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Abstract 

Functional Magnetic Resonance Imaging (fMRI) is one of the most popular neu-

roimaging methods for investigating the activity of the human brain during cogni-

tive tasks. As with many other neuroiroaging tools, the group analysis of fMRI data 

often requires a transformation of the individual datasets to a common stereotaxic 

space, where the different brains have a similar global shape and size. However, the 

local inaccuracy of this procedure gives rise to a series of issues including a lack of 

true anatomical correspondence and a loss of subject specific activations. 

Inter-subject parcellation of fMRI data has been proposed as a means to alleviate 

these problems. Within this frame, the inter-subject correspondence is achieved by 

isolating homologous functional parcels across individuals, rather than by match-

ing voxels coordinates within a stereotaxic space. However, the large majority of 

parcellation methods still suffer from a number of shortcomings owing to their de-

pendence on a general linear model. Indeed, for all its appeal, a GLM-based parcel-

lation approach introduces its own biases in the form of a priori knowledge about 

such matters as the shape of the Hemodynamic Response Function (HRF) and task-

related signal changes. 
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In this thesis, we propose a model-free data-driven parcellation approach to single-

and multi-subject parcellation. By modelling brain activation without an relying on 

an a priori model, parcellation is optimized for each individual subject. In order to 

establish correspondences of parcels across different subjects, we cast this problem 

as a multipartite graph partitioning task. Parcels are considered as the vertices of 

a weighted complete multipartite graph. Cross subject parcel matching becomes 

equivalent to partitioning this graph into disjoint cliques with one and only one 

parcel from each subject in each clique. In order to solve this NP-hard problem, 

we present three methods: the OBSA algorithm, a method with quadratic program-

ming and an intuitive approach. We also introduce two quantitative measures of 

the quality of parcellation results. 

We apply our framework to two fMRI data sets and show that both our single-and 

multi-subject parcellation techniques rival or outperform model-based methods in 

terms of parcellation accuracy. 
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CHAPTER 1 

Introduction 

1.1 Background and motivation 

Due to the fact that neurons do not store energy, the firing of neurons leads to 

changes in both local blood flow and local deoxyhemoglobin content in the blood. 

The dynamic regulation of the blood flow in the brain is called hemodynamic. The 

use of magnetic resonance (MR) scans to measure hemodynamic responses provides 

a non-invasive approach to study the functions of the human brain. 

The hemodynamic response corresponding to neural activity -in the brain alters the 

contrast of T2* weighted magnetic resonance images (MRI) [Ogawa et al., 1990a,b; 

Turner et al., 1991]. This is called Blood Oxygen Level Dependence (BOLD). The 

precise nature of the relationship between neural activity and the BOLD signal is 

still a subject of research. However, in general, they are well related. Functional 

Magnetic Resonance Imaging (fMRI) uses BOLD signals as an indirect approach to 

the measurement of neural activity in the brain. 
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CHAPTER 1: INTRODUCTION 

The use of fMRI to measure BOLD signals has provided neuroscientists with a pow-

erful tool to examine brain activity. It has been widely used in various fields of 

neuroscience [Achard et a1., 2006; Cohen et a1., 2008; Simon et a1., 2004]. As the ac-

quisition of fMRI signals is complicated and BOLD signals have a very low signal-

noise-ratio, preprocessing is an important step for fMRI data analysis. 

According to different research aims, many methods have been proposed for fMRI 

data analysis. The General Linear Model (GLM) introduced by Friston et a1. [1994] 

is one of the most popular model-driven methods in fMRI data analysis. In this re-

gression method, a model is first set up to describe the BOLD signals corresponding 

to the stimulation, after which the model is applied to the data. Statistical analysis 

is performed on each voxel with the null hypothesis that the model does not match 

the time course on that voxe1. Therefore, for each voxel, GLM provides a statisti-

cal measure (e.g. a t-value or an F-value) to present the possibility that the brain 

structure corresponding to that voxel is activated during the stimulation. 

In GLM-based analysis, the shapes of the BOLD responses are presumed to be the 

same for all subjects and voxels. The variability of the BOLD responses is ignored. 

However, as shown by Aguirre et a1. [1998] and Handwerker et a1. [2004], the BOLD 

responses of the human brain vary across subjects, trials, days, and even different 

regions in the brain. Therefore, several methods have been proposed to overcome 

the int1uence of BOLD variability in model-driven study. For instance, Friston et a1. 

[1999]; Woolrich et a1. [2004] have proposed different basis sets for the Hemody-

namic Response Function (HRF). The authors first define an HRF basis set, which 

could describe the reasonable HRF 5hapes. The BOLD signals from different subjects 
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CHAPTER 1: INTRODUCTION 

can be modelled with different HRFs from the predefined basis set. These methods 

relax the assumption of BOLD signals from a fixed model to a model set. 

Some other analysis methods do not require the assumption about the shapes of 

BOLD. For instance, Backfrieder et al. [1996] use Principal COII).ponent Analysis (PCA) 

for fMRI data analysis. With visual and motor stimulation experiments, they show 

that their method yields accurate absolute quantification of in vivo brain activity. 

Besides PCA, McIntosh et al. [2004] have proposed Partial Least Squares (PLS) as an 

effective multivariate analytic tool to identify brain activity patterns. In this work, 

they use event-related fMRI data to demonstrate that their method could provide 

robust statistical assessment without making assumptions about the shape of the 

HRFs. 

Data-driven analysis is another type of method widely used in the area of fMRI 

data processing, in which brain activation is detected using only information con-

tained in the fMRI signal itself. Techniques, such as Independent Component Anal-

ysis (ICA) [Beckmann and Smith, 2004; Li et al., 2007; Wang and Peterson, 2008] and 

clustering [Gao and Yee, 2003; Goutte et al., 1999], have been successfully used to ex-

tract the main components of responses from the fMRI time series. As for most data-

driven techniques, the components· of activation are extracted individually from 

each subject; the cross-subject variability of the BOLD signals does not influence 

the analysis results. Therefore, data-driven approaches can also be considered to be 

a means of solving the problem of cross-subject HRF variability. 

In recent years, pattern-based classification analyses appear with increasing fre-

quency in the functional neuroimaging area [Haynes et al., 2007; Kamitani and Tong, 

3 



CHAPTER 1: INTRODUCTION 

2005, 2006; Mitchell et al., 2004]. These methods use machine learning algorithms 

to decode different mental states, behaviour and other variables from fMRI data. 

Compared with other methods, a machine learning classifier is complex to imple-

ment but, it makes a fundamental advance in the state of the art by linking patterns 

of brain activity to experiment design variables [O'Toole et al., 2007]. 

No matter which analysis approach is used, the study of therelationship between 

function and structure in the human brain relies on the analysis of groups of sub-

jects. Therefore, voxel-based spatial normalization is also required for multi-subject 

analysis in order to bring fMRI images of different subjects into the same coor-

dinate system, such as Talairach space [Talairach and Tournoux, 1988] and MNI 

space [Evans et al., 1993]. After spatial normalization, it is generally assumed that 

for all subjects registered to the standard space, the same coordinates correspond to 

the same brain structure. Further analysis can be applied in the standard space. 

This method relies heavily on the assumption that for all spatially normalized sub-

jects, the same coordinates in the standard space correspond to brain structure with 

the same function. However, even though many registration methods have been 

introduced [Brown, 1992; Zitova, 2003], due to the limitation of algorithms and the 

complexity of human brain anatomy, the problem of mis-registration still exists. For 

instance, in Figure 1.1, images from two subjects were registered to MNI space with 

rigid and affine registration. Both of these subjects were scanned under the same 

stimulation paradigm. Slice timing correction and motion correction were applied 

to the data. Then, the fMRI data was processed "vith GLM. The images in the red, 

green and blue dashed line rectangles are the images of the transverse, coronal and 

4 



CHAPTER 1: INTRODUCTION 
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Legend 2 

Figure 1.1: An example of mis-regish-ation. The fMRl images of both subjects 

were scanned under the same stimulation paradigm. Acti vation w ith 

p < 0.05 is shown. The mis-registration problem is discussed in sec-

tion 2.2.1. More details of the experiment are presented in Chapter 5 

, , 

sagittal planes. In each dashed line rectangle there are two images. The left is from 

subject 1 and the right is from subject 2. The activation detected in subject 1 is pre-

sen ted on the red and yellow t-value map as shown in legend 1. The activation 

detected in subject 2 is presented on the blue and green t-value map as show n in 

legend 2. Comparing the activation maps from both subjects on the right occipi-

tal gyrus, the activation of the subject 1 is about Smm posterior to the activation in 

subject 2. In these two subjects, the same coordinates in the standard space d o not 

correspond to the same fur'.Ction. If the activation regions are smail, this activation 

may be missed in a group analysis. 

Parceilation could be used for group fM RI analysis to deal w ith th e mis-registration 
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CHAPTER 1: INTRODUCTION 

problem and overcome the limitation of spatial normalization. The parcellation of 

the human cerebral cortex into functionally distinct areas is an important area of 

neuroscience. Brodmann has parcellated the human brain into 52 different fields, 

based upon its cytoarchitecture. Using modem neuroimaging techniques, many 

methods have been proposed to parcellate the brain noninvasively[Peltier et al., 2009; 

Pohl, 2005; Shen et al., 2010]. 

Coulon et al. [2000] have proposed a method that uses hierarchical grey-level blobs 

to describe individual activation maps in terms of structures. A comparison graph 

is constructed based on these blobs for group analysis. This method can be consid-

ered as one of the earliest studies to use parcellation for the analysis of functional 

activation maps. Later, Flandin et al. [2002] presented parcellation as a way of deal-

ing with the shortcomings of spatial normalization for model-driven analysis. They 

parcellate the brain of each subject into about 1000 functionally homogenous parcels 

with GLM parameters and group analysis is implemented on the parcels. However, 

this method is specifically designed for GLM analysis. 

We consider that parcellation based analysis can be improved in the following two 

ways at least. (1) For individual subject parcellation, we need to overcome the vari-

ability of HRFs and provide the parcellation that is optimised for each individual 

subject. So t.hat the parcellation accuracy could be increased. (2) We need to widen 

the scope of parcellation based analysis, so that data-driven analysis or machine 

learning classifiers can also be constructed on the parcels. 

6 



CHAPTER 1: INTRODUCTION 

1.2 Aim and contribution 

Image time-series 

! 
Rea linn r .. H:u·u 

Data-Driven 
Parcellation 

Cross-subject I 

i parcel matching I 
! 

Figure 1.2: Data-driven parcellation framework. 

The aim of this research is to develop a flexible fMRI data analysis framework 

based on parcellation. This framework should be able cope with the problem of 

mis-registration and HRF variability and can be used for data-driven analysis and 

machine learning based analysis. 

Figure 1.2 shows this framework. In order to alleviate the issue of cross-subject par-

cel matching, images of all subjects are first aligned into standard space. After that 

a novel data-driven parcellation method based on adaptive smoothing for manifold 

embedding is applied to each subject [Ji et al., 2009]. Figure 1.3 shows the data flow 

of this method. Because no prior information on HRF is required in this approach, 

the cross-subject variability of HRF does not influence the parcellation results. 

Next, the parcels from all subjects are matched for further analysis. Here, we try to 

7 
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ｾ Ｎ . ..... Ｌ ｾ Ｌ ,

....... Ｂ ｖ ｾ ﾷ ｟ Ｂ Ｇ ﾷ ﾷ ﾷ Ｂ Ｂ Ｇ ｾ Ｂ Ｇ Ｇ Ｇ Ｇ ｾ Ｇ Ｇ '

-, :l ｾ Ｎ Ｚ Ｚ Ｎ . ,;' ,} ,::: '!:',i 

IMRI whole 
brain data 

Ｌ ｾ ~ ." :-
ｾ ~ .. ----... ---.,,, ｾ ~ .... 

Iknoisin2 J 
｛ Ｚ : ｩ ｾ ~ ｾ ［ ｰ ｣ c ｬ l

J 
Partial Least 

Square 

J 

ICs from all subjects 

, " . 
• ·"v . 

. ;. Ｎ Ｎ Ｎ Ｎ ［ ｾ ~ ' .. 

J ｃ ｾ ~ Ｇ ' ｬ ｲ ｡ a ｬ l ｴ t ､ d
CIUHCr iu!! 

J Sced St'l c'crio ll 
based 0 0 Ie 

ma ps 

Seed yowls and 
corresponding fMRI 

signals 

.ParceUation with spl'Ctral clustering ｢ ｡ ｳ s ｾ ､ d on 
covarinnc.c between signals of each voxeJ and 

PLS componcuts 

Figure 1.3: Single subject data-driven parcellation. 

answer the question that, given only a suitable definition of the similarity between 

parcels from different subjects, is it possible to use the group information to find 

the best parcel correspondence? In order to answer this question, we formalize the 

problem of parcel matching as a multi-partite graph partitioning problem. Match-

ing the parcels across all subjects is the same as partitioning a weighted graph into 

disjoint cliques by cutting some edges. The matching is optimized by minimiz-

ing the weights of the cut edges. We propose an order-based annealing method 

to solve this problem effectively and we discuss the similarity between the parcel 

matching problem a..."1d permutation invariant analysis Uebara, 2003]. Therefore, in 

order to accelerate the optimization! we formalize the problem of parcel matching 

8 



CHAPTER 1: INTRODUCTION 

into quadratic programming. We test the parcel matching algorithms with one toy 

dataset and one fMRI real dataset. 

Hypothesis 

The main hypothesis of this thesis is that our multi-subject data-driven parcellation 

approach improves over (1) standard voxel-wise fMRl analysis in terms of both ro-

bustness and sensitivity to normalization issues and (2) model-based parcellation 

techniques in terms of parcellation accuracy. 

1.3 Overview of the thesis 

Chapter 2 presents a review of the related work on fMRl data analysis and par-

cellation. We discuss previous work on model-driven and data-driven fMRl data 

analysis. Moreover, the problems of mis-registration and variability of HRF are ad-

dressed in this chapter. 

Then, in Chapter 3, we first discuss spectral clustering and its application to par-

cellation. Next, the impact of noise on manifold embedding is discussed. Due to 

these factors, we suggest adaptive smoothing as a preprocessing step for parcella-

tion with spectral clustering. Using one group of subjects as an example, the thesis 

shows the data structure of independent components from groups of subjects. Fol-

lowing that, combining independent component analysis and partial least square, 

we propose a novel, data-driven single-subject parcellation procedure. Finally, we 

proposed several methods to measure the parcellation quantitatively. 

9 



CHAPTER 1: INTRODUCTION 

Chapter 4 describes how the cross-subject parcel matching problem could be con-

sidered as a graph partitioning problem. We compare three methods in order to 

partition multi-partite graphs effectively and efficiently. 

In the next step, the data-driven framework proposed in this thesis is applied to two 

real fMRI data sets in Chapter 5. 

Finally, in Chapter 6, we give the conclusion and discuss the directions of future 

work. 

10 



CHAPTER 2 

Literature Review 

In this chapter, we give a review of fMRI data analysis and human brain parcel-

lation. First, we give an introduction to functional magnetic resonance imaging in 

section 2.1. In section 2.2, we review the state-of-art data analysis methods for fMR!. 

After that, in section 2.3, human brain parcellation is introduced in short. Finally, 

we give a summary in section 2.4. 

2.1 Introduction to fMRI 

Magnetic Resonance Imaging (MRI) is an imaging method that uses strong magnetic 

fields to create images of biological tissue [Huettel et aI., 2004; Lauterbur, 1973]. 

During a MR scan, the subject is placed in a powerful static magnetic field to align 

the magnetization of some atoms in the body. To create an image, the scanner uses a 

series of changing magnetic gradients and oscillating electromagnetic fields, known 

as a pulse sequence, to systematically alter the alignment of this magnetization. This 

causes the nuclei to produce a magnetic signal detectable by the scanner. Accord-
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ing to these signals the scanner can construct an image of the scanned area of the 

body. Using different pulse sequences, the scanner can provide images with differ-

ent properties for a variety of research purposes [Bernstein et aL, 2004]. 

Functional magnetic resonance imaging (fMRI) uses MR imaging to measure the 

metabolic changes in blood flow which is related to neural activities in the brain or 

spinal cord of humans or other animals. As neuron cells do not reserve energy, the 

energy consumed for neuronal activity is supplied by chemical reactions of glucose 

and oxygen. During this chemical action, oxygenated haemoglobin in the blood 

flow turns to deoxygenated haemoglobin. This transformation supplies the needed 

oxygen. Pauling and Coryell [1936] found that oxygenated haemoglobin and de-

oxygenated haemoglobin have different magnetic properties. Consequently, the 

magnetic resonance signal of blood flow is slightly different according to its level 

of oxygenation. Ogawa et aL [1990a,b] have demonstrated that the presence of de-

oxygenated blood decreases the measured MR signal on T2* images. The proportion 

of deoxygenated haemoglobin leads to the signal change on T2* -weighted images. 

Such a change is called blood-oxygenation-level dependent (BOLD) contrast. 

Based on BOLD contrast, three groups published the first BOLD fMRI studies in 

1992. Kwong et aL [1992] used 1.5 T MRI to study the activity in the human primary 

visual (VI) and motor (Ml) cortex. During the scan, brain activation was evoked by 

visual simulation and hand squeezing. They found that in both areas the MR sig-

nal changes agree with the corresponding stimulation. About one month later, us-

ing 4T MRI, Ogawa et al. [1992] published a similar experiment to evaluate changes 

in gradient-echo signal resulting from longer visual stimuli. In addition, by using 
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different image-acquisition echo time, they further proved that the BOLD signal is 

produced by T2* effects. At almost the same time, Bandettini et al. [1992] studied a 

motor task in which subjects were instructed to touch each finger to thumb repeti-

tively. They showed local signal increase of 4.3 ± 0.3% in the human primary motor 

cortex. 

Since these studies, the BOLD-fM:RI has been applied to researching into different 

brain functions in several ways in order to understand the workings of the human 

brain. The most popular topics are the task related fM:RI studies. These studies 

attempt to find the patterns of brain activity associated with the mental processes 

of interest. In this type of experiment, during an fMRI scan, subjects are required to 

do certain tasks. These tasks are designed according to the research interests. Using 

fM:RI data, one could construct statistical maps of task-dependent activation. For 

instance, Christensen et al. [2006]; Spalek and Thompson-Schill [2008] have studied 

the BOLD responses under visual and language tasks. 

Besides task-related fM:RI studies, some researchers are interested in using resting-

state fMRI experiment to investigate the functional connectivity of the human brain 

[van den Heuvel and Pol, 2010]. Functional connectivity is defined as the temporal 

dependency between spatially remote neurophysiologic events [Friston et al., 1993; 

van den Heuvel and Pol, 2010]. During resting-state experiments, volunteers are in-

structed to relax and not to think of anything particular. Biswal et al. [1995, 1997] 

have demonstrates that, during rest, the left and right hemispheric regions of the pri-

mary motor network show a high correlation between their fM:RI BOLD time series. 

Subsequently, many researchers have successfully shown the functional connectiv-
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ity of other known functional networks, such as visual, auditory network and higher 

order cognitive networks [Achard et al., 2006; Bassett et al., 2006; Cordes et al., 2001, 

2000; Fox and Raichle, 2007; Lowe et al., 2000]. These and subsequent studies have 

revealed new fundamental insights in the organization of the human brain. 

In recent years, there has been growing interest in the use of machine learning for 

analyzing fMRI data. An increasing number of studies have shown that machine 

learning can be used to extract exciting new information from neuroimaging data 

[Norman et al., 2006; O'Toole et al., 2007; Pereira et al., 2009]. These studies cover 

a wide range of research topics, such as predicting conscious visual perceptions 

[Haynes and Rees, 2005a,b], decoding different mental states [Haynes et al., 2007; 

Mitchell et al., 2004; Mourao-Miranda et al., 2005], and classifying brain activity pat-

terns for lie detection [Davatzikos et al., 2005]. Almost all of the techniques devel-

oped for pattern classification and data mining can be applied to fMRI data analysis. 

Therefore, researchers have been attracted to the use of machine-learning techniques 

to analyze fMRI data. 

2.2 fMRI data analysis 

Each volume of fMRI data can be considered as a three-dimensional matrix, whose 

elements are voxels v(x,y,z). The volumes are sampled repeatedly over time. The 

whole fMRI data is a four-dimensional matrix with elements v(x,y,z,t). For an 

fMRI experiment, a volume, which could have 64 x 64 x 32 voxels, is sampled ev-

ery 3 seconds (TR = 3) for about 100 time points. Ideally, Vt, v(x, y, z, t) corresponds 
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to the same location in the brain. However, almost all fMRI data suffers from distor-

tion caused by subject head motion, physiological oscillations (e.g. heartbeats and 

respiration), inhomogeneities in the static field, and/ or differences in the timing of 

image acquisition. Due to these distortions, preprocessing is necessary to reduce 

variability in the data that is unrelated to the experimental task. In this section, we 

will first introduce the preprocessing of fMRI data. After that, we will review the 

state-of-art fMRI data analysis methods. 

2.2.1 Preprocessing of fMRI data 

Slice-timing correction 

Most fMRI data are acquired using two-dimensional pulse sequences to generate 

thin image planes (slices) [Huettel et al., 2004]. The number of slices required to 

cover the whole brain depends on the capabilities of the scanner. A typical scan, for 

instance the one used to generate the data sets in this thesis, needs 32 slices. These 

slices are acquired with equal spacing across the repetition time (TR), but in different 

orders. 

Figure 2.1 illustrates an example volume with four slices. In order to avoid cross-

slice excitation, most pulse sequences use interleaved slice acquisition, in which the 

odd slices are scanned first, followed by the even slices. For instance, in Figure 2.1, 

there are four slices in one volume, and each volume is scanned within TR = 3s. The 

four slices are acquired at 0.75s (red), 1.5s (green), 2.25s (blue) and 3s (yellow). How-

ever, in data analysis, it is commonly assumed that all these slices in this volume are 
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Figure 2.1: Slice-timing correction for fMRI data. 

acquired at time Os. Such difference in the timing of acquiring each slice is called the 

slice-timing problem. Henson et al. [1999]; Moortele et al. [1997] have described this 

slice-timing problem and have demonstrated its influence on the statistical analysis. 

The most commonly used method to correct slice-timing errors is temporal inter-

polation. In this method, using the information from nearby time points, different 

interpolation techniques are used to estimate amplitude of the MR signal at the onset 

of the TR. Thus, for each volume, the intensity of any voxel in that volume is cor-

rected to its intensity values at Os. Although some researchers (e.g. Calhoun et al. 

[2000]) have proposed more advanced algorithms for slice-timing correction, no 

method could perfectly recover the missing information from samples. The ac-

curacy of correction depends on the variability in the experimental data and the 

rate of sampling. Generally, when tl1e variability is low or TR is short, accuracy is 

higher. For the flv1RI data sets with typical temporal variability, slice timing correc-
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tion is more effective for data acquired at relatively short TRs. For the data sets with 

longer TRs, slice timing correction could introduce errors. Therefore, this step could 

be skipped when the TR is long. 

Motion Correction 

In fMRI analyses, it is assumed that each voxel represents a fixed location of the 

brain. If the volunteer's head moves, each voxel's time course is derived from more 

than one brain location. Even small head motion may cause very large damage to 

raw signal over time. Despite the widespread use of head restraints during fMRI 

scans, it is hardly possible to keep the head perfectly still. The goal of motion cor-

rection is to adjust the time series of images so that \:It, the voxels v(x, y,z, t) in every 

image correspond to the same position in the brain. 

Generally, the process of establishing spatial correspondences between two images 

is called coregistration. Let M and N be two image volumes. ff denotes the spatial 

transformation that maps voxel coordinates in image M to the coordinates in im-

age N. The coregistration between M and N can be described as an optimisation 

problem: 

Ｌ ｾ ］ = arg;ax Ｈ ｳ ｩ ｭ Ｈ Ｎ ｾ Ｈ ｍ Ｉ Ｌ ｎ Ｉ ) + A· R(,:#")) , (2.2.1) 

where sim (,:#" (M), N) represents the similarity between the image N and the de-

formed image ff (M). R (ff) is the regularisation on the deformation ff. 

Many coregistration methods have been developed for different image modalities 

[Ashburner, 1999; Ashburner and Friston, 1999; Essen et al., 1998; Gee et al., 1997; 

Park et al., 2003]. In motion correction, the images of the time series are from the 
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same brain. Therefore, all the volumes in the time series are coregistered to a single 

reference volume with rigid-body transformation [Bannister, 2004; Frackowiak et al., 

2004; Friston et al., 1996]. When using rigid-body transformations for coregistration 

of two images, it is assumed that the size and shape of the two objects are identi-

cal. Bya combination of translations and rotations, one image can be superimposed 

exactly upon the other. 

Here, translation is defined as the movement of the whole image volume along the 

axes. Let m = [x y z] I be a point in image volume M, where x, y, z are the coordinates 

in three-dimensional space. The transformation is: 

1 0 0 l\:x x 

9 o 1 0 l\:y y 

o 0 1 l\:z z 

1 o 0 0 1 1 

where m is translated l\:x, l\:y, l\:z units along the axis x, y and z. 

Rotation is defined as the turning of the entire image volume around the axes. The 

Rotation of ex radians around axis x is normally described by: 

i 1 0 0 0 x 

9 0 cos ex sin ex 0 y 

z 0 - sin ex cos ex 0 z 

1 L 0 0 0 1 1 

Similarly, rotations around axis y and z can be implemented by the following matri-
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ces: 

COSey 0 siney 0 cosez sinez 0 0 

0 1 0 0 - sine:;; cose= 0 0 
and 

- siney 0 COSey 0 0 0 1 0 

0 0 0 1 0 0 0 1 

Let 0 = {ax, ay, az, ex, ey, ez} be the set of parameters in translation and rotation. 

