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Abstract

Given the ever increasing quantity of sequence data, functional annotation of

new gene sequences persists as being a significant challenge for bioinformatics.

This is a particular problem for transcriptomics studies in crop plants where

large genomes and evolutionarily distant model organisms, means that identi-

fying the function of a given gene used on a microarray, is often a non-trivial

task. Information pertinent to gene annotations is spread across technically

and semantically heterogeneous biological databases. Combining and exploit-

ing these data in a consistent way has the potential to improve our ability to

assign functions to new or uncharacterised genes.

Methods: The Ondex data integration framework was further developed to

integrate databases pertinent to plant gene annotation, and provide data infer-

ence tools. The CoPSA annotation pipeline was created to provide automated

annotation of novel plant genes using this knowledgebase. CoPSA was used

to derive annotations for Affymetrix GeneChips available for plant species. A

conjoint approach was used to align GeneChip sequences to orthologous pro-

teins, and identify protein domain regions. These proteins and domains were

used together with multiple evidences to predict functional annotations for se-

quences on the GeneChip. Quality was assessed with reference to other annota-

tion pipelines. These improved gene annotations were used in the analysis of a

time-series transcriptomics study of the differential responses of durum wheat

varieties to water stress.

Results and Conclusions: The integration of plant databases using the On-

dex showed that it was possible to increase the overall quantity and quality

of information available, and thereby improve the resulting annotation. Direct

data aggregation benefits were observed, as well as new information derived

from inference across databases. The CoPSA pipeline was shown to improve

coverage of the wheat microarray compared to the NetAffx and BLAST2GO

pipelines. Leverage of these annotations during the analysis of data from a

transcriptomics study of the durum wheat water stress responses, yielded new

biological insights into water stress and highlighted potential candidate genes

that could be used by breeders to improve drought response.
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Definitions of terms and abbreviations

AAO [Gene] Aldehyde Oxidase: a gene that encodes an enzyme that catalyzes

the final step of ABA biosynthesis.

ABA [Phytohormone] Abscisic acid: one of the major plant hormones that forms

a hub in a signalling network which regulates many cellular and plant wide

processes.

ABAR/CHLH [Gene] cMagnesium-protoporphyrin IX chelatase H subunit: A

protein that was put forward by Shen et al. (2006) as a candidate ABA receptor.

ABI [Gene Family] A family of ABA insensitive gene loci.

Accession [Bioinformatics term] A unique sequence of characters that within the

scope of some definition uniquely define a database entry, independent of a

database instance. If multiple accessions are merged together, then a new ac-

cession is created and the previous made obsolete. Only one accession should

ever identify an entry, where obsolete accessions are present in an entry, this is

sometimes referred to as the primary accession.

ANOVA [Statistical methodology] ANalysis Of VAriance: a statistical procedure

by which observations are partitioned into groups representing sources of vari-

ation. Application Programming Interface(s) (API) [[Computer Science term] A

defined set of publicly exposed functions in a program, that allow another pro-

gram to make use of its resources. A good API exposes required functionality,

while minimising complexity.

BiFC [Molecular biology methodology] Biomolecular florescence complimentation

(BiFC): A methodology for confirming protein-protein interactions. Florescent

protein fragments are attached to two or more proteins suspected of interact-

ing. Interaction of these proteins will cause the fragments to reform and emit

its florescence colour, thereby confirming the interaction.

CDPK [Protein] Calcium Dependent Protein Kinase: a group of proteins that

are stimulated by Ca2+ to initiate their activity.

Drought Stress [Agricultural Plant Science term] The limitation on maximum po-

tential crop yield imposed by a water limitation.

Endoplasmic Reticulum (ER) [Cell organelle] An organelle that forms an inter-

connected network of tubules, vesicles, and cisternae within a eukaryote cell.

It is mainly involved in protein, lipid and steroid synthesis, and carbohydrate
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and steroid metabolism.

Extensible Mark-up Language (XML) [File format] A structured text document,

conforming to rules defined by W3C (2011). It allows documents to be machine-

readable. FCA [Gene] A gene encoding a posttranscriptional regulator of tran-

scripts involved in the flowering process (Macknight et al., 1997).

G protein [Protein family] A family of proteins that bind to guanine nucleotides

(GTP and GDP), and are involved in signalling.

GFP-florescence [Molecular Biology methodology]: Florescence labelling using a

small (238 amino acids) Green Florescence Protein (GFP), which emits green

light when exposed to blue light. The GFP gene can be fused into a target gene,

which then may express a protein with florescence. The target genes localisa-

tion and expression in the cell can therefore be monitored (Phillips, 2001).

GPA1 [Gene] The sole member of the G-protein Gα-subunit family within the

Arabidopsis genome.

GTG [Protein family] GPCR-type G proteins (GTG): A gene family including

GTG1 and GTG2 which are candidate ABA binding proteins (Pandey et al.,

2009).

Homolog(y) [Genetics term] The relationship between two genes that are des-

cended from a common ancestral genes (Fitch, 2000).

HSF [Protein family] Heat Shock Factors (HSFs). A family of transcription factors

which regulate HSPs.

HSP [Protein family] Heat Shock Proteins (HSPs). A family of proteins that as-

sist as chaperones in protein folding (Hu et al., 2009).

NAC [Protein family] A superfamily of transcription factors, many of which are

involved in hormonal regulation (Jensen et al., 2010). NCED [Gene family] A

gene family encoding 9-cis-epoxycarotenoid dioxygenase, which is an enzyme

that is part of the ABA biosynthesis pathway.

MAPK [Protein] Mitogen-Activated Protein Kinase: a signalling molecule that

forms the initial activator of the MAPK cascade. The second and third elements

of this cascade are MAPK Kinase (MAPKK) and MAPKK Kinase (MAPKKK),

respectively.

MYB [Protein family] A superfamily of transcription factors, which has the largest

number of members in Arabidopsis (Yanhui et al., 2006). They commonly in-

volved in the regulation of developmental processes and defence response.

Object-Oriented (OO) [Computer Science term] A programming paradigm based

around data objects, which consist of a group of fields and methods. OO is

associated with a number of good practices. Encapsulation: access to an ob-
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ject is restricted by public and private components. Abstraction: concepts or

ideas independent of an implementation instance are separated. Modularity:

where possible software is composed of separate interchangeable components.

Inheritance: common properties and methods of objects are shared between

implementations (e.g. Java class inheritance). Polymorphism: the ability to cre-

ate variable, functions or objects that have multiple implementation forms (e.g.

Java interfaces).

Ortholog(y) [Genetics term] The relationship between two homologous genes,

whose common ancestor is the last universal common ancestor of the taxa from

which the two sequences were obtained (Fitch, 2000).

OXL [File format] An XML based file format defined by Taubert et al. (2007) for

lossless serialisation of an Ondex graph. It is the main file format for exchan-

ging graphs within Ondex. OST [Protein family] Open stomata protein kinases

(OST): contains the OST1 (also called SRK2E and SnRK2.6) gene in Arabidopsis

which is regulated by ABA, the expression of which is strongly linked to sto-

matal aperture size (Mustilli et al., 2002).

PA [Compound] Phosphatidic acid (PA): A membrane lipid that is also a pre-

cursor for the biosynthesis many other lipids. It can also be involved in sig-

nalling.

Paralog(y) [Genetics term] The relationship between two homologous genes that

has arisen as a result of duplication (Fitch, 2000).

PCo [Statistical term] A Principal Coordinate identified by a Principal COordin-

ates analysis (PCO) analysis, and capturing variance within a dataset. PCos are

numbered according to rank, starting from one, based on the quantity of vari-

ance they capture in the dataset.

PCO [Statistical methodology] Principal COordinates analysis: a methodology

for exploring similarities and differences in multivariate data developed by

Gower (1966). PIP [Gene family] Plasma membrane Intrinsic Proteins (PIP): a

family of trans-membrane water channels (Phillips, 2001).

PPI [Molecular biology term] Protein-protein interaction (PPI). The transient or

permanent physical binding of two proteins.

PP2C [Gene family] Protein phosphatases of category 2C (PP2Cs): Some mem-

bers of this family are negative regulators of an ABA induced response (Santi-

ago et al., 2009b).

RCAR [Gene family] Regulatory components of ABA receptor (RCAR): A family

of 14 genes in Arabidopsis that bind to ABA and PP2Cs. Also known as PYR1

and PYLs (Ma et al., 2009, Santiago et al., 2009b).
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RIL [Genetics term] Recombinant Inbred Line (RIL) a population that has bred

without out-breeding from an F2 population. Two distinct genetic groups are

crossed to create an F1 hybrid, which is back crossed with one of the parents to

create the F2 population.

Semantic Drift [Data Integration term] The erroneous labelling of entities as

equivalent that have different semantic meanings. For example: The labelling

of a genetic loci as equivalent to a protein, based on a common accession in two

databases.

SnRK [Protein family] Sucrose non-fermenting-1 (SNF1)-related protein kinases

(SnRKs). A family encoded by 38 genes in Arabidopsis, that are named after

their similarity to the SNF1 gene in yeast.

Water Stress [Plant Science term] The state wherein the water absorption of a

plant does not amount to that which is lost through transpiration.

Y2H [Molecular Biology methodology] Yeast-2-hybrid (Y2H): A methodology for

confirming protein-protein interactions. A transcription factor is fragmented

into its constituent binding and an activation domain. A protein is attached to

each respective fragments. Confirming the activity of the transcription factor,

indirectly confirms the interaction of the proteins. The transcription factor chosen,

is often linked to lethality genes, which confirm a PPI based on the death of the

yeast.
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Chapter 1. Introduction

Functional annotation of coding sequences persists in being a severe limiting

factor in the analysis of both high-throughput genomics and transcriptomics

data. The problem is aggravated in organisms like wheat, which has three gen-

omes that together contain approximately 150,000 genes (Choulet et al., 2010)

and a large evolutionary distance to the plant model Arabidopsis thaliana (Gaut,

2002, Liu et al., 2001). Identifying the function of a given sequence, from or-

ganisms like wheat, is frequently a non-trivial task. To compound the prob-

lem, information pertinent to gene annotations is spread across technically and

semantically heterogeneous biological databases. Combining and exploiting

these data in a unified way has the potential to improve our ability to predict

novel-gene function (Lysenko et al., 2010).

This thesis is divided into two parts. Part I comprises Chapters 2-3, and ad-

dresses the bioinformatics problems associated with functional annotation of

sequence data. Part II (Chapters 6.1 and 6.3) demonstrates the utility of Part I by

leveraging the new functional annotations for the analysis of a time-series tran-

scriptome experiment in durum wheat, which studies the effect of drought in

three phenotypically distinct cultivars. The bioinformatics problems addressed

in Part I are motivated by the challenges of transcriptome analysis that emerge

in the biological application case presented in Part II. The significantly regu-

lated processes reported in Part II are consistent with existing models of water

stress response and thus serve to validate the functional annotations predicted

in Part I.

This introductory chapter provides the broad background to the challenges in-

herent in gene function annotation for use in transcriptome studies and presents

an overview of the thesis structure. Subsequent chapters contain more detailed
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introductory material pertinent to the work presented in that section of the

thesis.

1.1 Part I: Addressing functional annotation poverty

The problem that motivates the bioinformatics research presented in this thesis

is the analysis of a time-course gene expression dataset from durum wheat,

which used the Affymetrix wheat genome array. This GeneChip contains 55,052

transcripts from all 42 chromosomes in wheat. Sequence information for this

array comes from Triticum aestivum UniGene Build #38 (build date April 24,

2004). Also included are ESTs from the wheat species T. monococcum, T. tur-

gidum, and Aegilops tauschii, and GenBank full-length mRNAs from all species

through May 18, 2004 (Affymetrix, 2011c). Although this chip was designed us-

ing all the available wheat EST data that was in the public domain at the time,

it unfortunately only represents approximately 30% of the expected gene con-

tent of wheat. The partial coverage of the wheat genome in this transcriptome

dataset is the first source of poverty in the functional annotations available for

wheat.

For those genes that are represented on the GeneChip, two important factors

affect the efficacy of a given annotation set when interpreting the experimental

data: the accuracy of the proposed annotation and the coverage of the genes for

which correct annotations can be assigned.

1.1.1 Types of gene annotation

Functional annotations for genes are generally inferred from the predicted func-

tion of the protein which they encode and may be represented in a number
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forms, the most common of which are free-text (unstructured), Enzyme Com-

mission (EC) codes (NC-IUBMB, 1999), and Gene Ontology (GO) terms (Ash-

burner et al., 2000). Free-text is of limited practical applications for systems

wide analysis of high throughput transcriptome data. However, Natural Lan-

guage Processing techniques are increasingly making the annotations encoded

in free text accessible by identifying cross-references to other more structured

annotations (Chapman and Cohen, 2009). Within this thesis the focus is on ex-

ploiting structured functional annotation sources, the most pervasive of which

are EC and GO terms, which use non-redundant structured hierarchies and on-

tology’s respectively and are therefore amenable to analysis by computational

reasoning. Other less widespread functional classification systems include the

MIPS Functional Catalogue (FunCat) (Ruepp et al., 2004) and the classification

hierarchy used within MAPMAN (Thimm et al., 2004). Mapping of equivalence

between annotation systems terms are often provided. The most comprehens-

ive sets of translations are available for GO, which has a dedicated mapping

file format for representing these relationships (The Gene Ontology Consor-

tium, 2011a).

Additionally, databases which define groups of structurally similar genes such

as Clusters of Orthologous Groups of proteins (COG) (Tatusov et al., 2000, 2003)

serve to provide a similar functional annotation resource. However, an import-

ant distinction is that by consequence of grouping by sequence they are struc-

turally non-redundant; this is at the expense of functional redundancy (i.e. they

define the relationship between genes rather than between functions). The COG

database contains groups of similar protein sequences and has assigned func-

tional annotations for each of these groups. If two different clusters have the

same function, then they are redundantly represented in COG. Therefore, COG

can be said to be structurally non-redundant and functionally redundant: it is a

system of classification for protein sequence rather than function. The same is

true for databases of functional domain families such as Pfam (Finn et al., 2009).
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Functional redundancy in these databases is common place as convergent evol-

ution may lead to a single function or process (Koonin and Galperin, 2003) be-

ing encoded by very different sequences or protein structures. Depending on

the granularity with which a function is defined, a single organism often has

multiple protein-sequence solutions for a given function (e.g. for DNA binding

(Riaño-Pachón et al., 2007)).

The ability to define a function within a vocabulary is a prerequisite for lever-

aging function driven queries and statistical analysis. This can be achieved

through a non-redundant controlled vocabulary or through statements which

explicitly state the semantic relationship between terms in an ontology (e.g. “is

a” and “part of” hierarchies). Therefore, systems like EC, FunCat and GO are

important resource in defining functions independent of protein sequence or

structure. When COG or Pfam families are annotated with terms from these

classification systems, this allows powerful analysis that can construct cross

database queries such as: "for a given set of sequences, what Pfam/COG famil-

ies do they belong to, and which functions/processes are significantly enriched

from the EC/FunCat/GO annotation of these families".

The Enzyme Commission (EC) provide a nomenclature for enzymes based on

the reactions they catalyse. EC numbers classify enzyme reactions based on

four levels of a hierarchy. The roots of the hierarchy are six broad enzyme

classes, each subdivided into subclasses, and sub-subclasses. The fourth digit

of an EC term is the serial number of the enzyme, the specificity and nature of

which is set out in the guidelines of the EC (NC-IUBMB, 1999). Table 1.1 shows

a breakdown of how an EC number is constructed. For a given nomenclature

name the enzyme commission states that "a certain name designates not a single

enzyme protein but a group of proteins with the same catalytic property" and

they make no requirement for structural similarity for proteins annotated to a

given EC name. EC is therefore a reaction based naming of proteins, and while

this enables proteins to categorised independent of their sequence and physical
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structure (i.e. two different sequences can have an identical EC term if they act

on the same products and substrates in the same manor), it is not in the truest

sense a functional annotation system. According to EC guidelines a protein

classification should be assigned "based on the first enzyme-catalysed step that

is essential to the subsequent transformations". Pragmatically, however, data-

bases such as the ExPASy ENZYME (Bairoch, 2000) database, use EC numbers

as identifiers of biochemical catalysis of a given reaction (defined by product

and substrates), and allow multiple EC terms to be annotated to a given pro-

tein.

The Gene Ontology (GO) is a collection of three ontologies, which will be re-

Table 1.1: A breakdown of EC number hierarchy system using Glu-Glu dipeptidase
(3.4.13.7) as an example.

EC Number Digit Reaction Specificity Example

3.-.-.- 1 Reaction type Hydrolases
3.4.-.- 2 Substrate class Peptidases
3.4.13.- 3 Substrate sub-class Dipeptidases
3.4.13.4 4 Substrate Glu-Glu dipeptidase

ferred to here as GO categories. The cellular component category refers to parts

of a cell or its external environment, and in terms of annotation allows gene

products to be identified as "located in" a cellular component. The molecular func-

tion category describes the biochemical activities of a gene product, such as

binding or catalysis". It describes the potential for a given activity, rather than

the conditions under which it can be found. EC terms often have equivalents

within the molecular function category. The biological process category describes

participation by a gene product in operations or sets of molecular events with a

defined beginning and end. Processes often involve physical or chemical trans-

formations of entities, and are often described in terms of their end goal (e.g.

proline biosynthetic process, GO:0006561). Pathway names in metabolic data-

bases like KEGG (Kanehisa and Goto, 2000), MetaCyc (Caspi, 2006, Caspi et al.,

2008) and Reactome (Matthews et al., 2009) often have equivalents within this
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category. When combined, the three GO categories form a powerful resource

for annotating a gene with a summary of its biological function. GO has there-

fore become a popular and valued resource for developers of gene and protein

functional annotation tools.

For example: Okamoto et al. (2006) describes how theArabidopsis gene CYP707A,

encodes the endoplasmic reticulum (ER) membrane-bound Abscisic Acid 8’-

Hydroxylase, which is involved in ABA biosynthesis, and expressed in the

seed. Additionally they assert that this gene is involved in seed maturation.

Using the GO categories, the processes this gene is involved in can be de-

scribed by the terms "seed maturation" (GO:0010431), and "ABA biosynthesis"

(GO:0009688). The latter is equivalent to the pathway PWY-695 in MetaCyc,

which is located within a much larger pathway called carotenoid biosynthesis

(ec00906) in KEGG. The function is captured by "(+)-abscisic acid 8’-hydroxylase

activity" (GO:0010295), which has the equivalent EC term 1.14.13.93. The pro-

teins cellular location is described by the "ER membrane" (GO:0005789) term.

GO terms form part of a directed acyclic graph (DAG), which encodes semantic

relationships using "is a" and "part of", relationships. This enables semantic

reasoning across annotation sets. For example, given any two genes annotated

with GO functions it is possible using the relationships within the GO DAG

to locate common ancestors, and thereby determine which properties two or

more genes share in common. The inverse is also possible: identify all genes

that inherit from a given ontology term such as catalytic activity (GO:0003824).

A number of such methodologies for exploiting the GO DAG for reasoning are

described in Chapter 3.

The Gene Ontology therefore forms a central role for the annotation and ana-

lysis of gene and protein sequence data. Its use is pervasive within the biolo-

gical and bioinformatics literature, due to its simplicity (only two main types

of relation types, and one less common "regulates" relation), maturity (GO was

conceived by Ashburner (1998), and breadth of scope. The ability of GO to rep-
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resent information also captured by other forms of functional annotation has

led to the development of cross references to other structural and functional

annotation schemes, to the Gene Ontology. This enables users of GO to in-

corporate gene annotations from other annotation schemas, or conversely GO

annotations may be used to improve other annotation systems such as EC and

FunCat.

1.1.2 Provenance of annotation

Data provenance is an important issue for gene annotation. The assignment

of a given annotation to a gene, in a database, may have a complex history,

involving multiple biological experiments, databases, and computational infer-

ences. The confidence of any given annotation is dependent on the full history

of data and methods it depends upon. For a given computational annotation

in a higher-plant for example, it may be dependent on multiple experimental

evidences and methods, on multiple genes in that family, from multiple spe-

cies. It may also be dependent on computational and statistical evidences, such

as sequence alignment and co-expression. In order to compute such confidence,

it is essential that such provenance should be in a machine-readable form. Karp

(1998) notes that most sequence databases retain little or no provenance inform-

ation regarding the assignment of functions to sequences. Buneman et al. (2000)

highlight a further potential problem: cycles of database interdependence can

lead to a perpetual loops of inaccurate data. They highlight literature curation

as one such source of error, where biological literature reference knowledge in

databases, which themselves curate knowledge from published literature. The

conclusion is that using knowledge in public databases can be potentially dan-

gerous, without a full history of provenance for each statement, which should

ultimately trace back a set of experimental evidence.
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There are currently no widely adopted standards for describing the provenance

of in silico pipelines in bioinformatics, and there is a pressing need for capturing

this information (Stevens et al., 2007). Defining some universal standards for

such pipelines will be challenging, given the diversity of tools used in bioin-

formatics to generate pipelines, and the complex interdependencies between

pipelines and evidences. Failure to consider provenance can result in the mis-

annotation of genes and potential errors being propagated across databases,

and reintroduced even when corrected.

A related issue is the potential loss of the resolving power of computation meth-

ods, due to iterative expansion of sequence clusters, beyond their original abil-

ity to resolve function. Bork and Koonin (1998) was one of the first to discuss

this as a potential source of noise in public sequence database. Brenner (1999)

went on to describe how such errors were the result of computational infer-

ence across sequences, where there is insufficient homology, or deficiencies in

the alignment algorithms used. He emphasised the importance of labelling an-

notations in databases that were the result of computational predictions. This

can prevent inferences based on computational prediction, and the potential

chain of mis-annotation, as small errors are compounded, and the discrimin-

atory power of a functionally annotated sequence cluster reduced Gilks et al.

(2005, 2002) have presented a statistical framework for modelling how these

chains of errors can percolate through sequence annotations, and reduce the

function-resolving power of clusters.

There have been a number of efforts moving towards improved provenance

tracking in database. The GOA file format, which stores GO gene annotations

(The Gene Ontology Consortium, 2011a) contains a field to record the experi-

mental evidence of a annotation. Table 1.2 shows evidence codes approved by

GO. While useful for tracking the reliability of a GO annotation, Inferred from

Electronic Annotation (IEA), is too broad a category to be useful beyond ex-

cluding non-primary evidence. To address this problem, UniProt (The UniProt
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Consortium, 2010) records extend the IEA evidence by appending the compu-

tational method or database, from which the prediction is sourced. However,

this only extends to referencing a simple controlled vocabulary of evidence, and

omits basic provenance details such as database and program versions, pipeline

structure and method parameters.

Table 1.2: Evidence codes for the provenance of GO annotations as defined by the Gene
Ontology Consortium.(The Gene Ontology Consortium, 2011a)

Code Type of evidence Type category

NAS Non-traceable Author Statement
Author StatementTAS Traceable Author Statement

IEA Inferred from Electronic Annotation Automatically-assigned

IGC Inferred from Genomic Context

Computational Analysis

ISA Inferred from Sequence Alignment
ISM Inferred from Sequence Model
ISO Inferred from Sequence Orthology
ISS Inferred from Sequence or Structural Similarity
RCA Inferred from Reviewed Computational Analysis

IC Inferred by Curator
Curator StatementND No biological Data available

EXP Inferred from Experiment

Experimental Evidence

IDA Inferred from Direct Assay
IEP Inferred from Expression Pattern
IGI Inferred from Genetic Interaction
IMP Inferred from Mutant Phenotype
IPI Inferred from Physical Interaction

1.1.3 The Affymetrix GeneChip

Part I of this thesis specifically addresses the annotation of genes measured by

the Affymetrix GeneChip, which is used within the use case of part II. Within

this section, a brief overview of the design and terminology of the sequences on

the GeneChip is provided.

Affymetrix GeneChips are composed of a large number of cells, each of which
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represents either a perfect match (PM) and mismatch (MM) probe (a homo-

meric mismatch at the 13th position for a PM probe: A->T or G->C) (Affymetrix,

2011a). MM probes act as controls for cross hybridisation. These unique probes

are 25 nucleotide bases in length and are synthesised using photolithographic

fabrication. This involves the use of a mask to selectively expose light onto a

silicon wafer, which directs a light dependent chemical synthesis process. Hy-

droxyl groups are initially formed on the wafer by light passing through the

mask. Nucleotides are then added to the sequence feature, one nucleotide at a

time, with successive application of masks. This fabrication process is shown in

Figure 1.1. Each of the tens-of-thousands of 25-mer sequence features, that the

GeneChip array is targeted to quantify the expression of, is potentially hybrid-

ised to 11-20 PM probes. The full sequence that the PM probes are designed

to measure the expression of is the consensus sequence and the subset of the se-

quence they recognise is the target sequence.

Functional annotations, for sequences on an Affymetrix GeneChip, usually cor-

Figure 1.1: The photolithographic fabrication process used by Affymetrix to create mi-
croarray GeneChips.

respond to consensus or probe-set sequences. The relationship between these

two sequence types is one-to-one and they share the same Affymetrix probe-

set id. A probe-set id is appended by a basic extension nomenclature. The _at
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and _st indicate whether the target sequence is sense or anti-sense respectively.

These sequences are also sub-categorised by _a, _s, _x, or nothing. Sequences

without a code appended to the id have been designated as uniquely identi-

fying the set of corresponding target probes. Probe-set ids appended with _a

recognise multiple alternative transcripts. Those appended with _s share com-

mon probes from multiple genes. Probes for ids appended with _x may cross

hybridised unpredictably with multiple transcripts. These probe-set id categor-

ies are summarised graphically in Figure 1.2.

Figure 1.2: A graphical representation of the different probe set types on the Affymetrix
chip Affymetrix (2011b).

1.1.4 Detecting putative functional orthologs

The presence of large protein families, with many paralogous proteins, make

the process of detecting of the true ancestral functional ortholog, using se-

quence similarity alone, challenging. Algorithms like INPARANOID (Ostlund

et al., 2010a, Remm et al., 2001), OrthoMCL (Chen et al., 2006, Li et al., 2003),

OrthoMCL(Chen et al., 2006, Li et al., 2003), and PHOG (Datta et al., 2009a,
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Merkeev et al., 2006) have attempted to identify the ancestral ortholog from

multiple paralogous protein in the sequence alignment hits (using programs

like BLAST). These approaches can improve the accuracy with which func-

tional orthologs are detected. However, the most reliable computational ap-

proaches for predicting functional orthologs use phylogenetic analysis, how-

ever due to their computationally intensive requirements, and the requirement

for human supervision in these approaches means they are often not suited

to whole geneome analysis (Gabaldón, 2008).There are also limits to which

sequence-based phylogenetic analysis can be used to reliably transfer function.

Single residue changes can often have dramatic effects on the protein function

and its participation in molecular processes. For example, Hanzawa et al. (2005)

have shown that a single amino acid mutation in the TFL1 protein, in Arabidop-

sis, inverts the function from flowering repression, to that of an activator. Pre-

dicting, the importance of a residue for protein function using the phylogenetic

approach, requires the alignment of multiple orthologous sequences. In many

instances insufficient orthologous sequences exist, or too few of the functions

of the putative orthologs have been experimentally characterized to establish

they are functional orthologs. Karp (1998) notes that the danger in identifying

putative functional othologs through sequence alignment is that it is very diffi-

cult to assign a measure of confidence that a given function can be transferred

at a observed alignment score. Often, the alignment score threshold is defined

arbitrarily, and the confidence unknown.

Structural similarity between proteins has been shown to be a more reliable

method for interfering similar function, than sequence based similarity, how-

ever divergent and convergent evolution has led to some proteins which have

different structures with similar functions, and similar structures with differ-

ent functions, respectively (Hegyi and Gerstein, 1999). For example: Hegyi

and Gerstein (1999) highlight the TIM-barrel structure, which is found in pro-

teins encoding 16 evolutionary divergent enzymatic functions, which include
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representations from four different EC classes: oxidoreductases, hydrolases, ly-

ases, and iomerases.

Part of this thesis (Chapter 3) describes an automated, and high throughput,

pipeline for transferring function based on the alignment with sequences from

model organisms which have experimentally derived function. The sequences

from which function is transferred are termed putative functional-orthologs.

There is therefore uncertainty in transferring function based on sequence align-

ment alone, and functional assignments using this method should always be

viewed as putative, even in well conserved protein families. Where multiple

conserved domains exist, the probability is greater that a set of aligned se-

quences will share the same function (Hegyi and Gerstein, 2001). However,

Hegyi and Gerstein (2001) has shown that even with multiple conserved do-

mains, functional divergence in families frequently occurs. The divergence of

function in a protein family will depend on the evolutionary pressures associ-

ated with it’s role. Pathogen responsive proteins in sessile plants is an excel-

lent of protein families under extreme evolutionary pressure. These proteins

have a wide functional repertoire, which is constantly evolving in an evolu-

tionary arms-race against plant pathogens Shan et al. (2007). The transference

of function, across organisms, for pathogen responsive proteins is therefore a

challenge.

1.1.5 The current status of annotations for Affymetrix plant spe-

cies GeneChips

GO is one of the most important forms of structured annotation for interpret-

ing high-throughput transcriptomics data. A low coverage or quality of GO

annotation for the gene transcripts used to design a microarray adversely af-

fects the power and validity of the later analysis. Low coverage of annotation
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can result in much of the significant expression data being unexplained, and

the resulting conclusions may be unrepresentative of the true biology of the

system.

For Affymetrix GeneChip arrays, a standard annotation is provided by the Net-

Affx pipeline (Liu et al., 2003). NetAffx links data from multiple resources using

the SRS data linking system from Biowisdom (2009), and combines this with

its own computational predictions. Annotations are derived from the NCBI

databases UniGene, LocusLink (now EntrezGene), and Homologene databases

(Sayers et al., 2009)). UniGene is a database for identifying non-redundant sets

of EST sequences that represent transcribed genes. This makes it a particularly

important resource for partially-sequenced organisms such as wheat, where

much of the array has been designed from assembled EST sequences. Entrez-

Gene (Maglott et al., 2005) contains unique and stable curated sequences and an-

notations derived from RefSeq (Pruitt et al., 2005). Homologene (NCBI, 2011a)

is a set of predictions of homologs and paralogs. SWISS-PROT, which is the

curated component of UniProt, is also used to acquire annotations via the pro-

tein gi-number (NCBI, 2011b). Other annotations are acquired using InterPro

(Mulder et al., 2007) and pathway annotations using GenMAPP (Dahlquist et al.,

2002).

As well as linking existing annotations NetAffx produces electronically inferred

annotations. HMMs are used to identify conserved regions using the GRAPA

(Shigeta et al., 2003) phylogenetic methodology, which identifies families and

sub-families from conserved regions. Collections of annotated genes used to

generate HMMs were created for SCOP, EC and G protein-coupled receptors

(GPCR). In parallel to the NetAffx GRAPA pipeline, PSI-BLAST (Altschul and

Koonin, 1998) is used to categorise kinases according to the Hanks and Quinn

(1991) protocol, TMHMM (Krogh et al., 2001) is used to identify transmembrane

regions of proteins and BLASTx is used against GenBank (Benson et al., 2007).

Although NetAffx provides a recognised basis for annotation of GeneChip se-
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quences, it has a number of shortcomings as the foundation of a more sophist-

icated approach to annotation. The provenance of the predicted annotations is

not preserved within the resulting annotation files. The importance of proven-

ance for annotation has been described in 1.1.2. In particular detailed informa-

tion, on the parameters and thresholds, has not been fully described for the se-

quence comparison methods embedded in NetAffx. Consequently no measure

of confidence is provided for any of the annotations. While some functional an-

notations provided by NetAffx may have been predicted by highly conserved

sequence-similarity and strong experimental evidence, it is not possible to dis-

cern these from annotation derived from weak BLAST hits.

An alternative source of Affymetrix GeneChip annotations, which includes the

wheat Microarray that is the subject of Part II, is the BLAST2GO Functional

Annotation Repository (BLAST2GO-FAR) (Escobar, 2011), which is built using

the BLAST2GO tool (Conesa and Götz, 2008, Conesa et al., 2005). BLAST2GO

is a tool for predicting GO and EC annotations based on sequence similar-

ity. The structure of the BLAST2GO pipeline is shown in Figure 1.3, which

is divided into five stages. Stage 1 allows users to identify target sequences

by comparing query sequences using the NCBI BLAST sequence comparison

methods with NCBI sequence databases (Sayers et al., 2009) and/or to a custom

sequence database. In Stage 2, the Stage 1 targets are then mapped to GO an-

notations within the GO database (The Gene Ontology Consortium, 2011b), or

GOA format annotation files (The Gene Ontology Consortium, 2011a). Stage 3

of the pipeline is the critical and novel stage of BLAST2GO, and involves select-

ing terms from the set of GO annotation terms that occur within the annotation

of all sequence hits. This is achieved by producing an annotation score (AS) for

each of these candidate terms. This AS is calculated based on the sum of two

other scores which are termed the direct term (DT) and second term (AT). The

DT is simply the maximum scoring sequence hit for the given term, where the

score of the hit is the product of the best GO evidence code weighting (provided

15



by a lookup table) and the sequence similarity. The exact nature of the sequence

similarity score used by BLAST2GO is not clearly specified by their publica-

tions, but it can be speculated that either bitscore or sequence identity could

perform this role. The formula for calculating DT is given in Equation 1.1.

The BLAST2GO score was calculated on a term t and a query sequence q, which

they term the Direct Term (DT). The function hits(t, q) returns the set of se-

quence hits that by inference could annotate t with the term q. The function

similarity(i) returns the sequence similarity of t to i. The function evidence_weight(i, t)

returns the evidence code weight of the range {0..1}, which annotates the hit i

with t.

DT(t, q) = MAXi∈hits(t,q) similarity(t, i)× evidence_weight(i, t) (Equation 1.1)

The second score, used in the calculation of the overall score, is defined am-

biguously in the BLAST2GO publications. Conesa and Götz (2008) define it as

the possibility of abstracting to a parent term, which is controlled by a weight ǫ

. They define abstraction as the annotation to a parent node where several child

nodes are present. The score AT is a product of the weight ǫ and the number of

“terms that unify at the node”. The most obvious interpretation of this is that

it refers to the cardinality of the set, which is the intersection of all children of a

given term with all other candidate terms. The implication of this is that in or-

der to facilitate abstraction to parent terms they must also include parent terms

in the scoring; this is confirmed by the subsequent inclusion of a “lowest term”

selection function. Based on these assumptions Equation 1.2 gives the formula

for AT.

The calculation of the score for the second term (AT) in BLAST2GO for a given

term t within the set of all candidate terms C. The function children(t, C) returns

the terms in C that are children of t based on the GO hierarchy. The type of rela-

tionships in GO that are traversed to identify the child terms is not defined, but

implicitly it can be assumed “is a” is used and optionally “part of”. The weight
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ǫ controls the possibility of abstraction, and the overall affect of AT on overall

annotation.

AT(t, C) = ǫ |children(t, C)| (Equation 1.2)

Finally, using these scoring functions the subset of selected terms is extracted

from all candidate terms. This is achieved by scoring each candidate term and

their parents (DT+ AT), retaining only those terms that score better than a set

threshold, and then retaining the subset of “lowest node” (leaf terms).Stages 4

and 5 represent optional statistical analysis and visualisation of the resulting

annotations.
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Figure 1.3: A schematic of the five step BLAST2GO pipeline. The five steps entailed BLAST of query sequence (1), mapping of query results to
GO (2), applying annotation rules to select GO terms (3), statistical analysis (4), and visualisation (5) (Conesa et al., 2005)
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For the wheat annotation in BLAST2GO-FAR BLASTX, the BLAST2GO pipeline

was run by Escobar (2011) using wheat Affymetrix consensus sequences against

the NCBI GenBank NR (non-redundant) database. This contains GenBank CDS

translations, Protein Data Bank (PDB), SwissProt, Protein Information Resource

(PIR), and the Protein Research Foundation (PRF). In Stage 1 they used the fol-

lowing cut-offs: the first 20 hits per query, e-value less than 1×10−3, and a min-

imal alignments length of 33 amino acids. These are low stringency parameters,

and are likely to result in a high rate of false positive in the initial pool of can-

didates. However, the scoring metric acts to counteract these false positives, by

selecting for the best alignments, highest confidence, and most consistent an-

notations.

The coverage of sequences on the Affymetrix chip annotated with at least one

GO term in the functional annotation provided by NetAffx and BLAST2GO is

shown in Figure 1.4. The low functional annotation coverage of both providers

is a limitation for researchers who wishing to leverage the existing annotations

for crop transcriptome analysis. It is evident from Figure 1.4 that more than 98%

of the wheat microarray sequences have no annotations, from any category of

GO, in the NetAffx annotation. The number of transcripts that were not annot-

ates reduces considerably to 65% using BLAST2GO-FAR annotation. However,

it is unclear from this data what the difference in quality is between NetAffy

and BLAST2GO-FAR annotation. This issue is addressed in more detail within

Chapter 3, where the annotations predicted by the pipeline developed in this

thesis are compared. However, it is clear that low GO annotation coverage of

microarray sequences is a problem for many of the Affymetrix plant species

GeneChips. Therefore, there is a necessity to improve coverage of GO annota-

tion for these arrays without adversely sacrificing the quality of annotation.

This forms the primary motivation for Part I of this thesis, and is a prerequisite

for the biological questions posed by the application use-case presented within

Part II of this thesis.
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Figure 1.4: Existing GO annotation coverage of the target sequences on the NetAffx and Blast2GO Affymetrix plant microarrays. Data is for the
September 2010 release of BLAST2GO-FAR (Escobar, 2011).
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As previously discussed in this section, and is apparent from Figure 1.4, a lim-

iting factor of interpreting transcriptome data in wheat is low coverage of func-

tional annotation. Sequence based function prediction is aggravated by a lack of

sequence data for durum wheat and a large evolutionary distance to the model

organism Arabidopsis. The evolutionary closest source of sequence data is bread

wheat, which contains an ancestral durum genome.

The genetics and evolution of the Triticeae tribe, is described within Chapter

. One current estimate puts the number of genes on each diploid genome of

bread wheat at 50,000 (Choulet et al., 2010). GenBank currently has over 1 mil-

lion EST sequences, however only 1,830 fully sequenced genes for bread wheat

(October 2010). In Entrez wheat has 41,000 UniGene records which are clusters

of sequences that are believed to be a single gene based on protein similarit-

ies, cDNA alignment, and genomic location data to originate from the same

transcription locus. As previously stated the Affymetrix wheat chip is built

from Triticum aestivum UniGene Build #38 (build date April 24, 2004), together

with ESTs from across Triticeae. Some of these genes may be incomplete and

misassembled, which further aggravates the assignment of function through

sequence methods.

Feuillet and Muehlbauer (2009) estimate that the monocot wheat diverged from

dicot Arabidopsis 150 million years ago (see Figure 1.5). It can be expected there-

fore that significant differences exist in the structural and functional repertoire

of genes between these two species. In some instances this may include novel

gene families or processes, not present in Arabidopsis.

21



Figure 1.5: The phylogenetic relationship between grasses and the model organism Ar-
abidopsis. Estimated divergence times in millions of years are indicated on
branches (Feuillet and Muehlbauer, 2009).

1.2 Part II: Applying functional annotation to transcriptome ana-

lysis

The previous section presented the requirement for improved Affymetrix plant

GeneChip annotations and in particular highlighted the difficulties associated

with the wheat array annotation. Part II of this thesis entails the analysis of

a time-series transcriptome data set from three differentially drought-tolerant

cultivars of durum wheat subjected to water stress conditions. Part II com-

prises two chapters; Chapter describes the controlled environment experiment,

the genetics of durum wheat, and the biological background of water stress in

plants; Chapter details the statistical and bioinformatics analysis of the wheat
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microarray, utilising the improved functional annotations derived from the pipeline

described in Part I.

1.2.1 The water stress use-case

As discussed in Section 1.1, there is a general need for improved functional

annotation of transcriptomic sequences in plants. This section outlines a spe-

cific use-case in the form of a transcriptome time-course response experiment

in durum wheat (Triticum turgidum subsp. Durum), which was conducted at

Rothamsted Research as part of the TRITIMED project. It begins by describing

the biological motivation and importance of the experiments, and proceeds to

outline the structure of the experiment and the types of annotation pertinent to

its analysis.

Durum wheat is a tetraploid species of wheat that is widely grown agricultur-

ally and used in the production of pasta and bread. It is widely grow in North

and Central America, Russia, Europe, North Africa, and West Asia. In 2005

the EU accounted for 27% of the worlds production and North and Central

America 34%, with most of the remainder produced in Asia (USDA, 2005). For

individual countries the largest producers in terms of the proportion of world

yield in 2005 were France (7%), Syria (8%), Turkey (8%), USA (10%), Italy (13%),

and Canada (19%). Many of these regions are projected to have reduced pre-

cipitation, as a consequence of climate change (Neelin et al., 2006). Within one

of the major production areas of high quality grain (Mediterranean and west-

ern Asia) a trend of declining rainy days has been observed (Gupta et al., 2009),

which is shown in Figure 1.6. There is therefore a pressing need to better un-

derstand drought resistance in durum wheat and to provide candidate genes

for targeted breeding. The development of drought resistant varieties will be a

prerequisite in ensuring yield and therefore food sustainability in future years.
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The methodology for the TRITIMED microarray experiment is described in

Figure 1.6: Trends for the number of rainy days in central and west Asia, north Africa,
and the northern Mediterranean (1901-2002) (Gupta et al., 2009)

Chapter . This section provides only a general overview of its structure and

aims. The experiment consisted of time-series observation of water stress in a

controlled environment for three cultivars of Durum wheat: Lahn, Cham1 and

RIL2219. Lahn is a high yield variety but does not have good yield stability

under drought. Cham1 has a lower yield than Lahn, but maintains high yield

under drought conditions. RIL2219 was observed to have one of the best yield

stabilities under drought of any of the recombinant inbred lines that resulted

from crossing Cham1 and Lahn. The RIL2219 was observed to have higher

yield stability than either parent. Five 24-hour interval transcriptome observa-

tions, using the Affymetrix wheat chip array, were conducted over five days of

increasing water stress, from flag leaf tissue.

The experiment therefore measured two independent variables: time and cul-

tivar. Time measurements were spread over five days and captured early re-
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sponses to small changes in Relative Water Content (RWC) of the leaf, as well

as late responses to dramatic changes in RWC. A biological overview of the

known early and late molecular responses to drought are provided in Chapter .

The molecular drought response is complex, and incorporates signalling, meta-

bolic pathway, and structural changes to the plant. These responses are tem-

porally and specially coordinated, and can result in system wide responses in

the plant such as the initiation of senescence. The physiological consequences

of drought also results in physical, heat, and salt stress, which have their own

molecular sensing and response pathways. The TRITIMED experiment aims to

characterise and observed these time dependent responses in the durum wheat,

and compare and contrast how these responses vary across the three cultivars.

The differences in the yield stabilities of the three cultivars could be a result of

one or a combination of observed molecular differences: (a) distinct processes

active between the varieties, (b) temporal shifts in processes, or (c) quantitative

differences in process components. Molecular process annotation of genes is

therefore important in considering process level changes in the transcriptome.

In order to further dissect individual active processes, annotations of gene mo-

lecular functions are required. Both of these categories in the Gene Ontology

are of particular importance in interpreting this data-set. EC annotations relate

directly to enzyme molecular functions, and are relevant to the dissection of

metabolic pathway processes.

Protein-protein interaction (PPI) networks together with protein-gene interac-

tions (PGI) controls are thought to play a crucial role in a plants response to

drought (Hirayama and Shinozaki, 2007). Plant hormones, particularly abscisic

acid (ABA), are central to these regulatory signalling pathways, which coordin-

ate gene expression. These signalling networks are described in detail within

Chapter . There is therefore a strong motivation to incorporate these pathways,

in the analysis of the TRITIMED dataset. Currently there is a number of PPI and

PGI networks in Arabidopsis that Lysenko et al. (2010) have demonstrated are
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amenable to data integration, and complimentary to each other. Regrettably,

no database of experimentally validated PPI and PGI interactions exists for

wheat. However, a large body of work exists in inferring these networks, from

experimental evidences and comparative genomics (Carter, 2005). However,

these methodologies often have high false positive rates, and require data that

is not available for wheat. Usually multiple sources of complementary evid-

ence are required to build high quality networks (De Smet and Marchal, 2010).

For this reason, the scope of this thesis does not include PPI and PGI data-

bases or inference methods. However, the biological process category within

the Gene Ontology includes terms for signalling pathways (GO:0023033). An-

notations of genes with these terms can provide some indication of enriched

or active pathways within a microarray dataset. Although a topological ana-

lysis of these networks is not possible, as GO does not provided information

on the adjacency of process. Also, identification of transcription factors is rel-

atively straightforward given the conserved nature of families of DNA binding

domains. There are many plant transcription factor databases, which contain

annotation for wheat or closely related species. Those integrated in this pro-

ject are described within Section 3.3.1. The annotation of transcription factors

in a microarray dataset, such as TRITIMED, can reveal the quantity of regu-

lation and the families of genes involved. This could have been extended to

inference of PGI networks, using co-expression in the TRITIMED data. How-

ever, this is not included as part of this research project. The lack of genomic

sequence data in wheat means it is not possible to identify cis-binding regions

(Su et al., 2010). The large 24 hour time interval between measurements in TRI-

TIMED also makes identifying causality through network reconstruction tech-

niques challenging. The time it takes for a transcriptome copy number change

to affect a change in the protein levels varies, critically, depending on the pro-

tein, and the quantity of ribosomes in the cell (Piques et al., 2009). Based on the

work by Piques et al. (2009), in Arabidopsis, around three hours would be a reas-
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onable time-interval to capture even the fastest protein translations in plants.

However, the GO process ontology does includes signalling pathway annota-

tions (GO:0023033), which provides some indication of enriched or active path-

ways within a microarray dataset. However, a topological analysis of these data

is not possible when using GO, as they only indicate membership of signalling

pathway, and it is not possible to reconstruct the full network without inform-

ation on the relatedness of processes. Identification of transcription factors

which bind to DNA promoter regions is relatively straightforward given the

relatively conserved nature of families of these domains. There are also many

plant transcription factor databases, which contain annotation for wheat or

closely related species such as the grasses. Those integrated in this project are

described within Chapter 3. The annotation of transcription factors in a mi-

croarray dataset, such as TRITIMED, can reveal the quantity of regulation and

the families of genes involved. This could have been extended to inference of

PGI networks, using co-expression in the TRITIMED data. However, this is not

included as part of this research project, given the lack of genomic sequence

data to identify cis-binding regions (Su et al., 2010), and the large time interval

between measurements in TRITIMED.

Analysis of the TRITIMED microarray data required statistical analysis to identify

the genes that have significantly changing expression with regard to compar-

isons across the independent variables (time and cultivar). Statistical analysis

was also used to identify the major trends in expression. Subsets of genes with

statistically significant changes in transcript levels were statistically dissected,

such as from groups in two-way-ANOVA (e.g. genes with interaction between

independent variables), or from the greatest contributors to a given coordinate

of variation in principal coordinates analysis. The statistical analysis was un-

dertaken without regard to the potential gene function, so annotation of these

subsets would be important in revealing the biological mechanism that under-

lies the observed changes in gene expression. The questions that were of in-
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terest included whether genes contributing to a principal coordinate of vari-

ation within an experiment represented the activation of a particular process

(e.g. Protein synthesis) or whether expression of genes with significant interac-

tion between independent variables may be attributed to the action of a process.

This is particularly important in this experiment as genes that have significant

interaction over time and between cultivars may reveal processes that respond

to drought and are differentially regulated between cultivars.

The analysis of the TRITIMED experiment therefore is highly dependent on

the coverage and quality of sequences on the Affymetrix wheat array. A high

coverage of quality annotations on the chip could reveal previously unknown

processes active in the plant drought response. It also increases the probab-

ility that the analysis will identify the processes that are most responsible for

the differences in yield stability between the varieties. For this reason the ma-

jor effort described in Part I of this thesis was the development of methods

to identify the annotations for biological functions and processes for the gene

transcripts represented on the Affymetrix chip, and for verifying the quality of

these proposed annotations. The predominant methods for Affymetrix Gene-

Chip annotation make use of multiple sources of annotation information. It is

essential, therefore, that the integration process combines information accur-

ately and consistently for subsequent use in the annotation pipeline. Data in-

tegration, is however, recognised as a major challenge for the life sciences in

general and no pre-eminent bioinformatics methods have emerged that solve

it completely. Rather than develop an ad hoc point solution for this particular

project it was considered more appropriate to build on earlier work at Rothams-

ted Research that created the Ondex system (Köhler et al., 2006) as a general data

integration framework for use in systems biology projects. As well as providing

significant useful pre-built functionality, the general approach used by Ondex

made it possible to study aspects of data integration processes and later evalu-

ate them for their contribution to the annotation process. The general problems
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of data integration and the approach used by Ondex, including the extensions

developed to fulfil the requirements of this thesis, are introduced in Chapter

2. The remaining chapters in Part I of this thesis address the important topics

of using integrated data sources to develop a new approach to gene function

annotation and the evaluation of this new method alongside other annotation

pipelines (Chapter 3).
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Chapter 2. A data-integration framework for sequence

annotation

The annotation of newly obtained gene sequences is a general problem in bioin-

formatics. It entails elements of both comparative sequence analyses and in-

tegration of functional annotation. Sequence comparisons allow the transfer

annotations from genes in closely related model organisms. Data integration

enables the collection and dissemination of potentially important functional in-

formation on genes from a large variety of resources. Data integration can en-

rich the more direct sequence-based methods. As has been described in Chapter

3.1.2(a), the research in this thesis has been motivated by the need to extract as

much value as possible from the additional information sources because of the

focus on the interpretation of transcriptome data from a partially-sequenced

cereal crop species (wheat) for which relatively little direct annotation informa-

tion can be found. In large part, the annotation problem in wheat arises be-

cause the wheat genome is so distant in evolutionary terms from the main

model plant species Arabidopsis thaliana where most of the direct evidence of

gene function has been obtained by the analysis of gene disruption and other

functional genomics methods.
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2.1 Aims and Objectives

The aims of this chapter are to:

• Describe the state-of-the-art in data integration.

• Outline the Ondex data integration platform.

• Describe the developments of Ondex needed to facilitate a functional an-

notation pipeline.

This will be achieved through:

• An overview of a cross section of tools and processes.

• A description of the Ondex architecture.

• A description of algorithms developed for workflow enactment and graph

traversal, reduction, and query.

2.2 Introduction

Many studies and reviews have suggested that data fragmentation and hetero-

geneity can be a limiting factor in systems wide analysis of biological data sets

(Köhler et al., 2006, Lysenko et al., 2010). Mochida and Shinozaki (2010) have

recently suggested that further understanding of plant molecular systems for

increasing crop yields will be dependent on integration of multi-omics data.

Similarly, the prediction of functional annotations for new sequences are of-
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ten limited by the quantity and quality of information available (Chapter 3).

This is particularly true in comparative genomic approaches where predictions

are dependent on sequence similarity to other proteins or genes of known or

documented function. The success of these methods generally depends on the

evolutionary distance, as determined from sequence similarity, between a new

gene and a similar gene of known function. It is assumed that the more similar

the gene or protein sequences the greater the probability they are functional or-

thologs. The diversity of functions within the sequences that are similar to the

putative functional ortholog is also important, as it can reveal the degree of sub-

functionalization within that gene family. Subfunctionalization can be indicat-

ive to the strength of the prediction, as gene families containing a greater di-

versity of functions as more problematic to predict function based on sequence

similarity. For example: genes involved in the plant pathogen-host response

have the greatest diversity of functions, given the high rate of evolution given

that plants are sessile. Conversely, genes encoding enzymes that are part of

central metabolism, like Glutamate Synthase, show a high degree of conserva-

tion even between evolutionary distant plants.

It has been demonstrated by Lysenko et al. (2010) that the functional informa-

tion relevant to adding enriched annotations to the genes from plants species is

distributed across many different databases. No single data source can there-

fore be relied upon to provide all potentially valuable annotation information.

The use of data integration to build a knowledgebase of plant gene functional

annotations was therefore a prerequisite for this project.

2.2.1 Data representation and integration

The primary goal of data integration should be to provide uniform access to a

set of heterogeneous data sources (Calvanese et al., 2009). This frees a user from
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needing to locate the data, and understand the technical details how they are

stored and accessed. Most importantly the user does not have to decipher the

semantic idiosyncrasies of each data provider. This uniform access also enables

computational queries and reasoning which can be composed against a single

unified semantic schema. Data integration systems that have a focus on unified

representations are referred to as global or mediated schemas.

