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Abstract 

 

This thesis presents the development and evaluation of two applications for scaffolds in the field of 

liver tissue engineering. In the first study a poly (D,L lactic acid) (PDLLA) scaffold is used as a 

three-dimensional template for hepatocyte�hepatic stellate cell (HSC) co-culture. To enhance 

PDLLA ligand binding capacity scaffolds are surface modified using allylamine plasma deposition 

and treatment with NaOH. Primary adult rat hepatocytes and HSC are then seeded onto these 

scaffolds and cultured in static conditions. Scanning electron microscopy (SEM) is used to assess 

mono-culture and co-culture morphology whilst synthetic and cytochrome P450 function are 

measured using albumin and testosterone assays. 

 

The second study explores the potential for intrahepatic growth factor and extracellular matrix 

(ECM) delivery from a biodegradable polymer scaffold to promote liver growth and to enhance 

regeneration. The study is undertaken in rats. The scaffold design and implantation technique are 

first piloted in a short survival study. Hepatocyte growth factor (HGF), epidermal growth factor 

(EGF), fibroblast growth factor (FGF)1, FGF2 and liver derived ECM (L-ECM) are then loaded into 

poly(lactic-co-glycolic acid) (PLGA) + 5% poly(ethylene glycol) (PEG) scaffolds and implanted into 

normal and partially hepatectomised liver. Implant morphology is assessed by micro-CT 

reconstruction. Growth factor bioactivity and release are confirmed by in vitro profiling. Liver 

growth and volume redistribution are assessed by liver weight analysis. Parenchymal injury and 

function are quantified by measuring serum aspartate aminotransferase (AST) & bilirubin. 5-

bromodeoxyuridine (BrdU) inclusion & MIB-5 immunohistochemistry (IHC) are used to identify 

hepatocyte and non-parenchymal cell proliferation. Liver-scaffold interaction is characterised by 

H&E and Masson�s trichrome staining. Non-parenchymal cell migration is assessed by ED-1 and 

desmin IHC. All histology is then subjected to image analysis.  
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Chapter 1 Introduction 

 

1.1 Liver Surgery 

 

Liver surgery has evolved within one surgical lifetime into a repertoire of operations that 

can remove or replace nearly any amount of liver tissue 
1
. Liver resection and 

transplantation are first line treatments for a range of liver diseases, and in the case of 

malignant disease and liver failure, offer the only chance of a cure 
2-4

.   

 

1.1.1 Surgery for Liver Cancer 

 

Primary and secondary liver cancers are common and their incidence and mortality rates 

in the UK are rising 
5, 6

 (figure 1.1, top left). Hepatocellular carcinoma (HCC) is 

responsible for approximately 1,500 deaths per year in the U.K. 
7
. Without treatment 20% 

of patients will survive for 3 years 
7
, with liver transplantation survival is improved to 

65% at 5 years 
3, 8

. Liver resection for HCC offers similar short term survival to 

transplantation, but local recurrence rates at five years are much higher (50-60%) 
3
. 

Currently therefore liver transplantation offers the best chance of cure for HCC, but a 

chronic shortage of donor tissue means that this is not available for every patient 
7
(figure 

1.1, bottom left).  

 

The liver is also a common repository for tumour cells, second only to lymph nodes as a 

site for metastatic disease 
9
. Frequently liver metastases are associated with systemic 

malignancy, however as the liver is the first major organ reached by venous blood 
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draining from the intestinal tract; the liver may be the only site of metastatic disease from 

the large intestine 
2
. Without treatment the 5 year survival for patients with colorectal 

liver metastases is less than 5% 
10

. This improves to 37% with resection 
2, 11

. It is 

estimated that 5-10 % of all patients with colorectal liver metastases are eligible for 

resection 
9
, which equates to over one thousand patients per year in the UK 

12
. The extent 

of resection remains limited by the need to retain an adequate post-resection residual liver 

volume, a failure to do so resulting in higher rates of liver dysfunction and other 

complications 
13,

 
14

 (figure 1.1, top right). Developing strategies to boost functional liver 

capacity or enhance regeneration may improve outcome in patients undergoing radical 

resection. 

 

1.1.2 Surgery for Liver Failure 

 

Cirrhosis and liver failure are the leading causes of death from non-malignant digestive 

diseases in the U.K. 
12

 and their incidence is rising 
15

. The only established treatment for 

liver failure is transplantation 
16

. Without it liver failure has a mortality rate of 60-80% 
17

, 

but with transplantation the one year survival is over 90% and the predicted ten year 

survival is over 70% 
4
. Unfortunately with increasing demand for donor tissue one third 

of patients die while waiting for a liver transplant 
16

 (figure 1.1, bottom right). If it were 

possible to provide extracorporeal liver support to these patients as their livers 

regenerated or as a bridge to transplantation it may be possible to further improve 

survival in this challenging group.  
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1.1.3 The Future of Liver Surgery 

 

With the incidence and mortality rates of liver disease in the UK rising, a new set of 

challenges exist for clinicians and scientists. Further developments in surgical technology 

and local and systemic treatments for malignant and non-malignant disease will continue 

to improve patient outcome, but to address the major challenges of donor shortfall and 

functional liver support new therapeutic pathways must be explored. The following 

sections will explore how regenerative medicine may offer the solution.  

 



 

 

 

 

Figure 1.1 A snapshot of the burden of liver disease in the U.K. Trends in age-standardised incidence rates 

from 1971 to 2001 in England and Wales of all malignant cancers of the liver, gallbladder and biliary tract, by 

sex (3 year rolling averages). Bars are standard errors (top left)  6. Mean (SD) relative residual liver volume 

(RLV %) in patients with no, mild, moderate, and severe hepatic dysfunction following liver resection (one 

way between group ANOVA; **p = 0.005,***p,0.0001). Reference line indicates 33% residual liver volume 

(top right)  13. Deceased donor liver programme in the UK, 1 April 1997 - 31 March 2007 Number of donors, 

transplants and patients on the active transplant list at 31 March 2007 (bottom left) 18. Annual death rates on 

the waiting list for liver transplantation between 1997 and 2001 in UNOS categories 1 (acute/fulminant liver 

failure), 2a (decompensated chronic liver disease urgently requiring transplant), and 2b (decompensated 

chronic liver disease requiring transplant less urgently) (bottom right) 16. 
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1.2 Regenerative Medicine 

 

Regenerative medicine is a modern scientific discipline that seeks to capture the intrinsic 

power of biology to replace, regenerate or repair diseased or damaged tissue 
19

. Tissue 

growth and regeneration are complex processes that vary between tissues, with age and in 

the presence of disease. Designing tailor-made regenerative medicine solutions requires a 

clear understanding of the target tissue�s ultrastructure and cell biology as well as the 

pathophysiology of any underlying disease process.  

 

As a result of inter-tissue and inter-disease variation, it is not possible to present a single 

solution to tissue design and assembly. Instead this chapter focuses on the core challenges 

of therapeutic regenerative medicine (cell sourcing, signal delivery and disease resolution) 

and presents a range of successful strategies. 

 

1.2.1 Cell Sourcing 

 

The ability to source cells and modulate tissue growth is a central concept in regenerative 

medicine. In order to increase the functional capacity of a target tissue, the cell population 

must be restored. This can be achieved either by stimulating growth or regeneration in the 

native cell population or by delivery of regeneration-competent cells from an exogenous 

source (autologous, allogeneic or xenogeneic, differentiated or undifferentiated stem or 

progenitor cells) 
20

.  
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Stimulating a tissue to grow or regenerate may be achievable if appropriate signals are 

delivered to the native cell population. However this approach is limited by the native 

tissue�s capacity for self-renewal. Exogenous cell delivery also has a range of advantages 

and disadvantages. Autologous cell implantation is non-immunogenic but provides 

relatively low yields and is usually associated with some donor site morbidity. Allogeneic 

and xenogeneic cells are readily available but unpopular due to concerns over 

immunogenicity and risk of infection. Stem and progenitor cell delivery therefore offers the 

greatest potential as a tissue-specific, renewable cell source for tissue engineering but 

remains in the early stages of development 
20

. 

 

1.2.2 Signal Delivery 

 

In order to stimulate a tissue to regenerate or to assemble de novo appropriate cell signals 

must also be delivered. In general four classes of signal should be considered when 

designing a tissue engineering application: growth factor and cytokine signals, extracellular 

matrix (ECM) signals, intercellular interactions and physical signals (spatial, mechanical, 

electrical and microenvironment) 
21, 22

. A detailed understanding of the target tissue�s 

ultrastructure and cell biology is therefore a prerequisite for effective design. 

 

A range of natural or synthetic constructs, known as �scaffolds�, can be used for signal 

delivery 
23

. The role of these scaffolds varies between applications. They may be used 

simply as a supportive framework for in vitro or in vivo tissue assembly or as a more 

complex signal delivery system.  
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1.2.3 Cytokine and Growth Factor Delivery  

 

Cytokines and growth factors play a key role in regulating tissue growth and regeneration. 

These molecules, which are released locally and systemically, bind to cell-surface receptors 

that trigger intracellular signalling cascades 
21

. Their actions vary between tissues, at 

different stages of development, at different concentrations and can also be influenced by 

the presence of other growth factors.  

 

A range of controlled release systems have been utilised for growth factor delivery. These 

systems are capable of delivering molecules at different rates, for different durations in 

different tissues. For example, hydrogel based systems provide a rapid but short release 

profile 
21, 24

, whilst protein encapsulation into solid polymers by double emulsion 

techniques or supercritical processing may provide a more sustained release profile 
24, 25

. 

Alternatively growth factors and other bioactive molecules may be bound to the surface of 

polymers and are only released upon cell mediated degradation of the scaffold 
24

. The 

challenge in developing a tissue specific strategy is to determine the regenerative cycle of 

that tissue and match the growth factor (s) and release technology accordingly. 

 

1.2.4 Extracellular Matrix Signal Delivery 

 

The ECM is an insoluble network of proteins and carbohydrates that provides architectural 

and structural integrity to a tissue and enables phenotypic expression, migration and 

regeneration of its cell population 
21, 26, 27

. The basic structure of the ECM is defined by a 

collagen scaffold. Adhesive glycoproteins (laminin, tenascin) and proteoglycans adhere to 
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this scaffold and interact with the cells in or adjacent to it via matrix receptors (integrins) 

26
. This integrin-mediated cell-matrix binding, stimulates intracellular signalling cascades 

that can result in functional changes within the cell as well as aiding cell spreading and 

migration 
21

.  Deposited throughout the ECM are also cytokines and growth factors, matrix 

metalloproteases (MMPs), which promote ECM remodelling 
27

, and collagen breakdown 

products that exert their own chemoattractant forces 
28

. 

 

ECM signals may be delivered to the target tissue in a number of ways. In vitro, ECM 

molecules or ECM-like molecules may be delivered by coating culture surfaces with ECM 

products or incorporating ECM proteins into gels and scaffolds 
24, 29, 30

. In vivo whole 

sheets of decellularised animal derived ECM may be implanted to aid wound repair and 

tissue regeneration. This approach has been used very effectively to induce regeneration 

without immunogenic or inflammatory reaction 
31

. ECM may also be delivered directly by 

ECM producing cells incorporated into a cell-based tissue engineering system. For example 

hepatic stellate cells (HSC) release ECM and improve hepatocyte viability and function in 

vitro 
32-34

. 

 

1.2.5 Intercellular Signalling 

 

Homotypic and heterotypic intercellular interactions are important in many cell types for 

normal expression of phenotype and retention of regenerative capacity. Intercellular 

interactions occur either through direct contact (tight junctions, gap junctions, cadherins 

and desmosomes) or via secreted molecules (ECM components, cytokines and growth 

factors) 
21

. In order to assemble a tissue de novo or stimulate regeneration the tissue 
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engineer must re-establish these signalling pathways. Soluble factors and ECM components 

may be delivered as described previously, but to restore normal intercellular interactions, 

appropriate cells must be sourced and delivered into a micro-environment optimised for 

that cell population. 

 

1.2.6 Microenvironment & Physical Signalling 

 

Restoration of normal microenvironment and delivery of appropriate physical signals are 

essential for functional tissue assembly. In vitro, cells exposed to the correct oxygen partial 

pressure retain phenotype and have enhanced migration, proliferation and function 
35-37

. 

Optimisation of cell culture microenvironment may be achieved within a closed system 

bioreactor, where different physical parameters can be regulated. Once conditions have 

been standardised for specific cell and tissue types, the potential to scale-up the system 

becomes more realistic. In vivo microenvironment is also important. Implantation sites 

must have adequate blood supply and be free from underlying disease. Vascular access, 

implantation site and method of delivery must therefore be considered in the development 

process. 

 

Spatial signals influence phenotype and function. Growing cells in three-dimensions 

increases cell-cell contact, mimics in vivo architecture and encourages the formation of 

differentiated ultrastructure 
21, 33, 38

. If a scaffold is to support a cell population it should 

deliver the appropriate spatial cues either by providing a temporary three-dimensional 

support (as with many biodegradable porous constructs) or by directly mimicking the 
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complex architecture of the target tissue ECM, through a range of novel manufacturing 

techniques
38-40

.  

 

Electrical and mechanical signals have also been implicated in tissue morphogenesis and 

regeneration. Electrical signalling enhances nerve and muscle regeneration 
22, 41, 42

 and 

mechanical forces have been shown to influence cell orientation, migration and ECM 

deposition in dermal tissue 
40, 43

.  

 

1.2.7 Resolution of Underlying Disease 

 

The aim of regenerative medicine is to replace, regenerate or repair diseased or damaged 

tissue 
19

. The resolution of underlying disease is therefore central to the success of any 

regenerative medicine strategy. The microenvironment of diseased tissue may not be 

supportive of an implanted cell population and the underlying disease process may also 

affect the implanted tissue. It is desirable to ensure adequate treatment or excision of the 

diseased tissue before implantation or to consider implantation at an alternative site.  

 

The tissue engineering system may also be used to treat underlying disease.  Implantation 

of a cell based or controlled release system may positively influence disease resolution 

through the modulation of inflammation and the restoration of functional tissue rather than 

non-functional fibrous material. This has been achieved in a range of tissues through the 

delivery of ECM signals that encourage regeneration without scarring 
44

.  
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1.3 The Ultrastructure & Cell Biology of the Liver 

 

The liver has a unique architecture. In figure 1.2 it is viewed at a microscopic level, 

demonstrating the relationship between its ultrastructural building blocks: the portal tracts 

(comprising branches of the hepatic artery, portal vein & bile ducts); the lobules (the 

structural unit of the liver, comprising a prism of parenchymal plates which surround the 

sinusoidal channels that run from the peripheral portal tracts to a central vein), and its 

individual functional components (cells and the ECM). 

 

 

Figure 1.2 Schematic of liver lobule 45 
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1.3.1 The Hepatocyte 

 

Hepatocytes make up 87% of the total liver volume and are its key functional component. 

In vivo, hepatocytes are attached in parallel plates that run from a portal tract to a central 

vein, with a sinusoid on one side and a bile canaliculus on the other (Figure 1.2). Along the 

length of the sinusoid hepatocytes are exposed to different oxygen partial pressures and 

metabolic conditions. This gradient directly influences hepatocyte phenotype and results in 

hepatocyte sub-populations with different functional profiles 
46

. In vivo normal hepatocyte 

function requires a stable microenvironment and normal ultrastructure. Disruption of these 

by toxic injury or fibrogenesis causes hepatocyte dysfunction 
47

. Likewise, in vitro the 

hepatocyte is also sensitive to changes in its microenvironment. Hepatocytes cultured in 

non-enhanced culture conditions rapidly loose function (de-differentiation) and die. When 

signals and microenvironment mimicking in vivo conditions are restored, so too are 

hepatocyte viability and function 
48

. 

 

1.3.2 Sinusoidal Endothelial Cells  

 

Sinusoidal endothelial cells make up 2.5% of the total liver volume. In vivo they act as a 

filtration system for fluid passing from the sinusoidal lumen into the space of Disse and 

regulate uptake of lipid, cholesterol and vitamin A 
49

. In vitro isolated endothelial cells  

differentiate in response to ECM exposure and when co-cultured with hepatocytes form 

heterotypic aggregates with differentiated hepatic ultrastructure and enhanced hepatocyte 

functionality 
50, 51

. 
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1.3.3 Kupffer Cells 

 

Kupffer cells make up 2% of the total liver volume, and are found anchored to or inserted 

into the endothelial lining. They are the primary immune cell of the liver and are 

responsible for clearing damaged and foreign material from the blood (old cells, cellular 

debris, parasites, bacteria, viruses and tumour cells). When activated they secrete a range of 

cytokines (TNFĮ, IL-1, IL-6) and other pro-inflammatory mediators (prostaglandins, 

peroxidases, NO), regulated by autocrine and negative feedback loops. Their activation 

occurs in response to a range of stimuli (resection, ischaemia, toxins), and is central to the 

liver�s response to injury 
49

. Of particular interest is how Kupffer cells as part of the innate 

immune response prime hepatocytes for regeneration. 

 

1.3.4 Pit Cells 

 

Pit cells make up <1% of total liver volume and are located in or on the endothelial lining. 

They are morphologically similar to large granular lymphocytes and possess a MHC class 

II unrestricted killer cell activity against tumour cells and virus infected cells 
49

. 

 

1.3.5 Hepatic Stellate Cells  

 

HSC (also known as Ito cells, vitamin A storage cells, lipocytes or fat-storage cells) make 

up 1.4% of the total liver volume 
49

. In the normal liver they have a myofibroblast-like 

morphology with an additional fat storage component, and are found in the space of Disse, 
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separated from the sinusoidal lumen by the endothelial filter. HSCs communicate with the 

sinusoidal endothelium, ECM and parenchyma via long cytoplasmic processes 
52, 53

. 

 

The HSC exhibits two phenotypes: a quiescent vitamin A storage type and an activated 

type. The quiescent HSC is characterised by the presence of cytoplasmic lipid droplets. 

Upon activation the cell looses these lipid droplets and transforms into a pure 

myofibroblast-like cell, expressing Į-smooth muscle actin and desmin 
47

. 

 

The HSC has a number of important functions. The quiescent HSC stores and regulates 

vitamin A levels and can induce contraction and dilation of the sinusoidal lumen in 

response to a range of stimuli (prostaglandins, endothelin, thromboxane). The activated 

HSC plays an important role in liver regeneration and ECM remodelling in health and 

disease by the production of ECM components (collagen types I, III, IV & VI, fibronectin, 

laminin, proteoglycans and MMPs), growth factors (HGF, TGFĮ, TGFȕ) and cytokines. 

The role of the HSC in ECM remodelling and fibrogenesis has made it a potential target for 

modulation of fibrogenesis in specific disease states 
47

. 

 

In vitro the phenotype of the HSC is influenced by the culture micro-environment. When 

isolated HSC are cultured on tissue culture plastic they become activated, proliferate and 

secrete ECM and growth factors, similar to the HSC seen in vivo following liver injury. 

When HSC are cultured in an ECM rich environment, they revert to their quiescent 

phenotype, again demonstrating the importance of the ECM in regulating liver cell function 

47, 49
. How the HSC impacts on hepatocyte viability and function in culture will be 

discussed in detail in chapter 2. 
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1.3.6 The Extracellular Matrix  

 

The liver ECM makes up 3% of the total liver volume. The main sites of ECM within the 

liver are the external capsule (Glisson�s capsule), the portal tracts, the sinusoidal walls and 

the central veins. Its major constituents are collagens (types I, III, IV, V and other 

isoforms), glycoproteins (laminin, fibronectin, tenascin, nidogen amongst others) and 

proteoglycans (dermatan, chondroitin sulphate, hyaluronic acid, byglycan and decorin). In 

addition stored within this network are a cocktail of growth factors (HGF, EGF TGFȕ), 

hormones (insulin), cytokines and enzymes (matrix metalloproteases (MMPs)), which can 

be liberated as the ECM is broken down 
54

. 

 

The liver ECM has a dual function; it provides mechanical coherence and resistance, and 

regulates cell proliferation, migration, differentiation and gene expression by providing a 

network that allows the continuous exchange of signals between cells. In the early phase of 

regeneration ECM remodelling provides the first burst of growth factor release 
54

. 

Abnormal ECM deposition (fibrosis) is a major cause of chronic hepatic dysfunction, 

leading to reduced endothelial porosity (leading to impaired sinusoidal exchange), changes 

in HSC phenotype (quiescence to activation) and impaired hepatocyte function 
54

. 
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1.4 Liver Regeneration 

 

Liver regeneration is an orchestrated response induced by specific external stimuli and 

involving sequential changes in gene expression, growth factor production and 

morphologic structure 
55

. The capacity of the liver to heal is unique. Because of the organ�s 

susceptibility to major cellular damage and the impact this would have on the organism�s 

survival, numerous pathways have evolved to ensure that restoration of hepatic functional 

mass is achieved, even if components of these pathways are lost 
56

. Throughout 

regeneration the liver tissue retains its functional capacity, in contrast to other organ 

systems where function is lost or impaired whilst regeneration takes place. 

 

1.4.1 Animal Models 

 

The use of animal models has been central to our understanding the pathways that regulate 

liver regeneration. To provoke a regenerative response, two strategies can be employed: 

surgical resection or toxic injury. Surgical resection by partial hepatectomy (PH) enables 

the study of regeneration in normal liver 
57

. Toxic injury models are more complex, 

because by causing generalised hepatic injury, the resultant regenerative response requires 

both inflammation and proliferation. This review will focus on the pathways elucidated 

from the PH model. 
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1.4.2 Partial Hepatectomy 

 

The model of PH devised by Higgins and Anderson in 1931 enables the study of 

regeneration in normal liver 
57

. As the liver lobes in the rat are separate and have long 

vascular hila it is possible to resect lobes without compromising vascular inflow to the 

residual liver tissue.  

 

Following resection of the left and middle lobes (70% hepatectomy) the residual liver will 

undergo compensatory hyperplasia and hypertrophy until the original liver mass has been 

restored at which point regeneration halts. The end result being a restoration of liver mass, 

but not regrowth of the resected lobes.  

 

 

 

 

Figure 1.3 Normal mouse livers before and after 70% partial hepatectomy and the regenerated remnant 6 days 

later 58 
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1.4.3 The Regenerative Cycle 

 

After 70% PH in the rat, most liver mass is restored by day 3 and regeneration is complete 

by day 7 
57

. This repopulation is achieved by proliferation of the hepatocyte population 
59

. 

This occurs as a wave of proliferation beginning in the peri-portal zones spreading towards 

each central vein 
60

. Hepatocyte DNA synthesis begins to increase 12 hours after PH and 

peaks at 24 hours. The non-parenchymal cell response is slower, with DNA synthesis 

peaking at 48 hours. Regeneration will be complete within 1.6 cycles of replication 
61, 62

. 

Whilst this process is associated with modifications in cell-cell and cell-matrix interactions, 

full restoration of normal architecture will not occur until liver mass has been restored, 

thereby optimising the return to normal function 
56, 62

.  

 

In other liver injury models, different cell populations (the oval cell, haematopoietic stem 

cells) differentiate and proliferate to repopulate the liver; however their contribution is not 

significant following PH 
63

. 

 

1.4.4 Hepatocyte Priming & the Stimulus for Regeneration 

 

The normal hepatocyte resides in its quiescent G0 state, and does not enter G1 of the cell 

cycle until it has been has been �primed� (the process that sensitizes a cell to growth 

factors, leading to DNA replication and proliferation) (figure 1.4) 
64

. As a result in healthy 

liver less than 1% of all hepatocytes are in mitosis at any one time 
65

.  
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Figure 1.4 The multi-step model of liver regeneration proposed by Fausto, in which liver regeneration is 

divided into 2 phases, priming and cell cycle progression 64 

 

Hepatocyte priming occurs in response to a range signals initiated simultaneously within 

the liver. Following PH hepatic blood flow is altered 
66, 67

and the innate immune system is 

triggered 
59, 68

. The non-parenchymal cell population becomes activated, releasing 

cytokines and growth factors that causing the hepatocyte population to move from 

quiescence into the S-phase of the cell cycle.  

