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Abstract We report on a case study in synthetic biology, demonstrating the model-
driven design of a self-powering electrochemical biosensor. An essential result of
the design process is a general template of a biosensor, which can be instantiated
to be adapted to specific pollutants. This template represents a gene expression net-
work extended by metabolic activity. We illustrate the model-based analysis of this
template using qualitative, stochastic and continuous Petri nets and related analysis
techniques, contributing to a reliable and robust design.

1 Motivation

One of the greatest challenges in modern bioscience is arguably the development
of techniques for the engineering of living systems in a rigorous manner. This is
the domain of the emerging discipline of “Synthetic Biology” [HP06], which can
be defined as the design and construction of new biological parts, devices, and sys-
tems, as well as the re-design of existing natural biological systems for useful pur-
poses [Syn08]. One aspect of Synthetic Biology which distinguishes it from conven-
tional genetic engineering is a heavy emphasis on the development of foundational
technologies that make the engineering of biology easier and more reliable.
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We report on a case study in synthetic biology [Gla07], demonstrating the model-
driven construction of a completely novel type of self-powering electrochemical
biosensor, called ElectrEcoBlu. The novelty lies in the fact that the response signal
is an electrochemical mediator which enables electrical current to be generated in a
microbial fuel cell. ElectrEcoBlu functions as a biosensor for a range of important
and widespread environmental organic pollutants which stimulate the biosensor to
produce its own electrical power output. The system has the potential to be used for
self-powered long term in situ and online monitoring with an electrical readout.

Our approach exploits a range of state-of-the art modelling techniques [GHL07]
to guide the design and construction of this novel synthetic biological system in
order to ensure that its behaviour is reliable and robust under a variety of con-
ditions. This was facilitated by the entire team - molecular biologists and engi-
neers/modellers - working in an integrated laboratory environment, using Petri nets
as a communication means and following an iterative construction process as given
in Fig. 1. An essential result of the design process is a general template of a biosen-
sor, which can be instantiated to be adapted to special pollutants. This template
represents a gene expression network extended by metabolic activity. We demon-
strate the model-based analysis of this template, and by this way of the design of the
biosensor, using qualitative, stochastic and continuous Petri nets and related analysis
techniques.

Fig. 1 Model-driven syn-
thetic biology. Computer
modelling and analysis guides
the design and construction
in order to ensure behaviour,
which is reliable and robust
under a variety of conditions.
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2 Biochemical Context

Public concern and legislation are demanding better environmental control and mon-
itoring of pollutants. Biosensors are being developed in the fields of environment,
bioprocess control, food, agriculture, military, and medical industries. Biosensor
sensitivity and selectivity depend essentially on the properties of the biorecognition
elements to be used for analyte binding.

The discovery of transcriptional activators and their corresponding promoter se-
quences has made possible the development of bacterial biosensors for pollutants.
Modified cell biosensors are constructed by fusing a reporter gene (an enzyme or a
fluorescent protein e.g. GFP) to a promoter element that is induced by the presence
of a target compound. In the presence of an organic contaminant the transcriptional
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activator changes its three dimensional structure, becoming operative, and transcrip-
tion of the reporter gene is enhanced. The gene is transcribed to form mRNA which
is then translated into a protein which performs the biochemical activity (in the case
of enzymes) or fluoresces (e.g. GFP). The resulting increase in reporter gene product
is then detected by measuring the activity of the reporter enzyme or the fluorescence
of the reporter protein. Thus, under appropriate conditions, a direct correlation be-
tween contaminant concentration and reporter product can be established.

One holy grail of environmental biosensors is to create a system which can be left
in the field continuously monitoring and remotely sending electronic signals back
to a computer. One major problem is how to power such a device so that frequent
expensive battery changes are not necessary. One possible source of renewable en-
ergy for powering biosensor devices are microbial fuel cells (MFC) in which micro-
organisms oxidize compounds such as glucose, acetate or wastewater. The electrons
gained from this oxidation are transferred to an electrode. In the past, external, ex-
pensive, soluble redox mediators have consistently been added to MFCs to enhance
electron transfer. Pseudomonas aeruginosa has been shown to produce its own elec-
tron transporters, pyocyanin (PYO), which can function as electron-carrying redox
mediators increasing electrical power output of MFCs.