Historically there are three types of integration strategy: link integration, view-

based integration, and data warehousing (Stein, 2003). Link integration was

spearheaded by the successful SRS system (Biowisdom, 2009), which linked

together entities in databases based on shared unique names or accession iden-

tifiers. However, successful link integration is problematic because it does not

account for semantic differences in concepts between databases, or in the am-

biguity or inconsistency in the use of identifiers. This can lead to semantic drift

when linking information on a given gene. Much has been made of the differ-

ence between view-based and warehouse-based data integration approaches

(Sheth and Larson, 1990), however in practical terms, the most difficult chal-

lenges of both these data integration approaches are associated with creating

and mapping information to a global schema. The choice of whether data are

transformed and warehoused into a single repository, or accessed remotely via

a federated system approach has been well studied and is generally considered

a largely solved technical issue. Current research in data integration has there-

fore moved on, from a consideration of structural representation, to semantic

representation and integration (Ziegler and Dittrich, 2004).

A unified semantic schema in practical terms, often takes the form of an existing

or new ontology, hierarchy or controlled vocabulary developed according to the

subject domain of interest. These can be described in a generic language like

OWL (Group, 2009, Smith et al., 2004), OBO (Smith et al., 2007), or more often in

a domain-specific description format. Incorporation of new data into a common

semantic schema therefore consists of identifying how entries within a database

33



relate semantically to the defined concept-types and relation-types within the

target semantic definition. These relationships can be explicitly stated if there

is a defined ontology for a data-source, in the form of mappings between the

originating and target ontologies. In the case of a data source whose structure

does not reference any formal semantics, considerably more work is required

to define the semantics and parse the data into an amenable form where the

semantics can be analysed.

2.2.2 Data representations for biological data integration

Demir et al. (2002) helpfully observes that any representation of data is often

a compromise between clarity, coverage and content. If we adopt a high-level

approach to data representation that encompasses a wide coverage of differ-

ent domains, we can isolate the data from the domain specialist and sacrifice

the clarity of the data; we may also lose the ability to accurately represent the

content. Conversely, data representations that emphasise data clarity are often

limited in their coverage, and over simplify the domain. Data content captured

by complex representations can be limiting in terms of both coverage and clar-

ity (Figure 2.1).

There are several frameworks and exchange languages for modelling and in-

tegrating biological data. Pathway Analysis Tools for Integration and Know-

ledge Acquisition (PATIKA) is a two tier framework with a data integration

server in the background and a simple web based service for querying the in-

tegrated data (Dogrusoz et al., 2006). Data in PATIKA are stored as a graph

based data model in a persistent Object Orientated (OO) database. Biological

processes in PATIKA are represented as states and transitions between them.

This is a process modelling representation that has early roots in computer sci-

ence e.g. in the Petri nets formalisation as described by Choo (1982) and in
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Figure 2.1: The compromises among Coverage, Content and Clarity when defining a
data representation.

more recent time has been popular for developing quantitative models of bio-

chemical pathways (Steggles et al., 2007). In PATIKA a biological entity such as

a protein may be represented multiple times within the data structure as dis-

tinct states, which are defined by an entity’s transitions such as phosphorylation,

formation of a complex, or transport to a different cellular compartment. Each state

and transition is defined in a hierarchical tree based ontology (Figure 2.2) (De-

mir et al., 2004). This data structure is powerful in describing cellular signal

transduction pathways, but is complex and presents a significant challenge for

communication with biologists as it diverges significantly from the now famil-

iar pathway representations found in biological text books and the MetaCyc

(Caspi et al., 2008)and KEGG (Kanehisa and Goto, 2000) biochemical pathway

databases. Another limitation is that the PATIKA data model is highly domain

specific and could not be easily adapted to other non pathway information, and

is exclusively tied to the PATIKA ontology.

The data integration platform BN++ uses the BioCore model, which is based

on a PostgreSQL relational database and can represent metabolic pathways,

transcription data, protein-protein interaction data, and signalling pathways

(Sirava et al., 2002). The BN++ platform is essentially a three-tier separation of

integration, analysis, and visualization. Because the BN++ ontology is essen-
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tially represented by UML and hard coded in its relational database, changes

and expansion of the underlying ontology is problematic requiring expert tech-

nical knowledge of the system.

A recent warehousing data integration system is the PROtein Function, Evolu-

Figure 2.2: The hierarchical tree based relation Ontology in PATIKA, showing a sub-
section of the transitions ontology Dogrusoz et al. (2006).

tion, Structure and Sequence database (PROFESS) (Triplet et al., 2010) database.

PROFESS wraps a large number of protein related databases and makes them

available via a single normalised SQL schema. A summary of the databases

wrapped by PROFESS is shown in Figure 2.3. Users and applications can query

the database via an SQL query, RESTful Web services, or a Web page.
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Figure 2.3: The PROFESS virtual relational data warehouse approach, showing all the databases wrapped by the framework. Broken lines around
databases represent a wrapper service, red links show how the integrated databases reference each other. (Triplet et al., 2010).
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Other data integration systems of note are: VTT (Gopalacharyulu et al., 2005),

which uses a hybrid of a relational database and an XML server (allowing more

flexibility in user contributed data) PRODORIC (Wingender, 2004), BioGRID

(Stark, 2006), Biozone (Birkland and Yona, 2006a,b, Shafer et al., 2006), and Path-

Sys (Baitaluk et al., 2006).

All of these approaches and systems share a common problem: they are not

easily expanded to incorporate other domains, and a change to the semantic

representation would require a major reengineering of the database. Further-

more, the semantics of the unified schema is not always explicitly stated and

is dependent on the implicit semantic conversion encoded by the wrapper or

parser code.

As well as data integration frameworks, a number of standardised information

formats have been developed for use in the biological sciences. These standards

facilitate the exchange of information, as well as providing a common target

schema for integration. Their widespread adoption and Application Program-

ming Interfaces (API)s represent a significant advantage over proprietary rep-

resentations of integration frameworks. For the representation of biochemical

pathways there are four main formats: SBML (Nishimura et al., 2009), CellML

(Miyazono et al., 2009), PSI-MI (Hermjakob et al., 2004) and BioPAX (BioPAX,

2011). SBML and CellML are modelling languages used for describing bio-

chemical pathways with direct links to simulation tools. They describe the same

process of states and transitions captured in the PATIKA system. The other data

standards are primarily concerned with representing interactions between bio-

logical entities (mostly proteins) rather than how quantities of entities (typically

metabolites or gene transcripts) change in a dynamic process model.

Systems Biology Mark-up Language (SBML) is a machine-readable format (XML)

for representing models of cell signalling pathways, metabolic pathways, bio-

chemical reactions, gene regulation, and many more dynamic processes. SBML

optionally allows the referencing of other ontologies such as the Systems Bio-
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logy Ontology (SBO) (Le Novère, 2006) and BioPAX. The usefulness of a given

SBML file for data integration therefore depends upon the implementation.

CellML is also an XML-based language that can represent systems of differ-

ential algebraic equations that model how quantities (e.g. of metabolites) flow

through a process.

The Proteomics Standards Initiative Molecular Interaction (PSI-MI) format was

developed for representing the experimental evidence that supports observa-

tions of molecular interactions. It is less expressive than SBML and BioPAX

and lacks the capacity to describe inheritance hierarchies of entity and relation

types. It has, however, been used by many databases providing molecular inter-

action data. The Biological PAthway eXchange (BioPAX) language (Demir et al.,

2010) is an expressive exchange format for describing biological pathways. It

uses OWL Web ontology language for describing pathways, and therefore aims

to be compatible with the Semantic Web framework for data integration (Rut-

tenberg et al., 2007). Figure 2.4 shows the BioPAX schema for representing path-

ways, interactions and biological entities. The breadth of the language means

is capable of expressing information stored as PSI-MI, and much of SBML.

Visualisation and abstraction provides a way of accommodating complex rep-

resentation without sacrificing clarity and flexibility to the user. Data can be

natively stored by a data integration framework in a complex representation

and yet still made accessible to the end user through a visual abstraction to a

more understandable form. An excellent example of this is Systems Biology

Graphical Notation (SBGN), which allow the abstraction of SBML into three

distinct graphical notation languages with associated visualisations. Its goal

is to provide a standard format that is capable of describing a wide variety of

models. Process Description Language (PDL) allows a user to see the temporal

flow of biochemical interactions in a SMBL network. Entity Relationship Dia-

gram (ERL) shows a relationship centric view, which represents the interactions

of an entity independent of time. Activity Flow Language (AFL) focuses on the
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Figure 2.4: The BioPAX owl ontology. Classes are shown as boxes and arrows repres-
ent inheritance relationships. The three main names of types of classes in
BioPAX are "Pathway" (red), "Interaction" (green) and "PhysicalEntity" and
"Gene" (blue) (Demir et al., 2004). An example of properties attached to an
instance of a Protein is given top right.

flow of information between biochemical entities in a network. An example of

a PDL representation of the insulin-signalling pathway created from an SBML

model is shown in Figure 2.5.

Recently, Semantic Web (Ruttenberg et al., 2007) approaches to data integration

have become increasingly widespread. The term Semantic Web is was origin-

ally coined by (Berners-Lee and Hendler, 2001) to refer to their vision of how

the world-wide-web should evolve to be fully machine-readable. The Semantic

Web was defined with reference to three layers of enabling technologies that

express the evolution of the Web (Figure 2.6), the first of which is the existing

HTTP and HTML standards on which the Web was founded. The second en-

abling technologies of Semantic Web were standards which allowed documents

to be self describing. This included eXtensible Markup Language (XML) and

the Resource Description Framework (RDF). The third layer describes the cap-
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Figure 2.5: Systems Biology Graphical Notation (SBGN) rendering the insulin sig-
nalling pathway (SBGN, 2011).

ability to link documents through shared terminologies and ontologies. Here

the term Semantic Web is used in a more constrained sense to refer to the set of

RDF based technologies, which together with Web Ontology Language (OWL)

have been used for data integration.

At the heart of the Semantic Web is the RDF (Beckett and McBride, 2004) lan-

guage which is a framework for describing knowledge as a directed-labelled-

graph of triples. Statements in an RDF graph are composed from subject-predicate-

object triples, where the subject of the statement identifies the target of the state-

ment, the predicate describes the trait to be described, and the object refers to

the predicate property that the given subject has. Using a Uniform Resource

Identifier (URI) allows each of the three elements of the triple to refer to a con-
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Figure 2.6: The layer cake of enabling technologies for machine readable documents,
which evolves into a semantic Web (Berners-Lee and Hendler, 2001).

trolled vocabulary or preferably formal ontology definition. If two triplet state-

ments reference the same URI, that means they refer to the same subject matter.

In this way complex attributes and relationships for an entity can be described,

using a consistent language and vocabulary that is applied across many entities.

Defined controlled vocabularies and ontologies are therefore an essential pre-

requisite for unifying RDF documents. These are provided by the RDF Schema

(RDFS), Simple Knowledge Organisation System (SKOS) (Isaac and Summers,

2009), and the Web Ontology Language (OWL).

OWL is an essential part of Semantic Web and has two major versions and a

number of sub-languages. For the first version of OWL these were OWL-Lite,

OWL-DL, and OWL-Full (Smith et al., 2004) OWL-Lite is a subset OWL-DL that

is restricted to cardinalities of 0 or 1 on constraints for attributes of concepts.

OWL-DL is a subset of OWL-Full that allows the expressiveness of description

logic but limits this to elements that are computationally complete and decid-

able. OWL-Full has maximum expressiveness with no computational guaran-
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tees. In OWL2 there is a similar categorisation of 3 sublanguages according to

syntactic restrictions each of which is more restrictive than OWL-DL: OWL2-

EL, OWL2-QL, and OWL2-RL (Group, 2009). OWL provides formal semantics

for defining individuals (e.g. the T-cell surface glycoprotein CD4) and their

properties (AA sequence length = 458). Axioms are declared on classes of indi-

viduals ((e.g. glycoproteins), which define the types of relationships permitted

between them. These axioms can then be used as a basis for reasoning.

Using RDF to describe knowledge with reference to shared ontologies is the

fundamental strength of the Semantic Web approach and potentially enables

compliant data to be queried across in a unified way. SPARQL is a language

for defining queries across triples (Prud’hommeaux and Seaborne, 2008). It is

capable of expressing required and optional graph patterns, as well as conjunc-

tions and disjunctions.

2.2.3 Data representation and integration in Ondex

The Ondex data integration system is a warehousing based approach that relies

on the semantic transformation through parsers of imported data to be compli-

ant with a unified schema, formally declared in the Ondex metadata. The On-

dex metadata can be defined by the user, however the recommended method

is to use or extend the global schema defined by the Ondex development com-

munity. This enables interoperability between instances of Ondex warehouses.

The Ondex metadata is composed of a simple hierarchy, with single inherit-

ance, where classes within the hierarchy are considered sub-classes of their an-

cestors.

An Ondex data warehouse is therefore composed of two graphs: a directed

graph and a tree. The directed graph describes data in terms of instances of

concepts (represented by nodes) interconnected by directed relations (repres-
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ented by edges), each of which have collection of associated name-value pair

attributes. These concepts and relations reference a tree structured controlled

vocabulary of metadata, which defines and describes concept-classes, relation-

types, and attribute-names. For example: Figure 2.7 shows how the information

“The enzyme Xanthoxin Dehydrogenase is encoded by the gene ABA2” can be

represented in Ondex. The tree structure of the metadata allows Ondex to rep-

resent the rule that all Enzymatic proteins are also a type of protein. This allows

enables queries based on more general terms, such as protein, rather than spe-

cifying every type protein. A user may import a protein-protein-interaction

(PPI) database, such as IntAct (Aranda et al., 2010), which does not contain ex-

plicit knowledge indicating that a given protein is an enzyme. It is still possible

to identify that the enzyme Xanthoxin Dehydrogenase is identical to the protein

of the same name in the IntAct database because the concept-class of one in-

herits from the other. A tree based metadata system is considerably less ex-

pressive than referencing an OWL or OBO ontology, as it does not permit any

other relation than is a or allow for representing more complex relations where

a concept-class inherits from multiple classes. However, a hierarchy represents

a middle ground in complexity between a full ontology and a simple controlled

vocabulary.

Ondex in relation to an RDF based representation has a number of similar-

ities and differences. Two Ondex concepts connected by relations could be

represented as an RDF subject-predicate-object triple. Similarly, attributes on

concepts can be converted into a triple representation. Representing attributes

on relations requires reifying Ondex relations into a new concept representing

a relation and which is linked via two new properties. Attributes can then be

connected via triples to the reified relation. In this way, Ondex and RDF repres-

entations are interchangeable, and import and export capabilities exist in On-

dex to achieve this. However, by design there is no requirement for a concept

in Ondex to be identified by a unique URI. A single concept may be represen-
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Figure 2.7: The Ondex data representation: concept and relation instances reference
data types in the metadata. An enzyme taken from ABA biosynthesis is
used as an example to show its instance representation in the Ondex graph,
and the type references in the Ondex metadata.

ted multiple times within an Ondex graph, as concepts are redundantly created

from each new data-source. This allows equivalent concepts to be connected

through an equivalent concept relation at a later point, and retained indefinitely

for provenance tracking, or collapsed into one abstract concept to simplify visu-

alisation.

2.2.4 Ondex: an integration framework

The Ondex data representation forms the core of an integration and visual-

isation framework, which enables a user to build integration workflows, load

pre-integrated knowledgebases, queries and analyses the knowledgebase with

visualisation using graph layouts and overlays of quantitative data. At the

heart of the Ondex framework philosophy is community development, and

an object-oriented modular architecture that exposes a Java Application Pro-

gramming Interface (API), which ensures plug-ins for parsing, export and ana-

lysis can be independently developed and incorporated into workflows. On-

dex is implemented as a series of layers (Figure 2.8): minimizing complexity
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and ensuring plug-ins are also straightforward to implement. The Ondex data

storage structure is abstracted above the database engine. Therefore, any data-

base can be used to store an Ondex Graph if an appropriate interface is writ-

ten. Workflow plug-ins can also be implemented irrespective of the data stor-

age engine. Currently data storage implementations exist for the Object Ori-

ented (OO) transactional database BerkleyDB (Oracle, 2011), a relation format

implemented using MySQL, and a fast Random Access Memory (RAM) stor-

age based on hash-tables. For fast searching of attributes on the graph, which

is a requirement for integration methods and text mining, a attribute search

API provides an additional layer of abstraction on the Ondex graph API, the

text search engine library Lucene (Foundation, 2011) currently implements this

functionality. A graph query API was created as part of this project, and provides

rule-based querying of the Ondex Graph API. The methodology for this is de-

scribed in Section 2.2.4. Additionally a Decypher (TimeLogic, 2011) API was

implemented as part of this thesis. It allows Ondex API concepts with sequence

attributes to be submitted to Decypher Field Programmable Gate Array (FPGA)

hardware, which implements hardware accelerated algorithms for the common

BLAST and HMMR sequence tools.

The first stage of data integration in Ondex is parsing (Figure 2.9). This in-

Figure 2.8: The major API layers within Ondex in order of increasing complexity. APIs
are dependent on those beneath them in the stack.

volves the technical transformation of the data from its native format to the

Ondex data format, and the semantic transformation of data to conform to the
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Ondex controlled vocabulary, defined in the metadata. Each source of data is

transformed into its own graph which is loaded into the Ondex structure. Pars-

ers are written as plug-ins, which can be developed independently from the

underlying Ondex backend source code by using the Java APIs. After data-

bases have been parsed into the Ondex data format, the second stage is usually

to identify equivalent concepts within the set of graphs parsed into the Ondex

knowledgebase. It is expected that there will be redundancy among concepts

and so an important step in the integration process is to identify the equivalent

concepts among multiple graphs. The methodology for identifying equivalence

depends on the nature of the data and in many instances finding equivalence

using accession identifiers is sufficient. However, more advanced plug-ins are

available that use fuzzy matching and stemming of names, alignment of sim-

ilar graph motifs, or comparisons of attributes such as sequence using BLAST

algorithms. For the data required for the applications described in Chapter 3,

accession and sequence-based matching was sufficient. After equivalent con-

cepts have been identified in the Ondex graph, subsequent workflows steps

will depend on the needs of the application. In the example workflow described

in Figure 2.9, a comparative alignment plug-in is used to create links between

FASTA sequence concept and proteins in other databases. The resulting links

and annotations are extracted by a query plug-in, and then exported as a tab-

delimited file. A suite of generic plug-ins are provided in Ondex, and some of

these have been described by Köhler et al. (2006) and (Taubert et al., 2009). A full

list of self documented plug-ins is available within the integrator menu option

when loading the Ondex software.

By referencing a common Ondex data structure and semantics, integrated data

can be used to both aggregate existing knowledge and infer new relationships

in the data. The workflow described in 2.9 produces the Ondex meta-graph

shown in Figure 2.10 by stage three. The Ondex meta-graph representation

uses the standard Ondex graph layout methods to visualise the metadata con-
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ID GO_Term Ontology Database
Ta.7657.3.S1_a_at GO:0009225 Biological Process UniProt
Ta.7657.3.S1_a_at GO:0009832 Biological Process AraCyc
Ta.7657.3.S1_a_at GO:0019567 Biological Process UniProt

TAIRUniProt
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API

Parser

Attribute search 
interface (Lucene)
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Figure 2.9: An example of a simple Ondex workflow to annotate novel sequences in a
FASTA file. Separate plug-ins enacted by the Ondex workflow parse differ-
ent databases into the Ondex graph format. The stages in the integration
process are (1), identifying equivalent concepts across data sources based
on accession (2), apply comparative genomics using sequence alignment
(3), extracting an annotation pattern from the graph (4), and exporting the
results for further analysis (5). Also shown are the APIs (red) used by each
plug-in (purple) to access data in Ondex, or specialist hardware.

tent of the graphs in the knowledgebase. The nodes in the meta-graph represent

concept classes and the edges represent the relationship types. In Figure 2.10

The Arabidopsis Information Resource (TAIR) database provides gene and pro-

tein annotations to GO and EC terms (Garcia-Hernandez et al., 2002). UniProt

contains GO and EC annotations but only to proteins, and is a rich source of ac-

cession cross references. AraCyc provides EC annotation of gene loci. EC2GO

provides mappings from EC terms to GO functions and processes. Together

the union of these GO functional annotations for proteins and genes provide an

aggregation of existing knowledge. Using EC2GO mappings also enables Ara-

Cyc protein-EC annotations to be linked to GO annotations, by inferring that
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the two relationships {protein, has class, EC} and {EC, has function, GO term},

are equivalent to {protein, has function, GO term}.

In order to enact sequential plug-ins such as shown in Figure 2.9, a way of

EC

FASTA
Nucleotide

Protein

GO function/process/component

Gene

Encodes

Has class

Has function|involved in|located in

Has function
| involved in
| located in

Similar
sequence

Figure 2.10: A subset of the meta-graph produced from the integration of the five data-
bases in Figure 2.9. The circles represent concept classes and arrows re-
lation types. The names in bold are classes of concepts and underlined
names relation types. The broken black lines represent equivalence rela-
tions identified from accessions, solid coloured lines show relations im-
ported from databases and dashed green lines are relations inferred from
sequence similarities of attributes using BLASTx and BLASTn algorithms.

formally defining and sharing workflow descriptions was required. This was

developed as part of this thesis and is described in Section 2.3.1. Additionally

the process of extracting existing knowledge about a concept within an Ondex

graph such as Figure 2.10 requires the ability to express queries relating one

concept-class to another via a series of rules. For example for the graph in Fig-

ure 2.10 to achieve stage 4 of the workflow in Figure 2.9, it requires a query

that can define a path from each query sequences, via genes, proteins and EC

terms, to GO terms. This problem is addressed in Section 2.3.4 in the form of a

Metadata-Graph based Query Engine (MGQE).
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2.3 Methods

This section contains a description of the four key developments, which were

a prerequisite to utilising Ondex for this research project. They form the basis

for the annotation pipeline that will be described in Chapter 3 and address the

requirements that have been outlined in this Chapter. (1) The development and

architecture of an Ondex workflow enactor is described, which allows plug-

ins to be sequentially executed on a shared Ondex graph. (2) This section also

outlines the architecture of a parallel neighbour-hood-search library for Ondex.

These methods forms a building block for (3) a graph-reduction algorithm for

merging equivalent concepts, and (4) a Metadata-Graph based Query Engine

(MGQE), which supports both general queries and simple inference methods.

2.3.1 Executing sequential processes in Ondex – a workflow en-

actor

Prior to this research project, all workflows in Ondex required hard coding via

direct calls to the Java API, and failure to correctly specify parameters resul-

ted in late failures at the point a plug-in failed. In order to provide a flexible

framework, where workflows could be stored, shared and reproduced, a XML

based file format was introduced. This lightweight format allowed a user to

initialise Ondex graphs using specified database storage layers, and define the

sequential enactment of plug-ins on a Graph. A structured system for defining

the arguments that a plug-in required to run was also introduced. This enabled

the a priori validation of Ondex workflow XML, and fail fast workflow man-

agement.

Figure 2.11 shows an example of a simple XML workflow that creates an On-
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dex representation of UniProt, which is linked to the ExPASy enzyme database

by finding equivalent EC terms based on the EC accession. ExPASy contains

both Protein-EC term annotations, and the complete EC nomenclature hier-

archy. The workflow described executes four separate plug-ins to achieve this.

The steps are as follows and reference the numbering scheme within Figure

2.11:

1. A named Ondex graph is initialised using a memory-resident hash-table

representation as the resulting graph is likely to be small.

ReplaceExisting this parameter is redundant in the instance of a memory

graph and can be set to true. It allows persistent graphs to be re-

loaded or replaced.

2. The ExPASy Enzyme database is parsed from the two flat-files enzclass.txt

and enzyme.dat, which can be found at ftp://ftp.expasy.org/databases/enzyme

the ExPASy ftp site.

InputDir this specifies the directory which must contains the two flat-

files

3. A UniProt XML file (The UniProt Consortium, 2010) is parsed into Ondex.

This can be obtained by selecting a species of interest from the UniProt

taxonomy databases, following the link to the full protein set, selecting

the download link, then downloading the XML file .

InputDir this specifies a directory from which to import all UniProt XML

files

Context information creates labelled sub-graph sets of proteins based on

EC terms

HideLargeScaleReferences excludes review like literature references ref-
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erencing many proteins.

GoFile the latest Gene Ontology in version 1.2 OBO format

4. A plug-in that identifies equivalent EC concepts based on the EC acces-

sion, and creates a equivalence relation between them.

ConceptClassRestriction specifies which concept-classes to attempt to

find equivalence within

CVRestriction determines the type of accession to match

IgnoreAmbiguity when true it includes accessions flagged as ambigu-

ous. As we are using EC terms on EC concepts this should never be

the case.

5. Exports the whole graph using the Ondex data exchange format files (OXL),

encoded in XML (Taubert et al., 2007).

ExportFile the file name of the OXL file to create

Figure 2.12 shows the design of the workflow enactor that takes a workflow

XML file such as shown in Figure 2.11 and after verifying that the arguments are

valid and complete, sequentially executes the plug-in elements. The workflow

enactor is intrinsically linked with the plug-in architecture for detecting and

loading plug-ins, which was developed together with fellow student Artem

Lysenko. The plug-in argument definitions, required as part of the plug-in API,

contain methods for verifying that the arguments for the plug-in are complete,

and of the correct scope and type. For example: a plug-in can require as a

parameter a single real number between 1 and 10, a list of URIs corresponding

to files, or a collection of name value pairs. More complex objects can also be

provided as serialised XML parameters which are converted to Java objects us-

ing the XStream library prior to validation by the plug-in (Walnes and Schaible,

2011). The philosophy of the workflow-enactor and plug-in registry is to fail
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1.

2.

3.

4.

5.

Figure 2.11: An example of a simple XML defined workflow. (1) A memory graph is
created. (2) The EC hierarchy is parsed from ExPASy flat files. (3) Uni-
Prot is imported from an XML file with assistance from the latest GO OBO
format definition. (4) An accession based mapping plug- optimised for
low memory usage is then run to create links between EC concepts based
on the EC accession. Finally (5) the graph is exported in the OXL format.

fast. This is essential as plug-ins within data integration workflows can be time

consuming, it is therefore desirable to fail before the workflow plug-ins are ex-

ecuted.
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Figure 2.12: An overview of the information flow within the workflow enactment pro-
cess. Black boxes are processes, and green boxes are information stores.
The registry which detects and initialises plug-ins is also included because
of the role of plug-ins in validating arguments.
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2.3.2 Parallel connective sub-graph search

A requirement of the plug-ins that will be described in Sections 2.3.3 and 2.3.4,

is the ability to find the sub-graph of nodes and edges within a graph that con-

nect with a query-concept. In this search, the user should be able to define how

nodes and edges in the graph should be traversed from using a rule-based ap-

proach.

A generic library was created to facilitate traversal of a connecting sub-graph

using a breadth-first-search similar to that of Lau (2007), which supports par-

allelisation. Figure 2.13 shows an information flow diagram of the procedure.

An Ondex graph with a labelled query concept forms the starting point. The

traversal procedure (1) then identifies all the relations connecting the query

concept that have not previously been encountered (recorded as a set of rela-

tions). These are then broken into candidates for traversal, which are composed

as a triple in the form source concept, relation, target concept. This set of triples

is placed into a work queue that is sorted according to depth (relations from the

query concept). A thread-pool continually removes triples from the head of the

queue (2) and passes them to a user-definable function, which evaluates if the

triple may be traversed. For example Figure 2.13 shows the implementation of

a simple rule to extract connected PPI data. If the user defined function returns

true, then process (2) writes the verified triple into the results sub-graph, and

applies the traversal procedure (1) to the target element of the triple. The thread

is then returned to the thread-pool to continue processing jobs from the queue.

When all threads are inactive in the thread-pool and the queue is empty, the

resulting sub-graph is returned to the user.

When a user submits a large number of query concepts to be interrogated, then

an alternative thread-pattern is executed. The procedure described in Figure

2.13 runs under a single thread but multiple procedures are executed in paral-
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lel. Experience has shown this is more efficient where a moderate number of

queries are required, as the thread related synchronisation costs are reduced.

Queue of candidates
Sorted by depth

Ondex Graph 3) Example traversal rule
valid(from, relation, to):
return TRUE IF

from-type = protein
AND relation-type = interacts
AND to-type = protein

1) Traverse one depth
FOR EACH (unvisited relations of concept in graph)

extract triple and add to queue

START query 
concept

2) Propagate valid paths
GET triple from queue
IF (valid against rule?)

Send to concept

add triple to queue

TRUE

Relation types
Interacts
Has function
Is similar to

Concept class
Protein
Gene
GO term
Query concept

Information flow
Candidate
Seed concept

n

TRUE|FALSE

4) Evaluate progress
WHEN Q is empty 
AND all worker 
threads are idle
FINISH

Empty?

Sub-graph
RESULTa

b

c d e

f
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b
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e
f

d
d
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d
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Figure 2.13: An information flow diagram of the sub-graph query search algorithm.
The starting point for the algorithm is an Ondex graph with one concept
labelled as the target of the query. The result is a sub-graph containing
the query concept and any connecting nodes and edges that confirm to the
traversal rule.
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2.3.3 Graph transformation to remove redundancy

The integration workflow, to be described in Chapter 3, requires the integration

of information from large sequence databases containing information about a

large number of plant species. Given that data are parsed to create redundant

concepts and relations in Ondex, the resulting graphs are expensive to store and

slow to traverse. Information is also redundant at the attribute level, which is

a particular problem with sequence data because of the data storage require-

ments. The query and traversal of such large graphs with millions of concepts,

and tens of millions of relations is often not practical. Therefore, a requirement

of this research project was to develop a method to remove concept redund-

ancy within the graph, without losing information on provenance. Provenance

is a particular concern because imported concepts are labelled with the data-

base they originated from together with information about supporting evid-

ence, such as experimental-type. In order to properly evaluate the contribution

of information sources to the final annotation predictions (Chapter 6.3), and

assign confidence values to predictions, provenance and experimental inform-

ation must be retained within any non-redundant graph. The relation-collapse

algorithm was developed to meet these needs.

The sub-graph collapser plug-in contains an algorithm for iteratively collapsing

groups of equivalent concepts, connected by an is a relation, in an Ondex graph.

Ondex parsers create redundant nodes and edges in the graph where the in-

formation in two or more databases intersect. These are mapped together through

equivalence relations. The collapsing of equivalent concepts can be achieved by

executing the sub-graph collapser plug-in, with a parameter defining the relation

type that defines equivalence in the pipeline. An additional parameter allows

attributes of concepts from collapsed concepts to be copied to the new super

node.
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The first step in the algorithm is the identification of clusters of fully equivalence-

connected concepts in the graph. This was done using the algorithm described

in Section 2.3.2. Once the clusters have been identified, they are iteratively col-

lapsed by the creation of a super-concept to replace the cluster. Attributes of

concepts within the cluster are transferred to the new super-concept and rela-

tions that connect the elements of the cluster to external concepts are reassigned

to the new super-concept. Provenance is retained by concatenating data sources

on the new super-node. Similarly, evidence and attributes are merged into a list

on the new super-node or transferred to the new externally connecting edges.

However, some information is lost through this approach, as it is no longer pos-

sible to attribute a particular source of evidence to a specific database. A work

around of this, employed in this thesis, was to store a data-source and evid-

ence pair as an element in the list. However, a more long-term solution would

require changes in the Ondex data-structure, to accommodate this. Finally, all

concepts in the cluster (excluding the super-node), together with all their con-

necting relations are removed from the graph. Three example clusters in Figure

2.14 (A) are shown being iteratively collapsed through (B) to (D).

2.3.4 Implementing a Meta-data based Graph Query Engine (MGQE)

The extraction of gene annotations, from an Ondex integrated graph, will be

described in Chapter 3. A requirement for this process is an algorithm that can

extract paths in the graph from a starting concept to a target annotation, using

a priori encoded biological rules. The basis for such an algorithm was intro-

duced in Section 2.3.2. However, at this stage, two important requirements are

missing:
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C D

A B

Figure 2.14: The sequence of operations conducted by the sub-graph collapse plug-in
A-D to collapse nodes in an Ondex graph. Solid edges represent relations
internal to a cluster, which are deleted. Dashed edges represent relations
that interconnect clusters, which are reassigned to a cluster super-node.
Black nodes are the original concepts and grey edges are the new super-
nodes.

1. A formal syntax is needed for defining graph-traversal rules. Further-

more, defining a query should not require technical knowledge or pro-

gramming skills, and must be accessible to a computer literate biologist,

who is better placed to codify biological rules.

2. To retain the provenance of where a candidate annotation had originated

from a sub-graph a full record of the path traversed across the graph must

be retained and attached to the resulting target annotation.
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Two example queries over an Ondex graph that codify a biological rule that

have been used in Chapter 3 are provided below:

1. Find all query sequences that have a similar sequence to a protein, and where

that protein has an annotated EC class.

2. Find all query sequences that have a recognised protein domain, and where

that protein domain has an annotated EC class.

These rules can both be expressed declaratively in first order logic (FOL). How-

ever, there are many variants of FOL syntax, and formal logic languages are

unlikely to be accessible to most biologists. Within computer science, a num-

ber of application specific languages have developed to provide formal query

languages for databases. For relational databases the standard is the Structured

Query Language (SQL), and for RDF graph queries SPARQL serves this pur-

pose. However, these languages are often tied to specific data-structure imple-

mentations, and would require complex adaptors to make them function on an

Ondex graph. Additionally, they do not represent a user-friendly syntax for

the non-computer-scientist. A number of similarly motivated projects have en-

deavoured to represent SPARQL queries graphically (Hogenboom et al., 2010).

In addition to supporting a query syntax that is user-friendly, the query engine

results must retain the full provenance of the query. To retain the provenance of

where a candidate annotation had originated from a sub-graph such as resulted

from Section 2.3.2 is insufficient. A full record of the path traversed across the

graph must be retained and attached to the resulting target annotation.

In order to address the first requirement, a graphical notation for defining valid
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routes through a graph was defined. This represents concept-class and relation-

type meta-data, represented as a graph, which are valid for traversal over the

Ondex graph. A start and finish concept-class on the meta-data-graph indicate

the query concept class and target annotation type respectively. Repetition of

meta-data types and cycles are valid for the meta-data-graph, but not permit-

ted in concept and relation instances in the Ondex graph. Figure 2.15 shows

an example of such a meta-data-graph query. In order for a path in the Ondex

graph to be valid it must contain the same order and types of concepts and re-

lations permitted by the meta-graph. A validation of this is that a sub-graph

composed of the paths returned by the query algorithm must have the same (or

subset) meta-graph as the query. Additionally, attribute restrictions may be ad-

ded to the meta-graph-query, for example: a requirement that a traversal across

an "is similar sequence" relation must have a bitscore greater than a set value.

The meta-data-graph shown in Figure 2.15 is implemented on the assumption

QueryStart Protein
Similar 

sequence to EC term

Target Annotation

Domain

Of class

Figure 2.15: An example query showing permitted paths in the meta-graph from the
query concept class to the target annotation class, traversing selected rela-
tion types.

that the Ondex graph is non-redundant, i.e. it has been processed by a graph

transformation algorithm as described in section 2.3.3. The equivalent query for

a redundant graph would include is a self relations for each concept in the meta-

graph-query, which would allow free traversal across equivalent concepts.

The Meta-data based Graph Query Engine (MGQE) builds on the graph-traversal
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algorithm described in Section 2.3.2. The algorithm executes in parallel against

the set of concepts that fulfil the type requirements of the starting node of

the meta-graph-query (i.e. for Figure 2.15 this corresponds to all concepts in

the graph of concept-class type query). The traversal rule introduced in Sec-

tion 2.3.2, instead of checking against a hard coded rule, verifies each from-

concept, relation, to-concept triple against the meta-data-graph, encoded in a

Java object-oriented (OO) model. The meta-data-graph is currently defined by

a simple flat-file form, which is parsed into the native Java object model. How-

ever, creating a GUI to generate the same Java OO model would be relatively

trivial. The meta-data-graph is implemented with a Java API that may be exten-

ded to perform more complex validations, as the full path history is submitted

together with the next candidate concept to the traversal rule checker. In ad-

dition to the sub-graph traversal algorithm described in Section 2.3.2, and to

fulfil the second requirement of tracking, the full provenance-path of the query

results is stored. This replaces the sub-graph results described in Figure 2.13,

and is implemented as a linked tree where each node references the previous

concept/or relation in the path. This minimises the memory requirements of

a large number of paths. The full set of paths is derived from recursion back

along the path from the terminal nodes, selecting those that fulfil the type re-

quirements of the finishing concept-class of the meta-graph-query.

An Ondex plug-in was developed to encapsulate the functionality of the meta-

graph-query algorithm API. The resulting annotations from query concept to

target annotation can be exported, together with the full path history (and as-

sociated provenance), in tab-delimited format. This functionality is used ex-

tensively within the pipeline described in Chapter 3. The plug-in can also be

used to return a sub-graph of the elements included in the traversal. The meta-

graph-query is currently provided in flat file-format by the user, however as

stated it is intended that a GUI for defining queries will be developed.
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2.4 Conclusions

This chapter has outlined the Ondex system, together with some key devel-

opments that were a requirement for the pipeline described in Chapter 3. A

workflow framework for initialising graphs and executing sequential plug-ins

was implemented. This forms the basis for all the Ondex workflows described

in this thesis. Additionally, a persistent mechanism of describing workflows

meant that workflows described in this thesis, are reproducible, and can be run

against current data when they becomes available.

A number of methodologies were developed as part of this research project.

The parallel connective sub-graph search was fundamental to the development

of the procedure for removing redundancy, and underpinned the architecture

of the Meta-data based Graph Query Engine (MGQE). The parallel computing

engineered into these methods enabled workflows to run in tractable time. The

reduction in graph space, by removing redundancy, allowed the workflows to

be run completely in RAM on a server (128GB RAM), which dramatically re-

duced their running time. The parallelisation of these algorithms meant that on

a server with 32 active processing threads, working with huge datasets became

tractable. With all the improvements described, the workflows described in

Chapter 3, took approximately two weeks on a high performance server, with

128GB RAM and 16 Intel hyper-threaded CPUs at 2300 MHz.

The meta-graph query algorithm, developed for extracting paths through a

graph, was the most important prerequisite to using data-integration in On-

dex for sequence annotation. It permitted the formal definition of biological

rules that can be applied to an integration Ondex graph, and resulting candid-

ate annotation exported for further analysis. These will be further outlined in

Chapter 3. Using parallelisation greatly reduced the time required to extract

annotations, and enabled regular annotation workflows to be re-run to test dif-
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ferent parameters, and as new data became available. It also allows for queries

to remain tractable as the size of the knowledgbase increases.
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Chapter 3. CoPSA: Improving gene annotation through

conjoint sequence alignment to an integ-

rated knowledgebase

3.1 Introduction

Gene functional annotations are a prerequisite to the effective analysis of gene

expression data. They allow significant over- or under-expressed genes to be

classified by their associated functional groupings and biological processes.

This can form the basis for further studies or as an aid to interpret other in-

formatics and statistical analyses. Structured annotation systems allow gener-

alization of annotation, which consequently enables in silico testing of general

hypotheses against the dataset, for example: The expression of genes that are com-

ponents of photosynthetic processes varies as the stress progresses. It also enables

data driven hypothesis generation, where computational and statistical meth-

ods suggest processes that account for the observed gene expression. For ex-

ample: the use of multiple testing to identify enriched processes, which form

the basis for new hypothesis.

The annotation of genes from non-model plants, of which wheat is typical,

presents a significant challenge. Their genomes are often large in size relative to

Arabidopsis and they lack or are not amenable to high-throughput technologies

for functional genomics. This has resulted in a scarcity of experimental valid-

ation of gene function. Given the continued reduction in the cost of sequen-

cing technology, and initiatives like the International Wheat Genome Sequen-

cing Consortium (IWGSC), the need to reliably transfer annotation from well-
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characterised model organism genomes to large numbers of new sequences will

continue to be a major requirement in crop bioinformatics.

This chapter presents a pipeline for the Conjoint Prediction of Sequence An-

notation (CoPSA). CoPSA is built around the Ondex data-integration frame-

work and is configured using data sources pertinent to plants; however the

principles of data-integration and annotation transfer are applicable across all

species. The performance of CoPSA is evaluated against other comparable

pipelines, using the sequences used to design the Affymetrix wheat microar-

ray as an example. The annotations generated by CoPSA were used as a basis

for further analysis of the durum wheat microarray data. This is presented in

Part II of this thesis.

There are many comparative genomic pipelines that propose functional annota-

tions for sequences using the ever growing corpus of functional annotations

from other species. The novelty of the CoPSA system lies in the integration of

multiple sources of primary annotations.

3.1.1 Data sources and structures

The construction of a sequence-annotation pipeline requires the consideration

of a number of possible strategies and parameters. A common strategy, and one

that is adopted here, is to link a nucleotide sequence to existing sources of func-

tional annotation based on a computational analysis of the primary structure

of the sequence. This process is broken down into three main computational

tasks, (a) sourcing functional annotations, (b) linking primary sequence to ex-

isting functional annotation, and (c) evaluating the evidence for transference of

functional annotations.

A number of computational techniques exist to predict the function of a new

sequence, based on its primary structure. Alignment to protein sequences with
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a known function is a common approach. Nucleotide sequence alignments can

be made directly against amino acid sequences using algorithms such as trans-

lated BLAST (Altschul et al., 1990). A statistically significant bidirectional match

makes it possible to infer potential functional-orthology between the new gene

and its equivalent in a model organism. This putative functional-orthology re-

lationship becomes the basis of transferring the annotation from gene in the

model organism to the new gene. A more complex phylogenetic prediction of

functional-orthology can be constructed using multiple sequence alignment at

the computational cost of aligning all the sequences within the target organ-

isms. Conserved sequence motifs across protein families can also be detected

using Hidden Markov Models built from protein sequence databases with al-

gorithms such as HMMR (Eddy, 2009, 1990).

The vocabulary and structure of protein and domain annotations, which form

the basis for transference, are an important consideration for downstream ana-

lysis. Possible annotation types range from free-text descriptions, controlled

vocabularies, hierarchies, and ontologies. Terms that form part of structured

classification systems facilitate more powerful computational analysis. In prac-

tice the requirements for the classification system depends on the nature of the

biological question and the required analysis. Common references for defin-

ing structured terms include the Enzyme Commission (EC) classification of

enzymes (NC-IUBMB, 1999), Gene Ontology (GO) of gene function, process

and cellular location categories (Ashburner et al., 2000, Ashburner, 1998), the

FunCat hierarchy of protein function (Ruepp et al., 2004) and COG functional-

ortholog groups (Tatusov et al., 2000, 2003). Various domain specific ontologies

have been developed to extend the Gene Ontology family with additional cat-

egories. The Plant Ontology Consortium (2002) has produced a number of cat-

egories including organ, tissue and cell type structures, developmental stages

(Jaiswal et al., 2005) and traits. When annotating genes to metabolic pathways, a

number of database or tool specific pathway classification systems can be found
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in the KEGG (Kanehisa et al., 2010), MetaCyc (Caspi et al., 2010) and Reactome

(Matthews et al., 2009) databases and their derivatives. These vocabularies for

annotation have been described in detail within Chapter 3.1.2(a), a subset of

which was selected for the biological use-case described in Part II. The target

for annotation within this chapter are therefore GO, EC and a controlled vocab-

ulary of transcription factor families.

In Chapter , the NetAffx and BLAST2GO pipelines were described in detail.

The annot8r and ArrayIDer pipelines, while not providing downloadable an-

notation for the Affymetrix wheat GeneChip, provide tools capable of auto-

mated assignment of annotation. The annot8r is provided as a software-tool

only, however ArrayIDer provides annotations for sequences from other spe-

cies and microarray chips. Their methods are described here, as a point of com-

parison to CoPSA.

The annot8r pipeline uses BLAST to align nucleotide or protein sequences against

the annotated portion of the UniProt database (Schmid and Blaxter, 2008). They

focus on the annotation of species without sequenced genomes, where genes

are assembled from transcript sequences, into database such as UniGene (Say-

ers et al., 2011). As such their pipeline, while being developed and demon-

strated on nematode sequences, addresses the same issues present for the wheat

Affymetrix GeneChip. While the tool does not specifically include EST as-

sembly, they indicate that within their overall pipeline they use the PartiGene

pipeline for EST assembly (Parkinson et al., 2004) and the prot4EST tools for

optimally translating EST to proteins (Wasmuth and Blaxter, 2004). The an-

not8r pipeline annotates sequences with GO, EC, and KEGG pathways. BLAST

was used to align sequences against the proportion of UniProt that has usable

annotation, using user defined BLAST parameters. EC and KEGG pathway

annotations for proteins are included from the ENZYME database (Gasteiger

et al., 2003), and UniProt annotations provided by KEGG (Kanehisa et al., 2010),

respectively. The user may specify at this stage to include annotations which
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have the GO evidence code Inferred from Electronic Annotation (IEA), but in-

clusion is not recommended given the potential for accumulating error as dis-

cussed in Chapter . Confidence in an annotation transferred from a similar

protein is based on two simple measures. The bitscore and e-value of the best

hit supporting the annotation, and the proportion of all the protein hits that

support the annotation. The limitations of the pipeline are that the exclusion of

sequences without annotation at an early stage allows annotations to be trans-

ferred from suboptimal alignments. If a highly similar protein of unknown

function is present in UniProt, for a given query sequence, it is excluded a pri-

ori. This skews the overall e-values (which are based on sequence diversity),

and prevents the tool from accounting for the distance of the best protein align-

ment, to the best protein with annotation. The simple inclusion or exclusion

option for IEA, without evidenced based weighting of annotations, means that

if a user chooses to include IEA, then it may be included in annotation at the

expense of experimental annotation. Conversely, if a user excludes IEA then it

is at the expense of coverage.

3.1.2 Evaluating the quantity and quality of functional annota-

tion

Evaluating the quality of annotation, in terms of quantity and precision, is es-

sential for developing a functional annotation selection strategy for transferring

knowledge by sequence similarity. The most common strategy in Bioinform-

atics is to use precision and recall to this end. Estimations of precision and

recall can be calculated relative to a gold standard of very high quality annota-

tions. Qualitative precision and recall metrics taking into account the hierarch-

ical structure of the GO have been proposed by both Kiritchenko et al. (2005)

and Pal and Eisenberg (2005), however these measures are based on single an-
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notation comparisons. Comparisons of multiple sets of annotations, which is

relevant to sequence annotation has been developed by Verspoor et al. (2006),

based on the hierarchical measures proposed by Kiritchenko et al. (2005). The

Verspoor et al. (2006) precision and recall metrics calculate the hierarchical dis-

tance to the closest term in the gold standard annotation for that gene for each

GO term that annotates a gene. The resulting recall or precision for that gene is

the mean of these scores for all terms.

Hierarchical precision (Equation 3.1), recall (Equation 3.2), and f-score (Equa-

tion 3.3) is defined for an annotation set F(g) on a gene g, with reference to a

gold standard set by R(g) (Verspoor et al., 2006). For the GO term t, the function

anc(t) returns a term and all its ancestors that are connected by is a and part of

relations within the GO ontology.

hPrecision(F, R, g) =
1

|F(g)| ∑
a∈F(g)

max
r∈R(g)

|anc(r) ∩ anc(a)|
|anc(a)|

(Equation 3.1)

hRecall(F, R, g) =
1

|R(g)| ∑
r∈R(g)

max
a∈F(g)

|anc(r) ∩ anc())|
|anc(r)|

(Equation 3.2)

hF(hPrecision, hRecall) =
2(hPrecision)(hRecall)

hPrecision + hRecall
(Equation 3.3)

A prior assumption in the calculation of precision is that the gold standard an-

notation is complete, and consequently all surplus annotations in the predicted

annotation are the result of false positives. Unfortunately, no such experiment-

ally verified and complete functional annotation exists for every gene on the

wheat Affymetrix chip. Consequently, indirect measures of the quality of an-

notation must be used as a proxy for the quality of novel predictions. The func-

tional annotation evaluation metrics implemented in the AIGO library were

used for this purpose. These metrics are described in Section 3.2.3. The recall

calculation, however, can still be made using an incomplete set of high quality

annotations, with the usefulness of the measure being proportional to the com-

pleteness of the gold standard.
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3.1.2(a) Strategies for selecting the best functional annotations

A common method, for inferring gene function through sequence similarity, is

to simply take the best hit against a model organism. However, the best hit

from one species to the next may not reciprocally be the best hit. Whereas

a slightly worse alignment, that is more reciprocal may be a better candid-

ate for transference of function. Ideally a full phylogenetic tree should be re-

constructed, based on multiple species, which allows the evolutionary history

of the gene family and its subfunctionalizations to be leveraged in predicting

functional-orthologs. In some pipelines, a pre-computed database of known

functional-orthologs are used to transfer functional annotation; this approach

is used in the NetAffx pipeline (Liu et al., 2003). In the situations where the

sequence is novel and does not exist in a database of established functional-

orthologs, a transfer function based on reciprocal best hits is often used (Bork

and Koonin, 1998, Tatusov et al., 2003). This approach, however, only predicts

ancestral functional-orthologs, and does not provide paralogous genes in the

family that are sufficiently conserved that they may also have a shared func-

tion. It therefore results in a drastic reduction in coverage of annotation, in

the target organism. More advanced techniques cluster proteins into tree struc-

tures of functional-orthologs and their paralogs Li et al. (2003), Ostlund et al.

(2010b) or relate the novel sequence to an existing phylogenetic tree (Datta et al.,

2009b). However a severe limitation of these approaches is that they rely on

reasonably complete sequence information in a species. For an incompletely

sequenced organism like wheat, the reciprocal blast hit is vulnerable to produ-

cing false positives, because it is highly likely that a more similar sequence for

the reciprocal hit exists in wheat, but has not yet been sequenced. As discussed

in Chapter , wheat sequences on the GeneChip are mainly UniGenes, created

from assembled EST sequences. They are often incomplete or inaccurate; this
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may also result in incorrect alignments, and disrupt bidirectional results.

Provenance is also an important consideration in transferring functional an-

notations. The true functional-ortholog may be known, but only have electron-

ically inferred annotation. Whereas another very similar sequence may have an

experimentally validated function. In this case it may be appropriate to trans-

fer the more trustworthy annotation. Each annotation predicted by CoPSA is

accompanied by multiple provenances of information, which for BLAST de-

rived annotations include the protein and species of origin, sequence alignment

scores, gene ontology evidence code, and database sources. Database proven-

ance for an annotation may in turn be a composite of multiple databases, for

example: a sequence aligns to a protein sequence in Gramene, which has a

pathway entry and EC term in AraCyc, which has a translation to GO term

in EC2GO mapping. This chapter concerns the definition of a novel metric

for transforming some of these types of provenance information into a confid-

ence score. This confidence scoring function is restricted to BLAST derived an-

notation, as domain-derived annotation scores are not directly comparable and

Gene Ontology (GO) evidence codes are absent in GO annotation of domains

for the integrated databases.

3.1.3 Aims and Objectives

The broad aims of the work in this chapter are to:

• Improve the quality and quantity of gene-transcript annotation in non-

model organisms.

• Provide metrics for the confidence in a given annotation.

• Preserve the provenance of annotations.
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• Automate the above in a pipeline that can be re-run when new data be-

come available.

This will be achieved through:

• Identifying similar genes in other organisms.

• Identifying functionally conserved domains.

• Sourcing annotations of multiple databases and evidences.

• Providing a unified data structure and semantics for extracting annota-

tion.

• Extracting potential annotations by rule based reasoning over data.

• Selecting sub-sets of annotation based on metrics for quality.

This work will be evaluated by:

• Quantifying the contribution of sequence alignment methods, primary

data-sources, and data integration.

• Comparison to other sequence based annotation pipelines using precision

and recall.

• Empirical metrics of to compare the properties and semantic content of

annotations.
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3.2 Methods

With the aim of exploiting integrated data resources to enhance gene sequence

annotation, CoPSA was developed as a four-stage process:

1. Data aggregation: selecting and extracting the required data resources

and transforming them into a technically and semantically homogeneous

knowledgebase.

2. Data integration: the identification of equivalence across data sources, in-

cluding the data alignment of the redundancies created by data aggrega-

tion, in which equivalent concepts and relations are merged together.

3. Conjoint sequence alignment: identifying similarity from query sequences

to proteins and presence of Pfam domains within sequences then inferring

new gene-protein and protein-domain similarity relations in the know-

ledgebase.

4. Selection: Applying biological rules to traverse the integrated dataset and

extract the best candidate annotations.

