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Abstract

GPS precise point positioning (PPP) has been used in many scientific and commercial

applications due to its high computational efficiency, no need for any synchronous measurements

from a nearby reference receiver and homogeneous positioning quality on a global scale. However,

these merits are devalued significantly by unresolved ambiguities and slow convergences of PPP.

Therefore, this thesis aims at improving PPP’s performance by resolving ambiguities for a single

receiver and accelerating the convergences to ambiguity-fixed solutions in order to achieve a

centimeter-level positioning accuracy with only a few seconds of measurements.

In recent years, ambiguity resolution for PPP has been developed by separating fractional-

cycle biases (FCBs) from single-receiver ambiguity estimates. One method is to estimate FCBs

by averaging the fractional parts of single-difference ambiguity estimates between satellites, and

the other is to assimilate FCBs into clocks by fixing undifferenced ambiguities to integers in

advance. The first method suffers from a large number of redundant satellite-pair FCBs and

unnecessary 15-minute narrow-lane FCBs.

Therefore, this thesis suggests undifferenced FCBs and one narrow-lane FCB per satellite-

pair pass over a regional area in order to reduce the size of FCB products and achieve comparable

positioning quality with that of the original method. Typical tests show that ambiguity resolution

dramatically reduces the RMS of differences between hourly and daily position estimates from

3.8, 1.5 and 2.8 cm in ambiguity-float solutions to 0.5, 0.5 and 1.4 cm in ambiguity-fixed solutions

for the East, North and Up components, respectively. Likewise, the RMS for real-time position

estimates are reduced from 13.7, 7.1 and 11.4 cm to 0.8, 0.9 and 2.5 cm.

Furthermore, this thesis improves the accuracy of narrow-lane FCBs with integer constraints

from double-difference ambiguities. In a global network analysis, the RMS of differences for the

East component between the daily and IGS weekly estimates is reduced from 2.6 mm in the

solutions based on original FCBs to 2.2 mm in the solutions based on improved FCBs.

More importantly, for the first time, this thesis provides a theoretical proof for the equiv-

alence between the ambiguity-fixed position estimates derived from the aforementioned two

methods. This equivalence is then empirically verified by the overall minimal discrepancies of

the positioning qualities between the two methods. However, these discrepancies manifest a

distribution of geographical pattern, i.e. the largest discrepancies correspond to sparse networks

of reference receivers. This comparison can provide valuable reference for the GPS community

to choose an appropriate method for their PPP ambiguity resolution.

As the foremost contribution, an innovative method is originally developed in this thesis

in order to effectively re-converge to ambiguity-fixed solutions with only a few seconds of

measurements. Specifically, ionospheric delays at all ambiguity-fixed epochs are estimated and

then predicted precisely to succeeding epochs in the case of re-convergences. As a result, the

practicability of real-time PPP is greatly improved by eliminating the unrealistic requirement

of a continuous open sky view in most PPP applications. Typical tests illustrate that over

90% of re-convergences can be achieved within five epochs of 1-Hz measurements, rather than

the conventional 20 minutes, even if the latency for predicted ionospheric delays is up to 180 s.

Moreover, for a van-borne receiver moving in a GPS-adverse environment where satellite number

decreases significantly and cycle slips occur frequently, only when the above rapid re-convergence

technique is applied can the rate of ambiguity-fixed epochs dramatically rise from 7.7% to 93.6%

of all epochs.
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Douša’s kind invitation for a professional visit to the GeoForschungsZentrum Helmholtz Center.

I am also grateful to Prof T Marmont at Beacon Energy Ltd for his financial support.

Dr Richard Bingley as my internal assessor is acknowledged for his valuable suggestions

on my 3-year research in IESSG. Dr Andy Sowter is appreciated for kindly reviewing my GPS

solutions papers when I was deeply depressed by the journal editor’s comments. Prof Terry

Moore is specially thanked for paying my expenses during the IGS Workshop 2010 in Newcastle.

Dr Chris Hill is thanked for his help when I got injured on my elbows. Dr Marcio Aquino is

acknowledged for his help on the ionosphere issues. Dr Flavien Mercier from the Center National

d’Etudes Spatiales, France is thanked for his patience when I had questions on his research. Prof

Marek Ziebart as my external assessor is appreciated for spending his valuable time on reading

this thesis.

Thanks also go to Mr Donglie Liu, Ms Yujie Jin, Mr Kai Wan, Dr Lei Yang and Dr Yidong

Lou for their help and support during my living in the UK. Both Dr David Luff and Mr Craig

Hancock are acknowledged for their help in reading and commenting my papers and thesis. I

specially thank all IESSG staff and students for providing a nice environment for me during my

PhD study.

Finally, I need to express my heartfelt thanks to my parents and brothers, Xiaolin’s family

and my lovely girlfriend Lin Xu for their emotional support without which I could have not

focused on my study for three years.



Contents

List of Figures vii

List of Tables x

Acronyms and abbreviations xi

1 Introduction 1

1.1 Precise GPS positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Precise point positioning (PPP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Solution at a single receiver . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Satellite products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Multi-constellation and multi-frequency PPP . . . . . . . . . . . . . . . . 7

1.2.4 Advantages of PPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Problem statement: Deficiencies of PPP . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Integer Ambiguity Resolution 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Current advances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Theoretical fundamentals of PPP . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Methods based on fractional-cycle biases (FCBs) . . . . . . . . . . . . . . 13

2.2.3 Methods based on integer-recovery clocks (IRCs) . . . . . . . . . . . . . . 19

2.3 Theoretical comparison between the two methods . . . . . . . . . . . . . . . . . . 24

2.3.1 Assumptions for the theoretical analysis . . . . . . . . . . . . . . . . . . . 24

2.3.2 FCB determination and ambiguity-fixed position estimates . . . . . . . . 25

2.3.3 IRC determination and ambiguity-fixed position estimates . . . . . . . . . 27

2.3.4 Remarks on the theoretical comparison . . . . . . . . . . . . . . . . . . . 29

2.4 Method improvements made in this thesis . . . . . . . . . . . . . . . . . . . . . . 29

2.4.1 Derivation of undifferenced FCBs . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.2 One FCB per satellite-pair pass over a regional area . . . . . . . . . . . . 30

2.4.3 Implementation of real-time ambiguity resolution . . . . . . . . . . . . . . 30

2.4.4 Constraints from integer double-difference ambiguities . . . . . . . . . . . 31

2.5 Ambiguity search and validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.1 Sequential bias rounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.2 LAMBDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

iii



iv Contents

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Rapid Convergences 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Current advances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 Attempt by estimating the pseudorange precision . . . . . . . . . . . . . . 37

3.2.2 Attempt by constraining the position parameters . . . . . . . . . . . . . . 39

3.2.3 Attempt by improving the ambiguity validation . . . . . . . . . . . . . . . 40

3.2.4 Attempt by applying the ambiguity resolution . . . . . . . . . . . . . . . 40

3.2.5 Remarks on the above attempts . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Rapid re-convergence by repairing cycle slips . . . . . . . . . . . . . . . . . . . . 41