We denote the rigid-body transformation with parameter 0 on image volume M as 

§ (M I 0). The realignment parameters are determined as: 

0= argmax (sim(§(MIO), N)). 
.0 

(2.2.2) 

The sum of squared differences or mutual information can be used to measure sim-

ilarity between the reference and corrected volume. As there is a large number of 

parameters in 0, it is challenging to optimise equation 2.2.2. Thus, realignment 

algorithms use iterative approaches for head-motion correction. Gauss-Newton op-

timization is commonly used in rigid registration [Woods et al., 1998]. 

Spatial normalization 

In fMRI analysis, it is sometimes desirable to analyze the functional data from a 

group of subjects. For instance, some experiments need to examine cross-subject 

consistency of results. Some researchers try to establish the difference in fMRI 

responses between healthy and diseased subjects. To analyze fMRI data across 

subjects, each subject must be transformed into a standard space so that it is the 

same size and shape as the others. This process is known as spatial normalisa-

tion, which is an important preprocessing step for most voxel-based fMRI studies 

19 



CHAPTER 2: LITERATURE REVIEW 

[Frackowiak et al., 2004; Huettel et al., 2004]. After registration into the standard 

space, it is generally assumed that the same Euclidean co-ordinates correspond to 

approximately the same brain region in all subjects. Although many brain atlases 

have been proposed [Collins et al., 1993; Dimitrova et al., 2006; Mazziotta et al., 1995], 

Talairach space [Talairach and Tournoux, 1988] and MNI space [Evans et al., 1993] 

are the most commonly adopted co-ordinate systems for spatial normalization. 

Figure 2.2: One slice of functional image, structural image and MNI atlas. 

Figure 2.2 shows a slice of the functional image (left), the structural image (middle) 

and the MNI atlas(right). A typical functional image has a relatively low resolution. 

With this type of image, it is difficult to identify anatomical structures or boundaries 

and match them with the atlas. On the contrary, high-resolution structural images 

provide more details. Thus, it is common to acquire a structural image with an 

flvIRI scan. The reference volume of the functional image is first mapped wi th the 

structural image using affine registration. 
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Affine transformations can be described as: 

i all al2 a13 bl x 

9 a21 an a23 b2 y 

Z a31 a32 a33 b3 z 

1 0 0 0 . 1 1 

let matrix A be 

A= 

a31 a32 a33 

. Since most motions for medical imaging applications are reversible, invertibility is 

a natural requirement for image registration. An affine transformation is invertible 

if and only if the matrix A is invertible. The rigid body transformations introduced 

previously are a subset of affine transformations. As affine transformations are lin-

ear, they can only model the global geometric differences between images. How-

ever, as the functional and structural images are acquired with the same brain at 

almost the same time, affine registration is sufficient to align them with each other. 

After registering the functional volumes onto the structural image, the structural im-

age is normalised into a standard space. Then, the same transformations are applied 

to the functional volumes to bring them into the standard space. 

Many different registration algorithms can be used to map the structural image with 

the standard space. However, as the standard space is generated as an average of 

hundreds of subjects, the image is generally lacking in detail. Some local informa-

tion is lost. For instance, from the right image of Figure 2.2 we cannot determine the 

size of the ventricle or the boundary of the gyrus, which are marked with red circles. 
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Due to this limitation, global registration methods are commonly used for spatial 

normalization. And affine registration is one of the most popular and reliable global 

registration methods. There are a variety of affine registration toolboxes. With 

respect of the accuracy and computational requirement, [Zhilkin and Alexander, 

2004] have compared the performance of several affine registration programs. The 

comparison includes FSL [FMRIB, 2007] and SPM [SPM8, 2009] which are the most 

commonly used toolboxes in fMRI data analysis. 

Beside linear registration methods, there are also many local linear and non-linear 

registration methods that could provide more accurate mapping. Brown [1992]; 

Maintz and Viergever [1998]; Pluim et aL [2003]; Zitova [2003] give surveys of these 

techniques from different perspectives. Klein et aL [2009] gives a comprehensive 

evaluation of nonlinear deformation algorithms. More than 45,000 registrations be-

tween 80 manually labeled brains were performed with 14 nonlinear algorithms. 

And 8 different error measures are used to compare the performance to these algo-

rithms. However, due to the large variability in brain features and the limitation of 

algorithms, after normalisation, the same coordinates may still correspond to dif-

ferent brain structure in different subjects. In fMRI data analysis, spatial smooth-

ing is commonly used to deal with this problem by increasing the overlap between 

subject-specific activated regions. This approach may mask important cross-subject 

differences. Thirion et aL [2006] stated this problem and proposed to use parcella-

tion to overcome this disadvantage of spatial normalization. However, this method 

considers only the model-based data analysis methods. 
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2.2.2 General Linear Model 

The General Linear Model (GLM) is one of the most popular techniques for fMRI 

data analysis. Grinband et al. [2008] identified that in the first six months of 2007 

alone, 170 papers published in leading journals used this approach. 

In the GLM model, the observed data Yj from voxel j, j = 1,2, ... , J is modelled as a 

weighted combination of several explanatory variables X n, n E {I, 2, ... , N} plus an 

additive error term cf 

(2.2.3) 

Here, the vectors Xn are the models to describe the hypothesised changes in BOLD 

activity, corresponding to the experiment process or other known sources of vari-

ability. {30j is the parameter that reflects the total contribution of all constant factors. 

The parameters {3nj' n E {I, 2, ... , N} indicate how much each explanatory variable 

contributes to the data of voxel j. These parameters are calculated to minimise the 

error term. After that, in order to test the significance of a model factor (xn) for a 

given voxel (j), the corresponding parameter ({3nj) is divided. by the residual error 

(Cj)' Statistical significance can be evaluated from this quantity. 

Almost all major fMRI statistical analysis packages, such as SPM, FSL, AFNI Brain 

[Cox, 1996], include this model with the specific implementation dependent on the 

program. They share the same assumption that the observed fMRI data can be mod-

elled as the sum of separate factors along with additive Gaussian noise. This as-

sumption limits the performance and application of the GLM model. 

A potential problem is that the GLM model requires an accurate estimate of the fMRI 

23 



CHAPTER 2: LITERATURE REVIEW 

signals corresponding to the performance of the task. However, for many reasons 

it is difficult to provide precise models. For instance, during .the scan, the subjects 

may have been doing the task incorrectly. Even if the volunteers perform perfectly 

in the experiment, different subjects may still give different BOLD signals to the 

same stimuli. The same subject may also give different response signals at different 

time. 

Another limitation is that for some experiments, it may be impossible to specify a 

model to describe the waveform of activated voxels. One example is the research 

on the default mode of brain function. Raichle et al. [2001] argue that there might be 

an organised mode of brain function. This mode is present as a baseline or default 

state, which is suspended during specific goal-directed behaviors. Following this 

work, the research on the default mode network becomes a very active topic. For 

this type of studies, the subjects are mostly in a resting state during the scan. We 

cannot provide an accurate model for the BOLD signals. Thus, it is not convenient 

to use the GLM model to describe the default mode network. 

Another example is that, when the experimental process is too complicated, we do 

not know how BOLD signal will change corresponding to these tasks. Thus, it is 

impossible to use GLM for data analysis. For instance, Hasson et al. [2008] find the 

patterns of brain activation correlating with long-term memory formation during 

the viewing of extensive movie stimulus. Haynes et al. [2007] decode the mental 

states from fMRI data sets and found the brain regions that encode this information. 

Beside the above studies, there are many other experiments, in which, researchers 

cannot determine the BOLD models. For these studies, it is not suitable to use GLM 
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to process the data. Under this situation, data-driven analyses and machine learning 

techniques provide complementary approaches. 

2.2.3 Data-Driven analyses (DDA) 

Data-Driven analyses explore the structure of the data under the assumption that 

with suitable approaches, the signals of interest (e.g. task-related activation or sig-

nals associated with default state network) have distinctive data structures. Based 

on that, many model-free methods have been successfully applied to fMRI data 

analysis. Clustering and Independent Component Analysis (ICA) are the most pop-

ular techniques in this area. 

Clustering methods 

Fuzzy C -means (FCM) is the most commonly used clustering method. It is also 

one of the first clustering methods to have been applied to fMRI data analysis. 

Baumgartner et a1. [1997] and Moser et a1. [1997] applied FCM to detect the activa-

tion in the human visual cortex. In this method, the time course of each voxel is con-

sidered as a vector in T -dimensional Euclidean space, where T is the number of time 

instances. The FCM analysis is performed directly in the time domain. The signif-

icant intensity changes are represented by different cluster centroids. Furthermore, 

they compared the performance of their method with three previous approaches 

from the perspectives of reproducibility and quantification. One problem of the 

conventional FCM is its sensitivity to noise and the clustering result is dependent 

upon the random initialization. In order to improve clustering results, Chuang et a1. 
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[1999] proposed a method that combines Kohonen clustering network and FCM to 

increase the detection sensitivity and decrease the computation demand. 

The above clustering studies directly use time courses as feature vectors. Thus, the 

feature vectors are in very high dimensional spaces (usually more than 100). Us-

ing such high dimensional feature vectors, clustering results would be less robust. 

Therefore, in later studies, different dimension reduction techniques are used be-

fore clustering. For instance, Liu et al. [2000] developed temporal clustering anal-

ysis, in which the three-dimensional brain was collapsed into a one-dimensional 

space. In this one-dimensional space, they could detect brain activity without a pri-

ori knowledge concerning when and where would be a response. However, this 

method can only detect the largest peak of the activation. Therefore, in their later 

work Gao and Yee [2003] improved their method and proposed iterative temporal 

clustering analysis for multiple response peaks. 

Lange and Zeger [1997] applied a more commonly used dimension reduction method. 

They showed that the BOLD response to a periodic stimulus can be well charac-

terised by Fourier coefficients. According to this discovery, Meyer and Chinrungrueng 

[2005] proposed a method for the clustering of fMRI time series in the spectral do-

main. In order to improve the detection of brain activity, this method explicitly takes 

into account the intrinsic spatiotemporal correlations of fMRI time courses. Later, 

Wang et al. [2005] proposed the use of Support Vector Clustering (SVC) for activa-

tion detection. This method could give high quality detection results without spec-

ifying the number of clusters. Afterwards, they extended SVC to ESVC (Ellipsoidal 

support vector clustering) in order to find the clusters that are" more consistent with 
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the true data structure [Wang et al., 2007]. Although these Fourier transformation-

based methods are limited to the experimental designs with periodic stimuli, they 

could be extended to analyse non-periodic fMRI data by replacing the spectral anal-

ysis with other feature extraction methods (e.g. wavelet analysis). 

Besides activation detection, clustering methods are also widely applied to study-

ing the default modenetwork (DMN) and brain connectivity detection. Cordes et al. 

[2002] applied a hierarchical clustering algorithm to find clusters whose voxel mem-

bers have high cross correlation coefficients that represent a synchronous fMRI sig-

nal. One general problem of resting state fMRI analysis is that it is difficult to val-

idate the DMN derived in a particular experiment. Bellec et al. [2010] proposed a 

framework called Bootstrap Analysis of Stable Clusters (BASC) to study the sta-

bility of resting-state networks in fMRI. In another interesting work, Mezer et al. 

[2009] used short time frequency analysis and clustering to study the spatial sig-

nal characteristics of resting state fMRI time series. In addition, they scanned non-

functional Tl-weighted time series and used them to examine the contribution of 

the non-functional fluctuation in BOLD signal. Using Tl image series as a baseline 

to study the fMRI image series is a new and interesting topic.· 

ICA analysis 

Independent Component Analysis (ICA) is another popular and successful tech-

nique in data-driven fMRI analysis. Calhoun et al. [2003] gave a brief overview of 

the basic motivation and of several early works using ICA on fMRI data. A princi-

pal advantage of this approach is that it can be applied to experimental paradigms 
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in which models of brain activity are not available. 

The basic assumption of the ICA method is that the observed signals are linear mix-

tures of hidden sources. In ICA these hidden sources are called independent compo-

nents (ICs). ICs are non-Gaussian and statistically independent of each other. Using 

ICA algorithms, the independent components can be estimated from the observed 

data. Commonly used ICA algorithms include Infomax, FastICA and JADE. 

Cardoso and Soulourniac [1993] have presented Joint Approximate Diagonalization 

of Eigenmatrices (JADE). This algorithm performs joint approximate diagonaliza-

tion on fourth order cumulant matrices to archive spatial independence among 

sources. One problem of this algorithm is that it assumes the distributions of the 

unknown sources to be close to Gaussian. If the sources are non-Gaussian, the per-

formance of JADE decreases rapidly. In addition, JADE requires a very complex 

and large amount of matrix computation. Thus, this algorithm has very large mem-

ory requirements. Consequently, JADE can be prohibitive when dealing with high 

dimensional data like fMRI time series. 

Infomax is another way to estimate rcs. Bell and Sejnowski [1995] developed this 

approach which is based on entropy maximization in a feedforward neural network. 

This method is especially suited to separate sources that have higher kurtosis than 

the Gaussian distribution (super-Gaussian). They later extended their algorithm in 

Lee et al. [1999L so that it would be able to separate both sub-Gaussian and super-

Gaussian sources. Due to the fact that lnfomax is based on neural networks and 

gradient-based optimization technique, Infomax suffers from several typical prob-

lems. Firstly, the algorithm may converge to a local minimum of the contrast func-
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tion and consequently obtain a sub-optimal estimation. Secondly, the convergence 

speed is much lower than other ICA techniques and the convergence is critically 

dependent on the correct choice of the learning rate parameters. 

In order to overcome these problems, Hyvarinen and Oja [1997] have developed an 

efficient algorithm called FastICA. This approach uses fixed-point iteration scheme 

to maximise the non-Gaussianity of the estimated sources. Compared to gradient-

based methods, the fixed-point iteration technique converges much faster. Contrary 

to JADE, FastICA is computationally simple and requires little memory space. How-

ever, the problem of the sub-optimal results still exists. 

All of the above algorithms have been applied to £MRI data analysis. With a simu-

lated data set and an event related audio-visual task data, Ghasemi and Mahloojifar 

[2010] compared these three algorithms from the perspectives of robustness and reli-

ability. They conclude that Infomax emerged as a more reliable choice for extracting 

task-related activation maps and time-courses from fMRI data sets. JADE and Fas-

tICA gave a similar performance. However, in terms of convergence Infomax was 

the slowest. Although, this comparison is based on very limited experiments (e.g. 

only one set of data, only one type of £MRI experiment), it gives a general clue as to 

how to choose the algorithm. 

In £MRI data analysis, ICA can be applied in two approaches: spatial ICA (SICA) 

and temporal ICA (TICA) [Calhoun et al., 2001b]. In SICA, it is assumed that each 

fMRI image volume is a mixture of spatially independent components and each 

independent component is an image volume. On the other hand, TICA considers 

that the temporal signal of each voxel is a mixture of temporally independent time 
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courses. No direct and thorough comparison between these two approaches has 

appeared in the literature. However, most applications on fMRI data analysis use 

the SICA. 

In ICA analysis there are several general problems. Firstly, the number of ICs is a 

free parameter. ICA does not naturally estimate the number of hidden sources. U su-

ally, it is either empirically determined or estimated with other methods. Secondly, 

the ICA decomposition result is not unique. For the same set of data, different runs 

of the ICA algorithm could give different sets of ICs. In order to solve these prob-

lems, Beckmann and Smith [2004] proposed an integrated approach for fMRI data 

analysis named Probabilistic ICA (PICA). Differing from the classical ICA frame-

work, PICA allows for non-square mixing in the presence of Gaussian noise. Using 

Bayesian analysis, this method first estimates the amount of Gaussian noise and the 

true dimensionality of the data. After that, it carries out probabilistic modeling and 

achieves a unique decomposition of the data. Thus, PICA provides an effective solu-

tion to the above two problems and reduces problems of interpretation. Nowadays, 

this model is one of the most commonly used ICA techniques in fMRI data analysis. 

Another issue of leA analysis is that it does not provide a method for inference 

regarding groups of subjects. Unlike GLM, where individuals in the group share 

the same models, in ICA different individuals in the group have different ICs and 

are sorted differently. Due to this issue, several multi-subject ICA analysis methods 

have been proposed. These methods can be generally grouped into three categories. 

The first type of group analyses performs single-subject ICA and then combines the 

output into groups afterwards. For instance, Esposito et al. [2005] proposed a frame-
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work to study the natural self-organizing clustering of many independent compo-

nents from multiple individual data sets in the subject space. Another example is 

Wang and Peterson [2008], who developed 'Partner-Matching' to identify the ICs 

that are reproducible within or across individuals. Generally speaking, this class of 

methods allows for unique spatial and temporal features for each subject. But, since 

the data is noisy, the components are not necessarily unmixed in the same way for 

each subject. 

Another type of approaches concatenates the data from all subjects together either 

spatially or temporally with the independent components decomposed from con-

catenated data. Svensen et al. [2002] presented a method that produces a set of 

time courses common to the whole group. Corresponding to each time course, this 

method gives a separate image for each of the subjects. By contrast, [Calhoun et al., 

2001a] proposed another way of concatenation. This method first reduces the di-

mension of data from each subject via PCA. Then, the data from all the subjects 

is concatenated into one matrix. After that, a second PCA reduction further re-

duces the data before the final ICA decomposition. Schmithorst and Holland [2004] 

compared these two methods with the conclusion that subject-wise concatenation 

produced the best overall performance. To summarise, for this type of group ICA, 

since all subjects share one set of ICs, the comparison of subject difference within a 

component is straightforward. However, due to the concatenation, these methods 

require large computation and PC memory. 

Finally, the tensorial approach introduced in Beckmann and Smith [2005] factors 

data of all subjects as a combination of two outer products of loadings in the tempo-
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ral and spatial domains. This method is a natural extension of PICA. But, differing 

from the widely used PICA, the performance of this method is still under explo-

ration. 

For more thorough reviews on group ICA for fMRI data, readers could refer to 

Leibovici et a1. [2001] and Calhoun et a1. [2009]. Generally, these group analysis 

methods increase the power of ICA-based fMRI analysis. 

Although data-driven methods have been widely accepted for fMRI data analysis, 

their primary disadvantage is that the interpretation of the derived components is 

left completely to the experimenter. On the contrary, pattern-based classifiers can 

overcome fatal flaws in the inferential and exploratory multivariate approaches. We 

introduce this type of analysis in the following section. 

2.2.4 Machine learning classifier for fMRI data analysis 

In the last few years, pattern-based classification analyses are appearing with in-

creasing frequency in the functional neuroimaging literature. These methods cover 

a wide range of applications from activation detection to mental state recognition. 

For instance, Liang et a1. [2006] presented an application of support vector machine 

(SVM) methodology for fMRI activation detection. Later, Song et a1. [2007] formu-

lated the problem of activation detection as an outlier detection problem of the one-

class support vector machine. Another example is that Wang [2009] proposed a 

hybrid exploratory and hypothesis-driven fMRI data analYSis method through com-

bining conventional GLM with the support vector machine. 

Besides brain activation detection, mental state recognition is another important ap-
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plication of machine learning classifiers to fMRI analysis. Mitchell et al. [2004] used 

machine learning methods to classify the cognitive state of human subjects based 

on fMRI data sets. They have successfully distinguished cognitive states such as 

whether the subject is looking at a picture or a sentence. Haynes et al. [2007] used 

SVM to predict hidden intentions in the human brain. According to the prediction 

accuracy, they found the brain regions that encode these intentions. Similar appli-

cations also include those of Kamitani and Tong [2005, 2006]; Lee et al. [2009] and 

others. As mental state recognition is a complex process, it is very difficult to study 

it by classical GLM or data-driven approaches. The successful applications of ma-

chine learning algorithms increase the potential of using fMRI as a powerful tool to 

research brain functions. 

Figure 2.3 presents the general process of applying a supervised machine learning 

classifier to a practical problem. The first step is to define the problem. According to 

this problem, researchers need to design experiments and collect data. The second 

step is data preprocessing. In most cases, the original data contains noise and irrel-

evant components. In this step, noise and other redundant information should be 

identified and removed. Apart from that, high data dimensionality is also a prob-

lem for pattern analysis. Reducing data dimension is also an important task in this 

step. The third step is to choose a learning algorithm, which can automatically gen-

erate classifiers according to the training data. Finally, researchers need to adjust 

the parameters in each step so that the resulting classifier could give the best predic-

tion rate. Kotsiantis [2007] provides a detailed summary of this process and a brief 

review of the most commonly used algorithms such as multilayered perceptrons 
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Figure 2.3: Process of constructing a machine learning classifier. 

[Rumelhart et al., 1986] and SVM [Vapnik, 1995]. 

O'Toole et al. [2007] stated that there are three main reasons why pattern-based c1as-

sification analysis is attracting attention. Firstly, it overcomes flaws of voxel-based 
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inferential (e.g. GLM) and exploratory multivariate approa.ches (e.g. ICA). The 

voxel-based methods take the data as a union of independent voxels. The corre-

lation across voxels is usually ignored. On the other hand, the exploratory multi-

variate analyses lack effective ways of providing quantifiable links to experimental 

design variables. Secondly, pattern-based classification methods help with under-

standing of neural representation. By appropriately framing the experimental ques-

tion, pattern based classifiers can offer insight into the neural codes that underlie 

different mental states. The third advance is that these approaches make fMRI data 

analysis a more interdisciplinary subject and attract research expertise from a wider 

range of behavioural and brain science. 

Although pattern-based classification has the above advantages, one limitation of 

this method is the complexity of implementation and result interpretation. The ap-

plication of a classifier is not as straightforward as the statistical and exploratory 

method. Different experimental designs and data samples require different classifi-

cation approaches and parameter tuning methods to avoid overfitting and to keep 

the results reliable. Otherwise, the high dimensionality and limited number of sam-

ples could easily bias the analyses. Successful application of a classifier to fMRI data 

relies on tight cooperation between neuroscientists and experts in machine learn-

ing techniques. The neuroscientist needs to propose appropriately framed ques-

tions and the machine-learning specialist must ensure the accuracy and reliability of 

the data analysis. Under such circumstances, these approaches could open a door 

towards advancing functional neuroimaging studies and replacing the state-of-art 

analyses. 
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Machine learning for £MRI data analysis is a complex and quickly developing area. 

We suggest to readers Pereira et al. [2009] for a more detailed discussion of classifier 

methods in fMRI. 

2.3 Human Brain Parcellation 

Research on human brain mapping can be dated back to the times of the phrenolo-

gists. They believed that the amount of brain tissue devoted to a cognitive function 

determined its influence on behaviour. Accordingly, they divided the brain into 

several regions corresponding to different cognitive functions. Although the phre-

nologists' mapping is now considered to be a pseudoscience on scientific grounds, 

it introduced the idea of localization of function and established a functional atlas 

of the entire human brain that could be used to label each brain area with a specific 

function. Even today, the making of such an atlas remains one of the main aims in 

human brain mapping. 

In 1934, Kleist published an atlas of the human brain by correlating the location of 

brain lesions with the a behavioural examination [Bartsch et al., 2000]. The next de-

velopment came with Brodmann's observation of the neurons in the cerebral cortex, 

using the Nissl stain in 1909. Based on the cortical cytoarchitectonic organisation 

of these neurons, he defined 52 Brodmann areas [Guillery,2000]. His maps of the 

cortical areas in humans form a fundamental step in the process of human brain 

parcellation. 

The recent development of neuroimaging techniques provides new effective tools 
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for human brain parcellation in vivo. From our point of view, with the use of neu-

roimaging techniques, there are two major types of methods on parcellating the 

whole brain: top-down approaches and bottom-up approaches. We will discuss these 

two types of methods in the following sections. 

2.3.1 Top-down approaches 

In a top-down approach, researchers start the parcellation from the whole brain 

and use one or more imaging modalities to gradually partition the whole brain 

into smaller sub-regions, providing clear evidence. For example, using very high-

resolution structural MRI and £MRI, Bridge et a1. [2005] investigated the anatomical 

and functional borders between the primary and secondary human visual areas (VI 

and V2). In order to find the anatomical boundary, they used three separate scan-

ning sessions, in each of which, anatomical images were collected with different 

slice orientations. The hypo-intense band in the middle of the cortical grey mat-

ter was used as the anatomical signature of VI. In contrast, the functional borders 

were mapped with £MRI. They used visual stimulation to generate retinotopic maps, 

which were used to measure the location of VI/V2. They showed an excellent cor-

respondence between the anatomical and functional borders. 

Behrens et a1. [2003] used DTI images to parcellate the thalamus, according to its 

connectivity to different cortex regions. They manually outlined the whole thala-

mus and a number of cortical zones. Using their probabilistic tractography algo-

rithm with diffusion imaging data, they identified specific connections between the 

human thalamus and the cortex. According to this connection, the thalamus was 
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parcellated into several sub-regions. Later, Draganski et al. [2008] use probabilistic 

tractography on magnetic resonance diffusion weighted imaging data to segment 

basal ganglia and thalamus in 30 healthy subjects. They also found strong corre-

lation between tractography-based basal ganglia parcellation and anatomical data 

from previously reported invasive tracing studies in nonhuman primates. 

Also using DTl, Klein et al. [2007] parcellated BA 44/45 and SMA/pre-SMA. To 

parcellate SMA and pre-SMA, they first used a mask corresponding to these ar-

eas. Next, probabilistic tractography was run from every voxel within this mask to 

access connectivity with every voxel in the whole brain volume. According to this 

connectivity, they computed the cross-correlation matrix between the connectivity 

patterns of all voxels in the mask area. N ext, in order to divide all voxels in the 

mask into two clusters, spectral reordering and k-means clustering were applied to 

the cross-correlation matrix. A similar process was also performed on BA 44/45. 