 

1.4.5 Changes in Hepatic Blood Flow  

 

Nitric Oxide (NO) is a free radical that influences a wide range of physiological processes 

throughout the body. It is synthesised from L-arginine by nitric oxide synthase (NOS) and 

mediates many but not all of its physiological functions via the activation of soluble 

guanylate cyclase and the resultant increase in cGMP levels 
69

. In the normal liver, NO is 

present at only low levels where it is thought to regulate hepatic blood flow 
70

. Following 

PH levels of NO increase 
71, 72

 This increase in NO production has been shown to exert a 

protective affect on the liver, by inhibiting apoptosis and other cytokine mediated 

responses
70

. 
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The mechanism of NO release following PH relates to changes in hepatic blood flow. After 

PH, all the blood from the portal circulation passes through the much smaller residual liver 

tissue. It has been shown that this increase in sinusoidal blood flow causes an increase in 

endothelial shear stress, and that this shear stress is associated with NO release 
73

. This 

relative increase in portal vein blood flow through the residual liver reduces oxygen partial 

pressure in the sinusoidal blood and may cause hypoxic changes within the liver 

parenchyma. In addition it increases the availability of hepatotrophic stimuli passing 

though the liver (EGF, insulin, lipopolysaccharide (LPS) and nutrients) 
74

. Together these 

changes act as the trigger for regeneration after PH 
74, 75

. 

 

1.4.6 The Innate Immune Response  

 

Part of the liver�s unique regenerative capacity stems from its ability to modify the host 

immune response by releasing immunomodulatory molecules that are active in restoring 

the structural and functional integrity of the liver 
68

. The innate immune system, which 

exists to provide a rapid response to a wide spectrum of pathogenic signals, becomes 

activated after PH. It does so in a number of ways. 

 

Levels of LPS, a key activator of the innate immune system, are increased following PH. In 

its absence the regenerative cycle is impaired 
76, 77

. Complement activation has also been 

shown to influence liver regeneration after PH. C5a enhances the LPS dependent release of 

(interleukin) IL-6 from Kupffer cells and inhibition of C3a and C5a significantly impairs 

liver regeneration after PH 
78, 79

. Other components of the innate immune system are also 
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upregulated during liver regeneration after PH. These include acute phase proteins 
79

 and 

intracellular adhesion molecules (ICAMs) 
80

. 

 

1.4.7 Cytokines 

 

TNFĮ and IL-6 are responsible for �priming� hepatocytes for proliferation 
64

, and it appears 

that it is the interplay between these cytokines and growth factors that regulates liver 

regeneration 
59

. 

 

Following PH Kupffer cells release TNFĮ 
81

. This release occurs in part due to activation of 

the innate immune response 
64

. TNFĮ binds to TNF receptors on both Kupffer cells and 

hepatocytes 
82

. In both cell types this leads to activation of nuclear factor ɤ B (NFɤB). In 

the Kupffer cell causing an upregulation of IL-6 
55, 83

, and in the hepatocyte, �priming� the 

cell to make it more receptive to the effects of growth factors 
84

. TNFĮ is itself not directly 

mitogenic to hepatocytes; however its inhibition does slow the regenerative response 
85

. 

 

IL-6 released by Kupffer cells binds to its receptor (IL-6R), which activates MAP kinase 

and STAT3 signalling cascades 
86

. These signalling pathways activate the acute phase 

response, inhibit cell death and prime for regeneration 
59

. At normal physiological 

concentrations IL-6 is not directly mitogenic to hepatocytes, however its over-expression is 

associated with hepatic hyperplasia 
87, 88

. 
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1.4.8 Growth Factor Release & Action 

 

Once the hepatocyte has been primed, it becomes more sensitive to the effects of growth 

factors. A number of growth factors have been implicated in liver regeneration; of these 

hepatocyte growth factor (HGF) is the most potent hepatic mitogen. 

 

1.4.9 Hepatocyte Growth Factor  

 

HGF, also known as scatter factor, is a heterodimeric molecule made up of a 69 kDa Į-

chain and a 34 kDa ȕ-chain. It is synthesised and secreted as biologically inactive single-

chained precursor (pro-HGF), which is activated by serine proteases (urokinase-type 

plasminogen activator, HGF activator (HGFA) and plasminogen) 
89

. HGF exerts its effect 

by binding to its receptor c-Met. The c-Met receptor is composed of a 50 kDa Į-chain and a 

145 kDa ȕ-chain. The Į-chain is extracellular whilst the ȕ-chain is a trans-membrane 

subunit with an intra-cellular tyrosine kinase domain 
90

. Binding of HGF to c-Met results in 

phosphorylation of the tyrosine residue, which in turn recruits a range of intra-cellular 

signalling pathways (Gab-1, phospholipase c-Ȗ, STAT-3) 
89

. In addition to its mitogenic 

effect, HGF / c-Met coupling results in a range of responses in a variety of cells, including, 

motogenic, morphogenic, neurite extension and anti-apoptotic effects 
89

. 

 

In the normal liver, HGF is synthesised by non-parenchymal cells (HSCs and endothelial 

cells) 
91

 and deposited in the ECM 
92, 93

. Following PH, HGF levels increase rapidly and 

remain elevated until the functional liver cell population has been restored. The initial 

increase in HGF levels occurs as a result of ECM remodelling, which liberates the pro-
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HGF stored within it. More sustained release of HGF then occurs from de novo synthesis 

by activated HSCs 
91

. When antibodies against HGF are delivered after a toxic injury liver  

the regenerative response is significantly impaired 
94

. Infusion of HGF into the portal 

circulation results in an increase in the liver mass 
95-99

.  

 

In addition to its hepatic activity, HGF has a range of actions in a variety of tissues; both in 

development and in specific disease states (pregnancy, cardiac and peripheral vascular 

disease, tumour metastases). Serum levels of HGF vary throughout life, under normal 

conditions, between sexes, in pregnancy and with age 
89

. When exogenous HGF is injected 

intravenously it is taken up by a wide range of tissues (liver, adrenal gland, spleen, kidney, 

lung, stomach and intestine) and is rapidly cleared. Clearance is achieved predominantly 

through the liver (70%) and to a lesser extent by the kidneys (10%) 
89

.  

 

In animal models of parenchymal liver disease administration of exogenous HGF 

suppresses the onset of liver fibrosis, prevents progression to cirrhosis, and prevents death 

from hepatic dysfunction 
100, 101

. This demonstrates a potential therapeutic application for 

HGF delivery.  

 

1.4.10 Epidermal Growth Factor Receptor Ligands 

 

Epidermal growth factor (EGF) & transforming growth factor (TGF)Į are members of a 

group of growth factors that bind to the EGF receptor (EGFR). The EGFR (present on most 

cell types), is a large (170 kDa) trans-membrane glycoprotein, with tyrosine kinase activity. 

Binding to the receptor initiates a number of signalling cascades (including phospholipase 
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c-Ȗ, MAP kinases and STAT-3) and a range of responses in different tissues (mitogenesis, 

motogenesis, differentiation, de-differentiation and repair as well as tumour progression, 

invasion and metastasis) 
102

. 

 

EGF is synthesised as a large (130 kDa) precursor which is then cleaved to a mature (6 

kDa) molecule. It is secreted primarily by exocrine glands and is found in nearly all bodily 

secretions (Brunner�s gland, seminal, mammary and saliva) 
103

.  EGF has a direct 

mitogenic effect on hepatocytes in vitro and in vivo 
97

. When it is infused into the portal 

circulation it is deposited in the ECM and is cleared in one pass 
56

. There is no increase in 

the level of EGF in the serum following PH despite EGFR upregulation. 

 

TGF-Į, which is produced by hepatocytes along with most replicating epithelial cells, is 

also synthesised as a precursor that is then cleaved to a smaller (6 kDa) active molecule. It 

is directly mitogenic to hepatocytes, but its effects are more potent than EGF 
97, 104

. TGF-Į 

levels increase following PH. This commences 3-5 hours after PH and peaks at 24 hours 

105
. The absence of TGF-Į does not significantly impair liver regeneration, but the 

expression of EGFR by most hepatic cell types (parenchymal and non-parenchymal) 

suggests that the role of TGF-Į may be to stimulate mitogenesis in different liver cell 

populations during regeneration 
84

. 

 

1.4.11 Fibroblast Growth Factor 1 / Acidic & Fibroblast Growth Factor 2 / Basic 

 

FGF1 and FGF2 are members of the FGF superfamily of growth factors. FGF1 is a 16 kDa 

polypeptide found predominantly in neural tissue and FGF2 is a 17 kDa protein found in a 
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wider range of tissues (including plasma, brain, kidney and adrenal). Both FGF1 and FGF2 

have a strong affinity for glycosaminoglycans (GAGs), and binding to which potentiates 

their activity. It has been suggested that this affinity for GAGs relates to their role in ECM 

remodelling and the angiogenesis of repair 
106

. 

 

The FGF group of growth factors act by binding to the FGF receptor (FGFR), of which 

there are 4 isoforms. These isoforms display ligand variability, resulting in different FGF 

subtypes having different affinities for the different FGFR isoforms. The FGFR is a 

transmembrane tyrosine kinase receptor, which activates a range of signalling pathways 

(including phospholipase CY and MAP kinase cascades). In vitro both FGF1 and FGF2 

stimulate DNA synthesis and cell division and in vivo they are strongly angiogenic, 

enhance wound healing and have been implicated in tumour-genesis 
107, 108

. 

 

In the liver increased expression of both FGF1 and FGF2 has been observed during 

regeneration 
109

, although their absence does not inhibit the rate of regeneration 
56

.  In vitro 

both FGF1 and FGF2 are mitogenic to hepatocytes, although to a lesser extent than HGF, 

TGF-Į or EGF 
110

. Whilst the FGFR ligands are less influential on liver regeneration than 

HGF, TGF-Į or EGF, their ability to promote angiogenesis in growing tissue makes them 

an attractive target for regenerative medicine 
111

. 
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1.4.12 Other Factors 

 

A number of other factors have a role in liver regeneration: Insulin and glucagon promote 

liver regeneration after PH 
112, 113

. Although neither factor can induce DNA synthesis in 

vivo, the absence of insulin slows the rate of regeneration 
114

. The Wnt family of growth 

factors have diverse roles in regulating cell fate, proliferation, migration and death in 

developing and adult cells, and recent studies indicate that they may have an important role 

in regulating hepatocyte proliferation following PH 
58, 115

. 

  

A number of chemokines (interferon-inducible protein 10 (IP-10), monokine induced by 

gamma interferon (MIG) and macrophage inflammatory protein 1 (MIP-1)-Į) are expressed 

following liver injury and may play a role in regulating hepatocyte proliferation 
116

. 

Prostaglandins have also been implicated in the initial triggering of the liver regeneration 

cascade 
75

. 

 

Thyroid hormone (T3) is a powerful inducer of hepatocyte proliferation in vitro and in vivo, 

although liver regeneration is normal in the absence of T3 
117

.  Sex hormones (oestradiol) 

are also known to increase after PH 
118

. Noradrenaline (NA) augments the effects of HGF 

and EGF and inhibits the action of TGFȕ an inhibitor of regeneration 
56

. 

 

1.4.13 Termination of Regeneration 

 

Once the liver mass has been restored, regeneration is terminated. The signals that lead to 

this cessation are not well understood. A number of factors have been implicated. 

 26



1.4.14 Transforming Growth Factor ȕ (TGFȕ) 

 

TGFȕ is produced in the liver by the parenchymal and non-parenchymal cells of the liver, 

particularly the HSCs 
119

. It is secreted in its inactive form bound to an inhibitory protein 

complex. This inhibitory protein complex binds TGFȕ to the ECM 
120

. It is then activated 

by cleavage from its binding protein by proteases (MMPs, plasmin) 
121

.  Levels of active 

TGFȕ increase within 4 hours of PH and peak at 72 hours 
122

.  The upregulation of TGFȕ 

leads to liver fibrosis and hepatocyte apoptosis 
123, 124

, and its administration after PH 

inhibits regeneration 
125

. Conversely inhibition of TGFȕ stimulates hepatocyte proliferation 

126
.  

 

1.4.15 Other Inhibitors of Regeneration  

 

Several checkpoints exist in the STAT-3 pathway that provide mechanisms whereby 

feedback inhibition of specific growth factor / cytokine mediated pathways can regulate 

organ size 
59

.  

 

1.4.16 The Role of the Extracellular Matrix 

 

Extracellular proteases mobilise the cytokines and growth factors that are anchored within 

the ECM providing the crucial start and stop signals for intracellular signalling during liver 

regeneration 
121

. 
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Figure 1.5 Schematic illustrating the complex interplay between parenchymal cells, non-parenchymal cells, 

the ECM and other co-mitogens during liver regeneration after PH 
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1.5 Liver Tissue Engineering 

 

Early attempts to engineer liver aimed to provide a better understanding of the 

pathophysiology of liver disease or to develop in vitro models for toxicological and 

pharmacological testing. With the establishment of regenerative medicine as a modern 

scientific discipline the focus of liver tissue engineering has shifted to defined clinical 

endpoints. 

 

Liver tissue engineering can be separated into two approaches; in vitro systems that use cell 

and scaffold technologies to manufacture functional liver tissue de novo, and in vivo 

systems that aim to boost functional liver capacity by implantation of exogenous cell 

populations or by promoting growth or regeneration in the existing liver cell population. 

This section reviews in vitro and in vivo liver tissue engineering strategies with a particular 

emphasis on the core principles of regenerative medicine and discusses their therapeutic 

potential. 

 

1.5.1 Cell Sourcing for Liver Tissue Engineering 

 

For both in vitro and in vivo liver tissue engineering, the issue of cell sourcing is a major 

limitation. An exogenous source of regeneration-competent parenchymal and non-

parenchymal liver stem cells has yet to be identified. As a result in vitro systems and in 

vivo cell delivery systems must rely on isolated primary cells or cell lines. For basic science 

research these cell types are useful and are used widely, but for therapeutic applications 

they are undesirable due to concerns over immunogenicity, the risks of infection and 
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malignant transformation. Those in vivo strategies that seek to harness the liver�s innate 

regenerative capacity to boost functional liver mass are therefore currently at an 

adavantage.  

 

1.5.2 In Vitro Liver Tissue Engineering 

 

The long term aim of in vitro liver tissue engineering is to assemble and maintain 

functional liver tissue de novo. However manufacturing liver tissue is not straightforward. 

The liver has a complex architecture; its main functional component (the hepatocyte), 

rapidly de-differentiates in the absence of appropriate signal delivery; and normal hepatic 

function requires not only a hepatocyte population but also non-parenchymal cells and an 

ECM. In the short term the objective of liver tissue engineers is to improve hepatocyte 

viability and function. 

 

1.5.3 In Vitro Signal Delivery 

 

An isolated hepatocyte grown in a monolayer de-differentiates and dies within 10 days 48. 

This occurs due to loss of its ECM and intercellular interactions and disruption of its 

normal micro-environment 
127

. Hepatocytes attach to the ECM via transmembrane integrin 

receptors, which allow adhesion and influence cell migration and phenotypic expression. In 

doing so the ECM provides structural support and facilitates continuous exchange of 

signals between cells. In studies where hepatocyte-ECM signals are restored, by culturing 

hepatocytes with collagen and other ECM components (e.g. monolayer, sandwich), 

significant but not complete improvement in viability and function are seen 
29, 128-130

.  
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The benefits of restoring intercellular signalling have been demonstrated in a series of 

three�dimensional aggregate studies 
131-133

. Homotypic hepatocyte aggregates have better 

viability and function than an equivalent hepatocyte population on a collagen monolayer. 

Further improvement in viability and function are seen when non-parenchymal cells 

(fibroblasts, endothelial cells and HSCs) are introduced into the culture 
32, 134, 135

.  

 

The mechanisms of hepatocyte aggregation and surface attachment have been studied in 

detail by Griffith et al. They demonstrated that hepatocytes will form aggregates when the 

forces of intercellular attraction exceed the cell-surface adhesion strength. By observing 

hepatocyte aggregate morphology in different matrigel concentrations they found that at 

low matrigel concentrations (low adhesion strength) aggregates formed, whilst at high 

matrigel concentrations (high adhesive strength) hepatocytes attached in a monolayer 
136

. In 

a second study looking at how the cell surface interaction influences hepatocyte behaviour, 

it was found that the ability of a hepatocyte to attach to a surface is influenced not just by 

the concentration of the surface ligand but also its microdistribution 
137

. 

 

1.5.4 Scaffolds In Vitro  

 

Scaffolds are natural or synthetic constructs that are used to direct, supplement or replace 

the function of living tissues 
23

. The concept of using a scaffold as a three-dimensional 

supporting template for tissue regeneration has been successfully demonstrated in 

numerous applications including the repair of bone 
138

, cartilage 
139

and vascularised 

skeletal muscle 
140

. In the context of in vitro liver tissue engineering the scaffold should 
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provide support for the growing tissue, channels for cell migration and mass-transfer and 

surface features for cell attachment.  

 

The choice of scaffold material depends on its intended application. Animal-derived ECM 

scaffolds provide binding sites for integrin-mediated cell adhesion, but have poor 

mechanical strength, may suffer interbatch variability and are not immediately scaleable 
141, 

142
. Alternatively biodegradable polymers can be manufactured into complex micro-

scaffolds, may behave more predictably in vitro, biodegrade to natural metabolites and can 

be modified to improve cell-surface attachment 
143

.  

 

Lin and Sellaro have used a naturally derived, decellularised liver ECM (L-ECM), 

produced by mechanical and chemical treatment of porcine small intestinal submucosa for 

liver cell culture. This natural biomaterial contains a number of ECM components 

including collagen I, collagen IV, laminin and fibronectin, as well as growth factors, and 

when hepatocytes are cultured on it, they maintain synthetic and metabolic for over 30 days 

30, 144
. 

 

The potential of inorganic biomaterials has also been explored. Petronis used microporous 

titania ceramic scaffolds manufactured by injection moulding. The titania ceramic which 

has good biocompatibility and has been shown to be non-cytotoxic to hepatocytes 

encouraged hepatocyte aggregate formation without the need for ECM coating 
145

. The 

non-biodegradability of this biomaterial would limit its use to in vitro applications. 
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The poly (Į hydroxy acid) group of polymers have excellent biocompatibility and are 

widely used in tissue engineering 
146, 147

. Unmodified poly (L-lactic acid) (PLLA) scaffolds 

can support functional hepatocyte populations 
148

, and a range of surface modification 

techniques have been developed to increase their surface ligand availability. Nam et al used 

alkali hydrolysis to enhance hepatocyte attachment on PLLA 
149

 and plasma alyllamine 

surface deposition could also be used for this purpose 
150

.  

 

It is possible to improve the adhesion strength of polymers by incorporating bioactive 

compounds at the time of manufacture. Gutsche demonstrated that by incorporating lactose 

and heparin into the matrix of porous polystyrene scaffolds, hepatocyte adhesion was 

increased and hepatocyte function improved compared with an unmodified polymer 

scaffold 
151

.  

 

Polyethylene terephthalate (PET) has been used by Risbud to support hepatic endothelial 

cell populations. Here a woven PET fabric with macropores was coated in a collagen-

chitosan gel matrix. This fabric-gel complex supported an endothelial cell population and 

encouraged adhesion and retained function 
152, 153

. Mayer et al found that by EGF coating 

their woven PET fabric scaffold they could improve rates of hepatocyte aggregation and 

organisation 
154

. Likewise Takei et al improved hepatocyte attachment, aggregation and 

function by coating PVLA with Į-ASGPR, a monoclonal antibody with ECM protein-like 

properties 
155

. These are all good examples of surface modification of low surface adhesion 

strength polymers to improve surface signalling for a liver cell population. Having chosen 

the biomaterial and surface modification technique the next step in the design process is to 

determine its optimum structure. 
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1.5.5 Spatial Signalling and Scaffold Structure 

 

A range of scaffold designs have been trialled for liver cell culture. Porous scaffolds 

provide a large surface area to volume ratio, have little limitation on mass transfer and have 

good biocompatibility 
156

. Several studies have explored the effect of porosity on liver cell 

culture morphology and function. Ranucci demonstrated that by increasing the pore size of 

a PLLA scaffold, hepatocytes were more likely to form aggregates than attach in a 

monolayer, and that this change in morphology was associated with an improvement in 

their functional profile. The study suggested that a pore size of 100 ȝm was optimum for 

hepatocyte culture on PLLA scaffolds 
157, 158

. Work by Glicklis also demonstrated that a 

pore size diameter of 100 ȝm in an alginate scaffold provided optimum viability and 

function, and that increasing pore size above that level led to mass transfer limitations and 

central necrosis within the aggregate 
159

. 

 

The density of cell seeding is also important, and must be compatible with the biomaterials 

chemistry and internal morphology, whether or not it is adhesive to cells. Preferably this 

method must be rapid and allow high yields of cell entrapment with uniform distribution. 

Dvir-Ginsberg et al found that in order to optimise cell aggregation and function on a 

micro-porous alginate scaffold, cell densities of up to 5.7 x 10
6
 cells/cm

3 
were required. 

These denser cultures produced larger aggregates that interconnected with one another and 

retained hepatocyte specific function for over 7 days 
160

.  

 

In addition to the microporous and mesh-type scaffolds, new polymer processing 

techniques have led to the development of more sophisticated scaffold designs. Using a cell 
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assembly apparatus that incorporates prototyping, computer-aided design and image 

processing to generate three-dimensional cell-biomaterial constructs, Yan et al produced a 

hepatocyte-gelatin-alginate hydrogel composite. This composite remained viable and 

performed function for over 12 days, the hepatocytes organising into aggregates within the 

gel 
161

.  

 

Vozzi and Bhatia have produced micro-fabricated PLGA scaffolds using micro-syringe 

deposition operated on a three-axis micropositioner. By varying the pressure, speed and 

solution viscosity a wide range of complex scaffolds can be produced. Whilst the impact of 

these scaffolds on hepatocyte culture has yet to be established the concept has potential 
39

.   

 

An approach that breaks away from the aggregate based strategies discussed above is 

Ostrovidov�s use of a collagen coated PDMS microporous micro-membrane in a perfused 

bed bioreactor. The micro-porous PDMS membrane was produced in a mould and designed 

to simulate the plate-like arrangement of hepatocytes in the parenchyma 
162

. This produced 

promising functional data, and highlighted the benefits of developing a liver cell culture 

system within a bioreactor both for regulating microenvironment and offering real scale-up 

potential.   

 

1.5.6 Applications for In vitro Liver Tissue Engineering 

 

There are a range of clinical and basic science applications for in vitro liver tissue 

engineering systems. Bioartificial liver support devices have been developed to treat 

patients with acute liver failure (ALF) and to act as a bridge to transplantation 
163

. A 
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controlled trial has shown some improvement in short-term survival for a subgroup of 

patients with ALF treated using a porcine-hepatocyte based bioartificial liver, but a larger 

trial is required before its use becomes routine in a clinical setting 
164

. Similar in vitro 

systems may also prove useful in basic science for toxicological and metabolic studies and 

for studies of disease processes for example hepatitis C.  

 

1.5.7 In Vivo Liver Tissue Engineering 

 

The aim of in vivo liver tissue engineering is to increase the liver�s functional capacity, 

either by delivery of an exogenous liver cell population or by expansion of the native liver 

cell population. In the context of in vivo liver tissue engineering, scaffolds may be used to 

support a liver cell population or to act as a signal delivery system for growth factors, 

cytokines and other bioactive materials. 