3.4 Rapid re-convergence developed in this thesis . . . . . . . . . . . . . . . . . . . . 43

3.4.1 Precisely predict ionospheric delays . . . . . . . . . . . . . . . . . . . . . . 44

3.4.2 Rapidly retrieve integer ambiguities . . . . . . . . . . . . . . . . . . . . . 46

3.4.3 Remarks on the method implementation . . . . . . . . . . . . . . . . . . . 47

3.5 Comparison between rapid re-convergence methods . . . . . . . . . . . . . . . . . 48

3.6 A strategy for accelerating the first convergence . . . . . . . . . . . . . . . . . . . 49

3.6.1 Real-time ionosphere products . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6.2 Accelerating convergences with a dense network . . . . . . . . . . . . . . . 50

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 PANDA Software 53

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Software structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Software adaptation and development for this thesis . . . . . . . . . . . . . . . . 55

4.4 Post-processing PPP suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.1 Structure description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.2 Processing procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Real-time PPP suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5.1 Structure description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5.2 Processing procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Results on Ambiguity Resolutions 63

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 FCB determination with a regional network . . . . . . . . . . . . . . . . . . . . . 63

5.2.1 Data and models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.2 Wide-lane FCBs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.3 Narrow-lane FCBs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Impact of ambiguity resolution on hourly PPP . . . . . . . . . . . . . . . . . . . 66

5.3.1 Data, models and methods . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3.2 Performance of inside-EPN stations . . . . . . . . . . . . . . . . . . . . . 67

5.3.3 Performance of outside-EPN stations . . . . . . . . . . . . . . . . . . . . . 69

5.3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4 Impact of observation period on ambiguity resolution . . . . . . . . . . . . . . . . 71

5.4.1 Data, models and methods . . . . . . . . . . . . . . . . . . . . . . . . . . 71



Contents v

5.4.2 Efficiency of ambiguity resolution . . . . . . . . . . . . . . . . . . . . . . . 71

5.4.3 Reliability of ambiguity resolution . . . . . . . . . . . . . . . . . . . . . . 72

5.4.4 Positioning accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4.5 Degraded solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5 Ambiguity resolution at a remote mobile receiver . . . . . . . . . . . . . . . . . . 74

5.5.1 Data, models and methods . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.5.2 Satellite clock estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5.3 Narrow-lane FCB estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5.4 Comparison between kinematic PPP and differential positioning . . . . . 80

5.5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.6 Real-time ambiguity resolution in PPP . . . . . . . . . . . . . . . . . . . . . . . . 82

5.6.1 Data and models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.6.2 Rapidity of wide-lane ambiguity resolution . . . . . . . . . . . . . . . . . 84

5.6.3 Temporal stabilization of narrow-lane FCBs . . . . . . . . . . . . . . . . . 87

5.6.4 Performance of narrow-lane ambiguity resolution . . . . . . . . . . . . . . 89

5.6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.7 Impact of integer double-difference constraints . . . . . . . . . . . . . . . . . . . 91

5.7.1 Data, models and methods . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.8 Comparison between FCB- and IRC-based methods . . . . . . . . . . . . . . . . 94

5.8.1 Data, models and methods . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.8.2 Position differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.8.3 Position repeatability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.8.4 Comparison with the IGS weekly solutions . . . . . . . . . . . . . . . . . 97

5.8.5 Conclusions and suggestions . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Results on Rapid Convergences 101

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 Prediction error of ionospheric delays . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2.1 Data, models and methods . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2.2 Variation characteristics of ionospheric delays . . . . . . . . . . . . . . . . 102

6.2.3 Constant bias or linear fitting model? . . . . . . . . . . . . . . . . . . . . 102

6.3 Test rapid re-convergences with static stations . . . . . . . . . . . . . . . . . . . 104

6.3.1 Data, models and methods . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3.2 Performance of rapid re-convergences . . . . . . . . . . . . . . . . . . . . . 105

6.3.3 Is single-epoch ambiguity resolution possible? . . . . . . . . . . . . . . . . 107

6.4 Test rapid re-convergences with a mobile van . . . . . . . . . . . . . . . . . . . . 108

6.4.1 Data, models and methods . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4.2 Rapid convergences in a GPS-adverse environment . . . . . . . . . . . . . 109

6.4.3 Comparisons with an NRTK solution . . . . . . . . . . . . . . . . . . . . . 111

6.5 Conclusion on performance of rapid re-convergences . . . . . . . . . . . . . . . . 111

6.6 Rapid convergence by interpolating ionospheric delays . . . . . . . . . . . . . . . 112

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113



vi Contents

7 Global PPP-RTK 115

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2 A prototype of global PPP-RTK . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2.1 Global service providers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2.2 Augmentation service providers . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2.3 Global single users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2.4 Comparison with NRTK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2.5 Potential application: Geohazard early warning . . . . . . . . . . . . . . . 118

7.3 How many reference stations for this global PPP-RTK? . . . . . . . . . . . . . . 120

7.3.1 Data and models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.4 A case study on the 2009 L’Aquila earthquake . . . . . . . . . . . . . . . . . . . 125

7.4.1 Data, models and methods . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8 Conclusions and Perspectives 129

8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.2 Conclusions on the theoretical analysis . . . . . . . . . . . . . . . . . . . . . . . . 130

8.2.1 Integer ambiguity resolution . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.2.2 Method comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.2.3 Attempts for rapid convergences . . . . . . . . . . . . . . . . . . . . . . . 130

8.2.4 Rapid re-convergences to ambiguity-fixed solutions . . . . . . . . . . . . . 130

8.3 Conclusions on the data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.3.1 One FCB per satellite-pair pass over a regional area . . . . . . . . . . . . 131

8.3.2 Post-processing PPP with ambiguity resolution . . . . . . . . . . . . . . . 131

8.3.3 Real-time PPP with ambiguity resolution . . . . . . . . . . . . . . . . . . 132

8.3.4 Integer constraints from double-difference ambiguities . . . . . . . . . . . 132

8.3.5 Method comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.3.6 Rapid re-convergences to ambiguity-fixed solutions . . . . . . . . . . . . . 133

8.4 Main contributions to knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.5 Recommendations and Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . 134

References 137

A Method Comparison A-1

B Publications during this PhD study B-1

C Awards and professional experiences during this PhD study C-1



List of Figures

2.1 Procedure of FCB-based ambiguity resolution by Ge et al. (2008) . . . . . . . . . 14

2.2 Procedure of FCB-based ambiguity resolution by Bertiger et al. (2010) . . . . . . 17

2.3 Procedure of IRC-based ambiguity resolution by Laurichesse et al. (2009c) . . . . 19

2.4 Procedure of IRC-based ambiguity resolution by Collins (2008) . . . . . . . . . . 22

2.5 Data flowchart of a PPP-RTK model based on ambiguity resolution . . . . . . . 31

4.1 Brief structure of the PANDA software . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Structure of the post-processing PPP suite . . . . . . . . . . . . . . . . . . . . . 56

4.3 Structure of the real-time PPP suite . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1 Distribution of stations used for static PPP . . . . . . . . . . . . . . . . . . . . . 64