They found that the results of the two clustering methods agreed with each other. 

In addition, they used cytoarchitectonic probability data from SPM Anatomy to fur-

ther examine their findings,. 

Beckmann et al. [2009] used a similar method to parcellate the human cingulate cor-

tex. They manually drew a mask, named the cingulate seed masks (CSM). Then, us-

ing the same method as Klein et al. [2007], a cross-correlation matrix was calculated 

based on the basis of probabi1istic tractography. According to this matrix, CSM was 

first parcellated into five sub-regions. These sub-regions were then used as seed 

masks for the second iteration of the parcellation procedure, which divided CSM 

into 9 parcels. It was then seen that the third iteration did not lead to parcellations 
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that were reliably similar across subjects. Finally, CSM was parcellated into 9 sub-

regions with two iterations. In order to assess the relationship between anatomical 

connectivity and function, they performed a meta-analysis of 171 functional studies 

reporting cingulate activation. 

Unlike previous studies, Cohen et aL [2008] developed a method that used func-

tional connectivity MRI (fcMRI) to define functional areas in individual human 

brains. This method consisted of a surface-based analysis. Image volume was trans-

formed into cortical surface with Caret software and a grid of seed points was sam-

pled on the surface. These seeds could be considered as pixels on a 2D image (cor-

tical surface). For each seed point, a volumetric correlation map was generated by 

correlating the time course of the seed point and all other voxels over the entire vol-

ume of the brain. Next, they defined the similarity, eta2, between two seed points, 

which is calculated between the two volumetric correlation maps generated from 

these seed points. For each seed, there was matrix of eta2 representing the similar-

ity between that seed and all other seeds. This matrix could be considered as a 2D 

image. Finally, Canny edge detection algorithm was applied to each seed's eta2 "im-

age" for edge detection. Combining this method with functional MRI, Nelson et al. 

[2010] divided the left lateral parietal cortex into sub-areas based on the presence 

(or absence) of memory-retrieval-related activity. 

This type of parcellation method focuses on solid evidence that the proposed sub-

regions exist and the parcellation is highly reproducible within and across subjects. 

However, the limitation of this approach is that it can only be applied to some spe-

cific brain regions. Due to the high complexity and individual variability of the hu-
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man brain, whole brain parcellation is very difficult using this type of approaches. 

However, the continued endeavours of researchers enable this type of parcellation 

to cover more human brain areas. 

2.3.2 Bottom-up approaches 

In contrast to the first approach, this type of parcellation methods first defines a 

measurement that assesses the similarity between voxels. According to this mea-

surement the whole brain is parcellated into a certain number of homogeneous re-

gions. The main aim of this kind of parcellations is to facilitate further analysis. 

Coulon et al. [2000] produced one of the earliest studies to use parcellation for the 

analysis of functional activation maps. They aimed to process a group analysis while 

preserving individual information. In this research, they computed grey-level blobs 

from three-dimensional activation maps. These blobs, which can also be termed 

parcels, are calculated in the follOWing way: from each local maximum, a growing 

region is constructed around this maximum, until it meets another region or a point 

that belongs to the background'. With different scale-space blobs, they constructed 

a comparison graph that included all subjects. This inter-subject comparison graph 

was used in a labelling process for activation detection. 

With a similar research aim, Thirion et al. [2006] proposed ｾ ~ multi-subject whole 

brain parcellation. This method parcellates the whole brain into a certain number 

of parcels according to the parameters of General Linear Models (GLM). In this ap-

proach, voxels from all subjects are first pooled together. A C -means clustering 

algorithm is used to derive parcel prototypes on GLM parameters. The clustering 
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process is under the spatial constraint that voxels can only be assigned to prototypes 

that are closer than a predefined distance. Next, for each subject, seed voxels are 

found that correspond to the parcel prototypes defined in the previous step. These 

seed voxels should be functionally and spatially (in standard space) close to the par-

cel prototypes. Moreover, the warp from these seed voxels to the prototypes should 

be regular. In the third step, other voxels in each subject are assigned to these seed 

voxels with a spectral clustering algorithm. The voxels assigned to the same seed 

voxel form a parcel. All the parcels whose seed voxels correspond to the same par-

cel prototype are matched with each other. Statistical analysis is constructed on the 

matched parcels. This work also demonstrates a method to improves the sensitivity 

of group analyses and functional activity representation. 

Unlike the above studies which have focused on parcellation for activation detec-

tion. Hutchinson et al. [2009] have proposed a method that integrates parcellation 

with the classifier model. In this research, they use a Hidden Process Model (HPM) 

to model the fMRI data. This model assumes that the observed data is generated by 

a sequence of underlying mental processes the timing of which may be unknown. 

For each voxel, a set of parameters is used to describe the mental process. Machine 

learning algorithms are applied to estimate model parameters. In order to improve 

the accuracy of this estimation, they proposed a method that reduces the effective 

number of parameters. This algorithm uses a nested cross-validation hierarchical 

approach to undertake two tasks at the same time. The first task is to partition the 

brain into clusters of voxels that will share parameters and the second task is to 

estimate these parameters simultaneously. 
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Although this application is successful, we do not prefer this type of parcellation. 

One problem is that the integration of parcellation and parameter estimation in-

creases the complexity of the model and the risk of overfitting. Aonther disadvan-

tage is the difficulty of combining other image modalities into this parcellation pro-

cess. 

To sum up, all of parcellation methods in this class try to parcellate the whole brain 

at once. For each subject, they divide the brain into hundreds of regions. Therefore, 

compared to top - down approaches, it is difficult to validate rigorously every parcel 

and every boundary from the parcellation results. However, a noticeable advantage 

of these methods is that they can give meaningful and reasonable parcellation of 

the whole brain in a very short time. As discussed before, the high spatial dimen-

sionality of neuroimaging data is a cornmon problem for many analysis methods, 

especially for multivariate methods like machine learning classifiers. Parcellation 

could provide an effective tool to solve this problem. Therefore, it is meaningful to 

develop effective and efficient individual parcellation methods and as well as cross-

subject parcel analysis methods. 

2.4 Summary 

In this chapter, we reviewed the fMRI imaging theory, data ｾ ｡ ｬ ｹ ｳ ｩ ｳ s processes and 

human brain parcellation. 

After introducing the imaging theory, we presented several fMRI experiments and 

data analysis methods. Although we jntroduced the experiment design and data 
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analysis separately, they are very closely related. The experiment design determines 

corresponding data processing methods. 

Next, we gave a survey on current parcellation methods and categorised these meth-

ods into two classes: top-down approaches and bottom-up approaches. We de-

scribed the corresponding advantages and disadvantages of these two classes. 

According to our survey, we found that there were only a limited number of parcel-

lation methods in the bottom-up approach. On the other hand, multivariate analysis 

methods (e.g. machine learning classifiers) need an efficient whole brain parcel-

lation process to reduce data dimension and improve reliability of analysis. The 

multi-subject parcellation framework developed in Thirion et al. [2006] is specially 

designed for GLM based analysis. There is a need for a parcellation framework that 

can be used for data-driven and multivariate analyses. 

In order to fill this gap in knowledge, we propose a flexible fMRI data analysis 

framework based on parcellation in this thesis. We will first develop a data-driven 

parcellation method for individual subject. Then, we will use a graph partitioning 

method to find the correspondence of parcels in different subjects. The multivariate 

analysis or other models can be constructed on matched parcels. In the next chapter, 

we will introduce our data-driven individual parcellation method. 
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Parcellation of Individual Subjects 

3.1 Introduction 

As mentioned in Section 2.3, Thirion et a1. [2006] present parcellation as a solution 

to the problem of mis-registration and individual variance of brain anatomy. In the 

previously proposed parcellation framework, voxels are first clustered into func-

tionally homogeneous regions, or parcels, for each subject. After that, the parcella-

tions are homogenized across subjects, so that statistics can be computed at parcel 

level rather than at voxelleve1. 

In this chapter, we will present a data-driven, model-free, parcellation technique, 

based on Principle Component Analysis (PCA), Independent Component Analysis 

(ICA) and Partial Least Squares (PLS) (see Figure 3.1). Instead of using GLM, the 

feature space is generated with ICA and PLS for each subject. Thus, parcellation 

results are not biased by the assumption of a particular HRF shape. 

As in most parcellation methods [Kim et a1., 2010a; Neumann et a1., 2006; Peltier et a1., 
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Figure 3.1: A data-driven approach to parcellation. This method has two steps: 

feature extraction and spatially constraint clustering. In the first step, 

seed voxels are selected on IC maps of each subject. After denoising 

with Principal Component Analysis (PCA), Partial Least Square (PLS) 

latent variables are calculated with signals from seed voxels and Princi-

pal Components (PCs) from the whole brain. The covariance between 

signals of each voxel and PLS latent variables are used as feature vec-

tors. In the second step, spatially constrained clustering is applied on 

these feature vectors for parcellation 

2009; Shen et a1., 2010; Thirion et a1., 2006], our parcellation process can be divided 

into two steps: (1) feature extraction and (2) spatially constrained clustering. In the 

feature extraction step, pre-processing steps, such as slice timing and realignment, 

are first applied to the data. We implement linear interpolation and affine regis-

tration with FSL. Then, according to the histogram of the functional images, some 
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invalid voxels are removed. Finally, in our scheme, ICA and PLS are applied to cal-

culate a vector for each voxel in order to describe the functional behaviour. In the 

second step, we discuss several methods for spatially constrained clustering. We 

first introduce spectral clustering. After that, we propose an aggregation method. 

In the following sections, we first propose a novel feature extraction method for 

parcellation. In Section 3.3, we introduce spectral clustering for parcellation and 

suggest a statistical adaptive smoothing as a preprocessing step. In addition, we 

propose a fast parcellation method based on aggregation. In Section 3.4, two criteria 

for validating parcellation results are introduced and some experiment results are 

shown. We give the conclusion of this chapter in Section 3.5. 

3.2 Feature extraction for parcellation 

In this section, we introduce a data-driven method to extract brain activation fea-

tures from fMRI data. ICA is a popular and effective tool to detect activation in 

fMRI experiment. However, there are two problems that make ICA maps not ideal 

for parcellation. First, the Independent Components (ICs) from ICA decomposition 

are not ordered. It is difficult to tell which ICs are activation related and which ones 

are not, especially when considering the individual variability of BOLD responses. 

Another problem is that ICs are optimized for maximizing the independence be-

tween rcs, rather than describing the BOLD signals. Using rc maps to describe the 

ftmctional behaviour of each voxel may lose some activation-related information in 

the fMRI data. 
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McIntosh et al. [1996, 2004] have shown that Partial Least Square (PLS) is sensitive 

to the detection of task-related activity changes. Thus, we propose a new method 

which uses PLS scores as the functional measurement of each voxel. In this method, 

PLS is used to predict signals in the activated parts of the brain with the PCs of 

signals in the whole brain. The latent variables describe signals in the activated 

parts of the brain. If dealing carefully with the PCs and activated seed voxels, PLS 

could be a better way of characterizing the BOLD signal. 

Here, we explain the approach proposed in Figure 3.1. This method selects several 

seed voxels in activated regions. The seed voxels should contain activation signals. 

In addition, they should also be located in different regions to account for BOLD sig-

nal variability. These seed voxels represent the fMRI signals of interest. However, 

there is also noise in addition to artefacts in the time courses of these voxels. Thus 

the Partial Least Square latent variables are calculated using the PC of the whole 

brain to predict signals from seed voxels. The covariances between the fMRI signal 

in each voxel and the latent variables are used as the feature space for further parcel-

lation. Therefore, the problem of extracting feature space for parcellation becomes a 

question of how to select appropriate the seed voxels. 

Although many methods could be used in this step, we choose ICA due to the fact 

that it is one of the most effective data-driven approaches for fMRI data analysis. 

There are many methods to apply ICA on fMRI data analysis. In this thesis, Prob-

abilistic Independent Component Analysis (PICA) [Beckmann and Smith, 2004] is 

applied to individual subjects. For single subject data, the Ies of interest have to 

be selected either manually or according to their correlation with the experiment 
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design. For multi-subject data we propose the use of the cross-subject reproducibil-

ity of ICs for IC selection. As the pre-processing steps of slice timing and realign-

ment have been thoroughly discussed in previous work [Andersson et al., 2000; 

Frackowiak et al., 2004; Grootoonk et al., 2000; Henson et al., 1999], they are not co v-

ered in this section. The discussion in this section focuses on the step of using ICA 

and PLS for feature extraction and using different methods for parcellation. 

3.2.1 Histogram of functional images 

Slice-timing and realignment are first implemented to the fMRI data as preprocess-

ing steps. After that, the 4-D fMRI signal can be presented as f (x, y, z, t), where 

x, y, z are the coordinates of the voxels and t is the time index. The intensity of the 

image time series is first normalized to 0 - 100, according to the equation: 

(
, _)_ f(x,y,z,t)-minx,y,z,tf(x,y,z,t) 

fn x, y, L., t - f( ) . f(' _) * 100. maxx,y,::,f x, y, z, t - IDillx,y,z,t X, y, L., t 

Let fmean (.1:, y, z) be the mean of the normalized image series: 

1 T 
fmean(x,y,z) = T Lf(x,y,z,t), where 0 ｾ ﾷ ｴ t ｾ ~ 1. 

t=l 

(3.2.1) 

(3.2.2) 

A typical histogram of the mean image fmean is shown in Figure 3.2. This data set 

was acquired on a Philips Intera 1.ST scanner with a TR of 3s. During the scan, the 

subject was undertaking a sequential finger-tapping task auditorily paced with a 

metronome. :More detail of this data set is introduced in Section 5.2. 

The histogram is divided into four colour-coded parts. As shown in Figure 3.3, 

we overlaid each part of the brain images with a different colour. The blue part 

of the histogram corresponds to the background of the images. The green part of 
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Figure 3.2: Histogram of normalized fMRI images. The whole histogram is d i-

vided into four parts by three thresholds (dash lines). The four parts of 

the histogram are illustrated wi th the mean £MRI images in Figure 3.3 

the histogram corresponds to the voxels on the boundary between the background 

and grey matter. In these boundary areas, the process of realignment biases the sig-

nals. The bias reduces the mean of the signal intensity and lowers the reliability of 

the analysis made on these voxels. The yellow part of the histogram mainly corre-

sponds to the ventricles in the brain. The signals from the ventricles are random and 

have great similarity across subjects. These voxels could also bring bias to further 

analysis. 

Following the above discussion, only the voxels corresponding to the red part of the 

histogram are considered as valid voxels. These voxels are brought to the next pro-

cessing steps. As different fMRI images have different histograms, attention should 

be paid to the selection of the threshold for the histogram. As shown in Figure 3.3, 

there are three thresholds to determine. Here we choose the threshold manually. 

For convenience of description, in the rest of the thesis, this step of pre-processing 
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Figure 3.3: Different parts of brain corresponding to different parts of histogram. 

The images in the red, green and blue dashed rectangles are the im-

ages on the transverse, coronal and sagittal plane. The red, green and 

blue lines on the images are the axes of transverse, coronal and sagittal 

plane. 

is called histogram-filtering. 

3.2.2 Independent Components Analysis for fMRI Group Analysis 

As introduced in the Section 3.2, the aim of ICA analysis in the proposed scheme 

is to select seed voxels in all subjects. Therefore, we are looking for the rcs that 

are reproducible across sl;lbjects. Here, we focus on the reproducibility of IC time 

courses. 

For each subject, we first use PICA to decompose £MRI signals into several rcs. We 
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assume that, from the subjects who are under the same stimulation paradigm, ICs 

that represent neuronal signals are more similar to each other than to noise and 

artefact ICs. Thus, the corresponding IC time courses representing independent 

£MRI signals of neuronal origin can be clustered and identified. 

Here, we propose the use of a constrained clustering approach. Similar in spirit 

to the approach of Partner Matching [Wang and Peterson, 2008], this method can be 

considered to be a means of finding the ICs that best capture the Blood Oxygen Level 

Dependent Hemodynamic (BOLD) response to the stimuli. We aim to group those 

IC time courses that are associated with the responses to the same task features in 

different subjects into one cluster. The other ICs, which do not contain relevant (i.e. 

task-related) ｩ ｮ ｦ ｯ ｲ ｭ ｾ ｴ ｩ ｯ ｮ Ｌ , should be grouped into other clusters. 

Let Na and Nb be the number of ICs for subjects A and B respectively, with let and 

lC7 the ith IC of subject A and jth IC of subject B. t = 1, ... , T is the time index. 

Their correlation coefficients are given by: 

(3.2.3) 

The normalized correlation coefficients pnorm is: 

(3.2.4) 

Since the aim of the clustering is to put similar ICs from different subjects into one 

cluster, all the ICs of the same cluster should come from different subjects. Therefore 

we need to set the similarity between ICs of the same subject to O. The similarity 
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between two ICs is then defined as 

if A = B 

other wise. 

(3.2.5) 

The similarity matrix defined in 3.2.5 is based on the Correlation Coefficient. It could 

be easily modified to accommodate other measurements for similarity. For instance, 

if we change equation 3.2.3 to 

( CA B) (A B) "" () p(u, v) pI i,IC j =1 ICi,ICj = L... L...pu,vlog (u) (v)' 
UEICA VEICB P P 

J ] 

(3.2.6) 

and brought equation 3.2.6 into equation 3.2.4 and equation 3.2.5, we could get sim-

ilarity indices based on mutual information. 

Following this process, we use clustering techniques to separate ICs that correspond 

to brain activation. Three clustering and analysis methods are used here to find 

these ICs: hierarchical clustering, Principal Components Analysis (PCA) and man-

ifold embedding. Hierarchical clustering is calculated directly on the similarity de-

fined in equation 3.2.5. PCA is applied to the similarity matrix to examine the struc-

ture of these ICs. Considering ICs as vertices of a graph, based on similarity, the 

weights between two vertices can be calculated as: 

A B il/S(ICt,ICj) 
d(IC· IC) = 

l' J 

00 

if S(ICt,Icf) > 0, 

if S(ICt,ICj) <= O. 

(3.2.7) 

Next, the embedding method introduced in Section 3.3, is applied to the graph for 

spectral clustering. The results are further discussed in Section 5.3. 
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3.2.3 Seed Selection 

Due to the fact that BOLD responses of the human brain vary across different regions 

of the brain, in order to calculate the PLS latent variables that best capture the BOLD 

response, a number of seeds representing different active regions should be selected. 

For instance, when using GLM to measure functional responses, we could select 

seeds according to the map of the t-values. The voxels selected as seeds should have 

I 

high t-values, so that the time course of these voxels can represent the functional 

responses. In addition, these seeds should be spatially separated from each other 

and be located in different activated regions to contain the variance of BOLD across 

regions. 

In this thesis, in order to parcellate the whole brain in a data-driven approach, we 

use the Ie maps in Beckmann and Smith [2004] to select the seeds. First, the Ie maps 

corresponding to the brain activations are selected, using the method introduced in 

the last section. Then, within each Ie map, the first seed is chosen as the voxel 

with the largest value, which presents the strongest response. The second seed is 

then chosen amongst the voxels at least R voxels away from the first seed voxel. Of 

these voxels, the second seed should correspond to the largest Ie map value. The 

iterative process is repeated until all the seeds have been seJected. Therefore the 

seeds are located in different active regions. 

The number of seed voxels and the size of radius R depend on the experiment de-

sign of the £MRI scan. The rule of thumb is that seed voxels should be located in 

different activated regions, such that the corresponding £MRI signals could repre-

sent the variance of BOLD in different activated regions. For simple task data, for 
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instance, the finger tapping data introduced in Section 5.2, 30 seeds are selected from 

one IC map with R = 6. When the experiment design is more complex, we need to 

select the seeds from more than one IC map. For instance, in the multi-subject case 

described in Section 5.3, the subjects were under four types of stimulation: angry 

hand gesture, neutral hand gesture, angry face expression and neutral face expres-

sion. According to the result of the clustering analysis introduced in section 3.2.2, 

two IC maps are used for each subject. Thus, we pick R = 6 voxels and select 

Nseed = 15 seeds for each map. 

3.2.4 peA for fMRI denoising 

Due to the fact that the BOLD signal is very weak and the fMRI experiment process 

is complex, the Signal Noise Ratio (SNR) of the fMRI time ｳ ･ ｲ ｩ ｾ ｳ s is very low. Various 

noise sources contribute to this low SNR, such as physical noise, machine drift from 

the scanner [Weisskoff, 1996], respiratory and heart beat noise [Biswal et al., 1996], 

and so on. Correspondingly, many methods have been introduced for denoising 

fMRI data [Flandin and Penny, 2007; Mohamed et al., 2007; Monir and Siyal, 2009; 

Song et al., 2006], either for general denoising or for removing specific noise struc-

ture. Here, we use Principal Component Analysis (PCA) as a general denoising 

tool [Kerrouche et al., 2006; Zuendorf et al., 2003]. 

PCA is one of the most popular data analysis tools for dimensionality reduction 

[Jolliffe, 2002]. It transforms the data into a new coordinate system. In the new 

coordinate system, the greatest variance by any projection of the data comes to lie 

on the first coordinate (the first principal component). The second coordinate (the 
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second principal component) is the direction that is orthogonal to the first principal 

component and covers the second greatest variance. The third principal component 

is orthogonal to previous components and covers the third greatest variance. The 

rest of the principal components are calculated accordingly. 

Let Xvx T = Xij denote the data matrix after time-slicing, realignment and histogram-

filtering, where each row corresponds to the £MRI signal of a given voxel. After that, 

we propose to denoise the signal with peA in our parcellation scheme. We first cen-

tre the signal at each voxel by subtracting its mean as in equation 3.2.8. 

centered LJ=l Xij . 
Xij = Xij - T I = 1,2, ... , V. (3.2.8) 

After that, XVxT is decomposed into PPCA and TpCA: 

XVxT = PPCA· ｔ ｾ ｃ ａ A (3.2.9) 

ｔ ｾ ｃ ａ A is the transpose of the PCA score matrix of X (the matrix whose columns are 

the Principal Components (PCs) of the £MRI data), and PpcA is the PCA loading 

matrix. As the size of X is very large (about 20000 x T for 3T 64 x 64 x 32 £MRI 

data), the decomposing method introduced in Zuendorf et al. [2003] is used here. 

So that, XVxT can be decomposed as: 

X L-l/2 
PPCA = V x T . e· , (3.2.10) 

where, e is the matrix of eigenvector of XTX and L is a diagonal matrix and its 

nonzero elements are the eigenvalues of XTX. As ｐ ｾ ｃ ａ A * PPCA = I, the principal 

components can be calculated as 

TpCA = ｐ ｾ ｃ ａ A * XVxT· (3.2.11) 

55 



CHAPTER 3: PARCELLATION OF INDIVIDUAL SUBJECTS 

Ranking the PCs according to the variance they cover, the first few PCs usually 

have very high variances. These PCs correspond to high frequency noise and are 

removed manually. The last PCs are slow-variance artefacts. PCs that cover the last 

10% of the variance are removed. 
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Figure 3.4: Variance explained by each principal component. 

Here we still use the single-subject finger tapping data as an example to demonstrate 

the step of denoising with PCA. Figure 3.4 shows the variance covered by each PC, 

ranked from high to low. The horizontal axis presents the order of PCs, and the verti-

cal axis presents the percentage of variance each PC covers. In Figure 3.5, the six PCs 

that cover the largest variance are shown. As claimed above, the first and second 

PCs present the high frequency noise. This is different from most other applications 

of PCA, in which the first few components provide the most useful information. It 

can be understood by the fact that, in fMRI, there is a large amount of noise in the 

data. These noises form the principal variance of the data. 

In Figure 3.6, the six PCs that cover the smallest variance are shown. These compo-

nents are slow-variant artefacts and meaningless noise. Thus, in this example, only 

the 3rd to the 40th PCs are used in the next step of analysis. 
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Figure 3.6: Last six principal components. 

With different data, PCA results may be slightly different from each other. For in-

stance, in some trials of the data introduced in Section 5.3, only the first PC presents 

the high frequency noise. However the general rule is still the same. For simplicity, 

in the rest of the thesis, T peA is used to denote the matrix that contains only PCs of 

interest. 
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3.2.5 Partial Least Square (PLS) for feature extraction 

Let DYxNseed represent the fMRI signals of the seed voxels selected as in Section 3.2.3. 

Each column of Dyx Nseed corresponds to the fMRI signal in a given seed. Then, we 

use the PCs in matrix T pCA for the prediction of D with Partial Least Square (PLS). 

These components, the latent variables, should contain information from both T PCA 

and D. Here PLS is used to calculate the time series components that represent the 

individual specific functional activity signals. We decompose TpCA as: 

T PCA = T ｐ ｌ ｓ ｐ ｾ ｌ ｓ S where ｔ ｾ ｌ ｓ ST PLS = I (3.2.12) 

And D is predicted as: 

--- I D = TpLSBC, (3.2.13) 

where the columns of T PLS, til i = 1,2, ... , are the latent vectors of size T x 1. B is 

a diagonal matrix with the "regression weights" as diagonal elements and C is the 

"weight matrix" of the dependent variables [Abdi, 2003]. 

Given T PCA and D, the latent vectors could be chosen in several different ways. The 

canonical way is to find the latent vectors that maximize the covariance between 

the columns of T PLS and D [Wold et al., 2001]. Specifically, the first latent vector is 

calculated as: 

(3.2.14) 

(3.2.15) 
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with the constraint that 

I, (3.2.16) 

I, (3.2.17) 

and ｴ ｾ ~ u 1 be maximal. 

