.4 Scattering

The reflected voltages after calculating the node voltages are given by [1],

V r
j = Vz − V i

j (2.25)
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where j = 1, 2, 3, 4. With the stub the additional reflected voltage into the

stub is similarly given by,

V r
s = Vz − V i

s (2.26)

2.1.5 Connection

The above describes what happens within a TLM time step. In order to

connect link voltages to adjacent point in going from one time step to another

time step, the connection step in TLM is defined as follows.

Let the point of interest be (xn, ym), where xn = n∆l and ym = m∆l. If

the current time is tk where tk = k∆t, the connection steps for a 2D TLM

mesh are,

V i
1 (xn, ym, tk+1) = V r

2 (xn−1, ym, tk) V i
2 (xn, ym, tk+1) = V r

1 (xn+1, ym, tk)

V i
3 (xn, ym, tk+1) = V r

4 (xn, ym−1, tk) V i
4 (xn, ym, tk+1) = V r

3 (xn, ym+1, tk)

If the node contains a capacitive stub, the stub voltage is connected simply

by,

V i
s (xn, yn, tk+1) = V r

s (xn, yn, tk+1)

2.1.6 TLM Matched Boundary

The connection step is defined at all points except the simulation boundary.

The self-connection at the simulation boundary depends on what type of

reflection is required. The simplest conditions are the open circuit and short

circuit and are simply connected with the same value with the same polarity

or inverted polarity respectively.

As a simple emulation of the radiation condition, a TLM matched boundary

can also be used. This terminates the boundary link with an impedance equal

to the wave impedance of the medium as illustrated in figure 2.4.
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V1 V2

V3

V4

ZTL ZTL

ZTL

ZTL

ZM

Figure 2.4: TLM Shunt node Matched Boundary

Hence, the boundary connection is defined as,

V i
b (xn, ym, tk+1) =

ZM − ZTL

ZM + ZTL

V r
b (xn, ym, tk)

where, ZM is the material characteristic impedance and is equal to Z0 =
√

µ0/ε0 in free space.

2.2 Alternative Z transform Formulation

An alternative TLM formulation using bilinear z-transform was also presented

by J. Paul in [3]. The derivation uses less of an electrical analogy and more

of transmission line characteristics and a z-transform of Maxwell’s equations.

In this study, a 2D condensed model is used for E-type wave modelling.

2.2.1 Formulation

The formulation begins with Maxwell’s equation and transforming first to the

frequency domain(s-domain) as given in equation 2.1 and then using bilinear

transform to transform the equation to z-domain.

The normalising in the z-domain model is slightly different from that in the

electrical counterpart. In the z-domain model currents are also normalised to
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act as voltages. The normalising relationships are,

Ez = − Vz
∆l

Hx,y = − ix,y
(∆l)η0

Jefz = − ifz
(∆l)2η0

Jmf(x,y) = −Vf(x,y)
(∆l)2

σe =
ge

(∆l)η0
σm =

rmη0
(∆l)

The time domain derivative is replaced by s in the frequency domain and is

normalised according to,

s =
s̄

∆t
=

2

∆t

(

1− z−1

1 + z−1

)

(2.27)

where s̄ is the normalised s variable. The spatial derivative is normalised by

∂

∂x
=

1

∆l

∂

∂x̄

where x̄ = xn is the cell index. In the frequency domain equation 2.1 becomes,







(∇̄ × i)z

−(∇̄ ×V)x

−(∇̄ ×V)y






−







ifz

Vfx

Vfy






= s̄







2Vz

ix

iy






+







geVz

rmix

rmiy






+ s̄







2χeVz

χmix

χmiy






(2.28)

Using Stokes’ theorem,







(∇̄ × i)z

−(∇̄ ×V)x

−(∇̄ ×V)y






=







(V1 + V2 + V3 + V4)

−(V3 − V4)

−(V1 − V2)






(2.29)

Transforming equation 2.28 after substituting equation 2.29 to the travelling
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wave format (using Thevenin equivalents) the field calculation is given by,

2







(V1 + V2 + V3 + V4)

−(V3 − V4)

−(V1 − V2)







i

−







ifz

Vfx

Vfy






=







(4 + ge + s̄2χe)Vz

(2 + rm + s̄χm)ix

(2 + rm + s̄χm)iy






(2.30)

2.2.2 Scattering

The condensed formulation has a slightly different scattering step to the scat-

tering step given in the circuit analogy. This is mainly due to the simultaneous

modelling of permittivity and permeability. The scattering step is [3],













V1

V2

V3

V4













r

=













Vz + iy − V i
2

Vz − iy − V i
1

Vz − ix − V i
4

Vz + ix − V i
3













(2.31)

2.2.3 Other Differences

Apart from the previously mentioned differences between the two formu-

lations, one must keep in mind that the transmission line’s characteristic

impedance(ZTL) in the z-domain formulation is unity. Hence, the material

characteristic impedance also has to be normalised to the freespace impedance

accordingly.

2.3 A TLM Implementation

2.3.1 Basic Requirements

A transmission line modelling method implementation is comprised of simple

repetitive steps of scattering and connection as mentioned in the previous sec-

tions. Each of these steps is carried out for all the nodes within the domain of
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interest. With the addition of excitation and field saving steps, the complete

process in order can be given as,

1. Excitation of Fields

2. Field Calculations from Link/Stub Voltages

3. Save Field data as required

4. Calculate reflected Link/Stub Voltages

5. Connect adjacent nodes

6. Self connect boundary nodes

Please note that, the saving field data step (3) can be performed at any

place after the field calculation step (2).

2.3.2 Requirements for a Parallel Implementation

Note that all the steps given above, with the exception of the connection

step (5), can be carried out independently for each node. The connection

step involves pairs of adjacent nodes along each major dimension. Therefore,

the problem is parallel in each node, while inter-node communication occurs

at the connection step. Therefore, the problem is parallel for any chosen

domain set of DN = d1, d2, d3, ..., dN covering the domain of interest D (i.e.

d1 ∪ d2 ∪ d3 ∪ ... ∪ dN = D), where inter-domain communication occurs at

all the boundaries of the domains between nodes at the boundaries. Hence,

this becomes the recipe for a parallel implementation or a multi-threaded

implementation on a multi-core processor.

2.3.3 Object Oriented Requirements

Given a specific geometrical structure, a non object oriented implementation

of the above mentioned steps is fairly straightforward and efficient. However,
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such an implementation inevitably becomes hard to maintain, modify and

extend features as required. Hence, a software engineering approach to the

implementation of the TLM method should address the following.

• User configurable

• Extend for new types of materials and nodes

• Extend for new excitation source types

• Extend for new field saving and/or processing methods

• Adapt to new discretising techniques

• Adapt to new methods of node storage

In order to accomplish the above, key ‘concepts’ of an object oriented imple-

mentation of TLM method (or similar parallel computational electromagnetic

technique) can be defined as follows:-

• Material

• Node

• Geometry shape

• Excitation Source

• Field Sink (Saving)

• Discretiser (meshing algorithm)

• Node Store (storage of nodes created by the discretiser)

Typically, the configuration of the above concepts is initially provided by

the user, as illustrated in figure 2.5. Then the required excitation sources and

field saving methods(sinks) are added to the simulation before executing for
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Figure 2.5: Use case diagram of the designed TLM platform

a specific time. The concepts used in the configuration are implementations

of the base classes with the relationships shown in figure 2.6.

The class diagram in figure 2.6 is organised around the main simulation

class which holds all information centrally and acts as the facade for the

configuration and simulation. The discretiser the simulation class holds is

responsible for providing information such as step time, step size and the size

of the domain based on its instantiation parameters. It is also the bridge

in transforming between discrete time step tk and time value t as well as

discrete space step (xn, ym, zl) and space coordinates (x, y, z). This is required

when non uniform meshing is used by the discretiser. Though the size of the

domain is provided by the user, the discretiser might have to extend the size

depending on boundary types used (e.g. Perfect Matched Layers (PML)). The

discretiser also creates the nodes depending on the geometries defined in the

simulation and the materials. Therefore, the discretiser is the bridge between

the physical domain and structure and the internal node structure. In a

parallel implementation, both simulation and discretiser must be available to

all processes.

Once the node structure is determined, the instantiated nodes are stored

within the node store. In a parallel implementation, the node store selects

the set of nodes to work on as well as its node boundaries. All actions to

be performed on nodes must be passed onto the node store for it to apply
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depending on the internal ordering of the steps. This allows one to optimise

the storage of a set of nodes. For multi threading, this also gives one the

ability to divide the nodes into sets to be processed in parallel.

Two types of actions can be performed on nodes as defined in figure 2.6.

They are independent actions which can be performed in parallel and actions

which concern sets of nodes which can be performed in parallel on disjoint

node sets. All steps except inter node connections fall into the former category

and can be performed with very low overhead. Connection mostly concerns

either two, three or six nodes in one,two, three dimensions respectively. Fur-

ther, it can be generalised to use two nodes at a time only considering the link

between them. Then the application can be optimised to use two nodes at a

time. In one dimension it can be readily used. In two and three dimensions,

the connection has to be performed for x-directed links, y-directed links and

z-directed links independently. Since the connection involves two distinct

types for some links (other links connect same type nodes), run time type

information has to resolved for the two nodes every time with a significant

overhead.

The node selector is a concept defined by the discretiser to select a set of

nodes to be acted upon either based on some physical parameters or internal

mesh parameters. TLM steps (i.e. field calculation, scattering, connection,

boundary connection) use internal node selection, while user defined source

and field sink use physical parameters. Sources such a point source, plane

wave source, waveguide mode source define excitations to be performed at

a certain physical location (possibly set of locations). Similarly, Field sinks

are also defined to measure the field at a physical location (possible set of

locations). Field sinks are the most performnance critical step beside the

connection step as it possibly involves transferring a set of data over the

network or to a permanent storage (such as a hard drive).

Therefore, to improve the efficiency of the software, the node store must be

designed to optimally perform the connection without breaking the parallel

nature of nodes. To minimise the data flow to storage when storing the field

values of a large set of nodes, one could compress the data with a data storage
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standard such as HDF (http://www.hdfgroup.org/).

Figure 2.6: Class diagram of the TLM Platform

As shown in figure 2.7, the instantiating sequence consists of instantiating

the discretiser and the node store depending on the discretiser. The net se-

quence illustrates a multi threaded implementation of running the simulation.

Mutual exclusion (mutex) rules defined in the node store states the order of

execution for a given set of nodes.
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Figure 2.7: Sequence Diagram for Creating and Running a Simulation
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2.3.4 OOP Hierarchy and Associated Problems

Ideally each concept could be defined as an abstract class, with a well defined

interface between them.The concrete objects can be combined together at

run-time according to the user configuration. However, this approach has

some shortcomings.

First, the implementation is unaware of the specific types and the ar-

rangement at compile-time, and has to depend on run time type informa-

tion (RTTI) at all function calls. Yet, typically, the user configuration is

defined before the program is run. The run-time type resolution involves res-

olution of virtual functions and affects most for small repetitive functions.

This inevitably slows down the entire process severely, as the TLM process is

constructed from simple repetitive steps defined for every node at every time

step. This also implies that the compiler can only make local optimisation to

the concept members; hence, code in-lining cannot in this case improve the

performance drastically.

A second more hidden problem lies in defining the concept interface as it

should include all common behaviours of the concrete concepts. This requires

complex concrete concepts to either find a way around the rigid interface or

change the interface, which might introduce unrelated interface functions for

simpler concepts. A lot of such changes to an existing interface, makes the

code lose clarity eventually becoming hard to maintain.

2.3.5 Template Meta-programming as an Alternative

The first problem of run-time type binding overhead can be eliminated by

using static binding instead of run-time binding if the user configuration is

available at compile time. That is the user configuration must allow the

compiler to define all the concepts and their usage contexts. This however

demands the removal of virtual functions and the abstract hierarchy. Hence,

the user configuration should be able to define the interface between the

concrete concepts rigidly. This brings the second problem into light in defining

39



Chapter 2 Transmission Line Modelling Method

a rigid, yet flexible enough interface, to adapt to extensions and variations

mentioned earlier.

In C++, templates are used for on demand code generation, for types given

by the template parameters. If the user configuration can be defined as param-

eters to templated concepts, the associated concrete concept can be generated

by the compiler and bind them together according to the user configuration

(i.e. template parameters). In this case, not all concrete implementations of

a concept need be matched for all concrete implementations of another con-

cept, as it should have been with abstract class interfaces. Only the concepts

matching together can be generated according to the user configuration.

2.3.6 Computational Efficiency Comparison

In this study, TLM was implemented under three software paradigms. The

first one used an imperative programming paradigm. The second implemen-

tation used object oriented programming (OOP) entirely, following the dia-

grams shown above. The last implmentation improved the OOP implemen-

tation with functional programming and multi threading so that all objects

are statically known at compile time. In table 2.1, run times for the three

methods are compared for three test configurations, as performed on a dual

core Pentium processor with 4 Giga bytes of memory. The operating system

used was FreeBSD 9.0 without any graphical user environment to minimise

irrelevant background processes.

The first test consisted of a line source excitation entirely in freespace with

a simulation domain of 10µm× 10µm, for a simulation time of 2000fs. The

source was excited at the centre and the field was saved throughout the simu-

lation domain at all time steps in an HDF file with medium compression (level

6 in HDF). The second test added a dielectic cylinder of radius r = 1.35µ,

refractive index n = 2.82 at the centre of the simulation domain used in the

first test. The source was excited at (4.2µm, 4.2µm). The third test consisted

of a core clad waveguide with core width of 0.6µm, cladding width of 3µm

(appears on both sizes of the core), core refractive index of 2.82, cladding
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refractive index of 1.73. The length of the waveguide was 50µm. The simula-

tion domain was truncated to include only the waveguide which was excited

with a line source within the core.

Table 2.1: Computational Loads for a three tests carried out with the three
implementations. The tests are 1. freespace of size 10µm× 10µm
simulated for 2000fs, 2. dielectric cylinder (r = 1.35µm, n = 2.82)
in freespace of size 10µm×10µm simulated for 2000fs, 3. dielectric
waveguide (50µm×0.6µm, n = 2.82) in freespace with domain size
of 50µm× 6.6µm simulated for 2000fs.

Space Imperative OOP Method OOP + Templates
Step (µm) Method + Functional

Free Space Test 0.5 30s 221s 38s
0.25 325s 2354s 458s

0.125 3503s 24471s 4300s
Cylinder Test 0.5 37s 254s 47s

0.25 423s 2606s 545s
0.125 4523s 28946s 5587s

Waveguide Test 0.5 98s 982s 121s
0.25 972s 9934s 1021s

As can be seen clearly, the imperative method is the most efficient program

from all the tests carried out. The OOP method was about 8 times slower than

the imperative method. The templated method had run-times on average

about 1.5 times the imperative program. Therefore, the templated program

is nearly as good as the imperative program with the added flexibility.

2.4 Conclusions

In this chapter, the formulation of TLM for two dimensional E waves was pre-

sented. The analogy of the transmission line network to the Maxwell’s equa-

tions in free space were presented. Further, its technique of adding permittiv-

ity and matching boundary condition for radiating condition were discussed.
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As used extensively in this study, an alternative but equivalent formulation

using z-transform method was presented.

From the details of the TLM method, a software implementation based

on object oriented programming was suggested. However, due to the ineffi-

cient nature of the OOP method, template meta programming was used to

remove the overhead in determining objects at run time. Comparing the CPU

times for some typical problems, it was understood that the templated OOP

program works as well as a fairly rigid imperative program.

The next task in this study was to observe the spectral properties of optical

microresonators. But, due to non trivial nature of identifying the spectral

properties of high Q optical resonators, extracting resonances from a time

signal is discussed before embarking on determining these properties from

TLM simulations.
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3
Extraction of Resonator

Properties

This study is centred on the application of a time domain electromagnetic sim-

ulation technique to optical resonators. The effectiveness of the application

can be deduced from how well the resonator properties are represented by the

method. Resonant frequency and quality factors are the most fundamental

characteristics of a resonator. Hence, the accuracy of resonant frequencies and

quality factors of a resonator simulated by the numerical simulation method

can be taken as a representative of the effectiveness of the method. However,

these properties cannot be measured directly and need to be calculated either

from an energy spectrum or an energy measurement over time. The latter is

directly available in time domain simulations and can be converted to former

by means of a Fourier transform. But before making any statements on the

accuracy of the numerical simulation method, one must make sure that the

resonant frequency and Q factor calculations are more accurate than the sim-

ulation method. To this end, the accuracy of calculating resonant frequency

and Q factor must be known.

This chapter is dedicated to accurately extracting linear spectral properties

of high Q optical resonators from a time-domain numerical simulation. Even
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though the properties and methods discussed here are generally applicable

to any resonator, special attention is required in the case of very high Q

resonators such as optical resonators. The first section introduces the concepts

of the spectral properties and sets the requirements for extracting them.

A Fourier transform based method is discussed first in an attempt to extract

spectral properties. Identifying its limitations, complex exponential extrac-

tion techniques are then presented and compared, noting their strengths and

weaknesses for this particular problem. All methods are then applied to an

emulation of a typical numerical problem of a circular resonator, which is the

subject of the next chapter.

3.1 Spectral Properties - Resonant Frequency

and Q factor

The linear spectral properties of microresonators are completely determined

by the geometry and the refractive index distribution inside and just outside

the resonator. The spectral properties of spherical open dielectric resonators

were formulated by Debye in 1909 [1]. A similar formulation, following from

Maxwell’s equations for spherical dielectric resonators can be found in [2]. In

this technique, the vector time harmonic Maxwell’s equation is reduced to a

scalar wave equation on the basis of one component of the field being zero.

Two such wave categories are then formed so that a magnetic component is

zero (E waves) and an electric component is zero (H waves). By variable sep-

aration of the resulting partial differential equation (PDE), the fields inside

and outside the resonator are written in terms of Legendre polynomials (θ

distribution), sinusoidals (ϕ distribution) and spherical Bessel functions (r

distribution) as given in equation 3.1 [2].

Umn(r, θ, ϕ) =

{

C i
mnP

m
n (cos θ)

√
krJν(kr)e

±jmϕ (r ≤ a)

Ce
mnP

m
n (cos θ)

√
k0rH

(1)
ν (k0r)e

±jmϕ (r > a)
(3.1)
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where Umn is the scalar potential of the mode number combination (m,n),

C i
mn, C

e
mn are the complex amplitude inside and outside the sphere of mode

(m,n), Pm
n is the Legendre polynomial of order (n,m), k = k0

√
εr is the wave

number within the sphere, k0 is the free space wave number, a is the radius

of the sphere, (r, θ, ϕ) are the spherical coordinates and ν = m+ 1
2
.

By applying boundary conditions to the general solution given in equation

3.1, a characteristic equation in terms of k0 can be obtained, as given in

equation 3.2 [2].

[√
kaJν(ka)

]′

√
kaJν(ka)

=

[√
k0aH

(1)
ν (k0a)

]′

√
k0aH

(1)
ν (k0a)

(3.2)

where a prime denotes a total derivative in terms of ka or k0a.

3.1.1 Resonant Frequency

Therefore, there exists an infinite number of discrete frequencies related to the

real parts of the roots k0 of the characteristic equation known as the resonant

frequencies fr (fr = ℜ{k0}c/2π, where c is the phase velocity of light in

vacuum), at which the resonator will store optical energy in fields of the

form given by equation 3.1. At all other frequencies optical power within the

resonator (exited from outside or generated inside) will be scattered storing

little or no energy. Experiments towards the end of 1970s have confirmed

the existence of such optical resonances. In one such prominent experiment,

the levitation of silicone oil droplets with radiation pressure induced by a

dye-laser [3] was studied. In this experiment, the radiation force required to

levitate the droplets increased sharply due to the scattering of optical power

at some specific frequencies. The study confirmed that these frequencies

closely resemble the resonant frequencies of the oil droplets calculated from

Mie-Debye scattering theory [3].
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3.1.2 The Q factor

The complex nature of the roots k0 = kr0+ jki0 of the characteristic equation

3.2, give rise to the decaying nature of the resonances in the time domain [2].

This is further illustrated in figure 3.1. In the time domain it is a decaying

oscillation (figure 3.1a) while in frequency domain (figure 3.1b), it takes the

shape of a Lorentzian function.

-0.6

-0.2

 0.2

 0.6

 1

 0  10  20  30  40  50  60

M
ag

ni
tu

de
 (

no
rm

al
is

ed
)

time(fs)

(a) Resonance in the time domain

 0.2

 0.4

 0.6

 0.8

 1

 160  180  200  220  240

M
ag

ni
tu

de
 (

no
rm

al
is

ed
)

Frequency (THz)

(b) Resonance in the frequency domain

Figure 3.1: A typical resonance k0 = kr0 + jki0

Q factor is defined in many ways depending on the problem at hand. When

defined for energy, the Q factor is the ratio between energy stored and energy

dissipated. When defined for the frequency domain, it is the bandwidth rel-

ative to the resonant frequency. An approximate expression in the frequency

domain for Q factor is given by [4],

Q =
fr
∆f

(3.3)

where ∆f is the half power bandwidth of the resonance. This is invaluable

in most experiments where the frequency response is directly available. The

more exact definition is given by equation 3.4 [5].

Q =
fr
2fi

(3.4)

where fi is the imaginary part of the complex frequency f = k0c
2π

= fr + jfi.
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The importance of Q-factor is several fold. In the frequency domain, it is

a measure of the frequency selectivity as mentioned previously. In the time

domain, the Q factor is an indication of the length of the transient in the

resonator. In other words, when light coupled into a resonator, Q factor is

related to the length of time over which the resonator is capable of holding

a significant amount of optical power without radiating or absorbing. In a

typical spherical optical resonator, light transients as long as 2.7µs at 633nm

have been observed [6]. The length of the transient is known as the resonator

ring down time or lifetime of light energy(τ) in the resonator. Hence, the Q

factor is also defined by [6],

Q = 2πfrτ (3.5)

3.1.3 Extracting Resonant Frequency and Q factor

As mentioned in the previous subsection, the resonant frequency and Q factor

information is present in both time domain and the frequency domain. In

frequency domain data, accurately extracting these two properties is a matter

of resolving enough in frequency in order to apply equation 3.3. In order to

apply equation 3.4 to time domain data, one must extract a complex frequency

fr+jfi. However, extracting resonant frequencies and Q factors from a limited

time signal is proven to be a non trivial task [7, 8, 9, 10], even when these

can be observed in a Fourier transform of the time signal.

High Q cylindrical and spherical dielectric resonators have closely spaced

resonant frequencies with Q factors as high as 109 [6]. In order to accurately

resolve these from time domain data, long time signals are required. In time

domain simulations, due to heavy computational demands, very long simula-

tions of high Q 3D resonators using time domain numerical methods is highly

impractical. Therefore, methods of resonance frequency extraction from lim-

ited length time domain signals are compared in the next few sections in the

context of high Q optical resonators.
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3.2 Fourier Transform Fitting Technique

In this section, a method for extracting resonances with a known function fit to

the Fourier transform of a time signal is presented. Then, its limitations when

extracting one complex frequency and two closely spaced complex frequencies

from a time signal are discussed.

A resonant peak in the frequency domain corresponds to a Fourier trans-

form of a sinusoid truncated by a rectangular time window [9]. Hence, the

resonance line shape will be the frequency domain representation of the si-

nusoid convoluted by the sinc function. In the case of an undamped sinusoid

(i.e. infinite Q factor), the peak assumes the shape of a sinc function [7, 8, 9].

This is explained by the Fourier transform of an undamped sinusoid, a Dirac

delta function (δ(f − fr)) convoluted by the sinc function, resulting in a sinc

function centred at fr. For a damped sinusoid (i.e. finite Q factor), the line

shape will be a Lorentzian [2], the width of which is determined by the Q

factor, convoluted by a sinc function. The shape of the resulting function is

sought next in order to make an appropriate fitting function.

3.2.1 Fourier Transform Fitting Method

Let the continuous damped sinusoidal signal be,

µ(t) = Ae2πj(fr+jfi)t (3.6)

where A is the complex amplitude, which also includes phase delay. Using

Fourier Transform F(f) of a function x(t) is defined as,

F(f) =

∫

∞

−∞

x(t)e−j2πftdt (3.7)
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The magnitude of the Fourier transform of signal in equation 3.6 of length T

is,

|F(f)| =

∣

∣

∣

∣

∫ T

0

µ(t)e−j2πftdt

∣

∣

∣

∣

= |A|
∣

∣

∣

∣

1− e−2πfiT e−j2π(f−fr)T

2πfi + j2π(f − fr)

∣

∣

∣

∣

(3.8)

In equation 3.8, the magnitude of the numerator represents a periodic func-

tion of amplitude determined by fiT and oscillation period determined by

1/T . Hence, the width of the main lobe of the sinc function is determined by

1/T , whereas the height of the side lobes of the sinc function is determined

by fiT . When fiT >> 1, the amplitude of the oscillations will be small and

the frequency domain resembles a Lorentzian function. When fiT << 1,

the amplitude of the oscillations will be large indicating that the frequency

domain resembles a sinc function.

When extracting high Q resonances from small length time signals, the

second condition fiT << 1 becomes true; hence by allowing a uniform noise

floor ε, one obtains,

|F(f)| = α
∣

∣1− e−2πj(f−fr−fij)T
∣

∣

√

f 2
i + (f − fr)2

+ ε (3.9)

where α = |A|/2π. If the discrete Fourier transform data is fitted to this

function with sufficient number of points for the fitting algorithm to converge,

the resonant frequency (fr) and the Q factor (ratio of fr/2fi) can be estimated

from a time signal of an isolated resonance.

3.2.2 Extracting an Isolated Resonance from Fourier

Transform

An illustrative damped sinusoidal time signal with a complex frequency of

(193.548 + j0.00097)THz (1.55µm wavelength in free space and Q ≈ 106) of

time length 65536fs (12688 cycles) was converted to the frequency domain
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by fast Fourier transform (FFT) and the frequency samples within the inter-

val (192.5, 194)THz were fitted using a least square fitting (LSF) algorithm.