Methods concerning the data (1) aggregation, (2) integration, and (3) conjoint

sequence alignment are described in Section 3.2.1 and methods concerning the

(4) selection of candiatate annotations from putative functional-orthologs are

described in Section 3.2.2.
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Figure 3.1: The integration of Enzyme, Gene Ontology and Transcription factor information from public data into a gene annotation pipeline
using conjoint protein and domain alignment. An evaluation of the pipeline is against three other independent gene sequence based
annotation pipelines.
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3.2.1 Construction of a knowledgebase

3.2.1(a) Data aggregation

The aggregation of relevant data into Ondex targets three main types of annota-

tion, which were identified as important to the annotation process (Chapter

3.1.2(a)). These consisted of information about enzymes (EC terms), transcrip-

tion factor families, and GO annotations. These three annotation types were

prioritised as important in Chapter 3.1.2(a) and form the basis for the analysis

in Part II of this thesis. The source databases for these annotation types are

summarised in Table 3.1. These annotation types were selected deliberately as

complementary and with potential for developing the appropriate cross refer-

ences via ec2go (The Gene Ontology Consortium, 2011c) and through Ondex-

defined mappings. Additionally sequences and domain structural-properties

were included, which allowed candidate annotations to be assigned to query

sequences, based on HMMR and BLAST-derived similarities.
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Table 3.1: Sources and versions of databases aggregated into Ondex for annotations

Database Version (Retrieved) Components Species

KEGG 53 (15/02/10) PATHWAY, BRITE, KO, GENES, LIGAND Viridiplantae
(see Appendix 1)

AraCyc 6 (14/10/09) All Arabidopsis thaliana
ENZYME (22/02/10) All
TAIR/JCVI 9 (15/04/10) GO annotations Arabidopsis thaliana
Gramene v29-Feb09 (15/04/10) GO annotations Oryza sativa

UniProt 2010_04 (01/04/10) SwissProt/TrEMBL
Saccharomyces cerevisiae
Escherichia coli
Viridiplantae

GOA-Arabidopsis (TAIR) (15/04/10) GO annotations Arabidopsis
GOA-Oryza (Gramene) (15/04/10) GO annotations Oryza
GOA-Solanaceae (15/04/10) GO annotations Solanaceae
Sol Genomics Network (SGN)

external2go (04/04/10)

GO annotations
ec2go
interpro2go
pfam2go
prosite2go

AGRIS (26/09/09) AtTFDB, AtRegNet Arabidopsis thaliana

Plntfdb 3 (26/09/09) FASTA Viridiplantae (see Table 3.2)

Grassius (26/09/09) FASTA

Zea mays
Orzya sativa
Sorghum
Saccharum

Pfam A 24 (06/02/10) Domains
InterPro 24.0 (06/02/10) Domain annotations
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Plant genes are assigned to metabolic pathways in public databases such as

KEGG (Kanehisa et al., 2010), AraCyc (Mueller et al., 2003), Reactome (Mat-

thews et al., 2009) and Arabidopsis Reactome (Tsesmetzis et al., 2008). However,

because plant Reactome pathways are inferred using OrthoMCL and therefore

poorly represented (Lysenko et al., 2010), and Arabidopsis Reactome at the time

of writing was out of date, being based on the manual integration of the out-

dated KEGG release 38 (April 2006) and AraCyc v3.5 (February 2007). There-

fore, these two resources were excluded from the CoPSA aggregated process.

There is considerable semantic diversity in the definitions of metabolic path-

ways between databases, which vary in scope, structure and granularity. For

example, in terms of their scope they differ in their inclusion of signalling path-

ways and post-translational modifications as reaction steps in metabolic path-

ways. When considering structure and granularity of pathway databases, for

example, KEGG contains large pathway maps grouped in 11 large metabolic

categories, whereas AraCyc has a deep tree-hierarchy of pathways that resolves

down to leaves representing much smaller pathway units. Individual AraCyc

pathways typically contain much smaller groups of reactions than KEGG (Karp

et al., 2002).

Metabolic pathways are commonly composed of units of metabolic reactions

each of which has products, substrates, and other accessory molecules such as

enzymes and cofactors. Common products and substrates link reactions to-

gether; some compounds form the spine of the pathway, whereas others act

as accessory metabolites to the main chain of compound synthesis or catabol-

ism. Computationally identifying the spine of the pathway is a challenge. For

KEGG, the RPAIR database formally categorizes the role of reaction pairs in the

reaction (Kanehisa et al., 2006). In AraCyc the main reactions must be manually

inferred from the pathway diagram, which would be non trivial to do compu-

tationally.

Integrating metabolic pathway data therefore requires a complete identifica-
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tion of equivalent reactions in each database. However, there are no universal

unique identifiers for reactions that make up pathways. Finding equivalent re-

actions between databases is extremely challenging, as the completeness and

specificity of the compounds with which the reaction is described are depend-

ent on the database. For example, where a “reduced electron acceptor” is re-

quired in a reaction but unknown, AraCyc will place a textual place-holder in

the reaction, whereas KEGG omits the compound altogether. For example, in

the conversion of phaseic acid to dihydroxyphaseic acid: AraCyc RXN-8154

(Equation 3.1) includes unspecified electron accepters and reducers.

phasic acid+ reduced electron acceptor −⇀↽− dihydroxyphasic acid+ oxidized electron acceptor

(Equation 3.1)

However, KEGG R07577 (Equation 3.2) omits both unknown electron acceptor

from the equation. There are also disagreements on EC numbers assigned to

reactions, or differences in their specificity.

phasic acid −⇀↽− dihydroxyphasic acid (Equation 3.2)

Poolman et al. (2006) have identified a large amount of erroneous duplicated

reactions in KEGG. They also identified ambiguity in metabolite identifiers and

unbalanced reactions. These problems mean that finding equivalent reactions

between pathway databases is a difficult task, which frequently requires ex-

pert assistance. For example: Radrich et al. (2010) have built high quality integ-

rated SBML metabolic networks from KEGG and AraCyc using curator assisted

semi-automated methods. Similarly, Tsesmetzis et al. (2008) used the Reactome

framework to manually integrate KEGG and AraCyc and thereby identify dif-

ferences and inconsistencies. Taubert et al. (2009) have previously described the

use of graph visualisations in Ondex as a tool for compare the content of the

KEGG and AraCyc databases.

For these reason, when developing the integration of pathway information in
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the Ondex knowledge-base for CoPSA, only Enzyme Commission (EC) num-

bers were considered, as equivalence can more readily be found between EC

entries in data sources. A full description of the role these EC numbers play

in classifying enzyme function has been described in Chapter 3.1.2(a). The EN-

ZYME parser in Ondex works on the flat files downloadable from ExPASy and

was already available in Ondex. However, modifications were required to in-

clude protein and domain annotations in the database.

GO annotations for the TAIR and Gramene databases were extracted from the

Gene Ontology Annotation (GOA) file format from the GO Website. An exist-

ing parser in Ondex was available for the GOA file format, but this required

updating for this use-case. UniProt annotations were parsed from the UniProt

XML files by adapting the existing Ondex parser to include GO annotations

and UniProt Evidence Codes. The whole Gramene database, which contains

GO annotations for rice and a large number of grain species, was imported into

Ondex using the existing parser, which worked against the Gramene flat-file

data export.

For the purposes of mapping Pfam domains to Gene Ontology terms, the In-

terpro2go database (Hunter et al., 2009) was imported into Ondex. These data

were parsed using the existing Ondex plug-in for the external2go format defined

by the Gene Ontology Consortium. An InterPro XML parser was written to

provide mappings between Pfam and InterPro accessions.

The data-sources selected for transcription-factor annotation were chosen in or-

der to represent a broad range of species. AtTFDB (Davuluri et al., 2003) is

part of the Arabidopsis Gene Regulatory Information Server (AGRIS) (Palan-

iswamy et al., 2006), and contains 2,661 (December 2011) putative Arabidopsis

thaliana transcription factors identified through the presence of a DNA bind-

ing motif, sequence similarity to a known transcription-factor, and literature

curation. Genes were divided into 50 transcription-factor families. For com-

putational predictions, AtTFDB uses a combination of HMM profile search and
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iterative BLAST (e-value < 1×10−5), however this provenance information was

not preserved in the AtTFDB FASTA file. The Plant transcription-factor data-

base (PlnTFDB) (Riaño-Pachón et al., 2007) contained transcription-factor pre-

dictions based on HMM profile searches of 20 species (Table 3.2). PlnTFDB di-

vided genes into 84 transcription-factor families using domain-based classifica-

tion rules. The Grass Regulatory Information Services (Grassius) (Yilmaz et al.,

2009) provided transcription-factor predictions for four grass species (Table

3.2), of which only Saccharum is not included in PlnTFDB. Grassius uses a com-

bination of BLAST (e-value ≤ 1×10−5) with an InterPro-scan of DNA-binding

domains. It uses a combination of PlnTFDB and AtTFDB protein-family classi-

fication systems.

Table 3.2: The species represented in the PlnTFDB database

Group Species

Bangiophyceae Cyanidioschyzon merolae
Galdieria sulphuraria

Prasinophyceae Micromonas pusilla CCMP1545
Micromonas sp. RCC299
Ostreococcus lucimarinus
Ostreococcus tauri

Chlorophyceae Chlorella sp. NC64A
Chlamydomonas reinhardtii
Coccomyxa sp C-169

Bryophyte Physcomitrella patens

Lycopodiophyta Selaginella moellendorffii

Monocot Oryza sativa subsp. indica
Oryza sativa subsp. japonica
Sorghum bicolor
Zea mays

Eudicot Arabidopsis lyrata
Arabidopsis thaliana
Carica papaya
Populus trichocarpa
Vitis vinifera
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3.2.1(b) Data integration

There were two stages to data integration in CoPSA: semantic alignment and

identification of equivalence. Semantic alignment was mostly dealt with at the

parser stage, where data within each database were transformed into concepts

and relations that were consistent with Ondex metadata. Data from each source

correspond to unique concepts and relations redundantly across data sources in

the Ondex graph, requiring the creation of a new concept or relation, even if an

equivalent exists from a previously parsed element in another database. This

has a number of advantages, which have been outlined in Chapter 2. However,

this duplication of data between sources is expensive in terms of resources,

which is a particular concern for this Ondex application. It involves large se-

quence databases that are transformed into millions of concepts and tens of

millions of relations. The identification of equivalent concepts within the graph

(Figure 3.2 ) was a requirement both for executing cross database queries and

for merging equivalent concepts to reduce memory requirements. Table 3.3

shows the identifiers that were used within this use-case to map equivalence

between concepts in Ondex for each class of concept relevant to this application.

More types of identifiers were present in these data sources, but these were not

included as indicators of equivalence, either because they did not overlap with

other data sources or because they were too ambiguous in the context of the

concept class for this use-case.
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Table 3.3: Identifiers used to map equivalence for Ondex classes and concepts.

Class of Concept Identifier type Example id Reference

Protein UniProt P43291 (The UniProt Consortium, 2010)
AGI locus At1g10940 (TAIR, 2007)AGI models At1g10940.1
SGN 1631 (Mueller et al., 2005)
TIGR locus LOC_Os09g38320 (Yuan et al., 2003)TIGR models LOC_Os09g38320.1

Biological Process

Gene Ontology
8150

(Ashburner et al., 2000)Molecular Function 5575
Cellular Component 3674

Enzyme Commission Enzyme Commission 1.1.1.2 (NC-IUBMB, 1999)

Protein Domain Pfam PF01160 (Bateman, 2004)
InterPro IPR017442 (Hunter et al., 2009)
PROSITE PS01252 (Hulo et al., 2004)
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Figure 3.2: An example of the identification of concept equivalence on an Ondex graph
containing four different data sources.

A protein is encoded by a single RNA transcript, which in turn is encoded by

a single genomic locus. In the reverse relationship, a locus can yield multiple

RNA transcripts, as a consequence of alternative splicing, each of which yields

a different protein. As a consequence a database accession which identifies a

protein, also unambiguously points to a single loci. However, a gene locus can-

not be used in the same way to identify a protein. Some databases such as Ara-

Cyc, and the transcription factor databases described, only provide annotation

to a gene locus. As the consensus sequences on a microarray represent RNA

transcripts, if ambiguity is to be avoided, these consensus sequences cannot be

inferred the function assigned to a gene loci. In some instances alternative spli-

cing can result in differences in the function, process, and cellular location of a

protein. For example: the loci Ppo-A1 in wheat encodes seven isoforms, only

one of which is known to be a functional polyphenol oxidase (Sun et al., 2011).

However, without allowing inference to proteins from gene-loci, many poten-

tial annotations may be unusable. For this reason in this integration procedure,

accessions which identify gene loci are permitted on proteins. This allows en-
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zymes concept from AraCyc, which are identified only by an Arabidopsis Gene

Identifier (AGI) locus (TAIR, 2007), to be mapped as equivalent to proteins in

UniProt, based on the AGI locus.

Additionally 100% sequence identity of sequences was also used to identity

identical proteins between databases. In some instances different gene loci code

for identical protein sequences. In these instances using sequences as a means

to identify equivalence may introduce ambiguity. However, in terms of func-

tion these proteins are likely to be identical, so this will not have an adverse

effect on this pipeline.

GO and EC terms were unambiguously mapped using their respective types of

accession. Obsolete terms (which were not found in the current release of GO

or EC), were not translated to their current equivalent term (if any), as this was

done at a later stage to preserve provenance for statistics on obsolescence.

After clusters of equivalent concepts were identified in the graph, and rela-

tions indicating equivalence created to link these together, the resulting graph

is large and redundant. The size of the graph, which for this CoPSA pipeline

was millions of concepts and tens of millions of relations, is a challenge for

computation and storage. To address this issue, the redundancy removal meth-

odology, as described in Chapter 2, was applied to the graph.

3.2.1(c) Conjoint Sequence-Alignment

The integrated Ondex knowledgebase described above is generic to the annota-

tion of any plant gene sequence. However, the alignment methodology for con-

sensus nucleotide sequences presented in this section has been specialised for

use with plant Affymetrix GeneChip arrays. While the wheat Affymetrix array

is the focus of the main use-case in Part II of this thesis, it was considered im-

portant to demonstrate and evaluate the CoPSA methods against all the avail-

able Affymetrix plant species GeneChip arrays. The arrays used in this analysis
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are listed in Table 3.4.

Strictly, the annotation of an Affymetrix GeneChip concerns the sequences of

Table 3.4: The number of consensus sequences for each Affymetrix GeneChip (respect-
ive species only), and point at which NCBI taxonomony divides from Ara-
bidopsis thaliana.

GeneChip Consensus sequences Taxonomy divides from Arabidopsis at:

Sugar Cane 8,224 Class: Liliopsida
Tomato 10,038 SubClass: asteroids
Vitis Vinifera 16,436 Class: Liliopsida
Maize 17,555 Class: Liliopsida
ATH1-121501 22,746 Class: Liliopsida
Barley1 22,782 Class: Liliopsida
Cotton 23,977 Order: Mavales
Citrus 30,219 Order: Sapindales
Rice 57,194 Class: Liliopsida
Medicago 61,035 Order: fabid, Fabales
Soybean 61,035 Order: fabid, Fabales
Wheat 61,115 Class: Liliopsida
Poplar 61,251 Order: fabid, Fabales

the probe sets used to fabricate the array. However, for most purposes it is

more appropriate to use the consensus cDNA sequence, which is derived from

assembled ESTs and used by Affymetrix as the basis for the selection of the ar-

ray probe set sequence. This use of consensus sequences instead of probe-sets

is consistent with the approach used by Affymetrix (Liu et al., 2003) and others

(Frickey et al., 2008) for cross-species microarray sequence comparison. Dai et al.

(2005) have made a strong case for re-annotating the GeneChip probes against

current EST databases, as the original consensus sequences were based on more

limited transcriptome knowledge than currently exists. A re-annotation of probes

would reveal ambiguities where a probe-set that was designed to detect unique

expression of an EST according to previous EST databases is actually hybrid-

ising with a previously unknown sequence. Despite some potential advantages

in re-annotating the probe sets it was considered more appropriate for this pro-

ject to re-annotate the original consensus-sequences because they provide a vi-

tal point of comparison to other published analyses, and annotation pipelines.
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For sequence alignment between proteins and the consensus array sequences,

a translated-alignment algorithm that is closely analogous to BLASTx (Altschul

et al., 1990) was used. For performance reasons, the Decypher Tera-BLASTx tool

was utilised, which was run on a TimeLogic Field-Programmable Gate Array

(FPGA). This allowed the six frame alignment of nucleotide sequences to mil-

lions of amino acid sequences within a reasonable time-frame (<48 hours using

a SeqCruncher card). An e-value threshold of less than 1×10−4 and bitscore

of greater than 50 was used to pre-filter hits. This means that the probability

of finding at least one HSP by chance for that bitscore is 1×10−4. Equation

3.3 shows the relationship between e-value and the probability of finding at

least one High Scoring Pair (HSP) at the given score by chance (Karlin and

Altschul, 1990)). The other parameters were six-frame-query translation, word

size 4, banded gapped alignment, blosum62 matrix, open penalty -11 and ex-

tends penalty -1.

P = 1 − e−evalue (Equation 3.3)

A plug-in module for Ondex was created to convert sets of array consensus

transcript sequences and amino acid sequences from protein concepts captured

in the CoPSA knowledgebase, into FASTA query and target files respectively.

Tera-BLASTx was executed from within the Ondex plug-in via a generic Decypher

interface that was written for this purpose. The tab-delimited file of sequence

comparison hits was processed by the plug-in, which created a has similar se-

quence relation between each consensus-sequence-query concept and the pro-

tein hit. Properties such as e-value, bitscore, alignment length, and translation

frame were stored as properties of the relationship.

The hmmscan program that is part of HMMER 3.0rc1 was used for profile

searching (Eddy, 2009). Six frame translated consensus sequences were scanned

against version 24 HMM profiles from Pfam A. The gathering thresholds (GA)

were used as a score cut-off, which are manually defined by Pfam on a per

model basis. An existing plug-in was adapted to work with the new version of
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HMMER which created a has similar sequence between consensus sequences and

Pfam protein domain concepts.

The product executing both the described alignment plug-ins was a graph con-

taining relations connecting the query Consensus Sequence concepts to proteins

and domains. A schematic of the types and properties of relations is shown

in Figure 3.3. By consequence, proteins and domains linked the consensus se-

quences indirectly to a large range of information in the knowledgebase, some

of which may form potential annotation of those sequences.

Consensus 
Sequence

Protein

Domain

Relation type: has similar sequence
Attributes: e-value, bitscore, alignment length, translation frame

Relation type: is part of
Attributes: e-value, score, translation frame

Figure 3.3: The hit results from conjoint sequence-alignment are stored as relations in
the Ondex graph. Rectangles represent concept classes created by parsers
of existing databases in Ondex. Arrows connecting concept classes are new
relationships connecting them as a result of conjoint alignment. The attrib-
utes attached to each new relation type are listed.

3.2.1(d) An integrated knowledgebase

After the relevant data has been imported into an Ondex graph instance (Sec-

tion 3.2.1(a)), integrated together to form a non-redundant knowledgebase (3.2.1(b)),

and enriched with sequence similarity and domain annotations (Section 3.2.1(c)),

the resulting graph is large and slow to work with in Ondex. Concept classes,
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relation types, and attributes that were unrelated to the CoPSA workflow, were

therefore removed from the graph. This mainly consisted of concepts repres-

enting publications, genes and KEGG Orthology (KO) groups, and relations

connecting these components. Gene concepts were excluded as CoPSA util-

ises functional annotation of protein sequences and where appropriate gene

locus functional annotation are transferred to the protein translation product.

The biggest memory saving resulted from removing nucleotide and amino acid

sequences, after the methods described in Section 3.3.3 were complete. The

meta-graph for the resulting knowledgebase in Ondex, as shown by the Ondex

visualisation tool, is shown in Figure 3.4. This is still a complex graph contain-

ing 14 classes of concept, and 20 types of relation. It contains over a million

individual concepts and six million relations.

Concept class inheritance, previously described in Chapter 2 was not utilised in

this graph. Instead an expanded notation was used where the relation type is a

was used to denote the relationship between a concept and its parent concept.

For example: for each enzyme concept, two concepts of the class enzyme and

protein were created, and connected through an is a relation. This increased the

complexity of the graph, but was necessary as at the time of writing not all

Ondex plug-ins fully supported the class hierarchy functionality encoded by

the metadata. However, these two forms of representing class hierarchy can be

converted interchangeably.

Extraction of meaningful information from the knowledgebase shown in Figure

3.4 was a prerequisite for its utilisation in CoPSA. Its size and diversity in terms

of concept classes and relation types meant that no informative visual layout of

the whole graph was possible in Ondex. This semantic complexity was the mo-

tivation for the query engine previously described in Chapter 2. The semantic

richness of the graph meant that multiple paths to target annotation, utilising

different concept class and relation type combinations were possible. The query

engine was therefore required to accept multiple declared routes through the
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meta-graph to a given annotation concept class. The large number of concept

and relation instances in the knowledgebase added the requirement that the

query engine should be scalable to work with large graphs.
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Enzyme
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Reaction
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Figure 3.4: A screen shot from the Ondex visualisation software showing the meta-graph of the integrated knowledgebase for CoPSA annotation.
Some concepts classes that were imported by parsers but unrelated to this use-case have been removed. Concept classes have been
relabelled for clarity. HMMR and BLAST based relations are also included. A key to the concept and relation labels is found in Table
3.5 and Table 3.6 respectively.
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Table 3.5 shows the quantity of each of the concept classes in the CoPSA know-

ledgebase. The protein concept class had the largest number of concept in-

stances. These represent proteins and their sequences from all plant species, in

addition to Algae, Yeast and Escherichia coli. Proteins were found in the majority

of databases integrated in Section 3.2.1(a), and represent the biggest challenge

in terms of computation and storage requirements on Ondex. Transcription

factors are abundant in the knowledgebase, because they include three data-

bases covering 22 species. Gene concepts are not present in the graph as func-

tional annotation of protein sequences was targeted by the databases imported

in Section 3.2.1(a). Where a functional annotation of a gene locus occurs in a

database such as AraCyc, this is represented as a protein, as implicitly it is the

translated product of the locus that performs the function. Enzyme concepts

were less abundant than expected, as they were only created by AraCyc and

KEGG parsers. Some parsers of databases like ENZYME import EC annota-

tions of proteins but do not create Enzyme concepts. This does not affect the

CoPSA pipeline however. Protein complexes are rare, which reflects the relat-

ively small amount of information concerning them in functional annotation

databases.

Table 3.6 shows the quantity of relations in the CoPSA knowledgebase. On av-

erage there are six relations for every concept, however 63% of these relations

represent BLAST based sequence similarity, and connect 61,115 consensus se-

quences to 909,417 proteins. The remaining relations however are distributed

across the concepts in the graph. Over 1.6 million annotations to GO terms

are included in the graph, which are represented as relations to Proteins, EC

terms and Pfam domains. EC annotations are less abundant, with only 74,881

annotations, which link EC terms to proteins, domains, and enzyme concepts.

This was expected as EC represents a subset of the functionality captured in the

GO ontologies. The Protein-Protein Interaction (PPI) and Protein-Concept In-

teraction (PCI) concepts in the graph are all derived from the KEGG database,
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Table 3.5: A summary of the quantity of concepts and their classes in the Ondex integ-
rated knowledgebase prepared for CoPSA annotation.

Ondex label Concept description Number of instances

Protein Protein 909,417
Transcription Factor Transcription factor 67,548
Consensus Sequence Consensus sequence 61,115
Domain Protein domain (Pfam) 30,716
Enzyme Enzyme 24,003
Cellular Component GO Cellular Component 6,650
Compound Compound 4,563
Reaction Biochemical reaction 3,892
Molecular Function GO Molecular Function term 3,111
EC class Enzyme Commission class 2,852
Biological Process GO Biological Process term 2,717
Pathway Metabolic Pathway 931
Protein complex Protein complex 180

Total number of concepts 1,117,695

they represent negligible useful-information and are therefore not utilised in

this CoPSA pipeline.

3.2.1(e) Extracting functional annotations for sequences through graph tra-

versal

As previously described in Section 3.2.1(d) the result of integration and con-

joint alignment was a very large Ondex graph of concepts and relations, with

numerous properties attached. Previous steps of data aggregation and integra-

tion created an Ondex database of annotations to protein and domain concepts.

Conjoint alignment made these annotations accessible by introducing sequence

similarity relations from the concepts that contain the query sequences. The

next step in the workflow was to extract valid paths from the query sequence

to annotations. Encoded biological rules governed which relations could be tra-

versed in order to connect a candidate annotation to the query sequence. Fig-

ure 3.5 shows an example of three possible hypothetical paths from a consensus

sequence to a GO function annotation. Simply taking all possible paths would
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Table 3.6: A summary of the quantity of relations and their types in the Ondex integ-
rated knowledgebase prepared for CoPSA annotation. Protein-Protein In-
teraction (PPI) and Protein-Concept Interaction (PCI) are included but not
utilized in this CoPSA pipeline.

Concept class Relation description Number of instances

has_sim_sequence Has similar sequence (alignment) 3,856,937
has_function Has function (GO annotation) 694,147
has_participant Has participant (GO annotation) 496,529
located_in Is located in (GO annotation) 443,665
is_part_of Is part of (protein→domain) 333,421
is_a Is a (concept hierarchy) 91,547
catalysing_class Catalysing class (protein→EC) 74,881
catalysed_by Catalysed by 64,739
member_is_part_of Member is part of 6,866
adjacent_to Adjacent to (metabolic pathways) 588
preceded_by Preceded by (metabolic pathways) 432
derives_from Derives from (metabolic pathways) 388
ind_effected_by Indirectly effected by (PPI) 35
activated_by Activated by (PPI+PCI) 30
inhibited_by Inhibited by (PPI+PCI) 20
binds_to Binds to (PPI) 10
state_changed_from State changed from (PPI) 5
phosph_by Phosphorylated by (PPI) 4
repressed_by Repressed by (PPI) 3

Total number of relations 6,064,247

yield erroneous paths, as relations that indicate protein-protein interactions and

metabolic pathway steps change the implied subject of the final annotation and

the inference chain from the query to the final annotation becomes invalid.

Consensus 
Sequence Protein Reaction EC term

Compound Reaction

GO 
function

Protein

a b c d

e f

i

g

h

Figure 3.5: An example of valid and invalid paths through a graph. Key to relation
types (a) has similar sequence (b) catalyses (c) of class (d) is equivalent to (e)
interacts with (f) produced by (g) of class (h) consumed by (i) has function.
The path {a,b,c,d} is valid, the paths {a,e,i} and {a,b,f,h,g,d} are invalid.
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3.2.1(f ) Encoding biological rules as meta-graphs

For the encoding of biological knowledge into a machine readable form, a declarative-

query approach was adopted. This was described in detail in Chapter 2. Biolo-

gical rules for traversing the knowledgebase were encoded as a graph of Ondex

metadata (meta-graph). Traversal of the knowledgebase, from a query concept,

was constrained by the query meta-graph, which contained a DAG of travers-

able concept classes and relations. The execution of the query in a traversal

instance causes the algorithm, starting from the query concept, to pass through

any part of the Ondex graph instance that is validated by the rules encoded in

the meta-graph. For example: a very simple biological rule to define array se-

quences that are candidate transcription factors is shown below.

Every query sequence x that is “similar to” some “protein” concept y, where y “is a”

“transcription factor” concept z.

The textual description above can also be expressed more formally in first-order

logic (FOL), by defining which query sequences (x) are candidate transcription

factors (z). This is defined in Equation 3.4.

Equation 3.4 encodes the rule which identifies when sequence x is a transcrip-

tion factor in first-order-logic. The function type returns a constant defining the

class/type of a concept or relation. The sets C and R define the complete set

of concepts and relations in the graph respectively. The tuple {x, r, y} indicates

that in the graph x is linked to y through r.

∀x, r′, y, r′′, z where (x ∈ C, r′ ∈ R, y ∈ C, r′′ ∈ R, z ∈ C) :

type(x) = “query′′ ∧ type(r′) = “query′′ ∧ {y, r′′, z} ∧

type(y) = “is a′′ ∧ {y, r′′e, z} ∧ type(z) = “transcription f actor′′

=⇒ x “is a′′ transcription f actor

(Equation 3.4)
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Figure 3.6 shows how the logic in the textual and FOL descriptions above was

encoded as a query meta-graph, where each concept class and relation type

restriction form an additional conjunction (∧) condition in FOL that restricts

which sequences have the candidate transcription-factor target-annotation.

EC-codes annotations were extracted in a similar way with an additional ‘or’

Similar
sequence toQueryStart Protein Is a Trans. 

Factor

Target Annotation

Figure 3.6: An example of valid and invalid paths through a graph. Key to relation
types a has similar sequence b catalyses c of class d is equivalent to e inter-
acts with f produced by g of class h consumed by i has function. The path
{a, b, c, d} is valid, the paths {a, e, i} and {a, b, f , h, g, d} are invalid.

clause to include annotations via domains: every sequence x that is “similar

sequence to” a sequence of concept y, and y is a protein, and y has an “of class”

relation to concept z which is of type EC term, or x contains (has part) a Pfam

domain of the concept y, which has an “of class” relation to concept z which is

of type EC term. This can be described in FOL using an inclusive disjunction

(∨), which is shown in Equation 3.5. This FOL equation describes valid the as-

signment of the EC term z to the sequence x via the intermediate concept y. The

query graph equivalent that was used to encode this rule is shown in Figure 3.7.
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∀x, r′, y, r′′, z where (x ∈ C, r′ ∈ R, y ∈ C, r′′ ∈ R, z ∈ C) :

type(x) = “query′′ ∧ type(r′) = “similar to′′ ∧ {x, r′, y} ∧

type(y) = “protein′′ ∧ type(r′′) = “is a′′ ∧ {y, r′′, z} ∧ type(z) = “EC′′

∨

type(x) = “query′′ ∧ type(r′) = “haspart′′ ∧ {x, r′, y} ∧

type(y) = “domain′′ ∧ type(r′′) = “o f class′′ ∧ {y, r′′, z} ∧ type(z) = “EC′′

=⇒ z “describes′′ x

(Equation 3.5)

The rules that were encoded as query graphs in Figure 3.6 and Figure 3.7

QueryStart Protein
Similar
sequence to EC term

Target Annotation

Domain

Of class

Figure 3.7: The encoding of a simple biological rule that defines valid inference paths
from a query sequence to EC terms.

formed a sub-part of the rule that encodes the annotation of GO categories to

an array sequence, as their products form intermediates that can be annotated

via inference to GO terms themselves. Figure 3.8 shows the query graph for

the concepts and relation types that encode the rules that govern the extraction

of annotations from an array consensus sequence to entities from all three GO

categories. Given the size of the rule, a textual description and FOL definition

has been omitted but can be derived from the inclusive disjunction of the con-

junction of steps from sequence to GO entity in Figure 3.8.

Execution of the query graph in Figure 3.6 yielded not only the annotation

terms for each sequence but the full history of the path from which the term
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Figure 3.8: The encoding of biological rules that defines valid inference paths from a
query sequence through to GO category entities (molecular function, biolo-
gical process and cellular component).

was inferred. This was further exploited in evaluating provenance of the can-

didate annotation terms, based on the source of the elements traversed in the

path and properties stored in the graph. This was used to evaluate the data

sources of candidate annotation, retrieve scores on similar sequence relations,

and GO evidence codes on has function, participates in, and located in relations.

3.2.1(g) Correcting for domain annotation ambiguity

An important complexity in domain annotation using InterPro arises because

protein domain assignments are curated or inferred in the InterPro database

from the existing annotations of the proteins that share that domain (Hunter

98



et al., 2009). InterPro therefore reflects the potential roles of the domain rather

than its unambiguous function. This means the annotation of GO and EC terms,

based on domains, may also be ambiguous depending on the specificity of the

Pfam domain. Two separate strategies (exploiting the structure of the EC hier-

archy and GO graph) were adopted in order to select the annotation appropri-

ate to the specificity of the domain. In both instances the assumption is made

that domains with a large number of conflicting annotations are more general,

and require a more abstract annotation that unifies the annotations by using a

term from a higher-level in the hierarchy.

In order to generalize conflicting terms, the Most Informative Common An-

cestor (MICA) was used to find the most informative annotation term from the

hierarchy of annotations. MICA was originally as proposed by Resnik (1999)

and later applied by Lord et al. (2003) to the Gene Ontology. The MICA defin-

ition of most informative is based on Information content (IC), which is a useful

proxy measure of the specificity of the GO terms and accounts for the variab-

ility in the granularity of the GO graph (Lord et al., 2003). IC is based on the

assumption that more specific (information rich) terms will be referenced less

in a given set of annotation. The Shannon (2001) information-theoretic measure

can be thus applied to give the IC, based on the probability of the occurrence of

a term i. The calculation of IC from the probability p of the occurrence of a term

i is given in Equation 3.6.

IC(i) = − log2 p(i) (Equation 3.6)

Within CoPSA the probability of the occurrence of a term i was defined based

on the frequency of the annotation for that term and its set of ancestors (A),

to the set of Pfam domains (D), within a given ontology category of the Gene

Ontology (O). Ancestors of a term are defined as all terms in GO that subsume

the term through the is a or part of relations. This is shown in Equation 3.7.

p(i) =
∑t∈A(i,O)+t |D(t)|

∑j∈O |GP(j)|
(Equation 3.7)
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Generalization of domain terms involves the following steps: for each domain

annotation, clusters of conflicting terms in an annotation-set were identified as

terms that share at least one common ancestor, excluding the root term of that

category. These conflicting terms were then removed from the annotation and

replaced by the most informative term of the common ancestors. Where there

are multiple candidates for MICA, all were taken. Figure 3.9 shows an example

for the Carbamoyl-phosphate synthetase large chain, oligomerisation domain,

CPSase_L_D3 (PF02787). In this instance the algorithm identified a cluster of

five seemingly conflicting GO terms, and replaced them with the more gen-

eral ligase activity. The limitation of this approach is that it does not always

differentiate conflicting annotation from multi-functional domain annotations.

However, owing to the topology of GO, many of these multi-functional and

coherent annotations are divided at the root and therefore qualify for separate

clusters, as was found in the given example for ATP binding.
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Figure 3.9: Generalization of conflicting annotations for the Pfam domain CPSase_L_D3 (PF02787) using MICA. Green nodes are annotations and
red bordered nodes are the MICA selections.
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Generalization of the terms for EC annotations was less complex given that EC

is a hierarchy as opposed to a graph. A similar approach was therefore taken

to that used for GO-term generalization, with the highest numerical level (most

specific) common ancestor in the EC tree being used to generalize a set of EC

terms. The generalization algorithm was executed on a per-domain basis, with

the first-level EC terms being the greatest generalization possible. Where a set

of EC terms that annotate a domain includes multiple first-level categories, gen-

eralization was performed for each tree, with the level-one EC term being the

root of the tree. For example, the CPSase_L_D3 domain contains six candidate

EC annotations, from the Ligase family of EC terms (Table 3.7). The highest

level unifying EC category is Ligases (6.-.-.-), which maps to the GO Ligase

activity term (GO:0016874). Figure 3.10 shows the EC hierarchy on which this

conflict resolution is based.

Table 3.7: Annotations for the Pfam CPSase_L_D3 (PF02787) domain

EC code Official name

6.3.4.6 Urea carboxylase
6.3.4.16 Carbamoyl-phosphate synthase (ammonia)
6.3.5.5 Carbamoyl-phosphate synthase (glutamine-hydrolyzing).
6.4.1.1 Pyruvic carboxylase
6.4.1.2 Acetyl-CoA carboxylase.
6.4.1.3 Propionyl-CoA carboxylase.

3.2.2 CoPSA metrics for selecting putative functional-orthologs

Previously in this Section the methodology for building an integrated knowledge-

base and extracting annotation has been described. In the final part of this Sec-

tion, the methodology for selecting the best annotations from the candidates is

described. Five different methods for scoring candidate annotation sets (each

set corresponding to inferences from a protein with a similar sequence) are
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6.3.5.-

6.3.5.5

Figure 3.10: The generalization of conflicting EC terms for a domain annotation. Ori-
ginal annotations are underlined and the generalized candidate annota-
tion is highlighted in red.

presented. Two of these methods consider the range of evidence supporting an

annotation and the remaining three are pragmatic approaches to selecting an-

notation using the bitscore from BLASTx derived protein sequence alignments

of query nucleotide to candidate proteins. After describing each method their

performances are compared.

3.2.2(a) Best hit approach (CoPSA-BestHit)

The simplest approach to selecting the best annotation for a new sequence re-

tains the hit with the highest BLAST bitscore and at least one functional an-

notation; all other candidate sequences with annotation are excluded. Where

multiple top sequence alignments have the same bitscore, the union of their an-

notations is taken. This is a naive approach the limitations of which have been

described in 3.1.2(a). This approach does not consider provenance of annota-

tion and may therefore miss high quality hits of sub-optimal alignment.
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3.2.2(b) Union above threshold (CoPSA-Union)

The most inclusive approach takes the non-redundant union of all possible an-

notations for each query sequence. It is then necessary to remove any GO struc-

tural redundancy from the resulting set. Structural redundancy is defined as a

term that subsumes another by is a or part of relations in the GO hierarchy.

BLAST runs in CoPSA with a cut-off threshold of < 1×10−4 and a bitscore cut-

off of > 50. This approach is therefore analogous to executing a BLAST search at

these thresholds and taking all annotations that meet these score thresholds. It

is also unaware of provenance, and will take annotations with weak evidence,

even when strong experimental evidence is available.

3.2.2(c) Best hits within a weighted threshold (CoPSA-ε)

A compromise between the best-hit and union approaches is to take the best-

hit together with all hits within a threshold of similarity, this was determined

by the user defined weight ε, where the threshold for transfer of the functional

annotation of a putative functional-ortholog (g) to a sequence (p) in a functional

annotation set (FA) was:

threshold(p, FA) = max
g∈FA

bitscore(p, g)× ε (Equation 3.8)

For the purposes of these comparisons a ε value of 0.9 was used, which selected

hits with less than 10% deviation from the bitscore of the best BLAST hit. This

value was chosen as a pragmatic cut-off, which might reasonably be chosen by

a user wanting to find BLAST hits broadly similar to a query sequence. Again

this method is unaware of provenance.
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3.2.2(d) Multiple weighted fitness measure (MWFM)

The annotation scoring metric which has been developed most fully and con-

sidered to be the preferred metric for CoPSA is the Multiple Weighted Fitness

Measure (MWFM). In evaluating the relative confidence of a GO functional an-

notation, the MWFM method considers three sources of evidence:

1. Similarity of the target sequence to query

2. GO Evidence code (represents annotation evidence provenance)

3. Semantic similarity of a protein annotation set to other candidate annota-

tion sets (captures diversity and therefore subfunctionalization in the gene

family)

The first source of information for consideration is the similarity of the se-

quences under consideration. The assumption is that the higher the quality

of the alignment the greater the likelihood that the two sequences lie within

the same gene family and therefore share the same function. The unidirectional

bitscore is used, because calculating a bidirectional hit was both computation-

ally expensive, and less meaningful for incompletely sequenced wheat genome.

It also makes the pipeline more flexible, as any sequence, irrespective of organ-

ism can be considered, even if it is the only sequence available in a given organ-

ism.

The second source for consideration is the providence of the annotation on the

proteins that have been aligned to the query sequence. The experimental evid-

ence for a GO annotation is captured by its GO evidence code. These were

weighted based on the trustworthiness of the confidence, which are shown

in Table 4.1. These weightings were adapted from the default values used

by BLAST2GO, within the “b2gPipe.properties” file available as part of their

tool download package . The IEA code for electronic annotation is given a

much lower (0.2) weighting however compared to BLAST2GO (0.7). As with
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BLAST2GO, the annotations that are backed by experimental observations are

given the greatest confidence weighting.

The third piece of information considered by CoPSA-MWFM is the semantic

similarity of function between the sets of annotation, where each set contains

functional-annotations for a candidate protein aligned to the query sequence.

This gives a measure of the diversity of function within the protein family. If

the all the hits have very similar annotation then there is high confidence that

it is a functionally conserved family, and the wheat sequence is unlikely to be

a sub-function. If one of the best hits is very different to the rest of the family,

the probability is that this is a subfunctionalization and the highest probability

is with the major functions of the family.

For each of these sources of information, a confidence score between zero and

one was assigned, with the overall confidence in a protein and its annotation

being a product of these three considerations. These confidence metrics were

defined in three functions: sequence structural similarity sqs(p, g), mean evid-

ence code weighting mew(p, g, O), and mean semantic similarity to all other

sets of annotation mss(p, g, O). Where, g is the query sequence, p is the candid-

ate protein, and O is a category of the Gene Ontology. The overall conference

for an annotation is summarised in Equation 3.9.

con f idence(p, g, O) = sqs(p, g)× mew(p, g, O)× mss(p, g, O) (Equation 3.9)

The function sqs(p, g) is the similarity of the protein p to the query sequence

g expressed as a fraction of the highest scoring similarity within the set of all

proteins P found to be similar to the query sequence g (for the given thresholds)

( Equation 3.10).

sqs(p, g) =
bitscore(g, p)

maxi∈P bitscore(g, i)
(Equation 3.10)
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The mean evidence weight was based on a lookup function ecweight(t) that

translates the evidence code of a functional annotation via a lookup table shown

in (Table 3.8) to a weight between zero and one (these weightings are configur-

able by a user). The maximum scoring evidence code of all of the functional

annotations F for the candidate protein p in the given category O was taken to

indicate the highest potential quality of annotation that can be derived from the

candidate protein (Equation 3.11).

mew(p, g) = max
a∈F(p,g,O)

ecweight(a) (Equation 3.11)

For calculations of semantic distance, the asymmetric GS2 measure (Ruths et al.,

Table 3.8: Confidence weighting of GO evidence codes, as used in MWFM.

Evidence Name Weight

NAS Non-traceable Author Statement 0.9TAS Traceable Author Statement

IEA Inferred from Electronic Annotation 0.2

IGC Inferred from Genomic Context

0.9

ISA Inferred from Sequence Alignment
ISM Inferred from Sequence Model
ISO Inferred from Sequence Orthology
ISS Inferred from Sequence or Structural Similarity
RCA Inferred from Reviewed Computational Analysis

IC Inferred by Curator 0.9

ND No biological Data available 0.2

EXP Inferred from Experiment

1

IDA Inferred from Direct Assay
IEP Inferred from Expression Pattern
IGI Inferred from Genetic Interaction
IMP Inferred from Mutant Phenotype
IPI Inferred from Physical Interaction

2009) for comparison of term sets is used. This gives a measure of semantic sim-

ilarity between the functional annotations of g inferred from p, with all other

functional annotations of g, which are inferred from P − {p}, where P is the set
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of all candidate proteins for the query sequence.

mss(p, g, O) = gs(p, P − {p}) (Equation 3.12)

GS2 is based on a rank function for a term t within the functional annotation of a

set of genes G. The rank was simply a count of how many times a term appears

within the functional annotations of a gene set and the ancestors A(i, O) of

those annotations.

rank(t, G, O) =

∣

∣

∣

∣

∣

∣







g ∈ G|t ∈
⋃
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(Equation 3.13)

Based on the occurrence rank function it was then possible to derive the GS2

metric that compares for each set of annotations on a sequence, the similarity

of a gene product derived annotation set p with the annotations inferred from

the remaining gene products P − p.

gs(p, P − {p}) =
1

F(p, g, O)) ∑
t∈F(p,g,O)

1
anc(t, O) ∑

a∈anc(t,O))

rank(a, P − {p} , O)

|P − {p}|

(Equation 3.14)

The three different measures of confidence are combined by calculating their

product; thereby ascribing equal weight to each measure. The annotation set se-

lected by MWFM is derived from the protein that constitutes the best comprom-

ise in semantic consensus with other protein annotations, while maximising the

quality of evidence and sequence similarity against the query sequence.

3.2.2(e) Post-optimisation of MWFM to prioritise high quality evidence (MWFM-

OE)

MWFM was used to select the protein with the optimum potential to transfer

consistent, high quality evidence, from a protein with the highest similarity in

another species. Each protein that MWFM selects to transfer annotation from
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can have multiple functional annotations, each of which has different provid-

ence. For example: there may be strong experimental evidence for the catalytic

role of a protein, but only electronically inferred evidence for protein-protein

binding.

In order to improve confidence in the overall annotation of the protein, it is pos-

sible to exclude low quality annotation from being transferred from the MWFM

selected protein to the query sequence. Simply removing all electronically in-

ferred annotation prior to MWFM would have increased overall confidence,

however for the cases where no experimental annotation could be found, cov-

erage would have been greatly reduced. Removing the relatively low confid-

ence annotation after the MWFM process means that query sequences that only

have a good sequence alignment to a protein with electronic annotation, still

have annotations suggested by CoPSA. Additionally, where a query sequence

matches to a protein with a mixture of low confidence and high confidence an-

notation, only the high confidence annotation is preserved. This method there-

fore attempts to Optimise Evidence (OE) for each protein selected by MWFM,

such that only the best annotations are reported.

Two intervals for annotation evidence confidence were set at 0.5 ≥ x ≤ 1 and

0 ≥ x ≤ 0.5 , based on the evidence weighting reported in Table 3.8. A pro-

tein provided by MWFM for transfer of annotation to a query, was placed into

one of the two intervals based on the weighting of its most confident annota-

tion. All other annotations, lower than this interval, were not transferred to the

query sequence. The upper interval corresponds to experimental and human

curated evidence, the lower to electronically inferred annotation.
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3.2.3 Quantitative and qualitative evaluation of GO functional

annotations

This following section presents the metrics using to evaluate the qualitative

and quantitative properties of functional annotations. These are vital in making

comparisons between the functional annotations predicted by CoPSA, BLAST2GO,

and Affymetrix, as well as for comparing the various scoring metrics previously

proposed in this chapter. It is particularly important to recognise that these are

indirect measures of annotation quality, as there are no experimentally verified

annotations for the Affymetrix wheat microarray sequences, that could be used

to provide precision and recall statistics. Although the high quality NetAffx an-

notations can form a point of comparison, using hierarchical recall. The metrics

contained in this section are existing measures, or have been defined as part of

the AIGO project. All these measures are present within the open source AIGO

project, which has been implemented as an open source python library in col-

laboration with Michael Defoin-Platel.

3.2.3(a) Richness

Richness of annotation is simply the proportion of a gene Ontology category

used in the functional annotation of a set of genes FA, for a given GO category

O. Richness is calculated by taking the number of terms t within the category O

used within the functional annotation FA and dividing this by the total number

of terms in the gene ontology category. Equation 3.15 used to determine the

richness of a functional annotation FA with respect to an ontology category O.

The function P(t) gives the number of genes that are annotated with t. Note

that if a gene annotates a term, it is considered to annotate all the parents of
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that term via the is a and part of relations.

richness(FA, O) =
1
|O|

|{t|t ∈ O, |P(t) > 0|)}| (Equation 3.15)

3.2.3(b) Structural specificity

The structural specificity of annotation is a very simple measure of the depth of

the term in the GO hierarchy, as defined by the number of ancestors of the func-

tional annotations of a gene in an ontology category. Specificity should be used

with care as it makes an assumption that there is an equal semantic-distance

in all is a and part of relations, which is not always correct. The semantic-

distance represented by these relations is a measure of the difference in spe-

cificity between the parent and child term. The varies widely across the Gene

Ontology, depending on the sub-domain of the ontology. For example: iron ion

binding (GO:0005506) is 6 terms removed from the root in the GO DAG and

has 10,168 genes annotated to it, whereas chloride channel inhibitor activity

(GO:0019869) is 4 terms removed from the root and only has one gene annot-

ated to it. Clearly, the latter is the more specific term but has the lower depth

score.

3.2.3(c) Semantic coherence

The coherence of the annotations of a gene g within a FA is the mean semantic

distance of its elements according to the asymmetric GS2 measure (Ruths et al.,

2009) that has previously been described in this chapter. Coherence is formally

defined in Equation 3.16.

coherency(g, O) =
1

|FA(g, O))| ∑
i∈FA(g,O)

GS2sim({i}, FA(g, O)− {i})

(Equation 3.16)
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3.3 Results and discussion

This section presents the an analysis of CoPSA annotation, first with respect to

the constructed knowledge-base and second with respect to the annotations.

The quality of the final annotation is dependent on the coverage and quality of

the background information available to the annotation pipeline and the effect-

iveness with which raw annotations can be extracted from these sources. Sec-

tion 3.3.1 evaluates the potential annotations discovered by applying the query

graph to the integrated knowledgebase. The relative contribution of the BLAST

and HMMR methods in conjoint alignment were compared, as well as the effic-

acy of data aggregation and integration in sequence annotation. In the second

part of this section these candidate annotations is subject to further quality-

evaluation measures, with an assessment of the quality of the final processed

annotations.

Section 3.3.3 is an evaluation of CoPSA annotations and candidate metrics for

annotation ranking and selection. It is broken down into three aspects. Firstly,

a consideration of confidence of annotation is made for each of the scoring met-

rics proposed within CoPSA. Confidence is assessed based on the original evid-

ence of this annotation and the similarity of sequences. Secondly, a range of

properties of the annotation are examined for each of the metrics and Blast2GO

and NetAffx annotations. Thirdly, NetAffx is used as an incomplete but high

quality source of gold standard annotations. The ability of CoPSA to correctly

annotate genes with the same or similar annotations to NetAffx is assessed us-

ing the hierarchical recall metric proposed by Verspoor et al. (2006), which has

been described in Section 3.3.3(c).
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3.3.1 Analysis of the CoPSA knowledge-base

3.3.1(a) Evaluation of the quantity of annotation from conjoint alignment

The quantity of annotation for a given set of sequences is dependent on the

ability to find similar protein sequences and domain regions, and the efficiency

with which these candidate similar protein and domain regions can be used as

annotations. This section begins by considering the quantity of annotation that

can be derived from BLAST and HMMR alignment, then goes on to consider

the efficiency with which CoPSA translates these into annotations.

Quantifying protein and domain candidates from conjoint alignment

A key step common to all the query graphs used in CoPSA, which have been

described in Section 3.2.1, is the ability to identify similar protein sequences

and Pfam domain regions, which are dependent on the BLAST and HMMR

sequence alignment algorithms. As part of an annotation process, these steps

were evaluated by first addressing the question: what was the relative con-

tribution of protein sequence alignment (using BLAST) and domain identific-

ation (using HMMR) in identifying candidate annotation for the query con-

sensus sequences, for each of the species GeneChips being analysed? A simple

measure of coverage measures this contribution as the proportion of sequences

that have at least one annotation for the given method. This can be presen-

ted using a Venn diagram, which is constructed from the coverage provided

by each method, where the disjunctions show the two exclusive sources of an-

notation (BLAST or HMMR) and the conjunctions indicate when both methods

conjointly provide at least one candidate annotation (BLAST and HMMR).

Figure 3.11 shows such a stacked Venn diagram for the coverage of 13 Affy-

metrix arrays, summarising the calculated proportion of sequences that have
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exclusive annotation or are conjointly annotated with a domain or similar pro-

tein. The chart was created by looking up the provenance of the annotation

on each sequence, which is retained by CoPSA. The tracking of provenance

on graph queries is described in Chapter 2. This first step of the query, from

query sequence to protein or domain concept, indicates the alignment method

on which the final annotation is based. The methodology is used throughout

this chapter in providing statistics on the providence of annotation proposed

by CoPSA.

Figure 3.11 highlight that the first stage of CoPSA, identifying protein and do-

main similarity, is a limitation to further GO or EC annotation. Superficially, it

appears that very few sequences are annotated using Pfam domains alone, and

it could be concluded that protein sequence similarity (using BLAST) was suf-

ficient to provide a potential link to function annotation. However, the simple

coverage statistic shown in the Figure 3.11 does not show the potential for an

identified Pfam domain or similar protein sequence to be linked to functional

annotation. The quality of annotation derived from each method is also import-

ant, and is reflected in the specificity of function, and the breadth of functions

captured for a microarray sequence. A Pfam domain based annotation sys-

tem breaks up functional annotation into short sequence motifs, which may be

detected multiple times on a given query sequence. A protein sequence similar-

ity based annotation however is limited to annotating a query sequence with a

whole protein, which may only contain a partial alignment, and consequently a

limited common functionality. This is particularly relevant for query sequences

with multiple functional regions that do not have similar sequence with that

exact combination (or order) of domains. Therefore, the presence of both a sim-

ilar protein sequence and identified domain provides greater potential to infer

functional annotation and is an additional, and valuable, source of evidence.