After that, the first component is subtracted from TpCA and D, and the rest of the 

latent variables are calculated iteratively as the above until T PCA becomes a null 

matrix. The first PLS latent variables are signals of interest. Let Xo be derived from 

X after the signal variance has been removed: Xo = xl Ilxll, where x and Xo are the 

row vectors of X and Xo. We use the covariances between fMRI signals and latent 

variables, as shown in equation 3.2.18 , as the feature space for parcellation. 

(3.2.18) 

3.3 Spatially constrained clustering for parcellation 

Given the feature space that represents neural activity, the next step is to divide 

the whole brain into several spatially connected and functionally homogeneous re-

gions, according to the feature space. Thirion et al. [2006] have proposed a solution 

to this problem with spectral clustering. In this section, to solve the parcellation 

problem, two different ways are discussed. We first implement parcellation using a 

manifold embedding trick similar to that of Thirion et al. [2006]. After that, the Ag-

gregation and Boundary Competition methods are described. In this section, we use a 

toy example to illustrate the performance of different methods. The discussion and 

comparison of these methods are given in Section 3.3.3. 
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3.3.1 Clustering on the manifold for parcellation 

After feature extraction, each voxel in the spatio-functional space can be represented 

as a vector 

v(i) = [x(i) y(i) z(i) h(i) 12 (i) '" In(i)]', i = 1,2, ... , V, (3.3.1) 

where x, y, z are the coordinates of the voxel; h, 12, ... , In are the measurement of 

functional behaviour; and V is number of valid voxels. For instance, when the par-

cellation is based on the GLM parameter [Thirion et al., 2006] , if there are n regres-

sors to model the functional behaviour, the vector can be written as: 

v(i) = [x(i) y(i) z(i) {31(i) {32(i) '" {3n(i)]', i = 1,2, ... , V. (3.3.2) 

We denote the set of these vectors as V. These vectors can be considered as points 

sampled from a 3-dimensional manifold embedded in Rn+3. According to Whit-

ney's embedding theorem [Hirsch, 1994], n must conform to the constraint n + 3 ｾ ~

2 x 3 + 1. In other words, there can be, at most, n = 4 functional features. Oth-

erwise the topology of the manifold is broken and unpredictable results may ap-

pear [LaValle, 2006]. 

Now, we explain how to implement the parcellation based on clustering on the man-

ifold. For simplicity, a toy example generated with the equation 3.3.3 is used to 

illustrate the discussion. 

(3.3.3) 

Figure 3.7 shows this double Gaussian toy example, which is a 2-dimensional man-

ifold embedded in R3. In this case, the voxels are v(i) = [x(i) y(i) J(i)), where 
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Figure 3.7: The manifold is generated by sampling points on double Gaussian 

function introduced in equation 3.3.3. The black dots are the sam-

pled points. TI1e blue line represents the Euclidean distance between 

two points in JR3. The red line is the distance between these points on 

the 2-dimensional manifold embedded in JR3 . The green line illustrates 

that, considering the sampled points as vertices of graph, distances on 

the manifold can be estimated with the shortest path between the two 

points on the graph. 

f (i) = f (x(i),y(i)). Given two voxels on the manifold, the Euclidean distance be-

tween them is illustrated by the blue line. The geodesic distance, which is the short-

est possible line between these two voxels on the manifold, is shown by the red line. 

Classic clustering methods use the Euclidean distances for clustering. For the parcel-

lation problem, when using Euclidean distances for clustering, the voxels attributed 

to the same cluster may be spatially separate. This problem can be solved by us-

ing the geodesic distances for clustering [Thirion et al., 2006]. Due to the fact that 
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voxels are considered as sampled points on the manifold, we cannot directly cal-

culate the geodesic distance on the manifold. Therefore many methods have been , " 

developed to map the structure of the manifold into Euclidean space with lower di-

mensionality [Lafon and Lee, 2006; Roweis and Saul, 2000; Tenenbaum et al., 2000; 

Zhang and Zha, 2002], so that the geodesic distances can be calculated in the low-

dimensional Euclidean space. 

The general ideas of these methods are the same. Given a set of data sampled on 

a manifold, for instance v(i),i = 1,2, ... " the geodesic distance between any two 

pointsv(i) and v(j) is denoted as dg(v(i), v(j)). The aim of these methods is to find 

a new coordinate X 11 (i) for each v(i), so that for any two points on the manifold, 

the geodesic distance between them dg(v(i), v(j)) is equal to the Euclidean distance 

between their new coordinates Ilxn (i) - X Il (j) II. The new coordinates are the embed-

ding coordinates of the data points on the manifold. The Euclidean space described 

by the new coordinates is the embedded space of the manifold. 

Here we introduce two methods. They are based on different measurement of dis-

tances defined between sampled points on the manifold. These two methods are 

discussed and compared using the toy example above. As fMRI functional maps 

are usually very noisy, we further discuss the influence of noise on the parcellation 

with the manifold .. 

Isomap 

Isomap is used for computing low-dimensional embedding coordinates of high-

dimensional data points on the manifold by viewing the data sets as a weighted 
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graph. Each data point is a vertex on the weighted graph. The geodesic distance 

between any two points on the manifold is estimated by the shortest path between 

these two vertices on the graph. The green line in Figure 3.7 shows an example of 

this estimation. MultiDimensional Scaling (MDS) is then applied to calculate the 

embedding coordinates. The Isomap algorithm can be described in three steps. 

1. Defining neighbourhood graph. Tenenbaum et al. [2000] introduced two ways of 

constructing ｴ ｨ ｾ ~ neighbourhood graph. In one approach, two data points i 

and j are connected if the distance between them d(i, j) is closer than E. The 

resulting Isomap is an E-Isomap. In the other approach, two data points i and j 

are connected if i is one of the K nearest neighbours of j. The resulting Isomap 

is a K-Isomap. On the constructed graph, the weight of the edge between i and 

j is d(i,j). 

In our case, as the data points v(i) are evenly sampled in 3-dimensional Eu-

clidean space, the connectivity of the graph is defined on the 3-dimensional 

space of [x(i) y(i) z(i)] E JR3. The spatial distance between two voxels v(i), 

v(j) is defined as: 

The commonly used 6-connectivity, 18-connectivity or 26-connectivity in 3-

dimensional space can be used. (However, due to the influence of the noise 

discussed in Section 3.3.1, a large neighbourhood is not suggested.) 

The weights on the graph are defined as dj(v(i),v(j)), the functional differ-

ence benveen v(i) and v(i). For instance, when using PLS as the measurement 
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of functional behaviours and spatia16-connectivity to construct the graph, the 

weights can be defined as: 

(3.3.5) 

where, rk(i) is the covariance between the time course on voxel [x(i) y(i) z(i)] 

and the kth PLS latent variable as introduced in equation 3.2.18, and bk is the 

kth element on the diagonal of matrix B in equation 3.2.13. 

2. Calculating geodesic distances on the graph. In Isomap, the distance on the mani-

fold is estimated as: 

d( v(i), v(j)) = ｾ ~ ｾ ､ d (f(i), f(i + 1)) 2, 

! 

(3.3.6) 

where, P is a sequence of points of length I ｾ ~ 2 with PI = v(i), PI = v(j), 

Pi E V, Vi E {2, ... ,1 - I} and df(Pi, pi+d < 00. Thus, these points, P, form 

the shortest path between v(i) and v(j) on the constructed graph in step 1. 

Also d( v(i), v(j)) is the corresponding distance on the graph which can be 

calculated with the Dijkstra algorithm [Dijkstra, 1959]. The green line in Fig-

ure 3.7 illustrates the shortest path between two vertices as the estimation of 

the geodesic distances on the manifold. Dc is the V x V matrix, which is 

defined as Dc(i, j) = d( v(i), v(j)). Thus, Dc = ｄ ｾ Ｎ . In addition, if ::J k, 

Dc(k, l) = 00, VI E {1,2, ... V}, the kth row and column of Dc should be re-

moved, because v(k) is not connected to any other voxel on the graph. 

3. Constructing a lower dimension embedding. In this step, in order to embed the 

data into lower dimensional Euclidean space, MultiDimensional Scaling (MDS) 
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[Borg and Groenen, 2005] is applied to DG (k, I), so that the estimated distances 

on the manifold are preserved. Let Yi be the new coordinates of v(i) in the 

lower d-dimensional Euclidean space and Y be the set that includes all Yi. In 

MDS, the new coordinates are chosen to minimize 

E = ｾ ~ (11Yi -YjW - DG(i,j)). 
l,J 

Let 

b(DG) = -HDGH' 

where, H is V x V matrix with each element 

! 1 - 1/ v if i = j, 
H(i,j) = 

-1/ v otherwise. 

(3.3.7) 

(3.3.8) 

(3.3.9) 

Singular Value Decomposition (SVD) is then applied to b(DG). As b(DG) is 

symmetric, b(DG) can be decomposed as follow: 

b(DG) = V1:V', (3.3.10) 

where the elements L.ii in the diagonal of 1: are the Singular Values and the 

columns of V, written as lli, are the singular vectors. Thus, the new coordi-

nates in the embedded d-dimensional Euclidean space are: 

(3.3.11) 

Following this, clustering can be applied to the new d-dimensional space. Figure 3.8 

shows the Gaussian data (the left figure) and the data embedded in 3-dimensional 

Euclidean space with Isomap. 
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Figure 3.8: Double Gaussian data and the data embedded in 3-dimensional Eu-

clidean space with Isomap. 

Diffusion Map 

In Diffusion Map, the main goal is to find the low dimensional coordinates of data 

points on a 3-dimensional manifold embedded in an n-dimensional space. Unlike 

Isomap, which uses the shortest path to estimate the distance on the manifold, Dif-

fusion Map builds random walks on the data set, based on the connectivi ty and 

similarity betvveen the data points. It calculates the diffusion distance as an estimate 

of the distance on the manifold. 

Given a data set V = {v (1 ), v (2), ... , v (V )}, a kernel k V x V ｾ ~ R could be 

defined so that it satisfies: 

• k is symmetric: k( v (i), v (j) ) = k( v (j), v (i) ), 

• k is positivity preserving k( v (i), v (j) ) ｾ ~ o. 

• k represents the spatial connectivity of voxels by setting: 

k ( v (i), v (j )) = 0, \ids ( v (i), v (j)) > c (3.3.12) 
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where ds is the same as defined in equation 3.3.4 and € is the threshold for construct-

ing spatial connectivity. It is similar as the € in €-Isomap. This kernel k represents 

the similarity between any two voxels in the dataset V. As in Isomap, the voxels 

can be considered as the nodes of a weighted symmetric graph. The weight and 

connectivity of the graph is defined by k. For instance, isotropic diffusion could be 

defined as: 

(3.3.13) 

After defining the graph by (V,k), we can construct a reversible Markov Chain on 

V. Setting the degree of a vertex in graph V as 

(3.3.14) 

a new kernel is defined as: 

. . k(v(i),v(j)) 
p(V(I),V{J)) = (.). 

d v(z) 
(3.3.15) 

The new matrix is not symmetric. However, due to the constraint, 

v 
LP(v(i),v(j)) = I,Vi, 
}=1 

(3.3.16) 

p can be considered as the transition kernel of a Markov chain on V. Thus, we can 

define a row-normalized diffusion matrix, P , with each element as: 

P(i, j) = p ( v(i), v(j)). (3.3.17) 

Each element P(i, j) represents that given a random walk defined on P, if the current 

state is i, the next state is j with probability P(i, j). Given a time series t = 1, 2, ... , 

we could get a series of kernel pt. Denoting the element in matrix pt as Pt(i, j), for 

67 



CHAPTER 3: PARCELLATTON OF INDIVIDUAL SUBJECTS 

a random walk defined on P, given the current state i, after t times of transition, 

the possibility of that the state turns to j is P t (i, j). Denoting rr a column vector, in 

which each element rr(i) is the stationary distribution of the state v(i) in the Markov 

Chain, then 

lim Pt(i, j) = rr(j). 
t---->oo 

(3.3.18) 

We define a new symmetric matrix A, with each element a(i, j) in A as 

( .. ) J7iV5 p(") a I, J = r:::::r:\ 1, J . 
V rr(J) 

(3.3.19) 

The elements of set {Az}Z:;d are the eigenvalues of A. They satisfy the condition 

IAII ｾ ~ IA2I, .... The corresponding eigenvectors are l/JI,l/J2' .... After that, we have 

(3.3.20) 

Therefore, the diffusion distances at time t, {D t hEN are: 

(3.3.21) 

(3.3.22) 

where, 1/J I (i) = cp Z (i) / rr (i). The detailed proof of equation 3.3.22 can be found in 

Coifman and Lafon [2006]. Finally, we can embed diffusion distances into a lower 

d-dimensional Euclidean space by setting the new coordinated Yt(i) as: 

(3.3.23) 

The new coordinates embedded in the d-dimensional Euclidean space are termed 

diffusion coordinates. 

In brief, given matrix P and vector rr, Diffusion Map can be calculated in the follow-

ing steps: 
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Figure 3.9: Double Gaussian data embedded in a 3-dimensional Euclidean space 

using Diffusion Map with 62 = 0.05 (left) and 62 = 1 (right). For both 

of them diffusion time t = 2048. 

1. Calculate matrix A 

A = ITPTI, (3.3.24) 

where, IT and TI are diagonal matrices with IT (i, i) = NJ and TI (i, i ) = 

l/NJ· 

2. Apply SVD on A 

A = U1:U'. (3 .3.25) 

3. Calculate diffllsion coordinates 

ｾ ｾ Ｓ ｵ u Ｈ ｩ Ｉ )

NJ 
ｾ ｾ ~ ｕ U Ｈ ｩ Ｉ ) ]' 
NJ ' (3.3.26) 

where, ｾ ｬ ｩ i are the elements on the diagonal of L As ｾ ｩ ｬ lUl (i ) I NJ is con-

stant Vi, it is omitted here. 

If, using a Gaussian kernel, there are two parameters in Diffusion Map: diffusion 

time t and the kernel width J. The diffusion time t is easier to select. It can be 
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explained in two ways. First, there is a wide range for t. When t is in this range, 

the results are similar. For instance, for the double Gaussian data, the results are 

almost the same "it E (1000,4000). Secondly, it can be seen from equation 3.3.26 

that, after the SVD decomposing A, computationally, it is very easy to calculate 

diffusion coordinates with different diffusion times. 

On the other hand, the kernel is an important issue in Diffusion Map. There is much 

discussion on the selection of different isotropic and anisotropic diffusion kernels for 

different problems[Coifman and Lafon, 2006; Yen et al., 2009; Yu et al., 2008]. The 

Gaussian kernel is the most commonly used isotropic kernel. Here, we use the dou-

ble Gaussian data in Figure 3.8 to demonstrate how to choose the kernel width 6 of 

the Gaussian kernel. 

We first show the results of Diffusion Map with two different kernel widths 62 

0.05 and 62 = 1 in Figure 3.13. The toy data is embedded into a 3-dimensional 

Euclidean space with the kernel presented in equation 3.3.13. When using 62 = 0.05, 

the distances on the manifold are well presented in the embedded Euclidean space. 

After being embedded in the Euclidean space, the two peaks in the Gaussian data 

are far from each other and from the rest of the data points. However, when 62 = 1 

the embedding loses the structure of the manifold. The two peaks cannot be found 

the embedded Euclidean space. This can be explained by the fact that when 6 is 

very large, transition probability in the random walk P(i, j) is the same for all j. 

Therefore, the diffusion matrix can no longer represent the local geometry of the 

manifold. 

On the other hand, when 6 is too small, transition probability P(i, j) is very sensitive 
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Figure 3.10: First three diffusion coordinates when P = 0,03 

to dj(v(i),v(j)). Therefore, two peaks are embedded to points that are very far 

from the rest of the data. The corresponding parcellation results would be more 

ftmctional than spatial. The embedded data is shown in Figue 3.10. 

The influence of noise on parcellation with the manifold 

For the double Gaussian toy example, the above methods effectively embedded 

the manifold into Euclidean space. However the toy example used above and by 

Thirion et a1. [2006] is sampled under very low noise. With the finger tapping data, 

Figure 3.11 shows a slice of GLM parameter map and the corresponding manifold, 

based on which parcellation was made [Thirion et aI., 2006]. It is obvious that the 

map is not smooth. 

The topological stability of the Isomap algorithm under noise has been discussed be-

fore. Tenenbaum et a1. [2000] proposed and tested the Isomap algorithm on a Swiss 

Roll data without any noise. Balasubramanian and Schwartz [2002] questioned the 

stability of this algorithm under noise. Later, Tenenbaum et a1. [2002] explained that, 

if we carefully choose the connection of the graph (for instance, optimizing the pa-
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Figure 3.11: Illustration of noise level on the manifold of a GLM parameter map. 

rameter c in the c-Isomap), the algorithm is still reliable. However, in our case, this 

is not an effective way of dealing with the noise. 

Here, with the double Gaussian toy example, we argue that with parcellation meth-

ods based on a manifold, noise influences the results in at least two ways: the dimen-

sion of the embedded Euclidean space and the spatial connectivity of the parcels. 

Tenenbaum et al. [2000J and Thirion et al. [2006J have suggested that the dimension 

of the embedded Euclidean space should be the dimension of the manifold. Here, 

we use the double Gaussian toy example to show a different case. The Isomap spec-

trum in Figure 3.12.1 indicates that the dimension of the embedded Euclidean space 

should be at least 3. This is also supported by Figure 3.12.2 - 3.12.4. When increas-

ing the dimension of the embedded space from 2 to 3, there is a significant improve-

ment in the parcellation results. Continuing to increase the number of dimensions 

to 8, there is very little difference in the results. This is because of the structure of 

the manifold. For the Swiss Roll data, it is enough to use 2-dimensional Euclidean 
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Figure 3.12: Parcellation results from toy data in different embedded spaces 

space to represent the structure of the manifold. However, it is not the case for the 

double Gaussian data. 

In order to examine the performance of Isomap under noise, we apply Isomap to a 

noisy double Gaussian data generated by: 

(3.3.27) 

where, € '" N(O, 1). The data is shown as an image in Figure 3.13.1. Both the Isomap 

spectrum (Figure 3.13.2) and the parcellation results (Figure 3.13.3 - 3.13.4) indicate 

that 2-dimensional Euclidean space is enough to embed the manifold. However the 
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3.13.1: The double Gaussian data with 3.13.2: The spectrum of Isomap 

noise 
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embedded dimensions embedded dimensions 

Figure 3.13: Parcellation results from toy data with noise 

parcellation results are much worse than the ones in Figure 3_12_ The two peaks of 

the double Gaussian model cannot be presented. The parcellation is almost purely 

spatial. 

In order to explain these results, in Figure 3.14, we show the data embedded in 2-

dimensional and 3-dimensional Euclidean space. Comparing Figure 3.14 and Figure 

3.8, we can see that, without noise, at least 3-dimensional Euclidean space is needed 

to embed the data. When high-level noise is added on the data, 2-dimensional Eu-

clidean space is enough. The new coordinates cannot however represent the struc-
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ture of the manifold. The reason is that, when noise is added to the data rather than 

on the manifold, the data is scattered around it. The estimation of the geodesic dis-

tance is no longer accurate. Therefore, the Isomap cannot present the structure of 

the manifold. 
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3.14.1: Embedding on 2-dimensional space 3.14.2: Embedding on 3-dimensional space 

Figure 3.14: Embeddings of the toy data with noise 

It is claimed in Coifrnan and Lafon [2006] that Diffusion Map could a provide more 

robust estimation of the geodesic distance. Therefore, we apply Diffusion Map to 

the noisy double Gaussian data. Different kernel widths are used to find the best 

embedding. However, the results are disappointing. 

Figure 3.15 shows the results of Diffusion Map with two different kernel widths. 

The kernel width 152 = 0.05 is a suitable kernel width for the data without noise. 

However when noise is added to the same data, embedding results become very 

unreliable. Some points (in this case, 2% of all sampled points) become outliers in 

the embedded Euclidean space. They are very far from other embedded data. After 

removing the outliers, the data embedded in the 3-dimensional space is shov\TI1 in 

Figure 3.15.1. Apparently, the structure of the manifold can no longer be found. 
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3.15.1: Embedding on 3-dimensional space 3.15.2: Embedding on 3-dimensional space 

with 152 = 0.05 with 152 = 0.4 

Figure 3.15: Embeddings of the toy data with noise 

From the above discussion, we can conclude that the parcellation methods based 

on the manifold are effective only when the manifold is smooth. When there is a 

high-level of noise in the data, the low dimensional embedding of the data cannot 

represent the structure of the manifold. The parcellation results are similar to the 

results of clustering based on the spatial location of the voxels. In order to deal 

with this problem, we propose two methods: adaptive smoothing and Aggregation 

and BoundanJ Competition. We first introduce adaptive smoothing as a preprocessing 

step for manifold based parcellation. After that, in Section 3.3.2, we introduce a seed 

based parcellation method, the Aggregation and Boundary Competition method, 

which could give fast and reasonable parcellation results. 

Adaptive Smoothing for parcellation based on the manifold 

As discussed above, parcellation based on the manifold is effective only on a smooth 

manifold. However, there is high-level noise in fMRI data set. The noise in the 
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fMRI data could decrease the functional homogeneity of the final parcellation re-

sults. Here, we propose an adaptive smoothing method to deal with this problem. 

We first introduce this method for the general manifold embedding problem. After 

that, using the double Gaussian toy example, we discuss adaptive smoothing for 

parcellation. 

Given that Xi = [Xl (i) X2 (i) ... Xn (i)]', where i = 1,2, ... , M, are M points evenly 

sampled from a d-dimensional manifold embedded in n-dimensional space with 

noise. A Gaussian filter is implemented on this data, so that the smoothed data 

point Xi is 

(3.3.28) 

where, 
M Ilxi-Xjl12 

Gi = Le- 2/72 • (3.3.29) 
j=l 

As the Gaussian filter is isotropic, there is only one parameter (T in this smoothing. 

Therefore, the next problem is how to choose (T. In order to solve this problem, we 

propose a method similar to the k-fold cross validation in statistics. The data is first 

randomly divided into k equal (or roughly equal, when there is a remainder in M/k) 

parts, Cl , C2 ... Ck. Next, the error Ek is defined as: 

(3.3.30) 

where, 

(3.3.31) 

After that, the cross validation error Ecv is defined as: 

(3.3.32) 
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Along with the increasing of 0", Eev first decrease and then increase. We choose (7 as 

corresponding to the minimal Eev as the optimal parameter. 

We first use 'Swiss Roll' data set as an example to show the performance of the above 

smoothing method. 
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3.16.1: Swiss Roll data. 
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3.16.2: Swiss Roll data with noise. 

Figure 3.16: Embeddings of the toy data with noise 

Figure 3.16.1 shows the original Swiss Roll data. Given that, Xi = [Xi (1) xi(2) xi (3)] 

is a point in the data set, Gaussian noise is added to the data by 

Xrli(i) = xi(i) + £, where £ rv N(O, 1) (3.3.33) 

Figure 3.16.2 shows the data with Gaussian noise. With different kernel width (7, 

Eev is calculated. Here, we use each sample as one part of the cross-validation. The 

corresponding Eev are shown in Figure 3.17.1. In order to show the smoothing re-

suIts with different kernel width, we use three different values for 0" (corresponding 

to the three dots in Figure 3.17.1) to smooth the data. The smoothing results are 

shown in Figure 3.17.2 - 3.17.4. From these figures, it can be seen that (7 = 1.9 gives 

the best result. 
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3.17.4: Smoothing result with CT = 2,9, 

Figure 3.17: Smoothing of Swiss Roll data, 

In order to further prove the validity of this smoothing method, we use the graphs 

in Figure 3.18 to illustrate the improvement brought by the adaptive smoothing. 

Figure 3.18.1 shows a commonly used graph to select the size of neighbourhood 

for Isomap [Balasubrarnanian and Schwartz, 2002; Tenenbaum et al., 2000]. It can 

also be used to evaluate the results of embedding, In this graph, the horizontal axis 

represents the radius t in t -Isomap. The t determines the neighbourhood size in 

Isomap. The vertical axis presents two different rates: 'Rate I ', which is marked 

with a blue line and dots, represents a fraction of the points that are not included 

in the largest connected component of the neighbourhood graph; 'Rate 2', which 

is marked with a black line and triangles, represents the fraction of the variance in 
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Swiss Roll data. 

Figure 3.18: Results of tests on Swiss Roll data 

geodesic distance estimates not accounted for in the Euclidean embedding. The 

desired results should have both low 'Rate I' and 'Rate 2'. However when the 

neighbourhood size is small, there must be some points that are connected to the 

neighbourhood graph, and thus not included in the Euclidean embedding. When 

the neighbourhood size is too large, estimated geodesic distances are not sufficiently 

represented by a 2D Euclidean embedding. This problem leads to high 'Rate 2'. The 

optimal neighbourhood size is determined on the basis of a trade-off between these 

two rates. 
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Figure 3.18.1 shows the results from the noiseless Swiss Roll data. The optimal E 

locates between 4 and 6. When E is in this range, all the data points are connected to 

the neighbourhood graph. 'Rate 2' is also very low. Figure 3.18.1 shows the result 

when noise is added to the data. The noise level used here is higher than the one in 

Balasubramanian and Schwartz [2002]. Therefore, this graph shows that there is no 

optimal range for E. Both 'Rate l' and 'Rate 2' are very high. 