5.2 Fractional parts of all narrow-lane ambiguity estimates at all EPN stations on

day 245 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 Narrow-lane FCB estimates for all satellites with respect to PRN01 on day 245

in 2007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 Reliability of short-period ambiguity resolution . . . . . . . . . . . . . . . . . . . 72

5.5 Vessel trajectory on the Bohai Sea of China and three 1-Hz reference stations . . 76

5.6 Three ring networks of reference stations used for the satellite clock and FCB

determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.7 Clock comparison for three ring networks . . . . . . . . . . . . . . . . . . . . . . 78

5.8 Narrow-lane FCBs of all observed satellites with respect to PRN03 for three ring

networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.9 Distribution of narrow-lane FCB differences between the three ring networks . . 79

5.10 Distribution of 1-Hz stations for real-time PPP . . . . . . . . . . . . . . . . . . . 83

5.11 Fractional parts of a narrow-lane ambiguity between PRN30 and PRN31 at station

HOL2 with the two satellites’ time-mean elevation angles . . . . . . . . . . . . . 88

5.12 The peak-to-peak amplitudes of narrow-lane fractional parts against time-mean

elevation angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.13 Variation of narrow-lane fractional parts and resulting FCBs over a regional network 88

5.14 Position accuracy of real-time ambiguity-fixed PPP at station BSCN . . . . . . . 90

5.15 Magnitude distribution of all differences between the position estimates based on

the original and improved narrow-lane FCBs for the East, North and Up components 92

5.16 Daily RMS of transformed residuals of the position estimates against the IGS

weekly solutions for the East component in 2008 . . . . . . . . . . . . . . . . . . 93

5.17 Magnitude distribution of all position differences between the FCB-based and the

IRC-based methods for the East, North and Up components . . . . . . . . . . . . 95

vii



viii List of Figures

5.18 Geographical distribution of the station-specific RMS statistics of the position

differences over one year between the FCB- and IRC-based methods for the East

component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.19 Geographical distribution of the station-specific position repeatability of the FCB-

based method minus that of the IRC-based method for the East component over

one year . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.20 Daily RMS of the transformed residuals of the ambiguity-fixed position estimates

against the IGS weekly solutions for the East component in 2008 . . . . . . . . . 98

5.21 Geographical distribution of the station-specific East RMS for the FCB-based

method minus that for the IRC-based method . . . . . . . . . . . . . . . . . . . . 98

6.1 Variation characteristics of ionospheric delays over Europe when ionosphere con-

dition is relatively quiet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 RMS of prediction errors of the ionospheric delays under different time window

widths, latencies and elevation angles . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3 Six hours of position differences between the real-time epoch-wise and the daily

estimates at station ACOR for the East, North and Up components . . . . . . . 106

6.4 Performance of single-epoch precise positioning at station ACOR supported by

rapid re-convergences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.5 A mobile van used to test the method for rapid re-convergences developed in this

thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.6 Differences between a mobile van’s real-time position estimates and the ground

truth for the East, North and Up components . . . . . . . . . . . . . . . . . . . . 110

6.7 Differences between the ground truth and the position estimates of the ambiguity-

fixed PPP solution supported by a dense network . . . . . . . . . . . . . . . . . . 112

7.1 A prototype of a global PPP-RTK service based on rapid ambiguity resolution at

a single receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.2 Three global networks of reference stations for the determination of GPS satellite

orbits, clocks and FCBs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.3 A global network of 59 reference stations used to assess real-time PPP with

ambiguity resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.4 GPS stations for monitoring the 6th April 2009 L’Aquila earthquake . . . . . . . 126

7.5 Displacements for the East and North components at M0SE due to the L’Aquila

earthquake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.6 Estimated horizontal movement of M0SE before, during and after the L’Aquila

earthquake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A.1 Geographical distribution of the station-specific RMS statistics of the position

differences over one year between the FCB- and IRC-based methods for the North

component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1

A.2 Geographical distribution of the station-specific RMS statistics of the position

differences over one year between the FCB- and IRC-based methods for the Up

component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1



List of Figures ix

A.3 Geographical distribution of the station-specific position repeatability of the FCB-

based method minus that of the IRC-based method for the North component over

one year . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2

A.4 Geographical distribution of the station-specific position repeatability of the FCB-

based method minus that of the IRC-based method for the Up component over

one year . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2

A.5 Geographical distribution of the station-specific North RMS for the FCB-based

method minus that for the IRC-based method . . . . . . . . . . . . . . . . . . . . A-3

A.6 Geographical distribution of the station-specific Up RMS for the FCB-based

method minus that for the IRC-based method . . . . . . . . . . . . . . . . . . . . A-3



List of Tables

1.1 Quality of IGS GPS satellite prodcuts . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Positioning accuracy of PPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5.1 Performance of hourly PPP ambiguity resolution at inside-EPN stations . . . . . 68

5.2 Hourly solutions in which ambiguity resolution leads to degraded positioning

accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Performance of hourly PPP ambiguity resolution at outside-EPN stations . . . . 69

5.4 Efficiency of short-period ambiguity resolution . . . . . . . . . . . . . . . . . . . 71

5.5 Positioning accuracy of short-period static PPP . . . . . . . . . . . . . . . . . . . 73

5.6 Degraded solutions in short-period static PPP . . . . . . . . . . . . . . . . . . . . 73

5.7 Occurrence rate and mean RMS increment for degraded solutions . . . . . . . . . 74

5.8 Position accuracy of kinematic PPP for a vessel . . . . . . . . . . . . . . . . . . . 80

5.9 Position accuracy of kinematic differential positioning for a vessel . . . . . . . . . 81

5.10 Efficiency of ambiguity resolution for kinematic PPP and differential positioning 81

5.11 Rapidity of wide-lane ambiguity resolution corresponding to high elevations . . . 85

5.12 Rapidity of wide-lane ambiguity resolution corresponding to low elevations . . . . 86

5.13 Rate of reliably fixed ambiguities in all wide-lane ambiguities under different

thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.14 Position quality of real-time ambiguity-fixed PPP . . . . . . . . . . . . . . . . . . 90

5.15 Mean RMS of transformed residuals of the daily position estimates against the

IGS weekly solutions in 2008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.16 Mean RMS statistics of the transformed residuals of the daily ambiguity-float and

ambiguity-fixed position estimates against the IGS weekly solutions in 2008 . . . 97

6.1 Performance of rapid re-convergences within five epochs of 1-Hz measurements

under different latencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Statistics of the position quality for both the ambiguity-fixed solution with rapid

re-convergences and the NRTK solution for a van during its moving phases . . . 111

7.1 Performance of real-time PPP with ambiguity resolution when the 58-station

global network is used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.2 Performance of real-time PPP with ambiguity resolution when the 38-station

global network is used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.3 Performance of real-time PPP with ambiguity resolution when the 18-station

global network is used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

x



Acronyms and abbreviations

3D 3-Dimensional

BIPM Bureau International des Poids et Mesures

BKG Bundesamt für Kartographie und Geodäsie, Federal Agency for Cartography

and Geodesy

CHAMP CHAllenging Minisatellite Payload

CODE Center for Orbit Determination in Europe

CORS Continuously Operating Reference Station

COSMIC Constellation Observing System for Meteorology Ionosphere and Climate

CPU Central Processing Unit

DCB Differential Code Bias

DEOS Delft–Institute of Earth-Oriented Space Research

DLR Deutsches Zentrum für Luft- und Raumfahrt, German Aerospace Center

EGNOS European Geostationary Navigation Overlay Service

EPN EUREF Permanent Network

ERP Earth Rotation Parameter

ESOC European Space Operations Center

EUREF European Reference Frame

EUREF-IP EUREF-Internet Protocol

FCB Fractional-Cycle Bias
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Chapter 1