Based on coverage alone it is difficult to judge the contribution of these two

sequence-based annotation methods, to the overall pipeline. However, as key
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components in the annotation pipeline, it was possible to gauge the maximum

potential for annotation in each Affymetrix chip given the data and paramet-

ers used in this execution of CoPSA. From Figure 3.11 it was also apparent

that conjoint alignment has the lowest potential for annotation in wheat, and

not surprisingly the Arabidopsis ATH1 array was not limited at all by this step,

with protein equivalents found for 98% of sequences. This indicates that the

sequence annotation problem for wheat was much more limited by a shortage

of putative functional-orthologs than other species. This is not surprising given

the point of divergence between monocot and eudicot is estimated at 150-300

million years ago (Feuillet and Muehlbauer, 2009) (Chapter 3.1.2(a)), and the re-

liance on so much primary annotation from Arabidopsis when predicting wheat

gene function.
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Figure 3.11: A stacked Venn showing the relative proportion of Affymetrix consensus sequences with hits in conjoint analysis. Green shows the
proportion of the consensus sequences that have at least one BLAST homologous-sequence hit and a HMMR3 Pfam domain hit. Blue
and red shows the proportion of sequences that have only BLAST or Pfam hits, respectively. The sum of all components of the stacked
bar shows the overall proportion of consensus sequences on the chip that can be potentially annotated in this CoPSA run.
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Deriving Gene Ontology annotations from conjoint alignment

Once the related proteins and domains for a consensus GeneChip sequence

have been identified by the query graph inference engine, the further inferences

of gene ontology annotations become dependent on the volume and quality of

GO terms that can be identified as annotations for these entities. With respect to

genes with at least one GO annotation, Figure 3.12 shows the mean coverage of

the plant microarray chips. This confirmed that the lower coverage of domain

compared to protein annotations reported in the previous subsection, translates

into a reduced ability to annotate GO functions on the chip. It is also apparent

from Figure 3.12 that coverage also varies across the GO categories. For rank-

ing of categories by coverage, molecular function was the most abundant of the

categories to be annotated through HMMR and BLAST methods. However, the

ranking of the remaining categories differed between methods, with biological

process being more abundantly annotated through HMMR domain identifica-

tion and cellular component through BLAST sequence alignment.
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Figure 3.12: Mean sequence annotation coverage of Affymetrix chips for the three cat-
egories of the Gene Ontology, comparing for each BLAST and HMMR
methods. Error bars are standard error of the mean.
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Pfam functional domains detected by HMMR are more closely aligned with GO

molecular function terms, and this probably explains the higher conversion ef-

ficiency seen in Figure 3.14. Some Pfam domains like peroxidase (PF00141) can

be quite general and only resolve to a 3 digit EC term (i.e. 1.11.1.-), which could

be involved in many potential pathway processes, so there can be more ambi-

guity in assigning a GO process to a Pfam domain. The lower Pfam domain

to GO cellular component conversion efficiency may be caused by domains be-

ing active in many cellular locations. For example Glutamine Synthetase has

a highly conserved domain (Pfam: Gln-synth_C ) but may be expressed in the

Golgi apparatus, cytosol or mitochondrion. The final cellular location is de-

pendent on small changes in the non-domain region of the sequence (Bernard

and Habash, 2009). However, some domains such as DNA binding and trans-

membrane proteins do clearly indicate cellular component. For these reasons,

protein sequence similarities (identified using BLAST) with a query sequence

were more efficient in obtaining cellular-component and molecular-process pre-

dictions for the query than through the identification of Pfam domains (using

HMMR).

The coverage reported in Figure 3.12 is expanded in Figure 3.13 by a stacked

Venn representation, showing the coverage of sequences annotated exclusive

using protein sequence similarity (using BLAST) or Pfam domain identification

(using HMMR), or by both methods (HMMR+BLAST). This shows not only the

utility of each method on its own for annotating microarray chips in CoPSA, but

its contribution with respect to a conjoint analysis. Coverage is provided, on a

per-chip basis, to highlight the variability of each methods contribution across

species. For the Affymetrix Soybean GeneChip, annotation to Pfam domain via

HMMR provided candidate GO function annotations for 32% of the chip, and

3% of the sequences on the chip could annotated exclusively via this method.

In contrast, for the wheat GeneChip, the contribution of HMMR is much lower

relative to BLAST and the exclusive contribution by HMMR was negligible.
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In terms of the quantity of sequences that can be annotated, the wheat Gene-

Chip was the most difficult to annotate against GO (Figure 3.13). At least one

similar protein or domain region was found for 61% of sequences on the chip;

however, for GO molecular function, biological process, and cellular component at

least one term could be found for 56%, 55%, and 43% of sequences, respectively.
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Figure 3.13: Proportion of probe-sets on each GeneChip with a GO (a) molecular function, (b) biological process and (c) cellular component annotation.
Stacked Venn bars show the proportion uniquely and conjointly annotated by each method.
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Previously, it was established that the lower domain annotation coverage ob-

tained also resulted in lower coverage of GO annotations relative to protein

based sequence similarity methods. However, this does not indicate protein se-

quence similarity based on BLAST is more effective for GO annotation, as sens-

itivity differences could have resulted from the individual parameter settings

of methods. However, the efficacy with which domain or protein-similarity an-

notations result in a final CoPSA GO term prediction, does indicate the overall

usefulness of the method. Figure 3.14 shows efficiency, measured as a percent-

age of domain or proteins-similarity annotations that also result in at least one

GO annotation.

This lower conversion efficiency, together with the smaller quantity of sequences

with identified Pfam domains (using HMMR) resulted in a far smaller propor-

tion final candidate annotations through this method (Figure 3.12, Figure 3.13).

Of those annotations based on identified Pfam domains, the majority are also

annotated with protein sequence similarities (using BLAST). For the HMMR

identified domains methodology there is a consistent pattern that GO function

had the greatest conversion efficiency (Figure 3.14) and coverage (Figure 3.13),

followed by GO cellular location, and then GO biological process.

As described previously for GO term coverage, the efficiency of a method in

predicting GO annotations is species dependent. There is a marked reduc-

tion in the efficiency with which BLAST annotations can be converted to GO

terms in non-Arabidopsis organisms, with the grasses being among the most dif-

ficult to annotate (Figure 3.14). The Rice Gene Chip has the lowest annotation-

conversion efficiency. This indicates that evolutionary distance from Arabidop-

sis not only results in fewer protein-similarity predictions, but these annota-

tions are less likely to result in GO annotations. This may indicate the less

well-studied protein families in Arabidopsis are more prevalent in these organ-

isms. Almost all the organisms show an improvement in Pfam to GO annota-

tion conversion efficiency relative to Arabidopsis. This is a feature of HMMR
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domain cut-offs, which are curated for each Pfam family. Domains that are less

functionally characterised have more stringent cut-off thresholds, so are not as

frequently annotated for evolutionary distant sequences. By consequence for

species that are evolutionary distant from the model organisms, HMMR is re-

stricted to more highly conserved domains, with a high efficiency for functional

annotation.
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Figure 3.14: The efficiency of converting protein or domain annotation into GO term annotation. Statistics are shown for each category of GO
(differentiated by colour) and each sequence analysis method (differentiated by pattern). BLAST performance is measured by the
proportion of sequences with protein annotation that can also be assigned at least one GO annotation. HMMR performance is meas-
ured by the proportion of sequences with domain annotation that can also be assigned at least one GO annotation.
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Previously, the relative contribution of HMMR and BLAST to the CoPSA an-

notation pipeline was considered purely in terms of the numbers of sequences

annotated (coverage). However, it is also important to consider their separ-

ate contributions in terms of the total candidate annotations within CoPSA,

because there are multiple candidate annotations per sequence. Figure 3.15

shows for HMMR and BLAST the proportion of all candidate annotations that

are exclusive to each method or are redundant with the other method. Exclus-

ive content is defined as annotations for a sequence for which the same term or

a child term is not present in the annotation for that sequence using the other

method. A redundant annotation is one that shares the same GO term, or is a

parent term of an annotation for that sequence by the other method. In many

instances GO annotation via protein domain matching with HMMR was re-

dundant with sequence similarity derived annotation via BLAST. However, the

redundant evidence via both HMMR and BLAST added weight to the GO an-

notation, as it established that as well as sequence similarity to a protein of a

given function, there is also the preservation of a functional domain. In a num-

ber of cases, HMMR also provided unique candidate annotation. For the Ara-

bidopsis (ATH1) GeneChip there was also a large amount of consensus between

HMMR and BLAST derived annotation, this was due to the success of BLAST

in Arabidopsis with a 99% sequence coverage (Figure 3.11) and 100% sequence

conversion efficiency (Figure 3.14). Additionally in Arabidopsis the highest pro-

portion (40%) of the annotations were derived from HMMR. This almost cer-

tainly owes its strength to the position of Arabidopsis as a model organism and

its role in providing reference annotations for gene function from which many

of the Pfam domain models and annotations were originally derived.
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Deriving EC annotation from conjoint alignment

As well as annotating GeneChip sequences with GO terms, CoPSA was also

used to assign EC terms to sequences. An evaluation of the contribution of

BLAST and HMMR methods to EC annotation is provided in addition to their

previously described role in GO annotation. The utility of domain and protein-

similarity annotations for EC number predictions may differ to that of GO for

two reasons. (1) The original sources of EC primary database evidence may

not overlap, despite the high compatibility between ontologies in terms of con-

ceptual modelling. This could be caused by omissions or inadequacies in the

EC2GO mapping utilised in CoPSA. (2) EC represents a functional subset of

the GO ontology, which may be more or less amenable to annotation through a

given method.

Figure 3.16 shows a stacked Venn diagram showing the proportion of sequences

on each GeneChip annotated with EC terms. The Venn disjunctions shows

the sequences exclusively annotated using protein sequence similarity (using

BLAST) or identified protein domains (using HMMR). The Venn conjunction

is the proportion of GeneChip sequences which have annotation provided by

both methodologies. In an analysis of the same Affymetrix GeneChip arrays for

plant species as undertaken in the previous two Sections, it was found that find-

ing candidate EC annotations was overall less successful in terms of coverage

than finding GO annotations. GO molecular function, biological process, and cel-

lular component annotations on average covered 74% (standard error = 2.92%),

70% (standard error = 2.82%), and 58% (standard error = 2.20%) of consensus

sequences for each chip respectively. Whereas EC annotation covers on average

40.62% of the chip (standard error = 1.48%).

On average 22.18% (standard error = 2.20%) of a chip could be annotated with

EC using Pfam domain recognition with HMMR alone, and 39.14% (standard

error = 1.43%) by protein sequence similarity with BLAST alone. This demon-

strates a far greater role for HMMR in annotating EC terms, than was evident
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for GO. There is also higher and more consistent contribution of HMMR to EC

annotation, with on average 1.48% (standard error = 0.16%) of sequences being

uniquely annotated with EC by HMMR.
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Figure 3.16: A stacked Venn diagram showing the coverage of EC annotation for se-
quences on each Affymetrix GeneChip. The sequences annotated exclus-
ively by HMMR and BLAST are shown as well as the intersection contain-
ing sequences with annotation derived from both methods.

3.3.1(b) Evaluation of aggregated primary annotation

Aggregation of existing knowledge and inference of potentially new and un-

realised knowledge are both important potential benefits of data integration. In

order to quantify these benefits it is important to distinguish primary aggreg-

ated annotations, from knowledge that is the result of inference across mul-
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tiple data sources. Aggregated primary annotation in CoPSA is the subset of

functional annotations in public bioinformatics databases that can be extracted

irrespective of data integration. The data aggregation benefit of a database is

therefore defined as the singular contribution of that database to annotation,

independent of knowledge present in other databases.

In order to separate these primary annotations from those that are the result

of inference across multiple data sources, the systematic recording of proven-

ance within the final annotation was required. This included information on

the various elements, properties, and sources of data that the proposed CoPSA

annotation relied upon. This provenance of information was stored as evidence

attributes on graph nodes and edges in Ondex, and was the basis for determ-

ining the subset of primary annotations outlined in this section. This has been

described in more detail in Chapter 2. Post filtering of annotations based on

their provenance history, can therefore yield annotation that relies on know-

ledge from a single data source.

However, annotation provenance histories are permitted to include sequence

data and Pfam HMM models sourced from other databases, as these are a min-

imum requirement for annotation. This is necessary as databases of primary

annotation like GOA contain only links from protein accessions GO terms. In-

tegration of sequence data, which is usually a trivial accession look-up, is there-

fore distinguished from the task of knowledge integration related to protein

function.

Aggregating annotation to Gene Ontology

Figure 3.17 shows the unique, redundant and consistent contribution from GOA-

Arabidopsis thaliana, GOA-Orzya, Gramene, and UniProtKB. These databases

were aggregated and used by CoPSA to infer GO term annotations for con-

sensus sequences. The raw number of primary aggregated GO annotations,

for each database, in each chip, is represented by the total bar height. For

128



each CoPSA predicted GO term, for each sequence, in each database, the an-

notation is categorised according to three definitions denoting the presence or

absence of equivalent annotation in other data sources. These are defined in

Table 3.9. (1) The unique to the method category indicates no equivalent annota-

tion exists in the other data sources. The presence of the same or similar an-

notation in other databases is categorised based on the ontology structure. (2)

The category identical to the other method, indicates there is an identical annota-

tion from another data source. (3) Redundant to the other source, indicates that

a more specific annotation exists in another data source. (4) Consistent with the

other source, identifies annotations that are consistent with more general terms

present in other data sources. By implication the consistency of an annotation in

one methodology in relation to another, also indicates the reverse relationship:

the complementary redundancy of the shared annotation in the other methodo-

logy. Subdividing the aggregative contribution of databases according to these

categories allows the contribution of a data source to be evaluated in relation

to others. These categories are used through this section for comparing annota-

tions.

It is apparent from Figure 3.17 that the most important data source in terms

of total annotations and unique annotations is UniProtKB. However, the large

proportion of unique content provided by the other databases demonstrates the

utility of aggregating multiple primary data sources for maximising candidate

annotations. Even the lowest content data source, GOA-Oryza (provided by

Gramene in GOA format), contains 8767 unique annotations for rice.

GOA-Oryza is also provided by the Gramene database, and so the difference

in the quantity of primary annotation was surprising. However, Ondex only

has a parser for the version 29 Gramene flat-files (from Feb 2009), so the unique

content in the GOA format (April 2010) is therefore due to the more up-to-date

information in that format: an advantage of using a standard exchange-format.

Gramene, however, cannot be considered having duplicated the information in
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Table 3.9: Definition of categories used for comparative statistics of annotations de-
rived from different methods or data sources. These categories apply both to
GO or EC annotations, and parent and child relations are defined according
to the topology of the graph or hierarchy respectively. For the GO hierarchy
is a or part of indicates a parent child relationship. For EC a term is con-
sidered to be a child of the immediate more general level, i.e. 1.2.3.4 is a
child of 1.2.3.-.

Annotation type Definition

Identical to the other source The term appears for the same sequence
in the annotations of the other source

Consistent with the other source A parent term (excluding the root) ap-
pears for the same sequence in the an-
notations of the other source

Redundant to the other source A child term appears for the same se-
quence in the annotations of the other
method

Unique to the source No equivalent, parent, or child annota-
tion can be found for the sequence in any
of the annotations of the other source.

GOA-Oryza as it provides predicted GO annotations for all the grasses. The

GOA-format export is, however, restricted to rice. For this reason, aggregating

both sources for the annotation was a good compromise, and maximises can-

didate annotations. Similarly, UniProtKB contained many of the experiment-

ally derived annotations from GOA as it sourced these annotations to create its

own computationally predicted (IEA) annotations. However, given the cost of

computing these predictions, it was inevitable they were not as up-to-date as

the annotation in the directly downloaded GOA files. Aggregating UniProtKB

with the GOA annotations enabled the annotation to benefit from the latest

experimentally-derived annotations in addition to UniProtKB’s extensive pre-

dicted annotations.
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Figure 3.18 shows the proportion of sequences on each chip with at least one

GO annotation (uniqueness with respect to other databases is not considered in

this figure). This is reported for each of the primary database sources for the

scenario where they are used independent of other sources for GeneChip an-

notation. Figure 3.18 is reported in addition to Figure 3.17 because it shows the

impact on GeneChip coverage, not simply quantity of annotations. Differences

in GeneChip coverage between primary annotation sources are indicative of

the breadth of gene families annotated in that source.

The interpretation of each databases relative contribution changes when cal-

culated in terms of the coverage of annotated sequences on each chip. Fig-

ure 3.18 shows that the dominant quantities of annotation from the UniProt

database seen in Figure 3.17 is not reflected in a greater diversity of annotat-

able sequences. GOA- Arabidopsis and Gramene appeared to contain much less

raw annotation Figure 3.17; however they have a surprisingly high GeneChip

coverage. Likewise, the relatively smaller number of GOA-Oryza annotations

translate into a much larger coverage of the chip. There are two factors which

affect this difference between the number of raw annotations (Figure 3.17) and

sequence coverage (Figure 3.18). Firstly, the primary data sources vary in the

amount of annotations attached to each protein, with computational methods

producing a greater quantity of annotation. Secondly, the transference of func-

tion via sequence similarity means that there was less benefit (in terms of Gene-

Chip coverage) for primary annotations that were concentrated around well-

known protein families and exhaustively annotated homologous proteins, com-

pared to disparate annotations that covered novel or poorly annotated families.

The contribution of a source of primary annotation to increasing coverage is

therefore a function of both the quantity and diversity of original proteins an-

notated.
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The analysis shown in Figure 3.17 compared the quantitative contribution of

different databases to primary annotation. However, an evaluation of the ori-

ginal provenance of GO annotations within a primary source can give valu-

able information on the quality of the contribution of a data-source. Experi-

mental validation of gene or protein function is of far greater value than com-

putational predictions. The GO provides evidence codes that document the

provenance of annotation and these were included as properties on the Ondex

relations that store annotations from proteins to GO. The GO evidence codes

and the categories used to type them are listed in (Table 3.10). Figure 3.19

shows the results of an evaluation of the provenance of the primary annota-

tions by quantifying the number of proteins used for inference from each of

the GO evidence code categories. It is evident that the majority of the exper-

imental evidence was contributed by UniProtKB and GOA-Arabidopsis data-

bases, whereas Gramene and GOA-Oryza contributed mainly computational

predictions. This highlights the value of aggregating multiple data sources in

order to incorporate as much experimental evidence as possible. GOA- Ara-

bidopsis also contained Non-traceable Author Statement (NAS) and Traceable

Author Statement (TAS), neither of which was present in UniProtKB derived

CoPSA annotations. Conversely, UniProtKB contains additional experimental

annotations not present in GOA-Arabidopsis. Gramene also contains a number

of non-Oryza GO annotations of unstated provenance, which reflects the ori-

ginal table structure of the Gramene database where evidence is optional.

For GO annotations inferred from Pfam domain matches, no data aggregation

occurred because pfam2go, interpro2go and prosite2go domain annotations are

the only source of primary annotation used by to link domains directly with GO

terms in CoPSA, and were all derived from the InterPro mapping by Hunter

et al. (2009).
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Table 3.10: Evidence codes for the provenance of GO annotations as defined by the
Gene Ontology Consortium.(The Gene Ontology Consortium, 2011a)

Code Type of evidence Type category

NAS Non-traceable Author Statement
Author StatementTAS Traceable Author Statement

IEA Inferred from Electronic Annotation Automatically-assigned

IGC Inferred from Genomic Context

Computational Analysis

ISA Inferred from Sequence Alignment
ISM Inferred from Sequence Model
ISO Inferred from Sequence Orthology
ISS Inferred from Sequence or Structural Similarity
RCA Inferred from Reviewed Computational Analysis

IC Inferred by Curator
Curator StatementND No biological Data available

EXP Inferred from Experiment

Experimental Evidence

IDA Inferred from Direct Assay
IEP Inferred from Expression Pattern
IGI Inferred from Genetic Interaction
IMP Inferred from Mutant Phenotype
IPI Inferred from Physical Interaction

135



0%

10%

20%

30%

40%

50%

60%

70%

80%
NAS
TAS
IEA
IGC
ISA
ISM
ISO
ISS

RCA
IC

ND
EXP
IDA
IEP
IGI

IMP
IPI

NAS
TAS
IEA
IGC
ISA
ISM
ISO
ISS

RCA
IC

ND
EXP
IDA
IEP
IGI

IMP
IPI

NAS
TAS
IEA
IGC
ISA
ISM
ISO
ISS

RCA
IC

ND
EXP
IDA
IEP
IGI

IMP
IPI

Unknown
NAS
TAS
IEA
IGC
ISA
ISM
ISO
ISS

RCA
IC

ND
EXP
IDA
IEP
IGI

IMP
IPI

G
O

A
-A

rabidopsis thaliana
G

O
A

-O
ryza

G
ram

ene
U

niProtK
B

Number of protein annotations

F
ig

u
re

3
.1

9
:The

m
ean

proportion
ofchips

w
ith

one
or

m
ore

annotations
ofthe

given
evidence

code
for

allchips
analysed

in
each

ofthe
standard

G
ene

O
ntology

evidence
codes

categories.D
efinitions

ofthe
G

O
evidence

codes
can

be
found

in
Table

3.10.

136



Aggregating annotation to EC

A separate evaluation of the role of aggregation in providing EC annotation is

provided in addition to the previous assessment of GO. For the reasons pre-

viously stated within this section, EC annotation may differ substantially in

source and content from GO. This can be explained by the two previously de-

scribed factors. (1) The original sources of EC primary database evidence may

not overlap with GO annotation. (2) EC represents a functional subset of the

GO ontology, which for a given databases may be more or less amenable to an-

notation.

Figure 3.20 shows the contribution of the various primary data sources to CoPSA

EC annotation using protein similarity detected by BLAST. Annotation of se-

quences with EC terms, based on primary annotation in databases, yielded far

fewer annotations than CoPSA annotation of GO (Figure 3.17). This was to be

expected as EC is more specialised than the Gene Ontology and only applies to

a subset of proteins with catalytic function.

The estimates of redundant annotation were based on the EC hierarchy, where

an EC term in a primary data source was classed as redundant if another data

source annotated the same sequence to a more specific level and shared the

same parent category. For example, the EC term “1.14.13.- ” is redundant to the

more specific term “1.14.13.93”. Redundant annotation made up a minority of

annotation but was more prevalent in AraCyc and KEGG databases.

Consistent annotation, as with the definition for GO, was based on the over-

lap of parent categories. An annotation is consensual to another if it shares

all of the same parent categories. For example, “1.14.13.93” is consistent with

“1.14.13.6” but not with “1.14.16.1”. Most of the annotations fell into this con-

sensual category, which highlights a key difference compared to GO. In GO,

primary sources are composed of multiple annotations in the GO tree, whereas

for EC usually only a single term is assigned to a sequence. On average in the

primary annotations shown, 1.17 EC terms (standard error = 0.19) were annot-
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ated per sequence, whereas for GO there was 2.72 terms per sequence (standard

error = 0.86).

Unique annotations were defined as annotations that have no other consensual

annotation in any of the other data sources. The only contributor of completely

unique EC-term annotation was UniProt. This is almost certainly due to Uni-

prot providing curated mappings between GO and EC terms when populating

their EC annotation.
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Figure 3.21 shows the proportion of sequences on each GeneChip with at least

one EC term that was derived through aggregation of annotation from data-

sources. These statistics are provided for each data source that contained direct

protein to EC term annotation. Figure 3.21 shows that in terms of the usefulness

of the primary annotation in providing coverage of sequences represented on

the chips, UniProt was the most effective. The advantage of UniProt in provid-

ing protein to EC term annotation is more pronounced for GeneChip coverage

than for the annotation counts presented in Figure 3.17. This indicates that Uni-

Prot not only provides a greater quantity of annotations, but also provides EC

terms for a greater breadth of protein sequence types. Comparing the quant-

ity of annotation in Figure 3.17, with the coverage in Figure 3.21, also reveals

that the ENZYME database provides a similar improvement in the quantity of

sequences if can annotation, relative to the total quantity of protein to EC term

annotations (i.e. annotations are more widely spread across sequences).
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The quantity and coverage of annotation provided by a data source is not the

only measure of usefulness. The specificity of EC annotation indicated by the

level in the hierarchy is also an important measure of quality. Figure 3.22 shows

the mean EC level of annotations on each chip provided by each data source.

The specificity of annotation is species independent in ENZYME and largely

uniform for UniProt. However, for the KEGG and AraCyc pathway databases,

there is large variability, which follows a similar trend in both data sources.

There does not appear to be an obvious explanation for this that is related to the

evolutionary distance from Arabidopsis. The highest mean EC level is provided

by annotations from the ENZYME databases. KEGG and UniProt on average

contribute EC terms of a similar specificity. AraCyc aggregated EC annotations

have the lowest mean specificity in CoPSA.

The higher specificity of KEGG compared to AraCyc is surprising, consider-

ing that AraCyc contains a greater proportion of curated terms. In order to

explain this difference in mean specificity Figure 3.23 shows the distribution

of the mean number of annotations for each chip, at each level in the EC hier-

archy. It is apparent from this that AraCyc has a larger number of level 1 and

3 annotations than KEGG, but has less level 2 and 4 annotation. The major-

ity of the increase in specificity of KEGG relative to AraCyc is as a result of

more level 4 annotations. A possible explanation for this is the different spe-

cies specific metabolic pathways found in AraCyc and KEGG. AraCyc contain

only EC annotations for Arabidopsis enzymes, whereas the data imported from

KEGG included EC predictions from all Viridiplantae. These predictions appear

to have negligible impact on the quantity and coverage of EC annotations, but

may contribute to an increased specificity in CoPSA predictions.
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3.3.2 Evaluation of annotations inferred from data integration

Previously, CoPSA annotations that were derived from provenance based solely

on a single data source have been discussed in Section 3.3.1(b). CoPSA also uses

inference across multiple data-sources to create new candidate annotations that

may not have been present in any of the original primary data sources. This

subset of functional predictions, with an inference based provenance, is defined

as: annotations created by CoPSA that are based on information distributed

across more than one data-source. For example, where the ENZYME data-

base provides an EC term annotation for a given protein, and the EC2GO data-

source provides an equivalent translation of EC to a GO term. This GO term an-

notation is therefore a product of inference across these two data sources, and

may not exist in an explicit form in any public database. In the same manor

described in the introduction to Section 3.3.1(b), the provenance of information

was stored as evidence attributes on graph nodes and edges in Ondex, and was

the basis for determining the two provenance subsets: single-database aggreg-

ation and multi-database inference. This methodology of tracking provenance

during annotation extraction has been described in more detail in Chapter 2.

Post filtering of annotations based on their provenance history, can therefore

yield annotation that relies on knowledge from a single data source (single-

database aggregation) in addition to annotation reliant on multiple data sources

(multi-database inference).

Within this Section, the relative contribution of inference over multiple data-

sources is compared to that of aggregating existing annotations from individual

data-sources. The contribution to the quantity of annotation and coverage of se-

quences on the chip is evaluated for both annotation using protein sequences

(identified from BLAST) and Pfam domains (identified through HMMR). This

comparison is made first for GO annotations, and then repeated for EC an-
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notations. A comparison of provenance (multiple data-source inference verses

annotation-aggregation) is therefore made against two annotations subsets (from

protein sequences and Pfam domains) for both annotation types (GO and EC).

CoPSA annotations identified using protein-sequence similarity are considered

separately from those reliant on identified Pfam domains, because these two

methodologies rely on different data from multiple sources (e.g. the UniProt

and InterPro databases respectively). They therefore may differ in their reli-

ance on the two provenance types in question. It is equally true that GO and

EC annotations in CoPSA rely on different data (represented as different data

types) in multiple sources (e.g. the GOA and ENZYME databases respectively).

As in the previous section, in order to compare differences in the annotations

derived from single data-source aggregation to that from multiple data-source

inference, four annotation comparison categories were defined in Section 3.3.1(b)

and are summarised in Table 3.9.

The following four sections address: (1) predicted GO annotations through

protein similarity, (2) predicted GO annotations through domain identification,

(3) predicted EC annotations through protein similarity, and (4) predicted EC

annotations through domain identification. They have been structured in the

same way, and address the contribution of single-database aggregation versus

multi-database inference first with regard to the quantity of annotations provided,

and then through the coverage of sequences on each GeneChip.

Annotation of GO terms based on protein sequence similarity using BLAST

This section addresses the subset of GO annotations derived from protein se-

quence similarity using BLAST. For these annotations, Figure 3.24 shows the re-

lative contribution of multiple-database inference in comparison to using only

aggregation of existing GO annotations of single data-source provenance. The

results reported in this section are computed from the provenance recorded
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in each annotation produced by CoPSA. The methodology for recording this

provenance has been reported in Chapter 2. Subsets of the final annotation

were extracted based on their reliance on a single or multiple dataset in the

provenance history. The reporting of aggregation based annotations are equi-

valent to running CoPSA on each of the data-sources containing GO annotation

in isolation, and combining the results afterwards. Annotations with integra-

tion provenance are those annotations that depend on multiple sources; this is

not equivalent to applying CoPSA to all data-sources synchronously and sub-

tracting the union of aggregated annotations. This is because a given annota-

tion may be inferred from multiple sources, which are redundant to annotation

already reported in a single data source. For example: using ENZYME in com-

bination to EC2GO may yield annotations that are pre-existing in UniProt. For

this reason, Figure 3.24 reports the proportion of annotations with aggregated

and inference based provenance that are unique to each respective method, or

which are more or less specific or identical to that which was reported in the

complimentary method. The exact values for each of these comparison categor-

ies in each of the charted bars in Figure 3.24 are provided in Table 3.11. These

comparative annotation categories have been previously described in detail in

Section 3.3.1(b), and are summarised in Table 3.9.

It can be seen from Figure 3.24 that fewer novel annotations were derived from

inference compared to aggregation alone, however an average of 1197 (stand-

ard error = 190) unique annotations per chip were found that were previously

not explicitly annotated in any of the datasets. An additional average of 262

(standard error = 42) inference based annotations per chip improved on the

specificity of aggregation based annotation (consistent with the other method).

On average 10485 (standard error = 1742) inferred annotations per chip were

identical to direct annotations. There were also an average of 798 (standard er-

ror = 126) inference based annotations that produced less specific annotation

than were present for direct annotation. These consistent and identical annota-
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tions predicted through inference methods lend support to the validity of these

inference rules as well as adding evidence that corroborates the direct annota-

tion. While the contribution of inference methods to the total CoPSA annotation

was small in terms of quantity, their contribution is not negligible.

As previously stated there were relatively few inference based annotations (av-

erage per chip = 262) that improved on the specificity of GO term annotations

compared to aggregating direct annotation. Inference based annotations that

increased the specificity of a term (consistent with other method) accounted for

only 2.94% (standard error = 0.71%) of the total inferred annotations. Recip-

rocally, aggregation based annotations did not improve much on the specificity

provided by inference based methods, with only 0.67% (standard error = 0.15%)

belonging to the consistent comparison group. This indicates that for GO an-

notations, inference provides identical or novel annotations, but rarely provides

a more general or specific GO term for annotation.
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Figure 3.24: A comparison of the number of annotations derived from data aggregation verses inference over an integrated data set for GO
annotation via BLAST. The categories of annotation in the legend are defined in Table 3.9. The annotation counts shown in this chart
are provided in Table 3.11.
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Table 3.11: Counts of GO annotations for each GeneChip, derived from aggregation and inference based provenance.

GeneChip Method Unique to the method Consistent with the other
method

Redundant to the other
method

Identical to the other
method

Total

ATH1-121501
Aggregation 168639 855 225 9160 178879
Inference 1175 221 744 9160 11300

Barley1
Aggregation 108527 606 171 6370 115674
Inference 747 168 497 6370 7782

Citrus
Aggregation 152244 816 259 10082 163401
Inference 1294 264 710 10082 12350

Cotton
Aggregation 145827 785 215 9184 156011
Inference 1045 219 698 9184 11146

Maize
Aggregation 96143 520 113 5041 101817
Inference 566 107 437 5041 6151

Medicago
Aggregation 281613 1651 434 19795 303493
Inference 2305 444 1400 19795 23944

Poplar
Aggregation 333895 1773 479 22295 358442
Inference 2284 490 1565 22295 26634

Rice
Aggregation 306187 1389 349 13649 321574
Inference 1495 348 1175 13649 16667

Soybean
Aggregation 258380 1567 481 16791 277219
Inference 1891 485 1339 16791 20506

Sugar Cane
Aggregation 42777 243 71 2451 45542
Inference 233 63 195 2451 2942

Tomato
Aggregation 56242 321 102 3629 60294
Inference 433 101 277 3629 4440

Vitis Vinifera
Aggregation 85511 409 118 4994 91032
Inference 564 121 357 4994 6036

Wheat
Aggregation 221968 1212 366 12868 236414
Inference 1540 379 990 12868 15777
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The quantity of raw annotations is important in studying the comparative mer-

its of annotations of aggregation and integration provenance; however it does

not indicate the distribution of annotation across sequences, which directly af-

fects coverage and the efficacy of the annotation for microarray interpretation.

Figure 3.25 shows the proportion of sequences on the chip that were annot-

ated with GO, using protein sequence similarity and either single-database ag-

gregation or multi-databases inference provenance exclusively. These cover-

age statistics are divided into sequences that received novel information not

present in any of the direct annotation of the databases, and sequences that re-

ceived annotation already present in direct annotation. In relation to the com-

parative definitions provided in Table 3.9, the category “additional information

provided relative to other method” amalgamates annotations that are unique

to the method, and consistent with the complementary method. The category

“Only redundant information relative to the other method”, amalgamates an-

notations redundant and identical to the other method. The four categories

have been simplified into two broader categories in Figure 3.25. These high-

light the impact of the aggregation and inference methods on overall annota-

tion, rather than providing a more detailed qualitative comparison.

A comparison based on the number of sequences on the chip annotated (cov-

erage) reveals that the impact of aggregating direct annotations, compared to

inference over datasets, was greater. On average, inferred annotation covered

in total 25.45% (standard error = 1.11%) of the sequences on a chip. An aver-

age of 3.73% (standard error = 1.03%) of sequences on the chip received new

or more specific annotation from inference, that could not be predicted by us-

ing any single incorporated database. This indicates that the average of 1212

(standard error = 203) novel and 262 (standard error = 42) consistent annotation

per chip previously reported, are widely dispersed across multiple sequences.

Reciprocally, single-database aggregation of GO annotations contributed new

or more specific annotation to on average 76.12% (standard error = 21.11%) the
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GeneChip. This confirms the greater efficacy of single-database aggregation

in providing a greater quantity and specificity of GO annotations for a Gene-

Chip through protein-sequence similarity, compared to multi-database infer-

ence. However, the benefits of multi-database inference in providing new and

more specific annotation is more variable, across databases than multi-database

inference, with the Arabidopsis ATH1 (93.74%), and Soybean (59.86%) GeneCh-

ips receiving the most and least benefit respectively.
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Figure 3.25: The proportion of sequence on the chip that can be annotated with GO terms using the aggregation of primary annotation and
inference over integrated data using BLAST.
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Annotation of GO terms based on detected protein domains using HMMR

The analysis described in the previous Section, dissected the data provenance

of annotation derived from protein similarities (identified from BLAST). This

analysis is repeated within this section for annotations derived from Pfam do-

mains, which were identified using HMMR. It is replicated for both methods

(using BLAST and HMMR), because domain and protein centric annotation rely

on different data and sources. The CoPSA annotations created using domains

may be more or less reliant on primary-aggregation or inference provenances.

The statistics in this section were generated based on a categorisation of each

annotation from the HMMR methodology into single-database aggregation or

multi-database inference based provenance, in the same manor described in the

previous section.

For the annotations derived from identified Pfam families (using HMMR), Fig-

ure 3.26 shows the relative contribution of annotations with multiple-database

inference provenance in comparison to using only aggregation of existing an-

notations with single data source provenance. On average across GeneChips

GO annotations derived from protein sequence similarity, described in the pre-

vious section, yielded 14.5 times (standard error = 0.40) more annotation from

primary-aggregation than inference provenance. By comparison, CoPSA GO

annotation using protein domains yielded only 4.3 times (standard error = 0.05)

as many annotation derived from aggregation compared to inference. This in-

dicates that inference across data sources, made a larger contribution when ex-

tracting GO annotations from Pfam domains (using HMMR) than from protein

sequence similarities (using BLAST). The increased efficacy of inference is ex-

plained by EC annotations of Pfam domains that do not have an equivalent GO

functional annotation in any integrated database.

The redundant annotation category represents GO terms that are predicted by

an annotation subset, but that exist as more specific predictions in the other

subset. Redundant GO term annotations across all GeneChips accounted for
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on average 4.06% (standard error = 0.08%) and 28.33% (standard error = 0.80%)

of single-database aggregation and multiple-database inference annotations re-

spectively. The consistent annotation category represents GO terms which were

more specific than the other category, but consistent with a parent (non-root)

terms from the other annotation set. For CoPSA annotations aggregated from

domains, on average per GeneChip 6.83% (standard error = 0.20%) are consist-

ent with annotations by multiple-database inference methods. Reciprocally, for

multiple-database inference, on average per GeneChip 16.08% (standard error

= 0.27%) were consistent with aggregated annotations. Compared to the statist-

ics for reciprocal annotations in protein similarity derived annotation (BLAST)

(see Section 3.4.3.1), presented in the previous sections, domain based annota-

tion benefits considerably more in specificity by multiple-database inference

(2.94% versus 16.08%).
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Figure 3.26: A comparison of the number of annotations derived from data aggregation verses inference over an integrated data set for GO
annotation via Pfam domains (using HMMR). The categories of annotation in the legend are defined in Table 3.8. Annotations are
filtered based on MICA terms per domain, which is described in Section 3.2.1(g).
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As with the analysis procedure for annotations based on protein similarity, the

distribution of annotation provenance across GeneChip sequences is also con-

sidered, which directly affects coverage and the efficacy of the annotation for

microarray interpretation. Figure 3.27 shows the proportion of sequences on

the chip that were annotated with GO using domains (identified using HMMR)

and either single database aggregation or multi-database inference provenance

exclusively. As in the previous section with Figure 3.25, these coverage stat-

istics are subdivided into two broad comparative categories, contrasting new

information with redundant information. These highlight the impact of the ag-

gregation and inference methods on overall annotation, rather than providing

a more detailed qualitative comparison.

In terms of additional coverage of sequences on the chip, shown in Figure 3.27,

there were on average a greater proportion of of GeneChip sequences annot-

ated, with GO, using multi-database inference, based on HMMR detected do-

mains (based on 7.10% less inference than aggregation based annotations, stand-

ard error = 0.43%) than were derived from multi-database inference using pro-

tein sequence similarity (using BLAST) (based on 10.2% less inference than ag-

gregation based annotation, standard error = 0.18%). This is despite GO annota-

tion, using protein sequence similarity, in this CoPSA pipeline being a richer

source of information than HMMR identified domain (see Section 3.3.1(a)).

Compared to protein similarity (BLAST) based annotation, described previ-

ously in this section, the role of multi-database inference using HMMR iden-

tified domains was far greater in increasing the proportion of GeneChip se-

quences with new or more specific GO annotations. For domain based annota-

tion, on the average GeneChip, the proportion of sequences with additional

information was 7.10% (standard error = 1.97%) and 35.05% (standard error =

9.72%) for single-database aggregation and multi-database inference, respect-

ively. This is compared to 76.12% (standard error = 21.11%) and 25.45% (stand-

ard error = 9.72%) of sequences benefiting from single-database aggregation
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and multi-database inference respectively in protein-similarity (using BLAST)

based annotation.
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Figure 3.27: The proportion of sequence on the chip that can be annotated with GO terms using the aggregation of primary annotation and
inference over integrated data using HMMR. GO terms are generalized according to domain using MICA as described in Section
3.2.1(g).
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Annotation of EC terms based on protein sequence similarity using BLAST

Previously in this section, the relative contribution of single-database aggrega-

tion and multi-database inference to GO annotation was evaluated, using pro-

tein sequence similarity (BLAST) and Pfam domain detection (HMMR). Within

this section the contribution of single-database aggregation and multi-database

inference to EC annotation, using protein sequence similarity (BLAST) is eval-

uated. As previously stated in the introduction to Section 3.3.2, the evaluation

is repeated for EC as well as GO, as the data types and data sources differ for

these two annotation types. Therefore, it is expected that the contribution of

single-database aggregation and multi-database inference may differ.

Figure 3.28 shows the relative contribution of single-database aggregation com-

pared to multi-database inference, for predicted EC terms using protein se-

quence similarity (BLAST). The comparison categories used are the same as in

the previous two sections and have been summarised in Table 3.9. The two cat-

egories of provenance of annotation are tracked in the same manner described

within the introduction to Section 3.3.2.

Figure 3.28 reveals that for every GeneChip apart from Sugar Cane, the num-

ber of annotations contributed by multi-database inference was greater than

from single-database aggregation. On average there was 19.38% (standard er-

ror = 5.38%) more annotation produced per GeneChip by multi-database in-

ference compared to single-database aggregation. There were also on average

77.72% (standard error = 21.56%) more unique annotations produced by multi-

database inference than single-database aggregation.

EC terms predicted through single-database aggregation tended to be more

likely to increase the specificity than multi-database aggregation. On average

there were nearly three times (279.03%) more annotations predicted by single-

database aggregation that improved on the specificity provided by multi-database

inference, compared to the reciprocal comparative group (consistent annota-

tions within inference provenance group). This indicates that while producing
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more novel annotations, the multiple-database inference were lower in the EC

hierarchy than single-database inference.

Of all the annotations produced by both single-database aggregation and multi-

database inference 58.18% were predicted identically in both methods. This

high degree of agreement in the two methods may either be regarded as strong

supporting evidence for the annotations, or indicate some existing inference by

the data sources themselves: i.e. a database may use EC2GO to translate ex-

isting curated GO annotations into EC annotations, which leads to agreement

when the procedure is duplicated in CoPSA.

There is a considerable amount of consistent annotation (increased specificity),

which amounts to 14,766 single-database aggregated and 3549 multi-database

inferred annotations, across all GeneChips. This shows that multi-database in-

ference of annotation can increase the specificity of single-database aggregated

EC annotation, and vice versa. However in this instance there was on average

per GeneChip, 349.42% more consistent annotation from single-database ag-

gregation. The combining of aggregated and inferred evidence however meant

that overall genes could be annotated with more specific EC terms.

Interestingly, the improvement in specificity was dependent on the GeneChip,

with Sugarcane gaining the least number of annotations (521) that increased

in specificity when both provenances were considered. The Wheat GeneChip,

which is the subject of the Part II use case, gained 1,978 and the most successful

gains were by Poplar (2742).
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Figure 3.28: A comparison of the number of annotations derived from data aggregation verses inference over an integrated data set for EC an-
notation via BLAST. The categories of annotation in the legend are defined in Table 3.9.
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Figure 3.29 shows the proportion of sequences on the chip that were annotated

with EC, using protein sequence similarity (using BLAST) and either single

database aggregation or multi-database inference provenance exclusively. As

with Figure 3.25 and Figure 3.27, described in the previous two sections, these

coverage statistics are divided into sequences that received novel information

not present in any of the direct annotation of the databases, and sequences

that received annotation already present in direct annotation. The parallel ana-

lysis of EC annotation provenance using GeneChip sequence coverage, in ad-

dition to raw annotation counts, can yield additional insights into the impact of

provenance in the distribution of annotation across the chip.

It was previously shown in this section that multi-database inference contrib-

utes more to EC annotation counts than single-databases aggregation. Based

on Figure 3.29, it is also apparent that the same holds true with regard to cover-

age of sequences on the GeneChip. On the average GeneChip 10.93% (standard

error = 3.03%) of sequences could be annotated with EC by single-database

aggregation, whereas 19.32% (standard error = 5.35%) of sequences could be

annotated by multi-database inference.

This suggests that for EC annotation, through sequence similarity, incorpor-

ating a multi-database inference approach, is complementary to information

derived from aggregating knowledge in existing databases. It leads to both

greater quantities of annotations and a larger coverage of the GeneChips stud-

ied. While the previous three sections have demonstrated that inference over

multiple-databases contributes to the final annotation quantity and coverage,

EC annotation using protein sequence similarity, is the strongest demonstra-

tion of this yet. It is the first to show that in some instances data inferred across

data-sources can exceed that obtained by single-database aggregation alone.
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Figure 3.29: The proportion of sequence on the chip that can be annotated with EC terms using the aggregation of primary annotation and
inference over integrated data for BLAST.
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Annotation of EC terms based on protein domains detected using HMMR

The previous section compared single-database aggregation with multi-database

inference, in providing EC annotation through protein sequence similarity us-

ing BLAST. This section makes the same comparison but for EC annotation us-

ing Pfam protein domains detected by HMMR. Figure 3.30 shows the relative

contribution of single-database aggregation compared to multi-database infer-

ence, for predicted EC terms using Pfam domains identified through HMMR.

The comparison categories used are the same as in the previous three sections

and have been summarised in Table 3.9. The two categories of provenance of

annotation are tracked in the same manner described within the introduction

to Section 3.3.2.

Unlike protein sequence similarity based prediction of EC terms, multi-database

inference yielded less EC annotation than single-database aggregation for pro-

tein domain based predictions. For the average GeneChip there were 68.60%

(standard error = 19.03%) more EC annotations of single-database aggregation

than multi-databases inference provenance. 37.90% of annotations predicted by

both methods were identical. This was lower than was found using sequence

similarity based predictions of EC annotations (58.18%), and reflects the lower

yield of multi-database inference, which resulted in a far greater quantity of

novel annotation from single-database aggregation.

There were a larger proportion of consistent terms (more specific) for multi-

database inference, with 59.47% (standard error = 16.49%) more on average per

GeneChip than from single-database aggregation. This indicates that multi-

database inference based methods are more likely to increase the specificity of

EC terms predicted for domain based annotation. This is the inverse of what

was found for protein sequence based prediction of EC in the previous section.
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Figure 3.30: A comparison of the number of annotations derived from data aggregation verses inference over an integrated data set for EC annota-
tion via HMMR. The categories of annotation in the legend are defined in Table 3.9. Annotations are filtered based on generalizing
EC terms per domain, which is described in Section 3.2.1(g).
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Figure 3.31 shows the proportion of sequences on the chip that were annotated

with EC, using detected domains (using HMMR) and either single database ag-

gregation or multi-database inference provenance exclusively. As with Figure

3.25, Figure 3.27, and Figure 3.29, which were described in the previously in

this section, these coverage statistics are divided into sequences that received

novel information not present in any of the direct annotation of the databases,

and sequences that received annotation already present in direct annotation.

In the first part of this section a greater number of annotations were observed

with provenance from single-database aggregation compared to using infer-

ence across multiple-database. Provenance from single-database aggregation

was also responsible for the greater proportion of novel annotations. As ex-

pected Figure 3.31 shows that this translated into a greater coverage of Gene-

Chips sequences with single-database aggregation providence. On average

per GeneChip, annotations of single-database aggregation provenance covered

21.20% (standard error = 5.88%) of sequences, whereas multi-database infer-

ence covered only 15.33% (standard error = 4.25%). However, the 59.47% more

annotations from multi-database inference that improved upon specificity (dis-

cussed earlier in this section), resulted in a larger proportion of sequences on

the chip receiving additional information from this provenance. On average

per chip 10.66% (standard error = 2.96%) of sequences received additional in-

formation from multi-database inference, whereas only 5.06% (standard error

= 1.40%) of sequences benefited in this way from single-database aggregation.
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Figure 3.31: The proportion of sequence on the chip that can be annotated with EC terms using the aggregation of primary annotation and
inference over integrated data for HMMR. EC terms are generalized according to domain as described in Section 3.2.1(g).
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Comparison of CoPSA annotation coverage for the wheat GeneChip against other pipelines

CoPSA aims to provide improved annotation of the consensus sequences for

Affymetrix GeneChips for non-model organism species, where experimentally

validated GO terms are rare or non-existent. For the comparison of CoPSA to

other sequence annotation pipelines, we will focus on wheat, which was one

of the most challenging arrays to annotate, and is the subject of the use-case

for this thesis. While it would be desirable, a comparison for all plant arrays is

problematic, as comparable sequence annotations other than from NetAffx are

not available for all arrays. Comparisons for wheat were made against the Af-

fymetrix NetAffx version 30 annotation and the BLAST2GO annotation (down-

loaded 27/05/2009 from the B2G-FAR website (Escobar, 2011)).

Figure 3.32 shows a Venn diagram of the coverage of consensus-sequences an-

notated on the Wheat GeneChip with at least one GO molecular function term

for Affymetrix-NetAffx, BLAST2GO pipelines, and CoPSA (using protein se-

quences and domains) pipelines. It is evident that CoPSA provided more can-

didate GO annotations than either of the other pipelines but there are significant

overlaps with the annotations from the other pipelines. CoPSA was able to an-

notate 90% and 97% of the candidates annotated by NetAffx and BLAST2GO

respectively. A total of 37% of the chip was annotated only by CoPSA. Con-

versely, BLAST2GO and NetAffx provided annotation on 0.8% of the chip that

was not covered by CoPSA.

Figure 3.33 shows a Venn diagram of the coverage of consensus-sequences an-

notated on the Wheat GeneChip with at least one GO biological process term

for Affymetrix-NetAffx, BLAST2GO pipelines, and CoPSA (using protein se-

quences and domains) pipelines. For GO biological-processes, CoPSA annot-

ated 86% and 88% of the consensus sequences annotated by NetAffx and BLAST2GO

respectively. 34.37% of the chip was exclusively annotated by CoPSA. BLAST2GO

and NetAffx provided annotation on 2.4% of the chip that was not covered by

CoPSA.
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Figure 3.32: The wheat chip sequence coverage for GO molecular-function annotation,
compared to BLAST2GO and NetAffx annotation. The value in the top
right represents the sequences on the chip that were not annotated by any
of the pipelines.
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Figure 3.34 shows a Venn diagram of the coverage of consensus-sequences an-

Figure 3.33: The wheat chip sequence coverage for GO biological-process annotation,
compared to BLAST2GO and NetAffx annotation. The value in the top
right represents the sequences on the chip that were not annotated by any
of the pipelines.

notated on the Wheat GeneChip with at least one GO cellular component term

for Affymetrix-NetAffx, BLAST2GO pipelines, and CoPSA (using protein se-

quences and domains) pipelines. For GO cellular components terms, CoPSA an-

notated 90% and 95% of the consensus sequences already annotated by Net-

Affx and BLAST2GO respectively. Unique annotation by CoPSA accounted for

24.35% of the chip. BLAST2GO and NetAffx provided annotation on 1.2% of

the chip that was not covered by CoPSA.
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Those annotations which overlap with other pipeline annotation predictions

Figure 3.34: The wheat chip sequence coverage for GO cellular-component annotation,
compared to BLAST2GO and NetAffx annotation. The value in the top
right represents the sequences on the chip that were not annotated by any
of the pipelines.

form an important part of validating CoPSA, and the next step was to compare

the content of these annotation sets. The semantic similarity between these

annotations is highly dependent on the selection of annotations from the can-

didates and this will be discussed later in this chapter.
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3.3.2(a) Transcription factor annotation

Figure 3.35 shows the proportion of consensus sequences that were identified

as a transcription factor by CoPSA, for each of the Affymetrix GeneChips stud-

ied. Previous work by 3.37 provides estimates for the number of transcription

factors that can be expected in plant species based on other sequenced organ-

isms (Figure 3.37). The number of transcriptions factors found by CoPSA was

slightly higher than the 6% of the genome predicted by 3.37, with the exception

of the ATH1 chip, which was 14.23% of the GeneChip. The CoPSA predictions

for the Wheat GeneChip, which are used in the Part II use-case, are closest to

the 6% observation. However, 6% is a very rough estimate, the number of tran-

scription factors in a genome may vary according to species and Yilmaz et al.

(2009) observes considerable variation in Figure 3.37. Many of the GeneChips

studied detect only a subset of genes in the target genome, and therefore may

not contain a representative number of transcription factors.

Figure 3.36 shows the number of transcription factors identified on each Gene-
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Figure 3.35: The proportion of consensus sequences on each GeneChip that were iden-
tified as potential transcription factors by CoPSA.
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Chip by CoPSA. It is not readily comparable to the results by Yilmaz et al. (2009),

which are shown in Figure 3.37, because most of the GeneChips were designed

for partially sequenced organism and as such detect only a subset of transcrip-

tion factors in the genome. Their prediction of just under 3,500 transcription

factors, in a genome of around 60,000 genes for Maize is higher than the 1,803

found by CoPSA. However, the Maize GeneChip is built from NCBI’s GenBank

(September 29, 2004) and Zea mays UniGene Build 42 (July 23, 2004) databases,

and is designed to detect expression of only 13,339 genes (AFFYMETRIX, 2004).

If the Maize gene chip contains the same proportion of transcription factors as

the genome, then the CoPSA predictions are in line with the predictions of Yil-

maz et al. (2009). The Sugar Cane genome is expected to contain slightly greater

than 2,000 transcription factors respectively. CoPSA identified 709 transcription

factors on the Sugar Cane GeneChip. This GeneChip is built from Saccharum of-

ficinarum UniGene Build 5 (August 27, 2004) and GenBank mRNA (November

2, 2004), which is designed to pick up expression of 6,024 genes. Sugar Cane

is expected to have in the region of 37,000 genes. The CoPSA predictions are

therefore much higher than Yilmaz et al. (2009) projected. This could be caused

by three factors (1) the proportion of transcription factors on the Sugar Cane

GeneChip is not representative of their frequency in the genome, (2) Sugar Cane

has an unusual overabundance of transcription factors, or (3) CoPSA has a high

false positive rate of transcription factor prediction for this GeneChip. The first

causative factor seems the most probable. CoPSA false positive rate is more

likely to be related to methodologies, and databases. The false positive rate

specific to a species, is likely to be cause by its distance from Arabidopsis.

Predictions for the ATH1 GeneChip were both too high in terms of coverage

(14.23% shown in Figure 3.35) and the quantity of transcription factors (3,237

shown in Figure 3.36). Palaniswamy et al. (2006) predict 1,690 transcription

factors for Arabidopsis. This seems to be a consequence of setting the paramet-

ers of CoPSA to pick up more distant putative functional-orthologs. The ap-
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propriate alignment thresholds for transferring annotations from Arabidopsis to

organisms like Poplar and Wheat, does not appear to be appropriate for annot-

ating Arabidopsis sequences, and results in higher false positives. As previously

stated, in this chapter, the aim of this configuration of the CoPSA pipeline is to

demonstrate the annotation of non-model organism. It is therefore inappropri-

ate to use CoPSA as a source of Arabidopsis TF annotations. It is included just

for comparison purposes.
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Figure 3.36: The number of transcription factors found by CoPSA on each GeneChip.