Our project aimed to use a synthetic biology approach to combine the production
of an environmental biosensor for economically important industrial environmen-
tal pollutants with a microbial fuel cell which can produce its own electricity. The
intention is that the cells will recognise the presence of a pollutant via a modu-
lar interchangeable range of pollutant-specific transcriptional activator proteins and
enhance electricity generation in a microbial fuel cell by inducing genes for the
synthesis of the electron mediator PYO which function as novel reporter genes.

The recognition element of the designed biosensor system is a pollutant respon-
sive transcriptional activator XylR (DntR) which binds the important environmental
pollutant toluene (salicylate). The reporter element of the biosensor consists of the
enzymes S-adenosylmethionine-dependent N-methyltransferase (PhzM) and flavin-
dependent hydroxylase (PhzS) which convert the precursor compound phenazine-1-
carboxamide (PCA) to PYO in the biosynthetic pathway cloned from Pseudomonas
aeruginosa into E. coli and a non-pathogenic Pseudomonad strain.

The molecular biologists of our team constructed an initial diagram to describe
the system, using a fairly informal graphical syntax, see Figure 2. The generic form
of the transcription factor (‘tf’ for the gene, and ‘TF’ for the protein product) rep-
resents both XylR (toluene detecting) and DntR (salicylate detecting). In outline,
essential steps that we used to develop and refine our model are:

1. Simplification by abstracting away the mRNA, thus combining transcription and
translation.

2. Summarizing pollutant-specific transcriptional activator proteins under the term
TF.

3. Combining the PhzM and PhzS components to give one step from PCA to PYO.
4. Developing a variant of the model with a positive feedback loop (pfb).
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By doing so, we obtain a gene expression network, extended by metabolic ac-
tivity, i.e. the model combines different abstraction levels: gene activity as well as
metabolic activity, in the style of [vHNM+00]. This represents deliberately a min-
imal model concentrating on the most essential facts necessary to investigate the
system’s signal/response behaviour. To be able to analyse the system before hav-
ing constructed it, we are going to apply formal modelling techniques allowing the
computer-based evaluation of the system under construction.

Fig. 2 The general biosensor
scheme in two versions: with-
out/with the positive feedback
(pfb). Thick arrows represent
protein coding genes, thin
right-angle arrows represent
promotors optionally labelled
with the transcription factor,
and thin straight arrows rep-
resent biochemical reactions.
Note that the first instance of
the ‘tf’ protein coding gene is
constitutively expressed.
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TF + S TF|S

phzMS
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3 Framework

We have used a framework [GHL07] which integrates the qualitative, stochastic
and continuous paradigms, as a basis for our overall approach to modelling and
analysing the biosynthetic pathways, compare Fig. 3. Each perspective adds its con-
tribution to the understanding of the system, thus the three approaches do not com-
pete, but complement each other.

In summary, the qualitative time-free description is the most basic one, with dis-
crete values representing numbers of molecules or levels of concentrations. The
qualitative description abstracts over two timed, quantitative models. In the stochas-
tic description, discrete values for the amounts of species are retained, but a stochas-
tic rate is associated with each reaction. The continuous description models amounts
of species using continuous values and associates a deterministic rate with each re-
action, which now occurs continuously. These two time-dependent models can be
mutually approximated by propensity (hazard) functions belonging to the stochastic
world; see [GHL07] for more details.

This framework can be applied to a variety of formalisms; we specify stochastic
models by stochastic Petri nets defining reaction rate equations (RREs), and con-
tinuous models by continuous Petri nets defining ordinary differential equations
(ODEs). In the following we assume basic knowledge in the standard Petri net termi-
nology; see e.g. [BK02, DA05, MBC+95] for introduction and related definitions.
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Fig. 3 Conceptual framework of our computational methods.