The fitting accuracy was increased by padding the time signal with zeros to

increase the number of frequency samples within the interval, yet maintain-

ing the underlying Fourier transform function of the signal truncated by the

rectangular window.

The fitting algorithm used was Lavenberg-Maquardt linear least square fit-

ting algorithm [11]. The fitting process requires careful attention in setting

the initial parameters. This is mostly due to the nature of the sinc function.

If the resonant frequency is set at the correct position, the other parameters

(i.e. amplitude, damping and noise) tend to adjust appropriately. Therefore,

setting the resonant frequency is important to the fitting algorithm. This

however is not a tedious task as the resonant frequency can be set by observ-

ing the line shape, because a curve shift can be observed for small variations

of resonant frequency. As illustrated in figure 3.2, which shows the frequency

domain data of a damped sinusoid along with a fitting curve of which the

frequency has a 0.001THz error compared to the signal represented by the

data. With the available resolution on paper, one can deduce that the actual

frequency of the data is slightly higher. Therefore, the accuracy of the reso-

nant frequency estimation for a noiseless isolated resonance depends only on

how far one can zoom in to see the overall shift between the fitted curve and

the data points.

The fitting results are presented along with a continuous Fourier transform

of the truncated time signal (equation 3.9 where ε = 0), in figure 3.3 with

corrected resonant frequency. The error in resonant frequency was less than

0.0005%, while the error in Q factor was less than 1%. The same form of

signal but with higher Q factors was fitted similarly to observe a limitation

of extracting Q factor. The results are presented in table 3.1.
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Figure 3.2: The resonance function (LSF) fit to a discrete Fourier transform of
a damped sinusoidal time signal of 193.548THz and Q of 106(cross)
by setting the resonant frequency at 193.547THz (with 0.001THz
error).

Table 3.1: Results of extracting isolated high Q resonances of resonant fre-
quency fr = 193.548THz and a signal length of T = 65536fs.

Q factor Estimated Q factor
106 1.00× 106

2× 106 1.96× 106

5× 106 4.50× 106

8× 106 6.33× 106

107 7.08× 106

5× 107 1.02× 107

108 1.03× 107

109 1.03× 107

According to table 3.1, beyond a Q factor of 5×106, the Q factor extraction

degrades heavily. Beyond a Q factor of 5 × 107, the result does not vary

with increasing Q factor producing the limit of fiT < 0.0025 for accurate

extraction of the Q factor. The reason for the limitation can be explained

with the aid of figure 3.4, which shows the frequency domain representations
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Figure 3.3: The resonance function (LSF) fit (dashed) to a discrete Fourier
transform of a damped sinusoidal time signal of 193.548THz and Q
of 106(cross), and the corresponding continuous Fourier transform
of the damped sinusoidal (solid). Note: the continuous Fourier
transform coincides with the fitted function.

of four resonances, each differing only in Q factor.

In figure 3.4, the Fourier transforms of signals with Q factors of 106 and 107

are indistinguishable to the naked eye. To the fitting algorithm, any Q factor

beyond 5× 107 is indistinguishable. The only difference between the Fourier

transforms of signals of Q factors 106, 105 are at the nulls near the centre.

This indicates that beyond a Q factor of 5× 107 for a time signal of 65536fs

the Fourier transform becomes a sinc function with a shape governed by the

rectangular window width. Hence, beyond this limit Q factors extracted from

Fourier transforms of time signals do not relate to the underlying Q factor

of the signal. This limit depends on the time length of the signal T and

can be increased by increasing the time length. When αT is close to its

limiting value, the Fourier transform has characteristics of both Lorentzian

and sinc functions and can still be used to extract the Q factor with reasonable

accuracy. If otherwise, the Fourier transform takes the shape of a Lorentzian

and, as table 3.1 confirm, can be used to extract Q factor with high accuracy.
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Figure 3.4: Fourier transforms of signals of length 65536fs and resonant
frequency fr = 193.548THz and varying Q factors of 104

(dashed),105 (thick solid), 106 (solid), 107 (thick dotted).

3.2.3 Extracting Two Closely Spaced Resonances

In addition to accurately extracting an isolated resonance in practical appli-

cations, resonance extraction techniques must be able to resolve two closely

spaced resonances. If the frequencies are sufficiently far apart, the frequency

domain samples can be separated and two fittings can be performed indepen-

dently.

In order to find a limiting condition for two single line shape fittings, res-

onant frequency and Q factor were extracted from a time signal of two res-

onances, with varying separation between the two resonances (fsep), keeping

one resonance at 193.548THz of Q = 2× 105.

In order to separate the two resonances by programmable means, one could

identify the peaks by visiting data points in order. However, this has to

be done before padding the time signal, after which humps related to the

underlying sinc function appear. In addition, one can no longer interpret

the resonant frequency of each resonance by merely observing the Fourier

transform. Hence, only an educated guess can be provided as the initial

resonant frequency parameter for the fitting algorithm. This is due to the
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leakage from the other resonance as explained below.

Figure 3.5 illustrates the extraction of two peaks separated 10∆f , 5∆f and

2∆f respectively. Even though spectral leakage (effect of the presence one

frequency component to other components in a Fourier transform [12]) can be

observed in 10∆f and 5∆f separations, the fitting processes is not very much

affected, as the main lobe is intact. However, when the separation is 2∆f ,

even the main lobe is affected degrading the ability to resolve for resonant

frequency. The error in frequency and Q factor of the varying resonance

(Q = 2× 105) are presented in figure 3.6.

Until the separation is about one DFT frequency interval ∆f (i.e. 1/T ),

the resonant frequency could be obtained with high accuracy. The Q factor

however degraded rapidly when the separation was decreased according to

figure 3.6, which shows the percentage errors of estimated resonant frequencies

and Q factors, when the separation is varied. This is due to the spectral

leakage from the resonances. The means of reducing spectral leakage is to

employ window functions with larger dynamic range(i.e. smaller side-lobes).

But all other window functions compared to the rectangular window used

here have lower frequency resolution, compromising the separation altogether

and merging the two high Q resonances into one lower Q resonance [12].

When the resonant frequency separation is between ∆f and 0.5∆f , the

DFT displays two combined humps as illustrated in figure 3.7a, but the cen-

tre of each hump tends to shift from its actual resonant frequency due to

severe spectral leakage. Even multiline fitting failed to extract the resonant

frequency properly in this range, as confirmed by Feit et. al [9]. Below the

seperation of 0.5∆f , the resonances morph into one resonance as illustrated

in figure 3.7b.
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Figure 3.5: Fitting of two resonances both of Q = 2× 105 separated by fsep,
keeping the lower resonant frequency fixed at fr = 193.548THz.
The Fourier transform is obtained from a 65536fs long signal
padded with zeros to obtain more points. FFT samples are de-
noted as (+) and the Fitted function as (-)
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3.3 Alternative Methods of Resonant

Frequency Extraction

As seen previously, in the time domain representation, a resonance can be

represented completely by a complex exponential (or damped sinusoidal).

When fitting algorithms process the time signal without transforming the

signal into the frequency domain, the limitation in extracting Q factor due to

sinc convolution is lifted. However, the fitting for all components has to be

accomplished simultaneously. The exponential terms of the fitting problem

makes the problem a demanding one. There exists techniques to either reduce

the fitting problem into a more manageable linear fitting problem or reduce

the number of components acted upon at one time. Some of these methods

are briefly discussed in this section.

3.3.1 Matrix Pencil Method

The matrix pencil method(MPM) is a non-iterative approach to solving the

nonlinear least squares problem involving complex exponentials [13]. Let the
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input signal be y = {y0, y1, . . . , yN−1} N samples contaminated with noise.

The signal is prefiltered using Singular Value Decomposition after making a

matrix Y from shifted columns of y,

Y =













y0 y1 . . . yL

y1 y2 . . . yL+1

...
... . . . ...

yN−L−1 yN−L . . . yN−1













(N−L)×(L+1)

(3.10)

where L is the pencil parameter chosen arbitrarily to be larger than the

number of unique complex sinusoids in the signal (M) [13]. Hua et. al have

shown that if the pencil parameter L, is kept between N/3 and 2N/3, the

method is immune to a SNR of 20− 26dB [14]. The highest noise immunity

is achieved at the extremes of the given range [14]. In this work L is chosen

to be ⌊N/2⌋. Singular value decomposition is carried out on Y resulting in,

Y = UΣV H (3.11)
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where U , V are unitary matrices containing eigenvectors of Y Y H and Y HY .

Σ = diag{σ0, σ1, . . . , σmin(N−L,L+1) | σi > σi+1} contains singular values of Y .

By comparing the values of Σ, the most significant M number of σ values

are preserved while making insignificant values zero. M is selected so that

σM/σ0 < 10−4. Let the filtered singular values be Σ′ = diag{σ0, σ1, . . . , σM−1}
and right singular vectors V ′ = {v0,v1, . . . ,vM−1}, where vi are the column

vectors of V .

Matrices V ′

1 and V ′

2 are made from V ′ by deleting the last row and the first

row respectively. The filtered pencil of materices Y ′

1 and Y ′

2 is made as,

Y ′

1 =UΣ′V ′H
1 (3.12)

Y ′

2 =UΣ′V ′H
2 (3.13)

The generalised eigen value of Y ′

1 and Y ′

2 are the complex eigenfrequen-

cies of the signal. The same can be obtained by the eigenvalues of ma-

trix {V ′H
1 }+{V ′H

2 }+. where + denotes psuedo inverse defined as {A}+ =

{AHA}−1AH .

A comparison between the matrix pencil method and the original Prony

estimation method is given in [13, 14], and shows that despite the common

formulation MPM is superior in terms of noise immunity.

3.3.2 Modified Prony Estimation

Prony’s method of extracting complex exponentials from a time signal is

a well known iterative least square fitting method. However, the method

does not converge, or provides inconsistent results in the presence of noise

[15]. Osborne and Smyth have developed and generalised a modified Prony

approach addressing these issues [16, 17, 18].

Let the noiseless signal µ = {µ0, µ1, . . . , µN−1} is a combination of complex
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exponentials,

µi =

p
∑

k=1

αke
−βkti (3.14)

where αk, βk are generally complex, and ti = i/N is the normalised time.

Given a sampled time signal with Gaussian noise with zero mean εi,

yi = µi + εi (3.15)

the modified Prony method estimates the function µ(t) that satisfies a con-

stant coefficient differential equation of order p.

p+1
∑

i=1

γiD
i−1µ = 0 (3.16)

where D is the differential operator.

The equation can be represented in a difference equation as,

p+1
∑

i=1

γi∆
i−1µ = 0 (3.17)

where,

∆ =N(II − I) (3.18)

II =













0 1 0 . . . 0

0 0 1 . . . 0
...

...
... . . . ...

1 0 0 . . . 0













(3.19)

The method estimates the complex constant coefficients γ = (γ0, γ1, ..., γp), so

that the derivative of the reduced sum of squares with respect to the complex

amplitudes αj of the fitted complex exponentials, ψ̇ = 2Bγ(γ)γ is as close to
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zero as possible.

B(γ)ij = yTXγi(X
T
γ Xγ)

−1XT
γjy − yTXγ(X

T
γ Xγ)

−1XT
γiXγj(X

T
γ Xγ)

−1XT
γ y

(3.20)

where, Xj is the leading (n− p) columns of Cj.

Cj =

(

p+1
∑

k=1

∆k−1

)T

(3.21)

X =

p+1
∑

k=1

γkXk (3.22)

The matrix X is a Toeplitz banded matrix where the first p + 1 elements of

the first column is given by,

c =























1 −1 1 . . . (−1)p

1 −2 . . . (−1)pp
. . . . . . ...

1 −
(

p

1

)

1



































1

N
. . .

Np













γ (3.23)

The matrix B can be formed efficiently as follows[16] : From matrix Y .

Y = (XT
1 y, . . . , X

T
p+1y) Matrix does not depend on γ

M = (XTX)1/2 The lower Cholesky factor - banded

Z =M−1Y Banded Matrix Multiplication

v =M−TZγ

V = (X1v, . . . , Xp+1v)

B = ZTZ − V TV

After forming B, its eigenvector is taken as new γ and is iterated until its

eigenvalue is close to zero as possible for the precision of floating point values

used. The eigenvector of Y TY is used as the initial γ.
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The roots of the characteristic polynomial pγ(z) = 0 of the differential

equation, are the complex frequencies βj [18]. In order to convert them to

the time/frequency scale of the input signal,

ζi = − 1

2π∆t
ln

(

1 +
βi
N

)

(3.24)

This formulation based on the constant coefficient differential equation,

known as the “difference formulation”, has a limitation in forming matrix

B from differencing the input signal y. When calculated with 64-bit preci-

sion, a non-negligible amount of subtractive cancellation occurs during the

differencing[18], requiring algorithms with adjustable precision depending on

both the number of samples N and p. Therefore, when extracting multiple

resonances from the difference method, a precision of more than log2(N
P )

bits was used in this implementation, when applying recursive differencing to

the input signal y and when calculating the Choleski factorisation required in

the process of calculating B.

An alternative formulation known as the “recurrence formulation”, derived

from a constant coefficient difference equation, does not suffer this limitation

due to precision[18].

By approximating the difference by a shift operation [18], equation 3.17,

p+1
∑

i=1

δiII
i−1µ = 0 (3.25)

This formulation becomes simpler as the recurrance prony parameters δ =

{δ1, δ2, . . . , δp+1} are directly present in the banded Toeplitz matrix X as c.

The method for calculating B(δ) is similar to that of B(γ), only simpler

because XT
i y are simply y shifted by i. The downside of the recurrance

method is that for largeN and p, the problem becomes ill-conditioned because

the roots of the characteristic polynomial become very close to unity in the

“recurrence formulation” [18].
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3.3.3 Harmonic Inversion

Harmonic inversion by filter diagonalisation is a method first developed by

Wall and Neuhauser[10] and later developed by Mandelshtam and Taylor[19].

The method filters the time signal using a windowed DFT to band limit (∆ω)

the signal, so that only 50 to 200 damped exponentials are present within the

chosen frequency band ([ω0 − ∆ω, ω0 + ∆ω]). The signal is then shifted by

−ω0 in the frequency domain, so that the resulting signal is centred at zero

frequency. The frequency domain signal is then inverted to the time domain

by an inverse discrete Fourier transform to obtain the band limited decimated

complex time signal. Frequency extraction is then carried out by methods

such as Prony’s method, direct signal diagonalisation or Pade approximant.

In this study, ‘haminv’ – an implementation using direct signal diagonalisation

– available on the internet at http://ab-initio.mit.edu/harminv was used. A

detailed formulation of the method is given in [10, 19] was used in the work

undertaken here.

3.4 Comparison of Frequency Extraction

Methods

In comparing the frequency extraction methods discussed in section 3.3, the

extraction of an isolated high Q resonances in the presence of noise is the

simplest, but nonetheless important, task. Time domain numerical methods

such as the Finite Difference Time Domain(FDTD) and Transmission Line

Modelling(TLM) methods are known to introduce unwanted noise via mesh

dispersion[20, 21] and mesh boundaries[22]. Noise also arises from simula-

tion domain boundaries (usually perfectly matched layers). These effects are

discussed separately in chapter 4.
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3.4.1 Extracting an Isolated Resonance

In order to identify the limitation of extracting resonances in the presence

of noise, random noise of known strength was added to a time signal of a

damped sinusoid, in the form given by equation 3.6, of a known frequency

of 193.548THz (1.55µm free-space wavelength) and varying Q factors rang-

ing from 100 up to 108. The random noise was generated with a normal

probability density function with varying strengths down to a SNR of 40dB.

Signal Parameters

Results pertaining to four noise levels - namely 100dB, 80dB, 60dB and 40dB

are discussed in the following sections. The noise values were generated from

a Gaussian random distribution with zero mean and a standard deviation of

10−5, 10−4, 10−3 and 10−2 times the amplitude of the sinusoidal signal for the

respective noise levels. The random number distribution used was Mersenne

Twister psuedo random number generator, the cycle length of which is about

106000 [23].

Under noise, all of these methods provide different values for different sig-

nals. Hence, a single reproducible value cannot be provided for a given set

of signal parameters. A statistical parameter representing the central value

and its dispersion (in statistical distribution sense) over many signals with

the same signal parameters produces a better picture of the strengths and

weaknesses of these methods. Median was used as the measure of central

tendency, while inter-quartile range was used as the measure of statistical

dispersion about the median. These two robust statistical measures together

indicate the accuracy of extracting each parameter from a given time signal

with a known signal to noise ratio.

In this section, the isolated resonance was extracted from the time sig-

nal formed as discussed above. All methods were given 500 double precision

floating point samples of the time signal sampled at 1fs increments. 100

such signals were generated from the same sinusoidal signal, by adding ran-

dom numbers drawn from the same statistical dispersion, to carry out the
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statistical analysis.

Results with Noise

The medians of estimated resonant frequencies of all methods at all noise lev-

els were at 193.548THz indicating that methods have no bias in extracting

resonant frequencies. Therefore, given enough number of time responses of

the same resonator with SNR more than 40dB, one could statistically evaluate

the actual resonant frequency. Further, the statistical dispersion of resonant

frequencies was negligible (< 1e − 8%) for all methods at −100dB,−80dB

noise levels. At −60dB only the harmonic inversion method had an account-

able statistical dispersion (still low at 2× 105%). This along with dispersion

of frequency for all methods at −40dB noise is presented in figure 3.8.
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Figure 3.8: The numerical dispersion of frequency extracted by all methods
at −40dB and harmonic inversion at −60dB.

According to figure 3.8, in general, the statistical dispersion in estimated

resonant frequency (i.e. error in resonant frequency for a given time signal)
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is higher for low Q factors. This is due to the fast decay making most time

samples (towards the end of the time signal) with lower signal to noise ratio

than that indicated (Harmonic inversion has the largest statistical dispersion

when the Q factors are high).

The median of the estimated Q factor is given in figure 3.9, whereas the

dispersion of estimated Q factor as a percentage of the median Q is given in

figure 3.10.
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Figure 3.9: The median estimated Q factor from a time signal of 500fs
at noise levels −100dB (dot-dash), −80dB (dotted), −60dB
(dashed), −40dB (solid) extracted from difference Prony (red),
recurrence Prony (green), matrix pencil (blue) and harmonic in-
version (black) methods.

As can be seen from figure 3.9, at −100dB, the ratio of the estimated

median to the actual Q factor is close to unity according to the gradient of

the graph. At −80dB, the graph levels at about 107, at −60dB levels at

about 106 and at −40dB levels at about 105 indicating that the median error

in Q factor estimation is directly proportional to the noise level present in the

signal.
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Figure 3.10: The interquartile range (measure of dispersion of Q) of estimated
Q factor against the actual Q factor at noise levels at −100dB
(dot-dash), −80dB (dotted), −60dB (dashed), −40dB (solid)
extracted using difference Prony (red), recurrence Prony (green),
matrix pencil (blue) and harmonic inversion (black) methods.

According to figure 3.10, the statistical dispersion of estimated Q increases

by ten folds when the noise level is increased by ten folds in general. the

percentage of statistical dispersion of Q reaches 100% when close to the lev-

elling off point in figure 3.9. The two graphs indicate that the the maxi-

mum limit of the Q factor estimated from these methods is directly propor-

tional to the noise level. Figure 3.10, shows no clear distinction as to which

method is best/worst, according to the results seen so far, harmonic inversion

is marginally worse than others.

The effect of increased time duration on Q factor estimation was observed

by comparing a time signal of 1000fs duration with the same signal parame-

ters and a noise level of −60dB. The median and inter-quartile range of these

results are presented in figures 3.11 and 3.12 along with the results previously

obtained for a time signal of duration 500fs with similar properties.
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Figure 3.11: The median of estimated Q factor from a time signal of 500fs
(dashed) and 1000fs (solid) at a noise level of −60dB extracted
from difference Prony (red), recurrence Prony (green), matrix
pencil (blue) and harmonic inversion (black) methods.

According to figures 3.11 and 3.12, as a direct result of increasing the time

duration by 2, both sets of curves have been shifted by a factor of 10. In other

words, the maximum Q factor obtainable with a given accuracy is increased

10 times when the time duration is doubled.

Compared to FFT based extraction method presented, these methods have

similar accuracy in estimating resonant frequency. But when estimating the Q

factor (or imaginary part of frequency), complex frequency extraction meth-

ods, clearly outperform the FFT method. This is knowing that the complex

extraction methods has 65 times less time duration and much lower SNR of

100dB-40dB (noiseless case in FFT includes quantisation noise of the IEEE

double precision floating point value which calculates to ≈ 300dB).
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Figure 3.12: The inter-quartile range of estimated Q factor from a time signal
of 500fs (dashed) and 1000fs (solid) at a noise level of −60dB
extracted from difference Prony (red), recurrence Prony (green),
matrix pencil (blue) and harmonic inversion (black) methods.

3.4.2 Identifying Two Closely Spaced Resonances

In ultra high Q optical resonators, resonances of the same radial order occur

at a separation given by the free spectral range(FSR), which depends on

the dimensions of the resonator[24]. These need to be separated to obtain

a correct estimation of Q factors. As shown previously with FFT, this can

be obtained by high enough frequency resolution, requiring long simulation

times. In addition to the heavy computations, errors due to the approximate

nature of numerical wave simulation methods become higher when simulated

for a longer time duration [25].

This section aims to obtain a limitation on the separability of two closely

spaced resonances that can be obtained for a given length of time, by extract-

ing a pair of resonances with varying separation at varying noise levels.

68



Chapter 3 Extraction of Resonator Properties

Signal Parameters

Time signals were formed by linearly combining two high Q resonances (Q =

107), where one resonance was placed at 193.548THz (1.55µm free space

wavelength), and the other placed with varying separation in frequency. Gaus-

sian random noise was added to the signals at SNR levels of 100dB, 80dB.

Results

The resonant frequencies and Q factors were extracted using difference Prony,

recurrence Prony, matrix pencil and harmonic inversion methods from the

above mentioned time signals. For each signal parameter 100 distinct signals

were generated with different noise values drawn from a Gaussian random

number distribution.

In the simulations, the main concern was the separability of the resonance

into two resonances by the extraction technique. If the method could identify

the two resonances, the median error percentage and the interquartile range

was insignificant and resembled the values obtained for isolated resonance

case. The recurrance Prony method at −80dB could not identify peaks closer

than 0.5∆f , where ∆f = 0.5THz is the frequency resolution determined by

the total time (2000fs) in the time signal. All other methods could identify

two seperate resonances upto 0.2∆f , whereas the recurrence Prony method

at −100dB could identify even upto 0.1∆f .

The median of the percentage errors in Q factor of such obtained resonances

are shown in figure 3.13, whereas the interquartile range is shown in figure

3.14.

From figures 3.13 and 3.14, it is evident that the error in Q factor in-

creases with decreasing separation in all methods except harmonic inversion.

Below ∆f harmonic inversion behave like other methods, but above ∆f , its

behaviour is unexplainable. This might be because of the filtering and decima-

tion occurring in harmonic inversion method. However, this behaviour is not

reported elsewhere and cannot be confirmed by this test alone. At −100dB

all methods (except harmonic inversion) can separate resonances upto 0.5∆f
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Figure 3.13: The median percentage error in extracting Q factors from time
signals of two resonances of Q = 107 of length 2000fs with
two noise levels -100dB (solid) and -80dB(dashed) obtained via
difference Prony (red), recurrence Prony (green), matrix Pencil
(black), and harmonic inversion (black).

with 10% accuracy in Q factor. At −80dB all methods (except harmonic

inversion) can separate resonances upto 2∆f with 10% accuracy in Q factor.

This is the limitation of extracting two closely spaced high Q resonances from

a limited time signal using complex frequency determination techniques.

According to the results obtained so far, the difference formulation of mod-

ified Prony method provides the best accuracy in the resonant frequency and

the Q factor, while the recurrence formulation provides the least accurate

results. The matrix pencil method provides results almost as good as the

modified Prony method in most circumstances. The performance of the har-

monic inversion method varies depending on the conditions of the signal such

as noise, Q factor and separation in frequency in an unpredictable manner. In
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Figure 3.14: The interquartile range of percentage error in extracting Q fac-
tors from time signals of two resonances of Q = 107 of length
2000fs with two noise levels -100dB (solid) and -80dB(dashed)
obtained via difference Prony (red), recurrence Prony (green),
matrix Pencil (black), and harmonic inversion (black).

general, all methods could identify the resonant frequency and the Q factor

with an accuracy better than the FFT based fitting method.

3.4.3 Extracting Resonances of a Dielectric Infinite

Cylinder

Having studied the limitations of the frequency extraction techniques in ex-

tracting isolated and two closely spaced resonances, limitations occurring in

applying these methods in extracting multiple resonances of a practical res-

onator, which contains a mix of low and high Q resonances with varying

separations between them, are now studied.
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Signal Parameters

An infinite cylindrical optical resonator is considered here as a typical ex-

ample containing a mix of resonances. The complex resonant frequencies of

an infinite cylinder placed in free-space can be obtained using an analytical

solution as given in eqution 4.16 in the next chapter.

The time signal was formed from the resonances of an infinite cylinder of

index n = 2.82 (As2Se3 at 1.55µm wavelength) and radius a = 1.35µm within

the frequency range of 150−250THz, which includes resonances of azimuthual

order m in the range of 1 to 16. Despite the sub wavelength dimensions, the

resonances have high radiation Q factors, which in practical situations is much

lower due to material loss [6]. All resonances of the form given in equation

3.6 with equal amplitudes A, were summed in time domain to form the time

signal. Then, uniform random noise was added with an SNR of 80dB, and

the resulting signal was sampled at 1fs intervals. Two such signals of length

2000fs and 4000fs were used to extract resonances. The Fourier transforms

obtained for the signals with the two time lengths are shown in figure 3.15.
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Figure 3.15: Magnitude of the discrete Fourier transform of the 2000fs and
4000fs long time signals of 2000 and 4000 samples respectively,
containing the resonances of an infinite cylinder of refractive in-
dex n = 2.82 and radius a = 1.35µm, between 150-250THz with
added noise of SNR=80dB.
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Prony Method Modifications

In order to use the modified Prony methods, the number of components was

first estimated from the Fourier transform shown in figure 3.15. Since each

resonance appears as a complex conjugate pair forming a real signal, P should

at least be twice the number of resonances present. According to figure 3.15,

the number of frequency components P was initially set to 32.