3.3.3 Analysis of CoPSA annotations and metrics

The evaluation of CoPSA and the proposed metrics is broken down into three

aspects. Firstly, a consideration of confidence of annotation is made for each

of the scoring metrics proposed within CoPSA. Confidence is assessed based
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Figure 3.37: An estimation of the number of transcription factors in grasses by Yilmaz
et al. (2009). Black circles represent Arabidopsis, rice, poplar, and Chlamydo-
monas (r2=0.87). Blue triangles represent yeast, fruit fly, mouse, and human
(r2=0.74).

on the original evidence of this annotation and the similarity of sequences.

Secondly, a range of properties of the annotation are examined for each of the

metrics and Blast2GO and NetAffx annotations. Thirdly, NetAffx is used as an

incomplete but high quality source of gold standard annotations. The ability

of CoPSA to correctly annotate genes with the same or similar annotations to

NetAffx is assessed using the hierarchical recall metric proposed by Verspoor

et al. (2006), which has previously been described in this Section 3.3.3(c).

3.3.3(a) Confidence in annotations from scoring strategies

The two variants of fitness metrics proposed around the Multiple Weighted Fit-

ness Measures (MWFM) effectively make a compromise between sequence sim-

ilarity, evidence codes, and degree of functional consensus with the other sim-

ilar proteins. It is expected therefore that relative to the other confidence metrics
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they compromise on selecting the most similar sequence, where a suboptimal

sequence alignment provides better evidence or is more consistent with other

sequences. Figure 3.38 was generated for each CoPSA post filtering method

that was proposed in 3.2.2, by extracting the alignment of every protein used to

transfer annotation to a query sequence, and then calculating the mean bitscore

for all these proteins. The MWFM-OE method was identical in bitscore to the

MWFM, as it filters at the post protein selection stage of annotation selection.

It is therefore not included in Figure 3.38. If a method such as the MWFM

compromises on protein-sequence alignment strength in favour of stronger ex-

perimental evidence, then it should result in a lower mean bitscore. Figure 3.38

therefore reveals an expected pattern of results with the BestHit and Epsilon

methods resulting in the highest bitscores. The Epsilon approach affects the

greatest average bitscore of proteins used in inference, because it selects for the

highest bitscore while maximising the number of high scoring proteins used in

analysis. The CoPSA-Union method average bitscore represents the mean of

all proteins found at the given thresholds. It would therefore be expected that

MWFM produces a lower average bitscore if it only selected for proteins that

would be more distant in evolutionary terms but would carry stronger evid-

ence terms; which in this instance would come from Arabidopsis thaliana, Algae,

and Yeast. However, the average bitscore of MWFM is similar to CoPSA-Union

and this suggests that a compromise has been found between evidence strength

and sequence similarity.

Figure 3.38 showed that MWFM results in annotation being transferred from

weaker alignments. This results from a compromise on sequence similarity in

order to promote evidence-rich proteins for inference. Figure 3.39 was gener-

ated for each method by taking the evidence code for each annotation trans-

ferred, looking up the weighting for this evidence code using Table 3.8, and the

then calculating the mean weighting for the method. If MWFM is comprom-

ising on sequence similarity in order to transfer more annotation with stronger
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Figure 3.38: Average evidence weighting for annotations produced by the five
strategies. For the two selection strategies that treat the three categories
of the Gene Ontology separately, the respective values are shown.

evidence, then it would be expected that MWFM achieves a larger mean evid-

ence weighting. As expected Figure 3.39 shows that MWFM this affects an in-

crease in the mean annotation evidence code weighting relative to the BestHit

and Epsilon strategies that act to maximise bitscore alone. The average evid-

ence weight for annotations across all categories is 0.54 (standard error = 0.002)

and 0.65 (standard error = 0.002), for CoPSA annotations based on MWFM and

MWFM-OE respectively. This indicates that in terms of the average evidence

weight both the MWFM and MWFM-OE outperform all three of the bitscore

based confidence measures. The optimisation of evidence in MWFM-OE in-

creases the confidence in annotation across all three aspects, without comprom-

ising on the bitscore.

178



0.25

0.34

0.49

0.37

0.57

0.66

0.54

0.65

0.76

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
ll 

ca
ta

go
rie

s

A
ll 

ca
ta

go
rie

s

A
ll 

ca
ta

go
rie

s

M
ol

ec
ul

ar
 F

un
ct

io
n

B
io

lo
gi

ca
l P

ro
ce

ss

C
el

lu
la

r C
om

po
ne

nt

M
ol

ec
ul

ar
 F

un
ct

io
n

B
io

lo
gi

ca
l P

ro
ce

ss

C
el

lu
la

r C
om

po
ne

nt

CoPSA-
BestHit

CoPSA-
Epsilon

CoPSA-
Union

CoPSA-MWFM CoPSA-MWFM-OE

M
ea

n 
ev

id
en

ce
 w

ei
gh

tin
g 

of
 G

O
 a

nn
ot

at
io

ns

CoPSA post-filtering of annotation method

Figure 3.39: The mean bitscore of proteins that were used in annotation inference, for
the four candidates for a CoPSA annotation selection strategy. For the
MWFM selection strategy that treats the three categories of the Gene On-
tology separately, the respective values are shown. Error bars are standard
error of the mean.

3.3.3(b) Comparative properties of the annotation

A very simple measure that can be applied to an annotation pipeline is to com-

pute the number of GO annotations proposed per-gene in each category. Figure

3.40 was calculated using the mean number of annotations proposed per query

sequence, for each post-filtering method, and each of the GO categories. A low

number of predictions per-gene in the GO molecular function or biological process

categories (less than 2) indicates that the annotation method has a low recall.

This is because GO is designed such that multiple aspects of a gene function

can be described (e.g. catalytic activity and ATP binding), multiple processes

that a gene is engaged in (e.g. regulation of catalytic activity and proteolysis),
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and multiple cellular locations (e.g. integral to membrane and nitrate reductase

complex). It is unusual for a gene function to be only applicable to one term

from the function or process category.
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An example of multi-process assignment is shown by the graph in Figure ,

where CoPSA post-filtered by MWFM-OE correctly assigns two processes to

the highly conserved Glutamate-Synthase-2 (GS2) gene, Ta.28435.1.S1_at. The

process Oxidation reduction, describes the chemical process undertaken in the re-

action, whereas Glutamate biosynthetic process describes the metabolic pathway-

level process that the gene is involved in. NetAffx contains a correct free text

description of the gene function, but fails to annotate any GO terms to the gene.

Blast2go identifies the correct metabolic pathway process but does not assign

the chemical process involved. However, it additionally annotates GS2 with

the Glutamine biosynthetic process. While these pathways are adjacent, this

gene is involved in Glutamine catabolism rather than biosynthesis. However,

as it forms a cycle together with Glutamine synthetase, the catabolism can also

form a precursor to the biosynthesis (Miflin and Habash, 2002), highlighting

the complexity and ambiguity of process annotation.

As well as indicating low recall, the mean number of annotations per-gene

(Figure 3.40), can indicate low precision if the number of annotations within a

category is unfeasibly high. Identifying the point where the number of terms

assigned to an annotation becomes improbable is not an easy task, and depends

on the gene and structure of the gene ontology. Using the measure of semantic

coherency described in Section 4.2.5, together with the number of annotations

goes some way to addressing this issue, as it indicates the distribution of the

annotations within the ontology. A small number of terms that are moderately

spread throughout the GO tree, indicates that multiple aspects of the function

or process are being described. Whereas the annotation of a large number of

highly coherent terms (adjacent in the tree), indicates there is some disagree-

ment in the sub-functionalization of a gene. Conversely, a low coherency may

also indicate incompatible annotation. This ambiguity in interpreting semantic

coherency, limits its usefulness but it can still be a useful tool when comparing

pipelines, and identifying outliers. When comparing a high quality but low
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Figure 3.41: Highlighted in red within the Gene Ontology process category are two
terms correctly annotated to Ta.28435.1.S1_at (Glutamate Synthase 2), by
CoPSA-MWFM-OE. The annotation describes the chemical process of ox-
idation reduction, and a biochemical pathway process of glutamate bio-
synthesis.
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coverage pipeline, against a high coverage pipeline, a similar semantic coher-

ency indicates that the structure of the gene annotations for the latter pipeline

follows a similar pattern of annotation to the first.

Figure 3.42 shows for each of the post filtering methods, the mean semantic

coherency between annotations that were transferred to the wheat GeneChip

query sequences. A comparison to BLAST2GO and NetAffx annotations for the

wheat GeneChip has also been added to Figure 3.42. A mean value is provided

for each GO category. However, coherency is dependent on the structure of

each and so inter-category comparisons are not possible. From Figure 3.42 it is

evident that the CoPSA-Union post-filtering methodology displays the lowest

semantic coherency of all three categories. Furthermore, CoPSA-Union has a re-

sponse pattern that is the least similar to the NetAffx and BLAST2GO pipelines.

Since CoPSA-Union is the most inclusive pipeline, it might be expected to gen-

erate the highest number of false positive annotations. This result suggests that

low semantic coherency may well be a product of large numbers of false posit-

ives. The nature of the GS2 metric means that increasing the number of terms,

which are annotated to each gene, restricts the minimum and maximum coher-

ency of sampled terms. The large number of annotation per gene for CoPSA-

Union (Figure 3.40), acted as a moderator of low coherency, and contributed to

the lower coherency through the lower abundance of small sets with high co-

herency.

CoPSA-MWFM produces a similar response pattern that is more similar to Net-

Affx and BLAST2GO in all categories, indicating the more selective MWFM

weighting scheme acted to increase the coherency of annotation. Coherency

within annotation sets, however, was not directly selected for by the MWFM

weighting, as GS2 was used only for calculating semantic distance within cat-

egories. However, the main strategy of MWFM is that it acts to select the an-

notations from one putative functional-ortholog only; whereas Union aggreg-

ates annotations from across a range of putative functional-orthologs.
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The OE extension to CoPSA-MWFM, which selected for experimentally valid-

ated annotations, showed increased coherency in all categories relative to basic

MWFM filtering strategy. This is closely linked to a moderate decrease in the

number of annotations per gene (Figure 3.40); indicating OE is acting to exclude

the more distant annotations in a set.
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Figure 3.43 shows a comparison of the different filtering strategies and pipelines

in terms of the mean information content (IC) of their annotations for each of

the GO categories within each of the methods. The method for calculating IC as

been previously described in Section 3.2.1(g). With a given category, the mean

IC values were calculated from the GO annotations of each gene, and then the

mean of these means were taken across the genes. The mean IC score of the

functional annotations produced by a method therefore reflects the IC of the

annotation usage, as opposed to the IC of the GO terms utilised (the mean IC of

the set of GO terms used for annotation by a method). The IC values observed

were dependent on the size and structure of the GO category. Comparisons can

therefore be made between methodologies within a given GO category but not

between categories.

The CoPSA annotation filtering strategies all produce higher mean IC scores

than NetAffx annotations and similar IC scores to BLAST2GO. Figure 3.44 shows

the richness of annotations from each GO category, produced by each of the

post-filtering methods and comparison pipelines. Richness is as defined in Sec-

tion 3.2.3, which is simply the proportion of the gene ontology used in the func-

tional annotation. Figure 3.45, shows the mean structural specificity of annota-

tions from each GO category, produced by each of the post-filtering methods

and comparison pipelines. Structural specificity is defined in Section 3.2.3, and

is simply the number of ancestors for a GO term, which increases as GO terms

become more specific (further from the root) in the GO Directed Acyclic Graph

(DAG). IC scores (Figure 3.43) should be viewed together with the richness (Fig-

ure 3.44) and the structural specificity of terms used in the annotations (Figure

3.45). The structural specificity tends to be related to IC because, terms that are

lower in the GO DAG, tend to be more rarely used. Because of the way IC is

defined (Section 3.2.1(g)), terms that are higher in the DAG (closer to the root

term) accumulate implicit annotation from their children. This means that IC

scores drop as terms approach the root, and consequently the root contains no
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information.

NetAffx has the lowest IC content of all the pipelines, but has a similar or better

structural specificity. NetAffx also has the lowest coverage of the Gene onto-

logy (richness). This indicates that NetAffx is mainly annotating using terms

that are more specific in the GO hierarchy but have low IC score. This means

that they are commonly used terms for annotation by all pipelines. This high-

lights a limitation of IC as a measure of annotation accuracy, because it penal-

ises terms that are functionally informative, but frequently used, either because

they represent a common function in the cell, or because they are well known

or easily characterised (e.g. highly conserved proteins such as those found in

central metabolism). In this instance, the low IC of NetAffx does not indic-

ate it has poor quality of annotation, but rather a low coverage, and is highly

conservative. The high quality of NetAffx annotation was confirmed by eval-

uating the annotation of a number of known genes, which included inspection

of glutamate synthase annotations by an expert in the field (D Habash, data

not shown). BLAST2GO has the highest structural specificity, and maintains a

similar IC mean to CoPSA. This indicates that it is annotating specific terms in

the tree that are more rarely annotated in the wheat GeneChip. However, the

relatively low richness of annotation (Figure 3.44) relative to CoPSA indicated

that high IC terms were selected at the expense of a more general coverage of

the breadth of the ontology.

All the CoPSA annotation-selection strategies have the effect of increasing IC

relative to the CoPSA-Union method. MWFM results in the greatest average

IC content, whereas the OE adaption results in reduced IC. This indicates that

selecting for experimentally derived annotations biases the annotation against

more rarely used annotations. It implies experimental evidence transferred by

protein sequence similarity is, more frequently, less specific (more conservative)

than computational predictions, which may indicate the methods with high IC

are assigning terms that are more specific than the evidence supports.
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3.3.3(c) Functional similarity of annotations to NetAffx

A well as examining the properties of the functional annotations produced by

each post-filtering method and compared pipeline (Section 4.3.2), a comparison

of the functional similarity of each functional annotation output to NetAffx is

reported in this Section. As previously explained in Section , a full analysis of

precision and recall against a gold standard that has been experimentally val-

idated was desirable, but not possible, given the absence of any suitable gold

standard. However, NetAffx was used as the next best substitute for a gold

standard annotation set. The validity of this exercise is therefore dependent on

the high quality of NetAffx annotations. There is no definitive proof of their

quality in the absence of a gold standard annotation. However, based on the

evaluation in the previous section, an inspection of the GO annotation for the

glutamate synthase family of genes by D Habash, and through visual inspection

of the annotation, there are many indications that they represent a conservative,

high precision, but low coverage annotation set.

Figure 3.46 shows theVerspoor et al. (2006) hierarchical recall metric, calculated

against NetAffx GO annotation, on the annotations from each post-filtering

method and BLAST2GO. The GO categories are presented individually as the

confidence in the annotations from each may differ. If this NetAffx is a reli-

able annotation set then Figure 3.46 demonstrates a significant endorsement of

CoPSA annotations, as it consistently predicts the same or very similar annota-

tion sets to NetAffx. BLAST2GO has consistently lower recall in all categories

compared to CoPSA. It shows that for those genes annotated by NetAffx, the

predictions of BLAST2GO are less similar to NetAffx than those from CoPSA.

This may indicate that BLAST2GO has a higher false negative rate than CoPSA.

The annotation selection strategies are designed to improve precision by ex-

cluding inaccurate annotations and this often has negative consequences for

recall. However, none of the methods show more than a 10% reduction in re-

call. Out of all the methods CoPSA-MWFM-OE, which is the most stringent,

192



shows the greatest reduction in recall. This is expected as a more conservative

approach to post-filtering is likely to trade a reduction in false positives against

an increase in false negatives.
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3.4 Conclusions

In this chapter, the encoding of biological rules for inference over an Ondex

graph has been shown to be an effective strategy for identifying a variety of

biological function annotations for the consensus sequences used to design Af-

fymetrix GeneChip arrays. These annotations incorporated elements derived

from multiple data sources, alignment methodologies, and structures of an-

notation.

A conjoint strategy, incorporating both protein functional domain identification

(HMMR with Pfam) and protein sequence alignment (BLAST), was shown to

improve the quantity, coverage, and diversity of predicted annotations. Over-

all, BLAST proved the more sensitive method; however a small number of se-

quences could annotated only through the HMMR based method.

Aggregation of annotations from multiple data-sources was shown to increase

both the number of sequences that could be annotated and the range of GO

terms used in the annotation. An evaluation of the contribution made by dif-

ferent data sources, UniProt and GOA-Arabidopsis were shown to provide the

greatest number of annotations, as well as being the richest source of annota-

tions supported by experimental evidence. In addition, the Gramene-derived

annotations provided a smaller but still substantial source of annotation. Omit-

ting any of the above data sources from the data integration process would

have resulted in a loss of annotation. This supports the view that the large

and disparate collection of public biological databases (Cochrane and Galperin,

2009, Galperin, 2007) contain fragmented knowledge and that data aggregation

through integration is therefore necessary to utilize this knowledge within sys-

tems biology (Molina et al., 2010).

Data integration was also shown to be beneficial in the exploitation of unreal-

ised information, components of which were spread across all the data sources.
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This information was identified by the implementation of an inference-based

query engine for Ondex which extracted new annotation relationships by en-

coding generic rules in a query graph. Protein sequence alignment (using BLAST)

based annotations were found to be more readily translated by inference rules

into GO annotations. A small number of unique GO annotations were also

derived from identified Pfam domains (using HMMR). For predicting EC an-

notations, protein sequence alignment (using BLAST) was also the most effect-

ive strategy, however, with regard to the inference of GO annotations, a lar-

ger quantity of unique annotations could only be found using Pfam domains.

Multi-database inference of annotations yielded less new information, relative

to single-database aggregation, for protein sequence alignment based annota-

tion from GO but contributed substantial amounts of unique and supporting

data when using Pfam protein domain links to GO. For EC annotation using

protein sequence alignment, inference contributed a greater quantity of annota-

tion than data aggregation alone, which translated into a substantial increase in

sequence coverage. For EC annotation based on identified Pfam domains, in-

ference was less important for new-annotations, but proved to be important in

increasing the specificity quality of annotations.

Compared to the BLAST2GO (Conesa and Götz, 2008) and NetAffx (Liu et al.,

2003) annotation pipelines, CoPSA increased the overall coverage of annota-

tions for consensus sequences used the Affymetrix wheat array. CoPSA was

able to uniquely annotate 37%, 34% and 24% of the wheat GeneChip sequences

with GO categories of molecular function, biological process and cellular compon-

ent respectively. These sequences had previously been un-annotated in their

respective categories by any of the compared providers. There was a large de-

gree of overlap with the other methods. For GO molecular function CoPSA was

able to provide annotation for 90% and 97% of the sequences annotated with

this category by NetAffx and BLAST2GO respectively. For GO biological process

the overlap was 86% and 88%, and for cellular component 90% and 95%. This
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confirms that in terms of coverage, CoPSA can provide annotation for more se-

quences than either of the providers compared. However, it does not address

the functional similarity of the annotation provided. Nor does it address the

reliability of the annotation. This aspect of the functional annotation provided

by CoPSA was evaluated in Section 3.3.3 .

This chapter has concentrated on the improvements that the methods imple-

mented in CoPSA have made to the number and specificity of annotations that

could be identified from integrated data resources. This led to an increase in

the number of sequences on the wheat Affymetrix array that could be assigned

putative biological functions and was shown to be an improvement over exist-

ing methods. This result is important for the future analysis of data from the

transcriptomics time-course experiment that will be presented in Part II.

CoPSA annotations were found to have a similar level of specificity to the high

quality NetAffx annotations, and slightly lower specificity than BLAST2GO an-

notations. Lower specificity can be an indicator of more conservative annota-

tion, as is the case with NetAffx. While, not conclusive, the similar specificity

of CoPSA annotation indicates a pattern of annotation that is more consistent

with conservative annotation.

CoPSA annotations are the richest in terms of utilising the breadth of the GO

categories, which reflects the higher number of genes on the chip with annota-

tion. It indicates that CoPSA has not simply assignedthe same set of function

to more genes, as would be the case when using less stringent criteria. This

suggests the greater body of annotation information created using data integ-

ration, has increased the ability of CoPSA to assign annotations to many more

unknown or partial-characterised wheat genes than any of the standard annota-

tion pipelines.

The annotations for genes using CoPSA had higher Information Content (IC)

than NetAffx and similar, but slightly lower, IC when compared to BLAST2GO.

It was also observed that the OE adaption of CoPSA-MWFM resulted in lower
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IC scores. Together this points to an inverse relationship between IC and how

conservative the annotation is. The would mean IC values observed in CoPSA-

MWFM-OE therefore represented a middle ground between NetAffx and BLAST2GO,

in the compromise between annotating rarer terms, and being more conservat-

ive in annotation.

The strongest endorsement of the accuracy of CoPSA predictions, come from

the assessment of hierarchical recall as defined by Verspoor et al. (2006). This

showed that CoPSA made the same or similar predictions for those genes an-

notated by NetAffx, giving a recall of 84-90% for function, 78-83% for process,

and 82-89% for recall for CoPSA-Union compared to CoPSA-MWFM-OE re-

spectively.

Having demonstrated that CoPSA annotations are a significant improvement

over other annotation pipelines, the next step is to apply the CoPSA annota-

tions in the analysis and interpretation of a time-course microarray data set.

198



Chapter 4. A time-series response to water stress in

durum wheat

This chapter describes the background and methodology to the biological use

case, which provided the primary motivation for development of the CoPSA

annotation pipeline described and evaluated in Chapter 3, respectively. This

begins by introducing water stress as a critical problem with global impact in

agriculture and food production, and goes on to describe the primary molecular

control of the drought and osmotic stress in plants as (Section 4.1). The import-

ance and genetics of Durum wheat is then described (Section 4.1.2), with ref-

erence to its impact on transcriptome analysis. Finally, Section 4.1.3 describes

a controlled environment experiment to study the effect of water stress over

time on the transcriptome, which form the bases for the use-case for this thesis.

Chapter 6.3 then describes how CoPSA annotations were used to build on this

transcriptome analysis.

4.1 The Biological background to water stress

Drought is the major abiotic limitation to crop yield and is thus a serious prob-

lem globally with significant agricultural, economic, political and social impact.

It is likely to become even more important if current predictions of the effects of

climate change prove correct (Neelin et al., 2006). Water stress, however, should

not be viewed in isolation from other abiotic and biotic stresses which often oc-

cur simultaneously under field conditions.
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4.1.1 Water stress in plants: Molecular response

It is usual in the field to observe multiple abiotic stresses acting concurrently

on the plant. Significant physical similarities exist between the major abiotic

stresses, with osmotic disruption being a common feature of drought, salin-

ity and temperature stress (Zhu, 2002) . Consequently, water stress has the

greatest commonality with the other stresses, at not only the physical but mo-

lecular scale. There is also significant overlap at the molecular scale, with the

same genes, hormones, and signalling pathways being utilised in multiple abi-

otic stress responses. The overlap of the molecular response is termed cross-talk

(Chinnusamy et al., 2004).

An important component of the stress response occurs at the sensing stage.

Stress sensors are a major target of study and have so far proved elusive. A can-

didate osmosensor for immediate osmotic stress signalling is ATHK1, and was

identified by Urao et al. (1999) in Arabidopsis. Similar sequences for ATHK1 have

been identified in other plant species (Chefdor et al., 2006, Pareek et al., 2006)

ATHK1 encodes a protein with two transmembrane domains, which senses a

change in osmotic potential within the cell and can trigger a number of cell sig-

nalling pathways, outlined in Figure 4.1.
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Calcium dependent protein kinase
(CDPK) cascade

Osmotic Stress

Mitogen-activated protein kinase
(MAPK) cascade

Membrane bound Osmosensor

Stomatal closure

Ethylene signaling

Growth Inhibition

Jasmonic acid 
signalling

Aquaporins

Osmoprotectants

Flowering inhibition

ABA signaling

Figure 4.1: The osmotic stress sensing and signalling response. The red connection
indicates negative inhibition of a pathway.

ATHK1 triggers a mitogen-activated protein kinase (MAPK) cascade: MAP-

KKK ⇒ MAPKK ⇒ MAPK (Agrawal et al., 2003). Brader et al. (2007) demon-

strated that an increase in expression of MPK4 in Arabidopsis coincides with an

increase in the enzymes involved in jasmonic acid (JA) and ethylene biosyn-

thesis pathways. Gao et al. (2004) has shown JA signalling may be involved in

the production of the osmoprotectant glycinebetaine.

In addition to those pathways overviewed in Figure 4.1, Urao et al. (2000) and

Suzuki et al. (2001) have identified three phosphorelay (signalling through the

transfer of a phosphoryl group (Hoch and Varughese, 2001)) intermediates (ATHP1–3)

and four potential phosphorelay response regulators (ATRR1–4). This repres-
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ents an independent protein-protein interaction pathway connecting the Ara-

bidopsis osmosensor (AtHK1) to gene signalling. A similar mechanism in Pop-

lar was identified by Chefdor et al. (2006) and in Rice by Pareek et al. (2006).

At the metabolic level carbohydrates, betains, and proline are produced in re-

sponse to water stress, correcting the immediate loss of osmotic pressure (Beck

et al., 2007). Proline has been linked to Auxin and Ca++ accumulation (Sadiqov

et al., 2002). Plant hormones play a crucial role in the sensing and signalling of

water stress. ABA is an excellent example of the complexity of this signalling

and plays a central role in many of the key signalling pathways from sense to

response. For this reason in the following section, I examine in detail the role of

ABA in water stress signalling.

4.1.1(a) The role of ABA in water-stress signalling

The role of ABA in water stress signalling has been known for a long time

(Mizrahi et al., 1970, Imber and Tal, 1970), but only recently has the full com-

plexity of its interactions and regulatory mechanisms become known. Studies

had suggested ABA was unique among plant hormones in the complexity of its

regulation network. However, recent retractions and counter evidences in the

field leave this in doubt. This section begins with a description of the regulation

of ABA concentration and proceeds to describe its effects.

ABA biosynthesis and related pathways

ABA is highly mobile, and moves from the root to the shoot and surround-

ing soil. ABA movement from root to the phloem is highly pH-dependent and

ABA leaches from the root into the surrounding soil of the plant forming equi-

librium with the rhizosphere. This prevents excessive loss from the root during

root-shoot signalling (Hartung et al., 1996). The localized concentration of ABA

is therefore controlled by its rate of biosynthesis. It is not surprising, there-
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fore, that there is tissue-specific localization of enzymes involved in ABA bio-

synthesis. The AAO paralog group encodes Aldehyde Oxidase enzymes that

catalyse the final non-redundant step of ABA biogenesis (Figure 4.2) which is

also involved in the production of reactive oxygen species that play a role in

ABA signal transduction (Yesbergenova et al., 2005). AAO2 is expressed in the

leaf (Seo et al., 2000) whereas AAO4 is localized in the seeds; the other para-

logs (AAO 1, 3) are likely to be important in the roots, given they are most

highly expressed there (Seo et al., 2000, Sekimoto et al., 1998). Koiwai et al.

(2004) went further and has identified by GFP-florescence, individual tissues

and cells where AAO3 is concentrated. This implies that water stress percep-

tion is likely to be heterogeneous across cells and highly tissue specific in its

characterization. This poses an interesting challenge to systems biology as sig-

nificant tissue specific annotation of signalling pathways has not been readily

available in public plant databases. However, the AREX databases has begun

to make Arabidopsis tissue specific expression data available for the root (Brady

et al., 2007, Birnbaum et al., 2003). When the viability of a signalling or metabolic

pathway is dependent on the tissue proteins are located in, then tissue becomes

an important consideration for interpreting gene expression data.

Carotenoid 
Biosynthesis trans-neoxanthin 9’-cis-neoanthin

xanthoxinabscisic aldehyde

(+)-ABA
Phasic Acid Biosynthesis

ABA Glucose Esther Biosynthesis

At-NCED(9,6,2,3)
1.13.11.51

At-ABA2
1.1.1.288

At-AAO3
1.2.3.14

Figure 4.2: The ABA biosynthesis pathway from Arabidopsis thaliana (Source AraCyc,
December 2011). Enzymes are represented in red, major biochemical
products and substrates in black, and reactions as blue arrows.

In addition to the AAO mediated reaction, the enzyme 9-cis-epoxycarotenoid
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dioxygenase (NCED) appears to catalyse an important reaction in controlling

ABA biosynthesis (Figure 4.2). Iuchi et al. (2001) have observed a significant

correlation between the expression of AtNCED3 with ABA levels and ABA me-

diated responses. Yang and Guo (2007) have identified the same response in

leaves and roots for a NCED gene in Stylosanthes guianensi and the same has

been shown in the leafs of Solanum lycopersicum (Thompson et al., 2000). How-

ever, it is thought that in planta AAO is the prime regulatory enzyme (Nambara

and Marion-Poll, 2005).

The molybdenum cofactor is involved in the final reaction of ABA biosyn-

thesis and is synthesized in the Molybdenum Cofactor biosynthesis pathway

shown in Figure 4.3. In addition to the AAO and NCED catalysed reactions

of ABA biosynthesis the gene ABA3 which encodes the molybdenum-cofactor-

sulpherase enzyme (catalysing the final stage of the pathway shown in Figure

4.3) has been observed to be over expressed in drought-stressed plants. The

ZEP gene that codes for zeaxanthin epoxidase, which catalyses the first stage

of ABA biosynthesis is also up regulated during water stress. The ABA2 gene

(Figure 4.2) encoding the xanthoxin dehydrogenase enzyme however does not

appear to be regulated during water stress (Nambara and Marion-Poll, 2005).
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Purine Nucleotide Metabolism GTP

cyclic pyranopterin monophosphatemolybdopterin

molybdopterin-AMP molybdenum cofactor (dioxyo)

molybdopterin 
biosynthesis protein
3.5.4-

molybdopterin
synthase
2.8.1-

molybdopterin hydrolase
1.2.3.14

molybdenum cofactor (sulfide)

molybdopterin 
adenylyltransferase
2.7.7.-

molybdopterin 
cofactor sulfurase
2.8.1-

Figure 4.3: The molybdenum cofactor biosynthesis pathway from Arabidopsis thaliana,
molybdenum cofactor is involved in the final stage of ABA biosynthesis
(Figure 4.2) (Source AraCyc, December 2011). Enzymes are represented in
red, major biochemical products and substrates in black, and reactions as
blue arrows.

ABA catabolism is also important in water stress, as all 4 CYP707A genes in the

downstream phaseic acid biosynthesis pathway (Figure 4.4) are up regulated

by water stress (Kushiro et al., 2004, Saito et al., 2004), ABA concentration there-

fore seems to be co-regulated by its biosynthesis and catabolism. Interestingly,

this seems to be a central node for plant hormone regulation, as CYP707A3 is

positively regulated by both gibberellin and brassinolids (Saito et al., 2004).

ABA biosynthesis (+)-ABA 8’-hydroxyabscisate

phasic aciddihydroxyphasic acid

ABA 8’hydroxylase
1.14.13.93

1.-.-.-

Figure 4.4: The phaseic acid biosynthesis pathway from Arabidopsis thaliana (Source
AraCyc, December 2011)
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The ABA signalling responses

As with ABA concentration, localization plays an important role in ABA sig-

nalling and significant work has been done to characterize the movement of

ABA from its site of production to its site of action. It has long been thought that

ABA plays a crucial role in the root to shoot signalling in water stress through

xylem transport of ABA Zhang and Davies (1987), Davies and Zhang (1991),

Sauter et al. (2001), Wilkinson and Davies (2002), Jiang and Hartung (2008).

However, Christmann et al. (2007), in response to the observation by Holbrook

et al. (2002) that the shoot drought ABA response can occur independently of a

root ABA signal, has recently presented evidence that a hydraulic signal from

root to shoot is far more important. This would indicate a model where ABA

is synthesized in its locality as required in response to other signalling mech-

anisms. This seems consistent with the previously discussed work by Koiwai

et al. (2004) where elevated ABA concentrations are shown to be cell and tis-

sue specific, which requires either an efficient transport mechanism or localized

production.

A key component to understanding ABA signalling activity is the identifica-

tion of ABA receptor sites. In the last two years, considerable progress has been

made towards identifying these sites of action, of which at least three have been

identified. The Vicia faba (Broad bean) chloroplast protein Mg chelatase H sub-

unit encoded by ABAR/CHLH was identified as a candidate ABA signalling

receptor for stomatal closure, and ABA binding with a homolog in Arabidop-

sis has been observed (Shen et al., 2006). Shang et al. (2010) have also shown

ABAR interacting with WRKY transcription factor. However Müller and Hans-

son (2009) have failed to show any effect on ABA of barley from ABAR mutants.

Liu et al. (2007) has also observed GCR2, a G protein–coupled receptor mem-

brane protein binding to ABA. However recent studies have failed to show any

loss in ABA sensitivity in GCR2 knockouts (Gao et al., 2004, 2007). More re-

cently, Risk et al. (2009) have show that GCR2 does not bind with ABA, cite
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problems in protein purity and data-analysis in Liu et al. (2007) work.

Two promising new candidate families of proteins involved in ABA binding

have recently emerged; the GPCR-type G proteins (GTG) and the regulatory

components of ABA receptor (RCAR) proteins. Pandey et al. (2009) have iden-

tified GTG1 and GTG2 in Arabidopsis. They showed these transmembrane G-

protein-coupled-type proteins were shown to bind to ABA, and double knock

out mutants induced ABA hypersensitivity.

The RCAR family are the most promising candidates for ABA binding receptors

to-date, and consist of 14 genes in Arabidopsis. RCAR1 was first identified by Ma

et al. (2009), who demonstrated a physical interaction with ABA using three dif-

ferent methods: yeast-two-hybrid (Y2H), bimolecular florescence complement-

ation (BiFC), and confocal microscopy of a green fluorescent protein (GFP) la-

belled RCAR1 protein. Ma et al. (2009) also showed multiple-RCAR knockouts

were ABA insensitive. An ABA-RCAR complex has been observed with X-ray

diffraction (Santiago, Rodrigues, Saez, Rubio, Antoni, Dupeux, Park, Márquez,

Cutler and Rodriguez, 2009, Nishimura et al., 2009), as well as a three-way

complex (ABA-RCAR-PP2C) with Gα and phosphatase 2C (PP2C) (Yin et al.,

2009, Miyazono et al., 2009). Melcher et al. (2009) have described a ligand-

binding pocket in RCAR, which is flanked by a β-loop gate that closes upon

ABA binding. This affects conformational changes which allows a PP2C protein

to bind into an otherwise competitively inhibited active site. Santiago, Dupeux,

Round, Antoni, Park, Jamin, Cutler, Rodriguez and Marquez (2009) observed

this complex localised to the nucleus and the cytosol using GFP labelling. Fig-

ure 5.21 shows a schematic by Raghavendra et al. (2010) describing how this

ABA sensing complex, fits in with the known ABA responsive signalling path-

ways. The ABA-RCAR-PP2C complex formation appears to prevent the inhibi-

tion of sucrose non-fermenting-1 (SNF1)-related protein kinases (SnRKs). PP2C

have previously been implicated in SNF1 related kinase (SnRK) signalling. A

number of studies have linked various SnRKs with stomatal aperture size (Li
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et al., 2000, Mustilli et al., 2002, Yoshida et al., 2002, Fujii et al., 2007). The gene

OST1 in rice which encodes SnRK2 protein in rice, and is strongly correlated

to stomatal aperture, has also been shown to be dependent on the functioning

of the ABI1 gene encoding the PP2C (Yoshida et al., 2002, Mustilli et al., 2002).

This confirms that this mechanism is conserved in other plant species, as well

as Arabidopsis.

The first mode of action of the ABA-RCAR-PP2C signalling complex is shown

in Figure 5.21(a). The competitive inhibition by the RCAR complex of the inhib-

itory action of PP2Cs on OST1, frees up OST1 to initiate stomatal closure. The

action of OST1 on stomatal closure was elucidated by Mustilli et al. (2002). More

recently it has been shown that in the absence of ABI1, OST1 phosphorylates,

and consequently activates SLAC1 anion channel (Geiger et al., 2009, Lee et al.,

2009). Ultimately, this activation results in the depolarisation of the guard cell,

which leads to turgor loss through osmosis and consequent stomatal closure

(Negi et al., 2008, Vahisalu et al., 2008). Sato et al. (2009) have also shown that

OST1 phosphorylates the C-terminal region of the K+ channel protein KAT1,

which prevents the passage of K+, which would otherwise repolarise the guard

cell. Siegel et al. (2009) suggests that this, ABA-mediated signalling of stomatal

closure, is co-regulated by Ca++ mediated signalling, which is multiplicative

with the activity of OST1. They showed the action of ABA in stomatal closures

is approximately 30% of normal, in the absence of elevated Ca++. The pres-

ence of Ca++ inhibits K+ channels, and activates slow anion channels such as

SLAC1. The action of dependent phosphatase kinase (CDPK) links ABA with

Ca++, and connects to a wider signalling transcriptional regulation pathways.

The gene ABI1 which encodes a PP2C has previously been shown by Leung

et al. (1994) and Mori et al. (2006) to link ABA and Ca++ signalling, to affect

stomatal closure. Ca++ activates CDPKs by binding to a calmodulin-like regu-

latory domain (Harmon et al., 2000).

The second mode of action of the ABA-RCAR-PP2C signalling complex, in the
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nucleus, is shown in Figure 5.21(b). In the absence of PP2C inactivation (by

RCAR complex competitive inhibition) the OST1 protein phosphorylates ABA-

responsive Element Binding Factor (ABFs), which bind to the ABA responsive

prompter (ABRE) (Fujita et al., 2009, Yoshida et al., 2010). A key target for Ca++

signalling is also the AREB transcription factor domain. The CDPK AtCPK32

has been shown to regulate a family of transcription factors sharing the AREB

domain, these are known to heighten sensitivity to ABA, and phosphorylate

ABI5 (Choi et al., 2005).

Figure 4.5: The RCAR, ABI1 (a PP2C), ABA complex (pink), and its role in cystosolic
and nuclear sensing and signalling of ABA in the cytosol (a) and the nucleus
(b) (Raghavendra et al., 2010).
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Downstream secondary messengers affected by ABA signalling form a complex

network of cascades and regulations. In Figure 5.6 Hirayama and Shinozaki

(2007) helpfully summarize the major proposed signalling pathways. They

speculated even before the ABA-RCAR-PP2C complex was known, that PP2C

was a likely control hub within ABA signalling.

Figure 4.6: A summary of ABA downstream signalling pathways highlighting the
three main ABA receptors (Hirayama and Shinozaki, 2007). Note: The work
describing FCA as an ABA receptor has now been retracted (Razem et al.,
2006), as a result of work by Risk et al. (2008).

The role of CDPKs in aquaporin activity has been recognized since Maurel

et al. (1995). Mariaux et al. (1998) and Jang et al. (2004) have both observed

Plasma The plasma membrane intrinsic proteins (PIP) are aquaporin channel

proteins, which are encoded by 13 known genes in Arabidopsis thaliana. The

family has been found to contain both ABA-dependent and independent genes.

PIP gene expression in response to ABA seems to be tissue and stress-specific;
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intriguingly in roots, Jang et al. (2004) showed significant reductions in some

PIP genes in response to ABA.

The MAPKs cascade pathway that is independent of ABA, briefly discussed in

the introduction to this section, can also be triggered by higher ABA concen-

trations. It is not known whether this is a direct interaction, or as a result of

indirect reactive oxygen species accumulation which also triggers a MAPK cas-

cade (Zhang et al., 2006).

Any useful representation of water stress response must encompass responses

at the level of signal sensing, regulatory cascades, transcription factor signalling,

and gene and metabolic pathway activation: to present an accurate system rep-

resentation. In addition to the immediate propagation through the transduction

scales described in Figure 4.7, signalling feedback and cross pathway inhibi-

tions make the drought response system highly complex.

Gene expression

Transcription factor expression

Protein-protein regulatory cascade

Signal sensing molecules

Metabolic pathway activation

Figure 4.7: The signal cascade encompasses multiple transduction scales. Signal sens-
ing molecules and hormones such as ABA and ATHK1 trigger protein-
protein cascades and TF expression. TF expression influences the expres-
sion of a gene or group of genes. Genes encode signal sensing protein
increase the severity of response and genes encoding enzymes alter the
abundance of plant hormones.

Another important aspect in our understanding of the plant’s response to water

stress is the time frame for the molecular and physiological responses. Sig-

nalling processes and physiological responses do not occur in isolation, but
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evolve and interact over time. For example: an early transcriptional response

during mild stress may have consequences for later signalling responses to

severe stress. An isolated snapshot of the transcriptome in time may therefore

be inadequate to understand the plant’s response. A real-time monitoring is of-

ten impractical because of cost implications; however a pragmatic interval for

monitoring transcriptome responses can be selected which makes a balanced

compromise between the cost of measurement, the frequency of gene changes,

and the length of the water stress response.

4.1.2 The Genetics of durum wheat

Triticum turgidum subsp. Durum (durum wheat) is a tetraploid species of wheat

that is widely grown as a crop and used in the production of pasta and bread.

Durum wheat comprises approximately 8% of the worldwide wheat produc-

tion. Taxonomically, it is a hybrid between a wild grass and primitive diploid

wheat, and forms part of the hybrid with the grass T. tauschii that formed the

common ancestor for the hexaploid bread wheat, Triticum aestivum (Nevo et al.,

2003). Figure 4.8 shows the genetic contribution Durum wheat has made to the

current wheat species. One of the significant problems for researchers wanting

to work on Durum wheat, is that there is little genome sequence data available

in public sequence databases, with GenBank (Benson et al., 2007) containing

only 19,641 ESTs (October 2010). The closest related wheat species where signi-

ficant amounts of sequence data are available is hexaploid bread wheat, which

contains an ancestral durum genome. Bread wheat has an estimated genome

size of 13.5Gb which is huge when compared to the model plant Arabidopsis

thaliana genome size of 157Mb. At the time of writing, the number of bread

wheat sequences in the public databases was just over 1 million EST sequences,

and 1,830 fully sequenced genes within GenBank (October 2010). In Entrez,
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wheat has 41,000 UniGene records which are clusters of sequences that are be-

lieved to originate from the same transcription locus, based on protein simil-

arities, cDNA alignment, and genomic location data. This can be contrasted

with Arabidopsis sequences in the version 10 release of TAIR which had 27,416

protein coding genes, 4827 pseudo-genes and transposable elements, and 1359

non coding RNAs. A recent preliminary study which sequenced 18.2 Mb of

the wheat 3b chromosome found 175 gene and pseudo-gene models and from

this they calculated a gene density of 1 gene per 104 kb, which led to a high

estimate of 50,000 genes per diploid genome (Choulet et al., 2010). The Inter-

national Wheat Genome Sequencing Consortium (IWGSC) (Gill et al., 2004) are

currently in the process of building a physical map of the wheat genome, and

has begun full sequencing of the 3b chromosome as a pilot, using Roche 454

next generation sequencing of BAC clones.
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Figure 4.8: The current theory on the genetic history of modern wheat, showing the
inheritance of genomes and the origin of polyploidy in modern wheat (Ge-
netic and Center, 2011).

Durum wheat is tetraploid and consequently, ancestral genes are duplicated

across A and B genomes as a homoeologue pair. If the sequences of a given

homoeologue pair have not diverged in the regions targeted by the probes on

the Affymetrix chip, and both genes are active in the transcriptome, then gene

expression will be the product of multiple genomic loci. Redundant genes are

sometimes eliminated or epigenetically silenced during the formation of the

polyploid in order to stabilise a viable gene expression profile (Chen, 2007).

Therefore, in some instances, only one gene from a single genome is active

in the transcriptome. However it has been observed that for a large number

of homoeologous genes in bread wheat, with single nucleotide polymorphism

(SNP) differences that allow the homeologues to be identified, all three genes
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are expressed (Mochida et al., 2003). Where coding genes have 100% iden-

tity across genomes, then the proteins they encode are likely to be identical,

and so in terms of function and process they are indistinguishable. However,

where small polymorphisms between copies of a gene occur, and the microar-

ray probe-sets are not able to differentiate, then part of the reported transcrip-

tome profile of a gene may be in error. This aspect can be examined further

when one needs to explore particular gene families with subsequent qPCR and

other methodology and is beyond the scope of this thesis.

The issue of gene duplication is not an issue restricted to polyploidy. Gene du-

plications may occur within a genome from transposable elements, which are

particularly active in wheat (Choulet et al., 2010, Sabot et al., 2005) and this res-

ult in paralogous genes. The complexity of genome duplication and polyploidy

create problems for the interpretation of transcriptome data and these are com-

pounded by incomplete knowledge of wheat gene sequences. The most import-

ant problem is that many microarray probe-sets record expressed transcripts

of unknown genes or gene variants. It is imperative, therefore, that observed

expression results from the microarray be experimentally validated using com-

plementary methods such as qualitative real-time PCR (qRT-PCR).

A similar issue arises in the use of microarrays to compare individuals or ge-

netic lines. Sequence polymorphism in genes varieties and germlines, can also

result in variations in probe-sequence binding affinity, and consequently affect

the reported expression. This could potentially be a source of error in compar-

ing samples. However a study using the Affymetrix wheat microarray, which

looked at 15 probe-sets that reported large differential expression across cul-

tivar lines, confirmed using qRT-PCR that the differences were due to real ex-

pression (Wan et al., 2009).
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4.1.3 A controlled-environment time-series microarray experi-

ment

This use case forms the motivation for developing improved functional an-

notation of microarray sequence targets for the analysis of a durum wheat

water stress-response experiment. The data comes from a time-series microar-

ray experiment designed to study water stress in a controlled environment for

three cultivars of durum wheat. The experiment was conducted as part of the

TRITIMED project at Rothamsted Research to understand gene transcript re-

sponses and identify candidate genes. It is included here as background to

understanding the data set, for which an example analysis will be presented in

Chapter 6.3 that demonstrates the utility of CoPSA annotations. The transcrip-

tome responses were studied from three cultivars of durum wheat: Cham1,

Lahn and RIL2219 (Figure 4.9). These cultivars were developed by the wheat

breeder Miloudi Nachit (ICARDA, Syria). Cham1 is a drought-resistant variety

widely grown in the Mediterranean basin and Lahn is a high yielding variety

from Syria, which performs well under well-watered conditions but is suscept-

ible to changes in temperature and water availability. Recombinant Inbred Line

(RIL) 2219 is one of the 114 RILs that originating from the cross between Cham1

and Lahn. This RIL was identified as one of the more drought tolerant lines in

terms of stability of yield when compared to either parent using multi-site field

trials (15 sites) conducted over two years. The two parents and RIL2219 were

subsequently studied for their responses to water stress imposed under con-

trolled environment conditions.

The optimum conditions to produce severe water stress over 5 days where se-

lected in preliminary studies over a period of two years prior to the controlled-

environment experiment. The three cultivars were grown in 3.5L pots under

controlled environment conditions of:
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• Temperatures of 25◦C during the days and 20◦C during the nights

• A photoperiod of 14 hours at a 700-900 µmol−2s−1 photon flux density

• 65% relative humidity

• A peat-free soil-compost enriched with slow-realise fertilizer (Osmocote,

N:15%, P2O5: 11%, K2O:13%, MgO:2%, Bo:0.02%, Mo: 0.02%, Cu: 0.05%,

Mn0.06%, Mn:0.06%, Zn: 0.0015%, Fe chelated: 0.15%)

• Hand watered

A random block design was used with four biological replicates per cultivar,

treatment and time point. Plants from the different lines had similar develop-

mental rates and plant heights; an important set of considerations to enable the

study of stress without the complexity of added developmental-induced stress

responses (Figure 4.9)

The drought stress was induced at one week post-anthesis, and the plants were

deprived of water over five days. Samples, from 3 biological replicates, and

from 3 repeated independent experiments, were taken each day from the total

flag leaf and the RNA extracted. Total RNA was extracted using TRIZOL Re-

agent (Invitrogen) according to manufacturer recommendations. Total RNA

was DNase treated with TURBO DNase enzyme (Ambion) and cleaned using

RNeasy columns (Qiagen). RNA concentration was measured in a Nanodrop

spectrophotometer and first strand cDNA was synthesised using SuperScript

III enzyme (Invitrogen). Best quality RNA was applied to Affymetrix wheat

gene expression arrays at Bristol University.
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Figure 4.9: Cham1 (drought tolerant), Lahn (high yielding but low drought tolerance)
and RIL2219 (drought tolerant line) under well watered conditions in the
TRITIMED experiment. (Source: Marcela Baudo).

Figure 4.10 shows the normalised fluorescence intensity from the probes on

the wheat Affymetrix GeneChip array hybridised to RNA from the five time

points using the GeneSpring microarray analysis tool kit. It clearly shows the

complexity and variation within the data and the need for further dissection

of genes. The statistical and bioinformatics analysis of this complex data set is

described in Chapter 6.3, which incorporates the improved CoPSA annotations

described in Chapters 3.
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Figure 4.10: An overview of the expression of all significantly expressed genes (p>0.05)
in the three time courses, for the three cultivars: Cham1 (drought tolerant),
Lahn (high yielding but low drought tolerance) and RIl2219 (drought tol-
erant line). (Source: Marcela Baudo, created in GeneSpring). The colour
of each plotted genes relates to the colour chart and represents log of the
expression relative the control.
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Chapter 5. Utilizing CoPSA annotations for microar-

ray analysis

This chapter describes how the Affymetrix wheat chip annotations, derived

from CoPSA, were applied to the analysis of the microarray experiment de-

scribed in Chapter 6.1. It is intended as a demonstration of how CoPSA annota-

tion, presented in Chapter 3, can be used to facilitate the analysis of a transcrip-

tomics experiment. This chapter also describes statistical analysis conducted

by members of the TRITIMED project. The expression data were subjected to

two-way ANalysis Of VAriance (ANOVA) and Principal COordinates (PCO)

analysis, which were both completed by Stephen Powers. These statistical ana-

lyses were undertaken to identify subsets of the genes represented on the mi-

croarray that were changed significantly during the experiment. The influence

of water stress in terms of Relative Water Content (RWC) required a transform-

ation of the data, which was completed by Michael Defoin-Platel. The rest of

the analysis was undertaken by myself.

5.1 Aims and Objectives

The aims of this chapter are to:

• Demonstrate the utility of an improved functional annotation set in the

analysis of a transcriptome.

• Enrich statistical data-analysis with functional descriptions of gene-sets.
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• Provide summaries of the functions and processes expressed during the

experiment.

• Demonstrate, on a number of example processes, how functional annota-

tion can be leveraged to drill down to individual pathways.

This will be achieved through:

• A summary of the dataset with respect to the significantly expressed AN-

OVA groups, and significantly enriched functions and processes within

these.

• Describing the variation within the dataset with respect to Principal Co-

ordinates (PCo), and the significantly enriched molecular functions and bio-

logical processes which contribute to these.

• Leveraging transcription-factor family annotation to summarise transcrip-

tional control.

• Providing a summary of the highest level processes expressed at each time

point in response to water stress.

• Drilling down to a more detailed view of genes connected to the ABA

biosynthesis and RCAR signalling pathways. This is shown through an

example analysis of ABA related genes, facilitated by improved functional

annotation, from CoPSA.
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5.2 Introduction

This introduction describes the statistical analysis undertaken for the TRITIMED

project. Later within this chapter, the analysis was combined with the improved

functional annotations from the CoPSA pipeline (Chapter 3) to demonstrate its

utility.

5.2.1 Two-way ANOVA

From the TRITIMED controlled environment (CE) experiment, 63 samples were

assayed, using Affymetrics technology, for gene expression. The samples com-

prised 6 replicates of well- watered (WW) and 3 replicates of stress (S) at 1-5

days for each of 3 wheat lines. The three wheat lines are composed of Lahn,

a high yielding but drought susceptible line, Cham1, a drought resistant line,

and RIL2219, a highly drought resistant line created from Lahn and Cham1. The

gene expression data was filtered to exclude non-expressing genes (those with

between 0.7 and 1.4 fold change in expression) and for rogue observations on

the chip. After this initial processing there were 19,062 genes left for ANOVA

analysis. The gene expression was first transformed into the log2 scale in order

to normalise the data. The test assesses the significance for the main effects,

cultivar and time, and the interaction between these factors. The ANOVA was

also repeated for the factors cultivar and Relative Water Content (RWC), after

a normalisation with respect to RWC procedure described later in this section.

The F-test, a variance ratio test, is used in ANOVA to measure the significance

of the main effects. This significance of main effects for a given gene was tested

by calculating the variance from the difference in lines across treatments and

the residual variance. The F-statistic for a gene indicates significance if it is suf-
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ficiently large to appear in the tail of the F-distribution, such that the probability

of obtaining that F-statistic by chance is 0.05. Normal distribution in gene ex-

pression was checked by considering plots of these residuals. Tests to confirm

normal distribution (an key assumption of ANOVA) were not applied, how-

ever visual inspection of residual plots supported the general robustness of the

ANOVA.

The product of ANOVA was four non-redundant sets of genes that can be cat-

egorised as having significance with respect to time (2,877 genes), line (782

genes), line+time (4,621 genes), and line.time (10,363 genes). The final group re-

cords genes with an interaction between the two independent variables (factors).