After adaptive smoothing, the results of the smoothed data are shown in Figure 

3.18.3. Compared to the results in Figure 3.18.2, the smoothing decreases both 'Rate 

l' and 'Rate 2'. In addition, it broadens the stable range of neighbourhood size, in 

which Isomap could yield reasonable results. The 2D embedding of the smoothed 

Swiss Roll data is shown in Figure 3.18.4. 

After that, we use the double Gaussian toy examples to test the performance of 

the adaptive filter on the parcellation problem. First, using a double Gaussian we 

generate 10 sets of data, with different levels of noise with the equation below: 

(x-15)2+(y-35)2 (x-35)2+(y-15)2 ) 
f ( x, y) = 5 . (e 90 + e - 90 + pE, (3.3.34) 

where, E rv N(O,I) and p = 0.5, 1, 1.5, 2, ... , 5. The data, with different levels of 

noise, is shown in Figure 3.19. The adaptive smoothing method proposed above is 

implemented to smooth the data. The results are shown in Figure 3.20. 

After adaptive smoothing, the smoothed data is embedded into 3D Euclidean space 

with Isomap. Figure 3.21 shows the embedding and parcellation of the data gener-

ated with p = 5. 

As demonstrated above, the manifold embedding methods are not reliable when 
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Figure 3.19: Toy data with different levels of noise. 

the data is sampled under high-level noise. We use two examples to show that 

adaptive smoothing could effectively improve the results of manifold embedding 

techniques. The smoothing proposed here is different from the one used in classic 

£MRI group analysis. In these analyses, a large kernel width is used to increase the 

overlapping of the activated regions in different subjects. In contrast, the reason 

we use smoothing here is to make the manifold embedding techniques applicable. 

Therefore, as shown in Chapter 5, the automatic selected kernel widths are much 

smaller than the ones corlunonly used in classic £MRI data processing. 

3.3.2 Aggregation and Boundary Competition 

In this section, we propose another spatially constrained clustering method for par-

cellation. Unlike the methods introduced above, this method is based on seed vox-

els and parameter-controlled aggregation. The algorithm can be divided into two 

parts: Aggregation and Boundary Competition. In Aggregation, voxels are aggregated 

to neighbouring seed voxels. Following that, in Boundary Competition, the voxels that 
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Figure 3.21: Embedding and parcellation on smoothed data. 

locate at the boundary of different parcels are reassigned to improve the functional 

homogeneity and the spatial connectivity of the parcellation results. 

We still use the notation in equation 3.3.1 to represent the fMRI data. The vector 

set {v (i) , i = 1,2, ... , V} is the set of all the voxels to be parcellated. The number 

i is the index of the voxels and V is the number of the voxels in the vector set. 

In addition, we further denote the number of the parcels as P. And Pi is a set of 

voxel indices, such that for any index kE Pi, the voxel v (k) is labelled as the ith 
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parcel. Therefore, we have Pi n Pj = 0, 'Vi =1= j. At the end of parcellation, we have 

UJ=l Pj = {l, 2, ... , V}. 

At the beginning of Aggregation, the number of the parcels P is first determined and 

P seed voxels are selected. The seed voxels are the prototypes of parcels. Hence, 

they should be spatially and functionally far from each other. The seed selection 

method introduced in section 3.2.3 can be used here. However the setting of radius 

R is different. 

Here, the Aggregation is presented in two steps: 5etting 5eeds and Aggregation. 

1. Setting Seeds: 

Let the indices of p seed voxels for aggregation be 51,52 ... 5p. The first seed 

voxel V(51) is selected as, 

51 = arg ｾ ｡ ｸ x Illh (i) h (i) ... fn (i) JII 
I 

(3.3.35) 

The second seed voxel v( 52) is selected as, 

52 = argmax Illh(i) h(i) 
I 

(3.3.36) 

subject to II [xCi) y(i) z(i)J- [x(51) y(51) z(51)]11 > R. 

And the kth seed voxel V(5k) is selected as, 

Ｕ ｫ ］ ｡ ｲ ｧ ｾ ｡ ｸ ｬ ｬ ｛ ｨ Ｈ ｩ Ｉ ) h(i) ... fn (i)]1\ 
I 

(3.3.37) 

It continues until p seeds are selected. R should be large enough, so that for 

any voxel there should be a seed voxel with the distance smaller than R. On 
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the other hand, if R is too large, there may not be enough voxels for P seeds. 

Therefore, we suggest R be selected as R3 < V I P. 

2. Aggregation: 

The step of Aggregation is similar to seed region-grow algorithms in image 

segmentation [Shapiro and Stockman, 2001]. Seeds 51, 52· .. 5p are the initial 

state of the P parcels. Therefore, at the beginning of the parcellation, Pi = 

{ 5 i }. After that, in each step of aggregation, the algorithm allocates additional 

voxels to Pi. Let H be the set of all unlabelled voxels that are the neighbours 

of the labelled voxels: 

p p 

H = {i ti U PjIN(i) n U Pj -/=0}, (3.3.38) 
j=l j=l 

where, N(i) is the set of voxel indices. The corresponding voxels of N(i) are 

in the neighbourhood of voxel v(i). The neighbourhood of a voxel could be 

defined as 6-connected or 28-connected in 3D space. For unlabelled voxel 

v(i), i E H, the distance between voxels v(i) and the neighbouring parcel Pj is 

defined as, 

. Illh (i) h (i) '" in (i) 1 - LjEPj ( lh (j) h (j) '" in (j) 1) /1lj II 
d(V(l),Pj ) = (IN(i)npjI/IN(i)I)b ' 

(3.3.39) 

where, v(i) is the voxel in the set H; 1lj is the number of voxels in region Pj; 

IN(i) n Pjl is the number ofvoxels labelled as parcel Pj in the neighbourhood 

of v(i) and 6 is the parameter to control the aggregation. When 6 is 0, the ag-

gregation is based on functional similarity. On the other hand, when 6 -----+ 00 
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the aggregation is based on spatial connectivity. At each step of the aggrega-

tion, a certain number ( sv) of voxels are labelled to the nearest parcel according 

to the distance defined in equation 3.3.39. These voxels should be the voxels 

that are closest to the parcels. Consequently, for each voxel v(i), i E H, we find 

the parcel that is nearest to this voxel by 

J = argmin d(v(i), Pj ). 
j 

(3.3.40) 

After that, for all i E H, the distances d(v(i), Pi) are ranked. The first Sv voxels 

associated with the smallest d(v(i),PJ) are labelled as Pr 
The aggregation is repeated until all the voxels are labelled. 

During the process of aggregation, there are two parameters that control the re-

sults: b in equation 3.3.39 and the number of voxels to aggregate at each step, Sv. 

The parameter b is used to control the balance between the spatial connectivity and 

functional homogeneity of the parcels. When b = 0, the d(v(i), Pj) is the functional 

distance. The voxel may be assigned to a spatially unconnected the parcel. Thus, the 

resulting parcels may have very high functional homogeneity but the voxels in the 

same parcel may be spatially separated from each other. On the other hand/ when b 

is too big, the voxel may be assigned to a parcel that is spatially well connected but 

functionally very far. The resulting parcels may have low functional homogeneity. 

Intuitively, we suggest using b between 0 and 1. The other parameter Sv controls the 

speed of aggregation. 

After Aggregation, Boundary Competition is implemented. In Boundary Compe-

tition, the voxels whose neighbouring voxels are labelled differently to them are 
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considered as voxels on the boundary. B is denoted as the set of the indices of all 

the voxels on the boundary. For each voxel i in B, i is first marked as unlabelled. 

Then, the distance between v(i) and its neighbour parcels are calculated, as in equa-

tion 3.3.39. Following this, v(i ) is labelled as its neighbour region with the minimal 

d (v( i), Pj ) . This is repeated until stop criterion is met. The stop criterion could be 

that label of all voxels are no longer changed. 

Figure 3.22: Results of Aggregation (left) and Boundary Competition 

The left graph of Figure 3.22 shows the result of aggregation with b = 0.2 and Sv = 

28. The boundary of the parcel is noisy. During boundary competition, b = 1 is 

used. The boundary of the parcels is more regular. 

3.3.3 Discussion 

In the above sections, we introduced three spatially constrained clustering methods 

for parcellation. Two of them were based on the manifold approach. The last one 

was based on aggregation and boundary competition. 

In methods based on the manifold approach, the feature space is first embedded 

into Euclidean space, which could best represent the geodesic distances of the data 
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in the feature space. After that, the data is parcellated with k-mean algorithm in 

the embedded Euclidean space. Alternatively, in the method based on aggregation, 

parcels are calculated according to designed algorithms. 

Both of these methods share one common point in that seed voxels have to be used. 

In manifold based methods, seed voxels are used in the last step, k-mean algorithm. 

In aggregation, seed voxels are selected first. The major difference is that, in man-

ifold based approaches, voxels in the whole brain are allocated to the seed voxels 

according to the geodesic distances represented by the embeddings. Unlike this, in 

aggregation, voxels are parcellated according to the parameter controlled automatic 

algorithm. 

Considering the effectiveness and reliability of these algorithms, manifold based 

methods are effective only when the noise level is low and the manifold is smooth. 

Under high level noise, even though the first eigenvalues cover most of the variance 

in the spectrum of Figure 3.13.2, the embeddings cannot represents the geodesic dis-

tances sufficiently. Under these circumstances, the adaptive smoothing is proposed. 

The result of experiments on two toy examples shows that this method could im-

prove the embedding results and increase the reliability against noise. 

On the other hand, the aggregation algorithm is controlled by two parameters. 

Choosing appropriate parameters could make the algorithms more robust to noise. 

However, this algorithm could be sensitive to different settings of parameters and 

seeds. Using different seed voxels and parameters on the same data, the result could 

be very different from each other. Thus the choice of seeds and parameters is im-

portant for aggregation. At the end of aggregation, the central voxel of each parcel 
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can be used as new seeds and the aggregate is iterated in order to increase the con-

vergence of the algorithm. In our examples, due to the fact that the seed voxels are 

selected carefully, such iteration does not give much improvement. 

Next, we compared these methods from a computational pomt of view. Due to the 

fact that calculating the embeddings of the geodesic distance needs large compu-

tation, the efficiency of the manifold embedding algorithms is not very high. Espe-

cially when compared them to the aggregation algorithms, the difference is obvious. 

However, embedding methods give better global parcellation results, on the condi-

tion that the manifold is smooth. 

Therefore, if computational efficiency is an important requirement in the analysis, 

the aggregation and boundary competition method for parcellation is to be recom-

mended. If time permits, manifold based methods could give better parcellation 

results. When using manifold based parcellation for 3D image parcellation, the use 

of at least 4 last embeddings for parcellation is suggested. If the manifold is not 

smooth, adaptive smoothing can be used as a preprocessing step. Otherwise, the 

embed dings cannot represent the geometry of the manifold. 

3.4 Validation of Intra-subj eet Pareellation 

3.4.1 Intra-parcel functional variance 

The aim of parcellation is to divide the brain into functionally homogeneous re-

gions. Therefore, the functional homogeneity of parcels is naturally a criterion by 

which to examine parcellation methods. Thirion et al. [2006] present intra-parcel 
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functional homogeneity with intra-parcel variance of the GLM parameter. How-

ever, due to the fact that there is noise as well as other artefacts in the £MRI data , 

the GLM parameters cannot sufficiently represent the functional behaviour of the 

corresponding voxels. Therefore, in this section, we propose some other methods to 

measure intra-parcel functional homogeneity. 

Intra-parcel variance of GLM t-values 

Let Nr be the number of regressors in the design matrix of GLM and fi E RNrx1 be 

the vector of t-values for voxel i. Np is the number of parcels in the whole brain. 

For any parcel Pj' j = 1,2, ... , N p, the functional variance of Pj' v(Pj ), is: 

Nr 

v(Pj) =. L(std(fk))2, where, fi = lfl f4 ... fkrl' and i E Pj (3.4.1) 
k=l 

The mean and distribution of v(P i ) across all parcels is used to compare the accuracy 

of the parcellations. 

Intra-parcel variance of PLS t-values 

Given a design matrix Y E RTxNr, where Yk E RTx1 is the kth column of Y, instead 

of using the matrix D as in section 3.2.5, the regressor Yk is used to calculate latent 

variables as in section 3.2.5. If rk is the covariance between the fMRI time series and 

the first latent variable, then 

rkJT 2 
tk = 2 l-r k 

(3.4.2) 

has a t-distribution with T - 2 degrees of freedom. The null hypothesis of this test 

is that the signal of that voxel is not covariant with the PLS components. Thus, we 
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can generate statistical maps to represent the significance of the covariance between 

the signals in each voxel and the first latent variable. 

3.4.2 Nearest Silhouette Coefficient 

Silhouette is a method proposed in Rousseeuw [1987] to evaluate the clustering va-

lidity. In this method, each sample is given a so-called silhouette to represent whether 

the sample lies well within the cluster it is assigned to. 

Given that all the N samples, Xl, X2, ... , XN, are clustered into Pclusters, PI, P2, ... , Pp, 

and d(Xi,Pj) is the distance between the sample Xi and the cluster Pj , the silhouette 

coefficient for the sample Xi is defined as: 

where, 

1 - a(i) /b(i) if a(i) < b(i) 

s(i) = 0 if aU) = b(i) 

b(i) / aU) - 1 if a(i) > b(i) 

a(i) 

b(i) 

The distance d(Xi,Pj) is defined as: 

(3.4.3) 

(3.4.4) 

(3.4.5) 

(3.4.6) 

The a(i) is the distance between the sample Xi and the cluster it is assigned to, Whilst 

b(i) is the distance between the sample Xi and the cluster that is the second best 

choice for Xi to be clustered to. The silhouette coefficient of that sample, s(i), is 

calculated by comparing these two distances. 
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Silhouette has been successfully applied to validate the result of many different clus-

tering problems [Kim et al., 2010b; Maulik and Mukhopadhyay, 2010; Mitra et al., 

2010]. However Silhouette cannot be effective in validating the results of parcella-

tion. In parcellation, for any voxel v(i), there may be a parcel that is spatially far but 

functionally very close to the voxel v( i). Although due to the spatial constraint, this 

parcel cannot be the second best choice for v(i), the Silhouette calculates b(i) with 

that parcel. Such a situation gives a very low s(i) no matter whether v(i) is well clus-

tered or not. Therefore, with the same spirit of Silhouette Coefficient, we propose 

an adapted version of Silhouette Coefficient called Nearest Silhouette Coefficient. 

Here, we use the same denotation in section 3.3.2. For any voxel v(i), i E PI, the 

spatial distance between voxel v(i) and parcel P nz, m =J I is defined as: 

1 
min II [x(i) y(i) z(i)] - [xU) y(j) zU)]11 

d(v(i), Pm) = jEPm 

00 

if Pm, PI are neighbours, 

otherwise 

(3.4.7) 

According to the distance defined above, the parcel spatially closest to v(i) is con-

sidered as the the second best choice for v(i). Therefore, b(i) is calculated as: 

(3.4.8) 

where, 

k = argmind(v(i),Pm). (3.4.9) 
m,iliP", 

In addition, a(i), i E PI is defined as: 

a(i) = ｉ ｾ ~ I .L 11[/1(i) h(i) ... fn(i)]- [/1U) hU) ... fnU)]II· 
I jEPI 

(3.4.10) 

Finally, s(i) is calculated as in equation 3.4.3. The mean value of all s(i) can be used 

to evaluate the parcellation results. 
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3.4.3 Results from the toy data 

Using the evaluation methods proposed above and the double Gaussian toy exam-

pIe shown in Figure 3.13.1, we examine the parcellation methods introduced in this 

chapter. Here, three methods are compared: Isomap parcellation, Isomap parcella-

tion with Adaptive Smoothing and lastly Aggregation and Boundary Competition. 

The parcellation result of these methods are illustrated in Figure 3.13.3, Figure 3.21, 

and Figure 3.22. K -means Clustering on the spatial coordinates of the voxels are 

used as a baseline. The intra-parcel variances and nearest silhouette coefficients for 

each parcellation result are calculated and shown in Figure 3.23. 

Figure 3.23.1 shows the intra-parcel variances. The horizontal axis denotes different 

parcellation methods: clustering on the spatial coordinates (SC), Isomap parcella-

tion (IM), Isomap parcellation with Adaptive Smoothing (SIM) and Aggregation 

and Boundary Competition (A&BC). The vertical axis represents the intra-parcel 

variance of each parcel. Each black dot shows the intra-parcel variance of a parcel. 

The mean intra-parcel variance of each parcellation method is presented with the 

corresponding red triangle. 
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Figure 3.23: Comparison of parcellation results. 
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The nearest silhouette coefficients of each parcellation method are shown in Figure 

3.23.2 with error bars. The red triangles and the bars illustrate the mean, the first 

and the third quartile of nearest silhouette coefficients of each parcellation. 

From Figure 3.23, we can see that, according to both evaluation methods, the Isomap 

parcellation with adaptive smoothing gives the best results. The Aggregation and 

Boundary Competition is also effective. 

3.5 Summary 

The main contribution of this chapter is that we used the signals from seed vox-

els and the principal components of all signals to calculate PLS components as the 

activation signal for individual subjects. Clustering methods were applied to auto-

matically select a number of independent components that are reproducible across 

all the subjects. Then, seed voxels were obtained from the associated lCA maps. Af-

ter that, we computed the PLS latent variables between the fMRI signal of the seed 

voxels and the principal components of the signal across all voxels. The PLS maps 

were used as feature space. 

Next, we introduced two ways of parcellation: manifold based methods and aggre-

gation based method. Using a toy example, we demonstrated that, due to noise in 

the feature space, the parcellation results did not have desired parcel characteristic 

introduced in Thirion et al. [2006]. Therefore, we proposed an adaptive smoothing 

method to solve this problem. The smoothing method was applied to two sets of 

data: the Swiss Roll data and the double Gaussian data. ｔ ｨ ｾ ~ results showed that 
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our smoothing method improves the results of manifold embedding. 

In order to evaluate parcellation results, we proposed two criteria for validation. 

The first one is the intra-parcel functional variance, which is similar to that proposed 

in Thirion et al. [2006]. However, in order to reduce the influence of the noise and 

other artefacts, we used GLM t-values and PLS t-values to represent the functional 

behaviour of each voxel. In addition, we proposed Nearest Silhouette Coefficient as 

another validation method. 

Using the toy example and these validation methods, we examined these parcella-

tion techniques: Aggregation and Boundary Competition Parcellation, Isomap par-

cellation with and without Adaptive Smoothing. The results of both validation ap-

proaches give the same conclusion: Isomap parcellation is an effective method for 

parcellation. However, the performance is limited by noise. Adaptive Smoothing 

can solve this problem for Isomap parcellation and improve the final results. The 

Aggregation and Boundary Competition Parcellation gives fast parcellation results 

and the accuracy is similar to the Isomap parcellation with Adaptive Smoothing. 

These methods are further compared with two fMRI data sets. The results will be 

shown and discussed in Chapter 5. 

In this chapter, we focused on the parcellation methods for individual subject. In 

the next chapter, we will discuss how to find the correspondence of parcels across 

subjects. 
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CHAPTER 4 

Cross Subject Cotnparison of 

Parcels 

4.1 Introduction 

In the previous chapter, we introduced parcellation methods for individual subjects. 

Due to the fact that many fMRI studies rely on the analysis of groups of subjects, it is 

essential to establish parcel correspondence across subjects. As mentioned in Chap-

ter 2, there are only few cross-subject parcellation methods. Most of these meth-

ods are indirect. For instance, Thirion et al. [2006] constructed the correspondence 

during individual parcellation. Jbabdi et al. [2009] built hierarchical models on the 

parcels from all subjects. 

In this chapter, we consider the parcel-matching as an independent step. We pro-

pose a more general and direct way of solving this problem. Given several individ-

ually parcellated subjects, we look for the best correspondence for the parcels across 
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all subjects. 

We formularize the cross-subject parcel-matching problem as a multipartite graph 

partitioning problem. The main advantage of this approach is that one only needs 

to define a similarity (or distance) measure between two parcels from two different 

subjects for the algorithm. The algorithm can optimize the overall parcel matching. 

The optimization is based on the information of all subjects to increase accuracy. 

As the parcel matching step is independent of individual parcellation, this method 

can be applied to match parcels generated with any technique and any imaging 

modalities (e.g. structural image, DTI). 

In this chapter, we introduce the Order Based Simulated Annealing (OBSA) method 

as a way of solving the multipartite graph partitioning problem. Using one toy ex-

ample and the multi-subject data, we show that this method gives fast and reliable 

performance. In addition, we discuss the similarity between our methods and the 

'Bags of Pixels' introduced in Jebara [2003], which recast a special case of our prob-

lem. Furthermore, we illustrate that the optimization subject used in the 'Bags of 

Pixels' approach is ill posed as a general method for the task of image recognition. 

This chapter is organized as follows. The model-based multi-subject parcellation 

method is introduced in section 4.2. In section 4.3, the cross-subject parcel matching 

problem is formalized into a multipartite graph partitioning problem. Then, we de-

scribe how to solve this graph partitioning problem. After that, we discuss the idea 

of representing images as 'Bags of Voxels' in this section. Finally, the experimental 

results and discussion are given in section 4.4 and section 4.5. 
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4.2 Multi-subject parcellation 

Thirion et al. [2006L proposed a three step approach for multi-subject parcellation: 

(1) find parcel prototypes, (2) identifiy subject-based instances of these prototypes 

and (3) parcellate each individual subject with the prototypes. In the following para-

graphs, we explain these three steps. 

Let us first assume that there are S subjects, each of which_ has Vs, s = 1,2, "'f S 

voxels and each subject is to be parcellated into P parcels. All these subjects have 

been registered to standard space. 

In the first step, all the voxels are pooled together. The set V has all the V = Ls V, 

voxels. Each voxel v(i) E V is associated with two vectors: (1) the location vector 

c(i) which represents the coordinates of the voxels in the standard space, (2) the 

feature vector f(i) which is the functional measurement of v(i). These two vectors 

are represented as: 

c(i) [x(i) y(i) z(i)]', (4.2.1) 

f(i) [ft(i) h(i) , ... , frz(i)]', i=I,2, ... ,V, (4.2.2) 

Given any two voxels v(i) and v(j) in the set V, Thirion et al. [2006] defined a spatial 

distance and a functional distance between them. The spatial distance is 

dspatial(v(i),V(j)) = V[(x(i) - x(j)]2 + [y(i) - y(j)F + [z(i) - z(j)]2. (4.2.3) 

The functional distance is defined as 

rz 

dj(v(i),v(j)) = L (A(i) - A(j))2. (4.2.4) 
k=l 
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After pooling all voxels together, they are clustered to P clusters according to their 

functional measurement. In addition, the clustering is under the spatial constraint 

that for any voxel in a cluster, the spatial distance between the voxel and the centre 

of the corresponding cluster must be less than de. The centres of these clusters are 

used as parcel prototypes. Let pi, i = 1,2, ... , P be the prototypes of the P parcels. As 

in the case of a voxel, each parcel prototype has a location vector cP and a feature 

vector fP associated with it, which are 

[ff (i) If (i) I _._, I%(i)]', i = 1,-2, ... , V, 

The voxel vs(i) is allocated to PJ according to the following equation: 

J = argmindj(vs(i),Pj) subjectto ds(vs(i),Pj) < de 
j 

(4.2.5) 

(4.2.6) 

(4.2.7) 

Constraint C-means is used for this step. More discussion on constraint clustering 

methods can be found in Basu et al. [2008]. 

In the second step, given a parcel prototype Pi and a subject s, we need to find 

the corresponding subject-based instance P:. pi is a voxel in subject s that satisfies 

two conditions: firstly, it must be spatially and functionally closest to the prototype 

Pi; secondly, for any parcel prototype pi, in each subject s, there is one and only 

one voxel pi that corresponds to Pi. Thirion et al. [2006] model the correspondence 

between parcel prototypes and subject-based instances by image warping. They 

propose an iterative algorithm to calculate the these instances. 

In the last step, pi, i = 1,2, ... P, are used as seeds for the individual parcellation 

of the subject. For instance, when using Isomap, pi,i = 1,2, ... P are used as the 
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seeds of the k-means clustering algorithm implemented in the embedded Euclidean 

space. The parcels corresponding to the same parcel prototype are matched with 

each other. 

In this method, the correspondence of the parcels across subjects is constructed dur-

ing parcellation based on the functional measurement and anatomy space. It fits 

the analysis framework proposed by Flandin et al. [2002]. However, in this method, 

the parcel matching step is closely combined with the individual parcellation step. 

Thus, it is difficult to apply this parcel matching approach to other parcellation 

methods or parcellation with other image modalities. To deal with this problem, 

in the next section, we propose a direct way to match parcels across all subjects. 

4.3 Cross-subject matching as a multipartite graph partition-

ing problem 

4.3.1 Multipartite graph partitioning for cross-subject matching 

In this model, we first assume that the distance between any two parcels from dif-

ferent subjects can be well defined. This distance can effectively measure the dis-

similarity between parcels from different subjects. The second assumption is that 

the parcel matching between any two subjects is one to one. It means that, for any 

parcel in a subject, it can be matched to one and only one parcel from another sub-

ject. 

Then, we consider each parcel as a vertex on a graph. Each vertex is connected to all 
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parcels that are not from the same subject. Each edge is weighted with the distance 

between the parcels that it connects. Therefore, the parcels and the edges connecting 

them form a weighted complete multipartite graph ｋ ｾ Ｎ .

N ext, we consider a way to partition the graph ｋ ｾ ~ into a disjoint union of 5 cliques 

by removing some edges. After partitioning, each clique is a complete graph. It has 

one and only one vertex from each subject. In addition, the sum of the weights in all 

cliques is minimized. According to our assumptions, the parcels in each clique can 

be considered as matched parcels. 