The attempt to extract these resonances failed with the recurrence formu-

lation with double precision calculations, as the limited precision of 53 bits

(IEEE 754 floating point standard[26]) was not sufficient to perform the re-

quired Cholesky factorisation[18], when NP is large. Therefore, quadruple

precision (113 bits according to IEEE 754[26]) was used in the modified Prony

recurrence method.

In both formulations of modified Prony method, it was observed that the

estimate of the Q factors improved when P was increased from its initial guess

at P = 32. The estimated Q factors improved until P was equal to 60. In the

solution, the additional resonances had small amplitude and/or did not fall

within the frequency range of 150−250THz considered, indicating they were

spurious resonances that helped the solution to converge while compensating

for noise. This was confirmed from the solution of the matrix pencil method,

which estimates the number of resonances from the most significant singular

values, as mentioned in section 3.3.1. The matrix pencil solution also had 60

components and some of them were out of the frequency range of interest and

had small amplitudes.

Results

The error in the resonant frequency and the Q factor are given in figures 3.16

and 3.17 respectively for the time signal of lengths 2000fs and 4000fs.

According to figure 3.16(a), and figure 3.17(a), the difference Prony method

was the most accurate, where as the matrix pencil method fared as the second

best. According to figures 3.16 and 3.17, when extracting frequency, harmonic

inversion was close in accuracy to the Fourier transform based method, while
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Figure 3.16: Error in resonant frequency estimation from a time signal (a) of
length T = 2000fs and (b) of length T = 4000fs, of a dielec-
tric cylindrical cavity of radius r = 1.35µm and refractive index
n = 2.82 obtained using harmonic inversion, matrix pencil and
modified Prony (recurrence and difference) methods. T is the
length of the time signal.
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the recurrence Prony method had the worst accuracy. However, harmonic

inversion had better accuracy in estimating Q factors than the Fourier trans-

form or recurrence Prony methods.

In general for all methods, the estimation of resonant frequency improved

slightly with an increase in Q factor, while the estimation of Q factor de-

graded. An increase in the length of the time signal improved the accuracy

in both resonant frequency and Q factor extraction of all methods.

Due to large P , and the high precision required to accommodate a large

value of P , the difference Prony method was significantly more computation-

ally heavy compared to other methods. The matrix pencil method on the

other hand was quick to produce a solution when N = 2000, but took a

significantly longer time, close to that of the difference Prony method, when

N = 4000, due to the singular value decomposition of a matrix of rank 4000.

Harmonic inversion was the quickest of all the methods and did not increase

its complexity much when N was increased, due to the banded and decimated

signal used to extract resonances.

It is important to note some limitations observed. In the matrix pencil

and recurrence Prony methods, sampling of time signals beyond the Nyquist

frequency limit ( fsampling > 2fhigh ), in order to decrease the matrix sizes,

resulted in solutions mostly out of the frequency range of interest. This poses a

challenge in transforming them into the frequency range of interest. Since the

recurrence Prony method is unable to handle a large number of samples and

resonances, this limitation in sampling interval renders the method marginally

suitable for extracting the parameters of closely spaced high Q resonances.

Table 3.2 summarises the key ideas observed during the comparison of

frequency extraction methods.

Therefore, for a given time signal, the modified difference Prony method

is the best method in terms of accuracy to extract the resonant frequency

and Q factor by tuning the number of components P and the calculation

precision. The matrix pencil method can be a better alternative in terms

of computational efficiency, when the number of time samples is sufficiently

low. If the number of samples is very large, harmonic inversion provides a

76



Chapter 3 Extraction of Resonator Properties

Table 3.2: Frequency Extraction Method Summary

Method Complexity Accuracy Remarks
FFT Fit quick low Manual intervention for fr
Harmonic quick medium
Inversion
MProny medium medium Cannot be used when N is high
recurrence Cannot be used for large ∆t
MProny slow high Multi-precision calculation required
difference Memory limitations due to large matrices
Matrix slow high Cannot be used for large ∆t
Pencil Memory limitations due to large matrices

reasonable alternative to both matrix pencil and modified difference Prony

methods.

3.5 Conclusions

Resonant frequencies and Q factors are the fundamental spectral parameters

of any resonator. Yet calculation of these properties from limited time signals

obtained from time domain numerical simulations are not completely straight

forward. Therefore, characterisation of resonance extraction techniques must

be performed before applying them to extract resonances.

In this chapter, several resonant frequency estimation techniques useful for

the extracting closely spaced high Q resonances of optical resonators from

time domain data were discussed. As a very straight forward method, shape

extraction from a Fourier transform of the time signal was presented. It was

shown that a significant variation of Q factor changed the sample points in

the Fourier transform only slightly when Q is high relative to the time signal

length. Further, the method is poor in resolving two closely spaced reso-

nances. These render the straight forward (Fourier transform based) method

inappropriate to extract closely spaced high Q resonances. Therefore, several
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complex exponential extraction techniques were then considered.

The recurrence formulation of the modified Prony method was capable of

extracting isolated resonances with significant accuracy. However, its ac-

curacy heavily reduces when two resonances are closely spaced, due to the

closeness of the roots of the characteristic polynomial, to unity in the formu-

lation, as mentioned in [18]. The difference formulation of the modified Prony

method was then tested, but could not be used with standard 64-bit floating

point precision as the repeated differencing and Cholesky factorisation in the

method required higher precision. With the use of floating point numbers

with adjustable precision, the method was successful in extracting multiple

resonances with significant accuracy. However, the method was computation-

ally intensive in practical situations, due to the multiple precision arithmetic

involved and the large number of components required (P ). The value for P

should be much larger than the peaks visible in a Fourier transform of the

time signal to accommodate resonances with small amplitudes and spurious

resonances, which can be eliminated by selection. The matrix pencil method

was found to be a good alternative with relatively high accuracy in evaluating

both resonant frequency and Q factor. In addition, the harmonic inversion

method, which is a relatively new means for extracting resonances, was tested.

This method used low computational resources, while providing results with

moderate accuracy.

Based on the information regarding the limitations of frequency extraction

methods from limited time signals, the limitations of time domain numerical

simulations can now be observed given that the accuracy of frequency extrac-

tion is made higher than that of the numerical method by simulating long

enough to secure required accuracy. Therefore, the limitations of TLM in the

context of optical resonators are studied in the next chapter.
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4
Limitations of Time Domain

Numerical Methods

In almost all numerical method solutions there exists an error which can for

example be quantified by comparing with results for a problem for which

an analytical solution exists. The success of the numerical method lies in

its ability to converge quickly to the required solution with refinement of

the numerical method. Finite Difference Time Domain (FDTD) method and

the transmission line modelling (TLM) method fall into the category of time

domain numerical methods based on the differential form of Maxwell’s equa-

tions. They are considered as rigorous methods, which converges with mesh

refinement. However, this assumption is sometimes questionable; as pointed

out by Boriskin et. al in [1], for example, FDTD does not converge to the

known scattered spectra of an infinite cylinder excited externally by a line

source with mesh refinement. This section therefore is dedicated to identify-

ing the roots of such a deviation from the analytical solution, in the context

of modelling optical resonators.
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Chapter 4 Limitations of Time Domain Numerical Methods

4.1 Problem Description

From the paper by Boriskin et. al , it is deducible that the solution of electro-

magnetic problems containing circular boundaries using a time domain code

that is run for a long time is prone to errors. Further, the size of the ge-

ometries used in [1] is comparable in size to the interested wavelength. In a

bid to isolate the causes of the errors, an isolated infinite cylinder of radius

a and refractive index nc was studied analytically and using TLM. But in-

stead of exciting from outside the geometry as in [1], an off-centre line source

inside the geometry was used. By using a source inside the resonator, the

influence of coupling was eliminated. Free-space coupling tends to be poor

for resonators especially when the Q factors are high [2]. This also minimises

the effect of back scattering from the end of the simulation domain. Hence, in

this chapter, the intrinsic problem of modelling of circular optical resonators

is considered.

4.2 An Analytical Approach

Consider an infinite cylinder of homogeneous nonmagnetic dielectric material

of refractive index nc of radius a placed in freespace n0 = 1.

The time harmonic field form of the Maxwell curl equations[3] in equations

4.1 and 4.2 for a time variation of ejωt, in an isotropic medium can be expanded

in a cylindrical coordinate system (ρ, ϕ, z) to the form given in equations 4.3a

to 4.3f for a source free domain.

∇× E = −jωµH (4.1)

∇×H = jωεE+ J (4.2)
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(

1

ρ

∂Ez

∂ϕ
− ∂Eϕ

∂z

)

= −jωµHρ (4.3a)

∂Eρ

∂z
− ∂Ez

∂ρ
= −jωµHϕ (4.3b)

1

ρ

(

∂(ρEϕ)

∂ρ
− ∂Eρ

∂ϕ

)

= −jωµHz (4.3c)
(

1

ρ

∂Hz

∂ϕ
− ∂Hϕ

∂z

)

= jωεEρ (4.3d)

∂Hρ

∂z
− ∂Hz

∂ρ
= jωεEϕ (4.3e)

1

ρ

(

∂(ρHϕ)

∂ρ
− ∂Hρ

∂ϕ

)

= jωεEz (4.3f)

The whispering gallery modes can be categorised into two types in order

to obtain the reduced scalar wave equation of Debye Potential [4]. In electric

type waves one magnetic field component is zero, whereas in magnetic type

waves one electric field component is zero [2]. In the case of a cylinder infinite

in z-dimension, Hz and Ez are zero in E type and H type waves respectively.

4.2.1 Electric Type Waves

Given Hz = 0, from equation 4.3c,

∂(ρEϕ)

∂ρ
=
∂Eρ

∂ϕ
(4.4)

By defining W so that ρEϕ = ∂W
∂ϕ

, Eρ = ∂W
∂ρ

, and W = ∂U
∂z

, from equations

4.3d and 4.3e, one can obtain,

Hϕ = −jωε∂U
∂ρ

(4.5)

Hρ = jωε
1

ρ

∂U

∂ϕ
(4.6)
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By substituting 4.5 in 4.3f, one can obtain an expression for Ez in terms

of U . In order to satisfy 4.3b and 4.3c with expressions for Hϕ, Hρ, and

Ez in terms of U , the reduced wave equation can be obtained for cylindrical

coordinates as given in equation 4.7 [2].

∂2U

∂z2
+

1

ρ

∂

∂ρ

(

ρ
∂U

∂ρ

)

+
1

ρ2

(

∂2U

∂ϕ2

)

+ k2U = 0 (4.7)

The electric field components are given by[2],

Eρ =
∂2U

∂ρ∂z
(4.8)

Eϕ =
1

ρ

∂2U

∂ϕ∂z
(4.9)

Ez =
∂2U

∂z2
+ k2U (4.10)

Since there is no variation of potential along the z-axis(infinite), the RHS

of equations 4.8, 4.9, and the first term of equation 4.10 vanish.

By variable separation of U(ρ, ϕ) = R(ρ)Φ(ϕ), one can obtain from equa-

tion 4.7,

ρ2
d2R

dρ2
+ ρ

dR

dρ
+ (k2ρ2 − c)R = 0 (4.11)

d2Φ

dϕ
+ cΦ = 0 (4.12)

where c
ρ2

is the separation constant.

Since the azimuthal variation Φ(ϕ) is continuous from ϕ = 0 to ϕ = 2π, 0 <

c = m2, where m ∈ Z
+
0 . Hence, the solution of Φ(ϕ) consists of sinusoidals.

Equation 4.11, is the Bessel differential equation where the argument is kρ

and the order of the Bessel function is m. Since the field inside the cylinder

is finite, the solution inside will consist of Bessel functions of the first kind

Jm(kρ). In order to satisfy the radiation condition, the solution outside the

cylinder will consist of outgoing Hankel functions (second kind) H(2)
m (k0ρ).
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Therefore, the general solution for a cylindrical resonator can be expressed as

Um(ρ, ϕ) =

{

C i
mJm(kρ)e

±jmϕ ρ ≤ a

Ce
mH

(2)
m (k0ρ)e

±jmϕ ρ > a
(4.13)

From the continuity of tangential field components Ez and Hϕ at the cylin-

der boundary(ρ = a) one can obtain two relationships between C i
m, Ce

m for

nonmagnetic materials, as given in equations 4.14 and 4.15 respectively.

Ce
m

C i
m

= ε
Jm(k0

√
εa)

H
(2)
m (k0a)

(4.14)

Ce
m

C i
m

= ε
3

2

J ′

m(k0
√
εa)

H
(2)′
m (k0a)

(4.15)

By combining equations 4.14 and 4.15 one can obtain the characteristic

equation of k0 as in equation 4.16, the roots of which are the resonances of

the dielectric nonmagnetic infinite cylinder.

Jm(k0
√
εa)H(2)′

m (k0a)−
√
εJ ′

m(k0
√
εa)H(2)

m (k0a) = 0 (4.16)

Due to the oscillatory nature of the cylindrical waves, there exists an in-

finite number of roots to the characteristic equation. Hence, resonances are

denoted by two mode numbers m and q, where q denotes the q th root of the

characteristic equation of order m. From the discussion provided in [2] for

spherical resonators, one can come up with some observations about reso-

nances in an infinite cylinder. As in spherical resonators, q also denotes the

number of nodes of the field within the cylinder in the radial direction [2].

Hence, q is noted as the radial order. Similarly, m denotes the number of

nodes in the azimuthal direction; hence named azimuthal order. Hence, m

and q together completely describe the modes within an infinite cylinder be

they high Q whispering gallery or low Q bulk modes. From the properties of

Bessel functions, the Q factors of a particular azimuthal order m decreases

with increasing radial order q [2]. This is also related to the fact the higher q
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(more nodes within cylinder) the larger the modal volume.

4.2.2 Magnetic Type Waves

Given Ez = 0, from equation 4.3f,

∂(ρHϕ)

∂ρ
=
∂Hρ

∂ϕ
(4.17)

By defining W so that ρHϕ = ∂W
∂ϕ

, Hρ =
∂W
∂ρ

, and W = ∂V
∂z

, from equations

4.3a and 4.3b, one can obtain,

Eϕ = jωµ
∂V

∂ρ
(4.18)

Eρ = −jωµ1
ρ

∂V

∂ϕ
(4.19)

By combining equations 4.18,4.19 and 4.3c, 4.3d,4.3e, one could obtain the

reduced wave equation for the H type waves as given in equation 4.20, which

is of the same form as equation 4.7.

∂2V

∂z2
+

1

ρ

∂

∂ρ

(

ρ
∂V

∂ρ

)

+
1

ρ2

(

∂2V

∂ϕ2

)

+ k2V = 0 (4.20)

Similar to E-type waves, Hρ and Hϕ components vanish due to z-invariant

V . The only magnetic component is given by,

Hz = k2V (4.21)

Since the reduced wave equations for both E and H types are similar, the

general solution of H-type waves will be

Vm(ρ, ϕ) =

{

C i
mJm(kρ)e

±jmϕ ρ ≤ a

Ce
mH

(2)
m (k0ρ)e

±jmϕ ρ > a
(4.22)

From the continuity of tangential components Eϕ and Hz at the cylinder
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boundary, one can obtain two relations between C i
m and Ce

m for nonmagnetic

materials as given in equations 4.23 and 4.24 respectively.

Ce
m

C i
m

= ε
Jm(k0

√
εa)

H
(2)
m (k0a)

(4.23)

Ce
m

C i
m

=
√
ε
J ′

m(k0
√
εa)

H
(2)′
m (k0a)

(4.24)

By combining equations, 4.23 and 4.24, on can obtain the characteristic

equation of k0 for H type waves as given in equation 4.25, the roots of which

are the H type resonances of the nonmagnetic infinite cylinder.

√
εJm(k0

√
εa)H(2)′

m (k0a)− J ′

m(k0
√
εa)H(2)

m (k0a) = 0 (4.25)

4.2.3 Resonant Frequencies and Q factors

The resonant frequencies and the Q factor of the structure considered in this

chapter for E and H type waves can be extracted by solving equations 4.16

and 4.25 for complex k0 respectively. The resonant frequency fr and the Q

factor can be obtained from the following relations[2].

fr =
c

2π
ℜ(k0) (4.26)

Q =
ℜ(k0)
2ℑ(k0)

The equations 4.16 and 4.25 were solved by Newton Rhapson method for

resonant frequencies between 150THz and 250THz (1.55µm centre wave-

length), for a cylinder of r = 1.35µm and n =
√
ε = 2.82. Table 4.1 shows

the resonant frequencies and Q factors for E waves, while table 4.2 shows the

resonant frequencies of Q factors of H waves within the frequency range of

interest.

The resonant frequency and Q factor results shown in tables 4.1 and 4.2

indicates that the Q factor increases as the number of nodes in the azimuthal
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Table 4.1: The E type analytical resonances of a dielectric cylinder of r =
1.35µm and n = 2.82 in the frequenbcy range of 150 - 250THz

Azimuthal Radial Res. Freq. Q
Order Order (THz)

9 1 151.90 5.89× 104

6 2 151.91 134
10 1 166.12 2.22× 105

7 2 167.88 308
11 1 180.22 8.47× 105

8 2 183.59 766
12 1 194.23 3.27× 106

9 2 199.05 2042
13 1 208.16 1.27× 107

7 3 209.91 92
10 2 214.30 5744
14 1 222.02 5.00× 107

8 3 226.20 161
11 2 229.37 16868
15 1 235.82 1.98× 108

9 3 242.34 310
12 2 244.28 51263
16 1 249.56 7.87× 108

direction increases. When the radial order increased, the Q factor is decreased

significantly. These results will be later used to compare the resonant frequen-

cies and Q factors estimated from TLM numerical simulations for E and H

waves.

4.3 Limitations in Representing Domains in a

Cartesian mesh

Two dimensional numerical methods based on Cartesian (structured) meshes

represent each geometry by a set of cuboids (in special cases cubes). There-
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Table 4.2: The H type analytical resonances of a dielectric cylinder of r =
1.35µm and n = 2.82 in the frequenbcy range of 150 - 250THz

Azimuthal Radial Res. Freq. Q
Order Order (THz)

8 1 150.42 1.61× 104

9 1 164.71 6.14× 104

10 1 178.88 2.37× 105

7 2 180.46 165
11 1 192.93 9.22× 105

8 2 196.38 468
12 1 206.90 3.61× 106

9 2 211.96 1382
13 1 220.79 1.42× 107

10 2 227.25 4206
14 1 234.62 5.66× 107

11 2 242.34 1.31× 104

15 1 248.38 2.26× 108

fore, the representation of the non-recti-linear edges of a geometry is non-

exact. Furthermore, if the mesh is uniform in each direction, even recti-linear

edges not confirming to the grid cannot be expressed exactly. Figures 4.1a

and 4.1b illustrate these situations.

The stair-step approximation to curved or non-mesh-conforming boundaries

poses several problems. Misrepresentation of the area and/or the perimeter

of the geometry is one such problem. Another problem concerning resonators

would be spurious resonances, and resonance frequency shifts due to the ir-

regular boundary [5, 6]. In the next section, generally used methods of dis-

cretisation are tested for the circular dielectric resonator geometry discussed

in section 4.2 to observe the influence of these on the accuracy of results

produced using a 2D TLM method.
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(a) (b)

Figure 4.1: Limitations of representing (a) non-recti-linear edges and (b) non-
mesh-conforming recti-linear edges in a uniform Cartesian mesh

4.4 Standard Methods of Discretisations

Since there is an ambiguity in selecting border-cells (cells partially covered by

the geometry) attached to the circular geometry, one can often find several

methods to approximate the curved boundary. If all border-cells are consid-

ered as inner part of the discretised geometry the total area and the perimeter

will be overestimated; this will be referred to as “outside” stair-step approxi-

mation. If all border-cells are not included in the description of the inner part

of the geometry, it will be referred to as “inside” stair-step approximations.

This underestimates area and perimeter. These two cases are illustrated in

figures 4.2a and 4.2b and may be regarded as the two extremes of the dis-

cretisation of a geometry. The difference between the two becomes smaller as

the cell size decreases.

In order to test the applicability and limitations of these two standard

methods of discretisation in the context of a circular resonator, the frequency

response of energy within the resonator after a line source excitation inside the

resonator will be compared against the analytical results obtained previously.

The domain of the simulation was discretised so that the usual rule of

thumb, where ∆l < λmin/10 holds true. The complete set of simulation

parameters is given in table 4.3 and the simulation structure is illustrated in

figure 4.3.
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(a) (b)

Figure 4.2: (a) Inside and (b) outside discretisations of a circle in a Cartesian
mesh

(ρ0, ϕ0)
n

freespace

y

x

ρ = a

Figure 4.3: Infinite cylinder (ρ = a) when exited with an infinite line source
placed at r0 = (ρ0, ϕ0).

The spectrum of the total energy is defined in terms of the Fourier transform

F as,

Eres(f) =

∫

Ω

F{Ez(r, t)}F{Ez(r, t)}∗dr (4.27)

where Ω is the domain of the resonator (i.e cylinder). The spectrum of energy

for inside and outside discretisations are plotted alongside the analytical result

for resonant frequency for E waves in figure 4.5. It is not immediately obvious

from this plot which peak in the spectrum corresponds to which analytic

resonant frequency. This information can be deduced from the corresponding

modal fields pattern by Fourier transforming the time signal at every point
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Table 4.3: Simulation parameters of the infinite cylinder in air excited by a
pulsed line source

Refractive Index (As2Se3) n 2.82
Radius r 1.35µm
Domain step size ∆l 0.05µm

Time step ∆t
√
2∆l/c

Domain Size 10µm× 10µm
Domain Truncation TLM Matched Boundary
Source position ρ0 1.13µm
relative to center ϕ0 π/4
Width of Gaussian Pulse w 5fs
Centre frequency of excitation f0 200THz
Centre wavelength in medium λm 0.5319µm

and observing the field pattern in space at a frequency close to the centre of

the peak. Some of the field patterns for inside and outside discretisations are

shown in figure 4.4.

For these standard methods of discretisations, the frequency shifts reported

by Boriskin et. al [1] can be confirmed from figure 4.5. But the two ex-

treme discretisations shift the curve in opposite directions. This indicates

that minute variations at the boundary can change/shift the response of the

resonators significantly.

The variation of these shifts are then observed for finer meshes with space

steps of 0.025µm and 0.0125µm. Figures 4.6 and 4.7 show the energy spec-

trum of E waves for step sizes of 0.025µm and 0.0125µm respectively.

From figures 4.6 and 4.7, it should be noted that the difference between the

resonances predicted using the inside and the outside discretisations is not

only limited to a frequency shift. The relative amplitudes of resonances are

different, indicating that discretisation plays an important role in modelling

resonators.

There is a significant error in resonant frequency predicted in λ/10 (0.05µm)

step size towards the higher frequencies. This effect can be related to mesh
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(c) WGM(9,3) outside

Figure 4.4: The Resonant Magnitude Mode Shapes of (a)WGM(10,1) in in-
side (b)WGM(9,2) in inside (c)WGM(9,3) in outside discretisa-
tions.

dispersion which is the intrinsic error of the TLM mehod [7]. The mesh dis-

persion occurs in TLM due to the small amount of magnetic susceptibility

coupled when representing electric susceptibilities [7]. The amount of mag-

netic susceptibility decreases with decreasing step size; hence the error should

diminish rapidly when the step size is decreased. However, in this case it does

not and there exists a significant frequency shift even at λmin/40 step size in

figure 4.7. The shifts in resonant frequency observed in these graphs from

the analytical result confirms the non converging frequency shift reported by

Boriskin et. al [1].

However, this is not necessarily due to the boundary as the authors of

[1] suspected. As can be seen from figures, 4.5, 4.6 and 4.7, the shift is

nearly symmetric about the analytical resonant frequencies and the direction

of the shift depends upon the discretisation method. If the shift was solely

due to the boundary, the shift should be assymetric about the analytical

resonant frequencies affecting both geometries alike. Therefore, the results

indicate that the discretised area should be chosen carefully in order to obtain

accurate results for the resonant frequency (i.e. spectrum) when simulating

non-Cartesian geometries using a Cartesian mesh.
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Figure 4.5: The energy spectrum of E type waves supported by an infinite
cylinder excited by a line source inside the resonator for inside
and outside discretisation with a space step of 0.05µm along with
the analytical resonant frequencies.

4.5 Alternative methods of Discretisation

The above discussion leads towards an intermediate discretisation method in

order to accurately model non-Cartesian geometries using structured TLM

meshes. The most obvious solutions that spring to mind would be graded

meshing [8] and multi meshing [9] in order to use finer meshes to describe

boundary regions without compromising on computational demand.

The graded meshing technique enables higher resolution and rectangular

cell sizes to represent finer details of the geometry as illustrated in figure

4.8a. The graded meshing maintains one-to-one links to neighbouring cells, by

applying the grading along vertical and/or horizontal lines. In order to match
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Figure 4.6: The energy spectrum of an infinite cylinder excited by a line
source inside the resonator of E type waves for inside and outside
discretisation along with the analytical resonant frequencies for
step size of 0.025µm.

the Courant criteria, the time step is reduced to match the smallest space step

in the mesh, demanding more computational effort. Hence, for a given total

simulation time the number of time steps will be doubled when the smallest

step size is halved, but this approach does not result in a significant increase in

the total number of cells. Therefore, the grading operation results in a linear

increase in computational complexity, whereas a usual mesh refinement on

the entire spatial domain results in a cubic increase in complexity of a 2D

simulation.