ANOVA also provides a Least Significant Difference (LSD) for each ANOVA

comparison of means; these can be used to determine the level of difference

between means required for significance. This is used within this study to test

which times points in the line.time interaction group contain significant expres-

sion relative to the well watered control.

5.3 Principal COordinates analysis (PCO)

Principal Coordinates Analysis (PCO) is a methodology for exploring similarit-

ies and differences in multivariate data, which was developed by Gower (1966).

A key advantage of PCO is that it does not assume a distribution, and is less

computationally intensive than approaches such as Canonical Variates Analysis

(CVA). PCO analyses variance for each sample in a similarity data matrix (genes

were columns and samples rows), and allows the visual identification of differ-

ences due to the treatment combinations (lines, by days of stress, or RWC). A

full similarity matrix was created, comprising the Euclidean distance between

all replicates given the 19,062 genes measured on the GeneChip. A reduced

matrix of mean similarities were derived from this original matrix per combin-
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ation of line, and days of stress, or RWC, for each respective analysis. The PCO

is then applied to this reduced matrix. The similarity between samples is based

on the Euclidean distance between units.. Units are calculated, using Equation

5.1, for each gene k in 19,062 space, where the i and j are sample in each pair.

xki is therefore the value of gene k in sample i and rk is the range gene k. The

similarity between two samples i and j is the Euclidean distance between a pair

of units, which is given in Equation 5.2.

Sk = 1 − {(xki − xkj)/rk}
2 (Equation 5.1)

Sij = ∑
k

{Sk(xki, xkj)} (Equation 5.2)

The result is a series of Principal Coordinates (PCos) that are ordered by the

amount of variance in the data they encompass, with the first three PCos usu-

ally capturing the majority of the variance of the data. The first three PCos on

the reduced (averaged across replicates) line.time similarity-matrix captured

52.84%, 9.22%, and 6.80% of variance, respectively. For the line.RWC reduced

(averaged across replicates) similarity-matrix, the first three PCos captured 47.84%,

15.01%, and 9.95% of variance respectively. PCos are one-dimensional coordin-

ates, which can be related back to the original data columns by linear regres-

sion analysis. Simple linear regressions of the principal coordinate scores on

the corresponding gene expression data are used to derive F statistics. Equa-

tion 5.3 shows the linear regression model used to derive F-statistic, where PCo

is the coordinate, i is the PCo index (i.e. for the PCos referenced in this chapter

i ∈ {1..3}), j is the variable combination (i.e. one of 18 line.time or line.RWC

combinations), and GE is the matrix of mean (over replicates) gene expression

values. The largest F-statistic indicates the gene that correlates most strongly

with the PCo score.

PCoij = α + β × GEkj (Equation 5.3)
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In this way, the means of replicates for each treatment combination were plot-

ted for each PCo. The F-statistics from the correlation relating each PCo to the

expression values of each gene were collated and sorted largest to smallest, for

each PCo. The F-statistic is therefore inversely related to the probability that

the expression gene of the gene contributes to that PCO. Genes were categor-

ised as of primary importance to a PCo if they made up 5% of the sum of the

F-statistics for that PCo.

5.4 Analysing stress in terms of Relative Water Content (RWC)

A key motivation of the experiment was to test the hypothesis that a transcrip-

tome response of a cultivar to water stress affected its ability to maintain yield

under drought. Results showed that RIL2219 had a delayed physiological re-

sponse (leaf RWC) to water stress when compared to both parents after day

three (Figure 5.1). This introduced an added complexity to the analysis of the

data and necessitated the normalisation of gene expression data sets to allow for

the exploration of differences in gene expression for all lines at the same level

of water stress (RWC) measured in the leaves.

The sigmoid function shown in Equation 5.1 was used to determine RWC

at a given time point t. The values a, b, c, and d were determined using a

quasi-Newton gradient descent algorithm. However, given that the RWC in

the drought resistant RIL2219 never fell below 70% the final two time points

(day 4 and 5) Lahn and Cham1 were not comparable with RIL2219. Therefore,

in order to find a reasonable solution, a projected data point of 30% RWC was

added at day 10, based on an assumption of continuing decline in RWC. This

value was projected based on consultation with the domain expert, D Habash.

irwc(t) =
1

1 + e
t−c

d

a + b (Equation 5.1)
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Figure 5.1: The mean Relative Water Content (RWC) over five days of stress in the three
cultivars: Cham1 (drought tolerant), Lahn (high yielding but low drought
tolerance) and RIl2219 (drought tolerant line). Error bars are standard error
of the mean. Raw data was provided by Marcela Baudo (2008).

From the interpolated RWC data, gene expression values were estimated for

values of RWC from 40% to 90% in increments of 10%. Expression patterns

between days were predicted by fitting a Lagrange polynomial to the data, this

enabled the interpolation of expression according to RWC points, which fell in

the interval between the daily expression measurements. This fitting function

assumes that gene expression is tightly regulated (i.e. it does not modulate dra-

matically between days). However, given that the measurements are 24 hours

apart and gene expression in plants can affect a change in protein levels after

3 hours (Piques et al., 2009), this assumption for some genes may be incorrect.

The function does allow gene expression to change rapidly, multiple times, in a

positive or negative direction during the five days observed in the experiment.

RWC does not fall much in the first two days of the experiment (Figure 5.1),
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and the new extrapolated gene expression values are based on the interpolated

RWC series, which falls within the interval of days 3, 4 and 5 of the experiment.

The re-analysis of the experiment with regard to RWC is therefore an observa-

tion of the transcriptome from moderate to severe water stress, having already

undergone 2 days of milder water stress. This analysis allowed for the explor-

ation of the datasets both in terms of expression over the time course of stress

and in terms of equivalent leaf RWC content.

ANOVA and PCO were then applied in the same manner as for line and time

variables, to line and RWC variables. These statistical analyses of expression as

a function of line and RWC are used throughout this chapter in the analysis of

the progression of drought for the later time points (days 3, 4, and 5). They are

viewed in conjunction with expression as a function of line and time which is

more sensitive to the early onset of drought, before the onset of more dramatic

physical changes in RWC.

5.5 Methods

The following section describe statistical procedures used to determine the stat-

istical significance of an observing a CoPSA annotation for a subset of expressed

genes.

5.5.1 Enrichment analysis for gene-sets annotated to GO terms

The analysis of the enrichment of functional annotation within gene sets util-

ised the Gene Ontology Enrichment Analysis Software Toolkit (GOEAST) (Zheng

and Wang, 2008). All Gene Ontology (GO) annotation were provided by the

CoPSA annotation pipeline, using the multiple weighted fitness measure with

per gene optimisation of evidence weightings (MWFM-OE) as was described
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in Chapter 3.

A hyper-geometric tail, shown in Equation 5.1, was used to determine the prob-

ability that genes that annotate a GO term (t) in a set are enriched compared to

the genes that annotate the same term in the whole chip. Where, k is the number

of genes in the set to be tested, m is the total number of genes in the microar-

ray, q is the number of genes in the tested set that annotate the term, and m

the number of genes on the chip that annotate t. Hyper-geometric enrichment

is a popular alternative to Fishers exact test (e.g. (Thibaud-Nissen et al., 2006,

Popescu et al., 2009, Choudhury and Lahiri, 2011)) and has been used in many

tools for GO term enrichment (Choudhury and Lahiri, 2011, Eden et al., 2009,

Zheng and Wang, 2008). It is computationally less demanding, but equivalent

to, the one-tailed version of Fishers exact test (Rivals et al., 2007). Depletion is

not considered within this chapter; however, this can also be derived from a

two-tailed Fishers exact test.

pvalue(t) =
m

∑
i=q







m

i













t − m

k − i













t

k







(Equation 5.1)

Multiple repeated enrichment tests were conducted for GO terms not selected a

priori, and therefore a correction for multiple testing must be applied to account

for the expected proportion of falsely rejected null hypotheses (i.e. the probab-

ility of observing a GO term in the set is the same as on the chip) (Khatri and

Drăghici, 2005). This False Discovery Rate (FDR) was controlled by using the

(Benjamini and Yekutieli, 2001) p-value correction.

Enrichment is a useful analysis to determine biological processes, molecular func-

tions, or cellular components that are overrepresented in a gene set, however there

are a number of limitations to the analysis. It is constrained by the annotation

itself, and low annotation coverage of a GO term inevitably results in an in-
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creased likelihood of false negatives. In particular, low coverage of processes

even when biological functions imply a common process lead to enrichment

being missed. Also, current methods do not account for co-enrichment of bio-

logical functions processes, which can potentially be meaningful (Zheng and

Lu, 2007). Co-enrichment of two biological functions or processes may have

biological meaning within a group of proteins. For example: K+ channel pro-

teins which are also kinase binding may be co-enriched, which would indicate

a significant specific-combination of these functions.

A contingency table for determining the set comparisons in enrichment is provided

in Table 5.1. For the purposes of enrichment of GO annotated gene-sets within

a given ANOVA group compared to an Affymetrix GeneChip C, g ∈ Ct is the

set of genes that are annotated with the given GO term t, g /∈ Ct are the genes

that are not annotated by the GO term t. g ∈ Cs are the significant genes that

are found within the ANOVA group s, g /∈ Cs are the genes that are not found

in the ANOVA group. The resulting 2x2 matrix therefore groups genes in 4 ex-

clusive sets, and form the basis for comparative enrichment analysis.

Table 5.1: A contingency table for determining the comparisons for the enrichment of g
within a set s for a term t within the set of genes on an Affymetrix GeneChip
C.

g ∈ Ct g /∈ Ct ∪g

g ∈ Cs Cs ∩ Ct
Cs
Ct

Cs

g /∈ Cs
Ct
Cs

C(Cs ∪ Ct)
C
Cs

∪g Ct
C
Ct

C

5.5.2 Enrichment for transcription regulatory genes analysis

Fishers-exact-test was used for transcription factor analysis, as a smaller num-

ber of transcription factor families meant it was less computationally demand-
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ing than GO gene-set enrichment. The contingency table for this is the same

as that shown in Table 5.1, where s is the set of all transcriptional regulatory

genes, and t is the given transcriptional regulatory family. Adaption was made

for multiple testing using the correction by Benjamini and Hochberg (1995).

5.5.3 Identifying RCAR gene family members on the wheat Gene-

Chip

The RCAR protein family, previously described in Chapter 6.1, is an ABA re-

ceptor, and therefore may play a critical role in ABA mediated water stress sig-

nalling. Unfortunately being a very recently functionally-characterised family,

the public databases do not have an appropriately assigned EC number of GO

term, even in Arabidopsis. It was therefore necessary to predict the orthologous

gene family members on the wheat chip by a manually supervised sequence

alignment procedure with the Arabidopsis RCAR proteins (PYL 1..13).

The translated, protein to nucleotide, alignment was performed using tBLASTn

(NCBI version 2.2.24); this was done against a database of all consensus se-

quences on the wheat GeneChip, using the protein sequences of PYL 1 to 13

from UniProt release 2011_02 as the query. A conservative e-value of 1×10−7

was used, with default BLAST settings. A visual inspection of the hits re-

vealed a cluster of strong hits ranging from e-values of 1×10−45 to 1×10−65.

Bitscores within this cluster ranged from 102 to 245. For each of these highly

similar wheat sequences, GeneWise2 (Birney et al., 2004) was used to translate

the wheat nucleotide sequence to an amino acid sequence. GeneWise predicts a

genes intron and exon structure using a similar protein structure as a template.

For each of the nucleotide sequences in the orthologous wheat sequence cluster,

the PYL gene with the highest bitscore was used as the template protein. A

phylogram was generated from a ClustalW2 alignment, using the Neighbour-
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Joining (NJ) method (Saitou and Nei, 1987, Studier and Keppler, 1988), which is

a widely used (Gascuel and Steel, 2006) and fast method that clusters sequences

by attempting to minimise the sum of the branch lengths. The NJ method does

not require that all lineages have diverged by equal amounts. A key weakness is

it provides only a single tree, and it cannot identify individual nucleotides that

are informative or problematic to the tree construction (Sleator, 2011). How-

ever, as we are clustering RCAR genes, from a single gene family, we expect

them to form a single tree. The full alignment of these RCAR genes is given in

Appendix 7.

5.6 Results and Discussion

This section begins with a system-wide analysis of the water stress transcrip-

tomes. Summary ANOVA statistics, principal coordinates analysis (PCO), and

enrichment analysis facilitates the dissection of the microarray data into the

principal variations and processes. The section then proceeds with a novel

process-centric discussion of the early and late responses, pulling out enriched

processes, and mechanisms currently thought to be associated with water stress.

This analysis focuses on gene expression from a time analysis, but occasional

reference is made the normalised RWC analysis. The time analysis includes

early time-points that could be potentially important in explaining the overall

yield stability in drought conditions of the Cham1 and RIL2219 cultivar lines.

Because of space limitations it has not always been possible to include the ana-

lysis in terms of RWC and time, however where RWC provides additional in-

sights it is included.
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5.6.1 A systems-wide view of three water-stress transcriptomes

ANOVA dissected the datasets into four groups of significance:

1. Line alone contains line differences with no response to water-stress over

time (these are constitutive genes which are useful for qPCR as controls

for water stress).

2. Time alone contains genes responsive to water stress but with no differ-

ence between the three lines.

3. Time+line contains genes with a line and a time effect but without an in-

teraction between these variables.

4. The line.time interaction ANOVA group contains genes with significant

variation among the differences of the means, as line and time changes.

In addition to these four groups, there are two other sets of genes on the Gene-

Chip, the first where no expression was reported, and the second has reported

expression but no significant changes occurred over line or time were presence.

The quantity of genes from the GeneChip present in each of these groups is

given in Table 5.2.

The line.time group means that gene expression in this subset is a complex

Table 5.2: A summary of the number of genes in each ANOVA group

Group Number of genes

Line alone significance (p-value<0.05) 781
Time alone significance (p-value<0.05) 2,877
Line+Time significance (p-value<0.05) 4,621
Line.time significance (p-value<0.05) 19,062
No significant (p-value<0.05) 420
No reported expression 27,291
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interaction between line and time (i.e. these variables are not independent of

each other). This was the most interesting ANOVA group because it identi-

fied genes with different expression profiles between varieties, and is a po-

tential source of gene candidates that affect the yield-stability-under-drought

trait. A 5% (p<0.05) Least Significant Difference (LSD) for each gene was used

to identify a posteriori the genes that had significant differences compared to

the well-watered control at each time-point in each cultivar. This enabled the

dissection of line.time interaction into per time-cultivar significant subsets, for

summary analysis.

Within the genes with significant line.time interaction, the progressive increase

in water stress over time also resulted in an increased number of significantly

expressed genes (p<0.05) relative to the control in all three cultivars (Figure 5.2).

The number of expressed genes in Cham1 monotonically increases with days

of progressive water stress. However, for the Lahn and RIL2219 cultivars, the

quantity of significantly expressed genes modulated over time. In Lahn the

number of significantly-expressed genes decreased for the first three days, and

then rapidly increased. For the RIL2219 cultivar, which is highly yield stable

under drought conditions, the number of genes expressed decreased until day

two, slowly but progressively increased up until day four, and then rapidly

increased on day five. The drought susceptible Lahn had a progressive and

more measured increase in the number of genes expressed from day one, with

a larger response observed much earlier than the other varieties. The amount

of expression changes (fold change) seen across cultivars showed a marked in-

crease at the last stages of the stress (Figure 5.3). Further, the modulation pre-

viously apparent for the number of genes changing expression levels over time

in RIL2219 seen in Figure 5.2 was absent when mean fold change compared to

the control was considered. The fall in the number of genes expressed during

the second day in the line.time interaction group of RIL2219 does not accom-

pany a fall in the mean expression. Within day 2, in Cham, similar quantities
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Figure 5.2: The number of genes with significant (p-value<0.05) line.time expression
derived from the ANOVA LSD relative to stress free control for each day
and in each of the three cultivars: Cham1 (drought tolerant), Lahn (high
yielding but low drought tolerance) and RIl2219 (drought tolerant line).

of genes were expressed as in the other lines, but at day 4, the amount of fold

change dramatically drops and the quantity of genes increases. This indicates

a trigger occurred on day three for Cham that was not seen in the other lines.

The drought resistant RIL2219 and Cham1 both show delayed increases in the

quantity of expression relative to the drought susceptible Lahn, which shows

a dramatic increase after four days of stress. These preliminary views on the

global changes in the transcriptome, hint at a relationship between the number

of genes and their expression levels with yield stability under drought condi-

tions.This global analysis shows that for all lines, there is a dramatic increase

in the number and amount of fold expression in genes towards the end of the

stress; at the severe stage where leaf RWC is below 70%. Further, the results

also show that there are differences in the number genes regulated and their
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mean fold change between the lines.
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Figure 5.3: The mean fold change of expression above the Least Significant Difference
(LSD) for genes with significant line.time interactions (p<0.05) for each day
and in each of the three cultivars: Cham1 (drought tolerant), Lahn (high
yielding but low drought tolerance) and RIl2219 (drought tolerant line). Er-
ror bars are the standard error of the mean.

Differential regulation across cultivar lines

Observed differences in phenotype (such as drought tolerance) between lines

can be the result of differential regulation of the same processes, or the activa-

tion of new processes by gene regulatory mechanisms. An analysis of the sig-

nificantly regulated genes, common between cultivars, at each time-point, can

reveal the degree to which common processes are being differentially regulated

between cultivars.

The following proportional Venn diagrams (Figure 5.4-5.8) show a compar-

ison of the genes common to all three cultivars within the line.time group that
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were significantly regulated at each time-point. There were major differences

in both the number and identity of those genes regulated at early and late time

points. This indicates that there were qualitative differences in the stress re-

sponse between the lines even during the first day of stress (Figure 5.4), when

there was no observable difference in RWC (Figure 5.1). The 516 genes ex-

pressed only in the drought resistant cultivars Cham1 and RIL2219 are can-

didates for further studies.

These Venn intersections (Figure 5.4-5.8) indicate that for the regulation of genes

in a per time-point comparison, the RIL2219 shares more genes in common with

its Cham1 parent. Consistently throughout every time point the RIL2219 shared

more regulated genes with its Cham1 parent that the Lahn parental cultivar.

Cham1

RIL2219

Lahn

Figure 5.4: The intersection of significantly (p<0.05) expressed (relative to control)
genes at day 1 in the three cultivars (Cham1 (drought tolerant), Lahn (high
yielding but low drought tolerance) and RIl2219 (drought tolerant line)), for
genes with line.time significant expression.

236



LahnCham1

RIL2219

Figure 5.5: The intersection of significantly (p<0.05) expressed (relative to control)
genes at day 2 in the three cultivars (Cham1 (drought tolerant), Lahn (high
yielding but low drought tolerance) and RIl2219 (drought tolerant line)), for
genes with line.time significant expression.

Lahn

RIL2219

Cham1

Figure 5.6: The intersection of significantly (p<0.05) expressed (relative to control)
genes at day 3 in the three cultivars (Cham1 (drought tolerant), Lahn (high
yielding but low drought tolerance) and RIl2219 (drought tolerant line)), for
genes with line.time significant expression.
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Lahn

RIL2219

Cham1

Figure 5.7: The intersection of significantly (p<0.05) expressed (relative to control)
genes at day 4 in the three cultivars (Cham1 (drought tolerant), Lahn (high
yielding but low drought tolerance) and RIl2219 (drought tolerant line)), for
genes with line.time significant expression.
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Lahn

RIL2219

Cham1

Figure 5.8: The intersection of significantly (p<0.05) expressed (relative to control)
genes at day 5 in the three cultivars (Cham1 (drought tolerant), Lahn (high
yielding but low drought tolerance) and RIl2219 (drought tolerant line)), for
genes with line.time significant expression.

In the most drought resistant cultivar, RIL2219, the number of unique genes

peaks at day one (Figure 5.4), with 235 significantly regulated genes. These

unique early response genes are important candidates for conferring high yield-

stability under drought, as they represent unique responses that occur before

the more dramatic consequences of water stress develop in the plant. The en-

riched FO functions of these genes are given in Table 5.3. The presence of an

endodeoxyribonuclease is surprising at such a minor change in RWC. These

enzymes are often involved in DNA repair and are expressed in response to

reactive oxygen species (Gutman and Niyogi, 2009, Choi et al., 2005), which

would be a consequence of severe osmotic stress. A gene encoding 3-methyl-2-

oxobutanoate dehydrogenase (BCOAD) was also found to be significantly en-

riched in the expressed genes, after one day of water stress. BCOAD catalyses

part of valine, leucine and isoleucine degradation pathways. The most abund-

ant genes of enriched function after one day of water stress are 14 Heam oxy-
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genase genes (HOs). HOs are significantly expressed after one day of stress, in

the drought resistant RIL2219 cultivar, but are not present at this time point in

any of the other cultivars. HOs catalyse the cleavage of heam to biverdin, iron

and carbon monoxide and in plants are responsible for the production of the

BV IXα precursor to the phytochome chromophore, phytochromobilin (Gisk

et al., 2010). These enzymes are therefore essential for photomorphogenesis,

and therefore maintaining photosynthesis. Gisk et al. (2010) have also specu-

lated that they may also play a role in responding to oxidative stress, as BV IXα

has antioxidant properties. A folic acid transporter was also expressed within

the RIL2219 Genes with enriched function, after one day of water stress. Folic

acid is an essential cofactor for enzymes involved in the synthesis of purines,

thymidylate, panthonetate, and methionine in plants (Neuburger et al., 1996).

Folic acid transport could therefore be affecting at a wide range of metabolic

processes in the cell.

Table 5.3: Gene functions significantly enriched (p=0.05) in genes uniquely regulated
at day 1 by RIL2219.

Go term Description Significance Genes

GO:0000014 Single-stranded DNA specific en-
dodeoxyribonuclease

0.05 1

GO:0003863 3-methyl-2-oxobutanoate dehydro-
genase

0.05 1

GO:0004392 Heme oxygenase (decyclizing) 0.02 14
GO:0071614 Linoleic acid epoxygenase 0.005 6
GO:0008517 Folic acid transporter 0.05 1

5.6.2 Enriched processes with a temporal response to drought

The line.time group of genes that were identified as significant by ANOVA was

the most interesting in terms of candidate gene identification (for improved

drought resistance). However, line+time and time-only ANOVA groups also
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captured drought responsive genes that vary over time but have no signific-

ant interaction. A combined analysis of these groups with the line.time group

revealed all the significantly regulated drought responsive genes. Enrichment

analysis of these time-responsive genes revealed processes that were regulated

in response to drought.

Some of the most enriched processes within the genes that had significant time

regulation are associated with regulation of transcription and translation. These

include 1,271 genes that regulate gene expression with an enrichment p-value of

3.52×10−24 and 671 genes involved in translation with a p-value of 1.52×10−9.

This latter category included genes involved in ribosome biogenesis (243 genes,

p=8.96×10−7) and tRNA aminoacylation (80, p=7.04×10−8). Post-translational

processes such as protein folding (251 genes, p=3.61×10−16), protein complex

assembly (151 genes, p=0.0001) and protein transmembrane transport (76 genes,

p=0.001) were also enriched. The metabolic machinery associated with these

processes were also significantly enriched with 28 genes involved in purine

ribonucleoside metabolism p=0.003), and 12 genes involved in lysine biosyn-

thesis (p=0.02). There was also enrichment for 75 proteins associated with trans-

membrane import (p=0.00051).

There were 247 genes, involved in photosynthesis, which were highly enriched

(p=2.58×10−26) in this category, together with 6 genes specifically related to the

negative regulation of photosynthesis (p=0.04). Chloroplast organization was

also enriched (53 genes, p=2.81×10−5) and together with protein targeting to

chloroplast (29 genes, p=0.005×10−5).

There was also evidence other stress responsive pathways, with enrichment for

response to temperature stimulus (237 genes, p=0.02) of which 164 enriched

genes where specifically associated with the cold stress response. Response

to ozone (23 genes, p=0.01), inorganic substances (388 genes, p=0.002), and

metal ions (352 genes, p=0.0002) were also enriched. These stress responses

may be triggered as a result of cross-talk of pathways, and as a result of indirect
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physiological effects of water stress.

Finally the other major enrichments were in seed development (352 genes, p=1.86×10−5),

and stomatal complex morphogenesis for which all 5 known genes on the chip

that were associated with this process showed significantly regulated (5 genes,

p=0).

5.6.3 Principle coordinates of variation

PCO was conducted on the individual replicates to explore the whole dataset

and to identify top key candidate genes which explain the majority of variance

in the data. In all instances a stronger cohesion was observed between replicates

than the independent variable combinations. The plots of the PCos presented

within this section are therefore based on a PCO analysis of the mean of the

three replicates for each line.time combination, and line.RWC combination.

Visualising gene expression through PCO (Figure 5.9) revealed a clear separa-

tion of data points according to time, with early time points being more similar

than later points. Most of this separation is contributed by the first Principal

Coordinate (PCo1), with earlier time points clustering around higher values

in the PCo. PCo1 accounts for 52.84% of variance, which strongly suggests that

the major variation in gene expression is over time. There is a greater differenti-

ation over time within the Cham1 and Lahn cultivars than the drought-tolerant

RIL2219. This may indicate that the yield-stability of the RIL2219 cutivar, under

water stress, is linked to a more moderated change in expression pattern over

time, compared to the other varieties.

PCo2, however separate mostly according to cultivar and to a lesser extent time

on a per cultivar basis, with Lahn clustering from 0.16 to -0.43, Cham1 from 0.15

to -0.56, and RIL2219 from 0.17 to -0.34. This arranges the cultivars in the same

order as their respective yield-stabilities under drought-stress, which indicates
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this PCo may be pulling out the underlying basis for these traits in the tran-

scriptome. PCo2 accounts for 9.22% of variance in the data. PCo3 appears to

separate according to cultivar and time, with the same yield stability order ap-

parent in PCo2. PCo3 accounts for 6.80% of variance in the data.
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Figure 5.9: Principal Coordinates Analysis (PCO) of genes for PCo 1, 2, and 3 based on the mean of the replicates for all line against time combin-
ations. The samples are identified by a combination of the cultivar (C = drought tolerant Cham1, L = high yielding but low drought
tolerance Lahn and R = the drought tolerant line RIL2219) and the number of days of water stress (1, 2, 3, 4 and 5 days of stress). Data
provided by Stephen Powers. (a) PCo1xPCo3 (b) PCo2xPCo3 (c) Pco1xPCo2
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The results so far have highlighted that the progression of water stress over

time effects a greater change in gene expression than observed between lines.

The variation in RWC between lines shown in Figure 5.1 indicates that a time

shift is present in the profile of gene expression between lines. Normalising the

data with respect to leaf RWC (described in Section 5.4) allowed the dissection

of differences within lines after day 3 of the stress. Figure 5.10 shows the results

of PCO on the mean of the three replicates for each combination of line and

RWC value. PCo1 very clearly shows the separation of lines and RWC values.

There is a greater homogeneity in the distribution of cultivar time points in the

PCo, as compared to PCo1 from Figure 5.10, which demonstrates that the pro-

cedure was effective in normalising the expression profiles against RWC. PCo1

accounts for 53.32% of variation in the data. As observed in the PCO analysis

based on duration of water stress (time) (Figure 5.10), the RWC analysis clearly

separates the cultivars in the same order as their yield-stability under drought

both for PCo2 and PCo3.
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Figure 5.10: Principal Coordinates Analysis (PCO) of genes for PCo 1, 2, and 3 based on the mean of the replicates for all line against time
combinations. The samples are identified by a combination of the cultivar (C = drought tolerant Cham1, L = high yielding but low
drought tolerance Lahn and R = the drought tolerant line RIL2219) and RWC (90%, 82%, 74%, 66%, 58% and 50%). Data provided by
Stephen Powers. (a) PCo1xPCo3 (b) PCo2xPCo3 (c) Pco1xPCo2.
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Regression analysis of Principle Coordinates

Regression analysis, described in Section 5.3 and provided by Stephen Powers,

was used to relate the gene expression values for each gene to each principal

coordinate (PCo). It was therefore possible to rank the genes based on their

contribution to the variance captured by the PCo. This section describes the

GO molecular functions and biological processes that were represented within the

genes that contributed the top 5% of the variation captured by each PCo. The

PCo’s discussed were calculated on the line.time expression data-set, the res-

ults of which as have been described previously in this section.

For PCo1 the genes most responsible for the variance separation were the ri-

bosomal subunits which were identified in both functional (Table 5.4) and pro-

cess (Table 5.5) annotations. For the genes that contributed 5% of the variance

captured by PCo1, 47 out of the 69 genes were ribosomal subunits (Table 6.5).

Ribosomal subunits involved in ribosome biogenesis (GO:0042254) were also

found to be significantly enriched in the genes contributing the top 5% of vari-

ation for PCo1 (p-value = 3.17×10−9). For all Ribosomal subunits in PCo1,

the fold-change in expression compared to the control was greater than the

least-significant-difference (LSD) (p-value <0.01). This confirms the previous

observation in this section that PCo1 pulls out variation over time. The time-

course expression pattern for these ribosomal subunit genes is shown in Fig-

ure 5.11. The second most common function within PCo1 was RNA binding,

which is a co-function of a sub-set of ribosomal subunits. The remaining genes

within PCo1 are mostly transcription factors, protein-protein interactions and

enzymes.

The gene TaAffx.44105.1.S1_at is the second most important gene contributing

to PCo1. It was reported by CoPSA as a transcription factor because of its weak

similarity to At3g50685, which was erroneously annotated by AGRIS as a tran-

scription factor (this annotation has since been removed in the most recent ver-

sion of AGRIS, January 2011). A closer inspection reveals that the gene has the
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greatest similarity to 02g023760 from Sorghum bicolor (67% amino acid identity,

ClustalW2 alignment provided in Appendix 6). This gene family is functionally

uncharacterised even in Arabidopsis. This is potentially an interesting target for

further experimental research, given its importance in PCo1, and its function-

ally uncharacterised status. There is also one protein transporter that is the 9th

highest contributor to the PCo. A full rank of the genes contributing to the top

5% of variation captured by PCo1, together with their exact CoPSA predicted

functions and processes can be found in Appendix 8 and 9.

GO molecular function and biological process annotation of genes in PCo1 indic-

ates that overall the main contributor of gene expression variation during the

progression of water stress over time, are processes controlling the synthesis

and transport of proteins. As protein synthesis is fundamental to all processes

in the cell, this suggests that the plant is undergoing a global reconfiguration

of molecular processes in response to a progressively increasing water stress

over time. The absence of ribosomal proteins, within the main contributors to

PCo2 and PCo3, addressed later in this section, indicates that the regulation of

protein synthesis is more of a constitutive response to stress, than a strong dif-

ferentiator the stress response between cultivars.

In response to the observation of ribosomal proteins in PCo1, the role of ri-

bosomal proteins that were significantly expressed in the ANOVA time-dependent

groups (time-only, line+time, and line.time) was also studied. A significant en-

richment (p value = 8.96×10−7) was found for 243 genes involved in the ri-

bosome biogenesis process within these ANOVA groups, compared the pre-

valence genes annotated with this process on the wheat GeneChip. The same

genes, encoding ribosomal subunits, are responsible for the significant enrich-

ment of the GO ribosomal biogenesis process. Repression of ribosomal biogen-

esis is a known response to oxidative stress (Novoa et al., 2003), which is a phys-

ical consequence of water stress on the cell. The subsequent reduction in protein

synthesis, as a result of reduced ribosome availability, prevents proteins being
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abnormally folded during osmotic stress conditions and reduces the stress on

the endoplasmic reticulum (Harding et al., 2000). This suggests that this late

inhibition of ribosome biosynthesis is a response to physical water stress on the

cell. The delayed inhibition of protein synthesis in RIL2219 (Figure 5.11(a)) is

indicative that physical stress to the cell is mitigated by other adaptations. This

is consistent with the delayed fall in RWC observed in RIL2219, with an RWC

of around 70% being consistent with the inhibition of protein synthesis (Figure

5.1).

Table 5.4: The high-level GO molecular functions of the top 5% contributing genes in
PCo1 as annotated by CoPSA. Some functions have been generalised up the
GO tree in order to provide a simpler overview. Genes with multiple annot-
ated terms from different parts of the tree may appear twice. 67 out of the
70 genes within the 5% contributing genes have a predicted function and ap-
pear in this report. A full listing of the genes and their GO term annotations,
from the top 5% of PCo1, is available in Appendix 8 and graphical as a DAG
in Appendix 9.

Molecular Function Function name Genes

GO:0003735 Structural constituent of ribosome 47
GO:0003723 RNA binding 8
GO:0003700 Sequence-specific DNA binding transcrip-

tion factor activity
7

GO:0003824 Catalytic Activity 7
GO:0005515 Protein binding 5
GO:0008565 Protein transporter 1
GO:0003755 Translation initiation factor activity 1
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Table 5.5: The high-level GO biological process of the top 5% contributing genes in PCo1
as annotated by CoPSA. Some processes have been generalised up the GO
tree in order to provide a simpler overview. Genes with multiple annotated
terms from different parts of the tree may appear twice. 60 out of the 70
genes within the 5% contributing genes have a predicted process and appear
in this report. A full listing of the genes and their GO term annotations from
the top 5% of PCo1 is available in Appendix 8 and graphical as a DAG in
Appendix 9.

Biological Process Process name Genes

GO:0006412 Translation 47
GO:0042254 Ribosome biogenesis 11
GO:0009416 Response to light stimulus 4
GO:0009965 Protein Folding 3
GO:0009651 Response to salt stress 2
GO:0042742 Defence response 2
GO:0000917 Barrier septum formation 1
GO:0006396 RNA Processing 1
GO:0009765 Photosynthesis 1
GO:0015031 Protein transport 1
GO:0015995 Chlorophyll biosynthetic process 1
GO:0009739 Response to gibberellin stimulus 1
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Table 5.6 and 5.7 show a summary of the GO functions and processes respect-

ively, that were used by CoPSA to annotate genes within PCo2. There were

38 genes that contributed the top 5% variation captured within PCo2, of which

10 were identified as enzymes. This was higher in quantity and proportion

than the 7 enzymes out of 70 genes in the top 5% of PCo1. Ubiquitin-protein

ligase enzymes ubiquitinate proteins, to signal their degradation. The NADH

dehydrogenase (ubiquinone) enzyme, catalyses the conversion of ubiquinone

(necessary for ubiquitin-protein ligases) into ubiquinol. Regulation of these

two proteins in PCo2, which mostly captures variation across lines, indicates

that regulation of protein degradation is important in differentiating the lines.

The enzyme disulfide oxidoreductase is involved in redox and therefore po-

tentially regulates homeostasis, an important response to osmotic stress. There

were 12 signalling related genes in the top 5% of this PCo, whose function in-

cluded binding of nucleotides, proteins, cofactors, and lipids. As PCo2 mainly

captures variation between the lines, this indicates that control of signalling re-

lated processes is important for differentiating differences in line. This hints

that the drought resistant RIL2219 may be able to ameliorate the fall in RWC

through a differential signalling strategy.

The biological processes that the genes in the top 5% of variation captured in

PCo2, are diverse, however many of the processes are direct or indirect re-

sponses to water stress on the cell. The observed, responses to metal ions, and

ion transport, may be processes responding to ion imbalances, caused by os-

motic stress. They may also be involved in signalling, as Ca++ is an important

in the ABA mediated signalling pathway (Chapter 6.1). Additionally, the pres-

ence of protein phosphorylation and ubiquitination processes indicates that this

PCo has a strong signalling element.

Table 5.8 and 5.9 show a summary of the GO functions and processes respect-

ively, that were used by CoPSA to annotate genes within PCo2. There were

41 genes that contributed the top 5% variation captured within PCo3. As with
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Table 5.6: The high-level GO molecular functions of the top 5% contributing genes in
PCo2 as annotated by CoPSA. Some functions have been generalised up the
GO tree in order to provide a simpler overview. Genes with multiple annot-
ated terms from different parts of the tree may appear twice. 20 out of the
38 genes within the 5% contributing genes have a predicted function and ap-
pear in this report. A full listing of the genes and their GO term annotations
from the top 5% of PCo2 is available in Appendix 14.

Molecular Function Function name Genes

GO:0005515 Protein binding 6
GO:0009055 Electron carrier activity 3
GO:0005488 Binding (type not known) 2
GO:0030234 Enzyme regulator activity 2
GO:0008289 Lipid binding 2
GO:0016491 Oxidoreductase activity 2
GO:0015035 Protein disulfide oxidoreductase activity 2
GO:0004872 Receptor activity 2
GO:0004842 Ubiquitin-protein ligase activity 1
GO:0003824 Catalytic activity 1
GO:0048037 Cofactor binding 1
GO:0008137 NADH dehydrogenase (ubiquinone) activity 1
GO:0000166 Nucleotide binding 1
GO:0045735 Nutrient reservoir activity 1
GO:0004867 Serine-type endopeptidase inhibitor activity 1
GO:001615 Sucrose synthase activity 1

PCo2, there is a broad spectrum of functions captured by the top 5% of this

PCo. As previously explained in this section, PCo3, mostly captures variation

between lines. One of the most prominent gene functions in the top 5% of PCo3

is DNA binding, which accounts for 8 out of 41 of the genes within the top 5%.

Given the absence of DNA binding in PCo2, PCo3 appears to captures the main

variation of transcriptional control of across lines. The transcriptional control is

distinct from the 8 DNA binding genes found in PCo1, which accounts mainly

for variation across time. This indicates the presence of two distinct transcrip-

tional clusters, which regulate time and line variation respectively. The vari-

ation in early and late transcription factor expression, and their gene families is

further discusses in Section 5.6.4. 14 out of 41 genes within the top 5% of PCo3

are enzymes.

Trehalose phosphatase (EC: 3.1.3.12) has both a unique and mixed probe set (x
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Table 5.7: The high-level GO biological process of the top % contributing genes in PCo2
as annotated by CoPSA. Some processes have been generalised up the GO
tree in order to provide a simpler overview. Genes with multiple annotated
terms in different parts of the tree may appear twice. 12 out of the 38 genes
within the 5% contributing genes have a predicted process and appear in this
report. A full listing of the genes and their GO term annotations from the top
5% of PCo2 is available in Appendix 14.

Biological Process Process name Genes

GO:0009058 Biosynthetic process 2
GO:0045454 Cell redox homeostasis 2
GO:0010252 Auxin homeostasis 1
GO:0006812 Cation transport 1
GO:0045454 Cell redox homeostasis 1
GO:0006879 Cellular iron ion homeostasis 1
GO:0042742 Defence response to bacterium 1
GO:0048527 Lateral root development 1
GO:0006869 Lipid transport 1
GO:0007140 Male meiosis 1
GO:0007067 Mitosis, 1
GO:0050819 Negative regulation of coagulation, 1
GO:0045910 Negative regulation of DNA recombination 1
GO:0009860 Pollen tube growth, 1
GO:0006468 Protein phosphorylation 1
GO:0016567 Protein ubiquitination 1
GO:0001558 Regulation of cell growth 1
GO:0046686 Response to cadmium ion 1
GO:0046686 Response to cadmium ion 1
GO:0009409 Response to cold 1
GO:0009408 Response to heat 1
GO:0006979 Response to oxidative stress 1
GO:0009639 Response to red or far red light 1
GO:0009651 Response to salt stress 1
GO:0009414 Response to water deprivation 1
GO:0048768 Root hair cell tip growth, 1
GO:0005985 Sucrose metabolic process 1
GO:0006511 Ubiquitin-dependent protein catabolic process 1
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type probe-set) (see Chapter 3.1.2(a) for explanation of probe-set types) repres-

ented in the top 5% of variation in PCo3, which is involved in the biosynthesis

of Trehalose. Trehalose has been shown to be involved in stress signalling, as

well as the regulation of growth and pathogen response (Fernandez et al., 2010).

Iturriaga et al. (2009), have recently shown that over expression of the AtTPS1

gene, encoding this enzyme in Arabidopsis, resulted in an increase in trehalose.

The over expression of AtTPS1, also inferred drought tolerance. The presence

of this enzyme in a PCo that captures line variation, indicates that trehalose

mediated signalling may be playing an important role in conferring a greater

water stress resistance in these varieties.

The third and 17th highest contributors to PCo3 are mixed (x type probe-set)

and unique probe-sets for Ta.4760.1.S1_ at, which encodes a calcium-transporting

ATPase activity that is also calmodulin binding. Further Given the importance

of Ca++ in ABA mediated drought signalling through CDPKs, this could po-

tentially be an interesting target for future study.

5.6.4 Control of transcription

Transcription factors control regulation of gene expression and in turn the quant-

ity of RNA. This RNA may in itself regulate gene expression (Bonnet et al.,

2006), encode transcription factor that regulate other genes, or proteins with a

diverse array of functions within the cell. Transcription factors therefore are

powerful regulators of processes within the cell. A number of families have

been shown to play a key role in regulating the plants response to drought

(Shinozaki and Yamaguchi-Shinozaki, 2007). Other families of genes that con-

trol transcription via other means are also included in this analysis. For ex-

ample: SET genes control transcription through histone methylation (Marmor-

stein, 2003). It was important to target transcription factors because of their
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Table 5.8: The high-level gene functions of the top 5% contributing genes in PCo3 as
annotated by CoPSA. Some functions have been generalised up the GO tree
in order to provide a simpler overview. Genes with multiple annotated terms
from different parts of the tree may appear twice. 35 out of the 41 genes
within the 5% contributing genes have a predicted function and appear in
this report. A full listing of the genes and their GO term annotations from
the top 5% of PCo3 is available in Appendix 11.

Molecular Function Function name Genes

GO:0003677 DNA binding 8
GO:0022857 Transmembrane transporter activity 3
GO:0005488 Binding 2
GO:0005515 Protein binding 2
GO:0016787 Hydrolase activity 2
GO:0004805 Trehalose-phosphatase activity 2
GO:0005516 Calmodulin binding 2
GO:0005524 ATP binding 2
GO:0008270 Zinc ion binding 2
GO:0008381 Mechanically-gated ion channel activity 1
GO:0005388 Calcium-transporting ATPase activity 1
GO:0030599 Pectinesterase activity 1
GO:0004857 Enzyme inhibitor activity 1
GO:0008716 D-alanine-D-alanine ligase activity 1
GO:0004028 3-chloroallyl aldehyde dehydrogenase activ-

ity
1

GO:0004198 Calcium-dependent cysteine-type en-
dopeptidase activity

1

GO:0008661 1-deoxy-D-xylulose-5-phosphate synthase
activity

1

GO:0008716 D-alanine-D-alanine ligase activity 1
GO:0004321 Fatty-acyl-CoA synthase activity 1
GO:0016229 Steroid dehydrogenase activity 1
GO:0004197 Cysteine-type endopeptidase activity 1
GO:0005506 Iron ion binding 1
GO:0008825 Cyclopropane-fatty-acyl-phospholipid syn-

thase activity
1

GO:0050342 Tocopherol O-methyltransferase activity 1
GO:0080064 4,4-dimethyl-9β,19-cyclopropylsterol-4α-

methyl oxidase activity
1
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Table 5.9: The high-level gene processes of the top 5% contributing genes in PCo3 as
annotated by CoPSA. Some processes have been generalised up the GO tree
in order to provide a simpler overview. Genes with multiple annotated terms
in different parts of the tree may appear twice. 27 out of the 41 genes within
the 5% contributing genes have a predicted process and appear in this report.
A full listing of the genes and their GO term annotations from the top 5% of
PCo3 is available in Appendix 11.

Biological Process Function name Genes

GO:0008610 Lipid biosynthetic process 1
GO:0016126 Sterol biosynthetic process 1
GO:0009409 Response to cold 2
GO:0042538 Hyperosmotic salinity response 2
GO:0006281 DNA repair 1
GO:0006754 ATP biosynthetic process 2
GO:0009624 Response to nematode 1
GO:0006839 Mitochondrial transport 1
GO:0009790 Embryo development 1
GO:0005992 Trehalose biosynthetic process 2
GO:0045449 Regulation of transcription 3
GO:0048366 Leaf development 1
GO:0010386 Lateral root primordium development 1
GO:0009723 Response to ethylene stimulus 1
GO:0009414 Response to water deprivation 1
GO:0009737 Response to abscisic acid stimulus 1
GO:0009252 Peptidoglycan biosynthetic process 2
GO:0055114 Oxidation-reduction process 2
GO:0006508 Proteolysis 2
GO:0009611 Response to wounding 1
GO:0016114 Terpenoid biosynthetic process 1
GO:0055085 Transmembrane transport 1
GO:0050982 Detection of mechanical stimulus 1
GO:0016567 Protein ubiquitination 1
GO:0006917 Induction of apoptosis 1
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unique regulatory properties, and our poor understanding of the complexity of

their interactions and involvement in water stress in wheat.

a) Transcriptional response to drought per se

Figure 5.12 shows the major families of transcription factors that change sig-

nificantly over time. It is derived from a CoPSA TF family annotation of the

genes in the ANOVA groups: time-only, time+line, and line.time (treated all

together). It highlights the early responsive transcription factor families, which

were defined as those that were significantly regulated within the first two

days. These early responses represent signalling activity prior to any large

changes in RWC (Figure 5.1). Table 5.10 summarises the numbers of genes

that are regulated at early and late time-points, grouped according to the tran-

scription factor families provided by CoPSA, that are currently thought to be

drought responsive (Shameer et al., 2009, Shinozaki and Yamaguchi-Shinozaki,

2007). All of these known transcription factors are expressed in large quant-

ities with the time-responsive genes (Figure 5.12), and all appear within the

top 50% of transcription factor families expressed, ranked by the number of

genes expressed. Additionally the WRKY super-family contains members in-

Table 5.10: Summary of known transcription regulating gene families associated with
drought, and the number of early and late regulated genes in the time
responsive ANOVA groups. Major drought responsive transcription
factors families comes from Shinozaki and Yamaguchi-Shinozaki (2007) and
Shameer et al. (2009).

Protein family Early responsive genes Late responsive genes

Lahn Cham RIL2219 Lahn Cham RIL2219
AP2-EREBP (ERF) 0 0 1 29 29 24
BHLH 2 2 4 18 18 17
BZIP 3 3 5 26 26 25
HOMEOBOX 3 3 2 16 16 17
HSF 5 5 1 1 1 2
MYB 5 5 7 57 57 67
NAC 2 2 24 22 22 20
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volved in senescence, and have been found in drought and a salt-stressed tis-

sues (Eulgem et al., 2000). The onset of senescence has been associated with

water stress (Weaver et al., 1998), and delayed senescence has been shown to im-

prove drought tolerance (Rivero et al., 2007). Within the early regulated genes,

the only set of genes significantly enriched relative to their abundance on the

chip were the Heat Shock Factors (HSF) which were enriched for Lahn (5 genes,

p-value=0.02). For late time-points no significant enrichment was found for

any transcription factor family within Lahn however there were 5 significantly

enriched families in Cham1, and 4 in RIL2219 (Table 5.11 and Table 5.12 re-

spectively). Those families enriched in RIL2219 were a subset those enriched in

Cham1.
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Figure 5.12: Transcription factors that change significantly over time, categorised as early (≤2days) and late (>2days) responsive, and grouped by
family. Only transcription factor families with more than 5 expressed transcription factors are shown.
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Enrichment analysis was performed on these time responsive genes, using Fishers-

exact test with a correction for multiple testing devised by Benjamini and Hoch-

berg (1995). These did not reveal any significantly enriched families within

Lahn, however a number of transcription regulatory genes were enriched, the

majority of which were not transcription factors, with the exception of the C2C2-

GATA family in Cham1 (Table 5.11).

Table 5.11: Significantly enriched families of genes that regulate translation within
Cham1.

Family p-value Genes

SET 5.60×10−4 30
AUX/IAA 0.001 31
GNAT 7.27×10−3 22
BHLH 0.01 20
C2C2-GATA 0.01 19
SWI/SNF-BAF60B 0.04 10

Table 5.12: Significantly enriched families of genes that regulate translation within
RIL2219.

Family p-value Genes

SET 9.08×10−5 30
GNAT 1.99×10−4 24

AUX/IAA 0.002 28
BHLH 0.006 17

SWI/SNF-BAF60B 0.02 10

b) Cultivar specific transcriptional responses to drought

Figure 5.13 shows the transcription factor families that show significant regula-

tion in the line.time ANOVA group which are a subset of those genes in Figure

5.12. As in Figure 5.12 these are broken down into summaries for each cultivar,

by the early or late-responsive genes significantly expressed (p-value < 0.05)

compared to the control. In order to reduce the number of families to a man-

ageable level, only families with more than five transcriptions factors expressed

at any time point are shown. Heat Shock Factors (HSFs) represent the largest
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number of early responsive genes within the TRITIMED dataset, with the most

present in Lahn, followed by Cham1 and RIL2219 respectively. This seems to

closely follow RWC content and yield-stability-under-drought in these variet-

ies. HSF were almost exclusively down regulated at early and late time points,

with the exception of one in Cham1, which was significantly up-regulated dur-

ing day 4.

A HSF is transcription factor that regulates a Heat Shock Protein (HSP). HSPs

act as chaperones to ensure the correct folding of proteins, and are produced in

response to heat, as a mechanism for refolding denatured proteins. In plants,

the HSF family is particularly diverse and is expressed during heat and drought-

stress, and seed development (von Koskull-Döring et al., 2007). von Koskull-

Döring et al. (2007) speculate that the HSFs are likely be involved in a number

of other yet unknown signalling process. As the inability to adapt for heat is

often a consequence of drought, since transpiration is reduced, the HSFs are

therefore likely to be produced as an indirect response to heat stress. Addi-

tionally, an abnormal osmolyte potential in a cell, caused by water stress, also

adversely affects correct protein folding (Hu et al., 2009). Some HSFs are also

known to responsive to senescence (Breeze et al., 2008).

The largest group of transcription factors expressed in the line.time category

are the MYB family, which are known to be involved in osmotic-stress response.

MYBs have been shown to act as part of ABA mediated signalling (Abe et al.,

2003). All of the other transcription factor families known to be associated with

drought are present in this ANOVA group and are shown in Table 5.13.
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Table 5.13: Summary of known transcription regulating gene families associated with
drought, and the number of early and late regulated genes in the line.time
ANOVA group. Major drought responsive transcription factors families
comes from Shinozaki and Yamaguchi-Shinozaki (2007) and Shameer et al.
(2009).

Protein family Early responsive genes Late responsive genes

Lahn Cham RIL2219 Lahn Cham RIL2219
AP2-EREBP (ERF) 0 0 0 1 0 0
BHLH 2 3 4 10 11 10
BZIP 2 3 1 17 19 12
HOMEOBOX 2 2 1 10 9 11
HSF 4 3 1 1 1 1
MYB 1 8 5 34 38 37
NAC 2 5 1 12 13 13
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5.6.5 Processes enriched in time-responsive genes

To summarise these results, the major enriched processes within significantly

regulated time-responsive genes were broken down into six major categories.

Figure 5.14 shows processes associated with the primary metabolic and genetic

processes of the cell, which have been broken down into processes involved in

the regulation of energy, carbon, and nitrogen metabolism; transcription; and

translation. Figure 5.15 shows the processes involved in signalling; senescence

and flowering; and general stress response processes. This figure was created

by inspecting the GO biological process tree, derived from the annotation of sig-

nificantly enriched genes (p-value < 0.05) at each time-point, and then gener-

alising the more specific categories to provide a manageable overview of the

data.

Figure 5.14 shows that photosynthesis genes are enriched in all but the third

day of water-stress. This indicates that even during a mild water-stress, at an

early time point, the transcriptome regulating photosynthesis is still signific-

antly affected. Other processes related to energy storage and metabolism are

enriched throughout the stress, with the exception of day three. Previous res-

ults have shown that the late regulation of ribosomal subunits is important in

explaining the overall variation over time, and ribosomal biogenesis related

genes are shown here to be significantly enriched during day 5 of stress. It is

also apparent that the processes vital to transcription and translation are also

significantly regulated throughout the progressive water-stress. This indicates

a global reconfiguration of these mechanisms is initiated from the very early

stress response, which culminates in the down regulation of primary ribosomal

mechanism during the final two days of severe water stress.

Figure 5.15 shows the enrichment genes from of other important processes re-

lating to signalling, senescence, and general stress responses. The presence of
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four processes which are involved in the biosynthesis of ABA, ethylene, ster-

oids, and trehalose during the first two days of stress, confirms that the plant is

responding to mild water stress, and has initiated the regulation of compounds

that mediate signalling in the plant. This early regulation of these processes is

likely to impact the later sensitivity of the plant to stress, by effectively priming

the signalling apparatus. Genes involved in processes related to the initiation

of flowering and senescence are also significantly regulated from day one of the

stress.
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Figure 5.14: A summary of the major primary metabolism significantly enriched (p>0.05) processes that emerge over days of stress.
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Figure 5.15: A summary of the physiological, signalling, and cross-talk significantly (p>0.05) enriched processes that emerge over days of stress.
Abbreviation: biosynthesis (BS).
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5.6.6 Hormonal control

Section 5.6.5 summarised the processes and signalling responses that were af-

fected during the drought response time course identified by a gene enrich-

ment analysis using all genes from the time-responsive ANOVA groups. Only

ethylene biosynthesis genes were found in enough abundance for enrichment

to be significant. However, within the line.time ANOVA group, which con-

tains genes that have significant interactions between line and time, there are

far more enriched hormonal processes. Table 5.14 shows significantly enriched

hormonal processes in the line.time ANOVA group, compared to their abund-

ance on the whole wheat GeneChip. Enrichment was performed on a per-day

basis for those genes in that day that are significantly expressed compared to

the control (change greater than the LSD at p<0.05). The methodology for cal-

culating enrichment statistics has been described in Section 5.5.