 

1.5.8 Cell Delivery In Vivo 

 

When isolated hepatocytes are transplanted intrahepatically or intra-splenically they exhibit 

long-term survival but cannot be delivered in large enough quantities to boost functional 

liver capacity 
165

. Similarly when hepatocytes bound to microcarriers are injected into rats 

that had and undergone uniformly lethal liver resection or UDP-glucuronyltransferase 

deficient Gunn rats (rats incapable of conjugating bilirubin), metabolic improvements were 

demonstrated but no long-term survival benefits were seen 
166, 167

.  
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Cell delivery via intra or extra-hepatically implanted scaffolds may allow delivery of a 

greater hepatocyte load. In early studies where cell-scaffold composites were implanted 

extra-hepatically (subcutaneous, mesenteric, omental, retroperitoneal), cells near the 

implanted surface survived but those deep within the scaffold  died due to inadequate mass-

transfer 
168

. Strategies to pre-vascularise scaffolds prior to cell delivery have been used to 

improve mass-transfer. If a scaffold (+/- angiogenic factors) is implanted into the target site 

before cell seeding there is an opportunity for vascular in growth to occur. At a later point 

cells can then be seeded via an open procedure or through a catheter into the scaffold. Stein 

used this approach to improve hepatocyte engraftment in PVA discs implanted into the 

mesentery 
143

 and Kedem used it to enhance engraftment in alginate scaffolds implanted 

onto the liver edge 
169

. Whether these pre-vascularised cell-scaffold composites can allow 

delivery of liver cell populations that are large enough to increase total functional capacity 

is not yet known. 

 

Different implantation sites will be appropriate for different clinical scenarios. For 

example, in the presence of malignancy or cirrhosis it may be preferable to implant the 

liver cell population away from the diseased liver so that the donor tissue remains 

unaffected by the underlying pathology. If liver cells are to be delivered extrahepatically, 

they must be provided with hepatotrophic stimulation. Hepatotrophic stimuli are important 

for hepatocyte differentiation and engraftment in vivo and their absence has been 

implicated in the failure of extra-hepatic scaffold implantation studies 
170

. Porto-caval 

shunting (PCS) provides hepatotrophic stimulation at extrahepatic sites by preventing first 

pass metabolism of liver mitogenic factors. Mooney et al used PCS to improve hepatocyte 

engraftment on porous PLGA scaffolds implanted into the mesentery of Lewis rats 
171

. 
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Kneser also used PCS to enhance hepatocyte engraftment, demonstrating long term 

hepatocyte engraftment on porous PVA scaffolds in rats up to one year 
172

. In addition to 

the loss of hepatotrophic stimuli, by choosing to implant a scaffold extra-hepatically bile 

excretion will also be lost. This may not be appropriate for all clinical applications.  

 

1.5.9 The Scaffold as a Delivery Device 

 

When growth factors are infused into the liver it is possible to induce a range of effects. 

Direct infusion of HGF and EGF receptor ligands into the liver has been shown to enhance 

liver growth 
95-97

. Only a limited number of studies, have investigated the impact of 

intrahepatic growth factor delivery via scaffolds. Mooney used a polymer-based scaffold 

delivery system to improve engraftment of hepatocytes in an extra-hepatic, hepatotropically 

enhanced implantation site. By incorporating EGF microspheres into the hepatocyte-PLGA 

composite further improvements in rates of hepatocyte engraftment were seen 
171

. Oe et al 

investigated the controlled release of HGF in a rat cirrhosis model. Using intraperitoneally 

injected biodegradable gelatin microspheres into loaded with HGF; they showed that 

delivery of HGF enhanced recovery from cirrhosis 
173

. 

 

1.5.10 Intrahepatic Scaffold Implantation 

 

An alternative to transplanting a hepatocyte population is to encourage synthesis of new 

liver tissue in vivo. Takimoto et al implanted collagen-polypropylene composite scaffolds 

into rat livers. Two weeks after implantation the scaffold was filled with oval cells, by three 

weeks it was invaded by activated HSCs and by one month mature hepatocytes were 
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identified. After six months mature liver tissue, juxtaposed with bile ducts and blood 

vessels, was seen throughout the collagen-polypropylene scaffolds. This is the first 

example of liver tissue formed de novo, although it was not associated with an increase in 

the total liver cell mass 
174

. 

 

1.5.11 Applications for In Vivo Liver Tissue Engineering 

 

In vivo liver tissue engineering is in the early stages of development. The limited successes 

of isolated hepatocyte transplantation have now been superseded by cell delivery via 

prevascularised scaffold systems and the use of signal delivery via biodegradable scaffolds. 

Having the ability to increase the liver�s functional capacity is an exciting prospect. It could 

be used to treat metabolic diseases of the liver 
165

; to act as a bridge to (or in place of) liver 

transplantation in patients with acute or chronic liver failure or to boost the functional liver 

mass after liver resection for cancer, allowing larger resections and faster patient recovery. 
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1.5.12 Overview 

 

In the past 20 years we have seen major advances in the regeneration of structural tissues, 

like cartilage and bone, but because the liver is architecturally and functionally more 

complex, progress with liver regeneration has been less dramatic. There are a number of 

areas for improvement. 

 

By developing a better understanding of the factors that regulate hepatocyte regeneration 

and phenotypic expression and then delivering these factors via controlled release strategies 

it may become possible to offset hepatocyte de-differentiation in vitro. Improved cell 

densities will be possible with new scaffold fabrication techniques providing more 

authentic ultrastructure and better cell surface attachment. Cell survival and vascularisation 

in implanted hepatocyte populations will increase as we improve our ability to 

prevascularise and incorporate hepatotrophic factors into the scaffolds via controlled 

release systems. Stem cell science may also provide a new cell source to populate all these 

applications. 

 

Recent studies have shown a short-term survival benefit for a porcine-hepatocyte liver 

support system 
164

. As our in vitro culture technologies improve the use of biological liver 

support devices for the treatment of liver failure may become a reality, but realistically this 

will take another 10-15 years. In the short term, small scale in vitro systems will become 

available for metabolic studies and studies of disease and drug metabolism. 
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1.6 Study Background, Design & Hypotheses  

 

This thesis presents two approaches to liver tissue engineering. The first is an in vitro 

model that combines the benefits of hepatocyte-HSC co-culture and three-dimensional 

tissue assembly in one culture system. The second approach is an in vivo system that 

harnesses the regenerative capacity of the liver to boost functional liver mass using a 

biodegradable polymer-based growth factor and ECM delivery system.  

 

Study 1: Hepatocyte-Hepatic stellate cell co-culture on three-dimensional microporous 

PDLLA scaffolds 

 

Hypothesis 

 

Co-culture of hepatocytes with HSC on a three-dimensional PDLLA scaffold enhances 

hepatocyte viability and function.  

 

The objectives of this study are to evaluate hepatocyte-HSC co-culture on PDLLA scaffolds, 

determine the impact of PDLLA surface modification on culture morphology and function 

and to compare this approach with existing hepatocyte culture strategies. 

 

 41



Study 2: Intrahepatic growth factor and ECM delivery via biodegradable polymer scaffolds 

 

Hypothesis 

 

Intrahepatic delivery of growth factors and liver derived ECM proteins can stimulate 

functional liver tissue growth in normal and regenerating liver. 

 

The objectives of this study are to develop an intrahepatic growth factor and ECM protein 

delivery device and evaluate its impact on liver growth in normal liver and in an animal 

model for PH. 
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Chapter 2 Hepatocyte-HSC Co-Culture on Three-Dimensional Microporous PDLLA 

Scaffolds 

 

2.1 Introduction 

 

The rapid de-differentiation of primary hepatocytes in culture can be offset by the 

restoration of normal intrahepatic in vivo signalling. In Guillouzo�s detailed review of in 

vitro models for toxicology, a wide range of liver cell culture strategies are described 
48

. 

These strategies achieve modest improvements in cultured hepatocyte viability and 

function by restoring single intrahepatic signalling pathways. To produce a culture system 

that sustains a hepatocyte population with levels of differentiation and a proliferative 

capacity that matches that of a healthy in vivo hepatocyte population more sophisticated 

culture systems must be developed. 

 

By designing a liver cell culture strategy in which multiple pro-differentiation signals are 

delivered simultaneously, in vitro hepatocyte viability and function may be sustained at 

higher levels than is achievable in traditional culture systems. A number of pro-

differentiation signals have been identified. These include homotypic and heterotypic 

intercellular interactions, ECM ligand binding, delivery of soluble factors and restoration of 

three-dimensional architecture 
48

. This study will set out to trial a culture system that 

delivers multiple signals simultaneously, by co-culturing hepatocytes with HSC on a three-

dimensional scaffold. 
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The HSC is an attractive target for in vitro liver tissue assembly. In vivo it is an important 

regulator of liver regeneration 
47, 52

, and in vitro has been shown to enhance hepatocyte 

viability and function by restoring heterotypic intercellular interactions and ECM ligand 

binding 
33, 34

. When hepatocytes are co-cultured with HSCs in a non-adherent tissue culture 

environment, the HSC population becomes activated, attaches to the hepatocyte population 

via long dendritic processes and draws them into a mixed cell aggregate (figure 2.1) 
33

. 

When imaged after 48 hours using transmission electron microscopy (TEM) these 

aggregates have differentiated hepatic ultrastructure
33

. Comparative studies demonstrate 

that the metabolic and synthetic functional profile of these aggregates is significantly 

greater than in conventional liver cell culture systems
34

. The next step is to determine how 

this co-culture model performs within a three-dimensional scaffold. 

 

 

 

Figure 2.1 Time lapse microscopy of a hepatocyte-HSC co-culture at 24 hours post seeding (left) and light 

microscopy of haemotoxylin stained hepatocyte-HSC aggregates 5 days after seeding (right). When 

hepatocytes are co-cultured with HSCs in a low adherent tissue culture environment the HSCs become 

activated and hepatocytes aggregate around them.  Within 4 days they have formed viable circular aggregates 

with differentiated hepatic ultrastructure and function  34 
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A range of biomimetic scaffolds have been developed for three-dimensional cell culture
175

. 

For this study a scaffold that could be optimised for liver cell culture was required. 

Microporous poly (Į hydroxy acid) scaffolds have previously been shown to support 

hepatocyte culture 
148

, and work by Ranucci et al has defined the optimal pore diameter for 

this application (100 ȝm) 
157

. PDLLA is a member of this group of polymers and can be 

foamed to a mean pore diameter of 100 ȝm using supercritical CO2 processing 
176

. It is also 

possible to surface modify PDLLA using allylamine plasma deposition or NaOH treatment 

to increase the ligand availability on the surface of the scaffold without altering its bulk 

properties. These surface modification techniques have been used to improve hepatocyte 

attachment on glass and PLA respectively 
149, 150

. 

 

The aim of this study was to evaluate hepatocyte-HSC co-culture on three-dimensional 

microporous PDLLA scaffolds, to determine if surface modification of the PDLLA could 

impact on the morphology and function of the cell population and to compare the 

functional profile of hepatocyte-HSC co-culture on a PDLLA scaffold with traditional 

culture models. The objectives of the study were to develop a seeding and culture protocol 

for hepatocyte-HSC co-culture on microporous PDLLA scaffolds and to evaluate the 

morphology and function of the scaffold cultures. Cells were cultured on plain PDLLA and 

PDLLA that had been surface modified using allylamine plasma deposition and PDLLA 

modified by NaOH treatment. Hepatocytes and HSCs isolated from rat livers were seeded 

onto the scaffolds. The morphology of the scaffold cultures were imaged using scanning 

electron microscopy (SEM). To assess the synthetic function albumin production was 

measured and to assess metabolic function testosterone metabolism assays were performed. 

The function of these cell scaffold co-cultures was then compared with conventional 
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hepatocyte culture systems (tissue culture plastic (TCP) & type I collagen) and with culture 

on an alginate scaffold. 

 

2.2 Materials and Methods  

 

2.2.1 Hepatocyte Isolation 

 

Hepatocytes were isolated from adult male Wistar rats weighing 150-250 g using a 

modified 2-step collagenase perfusion technique 
177

. In brief, rats were killed by cervical 

dislocation and the liver perfused with 0.5 mM EGTA in Hanks-Hepes buffer at 15 ml/min 

for 15 min at 37º C, followed by Hanks-Hepes buffer containing 5 mM CaCl2 and 100 

U/ml Type IV Collagenase (Sigma) for  a up to 30 min until digested. The liver was then 

disaggregated, filtered and washed in Williams E media (Gibco) containing 10% foetal calf 

serum (FCS) (Sigma), and the hepatocytes purified by density gradient centrifugation (45% 

Percoll (Sigma, density 1.125-1.135 g/ml), 5% 10x Hanks-Hepes solution, 45% Williams E 

media, 5% FCS). Cell density and viability were counted on a haemocytometer following 

trypan blue exclusion (Sigma). Viability typically exceeded 90%.  

 

2.2.2 Hepatic Stellate Cell Isolation  

 

HSC were isolated from the hepatocyte washes and density gradient supernatant from the 

hepatocyte isolation as previously described by Riccalton-Banks 
178

. In brief, the 

hepatocyte washes and density gradient supernatant from the hepatocyte isolation were 

combined, centrifuged three times at 50 g for 5 min and the pellets discarded. The final 
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supernatant was centrifuged at 250 g for 5 min, the pellet resuspended in stellate cell media 

(Dulbecco�s modified Eagle�s medium (DMEM) (Gibco) supplemented with 10% FCS 

Gold (PAA Laboratories), 5 mM L-glutamine (Gibco), 100 ȝg streptomycin and 250 ng 

amphotericin B (Gibco)) and grown to confluence in T75 tissue culture flasks (Sigma).  

 

2.2.3 Scaffold Manufacture 

 

Microporous PDLLA scaffolds were manufactured by foaming using supercritical CO2 as 

previously described by Barry 
179

. In brief, 130 mg of PDLLA (mw 52 Polyscience Inc) was 

placed in each well of a 10 well poly (TetraFluoroEthylene) (PTFE) mould. The polymer 

was melted in a custom made 60 ml pressure vessel using 230 bar pressure of CO2 at 35º C 

for 60 min followed by a 60 min controlled decompression. Once the system had 

depressurised, the scaffolds were removed and left for 60 min to allow residual CO2 to 

leave the scaffolds. To prepare the scaffolds for use the PDLLA cylinders had there non-

porous skin removed and were then sliced into 1 mm thick wafers and stored at 4º C. 

 

2.2.4 Allylamine Plasma Deposition 

 

Allylamine plasma deposition was performed as described by Barry 
176

. In brief, the 1 mm 

PDLLA scaffold wafers were placed into a plasma chamber. The vacuum chamber was 

evacuated and stabilized at 39.9 Pa of O2 and a glow-discharged plasma formed (3 W for 

180 sec). The scaffolds were exposed to allylamine vapour for a further 10 min. Deposition 

proceeded until an equivalent thickness of polymer was formed on the quartz microbalance 

positioned opposite the substrates. The samples were stored at 4º C for a maximum of 2 
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weeks before use. Prior to cell seeding the scaffolds were pre-wet in PBS in a vacuum and 

washed once in seeding medium. 

 

2.2.5 Sodium Hydroxide Treatment 

 

The 1 mm PDLLA scaffold wafers were pre-wet with PBS in a vacuum and immersed in 0.5 

M NaOH solution for 20 min at 37º C. The scaffolds were removed from the NaOH 

solution and washed 3 times in PBS. Before cell seeding the scaffolds were washed in 

seeding medium. 

 

2.2.6 Cell Seeding & Maintenance 

 

0.6x10
6
 freshly isolated primary rat hepatocytes and 0.3x10

6
 pre-isolated rat HSC 

suspended in 200 ȝl of hepatocyte medium (William�s E media supplemented with 5 mM 

L-glutamine, 50 μg/ml gentamicin, 5 mM nicotinamide, and 10 mU/ml insulin, 10 μM 

dexamethasone) were seeded directly onto scaffolds pre-wet in a vacuum with Williams E 

media containing 10% foetal calf serum and incubated for 1 hour. 1 ml of hepatocyte 

medium was then added to each of the wells and the cultures incubated at 37° C in a 

humidified atmosphere of 5% CO2 and 95% air. Media was changed daily. 

 

2.2.7 Scanning Electron Microscopy  

 

Cells were fixed in a 3% glutaraldehyde solution (TAAB Laboratories) followed by 

staining with 1% osmium tetroxide solution (TAAB Laboratories). The samples then 
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underwent stepwise dehydration in ethanol (25%-100%) before drying in 

hexamethyldisilazane (Sigma). The scaffolds were sputter-coated with gold and imaged 

with a JSM-6060LV (Jeol Ltd) variable pressure scanning electron microscope (SEM). 

Hepatocyte, HSC and co-culture morphology was examined on all scaffolds at 48 hours 

after seeding and on NaOH treated PDLLA at 5, 7 and 14 days. 3 samples were examined 

for each cell-scaffold configuration at each time point. Cells selected for imaging by 

starting at a representative area and rotating clockwise, taking up to 10 images per sample. 

Representative images are shown.  

 

2.2.8 Albumin Production 

 

Albumin levels in supernatants of cultures were measured using a rat albumin enzyme-

linked immuosorbent assay (ELISA) according to the manufacturer�s instructions (Bethyl 

Laboratories E110-125). In brief, culture media was aspirated from the wells, centrifuged 

and stored at -20º C. A 96-well high-affinity ELISA plate (Costar) was coated with a 1 in 

100 dilution of anti-rat albumin for 1 hour at 37º C and washed (0.05% Tween 20 / Tris 

buffered saline solution (Sigma)). The plate was blocked (0.05% bovine serum albumin) 

for 30 min, washed and incubated with appropriate dilutions of standards and samples. 

After 60 min the plate was washed and incubated for a further 60 min with a 1 in 40,000 

dilution of the HRP conjugated antibody, rewashed and developed with 3,3',5,5'-

Tetramethylbenzidine (TMB) (Sigma) for 15 min before the reaction was terminated with 

2M H2SO4 and the optical density measured at 450 nm using a MRX plate reader (Dynex 

Technologies). All standards and samples were analysed in triplicate. 
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2.2.9 Testosterone Metabolism Assay 

 

The testosterone metabolism assay was performed as previously described 
34

. At different 

time points media was aspirated from the wells and the cultures incubated for 1 hour in 1 

ml of EBSS containing 1mM Ca
2+

,1 mM Mg
2+

 and 100 ȝM testosterone at 37º C. The 

solution was aspirated, centrifuged and the supernatant stored at -20º C for later analysis. 

Samples were analysed using a Beckman High pressure liquid chromatography (HPLC) 

1090 fitted with a Zorbax 300 SB-C18 4.6 mm x 15 cm column maintained at 50º C 

(Beckman Coulter Inc). Mobile phase A consisted of 450 ml H20:50 ml Acetonitrile:250 μl 

Formic acid, and mobile phase B consisted of 50 ml H20:450 ml Acetonitrile:75 μl Formic 

acid. The mobile phase was run at 1 ml/minute, starting at 15% B and increasing over 10 

minutes to 50% B, with a sample injection volume of 40 μl. UV absorbance was detected at 

245 nm with an integral diode array detector. Each run was controlled by intermittent 

injection of an external standard containing 6β-hydroxytestosterone (Sigma) and 4-

androstene-3,17-dione (Sigma).  

 

In rat hepatocytes 6ȕ-hydroxylation of testosterone is mediated predominantly by 

cytochrome P450 (CYP) 3A1 
180, 181

 and oxidation of testosterone to 4-androstene-3,17-

dione is mediated predominantly by CYP 2B1 
181

. The testosterone metabolism assay 

measures the activity of CYP 3A1 and CYP 2B1 in our hepatocyte population by detecting 

levels of their metabolites (6ȕ-hydroxytestosterone and 4-androstene-3,17-dione) after a 1 

hour incubation with testosterone. Enzyme activity at each time point is presented as a 

percentage of the activity found in a freshly isolated population of hepatocytes in a 
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matched culture environment. CYP3A1 activity was only detected in hepatocyte mono-

culture on collagen at day 3 and not on any of the scaffold cultures (not shown).  

 

2.2.10 Statistical analysis 

 

Data was analysed using the Statistical Package for Social Sciences (SPSS) (Version 14 for 

Windows; GmbH, Germany). Data are expressed as the mean +/- standard deviation. The 

statistical significance of differences among groups was assessed by the independent 

Student t test or the one way analysis of variance (ANOVA) with Tukey post test as 

appropriate. P values less than 0.05 were regarded as statistically significant.  
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2.3 Results  

 

2.31 Morphology 

 

Figure 2.2 SEM of hepatocytes seeded in monoculture on unmodified (top) plasma coated (middle) and 

NaOH treated (bottom). Hepatocytes on the unmodified PDLLA aggregated at the base of the pores with 

limited attachment to the scaffold surface. Those seeded onto plasma coated and NaOH treated PDLLA 

attached to the scaffold surface and fewer, smaller cellular aggregates were present. 
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Figure 2.3 SEM of HSC seeded in mono-culture onto unmodified (top) plasma coated (middle) and NaOH 

treated (bottom) PDLLA. When HSC were seeded onto the unmodified scaffolds they developed an activated 

morphology and formed aggregates. When HSC were seeded onto plasma and NaOH treated scaffolds they 

developed a predominantly quiescent morphology with flattened cells attaching directly to surface of the 

scaffold and fewer activated HSC or cell aggregates visible. 
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Figure 2.4 SEM of hepatocyte-HSC co-culture on unmodified (top) plasma coated (middle) and NaOH treated 

(bottom) PDLLA. On unmodified PDLLA the HSC developed an activated morphology attaching to 

hepatocytes in mixed cell aggregates. On the plasma coated and NaOH treated PDLLA hepatocytes and the 

predominantly quiescent HSCs attached directly to the scaffold surface, with few aggregates present.
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2.3.2 Function 
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Figure 2.5 Albumin concentration in the media of hepatocyte-HSC co-cultures on unmodified (white), 

plasma coated (light grey) and NaOH treated (dark grey) PDLLA up to 7 days after seeding +/- SD mean 

(n=3). There was no significant difference in the level of albumin production between the 3 scaffold types 

for the duration of the experiment. On all scaffolds albumin production dropped significantly between day 

4 and 5. *P < 0.05 compared with equivalent scaffold culture on day 4. 

* 

      * * 
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Figure 2.6  Albumin concentration in the media of hepatocytes cultured on TCP (white), type 1 collagen 

(light grey) and hepatocytes co-cultured with HSC on NaOH treated PDLLA (dark grey) up to 7 days after 

seeding +/- SD mean (n=3). Albumin concentrations were maintained in the collagen cultured hepatocyte 

population for the duration of the study significantly exceeding levels in both the mono-culture on TCP and 

co-culture on NaOH treated PDLLA. The concentration of albumin in the co-cultures dropped significantly 

between days 4 and 5, but remained significantly higher than mono-culture on TCP up to day 6.  *P < 0.05 

compared with mono-culture on TCP and **P < 0.05 compared with co-culture on NaOH treated PDLLA. 
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Figure 2.7  Albumin concentration in the media of hepatocyte mono-culture (white) and co-culture (light 

grey) on an alginate scaffold with co-culture on NaOH treated PDLLA (dark grey) up to 7 days after seeding 

+/- SD mean (n=3). Mono-culture and co-culture on the alginate scaffolds had significantly higher levels of 

albumin than co-culture on the NaOH treated scaffold up to day 3. Albumin levels on the alginate scaffolds 

fell significantly between day 4 and 6. There was no significant difference between albumin production by 

mono-culture and co-culture on the alginate scaffolds. *P < 0.05 compared with co-culture on NaOH 

treated PDLLA. 
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Figure 2.8 Average CYP2B1 activity relative to activity at T0 in hepatocytes mono-cultured on unmodified 

PDLLA (white) and co-cultured on unmodified (light grey), plasma coated (darker grey) and NaOH treated 

(black) PDLLA at days 3, 5 and 7 after seeding +/- SD of mean (n=3). CYP2B1 activity in the hepatocytes 

co-cultured with HSC on PDLLA was significantly greater than in the mono-cultured hepatocytes at day 3 

and 5 after seeding. On all scaffolds CYP2B1 activity fell significantly between day 3 and day 5. The 

metabolite was not detectable in any of the cultures at day 7. *P < 0.05 compared with mono-culture on 

unmodified PDLLA. 
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Figure 2.9 Average CYP2B1 activity relative to activity at T0 in hepatocytes mono-cultured on TCP (white) 

and type I collagen (light grey) and co-cultured with HSC on NaOH treated PDLLA (dark grey) at days 3, 5 

and 7 after seeding +/- SD of mean (n=3). At day 5 CYP2B1 activity was significantly greater in the 

collagen and on NaOH treated PDLLA cultures than on TCP. Only hepatocytes on collagen had CYP2B1 

activity at day 7. * P< 0.05 compared with mono-culture on TCP and **P < 0.05 compared with co-culture 

on NaOH treated PDLLA.  
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2.4 Discussion 

 

The aim of this study was to evaluate hepatocyte-HSC co-culture on three-dimensional 

PDLLA scaffolds, to determine the impact of surface modification on scaffold 

morphology and function and to compare their functional profile with traditional culture 

models. Using microporous PDLLA scaffolds manufactured using supercritical CO2 

foaming and surface modified using allylamine plasma deposition and NaOH treatment 

the morphology and function of these co-cultures was assessed. 