A similar but a computationally less intensive method is to incorporate

multi-grid technique where mesh refinement is applied to areas with fine de-

tails as illustrated in figure 4.8b. In this method, only the required cells need

96



Chapter 4 Limitations of Time Domain Numerical Methods

 0.01

 0.1

 1

 160  180  200  220  240

M
ag

ni
tu

de
 (

no
rm

al
is

ed
)

Frequency(THz)

inside
outside

data

Figure 4.7: The energy spectrum of an infinite cylinder excited by a line
source inside the resonator of E type waves for inside and outside
discretisation along with the analytical resonant frequencies for
step size of 0.0125µm.

to be refined. The compromise of this method is that an approximation has to

be made in connecting multiple links to multiple links of neighbouring cells.

This disconnection applies to the time-step as well. The time-steps of smaller

cells are smaller and that of the larger cells are larger and are multiples of

powers of 2. These two approximations if handled properly lead to an efficient

mesh refinement method.

CST Microwave Studio [10], a commercial implementation of TLM with a

further optimised multi mesh (as of 2012), was use to observe the accuracy

improvements obtainable by partially refining the mesh as mentioned above.

CST simulation parameters were the same as the parameters given above

except the space step and time step. The space step was allowed to vary
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(a) Graded Mesh (b) Multi Mesh (c) Same Area

Figure 4.8: Alternative Meshing Techniques

between λmin/10 and λmin/100, where λmin = 1.2µm. Since the CST is a

3D TLM implementation, the time step is at least
√
2 times smaller than

that used in the 2D simulation throughout this study. However, the time

complexity of the this CST simulation was similar to that of the 2D simulation

for the step size of 0.025µm (≈ λmin/20). The energy spectrum of the infinite

cylinder obtained from the time domain CST simulation is given in figure 4.9.

The resonances were extracted from the time signals with a duration of

18000fs using difference Prony method. The medians of the resonant fre-

quencies and Q factors obtained for each resonance are given in table 4.4. It

should be noted that, when the resonances are extracted using matrix pen-

cil and harmonic inversion, the resonant Q factors varied from that given in

table 4.4. No two methods agreed with each other indicating that the ap-

proximations used in CST simulation imposes irregular noise affecting each

resonant extraction method differently. Since the results from the difference

Prony method were similar for time duration of 4000fs, 8000fs and 18000fs

its results were chosen to be presented here.

The error in the obtained resonant frequencies and Q factors compared to

the analytical results presented in table 4.1 are plotted against theoretical

values in figures 4.10 and 4.11 respectively. In table 4.1, WGM stands for

whispering gallery modes and the mode number pair represent the azimuthal

order and the radial order respectively.

As can be observed, the resonant frequency could be obtained with an er-
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Figure 4.9: The spectrum of an infinite cylinder (n = 2.82, r = 1.35µm) ex-
cited by a line source inside the resonantor of E type waves as sim-
ulated by CST Microwave Studio with an optimised multi mesh
with varying stepsize between 0.04µm and 0.004µm.

ror less than 0.2% for all resonances of concern. However, a pattern for the

resonance shifts cannot readily be observed. Hence, it is difficult to charac-

terise the observed resonance shift and provide an explanation for cause of

this error. This non uniform behaviour is mainly due to the non uniformity

of the mesh. Therefore, it is difficult to predict the accuracy improvement

obtainable by refining the mesh further.

On the other hand, the Q factor has a general trend of increasing error with

the increasing theoretical Q factor. As observed, Q factors up to 105 could be

obtained to within 10% error. In figure 4.11, the general trend of the error in

Q factor of WGM(x,1) modes (i.e. 1st radial order modes) is lower than the

general error trend in Q factor of WGM(x,2) modes (2nd radial order modes).

The error trend of WGM(x,2) is lower than that of WGM(x,3), though this

is not that clearly visible. This is opposite to what one would expect from
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Table 4.4: The resonances obtained (using difference Prony method) from
time responses of an infinite cylinder of n = 2.82 and r = 1.35µm
of a length of 18000fs simulated with CST Microwave Studio.

Resonance Frequency Q factor
WGM(9,1) 151.72 38496
WGM(6,2) 151.90 137
WGM(10,1) 165.938 217218
WGM(7,2) 167.871 305
WGM(11,1) 180.054 66684
WGM(8,2) 183.529 757
WGM(12,1) 194.551 25606
WGM(9,2) 199.09 1994
WGM(13,1) 208.047 4640860
WGM(10,2) 214.361 5681
WGM(14,1) 221.97 2713
WGM(8,3) 226.313 169
WGM(11,2) 229.489 15163
WGM(15,1) 235.797 443718
WGM(9,3) 242.666 324
WGM(12,2) 244.393 13022
WGM(16,1) 249.549 180252

a uniform mesh where WGM(x,1) Q factors are underestimated more than

WGM(x,2) Q factors, etc since the stair-step approximation affects the modal

volume of WGM(x,1) more. In multi mesh techniques, the opposite is true.

The meshing becomes finer away from the centre towards the boundary. The

TLM errors are then higher for coarse meshes further inside but lower for

finer meshes closer to the boundary. This is a possible explaination of the

results obtained using CST MW studio.

In conclusion, these mesh refinement techniques can be thought of as ef-

ficient alternatives to complete mesh refinement. Despite being able to ob-

tain a resonably accurate result with comparatively small computational de-

mand, the techniques’ error characteristics vary from one situation to another.
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Figure 4.10: The percentage error of the resonant frequencies of the E wave
modes supported by an infinite cylinder (n = 2.82, r = 1.35µm)
modelled by CST Microwave Studio with a multi mesh with
space step size varying between 0.04µm and 0.004µm. 1st ra-
dial order modes are deonted by WGM(x,1), 2nd order modes
by WGM(x,2) and 3rd order modes by WGM(x,3).

Hence, one cannot deduce the amount of refinement required to obtain a given

accuracy level.

Therefore, in the next section some alternative discretisation techniques

are explored that can be used to model non-Cartesian geometries using a

Cartesian grid. It is shown that they behave slightly more predictively for

the illustrative example of the infinite dielectric cylinder.

4.6 Same area Discretisation

An intermediate approximation, in which the modelled area is made closest to

the actual area of the geometry was also considered and is illustrated in figure

4.8c. In this method, boundary cells are included in the geometry selectively

according to the distance of the cell-centre to the actual boundary of the
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Figure 4.11: The percentage error of resonant Q factor of the E wave modes
supported by an infinite cylinder (n = 2.82, r = 1.35µm) mod-
elled by CST Microwave Studio with a multi mesh with space
step size varying between 0.04µm and 0.004µm. 1st radial
order modes are deonted by WGM(x,1), 2nd order modes by
WGM(x,2) and 3rd order modes by WGM(x,3).

geometry until the modelled geometry fulfils the aforementioned criterion.

For a circle of radius r at r0 = (x0, y0, z0), the distance to a cell-centre at

rc = (xc, yc, zc) from the boundary will be |rc − r0| − r. A downside which

soon becomes obvious is that geometries that are meant to be symmetrical

might become assymetric due to the non uniform operation of selecting some

boundary cells. Further it is unsuitable for situations illustrated by figure

4.1b, where it might produce a staggered edge. However, this approximation

is now persued for circular geometries. The spectrum of the total energy

inside the infinite cylinder defined previously is presented in figure 4.12 for

three step sizes 0.05µm, 0.025µm and 0.0125µm using the same area technique

with a computational domain of 10µm × 10µm truncated by TLM matched

boundaries.

As can be seen from figure 4.12, unlike inside and outside discretisations,
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Figure 4.12: The energy spectrum of an infinite cylinder excited by a line
source inside the resonator of E type waves for same area discreti-
sation along with the analytical result for step sizes of 0.05µm,
0.025µm, and 0.0125µm.

the same area results tend to converge to the analytical resonant frequencies.

The amplitude of the baseline seems to be slightly higher for λ/40 (0.0125µm)

step size indicating that the power loss is generally smaller. There is a signifi-

cant error in resonant frequency predicted in λ/10 (0.05µm) step size towards

the higher frequencies. This effect can be related to mesh dispersion, previ-

ously observed even when using inside and outside discretisations at the same

step size. However, the curves seem to converge towards the analytical res-

onant frequencies when the step size is decreased. Therefore, the same area

technique accurately represents the domain so that the resonant frequencies

converges with decreasing step size.

Now that each resonant frequency is resonably accurately modelled as ob-

served from the energy spectrum, the complex resonances (resonant frequency

and Q factor) are extracted using the modified difference Prony method. The
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complex resonances are extracted from all the time signals of duration of

4000fs at each measurable space point within the resonator, individually.

The median of the complex resonances over the resonator is then calculated

for each resonance and are presented in table 4.5. The error percentages in

resonant frequency and Q factor are given in figures 4.13 and 4.14 respectively.

Table 4.5: Resonant frequencies and Q factors extracted from time signals of
duration of 4000fs for an infinite cylinder (n = 2.82, r = 1.35µm)
modelled with same area technique for step sizes of 0.05µm,
0.025µm, 0.0125µm.

∆l = 50nm ∆l = 25nm ∆l = 12.5nm
WGM Res. Q factor Res. Q factor Res. Q factor
order Freq. Freq. Freq.

(THz) (THz) (THz)
WGM(6,2) 150.954 156 151.815 153 151.908 156
WGM(9,1) 151.048 3572 151.696 24641 151.843 53497
WGM(10,1) 165.004 1381 165.834 38395 165.987 146327
WGM(7,2) 166.668 342 167.607 331 167.807 326
WGM(11,1) 178.799 2092 179.868 17549 180.122 402087
WGM(8,2) 181.804 835 183.136 764 183.500 751
WGM(12,1) 192.341 3575 193.764 25952 194.126 646188
WGM(9,2) 197.094 2109 198.571 2157 198.922 2135
WGM(13,1) 205.783 21613 207.610 153406 208.004 129674
WGM(7,3) 207.495 106 209.291 98 209.444 101.409
WGM(10,2) 211.873 2977 213.728 6407 214.194 5247
WGM(14,1) 218.660 16066 221.319 363019 221.850 107892
WGM(8,3) 223.039 185 225.406 173
WGM(11,2) 226.366 3073 228.629 10588 229.168 16314
WGM(15,1) 232.660 7124 235.019 239323 235.601 965641
WGM(9,3) 238.761 351 241.458 301 242.104 291
WGM(12,2) 240.400 832 243.372 5182 244.07 43075
WGM(16,1) 246.249 5435 248.767 40255 249.312 303433

According to figure 4.13, the error in resonant frequency is between 0.6-1%

for a space step of 0.05µm, 0.1-0.3% for a space step of 0.025µm and 0.03-0.1%
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Figure 4.13: The percentage error of resonant frequencies of the an infinite
cylinder (n = 2.82, r = 1.35µm) modelled by same area method
with space steps of 0.05µm, 0.025µm and 0.0125µm.

for a space step of 0.0125µm. The resonant frequency has a clear dependency

on the space step and the error is decreased almost in proportion to the space

step. The error in E waves observed using the finest mesh (0.0125µm) has

some resonances (at ≈ 165THz and 210THz) with slightly deviated error

values from the general trend, which may have resulted from the extraction

method’s error in resolving close resonances.

The error in Q factor increases with the analytical Q factor over around

1000 according to figure 4.14. The error decreases by almost one order of

magnitude when the space step is halved. The error is less than 10% for Q’s

of 2000 for 0.05µm, 8000 for 0.025µm and 60000 for 0.0125µm step sizes.

The Q factors tend to decrease with the surface roughness [11] with practical

resonators. In this instance, the stair step approximation presented by the

mesh is the source of an effective surface roughness in the structure simulated.

However, the errors obtained for the resonant frequency and Q factor are
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Figure 4.14: The percentage error of resonant Q factors of the an infinite
cylinder (n = 2.82, r = 1.35µm) modelled by same area method
with space steps of 0.05µm, 0.025µm and 0.0125µm.

higher than those observed using multi-mesh technique. Yet, the results are

more orderly, and can be predicted to produce slightly better results than the

multi-mesh approach when the space step is halved further (λmin/80). But,

the computation time complexity would in this case be 8 times that of the

finest mesh used in this study.

In conclusion so far, the same area method provides an improvement over

the inside and outside discretisations considering the resonant frequency. The

simulated resonant frequency converge to the analytical values as the step

size decreases. However, the Q factors are underestimated due to surface

roughness still present in the same area discretisation technique. Hence, other

discretisation techniques are considered next to solve the factor of the surface

roughness and its detrimental effects on simulated Q factor.
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4.7 Anti aliasing Discretisation

When a continuous signal is sampled, the samples should be able to repre-

sent the underlying continuous function. In other words, when a continuous

function is reconstructed from the samples, it should be as close as possible

to the original continuous function.

Nyquist’s theorem states that if the original function’s bandwidth is higher

than twice the sampling frequency, the reconstructed signal from an infinite

number of samples will not contain the higher frequency components present

in the original function. In the following sub sections anti aliasing filtering in

the spatial domain is discussed.

4.7.1 Reconstruct Rectangular Signal

Let us sample a rectangular function with a sampling interval of T = 1/N

within a domain of [−1, 1]. Samples between −N/2 and N/2 will have a value

of 1. In total there will be 2N + 1 samples.

A signal can be reconstructed from a set of samples using Nyquist interpo-

lation defined by equation 4.28.

x(t) =
n=N
∑

n=−N

x[n]× sincπ

(

t− nT

T

)

(4.28)

For example, the Nyquist interpolation method is used to reconstruct a

continuous signal from the sampled rectangular function defined above. The

reconstructed signal along with the original rectangular function is shown in

figure 4.15 for a sampled rectangular signal of N = 20.

Figure 4.15 shows Gibbs oscillations at the discontinuities. The error of

the reconstructed signal is maximum at the discontinuities and minimum

at the point farthest from discontinuities. If the refractive index function

in the spatial domain is represented as a rectangular function with sharp
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Figure 4.15: Reconstruction of a rectangular function sampled at 1/20 sam-
pling interval, and the error of reconstruction compared to the
original rectangular function

discontinuities, the underlying shape represented will model an error at the

boundaries. In order to minimise this effect anti alias filtering is performed

in digital signal processing of audio, images and video.

4.7.2 Anti-alias Filtering

The rectangular function therefore must pass through an anti-aliasing filter

before sampling in order to avoid such oscillations. The resulting signal will

have smooth edges instead of sharp variations. The anti aliasing filter should

be selected so that the reconstruction best represents the original signal while

eliminating high frequency signal components. In this section a sinc function,

an Airy function, and a Gaussian function are compared to identify an anti-

aliasing filters that preserves maximum detail.

Sinc Filter

The sinc filter is the normalised sinc function compressed by N as given by

equation 4.29. Sinc filter has a sharp cut-off and so rejects high frequency com-

ponents. While doing so, it introduces Gibbs oscillations at discontinuities,
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which overshoot and undershoot. Even though overshoot is not particularly

problematic, the undershoot becomes a problem if the lower level is zero, since

negative material parameters are some times non-physical. However, in the

spatial frequency domain, it acts as the benchmark.

sincaaf (x) = sincπ(Nx) (4.29)

Lanczos Filter

Even-though the sinc filter is the ideal “brick wall” filter to let all frequencies

within the bandwidth to pass though with uniform amplitude, it has some

shortcomings. The Gibbs oscillations at step changes are unavoidable no

matter how high the sampling rate is. The second problem is a limitation of

applying the filter to arbitrary signal shapes via discrete convolution, because

the filter extends to infinity. To overcome this second limitation, Lanczos

filters are used. They are essentially sinc functions windowed by the main

lobe of another sinc function to restrict its spread. The Lanczos filters are

defined as,

L(x) =

{

sincπ(x) sincπ(x/a) −a < x < a

0 otherwise
(4.30)

where a = 1, 2, 3, . . . controls the width of the filter. The Lanczos filter

for a values larger than unity produces small undershoots to allow for more

frequency content [12]. Therefore, only the a = 1 case is considered in this

work. Since the filter for a = 1 defined as it is, the frequency rejection was

poor. Hence, the filter is stretched by a factor of 2. Figures 4.16a and 4.16b

shows the spacial domain and frequency domain characteristics of Lanczos

filter for a = 1 defined as it is and when scaled by a factor of 2. This shows

that the stretched Lanczos filter has the correct cut-off at 0.5. Hence, the
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filter used is,

L1(x) =

{

sincπ
(

x
2

)2 −2 < x < 2

0 otherwise
(4.31)
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Figure 4.16: Lanczos filter for a = 1 and the stretched Lanczos filter to im-
prove frequency domain characteristics.

Airy Disc based Filter

The Airy disc is the most popular anti-aliasing filter in optical instruments

since it is the natural diffraction pattern of a circular hole [12]. The Airy

disc is thus propotional to the Franhouffer diffraction pattern. However, the

Airy filter must be scaled by a factor of 1/2 in order to retain more low order

frequencies. Figures 4.17a and 4.17b shows the spacial domain and frequency

domain characteristics of the Airy filter and its stretched (compressed) func-

tion. The compressed function has the cut-off frequency near 0.5, whereas as

the Airy filter does not. Hence, the filter can be defined by,

Aif (x) =
J2
1 (2x)

4x2
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Figure 4.17: Airy filter the stretched(compressed) Airy filter to improve fre-
quency domain characteristics.

Gaussian Filter

The Gaussian function can also be used as an anti aliasing filter. However

its practicality is only limited due to its broad frequency response. Stretch-

ing or compressing the Gaussian filter did not improve its poor frequency

characteristics. Hence, the Gaussian filter is defined as,

1√
2π
e−x2

(4.32)

Frequency Response of Filters

In order to preserve maximum detail (i.e. sharpest possible transition from

zero to one in spacial domain) of the step response while cutting off the high

frequencies. The frequency response of each filter is presented in figure 4.18.

According to figure 4.18, the sinc filter produces the best response in the

frequency domain as the sinc filter exhibits a sharp cut-off at 0.5. The Airy

filter seems to be a good alternative, but has inferior characteristics near cut-

off. The Lanczos filter has similar characteristics as the Airy filter in the pass

band and the cut-off region. The Gaussian filter is the worst of all showing

no distinction between the pass and stop bands. Lanczos filter was chosen to

be implemented over the Airy filter merely because the sinusoidal function is
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Figure 4.18: The normalised frequency response of the anti-aliasing filters

less resource intensive than the Bessel function to implement in a computer

code. In general both of them are equally well suited.

4.7.3 Anti Aliasing in TLM

In two dimensional TLM, a normalised anti aliasing filter was used to deter-

mine the electrical susceptibility modelled at the centre (x0, y0) of a given cell

(xn, yn). The filter is assumed to be truncated in the x,y directions at −X/2,
X/2 and −Y/2, Y/2 expressed in space step units, respectively.

χe[xn, yn] =

∫ X/2

−X/2

∫ Y/2

−Y/2

faa(x, y)χe(x∆l + x0, y∆l + y0) dx dy (4.33)

where faa is the anti-aliasing filter function defined in the previous subsection.

The spread X and Y depends on the anti alias filter used. For a bounded

filter such as Lanczos filter a = 1 the boundary is defined by X = 4, Y = 4.

If the filter is unbounded, such as Gaussian or Airy filter, the filter must be
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truncated.

Unlike same area discretisation, anti-aliasing discretisation can be used in

both situations depicted in figures 4.1a and 4.1b. Note that this method also

smoothes the edges of mesh conforming geometries. This is all in accordance

with the sampling theorem.

4.7.4 Study of an Infinite Cylinder

The same cylinder studied throughout this chapter is now discretised using

the anti aliasing method with the Lanczos filter and simulated with the pa-

rameters summarised in table 4.3 for a uniform mesh of step sizes of 0.05µm,

0.025µm, 0.0125µm The total energy within the resonator is presented in

figure 4.19.

As observed with the same area technique, the resonances seem to converge

to the analytical resonant frequency when the space step is decreased. Fur-

ther, for the coarse mesh (0.05µm), there exists a significant error in predicting

resonant frequencies at high frequencies due to modelling errors. These di-

minish when the mesh is made finer. The resonant frequencies and Q factors

were extracted from the time signals of duration of 4000fs over the cylinder

using the difference Prony method and the median value for each resonance is

presented in table 4.6. The error of the resonant frequency and Q factor mod-

elled by the anti aliasing method is given in figure 4.20 and 4.21 respectively

for the same step sizes used previously.

The error in resonant frequency follows the same pattern observed in the

same area method (i.e. increase with frequency and is proportional to the

space step) but with slightly lower errors for each step size. In addition,

except for the WGM(6,2) resonance at ≈ 150THz, the error in resonant

frequency for all resonances increases monotonically with resonant frequency.

The error in Q factor is significantly improved compared to both same area

method and CST Microwave Studio muti mesh simulation. Even for a coarse

mesh of 0.05µm (i.e. λmin/10), the Q factor has a smaller error compared

to the other two mesh refining techniques, despite the nearly 1% error in
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Table 4.6: Resonant frequencies and Q factors extracted from time signals of
duration of 4000fs within the cylinder (n = 2.82, r = 1.35µm)
modelled with same area technique for step sizes of 0.05µm,
0.025µm, 0.0125µm.

∆l = 0.05µm ∆l = 0.025µm ∆l = 0.025µm
WGM Res. Q factor Res. Q Res. Q
order Freq. Freq. factor Freq. factor

(THz) (THz) (THz)
WGM(6,2) 151.302 1.47× 102 151.814 1.42× 102 151.930 1.51× 102

WGM(9,1) 151.440 4.92× 104 151.792 5.86× 104 151.865 5.93× 104

WGM(10,1) 165.469 1.23× 105 165.962 1.94× 105 166.069 2.05× 105

WGM(7,2) 166.983 3.26× 102 167.669 3.25× 102 167.822 3.25× 102

WGM(11,1) 179.358 2.41× 105 180.015 7.41× 105 180.160 8.57× 105

WGM(8,2) 182.405 7.53× 102 183.303 7.46× 102 183.507 7.46× 102

WGM(12,1) 193.105 4.00× 105 193.963 2.40× 106 194.154 3.56× 106

WGM(9,2) 197.527 2.15× 103 198.681 2.15× 103 198.944 2.12× 103

WGM(13,1) 206.725 6.16× 105 207.815 5.56× 106 208.063 1.23× 107

WGM(7,3) 207.774 9.90× 101 209.486 9.73× 101 209.771 9.61× 101

WGM(10,2) 212.372 6.41× 103 213.832 6.47× 103 214.168 6.23× 103

WGM(14,1) 220.242 1.03× 106 221.584 1.07× 107 221.899 4.09× 107

WGM(8,3) 223.446 1.95× 102 225.581 1.68× 102 226.030 1.69× 102

WGM(11,2) 226.976 1.37× 104 228.793 1.72× 104 229.211 1.65× 104

WGM(15,1) 233.622 8.54× 105 235.284 1.53× 107 235.673 7.22× 107

WGM(9,3) 239.159 3.20× 102 241.553 2.94× 102 242.122 2.88× 102

WGM(12,2) 241.351 2.42× 104 243.588 4.48× 104 244.100 4.62× 104

WGM(16,1) 246.884 5.12× 106 248.915 8.73× 106 249.389 9.54× 107
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Figure 4.19: The energy spectrum of an infinite cylinder excited by a line
source inside the resonator of E type waves for anti aliasing
discretisation along with the analytical result for step sizes of
0.05µm, 0.025µm, and 0.0125µm.

resonant frequency at that discretisation level. Further, the error in resonant

frequency is reduced by a factor of 10, when the step size is halved.

By using anti aliasing methods, the influenced artificial surface roughness

on high Q resonances is reduced for relatively coarse meshes. However coarse

meshes produce a resonant frequency shift due to the inherent modelling

errors such as TLM mesh dispersion [7].
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Figure 4.21: The percentage error of resonant Q factors of the an infinite cylin-
der (n = 2.82, r = 1.35µm) modelled by anti aliasing method
with space steps of 0.05µm, 0.025µm and 0.0125µm.
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4.8 Conclusions

In this chapter, the modelling of an infinite cylinder using TLM was consid-

ered. The problem was first solved analytically and the resonant frequencies

and Q factors of an illustrative structure were obtained from the character-

istic equation so obtained. Then using these results as a benchmark, the

influence of certain well established limitations was investigated such as TLM

mesh dispersion and stair case error in Cartesian meshes. Using standard

discretising techniques, the cylinder was descretised and simulated to identify

specific limitations regarding circular resonators as discussed in the literature.

In the path to overcome these limitations, an optimised multi-mesh technique

as used by CST Microwave Studio was considered. It produced reasonable

results for the resonant frequency with an accuracy up to 0.2%, but the Q

factor was severly underestimated despite using λ/100 as the smallest step

size. In addition, the variation of the accuracy with the step size was unpre-

dictable as the represented geometry affects different resonances differently

and no pattern for the affects could be found. Therefore, a simpler method

using standard TLM mesh was sought.

First a same area discretisation method, where the discretised geometry’s

area is made as close to the physical geometry as possible for the given mesh

size, was considered. This provided results with lower accuracy than that

of the multi-mesh method but was orderly and the affects were explainable.

The error in Q factor was due to the stair stepping error which reduced in

proportion to the mesh size. The resonant frequency was a function of TLM

dispersion, which again could be reduced in proportion to the mesh size.

Then “anti-aliasing” the complete structure was considered. Initially the

idea was to reduce the high frequency noise introduced by the stair step.

A Lanczos filter was considered as the anti aliasing filter due to its good

frequency and time domain (spatial domain) characteristics. The results were

promising, in that it showed the same predictability as the same area method,

but had much higher accuracy in the predicted Q factor. It is quite remarkable
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that even with a coarse discretisation of λ/10, Q factor predicted using the

anti aliased mesh was more accurate than using a λ/100 multi-mesh. The

error in resonant frequency however, is of the same order as with the same

area method. This provides further evidence that this error is a direct result

of the TLM dispersion error.