4 Qualitative Approach

Modelling From the graphical representation of the system given in Figure 2 and
its accompanying explanations we derive a qualitative Petri net describing a general
kernel biosensor template, and also one possible extension with pfb, see Figure 4.
This template and the pfb variant may be instantiated according to Table 1, creating
dedicated biosensors for different pollutants. Other variants are possible, including
switches and clamps, which we do not discuss here for lack of space.

The Petri net represents an extended gene expression network comprising transi-
tions of various abstraction levels:

• gene expression: TF expression, reporter expression;
• association/deassociation: TFS association, TFS deassociation;
• enzymatic reaction: response production;
• degradation: TF/TFS/reporter/response degradation.

The transition T F expression is an input transition (transition without preplaces),
modelling a constitutively expressed transcription factor, i.e. a gene which is con-
stantly active. The degradation transitions are output transitions (transitions without
postplaces). They model the fact that species naturally degrade, i.e. their concentra-
tion diminishes if they are not produced continuously.

The two essential components of a biosensor are easily identified: the recognition
element (upper part), and the reporter element (lower part), both coupled by the TFS
complex. In the recognition element, the signal (pollutant) forms a complex (TFS)
with a constitutively expressed transcription factor (TF). The TFS complex may
accelerate the TF expression, thus facilitating faster TFS association; in this case
we get a pfb. In the reporter element, the two read arcs (having a black dot as arrow
head) reflect the signalling cascade: TFS → reporter → response. In the following
we analyse the template, and by this way all its instances.
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Fig. 4 Qualitative Petri net(s) of the biosensor template. The kernel system is given with white
transitions, and the positive feedback (pfb) variant has an additional transition indicated in grey.
The place given in black models the precursor, which is assumed to be available in sufficiently
large amounts; hence it is neglected in the model analyses. The two-lines result vector given at the
bottom summarizes the main qualitative analysis results; see [HGGH07] for more details.

Table 1 Possible instantiations for the places in the biosensor template.

place instances

signal toluene, salicylate
TF XylR, DntR
TFS XylR|S, DntR|S
reporter PhzMS as combination of PhzM and PhzS
precursor phenazine-1-carboxamide (PCA)
response pyocyanin (PYO)

Analysis Having established initial confidence in the model behaviour by playing
the token game, both systems were formally analysed. We list here the most essential
analysis results only. For a summary see the two-lines result vector given at the
bottom of Figure 4, for more explanatory details see [HGGH07].

The Petri net has input transitions and output transitions, i.e. it is an open sys-
tem. Input transitions are always enabled, therefore they are able to fire arbitrarily
often, making the Petri net unbounded. Consequently, the Petri net is not covered
by P-invariants (CPI). Actually, there is only one minimal P-invariant, which com-
prises merely the place signal. That means that the token number on this place never
changes under any firing, reflecting the model assumption that the signal (pollutant)
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is constantly there at a strength as chosen by the initial marking. Therefore, this
place requires at least one token in the initial marking to allow its posttransition to
fire. On the contrary, all other places - empty in the initial marking - are unbounded,
i.e. the token number may rise to infinity if we consider the model under any tim-
ing behaviour. The proof of boundedness under given timing constraints, as e.g. by
determining a steady state, is left to the quantitative analyses, see Section 5.

Having the initial marking, we consider liveness. The Petri net is ordinary, i.e. all
arc weights are equal to 1, and the net belongs to the structural net class Extended
Simple (ES). The Petri net with the given initial marking has the deadlock trap
property (DTP). The DTP involves liveness for ordinary ES nets. Because the net is
live, there are no dead transitions and no dead states. That basically means that all
reactions will take place forever. Because the net is ES, the liveness is guaranteed
for any timing constraints.

We compute the T-invariants to get the subprocesses, from which the whole in-
finite system behaviour is comprised. The Petri net without pfb is covered by the
following minimal T-invariants (CTI), all enjoying an obvious biological meaning:

y1 = {T F expression,T F degradation},
y2 = {T F expression,T FS association,T FS degradation},
y3 = {T FS association,T FS deassociation},
y4 = {reporter expression,reporter degradation},
y5 = {response production,response degradation} .