 

A series of preliminary studies were undertaken to optimise the seeding technique and 

culture protocol. To improve the level of cell attachment, cells were seeded in low 

volumes (200 ȝl) onto scaffolds that had been pre-wet in a vacuum with media containing 

FCS and were incubated for one hour before hepatocyte media was added. This approach 

minimised the �wash-off� of cells from the scaffolds and did not significantly impact on 

hepatocyte function.     

 

The characteristics and extent of ligand availability on the surface of a biomaterial 

influences cell culture morphology, cell phenotype and function 
48, 136, 137

. Surfaces with 

limited ligand availability exert a low cell-substratum adhesion force. When cells are 

seeded onto these surfaces the forces of intercellular attraction exceed the cell-substratum 

adhesion forces and the cells preferentially aggregate. When cell-substratum adhesion 

forces increase, more cells attach to the surface and less aggregation occurs 
136, 137

. 
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Previous work has shown that unmodified PDLLA has limited ligand availability 
176

, as a 

result when hepatocytes are seeded onto it they preferentially aggregate and do not attach  

33
 
32

.  Allylamine plasma deposition and NaOH treatment increase the ligand availability 

on the scaffold surface without altering its bulk properties and have been used to aid 

hepatocyte attachment 
149, 150

. Allylamine plasma deposition coats PDLLA with a layer of 

amine groups that encourage secondary ECM deposition and cellular attachment 
150, 176

 

whilst NaOH treatment generates functional hydroxyl groups on the polymer surface to 

which cells can attach 
149

.  

 

In this study when the PDLLA surface was modified, more hepatocytes attached directly 

to the polymer surface and the aggregate sizes were smaller. This was demonstrated with 

hepatocytes in mono-culture on both the plasma deposited and NaOH treated scaffolds. 

Surface characteristics also influenced cell phenotype. When HSCs were seeded onto 

unmodified PDLLA they developed an activated morphology with multiple cytoplasmic 

processes attaching to the scaffold surface. When ligand availability was increased, HSCs 

reverted to a predominantly quiescent phenotype as seen on the plasma and NaOH treated 

scaffolds.  In co-cultures on unmodified PDLLA again there was much less hepatocyte 

attachment to the scaffold and more HSCs had an activated morphology than on the 

plasma treated and NaOH treated PDLLA. On the surface modified scaffolds hepatocytes 

and HSCs attached directly to the scaffold surface with a few activated HSC and small 

cell aggregates visible. 
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The differences in attachment profile and culture morphology did not impact on the 

functionality of the co-cultures. When albumin production and CYP activities on the 

different cell-scaffold configurations were compared no difference was identified. 

Overall the functionality of mono-cultures and co-cultures on PDLLA in static conditions 

was disappointing, with both metabolic and synthetic function dropping significantly 

after 3-4 days in culture. Co-culture on PDLLA did significantly outperform hepatocyte 

mono-culture on TCP. However both synthetic and metabolic functions in the co-cultured 

scaffolds were significantly lower than that seen with hepatocyte mono-culture on 

collagen, a conventional hepatocyte culture system that hepatocyte-HSC co-culture in 

low adherent tissue culture conditions had previously been shown to significantly 

outperform 
32, 34

.  

 

The significant drop in the synthetic and metabolic function of the hepatocyte populations 

that occurred after 3-4 days correlated with the non-viable appearance of the cell 

populations at day 5. This rapid decline in function was also seen when hepatocytes and 

HSCs were cultured on alginate scaffolds. It is unclear from this data, why this drop in 

function occurred. Previous work by Ranucci has shown that microporous PLA scaffolds 

can support functional hepatocyte monocultures for up to one week 
157

. There have been 

no previous studies exploring how co-cultures behave on PDLLA in static conditions.  

 

The scaffold culture system may have failed because: there was inadequate mass transfer 

of O2 and nutrients into the scaffold pores; the seeding density of hepatocytes and HSCs 

was inadequate (preventing the formation of homotypic and heterotypic intercellular 
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interactions) or the release of lactic acid from the PDLLA was hepatotoxic. A range of 

modifications could be made. The scaffolds could be maintained within a bioreactor. 

Previous studies have shown that liver cell culture in microfluidic environments enhances 

hepatocyte synthetic function 
182

, allows differentiation of phenotype within a hepatocyte 

sub-population 
37

 and optimises mass transfer 
159

. In addition micro-channels could be 

drilled through the scaffolds to further improve mass transfer. Alternative seeding 

densities may be trialled. Studies by Dvir-Ginzberg have shown that alteration in seeding 

densities can significantly impact on liver cell culture viability and function 
160

. 

Microporous poly (Į hydroxy acid) scaffolds have been shown to support liver cell 

culture but they may not be the �ideal� biomaterial for liver tissue engineering and 

alternative biomaterials or scaffold structures may be better suited for hepatocyte-HSC 

co-culture and warrant investigation.  

 

Limitations in this study relate to the functional assays. In the testosterone metabolism 

assay, metabolites were detected by HPLC. After 3 days the levels of testosterone 

metabolites were very low even under optimal culture conditions 
34

. In future an 

additional more robust metabolic assay (urea or CYP1A) could be used. It would also be 

beneficial to express functional data relative to total cell number. This could be achieved 

by performing a DNA assay in conjunction with the functional data.  

 

 

 

 

 63



2.5 Conclusion 

 

The surface characteristics of PDLLA influence HSC phenotype and hepatocyte-HSC co-

culture morphology. Under static conditions the long-term viability and function of these 

co-cultures is limited. This study supports further development of a HSC-based in vitro 

liver tissue engineering system but significant modifications to the culture system design 

are required. 
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Chapter 3 Polymer-Based Intra-Hepatic Growth Factor Delivery  

 

Partial hepatectomy (PH) induces a proliferative response in liver that differs to the 

regenerative pathways seen in other tissues. Rather than proliferation of a sub-population 

of stem or progenitor cells or the recruitment of cells from the peripheral circulation, liver 

regeneration following PH is mediated by proliferation of the adult hepatocyte and non-

parenchymal cell populations throughout the liver, not just in isolated lobes or at the 

resection surface. Remarkably whilst this expansion of liver mass occurs, the liver retains 

its functional capacity 
59, 74

. 

 

The sequence of events that leads to this proliferative response is complex, involving 

interplay between the hepatocyte and non-parenchymal cell populations (endothelial cell, 

Kupffer cell and HSC) and the ECM. The trigger for regeneration is the change that 

occurs in hepatic blood flow (hepatic dysoxia, endothelial shear stress, increased 

hepatotrophic stimuli availability) 
75

 
74

. This is followed by an increase in urokinase 

activity 
183, 184

, remodelling of the ECM and mobilisation of HGF 
185

 
91

. At the same time, 

Kupffer cells begin to release TNFĮ and IL-6 
64, 122

, which sensitise the hepatocyte 

population to the effects of HGF and EGF receptor ligand (TGFȕ, EGF, HB-EGF) 

binding 
96, 97

. The activation of the HGF and EGF receptors induces a number of 

intracellular signalling pathways resulting in rapid induction of more than 100 genes 
59

. 

After the initial burst release of growth factors from the ECM, the HSC population 

becomes activated and begins to release HGF, TGFȕ and ECM 
47, 91

 
93

 
74

 and the 
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hepatocyte population upregulates FGF1 and FGF2 expression 
56, 109, 186

. In the rat liver 

this leads to restoration of liver mass within 7 days 
57

. 

 

HGF is the liver�s key mitogen. When its action is blocked, liver regeneration is impaired 

187, 188
 and when it is delivered into normal liver it can stimulate a proliferative response 

and even hepatic enlargement 
95, 96

 
98, 99

. When it is delivered into partially 

hepatectomised liver or liver pre-treated with collagenase, this response is increased 
96

 
97

. 

EGF receptor ligands are also mitogenic to hepatocytes, when injected into normal liver 

they stimulate only a modest proliferative response, but when they are injected into 

partially hepatectomised liver or liver pre-treated with collagenase the proliferative 

response is significant 
97

 
74

. FGF1 and FGF2 are also mitogenic to hepatocytes 
110

, but 

their effects on liver mass have not been studied in detail.  

 

ECM remodelling is another important element in the liver�s regenerative cycle. In the 

early phase of regeneration the ECM acts as a reservoir for growth factors 
121

and its 

breakdown products exert a direct chemotactic effect 
28

. Whilst in the later stages of 

regeneration reorganisation of the ECM may act as a stop signal to the regenerative 

response 
74, 189

. 

 

The aim of this study was to investigate the effects of intrahepatic delivery of the liver�s 

key mitogens (HGF, EGF, FGF1 and FGF2) along with liver-derived ECM proteins via 

biodegradable polymer scaffolds, with the aim of inducing proliferation in normal hepatic 

parenchyma. This study was undertaken in rats and is presented in 2 parts.  Part 1 focuses 
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on implant development and a pilot study, using only growth factor delivery, to assess the 

implantation technique and make a preliminary assessment of the proliferative response.  

Part 2 compares different polymer-based growth factor and ECM delivery systems. 
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3.1 Part 1: Implant Development & Pilot Study 

 

3.1.1 Part 1 Introduction 

 

A range of polymer-based growth factor delivery systems have been described 
24

 
146, 190

. 

For this study a delivery system and manufacturing technique that provided sustained 

release and allowed a high level of protein loading without loss of bioactivity was 

desirable. Supercritical processing of poly (Į hydroxy acid) polymers using high pressure 

CO2 reduces the glass transition temperature (Tg) of the polymer allowing melting and 

protein incorporation at physiological temperatures 
25, 191, 192

. This method has been used 

to manufacture growth factor delivery systems that provide sustained release and have 

superior retention of bioactivity compared with alternative processing techniques and 

release technologies 
192, 193

. 

 

Takimoto et al described implantation of a non-biodegradable polypropylene cone into 

rat liver 
174

. In that study a 1 cm x 2 cm cone was pushed through the middle lobe of the 

liver and locked in place with extra-hepatic upper and lower stabilising discs. For this 

study a smaller implant that could be implanted into any lobe and did not require external 

stabilisation was required.  

 

Part 1 of this study was undertaken in 2 steps: step 1 implant development and step 2, a 

pilot study. The objective of the implant development process was to design a polymer-

based growth factor delivery system based on choice of biomaterial, size of implant, 
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processing technique and implantation method and then develop and optimise a surgical 

protocol for polymer scaffold implantation, using cadaveric and terminal anaesthetic 

studies, before embarking on survival surgery. The objectives of the pilot study were to 

assess the implantation technique using survival rates, liver weights and serum liver 

function, and to perform a preliminary characterisation of the liver- implant interaction 

over 14 days, using H&E staining and MIB-5 immunohistochemistry (IHC) as a 

proliferative marker. Control animals underwent a sham procedure or received a plain 

polymer implant. An overview of the study design is shown in figure 3.1. 

 

 

Figure 3.1 Implant development and pilot study design 
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3.2 Materials & Methods  

 

3.2.1 PDLLA Implant Manufacture 

 

Porous PDLLA cylinders were manufactured as previously described 
150

. In brief, to 

manufacture a plain PDLLA implant, 130 mg of PDLLA (mw 52 Polyscience Inc) was 

placed in a 1cm x 1 cm poly (tetrafluoroethylene) (PTFE) mould, melted using a 230 bar 

pressure of CO2 at 35º C for 60 min followed by a 60 min decompression. The 1 cm x 1 

cm porous PDLLA cylinder was then machine cut on a Boley lathe at 3000 rpm (Boley) 

down to a 3 mm x 4 mm porous cone and stored at 4º C until implantation (Appendix 1). 

 

To manufacture a growth factor loaded PDLLA implant,130 mg of PDLLA was blended 

with a growth factor solution (0.4 ȝg/ml of recombinant human (rh) HGF, 20 ȝg/ml  rh 

EGF, 2 ȝg/ml rh FGF1 and  2 ȝg/ml rh FGF2  (Autogen Bioclear Ltd)). The polymer-

growth factor blend was freeze dried, placed in the PTFE mould and supercritically 

processed in CO2. The growth factor loaded PDLLA cylinder was machine cut as above. 

Before implantation each cone was centrifuged at 100 g with a 8 ȝl solution containing 

0.4 ȝg of HGF, 0.4 ȝg of EGF, 0.4 ȝg of FGF1 and 0.4ȝg of FGF2 for 5 min, freeze dried 

at  -20º C and stored at 4º C until implantation (Table 3.1). 
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Table 3.1 Growth factor dosage for the pilot study  

Growth Factor Supercritically Incorporated Surface Adsorbed Total 

HGF 30 ng 400 ng 430 ng 

EGF 550 ng 400 ng 950 ng 

FGF1 170 ng 400 ng 570 ng 

FGF2 170 ng 400 ng 570 ng 

 

3.2.2 Implant Characterisation: Micro CT  

  

ȝCT images of implants were obtained using a high resolution ȝCT system (µCT 40, 

Scanco Medical). Scaffolds were mounted on a stage within the imaging system and 

scanned at 55 kV with a current of 143 mA.  Samples were scanned at 12 µm resolution 

with an integration time of 300 msec to produce three dimensionally reconstructed 

images. Raw tomographic images were thresholded to remove background data, and 

porosity and pore diameter were calculated using Scanco image analysis software. 

 

3.2.3 Animals 

 

The pilot study was approved by the U.K. Home Office and conducted in accordance 

with protocols laid out in Project Licence PL 40/2880. 70 adult male Wistar rats (Charles 

River) (200-300 g) were housed in the Biomedical Sciences Unit of the University of 

Nottingham, given access to standard laboratory rat chow and water ad libitum and 

maintained in a standard 12-hour light-dark cycle.  
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3.2.4 Anaesthetic Protocol  

 

Animals were anaesthetised in a closed box using 1.5% isoflurane and oxygen. The 

unconscious rat was weighed and a given a subcutaneous injection of buprenorphine (2.5 

mg/kg). The animal was then transferred on to a warming mat where anaesthesia was 

delivered via a face mask. Depth of anaesthesia was assessed by confirming a negative 

response to a painful stimulus (squeezing web space between toes of the hind feet) and 

monitored throughout surgery by assessing respiratory rate and response to painful 

stimuli. 

 

3.2.5 Operative Technique 

 

The abdomen was shaved, cleaned with 10% aqueous betadine and draped. A 2 cm upper 

midline abdominal incision was made and using bilateral subcostal compression the 

middle lobe delivered. Holding the middle lobe between the thumb and index finger a 1 

mm capsular incision was made on the anterior surface of the lobe to a depth of 0.5 mm 

using a number 11 scalpel blade. The cone was then implanted into the liver so that its 

edges sat below the capsule. Haemostasis was achieved where necessary by gentle 

compression with a cotton bud. The lobe was then returned to the abdomen, the 

abdominal cavity inspected and the abdominal wall closed in layers with 3/0 vicryl on a 

cutting needle. The animal was recovered on a warming mat, weighed and housed under 

standard conditions with buprenorphine given for 2 days post-operatively. In those 
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animals undergoing a sham procedure an upper midline incision, middle lobe delivery 

and liver capsule incision was performed.  

 

3.2.6 Necropsy Protocol 

 

At allocated time points the animals were anaesthetised (section 3.2.4) and weighed.  

Blood samples were collected by cardiac puncture and the animals sacrificed with an 

intra-cardiac bolus of phenobarbital. After death was confirmed (loss of light reflex and 

heart beat), a full length midline abdominal incision was made, the liver was dissected 

from surrounding tissue and removed. The total liver weight was recorded and the livers 

prepared for histology. 

 

3.2.7 Liver Weight Analysis 

 

The growth of liver tissue was assessed using the following equation: 

 

Equation 1 

 

Liver body weight ratio (LBW) = 
Total liver weight

Body weight at termination
 

 

 

 

 73



3.2.8 Liver Function 

 

Serum aspartate aminotransferase (AST) and total bilirubin were measured using a Vitros 

chemistry plate analyser (Ortho-Clinical Diagnostics, Johnson & Johnson) as described in 

Vitros Chemistry Publications 815 9931, 843 3815. 

 

3.2.9 Processing & Histology 

 

At sacrifice the livers were removed and fixed in 10% phosphate buffered formalin 

(Sigma), stored for up to 1 month and processed on a vacuum tissue processor (Leica 

Microsystems) (Appendix 3). Paraffin sections were stained with haemotoxylin & eosin 

(H&E) for routine histology. 

 

3.2.10 MIB-5 / Ki-67 Immunohistochemistry  

 

MIB-5 index was detected as previously described 
194, 195

 (Appendix 7). 4 ȝm sections 

were dewaxed in histoclear and immersed in 10 mM sodium citrate (pH 6.0), washed, 

incubated in H2O2 blocking solution, washed in dH2O, rinsed in 0.005 M TRIS/HCl 

Buffered Saline (TBS) pH 7.6 and incubated in a 1:100 Ki-67 antibody solution for 30 

mins (M7248, Dako Systems). Slides were then agitated TBS, incubated in dextran 

antibody solution (Dako Systems), washed, incubated in DAB chromogen solution, 

washed, counterstained in Gill�s haematoxylin, washed and differentiated in 1% acid 
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alcohol. Finally the slides were washed, dehydrated in alcohol and transferred to alcohol 

and histoclear before mounting in DPX. 

 

3.2.11 Imaging and Analysis 

 

Histological evaluation was undertaken by a blinded independent pathologist (A. 

Zaitoun). H&E and IHC slides were imaged using a digital NanoZoomer (Hamamatsu, 

Photonics Ltd). Representative images were selected for presentation.  

 

3.2.12 Statistical Analysis 

 

Data was analysed using the SPSS. Data are expressed as the mean +/- standard 

deviation. The statistical significance of differences among groups was assessed by the 

independent Student t test or the one way ANOVA with Tukey post test as appropriate. P 

values less than 0.05 were regarded as statistically significant.  
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3.3 Results 

 

 

Figure 3.2 Photograph (left) and ȝCT reconstruction (right) of a machine cut PDLLA implant. Conical 

implants (base 3 mm x height 4 mm)  were machine cut from PDLLA cylinders foamed by supercritical CO2 

processing, yielding implants with a mean porosity of 30.8% and a mean pore diameter of 103.8 ȝm as 

determined by ȝCT reconstruction (right). 
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Figure 3.3 LBWs (calculated using equation 1) following sham procedure (white), plain polymer (light 

grey) and growth factor loaded cone (dark grey) implantation (+/- SD of mean) (n=3). There was no 

significant difference LBWs between the sham, plain polymer and growth factor loaded polymer groups.  
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Figure 3.4 Serum AST for the pilot study up to 14 days after implantation. Following sham procedure 

(white), plain polymer (light grey) and growth factor loaded cone (dark grey) implantation (+/- SD of 

mean) (n=3). There was no significant difference in serum AST levels between groups. Serum bilirubin 

was undetectable for the duration of the study. 
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Figure 3.5 H&E staining of PDLLA scaffolds implanted into rat liver for the pilot study. Low power 

demonstrating a scaffold implanted into the medial lobe (top) and higher power demonstrating the porous 

scaffold and surrounding parenchyma at T0 (bottom). Following implantation, the porous cones compressed 

the surrounding liver tissue and erythrocytes filled the pores. Original magnification top 1.25X and bottom 

2.5X. 
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Figure 3.6 H&E of plain polymer (left) and growth factor loaded (right) scaffold implanted livers at up to 

14 days after implantation. By day 2 a band of inflammation surrounded each implant; by day 5 the band of 

inflammation had decreased in size and had become well demarcated and by day 7 there was evidence of 

cell migration / ECM deposition in the pores of the growth factor loaded scaffolds (arrowed). Cell 

migration / ECM deposition was present in all scaffolds at day 14. Original magnification 2.5X. 
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Figure 3.7 MIB-5 IHC of rat spleen (left) and peri-implant parenchyma 4 days after implantation of a 

growth factor loaded scaffold into normal liver (right). MIB-5 positive nuclei are stained brown & 

peroxidase activity is stained blue. MIB-5 positive nuclei were present in the control tissue but despite 

changes on H&E staining of the implanted liver tissue that were consistent with active mitosis no MIB-5 

stained cells present on any of the samples for the duration of the study. Original magnification 20X. 
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3.4 Discussion 

 

Supercritical processing of PDLLA exhibits high protein loading and sustained release 

kinetics 
25, 191, 193, 196

. Growth factor containing PDLLA scaffolds were used for direct 

implantation into the middle lobe of anaesthetised rats. Pre-process loading and direct 

surface adsorption allowed the production of implants that contained a total of 430 ng of 

HGF, 950 ng of EGF, 570 ng of FGF1 and 570 ng of FGF2. 

 

Following a series of cadaveric studies a 3 mm x 4 mm cone was selected because it 

could be implanted easily without parenchymal fracture. The surgical protocol was then 

developed and optimised. A further series of terminal anaesthetic studies were undertaken 

to ensure that the cones could be implanted safely and to identify and resolve any peri-

operative complications (haemorrhage, parenchymal fracture and implant migration).  

 

The study describes a method of intrahepatic scaffold implantation that is feasible and 

well tolerated. In the pilot study there were no surgical or anaesthetic complications and 

all animals recovered and survived until the allocated time points.  

 

Liver and body weight analysis did not detect any difference in LBW between the sham, 

polymer only or growth factor loaded groups. In future studies the implanted lobe weight 

will be measured to improve the sensitivity of the liver weight analysis. 
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Isolated increases in serum AST occurred in both implantation groups. The increase in 

AST after implantation resulted from mobilisation of the liver and parenchymal trauma 

during capsule incision. Later elevation of serum AST may have related to peri-implant 

inflammation. 

 

Histology confirmed successful implantation of the cones into the middle lobe of the 

liver. There were no episodes of implant migration. Implantation of plain polymer and 

growth factor loaded cones resulted in an initial inflammatory reaction that resolved with 

time and was followed by cell migration and ECM deposition into the pores of the 

scaffolds.  There was no evidence of inflammation in the sham group, although the 

capsule incision site was difficult to localise by day 3. The pattern of inflammation was 

similar in the plain polymer and growth factor loaded implants. Cell migration / ECM 

deposition was present in the pores of the growth factor loaded scaffolds by day 7 and 

was present in both scaffold types by day 14. 

 

At this stage the significance of peri-implant inflammation was unclear. Liver 

regeneration is a multi-step process requiring �priming� of the hepatocyte population, and 

so some peri-implant inflammation may enhance the activity of growth factors being 

released from the scaffolds. The inflammatory response therefore needs to be 

characterised further. Similarly cell migration and ECM deposition within the pores of 

the scaffolds is potentially beneficial as it increases liver-scaffold interaction and may 

encourage mobilisation of growth factors from the polymer matrix. The nature of this 

interaction also requires more detailed characterisation.  
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MIB-5 IHC failed to identify proliferating parenchymal or non-parenchymal liver cells in 

the sham, plain polymer or growth factor loaded implant groups despite changes in the 

parenchyma and scaffolds suggestive of proliferation. MIB-5 antibody binds to the Ki-67 

related nuclear protein present throughout the cell cycle and has previously been shown 

to correlate well with existing proliferative markers in rodent tissue 
194, 195

. Expression 

and localisation of the nuclear protein does vary between tissues and with fixation and 

processing protocols 
195, 197

. The size of the liver samples may have led to inadequate 

fixation of cells and a failure to detect the cell related nuclear antigen. In future studies 

modifications to the histology protocols will be made to ensure adequate fixation (see 

below) and BrdU incorporation will be undertaken in conjunction with the MIB-5 IHC to 

ensure that any proliferating cells are identified. 