Having established that TLM with antialiasing as an accurate numerical

modelling technique the problem initiated by Boriskin et. al [1] can be re-

considered. Their concerns of resonance shift and Q factor estimation is well

addressed by the studies in this chapter. However, it should be borne in

mind that in the present study, the exact problem was not considered due to

the boundary reflections in TLM matched boundaries used throughout this

chapter to terminate the simulation domain. Therefore, in the next chap-

ter, perfect matched layers are developed for TLM in order to provide better

radiating boundary conditions at the edge of the simulation domain.
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5
Perfectly Matched Layers for

TLM

All numerical simulation techniques require truncation of the finite simulation

domain. In some frequency domain techniques, the boundary can be defined

to satisfy the radiating condition [1], [2]. In these formulations, the edge of

the computational domain can be as small as the boundary of the geometrical

objects of interest. However, for most time domain formulations including

FDTD, FEM, TLM, the boundary of the simulation window is selected to

cover the region of interest including extra space not belonging to geometrical

objects of interest. Special treatment at the edge of computational domain is

then required to impose a radiating condition.

The current most popular method is to terminate the simulation domain

with perfect matched layers (PMLs), which consist of artificial absorbing ma-

terial [3]. They are perfectly matched theoretically (hence the name), but in

numerical models they can deviate from the ideal. PMLs have been proven to

work exceptionally well in FDTD, but in TLM, their efficiency is significantly

lower [4], [5]. Even though there exists several formulations for PMLs in

TLM, their usage in everyday simulation problems is not yet widely accepted

unlike in FDTD.
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In this chapter, perfectly matched layers are implemented using a method

originally proposed by J.Paul[6, 7] for 2D H waves and 3D. Some of its capa-

bilities are studied for 2 dimensional E wave propagation and oblique angles

of incidence. In addition, uniaxial PML and Convolutional PML, which have

not yet been reported for TLM are studied as probable candidates for PML.

5.1 Motivation and Background

Until now in the simulation of optical resonators, a simple TLM matched

boundary was used, where the end link is terminated with an impedance

matched to the material of the end node. This has been able to produce

adequate results in the case of the internally excited resonator. When the

excitation is outside the resonator, most of the field will be scattered and

the post-scattered results will include fields back scattered from the edge of

the simulation domain. This problem applies to all excitation techniques

including omni directional line sources, plane waves, and coupled waveguides.

In general, back-scattering from the edge of the computational domain is

applicable to all wave simulation problems in TLM, but can be minimised or

made irrelavent by making the computational domain large enough to isolate

the problem of interest from the backscattered waves. In the case of optical

resonators such isolation is ineffective due to the long run times required

for resonators, during which time the scattered waves from the edge of the

simulation domain find their way into resonators. Therefore, better boundary

conditions are required when simulation tools are used in the context of optical

resonators.

5.1.1 TLM Matched Boundary

Unlike FDTD, TLM computational domains can be terminated by an impedance

matched to the material at the edge of the domain. However, due to TLM

mesh dispersion, the impedance is not the same in every direction [8]. There-

fore, it is unable to obtain matching condition for arbitrary angle of incidence.
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As a guideline, the wave absorbing performance of simple TLM matched

boundaries is now measured for varying angles of incidence.

For obtaining varying angles of wave incidence at the edge of the computa-

tional domain, a metal waveguide was truncated by the matched boundary.

A metal waveguide of height h will propagate TE waves (E polarisation in

z-direction, propagation along x, transverse axis y) waves in the fundamental

mode TE01 when the wavelength λ satisfies h < λ < 2h [1]. These waves

at each wavelength (frequency) travel with different group velocities (λ = 2h

is the slowest, λ = h is the fastest) and different ray angles θ. Figure 5.1

illustrates such a metal waveguide truncated by a TLM matched boundary.
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Figure 5.1: Illustration of a metal waveguide and ray representation of a TE

polarised wave with a TLM matched boundary

The well-known relationship between wavelength and ray angle for the fun-

damental TE01 mode is given by [1],

cos θ =
λ

2h
(5.1)

Hence, a pulsed wave consisting of different frequencies propagating in the

fundamental mode will be incident at (90◦ − θ) to the boundary. Therefore,

reflection of the 2D TLM matched boundary can be observed for varying

angles of incidence by observing the reflection of a pulse.

A waveguide of height h = 1µm, and length l = 400µm filled with air was

modelled in TLM with a space step size ∆l = 0.05µm. The top and bottom
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(y-plane) boundaries were defined as metal by a short circuiting the end links

(i.e. reflection coefficient of -1). The left hand size x-plane boundary was

kept at matched condition, but it does not affect the simulation since the

waveguide is long. The waveguide was excited with a pulsed line source at

x = 300µm, y = 0.5µm with a centre frequency of 225THz, and Gaussian

pulse width of 10fs. The field was observed in the plane of x = 350µm. The

simulation was run for 1600fs. The incident (Ei
z) and the reflected waves

(Er
z) were seperated from the time domain, and the reflection was calculated

according to,

Γ(f) =

∑y=1µm
y=0 F{Er

z(x = 350µm, y)}
∑1µm

y=0 F{Ei
z(x = 350µm, y)}

(5.2)

where F{} is the discrete Fourier transform calculated with an fast Fourier

transform (FFT), and f is frequency. Figure 5.2 shows the reflection at

the matched boundary against frequency, along with the angle of incidence

relationship with frequency.

According to figure 5.2, the reflection is minimum when the angle of inci-

dence is 45◦. At this angle, the 2D TLM matched boundary is completely

matched, since the mesh dispersion is minimum at 45◦ [8]. From figure 5.2,

it is evident that the reflection increases when the angle of incidence moves

away from 45◦. This agrees with TLM mesh dispersion, which is maximum

along the principal axes [8].

This suggests that for extreme angles the reflection is more than −20dB

in general and specially between 44◦ - 46◦, the reflection is well below −40dB.

Since, optical resonators radiate energy in all directions (not necessarily equally),

better boundary conditions are required to achieve −120dB for the simulation

of the externally excited cylindrical resonator [9].

5.1.2 Berenger’s Perfectly Matched Layers

In contrast to the approach taken by the TLM matched boundary, Berenger

proposed to add layers of absorbing material outside the boundary so that the
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Figure 5.2: Reflection of a metal slab waveguide of height h = 1µm, support-
ing the fundamental TE01 mode, at a TLM matched boundary
along with angle of incidence relationship with frequency.

field attenuates within the absorbing material [10], [11], given that the wave

impedances of the materials on either side of the boundary are the same. In

order to match the wave impedance of a non-magnetic material to a material

with loss (conductance), one should satisfy the following condition within the

absorbing layer [10].
σe
ε

=
σm
µ0

(5.3)

where σe, σm are electrical and magnetic conductances respectively. However,

due to modelling error in ε, σe and σm, which varies with wavelength, the con-

dition cannot be satisfied at all frequencies in a numerical method. Therefore,

one must also make sure that the conductance is increased gradually in space

to minimise reflection to an acceptable level. In FDTD, parabolic profiles

are widely used even though better profiles are obtained using a fourth order

polynomial or a geometric profile [12].
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When considering a two or three dimensional PML, waves propagating

normal to the boundaries must be absorbed without affecting the wave prop-

agating tangential to the boundaries. In the method proposed by Berenger,

each field component is split into two orthogonal directions, which are also or-

thogonal to the direction of the field component (e.g. Ez is split as Ezx+Ezy)

[10]. This allows one to absorb only the component normal to the boundary

plane (e.g. for an x-plane boundary only Ezx is absorbed keeping Ezy intact).

Therefore, the conductances are split between two components to represent

this anisotropic absorption. For instance, the x directed electric and magnetic

conductances are split as, σe = σex + σey and σm = σmx + σmy.

The material types to be used in a two dimensional TLM model is illus-

trated in figure 5.3.

z
x

y

Simulation Domain

σx = 0, σy 6= 0

σx = 0, σy 6= 0

σ
x
6=

0,
σ
y
=

0

σ
x
6=

0,
σ
y
=

0

σx 6= 0
σy 6= 0

σx 6= 0
σy 6= 0

σx 6= 0
σy 6= 0

σx 6= 0
σy 6= 0

Figure 5.3: Illustration of PML material properties at the boundary

This formulation was proposed and implemented for the finite difference

time domain (FDTD) method in both 2D and 3D [10], [11]. PMLs were

first employed in TLM via interfacing it with an FDTD PML at the mesh

boundary using TLM to FDTD field transformations [13], [14]. Pena et.
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al first implemented a TLM implementation of a PML using an anisotropic

node and a source term to cancel out the extra conductance modelled [4].

All of these implementations in TLM report reflections of −55dB (FDTD

interfacing) to −60dB (anisotropic TLM) with 25 PMLs at the end of a

WR-28 metal waveguide for a range of angles of incidence at the bound-

ary. Equivalent FDTD PMLs have shown reflections around −100dB. A 3D

Symmetrical Condensed Node (SCN) was formulated by Dubard et. al [5]

with an approach similar to that taken in FDTD formulation and reported

some improvement over the method proposed by Pena et. al [4]. This method

was further characterised with various conductivity profiles by Maguier et. al

, who report about −70dB reflection with 20 PMLs, which is again far less

efficient compared to the FDTD PMLs. Most importantly, for some profiles,

the TLM method has shown some instability [15]. On an entirely different

path, a split field implementation by Paul [6, 7] was used to observe the re-

sponse of 3D freespace cubic cavity below −60dB, with 5 PMLs. However,

further characterisations (with varying angles of incidence) were not followed.

In this study, the latter mentioned method was formulated for E-waves

following a similar path in order to characterise and better understand the

split field method.

5.1.3 Uniaxial Perfect Matched Layers

One of the main concerns raised following the proposal of Berenger’s PML

was that the splitting of field components is non-Maxwellian. Further, its

application was limited to structured coordinate systems [16]. A Maxwellian

PML was introduced by Gedney [16] as a solution which has since then been

known as Uniaxial PML, which was shown to be equivalent to Berenger’s

PML. The method was also later explained by stretching of spatial coordinates

to the complex domain [17] and this extended formulation is known as the

complex frequency shifted (CFS) PML.

Considering a plane wave incident on the z boundary, let the Maxwell’s
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equations within the nonmagnetic PML material be,

∇× E = ωµ0 ¯̄µH (5.4)

∇×H = −ωε0εr ¯̄εE (5.5)

where ¯̄µ and ¯̄ε are diagonal tensors representing the anisotropy, εr is the

common factor of relative permittivity. By solving the Maxwell’s equations

and separating the modal solutions as transverse electric(TE) and transverse

magnetic(TM), Gedney has obtained the conditions for zero reflection for

both TE and TM modes at the boundary [16] as,

¯̄ε = ¯̄µ =







a

a
1
a






(5.6)

where a can be arbitrarily chosen to represent an absorbing material and, in

[16], Gedney has selected 1+σ/jωε0. It was also mentioned that one could use

κ+ σ/jωε0 to attenuate evanescent waves further. In order to generalise the

material parameters for x, y boundaries and for corner regions, the following

parameters are used

¯̄ε = ¯̄µ =







sysz
sx

sxsz
sy

sxsy
sz






(5.7)

where si = 1+ σi/jωε0 inside PML bounded by i-directed plane (i = x, y, z),

and si = 1 elsewhere.

Due to the inferior performance of Berenger’s PML in TLM despite a proven

equivalence between FDTD and TLM [18] in 2D, this method was also imple-

mented in TLM in this study as it has been successful in FEM and in other

coordinate systems.
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5.2 Berenger’s PML Formulation

Considering E-waves let the electric field component Ez = Ezx+Ezy. Maxwell’s

equations for E-waves can then be re-expressed in condensed form as [10],













∂Hy

∂x

−∂Hx

∂y

−(∇× E)x

−(∇× E)y













=
∂

∂t













ε0Ezx

ε0Ezy

µ0Hx

µ0Hy













+













σex ∗ Ezx

σey ∗ Ezy

σmy ∗Hx

σmx ∗Hy













+
∂

∂t













ε0χeEzx

ε0χeEzy

0

0













(5.8)

where σe(x,y) and σm(x,y) are the electrical and magnetic conductivities inside x

and y plane boundaries, χe is dielectric susceptibility. In the frequency domain

(s-domain) with usual normalisations, the condensed equation becomes,













∂iy
∂x̄

−∂ix
∂ȳ

−(∇̄ × V )x

−(∇̄ × V )y













= s̄













2Vzx

2Vzy

ix

iy













+













gexVzx

geyVzy

rmyix

rmxiy













+ s̄













2χeVzx

2χeVzy

0

0













(5.9)

Using Stokes’ theorem to express spatial derivatives in terms of V1, V2, V3, V4,













(V1 + V2)

(V3 + V4)

−(V3 − V4)

−(V1 − V2)













= s̄













2Vzx

2Vzy

ix

iy













+













gexVzx

geyVzy

rmyix

rmxiy













+ s̄













2χeVzx

2χeVzy

0

0













(5.10)

In the travelling wave format it becomes,

2













(V1 + V2)

(V3 + V4)

−(V3 − V4)

−(V1 − V2)













i

=













(4 + gex + 2s̄χe)Vzx

(4 + gey + 2s̄χe)Vzy

(2 + rmy)ix

(2 + rmx)iy













(5.11)
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From the normalisations ge = σe∆lη0
√
2 and rm = σm∆l/(η0

√
2) [6], the

perfect matching relationship becomes,

ge = 2rm(χe + 1) (5.12)

Note that this applies to separate x, y components of ge and rm.

5.2.1 Implementation Validity

The PML formulation given above now needs to be validated after implement-

ing in TLM. The most important theoretical assumptions made in Berenger’s

PML formulation [10] is the wave velocity and the impedance matching be-

tween freespace and the PML absorbing material. In TLM the impedance

and the phase velocity depend on frequency as well as the direction of propa-

gation. To this end, the impedance and the phase velocity of freespace angles

varying between zero and 45◦ are considered first, as given in figure 5.4. The

impedance was calculated by observing the electric and magnetic fields emit-

ted by a line source in freespace at specific angles. For transverse electric and

magnetic fields, i.e. TEM mode, the wave impedance is given by,

Z(θ, f) =
E(θ, f)

H(θ, f)
(5.13)

where θ is the angle of propagation, and Z(θ, f) takes a value of
√

µ0/ε0 ≈
120πΩ for freespace in theory [1].

As can be seen from figure 5.4, the wave impedance of the TLM mesh at

45◦ is the closest to the theoretical value of 376.7Ω. The wave impedance

increases when the angle deviates from 45◦ with maximum error when prop-

agating parallel to Mesh axes. This complies with the TLM dispersion as

discussed in [8]. Therefore, a theoretical PML can only be perfectly matched

at 45◦ with minimum reflection; the relationship between ge and rm obtained

previously (ge = 2rm) is only valid at 45◦. Every angle of incidence has a

unique relationship between ge and rm, for which the reflections are mini-
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Figure 5.4: The impedance of freespace as modelled by 2D TLM with a space
step of 0.05µm at various angles of propagation.

mum at the freespace-PML boundary. At 0◦, this relationship is ge = 4rm.

In this light, the wave impedance mismatch between freespace and the PML

was calculated. At a given frequency and direction both deviate from the

theory, but if the mismatch can be minimised, the reflection at the freespace-

PML boundary can be minimised. The error value at each frequency was

calculated as,

Zerr(f) =

√

∫ 2π

0
(Zfs(θ, f)− Zpml(θ, f))

2 dθ

2π
(5.14)

where Zfs is the impedance of freespace as modelled by TLM, Zpml is the

impedance of PML as modelled by TLM.

The electrical conductivity σe of the PML was set as ≈ 9.76(mho/nm),

where ∆l = 0.05µm. The mismatch in wave impedance measured when

ge = 2rm (as per the theoretical relationship), and when ge = 4rm is given in
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figure 5.5. The factor of 4 was chosen for reasons, which will become clear in

the next subsections.
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Figure 5.5: Impedance mismatch between freespace and PML integrated over
propagating angles as a function of frequency when the normalised
electrical and magnetic conductivities are related by ge = 2rm and
ge = 4rm.

As can be seen, the impedance mismatch is worse for the theoretical ge =

2rm (when all angles are given uniform importance). The mismatch increases

for low frequencies and flattens out with finite error and increases slowly again

at high frequencies.

In addition to impedance, phase velocity is another factor affecting the

reflection at the freespace-TLM boundary. The error in phase velocity was

calculated by measuring the phase change observed between two close spacial

positions for zero and 45◦ propagation for ge/rm ratio of 1,2,4 and are given

in figures 5.6 and 5.7.

According to figure 5.6, when the propagation is parallel to a mesh axis,

the phase velocity error is smallest when the theoretical relationship between
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Figure 5.6: The error in phase velocity relative to that of TLM freespace phase
velocity, when propagating parallel to an axis

ge and rm is obeyed. The phase velocity error is a minimum at a particular

frequency and it was observed that the particular frequency at which this

happens depends on the conductivity of the PML.

According to figure 5.7, the phase velocity error at 45◦ propagation is still

minimum when ge = 2rm. In this case, the velocity error has improved both at

the low frequency and high frequency ends. The other curves haven’t changed

much from the axial propagation case.

The error in phase velocity is higher when ge = 4rm for both parallel and 45◦

propagation. The magnitude of the error however is small,less than 0.01%.

Hence, the PML material is shown to be nearly matched to the free space

considering the phase velocity.

According to the results obtained so far, a clear winning relationship be-

tween ge and rm could not be obtained, as impedance matching is better when

ge = 4rm and the phase velocity matching is better when ge = 2rm. Next,

the conductivity profile and the reflection at the freespace-PML boundary is

considered.
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Figure 5.7: The error in phase velocity relative to that of TLM freespace phase
velocity, when propagating at 45◦ to main axes.

5.2.2 PML Conductivity Profile

Since theoretically, the material into PML interface is matched, there should

be no reflection back into the simulation domain. However, due to modelling

error existing in all numerical techniques, there exists a reflection whenever

the material parameters differ. Since the reflection is dependant on frequency

and direction, a universal perfect matching condition does not exist.

This also makes clear that, if there is no material parameter change, there

exists no reflection. Hence, for a uniform conductivity profile in the PML

region only an initial reflection will be present if the PML absorbing region

is significantly long. Thus, reflections at the boundary between freespace and

PML with a uniform conductivity profile are initially studied. Table 5.1 shows

the simulation parameters, where a 2 dimensional simulation window with

periodic boundary conditions in the y-direction was excited with a Gaussian

pulsed plane wave in freespace to observe the reflections.

Figures 5.8a and 5.8b shows the reflection back to freespace and the am-

plitude of the field after 25 PML layers.

When a constant conductivity profile is used within the PML, the reflection
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Table 5.1: Simulation parameters used in order to observe the reflections at
a freespace-PML boundary at normal incidence

Window Size X = 50µm
Y = ∞

PML Width XPML = 25µm
Space step 0.05µm
Excitation line x = 30µm
Excitation Centre Frequency f0 = 200THz
Gaussian Pulse width t = 1fs
Measurement line (incident + reflection) x = 40µm
Measurement line (absorption + transmission) x = 52.5µm

at the boundary decreases in proportion to the conductivity. According to

figure when conductivity is decreased by a factor of 10, the reflection reduces

by -20dB indicating the proportionality. The amount of absorption however

decreases exponentially when conductivity decreases, which is the expected

behaviour theoretically. If one requires at least −Rpml (dB) reflection from

the PML boundary, the conductivity of the first PML cell must be selected so

that the freespace-PML reflection is below the required reflection level. This

is a necessary condition regardless of the conductivity profile or the depth

of the PML. Since this reflection arises due to discretisation (i.e. non-ideal)

of Maxwell’s equations, the reflection should diminish when the step size is

decreased. The reflection at three space step sizes are shown in figure 5.9.

The reflection at the freespace-PML boundary decreases by 6dB when the

step size is decreased by a factor of 2. This shows that, the reflection is

proportional to the step size. The formula for freespace-PML reflection in the

discretised case can thus be presented as,

RD ∝ σ∆l (5.15)
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Figure 5.8: The Reflection and the Amplitude after 25 PML layers for a con-
stant conductivity profile when ge = 4rm

Therefore, the total reflection from the PML boundary can be written as,

Rpml = RD +RCRB (5.16)

RC = exp

[

− 2

ε0c

∫ δ

0

σ(ρ) dρ

]

(5.17)

where RC is the attenuation of the field through the PML layer of depth

δ, RD is the reflection due to discretisation error, and RB is the reflection

at the end of the PML. Usually in FDTD RB = 1 since, a perfect electric

conductor is used at the end of the PML. But in TLM, a matched boundary

condition can be used, which will give an additional attenuation of 10 − 15

dB as observed in subsection 5.1.1. For a uniform conductivity profile RD is

almost uniform as observed in figure 5.8a. The optimum conductivity profile

σ(ρ) should then produce minimum RD for a given RC .

Let a normalised conductivity profile be,

σ̂(ρ) =
σ(ρ)

∫ δ

0
σ(ρ) dρ

=
σ(ρ)

σ0
(5.18)

Then,

RC = exp

[

− 2

ε0c
σ0

]

(5.19)

136



Chapter 5 Perfectly Matched Layers for TLM

-80

-75

-70

-65

-60

-55

-50

-45

-40

 10  100

R
ef

le
ct

io
n 

(d
B

)

Frequency (THz)

ge=0.1, Dl=0.05um
ge=0.1, Dl=0.025um

ge=0.1, Dl=0.0125um

Figure 5.9: The reflection at the freespace-PML boundary for space step sizes
of 0.05µm, 0.025µm, and 0.0125µm when ge=0.1, rm=0.025;

where RC is the required attenuation through the PML layer. The conduc-

tivity profile σ(ρ) = ln(RC)σ̂(ρ)

σ0 =
−RC(dB)

40η0 log10(e)
(5.20)

Hence, the TLM conductivity ge(ρ) = ge0ĝe(ρ) is obtained by normalising σ0,

where

ge0 =

( −RC(dB)

40 log10(e)

)√
2 (5.21)

ĝe(ρ) = σ̂(ρ)∆l (5.22)

For a given PML cell, the spatial average of ge(ρ) within the cell is used as

the conductivity value ge(ρn) of the cell.
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For a polynomial conductivity profile of the form ρm,

ĝe(ρn) =
(n+ 1)m+1 − nm+1

Nm+1
(5.23)

where N is the depth of the PML in integer number of cells.

The effectiveness of this approach is discussed in the next subsection.

5.2.3 Reflection at Freespace-PML Boundary

The reflection at the freespace-PML junction is the most important factor in

PML-characteristics. If the reflection is low enough, the wave energy trans-

mitted into the PML in principle can be absorbed with a large enough number

of layers to reduce subsequent reflections. Since reflections for various angles

of incidence needs to be considered, the metal waveguide used previously

in this chapter to benchmark matched boundary is used to represent angles

within the range 30◦ - 60◦. A plane wave propagating in an equivalent 1D

mesh (i.e. 2D mesh with periodic boundary conditions in y-direction) is used

to represent normal incidence. The initial plane wave reflection for a quadratic

profile of 25 layers when RC is 10dB, 20dB, 30dB and 40dB was evaluated

for normal incidence for ge = 2rm and ge = 4rm, and the results are given in

figure 5.10. The initial reflection was observed by extending the profile at the

conductance value at the 25th layer uniformly for a long distance. The metal

waveguide reflection was measured when RC = 10dB, 20dB and the results

are given in figure 5.11.

The figures 5.10 and 5.11 show the best possible reflection obtainable from

a quadratic profile of 25 layers. From the figure 5.10, it is evident that the

PML is highly effective above a certain frequency. When the the overall

conductivity (i.e. requird attenuation) of a given profile is decreased, this

“threshold” frequency is decreased. For ge = 4rm, all profiles could produce a

reflection better than −65dB for normal incidence beyond the threshold. For

ge = 2rm, this value is about −45dB. It was found by numerical experiment

that out of many relationships, ge = 4rm seems to produce the smallest
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Figure 5.10: Reflection of a plane wave for RC = 10dB, 20dB, 30dB, 40dB and
ge = 2rm, ge = 4rm when the conductivity profile is quadratic
and 25 PML layers are used.

reflection for any given profile for normal incidence. Therefore, when 1D

propagation is modelled with 2D TLM by periodic boundary conditions in

one dimension, it is advantageous to use ge = 4rm.

The reflection results for 2D waveguide propagation according to figure 5.11

indicates that ge = 2rm relationship is better. As shown in figure 5.2, in the

case of a matched boundary, for ge = 2rm, at 45◦ propagation, the reflection

is at its smallest. In this test ge = 4rm behaves relatively poorly. In general,

the reflection is higher when the angle of incidence is higher. This property

though mentioned in general for FDTD for split field formulation [16], is not

evident in the PML formulations presented by Pena and Ney [4] or Dubard

and Pompei [5]. This may be partly due to the fact that their formulations

are Maxwellian and anisotropic but the split field term is achieved by other

means (such as a compensating source). The quadratic conductivity profile

they have used had a maximum of 10S/m. For the space step of 0.23mm

their maximum ge = 1.226, whereas in the case of RC = −10dB in the

presented model maximum ge = 0.188, which is more than 6 times smaller

when the conductivity value they have used is normalised. If the conductivity
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Figure 5.11: Reflection of TE01 mode from a metal waveguide PML junction
for RC = 10dB, 20dB and ge = 2rm, ge = 4rm along with the an-
gle of incident at each wavelength when the conductivity profile
is quadratic.

is increased to the value give by Pena and Ney, the initial reflection will be

much higher than -55dB (value for RC = −10dB). This indicates that the

performance of their PMLs is much better than that presented here.

Despite the small error in impedance and velocity demonstrated in section

5.2.2, the presented PML is not well suited for large angles of incidences. It

can however provide a better boundary condition to TLM than the matched

boundary provided enough PML layers are used. But its efficacy is much less

compared to that previously presented by Pena and Ney [14, 4] and Dubard

and Pompei[5]. The only advantage in this formulation is its simplicity in

formulation and implementation.

5.3 Uniaxial PML Formulation

Having done the literature review of uniaxial PML technique, in this section

the method is implemented in TLM.

Consider an x-directed boundary plane. For a frequency independent σ,
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the relative permittivity tensor is given by [16],

¯̄ε = ¯̄µ =







1− σ
jωε0+σ

1 + σ
jωε0

1 + σ
jωε0






(5.24)

In the relative permittivity and permeability tensor, the real part corresponds

to refraction while the imaginary part corresponds to conductance. As can

be seen, the x-directed conductivity is negative indicating that the x-directed

components are amplified. This also has an implication on stability. In stub

loaded TLM, including z-domain models, the time step is at its maximum

satisfying the Courant condition (∆l/∆t ≤
√
2c). Hence, any negative con-

ductivity increases the phase velocity causing instability. This does not di-

rectly affect 1D propagation as the Courant condition becomes ∆l/∆t ≤ c,

which can be satisfied by the 2D mesh up to some values of conductivity.