The Petri net with pfb has additionally the following two T-invariants (the counter-
parts to y1, y2, replacing T F expression by p f b):

y6 = {p f b,T F degradation},
y7 = {p f b,T FS association,T FS degradation}.
One of the benefits of using the qualitative approach at this early stage of system

design was that the systems could be modelled and analysed without any quanti-
tative parameters. Moreover the qualitative step helps in identifying suitable initial
markings and potential quantitative analysis techniques.

5 Quantitative Approaches

Modelling To transform the validated qualitative Petri net into quantitative ones,
we need to assign to all reactions their rate functions, which generally employ the
current state of the reactions’ substrates, or - in Petri net terms - the current marking
of the transitions’ preplaces. Table 2 gives for each reaction (transition): the reac-
tion equation, the rate function and the involved rate constant(s). The rate functions
are used in the stochastic model as the propensity (hazard) functions, determining
the current stochastic firing rates, and in the continuous model as the deterministic
rate functions, determining the current deterministic firing rates. The conversion of
stochastic and deterministic rate constants into each other is well understood, see
e.g. [Wil06], especially it holds that they are equivalent for first-order reactions.
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Table 2 The reaction equation, rate function, and rate constant(s) for each reaction (transition a).
The running numbers correspond to the transition numbers in Figure 4. For better readability we
use the abbreviations of the instances employed, compare Table 1, and s for the signal. For the
concrete values or value ranges of the rate constants see [HGGH07].

# reaction equation rate function b rate constant

1 φ → T F c1 c1 = αT F
1′, pfb φ → T F (c11 ·T FS)/(c12 +T FS) c11 = βT F , c12 = γT F
2 T F → φ c2 ·T F c2 = δT F
3 T F + s → T FS c3 · s ·T F c3 = βT FS
4 T FS → FT c4 ·T FS c4 = kd
5 T FS → φ c5 ·T FS c5 = δT FS
6 φ → PhzMS (c61 ·T FS)/(c62 +T FS) c61 = βPhzMS, c62 = γPhzMS
7 PhzMS → φ c7 ·PhzMS c7 = δPhzMS
8 φ → PYO c8 ·PhzMS c8 = αPYO
9 PYO → φ c9 ·PYO c9 = δPYO

a The preplaces of a transition correspond to the reaction’s substrates, and its postplaces to the
reaction’s products.
b Reactions 1′, 6 employ Michaelis-Menten kinetics, while all others follow the mass action
kinetics.

Finding the rate constants proved to be a difficult and time consuming process. It
involved both searches for scientific papers and also discussions with the biologists
on our team. Sometimes the exact value for a parameter could not be found due to
lack of published material on the reactions involved, however the biologists man-
aged to identify a suitable range of values between which the parameter would fall.
The values for the TF were estimated using average values for bacterial transcrip-
tion factors, those for PhzMS using standard rates for similar proteins, and those for
PYO using rates from the literature [OAM+03, PGS+07].

In the following we illustrate the strength of quantitative approaches by selected
examples with special emphasis on sensitivity analysis, which aims at the identifica-
tion of those parameters to which a system is sensitive; i.e. small changes in a param-
eter’s value significantly affect the system behaviour. We start with the stochastic
approach to exclude eccentric system behaviour caused by stochastic noise, before
considering the averaged behaviour in the deterministic continuous approach.

Stochastic analysis The class of stochastic Petri nets [BK02, MBC+95] associates
an exponentially distributed firing rate (waiting time) with each transition, specified
by a firing rate λ . Generally, this state-dependent firing rate is defined by a propen-
sity (hazard) function. Table 2 provides the details which permit reading the net in
Figure 4 as a stochastic Petri net, specifying at the same time RREs.