In the ANOVA group from the Lahn cultivar there were no hormonal processes

found to be enriched at any day of the time-course. However, in Cham1 jas-

monic acid (JA) biosynthesis is significantly regulated during days 1-3 of the

time-course. Within RIL2219 there was also early regulation of JA biosynthesis

genes after one day of water stress, as well as Ethylene biosynthesis genes on

day two, and Ethylene signalling on day three. Salicylic acid (SA) metabolism

genes were found to be enriched at day three, and ABA signalling genes were

enriched at day four. This points to the importance of hormonal regulation in

differentiating RIL2219 from the other varieties, and highlights the pivotal role

of hormones in regulating the drought response. Particularly interesting is the

enrichment of ethylene pathway genes on day two in RIL2219, which were also

enriched within the time responsive-only genes. This suggests that ethylene-

mediated signalling is of pivotal importance in the drought response, and it dif-

ferentiates the high-yield-stability RIL2219 from the other cultivars. The genes
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involved in ethylene-mediated signalling are therefore a good source of can-

didate genes that could be suitable as gene-markers for selective breeding. The

early regulation of JA biosynthesis, may also suggests that ethylene could be a

candidate for regulating the later JA, SA, and ABA signalling response mech-

anisms.

This time series dataset clearly shows the global involvement of most hormone

Table 5.14: Enriched GO processes concerning plant hormones for genes within the
line.time ANOVA group.

Day RIL2219 Cham1 Lahn

1 JA biosynthesis (p=0.02) JA biosynthesis (p=0.02) None
2 Ethylene biosynthesis

(p=0.07)
JA biosynthesis (p=0.01) None

3 SA metabolism (p=0.01),
Ethylene signalling (p=0.08)

JA biosynthesis (p=0.02) None

4 ABA signalling (p=0.04) None None
5 None None None

groups in the wheat stress response. This is the first report of such a dissec-

tion of water stress response in wheat leaves post anthesis and the datasets are

available for further mining. To demonstrate the uniqueness and utility of the

time series approach, I have focused on the hormone ABA in the subsequent

section.

Figure 5.16 shows an overview of the ABA biosynthesis pathway, together with

the first step of ABA degradation. For the each enzyme in the pathway, the gene

or genes on the wheat GeneChip, which correspond to the respective enzyme

function (determined by the exact EC number), and appear within the line.time

ANOVA category are reported. For each of these genes the main direction of

their expression (if significant, p-value < 0.05) relative to the well-watered con-

trol is also given.

For the first step in the ABA biosynthesis pathway, catalysed by neoxanthin

synthase (EC: 5.3.99.9), there were no sequences on the wheat GeneChip iden-

tified by CoPSA. For the second pathway step, catalysed by NCED, five can-
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didate genes were found on the chip, of which TaAffx.76007.1.S1_at was found

to have a line.time significant expression. In addition Ta.9731.1.S1_x_at and

Ta.9731.2.S1_a_at were identified as having line+time significance. The remain-

ing genes had no significant changes in expression over time; however one gene

had significant variation across line only (TaAffx.59686.1.S1_at). For the second

step in the pathway, catalysed by xanthoxin dehydrogenase (EC: 1.1.1.288),

there was only one gene (TaAffx.29044.1.S1_at) matching this function on the

wheat GeneChip, and this had a line.time significant interaction. For the third

step in the pathway, catalysed by abscisic aldehyde oxidase (EC: 1.2.3.14), there

were 9 genes on the wheat GeneChip matching this function. Two of these

genes (Ta.6172.3.A1_a_at and TaAffx.92079.1.S1_at) had a line.time interaction,

and the remainder had no significant changes in expression over time. Finally,

the first degradation step of ABA catabolism, catalysed by ABA 8’-hydroxylase

(EC: 1.14.13.93), had 5 genes on the wheat GeneChip matching this function.

Of these only one had a line.time interaction. The remaining genes had no

significant changes in expression over time; however one gene had significant

variation across line only (TaAffx.48690.1.S1_at).

Figure 5.16 shows that the enzymes within the second (NCED), third (xanthoxin

dehydrogenase), and forth (abscisic aldehyde oxidase (AAO)) stages of ABA

biosynthesis were almost exclusively up-regulated from the third day of water

stress. There were only two exceptions to this pattern: genes in, (a) the second

stage of the pathway (NCED) expressed in RIL2219 at day three, and (b) the

fourth stage (abscisic aldehyde oxidase (AAO)), which showed isoenzymes sig-

nificantly expressed at day one, in the Lahn cultivar. It is impossible to quantify

the effect of gene expression on the metabolites in the pathway from this data

alone, given the complexities of post transcriptional modification, isoenzyme

functional heterogeneity, and pathway flow dynamics. However, it could be

speculated that the up-regulation of all the genes in the biosynthesis of ABA,

may lead to an accumulation of ABA. This was further supported by the down
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regulation of the first stage in the catabolism of ABA (ABA 8’-hydroxylase) at

day 3 and 4. This certainly makes an interesting hypothesis for further biolo-

gical validation.

Previous work had shown that xanthoxin dehydrogenase is not significantly

regulated during water stress (Nambara and Marion-Poll, 2005). Figure 5.16

shows that within the TRITIMED data set, that this is not the case.

Figure 5.17 shows the expression of two genes on the wheat GeneChip that

encode an NCED enzyme (corresponding LSDs provided in Table 5.15), which

catalyses the second stage of ABA biosynthesis. These are constitutive responses

to days of water stress, where the genes in each cultivar line are changing by

the same magnitude and in the same direction, but the base expression level

of the genes varies between cultivars. However, it is not possible to concretely

link this observed difference in expression to a variance in true base expres-

sion level, as the effect is indistinguishable from systematic differences between

lines which may affect the sensitivity of the probes to the quantity of a gene

transcript (e.g. line polymorphisms). It seems probably however that a lack

of interaction in these NCED genes, and the conserved regulation of expres-

sion throughout days of stress, in all three cultivars, means these genes are

important as constitutive response to water stress. The late significant down-

regulation (p-value<0.05) at the final day of water stress, is the inverse of the

line.time interacting NCED enzymes, for which a significant up-regulation (p-

value<0.05) was observed at days 3-5. This indicates the regulation of this step

of ABA biosynthesis is additive, involving both constitutive and line specific

regulation of isoenzymes over time.

Figure 5.18 shows for Lahn (drought susceptible), the expression over days

of water stress, relative to the well watered control, for all line.time interact-

ing genes in the ABA biosynthesis and initial degradation pathway previously

shown in Figure 5.16. The LSD for comparing these relative expression values

is given in Table 5.16. These relative expression values expand on the previous

272



Figure 5.16: Metabolic steps within the ABA biosynthesis and catabolism pathway,
with the direction of expression for line.time significant (p<0.05) enzymes
identified by CoPSA reported. Red and blue indicate significant up
and down regulation respectively, compared to the well-watered control.
There are two isoenzymes reporting line.time significant expression for
abscisic aldehyde oxidase (1.2.3.14), which are both reported.
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Table 5.15: LSDs for comparing time-points to well-watered control for genes in ABA
biosynthesis with a line+time interaction.

Enzyme Gene LSD

1.13.11.51 (NCED) Ta.9731.1.S1_x_at 0.231129
1.13.11.51 (NCED) Ta.9731.2.S1_a_at 0.201635
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Figure 5.17: The mean expression of genes across lines, with line+time significance (p-
value<0.05), that encode 9-cis-epoxycarotenoid dioxygenase (NCED) (EC:
1.13.11.51). The graph shows the gene variation in gene expression, over
days of water stress, relative to the well-watered control. The least signi-
ficant difference (LSD) relative to the control is given in Table 5.15

summary of direction of significant regulation, which were provided in Figure

5.16. It reveals that NCED has a greater magnitude of expression after 4 days of

water-stress, compared to any of the later enzymes in the pathway. AOO also

display a great magnitude of regulation at day four, however its magnitude of

expression change relative to the control, is not as marked as NCED. It is dif-

ficult to assess the impact that this will have on ABA concentration, however

previous work has indicated that the changes in expression of NCED and AAO

are the most correlated with ABA (Nambara and Marion-Poll, 2005, Yang and
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Guo, 2007). Therefore, it seems probable that the up-regulation of NCED and

AAO in Lahn, after four days of water stress, will result in a reciprocal increase

in ABA.

Figure 5.19 shows for Cham1 (drought resistant), the expression over days

Table 5.16: Least significant differences (LSDs) when comparing to control (p-value <
0.05), for comparing time-points to well-watered control for genes in ABA
biosynthesis with a line.time interaction.

Enzyme Gene LSD

1.13.11.51 (NCED) TaAffx.76007.1.S1_at 0.43
1.1.1.288 (Xanthoxin dehydrogenase) TaAffx.29044.1.S1_at 0.32
1.2.3.14 (AAO) Ta.6172.3.A1_a_at 0.09
1.2.3.14 (AAO) TaAffx.92079.1.S1_at 0.27
1.14.13.93 (ABA 8’-hydroxylase) Ta.8902.1.S1_at 0.23
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Figure 5.18: The expression of Lahn genes with line.time significance (p-value < 0.05),
within the ABA pathway shown in Figure 5.16. The graph shows the gene
variation in gene expression, over days of water stress, relative to the well-
watered control. The least significant difference (LSD) relative to the con-
trol is given in Table 5.16.

of water stress, relative to the well-watered control, for all line.time interact-

ing genes in the ABA biosynthesis and initial degradation pathway (LSDs are
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given in Table 5.16). As with Lahn the expression of NCED and AAO genes

have the greater magnitude of regulation, relative to the other enzymes, after

four days of water stress. However, the regulation of on one of the AAO

enzymes (Ta.6172.3.A1_a_at) at day five is not significant relative to the con-

trol, because of a down regulation. There is also a temporal shift compared to

Lahn, with NCED and AOO genes showing significant expression a day earlier

after only three days of water stress. Overall the regulation of these genes is

more smoothly progressive than the dramatic changes in expression observed

in Lahn.

Figure 5.20 shows for RIL2219 (drought resistant), the expression over days
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Figure 5.19: The expression of Cham1 genes with line.time significance (p-value<0.05),
within the ABA pathway shown in Figure 5.16. The graph shows the gene
variation in gene expression, over days of water stress, relative to the well-
watered control. The least significant difference (LSD) relative to the con-
trol is given in Table 5.16.

of water stress, relative to the well-watered control, for all line.time interacting

genes in the ABA biosynthesis and initial degradation pathway. NCED, as with

Lahn is over expressed during the final two days of water stress. However, the

difference between days 4 and 5 is more marked that Lahn or Cham1, and is
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increasing in contrast to decreasing in the other cultivars. There are no signi-

ficant expression changes in AAO over time, relative to the well-watered con-

trol. This could be indicative of a delayed increase in ABA regulation at days

four and five. This is consistent with the lower RWC (Figure 5.1) observed in

RIL2219, which indicates that RIL2219 has mitigated the fall in RWC enough to

delay water stress, and the requirement to launch an ABA mediated response.
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Figure 5.20: The expression of RIL2219 genes with line.time significance (p-value <
0.05), within the ABA pathway shown in Figure 5.16. The graph shows
the gene variation in gene expression, over days of water stress, relative to
the well-watered control. The least significant difference (LSD) relative to
the control is given in Table 5.16.

ABA mediated signalling

As previously outlined in this section , as well as ABA biosynthesis, the tran-

scription factor and protein-protein interaction mediated signalling is also in-

tegral to the ABA mediated drought response. Without the presence of an ABA

receptor (RCAR), and the downstream components of the signalling pathway,
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the regulation of ABA biosynthesis is ineffective at counteracting water stress

(Ma et al., 2009). Figure 5.21 shows a proposed model of the signalling path-

way from osmotic stress to the control of stomatal aperture and transcription,

based on current knowledge in this area. RCAR orthologs was identified on the

wheat GeneChip according to the methodology described in Section 5.5. The

direction of significant expression relative to the well watered control (p-value

< 0.05) of 3 out of 5 RCAR genes on the wheat GeneChip that have line.time

interaction are given. The probe-sets TaAffx.43193.1.S1_at, Ta.21082.1.S1_x_a,

and TaAffx.109881.1.S1_at come from disparate parts of the RCAR family (Fig-

ure 5.22). There appears to be very little commonality in the directional pattern

of their expression. There also appears to be large differences between the lines

for TaAffx.43193.1.S1_at and TaAffx.109881.1.S1_at, however Ta.21082.1.S1_x_a

is consistently down-regulated during day 4 and 5 in Lahn and RIL2219, and

during days 2 to 5 in Cham1. However care should be taken with this probe-

set as it is a mixed type, which may confuse expression of probes binding to

other transcripts (x type probe-set, see Chapter 3.1.2(a) for an explanation of

probe-set types), which may cross Out of the two remaining RCAR genes on

the wheat GeneChip, TaAffx.131393.1.S1_at had line+time significant expres-

sion, and TaAffx.11433.1.S1_at did not register significant transcript binding,

and was therefore excluded prior to ANOVA.

The gene expression relative to the well watered control, across days of stress,

for the three RCAR genes with line.time interaction, in Lahn, Cham1, and RIL2219

is shown in Figure 5.23, Figure 5.24, and Figure 5.25 respectively. The Least Sig-

nificant Differences (LSDs) corresponding to these genes are provided in Table

5.17. This expands on the brief summary of the direction of their regulation,

previous provided in Figure 5.21. It is apparent from Figure 5.23 that most of the

regulation for two RCAR genes (TaAffx.109881.1.S1_at and Ta.21082.1.S1_x_a)

in Lahn are at days four and five. However a small but significant up-regulation

in TaAffx.109881.1.S1_at occurs after only one day of stress, and then a much
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Figure 5.21: The role and direction of expression for line.time interacting RCAR genes
within ABA water-stress signalling. Osmotic stress related signalling
showing enzymes (red), transmembrane ion channels (purple), transcrip-
tion factors (blue), and protein kinases (black). Red and blue indicate sig-
nificant (p<0.05) up and down regulation respectively, compared to the
well-watered control.
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Figure 5.22: A phylogram showing the alignment of RCAR genes in Arabidopsis and
orthologous sequences on the wheat GeneChip, using ClustalW2.

larger up-regulation on days 4 and 5. TaAffx.43193.1.S1_at has no significant

regulation relative to the control, at any time point in Lahn.

The expression of Ta.21082.1.S1_x_a in Cham1 is down regulation (Figure

Table 5.17: Least Significant Differences (LSD) values (p-value < 0.05), (1) for the com-
parison of the gene expression recorded for a day to the well-watered con-
trol, and (2) for inter-comparison of expression between days. Significance
p-values at 0.05 and 0.01 are provided for each of these comparison types.

Gene LSD

TaAffx.43193.1.S1_at (PYL1) 0.12
Ta.21082.1.S1_x_at (PYL4) 0.14
TaAffx.109881.1.S1_at (PYL9) 0.13

5.24), as was the case in Lahn (Figure 5.23); however expression is reduced

sooner, after only two days of stress, and recovers during days 4 and 5. In con-

trast to Lahn, TaAffx.43193.1.S1_at is significantly regulated at days 3 and 5 of

water stress, and modulates between small-insignificant and significant down-

regulation during days 2 to 5. Although the quantity of regulation in Lahn was

not significant, relative to the control, the reduced up-regulation at days 2 and

4, compared to the peaks at days 3 and 4, is similar in the Cham1. The Cham1

however displays this expression pattern at a lower expression level than the

well-watered control.
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Figure 5.23: The expression of line.time significant genes in Lahn, for genes that are
strongly orthologous with members of the RCAR family.

Overall the TaAffx.43193.1.S1_at and Ta.21082.1.S1_x_a RCAR genes both show

a greater quantity of regulation at day 3 relative to the control, in a strong co-

ordinated down-regulation. This is despite there being only minor difference in

RWC at day 3 (Figure 5.1). This may suggest an early desensitisation of ABA-

mediated-signalling in Lahn through RCAR down-regulation, at day three.

It might be expected that if the early regulation of RCAR genes in drought
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Figure 5.24: The expression of line.time significant genes in Cham1, for genes that are
strongly orthologous with members of the RCAR family.

resistant Cham1 (Figure 5.24) acts to desensitise the plant to ABA mediated

signalling, then the highly drought resistant RIL2219, would exhibit the same
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early regulation. However, the opposite appears to be the case (Figure 5.25).

Like Lahn TaAffx.43193.1.S1_at has no significant regulation relative to the con-

trol, at any time point. As with Lahn, TaAffx.109881.1.S1_at is not regulated

until day 4 and 5 of water stress. The direction of magnitude of day five is

highly similar to Lahn, however RIL2219 exhibits strong a down-regulation day

four (Figure 5.25), unlike the strong up-regulation in Lahn (Figure 5.23). How-

ever, this can be accounted for by the overall delay of RWC fall in RIL2219.

Lahn also exhibited a down regulation, much earlier at day one (Figure 5.23),

but this was small and insignificant. The down-regulation of the expression of

Ta.21082.1.S1_x_a at day 4 and 5, in RIL2219 is very similar to that observed in

Lahn.

The expression of RCAR genes appear to modulate over time, with no clear
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Figure 5.25: The expression of line.time significant genes in RIL2219, for genes that are
strongly orthologous with members of the RCAR family.

linear relationship with time or RWC. It seems apparent that their regulation

is as a result of a complex function. They may act multiplicatively to regu-

late ABA sensitivity for multiple GO biological processes and cellular components.

Overall, Lahn and RIL2219 exhibit late regulation of Ta.21082.1.S1_x_a, with

very similar profiles. Cham1 is unique in exhibiting significant regulation of

TaAffx.43193.1.S1_at, across time.
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There was no specific EC category for PP2Cs. However the EC category 3.1.3.16,

which describes the function of phosphoprotein phosphatase, encompasses PP2Cs,

as well as the closely related PP1s, PP2As and PP2Bs. CoPSA identified 120

of these genes on the wheat GeneChip, of which no expression was detected

for 72. There was 31 of these genes with line.time interactions, 12 with only

line+time significant regulation, 5 with significant differences between days,

and 1 with significant differences between lines. None of the genes with de-

tected expression, were not found within these ANOVA groups (i.e. none had

emphno effect from the line or time variables).

The expression above significant (p-value < 0.05) of the 31 phosphoprotein

phosphatases (PPs) (3.1.3.16) which have a line.time interaction is given for

Lahn, Cham1 and RIL2219 in Figure 5.26, 5.27 and 5.28, respectively. A sim-

ilar trend to that observed in RCAR emerges, with Lahn showing significant

up and down regulation of PPs during days 4 and 5 of water stress. A small

number of PPs are unregulated in RIL2219 at day 4, and most are unregulated

during day 5. As with RCAR genes, Cham1 shows significant regulation of PPs

during days 3, 4, and 5. Together with the observations of regulation of RCAR

genes, this observation points to an early regulation of components of ABA me-

diated signalling in Cham1. As Lahn and Cham1 are the most synchronised in

terms of RWC, it is likely that Cham1 is more responsive in regulating compon-

ents of ABA-mediated signalling, in order to better respond to the fall in RWC.

The similarity in expression of RCARs and PPs between Lahn and RIL2219, des-

pite very different RWC levels, indicates that other adaptations in RIL2219 have

mitigated the fall in RWC to such an extent that the early RCARs/PPs response

in Cham1, has been delayed to days 4 and 5. This suggests that an earlier prim-

ing of the RCAR/PP2C may be part of the reason Cham1 and RIL2219, have

improved yield stability in drought conditions.
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Figure 5.26: The expression above significant (p-value < 0.05) compared to the well-
watered control, for 31 phosphoprotein phosphatase genes (EC: 3.1.3.16)
in Lahn which have a line.time interaction.

-1

-0.5

0

0.5

1

1.5

1 2 3 4 5

E
xp

re
ss

io
n 

re
la

tiv
e 

to
 w

el
l-

w
at

er
ed

 c
on

ro
l

Days of water stress

Figure 5.27: The expression above significant (p-value < 0.05) compared to the well-
watered control, for 31 phosphoprotein phosphatase genes (EC: 3.1.3.16)
in Cham1 which have a line.time interaction.
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Figure 5.28: The expression above significant (p-value < 0.05) compared to the well-
watered control, for 31 phosphoprotein phosphatase genes (EC: 3.1.3.16)
in RIL2219 which have a line.time interaction.

5.6.6(a) Transcriptome responses to osmotic stress

The accumulation of proline is a known response to osmotic stress, and pre-

vents shifts in redox potential. Cell redox homeostasis was observed to be an

important process in early and late responses in time significantly regulated

genes. Table 5.18 shows that proline metabolic process genes were enriched

within the line.time ANOVA group for the RILL2219 and Cham1 cultivars.

Metal-ion related processes play a role in signalling, maintaining osmotic po-

Table 5.18: Osmolyte enriched processes in the line.time group

Day RIL2219 Cham1 Lahn

1
2 Proline biosynthesis (p=0.04)
3 peptidyl-proline

hydroxylation (p=0.03)
4 Proline metabolism (p=0.07)
5

tential, synthesis of metal containing compounds, and preventing toxic build-

up of metals. Table 5.19 shows that a large number of metal ion related pro-

cesses were enriched within the line.time ANOVA group. Cadmium was not
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present in the environment of the plants, so it seems probable that the Cd++

responses observed are a result of general metal-responsive genes. K+ trans-

porters such as KAT1 are important for control of stomatal aperture (Sato et al.,

2009), and their role in the ABA mediated water stress response has been de-

scribed in Chapter 6.1. There enrichment during days 4 and 5 in RIL2219, 2 and

3 in Cham1, and 2 and 5 in Lahn indicate they are important throughout mild

and severe water stress. The overabundance of K+ transporters like KAT1 in

the stomata is likely to reduce the sensitivity of the ABA mediated response.

However further verification of KAT1 orthology and localisation would be re-

quired to further elucidate the mechanism here. Enrichment of these transport-

ers highlights an important area for further work.

Table 5.19: Metal ion enriched processes in the line.time group.

Day RIL2219 Cham1 Lahn

1 response to Zn++

(p=0.07)
response to Zn++

(p=0.01)
Na+ transport
(p=0.09), Zn++ trans-
membrane transport
(p=0.08)

2 K+ transmembrane
transport (p=0.06)

K+ transmembrane
transport (p=0.04),
Cd++ response
(p=0.0005)

3 K+ import and cellu-
lar transport (p=0.07)

4 K+ transmembrane
transport (p=0.009)

Cd++ response
(p=0.003), response
to Zn++ (p=0.06)

5 K+ transmembrane
transport (p=0.04),
Cd++ response
(p=0.005)

K+ transmembrane
transport (p=0.006),
Cd++ response
(p=0.0008)
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5.7 Conclusions

This chapter has shown that improved annotation using CoPSA has allowed

a broad systems analysis of the TRITIMED durum wheat drought-response

time-course microarray experiment and enabled dissection of particular path-

ways and candidate gene families. The uniqueness of the dataset has allowed

the partition of the wheat leaf water response to early, intermediate and late

phases of stress. Coupled with statistical models it allowed the identification

of line specific responses and suggest candidate pathways and genes for future

new studies. A number of novel biological insights were discovered as a con-

sequence.

A high level of structure is present in the wheat leaf transcriptome response

to water stress across all lines examined. A biological system in which regu-

lation had broken down would exhibit a random expression of genes, and we

would not expect it to exhibit enrichment of processes, across time-points and

between lines. The high degree of order within the regulation and processes af-

fected would indicate a controlled and progressive change in the plant genome

and physiology. Whilst previous studies and reviews on early signalling have

proposed a progression from sensing to final physiological effect (Gregersen

and Holm, 2007, Shinozaki and Yamaguchi-Shinozaki, 2007, Zhou et al., 2007),

none have dissected the transcriptome transient to so many time points, identi-

fied time-specific components and further tested these changes across different

wheat lines.

The combination of transcriptome dissection by statistical (ANOVA, PCO) and

functional analysis (CoPSA annotations) facilitated the dissection of responses

into various subgroups. One subgroup of ANOVA genes were not responsive

to stress and these can be used as controls for further water stress studies (Sec-

tion 5.6.1: 1,201 genes with line only or no significance).
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PCO analysis was performed, to elucidate principle components of variation

in gene expression for line and time, and line and RWC independent variables.

CoPSA annotations were used to better understand the processes and functions

that underlie the genes that contribute most to the top three PCos. These top

contributing genes were identified through regression analysis. This revealed

that the main contributor to variation across time (captured by PCo1) were late

down-regulated ribosomal subunits, responsible for protein synthesis. This is

in line with what others have observed (Novoa et al., 2003), and it acts to re-

duce stress on the cell and prevent abnormal protein folding (Harding et al.,

2000). PCo2 and PCo3, which mainly highlighted variance between lines, con-

tained processes that were related to metabolism, signalling and regulation of

transcription. This highlights the importance of genes from these processes as

candidates for breeding for improved yield stability in drought conditions.

Another group of ANOVA genes showed responses to stress across time (Sec-

tion 5.6.1: 26,560 genes with time, time+line or time.line significance), these

were used to build an overview of pathways, processes that were responsive to

stress. This analysis was later expanded to elucidate transcription factor famil-

ies that were early and late responsive in terms of time and RWC. Enrichment

analysis of these time responsive genes was used to build a high level over-

view of water-stress responsive processes in Section 5.6.5. Figure 5.14 and ??

provided a visual summary of processes regulated by significantly enriched

genes during each day of water stress. They demonstrated that the transcrip-

tome response to stress is global, encompassing many processes, many of which

regulate primary processes of transcription, translation and energy metabolism.

It also showed that these processes are regulated from only one day of water

stress, which indicates the plant is sensing the stress at this stage, and launch-

ing a progressive global regulation of processes. This type of progressive and

global regulation from a mild to a sever water stress has not previously been

shown. An overview for time responsive transcription factor families was also
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provided. These time responsive processes provided potential genes for further

biological verification as candidate genes for germplasm improvement.

The most interesting group of genes from ANOVA for wheat breeders was the

line.time group (4,621), because these contained genes that were responding

to water-stress but were differentially regulated between cultivars. There were

the most likely to reveal genes responsible for inferring yield stability under

drought in then Cham1 and RIL2219 cultivars. This group revealed line specific

early and late responses and progressions. An overview for line.time respons-

ive transcription factor families was provided in Section 5.6.4.

Transcription factor analysis revealed that a large number of transcription factor

families were expressed in response to water stress (Section 5.6.4). Most of these

were expressed at days 3, 4 and 5, however a large number were significantly

regulated at days 1 and 2, at mild water-stress. This strongly indicates that

transcriptional control is highly regulated and progressive from early stages

of water-stress. The usual transcription factor families that are well studied

in relation to drought were present in the data (Table 5.10). Particularly in-

teresting was the early regulation of 24 NAC genes during the first two days

of water-stress in RIL2219, which was more abundant that the two NACs ex-

pressed during these time points in Lahn and Cham1. NACs are known to

regulate hormone signalling in a time dependent manner (Jensen et al., 2010),

and regulate senescence (Guo and Gan, 2006), which appears to be delayed in

RIL2219. NACs also appear as an important family within the line.time AN-

OVA group. These are therefore strong candidates for explaining the RIL2219s

superior yield stability under drought. Another interesting result were HSFs,

of which 6 were significantly expressed differentially with time in Lahn and

Cham1, however only 3 were expressed in RIL2219. HSFs were almost exclus-

ively significantly down-regulated during days 1 and 2. Their role in regulating

HSPs which assist in protein folding under heat and osmotic stress (Hu et al.,

2009), may be explained by the previous findings that protein synthesis is the
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most regulated and enriched process in PCo1. If protein synthesis is down-

regulated then HSFs are no longer required. However, their regulation after

only one day of stress, before protein regulation is down-regulated is intriguing,

and may indicate some more complex and previously unknown role in sig-

nalling. Some HSFs are known to responsive to senescence (Breeze et al., 2008),

their absence in RIL2219 is supportive of a model of delayed senescence in this

cultivar. MYBs have been previously shown to be ABA inducible transcription

factors (Abe et al., 2003), and these where one of the most abundant families at

late time points.

In addition to transcriptional factor signalling, in Section 5.6.6 hormonal pro-

cesses were observed to be significantly enriched in RIL2219 and Cham1 within

the line.time ANOVA. Jasmonic acid biosynthesis was enriched at early time

points in both these cultivars. Jasmonic acid has recently been shown by Shan

and Liang (2010) to regulate glutathione during water stress in plants, which

is an antioxidant, protecting the plant from oxidative stress. Ethylene biosyn-

thesis and signalling was enriched during day two and three respectively in

RIL2219. Ethylene, as well as regulating growth and development, has been

associated with the regulation of senescence and photosynthesis related genes

(Grbić and Bleecker, 1995).

Given the importance of ABA in the water-stress response, a detailed analysis

of genes involved its biosynthesis and downstream signalling was conducted

in Section 5.6.6. An intriguing up-regulation of upstream genes encoding en-

zymes in the ABA biosynthesis, and down-regulation of downstream genes

was observed. There were important cultivar differences, with Cham1 exhibit-

ing an earlier up-regulation of upstream genes. The expression profiles of Lahn

and RIL2219 appeared to be similar for this pathway. Previous work had shown

that xanthoxin dehydrogenase is not significantly regulated during water stress

(Nambara and Marion-Poll, 2005). The TRITIMED data set shows this is not the

case at least in wheat, and the gene encoding xanthoxin dehydrogenase is sig-
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nificantly up-regulated at days 4 and 5 in Lahn and RIL2219, and days 3 and 4

in Cham1.

Downstream ABA signalling was also considered in Section 5.6.6. The RCAR

and PP genes which are important in forming the ABA-receptor complex, both

demonstrated progressive increases in regulated over time. In both cases, up

and down regulation was observed, indicating the regulation of these import-

ant signalling genes may be additive or multiplicative (i.e. multiple co-regulated

genes acting together to regulate the water stress response). This supports the

observation of Ma et al. (2009) that multiple knockouts of RCAR genes is re-

quired to induce stomatal-aperture insensitivity ABA. The enrichment of K+

transmembrane transporters (Section 6.3.4), may indicate a downstream reg-

ulation of ABA-mediated signalling of stomatal closure (Sato et al., 2009), the

variation of expression of which may lead to stomatal insensitivity to ABA.

The utility of improved CoPSA annotation in understanding a complex tran-

scriptome has been demonstrated throughout this chapter. They are of partic-

ular power when combined with statistical dissections and tests such as PCO,

ANOVA, and enrichment analysis. Through improved annotation a potentially

daunting 26,560 time responsive genes were categorised into their respective

processes (Figure 5.14 and Figure 5.15). Through CoPSA annotation it was pos-

sible to further interrogate these data by asking specific question about tran-

scriptional families (Section 5.6.4) and hormonal control (Section 5.6.6), which

are known to be important to the water-stress response in plants. A high-level

system wide view of the data-set, together with the power to drill down to de-

tails, is facilitated through structured-annotation with improved coverage and

specificity. This improved understanding of this transcriptome data set has yiel-

ded a number of water-stress related gene targets for breeders. This informa-

tion has now been transferred to the durum wheat breeders at CGIAR centre

ICARDA for further validation and utility.
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5.8 Further Work

The example of CoPSA enabled analysis, presented in this thesis, is limited to

the protein functions and the metabolic functions they are involved in. Wheat

breeders are primarily interested in plant traits, which are a consequence of

many plant interacting processes (which are regulated over time, and between

tissues). Quantitative Trait Loci (QTL) statistically relate the overall contribu-

tion of a genomic region to a trait of interest. There are many existing water

stress QTLs for durum wheat (Habash et al., 2009), and relating these regions to

the biological processes summarised in this chapter would be a valuable contri-

bution to understanding the molecular mechanism behind the trait, and could

provide candidate marker genes in breeding. For non-model organisms, where

there is not a complete genomic sequence, calculating the genomic location of

genes within QTL coordinates is challenging. ESTs which have been mapped

to chromosomal bins (Qi et al., 2004, Conley et al., 2004, Peng and Lapitan, 2005)

could be used to propose candidate genes within QTL regions.

Recently, classical QTL analysis has been combined with transcriptome analysis

through expression QTL (eQTL) studies. These work by measuring both gene

expression and genetic variation in a large number of individuals. Statistical

genetic methods, traditionally used in QTL analysis, can then be used to link

genetic differences (associated to traits) to individual differences in expression.

Nicolae et al. (2010) has shown these eQTLs, linked to traits, can also corres-

pond to SNPs which are important for that trait. This directly feeds into marker

assisted breeding strategies, which can then select for SNPs associated with de-

sirable traits. The interaction between loci, which gives rise to a complex trait

can also be inferred (Michaelson et al., 2009). eQTLs are therefore a powerful

tool in understanding the importance of expression of individual genes with

respect to complex traits.
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A further limitation of the TRITIMED transcriptome dataset, described in this

chapter, is that only a subset of the transcriptome is measured by the wheat

GeneChip. Wan et al. (2008) puts the coverage of the transcriptome measured by

the wheat GeneChip at around 50% of genes in hexaploid wheat. The ever de-

creasing cost, and increasing read length, of sequencing technologies like Roche

454, makes this a more viable option for the futureCoram et al. (2008). Theoretic-

ally, transcriptome sequencing can achieve a 100% coverage of a transcriptome,

although the large size of the wheat transcriptome makes this expensive.
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Chapter 6. Summary conclusions and further work

6.1 Conclusions

This thesis was motivated by a need to improve annotation on the wheat Gene-

Chip. The scarcity of annotation on the wheat GeneChip provided through Af-

fymetrix NetAffy pipeline (Liu et al., 2003) and Blast2GO-FAR (Escobar, 2011),

potentially limits the analysis that can be done with transcriptomics data set.

An incomplete annotation of the GeneChip presents the danger of a limited

analysis that is unrepresentative of the true biological system, where genes with

significant variation are simply unexplained.

Improved gene annotation coverage and specificity was achieved through a

novel pipeline strategy presented in Chapter 3, which leveraged data integ-

ration methodologies developed in Chapter 2. Many existing sequence an-

notation pipeline tools like BLAST2GO (Conesa and Götz, 2008, Conesa et al.,

2005) leverage single data sources, that were used in annotation transfer, which

was based on sequence alignment to identify putative functional-orthologs.

Chapter 3 showed that the novel data integration approach incorporated into

CoPSA improved the quantity of sequences on each Affymetrix plant GeneCh-

ips that could be annotated (coverage). It also improved the specificity with

which genes could be annotated. This benefit was as a result of aggregat-

ing unique annotations from multiple data sources, as well as indirect infer-

ences which revealed knowledge, some of which was not present in a single

data source. CoPSA also incorporated a conjoint analysis that utilised both

gene sequence alignment against proteins, and the identification of protein do-

mains. Both of these approaches were shown to benefit from data integration
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approaches.

As a consequence of these benefits derived from a novel data integration and

conjoint methods approach, comparisons to NetAffx and BLAST2GO and pipelines

showed that CoPSA was able to uniquely annotate genes that accounted for

34%, 24%, and 32% of the wheat chip for GO molecular function, biological

process, and cellular component categories respectively. This represents a real

benefit in terms of novel annotation, which was key to the success of the ana-

lysis presented in Part II.

The usefulness of any annotation is highly dependent on its quality. Benefits

in terms of coverage and specificity of annotation must be balanced against

the trustworthiness of annotation. Chapter 3 also showed that this increase

in the coverage, quantity, and specificity of annotations can also be translated

into improved quality of annotations. Comparison to wheat GeneChip annota-

tions from NetAffx and BLAST2GO pipelines revealed that CoPSA makes very

similar predictions to the high quality NetAffx pipeline. Metrics assessing the

properties of the CoPSA annotations revealed that they show similar charac-

teristics to other pipelines. This adds confidence to the novel CoPSA annota-

tions that are not covered by other pipelines. Two novel filtering strategies for

selecting high quality annotations from the CoPSA pipelines were proposed,

and these were shown to perform better or similar to other standard filtering

strategies. The success of these filtering methods demonstrated the benefit of

recording provenance of annotation, which can be later used to derive confid-

ence metrics. Provenance retained by the Meta-data based Graph Query Engine

(MGQE) presented in Chapter 2, is a novel feature of a sequence based annota-

tion pipeline, and was leveraged in the final annotation selection metrics in

Chapter 3.

The transcriptome data set and its analysis, which was a key use-case to demon-

strate the utility of the CoPSA annotation system, was presented in Chapters

and . Regulation of biological processes were observed in the TRITIMED time-
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series microarray experiment which were consistent with current knowledge in

the field. This both demonstrated the utility of the current CoPSA annotation,

in confirming existing models, and confirmed the quality of the annotations. A

high error rate in the annotations would not have yielded observations of en-

riched processes which confirm current biological knowledge.

As well as confirming existing knowledge in the field of water-stress, analysis of

the TRITIMED data set yielded novel biological insights. These concerned ob-

servations of processes and functions which where responsive to water stress,

and differences between lines which may contribute to an explanation of the

high yield stability under drought of the Cham1 and RIL2219 lines. Both ob-

servations yielded novel genes, which could potentially be used in targeted

breeding of drought resistant cultivars. They could form candidate genes for

investigating existing QTL loci in durum wheat (Habash et al., 2009), which

could help relate these genes to cultivar traits, and explain the molecular mech-

anism of the loci.

Combining statistical dissection and testing with CoPSA structured annotation,

proved to be a powerful combination in interpreting the TRITIMED dataset.

Principle coordinates analysis revealed three Principal Coordinates (PCos) that

captured the main trends of variation in the gene expression. The first of these

PCos captured the main expression changes across time, which was common

to all three cultivars. It therefore represented constitutive responses to water-

stress. Annotation of the genes with CoPSA data revealed that a large amount

of variation could be explained by the late down-regulation of ribosomal sub-

units. This indicated that the down regulation of protein synthesis to prevent

protein with abnormal folding and reduce stress on the cell is one of the main

constitutive responses to water-stress. The observation of down regulation of

Heat Shock Factors (HSFs) during early and late water-stress progression was

intriguing. The absence of early regulated HSFs in RIL2219 may be important

in its ability to mitigate drought. HSFs assist in protein folding under osmotic
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stress, and their early regulation when protein synthesis is unaffected, suggests

a novel role in signalling. One speculative explanation is their responsiveness

to senescence (Breeze et al., 2008), which appears to be delayed in RIL2219.

CoPSA annotation of transcription factors on the wheat GeneChip enabled sys-

tems wide analysis of families expressed at early and late time-points (Sec-

tion 5.6.4). This novel approach to interpreting transcriptional regulation in

an evolving water-stress has never been performed for multiple cultivars of

wheat. It revealed a global regulation of transcription, involving many tran-

scription factor families, which included families with established associations

with water-stress, but all included many families not usually associated with

water-stress. The majority of transcriptional regulation was observed during

late time points; however there were a number of early responsive transcription

factors. This indicates that transcription is primed at a very early stage of water

stress. ABA was chosen to demonstrate how CoPSA annotations could be used

to drill down to detailed analysis. ABA biosynthesis and signalling is known

to vitally important in a plants response to water stress (see Section 4.1.1(a)).

Previous work had shown that the enzyme xanthoxin dehydrogenase which

catalyses ABA biosynthesis is not significantly regulated during water stress

(Nambara and Marion-Poll, 2005). However, the TRITIMED data set shows

this is not the case, and the gene encoding xanthoxin dehydrogenase is signi-

ficantly up-regulated at days 4 and 5 in Lahn and RIL2219, and days 3 and 4 in

Cham1. Furthermore it was shown that all the genes upstream in ABA biosyn-

thesis are regulated during the final three days of stress, and the catabolism step

immediately after is strongly down regulated. This pointed to a late accumula-

tion of ABA in response to severe water stress. The Cham1 cultivar exhibited

an earlier response, which may explain its improved resistance to water stress.

The RCAR-PP2C-ABA signalling receptor-complex was also examined, and a

complex regulatory system (possibly additive) involving late up and down reg-

ulation during the final two day of drought stress in RIL2219 and Lahn, and the
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final three days in Lahn. The early responsiveness of Lahn again points to a

novel role of early ABA-mediated signalling in priming the plant, before severe

water stress.

6.2 Acknowledgement of limitations

CoPSA is a sequence based functional annotations, which relies on identify-

ing the putative functional-ortholog from which to transfer annotation. There

are a number of inherent difficulties with this approach. The underlying as-

sumption in this field is that the more similar the sequences, the greater the

probability that they share function. This is not always the case, even with

highly conserved sequences. Examples were given to support this in Section

1.1.4, and it was been discussed in some detail by Bork and Koonin (1998) and

Karp (1998), the latter of which also discusses the dearth of provenance, for

functional assignments, in public databases. The confidence with which the

putative functional ortholog can be identified can be improved using phylo-

genetic techniques, however these approaches are computationally expensive,

often require human supervision, and are still sequence based approaches. The

biggest limitation with a sequence based approach is when a sequence only has

weakly similar sequences in model organisms. Structural similarity between

proteins has been shown to be a more reliable method for interfering similar

function, however divergent and convergent evolution has led to some pro-

teins which have different structures with similar functions, and similar struc-

tures with different functions, respectively (Hegyi and Gerstein, 1999). How-

ever, for most sequences a three dimensional structure is unavailable, and ac-

curate and fast in silico prediction of three dimensional structure from protein

sequence data has still not been realized in bioinformatics. Also, not all proteins

expressed in the cell, are folded into complex globular structures, and remain
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in a less structured state (Wright and Dyson, 1999). Given that sequences in

non-model organisms, like wheat, are often incomplete, it seems unlikely this

will be realized, in this area, in the immediate future. Given that sequence and

structure based identification of putative functional-orthologs both have their

limitations, we remain heavily reliant on experimental work to elucidate func-

tion in non-model organisms. Much of this experimental work already exists in

unstructured resources, like text, and will require improvements in text-mining

methods, and the adoption of structured publishing, to leverage it. Text-mining

of functional annotation has been facilitated in recent years by the BioCreAtivE,

grand challenges Yeh et al. (2005), Hirschman et al. (2005). Efforts to The statist-

ical facilitate publishing experimental data directly in machine a readable form

include Nano-Publications (Mons and Velterop, 2009) and Linked Data (Bizer

et al., 2009).

The example approach, presented in Chapter 6.3, was based on ANOVA for

the analysis of significant expression, which assumes a normal distribution of

gene expression. An inspection of the histogram plot of the residuals verses

fitted values indicated a normal distribution, and Giles and Kipling (2003) pre-

viously reported normal distribution in 59 human GeneChips. However, Giles

and Kipling (2003) also reported non-normal distributions among genes with

low expression, and Hardin and Wilson (2009) have more recently reported

non-normal distributions in Affymetrix data. Further analysis should include

rigorous tests for non-normality, such as the Shapiro–Wilk test (SHAPIRO and

WILK, 1965). Gao and Song (2005) have proposed a number of non-parametric

tests, which are appropriate for for multi-factorial microarray expression data

(factors are line and time in the experiment described in Chapter 6.3). They

were able to elucidate treatment effects, without the assumption of a normal-

distribution.
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6.3 Further Work

Additional improvements could be made in the selection of high quality an-

notations from the CoPSA pipeline. The scoring metric selected for the ap-

plied annotation in Chapter 3, used consensus to identity annotations to trans-

fer. Pragmatically, this works in the vast majority of cases as it excludes sub-

functionalization within a gene family, and selects the majority function. How-

ever, an approach which more closely models the evolution of gene function

would be to incorporate a phylogenetic analysis to identify the true ortholog

ancestry of a gene, and then transfer only from the nearest informative ancest-

ors. There are existing approaches to phylogeny that work on only sequence in-

formation, or with the expected sequencing of the wheat genome by the IWSC

, it should be possible to incorporate synteny maps of the genomic sequence

to identify orthologs. The filtering strategy used a single ortholog approach,

i.e. it selected a gene, and then transferred all the annotation. Transferring

annotation from multiple orthologs could improve annotation, by incorporat-

ing multi-functionalities of genes that have been verified in different species.

However, for this approach to work a methodology for identifying the differ-

ence between multi and sub-functionalization would be required. This could

be achieved through a phylogenetic approach to functional annotation. Ad-

ditionally, a probabilistic approach based on the frequency of co-occurrence

of function within the annotation sets of proteins, could be used to identify

coherent annotations, sourced from multiple putative functional-orthologs.This

would require a calculation of joint probabilities for sets of GO terms.

The existing CoPSA pipeline concentrates on the annotation of protein func-

tion, by exploiting protein sequence similarity and protein domains. Some

sequences such as non-coding RNA are not translated to proteins, and con-

sequently would not be assigned a function with the existing CoPSA pipeline.
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There are existing efforts by groups such as (Dryanova et al., 2008) to create

pipelines in wheat to identify these sequences, which could be incorporated

into the CoPSA pipeline.

One of the most exciting recent developments is the International Wheat Gen-

ome Sequencing Consortium (IWGSC) (Gill et al., 2004), which aims to pro-

duce a high quality and fully assembled wheat sequence. This effort is cur-

rently mostly funded, and is currently producing genomic sequence data for

the 3b chromosome. 85Gb of unassembled genomic sequence data of the wheat

genome with 5x coverage has recently become available from a BBSRC project

(Barker, 2010, 2011).

In addition to the work reported in this thesis. Information Theoretic approaches

have been used by Stephen Powers to dissect the major components of variation

in the data further. The GO and EC annotations created as part of this project,

have also been used to better understand this alternative statistical dissection of

the TRITIMED data. The transcription factors identified by CoPSA have been

used by Michael Defoin-Platel as priors to predict regulatory networks, which

have been inferred based on TRITIMED gene co-expression data. Enrichment

of CoPSA derived GO annotations was observed in these regulatory clusters.

It became apparent when conducting the analysis in Chapter that visualisation

of annotation for a large and complex transcriptome such the TRITIMED data

set is a challenge. Ondex contains existing graph visualisation tools, which can

lay out a complex network in an organic way. However, it is not always pos-

sible to provide generic visualisations that are accessible in a biological context.

For example metabolic pathways require certain implicit assumptions about

the main compounds and the important reactions, which are difficult to infer

computationally, and require a specific visualisation schema. Reactome has

created layouts to computationally generate metabolic pathways (Matthews

et al., 2009), however to accommodate multiple biological domains such as sig-

nalling, and physiological processes is a challenge. Existing tools like MAP-
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MAN Thimm et al. (2004) have created user friendly visualisations that are ac-

cessible to a biologist. With a translation between GO, EC, and the MAPMAN

ontology it would be possible to use CoPSA annotations within MAPMAN.
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Appendix

Appendix 1: KEGG species imported into Ondex, as part of the CoPSA pipeline.

KEGG species code Organism Common name Group

vvi Vitis vinifera Wine grape Grape

osa Oryza sativa japon-

ica

Japanese rice Grasses

sbi Sorghum bicolor Sorghum Grasses

zma Zea mays Maize Grasses

cre Chlamydomonas re-

inhardtii

Green algae

olu Ostreococcus lucim-

arinus

Green algae

ppp Physcomitrella

patens subsp. patens

Mosses

ath Arabidopsis thaliana Thale cress Mustard

cma Cyanidioschyzon

merolae

Red algae

rcu Ricinus communis Castor bean Spurge

pop Populus trichocarpa Black cottonwood Willow
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Appendix 2: Functions of GS2 gene in the gene ontology molecular function category
highlighted in red.
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Appendix 3: A comparison of significantly (p<0.05) expressed genes in RIL2219 with
other cultivars

Percentage of significant probes shared

Time point Lahn Cham1 Both
1 20.94% 21.49% 7.16%
2 14.89% 26.34% 4.20%
3 12.44% 58.13% 8.37%
4 80.14% 72.63% 63.68%
5 92.85% 94.43% 89.28%

Appendix 4: A comparison of significantly (p<0.05) expressed genes in Cham1 with
other cultivars.

Percentage of significant probes shared

Time point Lahn RIL2219 Both
1 30.10% 19.40% 6.47%
2 13.45% 6.58% 1.05%
3 79.81% 6.10% 0.88%
4 91.19% 11.33% 9.94%
5 88.56% 85.43% 80.77%

Appendix 5: A comparison of significantly (p<0.05) expressed genes in Lahn with
other cultivars.

Percentage of significant probes shared

Time point RIL2219 Cham1 Both
1 4.48% 7.14% 1.53%
2 4.79% 17.30% 1.35%
3 7.98% 45.09% 5.37%
4 8.94% 65.22% 7.11%
5 88.51% 93.33% 85.12%
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Appendix 6: A ClustalW2 alignment of TaAffx.44105.1.S1_at with the protein encoded at the locus 02g023760 in Sorghum bicolor (XP_002462318.1

TaAffx.44105.1.S1_at MASLALRPIMPAXXAAASTTTXLNRARRGSXTLLR-----RRQPVTCMAESSGGGNSTVE 55
02g023760 MASLALHPIIPAT-AASSTTLAVVVGSRHAATLHRCFRPRRRLITTCKAEPSGG-NSTVE 58

******:**:** **:*** : . * : ** * ** .** **.*** *****

TaAffx.44105.1.S1_at LAAXAXGXASCAXVAWSLYXXKATGCGLPPGPGGSXGAAEGVSYLVVAGXVGWSLTTKVR 115
02g023760 LAAGAAGLASSAVVAWSLYTLKTTGCGLPPGPGGALGAAEGVSYLVVAGLVGWSATTKVR 118

*** * * **.* ****** *:***********: ************* **** *****

TaAffx.44105.1.S1_at TGSXLPAGPYGXLXAAEGVXYXXVVAIAAVXGLXFFXXGSLPGPXPXXXCFG 167
02g023760 TGSGLPAGPYGLLGAAEGVAYLTVAAIAVVFGLQFFQQGSIPGPLPSEQCFG 170

*** ******* * ***** * *.***.* ** ** **:*** * ***
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Appendix 7: A ClustalW2 alignment of RCAR (PYL1-13 and PYR1) with candidates
on the wheat chip. Translation of nucleotide consensus sequences was
performed using GeneWise2.