In order to find the limiting condition for stability, the phase velocity in

the y-direction (direction transverse to the x-boundary plane) is formulated

as follows.

vp =
1√
µε

=
1

√
µ0ε0

(

1− σ
jωε0+σ

) =
c

(

1− σ
jωε0+σ

) (5.25)

According to equation 5.25, at very high frequency the wave velocity within

the PML material becomes closer to that of freespace. At very low frequency

wave velocity becomes infinite indicating zero permittivity and permeability.

Assume a relationship between ∆l and ∆t in the mesh as,

uTLM =
∆l

∆t
= ζc (5.26)

where ζ is a “slowing down” parameter. Hence,

ζ >

√

2

(

1 +
σ2

ω2ε20

)

(5.27)
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Several techniques can be used to decrease the time step in TLM. The sim-

plest but the least efficient method is using the stub loaded symmetric con-

densed node(SCN) [19]. The hybrid symmetric condensed node(HSCN)[19]

and Super symmetric condensed node(SSCN)[19] are better alternatives to

achieve stability. Since a stub loaded SCN was used throughout this study,

extension of this seemed to be the path of least resistance. Therefore a stub

loaded 2D symmetric condensed node was used to implement the uniaxial

PML in TLM.

5.3.1 TLM Formulation

In the stub loaded 2D mesh, let

uTLM =
∆l

∆t
=

√
2vrc (5.28)

ZTL =
√
2
η0
vr

(5.29)

where vr ≥ 1 is the scaling factor for ∆t required for stability for the given

conductivity. Until now, vr was unity, representing freespace (ε0, µ0) as the

background material. The permittivity and the permeability modelled by the

link lines (see chapter 2) when vr > 1 are,

ε =
2∆t

ZTL∆l
= ε0 (5.30)

µ =
ZTL∆t

∆l
=
µ0

v2r
(5.31)

When vr > 1 to satisfy the Courant condition for the negative conductivity,

the deficit in the permeability can be added by short circuited stubs (repre-

senting inductance) for each direction to match the material properties. The

characteristic inductance of a short circuited stub is ZL = 2L/∆l, where L is

the inductance represented by the short circuited stub [8]. In order to rep-

resent a permeability of µ0 , the inductance per unit length in one direction
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with the stub should be equal to µ0,

Ld =
ZTL∆t

∆l
+
ZL∆t

2∆l
= µ0 (5.32)

Hence, the characteristic impedance of the added stub is given by,

ZL = 2ZTL(v
2
r − 1) (5.33)

The voltage equation 2.21 for the stub formulation given in chapter 2 will be

unaltered while the current equations 2.22 and 2.23 are modified [8]. Hence

the field calculation equations become,

Vz =
V i
1 + V i

2 + V i
3 + V i

4

2
(5.34)

Ix =
2V i

2 − 2V i
1 + 2V i

Lx

2ZTL + ZL

(5.35)

Iy =
2V i

3 − 2V i
4 + 2V i

Ly

2ZTL + ZL

(5.36)

where V i
Lx and V i

Ly are the incident voltages of x directed and y directed

inductive stubs respectively. The scattered voltages of the inductive stubs

are given by,

V r
L(x,y) = ZL(x,y)I(x,y) − V i

L(x,y) (5.37)

When deriving the above equations, loss-free conditions are assumed as

followed previously in chapter 2. The z-domain model given in chapter 2

includes conductivity as ge and rm. Since both formulations are identical for

freespace, by analogy with the equations 5.34, 5.35 and 5.36 the stub loaded

equations in the z-domain can be obtained as,

2







(V1 + V2 + V3 + V4)

−(V3 − V4 − VLx)

−(V1 − V2 − VLy)







i

=







(4 + gez + s̄2χe)Vz

(2 + ( ZL

ZTL
) + rmx + s̄χm)ix

(2 + ( ZL

ZTL
) + rmy + s̄χm)iy






(5.38)
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where the normalised z-directed electrical conductivity gez = σezz∆lZTL, the

normalised x-directed magnetic conductivity rmx = σmxx∆l/ZTL, the nor-

malised y-directed magnetic conductivity rmy = σmyy∆l/ZTL, σezz is the z

directed electrical conductivity, σmxx is the x directed magnetic conductivity,

σmyy is the y directed magnetic conductivity.

Let us now consider the relative permittivity and permeability tensor of

UPML material of a general boundary (i.e. x-directed, y-directed, corner)

using equation 5.7.

¯̄ε = ¯̄µ =









1 + σy−σx

jωε0+σx

1 + σx−σy

jωε0+σy

1 + σxσy

j2ω2ε2
0

+ σx+σy

jωε0









(5.39)

The Maxwell’s equations for the PML material for a 2 dimensional E-wave

formulation in the frequency domain are now given by,







−(∇×H)z

(∇× E)x

(∇× E)y






=







jωε0Ez

jωµ0Hx

jωµ0Hy






+











εr

(

σxσy

jωε0
+ σx + σy

)

Ez

jωµ0

(

σy−σx

jωε0+σx

)

Hx

jωµ0

(

σx−σy

jωε0+σy

)

Hy











+







jωε0χeEz

0

0







(5.40)

where σx, σy are conductivities as illustrated in figure 5.3. In equation 5.40,

the first vector on the R.H.S represents field in freespace, the second vector

on the R.H.S represents field due to conductivities, and the third vector on

the R.H.S represents field due to susceptibilities. Hence,

σezz = εr

(

σxσy
jωε0

+ σx + σy

)

(5.41)

σmxx = jωµ0

(

σy − σx
jωε0 + σx

)

(5.42)

σmyy = jωµ0

(

σx − σy
jωε0 + σy

)

(5.43)
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After conductivity normalisations and substituting jω = s = s̄/∆t [6],

gez(s̄) = εr

(

γxγy
2

1

s̄
+ γx + γy

)

(5.44)

rmx(s̄) =
s̄(ρy − ρx)v

2
r

s̄+ ρx
(5.45)

rmy(s̄) =
s̄(ρx − ρy)v

2
r

s̄+ ρy
(5.46)

γx =
σx∆l

√
2η0

vr
ρx =

γx
2

(5.47)

γy =
σy∆l

√
2η0

vr
ρy =

γy
2

(5.48)

Transforming to the z-domain (s̄ = 2(1− z−1)/(1 + z−1)) results in,

gez(z) = gez0 + z−1

{

gez1
1− z−1

}

(5.49)

rmx(z) = rmx0 − z−1

{

rmx1

(2 + ρx) + z−1(ρx − 2)

}

(5.50)

rmy(z) = rmy0 − z−1

{

rmy1

(2 + ρy) + z−1(ρy − 2)

}

(5.51)

where

gez0 = εr

(

γx + γy +
γxγy
2

)

gez1 = εrγxγy (5.52)

rmx0 = 2v2r
(ρy − ρx)

2 + ρx
rmx1 = 4ρxv

2
r

(ρy − ρx)

(2 + ρx)
(5.53)

rmy0 = 2v2r
(ρx − ρy)

2 + ρy
rmy1 = 4ρyv

2
r

(ρx − ρy)

(2 + ρy)
(5.54)

By substituting in equation 5.38, one can obtain the field calculation steps
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for freespace (χe = 0)as,

Vz =
2V i

z − z−1Sez

4 + gez0
Sez = gez1Vz + z−1Sez (5.55)

ix =
2iix + z−1Smx

2 + ZL

ZTL
+ rmx0

Smx =
rmx1ix + (2− ρx)Smx

2 + ρx
(5.56)

iy =
2iiy + z−1Smy

2 + ZL

ZTL
+ rmy0

Smy =
rmy1iy + (2− ρy)Smy

2 + ρy
(5.57)

(5.58)

where V i
z = V i

1+V
i
2+V

i
3+V

i
4 , iix = −(V i

3−V i
4−V i

Lx) and iiy = −(V i
1−V i

2−V i
Ly).

In the case of a material with constant electrical susceptibility χe equation

5.55 is changed to

Vz =
2V i

z + z−1(Sχez − Sez)

4 + gez0 + 4χe

(5.59)

where Sχez = 8χeVz − z−1Sχez.

Instability of UPML in TLM

In this study, a value of
√
2 was used for the scaling factor vr. This also

identical to a 3D TLM mesh reduced to a 2D mesh with periodic boundary

conditions at z-plane boundaries. Further, PMLs in TLM are terminated with

a TLM matched boundary in this study unless noted otherwise. The UPML

model became universally unstable due to the negative conductivity present

as mentioned in the beginning of this sub-section.

It was noted that when the excitation was higher in frequency compared

to f = c/∆l, longer time was taken to gain instability. When the conductiv-

ity is decreased, again the method took longer time to gain instability. But

the reflection at the boundary was well below -100dB until it became un-

stable. Even though this method is not further studied, it is suggested that

this method could provide significant improvement in TLM if the source of

instability could be found. Instead convolutional PML(CPML), which has

a similar equations but relates back to the split field formulation [17] was
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studied next.

5.4 Convolutional PML Formulation

Convolution PML is an alternative method derived to obtain a perfect match-

ing interface between two material mediums, one of which is intended to be

absorbing [20] to form the perfect matched layer. Considering plane wave

propagation in a material, coordinate stretching was proposed by Chew and

Weedon [20] so that wave absorbing is achieved by coordinate transformation

rather than changing material properties.

Maxwell’s equations in the new coordinates is defined as [20],

∇e × E = jωµH (5.60)

∇h ×H = −jωεE (5.61)

(5.62)

where,

∇e = x̂
1

ex

∂

∂x
+ ŷ

1

ey

∂

∂y
+ ẑ

1

ez

∂

∂z
(5.63)

∇h = x̂
1

hx

∂

∂x
+ ŷ

1

hy

∂

∂y
+ ẑ

1

hz

∂

∂z
(5.64)

A plane wave propagates undisturbed by a coordinate transformation (i.e.

the wave impedance at the boundary is constant at
√

µ/ε) if ex = hx, ey = hy,

and ez = hz irrespective of the values of ei, i = x, y, z [20].

Let ei = hi = si, i = x, y, z. Then in two dimensions and in frequency

domain for E-waves, component wise Maxwell’s equations can be written as,









1
sx

∂Hy

∂x
− 1

sy
∂Hx

∂y

− 1
sy

∂Ez

∂y

1
sx

∂Ez

∂x









=







jωεEz

jωµHx

jωµHy






(5.65)
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where sx = 1 + σx(x)
jωε0

and sy = 1 + σy(y)

jωε0
.

The equation can be rearranged as after substituting for sx, sy,









(

1 + σy

jωε0

)

∂Hy

∂x
−
(

1 + σx

jωε0

)

∂Hx

∂y

−∂Ez

∂y
∂Ez

∂x









=







jωε0Ez

jωµ0Hx

jωµ0Hy






+









εr

(

σx + σy +
σxσy

jωε0

)

Ez

σyη
2
0 Hx

σxη
2
0 Hy









+







jωε0χeEz

0

0







(5.66)

After normalisations for 2D, one obtains,

2







(

1 + γy
2s̄

)

(V1 + V2) +
(

1 + γx
2s̄

)

(V3 + V4)

−(V3 − V4)

−(V1 − V2)







i

=







(4 + gez(s̄) + 2s̄χe)Vz

(2 + rmx)ix

(2 + rmy)iy







(5.67)

where

gez(s̄) = εr

(

γx + γy +
γxγy
2s̄

)

(5.68)

rmx(s̄) = ρy (5.69)

rmy(s̄) = ρx (5.70)

γi = σi∆lη0
√
2 , i = x, y (5.71)

The current update equations are given by the standard equation for 2D TLM.

The voltage update equation can be obtained by using the z-transform.

Vz =

(

1 + γy
4

)

2V i
zx +

(

1 + γx
4

)

2V i
zy + z−1(Sχez + Sez)

4 + gez0 + 4χe

(5.72)

where Vzx = V1 + V2,

Vzy = V3 + V4,

Sez = γyV
i
zx + γxV

i
zy − gez1Vz + z−1Sez
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5.4.1 Implementation

Convolutional PML method, when implemented as formulated becomes un-

stable for a 2D mesh. It was found out that the integrating term on the L.H.S

(i.e. the convolutional term) is causing the instability. However, this term is

also the key in obtaining the perfect matching condition. In order to retain the

amplification while eliminating the integrating term, Sez was modified to con-

tain terms from the R.H.S of the equation. Therefore, Sez = −gez1Vz+z−1Sez.

This stabilised the material, but some reflection was also observed..

In order to characterise the PML medium, the reflection at the end of a

metal waveguide is used in the next section.

5.4.2 Reflection

The reflection at the end of the metal waveguide presented in section 3.1.1 was

truncated with 25 CPML layers. In FDTD a similar structure in microwave

frequencies and millimetre length space steps, a reflection between −90dB

to −110dB was observed [4]. By using a constant conductivity profile and

with different conductivity values given by the required attenuation RC =

5dB, 10dB, 15dB, 20dB was used as the PML. For a Gaussian pulse excitation

at 225THz with a pulse width of 10fs, the reflection observed is shown in

figure 5.12.

According to figure 5.12, the best reflection properties were obtained when

RC = 10dB for 25 CPML layers. When required attenuation RC is smaller,

the initial reflection from the freespace-CPML boundary is smaller but the

wave is not attenuated enough, resulting in a higher reflection. When RC

is larger, the initial reflection from the freespace-CPML boundary is higher

producing a higher overall reflection. Thus, from 25 layers, with required at-

tenuation RC = 10dB an overall reflection of −35dB was observed throughout

the frequency spectrum. Even with other values of RC , a reflection of −30dB

could be obtained. This is an achievement compared to the TLM matched

boundary, but is not as good as the reflection characteristics observed for
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Figure 5.12: The reflection at the end of metal waveguide of width 1µm trun-
cated by 25 CPML layers of constant conductivity profile with
RC = 5dB (solid), RC = 10dB (dashed), RC = 15dB (dotted),
RC = 20dB (dot-dash).

other PML formulations in TLM [4], [5].

Then, the reflection obtained by different conductivity profiles were con-

sidered. In figure 5.13, the metal waveguide reflection for 25 CPML layers of

a constant, linearly increasing, quadratically increasing, and logarithmically

increasing profiles with a required attenuation RC = 10dB, are shown.

According to figure 5.13, the logarithmic profile produced better reflection

of −40dB than that obtained from the constant profile. The quadratic pro-

file provided the worst reflection. This is contradictory to the observations

by Pena and Ney [4], where quadratic profile had given the best reflection

properties.

Then the number of CPML layers were doubled to observe how well CPML

can be used to absorb incident waves. If the reflection is significantly smaller

for a longer CPML layer then it can be used to truncate boundaries though

not efficient as other PML formulations. In figure 5.14, the reflection at the

metal waveguide was observed for a CPML of 50 layers with a logarithmic

conductivity profile and the required attenuation of RC = 10dB, 15dB, 20dB.
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Figure 5.13: The reflection at the end of metal waveguide of width 1µm trun-
cated by 25 CPML layers of constant (solid), linear (dashed),
quadratic (dotted) and logarithmic (dot-dash) conductivity pro-
files with RC = 10dB.
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Figure 5.14: The reflection at the end of metal waveguide of width 1µm trun-
cated by 50 CPML layers of logarithmic conductivity profile with
RC = 10dB (solid), RC = 15dB (dashed), RC = 20dB (dotted).
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The reflection has slightly improved upto −45dB by using 50 CPML layers

when RC = 15dB. The reflection for RC = 10dB and RC = 20dB are both

larger than that obtained for RC = 15dB. This is evident that doubling of

CPML layers does not decrease the reflection by a significant amount. This

indicates that the CPML is not an effective method to truncate boundaries.

This is because PML materials require several extra variable in computer code

resulting in significant increase in omputation time if large number of layers

are to be used to obtained the required reflection.

5.5 Conclusions

In the last chapter an accurate discretisation technqiue was presented for

optical resonators. The main aim of this chapter was to find better simulation

domain tructation methods, so that resonators can be externally excited.

To this end PML formulations by Berenger were implemented, but proved

very inefficient when the angle of incidence is larger than 45◦. A uniaxial

PML formulation was implemented next. This formulation was unstable de-

spite trying to satisfy Courant condition by slowing down the TLM mesh.

Convolutional PML formulation was considered and was also unstable. By

ignoring some delay terms, the convolutional PML became stable, and reflec-

tion at a metal waveguide was then observed. The results have shown that

a logarithmic profile could obtain better reflections with CPML at about

−35dB for 25 layers, −45dB for 50 layers. It was noted that significantly

increasing the number of layers does not result in a significant attenuation

of the reflected waves. This indicates that the CPML formulation is also

inefficient.

As a future direction it is suggested to investigate the stability issues of

UPML, where good attenuation could be observed before going into an un-

stable state. CPML can be used until such a time. In order to model chalco-

genide microresonators dispersion and nonlinearity should be modelled in

TLM. Hence, the next chapter aims at modelling dipersion characteristics of
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several chalcogenide materials.
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6
Dispersive Models for

Chalcogenide Glasses

The microresonators and waveguides considered so far have a myriad of appli-

cations in optical devices. Many of the devices studied experimentally to date

are based in silica glass, especially when it comes to microresonators. Silica

being an amorphous glass material has been widely used due to its mor-

phability into spheres by thermal reflux [1]. However, the refractive index

and nonlinearities are low in silica glasses compared to other semiconductor

materials. Chalcogenide glass materials are inherently superior to silica for

microresonator applications because of their higher index of refraction and

nonlinearities compared to silica [2]. However, their physical characteristics

and chemical reactions with atmospheric elements make them delicate and

prone to contamination.

The refractive index and nonlinearities of chalcogenide glasses also vary

with frequency (wavelength) [3]. This leads to dispersion (pulse broadening)

in optical systems because the phase velocity at each frequency becomes dif-

ferent within the material. Pulse broadening also occurs due to the guiding

structure [4]. Sometimes dispersion acts to advantage, such as when balanc-

ing pulse spreading with nonlinearity to form solitons [5]. Whether dispersion
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is desired or undesired applications require accurate knowledge of dispersion,

as well as nonlinearities, in materials as a first step to understanding how

pulses propagate through waveguide structures made using them.

In this chapter, refractive index and dispersion models are presented for

some chalcogenide glass materials. The same models are then implemented

in TLM z-models. These models are then validated in the context of plane

wave reflection.

6.1 Refractive Index Models

6.1.1 Complex Refractive Index and Permittivity

The permittivity of a material can generally be complex i.e. ε = ε1 + jε2.

The refractive index n + jκ and the electrical susceptibility χe = χe1 + jχe2

are also complex valued. The relationship between the complex permittivity,

susceptibility and the complex refractive index are,

ε1 = χe1 + 1 = n2 − κ2 ε2 = χe2 = 2nκ (6.1)

where n is the real part of refractive index and κ is the extinction coefficient

(imaginary part of refractive index).

Maxwell’s curl equations for nonmagnetic materials can be expressed in the

form [6],

∇×H = −jωε0E− jωχeP (6.2)

∇× E = jωµ0H

where P is the electrical polarisation vector and a time variation of e−jωt has

been assumed. The real part of the susceptibility (χe) in equation 6.2, results

in refraction while the imaginary part results in absorption. The real part and

the imaginary parts of the susceptibility are not independent of each other
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and are related by the Kramer’s Kronig relation given by [7],

χe1(ω) =
2

π
℘

∫

∞

0

ξχe2(ξ)

ξ2 − ω2
dξ χe2(ω) = −2ω

π
℘

∫

∞

0

χe1(ξ)

ξ2 − ω2
dξ (6.3)

where ξ is the angular frequency and the integration variable, ℘ denotes the

Cauchy principal part [7]. Hence, once the real or imaginary part is known

the other can be obtained. From these relations it is evident that refraction is

linked with absorption/transparency and that the Maxwell’s equations given

above model both refractive index and absorption simultaneously.

Further, in a general complex permittivity model [7], the conductance σe
is given by,

σe(ω) = ε0ωε2(ω) (6.4)

There exists many models for refractive index. Most methods model only

the real part of the refractive index, such as the Cauchy model and Sellmeier

model [7]. On the other hand models such as Drude model [7], and the Tauc-

lorentz model [8] describe both real and the imaginary part of the refractive

index. Most materials are modelled using Drude and Sellmeir equations [4, 7]

and these coefficients are well documented [9].

6.1.2 Cauchy Model

The Cauchy dispersion models is the most simplified and the very first model

developed. However, the Cauchy model approximation is only valid away

from band gaps, where the imaginary part of refractive index is very small.

In other words, the model is valid in the optically transparent regions. The

Cauchy model defines the real part of permittivity (ε1) as,

χe1 = A+
B

λ2
+
C

λ4
(6.5)

where A, B, C are the model parameters and λ is the wavelength [7, 9].

The model according to the equation 6.5, assumes that the band gap, where

a resonance in refractive index occurs is at zero frequency. Hence, the Cauchy
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model is not appropriate if multiple bandgaps fall within or close to the fre-

quency range of interest.

6.1.3 Sellmeier Model

The Sellmeier model is the most widely used and documented model as it

models the refractive index to a high degree of accuracy. Similar to the

Cauchy model, the Sellmeier model is valid away from band gaps. But unlike

the Cauchy method, the Sellmeier model can be used to model materials with

more than one band gap in the frequency range of interest. The Sellmeier

model of real electrical susceptibility (χe) is given by,

χe = A0 +
Ns
∑

j=1

Ajλ
2

λ2 − a2j
(6.6)

where Aj, aj are model parameters, and Ns is the number of Sellmeier coef-

ficients.

The equation 6.6 models multiple infinite material resonances at aj wave-

lengths. According to [10], two Sellmeier terms (Ns=2), one in the ultraviolet

(UV) and other in the infrared (IR) are sufficient for most solid materials for

a wade frequency range away from absorption peaks.

6.1.4 Drude Model

The Drude model is built on the basis of electron hole transitions within

a material. By considering the movement of an electron in the presence of

an external electric field, and the resultant polarisation, the Drude model of

complex permittivity can be obtained as [7].

χe(ω) = χe∞ +
Aω2

0

ω2
0 + jγω − ω2

(6.7)

where ω0 is the frequency of absorption peak, γ is the damping of an absorp-

tion peak, defining its width, and A is the strength of the absorption peak.
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Hence the real part and the imaginary parts of the model are,

χe1(ω) = χe∞ +
Aω2

0(ω
2 − ω2

0)

(ω2 − ω2
0)

2 + γ2ω2
χe2(ω) =

Aω2
0γω

(ω2 − ω2
0)

2 + γ2ω2
(6.8)

In metals, electrons can move freely in the conduction band; hence, the ω0

term in the denominator vanishes producing,

χe(ω) = χe∞ −
Aω2

p

ω2 + jγω
(6.9)

where ωp is the plasma frequency [7].

6.1.5 Tauc-Lorentz Model

The Tauc-Lorentz model describes the imaginary part of the permittivity. It

is mostly used for amorphous materials. It is reported to be very accurate

compared to other refractive index models [8, 11]. It takes the form

ε2(E) =
AE0C(E − Eg)

2

(E2 − E2
0)

2 + C2E2

1

E
(6.10)

where A, E0, C, Eg are model parameters and, along with E = hc/λ, all

parameters have units of energy in eV .

From the Kramer’s Kronig rule, the real part of permittivity can be ob-

tained as follows [8, 11].

ε(E) = ε1(∞) +
A1E

2 + A2 + A3/E{(E + Eg)
2 ln(E + Eg)

2 − (E − Eg)
2 ln(E − Eg)

2}
E4 + E2(C2 − 2E2

0) + E4
0

(6.11)
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where,

A1 = aln(E
2
g − E2

0)− atan(E
2
0 + E2

g ) + atan2 (6.12)

A2 = aln(E
2
gC

2 − E4
0 − 3E2

0E
2
g )− atan(E

2
gC

2 − E2
gE

2
0 − E4

0)− atan2γ
2 − aln2

(6.13)

A3 =
AE0C

2π
(6.14)

aln =
AC

2παE0

ln

(

E2
0 + E2

g + αEg

E2
0 + E2

g − αEg

)

(6.15)

aln2 = 2
AE0C

2π
Eg ln((E

2
0 − E2

g )
2 + E2

gC
2) (6.16)

atan =
A

πE0

[

π − tan−1

(

2Eg + α

C

)

+ tan−1

(−2Eg + α

C

)]

(6.17)

atan2 = 2
AE0Eg

πα

[

π + 2 tan−1

(

2
γ2 − E2

g

αC

)]

(6.18)

α =
√

4E2
0 − C2 (6.19)

γ =
√

E2
0 − C2/2 (6.20)

Since, the Tauc-Lorentz model fits to the imaginary part of the refractive

index(or permittivity), it is a model of absorption peaks.

6.2 Refractive Index Model for Chalcogenide

Glasses

All the models presented in this chapter are rational functions except for

the Cauchy model. Therefore, fitting these models to experimental data is

sensitive to initial guess values. Further details regarding each model is given

below.

For the Cauchy and the Sellmeier models, the fitting to experiment data for

chalcogenide glasses was performed only for values where κ ≈ 0. Otherwise,

refractive index near the absorption peak affects the fitting accuracy for longer
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wavelengths. Since the Cauchy model is a polynomial, least square fitting

methods produce stable model parameters.

Sellmeier models have singularities at a1, a2, . . .. This requires, the ini-

tial parameters of a1, a2, . . . to have values not within the fitting wavelength

range(i.e. wavelengths for which κ = 0). If otherwise, this causes the matrices

of the least square fitting method to be singular as well. Hence, values less

than the material resonance are used as initial values for a1, a2, . . . According

to [10], two Sellmeier terms (a1 in UV and a2 in IR) with a constant term is

sufficient for most solid materials for a wide frequency range away from the

absorption peaks. In order to verify this for chalcogenide glasses, Sellmeier I

and Sellmeier II (one and two terms in the summation presented in equation

6.6) models were used with the constant term.