The unboundedness of the underlying qualitative model precludes the use of all
standard Markov analysis techniques, which are based on the state transition matrix.
Applying Gillespie’s exact simulation algorithm [Gil77] produces data describing
the dynamic evolution of the biological system over time. Note that the template de-
scribes the model for one cell; the organism that we use as the ‘chassis’ for our syn-
thetic system is E. Coli, which is unicellular. However the bacteria exist in colonies
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comprising many cells, each of which contributes to the total production of the re-
sponse. Thus we have carried out simulations for different size colonies in order to
investigate the effect on the observed behaviour, under the reasonable assumption
that there is no interaction between individuals in the colony. Figure 5 shows the
output of the response (PYO) over time for a signal s = 10µM. Each graph repre-
sents a different number of cells being simulated (1, 10, 100 and 1000), averaged
over 10 runs. The noise decreases as the number of cells increases, thus behaviour
of the stochastic model approaches that of the deterministic model (see Figure 7).
Moreover it is obvious that the system reaches a steady state in all shown cases,
determining the value at which the response saturates.
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Fig. 5 Diagrams displaying the response (PYO) in number of molecules to a signal s = 10µM
over time produced by simulations for 1, 10, 100 and 1000 cells, averaged over 10 runs.

The goal was to construct a biosensor that would yield a graded signal response.
Due to the difficulties experienced in obtaining data, simulations were compared to
that in [WWR+98], where a similar system was investigated. In that paper a graded
response of the luminescent output was measured over different signal concentra-
tions. The main parameter that affects this was found to be γPhzMS. Using the plot
from [WWR+98], we investigated different values of γPhzMS ranging from 170 to
500 µM. A graph for response over signal for each of the examined 5 values of
γPhzMS (10 cells) is given in Fig. 6 with standard deviation intervals of response at
each value of signal. A lower value of γPhzMS gives a more graded response, which
is consistent with the results reported in [WWR+98].

For more examples and results of the stochastic analyses see [FM07]. We con-
tinue with the computationally less expensive continuous approach considering the
averaged behaviour.
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Fig. 6 Diagram showing
increasingly graded response
to the signal for decreasing
values of γPhzMS (10 cells).
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Continuous analysis In a continuous Petri net [DA05] the marking of a place is no
longer an integer, but a non-negative real number, and transitions fire continuously
according to the deterministic rate functions. Assigning these rate functions to all
transitions, see Table 2, and reading the net in Figure 4 as a continuous Petri net,
generates the ODEs as given in the equations (1) - (4). The last term in equation (1)
corresponds to the pfb transition (given in grey in Figure 4).

˙T F = αT F −δT F ·T F−βT FS · s ·T F + kd ·T FS +βT F
T FS

γT F +T FS
(1)

˙T FS = βT FS · s ·T F− kd ·T FS−δT FS ·T FS (2)

˙PhzMS = βPhzMS
T FS

γPhzMS +T FS
−δPhzMS ·PhzMS (3)

˙PYO = αPYO ·PhzMS−δPYO ·PYO (4)

Simulating the continuous Petri net, i.e. solving numerically the underlying sys-
tem of ODEs, we get data as given in Figure 7. Here we continue the steady state
analysis, comparing the kernel system against its variant in order to determine the
influence of the pfb. We can see clearly that in both graphs the initial concentrations
of PhzMS and PYO both start at zero. Once the reactions have begun (triggered by a
pollutant) they increase until they reach a steady state. The interesting point to note
is that the production of PYO and PhzMS is much higher in the system with pfb.
In quantitative terms, the model with pfb gives around 30% gain. This result allows
interesting insights into possible design decisions for the system under construction.

Further, we applied a variant of multi-parametric sensitivity analysis (MPSA) in
order to determine those parameters which play a significant role in distinguish-
ing the behaviour between the two models (basic version, and with pfb). Parameter
γPhzMS turned out to be the most sensitive. Thus, in order to refine our comparison
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we would first try to narrow the value range for this parameter. Such information
permits prioritization of costly and time consuming wet-lab experiments.

Fig. 7 Dynamic behaviour
of the continuous Petri nets
allowing comparison of the
two system variants. The thin
curves belong to the kernel
model, and the thick curves to
the model with pfb.
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6 Tools

The Petri net models were built using the Snoopy [Sno, HRS08] software which is a
software tool to design and animate hierarchical graphs, among others Petri nets. It
supports qualitative, stochastic and continuous Petri nets, and incorporates the exact
Gillespie algorithm for stochastic nets and a variety of ODE solvers for continuous
nets. Snoopy provides export to various analysis tools as well as SBML import and
export.