Introduction

1.1 Precise GPS positioning

Since 1980s, the Global Positioning System (GPS) (McDonald 2002) has been recognized as an

effective and valuable tool in acquiring positions on a global scale. Due to the low precision

and the complicated error budget of GPS pseudorange measurements, the resulting accuracy

of standard point positioning can only reach about 10 m (Alkan 2001). In differential GPS

positioning where a reference receiver at a known position provides error corrections, however,

the position estimate at a nearby receiver can usually achieve an accuracy of better than 1 m

(Alkan 2001; Landau et al. 2007). This can be understood in terms of the spatial and temporal

correlation of GPS errors in the satellite orbits and clocks, the tropospheric and ionospheric

delays (Kaplan and Hegarty 2006). Hence, most measurement errors at the nearby receiver

can be mitigated by the error corrections from the reference receiver. Unfortunately, this error

mitigation deteriorates when the inter-receiver distance is increased. This is due largely to

the spatial decorrelation of the atmospheric delays if the inter-receiver distance exceeds several

tens of kilometers. In this case, a sparse network of reference stations can be established to

both improve the accuracy of the satellite orbits and clocks, and generate a grid model for the

ionospheric delays over a continental area (Kee et al. 1991). As a result, the positioning accuracy

of around 1 m can be achieved even though the inter-receiver distance is up to a few hundred

kilometers. Typical examples are the US (United States) Wide Area Augmentation System

(WAAS) (Lawrence et al. 2007) and the European Geostationary Navigation Overlay Service

(EGNOS) (Guida et al. 2007).

Nevertheless, GPS carrier-phase measurements have to be exploited if a centimeter-level

positioning accuracy is required. Carrier-phase measurements are of millimeter-level precision,

but suffer from their nuisance ambiguities which have to be estimated along with the other

parameters of primary interest. A large number of ambiguities can considerably deteriorate

the positioning quality. Fortunately, integer resolution of double-difference ambiguities can be

routinely performed on baselines between a network of receivers by double differencing the

carrier-phase measurements (e.g. Dong and Bock 1989). In this relative positioning, fixing

ambiguities to integers can significantly improve the positioning quality, especially for the East

component (Blewitt 1989; Dong and Bock 1989; Xu 2007). For example, Blewitt (1989) improved

the daily baseline accuracy from 2.7, 1.0 and 3.6 cm to 1.0, 0.8 and 4.0 cm for the East, North

and Up components, respectively, by applying integer ambiguity resolution to baselines of up to

1
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2000 km; and at present, daily positioning accuracy can normally achieve millimeter level after a

successful double-difference ambiguity resolution (e.g. Hill et al. 2009; King and Williams 2009;

Puskas et al. 2007); furthermore, GPS measurements of only a few hours or even 5-15 minutes

can lead to an ambiguity-fixed positioning accuracy of better than 2 cm for baselines of shorter

than several tens of kilometers (e.g. Eckl et al. 2001; Ghoddousi-Fard and Dare 2006; Larson

et al. 2001; Lazio 2007; Schwarz 2008; Soler et al. 2006; Wielgosz 2010); finally, centimeter-level

positioning accuracy can also be obtained for ambiguity-fixed epoch-wise solutions, especially for

the horizontal components, on short baselines of only a few tens of kilometers (e.g. Bouin et al.

2009; Han and Rizos 2000a; King 2009; Larson et al. 2007; Shan et al. 2007). For comparison,

keeping float ambiguities can potentially jeopardize the final solutions. For example, King et al.

(2003) indicated that keeping float ambiguities can introduce spurious periodic horizontal signals

into a position time series. Tregoning and Watson (2009) reported that the spurious-signal

amplitudes in the ambiguity-float position time series are significantly larger than those in the

ambiguity-fixed ones.

Apart from these achievements in the post-processing mode, the real-time kinematic (RTK)

positioning is also of great interest for the GPS community. Usually, ambiguity-fixed solutions

can be achieved using a few seconds of measurements and the positioning accuracy is at the

centimeter level if the baseline length is shorter than a few tens of kilometers (Dai 2000; Dai

et al. 2007; Han 1997b). However, this convergence speed to an ambiguity-fixed solution is

highly subject to the accuracy of atmospheric corrections, especially during an ionospheric storm

characterized by irregular and heterogeneous properties over space and time (Dai et al. 2003;

Kim and Tinin 2007; Pratt et al. 1997; Wielgosz et al. 2005). Hence, longer baselines will

lead to lower success rates of instantaneous ambiguity resolution. In this case, a network of

Continuously Operating Reference Stations (CORS) can be established to spatially interpolate

the atmospheric corrections of which the accuracy is significantly improved over that provided

by the normal RTK where only one reference station is employed (Fotopoulos and Cannon 2001;

Musa et al. 2005; Pratt et al. 1997; Snay and Soler 2008). This service model is called network

RTK (NRTK). As a result, the inter-station distance can be extended to 50-100 km, or even

a few hundred kilometers (Grejner-Brzezinska et al. 2005; Landau et al. 2007; Park and Kee

2010). However, the deficiencies of NRTK are also obvious. On the one hand, interpolated

atmospheric corrections are normally usable only within the coverage of the CORS network and

the accuracy of atmospheric corrections is rapidly degraded when users locate far outside the

CORS network (Grejner-Brzezinska et al. 2005, 2009). On the other hand, due largely to the

costly establishment of CORS networks, NRTK can cover only a regional area and hence can

hardly evolve into a precise positioning service on a global scale (Rizos 2007).

However, many real-time applications require high positioning accuracy of centimeter level

on a wide-area or even a global scale. For example, in precision farming, the irrigation-conduit

and seed-bed establishment, which require a positioning accuracy of better than 10 cm, may

be conducted in an area of over hundreds of square kilometers (Mondal and Tewari 2007);

the topographical surveying with photogrammetry or laser scanning requires centimeter-level

positioning accuracy for airborne sensors over a large area where reference stations are not

always available (Yuan et al. 2009); precise positioning in offshore and desert areas, e.g. ocean

drilling, seafloor and sea-surface mapping, and geohazard mitigations for volcano eruptions and

tsunami monitoring, normally cannot require any nearby reference stations to be built due to

logistical feasibility and expense (e.g. Chadwell and Spiess 2008; Kato et al. 2005). Therefore, a
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global positioning service providing instantaneous centimeter-level accuracy without establishing

a global dense network of reference stations has become a strategic development direction in the

GNSS-based (Global Navigation Satellite System) positioning technologies.