In this study refractive index and absorption data of three Chalcogenide

glass materials formed in-house are used to obtain the dispersion models.

Table 6.1 presents the fitting parameters obtained for each refractive index

model. The raw refractive index and extinction coefficient data are presented

in Z.G.Lian’s thesis [12]. The model fittings of Cauchy, Sellmeier models

obtained for As40Se60, Ge10As24.4Se66.6 and Ge17As18Se65 are plotted along

with their refractive index measurements in figure 6.1 and fittings of Drude

and Tauc-Lorentz model of the same glasses along with measurement data in

figure 6.2.

For these three Chalcogenide glasses, the Drude model could not be used

to model the refractive index for the whole range of refractive index values.

The reason for this is that for wavelengths longer than that corresponding to

the band gap energy (approx700nm)the absorption reaches near zero. But

the Drude model fitted for the whole wavelength range represents significant

absorption even below band gap energy (i.e. at longer wavelengths), due to its

slowly decaying Lorentzian shape. However, the Drude model can be fitted

for wavelengths longer than 700nm, in which case the absorption becomes

small (i.e. γ << ω0) effectively coinciding with the Sellmeier I model.

The Tauc-Lorentz and the Drude models also represent the imaginary parts

of the refractive index (κ). The modelled imaginary parts of refractive index

162



Chapter 6 Dispersive Models for Chalcogenide Glasses

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 0  500  1000  1500  2000  2500

R
ef

ra
ct

iv
e 

In
de

x

wavelength (nm)

As40Se60

Ge10As24.4Se66.6

Ge17As18Se65

Measurement As40Se60
Cauchy fit As40Se60

Sellmeier I fit As40Se60
Sellmeier I + A2 fit As40Se60

Measurement Ge10As24.4Se66.6
Cauchy fit Ge10As24.4Se66.6 

Sellmeier I fit Ge10As24.4Se66.6
Sellmeier I + A2 fit Ge10As24.4Se66.6

Measurement Ge17As18Se65
Cauchy fit Ge17As18Se65

Sellmeier I fit Ge17As18Se65
Sellmeier I + A2 fit Ge17As18Se65

Figure 6.1: Cauchy (red), Sellmeier I (blue), Sellmeier I with Con-
stant (green) fits to As40Se60 (solid), Ge10As24.4Se66.6 (dashed),
Ge17As18Se65 (dotted) along with refractive index measurement
data for the three glasses.

via the real part of the refractive index fits are presented in figure 6.3 along

with the measured extinction coefficient κ.

According to figures 6.1 and 6.2, the Tauc-Lorentz (TL) fits best to the

measurements within the whole wavelength range. Tauc-Lorentz model is

known to accurately model semiconductor materials near band gaps [13, 14]

and Chalcogenide glasses [15, 16]. The fact that the model corresponds to

the physics of the amorphous material means that the TL coefficients are

related to the material composition. This lets one design materials to satisfy

refractive index (permittivity) criteria as pointed out in [15].

For wavelengths longer than 800nm all fittings model the refractive index

close to the measured values. Sellmeier I model with a constant and the
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Figure 6.2: Drude (blue), Tauc-Lorentz (red) fits to As40Se60 (solid),
Ge10As24.4Se66.6 (dashed), Ge17As18Se65 (dotted) along with re-
fractive index measurement data for the three glasses.

Drude model more accurately model the refractive index up to 600nm than

Cauchy and Sellmeier I model.

The Extinction coefficient is also well modelled by Tauc-Lorentz as shown

in figure 6.3. The Drude model indicates the presence of a resonance peak, but

the peak is not positioned or damped appropriately. Therefore, Drude model

does not provide much of an advancement over Sellmeier models though it

represents some form of absorption.

Since this study concentrates on modelling chalcogenide materials in elec-

tromagnetic simulations, it will be useful to identify fitting errors at this

stage so that they can be compared with TLM modelling errors later. The

percentage error in modelled refractive index for the three glasses for Cauchy

and Sellmeier I models are presented in figure 6.4, whereas percentage error
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Figure 6.3: Extinction coefficient represented by Drude (blue), Tauc-Lorentz
(red) model fits to As40Se60 (solid), Ge10As24.4Se66.6 (dashed),
Ge17As18Se65 (dotted) along with extinction coefficient measure-
ment data for the three glasses.

of Sellmeier I + constant, Drude and Tauc-Lorentz models are presented in

figure 6.5.

As seen in figure 6.5, the Tauc Lorentz model’s error is uniform over the

interested frequency range at around 0.02-0.05%. The errors of all other

models increase drastically for wavelengths below about 700nm, mainly due to

non zero κ (i.e. close to the absorption peak). The error of the Sellmeier I and

Cauchy models are larger than that of others at 0.3% away from absorption

peaks. The Sellmeier I with a constant and Drude models have an error close

to the Tauc-Lorentz model away from absorption peaks.

Since addition of a constant rarely increases implementation complexities

in general, from now on the Sellmeier I model with a constant is referred to as
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Table 6.1: Cauchy, Sellmeier and Tauc Lorentz fitting to Ge10As24.4Se66.6
Cauchy, Sellmeier and Tauc Lorentz fitting to Ge17As18Se65
Cauchy, Sellmeier I, Sellmeier I + Constant, Drude, Tauc-
Lorentz parameters for three Chalcogenide glasses As40Se60,
Ge10As24.4Se66.6,Ge17As18Se65 .

Model As40Se60 Ge10As24.4Se66.6 Ge17As18Se65
Cauchy A 6.7196 5.7642 5.5360
(> 700nm) B (µm)2 0.5045 0.3696 0.3674

C (µm)4 0.2303 0.1252 0.09886
Sellmeier I A1 6.6482 5.7234 5.5065
(> 700nm) a1 µm 0.3351 0.2976 0.2912
Sellmeier I A1 2.8748 2.4957 2.7056
+ Constant a1 µm 0.4542 0.4098 0.3856
(> 700nm) A0 3.8275 3.2583 2.8232
Drude A 3.1450 2.4887 2.7002
(> 700nm) γ rad/ps 14.162 39.228 57.069

ω0 rad/ps 4290.1 4595.4 4884.5
χe(∞) 3.5536 3.2654 2.8287

Tauc Lorentz A 209.7 208.7 237.2
C 4.509 6.773 6.579
E0 3.180 3.388 3.290
Eg 1.804 1.881 1.986
ε1(∞) 1.048 1.238 0.9566

the Sellmeier I model in this study. Further, when a Sellmeier II term model

is used for these three glasses, the second resonance occurs at very small

wavelength < 0.01µm, effectively representing a Sellmeier I model with a

constant. The Sellmeier III model was not studied in detail as its convergence

was found to depend mostly on the initial values indicating that the model

has more free parameters than the experimental data.
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Figure 6.4: Percentage error of refractive index of Cauchy (red) and Sell-
meier I (blue) models relative to the measured refractive indices
of As40Se60 (solid), Ge10As24.4Se66.6 (dashed), Ge17As18Se65 (dot-
ted).

6.3 Modelling Dispersion

The dispersion is the dependence of the phase velocity of a wave on frequency.

This makes a pulse (collection of frequencies) to broaden or narrow while prop-

agating. The broadening is caused by positive dispersion and occurs due to

material dispersion and dispersion of the structure (usually waveguide). Nar-

rowing is caused by negative dispersion (anomalous dispersion) and occurs

due to self focusing effects of material nonlinearities and negative dispersive

structures. Note that pulse narrowing with dispersive (linear frequency de-

pendant) medium is only possible until the pulse becomes transform limited

pulse, which is defined as a pulse with the minimum time duration for a given
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spectral content.

The dispersion parameter D is defined by,

D = −2πc

λ2
∂2k

∂ω2
(6.21)

where c is the speed of light in vacuum and k = ω
√
ε1/c. The same equation

can be expressed in terms of ε1 as,

D = − λ

4c
√
ε

{

2
∂2ε1
∂λ2

− 1

ε1

(

∂ε1
∂λ

)2
}

(6.22)
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For the Cauchy equation,

∂ε1
∂λ

= −2

{

B

λ3
+ 2

C

λ5

}

(6.23)

∂2ε1
∂λ2

= 2

{

3
B

λ4
+ 10

C

λ6

}

(6.24)

For the Sellmeier I equation,

∂ε1
∂λ

= −2A1a
2
1

λ

(λ2 − a21)
2

(6.25)

∂2ε1
∂λ2

= 2A1a
2
1

3λ2 + a21
(λ2 − a21)

3
(6.26)

6.4 Transmission Line Models of Dispersion

Dispersion (a frequency dependent refractive index model) can be included

in the Maxwell’s equation as the Polarisation vector P = χeE, where χe is

frequency dependant. This can be achieved in both stub model and the z-

domain models [5, 17]. V.Janyani [5] suggests that it is easier to implement

dispersion with a z-model than with a stub model once the refractive index

model in the s-domain is known. The suggestion is due to the difficulty in

determining the combination of electrical components (R,L,C). Janyani [5] has

also based this on the Duffing model which includes nonlinearity. Regardless

of the implementation path, one must first obtain the s-domain models of the

refractive index models presented earlier in order to represent them in TLM.
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6.4.1 Laplace Domain Models

Cauchy Model

Let us first consider the Cauchy model. The frequency response of the model

in terms of angular frequency ω is,

χe(ω) = A+
B

(2πc)2
ω2 +

C

(2πc)4
ω4 (6.27)

It is fairly straight forward to obtain the s-domain model since s2 = −ω2

follows from s = jω. Hence the s-domain sucessptibility of the Cauchy model

is,

χe(s) = A− B

(2πc)2
s2 +

C

(2πc)4
s4 (6.28)

Sellmeier Model

Considering the Sellmeier I equation with a constant, the frequency response

is,

χe(ω) = A0 +
A1

1−
(

a1
2πc

)2
w2

(6.29)

Even in this instance, the s-domain model can be obtained as,

χe(s) = A0 +
A1

1− τ 21 s
2

(6.30)

where τ1 = a1/2πc.

6.4.2 Z domain Implementations

In order to implement the s-domain models presented above in TLM z domain

model, one must use a z-transformation technique. Since direct transforma-

tion s = 1
T
ln(z) cannot be used when the transfer function is a rational func-

tion of polynomials of s, one can use bilinear z-transform defined in chapter

2.
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Let’s consider the Ez component of equation 2.30 for E waves given in

chapter 2. Assuming frequency dependant conductivity ge(s) and electrical

susceptibility χe1(s), the equation becomes,

2(V i
1 + V i

2 + V i
3 + V i

4 ) = 4Vz + ge(s)Vz + 2s̄χe1(s)Vz (6.31)

This formulation presented in J. Paul’s thesis [17] can be used for arbitrary

ge(s) and χe1(s).

However, as noted previously, the conductivity (from the imaginary part

of permittivity/susceptibility) is not independent of the real part of the sus-

ceptibility except the frequency independent constants. The Kramer’s Kronig

relations does not relate the constant values ge(∞) and χe1(∞). Hence, linear

materials can be divided into two categories.

• constant χe(∞) and constant ge(∞) (simple).

• frequency dependant χe(z) and constant ge(∞) (dispersive).

The first is a simple lossy dielectric which was addressed in the beginning

of this study. The second form represents materials with a frequency depen-

dant real part of susceptibility (χe1(ω)) and frequency independent imaginary

part of susceptibility (χe2) and materials with frequency dependant real and

imaginary parts χe(ω) inter-related by the Kramer’s Kronig relations.

In order to illustrate this further, consider a material with general complex

susceptibility χe(s) = χen(s)/χed(s) expressed as a rational polynomial, where

χen(s) = a0 + a1s+ a2s
2 + . . . and χed(s) = b0 + b1s+ b2s

2 + . . .. Then

χen(ω) = (a0 − a2ω
2 + a4ω

4 + . . .) + jω(a1 − a3ω
2 + a5ω

4 + . . .)

= χr
en(ω) + jωχi

en(ω) (6.32)

χed(ω) = (b0 − b2ω
2 + b4ω

4 + . . .) + jω(b1 − b3ω
2 + b5ω

4 + . . .)

= χr
ed(ω) + jωχi

ed(ω) (6.33)

where a superscript r denotes real part, a superscript i denote imaginary

part and subscripts en and ed denote numerator and the denominator of the
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complex electrical susceptibility. It should be noted that in determining the

frequency response, from the s domain model by substituting s with jω, the

real parts consist of even orders of ω whereas the imaginary parts consist of

odd orders of ω.

The frequency dependant real part and imaginary part of susceptibility are

given by,

χe1(ω) =
χr
en(ω)χ

r
ed(ω) + ω2χi

en(ω)χ
i
ed(ω)

(χr
ed(ω))

2 + (χi
ed(ω))

2 (6.34)

χe2(ω) = ω
χi
en(ω)χ

r
ed(ω)− χr

en(ω)χ
i
ed(ω)

(χr
ed(ω))

2 + (χi
ed(ω))

2 (6.35)

The denominator of χe1(ω) and χe2(ω) now has only even order of ω. The

numerator of χe1(ω) have only even orders while that of χe2(ω) contains only

odd orders of ω.

From χe2(ω), the conductance σe(ω) can be obtained as,

σe(ω) = ε0
ω2 {χi

en(ω)χ
r
ed(ω)− χr

en(ω)χ
i
ed(ω)}

(χr
ed(ω))

2 + (χi
ed(ω))

2 (6.36)

Now both the numerator and the denominator of σ(ω) have even orders of ω.

As per the process in modelling χe1(ω) and σe(ω), they are expressed in the

s-domain by replacing ω2 with −s2, before fitting into the last two terms of

equation 6.31. Note that by now, all the coefficients of the numerators and

denominators of both χe1(s) and σe(s) are real.

However, they have to be normalised using ge(s) = σe(s)∆lη0
√
2 and s =

s̄/∆t noting from chapter 2 that ∆l/∆t =
√
2c for two dimensional TLM,

where η0 =
√
µ0ε0. Hence, the last two terms of the equation 5.31 then
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becomes,

{ge(s) + 2s̄χe1(s)}Vz = {2∆tσe(s)/ε0 + 2s∆tχe1(s)}Vz (6.37)

= 2∆t

{

−s2χ
i
en(s)χ

r
ed(s)− χr

en(s)χ
i
ed(s)

(χr
ed(s))

2 + (χi
ed(s))

2

+2s
χr
en(s)χ

r
ed(s)− s2χi

en(s)χ
i
ed(s)

(χr
ed(s))

2 + (χi
ed(s))

2

}

Vz (6.38)

= 2s∆t

{

(χr
ed(s) + sχi

ed(s)) (χ
r
en(s)− sχi

en(s))

(χr
ed(s))

2 + (χi
ed(s))

2

}

Vz

(6.39)

= 2s̄

{

a0 + a1s+ a2s
2 + . . .

b0 + b1s+ b2s2 + . . .

}

Vz = 2s̄χe(s)Vz (6.40)

This proves that using the complete susceptibility function in s is equivalent

to using separate conductance and real part of susceptibility. In the second

case, if they are implemented in separate paths to be added at a later stage,

the cost of computation and storage will be doubled since the order of s in

the numerator and denominator are doubled when separating the real part

and imaginary part. However, it should be noted that this does not take

into account any frequency independant conductivity present in the material

which must be modelled via a constant ge. Hence, the voltage equation is re

written as follows,

2(V i
1 + V i

2 + V i
3 + V i

4 ) = 4Vz + geVz + 2s̄χe(s)Vz (6.41)

Once transformed to the z domain, the equation becomes,

2(V i
1 + V i

2 + V i
3 + V i

4 ) = 4Vz + geVz + 4

(

1− z−1

1 + z−1

)

χe(z)Vz (6.42)

In order to separate χe(z) into two parts, so that one part is independant of

z−1 (i.e. only dependant on value at the current time step) and the other part

is dependant on z−1 (i.e. dependant only on values at previous time steps)
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partial fractions as follows [17],

(1− z−1)χe = χ0
e − z−1(χ1

e + χ̄e(z)) (6.43)

By rearranging equation 6.42, and substituting the relations one eventually

arrives at,

Vz = κez
{

2V i
z + z−1Sez

}

(6.44)

Sez = 2V i
z − (4 + ge − 4χ1

e)Vz + Ser (6.45)

Ser = 4χ̄e(z)Vz (6.46)

where κez = 1/(4 + ge +4χ0
e) is a constant and V i

z = V i
1 + V i

2 + V i
3 + V i

4 is the

incident link voltages into the node. In order to implment the Ser(z) with the

least number of variables to hold past information, one can express Ser(z) as,

Ser = γ0Vz + z−1Ser1

Ser1 = γ1Vz + δ1Ser + z−1Ser2

...

Sern = γnVz + δnSer

given,

χ̄e(z) =
γ0 + γ1z

−1 + . . .+ γnz
−n

1 + δ1z−1 + . . .+ δnz−n
(6.47)

In order to model the materials discussed previously Caucy, Sellmeier and

Drude models are transformed into the z-domain and partial fractions χ0
e, χ

1
e

and χ̄e(z) for each model are presented next.

Cauchy Model

From the s-domain model, one can obtain χe,Cauchy(z) by bilinear transform

as,

χe,cauchy(z) = A−Bz

(

1− z−1

1 + z−1

)2

+ Cz

(

1− z−1

1 + z−1

)4

(6.48)
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where Bz = B/(πc∆t)2 and Cz = C/(πc∆t)4. From partial fractions one can

obtain,

(1−z−1)χe,Cauchy(z) = χe0,Cauchy−z−1

{

χe1,Cauchy +
a0 + a1z

−1 + a2z
−2 + a3z

−3

1 + 4z−1 + 6z−2 + 4z−3 + z−4

}

(6.49)

where

χe0,Cauchy = χe1,Cauchy = A−Bz + Cz (6.50)

a0 = −a3 = −4Bz + 8Cz (6.51)

a1 = −a2 = −4Bz − 8Cz (6.52)

Sellmeier Model

From the s-domain model, by bilinear z-transform as,

χe,Sellmeier(z) = A0 + A1
(1 + z−1)2

(1 + z−1)2 + γ21(1− z−1)2
(6.53)

where γ1 = a1/(πc∆t). From partial fractions,

(1− z−1)χe,Sellmeier = χe0,Sellmeier − z−1

{

χe1,Sellmeier +
a0 + a1z

−1

1 + b1z−1 + z−2

}

(6.54)

where

χe0,Sellmeier = χe1,Sellmeier = A0 +
A1

1 + γ21
(6.55)

a0 = −a1 = −4A1
γ21

(1 + γ21)
2

(6.56)

b1 = 2

(

1− γ21
1 + γ21

)

(6.57)
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Drude Model

From s-domain model, by bilinear transform as,

χe,Drude(z) = χe∞ +
AΩ2

0(1 + z−1)2

(1− z−1)2 + Γ(1− z−2) + Ω2
0(1 + z−1)2

(6.58)

where Ω0 = ω0∆t/2 and Γ = γ∆t/2. From partial fractions,

(1− z−1)χe,Drude = χe0,Drude − z−1

{

χe1,Drude +
a0 + a1z

−1

1 + b1z−1 + b2z−2

}

(6.59)

where,

χe0,Drude = χe∞ +
AΩ2

0

1 + Γ + Ω2
0

(6.60)

χe1,Drude = χe∞ +
AΩ2

0

1− Γ + Ω2
0

(6.61)

a0 =
2AΩ2

0

1 + Γ + Ω2
0

{

Ω2
0 − 1

1 + Γ + Ω2
0

− Ω2
0 + 1

1− Γ + Ω2
0

}

(6.62)

a1 =
2AΩ2

0

1 + Γ + Ω2
0

{

Ω2
0 + 1

1 + Γ + Ω2
0

− Ω2
0 − 1

1− Γ + Ω2
0

}

(6.63)

b1 = 2
Ω2

0 − 1

1 + Γ + Ω2
0

(6.64)

b2 =
1− Γ + Ω2

0

1 + Γ + Ω2
0

(6.65)

Notes on z-models

The Cauchy model implemented above becomes unstable for the A,B,C pa-

rameter values obtained for the three chalcogenide glasses. In the s-domain

transfer function there contains only zeros. The zeros are given by,

s =

√

B ±
√
B2 − 4AC

2A
(6.66)
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Both of these zeroes are real and positive for the A,B,C parameter values

obtained for the three chalcogenide glasses.

6.5 Plane Wave Reflection of Dispersive

Models

In this section, the implemented models are validated by plane wave prop-

agation (1D propagation). The reflection and the transmission of a plane

wave incident from free-space to a dispersive material were measured. The

simulation parameters are given in table 6.2.

Table 6.2: Simulation parameters to observe reflection from a dispersive ma-
terial junction

Window size X = 50µm
Y = ∞

Step size ∆l = 0.05, 0.025µm
Freespace to material X = 25µm
planar boundary
Materials As40Se60

Ge10As23.4Se66.6
Ge17As18Se65

Excitation line x = 5µm
Excitation Centre Frequency f0 = 200THz
Gaussian Pulse width t = 5fs
Measurement plane
Incident & Reflection x = 10µm
Transmission x = 30µm

The incident, reflection and the transmission waves were measured in the

time domain and converted to the frequency domain by a fast Fourier trans-

form (FFT). The reflection obtained from TLM Sellmeier I models for As40Se60,

Ge10As23.4Se66.6, and Ge17As18Se65 are presented for TLM space step sizes of

0.05µm and 0.025µm, along with the theoretical reflection obtained from the
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Sellmeier I model, in figure 6.6. Similarly, the transmission obtained from the

TLM Sellmeier models for the three glasses are presented along with theoret-

ical transmission obtained for the Sellmeier model in figure 6.7. As a measure

of TLM modelling error, the percentage error in reflection and transmission

for the three glasses for the two TLM space step sizes are presented in figures

6.8 and 6.9 respectively.
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Figure 6.6: Plane wave reflection obtain from TLM Sellmeier I models for
As40Se60, Ge10As23.4Se66.6, and Ge17As18Se65 for a space step of
0.05µm, 0.025µm, with theoretical reflecton from Sellmeier I
model, when a plane wave is incident from freespace, normal to
the boundary.

From figures 6.6 and 6.7, the TLM model is validated against the Sellmeier

I model as the results converge towards the theoretical expectation when the

space step is decreased.

The error in reflection observed was much larger than the error observed

for the transmission for the same parameters. In figure 6.8, at 1500nm with

0.05µm, which corresponds to λ/10 (given that refractive index at 1500nm

is ≈ 2.8) at that wavelength, the error in reflection is about 4%. Also at
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Figure 6.7: Plane wave transmission obtain from TLM Sellmeier I models for
As40Se60, Ge10As23.4Se66.6, and Ge17As18Se65 for a space step of
0.05µm, 0.025µm, with theoretical transmission from Sellmeier I
model, when a plane wave is incident from freespace, normal to
the boundary.

a wavelength of 750nm with a TLM space step of 0.025µm (given that the

refractive index at a wavelength of 750nm is ≈ 3.2), which corresponds to

λ/10 at 750nm, the error in reflection is about 4%. This is observed in the

discussion of TLM mesh dispersion in [18], which mentions that at λ/10 the

error in velocity is 4%. Hence, the error in reflection is a direct consequence

of mesh dispersion. However, the errors in transmission at both locations

are about 1%. Hence, it can be concluded that the modelling errors in TLM

affects less for transmission, and reflection is the more stringent measure for

error analysis.

When an error of about 4% is compared with the modelling error of the

Sellmeier model, which was less than 0.1% beyond 700nm, it is clear that it is

more important to reduce TLM mesh dispersion than to accommodate more

elaborate models such as the Tauc-Lorentz one.
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Figure 6.8: Percentage error in plane wave reflection obtain from TLM Sell-
meier I models for As40Se60, Ge10As23.4Se66.6, and Ge17As18Se65
for a space step of 0.05µm, 0.025µm, relative to theoretical reflec-
ton from Sellmeier I model, when a plane wave is incident from
freespace, normal to the boundary.

6.6 Conclusions

In this chapter, the complex refractive index was assumed to be frequency

dependant. In order to describe measured refractive indices of some chalco-

genide glasses, several models were discussed. The Cauchy, Sellmeier Drude,

and Tauc-Lorentz models were considered as suitable candidates for such

modelling. The Tauc-Lorentz model was identified as the best model for

chalcogenide glasses representing the complex refractive index for the whole

range of the wavelengths of interest. The Drude model and Sellmeier model

were the next best, but they were only accurate when the material is sig-

nificantly transparent (in these glasses for wavelengths above around 700nm

wavelength). It was also understood that the Sellmeier model with one term

with a constant is the suitable Sellmeier model for chalcogenide glasses.
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Figure 6.9: Percentage error in plane wave transmission obtain from
TLM Sellmeier I models for As40Se60, Ge10As23.4Se66.6, and
Ge17As18Se65 for a space step of 0.05µm, 0.025µm, relative to the-
oretical transmission from Sellmeier I model, when a plane wave
is incident from freespace, normal to the boundary.

Then, the dispersive models are accommodated into TLM by means of

z-transform. The Sellmeier model was the most suitable candidate as the

Cauchy model is unstable due to its non-strict transfer function. The Drude

model coincides with the Sellmeier model for the given chalcogenide glasses.

The Tauc-Lorentz model included terms that cannot be readily converted to

s-domain to be later transformed to z-domain. The plane wave reflection

and transmission was observed and the results verify that the TLM models

closely represent the Sellmeier model as the space step is decreased. The

error in reflection was about 4% and transmission was about 1% when λ =

10∆l. The reflection error was in accordance with the standard TLM mesh

dispersion error, and is understood as the better representative of modelling

error. Lastly, it was noted that it is more important to minimise the TLM

meshing error than to incorporate more elaborate refractive index models in
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TLM.

The frequency dependence of chalcogenide glasses were modelled in this

chapter from measurement to electromagnetic simulation. The next most

important feature of chalcogenide glasses, the nonlinearities is the subject of

the next chapter.
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7
Nonlinear Models for

Chalcogenide Glasses

Optical nonlinearity is the nonlinear relationship between dielectric polarisa-

tion and electric field in certain materials, in the presence of various types of

fields. The nonlinear effects include thermal, electrical, magnetic and optic.