 

The limitations in this study relate to release profiling and histological processing. 

Release profiling of the growth factors incorporated in this study was not performed. 

Whilst interpretation of in vitro release data has limited applicability to the in vivo setting, 

having an indicator that growth factors are present within the implant and that they have 

retained their bioactivity after processing would be desirable. An in vitro release study 

should therefore be performed prior to embarking on the next phase of the study. 

Limitations in the fixation and processing protocols were demonstrated in the pilot study. 

In future studies, liver will be cut up into 1 cm x 1 cm blocks before fixation and will be 

fixed in a vacuum for a minimum of 48 hours before processing, rather than fixing whole 

lobes of liver with the capsule still intact. These modifications along with the use of BrdU 
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IHC to quantify proliferation and IHC to characterise cell migration and ECM deposition 

and inflammation will be carried forward to the comparative study. 

 

3.5 Conclusion 

 

This study presents a new method of intrahepatic polymer scaffold implantation that is 

safe and well tolerated. Intrahepatic implantation of porous PDLLA stimulates a peri-

implant inflammatory reaction that resolves with time and is followed by cell migration 

and ECM deposition in the pores of the scaffold. No proliferative response was identified 

in the livers implanted with the polymer based delivery system.  
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 86

3.6 Part 2: A Comparative Study  

 

The doses of HGF, EGF, FGF1 and FGF2 (alone or in combination) required to induce a 

proliferative response in normal rat liver is not known. Several studies have explored the 

dose response for HGF and EGF delivery in rodent liver. These studies (summarised in 

table 3.2) have used different rodent species and strains, different infusion techniques, 

and different HGF and EGF preparations measured to different end points. The route, 

method and duration of delivery all impacted on the proliferative response. Growth 

factors have short half lives in vivo and are rapidly cleared 
99

. Delivering the growth 

factors directly into the liver parenchyma will therefore have a different effect to delivery 

into the portal or systemic circulation. These studies demonstrate that large doses of 

individual growth factors are required to induce pan-hepatic enlargement in normal liver, 

but that smaller doses can stimulate increases in proliferation when delivered into liver 

�primed� for regeneration 
97

 
96

. There are no reports of the effects of delivering multiple 

growth factors directly into the hepatic parenchyma.  

 



Table 3.2 summarises the results of 6 studies exploring the impact of intra-hepatic growth factor delivery in rodent liver. Where response to growth factor 

delivery is not known the section is blank

Outcome 

Proliferation 

Study Species & Strain Growth Factor Route Dose 

Measure Response 

Liver weight 

Patijns et al 

199895 

Mouse Ƃ  

C57BL/6 & NIH3 

rh HGF Portal vein 5 mg/kg/day for 5 days BrdU ç - 

 

ç x2.5 

Roos et al198 

1995 

Mouse ƃ 

 C3H/HeJ 

rh HGF + dextran sulphate Intraperitoneal 2.4 mg/kg/day for 3 days Mitotic bodies ç 

 

- ç x1.3 

Ishii et al99 

1995 

Rat ƃ  

Wistar 

HGF  Jugular Vein 100 ȝg/kg/day  up to 5 days BrdU ç x6 å - 

Liu et al96 

1994 

Rat ƃ  

Fisher 344 

rh HGF Portal Vein 100 ȝg/kg BrdU ç x4  - - 

Webber et al97 

1994 

Rat ƃ  

Sprague-Dawley 

rh HGF Portal Vein 80 ȝg 3H-thymidine ç x2 - - 

Fujiwara et al98 

1993 

Rat ƃ  

Sprague-Dawley 

h and rh HGF Femoral Vein 600 ȝg/kg BrdU ç - - - 

Webber et al97 

1994 

Rat ƃ  

Sprague-Dawley 

rh EGF Portal Vein 80 ȝg 3H-thymidine ç x2 - - 
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3.6.1 Implant Manufacture 

 

Supercritical processing using high pressure CO2 incorporates growth factors and other 

bioactive molecules into poly (Į hydroxy acid) scaffolds without major loss of bioactivity 

191, 193, 196
. In the pilot study growth factors were loaded prior to processing in high 

pressure CO2. As a result, polymer containing growth factor was lost during cut down to 

the conical implants. To improve the efficiency of this process an alternative method that 

retained the benefits of supercritical processing but eliminated the cut down step was 

developed.  

 

Work by Hamilton et al has shown that blending 50:50 PLGA with PEG400 reduced its Tg 

(figure 3.9) 
199

. At 5% PEG inclusion the Tg of PLGA is reduced to 35-40º C. A PLGA + 

5% PEG blend can then be mixed in high pressure CO2 and melted at temperatures that 

will not denature the growth factors or ECM proteins incorporated into it.  For the 

comparative study, growth factors and L-ECM were incorporated into PLGA + 5% PEG 

in high pressure CO2. This was milled into microparticles and sintered at 40º C in a 

conical teflon mould. This modification to the implant manufacturing step increased the 

efficiency of growth factor loading and enabled larger doses of individual growth factors 

to be incorporated. 
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Figure 3.8 Impact of PEG400 incorporation on the Tg of 50:50 PLGA. As the amount of PEG blended with 

PLGA increases the Tg of the polymer blend decreases. At 5% loading of PEG the Tg has fallen into a 

physiological range (35-40º C)199 

 

3.6.2 L-ECM Manufacture 

 

L-ECM is manufactured by decellularising slices of porcine liver. This produces a sheet 

made up of structural (collagens, glycoproteins and proteoglycans) and functional 

proteins, including growth factors 
43

. In vitro L-ECM has been shown to maintain 

hepatocyte viability and function 
144

 and promote sinusoidal endothelial cell 

differentiation 
30

. In vivo similar naturally derived ECM products have been used to 

stimulate regeneration without scarring in a range of tissues 
31

.   
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L-ECM was incorporated into the polymer cones by milling sheets of lyophilised L-ECM 

into sub 220 ȝm microparticles and mixing them with the polymer in high pressure CO2. 

The maximum amount of L-ECM that could be incorporated into the cone implants was 

20% by weight. Loading the L-ECM at levels above 20% resulted in softening of the 

implants at body temperature, which made implantation difficult. .  

 

The pilot study demonstrated that intrahepatic biodegradable polymer scaffold 

implantation was feasible and identified modifications to the implant design and study 

protocol necessary to optimise the data set. These modifications were implemented into 

the study design. The objectives of the comparative study were to characterise the 

interaction between the liver and the growth factor and or L-ECM loaded polymer 

implants and to compare the proliferative response induced in the surrounding 

parenchyma. Again the study was undertaken in rats. Animals were maintained for up to 

56 days post-implantation. Control animals underwent a sham procedure (laparotomy & 

capsule incision) or had a plain polymer or plain L-ECM cone implanted. An overview of 

the study design is shown in figure 3.9. 
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Figure 3.9 Comparative study design 

 

3.7 Materials & Methods 

 

3.7.1 Animals 

 

The Comparative Study was approved by the University of Pittsburgh�s Institutional 

Animal Care Use Committee (IACUC) and conducted in accordance with the protocols 

laid out in Licence 0609564. 150 adult male Wistar rats (Charles River) (200-250 g) were 

housed in the Animal Facility of the McGowan Institute for Regenerative Medicine, 

University of Pittsburgh, given access to standard laboratory rat chow and water ad 

libitum and maintained in a standard 12-hour light-dark cycle.  
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3.7.2 L-ECM Isolation 

 

Decellularised L-ECM was isolated as previously described 
38, 144

. Porcine liver was cut 

into 5 mm slices on a rotating blade and washed in de-ionized water. The liver slices were 

pressed and soaked in 0.02% trypsin / 0.05% EDTA acid (Gibco) at 37º C for 1 hour, 

washed in deionised water, repressed and mechanically agitated in a 3% Triton X-100 

solution (Spectrum Laboratory Products Ltd). The slices were repressed and 

mechanically agitated in 4% sodium deoxycholic acid (Spectrum) for 1 hour followed by 

irrigation in water. Hydrated sheets of L-ECM were finally vacuum-pressed into a teflon 

mould (Appendix 2) or lyophilised at -20º C, milled into sub 225 ȝm microparticles using 

a Wiley mill and sterilised in ethylene oxide (EtO) (Sterile Technologies Inc.). 

 

3.7.3 Polymer Implants 

 

To manufacture the polymer only implants PLGA (50:50, Alkermes) and PEG (mw 400 

Fluka) were mixed together at 95º C to produce a PLGA 5% PEG blend. This was milled 

and processed using a 230 bar pressure of CO2 at 35º C for 60 min followed by a 60 min 

decompression. The supercritically processed PLGA + 5% PEG blend was milled to sub 

250 ȝm microparticles, 8 mg of which was loaded into a 4 mm x 4 mm teflon mould 

(Appendix  2), sintered at 40º C for 3 hours and cooled for 30 min at 4º C before removal. 

The implants were stored at 4º C until implantation. 

 

To manufacture the growth factor loaded implants, the milled polymer blend was mixed 

with a growth factor solution (per implant = 8 mg PLGA 5% PEG: 2.5 ȝg rh HGF, 5 ȝg 
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rh EGF, 2.5 ȝg rh FGF1, 2.5 ȝg rh FGF2), freeze dried, processed, milled and sintered as 

described above. To manufacture the L-ECM loaded implants, milled polymer blend was 

mixed with milled liver-ECM (20% by weight), processed, milled and sintered, and to 

manufacture the growth factor and liver-ECM loaded hybrid implants, milled polymer 

blend was mixed with milled liver-ECM and the growth factor solution (per implant = 6.4 

mg PLGA 5% PEG + 1.6 mg L-ECM + 2.5 ȝg HGF, 5 ȝg EGF, 2.5 ȝg FGF1, 2.5 ȝg 

FGF2), freeze dried, processed, milled and sintered. 

 

Table 3.3 Growth factor dosages for the comparative study 

Growth Factor Total 

HGF 2.5 ȝg 

EGF 5.0 ȝg 

FGF1 2.5 ȝg 

FGF2 2.5 ȝg 

 

 

3.7.4 L-ECM Implants 

 

To manufacture the L-ECM only implants, 10 sheets of hydrated L-ECM were vacuum 

pressed into a teflon mould (Appendix 2). Implants were sterilised with EtO and stored 

until use. 
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3.7.5 Implant Characterisation: L-ECM Distribution  

 

To determine the distribution of L-ECM in the polymer implants, dyed, NaCl-labelled 

gelatine was substituted for the L-ECM. Milled PLGA + 5% PEG blend was mixed with 

milled dehydrated gelatin (sub 220 µm) containing red food dye and NaCl (80% polymer 

20% gelatin by weight). This was processed and sintered as described above, and the 

implant imaged by light microscopy and ȝCT. 

 

3.7.6 Implant Characterisation:  Release Profiling 

 

Growth factor loaded PLGA + 5% PEG implants were each incubated in 5 ml of PBS for 

5 days at 37º C in static conditions. The PBS was then aspirated and stored at -20º C for 

later analysis. HGF, EGF FGF1 & FGF2 levels in 5 day implant-conditioned PBS were 

determined using HGF and EGF Quantikine® ELISA kits as previously described 

(DHG00, DEG00, DFA00B & DFB50, R&D Systems). In brief, standards and 

appropriate dilutions of samples were incubated on HGF and EGF antibody coated 96-

well plates. The plates were washed, incubated with an HRP conjugated antibody, 

washed and incubated with a substrate solution (TMB) for 20-30 min before the reactions 

were terminated with 2 M H2SO4 and the optical density measured at 450 nm using a 

MRX plate reader (Dynex Technologies). Sample concentrations were determined by 

regression analysis of the standard curves. 
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To determine the bioactivity of implant-conditioned PBS, hepatocytes were cultured with 

implant-conditioned media, unconditioned media or media containing a known 

concentration of growth factors and the culture morphology compared. Hepatocytes were 

isolated from adult male Wistar rats as previously described (section 2.2.1) 
177

. Viable 

hepatocytes were plated at a density of 15000 cells/cm
2
 in T40 culture flasks for 2 hours 

in Williams E media containing 10% FCS. The cells were then washed with warmed PBS 

and the media replaced with 15 ml of either 2:1 hepatocyte culture media: unconditioned 

PBS, 2:1 hepatocyte culture media: conditioned PBS or 2:1 hepatocyte culture media: 

growth factor solution (PBS containing 2.5 ȝg rh HGF, 5 ȝg rh EGF, 2.5 ȝg rh FGF1, 2.5 

ȝg rh FGF2). The cultures were maintained in 5% CO2 at 37º C and imaged at 0, 12, 24, 

48 and 72 hours (representative images shown). 

 

3.7.7 Anaesthetic Protocol & Operative Technique 

 

The anaesthetic and operative protocols were the same for the pilot and comparative 

studies, with the addition of one pre-operative and two post-operative doses of 

gentamicin (5 mg/kg) for each animal. 

 

3.7.8 Necropsy Protocol 

 

A sterile intraperitioneal injection of 5-bromo-2-deoxyuridine BrdU (100 mg/kg) (Sigma) 

was given 24 hours prior to sacrifice. At allocated time points the animals were 

anaesthetised (as above) and weighed.  Blood samples were collected by cardiac puncture 

and the animals sacrificed with an intra-cardiac bolus of potassium chloride. After death 
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was confirmed (loss of light reflex and heart beat), a full length midline abdominal 

incision was made, the liver dissected from surrounding tissue and removed. The total 

liver and middle lobe weights were recorded and the livers prepared for histology. 

 

3.7.9 Liver Weight Analysis 

 

In addition to the LBW, the growth of liver tissue was assessed using the following 

equation: 

 

Equation 2 

Median : total liver weight ratio (MTR) = 
Median lobe weight 

Total liver weight
 

Middle Lobe Weight 

Middle:   

 

3.7.10 Processing & Histology  

 

At sacrifice the livers were removed, cut into 1 cm x 1 cm squares, fixed in 10% 

phosphate buffered formalin for 24 hours in a vacuum at 37º C and stored for up to 1 

month. Livers were then processed on a vacuum tissue processor as for the pilot study 

(Appendix 3). 3 ȝm paraffin sections were stained with H&E for routine histology and 

Masson�s Trichrome to assess of ECM deposition (Appendix 4). 
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3.7.11 ED-1 Immunohistochemistry 

 

ED-1 positive cells were detected as previously described (Appendix 5)  
200

. 3 ȝm 

paraffin sections were de-waxed in histoclear, quenched in H2O2 and rinsed in dH20. The 

sections were incubated in 0.05 Tris for 5 min and in trypsin (1 mg/ml) for 15 min at 37º 

C. The sections were blocked, drained and incubated for 1hour at room temperature in a 

1:200 primary ED-1 antibody solution (MCA341R, Serotec). The sections were rinsed in 

0.1 M phosphate buffer saline containing 0.3% Triton X-100 and 0.1% sodium azide 

(PBST) and incubated in a 1:500 secondary antibody solution (AP192B, Chemicon) for 

30 min. The sections were rinsed in PBST and labelled with an Avidin-biotin complex 

(ABC) Vector Elite kit (Vector Laboratories) for 30 min and the sections were rinsed in 

PBST. Chromogen was applied for 10 min, rinsed in dH2O and counterstained in aqueous 

haematoxylin (Biomeda). Adult male Wistar rat spleen acted as the control. 

 

3.7.12 Desmin Immmunohistochemitry 

 

Desmin positive cells were detected as previously described (Appendix 6) 
201, 202

. 3 ȝm 

paraffin sections were dewaxed in histoclear, quenched in 3% H202 and rinsed in dH20. 

The sections were steamed for 20 min in retrieval buffer (Dako) cooled and rinsed in 

dH2O. Sections were blocked, drained and incubated in a 1:50 primary desmin antibody 

solution (SC-7559, Santacruz) for 1 hour at room temperature, rinsed in PBST and 

incubated for 30 min in a 1:500 secondary antibody solution (AP180B, Chemicon). The 

sections were rinsed in PBST labelled with ABC Vector elite kit for 20 min and rinsed in 
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PBST. Chromogen was applied for 10 min, rinsed in dH2O and counterstained in aqueous 

haematoxylin (Biomeda). 

 

3.7.13 BrdU Immunohistochemistry  

 

BrdU positive cells were detected as previously described (Appendix 8) 
202

.  3 ȝm 

paraffin sections were dewaxed in histoclear, washed, rinsed in dH2O and incubated in 10 

mM sodium citrate solution pH 6.0 for 23 min in a 650 W microwave. Sections were 

washed and incubated in a H2O2 blocking solution for 15 min, washed, incubated in 

buffer for 20 min, drained and incubated in a 1:200 primary BrdU antibody solution 

(M0744, Dako). The sections were then washed in 0.005 M TRIS/HCl pH 7.6 buffered 

saline, incubated in secondary antibody (K5001, Dako)  for 30 min, jet washed in TBS, 

incubated in Dako HRP streptAvidin for 30 min, jet-washed in TBS, incubated in DAB 

solution for 10 min, washed and counterstained with haematoxylin. Rat spleen acted as 

the control. 

 

3.7.14 Imaging and Analysis 

 

Histological evaluation was undertaken by a blinded independent pathologist (G 

Michalopoulos & A. Zaitoun). H&E, Masson�s Trichrome and IHC slides were imaged 

using a digital nanozoomer (Hamamatsu). Representative images were selected for 

presentation. Liver tissue in growth into the scaffolds (cell migration and ECM 

deposition) on H&E staining was measured using Image J image analysis software 

(Rasband, W.S., Image J, U. S. National Institutes of Health, Bethesda, Maryland, USA, 
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http://rsb.info.nih.gov/ij/  version 1.38, 1997-2007). The percentage of liver tissue 

migration was calculated by subtracting the area of transparent polymer from the total 

implant area (Figure 3.10). This value was adjusted for the L-ECM containing implants. 

The peri-implant inflammatory band thickness was measured using the Nanozoomer 

Digital Pathology software (NDP viewer Version 1.06, Hamamatsu Photonics) and is 

expressed relative to the widest diameter of the implant on H&E staining. Where tissue 

had detached this was not included in the analysis. 

 

 

 

Figure 3.10 shows the data sequence generated by Image J analysis software that was used to measure liver 

in growth (cell migration and ECM deposition) in a porous scaffold. The implant area was first cut from a x 

2.5 jpeg file (left). This was converted into an 8-bit file (middle), thresholding and inversion of which 

allowed calculation of the total implant area and non-polymer area respectively (right). 

 

3.7.15 BrdU Count 

 

The proportion of BrdU-labelled hepatocytes on an individual sample was determined 

from counting the number of positively stained hepatocyte nuclei within a 0.04 mm
2
 peri-

portal area using the NDP viewer software at x40 magnification. The peri-implant 

parenchyma was subdivided into 3 bands each 1.5 mm thick, moving peripherally from 
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the implant edge (Figure 3.11). At least 6 peri-portal fields were counted per band. For 

samples with no scaffold implanted at least 6 random 0.04 mm
2
 peri-portal areas were 

counted. Hepatocyte nuclei were differentiated from other BrdU-labelled cells by their 

size and shape. Only cells with a circular morphology and nuclear diameter > 7 ȝm were 

counted. The number of BrdU-labelled hepatocytes per band is expressed as a percentage. 

To compare the BrdU-labelled non-parenchymal cells within the pores of different 

scaffolds representative images are shown.  

 

 

Figure 3.11 Example of an image map used to count BrdU positive nuclei in peri-implant parenchyma. A 

minimum of 6 0.04 mm2 peri-portal squares are sampled per band. A total of 3 bands are sampled per 

block. More detailed validation of the BrdU count protocol is presented in section 4.2.8. 

 

3.7.16 Statistical Analysis 

 

Data was analysed using SPSS. Data are expressed as the mean +/- standard deviation. 

Liver weights were assessed by one-way ANOVA with Tukey�s post-test. Liver tissue 

migration and inflammatory band thickness were analysed using independent student t-
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tests. BrdU counts were analysed using independent student t-tests. P values less than 

0.05 were regarded as statistically significant. 
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3.8 Results 

 

Figure 3.12 ȝCT reconstructions of the 4 mm x 4 mm conical implants used in the comparative study. Sub-

250 ȝm PLGA + 5% PEG microparticles were sintered in a teflon mould to yield scaffolds with a porosity 

of 34.8% and a mean pore diameter of 80 ȝm (left).  At 20% loading by weight the salt-labelled gelatin 

microparticles (in red) were distributed uniformly throughout the scaffold (right). 
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Figure 3.13 Average concentrations of HGF, EGF and FGF2 detected in 5 ml of PBS following a 5 day 

static incubation with a growth factor loaded PLGA + 5% PEG cone (+/- SD of mean) (n=2). HGF (white), 

EGF (light grey) and FGF2 (dark grey). The FGF1 ELISA failed to detect FGF1 in the standard, the cone 

incubation or an FGF1 control solution. 
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Figure 3.14 Hepatocyte culture morphology in unconditioned hepatocyte culture media, implant 

conditioned media and growth factor supplemented media at 0, 12, 24, 48 and 72 hours after addition of 

trial media. 12 hours after seeding, the hepatocytes in the implant-conditioned and growth factor 

supplemented media attached to the surface, flattened and had made contact with other cells. Hepatocytes 

in unconditioned media were rounded and there was no evidence of spreading. At 24, 48 and 72 hours after 

seeding, cultures in the conditioned and supplemented media contained interconnected colonies of 

hepatocytes with large nuclei. In the unconditioned media, hepatocyte spreading was less extensive, 

colonies were smaller and at 72 hours the hepatocytes had begun to detach and die. Original magnification 

20X.
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Figure 3.15 LBWs (calculated using equation 1) for the comparative study up to 14 days after implantation 

(+/- SD of mean) (n=3). Sham (white), polymer only (grey spot), L-ECM only (black spot), growth factor 

loaded (dark grey), L-ECM loaded (light grey) and hybrid (black). There were no significant differences 

detected between matched study groups for the duration of the study. 
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Figure 3.16 MTRs (calculated using equation 2) for the comparative study up to 14 days after implantation 

(+/- SD of mean) (n=3). Sham (white), polymer only (grey spot), L-ECM only (black spot), growth factor 

loaded (dark grey) L-ECM loaded (light grey), and hybrid (black). There were no significant differences 

detected between matched study groups for the duration of the study. 
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Figure 3.17 H&E for the 4 polymer-based scaffolds (polymer only, growth factor loaded, L-ECM loaded & 

hybrid) up to 14 days after implantation. By day 4 the pattern of ECM deposition, cell migration and the 

thickness of the band of inflammation around each scaffold differed between groups. There was limited 

interaction between the liver and the plain polymer cones. In the growth factor loaded, L-ECM loaded and 

hybrid scaffold implanted livers, liver-scaffold interaction was more pronounced, with greater rates of cell 

migration and ECM deposition and more prolonged peri-implant inflammation compared with the plain 

polymer implants. Original magnification 2.5X. 
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T0 Day 2 

 

 

Figure 3.18 H&E of polymer based scaffold implanted livers at T0 (left) & day 2 (right). At T0 erythrocytes 

filled the pores of the scaffolds and there was venous congestion and compression of the surrounding 

parenchyma (polymer only T0 top & middle left). In the L-ECM containing scaffolds the L-ECM 

microparticles stained with haematoxylin and could be easily visualised (L-ECM loaded T0 bottom left, 

arrowed). By day 2 there was a clearly defined band of inflammation and resolving necrosis surrounding 

all scaffolds. There was evidence of liver tissue migration in all scaffolds (polymer only day 2 top & middle 

right and L-ECM loaded bottom right) 
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Figure 3.19 H&E of plain-polymer implanted livers at days 7 and 56. By day 7 the band of necrosis 

surrounding the scaffold had resolved and only a thin band of fibrous tissue remained (polymer only day 7 

left). By day 56 the PLGA + 5% PEG had biodegraded with only residual fibrous tissue remaining at the 

implantation site (polymer only day 56 right).  