1.2 Precise point positioning (PPP)

Precise point positioning (PPP) is a GNSS positioning technique processing both undifferenced

carrier-phase and pseudorange measurements at solely a single receiver by fixing known satellite

orbits and clocks of centimeter-level accuracy (Zumberge et al. 1997). PPP is characterized

by two aspects. On the one hand, PPP processes undifferenced carrier-phase and pseudor-

ange measurements. Comparatively, the standard point positioning employs only pseudorange

measurements and the precise relative positioning employs double-difference measurements.

Note that the point positioning technique based on phase-smoothed pseudorange measurements

actually applies the difference between epochs to carrier-phase measurements (Hatch 1982). On

the other hand, PPP requires precise satellite orbits and clocks. For the positioning techniques

shown in Section 1.1, however, this requirement is usually unnecessary.

1.2.1 Solution at a single receiver

In general, at a single receiver, its position, zenith tropospheric delay (ZTD), clock and am-

biguities for all observed satellites are estimated in PPP (Kouba and Héroux 2001). For a

dual-frequency receiver, the first-order ionospheric delays can be removed using the ionosphere-

free combination observable (Hofmann-Wellenhof et al. 2001). The residual higher-order delays

account for less than 0.1% of the total ionospheric delays and their impacts on the position

estimates are presumed minimal, hence usually being ignored in PPP (see Hernández-Pajares

et al. 2007; Petrie et al. 2010). For a single-frequency receiver, ionospheric delays are usually

mitigated with a priori correction models (Le and Tiberius 2007; Øvstedal 2002), such as the

IGS (International GNSS Service) Vertical Total Electron Content (VTEC) maps (Hernández-

Pajares et al. 2009; Noll et al. 2009). Unfortunately, the errors of these maps can be up to

4.5 TECU (Total Electron Content Unit) on average which is approximately equal to 72 cm

for the L1 frequency (Hernández-Pajares et al. 2009). Throughout this thesis, however, “PPP”

always denotes “dual-frequency PPP” except when otherwise noted. Moreover, ZTD is projected

with a specific mapping function to the slant direction in order to correct the tropospheric delays

for all observed satellites (e.g. Boehm et al. 2006a,b; Guo and Langley 2003; Niell 1996). Finally,

the receiver clock is estimated as white noise and the ambiguities are estimated as real-valued

constants over continuous carrier-phase measurements.

Besides this estimation strategy, PPP is complicated by its state-of-the-art corrections

including the antenna phase center offset and variation, the phase wind-up effect, the relativity

effect, the tropospheric delay, the station displacement effects and the inter-pseudorange biases

(Hofmann-Wellenhof et al. 2001; Kouba and Héroux 2001). For a satellite, its center of mass,

referred to by its orbit, does not coincide with its antenna phase center. Hence, this phase center

offset from the center of mass should be corrected (e.g. Cardellach et al. 2007; Dilssner et al.

2010; Ge et al. 2005b). Note that this correction is subject to the satellite attitude which is

rather complicated and uncertain during eclipse periods (Bar-Sever 1996; Kouba 2009a). This

correction also applies to the receiver antennas. Moreover, the actual phase center does not
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coincide with the nominal one, but depends on the signal frequency and the relative position

between the satellite and the receiver. This phase center variation is at the millimeter level.

Since November 5th 2006, absolute phase centers, instead of the relative ones, have been applied

to the IGS products (Schmid et al. 2007).

GPS satellites transmit right circularly polarized radio waves, and thus the incoming carrier-

phase measurements depend on the mutual orientation between the satellite and receiver anten-

nas. This effect is called phase wind-up (Wu et al. 1993). Specifically, a rotation of the receiver

antenna around its boresight can change the carrier-phase measurements by up to one cycle

(Garćıa-Fernández et al. 2008). For a mobile receiver, this wind-up effect is subject to the

antenna attitude (Kim et al. 2006; Le and Tiberius 2006).

The relativity effect significantly affects the undifferenced GPS measurements (Hofmann-

Wellenhof et al. 2001). On the one hand, the gravitational field results in a space-time curvature

of the signal propagation. This propagation correction can be up to 18.7 mm for GPS satellites,

but this correction is much smaller for the relative positioning (Zhu and Groten 1988). On

the other hand, the satellite fundamental frequency is affected by the satellite motion and the

difference of the gravitational fields at the satellite and the receiver, consequently changing

the satellite clock. The resulting frequency shift under the assumption of circular orbits has

been corrected in the emitted satellite clock frequency. The residual periodic effect due to this

assumption can be up to 46 ns for the satellite clock, but cancels out in the relative positioning

(Zhu and Groten 1988).

Tropospheric delays for the satellite signal propagation are divided into two parts, namely

the hydrostatic delays caused by the dry atmosphere and the wet delays caused by the water

vapor (Solheim et al. 1999). In order to simplify their impact on GPS positioning, a symmetric

troposphere condition around a ground receiver is usually assumed and hence slant delays at the

same elevation can be mapped to the vertical direction with identical mapping function. Typical

mapping functions include the Niell mapping function by Niell (1996), the Global Mapping

Function and the Vienna Mapping Function 1 by Boehm et al. (2006a,b). A priori zenith delays

can be computed using the Hopfield or Saastamoinen models (Colombo 2006; Hopfield 1969;

Jensen and Øvstedal 2008; Saastamoinen 1973). Normally, zenith hydrostatic delays can be

modeled to an accuracy of a few millimeters if the surface meteorological measurements are

known, whereas zenith wet delays can be modeled to only a few centimeters (Stoew et al. 2007;

Tregoning and Herring 2006). As a result, residual zenith wet delays are usually estimated

in PPP. Note that the residual tropospheric delays are larger at smaller elevations due to the

inaccurate mapping functions, and ZTDs manifest a high correlation with the Up component

of positions in the estimation (e.g. Munekane and Boehm 2010; Tregoning and Herring 2006;

Wang et al. 2008). In addition, the asymmetry impact of the troposphere condition can be

partly mitigated by estimating the horizontal troposphere gradients (Bar-Sever et al. 1998).

Considering the inaccurate mapping functions, measurements from water vapor radiometers,

lidar, etc. have also been investigated and used to correct tropospheric delays (e.g. Bock et al.

2001; Bosser et al. 2010; Fund et al. 2010; Hobiger et al. 2008; Ortiz de Galisteo et al. 2010).

A ground station undergoes sub-daily periodic movements which can be up to a few decime-

ters, especially in the vertical direction. These station displacements are mainly caused by the

solid Earth tide, the ocean loading, the polar motion, the atmospheric pressure loading and the

hydrological loading (McCarthy and Petit 2004). In order to generate position estimates that

are compatible with the ITRF (International Terrestrial Reference Frame), one needs to correct
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for these displacements. The displacements due to the solid Earth tide, the ocean loading and

the polar motion can be precisely modeled to 0.1 mm according to McCarthy and Petit (2004).

The atmospheric pressure loading effects can be interpolated from tabular values (Tregoning and

van Dam 2005). The hydrological loading is still under investigation by the GPS community

(van Dam et al. 2001).

Finally, hardware biases differ for different measurement types (Jefferson et al. 2001).