Unlike thermal, electrical, and magnetic effects, optical effects have almost

instantaneous response and can be controlled by fast optical signals. On the

downside, optical effects are small in magnitude requiring large optical fields

in order to take effect. Therefore, optical materials showing high nonlinearity

should be combined with structures which enhance the nonlinear characteris-

tics of the underlying material. To this end, modelling of optical components

containing nonlinear material is highly influential in taking optical research

forward. In this chapter, instantaneous Kerr nonlinearity is looked at in detail

from a modelling perspective.

As pointed out in the introductory chapter of this thesis, one of the main

advantages of time domain numerical techniques over frequency domain tech-

niques is the ability to solve nonlinear problems with high accuracy. In the

previous chapter, TLM was utilised to model dispersion in chalcogenide glass

materials. In this chapter, TLM modelling is taken a step further to include
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Kerr nonlinearity present in chalcogenide glass materials [1].

In this chapter, a two dimensional stub TLM model and a z-transform

model for Kerr nonlinearity are presented. They are compared in the context

of a self focusing problem. Results from the models are also compared with

those from a time domain approximate beam propagation technique in the

context of a nonlinear waveguide junction.

7.1 Optical Nonlinearities

Until now in this study, the polarisation vector was assumed to have a lin-

ear relationship with electric field. The last chapter discussed the frequency

dependency of this relationship. Due to this assumption, optical beams at

one frequency could not affect beams at other frequencies or generate new

frequencies. Further, bending of optical beams occurred as a refraction phe-

nomenon only. This excluded the possibility of controlling optical signals

via other optical signals. Similar phenomenon in semiconductors in the kilo-

hertz to gigahertz electromagnetic signal regime was solely responsible for the

advancement of electrical technologies.

The polarisation vector can be written as a Taylor polynomial of the applied

electric field [2], [3].

P = ε0χeE+ ε0χ
(2)
e |E|E+ ε0χ

(3)
e |E2|E+ . . . (7.1)

where χe is the linear susceptibility, χ(2)
e and χ

(3)
e second and third order

nonlinear susceptibilities. All susceptibilities are complex in general, where

the imaginary part represents loss or gain.

The second order nonlinearity is the strongest and gives rise to phenom-

ena such as second harmonic generation (SHG) and sum and difference fre-

quency generation [3]. However, centrosymmetric (symmetric in all direc-

tions) molecules and crystal latices do not exhibit second order nonlinearities

[2, 1]. The third order nonlinearity present in most materials occur due to var-

ious physical phenomenon. Some result in instantaneous effects such a Kerr
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nonlinearity while some result in non-instantaneous effects such as Raman

nonlinearity.

7.1.1 Kerr Nonlinearity

Kerr nonlinearity in material is a third order nonlinearity where the refractive

index of the material at a given time depends on the optical power intensity.

Theoretically this effect is taken as instantaneous since in most materials the

response time for Kerr nonlinearity is small.

Instantaneous Kerr nonlinearity is the most desired form of nonlinearity

due to its self focusing effects and its usability in all optical control. In

most materials, including silica, its magnitude is small, requiring high optical

power to induce such effects. However, such high optical power either breaks

down the material or activates multi photon absorption, another nonlinear

absorptive effect, resulting in a thermal fusing of the material. There has been

a growing interest in this research area due to some semiconductors such as

Gallium Arsenide showing Kerr effects more than three orders of magnitude

higher than that of silica. Chalcogenide glass materials which contain some

semiconductor elements, also show similar Kerr effects.

The refractive index of a Kerr nonlinear material is given by,

n = n0 + n2I (7.2)

where n0 is the linear refractive index, n2 is the Kerr coefficient and I is the

optical intensity. The nonlinear coefficient can either be positive or negative

and the materials are termed accordingly (i.e. “positive-Kerr materials” and

“negative-Kerr materials”). Kerr nonlinearity is also widely defined as a third

order nonlinear susceptibility χ(3)
e .

n2 =
3χ

(3)
e

4cε0(χe + 1)
(7.3)

where c is the velocity of light in vacuum, and χe is the linear electrical
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susceptibility. Equations 7.1, 7.2 and 7.3 are linked together by the optical

intensity I = |E2|/(2η), where η = η0/n0.

The Kerr coefficient combined with the local instantaneous intensity is a

measure of the change of refractive index and all the consequent effects de-

pend on this combination n2I. Usually the maximum nonlinear change in

the refractive index is limited by the maximum electric field intensity that

the material can withstand. Materials like silica have a small Kerr coeffi-

cient around 2×10−17m2/W , whereas materials like chalcogenide glasses and

AlGaAs have high Kerr coefficients around 2× 10−13m2/W [3, 1].

7.2 Formulation

Instantaneous Kerr nonlinearity can be modelled in TLM as a sudden in-

crement(decrement) of the local electrical susceptibility function. Hence, an

additional (reductional) stub at the centre of the TLM node can model Kerr

nonlinearity. V.Janyani [4] has proposed a stub addition for incremental

changes of refractive indices for TLM nodes in 1 dimension. In this sec-

tion this method is further generalised to 2 dimensions. Alternatively, J.Paul

[5, 6] has proposed a z-transform based Kerr nonlinearity implementation of

a simpler formulation. This implementation is also pursued in this study to

compare their similarities and limitations.

7.2.1 2D Nonlinear Stub model

The stub that used to model increased permittivity can be used to express

the time dependent changes of refractive index. Hence, by intuition, stubs

can be added at each time step to represent incremental changes in refractive

index as they would occur on top of the stubs already present. However, this

would lead to a very complex TLM node, which grows over time.

The solution given by V.Janyani[4] to overcome this problem is to obtain

an equivalent stub at each time step to combine the two stubs. This method

essentially maintains a single stub, the properties of which changes over time.
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The following briefly underlines the concept.

Consider electrical susceptibility at time k, χek = χe(k−1)+χe∆. The added

stub looks like figure 7.1 and can be reduced as illustrated. As soon as the

differential stub is introduced, its incident voltage will be zero.Hence, the

combined stub can be reduced as shown. As shown in chapter 2, a stub

corresponding to χe is given by Ys = 4χe/ZTL, which can be used to express

an increment of χe∆. Thus:

(a) Newly Connected Stub (b) Reducing Stub (a) Resultant Stub

2kV
i
s

Ys

2kV
i
s∆ = 0

Ys∆

2kV
i
s

Ys

Ys∆

2kV
i
s

Zs∆

Zs∆+Zs

Ys + Ys∆

Figure 7.1: Incremental Stub Reduction to a Single Stub

Ys∆ = 4
χe∆

ZTL

(7.4)

From the above equation, the voltage of the TLM node voltage Vz can be

obtained by modifying the linear formulation slightly, as proven by Janyani,

[4], as follows.

Vz =
2(V i

1 + V i
2 + V i

3 + V i
4 ) + 2V i

s
Zs∆

Zs∆+Zs
(Ys + Ys∆)ZTL

4 + ge + (Ys + Ys∆)ZTL

(7.5)

The above can be reduced to the following equation by incorporating terms

involving susceptibilities and eliminating admittances.

kVz =
2(kV

i
1 +k V

i
2 +k V

i
3 +k V

i
4 ) + 8kV

i
s (k−1)χe

4 + ge + 4kχe

(7.6)
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The only unknown in this equation is kχe, which changes instantaneously

with |E|. From equation 7.2 and the definition of optical intensity I as,

I =
V 2
z n0

2(∆l)2η0
(7.7)

(7.8)

By definition the electrical susceptibility at time instant k is given by,

kχe = (kn)
2 − 1 (7.9)

In Kerr media n2I term is usually less than 0.01 [4]. This limit is imposed

by the maximum electric field tolerated by the material. Therefore, when

expressing (kn)
2, the n2

2I
2 term can be neglected. Hence,

kχe = χe + 2n2
V 2
z (χe + 1)

2(∆l)2η0
(7.10)

By substituting equation 7.10 in equation 7.6 one obtains,

kVz {4 + ge + 4χe}+4

{

n2(1 + χe)

(∆l)2η0

}

(kVz)
3 = 2(kV

i
1+kV

i
2+kV

i
3+kV

i
4 )+8kV

i
s (k−1)χe

(7.11)

The above equation is a cubic polynomial of kVz, where the right hand side

is a constant for a given step. Hence, one has to solve a cubic polynomial of

the form x3 + px = q. Because p and q2 are always positive, the equation has

only one real root, which can be expressed as [7],

kVz = [R +
√

Q3 +R2]1/3 + [R−
√

Q3 +R2]1/3 (7.12)

where R = Wz/8χe∆′, Q = (4+ge+4χe)/12χe∆′, Wz is the R.H.S of equation

7.11, and χe∆′ = n2(χe + 1)/(∆l)2η0. However, this requires one to use an

iterative root finding algorithm for cubic root twice and square root twice.

Therefore, it is much more economical to use one of Householder’s methods

(Newton Raphson, Halley’s method, etc.)[7] to solve equation 7.11 directly.
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kVz = Wz/(4 + ge + 4χe) gives a good initial guess since 4χe∆(kVz)
2 ≪ 1.

7.2.2 2D Nonlinear Z tansform model

By extending the model obtained for a dispersive material in the previous

chapter, using the polarisation vector, one can obtain [6],

2(V i
1 + V i

2 + V i
3 + V i

4 ) = 4Vz + geVz + 2s̄χe(s)Vz + 2s̄χeKV
3
z (7.13)

where χeK = 3
4
χ
(3)
e /(∆l)2. As with the dispersive model, the bilinear z-

transform is then used once the partial fraction for (1 − z−2)χe(z) is found

as mentioned in the last chapter. Hence the voltage calculation equation

becomes,

(4 + ge + 4χ0
e)Vz(z) + 4χeKVz(z)

3 =
{

2V i
z + z−1Sez(z)

}

(7.14)

Sez(z) = 2V i
z − (4 + ge − 4χ1

e)Vz − Ser(z) + SeNL

(7.15)

Ser(z) = 4χ̄e(z)Vz (7.16)

SeNL = 4χ(3)
e V 3

z (7.17)

Again, equation 7.14 is a cubic equation in Vz and can be solved using an

iterative method, discussed for the Stub model in section 7.2.1.

7.3 Modelling of Nonlinear Waveguide

Junction

Nonlinear waveguides are important as controlling components in integrated

optics [3]. There exists a myriad of problems regarding nonlinear waveguides.

Very interesting phenomena occur in coupled nonlinear waveguides, waveg-

uide lattices etc. However, the model built according to the above formulation

needs to be validated before exploiting it for more complex problems. In this
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section a linear to nonlinear waveguide junction is modelled to observe the

reflection at varying intensity levels as first studied by Janyani [4], and was

compared with a nonlinear time domain beam propagation method (TDBPM)

developed by Khai Le [8].

The nonlinear waveguide junction was constructed as illustrated in figure

7.2 with a space step of 0.05µm. The cladding is linear with a refractive index

ncl = 1.487. The linear refractive index of the waveguide core was nc = 1.491

throughout the whole waveguide structure and in the nonlinear section, the

Kerr coefficient n2 = 2×10−17m2/W . The width of the waveguide h = 3.1µm.

The simulation boundary was terminated with a PML layer of 25 cells. The

fundamental TE01 mode of the waveguide was excited at a centre wavelength

of 1.53µm and with Gaussian pulse widths of 18fs and 36fs in two separate

simulations.

The transmitted field was captured within the nonlinear region as soon as

the pulse completely enters the nonlinear region. The end of the pulse was

taken as when the electric field is 0.01 times the maximum electric field of the

pulse. The reflected field was captured at the same time in the linear region.

The incident field was captured within the linear region at the beginning of

the simulation. The normalised transmission(T) and reflection(R) coefficients

are defined as follows.

T =

∫ Y

−Y

∫

∞

x0
Et

z(x, y)dy dx
∫ Y

−Y

∫ x0

−∞
Ei

z(x, y)dy dx
(7.18)

R =

∫ Y

−Y

∫ x0

−∞
Er

z(x, y)dy dx
∫ Y

−Y

∫ x0

−∞
Ei

z(x, y)dy dx
(7.19)

where Y = 1.55µm when calculating transmission and reflection within the

core and Y = 25µm when calculating the total transmission and reflection.

x0 is the x-plane of the junction as illustrated in figure 7.2, Ei
z, E

r
z , E

t
z are

the captured incident, reflected and transmitted fields respectively.

The normalised core reflection and total reflection, computed as mentioned
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Figure 7.2: Linear to nonlinear waveguide junction where cladding refractive
index ncl = 1.487, core linear refractive index nc = 1.491, nonlin-
ear Kerr coefficient n2 = 2× 10−17m2/W , core width h = 3.1µm.
The computational domain is truncated by PML.

above, are plotted in figures 7.3, 7.4 against the n2I parameter, whereas the

normalised core transmission and total transmission are plotted in figures

7.5 and 7.6 respectively. Note that I is the maximum intensity of the inci-

dent pulse; hence the parameter n2I is the maximum refractive index change

experienced by the pulse.

When the core is linear, the pulse which is excited in the mode of the centre

wavelength, should travel forward with zero reflection. A very minute back

scattering can sometimes occur in numerical simulations due to two reasons.

Since the pulse is excited with the mode of the centre wavelength, the mode

shape variation within the pulse bandwidth may scatter some power to adjust

the overall field of the pulse. The other back scattering is due to the excitation

in the TLM mesh. Both these effects are negligible in the present simulations
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Figure 7.3: Normalised reflection within the core from the linear to nonlinear
junction as a function of maximum refractive index change for
pulses of pulse widths 18fs (solid) and 36fs (dashed) in both
TDBPM(blue) and TLM(red) simulations.

as the amount of such back scattering is less than 10−7 of the total power of

the incident pulse.

The nature of the back scattering changes, and becomes significant, when

the amplitude of the pulse incident upon the nonlinear junction increases so

that n2I > 0.005. This nonlinear back scattering consists of high frequency

components [9]. TD BPM methods, which only approximate the envelope

and not the underlying high frequency signal, can model this back scattering

to some extent [10]. The generalised nonlinear Shrodinger equation (GNLSE)

method as developed by E. Romanova et. al [9], does not model back scat-

tering at all, since only forward propagation was considered in their model.

Also, it is very interesting to note that the total reflection at the nonlinear
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Figure 7.4: Normalised total reflection from the linear to nonlinear junction as
a function of maximum refractive index change for pulses of pulse
widths 18fs (solid) and 36fs (dashed) in both TDBPM(blue) and
TLM(red) simulations.

waveguide junction did not vary much with the pulse duration. For the same

peak I, a longer pulse duration means more cycles in the pulse; hence more

energy in the pulse. Therefore, it can be deduced that the amount of reflec-

tion depends only upon the pulse height and maximum change of refractive

index (n2I), but not upon the total pulse energy. The total reflection mod-

elled by TLM and TDBPM is close in magnitude as can be seen from figure

7.4. However, the core reflection modelled by TLM becomes larger than that

modelled by TDBPM for shorter pulse widths. This might be due to a fre-

quency dependent reflection at the junction. Narrower pulses have broader

bandwidths in the frequency domain. BPM methods are band limited [11].

The amount of bandwidth (or in the frequency domain beam angle) that a
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Figure 7.5: Normalised transmission within the core from the linear to non-
linear junction as a function of maximum refractive index change
for pulses of pulse widths 18fs (solid) and 36fs (dashed) in both
TDBPM(blue) and TLM(red) simulations.

BPM method can handle depends on the Pade approximant’s order of the

differential operator of its fundamental equation [10]. In this case, a modified

Pade (1,1) was implemented in the TDBPM method, which provides a more

wide angled (more bandwidth) BPM than a simple Pade (1,1) approximation,

but is still band limited [12]. Therefore, the narrower pulse having a larger

bandwidth is prone to more error.

When the transmission in the core is considered in figure 7.5, the transmis-

sion is seen to increase with both incident power and pulse width. This is due

to the self focusing effect of the nonlinear core. In other words, the more the

nonlinear effect (n2I), the more the concentration of power in the core. It is

interesting to note that TLM and TDBPM agree well on the sensitive scale
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Figure 7.6: Normalised total transmission from the linear to nonlinear junc-
tion as a function of maximum refractive index change for
pulses of pulse widths 18fs (solid) and 36fs (dashed) in both
TDBPM(blue) and TLM(red) simulations.

shown.

The total transmission shown in figure 7.6 shows a different behaviour to

the core transmission. The total transmission decreases with increasing power

and pulse width. This is partly due to the back scattering, and partly due

to diffraction. For example, the reflection and the transmission at n2I =

0.03 for 18fs was considered; the total reflection amounted to ≈ 0.003%,

whereas the transmission loss modelled by TLM and TDBPM amounts to

≈ 2% and ≈ 0.5% respectively. Hence, all of the power not propagated in

both models has diffracted and escaped from the simulation domain in order

to support the fundamental mode within the waveguide. The reason why the

TDBPM approach models “less” diffraction is due to its less “Wide angle”
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behaviour compared to TLM. The use of higher-order Pade approximants

should alleviate this situation [12].

From the results obtained so far for the above problem, it can be concluded

that the amount of power reflected at the linear to nonlinear junction depends

only on the peak power, and the transmission is dependent greatly on the total

energy in the pulse. Further, the power transmitted tends to reside more in

the core as the pulse is propagated. It should also be noted that the power

transfer is more efficient for shorter pulses. This behaviour can be exploited

in applications where high power broader mode shaped pulses needs to be

transferred to a narrower mode shaped pulse.

7.4 Conclusions

Having modelled the dispersion characteristics of chalcogenide glasses, this

chapter aims at modelling the instantaneous Kerr nonlinearity present in

chalcogenide glasses. A TLM stub model and a z-domain model was proposed

to implement the Kerr nonlinearity. The developed models were used to model

a linear to nonlinear waveguide junction. The transmission and reflection was

calculated and compared with an approximate time domain beam propagation

method.

The results obtained fro TLM and TDBPM for reflection was in general

agreement. It was noted that the frequency content of the pulse does not

affect the reflection. The reflection depended on the peak amplitude of the

pulse. The transmission however is affected by pulse amplitude as well as

pulse duration. The difference between the reflected and transmitted power is

diffracted away from the simulation domain. This effect was better modelled

by TLM than by TDBPM.

So far in this study, several TLM model were considered. These can now

be used to model chalcogenide glass resonator applications. The next chapter

summarises the achievements of the study and proposes some future directions

of research.
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8
Conclusions and Future Work

In an era where all-optical switching and controlling is of utmost importance

to improve the speed of communication and control, optical resonators form

the basis and useful photonic controlling devices. Some moderate to high

Q factor optical resonators are applied as optical filters currently in the op-

tical industry [1]. However, the more important aspects of high Q optical

resonators are yet to be researched. Therefore, optical microresonator based

research is gaining momentum to deliver the promised advantages.

The main hindrance in optical resonator research is the lack of efficient

and accurate three dimensional simulation tools. Boundary integral equation

based methods have good accuracy and efficiency, but are unable to cope

with the nonlinear materials which would give rise to interesting properties.

Time domain numerical methods on the other hand have less accuracy and

efficiency, but can be used to model nonlinear materials.
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8.1 The Story So Far

8.1.1 Accurate Modelling of Microresonators in TLM

This study initiated as a bid to improve the accuracy of Transmission Line

Modelling (TLM) method - a time domain numerical method - in the con-

text of optical microresonators. Several observation were made regarding

the inaccuracies of time domain numerical methods by Boriskin et. al [2].

In this study these concerns were explored and it was understood that the

inaccuracy is due to the usual and intuitive discretisation methods used. In

these discretisations the modelled area/volume is either largely overestimated

or underestimated giving rise to the inaccuracies and non-convergence with

finer meshes.

The solution provided to solve this problem is to minimise the underestima-

tion and overestimation as far as possible with the given mesh by the “same

area” discretisation method. When an infinite cylindrical resonator was mod-

elled with this technique, the inaccuracies in resonant frequency were lifted.

Nonetheless, there was a significant error left in resonant Q factor due to

the artificial surface roughness experienced by the cylinder due to stair-step

approximation.

Anti-aliasing the simulation domain was then proposed to effectively “blur”

the sharp corners in the stair-step approximation. A modified Lanczos fil-

ter was incorporated as the anti-alias filter applied to the spatial domain,

resulting in promising improvements in the accuracy of resonant frequency

and Q factor. The accuracy improvement was compared to that obtained

from a commercial implementation of TLM with optimised multi-meshing

with λ/100 minimum step size. Anti-aliasing produced better accuracy in Q

factor even with λ/10 compared to the commercial multi-mesh implementa-

tion at the space step of λ/100. At λ/10, a shift in resonant frequency was

observed, which was down to the TLM dispersion error. The results show

that by using the “anti-aliasing” discretisation technique, the resonators can

be modelled with significant accuracy improvement which converges with the
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use of a finer mesh.

8.1.2 Frequency Extraction Methods

In order to come up with a discretisation method to improve the accuracy of

resonant frequencies and Q factors represented in TLM, an accurate method

was required first to estimate these parameters from a limited time signal

obtained from TLM simulations. Extracting resonant peaks from the Fourier

transformed time signals did not produce accurate results for the ultra high

Q factors of optical resonators. Several complex frequency extraction meth-

ods were compared to identify a suitable method to extract resonances. A

modified difference and recurred Prony methods,the matrix pencil method,

and harmonic inversion method were thus compared.

All methods were found to estimate the resonant frequency and Q factor

much better than the Fourier transform based method. However, the differ-

ence Prony method was identified as the best method and was used to extract

resonances to aid in the search of better discretisation methods in TLM.

8.1.3 Perfectly Matched Layers

Even though simulations of intrinsic resonators are not much affected by

the computational domain truncation, when resonators are coupled to an

excitation source external to the resonator, the domain truncation plays an

important role. Therefore, domain truncation methods better than TLM

matched boundaries were sought. Perfectly matched layers (PMLs) are widely

used in FDTD as a successful domain truncation method. However, in TLM,

the efficacy of PMLs are inferior to that of PMLs in FDTD [3], [4]. Some

instability concerns were also raised regarding PMLs in TLM.

In this study PMLs were implemented using various formulations. Direct

implementation of Berenger’s split field PML[5] in TLM was found to be

much less efficient compared to previous implementations of PML in TLM

[3, 4, 6]. Uniaxial PML was found to be unstable universally due to the
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negative conductivity present in the formulation. Even though there exists

a similar effect in convolutional PML formulation, it was made stable by

removing some delayed integrating terms. This implementation was the best

that were found from the study, but it still as inferior to PML implementations

by Pena and Ney [3, 6], and Dubard and Pompei [4].

8.1.4 Dispersive and Nonlinear Materials

Chalcogenide glasses were identified in the beginning of the study as promising

materials to be used in optical resonators. The dispersive and nonlinear

effects of Chalcogenide materials can be greatly enhanced by the tight optical

confinement provided by microresonators.

The refractive index measurements obtained for several glass compositions

were fitted for subsequent use in TLM simulations by several material models.

The Sellmeier model with one absorption peak and the Tauc-Lorentz model

provided accurate representations of the measured refractive index. The Sell-

meier model was implemented in TLM using a z-transform technique. The

accuracy of the developed model in TLM was muddled by the the TLM mesh

dispersion observed at λ/10 discretisation. However, the accuracy was im-

proved with a finer mesh.

Kerr nonlinearity present in chalcogenide glass materials were also modelled

using both stub and z-transform techniques. A nonlinear waveguide junction

was modelled and compared with a time domain beam propagation method

developed by a collaborating researcher, Dr. Khai Le, University of Belgium.

The results obtained from both methods were in broad agreement, but TLM

modelled the propagation in the nonlinear waveguide better.

8.2 Future Directions

The most prominent outcome of this study is the ability to model optical

resonators by anti-aliasing the simulation domain. This was only achieved

for linear dielectric materials in the current study. This can be carefully
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extended towards other materials such as dispersive and nonlinear materials.

Care to detail and thorough testing is required in these materials because the

behaviour of waves are defined by several parameters in such materials. Anti-

aliasing is effectively an averaging method. Hence, a solid recipe is needed to

be found when combining materials of several parameters to be placed in the

blurred boundary region.

Since PMLs were not very successfully implemented in this study, a thor-

ough understanding of PMLs in TLM should be further studied. In a litera-

ture review of PML implementations in TLM it was understood that only a

handful of publications have emerged from PML implementations. Therefore,

further research is required to understand why PMLs do not work in TLM as

well as they do in FDTD. Such a research would require one to delve into the

mesh dispersion characteristics of TLM in the electrical circuit level. Further

it will help formulate a workaround to compensate the errors to form better

boundary conditions.

Once the above mentioned issues are resolved, methods to improve the

efficiency of TLM and time domain numerical methods in general can be pro-

posed. One such proposal is to simulate only the regions of space that contain

significant electromagnetic energy at a given time. This would improve the

simulation time of waveguide propagation, but not so much in sub-wavelength

optical resonators.

Further, the complex resonance frequency extraction method used in this

study can be employed to predict the behaviour of electromagnetic field and

hence reduce the computational effort required for modelling transient effects

in TLM and other time domain numerical electromagnetic methods.

8.3 Conclusions

In the presented study, accuracy improvement of TLM in modelling optical

resonators was achived by the anti-aliasing discretisation method and a same

area method. Anti aliasing method emerged as the best discretisation method.

204



References

Future directions are recommended to employ the anti-aliasing technique for

dispersive and nonlinear materials.

A difference Prony method was identified as the best method to extract

spectral information from a limited time signal. It was also proposed as a

method to improve the efficiency of modelling optical resonators as a future

direction.

Several PML implementations formulated for TLM in this study have not

been as successful as in FDTD, but future directions are given to understand

how this can be improved.

Chalcogenide glasses were modelled as dispersive and nonlinear materials in

TLM. The models can be used to predict the behaviour of optical resonators

in the future and to design new geometries exploiting the beneficial properties

of these materials.
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