The analysis of qualitative Petri nets was performed using Charlie [Cha] which
can perform analysis of structural properties, invariant analysis, reachability graph
based analysis, and generate visualisations of reachability and coverability graphs.
These two tools were developed at the Brandenburg University of Technology, Cot-
tbus.

A specialised Gillespie-style “slow scale stochastic simulation algo-
rithm” [CGP05] was coded in Matlab [MAT] in order to produce the stochastic
simulations of the bio-sensor and the graphs in Figure 5 and Figure 6. Fast reactions
are computed separately to the slow reactions in order to avoid the slow behaviour
of a standard Gillespie-style algorithm. This approach was required due to the
properties of the sensor system, where the binding and unbinding reactions of TFS
are over six orders of magnitude faster than the other reactions.

The multi-parametric analysis of the model to determine those parameters which
play a significant role in distinguishing the behaviour between the two models was
performed using the Minicap package [Fri] implemented in Matlab and exploiting
its specialised ODE solvers MATLAB [SR97].
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The SBML version of the model was generated using the BioNessie [Bio] bio-
chemical pathway simulation and analysis tool developed at the University of Glas-
gow.

7 Summary

The formal modelling and analysis mechanisms of Petri nets have been used in a
synthetic biology project to design a completely novel type of self-powering elec-
trochemical biosensor, called ElectrEcoBlu. The novelty lies in the fact that the
response signal is an electrochemical mediator, which enables electrical current to
be generated in a microbial fuel cell. The work was facilitated by a team of molecu-
lar biologists and engineers/modellers working in an integrated laboratory environ-
ment, using Petri nets as a communication means.

The ‘ElectrEcoBlu’ project was carried out as part of the activities of the Univer-
sity of Glasgow’s team in the 2007 international Genetically Engineered Machines
(iGEM) Synthetic Biology competition, for which they won the Environment and
Sensor prize and a gold medal [iGE07].

The outcome so far is the design of a general template of a biosensor, which
provably corresponds in various aspects to the desired behaviour. In the next step,
the engineered cells will be constructed, i.e. they will be placed in a MFC and the
electricity generated under varying conditions and pollutant concentrations will be
measured. It is anticipated - supported by the model-based analyses - that the pres-
ence of the pollutant toluene would result in an enhanced reporter gene product
giving rise to the electron mediator pyocyanin. This in turn is expected to increase
the efficiency of electricity production resulting in a measurable electronic signal
proportional to the concentration of pollutant.

The model in its three versions and more related material are available at:
www.brc.dcs.gla.ac.uk/iGEM/2007.
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tine Merrick, Maija Paakkunianen and Scott Ramsay and staff David Forehand, Gary Gray, Mar-
garet Jackson, Raya Khanin, Emma Travis, and Gabriela Kalna. Rachael Fulton was supported by
a stipend from the Nuffield foundation. In addition we acknowledge financial support by Scottish
Enterprise, the European Union NEST program, the Carnegie Trust, and the University of Glasgow
as well as sponsorship from Merk and Anachem.

References

[Bio] BioNessie. A biochemical pathway simulation and analysis tool. University of Glas-



A Case Study in Model-driven Synthetic Biology 13

gow, www.bionessie.org.
[BK02] F. Bause and P.S. Kritzinger. Stochastic Petri Nets. Vieweg, 2002.
[CGP05] Y. Cao, D.T. Gillespie, and L.R Petzold. The slow-scale stochastic simulation algo-

rithm. Journal of Chemical Physics, 122(1):014116+, 2005.
[Cha] Charlie. A Tool for the Analysis of Place/Transition Nets. http://www-

dssz.informatik.tu-cottbus.de/software/charlie/charlie.html.
[DA05] R. David and H. Alla. Discrete, Continuous, and Hybrid Petri Nets. Springer, 2005.
[FM07] R. Fulton and M. Marba. A Stochastic Model for a General Biosensor.

www.brc.dcs.gla.ac.uk/iGEM/2007, Bioinformatics Research Centre, University of
Glasgow, UK, 2007.