Because the clock offsets are governed by the pseudorange biases and current official clocks

are estimated using the P1-P2 ionosphere-free observable (Defraigne and Bruyninx 2007), other

pseudorange types, namely C/A, C2, etc. have to be calibrated to keep their compatibility with

the P1-P2 combination. Such calibrations are performed by applying the P1-C1 differential code

biases (DCBs) to the raw pseudorange measurements (Jefferson et al. 2001; Leandro et al. 2007).

Note that these DCBs are normally deemed quite stable over at least one month.

1.2.2 Satellite products

Satellite products comprise orbits and clocks. GNSS orbits are determined by numerically

integrating all physical forces imposed on the satellites, such as the gravity from Earth, Sun

and Moon, the solar radiation pressure, the Earth radiation pressure and the thrust force

(Montenbruck and Gill 2000). The unknown model parameters describing these forces are

estimated using the GNSS measurements from a network of ground reference stations (e.g.

Beutler et al. 2003; Geng et al. 2006). On the other hand, satellite clocks are determined using the

undifferenced ionosphere-free observable of pseudorange and carrier-phase measurements from a

network of reference stations (e.g. Hauschild and Montenbruck 2009). Pseudorange and carrier-

phase measurements share the same clock parameters. To avoid the rank defect of the resulting

normal equations, a receiver clock or the sum of a group of receiver clocks are constrained to zero

(Kouba and Springer 2001). Due to the ambiguous nature of carrier-phase measurements, the

absolute clock offsets are actually determined with pseudorange measurements, whilst carrier-

phase measurements govern the relative accuracy between epoch-wise clocks (Defraigne and

Bruyninx 2007; Defraigne et al. 2008).

Since 1994, the IGS has been routinely providing precise GPS satellite products generated

by combining the individual products from several analysis centers including CODE (Center

for Orbit Determination in Europe), GFZ (GeoForschungsZentrum) and JPL (Jet Propulsion

Laboratory). The products have been evolving to be of better accuracy, shorter latency and

greater variety (Dow et al. 2009; Steigenberger et al. 2009). Table 1.1 presents a summary of

the quality of the latest GPS satellite products issued by the IGS. We can see that the final

products have the highest accuracy, but with a latency of 12 to 18 days; comparatively, the

rapid products have much shorter latency of a few tens of hours, but their clock sample interval

is enlarged from 30 s to 5 minutes; the observed ultra-rapid products of 24 hours excel in even

shorter latency of only several hours, but their accuracy deteriorates and their clock sample

interval is further enlarged to 15 minutes; finally, the predicted ultra-rapid products of 24 hours

can apply to real-time applications and their orbits can achieve a sufficiently high accuracy of

about 5 cm, but their clocks suffer from a rather poor accuracy of 3 ns.

In PPP, these satellite products need to be interpolated to coincide with the sample interval

of the actual measurements. From Table 1.1, we can find that all orbit products are sampled every

15 minutes. Yousif and El-Rabbany (2007) illustrated that the interpolation accuracies for the
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Table 1.1: Quality of IGS GPS satellite productsa

Product types Accuracy Latency Updates Sample interval

Final
orbits ∼2.5 cm

12–18 days every Thursday
15 minutes

clocks ∼75 ps 30 s

Rapid
orbits ∼2.5 cm

17–41 hours at 17 UTC daily
15 minutes

clocks ∼75 ps 5 minutes

Ultra-rapid

(observed half)

orbits ∼3 cm
3–9 hours at 03, 09, 15, 21

UTC daily

15 minutes

clocks ∼150 ps 15 minutes

Ultra-rapid

(predicted half)

orbits ∼5 cm
real time at 03, 09, 15, 21

UTC daily

15 minutes

clocks ∼3 ns 15 minutes
a http://igscb.jpl.nasa.gov/components/prods.html visited on 28/08/2010

Lagrange, the Newton Divided Difference and the Trigonometric methods differ minimally and

all achieve an accuracy of far better than 1 cm. On the other hand, linear interpolation between

successive epochs is normally adopted for the precise clock products. Note that larger sample

interval of satellite clocks leads to worse positioning quality of high-rate PPP (Hesselbarth and

Wanninger 2008). In Table 1.1, the final products have the smallest sample interval of 30 s. Bock

et al. (2009a) demonstrated that the epoch-wise positioning accuracy for 1-Hz data based on

1-second clocks is about 20% better than that based on 30-second clocks, but below 2% better

than that based on 5-second clocks. Hence, since May 4th 2008, CODE has been providing

precise GPS clocks of 5-second sample interval.

Furthermore, due to the poor accuracy of IGS predicted satellite clocks, they have to

be re-estimated for real-time applications using a network of reference stations by fixing the

corresponding IGS predicted satellite orbits (Hauschild and Montenbruck 2009). Since the

accuracy of predicted orbits is degraded with the increasing interval to the end of the observed

data arc, the latest products are used once they are available from the IGS (Douša 2010).

Therefore, the predicted ultra-rapid orbits are used from their release epochs until the newer

ones are available (Bock et al. 2009b; Geng 2009). Since June 26th 2007, the IGS has issued

a call for participation for a real-time pilot project in which real-time clock generation and

dissemination is one of the key objectives (see http://www.rtigs.net). Currently, JPL provides

a Global Differential GPS (GDGPS) service where the real-time satellite clock accuracy is

better than 0.7 ns with a latency of 4 to 6 s (see http://www.gdgps.net); BKG (Bundesamt

für Kartographie und Geodäsie, Federal Agency for Cartography and Geodesy) provides GPS

satellite clocks at a 5-second interval to support fully real-time kinematic PPP (Weber et al. 2007)

(see IGS Mail-6081); DLR (Deutsches Zentrum für Luft- und Raumfahrt, German Aerospace

Center) has issued their real-time GPS satellite clocks with an accuracy of better than 0.3 ns

and a latency of about 7 s since April 19th 2010 (see IGS Mail-6133); ESOC (European Space

Operations Center) has been submitting its real-time clocks with an accuracy of better than

0.2 ns to the IGS for test purposes since July 2008 (Agrotis et al. 2010b); moreover, some

commercial real-time PPP services, such as the StarFireTM and the Starfix, are also available

based on real-time satellite clocks that are generated with GIPSY (GPS-Inferred Positioning

SYstem) (Dixon 2006; Melgard et al. 2010). It is worth indicating that none of these real-time

clock products is used throughout this thesis.

Finally, PPP users cannot generate the satellite products themselves, but have to obtain

them from a service provider. For post-processing users, the listed products in Table 1.1 can be

easily accessed via the Internet. On the contrary, the dissemination of real-time satellite products

http://igscb.jpl.nasa.gov/components/prods.html
http://www.rtigs.net
http://www.gdgps.net


1.2 Precise point positioning (PPP) 7

highly depends on the robustness of the communication link. Currently, these products reach

the end users via geostationary satellites or the Internet (e.g. Dixon 2006; Kechine et al. 2004).