Let pi be the ith parcel of subject 5, where 5 E 1,2, ... , 5 and i E 1,2, ... P. According 

to our model, they are the vertices of a multipartite graph. The weight connecting 

vertices pi and pj is denoted as ｾ Ｈ ｰ ｩ Ｌ , pj) which represents the distance between 

these two parcels. We want to minimize: 

Subject to 

1 sSP P 

Ws = 2 L L L L citw(pin, pj) 
m=l n=l 1=1 j=l 

P 

L cir = I, Vm, n E I, ... 5 
1=1 

P 

Lc7r = 1, Vm,n E 1, ... 5 
j=1 

c"!n = 0 or I, Vm, n E I, ... 5 
I] 

(4.3.1) 

This problem is essentially a multidimensional assignment problem [Garey and Johnson, 

1990]. When there are only two subjects in the data set (5 = 2), the problem turns 

into a classic assignment problem: 
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Minimize 

Subject to 

p p 

Ws = L L CijW(P[' pi) 
i=l j=l 

P 

LCij = 1 
i=l 

P 

L Cij = 1, 
j=l 

cij = 0 or 1. 

(4.3.2) 

This problem can be solved with the Munkres algorithm [Munkres, 1957; Riesen et al., 

2007], which is illustrated in Figure 4.1. We denote W as the weight matrix with 

W(p}, pJ) as the element in row i and column j. Given W, Munkres algorithm pro-

vides the matrix C. The element Cij in C is the solution of the assignment problem 

presented in equation 4.3.2. We give more details of this algorithm in Section 4.3.2. 

Unfortunately, the Munkres algorithm can only find the optimal match of the parcels 

from two subjects. When there are more than two subjects, the corresponding multi-

partite graph partitioning problem is generally difficult to solve. For instance, when 

5 = 3, as introduced in Garey and Johnson [1990] the problem is generally NP-

hard. Burkard et al. [1996]; Crama and Spieksma [1992]; Spieksma and Woe ginger 

[1996] proposed approximation methods for some special cases. When 5 ｾ ~ 4, the 

problem is less studied. Haley [1963] and Pierskalla [1968] mentioned this problem 

but did not find a good solution. Crama and Spieksma [1992]; Jebara [2003] and 

Bandelt et al. [1994] proposed algorithms that could give approximations for some 

special situations. 

Similar to the multi-subject image registration problem, one intuitive solution is that 

we take one subject as reference and match all the other subjects to the reference sub-
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ject. The parcels assigned to the same parcel of the reference subject are considered 

as one clique. When using subject So as reference, rather than minimize equation 

4.3.1, this method minimizes 

s p p 

'"' '"' '"' sSo (s SO) L..J L..J L..J cij W Pi' Pj . 
5=1 i=l j=l 

(4.3.3) 

In each clique, this approach only minimizes the weights of the edges connecting 

the parcels from the reference subject. Thus, the solution is obviously suboptimal. 

Especially when the reference subject has a poor imaging or parcellation quality, the 

matching becomes less reliable. On the other hand, the parcel-matching step is a 

fundamental step for further analysis. The quality of the matching results directly 

influences the accuracy of the analysis in the next step. Therefore, it is important to 

find the optimal match of the parcels. Unfortunately, to the best of our knowledge, 

there is no efficient algorithm to solve this problem. The discussion of this problem 

mostly focuses on how to approximate the optimal solution. 

Another possible solution for this problem is to make further assumptions on the 

graph to simplify the problem. For instance, in Jebara [2003]; Kuroki and Matsui 

. [2009], it is assumed that each vertex in the graph can be described as a point in an 

Euclidean space. The weight of an edge is the Euclidean distance between the cor-

responding vertices. Under this assumption, the multipartite partitioning problem 

can be formularized into a quadratic programming problem. 

However, this assumption limits the application of this model. In many situations, 

it is not convenient to describe the weights as the Euclidean distances between the 

vertices, especially in analysis with a different imaging modality. For instance, in 
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fMRI analysis, for any two parcels from two subjects in standard space, if the centres 

of these two parcels are more than 5cm away from each other, it is not sensible to 

match them together. Therefore, we could set the weight connecting them as infinity. 

But the consequence of this setting is that it is difficult to consider the vertices as 

points embedded in a Euclidean space. When combining other imaging modalities, 

for instance, DTI, it would be common to encounter such a problem. 

In order to provide a way of solving this problem, in Section 4.3.2, we propose a 

novel algorithm that could approximate the optimal matching results, without mak-

ing further assumptions on the graph. 

4.3.2 Order Based Simulate Annealing (OBSA) 

As mentioned in section 4.3.1, Munkres algorithm gives optimal results to the as-

signment problem but it cannot deal with high dimensional problems. In this sec-

tion, we propose Order Based Simulate Annealing (OBSA) to solve the multipartite 

graph partitioning problem. The OBSA provides an approximation of the optimal 

solution based on the Munkres algorithm. 

Munkres Algorithm 

The Munkres algorithm (also known as Kuhn-Munkres Algorithm or the Hungarian 

method) was first published in Kuhn [1955]. After that, Munkres [1957] found that 

this method is polynomial. In Figure 4.1, we show the flow chart of this algorithm. 

Given a weight matrix W 4.3.2, the algorithm returns a modified matrix WI. The Cij 
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N 

Let emin be smallest 
uncovered element 

Add emin to the 
elements in 

covered rows 
and subtract it 
from elements 
in uncovered 

columns 

Start with the 
matrixW 

For each row i 
wij =wij-mmwij 

J 

W ij is a starred zero ifw ij = 0 
and there is no starred zero 

in its row or column 

Cover the columns 
with a starred zero 

Mark Zo an arbitrary 
zero in W, as prime 

Construct a series S 
that starts with Zo 

Unstar the starred zero in Sand 
replace all primes with stars 

Erase all other 
primes and uncover 

every line in W 

ｾ ｙ Y.... ( DONE) 

y 

y 

Cover Zo's row 
and uncover the 
column of the 
sta rred zero 

Insert Z1 to S; 
Replace Zo with 
the primed zero 
in the row of Z/; 
insert Zo into S 

Figure 4.1: Munkres Algorithm. 
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can be calculated as: 

C 
.. _ ! 1 if w:j is a starred zero 
I] -

o otherwise 

The corresponding sum of weights is: 

Ws = L>i{W(p;, Pj). 
ij 

Ws can be used to evaluate the quality of this assignment. 

Order Based Simulate Annealing (OBSA) 

(4.3.4) 

(4.3.5) 

Using the same notation as in section 4.3.1, this method can be described by the 

following algorithm: 

1. Initialization 

Set Wmin = 00. 

2. Randomly permute the order of all the subjects 

Let a sequence S be a random permutation of the integers from 1 to S, which is 

the number of all subjects. S (i) is the ith element of the sequence. It represents 

the index of a subject. 

3. Match the first two subjects in the sequence 

Use Munkres algorithm to match subject S(l) and S(2) and set i = 3. C2 is the 

matrix for the result assignment. C2 is this matched bipartite graph. In this 

graph, only the edges correspond to cij 2: 0, cij E C2 are kept. 
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4. Match the ith (i > 3) subjects in the sequence 

If i > S, go to next step, otherwise, set j = I, Wt = 00 

(a) If j > i, set i = i + 1 and go to the beginning of step 4, otherwise, use 

Munkres algorithm to match subject S(i) to S(j). The Ci is the result 

assignment matrix. 

(b) According to matrix Ci , match the new subject S(i) to the graph Gi - 1 to 

formalize a i-partite graph. This new graph is denoted as G:. In ｇ ｾ Ｌ , the 

subject S (i) only connects to S (j) by the edges corresponding to the non-

zero elements in Ci . ｇ ｾ ~ partitions all vertices into P disjoint sets. Each 

set has one vertex from each subject. Let ｋ ｾ ~ be the completed weighted 

multipartite graph with subjects S(I), ... S(i). So it has the same vertices 

as ｇ ｾ Ｎ . We partition ｋ ｾ ~ into P cliques so that each clique has the same 

vertices as each set in G:. Then, calculate the sum of weights W of all the 

cliques in ｋ ｾ Ｎ . If W < Wt , set Wt = Wand Gi = ｇ ｾ Ｎ . Then set j = j + 1 and 

go to step (a). 

5. Update the matched graph 

Until now we could get an S-partite graph GS and the sum of the weights of 

this graph Wt. Wt is minimized according to the order of subjects determined 

in step 2. If Wt < Wmin, Wmin = Wt and Gopt = GS
• Return to step 2. 

The algorithm should stop when Wmin stops decreasing. Practically, this algorithm 

converges quickly. We show this in Section 4.4. 
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4.3.3 Bags of Pixels and Bags of Parcels 

Jebara [2003] proposed a method that represents an image as a Bag of Pixels. In 

this section, we demonstrate that this representation of images can be considered 

as a special case of our problem. Furthermore, we show that this representation 

of the images is ill posed. However, the quadratic programming formularized in 

Jebara [2003] could be used to solve the multipartite graph partitioning problem. 

Therefore, we introduce the method in this section. 

When representing images as Bags of Pixels, each pixel in a image is described as 

n-tuple. For instance, given a grey scale image with N pixels, each pixel in the image 

is presented as a 3-tuple x = [x y il, in which, x and y represent the location of the 

pixel and i is the associated intensity value. Then, the image turns into a vector of 

3N x 1: 

(4.3.6) 

Let X be aN· D x 1 vector representing a image with N pixels. Each pixel is de-

scribed with a D-tuple: Xi = [x Y f(l) f(2), ... , f(D - 2)l,i E {1,2, ... ,N}. The 

matrix A is a (N . D) x (N . D) permutation matrix, such that: 

A= 

where, ID is a D x D identity matrix. A is a doubly stochastic matrix with aij E 
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Due to the fact that each tuple contains all the information of a pixel, the tuples can 

be concatenated in an arbitrary order. Therefore, for any permutation matrix A, AX 

is a different configuration of the same image. All the configurations of AX form a 

manifold. 

For a set of K images Xk, k E 1,2, ... , K that are from the same class, a Gaussian model 

is constructed to describe these images: 

(4.3.7) 

For simplicity, we assume that the covariance matrix I. is an identity matrix. Then, 

the log-likelihood can be expressed as 

1 (!A, fl) (4.3.8) 

where 

The log-likelihood l(!A, fl) can be further maximized over !A by minimizing 

C(!A) = L IIAkXk - pW· (4.3.9) 
k 

It should be noticed that equation 4.3.9 is equivalent to the multipartite graph par-

titioning problem. Let x7 = [x7 ｹ ｾ ~ ft(l) fik(2), ... , ff(O - 2)] be a vertex of a graph. 

It connects to all the tuples in other K - 1 images. The weights of edges connecting 

any two tuples is defined as: 

w(xi,xj) = Ilxi -xiW (4.3.10) 

(xt - X?)2 + (yt - yj? + (fr(l) - f7(1))2 + 

+ ... + (f[1l(0 - 2) - fF(D - 2))2 

109 



CHAPTER 4: CROSS SUBJECT COMPARISON OF PARCELS 

All the tuples form a K-partite graph. The multipartite graph partitioning problem 

can be represented by 

(4.3.11) 

The minimization object Ws(A) and C(A) are equivalent. Therefore, the idea of Bag 

of Pixels can be understood as a two step process. First, the pixels from different im-

ages are first matched to each other according to their positions and intensity values. 

This step is similar to our multipartite graph partition model. Further analysis, such 

as PCA Uebara, 2003] and kernel PCA [Kondor and Jebara, 2003], is then applied to 

the matched pixels. From a contrary viewpoint, the cross subject parcel-matching 

can be considered as an idea for representing each subject as a Bag of Parcels. How-

ever the similarity between parcels can be more flexibly and reliably defined. 

In image recognition, it is not common to take the co-registration of all the images as 

a preprocessing step. Without a careful preprocessing, it is difficult to be convinced 

that the correspondence of two pixels in two images can be determined only by the 

position and the intensity values of these two pixels. 

In addition, when the scale of the image intensity changes, even for the same data 

set, the result would be different. For instance, given a set of the grey scale images 

with intensity 0 ("....I I, if we linearly enhance the intensity scale to 0 rv 100, the match-

ing result would depend more on the intensity. Vice versa, if we linearly change the 

intensity scale to 0 ("....I 0.1, the matching result would depend more on the location of 

the pixel. 

Following the above discussion, when images are carefully preprocessed, represent-
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ing them as bags of pixels may be effective but as a general method for image recog-

nition, this formalization is ill posed. 

4.3.4 Quadratic programming for multipartite graph partitioning 

Jebara [2003] proposed a fast method to solve equation 4.3.8 using quadratic pro-

gramming. According to the discussion in the last section, when the vertices of a 

multipartite graph can be presented as points embedded in a Euclidean space, min-

imizing Ws is equivalent to minimizing C(A). Therefore, the algorithm proposed by 

Jebara [2003] could solve a sub-class of the multipartite graph partitioning problem. 

In this method, the constraints on the permutation matrix A k are relaxed. The opti-

mization problem formularized as: 

Minimize C(L7\.) = LllAkXk - PI1 2 +A I)at - ｾ ＿ ?
k ijk N 

(4.3.12) 

subject to at 2: 0, L at = 1, L at = 1, 
i j 

In order to avoid degeneracy, in equation 4.3.12, a penalty term is added to the min-

imization object. This term penalizes the at close to liN and favours the situation 

when ｡ ｾ Ｎ . is close to 0 or 1. The parameter A balances the convexity of the problem 
lJ 

and the optimality of the result. 

The quadratic programming is solved with the SMO algorithm introduced in Platt 

[1999]. This algorithm iteratively updates the elements of matrix Ak, where k is ran-

domly selected. At each iteration step, only four elements are updated. If denoting 

these 4 elements as ｡ ｾ ｭ Ｇ ' ｡ ｾ ｱ Ｌ , ｡ ｾ ｮ n and ｡ ｾ ｱ Ｌ , due to the linear constraints in equation 
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4.3.12, we have: 

where 0 ｾ ~ a,b,c < 1. 

the updating rule for the new ｡ ｾ ｮ n is: 

where, 

den 

knew num 
amn = den' 

+b(K - ｬ Ｉ ｸ ｾ ｬ l . Ｈ ｸ ｾ ~ - ｸ ｾ Ｉ ) - AK(2a + b - c) 

2(K - ｬ Ｉ Ｈ ｸ ｾ ~ - ｸ ｾ Ｉ ) . Ｈ ｸ ｾ ~ - ｸ ｾ Ｉ ) - 4AK. 

(4.3.13) 

(4.3.14) 

(4.3.15) 

(4.3.16) 

(4.3.17) 

This means that the updating rule for new ｡ ｾ ｬ ｱ Ｌ , ｡ ｾ ｮ n and ｡ ｾ ｱ q can be calculated accord-

ing to the constraints in equation 4.3.13. 

The entries in the permutation matrix are updated iteratively, until the cost function 

C(A) drops below the threshold steadily. More details of this algorithm can be 

found in Jebara [2003] and Guo and Gao [2006]. 

112 



CHAPTER 4: CROSS SUBJECT COMPARISON OF PARCELS 

4.4 Experiment results 

In this section, we examine the multipartite graph partitioning algorithms with two 

sets of data. One is the toy data generated with the double Gaussian model as in 

equation 4.4.1. The other one is the multi-subject face and ｧ ･ ｾ ｴ ｵ ｲ ･ e data introduced 

in section 5.3. Three parcel-matching methods are tested and compared in this sec-

tion. The first one takes each subject as reference and matches others to the reference 

subject with Munkres algorithm. As this method matches other subjects to the refer-

ence subject, it cannot fully use the information in all subjects to find the best match. 

The result of this algorithm relies heavily on the selection of the reference subject. 

Next, we apply our OBSA' algorithm and the quadratic programming formalized in 

Jebara [2003] to the data sets. The accuracy of the matching is evaluated by the sum 

of weights in all the cliques as the Ws in equation 4.3.1. 

4.4.1 Results from toy data 

In this section, we first use the double Gaussian model to generate 20 images as a 

toy data set. The images are generate according this equation: 

(4.4.1) 

where, € rv N(O,l). In order to simulate the inter-subject variability, for each image 

the location of the Gaussian peaks and the noise level are randomized. Each image 
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I 

is 50 x 50. The parameters Xl, Yl, X2, Y2, P are calculated as: 

Xl = 25 - 10v'2coS(7[/4 - e) + rl YI = 25 + 1OV2sin(7T / 4 - e) + r l 

X2 = 25 + 10V2cos(7[/4 - e) + r2 Y2 = 25 -1OV2sin(7[/ 4 - e) + r2 

rl rv U (O,8) r2 rv U(O,8) p rv U(0.l,O.3 ) e rv U( -7[ /4,7[/4) (4.4.2) 

The generated images are shown in Figure 4.2. 

Figure 4.2: Toy data. 

Adaptive smoothing and Isomap are used for the parcellation. Each image is par-

cellated into 7 parcels. The indices of the parcels are randomly labelled. Figure 4.3 

shows the parcellation results. We use these parcels as a toy example to test the 

parcel-matching algorithms. 
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Figure 4.3: The parcellation of the toy data. 

As we need to test the algorithm based on quadratic programming, the /h parcel of 

subject i is represented as a point in 3-dimensional Euclidean space as: 

vlrI}] , ( 4.4.3) 

and the weight of the edge connecting two parcels p;;Z and ー ｾ ~ is : 

(4.4.4) 

In the above equations, the x and yare the locations of the geometric centre of the 

parcel and I is the mean intensity of the pixels in the parcel. The parameter, is 

used to adjust the optimization object in parcel matching. VVhen, is large, the 

algorithn1s match the parcels according to the image intensity. On the contrary, 
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4.4.1: Matching with OBSA. 
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4.4.2: Matching with each subject as reference. 

Figure 4.4: Comparison of parcel matching methods with toy data. 

when l' is small, the algorithms match the parcels whose location are closer to each 

other. The parameter l' is determined by the size of the image and the scale of the 

intensity. Here, the 1'is selected as: 

(4.4.5) 

where, P = 7 is the number of the parcels in each subject and 5 = 20 is the number 

of subjects. 
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In Figure 4.4, Ws is used as a criterion to measure the matching results of different 

matching methods. Figure 4.4.2 shows the results of an intuitive matching method, 

which takes each subject as a reference and matches others to the reference subjects. 

The horizontal axis represents the subject taken as reference. According to the black 

line, when taking subject 12, 13, 19 as the reference, the corresponding Ws is higher. 

This is due to the fact the parcellation results of these subjects are not as good as 

others. This can be seen from Figure 4.3. These three subjects are shown in row 

3 column 2, row 3 column 3 and row 4 column 4. Due the the high noise in the 

images, the parcellation results of these subjects are different from others. In subject 

12 and 13, the parcels connecting the two Gaussian peaks are lost. In subject 19, one 

Gaussian peak is lost. 

Figure 4.4.1 shows the results of OBSA algorithm. In order to test the stability of 

the OBSA algorithm, we run OBSA five times. At each ｾ ･ Ｌ , the indices of the 

parcels are randomly permuted, so that the initialization point of the algorithm is 

randomized. We show the results of these five runs with different colour lines. The 

horizontal axis represents the iteration in the OBSA algorithm. In the first four runs, 

we iterated 20 times and in the last run, the algorithm was iterated 200 times. In 

this run, after 20 times of iteration, Ws did not decrease. These test results show 

that the OBSA algorithm converges quickly. In the worst case of our experiment, 

the algorithm converges at the 11 th iteration. 

In the quadratic programming, formalized in equation 4.3.12, parameter A is used 

to control convergence and performance. In order to achieve the best result of this 

algorithm, we used several ;\ values to evaluate its performance. However, the 
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Figure 4.5: Matched parcels. The parcels matched to each other are marked with 

the same colour in this figure. The parcels that represents the Gaussian 

peaks (orange and green parcels) are matched well. 

result is disappointing. We first use small A for fast convergence, but the result 

Ws is very large. After that, we gradually increase A. As A increases, the algorithm 

takes a longer time to converge but the matching result keeps the same. The best 

result we could get from this algorithm is Ws = 13.3 X 103
, which is worse than the 

previous two methods. 

To conclude, for this toy data, the matching results from the intuitive method and 

our approach are the same and the OBSA algorithm shows a fast convergence. The 

quadratic programming formularized in Jebara [2003] does not give a comparable 

118 



CHAPTER 4: CROSS SUBJECT COMPARISON OF PARCELS 

result. 

According to the best matching result, we show the matched parcels in Figure 4.5. 

The same colour represents the parcels in the same clique. 

4.4.2 Results from multi-subject fMRI data 

In this section, we use the multi-subject face and gesture data to test the parcel 

matching algorithms. As in the experiment on the toy data, the method is based 

on soft permutation. As quadratic programming could not give a stable and satis-

factory result, we apply only the other two methods this dataset. 

When dealing with real fMRI data,the situation is more complicated. The distances 

between the parcels should be defined according the specific application. However, 

the aim of this section is to compare the parcel matching methods. Therefore, we 

focus on a numerical comparison of the matching results. More discussion on the 

application of this data set is discussed in the next chapter. 

There are 25 subjects in the data set with each subject parcellated into 600 parcels. 

The parcel i from subject s is represented by: 

(4.4.6) 

where, vector [xf Yi zfj represents the centre of this parcel in MNI space, and tf is 

a vector of GLM t-values that describes the functional measurement of this parcel. 

For any two parcels pi and pi, w(pi, Pj), the weights of the edge connecting these 
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two parcels is defined as: 

(4.4.7) 

where, 

(4.4.8) 

Here, we add a spatial constraint to the definition of the edge weights. We assume 

that for any two parcels from two subjects, if their distance in the MNI space is more 

than 50mm, they do not correspond to the same brain structure. It is a very com-

mon assumption for fMRI data analysis. However, on account of this assumption, 

the vertices in the multipartite graph cannot be presented as points embedded in 

Euclidean space. Thus, it excludes several fast algorithms, including the quadratic 

programming method discussed in Section 4.3.4. 

However, the other two methods are still effective. The results are shown in Figure 

4.6. Similarly to Figure 4.4, the black line in Figure 4.6.2 shows the results when 

taking each subject as a reference and matching the rest to it. The horizontal axis 

represents the indices of the reference subject. The blue line Figure 4.6.1 shows the 

result Ws from the OBSA algorithm and the horizontal axis denotes the order of the 

iteration. The algorithm stabilizes after 10 iterations. 

4.5 Discussion 

In this chapter, the multi-subject parcel-matching problem is considered as a multi-

partite graph partitioning problem. We demonstrate the similarity between our idea 
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4.6.2: Matching with each subject as reference. 

Figure 4.6: Comparison of parcel matching methods with multi-subject fMRI data. 

and the method of representing images as bags of pixels. Based on that discussion, 

we conclude that representing images as bags of pixels is ill-posed for the general 

image recognition problem. 

In order to solve the multipartite graph partitioning problem, the method of Or-

der Based Simulated Annealing (OBSA) is proposed. Based on two data sets, this 

method is compared with the approach based on convex programming introduced 

in Jebara [2003] and a heuristic method using Munkres algorithm. Unfortunately, 
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the soft permutation algorithm formularized in Jebara [2003] could not give satisfac-

tory results. This further supports the theoretical argument presented in Guo and Gao 

[2006]. Compared with the heuristic method, the OBSA improves the accuracy of 

parcel-matching problem. 

The direct way of solving the multipartite graph partitioning problem is to search 

the space of cit to find the minimal Ws. The OBSA changed the searching space 

to the order of the sequence of all subjects S. In this space, for most practical prob-

lems, more than one order corresponds to the minimal Ws. Thus it is easier to find 

a reasonable solution. The experiment results also support this hypothesis. The 

algorithm converges quickly during the iteration. 

In the application of multi-subject matching to neuroscience it is important that sim-

ilarity between the parcels can be defined freely, according to the requirements of the 

research. Thus, sometimes it is not convenient to model the parcels as points em-

bedded in a Euclidean space. For instance, in fMRI analysis, the weights defined in 

equation 4.4.7 are reasonable and necessary but such a definition excludes many fast 

algorithms, such as the ones proposed by Bandelt et aL [1994] and Kuroki and Matsui 

[2009]. Under these circumstances, the OBSA can be used as a suitable tool to solve 

these problems encountered in neuroscience. 
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Application to fMRI data sets 

5.1 Introduction 

In this chapter, we apply our methods to two sets of £MRI data: single-subject motor 

cortex stimulation data and multi-subject face and gesture data. We use the experi-

ment results to test our hypotheses and examine the performance of our methods. 

In the following section, we first present the experiment results with the single-

subject motor cortex data set. The discussion focuses on the performance of our 

data-driven parcellation for individual subjects. Using a statistical test, we examine 

the hypothesis that our individual data-driven parcellation approach improves over 

model-based parcellation techniques in terms of parcellation accuracy. 

In Section 5.3 we use the multi-subject face and gesture data to test this hypothesis. 

When applying our individual parcellation method on on multi-subject data, we 

need to first find seed voxels that represent the desired functional responses. With 

this data set, we start by examining whether we can find reproducible Ies with 
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clustering methods. Then we compare the performance of our parcellation methods 

with the model-based individual parcellation method. 

In the next section, we examine our second hypothesis: oUr multi-subject data-

driven parcellation approach improves over standard voxel-wise fMRI analysis in 

terms of both robustness and sensitivity to normalization issues. In addition, we 

also show that the use of group information for parcel matching increases the sensi-

tivity of the analysis. 

Finally, in Section 5.5, we discuss the result of these analyses and give a summary of 

this chapter. 