TaAffx.131393.1.S1_at --------------------------------------------------
Ta.21082.1.S1_x_at --------------------------------------------------

PYL4 ----------------------MLAVHRPSSAVSDGDSVQIPMMIAS--F 26
PYL5 -------------------MRSPVQLQHGSDATNGFHTLQPHDQTDG--P 29

PYL12 -------------------MKTSQEQHVCG-------------------- 11
PYL11 -------------------METSQKYHTCG-------------------- 11
PYL13 -------------------MESS-KQKRCR-------------------- 10
PYL6 -------------------MPTSIQFQRSSTAAEAANATVRNYPHHHQKQ 31

PYL10 ----------------------MNGDE------TKKVES----------- 11
PYL8 --------------------MEANGIEN---LTNPNQER----------- 16
PYL9 ---------------------MMDGVEGGTAMYGGLETV----------- 18
PYL7 -------------------MEMIGGDDTDTEMYGALVTA----------- 20

TaAffx.109881.1.S1_at -------------------------------------EA----------- 2
TaAffx.11433.1.S1_at ------------------------------------EEM----------- 3

PYL3 ------MNLAPIHDPSSSSTTTTSSSTPYGLTKDEFST----------- 32
PYL2 ---------------------MSSSPAVKGLTDEEQKT----------- 17
PYR1 --------------------------MPSELTPEERSE----------- 12
PYL1 MANSESSSSPVNEEENSQRISTLHHQTMPSDLTQDEFTQ----------- 39

TaAffx.43193.1.S1_at ------------------------------LTAAEYAQ----------- 8

TaAffx.131393.1.S1_at ----------VPPEVARHHXHAAPGGRCCCSAVVQRVAAPXADVWAVVX 39
Ta.21082.1.S1_x_at ---------------ARHHEHAEPGSGQCCSAVVQHVAAPAAAVWSVVR 34

PYL4 QKRFPS---LSRDSTAARFHTHEV-GPNQCCSAVIQEISAPISTVWSVVR 72
PYL5 IKRVCLTRGMHVPEHVAMHHTHDV-GPDQCCSSVVQMIHAPPESVWALVR 78

PYL12 ------------------------------STVVQTINAPLPLVWSILR 30
PYL11 ------------------------------STLVQTIDAPLSLVWSILR 30
PYL13 ------------------------------SSVVETIEAPLPLVWSILR 29
PYL6 VQKVSLTRGMADVPEHVELSHTHVVGPSQCFSVVVQDVEAPVSTVWSILS 81

PYL10 -------------EYIKKHHRHELVESQCSSTLVKHIKAPLHLVWSIVR 47
PYL8 -------------EFIRRHHKHELVDNQCSSTLVKHINAPVHIVWSLVR 52
PYL9 -------------QYVRTHHQHLCRENQCTSALVKHIKAPLHLVWSLVR 54
PYL7 -------------QSLRLRHLHHCRENQCTSVLVKYIQAPVHLVWSLVR 56

TaAffx.109881.1.S1_at -------------DYMRRLHGHAPGENQCTSALVKHIKAPXHLVWSXVR 38
TaAffx.11433.1.S1_at -------------EYVRRFHQHEPGANQCTSFIAKHIKAPLQTVWSVVR 39

PYL3 -----------LDSIIRTHHTFPRSPNTCTSLIAHRVDAPAHAIWRFVR 70
PYL2 -----------LEPVIKTYHQFEPDPTTCTSLITQRIHAPASVVWPLIR 55
PYR1 -----------LKNSIAEFHTYQLDPGSCSSLHAQRIHAPPELVWSIVR 50
PYL1 -----------LSQSIAEFHTYQLGNGRCSSLLAQRIHAPPETVWSVVR 77

TaAffx.43193.1.S1_at -----------LLPTVEAYHRYAVGPGQCSXLVAQRIEAPPAAVWAIVR 46

TaAffx.131393.1.S1_at RFDQPQAYKSFVRSCALLDXXG------GVGTLXEVRVVXGLPAASSRER 83
Ta.21082.1.S1_x_at RFDQPQAYKRFVRSCALVAGDX------GVGTLREVHVVSGLPAASSRER 78

PYL4 RFDNPQAYKHFLKSCSVIGGDGD-----NVGSLRQVHVVSGLPAASSTER 117
PYL5 RFDNPKVYKNFIRQCRIVQGDGL-----HVGDLREVMVVSGLPAVSSTER 123

PYL12 RFDNPKTFKHFVKTCKLRSGDGG------EGSVREVTVVSDLPASFSLER 74
PYL11 RFDNPQAYKQFVKTCNLSSGDGG------EGSVREVTVVSGLPAEFSRER 74
PYL13 SFDKPQAYQRFVKSCTMRSGGGGGKGGEGKGSVRDVTLVSGFPADFSTER 79
PYL6 RFEHPQAYKHFVKSCHVVIGDGRE-----VGSVREVRVVSGLPAAFSLER 126

PYL10 RFDEPQKYKPFISRCVVQGK------KLEVGSVREVDLKSGLPATKSTEV 91
PYL8 RFDQPQKYKPFISRCVVKG-------NMEIGTVREVDVKSGLPATRSTER 95
PYL9 RFDQPQKYKPFVSRCTVIG-------DPEIGSLREVNVKSGLPATTSTER 97
PYL7 RFDQPQKYKPFISRCTVNG-------DPEIGCLREVNVKSGLPATTSTER 99

TaAffx.109881.1.S1_at SFDQPQRYKPFVSRCVVRGG------DLEIGSVREVNVKTXLPATTSTER 82
TaAffx.11433.1.S1_at RFDKPQVYKRFVENCVMQG-------NIEPGCVREVTLKSGLPGKWSIER 82

PYL3 DFANPNKYKHFIKSCTIRVNGNGI-KEIKVGTIREVSVVSGLPASTSVEI 119
PYL2 RFDNPERYKHFVKRCRL-ISGDG-----DVGSVREVTVISGLPASTSTER 99
PYR1 RFDKPQTYKHFIKSCSVEQN-----FEMRVGCTRDVIVISGLPANTSTER 95
PYL1 RFDRPQIYKHFIKSCNVSED-----FEMRVGCTRDVNVISGLPANTSRER 122

TaAffx.43193.1.S1_at RXDCPQVYXHFIRSCALRXDPEAG-DELRPGRLREVSVISGLPASTSTER 95

Continued on next page
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TaAffx.131393.1.S1_at LEILDDERHVLSFSVVGGEHRLRNYRSVTTVHPAPGES-----ASATLVV 128
Ta.21082.1.S1_x_at LEILDDESHVLXFRVVGGEHRLKNYLSVTTVHPSXAAP-----SSATVVV 123

PYL4 LDILDDERHVISFSVVGGDHRLSNYRSVTTLHPSP--------ISGTVVV 159
PYL5 LEILDEERHVISFSVVGGDHRLKNYRSVTTLHASD--------DEGTVVV 165

PYL12 LDELDDESHVMVISIIGGDHRLVNYQSKTTVFVAAE-------EEKTVVV 117
PYL11 LDELDDESHVMMISIIGGDHRLVNYRSKTMAFVAADT------EEKTVVV 118
PYL13 LEELDDESHVMVVSIIGGNHRLVNYKSKTKVVASPEDM-----AKKTVVV 124
PYL6 LEIMDDDRHVISFSVVGGDHRLMNYKSVTTVHESEEDSD---GKKRTRVV 173

PYL10 LEILDDNEHILGIRIVGGDHRLKNYSSTISLHSETIDG-----KTGTLAI 136
PYL8 LELLDDNEHILSIRIVGGDHRLKNYSSIISLHPETIEG-----RIGTLVI 140
PYL9 LELLDDEEHILGIKIIGGDHRLKNYSSILTVHPEIIEG-----RAGTMVI 142
PYL7 LEQLDDEEHILGINIIGGDHRLKNYSSILTVHPEMIDG-----RSGTMVM 144

TaAffx.109881.1.S1_at LEQLDDDEHILSVKXVGGDHRLRNYSSIITVHPQSIDG-----RPGTLVI 127
TaAffx.11433.1.S1_at LELLDDNEHILSVKFI---------------------------------- 98

PYL3 LEVLDEEKRILSFRVLGGEHRLNNYRSVTSVNEFVVLEKDKKKRVYSVVL 169
PYL2 LEFVDDDHRVLSFRVVGGEHRLKNYKSVTSVNEFLNQDSGK---VYTVVL 146
PYR1 LDILDDERRVTGFSIIGGEHRLTNYKSVTTVHRFEKEN-----RIWTVVL 140
PYL1 LDLLDDDRRVTGFSITGGEHRLRNYKSVTTVHRFEKEEEEE--RIWTVVL 170

TaAffx.43193.1.S1_at LDLXXDARRAFGFXITGGEHRLRXYRSVTTVSELSXAAP-A--EICTVVL 142

TaAffx.131393.1.S1_at ESYVVDVPPGNTPEDTRVFVDTIVKCNLQSLARTAEK------------- 165
Ta.21082.1.S1_x_at E------------------------------------------------- 124

PYL4 ESYVVDVPPGNTKEETCDFVDVIVRCNLQSLAKIAENTAAESKKKMSL-- 207
PYL5 ESYIVDVPPGNTEEETLSFVDTIVRCNLQSLARSTNRQ------------ 203

PYL12 ESYVVDVPEGNTEEETTLFADTIVGCNLRSLAKLSEKMMELT-------- 159
PYL11 SYVVDVPEGNSEEETTSFADTIVGFNLKSLAKLSERVAHLKL------- 161
PYL13 SYVVDVPEGTSEEDTIFFVDNIIRYNLTSLAKLTKKMMK---------- 164

PYL6 SYVVDVPAGNDKEETCSFADTIVRCNLQSLAKLAENTSKFS-------- 215
PYL10 SFVVDVPEGNTKEETCFFVEALIQCNLNSLADVTERLQAES-MEKKI-- 183

PYL8 SFVVDVPEGNTKDETCYFVEALIKCNLKSLADISERLAVQDTTESRV-- 188
PYL9 SFVVDVPQGNTKDETCYFVEALIRCNLKSLADVSERLASQDITQ----- 187
PYL7 SFVVDVPQGNTKDDTCYFVESLIKCNLKSLACVSERLAAQDITNSIATF 194

TaAffx.109881.1.S1_at SFVVDVXDGNTXDXTCXFVEAXXKXNXTSLXEXSXXLXVX--------- 168
TaAffx.11433.1.S1_at -------------------------------------------------

PYL3 SYIVDIPQGNTEEDTRMFVDTVVKSNLQNLAVISTASPT---------- 209
PYL2 SYTVDIPEGNTEEDTKMFVDTVVKLNLQKLGVAATSAPMHDDE------ 190
PYR1 SYVVDMPEGNSEDDTRMFADTVVKLNLQKLATVAEAMARNSGDGSGSQV 190
PYL1 SYVVDVPEGNSEEDTRLFADTVIRLNLQKLASITEAMNRNNNNNNSSQV 220

TaAffx.43193.1.S1_at SYVVDVPDGNSEEDTRLFADTVVRLNLQKLKSVAEA------------- 179

TaAffx.131393.1.S1_at ----------------
Ta.21082.1.S1_x_at ----------------

PYL4 ----------------
PYL5 ----------------

PYL12 ----------------
PYL11 ----------------
PYL13 ----------------

PYL6 ----------------
PYL10 ----------------

PYL8 ----------------
PYL9 ----------------
PYL7 CNASNGYREKNHTETNL 211

TaAffx.109881.1.S1_at ----------------
TaAffx.11433.1.S1_at ----------------

PYL3 ----------------
PYL2 ----------------
PYR1 T---------------- 191
PYL1 R---------------- 221

TaAffx.43193.1.S1_at ----------------
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Appendix 8: PCo1 from line.time analysis sorted by the genes contributing the most to the proportion of variance of this PCo. Only genes that
amount to 10% of the total f-score (PropF) for the PCo are shown. For each gene PropF is the proportion of the total f-score captured
by the gene and the higher ranked genes, it therefore represents the proportion of the PCo that would be captured if the given gene
was used as the cut-off point.

Gene PropF Molecular Function Biological Process

Ta.27765.3.S1_x_at 1.18×10−3 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
TaAffx.44105.1.S1_at 2.24×10−3 sequence-specific DNA binding transcription factor

activity(GO:0003700)
Ta.805.1.S1_at 3.27×10−3 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.27765.3.S1_at 4.26×10−3 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.2887.1.S1_x_at 5.22×10−3 structural constituent of ribosome(GO:0003735) ribosome biogenesis, translation(GO:0042254,

GO:0006412)
Ta.2887.1.S1_at 6.17×10−3 structural constituent of ribosome(GO:0003735) ribosome biogenesis, translation(GO:0042254,

GO:0006412)
Ta.1519.2.S1_x_at 7.09×10−3 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.1924.1.S1_x_at 7.99×10−3 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.2901.1.S1_at 8.89×10−3 protein transporter activity(GO:0008565)
Ta.1519.2.S1_at 9.78×10−3 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.28291.1.S1_at 1.06×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.3258.1.S1_at 1.15×10−2 transferase activity, transferring acyl groups other

than amino-acyl groups, protochlorophyllide

reductase activity, NADPH dehydrogenase

activity(GO:0016747, GO:0016630, GO:0003959)

chlorophyll biosynthetic process,

oxidation-reduction process(GO:0015995,

GO:0055114)

Ta.9829.1.A1_s_at 1.23×10−2

Continued on next page
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Ta.23479.1.S1_a_at 1.32×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.27117.2.S1_x_at 1.40×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.19112.1.S1_at 1.48×10−2 unfolded protein binding, ATP binding(GO:0051082,

GO:0005524)

protein folding(GO:0006457)

Ta.824.1.S1_a_at 1.56×10−2 structural constituent of ribosome, RNA

binding(GO:0003735, GO:0003723)

RNA processing, translation(GO:0006396,

GO:0006412)
Ta.1924.2.S1_x_at 1.64×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.14564.1.S1_at 1.72×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.28291.4.S1_x_at 1.80×10−2 structural constituent of ribosome, 5S rRNA

binding(GO:0003735, GO:0008097)

cell proliferation, ribosome biogenesis, leaf

morphogenesis, translation(GO:0008283,

GO:0042254, GO:0009965, GO:0006412)
Ta.27765.1.S1_x_at 1.88×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.14445.1.A1_x_at 1.95×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.3100.1.S1_x_at 2.03×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.1289.3.S1_at 2.10×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.27765.4.S1_x_at 2.17×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.28855.2.S1_at 2.25×10−2 structural constituent of ribosome, RNA

binding(GO:0003735, GO:0003723)

translation(GO:0006412)

Ta.25124.2.S1_x_at 2.32×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.10538.1.A1_at 2.39×10−2 peptidyl-prolyl cis-trans isomerase

activity(GO:0003755)

protein folding, protein transport(GO:0006457,

GO:0015031)
Ta.2739.4.S1_x_at 2.46×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.3789.3.A1_a_at 2.53×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.28703.1.S1_at 2.60×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.25124.2.S1_a_at 2.67×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)

Continued on next page
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Ta.14324.1.S1_x_at 2.74×10−2 structural constituent of ribosome(GO:0003735) ribosome biogenesis, translation(GO:0042254,

GO:0006412)
Ta.7195.2.S1_a_at 2.81×10−2 protein binding, ATP binding(GO:0005515,

GO:0005524)

protein metabolic process(GO:0019538)

TaAffx.30053.1.S1_at 2.88×10−2

Ta.28434.1.S1_x_at 2.94×10−2 structural constituent of ribosome(GO:0003735) ribosome biogenesis, translation(GO:0042254,

GO:0006412)
Ta.23823.1.S1_a_at 3.01×10−2 GTP binding(GO:0005525) barrier septum formation(GO:0000917)
Ta.28855.1.S1_at 3.08×10−2 structural constituent of ribosome, RNA

binding(GO:0003735, GO:0003723)

translation(GO:0006412)

Ta.24128.1.S1_x_at 3.14×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.8669.1.S1_at 3.21×10−2 sequence-specific DNA binding transcription factor

activity(GO:0003700)
TaAffx.132352.1.S1_at 3.28×10−2 D-dopachrome decarboxylase activity,

phenylpyruvate tautomerase activity(GO:0033981,

GO:0050178)

inflammatory response, response to other

organism(GO:0006954, GO:0051707)

Ta.30628.3.S1_x_at 3.34×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.10364.1.S1_s_at 3.41×10−2 sequence-specific DNA binding transcription factor

activity(GO:0003700)

response to gibberellin stimulus(GO:0009739)

Ta.1698.1.S1_at 3.47×10−2 structural constituent of ribosome(GO:0003735) ribosome biogenesis, translation(GO:0042254,

GO:0006412)
Ta.536.1.S1_at 3.54×10−2 RNA binding, translation initiation factor

activity(GO:0003723, GO:0003743)
Continued on next page
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Ta.28291.4.S1_at 3.60×10−2 structural constituent of ribosome, 5S rRNA

binding(GO:0003735, GO:0008097)

cell proliferation, ribosome biogenesis, leaf

morphogenesis, translation(GO:0008283,

GO:0042254, GO:0009965, GO:0006412)
Ta.28204.1.S1_x_at 3.67×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.1139.1.S1_x_at 3.73×10−2 chlorophyll binding(GO:0016168) nonphotochemical quenching, response to red light,

photosynthesis, light harvesting, response to blue

light, response to far red light(GO:0010196,

GO:0010114, GO:0009765, GO:0009637, GO:0010218)
Ta.2841.1.S1_s_at 3.80×10−2 translation initiation factor activity(GO:0003743)
Ta.3756.1.S1_x_at 3.86×10−2 peptidyl-prolyl cis-trans isomerase

activity(GO:0003755)

protein folding, defense response to

bacterium(GO:0006457, GO:0042742)
Ta.14324.3.S1_x_at 3.93×10−2 structural constituent of ribosome(GO:0003735) ribosome biogenesis, translation(GO:0042254,

GO:0006412)
Ta.13368.1.S1_x_at 3.99×10−2 sequence-specific DNA binding transcription factor

activity(GO:0003700)
Ta.9496.3.S1_at 4.05×10−2 sequence-specific DNA binding transcription factor

activity(GO:0003700)
Ta.28426.1.S1_a_at 4.12×10−2 structural constituent of ribosome(GO:0003735) ribosome biogenesis, translation(GO:0042254,

GO:0006412)
Ta.27785.1.S1_a_at 4.18×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.30803.2.S1_x_at 4.24×10−2 protein binding, structural constituent of

ribosome(GO:0005515, GO:0003735)

ribosome biogenesis, translation(GO:0042254,

GO:0006412)
Continued on next page
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Ta.22683.2.S1_at 4.31×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.28204.3.S1_at 4.37×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.22849.1.S1_x_at 4.43×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.30787.1.S1_at 4.49×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.24405.1.S1_at 4.56×10−2 protein binding, sequence-specific DNA binding

transcription factor activity(GO:0005515,

GO:0003700)

response to salt stress(GO:0009651)

Ta.15939.1.S1_at 4.62×10−2

Ta.3425.2.S1_x_at 4.68×10−2 sequence-specific DNA binding transcription factor

activity(GO:0003700)

response to salt stress(GO:0009651)

Ta.26908.1.A1_at 4.74×10−2 protein binding(GO:0005515) oxidation-reduction process(GO:0055114)
Ta.28338.1.S1_at 4.80×10−2 structural constituent of ribosome(GO:0003735) ribosome biogenesis, translation(GO:0042254,

GO:0006412)
Ta.2605.2.S1_at 4.86×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.1551.1.S1_s_at 4.93×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.21954.1.S1_at 4.99×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.3100.2.S1_x_at 5.05×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
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Appendix 9: PCo1 from line.time analysis, showing the function of annotated genes highlighted in red with the number of genes with that exact
term given in brackets. Only functions for genes that amount to 10% of the total f-score (PropF) for the PCo are shown. Visualisation
created using AmiGO.
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Appendix 10: PCo2 from line.time analysis sorted by the genes contributing the most to the proportion of variance of this PCo. Only genes that
amount to 10% of the total f-score (PropF) for the PCo are shown. For each gene PropF is the is the proportion of the total f-score
captured by the gene and the higher ranked genes, it therefore represents the proportion of the PCo that would be captured if the
given gene was used as the cut-off point.

Gene PropF Molecular Function Biological Process

Ta.8533.1.A1_s_at 2.30×10−3 oxidoreductase activity(GO:0016491)
Ta.11544.2.S1_a_at 4.36×10−3 receptor activity(GO:0004872)
Ta.2514.1.S1_a_at 6.41×10−3 protein binding, zinc ion binding(GO:0005515,

GO:0008270)

protein ubiquitination(GO:0016567)

Ta.20390.2.S1_a_at 8.46×10−3 protein binding, protein disulfide oxidoreductase

activity, electron carrier activity(GO:0005515,

GO:0015035, GO:0009055)

cellular iron ion homeostasis, cell redox homeostasis,

response to oxidative stress(GO:0006879,

GO:0045454, GO:0006979)
Ta.8183.2.S1_x_at 1.05×10−2

Ta.9941.1.S1_at 1.24×10−2 NADH dehydrogenase (ubiquinone)

activity(GO:0008137)

photorespiration(GO:0009853)

Ta.12503.1.S1_at 1.42×10−2 binding, catalytic activity(GO:0005488, GO:0003824)
TaAffx.53216.1.S1_x_at 1.59×10−2 antiporter activity, protein disulfide oxidoreductase

activity, electron carrier activity, glutathione

disulfide oxidoreductase activity(GO:0015297,

GO:0015035, GO:0009055, GO:0015038)

cell redox homeostasis, cation transport(GO:0045454,

GO:0006812)

Ta.4274.1.S1_at 1.74×10−2 sucrose synthase activity(GO:0016157) biosynthetic process, sucrose metabolic

process(GO:0009058, GO:0005985)
Continued on next page
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TaAffx.128827.1.S1_s_at 1.89×10−2

Ta.22094.1.S1_at 2.03×10−2 protein binding(GO:0005515) auxin homeostasis, pollen tube growth, root hair cell

tip growth, lateral root development, regulation of

cell growth, response to cadmium ion, defense

response to bacterium(GO:0010252, GO:0009860,

GO:0048768, GO:0048527, GO:0001558, GO:0046686,

GO:0042742)
Ta.26013.1.A1_a_at 2.17×10−2 binding(GO:0005488)
Ta.12503.1.S1_x_at 2.30×10−2 cofactor binding, oxidoreductase activity, acting on

the CH-OH group of donors, NAD or NADP as

acceptor(GO:0048037, GO:0016616)
Ta.11544.3.S1_x_at 2.43×10−2

Ta.30529.2.A1_x_at 2.56×10−2 nucleotide binding(GO:0000166)
Ta.8477.1.S1_at 2.68×10−2

TaAffx.25219.1.S1_at 2.81×10−2

TaAffx.32208.1.S1_s_at 2.93×10−2

TaAffx.38326.1.S1_at 3.05×10−2 protein binding(GO:0005515)
Ta.20390.2.S1_x_at 3.17×10−2 antiporter activity, protein disulfide oxidoreductase

activity, electron carrier activity, glutathione

disulfide oxidoreductase activity(GO:0015297,

GO:0015035, GO:0009055, GO:0015038)

cell redox homeostasis(GO:0045454)

Ta.14176.1.S1_at 3.30×10−2

Ta.5965.1.S1_at 3.42×10−2
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Ta.3242.1.A1_a_at 3.54×10−2

Ta.14176.1.S1_x_at 3.66×10−2

Ta.7398.1.A1_at 3.78×10−2

Ta.1282.4.S1_at 3.90×10−2 serine-type endopeptidase inhibitor activity, nutrient

reservoir activity, lipid binding(GO:0004867,

GO:0045735, GO:0008289)

lipid transport(GO:0006869)

TaAffx.110529.1.S1_at 4.01×10−2 protein binding(GO:0005515) protein phosphorylation(GO:0006468)
Ta.13966.3.S1_a_at 4.13×10−2 calcium-dependent phospholipid binding,

phospholipase inhibitor activity, calcium ion

binding(GO:0005544, GO:0004859, GO:0005509)

negative regulation of coagulation, response to salt

stress, response to heat, response to red or far red

light, response to cold, response to water

deprivation(GO:0050819, GO:0009651, GO:0009408,

GO:0009639, GO:0009409, GO:0009414)
Ta.22488.1.S1_at 4.24×10−2

Ta.7823.1.S1_at 4.35×10−2

Ta.22794.1.S1_at 4.46×10−2 protein binding, ubiquitin-protein ligase

activity(GO:0005515, GO:0004842)

ubiquitin-dependent protein catabolic process,

mitosis, response to cadmium ion, negative

regulation of DNA recombination, male

meiosis(GO:0006511, GO:0007067, GO:0046686,

GO:0045910, GO:0007140)
Ta.11544.1.S1_a_at 4.57×10−2

Ta.11544.2.S1_x_at 4.67×10−2 receptor activity(GO:0004872)
Ta.8528.1.A1_at 4.77×10−2

TaAffx.38601.1.A1_at 4.87×10−2
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TaAffx.94115.1.S1_at 4.97×10−2

Ta.28458.2.S1_at 5.07×10−2
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Appendix 11: PCo3 from line.time analysis sorted by the genes contributing the most to the proportion of variance of this PCo. Only genes that
amount to 10% of the total f-score (PropF) for the PCo are shown. For each gene PropF is the is the proportion of the total f-score
captured by the gene and the higher ranked genes, it therefore represents the proportion of the PCo that would be captured if the
given gene was used as the cut-off point.

Gene PropF Molecular Function Biological Process

Ta.21089.1.S1_at 2.12×10−3 cyclopropane-fatty-acyl-phospholipid synthase

activity, tocopherol O-methyltransferase

activity(GO:0008825, GO:0050342)

lipid biosynthetic process(GO:0008610)

Ta.21211.1.S1_at 4.08×10−3 iron ion binding, 4,4-dimethyl-9beta,19-

cyclopropylsterol-4alpha-methyl oxidase

activity(GO:0005506, GO:0080064)

sterol biosynthetic process(GO:0016126)

Ta.9000.1.S1_at 5.95×10−3 hydrolase activity, hydrolyzing O-glycosyl

compounds(GO:0004553)

carbohydrate metabolic process(GO:0005975)

Ta.22764.1.S1_x_at 7.80×10−3 sequence-specific DNA binding transcription factor

activity(GO:0003700)

response to cold, hyperosmotic salinity

response(GO:0009409, GO:0042538)
Ta.9259.1.S1_at 9.53×10−3 cysteine-type endopeptidase inhibitor activity,

serine-type endopeptidase inhibitor

activity(GO:0004869, GO:0004867)

DNA repair(GO:0006281)

TaAffx.132392.1.S1_at 1.12×10−2
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Ta.4760.1.S1_x_at 1.28×10−2 calmodulin binding, calcium-transporting ATPase

activity, ATP binding(GO:0005516, GO:0005388,

GO:0005524)

ATP biosynthetic process, response to

nematode(GO:0006754, GO:0009624)

Ta.3502.1.S1_at 1.43×10−2 binding(GO:0005488) mitochondrial transport(GO:0006839)
Ta.28432.1.S1_at 1.58×10−2 embryo development(GO:0009790)
TaAffx.84503.1.S1_at 1.72×10−2

Ta.23417.1.S1_at 1.85×10−2 binding(GO:0005488)
Ta.9194.2.A1_at 1.97×10−2 transmembrane transporter activity(GO:0022857)
Ta.21055.1.S1_at 2.09×10−2

Ta.6470.1.S1_x_at 2.21×10−2 trehalose-phosphatase activity,

alpha,alpha-trehalose-phosphate synthase

(UDP-forming) activity(GO:0004805, GO:0003825)

trehalose biosynthetic process(GO:0005992)

Ta.26178.1.A1_at 2.33×10−2 hydrolase activity(GO:0016787)
Ta.9497.1.S1_at 2.45×10−2 DNA binding(GO:0003677) regulation of transcription(GO:0045449)
Ta.4760.1.S1_at 2.57×10−2 calmodulin binding, calcium-transporting ATPase

activity, ATP binding(GO:0005516, GO:0005388,

GO:0005524)

ATP biosynthetic process, response to

nematode(GO:0006754, GO:0009624)

Ta.19289.1.S1_at 2.69×10−2

Ta.28513.1.S1_s_at 2.80×10−2 sequence-specific DNA binding transcription factor

activity, protein dimerization activity(GO:0003700,

GO:0046983)

leaf development, lateral root primordium

development, response to ethylene

stimulus(GO:0048366, GO:0010386, GO:0009723)
Continued on next page
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Ta.16038.1.S1_at 2.91×10−2 sequence-specific DNA binding transcription factor

activity(GO:0003700)

response to cold, response to water deprivation,

response to abscisic acid stimulus, hyperosmotic

salinity response(GO:0009409, GO:0009414,

GO:0009737, GO:0042538)
Ta.29434.1.A1_at 3.02×10−2 enzyme inhibitor activity, pectinesterase

activity(GO:0004857, GO:0030599)
Ta.4333.1.S1_at 3.13×10−2

Ta.10334.2.A1_at 3.24×10−2 D-alanine-D-alanine ligase activity, ATP

binding(GO:0008716, GO:0005524)

peptidoglycan biosynthetic process(GO:0009252)

Ta.435.1.S1_at 3.35×10−2 3-chloroallyl aldehyde dehydrogenase

activity(GO:0004028)

oxidation-reduction process(GO:0055114)

Ta.3677.1.S1_at 3.46×10−2 calcium-dependent cysteine-type endopeptidase

activity, sucrose transmembrane transporter

activity(GO:0004198, GO:0008515)

proteolysis, response to wounding(GO:0006508,

GO:0009611)

Ta.30607.1.A1_at 3.56×10−2 sequence-specific DNA binding, sequence-specific

DNA binding transcription factor

activity(GO:0043565, GO:0003700)

regulation of transcription, DNA-dependent,

transcription(GO:0006355, GO:0006350)

Ta.3366.1.S1_at 3.66×10−2 1-deoxy-D-xylulose-5-phosphate synthase activity,

oxidoreductase activity, acting on the aldehyde or

oxo group of donors, disulfide as

acceptor(GO:0008661, GO:0016624)

terpenoid biosynthetic process(GO:0016114)
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Ta.28335.1.S1_at 3.77×10−2 transporter activity(GO:0005215) transmembrane transport(GO:0055085)
Ta.6041.2.A1_x_at 3.87×10−2 mechanically-gated ion channel

activity(GO:0008381)

detection of mechanical stimulus(GO:0050982)

Ta.5457.1.S1_at 3.97×10−2 protein binding, zinc ion binding(GO:0005515,

GO:0008270)
TaAffx.122407.1.S1_at 4.07×10−2 sequence-specific DNA binding transcription factor

activity(GO:0003700)
Ta.4354.1.S1_s_at 4.17×10−2 endonuclease activity, nucleic acid

binding(GO:0004519, GO:0003676)

regulation of transcription,

DNA-dependent(GO:0006355)
TaAffx.79552.1.S1_x_at 4.26×10−2 protein binding, zinc ion binding(GO:0005515,

GO:0008270)

protein ubiquitination(GO:0016567)

TaAffx.118107.1.S1_at 4.36×10−2 D-alanine-D-alanine ligase activity(GO:0008716) peptidoglycan biosynthetic process(GO:0009252)
Ta.9194.1.S1_x_at 4.46×10−2 transmembrane transporter activity(GO:0022857)
Ta.1899.1.S1_x_at 4.55×10−2 cysteine-type endopeptidase activity(GO:0004197) proteolysis, induction of apoptosis(GO:0006508,

GO:0006917)
Ta.10389.3.A1_at 4.65×10−2 aldo-keto reductase activity, steroid dehydrogenase

activity(GO:0004033, GO:0016229)

oxidation-reduction process(GO:0055114)

Ta.6470.1.S1_at 4.74×10−2 trehalose-phosphatase activity,

alpha,alpha-trehalose-phosphate synthase

(UDP-forming) activity(GO:0004805, GO:0003825)

trehalose biosynthetic process(GO:0005992)

Ta.21064.2.S1_at 4.83×10−2

TaAffx.97935.1.S1_at 4.93×10−2 fatty-acyl-CoA synthase activity, 4-coumarate-CoA

ligase activity(GO:0004321, GO:0016207)
Continued on next page
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Ta.2462.1.S1_s_at 5.02×10−2 protein binding, ATP binding, ATP:ADP antiporter

activity(GO:0005515, GO:0005524, GO:0005471)
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Appendix 12: PCo1 from line.RWC analysis sorted by the genes contributing the most to the proportion of variance of this PCo. Only genes that
amount to 10% of the total f-score for the PCo are shown. For each gene PropF is the is the proportion of the total f-score captured
by the gene and the higher ranked genes, it therefore represents the proportion of the PCo that would be captured if the given gene
was used as the cut-off point.

Gene PropF Molecular Function Biological Process

Ta.3659.1.S1_a_at 1.00×10−3 GTP binding(GO:0005525) response to stress(GO:0006950)
Ta.29505.1.S1_x_at 1.91×10−3 microtubule binding, APG8-specific protease

activity, APG8 activating enzyme activity, Atg8

ligase activity(GO:0008017, GO:0019786,

GO:0019779, GO:0019776)

autophagy(GO:0006914)

Ta.824.1.S1_a_at 2.64×10−3 structural constituent of ribosome, RNA

binding(GO:0003735, GO:0003723)

RNA processing, translation(GO:0006396,

GO:0006412)
Ta.14042.1.S1_at 3.34×10−3

Ta.1252.1.S1_at 4.03×10−3 RNA binding(GO:0003723)
Ta.2958.1.A1_at 4.69×10−3

Ta.8999.1.A1_at 5.35×10−3 sequence-specific DNA binding transcription factor

activity(GO:0003700)

multicellular organismal development(GO:0007275)

Ta.5636.2.S1_x_at 6.01×10−3 hydrolase activity, acting on ester

bonds(GO:0016788)

lipid metabolic process(GO:0006629)
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Ta.28146.1.S1_s_at 6.64×10−3 binding(GO:0005488) fatty acid beta-oxidation, ADP transport, ATP

transport, indolebutyric acid metabolic process,

mitochondrial transport(GO:0006635, GO:0015866,

GO:0015867, GO:0080024, GO:0006839)
Ta.19158.2.S1_at 7.27×10−3 serine-type endopeptidase activity(GO:0004252) proteolysis(GO:0006508)
Ta.22212.1.S1_at 7.89×10−3

Ta.7238.1.S1_at 8.50×10−3 protein binding(GO:0005515) vernalization response, histone methylation,

regulation of flower development(GO:0010048,

GO:0016571, GO:0009909)
Ta.2427.1.S1_x_at 9.12×10−3 DNA-directed RNA polymerase activity, DNA

binding(GO:0003899, GO:0003677)

transcription(GO:0006350)

Ta.3262.1.S1_at 9.72×10−3 ATP phosphoribosyltransferase activity, signal

transducer activity, GTP binding(GO:0003879,

GO:0004871, GO:0005525)

G-protein coupled receptor protein signalling

pathway, small GTPase mediated signal

transduction, intracellular protein transport,

histidine biosynthetic process(GO:0007186,

GO:0007264, GO:0006886, GO:0000105)
Ta.24826.2.S1_x_at 1.03×10−2 structural constituent of ribosome(GO:0003735) ribosome biogenesis, translation(GO:0042254,

GO:0006412)
Ta.28308.1.S1_at 1.09×10−2 structural constituent of ribosome(GO:0003735) ribosome biogenesis, translation(GO:0042254,

GO:0006412)
Ta.20786.1.A1_at 1.15×10−2
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Ta.1335.1.S1_at 1.21×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.10191.1.S1_at 1.26×10−2 sequence-specific DNA binding transcription factor

activity(GO:0003700)
Ta.19112.1.S1_at 1.32×10−2 unfolded protein binding, ATP binding(GO:0051082,

GO:0005524)

protein folding(GO:0006457)

TaAffx.18904.1.S1_at 1.37×10−2 protein serine/threonine/tyrosine kinase activity,

ATP binding(GO:0004712, GO:0005524)

signal transduction, protein

phosphorylation(GO:0007165, GO:0006468)
Ta.2887.1.S1_at 1.42×10−2 structural constituent of ribosome(GO:0003735) ribosome biogenesis, translation(GO:0042254,

GO:0006412)
Ta.621.1.S1_x_at 1.48×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
TaAffx.92235.1.A1_at 1.53×10−2

Ta.10660.1.A1_at 1.58×10−2

TaAffx.40189.1.S1_at 1.63×10−2 sequence-specific DNA binding transcription factor

activity(GO:0003700)
Ta.8167.2.S1_at 1.68×10−2

Ta.24129.1.S1_at 1.73×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.22874.1.S1_x_at 1.79×10−2 structural constituent of ribosome(GO:0003735) ribosome biogenesis, translation(GO:0042254,

GO:0006412)
Ta.2958.2.S1_at 1.84×10−2

Ta.3141.1.S1_x_at 1.89×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.39.4.S1_x_at 1.94×10−2 protein binding, structural constituent of

ribosome(GO:0005515, GO:0003735)

translation(GO:0006412)
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Ta.3152.1.S1_at 1.99×10−2 hydrogen ion transporting ATP synthase activity,

rotational mechanism, hydrolase activity, acting on

acid anhydrides, catalyzing transmembrane

movement of substances, ATPase activity, ATP

binding(GO:0046933, GO:0016820, GO:0016887,

GO:0005524)

ATP synthesis coupled proton

transport(GO:0015986)

Ta.4599.1.S1_at 2.04×10−2 asparagine-tRNA ligase activity, nucleic acid

binding, ATP binding(GO:0004816, GO:0003676,

GO:0005524)

asparaginyl-tRNA aminoacylation(GO:0006421)

Ta.10344.1.A1_x_at 2.08×10−2

Ta.10818.1.S1_x_at 2.13×10−2 protein binding(GO:0005515) regulation of transcription from RNA polymerase II

promoter(GO:0006357)
Ta.2605.2.S1_x_at 2.18×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.28677.1.S1_x_at 2.23×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.28658.1.S1_at 2.28×10−2 APG8-specific protease activity, APG8 activating

enzyme activity, Atg8 ligase activity(GO:0019786,

GO:0019779, GO:0019776)

autophagy(GO:0006914)
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Ta.7657.1.S1_s_at 2.33×10−2 coenzyme binding, UDP-arabinose 4-epimerase

activity, dTDP-4-dehydrorhamnose reductase

activity, 3-beta-hydroxy-delta5-steroid

dehydrogenase activity(GO:0050662, GO:0050373,

GO:0008831, GO:0003854)

steroid biosynthetic process, nucleotide-sugar

metabolic process, extracellular polysaccharide

biosynthetic process, oxidation-reduction

process(GO:0006694, GO:0009225, GO:0045226,

GO:0055114)
Ta.24981.2.S1_a_at 2.38×10−2 structural constituent of ribosome, rRNA

binding(GO:0003735, GO:0019843)

translation(GO:0006412)

Ta.24128.1.S1_x_at 2.42×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.28341.2.S1_at 2.47×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.28493.1.S1_at 2.52×10−2 serine-type carboxypeptidase activity(GO:0004185) proteolysis(GO:0006508)
TaAffx.4262.1.A1_at 2.57×10−2

Ta.19269.1.S1_x_at 2.61×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.27765.3.S1_at 2.66×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.23247.1.S1_x_at 2.71×10−2 ubiquitin-protein ligase activity(GO:0004842) auxin metabolic process, cytokinin metabolic

process(GO:0009850, GO:0009690)
Ta.12395.1.S1_at 2.75×10−2 sequence-specific DNA binding transcription factor

activity(GO:0003700)
Ta.28673.1.S1_at 2.80×10−2 proton-transporting ATPase activity, rotational

mechanism, hydrogen ion transporting ATP

synthase activity, rotational mechanism(GO:0046961,

GO:0046933)

ATP synthesis coupled proton

transport(GO:0015986)
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Ta.13731.1.S1_at 2.84×10−2 protein binding, peptidyl-prolyl cis-trans isomerase

activity(GO:0005515, GO:0003755)

protein folding(GO:0006457)

Ta.10487.1.A1_at 2.89×10−2 heme binding(GO:0020037)
Ta.21954.1.S1_at 2.94×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.28712.1.S1_x_at 2.98×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.28712.1.S1_at 3.03×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.24248.2.S1_x_at 3.07×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.25124.2.S1_x_at 3.12×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.8792.2.A1_a_at 3.16×10−2 catalytic activity(GO:0003824)
Ta.6046.2.S1_a_at 3.21×10−2 sequence-specific DNA binding transcription factor

activity(GO:0003700)
Ta.21750.1.S1_x_at 3.25×10−2

Ta.7657.3.S1_a_at 3.29×10−2 coenzyme binding, UDP-arabinose 4-epimerase

activity(GO:0050662, GO:0050373)

plant-type cell wall biogenesis, nucleotide-sugar

metabolic process, arabinose biosynthetic

process(GO:0009832, GO:0009225, GO:0019567)
Ta.21021.2.S1_at 3.34×10−2 sequence-specific DNA binding transcription factor

activity(GO:0003700)

response to stress(GO:0006950)

Ta.2887.1.S1_x_at 3.38×10−2 structural constituent of ribosome(GO:0003735) ribosome biogenesis, translation(GO:0042254,

GO:0006412)
Ta.2299.1.S1_at 3.43×10−2 nucleic acid binding(GO:0003676) mRNA processing, RNA splicing(GO:0006397,

GO:0008380)
Ta.20465.1.S1_at 3.47×10−2 cysteine-type endopeptidase activity(GO:0004197) proteolysis, induction of apoptosis(GO:0006508,

GO:0006917)
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Ta.2576.1.S1_at 3.51×10−2 GTP binding, translation elongation factor

activity(GO:0005525, GO:0003746)
Ta.14519.1.S1_x_at 3.56×10−2 chromatin binding, Ran GTPase

binding(GO:0003682, GO:0008536)

response to UV-B(GO:0010224)

Ta.4419.1.S1_at 3.60×10−2 calcium-dependent cysteine-type endopeptidase

activity(GO:0004198)

proteolysis(GO:0006508)

TaAffx.33265.1.S1_at 3.64×10−2 sequence-specific DNA binding transcription factor

activity(GO:0003700)

defense response to bacterium(GO:0042742)

Ta.28699.1.S1_x_at 3.69×10−2 structural constituent of ribosome(GO:0003735) ribosome biogenesis, translation(GO:0042254,

GO:0006412)
Ta.28493.1.S1_x_at 3.73×10−2 serine-type carboxypeptidase activity(GO:0004185) proteolysis(GO:0006508)
Ta.22984.3.S1_at 3.77×10−2 nucleotide binding, nucleic acid

binding(GO:0000166, GO:0003676)

leaf development, leaf vascular tissue pattern

formation, endonucleolytic cleavage involved in

rRNA processing, sepal vascular tissue pattern

formation, root development, cotyledon vascular

tissue pattern formation, petal vascular tissue

pattern formation(GO:0048366, GO:0010305,

GO:0000478, GO:0080057, GO:0048364, GO:0010588,

GO:0080056)
Ta.13226.1.S1_at 3.82×10−2
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Ta.9436.1.S1_a_at 3.86×10−2 pyridoxal phosphate binding, transaminase

activity(GO:0030170, GO:0008483)

biosynthetic process(GO:0009058)

Ta.4676.3.S1_a_at 3.90×10−2 receptor activity(GO:0004872) response to sucrose stimulus, response to hormone

stimulus(GO:0009744, GO:0009725)
Ta.10740.1.S1_a_at 3.95×10−2 acyl-CoA thioesterase activity,

4-hydroxybenzoyl-CoA thioesterase

activity(GO:0016291, GO:0018739)
Ta.9829.1.A1_s_at 3.99×10−2

Ta.20677.1.S1_x_at 4.03×10−2 nucleotide binding, nucleic acid

binding(GO:0000166, GO:0003676)
Ta.2982.2.S1_x_at 4.07×10−2 protein binding, ferrous iron transmembrane

transporter activity, GTP binding, ATPase

activity(GO:0005515, GO:0015093, GO:0005525,

GO:0016887)

response to cadmium ion(GO:0046686)

Ta.28257.1.S1_x_at 4.11×10−2 structural constituent of ribosome(GO:0003735) ribosome biogenesis, translation(GO:0042254,

GO:0006412)
Ta.1184.1.A1_at 4.16×10−2

Ta.18890.1.S1_at 4.20×10−2 APG8 activating enzyme activity(GO:0019779)
Ta.6282.1.S1_at 4.24×10−2 protein transporter activity(GO:0008565) protein import into nucleus, docking(GO:0000059)
Ta.28365.1.S1_s_at 4.28×10−2 structural constituent of ribosome(GO:0003735) ribosome biogenesis, translational

elongation(GO:0042254, GO:0006414)
Continued on next page
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Ta.5262.1.S1_at 4.32×10−2 sequence-specific DNA binding transcription factor

activity(GO:0003700)
Ta.15265.1.S1_at 4.36×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.2153.1.S1_s_at 4.41×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.12514.1.A1_s_at 4.45×10−2 binding(GO:0005488)
Ta.2605.2.S1_at 4.49×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.11161.1.A1_at 4.53×10−2 sequence-specific DNA binding transcription factor

activity(GO:0003700)
Ta.19269.1.S1_at 4.57×10−2 structural constituent of ribosome(GO:0003735) translation(GO:0006412)
Ta.24299.1.S1_at 4.61×10−2 protein binding, structural constituent of

ribosome(GO:0005515, GO:0003735)

protein neddylation, aging, embryo development

ending in seed dormancy, protein ubiquitination

involved in ubiquitin-dependent protein catabolic

process, response to UV-B, response to salicylic acid

stimulus, response to auxin stimulus(GO:0045116,

GO:0007568, GO:0009793, GO:0042787, GO:0010224,

GO:0009751, GO:0009733)
Ta.28855.2.S1_at 4.65×10−2 structural constituent of ribosome, RNA

binding(GO:0003735, GO:0003723)

translation(GO:0006412)

Ta.14018.2.S1_a_at 4.69×10−2 unfolded protein binding(GO:0051082) protein folding(GO:0006457)
Ta.12406.1.S1_at 4.73×10−2 protein binding, ubiquitin-specific protease activity,

ubiquitin thiolesterase activity(GO:0005515,

GO:0004843, GO:0004221)

ubiquitin-dependent protein catabolic

process(GO:0006511)

Continued on next page
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Ta.9580.1.S1_at 4.78×10−2 uridine nucleosidase activity, purine nucleosidase

activity, inosine nucleosidase activity, adenosine

nucleosidase activity(GO:0045437, GO:0008477,

GO:0047724, GO:0047622)
Ta.13302.1.S1_at 4.82×10−2

TaAffx.98034.1.S1_at 4.86×10−2 translation initiation factor activity(GO:0003743)
Ta.1819.1.S1_at 4.90×10−2 hydrogen ion transmembrane transporter activity,

hydrolase activity, acting on acid anhydrides,

catalyzing transmembrane movement of substances,

ATP binding(GO:0015078, GO:0016820, GO:0005524)

ATP synthesis coupled proton

transport(GO:0015986)

Ta.4700.1.S1_at 4.94×10−2

Ta.10929.1.S1_at 4.98×10−2 protein binding, zinc ion binding(GO:0005515,

GO:0008270)

senescence, response to starvation,

autophagy(GO:0010149, GO:0042594, GO:0006914)
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Appendix 13: PCo2 from line.RWC analysis sorted by the genes contributing the most to the proportion of variance of this PCo. Only genes that
amount to 10% of the total f-score for the PCo are shown. For each gene PropF is the is the proportion of the total f-score captured
by the gene and the higher ranked genes, it therefore represents the proportion of the PCo that would be captured if the given gene
was used as the cut-off point.

Gene PropF Molecular Function Biological Process

TaAffx.3401.1.S1_at 2.40×10−3 protein binding, small GTPase regulator

activity(GO:0005515, GO:0005083)

vesicle-mediated transport, intracellular protein

transport(GO:0016192, GO:0006886)
Ta.8283.1.S1_at 4.56×10−3 sequence-specific DNA binding transcription factor

activity(GO:0003700)
Ta.8362.1.A1_at 6.68×10−3 protein tyrosine/serine/threonine phosphatase

activity, protein tyrosine phosphatase

activity(GO:0008138, GO:0004725)

protein dephosphorylation(GO:0006470)

Ta.3242.1.A1_a_at 8.75×10−3

TaAffx.133282.1.A1_at 1.07×10−2

Ta.28458.2.S1_at 1.27×10−2

TaAffx.38601.1.A1_at 1.46×10−2

TaAffx.120714.1.S1_at 1.65×10−2 sequence-specific DNA binding transcription factor

activity(GO:0003700)

embryo development ending in seed

dormancy(GO:0009793)
Ta.30902.1.S1_at 1.84×10−2

Ta.27678.1.S1_at 2.02×10−2 ATPase activity, ATP binding, DNA

binding(GO:0016887, GO:0005524, GO:0003677)

nuclear-transcribed mRNA catabolic process,

nonsense-mediated decay, transport(GO:0000184,

GO:0006810)
Continued on next page
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Ta.1282.4.S1_at 2.20×10−2 serine-type endopeptidase inhibitor activity, nutrient

reservoir activity, lipid binding(GO:0004867,

GO:0045735, GO:0008289)

lipid transport(GO:0006869)

Ta.12373.2.S1_x_at 2.38×10−2

Ta.30781.1.S1_at 2.57×10−2 protein binding, zinc ion binding(GO:0005515,

GO:0008270)
TaAffx.119948.1.A1_at 2.74×10−2

Ta.5553.1.S1_at 2.92×10−2 omega peptidase activity(GO:0008242) tetrahydrofolylpolyglutamate metabolic process,

glutamine metabolic process(GO:0046900,

GO:0006541)
TaAffx.36930.1.A1_at 3.10×10−2

Ta.26161.1.A1_at 3.27×10−2

Ta.25854.1.S1_at 3.45×10−2 amino acid transmembrane transporter

activity(GO:0015171)
Ta.21472.1.S1_at 3.62×10−2

TaAffx.42782.1.A1_at 3.79×10−2

Ta.22208.1.S1_at 3.96×10−2 phosphatidylinositol-4,5-bisphosphate

5-phosphatase activity,

phosphatidylinositol-4-phosphate phosphatase

activity(GO:0004439, GO:0043812)

root hair cell tip growth(GO:0048768)

Ta.3907.1.S1_at 4.13×10−2 potassium:hydrogen antiporter activity(GO:0015386) metabolic process(GO:0008152)
Ta.3242.1.A1_at 4.30×10−2

TaAffx.56933.1.S1_at 4.46×10−2

Ta.20175.1.A1_at 4.63×10−2

Continued on next page

335



TaAffx.57631.1.S1_at 4.79×10−2

TaAffx.97454.1.A1_at 4.95×10−2

Ta.12298.1.A1_at 5.12×10−2
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Appendix 14: PCo3 from line.RWC analysis sorted by the genes contributing the most to the proportion of variance of this PCo. Only genes that
amount to 10% of the total f-score for the PCo are shown. For each gene PropF is the is the proportion of the total f-score captured
by the gene and the higher ranked genes, it therefore represents the proportion of the PCo that would be captured if the given gene
was used as the cut-off point.

Gene PropF Molecular Function Biological Process

Ta.16038.1.S1_at 2.61×10−3 sequence-specific DNA binding transcription factor

activity(GO:0003700)

response to cold, response to water deprivation,

response to abscisic acid stimulus, hyperosmotic

salinity response(GO:0009409, GO:0009414,

GO:0009737, GO:0042538)
Ta.3452.3.S1_a_at 5.19×10−3 protein binding, zinc ion binding(GO:0005515,

GO:0008270)

protein ubiquitination(GO:0016567)

Ta.23045.2.S1_x_at 7.73×10−3 protein binding(GO:0005515) aging, response to fungus, response to

stress(GO:0007568, GO:0009620, GO:0006950)
Ta.27546.1.S1_at 9.98×10−3 iron ion binding, oxidoreductase

activity(GO:0005506, GO:0016491)

fatty acid biosynthetic process, oxidation-reduction

process(GO:0006633, GO:0055114)
Ta.25228.1.S1_at 1.21×10−2

Ta.29434.1.A1_at 1.41×10−2 enzyme inhibitor activity, pectinesterase

activity(GO:0004857, GO:0030599)
Ta.9830.1.A1_at 1.62×10−2 calcium ion binding, heme oxygenase (decyclizing)

activity, linoleic acid epoxygenase

activity(GO:0005509, GO:0004392, GO:0071614)

oxylipin biosynthetic process, defense

response(GO:0031408, GO:0006952)

Ta.26178.1.A1_at 1.81×10−2 hydrolase activity(GO:0016787)
Continued on next page

337



Ta.25997.1.A1_at 2.00×10−2 pectate lyase activity(GO:0030570)
TaAffx.128488.2.S1_s_at 2.18×10−2 sequence-specific DNA binding transcription factor

activity(GO:0003700)

response to cold, response to water deprivation,

response to abscisic acid stimulus, hyperosmotic

salinity response(GO:0009409, GO:0009414,

GO:0009737, GO:0042538)
Ta.23045.1.S1_x_at 2.37×10−2

Ta.21146.1.S1_at 2.55×10−2 protein kinase activity, choline kinase activity, ATP

binding(GO:0004672, GO:0004103, GO:0005524)

response to wounding, protein

phosphorylation(GO:0009611, GO:0006468)
Ta.6112.1.S1_at 2.73×10−2

TaAffx.97935.1.S1_at 2.91×10−2 fatty-acyl-CoA synthase activity, 4-coumarate-CoA

ligase activity(GO:0004321, GO:0016207)
Ta.3502.1.S1_at 3.09×10−2 binding(GO:0005488) mitochondrial transport(GO:0006839)
Ta.7069.1.S1_at 3.26×10−2 oxidoreductase activity, acting on a sulfur group of

donors, disulfide as acceptor(GO:0016671)

cell redox homeostasis(GO:0045454)

Ta.23388.1.S1_at 3.43×10−2 sequence-specific DNA binding transcription factor

activity, oxidoreductase activity, acting on single

donors with incorporation of molecular oxygen,

incorporation of two atoms of oxygen(GO:0003700,

GO:0016702)
TaAffx.114559.1.S1_x_at 3.60×10−2 hydrolase activity(GO:0016787)

Continued on next page
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Ta.4760.1.S1_x_at 3.77×10−2 calmodulin binding, calcium-transporting ATPase

activity, ATP binding(GO:0005516, GO:0005388,

GO:0005524)

ATP biosynthetic process, response to

nematode(GO:0006754, GO:0009624)

Ta.28513.1.S1_s_at 3.94×10−2 sequence-specific DNA binding transcription factor

activity, protein dimerization activity(GO:0003700,

GO:0046983)

leaf development, lateral root primordium

development, response to ethylene

stimulus(GO:0048366, GO:0010386, GO:0009723)
Ta.5457.1.S1_at 4.10×10−2 protein binding, zinc ion binding(GO:0005515,

GO:0008270)
Ta.7571.1.S1_at 4.26×10−2 ATP-dependent helicase activity, protein binding,

nucleic acid binding, ATP binding(GO:0008026,

GO:0005515, GO:0003676, GO:0005524)
Ta.28335.1.S1_at 4.41×10−2 transporter activity(GO:0005215) transmembrane transport(GO:0055085)
Ta.4494.1.S1_x_at 4.57×10−2 beta-amylase activity(GO:0016161) response to water deprivation, starch catabolic

process(GO:0009414, GO:0005983)
Ta.20707.2.S1_a_at 4.72×10−2 organic anion transmembrane transporter

activity(GO:0008514)
Ta.28432.1.S1_at 4.87×10−2 embryo development(GO:0009790)
TaAffx.114054.1.S1_at 5.01×10−2 RNA binding, ribonuclease activity(GO:0003723,

GO:0004540)

electron transport chain(GO:0022900)
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