1.2.3 Multi-constellation and multi-frequency PPP

Due to the huge economic benefits of GNSS in the ongoing information revolution, the US gov-

ernment is modernizing GPS whilst the Russian government is restoring GLONASS (Global’naya

Navigatsionnaya Sputnikovaya Sistema) (Revnivykh 2008). Meanwhile, the European and Chi-

nese governments have also joined this race by independently building the Galileo and Compass

systems (Cao 2009; Falcone 2008). Hence, PPP based on simulated or real multi-constellation

and multi-frequency measurements has been reported in many publications. For the multi-

constellation PPP, it is illustrated that adding GLONASS or Galileo measurements to GPS-based

PPP can clearly improve the positioning quality in GPS-adverse environments where the number

of GPS satellites significantly decreases and cycle slips frequently occur (Cai and Gao 2007; Cao

et al. 2010; Gjevestad et al. 2007; Kjørsvik et al. 2007; Melgard et al. 2010). On the other hand,

for multi-frequency measurements, most publications focus on the inter-frequency carrier-phase

combinations to derive ionosphere-reduced low-noise long-wavelength measurements for efficient

ambiguity resolution (e.g. Feng 2008; Hatch et al. 2000; Li et al. 2010). Henkel and Günther

(2008) proposed an ionosphere-free mixed pseudorange-carrier combination which has a long

wavelength of 3.215 m and a low noise level of 3.76 cm for multi-frequency PPP. Nevertheless,

throughout this thesis, neither multi-constellation nor multi-frequency PPP is further discussed.

1.2.4 Advantages of PPP

PPP was first developed for highly efficient analysis of GPS measurements from huge networks

(Zumberge et al. 1997). As demonstrated by Zumberge et al. (1997), PPP processing time

linearly scales with the number of stations n, namely O(n), but PPP closely reproduces an

O(n3) full network solution which is normally achieved by double-difference data processing.

Furthermore, in order to solve the problem of O(n4) computation burden after applying double-

difference ambiguity resolution to a network solution by PPP, Blewitt (2008) chose an inde-

pendent baseline set before fixing double-difference ambiguities, and consequently reduced the

computation burden to O(n) again. For example, a network analysis for 98 stations costs about

15 minutes for PPP whereas over 22 hours for double-difference data processing on a 3 GHz CPU

(Blewitt 2008). In addition, Ge et al. (2006) improved the strategy of forming double-difference

ambiguities with undifferenced ones, and thus considerably accelerate the network analysis.

On the other hand, PPP users do not need to establish any reference stations before they

carry out surveying, which can significantly reduce the logistical expense and simplify the work

(Bisnath and Gao 2009). This is because PPP does not require any raw measurements from

a nearby receiver, but only the precise satellite products determined by a network of reference

stations. Note that PPP users do not need to know the details of this reference network.

Moreover, PPP is a precise positioning technique working on a global scale in nature

(Wübbena et al. 2005). Empirically, only a sparse reference network is needed to maintain

a typical global PPP service. For example, a few tens of globally well distributed reference

stations can lead to precise satellite products of comparable quality with the IGS rapid, or even

final products (Geng et al. 2006; Hauschild and Montenbruck 2009), and PPP can be carried

out even in open oceans where the nearest reference stations may be a few thousand kilometers
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Table 1.2: RMS of the differences between PPP positions and ground truths

Measurements Mode
RMS (cm)

East North Up

Dual-frequency

Daily static <0.5 <0.5 <1.0

Hourly static ∼4.0 ∼2.0 ∼3.0

Post-processing kinematic ∼5.0 ∼4.0 ∼10.0

Real-time kinematic <10.0 <10.0 <20.0

Single-frequency
Post-processing kinematic ∼25.0 ∼25.0 ∼50.0

Real-time kinematic ∼40.0 ∼40.0 ∼50.0

away (Geng et al. 2010c). In addition, Table 1.2 shows current GPS-based PPP performance

under favorable conditions where carrier-phase measurements are continuous and the observation

period is sufficiently long (e.g. Chen 2004; Chen and Gao 2005; Dixon 2006; Gao et al. 2006;

Geng et al. 2010b; Héroux et al. 2004; Teferle et al. 2007; Tétreault et al. 2005).

Finally, for real-time applications, PPP requires only a limited transmission bandwidth

compared with the NRTK services (Dixon 2006; Wübbena et al. 2005). This is because correc-

tions from a PPP service provider mainly contain the orbits and clocks for all visible satellites of

which the volume does not change with the number of reference stations. On the contrary, for

FKP-based (Flächenkorrekturparameter, Area Correction Parameter) NRTK services, the num-

ber of reference stations defines the required transmission bandwidth; for VRS-based (Virtual

Reference Station) services, the number of users decides the bandwidth; finally, for MAC-based

(Master-Auxiliary-Concept) services, the number of auxiliary stations dominates the bandwidth

(Wübbena et al. 2005). Hence, the transmission bandwidth of an NRTK service is increased

when the system scale is enlarged.

Due to these advantages of PPP, it has been comprehensively applied to the geophysical

analysis (e.g. Blewitt et al. 2006; Calais et al. 2006; Larson and Miyazaki 2008; Melbourne et al.

2002; Sato et al. 2008), meteorological studies (e.g. Iwabuchi et al. 2006; Leandro et al. 2010;

Peng et al. 2008; Rocken et al. 2005; Skone et al. 2006), oceanographic research (e.g. King and

Aoki 2003; King et al. 2005; Zhang and Andersen 2006), orbit determinations for low Earth

orbiters (e.g. Hwang et al. 2009; Jäggi et al. 2007; Montenbruck et al. 2005) and industrial fields

(e.g. Ebner and Featherstone 2008; Satirapod and Homniam 2006; Schweitzer et al. 2010; Yuan

et al. 2009).

1.3 Problem statement: Deficiencies of PPP

Despite the above advantages, it is well-known that PPP still suffers from unresolved ambiguities

and slow convergences (Bisnath and Gao 2007).

On the one hand, ambiguities at a single receiver are conventionally not fixed to integers.

This is because the fractional-cycle biases (FCBs) in the GPS measurements are absorbed by

the undifferenced ambiguity estimates and their integer properties are thus destroyed (Collins

2008; Ge et al. 2008; Mercier and Laurichesse 2008). In theory, these FCBs are presumed

hardware-dependent and are present in all receivers and satellites (Teunissen and Kleusberg

1998). Hence, the FCBs cancel in double-difference data processing. Gabor and Nerem (1999)

described the FCBs as the fractional-cycle part of the uncalibrated offsets in the frequency

oscillators, uncalibrated delays from the transmitter and receiver hardware, or uncalibrated
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offsets between the signal detection phase reference and the time-tag generation reference within

a receiver. However, the temporal property of the FCBs is not exactly known. Blewitt (1989)

empirically reported that they were stable to better than 1 ns, Gabor and Nerem (1999) simply

assumed that they changed systematically with time and Wang and Gao (2007) found the high

stability of the receiver-dependent FCBs during continuous observation periods. Despite this

uncertainty, it is believed that the time-invariant parts of the FCBs cannot be separated from

the undifferenced ambiguity estimates in the conventional PPP proposed by Zumberge et al.

(1997), thus inhibiting integer ambiguity resolution at a single receiver.

On the other hand, the convergence in PPP means that the position or the ambiguity

estimates steadily approach to a specific accuracy level and do not leave this level after reaching it.