5.2 Experiment on single-subj ect motor cortex stimulation 

data 

5.2.1 Data 

In Chapter 3, we used this dataset to illustrate several data processing steps. Here 

we give more details about this set of data and the corresponding experiment. 

This set of single-subject data was acquired on a Philips Intera l.5T scanner. Each 

volume was scanned within 3 seconds (TR = 3s). There were altogether 108 volumes. 

The task consisted of a sequential finger-tapping task paced with auditory signals 

from a metronome. These auditory signals were given every 0.6 seconds. The digit 

order of the tapping was 1 - 3 - 2 - 4 repeated 6 times (14.4 seconds) in each period 

with a 14.4 second rest afterwards. Therefore, the period of one on-and-off block 
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Figure 5.1: The fMRl scan of the single-subject motor cortex stimulation data. 

was 28.8 seconds. This period was repeated 10 times during the experiment. 

Figure 5.1 shows the tasks during the scan and the convolutional model of the corre-

sponding BOLD response. The lower graph shows one period of the experiment, in 

which different colours illustrate tapping different fingers. The blue line shows the 

hemodynamic model. At the beginning of the experiment, there was a rest period 

of 30 seconds for the scanner to stabilize. 

5.2.2 Parcellation 

Preprocessing 

The data was first preprocessed with slice-timing correction and motion correction. 

We used the linear interpolation and affine registration in these steps which were 

implemented with the FSL toolbox [FMRIB, 2007]. To remove invalid voxels, we 

then applied histogram filtering on the preprocessed data. Smoothing is not used in 

the preprocessing step. 
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PCA denoising 

As introduced in section 3.2.4, we used PCA to increase the sensitivity of the analy-

sis. Here, based on this single-subject data set, we used an experiment to illu strate 

the performance of this denoising method. 

We first calculated the GLM t-values from the centred data matrix X Vx T = Xij ' Then, 

XV x T was decomposed as in equation 3.2.10 and equation 3.2.11. For this set of data, 

the first two PCs, which represents high-frequence noise, are first removed. After 

that, the last PCs, which altogether cover that last 20°;;) of the variance, are removed. 

Let ｔ T ｃ ａ A and ｐ P ｃ ａ A be the PCA score matrix and loading matrix after removing the 

components corresponding to the noise. The' clean' data matrix is: 

Xclean _ pcIean Tclean I 
V x T - PCA' PCA' (5.2.1) 

Then, we used matrix ｘ X ｾ ｔ T to calculate another set of t-values. Figure 5.2 shows 

the comparison of both sets of t-values. From this figure, we can see that after PCA 

denoising, the sensitivity of the GLM model increases. 

-5 0 5 10 15 
t-values of GLM without peA Denoising 

20 

Figure 5.2: Comparison of GlM t-values with and without PCA denoising. 

In order to further illustrate the effectiveness of the denoising, we show eight slices 
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of t-statistics maps in Figure 5.3. The fir st row shows four slices of GLM t-map wi th-

out using PCA denoising. The second row shows these slices when P C A denoising 

is applied. We can see that the t-maps in the second row show more activation. Es-

pecially on the images in the fourth column, the activation near the right superior 

parietal lobule becomes more noticeable after denoising. 

. ' 14.8 

ｾ ~ J 11.2 
1 
, 
7.7 

4.2 

0.7 

-2.8 

Figure 5.3: Statistical maps (t > 5) with and without PCA denoising. The sli ces 

in the first row show the result of t-test without using PCA denoising. 

The ones in the second row show the activation detection when PCA 

denoising is used. We use a large threshold (t > 5) to demonstrate the 

increase of detection sensitiv ity. 

Parcellation 

In order to examine our hypothesis and parcellation methods, we use diff erent fea-

ture spaces and clustering methods to parcellate the whole brain into 600 parcels. 

First, we directly apply k-means clustering with the spatial coordinates of all vox-

els. Each cluster is a parcel. In this parcellation, the voxels are grouped into parcel 
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according to Euclidean distance in the MNI space. The functional measurement of 

each voxel is not taken into consideration so the parcellation is purely spatial. We 

consider the results of this parcellation as a baseline. For convenience, we refer to 

this parcellation approach as Direct Clustering in the following parts of this thesis. 

The second parcellation method is the one proposed by Thirion et al. [2006]. In this 

method, GLM parameters are used as feature space and Isomap is applied for par-

cellation. We argued in Chapter 3 that the high level noise may influence the parcel-

lation. Thus we also use adaptive smoothing to improve this parcellation method. 

Next, we implement our data-driven individual parcellation on this data set. In this 

approach, we use PLS correlation coefficients as feature space. In order to calculate 

these coefficients, we first decompose the fMRI data into ICs with the FSL toolbox. 

We then find the IC map whose corresponding time course has the maximal corre-

lation coefficient with the BOLD model and 15 seed voxels are sampled from this 

IC map. Finally, PLS correlation coefficients are calculated from these seed voxels 

and clean PCs. After calculating these feature vectors, as in previous parcellation 

method, we use adaptive smoothing and Isomap for parcellation. 

Finally, we implement our aggregation algorithm on the PLS map for parceilation. 

These parcellation results are compared in the next section. 

5.2.3 Result analysis 

In Section 3.4, we introduced two quantitative measurements to evaluate the parcel-

lation results. In this section, we use the single-subject data to compare individual 

parcellation methods based on these quantitative measurements. 
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For both of these quantitative measurements, we first need to find a way to measure 

the functional behaviour of each voxel. We propose the use of GLM t-values and 

PLS t-values. In the following paragraphs, we compare these two approaches before 

discussing the comparison of parcellation results. 

GLM t-values vs PLS t-values 

In Section 3.4.1, we introduce GLM t-value to evaluate intra-parcel homogeneity. In 

addition, we propose PLS t-values as a novel approach to the measurement of par-

celiation performance. As reviewed in Chapter 2, the GLM t-value is a well-studied 

criterion to detect functional activity. On the other hand, PLS t-values are compar-

atively new [McIntosh and Lobaugh, 2004; Rayens and Andersen, 2006]. Using the 

single-subject data, Figure 5.4 illustrates the performance of PLS t-values against 

GLM t- values. 

The blue line in Figure 5.4.1 shows the PLS latent variable for PLS t-test and the 

red line is the GLM design. Figure 5.4.2 shows the scatter plot of GLM t-values 

and PLS t-values. In this plot, each dot corresponds to a voxel in the single subject 

data. The horizontal coordinate corresponds to the GLM t-values and the vertical 

coordinate represents the PLS t-values. According to this graph, PLS t-values give a 

performance similar to the GLM t-values. It can be considered to be an alternative 

approach to evaluating the intra-parcel homogeneity. 

In the following paragraphs, we compare the parcellation results with intra-parcel 

homogeneity and Nearest Silhouette Coefficient. Based on the comparison, we try 

to answer the following three questions: 
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Figure 5.4: Comparison between GLM t-values and PLS t-values. 

1. Does our feature extraction method improve the parcellation process? 

2. Could smoothing on the manifold improve the final results? 

3. Comparing the manifold based algorithm, how does aggregation algorithm 

perform? 

Intra-parcel homogeneity results 

We use different feature extraction methods and parcellation methods to generate a 

group of parcellation results, in which each subject is parcellated into 600 parcels. 

For each parcellation result, we calculate the intra-parcel functional variance v(Pi ) 

for each parcel Pi, where i = 1,2, ... ,600. For each parcellation result, we consider 

these 600 values as a sampling distribution that represents the overall intra-parcel 

homogeneity of this parcellation result. In the following discussion, we compare the 
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distributions corresponding to different parcellation results in" two ways. We use er-

ror bars for visual comparison and t-test to compare the mean of these distributions. 

In addition, we use four criteria to measure the corresponding intra-parcel homo-

geneity. These criteria are: GLM parameters, as in Thirion et al. [2006]; PLS correla-

tion coefficients r, defined in equation 3.4.2, GLM t-values and PLS t-values, defined 

in section 3.4.1. 

Figure 5.5 shows the visual comparison of parcellation results with the criteria stated 

above. Figure 5.5.1 shows the comparison based on GLM t-values. Each error bar 

represents one parcellation result. The dot in the middle of the error bar represents 

the mean value of v(P i ), i = 1,2, ... ,600. The top and bottom of the bar correspond to 

the first and third quartile of these intra-parcel variance values. The parcellation that 

gives high homogeneous parcels corresponds to the error bar with lower values. 

The horizontal axis and the colours of the error bars represent the parcellation meth-

ods. The black bar corresponding to 'DC' shows the result of Direct Clustering. 

The green error bar above' A&BC' shows the result of the Aggregation and Bound-

ary Competition method with PLS latent variables. The rest of the error bars show 

the parcellation results based on Isomap. We use red colour to mark the results of 

Isomap with adaptive smoothing, whilst blue error bars represent the Isomap based 

parcellation results without the use of adaptive smoothing. 'GLM' means GLM pa-

rameters are used for parcellation based on Isomap. 'PLSl', 'PLS2' and 'PLS3' rep-

resent Isomap-based parcellation with the first I, 2 and 3 PLS latent variables. 

The error bars in Figure 5.5.2 - 5.5.4 use the same notation. In Figure 5.5.3, v(P i ) 

is calculated with GLM parameters. However, we consider that the comparison 
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Figure 5.5: Parcellation results comparison with four different criteria. In each 

graph, the black bar represents the result of direct clustering in Eu-

clidean space, which can be considered as a base line. Green error 

bar shows the result of the Aggregation and Boundary Competition 

method with PLS latent variables. The blue bars show results of Isomap 

with adaptive smoothing. And the red bars show results of Isomap 

with adaptive smoothing. 

results in Figure 5.5.1 and Figure 5.5.2 are more reliable. This is due to the fact that 

these criteria bring noise into consideration. According to these graphs, all of the 

parcellation methods ,give better results than baseline. 

Here, we try to answer the first question proposed earlier in this section: Does our 
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feature extraction method improve parcellation accuracy? 

We first assume that when using the same spatially constrained clustering method 

to parcellate the whole brain into the same number of parcels, a better feature ex-

traction method leads to parcellation results with higher functional intra-parcel ho-

mogeneity. 

We first compare the blue error bars. These are the results when using Isomap di-

rectly on different feature spaces without adaptive smoothing. In Figure 5.5, the 

parcellation based on PLS gives a lower intra-parcel variance than the one based on 

GLM. We can see that when using an extra latent variable, the performance of PLS 

decreases. The reason is that, as the stimulation of the experiment is simple, one PLS 

latent variable is enough to describe the BOLD signal. Redundant latent variables 

bias the parcellation process. 

In addition, we use the t-test to compare the parcellation resuits based on GLM and 

PLS. In this test, we consider results corresponding to two blue error bars in each 

figure: the one corresponds to 'GLM' and the other corresponds to 'PLSl'. The null 

hypothesis is that V(Pi), i = 1,2, ... 600 of these two sets of parcels are from the same 

distribution. If the hypothesis is rejected, it means that these two parcellation results 

are statistically different. As can be seen from Figure 5.5, 'PLSl' has lower mean 

values. Therefore, a rejection of this hypothesis means that our feature extraction 

method leads to higher intra-parcel functional homogeneity. The results of the t-test 

are listed in Table 5.1. 

Each column in Table 5.1 represents a way of measuring the intra-parcel variances. 

The corresponding p-values are listed in this table. They are all smaller than 0.05, 
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Measurement of intra-parcel variances 

GLM t-values PLS t-values GLM parameter f3 PLS coefficient r 

p-value 0.002 8.85 x 10-7 0.029 6 x 10-10 

Table 5.1: Comparison of GLM and PLS based parcellation with t-test (Using 

lsomap parcellation without adaptive smoothing). 

which means that the null hypothesis should be rejected. Our feature extraction 

method provides higher intra-parcel functional homogeneity. 

Then, we check the red error bars. They represent the results when using adaptive 

smoothing and Isomap for parcellation. We can reach the same conclusion from 

these red error bars as from the blue ones. However, the bias caused by the redun-

dant latent variables is more obvious. It can be explained as that, when using adap-

tive smoothing to improve the parcellation algorithm, the results are more sensitive 

to the bias brought by the feature vectors. 

We also apply the same t-test on these parcellation results. The results of the t-test 

are listed in Table 5.2. 

Measurement of intra-parcel variances 
I 
I 

GLM t-values PLS t-values GLM parameter f3 PLS coefficient r I 
I 

p-value 0.35 0.001 0.4 3.3 x 10-6 

Table 5.2: Comparison of GLM and PLS based parcellation with t-test (Using 

Isomap parcellation with adaptive smoothing). 

According to this test, when using GLM t-values and GLM parameters to measure 

the intra-parcel functional variances, these two feature spaces give similar results. 
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When using PLS t-values and PLS correlation coefficients to measure the intra-

parcel functional variances, our feature extraction method increases the intra-parcel 

homogeneity. 

Combining the above analyses, we can conclude that generally our feature extrac-

tion method improves the parcellation result from the perspective of intra-parcel 

homogeneity. Although, in some situations, the improvement is not significant, we 

are able to answer the first question: when choosing the right number of latent vari-

ables for parcellation (for this set of data, 1 latent variable), our feature extraction 

method gives a better performance than GLM parameters. 

Next, we try to answer the second question: Could smoothing on the manifold im-

prove the final results? 

In order to answer the second question, we compare the blue bars and the red bars 

in Figure 5.5. It should be noticed that all measurements for intra-parcel variances 

are calculated on the images without smoothing. Therefore, it should give some 

bias to the results without smoothing. However, for parcellation based on GLM 

parameters, adaptive smoothing gives a noticeable improvement. Table 5.3 shows 

the p-values of a t-test. The null hypothesis is that adaptive smoothing does not 

decrease the intra-parcel variance. 

For the results based on one PLS latent variable, except for Figure 5.5.3, smoothing 

increases the functional homogeneity. However, the improvement is not obvious. 

Similarly we also use the t-test to examine these two distributions. Table 5.4 shows 

the p-values of the t-test. The null hypothesis is that adaptive smoothing does not 

decrease the intra-parcel variance. 
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Measurement of intra-parcel variances 

GLM t-values PLS t-values GLM parameter ｾ ~ PLS coefficient r 

p-value 0.042 0.048 0.16 0.08 

Table 5.3: Comparison of GLM based parcellation with and without adaptive 

smoothing. 

Measurement of intra-parcel variances 

I 

! 

i 
I 
i 

GLM t-values PLS t-values GLM parameter f3 PLS coefficient r i 
I 

! 
p-value 0.62 0.72 0.93 0.89 I 

! 

Table 5.4: Comparison of PLS based parcellation with and without adaptive 

smoothing. 

According to these t-values, adaptive smoothing does not provide effective im-

provement when using one PLS latent variable for parcellation. We use Figure 5.6 

to explain this difference. Figures 5.6.1 and 5.6.2 show the images of GLM param-

eters and PLS correlation coefficients. Figures 5.6.3 and 5.6.4 are the corresponding 

histograms. From these figures, we can see that the manifold of PLS correlation co-

efficients is smoother than that of GLM parameters. Therefore, adaptive smoothing 

is more effective on parcellation with GLM parameters. 

When using more than one PLS latent variable, due to the bias introduced by the 

redundant latent variables, the optimization object deviates from the desired one. 

The more optimal the algorithm could reach, the worse the final result would be. 

Therefore, adaptive smoothing cannot offer any advantage. 

According to the above analysis, we can answer the second question: adaptive 
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5.6.1: Image of GLM parameters. 5.6.2: Image of PLS correlation coeffi-

cients. 
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5.6.3: Histogram of GLM parameters f3. 5.6.4: Histogram of PLS correlation co-

efficients. 

Figure 5.6: Comparison between GLM parameters and PLS correlation coeffi-

cients. 

smoothing improves the manifold based parcellation algorithm when the noise level 

is high. In addition, we want to mention that the automatically selected Gaussian 

kernel widths for smoothing are between lmm and 2mm. These kernel widths are 

much smaller than the ones commonly used after spatial normalization. 

Finally, we answer the third question: comparing the manifold based algorithm, 

how does our aggregation algorithm perform? 

The green bar shows the results of the Aggregation and Boundary Competition al-

gorithm. We use one PLS latent variable to calculate feature vectors. The parameters 
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of this algorithm are selected with the intuitive method introduced in section 3.3.2. 

In all the graphs in Figure 5.5, the results from this algorithm reach the performance 

of Isomap based method. Table 5.5 shows the results of the t-test. The null hy-

pothesis is that the result of the Aggregation and Boundary Competition algorithm 

based on one PLS latent variable gives the same intra-parcel variance as the Isomap 

parcellation based on GLM parameters. According to these tests, this method gives 

similar or better results in comparison with the method based on GLM and Isomap. 

Measurement of intra-parcel variances 

GLM t-values PLS t-values GLM parameter f3 PLS coefficient r 

p-value 0.23 0.031 0.22 0.016 

Table 5.5: Comparison between Aggregation parcellation with PLS and Isomap 

parcellation with GLM. 

I 

I 

From another point of view, the computation required for this algorithm is much less 

than the Isomap algorithm. Therefore, compared with the manifold base methods, 

this algorithm gives an efficient and reasonable result. 

Nearest Silhouette Coefficient Results 

In section 3.4.2, we propose Nearest Silhouette Coefficient (NSC) as a novel method 

to validate the results of parcellation. This method gives each voxel a coefficient to 

measure how well this voxel is assigned. For each parcellation result, we have Nv 

coefficients, where Nv is the number of voxels. A high coefficient means that the 

corresponding voxel is functionally closer to the assigned parcel than the second-

nearest parcel. Each parcellation result is presented as a distribution of Nv NSCs. 
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Figure 5.7 shows the evaluation results based on NSCs. The annotation is the same 

as that used in Figure 5.5. We also use four functional measurements to evaluate 

the results. They are listed in the four sub-figures. The black error bars represent 

the results from purely spatial clustering. As the parcellation does not include any 

functional information, the mean values of the corresponding NSCs are close to O. 

Other parcellation methods give higher mean NSC values. 
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Figure 5.7: Parcellation results comparison based on Nearest Silhouette Coefficient 

with four different criteria. The graph legend is the same as Figure 5.5. 

According to Figure 5.7, the evaluation based on Nearest Silhouette Coefficient gen-

erally indicates the same conclusion as the evaluation based on intra-parcel homo-

geneity. Here, we also use the t-test to compare the NSCs from different parcellation 

results. Based on these comparisons, we answer these three questions proposed 
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earlier this section. 

i Measurement of NSCs 

i i 
i 

i 
\ 

GLM t-values \ PLS t-values GLM parameter f3 PLS coefficient r 

p-value1 0 I 0 0 0 i 
i 

1 

! 
i 

p-value2 0.0212 i 0.0372 0.3394 0.0002 
i 

Table 5.6: Comparison between PLS and GLM based parcellation with NSCs. 

We compare the results of the Isomap parcellation with GLM and one PLS latent 

variable. First, the parcellation is directly applied to the feature vectors without 

adaptive smoothing. These results are presented in Figure 5.7 with blue error bars 

corresponding to 'GLM' and 'PLS1'. The null hypothesis is that the results from 

'GLM' and 'PLS1' are sampled from the same distribution. Four functional rnea-

surements provide four p-values. They are listed in the first row of Table 5.6. In the 

next step, we compare the results when adaptive smoothing is used. These results 

are shown with the red error bars corresponding to 'GLM' and 'PLSI' in Figure 5.7. 

We use the same null hypothesis. The p-values are listed in the second row of Table 

5.6. These comparisons show that our feature extraction method increases NSCs of 

the parcellation. 

Next, we compare the results with and without using adaptive smoothing to an-

swer the second question. We first examine the performance of adaptive srnooth-

ing on GLM based Isomap parcellation. Using four functional measurements, we 

test the hypothesis that the use of adaptive smoothing does not increase the result 

from NSCs. The resulting p-values are shown in the first row of Table 5.7. These 
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p-values support the conclusion that adaptive smoothing does improve the parcel-

lation results. Then, we investigate whether adaptive smoothing can still increase 

NSCs when using one PLS latent variable for parcellation. We compare the blue 

and red error bars corresponding to 'PLS1' and hypothesize that they are from the 

same distribution. The results are shown in the second row of 5.7. For PLS based 

parcellation, adaptive smoothing does not provide the same improvement. 

Measurement of NSCs 

GLM t-values PLS t-values GLM parameter f3 PLS coefficient r 
; 

i p-value1 0 0 0 0 ! 

i 
; 

! p-value2 
i 

0.0527 0.0011 0.0416 0.0202 

Table 5.7: Comparison of Isomap parcellation with and without adaptive smooth-

ing. 

Finally, we compare the result of our Aggregation and Boundary Competition (green 

error bars) with the method based on GLM and Isomap (blue error bars correspond-

ing to 'GLM'). The aggregation method is applied to the feature vector calculated 

with one PLS latent variable. We still use the t-test and four functional measure-

ments to compare these distributions. All of them are smaller than 10-4
. Thus, we 

can conclude that our method provides effective and efficient parcellation. 
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5.3 Experiment on multi-subject face and gesture data 

5.3.1 Data 

Grosbras and Paus [2006] have used fMRI to identify the brain regions engaged dur-

ing the observation of hand action and facial expression, performed either in a neu-

tral or an angry way. Here we use the same data. The data was scanned in the Brain 

and Body centre, University of Nottingham. Fourteen adults participated this exper-

iment. Some of them were scanned twice at different times. Altogether, there were 

25 scans treated as 25 different subjects. The data was also acquired on a Philips 

Intera l.5T scanner. The TR of the scan was 3 seconds. We used four types of stim-

uli: neutral hand gesture, angry hand gesture, neutral face expression and angry 

face expression. The stimuli consisted of short (2 - 5 seconds) black-and-white video 

clips depicting either a hand action or a face in movement. 
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Figure 5.8: Convolutional HRF model for the multi-subject face and gesture data. 

Figure 5.8 shows the convolution model of this experiment. . Four solid lines rep-
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resent the models of the BOLD signals corresponding to the four types of stimuli. 

More details of the experiment and scanning can be found in Grosbras and Paus 

[2006]. 

5.3.2 Parcellation 

The individual parcellation process for single-subject data and multi-subject data is 

generally the same. The key difference is the way of choosing the seed voxels. In 

multi-subject parcellation, we try to find the IC time courses that are reproducible 

across all subjects. In this section, we focus on the discussion of whether the pro-

posed IC clustering method could find the reproducible ICs. 

The clustering of ICs 

We first use the FSL toolbox for slice timing correction, motion correction and PICA 

decomposition. After that, we pool these ICs together and apply PCA to the pooled 

ICs. Figure 5.9 shows the eigenvalues and the projection of the ICs in the direction 

of the first three PCs. Unfortunately, there is no obvious structure in the data. It 

means that clustering the rcs directly according to Euclidean distance cannot give 

satisfactory results. 

Then, we use the method introduced in section 3.2.2 to define the similarity between 

the ICs. Based on this definition of similarity, we apply hierarchical clustering on 

these rcs. Figure 5.10 shows the dendrogram of the clustering result with the ver-

tical axis representing the distance between the clusters. From this figure, we find 

that two clusters are very far from the rest of the ICs. Cluster 1 is marked in green 
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Figure 5.9: peA analysis of pooled Ies. 

Figure 5.10: The dendrogram of hierarchical clustering the Ies from all subjects. 

There are two clusters (red and green) of Ies that are far from other 

Ies (blue). 

and Cluster 2 is marked in red. In Cluster 1, there are 22 ICs each of which is from a 

different subject. In Cluster 2, there are 20 ICs. As in Cluster 1, the ICs in Cluster 2 

are all from different subjects. 

We further examine these two clusters in Figure 5.11. Figure 5.11.1 shows an IC fr om 

Cluster 1 (the blue solid line) which matches the BOLD models of the viewing the 

angry and neutral hand gesture (the red and black dashed lines). In Figure 5.11.2, 

the blue solid line shows an IC from Cluster 2. This IC matches the HRF models of 
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viewing the angry and neutral facial expression (the red and black dashed lines). 
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5.11.1: An IC in Cluster I, the dashed red and black lines represent the convolutional HRF models of 

neutral and angry hand gesture stimulation. 
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5.11.2: An IC in Cluster 2, the dashed red and black lines represent the convolutional HRF models of 

neutral and angry face expression stimulation. 

Figure 5.11: Ies in different clusters. 

In addition, we apply manifold embedding to the ICs according to the distance de-

fined in equation 3.2.7. Figure 5.12 shows the embedding results. The left figure 

shows the first 20 eigenvalues. In the right figure, each point represents an Ie em-

bedded in two dimensional Euclidean space. In this figure, we can see two distinc-
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tive clusters. Compared with the above hierarchical clustering results, we find that 

these two clusters are the same as the green and red clusters in Figure 5.10. 
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Figure 5.12: The clustering of res based on manifold. 
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According to the clustering results, we have two sets of ICs each of which corre-

sponds to a BOLD response. However, there are a few subjects who have no rcs 

that are organized into these two clusters. In such a case, we attribute the IC that is 

closest to each IC cluster to the corresponding cluster. This means that in each clus-

ter, there is one Ie from each subject. Seed voxels are sampled according to the Ie 

maps of these ICs. From each IC map, we sample 10 seed voxels. These seed voxels 

are used to calculate the PLS latent variables. Finally, the parcellation algorithms are 

implemented on the corresponding PLS correlation coefficients. 

5.3.3 Result analysis 

In section 5.2.3, we used the single-subject data to discuss whether the use of PLS as 

feature extraction method could increase the intra-parcel homogeneity. Here, we use 

the multi-subject to compare PLS and GLM based parcellation. The comparison i 
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based on two evaluation methods: intra-parcel homogenel'ty d N S'lh an earest 1 ouette 

Coefficient (NSC). We use this comparison to further examine the question: does 

our feature extraction method improve the parcellation process? 