[Fri] T. Friend. Minicap - Multi Parameter Sensitivity Analysis. Glasgow iGEm Team,
http://parts.mit.edu/igem07/index.php/Glasgow/Modeling.

[GHL07] D. Gilbert, M. Heiner, and S. Lehrack. A unifying framework for modelling and
analysing biochemical pathways using Petri nets. In Proc. CMSB 2007, pages 200–
216. LNCS/LNBI 4695, Springer, 2007.

[Gil77] D.T. Gillespie. Exact stochastic simulation of coupled chemical reactions. The Jour-
nal of Physical Chemistry, 81(25):2340–2361, 1977.

[Gla07] Glasgow University Team at iGEM - International Genetically Engineered Machine
Competition. http://www.brc.dcs.gla.ac.uk/iGEM/2007/, Cited 20 Jan 2008, 2007.

[HGGH07] C. Harkness, D. Gilbert, X. Gu, and M. Heiner. The use of Petri nets in the
Glasgow iGEM project: ElectrEcoBlu – a Self-powering Electrochemical Biosen-
sor. www.brc.dcs.gla.ac.uk/iGEM/2007, Bioinformatics Research Centre, University
of Glasgow, UK, 2007.

[HP06] M. Heinemann and S. Panke. Synthetic biology - putting engineering into biology.
Bioinformatics, 22(22):2790–2799, 2006.

[HRS08] M. Heiner, R. Richter, and M. Schwarick. Snoopy - A Tool to Design and Ani-
mate/Simulate Graph-Based Formalisms. In Proc. PNTAP 2008, associated to SIMU-
Tools 2008. ACM digital library, 2008.

[iGE07] iGEM - International Genetically Engineered Machine Competition, MIT.
http://parts.mit.edu/igem07/, Cited 20 Jan 2008, 2007.

[MAT] MATLAB. High-level language and interactive environment. MatWorks,
www.mathworks.com.

[MBC+95] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Mod-
elling with Generalized Stochastic Petri Nets. Wiley Series in Parallel Computing,
John Wiley and Sons, 1995. 2nd Edition.

[OAM+03] Y.Q. O’Malley, M.Y. Abdalla, M.L. McCormick, K.J. Reszka, G.M. Denning, and
B.E. Britigan. Subcellular localization of Pseudomonas pyocyanin cytotoxicity in
human lung epithelial cells. Am J Physiol Lung Cell Mol Physiol, 284(2):L420–430,
2003.

[PGS+07] J.F. Parsons, B.T. Greenhagen, K. Shi, K. Calabrese, H. Robinson, and J.E. Ladner.
Structural and functional analysis of the pyocyanin biosynthetic protein phzm from
pseudomonas aeruginosa. Biochemistry, 46(7):1821–1828, 2007.

[Sno] Snoopy. A tool to design and animate hierarchical graphs. BTU Cottbus, CS Dep.,
www-dssz.informatik.tu-cottbus.de.

[SR97] L. F. Shampine and M. W. Reichelt. The MATLAB ODE Suite. SIAM Journal on
Scientific Computing, 18:1–22, 1997.

[Syn08] SyntheticBiology.org. www.syntheticbiology.org, Cited 20 Jan 2008.
[vHNM+00] J. van Helden, A. Naim, R. Mancuso, M. Eldridge, L. Wernisch, D. Gilbert, and S. J.

Wodak. Representing and analysing molecular and cellular function in the computer.
J Biological Chemistry, 9-10(381):921–935, 2000.

[Wil06] D.J. Wilkinson. Stochastic Modelling for System Biology. CRC Press, New York, 1st
Edition, 2006.

[WWR+98] B.M. Willardson, J.F. Wilkins, T.A. Rand, J.M. Schupp, K.K. Hill, P. Keim, and
P.J. Jackson. Development and Testing of a Bacterial Biosensor for Toluene-Based
Environmental Contaminants. Appl Environ Microbiol., 3(64):1006–1012, 1998.