 

 

Figure 3.20 H&E of the polymer-based implants at day 7, demonstrating the patterns of tissue in growth 

(cell migration & ECM deposition) and inflammatory reaction around each scaffold. In the plain polymer 

scaffolds (top left) there was limited tissue in growth and the peri-implant inflammatory reaction had 

resolved by day 7. The presence of growth factors (top right) and L-ECM (bottom left) increased tissue 

migration into the scaffolds and prolonged the peri-implant inflammatory reaction. When delivered 

together via a hybrid scaffold they had an additive effect resulting in a faster rate of tissue migration and a 

more prolonged peri-implant inflammatory reaction (bottom right). 
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Figure 3.21 H&E of polymer-based implants demonstrating the neovascular and inflammatory changes 

occurring within the pores of the scaffold and in the surrounding parenchyma.  In the growth factor loaded, 

L-ECM loaded and hybrid scaffold implanted livers there was angiogenesis (arrowed) in the band of 

inflammation surrounding the scaffolds by day 4 (growth factor loaded day 4 top left) and within the pores 

of the scaffolds by day 7 (L-ECM loaded day 7 top right). Angiogenesis was seen throughout the medial 

lobe of the L-ECM loaded implant at day 28 (L-ECM loaded day 28 bottom left). Granulomas (arrowed) 

were present in all the polymer based implants by day 14 (hybrid day 10 bottom right). 
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Figure 3.22 Results of image analysis (as described in section 3.7.14) used to quantify cell migration and 

ECM deposition for the different polymer-based scaffolds up to 14 days after implantation. The values are 

expressed as a percentage of the total implant area (+/- SD of mean) (n=3) and were adjusted for the L-

ECM containing implants. Polymer only (white), growth factor loaded (dark grey), L-ECM loaded (light 

grey) and hybrid (black). For each polymer the percentage of tissue present within the implant area 

increased with time up to day 10. The proportion of tissue present in the L-ECM and growth factor loaded 

implants exceeded the polymer only implants by day 7. The amount of tissue present in the hybrid implant 

exceeded the polymer only by day 4 and L-ECM loaded implants and the growth factor loaded implants by 

day 7. There were no significant differences detected between the growth factor and L-ECM loaded 

polymer implanted livers. *P < 0.05 compared with the polymer only scaffolds, **P < 0.05 compared with 

the growth factor loaded scaffolds and ***P < 0.05 compared with the L-ECM loaded scaffolds. 
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Figure 3.23 Peri-implant inflammatory band thickness for the different polymer-based scaffolds at days 4, 

7, 10 and 14 after implantation. The values are expressed as an index relative to the maximum implant 

diameter of that section (+/- SD of mean) (n=3). Polymer only (white), growth factor loaded (light grey), L-

ECM loaded (dark grey) and hybrid (black). There was no significant difference detected between the 4 

groups.  
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Figure 3.24 Masson�s trichrome staining of the scaffold implanted livers at day 7. Collagen is stained 

green, cytoplasm, muscle and erythrocytes are stained red and nuclei are stained blue / black. Polymer only 

(top left), growth factor loaded (top right), L-ECM loaded (bottom left) and hybrid (bottom right). Collagen 

staining was greatest in the L-ECM containing scaffolds (L-ECM loaded & hybrid).  



 113

 

 

Figure 3.25 ED-1 IHC of the polymer based scaffolds in the polymer only day 28 (top left), growth factor 

loaded day 14 (top right), L-ECM loaded day 28 (bottom right) and hybrid day 14 (bottom right) scaffold 

implanted livers. ED-1 positive nuclei stain brown. ED-1 positive cells were seen in the band of 

inflammation surrounding all implants at day 4 and within the pores of the L-ECM containing implants 

from day 7. After day 7 Few ED-1 positive cells were identified within the polymer only or growth factor-

loaded implants. In the L-ECM containing implants, ED-1 positive cells accumulated around the L-ECM 

microparticles. More ED-1 positive cells were seen in the hybrid implants than in the L-ECM only implants 

at day 7. Control tissue (rat spleen) not shown. 
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Figure 3.26 Desmin IHC of the polymer based scaffolds in the polymer only day 28 (top left), growth factor 

loaded day 14 (top right), L-ECM loaded day 28 (bottom right) and hybrid day 14 (bottom right) scaffold 

implanted livers. Desmin positive cells stain brown. Desmin positive cells were seen in the band of 

inflammation surrounding all implants at day 4 and within the pores of all the implants by day 7.  More 

desmin positive cells were seen in the growth factor loaded and L-ECM loaded implants than in the 

polymer only implants. Desmin positive cells were distributed uniformly throughout the pores of the 

growth factor and L-ECM loaded implants. More desmin positive cells were seen in the hybrid implants 

than in the growth factor or L-ECM loaded implants at day 7. 
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Figure 3.27 H&E (top left), Masson�s trichrome staining (top right), ED-1 IHC (bottom left) and desmin 

IHC (bottom right) staining for the non-porous L-ECM only implant. The L-ECM only cones were non-

porous and as a result behaved differently to the porous polymer based scaffolds. Collagen fibres were 

present around the implant up to day 56. ED-1 positive cells were found at the implant surface. Desmin 

positive cells were found at the implant surface and throughout the peri-implant band of inflammation. 

From day 1 a band of inflammation and necrosis surrounded the implants (top left). ECM was deposited in 

the peri-implant parenchyma (top right). ED-1 (bottom left) and desmin positive cells (bottom right) were 

found at the interface between the liver and the implant, but the non-porous nature of the scaffold prevented 

rapid migration (bottom). 
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3.8.1 BrdU IHC: Implant versus Sham 

 

Implantation of polymer only cones caused a significant increase in the number of BrdU-

labelled hepatocytes around the implant at day 1. Implantation of the L-ECM cones 

caused a significant increase in BrdU-labelled hepatocytes at day 2, day 4 and day 10. 

There was no significant difference detected in the proportion of BrdU-labelled 

hepatocytes around the L-ECM loaded and growth factor loaded polymer cones 

compared with sham at each time point. Implantation of the hybrid cones caused a 

significant increase in BrdU-labelled hepatocytes at day 1 and day 4. 

 

3.8.2 BrdU IHC: Implant versus Control Scaffold 

 

There was no significant difference detected in the proportion of BrdU-labelled 

hepatocytes around the L-ECM loaded and growth factor loaded polymer cones 

compared with the polymer only implants at each time point. L-ECM only cones 

produced a significant increase in the number of BrdU-labelled hepatocytes compared 

with the L-ECM loaded polymer cones at day 4. Implantation of the hybrid cones 

produced a significant increase in the number of BrdU-labelled hepatocytes compared 

with the polymer only implants at day 4, and compared with the L-ECM loaded polymer 

implants at day 1 and day 4. When the parenchymal tissue distant to the implant was 

examined, no increase in the proportion of BrdU-labelling of hepatocytes could be 

detected for each of the study groups. At days 28 and 56 no increase in the proportion of 

BrdU-labelled hepatocytes could be detected around the polymer only, L-ECM only or L-

ECM loaded polymer implants. 
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Figure 3.28 Percentage of BrdU-labelled hepatocytes in band A of the peri-implant parenchyma up to 14 

days after implantation +/- SD of mean (n=3). Sham procedure (white), polymer only (grey spot), L-ECM 

only (black spot), growth factor loaded (dark grey), L-ECM loaded (light grey) and hybrid (black). *P < 

0.05 compared with the sham group, **P < 0.05 compared with the polymer only group and ***P < 0.05 

compared with the L-ECM loaded group. 
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Table 3.4 Percentage of BrdU positive hepatocytes in band A of the peri-implant parenchyma up to 14 days 

after implantation +/- SD of mean (n=3) 

 

 0 1 2 4 7 10 14 

Sham 

 0.18+/-0.16 0.89+/-0.31 0.09+/-0.16 0.20+/-0.17 0.36+/-0.16 0.27+/-0.00 0.18+/-0.16 

Polymer Only 

 0.98+/-0.41 2.60+/-0.56 0.94+/-0.95 0.75+/-0.57 1.07+/-1.14 0.36+/-0.31 0.40+/-0.19 

L-ECM Only 

 0.45+/-0.16 1.88+/-0.81 1.25+/-0.41 3.04+/-0.62 2.60+/-1.89 1.16+/-0.31 0.81+/-0.38 

Growth Factor Loaded 

 0.98+/-0.62 3.40+/-2.28 0.81+/-0.71 8.97+/-6.64 0.63+/-0.16 0.54+/-0.27 0.72+/-0.41 

L-ECM Loaded 

 0.27+/-0.27 0.63+/-0.41 1.07+/-0.38 1.07+/-0.65 0.89+/-0.68 1.07+/-0.27 0.27+/-0.00 

Hybrid 

 1.52+/-0.82 1.88+/-0.27 2.06+/-1.98 3.33+/-0.83 3.13+/-2.15 1.52+/-0.68 0.63+/-0.41 
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Figure 3.29 BrdU IHC of sham (top left), polymer only (top right), L-ECM only (middle left), growth factor 

loaded (middle right), L-ECM loaded (bottom left) and hybrid (bottom right) livers 4 days after 

implantation. BrdU positive nuclei stain brown, peroxidase activity stains blue. There were significant 

numbers of BrdU stained hepatocytes at day 4 in the L-ECM only and hybrid scaffolds. BrdU positive 

hepatocytes were also observed in 2 of the 3 growth factor loaded scaffold implanted livers. 



 

Figure 3.30 BrdU IHC of a hybrid scaffold implanted liver 4 days after implantation demonstrating that 

BrdU staining of hepatocytes and non-parenchymal cells was limited to band A adjacent to the implant. 
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Figure 3.31 Percentage of BrdU-labelled hepatocytes in bands A, B & C of the peri-implant parenchyma of 

a hybrid scaffold implanted liver 4 days after implantation +/- SD of mean (n=3).  *P < 0.05 compared with 

the sham group, **P < 0.05 compared with the polymer only group and ***P < 0.05 compared with the L-

ECM loaded group. 
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Figure 3.32 BrdU-labelled cells in the peri-implant band of inflammation at day 4. Polymer only (top left), 

growth factor loaded (top right), L-ECM loaded (bottom left) and hybrid (bottom right).  Non-parenchymal 

cells with BrdU positive nuclei were present in the peri-implant parenchyma of each polymer based 

scaffold. Non-parenchymal cell proliferation was not quantified. 
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3.9 Discussion 

 

HGF, EGF, FGF1 and FGF2 are all mitogenic to liver tissue and play a key role in the 

restoration of functional liver mass following PH 
59, 64, 74

. ECM remodelling is another 

important component in this regenerative cascade, acting as both a reservoir for growth 

factors and as template for tissue assembly 
74, 121

. To mimic the release profile of growth 

factors and remodelling of ECM proteins that occurs following PH, HGF, EGF, FGF1, 

FGF2 and L-ECM were delivered into the liver via intrahepatic biodegradable delivery 

devices.  

 

3.9.1 Implant Characterisation 

 

Sintered PLGA + 5% PEG cones loaded with 2.5 ȝg HGF, 5 ȝg EGF, 2.5 ȝg FGF, 2.5 ȝg 

FGF and 20% L-ECM by weight were implanted into the liver of rats. The sintered cones 

had a porosity of 34.8% and a mean pore diameter of 80 ȝm. In the pilot study the 

implants had a porosity of 30.8% and a mean pore diameter of 104 ȝm. By substituting 

L-ECM microparticles with NaCl labelled gelatin microparticles, it was possible to model 

the distribution of L-ECM in the sintered scaffolds. Because NaCl has a different density 

to the polymer and the gelatin, its can be identified on three-dimensional reconstruction 

of the micro x-ray analysis. This demonstrated that the sub-220 ȝm gelatin microparticles 

were well distributed throughout the scaffolds at 20% loading by weight. It is not known 

how inclusion of L-ECM or gelatin impacted on the porosity or pore diameter of the 

cones. 
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The implant size was increased from the pilot study. Sintering microparticles in a 3 mm x 

4 mm mould produced cones that were fragile and difficult to implant. The cone size was 

increased to 4 mm diameter x 4 mm height producing cones that were more robust. When 

this 4 mm x 4 mm cone design was trialled in cadaveric rat liver, it could be implanted 

without capsule fracture. It was not necessary to undertake further terminal anaesthetic 

studies. 

 

To confirm that growth factors were present in the scaffolds and that they had retained 

their bioactivity, an in vitro release study was undertaken. Growth factor loaded cones 

were incubated in 5 ml of PBS at 37ºC for 5 days under static conditions. A total of 304.9 

ng of HGF and 1511.0 ng of EGF and 1353.6 ng of FGF2 were detected by ELISA in the 

5 ml of PBS, which equated to 12%, 30% and 54% of the estimated total growth factor 

incorporated per cone. The FGF1 ELISA did not detect FGF1 in the control or test 

samples. These values were less than predicted, but more detailed profiling is required to 

accurately assess the variation in growth factor loading per scaffold.  

 

To determine whether the growth factors released in vitro had retained their bioactivity, 

primary hepatocytes were incubated in implant conditioned media and the culture 

morphology compared with a negative (unconditioned media) and a positive control 

(growth factor supplemented media) 
45

. The conditioned media stimulated the same 

proliferative response in the primary hepatocyte population as in the positive control 

media (growth factor supplemented) up to 72 hour after incubation, unlike the cells in the 

negative control media (unconditioned), which remained rounded, exhibited little 

evidence of spreading and by 72 hours had begun to loose viability and detach.  
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These release studies confirmed that HGF, EGF and FGF2 were present in the implants 

and that the growth factors released from the cones were bioactive. In future, additional 

characterisation of the release kinetics will be undertaken. To quantify the total amount of 

each growth factor incorporated into an implant more detailed in vitro release studies 

using different extraction buffers will be performed. The biodegradation of the scaffolds 

and release kinetics of the growth factors in vivo will also be determined by 

radioiodinating the scaffolds and growth factors and measuring the change in 

radioactivity over time 
203, 204

. 

 

3.9.2 Liver Weights 

 

In the pilot study no differences in LBWs were detected between study groups. To 

increase the sensitivity of the weight analysis for the comparative study, MTR was 

measured. As in the pilot study LBW remained constant for the duration of the study and 

no differences were detected between groups.  

 

There were also no differences detected in the MTRs for matched study groups. At day 

14 the MTR for the L-ECM only livers exceeded the MTR for the growth factor loaded 

and the hybrid livers and the MTR for the L-ECM loaded livers exceeded the MTR for 

the growth factor loaded livers. When LBW and actual total liver and medial lobe 

weights for the growth factor loaded and hybrid livers at day 14 were reviewed, all were 

below average (n=3 per time point), however histological examination could detect no 

abnormality to account for this trend. In order to confirm these differences the time points 

should be repeated.  
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3.9.3 Histological Characterisation 

 

In the pilot study, implantation of the plain and growth factor loaded porous PDLLA cones 

resulted in a peri-implant inflammatory reaction with tissue migration into the pores of 

the scaffold. This migration was present in the growth factor loaded implants at day 7 and 

in all the implants at day 14. In this study the polymer was changed to PLGA + 5% PEG, 

the growth factor dose was increased (at least 5 times for each growth factor) and L-ECM 

delivery was used for the first time. In addition the enhanced fixation and processing 

enabled clearer interpretation of the response and the later time points allowed 

characterisation of the liver scaffold interaction at 28 and 56 days after implantation. 

 

3.9.4 ECM Deposition & Cell Migration 

 

The potential for cells to migrate into the pores of a scaffold is influenced by the 

properties of the scaffold (the biomaterial, its architecture, the ligand binding capacity 

and its capacity for signal delivery) and the implantation site (its blood supply and 

migratory potential of the cells at the implantation site). In Takimoto�s study of non-

biodegradable porous collagen coated polypropylene scaffold implantation into normal 

rat liver, cells migrated into the pores of the scaffold sequentially. First HSCs migrated 

and deposited ECM in the pores; this was followed by neovascularisation. When a blood 

supply was established oval cells could migrate into the pore spaces and by 6 months 

differentiated liver tissue was present throughout the scaffold. In the absence of collagen 

the polypropylene scaffolds became surrounded in a mass of fibrous tissue and no tissue 

migration occurred 
174

.  
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A similar pattern of ECM deposition and cell migration was observed in this study. In the 

plain PLGA + 5% PEG implants, cell migration was slow in comparison to the L-ECM 

and growth factor loaded implants. By day 14 a narrow band of collagen surrounded the 

implant and only scanty cell migration had occurred. The incorporation of L-ECM and 

growth factors not only increased the rate and extent of cell migration into the scaffold 

but also influenced which cells migrated into the scaffold and the pattern of ECM 

deposition within the pores. When L-ECM and growth factor were used in combination, 

their effects were additive.  

 

Migration of ED-1 positive cells into the pores of the scaffolds was increased in the 

presence of L-ECM. In liver, Kupffer cells are the most likely source of ED-1 staining, 

although macrophages recruited from the peripheral circulation may also be labelled 
200

. 

PLGA and PEG are inert biomaterials and did not stimulate ED-1 positive cells to 

migrate. In contrast ECM breakdown products are known to exert a direct chemotactic 

effect on a range of cell types, including liver and inflammatory cells 
28

. Whilst growth 

factor incorporation did increase the rate of ED-1 positive cell migration in the L-ECM 

containing implants, in isolation they had no effect.  

 

Desmin positive cells migrated into all scaffolds. In liver, the HSC is the most common 

desmin positive cell, although fibroblasts recruited from the peripheral circulation may 

also have been labelled 
47, 201, 202

. In the presence of L-ECM and growth factors the rate of 

desmin positive cell migration was increased. When growth factors and L-ECM were 

delivered together they had an additive effect on desmin positive cell migration.  

 

Masson�s trichrome staining demonstrated that the pattern of ECM deposition also 

differed between implants. The addition of growth factors alone increased the density of 
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collagen deposition in and around the implant, but to a lesser degree than L-ECM 

incorporation, which caused extensive collagen deposition. When L-ECM and growth 

factors were delivered together the rate of ECM deposition increased. It was not possible 

to quantify the collagen deposition using image analysis because the density of collagen 

staining varied considerably between sections. In future collagen will be stained with 

pico-Sirius red which provides a more consistent level of staining 
205

. 

 

When the Masson�s trichrome staining is viewed alongside the desmin IHC it appears 

that ECM deposition occurs at the same rate as desmin positive cell migration. It is likely 

that these desmin positive cells (activated HSC) were responsible for the ECM 

deposition. It is unclear from this study how the presence of growth factors or L-ECM 

influenced HSC phenotype, but this has implications for the regenerative medicine 

strategy, as in their activated state HSC produce growth factors and ECM 
47

. 
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3.9.5 The Peri-implant Parenchyma  

 

A number of events occurred simultaneously in the band of liver tissue adjacent to the 

implants. These include: the resolution of the surgical wound, the local response to 

polymer breakdown, the regression of the implant margin as it biodegraded, the migration 

of cells from the peripheral circulation and different effects induced by growth factor and 

L-ECM release (proliferation, ECM deposition, anigiogenesis). In the plain polymer 

implanted livers this reaction was complete by day 7 and was not associated with 

significant ECM deposition or angiogenic changes. In the growth factor loaded group this 

reaction resolved by day 10 and in the implants that contained L-ECM (including the L-

ECM only implant) the peri-implant reaction persisted for longer. H&E, IHC and 

Masson�s trichrome staining demonstrate that this was largely an inflammatory process 

with ED-1 and desmin cell migration, proliferation and ECM deposition. How these 

events impacted on the effectiveness of the growth factor delivery system was unclear. 

 

3.9.6 Vascular Proliferation 

 

Vascular proliferation was observed within the pores and in the peri-implant parenchyma 

of all the polymer scaffold implanted livers. The presence of growth factors and L-ECM 

increased the rate and extent of vascular proliferation. It was not possible to determine 

whether the pattern of vascular proliferation was different between the L-ECM and 

growth factor containing scaffolds. HGF, EGF, FGF1 and FGF2 have all been shown to 

exert angiogenic effects in different tissues. The angiogenic effects of L-ECM or its 

breakdown products have not previously been documented. To characterise these 

angiogenic effects in greater detail image analysis could be undertaken to map capillary 

number and density and IHC could be undertaken to define the vessel morphology 
169

. 
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Vascular proliferation was also observed throughout the entire median lobe at day 28 in 

the L-ECM loaded polymer implanted livers. These changes were limited to the 

implanted lobe and were not pan-hepatic. They were not observed in the sham, polymer 

only or L-ECM only implants at 28 days. Again the mechanism is unclear and repetition 

of the time point is required. 

 

3.9.7 The L-ECM Only Implant 

 

The L-ECM only implant was not porous. It was therefore not possible to study migration 

into an L-ECM only scaffold or make a direct comparison with the porous polymer 

implants of its effects on the peri-implant parenchyma. Porosity was likely to enhance the 

level of liver-implant interaction by increasing the surface area available for ECM and 

growth factor mobilisation and by providing a route for cell migration. As a result in the 

L-ECM only implants there was no significant migration into the implants and the 

implants were still present at day 56. In the parenchyma adjacent to the implants there 

was an inflammatory reaction for the duration of the study, this band was made up of ED-

1 and desmin positive cells, collagen fibres and vascular tissue.  
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3.9.8 Proliferation 

 

BrdU incorporation detected by immunohistochemistry was used to measure the number 

of hepatocytes in the S-phase of proliferation. Work by Michlalopoulos et al 
96

 

demonstrated that hepatocyte proliferation following HGF infusion or PH occurs 

predominantly in the peri-portal regions of the lobule. In this study examination of the 

hepatocyte population therefore focused on the peri-portal regions adjacent to the 

implants. If there was a proliferative response detected in the peri-implant tissue then 

bands distant to the implant were also examined. The proliferative count was validated by 

a blinded liver histopathologist.  

 

Following capsule incision and cone implantation an increase in the number of 

proliferating hepatocytes was observed between time zero and day 1 for all study groups. 

This increase was restricted to the parenchyma adjacent to the capsule incision or cone 

implantation sites and was likely to be a direct response to the controlled liver injury. In 

the sham, plain polymer and L-ECM loaded polymer groups the number of proliferating 

hepatocytes then returned to baseline. In the L-ECM only implanted livers the number of 

proliferating hepatocytes continued to increase up to day 4 and then returned to baseline 

by day 14. In the hybrid implants there was an increase in proliferating cells up to day 4 

followed by a return to baseline by day 14. In all samples this proliferative response was 

limited to the band of parenchyma adjacent to the implant. The number of BrdU positive 

cells in the peripheral bands was not increased. 

 

The proliferative response that occurs in normal liver following HGF or EGFR ligand 

infusion is dose dependent. At lower doses HGF and EGFR ligand infusion can stimulate 
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an increase in proliferation but only sustained delivery of large doses of HGF has been 

shown to stimulate an increase in functional liver mass 
95

. 

 

When HGF or EGFR ligands are infused into liver that has been �primed� by chemical 

injury or by PH, lower doses of growth factor may achieve an increase in the proliferative 

rate of the hepatocyte population. In this study relatively low doses of HGF EGF, FGF1, 

FGF2 together with L-ECM were delivered directly into the liver parenchyma at the site 

of a controlled liver injury. This injury was associated with an inflammatory response 

that could have �primed� the hepatocyte population to the action of the growth factors 

being released. This may explain the increase in proliferating hepatocytes observed in the 

L-ECM only and hybrid implants at day 4 and day 7, and is supported by the peak in peri-

implant inflammation at that time point. As the peri-implant band of inflammation 

decreased in size, so did the proliferative count. When the inflammatory band was present 

in the absence of growth factors the proliferative response did not increase significantly 

and when growth factors were present in the absence of a modest inflammatory response 

no increase in proliferation was detected. 