Intra-parcel homogeneity results 

5 10 15 20 25 5 10 15 20 25 
Comparison with GLM (-values Comparison with PLS t-values 

Figure 5.13: Comparison of functional intra-parcel homogeneity. The blue error 

bars represent results of parcellation with GLM parameters. The red 

error bars represent results of parcellation with PLS covariance coe££i-

cients. 

First, using the GLM parameters as feature vectors, we parcellate each subject into 

600 parcels with Isomap parcellation. Before parcellation, we apply adaptive smooth-

ing to the feature space. The automatically selected kernel widths are between 

1.2rnrn and 2.2mm. Then, we use PLS to calculate feature vectors and apply the 

same process for parcellation. After that, the intra-parcel homogeneity is evaluated 

with the variance of GLM t-values and PLS t-values within each parcel. We compare 

the results in Figure 5.13. 

Similar to section 5.2.3, Figure 5.13 shows the intra-parcel variance of GLM t-values 
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Functional Measurements p-values 

0.961 0.712 0.345 0.962 0.811 0.019 0.007 

0.788 0.171 0.926 0.131 0.060 0.874 0.1261 
GLM t-values 

0.652 0.499 0.947 0.736 0.239 0.559 0.357 

0.269 0.109 0.369 0.865 

0.843 0.183 0.012 0.293 0.269 0.000 0.024 

0.008 0.106 0.432 0.000 0.001 0.895 0.000 
PLS t-values 

0.434 0.076 0.001 0.550 0.309 0.015 0.081 
I 

0.002 0.002 0.091 0.029 
I 

I 

Table 5.8: Comparison of GLM and PLS parcellation with multi-subject data. 

(left) and PLS t-values (right). Each error bar shows one parcellation result. The 

blue and red bars show the results of parcellation based on GLM and PLS. The hor-

izontal axis represents the indices of subjects. The lower the error bar the more 

homogeneous is the corresponding parcellation result. 

In addition, we use the t-test to compare these parcellation results. Using GLM t-

values and PLS t-values as functional measurements, we implement the t-test on the 

two parcellation results of each subject. The hypothesis is that both of the parcella-

tion results are sampled from the same distribution. The corresponding p-values are 

listed in Table 5.8. The first four rows show the p-values when using GLM t-values 

to measure the intra-parcel functional variance. The last four rows correspond to 

the p_ values when PLS t-values are used to measure the intra-parcel functional 

variance. The p-values marked in blue colour show that, for the corresponding sub-
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ject, GLM parcellation gives low er intra-parcel functional variance. Others show 

that PLS parcellation gives lower intra-parcel functional variance. 

Combining Figure 5.13 and Table 5.8, w e can give the following summary of this 

companson. When using GLM t-values to examine the intra-parcel homogeneity, 

PLS gives similar results to those of GLM. When using PLS ｴ Ｍ ｾ ｡ ｬ ｵ ･ ｳ s to examine the 

results, PLS performs better. 

Nearest Silhouette Coefficient (NSC) results 

f 
0.4 

0.2> 

o 

-0.2 -0.2 

5 10 15 20 25 
NSC calculated with PLS (-values 

5 10 15 20 25 
NSC calculated with GLM (-values 

Figure 5.14: Comparison of parcellation results wi th NSC. The blue error bars rep-

resent results of parcellation with GLM parameters. The red error bars 

represent results of parcellation with PLS covariance coefficients. 

Figure 5.14 shows the comparison between the GLM and PLS parcellation based on 

NSC values. As in the last section, the distribution of the NSC is shown with an 

error bar. Higher NSC values indicate better parcellation results. The left graph in 

Figure 5.14 shows NSCs calculated with GLM f-values. The one on the right shows 

NSCs based on PLS t values. 

We also compare these results with the t-test. The null hypothesis is that GLM and 
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Functional Measurements p-values 

0.665 0.000 0.000 0.000 0.000 0.003 0.000 

0.000 0.000 0.462 0.000 0.188 0.000 0.000 
GLM i-values 1 

0.000 0.000 0.000 0.029 0.000 0.000 0.000 I 

0.000 0.000 0.000 0.000 

0.000 0.000 0.000 0.000 0.574 0.000 0.000 

0.000 0.000 0.000 0.000 0.000 0.981 0.000 
PLS i-values 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.000 0.000 0.000 0.000 

Table 5.9: Comparison of GLM and PLS parcellation with multi-subject data. 

PLS parcellation give the same results. We list all p-values in Table 5.9. For each 

subject, if GLM parcellation gives higher mean value of NSCs, we mark the corre-

sponding p-values in Blue colour. 

To start with, we examine the first four rows of Table 5.9. The p-values in these rows 

represent the comparison results when using GLM i-values to calculate NSCs. For 

18 of the 25 subjects, PLS parcellation leads to higher NSCs. And for 17 of these18 

subjects, PLS parcellation provides a statistically significant improvement. 

The last four rows show the p-values when using PLS i-values to calculate NSCs. 

According to these p-values, for 24 of the 25 subjects, PLS parcellation gives higher 

NSCs, and for 22 of these 24 subjects, the improvement is statistically significant. 

Therefore, we can conclude that, when using NSC to measure the parcellation re-

sults, our PLS parcellation provides similar or better results for these 25 subjects. 

150 



CHAPTER 5: ApPLICATION TO FMRI DATA SETS 

5.4 Cross-Subject parcel matching 

The data set was acquired from 25 subjects viewing angry gestures or expressions. 

Scanning was performed on a Philips Intera loST, with TR=3s. During the scan, four 

types of visual stimuli are given to the sub jects, which are angry hand gestures, neu-

ral hand gestures, angry facial expression and neural facial expression. Using PLS 

latent variables, we parcellate each subject into 600 parcels with adaptive smooth-

ing and Isomap. Using the OBSA algorithm, we match the parcels from all of the 25 

subjects. The distance is defined with the method introduced in the last chapter. In 

Section 4.4.2, we showed the numerical result of this matching. Here, we illustrate 

the application of t-statistics on the matched parcels. 

We define a clique as a set of parcels. Each clique has 25 parcels from different sub-

jects. The parcels in the clique are matched with each other with the OBSA algo-

rithm. For each clique, we calculate two values: group parcel t-value and intra-

clique weight. The group parcel t-value represents the functional activity of the 

clique corresponding to each stimulus. The intra-clique weight is the sum of weights 

connecting all the parcels in the clique. This weight represents how well the parcels 

in this clique are matched with each other. 

Figure 5.15 shows the parcels that are activated with respect to the stimulus of the 

'angry hand gesture'. We first calculate ti, the GLM t-values for each voxel i. The 

voxels in each clique is considered as a group and the t-values for each clique C are 

calculated as: 

(5.4.1) 
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where C is the number of voxels in clique C. 

The first image (left top) in Figure 5.15 shows the group statistical map in standard 

space. Smoothing is applied after spatial normalization to increase the sensitivity. 

The blue colour bar indicates the corresponding i-values. Other images show the 

activation maps of matched parcels (with t-values greater than 4) in 25 subjects. 

The yellow-red colour bar shows the t-values of each clique. Due to the fact that 

the parcels in the same clique shares the same t-values, they are marked with the 

same colour on this map. Comparing the parcel-based analysis with the standard 

voxel-based analysis, we find that the activation near the inferior frontal gyrus is 

enhanced. 

Figure 5.16 shows the weight of each clique. The first image is the same as the one 

in Figure 5.15. Other images illustrate the weight of each clique. For each parcel in 

each image, the lower the weight, the better the corresponding clique is matched. 

Next, we compare two parcel-matching methods. We first take one subject as ref-

erence, and match all other subjects to the reference subject. When using this ap-

proach, taking subject 16 as reference gives the minimal cost, as shown in Figure 4.5. 

Thus, we match all other subjects with subject 16. Here, we consider all the parcels 

that matched to the same parcel in the reference subject as a clique and we calculate 

the t-values for each clique. The left image in Figure 5.17 shows an activation map 

of one subject. 

In contrast, we use our OBSA method to calculate the clique and activation maps 

(t > 4). The corresponding activation map is shown in the right image of Figure 

5.17. The right image shows one more parcel, which is not detected in the left one. 
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5.6 

4.4 
3.2 

7.2 
6.5 
5.7 

Figure 5.15: Two types of group analysis for the 'angry hand gesture' stimulati on. 

The first image (left top) shows the a group t-statistical map in stan-

dard space. The blue-green bar represents t-values. Others show the 

activation maps of matched parcels in 25 subjects. The yellow-red bar 

shows the t-values of the matched parcels. 
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5.6 
4.4 

3.2 

2.1e+02 
1.7e+02 
1.5e+02 

Figure 5.16: The sum of weights of the matched parcels. The first image and the 

blue-green bar are the same as in Figure 5.15. Other images show the 

sum of weights of cliques. 111e yellow-red bar shows the correspond-

ing values. The smaller the sum of weights, the better the correspond-

ing parcels are matched. 
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7.4-

6.2 

5 

Figure 5.17: Comparison of parcel-matching. We use two methods for the parcel-

matching. The first one is the intuitive way in which all subjects are 

matched to subject 16. The second method is the multi-partite graph 

partitioning method. After parcel-matching, t-statistical maps are con-

structed on the matched parcels. The left figure shows the result of 

intuitive matching and the right figure shows the result of matching 

method based on multi-partite graph partitioning. 

It means that our OBSA method increases the sensitivity of the statistical analysis 

based on parcels. 

5.5 Summary 

In Chapter 3, we discussed parcellation methods for individual subjects. In this 

chapter, we used two fMRI data sets to examine these parcellation methods. The 

first question is whether our data-driven feature extraction method improves par-

cellation accuracy. To answer this question, we applied the same algorithm to our 
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feature vectors and GLM parameters. In addition, we used two different validation 

approaches to compare parcellation results. We found that parcellation based on 

our feature extraction method gives better parcellation accuracy in most cases. 

In addition, we used adaptive smoothing to improve parcellation based on Isomap. 

Experimental results show that adaptive smoothing increases the functional homo-

geneity and NSC values, especially for the feature vectors that contain high-level 

nOIse. 

Finally, we examined the performance of our Aggregation and Boundary Competi-

tion algorithm for parcellation. Our experimental results show that this algorithm 

could give reasonable parcellation accuracy with a reduced computation require-

ment. 

Therefore, from these experimental results and analyses, we conclude that our data-

driven parcellation approach improves over model-based parcellation from two per-

spectives: (1) it does not need to presume HRF model; (2) it can reach and even give 

better parcellation accuracy than the model-based parcellation method. 

Next, we considered the methods that match the parcels from individual subjects. 

Here, we examined the hypothesis that the use of information from all subjects for 

parcel matching improves the accuracy of parcel-matching and further analysis. 

Our multipartite graph partitioning model and OBSA algorithm is a method that 

uses the information from all subjects. We compared the results from our method 

with results from the intuitive method that uses one subject as reference. The numer-

ical comparison shows that our method provides a more effective and efficient re-

sult. In addition, we applied statistical analysis on the matched parcels. The results 
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indicate that our method increases the sensitivity of activation ､ ･ ｾ ･ ｣ ｴ ｩ ｯ ｮ Ｎ . Further-

more, when we compared our methods with the standard voxel-based analysis, we 

found that our method enhances the activation detection. Therefore, our approach 

improves over the standard method in terms of robustness and sensitivity. 
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Conclusion and Future Work 

This thesis proposes a framework for data-driven fMRI analysis based on parcella-

tion. We argue that our multi-subject data-driven parcellation approach improves 

over (1) standard voxel-wise £MRI analysis in terms of both robustness and sensi-

tivity to normalization issues and (2) model-based parcellation techniques in terms 

of parcellation accuracy. Two £MRI data sets were used to support our hypothesis. 

In the following sections, we first give a summary of this thesis. Then, we discuss 

future directions for £MRI data analysis and human brain parcellation. 

6.1 Summary 

As mentioned in Chapter 2, Functional MRI uses magnetic resonance to measure 

changes in blood oxygenation level, which is related to the brain activity. We pre-

sented three types of fMRI analysis methods: General Linear Models (GLM), data-

driven analyses and machine learning classifiers. GLM is arguably the most popular 

method for £MRI data analysis. However, it relies heavily on a priori BOLD models. 
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When these models are unavailable, GLM is not an appropriate method for brain 

activation detection. For instance, when researching the default mode of brain func-

tion or decoding mental states, we do not know the corresponding BOLD signals. 

Data-driven analyses provide effective alternative approaches. In this thesis, we 

review two classes of data-driven analysis: clustering analyses and ICA analysis. 

These methods are widely used for detecting brain activity and perform analysis 

based on the data structure itself. The principal advantage of these methods is their 

applicability to experimental paradigms in the absence of an a priori model of brain 

activity. One flaw, however, is that they do not provide an interpretation of the 

results. 

In recent years, the use of machine learning classifiers has grown in popularity for 

fMRI analysis. This method could overcome the flaws in voxel-based inferential 

and exploratory multivariate approaches and help with the understanding of neu-

ral representation. Compared with other methods, a machine learning classifier is 

often more complex to implement and requires full cooperation between experts 

from different areas. With appropriate application, this method could provide an 

opportunity for more advanced neuroscience studies. 

Parcellation has been proposed as a way of dealing with the shortcomings of spatial 

normalization for fMRI analysis. In this thesis, we provide a taxonomy of brain par-

cellation methods, divided into two classes: top-down and bottom-up. In the first ap-

proach, parcellation starts with the whole brain and gradually divides it into smaller 

regions. When dividing a region into sub-regions, the focus is on the anatomical or 

functional evidence that could prove the existence of these sub-regions. Whole brain 
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parcellation is a long-term research subject. In contrast, in the second approach, 

researchers first define a measure of similarity between voxels. According to this 

similarity, the whole brain is then parcellated into a certain number of regions. The 

accuracy of this parcellation depends on many issues, such as imaging quality, the 

chosen similarity, the actual parcellation algorithm etc. From our review of parcel-

lation methods, we find that there is very little work using the second approach. 

Yet, there is a need for a method that could effectively and efficiently parcellate the 

whole brain into an arbitrary number of parcels. Therefore, we have developed 

our data-driven parcellation methods. Our multi-subject data-driven parcellation 

method has two major parts: data-driven individual subject parcellation and cross-

subject parcel matching. 

Data-driven individual subject parcellation 

Our parcellation 'method can be considered as a two-step process. The first step 

is feature extraction. The main idea behind this step is the use of seed voxels and 

the PCA components of whole brain data to calculate the PLS latent variables. The 

correlation coefficients between the time course of each voxel and these PLS latent 

variables are used as feature space. With this method, the choice of seed voxels 

is very important: the seeds should be located in different activated regions. In 

this thesis, we propose to sample the seeds from IC maps, which have been widely 

accepted as an effective way to study brain activations for individual subjects. For 

multi-subject analysis, we use IC maps whose IC time courses are reproducible in 

all subjects. 
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The second step of this method is spatial constrained clusterrn' g In P . . revlOUS par-

cellation studies, manifold based methods have been applied in this step. Thus, 

in this thesis, we investigate two manifold based methods: Isomap and Diffusion 

Map. Manifold based methods are sensitive to noise so that data sampled under 

high-level noise produces parcellation results with low intra-parcel homogeneity. 

In order to solve this problem, we propose an adaptive smoothing method as a 

preprocessing step. The experiment on 'Swiss Roll' data shows that this smooth-

ing method is an effective way of dealing with the noise. Another disadvantage of 

manifold based methods is that they require a large amount of computation. Con-

sequently, we develop a novel aggregation algorithm for parcellation which uses 

parameters to control the parcellation results. Correspondingly, we propose an in-

tuitive method to estimate the optimal parameters. Our experiment results show 

that this method is more robust against noise. It can provide results comparable 

with manifold-based methods. Furthermore, the computation requirement is much 

less. 

Another important issue for individual subject parcellation is the validation of par-

cellation results. In bottom - up parcellation methods, each brain is parcellated into 

hundreds of parcels. It is difficult to examine every parcel and every boundary. 

Therefore, we need a qualitative measurement to make a global evaluation of par-

cellation results. Intra-parcel variance of the GLM parameters is the state-of-the-

art method for this problem. However, due to the problem of noise and artefacts, 

GLM parameters do not always accurately represent the functional activation of 

each voxel. Therefore, we propose the use of GLM t-values and PLS t-values to cal-
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culate intra-parcel functional homogeneity. We consider these validation methods to 

be more robust against noise. Besides intra-parcel homogeneity, we also propose an-

other validation method: Nearest Silhouette Coefficient (NSC). This method gi\"es 

each voxel a coefficient and the distribution of all voxels represents the quality of 

the parcellation. When the parcellation is implemented randomly, the distribution 

of NSCs should have a mean close to o. The application of NSCs to a toy data set 

shows that this method is reliable. 

Our main contribution in this part of this thesis are: (1) a data-driven method to 

calculate feature vectors, (2) an improvement of manifold based parcellation, (3) a 

novel aggregation based parcellation method, (4) an improvement on the measure-

ment of intra-parcel homogeneity, (5) the use of NSC as a quantitative measurement 

for parcellation results. 

Cross-subject parcel matching 

After parcellation of each individual subject, the next step is to find the correspon-

dence of the parcels across subjects. We propose a multipartite graph model which 

considers the parcels from all subjects as a complete weighted multipartite graph. 

In this graph, each parcel is a vertex that is connected only to the parcels from other 

subjects. Each edge is weighted by the dissimilarity between the parcels it connects. 

The problem of parcel matching becomes that of partitioning this graph into cliques, 

so that each clique has one parcel from each subject and the sum of weights in the 

clique is minimized. The main advantage of this technique is that it uses informa-

tion from all subjects to find the best match of all parcels. According to the weights, 
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one could find outlier subjects with large dissimilarity to other subjects. However, 

according to previous studies (e.g. Crama and Spieksma [1992]; Garey and Johnson 

[1990]; Jebara [2003]), this multipartite partitioning problem is generally NP hard. 

In order to solve this problem, we first present an intuitive method, which takes 

one subject as reference and matches other subjects with the reference subject. The 

parcels matched to the same parcel from the reference subject are considered as the 

vertices of a clique. However, the solution of this method is sub-optimal. It cannot 

use the information in all subjects to find the best match. To overcome this problem, 

we develop an Oder Based Simulated Annealing (OBSA) method to estimate the 

optimal result. 

In addition, we discover that our multipartite partitioning model is similar to the 

concept of 'Bags of Pixels' Uebara, 2003], which is designed for image recognition. 

We argue that the idea of 'Bags of Pixels' is a special case of our model. In Jebara's 

work, quadratic programming is used to solve a similar problem. Therefore, we 

also try to use quadratic programming to solve our multipartite graph partitioning 

problem. A toy data set and a real multi-subject £MRI data set are used to evaluate 

these parcel matching methods numerically. In this experiment, the method based 

on quadratic programming cannot give a satisfactory result. Our OBSA algorithm 

gives better numerical results than the intuitive method. 

Although we give a negative report of the idea of 'Bags of Pixels', our aim is certainly 

not to deny the contribution of this idea. The goal of our discussion is to make a 

connection between the areas of £MRI data analysis and those of image recognition 

. . . b b ht' to the area of fMRI data so that techniques for Image recogrution can e roug ill 

163 



CHAPTER 6: CONCLUSION AND FUTURE WORK 

analysis in future studies. 

Our main contributions in Chapter 4 include' (1) a multi t't h .. .. par 1 e grap partition 

model for cross-subject parcel matching problem,(2) an OBSA algorithm, (3) fMRI 

data as bags of parcels. 

To examine the main hypothesis of this work, we apply our parcellation method to 

two fM:RI data sets (Chapter 5). 

We first show that our data-driven parcellation method is an improvement over 

model-based parcellation techniques, in terms of parcellation accuracy. In order 

to compare different feature extraction methods, we apply the same spatially con-

strained clustering methods to our PLS correlation coefficients and GLM parame-

ters. The parcellation results are compared with different validation methods. From 

this comparison, we find that our feature extraction method gives a better or a sim-

ilar performance. We also apply different clustering methods to the same feature 

space to compare the performance of these methods. The results of this comparison 

show that adaptive smoothing improves the manifold based clustering. In addi-

tion, our aggregation-based method could provide parcellation accuracy compara-

ble to manifold based parcellation. To sum up, our parcellation method improves 

over model-based techniques in two ways. (1) It is data-driven, therefore we do not 

need to assume an HRF model for the analysis. This method can also be applied to 

other model-free analyses such as resting-state studies or mental state recognition 

researches. (2) It reaches and even exceeds the model-based parcellation accuracy. 

The second hypothesis of this thesis is that our parcellation method is an improve-

ment over standard voxel-wise fl\,OO analysis in terms of both robustness and sensi-
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tivity to normalization issues. The main advantage of our parcel-matching method 

is that by defining the distance between two parcels, the algorithm gives a global 

optimal result using the information from ali parcels. Using the multi-subject fMRI 

data set, we compare our approach with the intuitive method and demonstrate that 

our approach improves the accuracy of the next step in fMRI analysis (t-statistic 

analysis in our case). Finally, comparing the statistical analysis based on our parcel-

lation method and standard voxel based method, we find that our method increases 

the sensitivity of the group statistical analysis. Therefore, we conclude that our new 

approach to parceliation and parcel matching increases the robustness of fMRI anal-

ysis based on parcellation. 

6.2 Future Work 

6.2.1 Further improvement to single-subject parcellation 

Parcellation 

Due to the limitations of functional imaging (e.g. low resolution, a high level of 

noise), it could be desirable to combine it with other imaging modalities for whole 

b · li t' For instance in parceliation with fMRI, it is difficult to define ac-ram parce a lOn. , 

curately the boundaries between parcels. We could use a high resolution structural 

image to clarify these borders. DrI could also provide structural information. We 

. d I b' them as a priori knowledge to 
would probably use a Bayesian mo e to com me 

functional parcellation. 
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The integration of bottom-up methods with top-d h own approac es would also most 

probably improve parcellation accuracy. For instance we ld .. , cou use anatoffilcallffi-

ages to parcellate the brain into Brodmann areas add··d ch . . n IVI e ea regIOn mto sub-

regions with bottom-up methods. 

Validation 

There are very few methods for validating the results of whole brain parcellation. 

In this thesis, we develop a novel quantitative approach. The use of other image 

modalities could also help here. For instance, DTI could be used to measure the 

connectivity of the voxels in each parcel with the variance of the connectivity as a 

way of estimating the structural intra-parcel homogeneity. 

6.2.2 Cross-subject parcel matching 

Distance between two parcels 

In this thesis, we propose a method that could give optimal parcel matching on the 

condition that the similarity between parcels in different subjects is well defined. 

Thus, how the similarity could be defined is naturally a very important and inter-

esting question. In our method, we use the functional distance and coordinates in a 

standard space. We still need linear spatial normalization as a preprocessing step. It 

would be interesting and challenging to combine other techniques or image modal-

ities in this process. Since the similarity between parcels is directly constructed with 

functional and structural images, we could avoid the problem of mis-registration 
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and other flaws of spatial normalisation. 

Parcel matching algorithms 

Our parcel-matching algorithm has two main limitations. First, the matching takes 

place under the assumption that there is one and only one parcel from each sub-

ject in a clique. In most cases, this assumption does not present a problem for fur-

ther analysis. However, occasionally, some parcels may be missing from a subject. 

In this situation, our algorithm may give a biased result. We could improve our 

parcel matching method by using, for instance, the k-cardinality assignment model 

Pentico [2007]. Rather than match all the parcels, this model <:an find only the first 

few cliques that have the maximal similarity. Thus, it could possibly eliminate the 

influence of missing parcels. 

Another limitation of our parcel matching method is that this algorithm ignores 

the relationship of the parcels within each subject. For each parcel, the correlation 

between this parcel a1(d other parcel in this subject is also important information. 

In our algorithm, this information was not used to match parcels from different 

subjects. Finding a way of incorporating this information would be an interesting 

topic for future study. 
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6.2.3 Application 

Resting-state fMRI data analysis 

In this thesis, our method is applied to task-related experiments. However, it could 

also be applied to resting-state fMRI to study the default mode network, which 

could provide valuable information on the physiolOgical processes in the human 

brain. Parcellation based methods could provide more reliable analysis in these 

studies. 

For some novel blind source separation algorithms (e.g. Wang et al. [2010]), the di-

mension of fMRI data is too high. Our data-driven parcellation method could re-

duce the dimension of the data and open a door to these types of analysis methods 

providing an alternative to the classic exploratory multivariate analyses (e.g. rCA). 

Machine learning Classifier techniques 

As introduced in Chapter 2, machine-learning algorithms are becoming more and 

more popular in fMRI data analysis. Here, as well, the dimension of the data is 

a problem. Parcellation could help to alleviate this problem and improve the ef-

fectiveness and efficiency of analyses. Furthermore, based on parcellation, many 

methods that have been successfully applied to the problem of object recognition 

(e.g. [Zhao et aI., 2007]) could also be used in fMRI data analysis. 
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CHAPTER 6: CONCLUSION AND FUTURE WORK 

6.3 Closing Comment 

We believe that the development of parcellation reflects the progress of understand-

ing human brain functions. New projects (e.g. the Human Connectome Project) are 

proposed to elucidate the neural pathways that underlie brain function. The suc-

cess of these projects could bring more understanding of the human brain, so that 

we could divide the brain into microstructures corresponding to more specific func-

tions. This new knowledge could add extra dimensions (e.g. a connectivity dimen-

sion and a function dimension) to the state-of-art human brain atlas and merge the 

gap between these two types of parcellation. 
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