 

The pattern of proliferation in the non-parenchymal cells within the scaffold followed a 

similar time course. The non-parenchymal cells present within the pores of the scaffold 

corresponded to the ED-1 and desmin positive cells labelled by IHC. As with the 

hepatocytes in the surrounding parenchyma the non-parenchymal cells proliferation 

peaked at day 4 and then decreased.  
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3.9.9 MIB-5 Immunohistochemistry 

 

In the pilot study MIB-5 IHC was used to identify hepatocyte and non-parenchymal cell 

proliferation. MIB-5 stained nuclei were present in the control tissue but despite changes 

that were consistent with proliferation, no MIB-5 staining was observed in the liver 

tissue. This led to concerns that proliferating cells were not being detected.  

 
Table 3.5 Proliferative markers in rat liver 194, 195, 206 

 
Proliferative Marker Mechanism Limitations 

BrdU IHC BrdU is incorporated into DNA during S-

phase and then detected by IHC 

-it requires pre-treatment with 

BrdU 

-The mutagenic properties of 

BrdU preclude use in survival 

studies 

- may be expressed by non 

cycling cells 

MIB-5 / Ki-67 IHC Ki-67 nuclear antigen is expressed in G1, S 

and G2 of the cell cycle (not G0) and then 

detected by IHC 

-there is variation in expression 

& localization 

-the half life varies 

-lost with different fixation and 

staining protocols 

proliferating cell nuclear 

antigen (PCNA) IHC 

PCNA is an auxiliary protein of DNA 

polymerases į and İ. Expression increases 

during the G1, peaks in S and declines 

during G2 & M-phases of the cell cycle. It 

is detected by IHC 

-it has variable expression 

- lost with different fixation and 

staining protocols 

-may be expressed by non 

cycling cells 

In situ hybridization 

(ISH) for histone mRNA 

Detects histone mRNA, the synthesis of 

which is restricted to the S phase of the 

cell cycle 

-Contamination & over fixation 

can reduce accuracy of detection 

 

 

 

A range of techniques have been developed to identify proliferation in rat tissue (table 

3.5). Of these the gold standard for detecting DNA synthesis in vivo is labeling of DNA 

by the modified pyrimidine analogue, a halogenated derivative of thymidine, BrdU 
194, 207, 

208
. BrdU is incorporated into DNA during the S-phase of DNA synthesis which can then 

be detected by IHC 
194

. The main disadvantage to this approach is that BrdU has to be 

administered prior to animal sacrifice. MIB-5 and PCNA IHC do not require pre-

treatment, however both antigens have variable expression and the sensitivity of the 

detection can vary with different fixation, processing and retrieval protocols. Similarly 
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mRNA ISH accurately detects cells in the S-phase of the cell cycle but the technique is 

less widely available and has variable sensitivity 
194

. 

 

In the comparative study BrdU IHC was used as the primary proliferative marker. In 

addition modifications were made to the fixation and processing protocols to ensure 

optimal fixation and processing. These modifications enabled successful detection of 

DNA synthesis in the control (rat spleen) and liver tissue. When samples that had stained 

positive for BrdU were then examined for MIB-5 no proliferation could be detected. This 

suggests that the hepatocyte and non-parenchymal cell MIB-5 / Ki-67 antigens were lost 

during fixation or processing. Further evaluation is required. 

 

3.9.10 Summary 

 

HGF, EGF, FGF1 and FGF2 are all mitogenic to liver cells 
56, 74

. In addition they exert 

chemotactic, motogenic and angiogenic effects in a range of tissues 
89, 102, 103, 107

. The 

release studies demonstrated that the growth factors are present within the scaffolds and 

that they had retained their bioactivity. As the polymer biodegrades these growth factors 

are mobilised and can bind to cell receptors. The growth factors also increase the ligand 

binding capacity of the biomaterial, allowing cells to attach and migrate into the scaffold 

pores. 

 

L-ECM may act in a number of ways. When present within the polymer scaffold it 

increases the ligand binding capacity, allowing cells to attach and migrate. The 

breakdown products of ECM are known to exert a direct chemotactic effect and in protein 

extraction studies, L-ECM has also been shown to contain a number of growth factors 

(HGF, EGF, VEGF, FGF2), although these levels varied considerably between 
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preparations (unpublished). As a result when L-ECM is broken down growth factors as 

well as ECM degradation products are mobilised and can act within the scaffold or on the 

surrounding liver parenchyma. Since this study was completed a porous L-ECM scaffold 

has been developed. Implantation of this scaffold would give a clearer idea of how L-

ECM influences cell specific migration. 

 

The limitations in this study relate to release profiling. Whilst this study demonstrated 

that growth factors were present in the growth factor loaded scaffolds and that the growth 

factors released from them in vitro had retained their bioactivity, data interpretation 

would be improved by more detailed characterisation of in vivo release from all implants. 

It is not known how the presence of L-ECM affects the release kinetics of the growth 

factors contained within the scaffolds (ECM proteins can bind growth factors and as a 

result they may delay the release of growth factors). This may explain the different 

patterns seen when growth factors and L-ECM are delivered alone and in combination. It 

is also unclear from this data how collagen deposition and cell migration affects the 

release of the growth factors. In future studies it would be useful to study the intra-

hepatic and systemic concentrations of individual growth factors.  

 

This study has demonstrated that: 

 

1. Intrahepatic implantation of porous PDLLA &  PLGA + 5% PEG scaffolds is 

feasible  

 

2. Intrahepatically implanted PLGA + 5% PEG and L-ECM biodegrade with time 
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3. Growth factor and L-ECM incorporation into porous PLGA + 5% PEG scaffolds 

enhances the rate of liver cell migration and ECM deposition with the pores of the 

scaffold and together they have an additive effect 

 

4. L-ECM incorporation promotes the migration of desmin positive cells and may 

exert a chemotactic affect on ED-1 positive cells into porous PLGA + 5% PEG 

scaffolds 

 

5. Growth factor incorporation promotes the migration of desmin positive cells and 

in the presence of  L-ECM accelerates the migration of ED-1 positive cells into 

porous PLGA + 5% PEG scaffolds 

 

6. Intrahepatic implantation of a growth factor & L-ECM loaded PLGA + 5% PEG 

scaffold stimulates a proliferative and inflammatory response in the adjacent peri-

implant parenchyma 

 

3.10 Conclusions 

 

Incorporation of growth factors and L-ECM into a PLGA + 5% PEG scaffold promotes 

liver cell migration and ECM deposition within the pores of the scaffold and stimulates a 

proliferative response in the hepatocyte and non-parenchymal cell population in the 

immediate peri-implant parenchyma.  



Chapter 4 Intrahepatic Growth Factor Delivery Following Partial Hepatectomy 

 

4.1 Introduction 

 

The rapid restoration of liver mass that occurs after PH is achieved by pan-hepatic 

hepatocyte proliferation. After 2/3 hepatectomy 95% of the hepatocyte population enters 

the cell cycle. This occurs in a wave of proliferation from the peri-portal to the peri-

central zone of each lobule. In the rat liver this wave of hepatocyte proliferation peaks 

after 24 hours and is largely complete by 72 hours 
59, 64, 74

. 

 

Table 4.1 summarises the results of previous studies that have examined the impact of 

growth factor delivery on hepatocyte proliferation following PH.  Webber demonstrated 

that infusion of HGF and EGFR ligands into the portal circulation after a 1/3 

hepatectomy led to an increase in hepatocyte DNA synthesis 
97

. Work by Ishii and 

Fujiwara showed similar effects when HGF was infused into the systemic circulation 

after 2/3 hepatectomy 
98, 99

. In Ishii�s study HGF infusion was associated with faster 

restoration of liver mass.  

 

Fausto hypothesised that the impact of exogenous HGF or EGFR ligand infusion on 

hepatocyte proliferation in hepatectomised liver was greater than that seen when infused 

into normal liver because the hepatocyte population had been �primed� for growth factor 

receptor binding either by TNF and IL-6 receptor binding or another start signal 
64

.  
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Table 4.1 summarises the results of 4 studies exploring the impact of intrahepatic growth factor delivery following partial hepatectomy. Where response to 

growth factor delivery was not stated the section is blank 

 

Outcome 

Proliferation 

Study Species & Strain Growth Factor Route Dose 

Measure Response 

Liver weight 

Ishii et al 

199599 

Rat ƃ 

Wistar 

HGF + 70% hepatectomy Jugular Vein 100 ȝg/kg/day  up to 5 days BrdU ç - ç x1.3 

Webber et al 

199497 

Rat ƃ 

Sprague-Dawley 

rh HGF 

+ 33% hepatectomy 

Portal Vein 80 ȝg 3H-thymidine ç x5 - - 

Fujiwara et al 

199398 

Rat ƃ 

Sprague-Dawley 

h and rh HGF 

+ 70% hepatectomy 

Femoral Vein 600 ȝg/kg BrdU  - - - 

Webber et al 

199497 

Rat ƃ 

Sprague-Dawley 

rh EGF 

+ 33% hepatectomy 

Portal Vein 80 ȝg 3H-thymidine ç x3-4 - - 
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In chapter 3 the development of an intrahepatic growth factor delivery system that provided 

combined release of the liver�s key mitogens was described. When this delivery system was 

implanted into normal liver it stimulated a proliferative response, increasing the rate of 

hepatocyte DNA synthesis in the parenchyma adjacent to the implant. The aim of this study was 

to determine how growth factor delivery from an intrahepatically implanted biodegradable 

scaffold affected the rate of hepatocyte DNA synthesis after PH. The study was undertaken in 

rats using the Higgins & Anderson model for 2/3 hepatectomy 
57

. The hybrid scaffold developed 

in chapter 3 was used to deliver the growth factors. A pilot cadaveric, terminal anaesthesia and 

short survival study was performed to optimise the study protocol. Scaffolds were implanted into 

2 groups. In the first group the scaffold was implanted at the time of PH (Simultaneous PH). In 

the second group the scaffold was implanted 2 days before the PH (Delayed PH). Animals were 

then maintained for up to 2 weeks after PH. Control animals underwent a PH and capsule 

incision or a sham procedure (laparotomy and capsule incision). Liver function was assessed by 

measuring serum AST and bilirubin. H&E staining was used to assess basic histology and 

proliferation was measured using BrdU incorporation detected by immunohistochemistry. In all 

groups T0 refers to the time of PH. 
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Figure 4.1 Partial hepatectomy study design  
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4.2 Materials & Methods 

 

4.2.1 Animals 

 

The study was approved by the University of Pittsburgh�s IACUC and conducted in accordance 

with the protocols laid out in Licence 0612048. 78 adult male Wistar rats (Charles River) (150-

250 g) were housed in the Animal Facility of the McGowan Institute for Regenerative Medicine, 

University of Pittsburgh, given access to standard laboratory rat chow and water ad libitum and 

maintained in a standard 12-hour light-dark cycle.  

 

4.2.2 PH Study Implant Manufacture 

 

To manufacture the hybrid scaffolds for the PH study PLGA (50:50) and PEG (mw 400) were 

mixed together at 95º C to produce a PLGA 5% PEG blend. This was milled mixed with milled 

L-ECM and the growth factor solution (per implant = 6.8 mg PLGA 5% PEG + 1.2 mg liver-

ECM + 2.5 ȝg HGF, 5 ȝg EGF, 2.5 ȝg FGF1, 2.5 ȝg FGF2), freeze dried and processed using a 

230 bar pressure of CO2 at 35º C for 60 min followed by a 60 min decompression. The 

supercritically processed hybrid blend was milled to sub 250 ȝm microparticles, 8 mg of which 

was loaded into a 4 mm x 4 mm teflon mould, sintered at 40ºC for 3 hours and cooled for 30 min 

at 4º C before removal. The implants were stored at 4º C until implantation. 
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Table 4.2 Growth factor dosages for the PH study 

Growth Factor Total 

HGF 2.5 ȝg 

EGF 5.0 ȝg 

FGF1 2.5 ȝg 

FGF2 2.5 ȝg 

 

4.2.3 Anaesthetic Protocol  

 

See Section 3.2.4 

 

4.2.4 Operative Technique 

 

The abdomen was shaved, cleaned with 10% aqueous betadine and draped. In those animals 

undergoing PH, a 4cm upper midline abdominal incision was made, the falciform ligament 

divided and using bilateral subcostal compression the middle lobe and left lobe were delivered. 

The middle and left lobes were ligated with 1/0 silk, divided, weighed and discarded. To implant 

the scaffold delivery device into the right lateral lobe, the lobe was held between the thumb and 

index finger, a 1 mm capsular incision was made on the surface of the lobe to a depth of 0.5 mm 

using a number 11 scalpel blade, and the cone was implanted so that its edges sat below the 

capsule. Haemostasis was achieved where necessary by gentle compression with a cotton bud. 

The abdominal cavity was inspected and the abdominal wall closed in layers with 3/0 vicryl on a 

cutting needle. The animal was recovered on a warming mat, weighed and housed under standard 

conditions with buprenorphine given for 2 days post-operatively. In those animals undergoing a 
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sham procedure an upper midline incision, right lateral lobe mobilisation and liver capsule 

incision was performed.  

 

4.2.5 Necropsy Protocol 

 

A sterile intraperitioneal injection of BrdU (100 mg/kg) was given 24 hours prior to sacrifice. At 

allocated time points the animals were anaesthetised and weighed.  Blood samples were collected 

by cardiac puncture and the animals sacrificed with an intra-cardiac bolus of potassium chloride. 

After death was confirmed (loss of light reflex and heart beat), a full length midline abdominal 

incision was made, the liver dissected from surrounding tissue and removed. The total liver and 

implanted lobe weights were recorded before the livers were prepared for histology. 
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4.2.6 Liver Weight Analysis 

 

In addition to the LBW (Equation 1), the growth of liver tissue was assessed using the following 

equation: 

 

Equation 3 

 

Implanted to total liver weight ratio (ITW) =
Implanted lobe weight

Total liver weight
 

 

4.2.7 Histology, H & E and BrdU Immunohistochemistry  

 

Samples were processed and stained for H&E and BrdU as described in sections 3.7.10 & 3.7.13. 

 

4.2.8 BrdU Count 

 

As in chapter 3 the proportion of BrdU-labelled hepatocytes on an individual sample was 

determined by counting the number of positively stained hepatocyte nuclei within a 0.04 mm
2
 

peri-portal area using the NDP viewer software at x40 magnification. The peri-implant 

parenchyma was subdivided into 3 bands (Figure 4.2) and only cells with a circular morphology 

and nuclear diameter > 7 ȝm were counted. The cumulative mean of hepatocytes per field in 

bands A, B & C for a sample block are shown in figure 4.3. The final number of BrdU-labelled 

hepatocytes per band is expressed as a percentage.  
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Figure 4.2 Image map for the BrdU scoring. Each block was divided into 3 bands (A, B and C). Each band was 1.5 

mm thick beginning at the implant edge, with up to 10 0.04 mm2 peri-portal squares sampled per band. 
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Figure 4.3 Cumulative mean of BrdU positive hepatocytes in a scaffold implanted liver (implant + PH) at day 2 post 

PH in bands A (Ƈ), B (Ŷ) & C(Ÿ) per field. At least 6 peri-portal fields were counted per band (n=3 per time point). 

For samples with no scaffold implanted at least 6 random 0.04 mm2 peri-portal areas were counted. 

 

 143



4.2.9 Liver Function 

 

Serum AST and total bilirubin were measured on a plate analyser in the Clinical Chemistry 

Department of the Children�s Hospital, University of Pittsburgh Medical Centre.  

 

4.2.10 Statistical Analysis  

 

Data was analysed using SPSS. Data are expressed as the mean +/- standard deviation. Liver 

weights and liver function were assessed by one-way ANOVA with Tukey�s post-test. BrdU 

counts were analysed using independent student t-tests. P values less than 0.05 were regarded as 

statistically significant. 
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4.3 Results 

 

 

Figure 4.4 Photographs of rat abdomens at necropsy following PH (left) and with a scaffold implanted 5 days after 

PH (right). The anterior abdominal wall has been excised and the scaffold implanted into the right lateral lobe.  

 

 

 

Table 4.3 Average resected lobe to total body weight ratio and percentage hepatectomy for the 3 study groups. There 

was no significant difference in size of hepatectomy between groups. 

 

 Resected Lobe : total body weight ratio Percentage average sham LBW (0.044) 

PH 0.030 +/- 0.003 68.0% 

PH + Implant 0.030 +/- 0.004 68.7% 

Implant + PH 0.028 +/- 0.004 65.4% 
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Figure 4.5 LBW (calculated using equation 1) up to 14 days after PH (+/- SD of mean) (n=3). PH (white), PH + 

implant (grey) and implant + PH (black). The average LBW in normal liver is 0.044 +/- 0.005.  At T0 (After PH) the 

average LBW was 0.018 +/- 0.003. In all groups LBW increased with time. By day 7 LBW was equal to the average 

sham LBW in all groups. The LBW in the PH animals was significantly greater than the LBW of the implant + PH 

animals at day 2. There were no other differences in LBW detected. *P < 0.05 compared with PH alone. 
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Figure 4.6 ITWs (calculated using equation 3) up to 14 days after PH (+/- SD of mean) (n=3). PH (white), PH + 

implant (grey) and implant + PH (black). In all groups ITW initially decreased after PH and then increased. At 12 

hours the ITW for the PH only animals was significantly greater than the ITW for the implant + PH animals. At day 

7 the ITW for the PH animals was significantly greater than the ITW for the PH + implant and the implant + PH 

animals. At day 14 the ITW for the PH animals was significantly greater than the ITW for the PH + implant animals. 

*P < 0.05 compared with PH alone. 
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Figure 4.7 Serum AST up to 14 days after PH (+/- SD of mean) (n=3). PH (white), PH + implant (grey) and implant 

+ PH (black). In all animals serum AST rose significantly following PH and returned to baseline levels in all 

animals by day 4. There was no significant difference in serum AST detected between groups for the duration of the 

study. No increase in serum bilirubin was detected for the duration of the study. 

 

 148



 

 

Figure 4.8 H&E of the PH + implant (top) and implant + PH (bottom) livers at T0, 2, 4 and 7 days after PH. In the 

PH + implant group: at T0 erythrocytes filled the pores of the scaffold and the surrounding parenchyma was 

compressed; at day 2 the scaffolds were surrounded by a band of inflammation and necrosis; at day 4 the band of 

necrosis had resolved and the band of inflammation was well demarcated.; by day 7 there was a dense peri-implant 

inflammatory reaction and marked ECM deposition and liver tissue migration in the pores of the scaffold. In the 

implant + PH group: at T0 the scaffolds were surrounded by a band of inflammation and necrosis; at day 2 the band 

of necrosis had resolved and the band of inflammation was well demarcated; at day 4 a dense band of inflammation 

surrounded the scaffold, there was ECM deposition and liver tissue migration in the pores of the scaffold; by day 7 

the peri-implant band of inflammation was resolving. Original magnification 2.5X. 
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Figure 4.9 H&E demonstrating mitotic, neovascular and inflammatory changes after PH. Hepatocyte mitosis was 

visible 12 hours after PH in all groups and remained visible for up to 7 days (PH + implant day 2, top left). Vascular 

proliferation was present in the implanted and non-implanted residual liver tissue 2 days after PH (implant + PH day 

2, top right). A well demarcated band of inflammation surrounded the PH + implant group of scaffolds from day 4 

(PH + implant day 4 , bottom left) and the implant + PH group of scaffolds from day 2 (implant + PH day 2, bottom 

right). Original magnifications top left 20X, top right 2.5X and bottom 10X. 
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PH + implant Implant + PH PH 

 

Day 2 

Day 4 

Day 7 

Day 1 

12 h 

T0 

Figure 4.10 BrdU IHC of single liver lobules in implanted and non-implanted lobes up to 7 days after PH. BrdU 

positive nuclei are stained brown. PH (left), PH + implant (middle) and implant + PH (right). The images are 

orientated so that the portal tracts are on the left and central veins are on the right. In the scaffold implanted livers 

the images are taken from band B. In all groups the number of BrdU stained cells increased up to 2 days after PH 

and then decreased. There were more BrdU positive cells in the non-implanted group at day 1 and in the implanted 

groups at day 2.   
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Figure 4.11 BrdU IHC of a non-implanted section of liver tissue 2 days after PH demonstrating the distribution of 

BrdU positive nuclei in relation to portal tracts and central vein. Hepatocyte proliferation advances in a wave from 

the peri-portal to the peri-central region. At each time 0.04 mm2 area of tissue lying between a portal tract and a 

central vein was sampled. 
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Figure 4.12 BrdU IHC of peri-implant liver parenchyma from the PH + implant (left) and implant + PH (right) peri-

implant parenchyma 2 days after PH in bands A, B and C. There were more BrdU positive hepatocytes in the bands 

closest to the implant.  
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Figure 4.13 BrdU staining of PH (top), PH + implant (middle) and implant + PH (bottom) at day 1 (left) and 2 (right) 

after PH. In the scaffold implanted livers the images are taken from band B. The peak of hepatocyte BrdU staining 

occurred 2 days after implantation. There were more BrdU stained hepatocytes in the non-implanted livers (PH) at 

day 1 and in band B of the implanted livers (PH + implant & implant + PH) at day 2. 
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Figure 4.14 Percentage of BrdU-labelled hepatocytes for the PH study up to 14 days after PH (+/- SD of mean) 

(n=3). PH only (white), PH + implant (grey) and implant + PH at 2d (black). The value stated for the implanted 

livers is the average for the 3 bands. At day 1 the percentage of BrdU positive hepatocytes in the non-implanted liver 

was significantly greater than implant + PH. At day 2 the percentage of BrdU positive hepatocytes in PH + implant 

group was significantly greater than the PH only group. There were no differences detected between groups for the 

remainder of the study. *p < 0.05 compared with the PH only group. 

 

Table 4.4 Percentage of BrdU positive hepatocytes in the peri-implant parenchyma up to 14 days 

after partial hepatectomy +/- SD of mean (n=3) 

 0 0.5 1 2 4 7 10 14 

Sham 0.18+/-0.16 0.89+/-0.82 0.89+/-0.31 0.09+/-0.16 0.18+/-0.16 0.45+/-0.16 0.27+/-0.00 0.18+/-0.16 

PH only 1.07+/-0.27 1.61+/-0.81 3.76+/-0.00 18.31+/-4.10 4.74+/-3.20 1.52+/-1.79 1.70+/-1.53 0.54+/-0.47 

PH + implant 1.22+/-0.23 0.98+/-0.85 2.03+/-1.77 28.17+/-1.50 1.85+/-1.62 1.40+/-1.13 0.39+/-0.40 0.98+/-0.91 

Implant + PH 1.28+/-1.40 2.21+/-0.83 2.33+/-0.47 31.55+/-7.51 1.22+/-1.17 0.49+/-0.19  
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Figure 4.15 Percentage of BrdU labelled hepatocytes in bands A, B & C of the PH + implant group at day 1. There 

were no significant differences detected. 
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Figure 4.16 Percentage of BrdU labelled hepatocytes in bands A, B & C of the implant + PH group at day 1. In band 

C the number of BrdU labelled hepatocytes was significantly less than the PH only livers. There was no significant 

difference between band A or B and the PH only livers. *P < 0.05 compared with the PH only group. 
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Figure 4.17 Percentage of BrdU labelled hepatocytes in bands A, B & C of the PH + implant group at day 2. In 

bands A & B the number of BrdU labelled hepatocytes was significantly greater than the PH only livers at day 2. 

There was no significant difference between band B and the PH only livers. In addition band B was significantly 

greater than band C. *P < 0.05 compared with the PH only group and **P < 0.05 compared with band C. 
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Figure 4.18 Percentage of BrdU labelled hepatocytes in bands A, B & C of the implant + PH group at day 2. In band 

B the number of BrdU labelled hepatocytes was significantly greater than the PH only livers. There was no 

significant difference between band A or C and the PH only livers. *P < 0.05 compared with the PH only group. 
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4.4 Discussion 

 

When exogenous HGF and EGF receptor-ligands are infused into liver that has been �primed� 

for regeneration, they induce an increase in hepatocyte DNA synthesis 
96-99

. The aim of this 

study was to determine if delivery of HGF, EGF, FGF1 and FGF2 from an intrahepatically 

implanted PLGA + 5% PEG + 15% L-ECM scaffold could increase hepatocyte proliferation and 

enhance liver regeneration in  liver �primed� by 2/3 hepatectomy. 

 

4.4.1 Study Design & Pilot  

 

In chapter 3 the development of an intrahepatic growth factor delivery device was described. In 

order to establish how intrahepatic growth factor delivery impacted on liver regeneration after 

PH, several modifications to the scaffold design and implantation technique were required. First 

the implantation site was changed. In chapter 3 the scaffolds were implanted into the medial lobe 

of the rat liver. Because the left and medial lobes of the rat liver are resected in the Higgins 2/3 

hepatectomy model, the scaffold had to be implanted at an alternative site 
57

. The right lateral 

lobe was the largest and most accessible of the remnant lobes and following a series of cadaveric 

and terminal anaesthetic studies was identified as the best site for scaffold implantation for the 

PH study. 

 

The polymer: L-ECM ratio was also modified. In order to implant the scaffold into liver tissue 

the sintered cone must not deform. The Tg of PLGA + 5% PEG is between 35-40º C as a result 

when is handled for long periods it softens. The rate of softening is increased when protein is 

incorporated into the scaffold blend because this reduces the total polymer per implant. Scaffold 
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softening was not a problem in the comparative study because the implants could be implanted 

into the medial lobe of the rat liver quickly with minimal handling. Scaffold softening was a 

problem when implantation of the 20% L-ECM scaffold into the right lateral lobe was piloted. 

To overcome this, the proportion of L-ECM loaded per scaffold was reduced to 15% by weight. 

This adjustment increased scaffold strength and allowed implantation without deformation. In 

future to preserve the L-ECM loading capacity of the scaffolds, alternative implantation and 

delivery systems could be developed.  

 

Younger animals were used for the PH study; as a result the average pre-operative body weight 

for the PH study was 187.3 +/- 22.1 g versus 260.1 +/- 32.0 g for the comparative study. This 

reduction in body weight made PH and right lateral lobe mobilisation easier. The sex, strain and 

husbandry conditions were the same in both studies. When the implantation regimes were 

piloted, the animals tolerated both PH and scaffold implantation well. There were 2 intra-

operative deaths. One was due to an anaesthetic complications and the other was due to 

uncontrolled liver haemorrhage from a large liver capsule tear. There were no post-operative 

deaths. 

 

4.4.2 Liver Weight Analysis 

 

In the Higgins & Anderson model for PH, three of the five liver lobes are excised. The remaining 

lobes then grow to restore liver mass. The majority of liver mass is restored by day 3 and 

regeneration is usually complete by day 7. This model provides a highly reproducible surgical 

resection 
74

 and this was confirmed in the resected lobe weight analysis. 
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In all groups LBW returned to pre-PH levels by day 7. A significant difference was detected 

between the LBW of the PH only group and the simultaneous PH group at day 2. Review of the 

liver and body weights for this time point demonstrated that there was no significant difference 

between the average liver weight for the simultaneous PH group and the other groups, but that 

the average body weight for the simultaneous PH group was greater. It is unclear whether this 

reduction in LBW reflects impaired regeneration in the implanted lobe. Repetition of this time 

point is therefore required. 

 

A change in inter-lobe weight distribution after PH occurs as the liver regenerates and 

reorganises. How the liver mass redistributes after PH has not previously been described. In this 

study the pattern of ITW change was consistent between study groups; initially dropping after 

PH and then rising to a plateau by day 7. Implantation of a scaffold into the right lateral lobe was 

associated with a rightward shift in the growth curve (figure 4.19). This shift was statistically 

significant at 12 hours, 7 and 14 days after PH. It is unclear whether this reflects impaired 

regeneration or whether the scaffold implantation caused a change in the inter-lobe weight 

distribution. Again repetition of the time points is required. 
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Figure 4.19  ITW curves for the different study groups up to 14 days after PH. PH only (Ŷ), PH + Implant (Ÿ) and 

Implant + PH at 2d (ź). Note the rightward shift and reduced plateau of the scaffold implanted right lateral lobes. 

 

4.4.3 Liver Function 

 

After PH, AST rose significantly in all groups and serum bilirubin remained constant. The 

increase in AST at day 2 was expected and reflected the timing and extent of the parenchymal 

injury. Whilst there was no difference in AST levels detected between study groups, AST 

reached its highest levels in the simultaneous PH group and was lowest in the delayed PH group. 

 

4.4.4 Basic Histology  

 

The appearances of the H&E stained scaffold implanted liver after PH mirrored that of the H&E 

staining of hybrid scaffolds implanted into normal liver (chapter 3). The scaffolds were initially 

surrounded by a peri-implant band of inflammation and necrosis, which resolved with time. At 

the same time cells migrated and ECM was deposited in the pores of the scaffold. There were 

some minor differences secondary to the PH. Numerous mitotic bodies were observed 
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throughout the lobe at day 2 after PH and the rate of migration and ECM deposition appeared 

faster than in the normal liver. This trend could be confirmed by image analysis (section 3.7.14). 

 

4.4.5 Proliferation  

 

Following 2/3 hepatectomy, hepatocyte DNA synthesis increases as liver mass is restored. In rat 

liver, this begins within 12 hours of PH and normally peaks around 24 hours 
59

. In this study the 

peak in hepatocyte DNA synthesis occurred after 24 hours in both the scaffold implanted and 

non-scaffold implanted livers. Otherwise the pattern of hepatocyte DNA synthesis in this PH 

study was consistent with the literature. The reason for the later peak is unclear. The rate of DNA 

synthesis after PH can vary between rodent species and strains and in response to circadian 

rhythm 
74

. To define it more clearly the number of time points in the first 72 hours after PH and 

the number of animals per time point should be increased.   

 

A number of differences in hepatocyte DNA synthesis were observed between the scaffold 

implanted and non-scaffold implanted livers. At day 1 the number of BrdU positive hepatocytes 

in the PH only group was significantly greater than in band C of the implant + PH group, whilst 

at day 2 there were significantly more BrdU positive hepatocytes in bands A and B of the PH + 

implant group and in band B of the implant + PH group than in the PH only livers. The 

differences in hepatocyte DNA synthesis observed between the non-implanted and scaffold 

implanted livers after PH suggests that the scaffolds are influencing liver regeneration. Further 

evaluation is required to determine if these differences represent an increase or decrease in the 

overall rate of liver regeneration.  

 

 162



When the growth factor loaded scaffolds were implanted into normal liver tissue the proliferative 

response that they induced was limited only to the liver parenchyma adjacent to the scaffolds. A 

similar gradient of proliferation was observed in the scaffold implanted livers after PH. Because 

growth factors are rapidly cleared by the liver, their direct release into the liver parenchyma from 

a scaffold was unlikely to stimulate proliferation beyond the adjacent peri-implant parenchyma. 

In future studies hepatocyte DNA synthesis at other sites in the residual liver tissue should be 

assessed.  

 

The timing of scaffold implantation did not impact on the rate of DNA synthesis after PH in this 

study. The highest rates of hepatocyte DNA synthesis were seen in the delayed PH group but 

overall the proliferative response seen in the parenchyma surrounding the scaffolds implanted at 

the time of PH was more consistent. A better understanding of the release kinetics of growth 

factors from the scaffold and of the pathways that initiate, regulate and terminate liver 

regeneration will allow the development of more targeted growth factor delivery regimes. 

 

4.4.6 Summary 

 

This study set out to characterise how intrahepatic delivery of HGF, EGF, FGF1 and FGF2 from a 

PLGA +5% PEG + 15% L-ECM scaffold impacts on liver regeneration following  70% 

hepatectomy. It demonstrated that scaffold implantation at the time of PH in the rat was feasible 

and that growth factor delivery was associated with an increase in hepatocyte DNA synthesis 

after PH. However it failed to demonstrate faster restoration of functional liver mass although 

scaffold implantation did impact on inter-lobar redistribution of liver mass. 
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The limitations in this study relate to the study design (the number of animals per time point, the 

time points used and the control groups) and release profiling. To make a preliminary assessment 

of intrahepatic growth factor delivery at the time of PH, 3 animals were used per time point at 

intervals up to 14 days after PH. In order to provide a more accurate assessment of the 

proliferative response after PH, future studies should focus on the first 7 days after PH with more 

animals per time point.  

 

In order to determine the impact of PLGA + 5 % PEG + 15% L-ECM implantation into the liver 

at the time of PH an additional control group should be incorporated into the study design. 

Implantation of a non-growth factor loaded scaffold into the liver at the time of PH would 

determine if the scaffold alone can induce a proliferative response. 

 

 

As in the comparative study more detailed in vitro and in vivo release profiling is required to 

characterise the release kinetics of growth factors from the scaffold at the time of PH; in 

particular how growth factor release was affected by the haemodynamic changes that occur 

following PH and how the reduction in L-ECM loading impacted on growth factor release. In 

addition it would be beneficial to have a measure of the systemic and hepatic serum growth 

factor concentrations in non-implanted and scaffold implanted livers after PH. 
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4.5 Conclusion 

 

Intrahepatic implantation of a PLGA + 5% PEG scaffold loaded with growth factors and L-ECM 

is associated with an increase in the rate of hepatocyte proliferation following PH. Further 

evaluation of growth factor delivery at the time of PH is warranted. 

 165



Chapter 5 General Discussion 

 

This thesis set out to review the expanding role of scaffolds in the field of liver tissue 

engineering and to describe the development and evaluation of two scaffold based liver tissue 

engineering strategies. In the first study the scaffold was used as a supportive template for 

parenchymal and non-parenchymal cell co-culture with the aim of offsetting hepatocyte de-

differentiation and improving long term hepatocyte viability and function in vitro. In the second 

study the scaffold was used as an intrahepatic delivery device for growth factors and ECM 

proteins with the aim of stimulating growth and enhancing regeneration in vivo. 

 

5.1 In Vitro Study 

 

 

The objectives of the in vitro study were to evaluate hepatocyte-HSC co-culture on a PDLLA 

scaffold, determine the impact of polymer surface modification on culture morphology and 

function and compare this approach with existing hepatocyte culture strategies. Previous work 

had demonstrated that hepatocyte-HSC co-culture produced viable cultures with differentiated 

hepatic ultrastructure and function 
32-34

. The aim of this study was to determine if hepatocyte-

HSC co-culture on a microporous PDLLA scaffold could induce additional functional benefits. 

 

Preliminary studies demonstrated that seeding of hepatocytes and HSC unto a PDLLA scaffold 

was feasible, that in the short term the hepatocytes remained viable and that culture morphology 

varied in response to variations in ligand binding capacity of the scaffold. A series of large scale 

long term comparative studies were therefore undertaken. Overall the results of these were 

disappointing. It was not possible to sustain a viable hepatocyte population beyond 3 days post-
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seeding. When hepatocytes were seeded onto the unmodified scaffolds in mono-culture there 

was limited interaction with the scaffold and functionality was poor. Modification of the scaffold 

surface properties by NaOH treatment or allylamine plasma deposition increased surface binding 

of hepatocytes but did not enhance their synthetic or metabolic functionality.  

 

Seeding HSC unto the scaffolds in mono-culture demonstrated that the ligand binding capacity 

of the scaffold could influence the phenotype of the HSC. When HSC were co-cultured with 

hepatocytes on PDLLA they acted as an interface between the scaffold surface and the 

hepatocytes but no benefit in terms of viability and function could be demonstrated. When 

hepatocyte-HSC co-culture on PDLLA was compared with hepatocyte monoculture on collagen 

or an alginate scaffold the functionality of the hepatocyte-HSC co-culture on PDLLA was 

significantly lower.   

 

The hypothesis �co-culture of hepatocytes with HSC on a three-dimensional PDLLA scaffold 

would enhance hepatocyte viability and function compared with traditional hepatocyte culture 

systems� was therefore not proven. There are elements of the strategy that warrant further 

evaluation. Specifically how the HSC acts as an interface between parenchymal cells and the 

scaffold and how it directs liver tissue assembly. By studying the interaction between the HSC-

ECM and HSC-hepatocyte in this deconstructed micro-environment a better understanding of the 

properties of the activated HSC could be obtained and used to modulate HSC activity in specific 

disease states or harnessed in future in vitro or in vivo liver tissue engineering enterprises. 
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5.2 In Vivo Study 

 

The objectives of the in vivo study were to develop an intrahepatic growth factor and ECM 

delivery device and evaluate its impact on liver growth in normal liver and liver following PH. 

Infusion of growth factors into the liver had previously been shown to stimulate growth and 

enhance regeneration 
95-99

. The aim of this study was to determine if intrahepatic growth factor 

delivery from a biodegradable scaffold had real therapeutic potential. 

 

A poly (Į hydroxy acid) polymer scaffold was used as the delivery device. A series of cadaveric 

and terminal anaesthetic studies allowed optimisation of the scaffold design and implantation 

technique before the first survival pilot was undertaken. This pilot study confirmed that 

intrahepatic scaffold implantation was feasible and provided preliminary characterisation of the 

liver scaffold interaction highlighting modifications to the study design that would be required 

for a larger scale comparative study. 

 

When the growth factor delivery device was implanted into normal liver tissue a number of 

observations were made. As expected the biomaterials (PLGA, PEG & L-ECM) biodegraded 

with time. The presence of growth factors and L-ECM enhanced the rate of liver cell migration 

and ECM deposition into the pores of the scaffold and increased the duration and extent of the 

inflammatory response in the parenchyma surrounding each implant. When the growth factor 

delivery device was implanted into liver tissue at the time of PH similar patterns of cell 

migration, ECM deposition and peri-implant inflammation were observed. In addition the 

redistribution of liver mass between lobes was influenced by the presence of an implanted 

growth factor delivery device.  
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The hypothesis �intrahepatic growth factor & L-ECM delivery from a porous PLGA + 5% PEG 

scaffold could stimulates a proliferative response in the peri-implant parenchyma of normal liver 

and liver tissue following PH� was proven, although the proliferative response was limited only 

to the immediate peri-implant parenchyma of normal and partially hepatectomised liver and was 

not associated with an increase or faster restoration of liver mass. 

 

These results suggest that there is a potential therapeutic application for intrahepatic growth 

factor delivery. If it were possible to stimulate liver growth prior to or to enhance regeneration 

after resection it may become possible to improve the outcome of those patients with pre-existing 

parenchymal liver disease or those requiring radical resection for cure. However before this 

approach is developed, more detailed characterisation of the release kinetics and dose responses 

for individual growth factors must be undertaken, and the work must be trialled in appropriate 

disease models. 

 

5.3 The Future of Liver Tissue Engineering for Liver Surgery 

 

The rapid evolution that has occurred in liver surgery over the last 30 years has presented a new 

set of challenges for the surgeon and the scientist. In vitro and in vivo tissue engineering may 

provide solutions on many of these new frontiers. Stem cell technology should eventually 

provide a renewable source of regeneration competent liver cells for in vitro and in vivo 

strategies. Developments in scaffold fabrication including natural-synthetic hybrid constructs 

may enable more effective signal delivery and rather than targeting growth factor signalling 

cascades, it may become possible to focus on specific intracellular signalling pathways. The liver 
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has a remarkable regenerative capacity perhaps future liver tissue engineering strategies will 

focus on harnessing this capacity rather than trying to generate new liver tissue de novo. 
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Appendix 1 Machine Cutting 

 

 

 
 

Figure A1 Schematic for design of machine cut PDLLA cones. Cylinders of foamed PDLLA were manufactured in a 

10 mm x 10 mm mould (top left). The cylinders were then cut down into 3 mm x 4 mm cones (top right & bottom 

left) on a Boley lathe (bottom right). 
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Appendix 2 Scaffold Mould & Vacuum Pressing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A2 Schematic and photograph of a 20 well 4 mm x 4 mm conical teflon mould for heat sintering of PLGA + 

5% PEG-based microparticles and vacuum pressing of L-ECM sheets. 

 

 

 
 

 
 

 

Figure A3 Photograph of the vacuum press for L-ECM only scaffold manufacture. 10 sheets of decellularised L-

ECM were vacuum pressed in the Teflon mould and sterilised in EtO. 
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Appendix 3 Liver Tissue Processing Schedule  

 

Table A1 Processing schedule for PDLLA and PLGA 5% PEG implanted rat livers. 

 

Reagent Time 

10% Formalin 10 mins 

Industrial Methylated Spirits 40 mins 

Industrial Methylated Spirits 40 mins 

Industrial Methylated Spirits 60 mins 

Industrial Methylated Spirits 60 mins 

Industrial Methylated Spirits 60 mins 

Industrial Methylated Spirits 90 mins 

Histoclear 60 mins 

Histoclear 60 mins 

Histoclear 60 mins 

Paraffin wax 60 mins 

Paraffin wax 90 mins 

Paraffin wax 120 mins 
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Appendix 4 Protocol for Masson Trichrome Staining 

 

Solutions:  

 

Ponceau Acid Fuchsin Solution 

1% Phosphomolybdic Acid  

0.2% Light Green in 0.2% Acetic Acid  

4% Iron Alum  

Mayer�s Haematoxylin  

 

Method: 

 

1. Dewax in histoclear 

2. Take sections to water  

3. Treat with 4% iron alum for 5 min 

4. Rinse in dH2O 

5. Stain with Mayer�s haematoxylin for 1 min 

6. Wash in tap water until nuclei are blue 

7. Stain with ponceau acid fuchsin for 5 min 

8. Rinse in deionised water  

9. Differentiate in 1% phosphomolybdic acid under microscopic control until collagen clear 

10. Stain in 0.2% light green in 0.2% acetic acid for 30-60 sec 

11. Dehydrate, clear and mount  

 

Results: 

 

Collagen   Green 

Cytoplasm, muscle, erythrocytes  Red 

Nuclei   Blue / Black 
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Appendix 5 Protocol for ED1 Immuohistochemistry 

 

Solutions:  

 

Histoclear 

Hydrogen peroxide (3%) 

Tris (0.05 M) 

Trypsin (1 mg/ml) 

Primary Antibody (MCA341R, Serotec) 

PBST 

Secondary Antibody (AP192B, Chemicon) 

ABC Vector Elite kit (Vector Laboratories) 

Chromagen 

Aqueous Haematoxylin 

Scotts Blue 

 

Method: 

 

1. Dewax in histoclear for 10 min 

2. Quench in H2O2 

3. Rinse in dH2O 

4. Incubate in Tris for 5 min 

5. Rinse in dH2O 

6. Incubate in trypsin for 15 min 

7. Rinse in dH2O and dry 

8. Incubate in primary antibody solution (1:200) for 1 hour 

9. Rinse in PBST 

10. Incubate in secondary antibody solution (1:500) for 30 min 

11. Rinse in PBST 

12. Label in ABC for 30 min 

13. Rinse in PBST 

14. Apply Chromagen for 10 min 

15. Rinse in dH2O 

16. Counterstain in haematoxylin 

17. Blue in Scotts and rinse in dH2O 

18. Air dry and mount in DPX 

 

Results: 

 

Nuclei    Blue / black 

Sites of peroxidase activity Brown  
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Appendix 6 Protocol for Desmin Immunohistochemistry 

 

Solutions:  

 

Histoclear 

Hydrogen peroxide (3%) 

Retrieval Buffer (Dako) 

Blue block 

Primary Antibody (SC-7559, Santacruz) 

PBST 

Secondary Antibody (AP180B, Chemicon) 

ABC Vector Elite kit 

Chromagen 

Aqueous haematoxylin  

Scott blue 

 

Method: 

 

1. Dewax in histoclear for 10 min 

2. Quench in H2O2 

3. Rinse in dH2O 

4. Steam for 30 min in retrieval buffer and cool 

5. Rinse in dH2O and dry 

6. Block with blue block for 10 min and drain 

7. Incubate with primary antibody (1:50) for 1 hour  

8. Rinse with PBST 

9. Incubate with secondary antibody (1:500) for 30 min  

10. Rinse with PBST 

11. Label in ABC for 20 min 

12. Rinse with PBST 

13. Apply Chromagen for 10 min 

14. Counterstain for 1min with aqueous haematoxylin  

15. Rinse in dH2O 

16. Blue in Scotts and rinse in dH2O 

17. Air dry and mount in DPX 

 

Results 

 

Nuclei    Blue / black 

Sites of peroxidase activity Brown 
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 Appendix 7 Protocol for MIB-5 Immunohistochemistry 

 

Solutions 

 

Histoclear 

10 mM Sodium Citrate pH 6.0   

En Vision � Kit (Dako) 

0.005mM Tris/HCl Buffered Saline (TBS) pH 7.6 Primary Antibody (M7248, Dako) 

DAB Chromogen Solution  

Gill�s 3 Haematoxylin  

1% Acid Alcohol  

Scotts Blue   

 

Method 

 

1. Dewax in Histoclear for 10 min  

2. Transfer to fresh alcohol x2 

3. Wash in tap water followed by dH2O 

4. Place in Sodium Citrate and perform microwave antigen retrieval for 20 min at 560 W 

5. Incubate peroxidase blocking solution for 5 min  

6. Wash dH2O 

7. Rinse in 0.005 M TBS  

8. Drain and incubate in unconjugated rat anti-Ki-67 antibody (1:100) for 30 min in moist incubating chamber 

9. Wash and agitate in TBS for 5 min 

10. Incubate in conjugated dextran antibody bound to peroxidase (Bottle 2 in EnVision kit) for 30 min 

11. Wash and agitate in TBS for 5 min 

12. Incubate in DAB chromogen solution in EnVision kit for 5 mins 

13. Wash in tap water 

14. Counterstain in Gill�s 3 haematoxylin  

15. Wash tap water 

16. Differentiate in acid alcohol  

17. Wash tap water 

18. Blue in Scotts Tap Water Substitute   

19. Wash tap water 

20. Dehydrate in alcohol for 3 min x2 

21. Histoclear for 3 min x2 

22. Mount in DPX  

 

Results 

 

Nuclei    Blue 

Sites of peroxidase activity Brown 
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Appendix 8 Protocol for BrdU Immunohistochemistry 

 

Solutions 

 

Histoclear 

10 mM Sodium Citrate pH 6.0 

Dako REAL� Detection Kit (Dako) 

Primary Antibody (MO744, Dako) 

0.005 M TRIS/HCl Buffered Saline (TBS) pH 7.6  

Secondary Antibody (K5001, Dako) 

HRP Solution (Dako) 

DAB solution (Dako) 

Gill�s 3 Haematoxylin  

1% Acid Alcohol  

Scotts Tap Water Substitute 

 

Method 

 

1. Dewax in Histoclear for 10 min x2 

2. Transfer to fresh alcohol for 3 min x2 

3. Wash in tap water followed by dH2O 

4. Place in Sodium Citrate and perform microwave antigen retrieval for 23 min at 560 W 

5. Wash in tap water followed by dH2O 

6. Incubate in Dako peroxidase blocking solution for 15 min 

7. Wash well in dH2O 

8. Incubate in  Buffer 1 for 20 mins 

9. Drain, wipe off excess serum and incubate in unconjugated BrdU (1:200) for 1 hour 

10. Jet wash in TBS x2 

11. Incubate in Dako biotinylated secondary antibody for 30 min 

12. Jet wash in TBS  

13. Wash in TBS for 5 min 

14. Incubate in Dako HRP for 30 min 

15. Jet wash in TBS x2 

16. Incubate in DAB solution for 10 min 

17. Wash in tap water  

18. Counterstain in Gill�s 3 haematoxylin 

19. Wash in running tap water 

20. Differentiate in 1% acid alcohol  

21. Wash in tap water  

22. Blue in Scotts Tap Water Substitute  

23. Wash in tap water 

24. Dehydrate in alcohol for 3 min x2 

25. Histoclear for 10 min x2 

26. Air-dry  

27. Mount in DPX  

 

Results 

 

Nuclei    Blue 

Sites of peroxidase activity Brown 
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