Typically, the convergence period is around 20 minutes before kinematic PPP can achieve a posi-

tioning accuracy of better than 20 cm (Bisnath and Gao 2007). Even worse, if continuous carrier-

phase measurements cannot be guaranteed, i.e. when severe cycle slips or signal interruptions

occur, a re-convergence may start. Compared with NRTK, such long convergence periods have

significantly devalued PPP in many commercial real-time applications (Bisnath and Gao 2007).

This slow convergence is largely attributed to the imprecise pseudorange measurements and the

slow change of satellite geometry. For one thing, imprecise pseudorange measurements cannot

effectively constrain the ambiguous carrier-phase measurements. Hence, the ambiguity estimates

can hardly converge to sufficiently accurate values within a short observation period (Teunissen

1996). For another, slow geometry changes of visible satellites lead to a high correlation between

the ambiguity and position parameters (Li and Shen 2010). As a result, a sufficient long period

has to be spent before the satellite geometry sufficiently changes, as otherwise the position

estimates can be significantly biased by inaccurate ambiguity estimates (Zhu et al. 2007).

1.4 Research objectives

Considering Section 1.3, this thesis concentrates on improving GPS-based PPP by resolving

ambiguities for a single receiver and accelerating the convergence to ambiguity-fixed solutions in

order to achieve centimeter-level positioning accuracy with only a few seconds of measurements.

The key issues addressed in this thesis are as follows:

• What methods have been developed for integer ambiguity resolution at a single receiver

and how do they differ in theory and practice?

• How do we implement a PPP-RTK service characterized by integer ambiguity resolution?

• How do the sub-daily static, post-processing kinematic and real-time kinematic PPP

benefit from integer ambiguity resolution?

• What methods have been developed for rapid convergences to ambiguity-fixed solutions in

the real-time PPP and are they realistic in practice?

• How can we significantly accelerate a re-convergence using precisely predicted ionospheric

delays and the first convergence using a dense network of reference stations?

• How does the real-time PPP benefit from rapid re-convergences and what will affect the

performance of rapid re-convergences?

• What are the prototype and the potential applications of a global PPP-RTK service based

on rapid integer ambiguity resolution?
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1.5 Thesis overview

This thesis is arranged into eight chapters which are outlined as follows. Following this chapter,

Chapter 2 reviews the methods to date developed for integer ambiguity resolution at a single

receiver and derives a theoretical proof for the equivalence between these methods. Then the

improved methods developed in this thesis are presented.

Chapter 3 reviews and compares the attempts developed for rapid convergences in the

real-time PPP. Of particular note, a method is originally developed in this thesis for the rapid

re-convergences to ambiguity-fixed solutions and a potential strategy for accelerating the first

convergence is proposed afterwards.

Chapter 4 introduces the software provided byWuhan University for a research collaboration

and then details the post-processing and real-time suites developed during this PhD research.

Chapter 5 presents and discusses the results for the sub-daily static, post-processing kine-

matic and real-time kinematic PPP after applying integer ambiguity resolution at a single

receiver. The contribution of integer double-difference constraints to the positioning quality

is highlighted. Then the comparison between the methods for integer ambiguity resolution is

illustrated in detail.

Chapter 6 presents and discusses the results for rapid re-convergences to ambiguity-fixed

solutions in PPP by applying the method developed in Chapter 3. The variation characteristics

of ionospheric delays are investigated. Also, rapid convergences through interpolated ionospheric

delays are briefly illustrated.

Chapter 7 proposes a prototype of a global PPP-RTK service and then compares it with

NRTK services. Its potential applications are afterwards discussed and tested. The question

that how many reference stations are sufficient to support this global service is also investigated.

Chapter 8 finally summarizes the main points and highlights the contributions of this thesis.

Then the perspective of PPP with rapid integer ambiguity resolution is discussed.



Chapter 2

Integer Ambiguity Resolution

2.1 Introduction

Integer ambiguity resolution can significantly improve the positioning quality, especially in real

time or when the observation period is short (e.g. Schwarz et al. 2009; Zumberge et al. 1997).

Although ambiguity resolution has been routinely performed in relative positioning, it is only in

recent years that ambiguity resolution at a single receiver has been preliminarily developed and

implemented in PPP (e.g. Collins 2008; Ge et al. 2008; Laurichesse and Mercier 2007). Hence,

this chapter first reviews the methods developed for ambiguity resolution at a single receiver,

then proves the theoretical equivalence of the ambiguity-fixed position estimates derived from

these methods and finally addresses the improved methods for ambiguity resolution developed

in this thesis. In addition, the methods for ambiguity search and validation are discussed before

ending this chapter.

2.2 Current advances

To date, the methods for ambiguity resolution at a single receiver can be categorized into two

groups: One is based on the determination of FCBs and the other is based on the determination

of integer-recovery clocks (IRCs). FCBs and IRCs have to be determined before they can be

applied to a single-receiver solution in order to recover the integer properties of ambiguities. In

this section, the fundamental measurement equations are first presented, and then the methods

for ambiguity resolution at a single receiver are detailed through mathematical derivations.

2.2.1 Theoretical fundamentals of PPP

In general, undifferenced GPS pseudorange and carrier-phase measurements on frequency g

(g = 1, 2) between receiver i and satellite k at a particular epoch can be respectively written as



















P k
gi = ρki + ctki +

µk
i

f2
g

+ bkgi − ekgi

Lk
gi = ρki + ctki −

µk
i

f2
g

+Bk
gi + λgN

k
gi − εkgi

(2.1)

11
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where ρki denotes the non-dispersive delay including the geometric distance, the tropospheric

delay and the relativity effects; note that antenna phase center corrections have to be applied

to P k
gi and Lk

gi before ρki becomes unassociated with the frequency (refer to Section 1.2.1);

c denotes the speed of light in vacuum, fg denotes the signal frequency and λg denotes the

wavelength; tki = ti − tk where ti and tk denote the receiver and satellite clocks, respectively;
µk
i

f2
g

denotes the first-order ionospheric delay with the higher-order delays ignored; bkgi and Bk
gi

respectively denote the pseudorange and carrier-phase hardware biases where bkgi = bgi − bkg and

Bk
gi = Bgi − Bk

g (Teunissen and Kleusberg 1998); bgi and Bgi are for the receiver whereas bkg

and Bk
g are for the satellite; Nk

gi denotes the integer ambiguity; finally, ekgi and εkgi represent the

residual or unmodeled errors, such as multipath effects (Dilssner et al. 2008), for the pseudorange

and carrier-phase measurements, respectively. In addition, it should be emphasized that the

hardware biases differ for different measurement types and signal frequencies. To date, the

temporal property of these hardware biases has not been exactly known, and thus they are

usually presumed to change slowly and minimally, or remain constant over time (e.g. Blewitt

1989; Dach et al. 2007; Gabor and Nerem 1999).

As introduced in Section 1.2.1, ionosphere-free combination observables are used in PPP

to eliminate the first-order ionospheric delays in pseudorange and carrier-phase measurements

(Dach et al. 2007; Hofmann-Wellenhof et al. 2001). Hence, the measurements used in the

conventional PPP by Zumberge et al. (1997) are



























P k
i = ρki + ctki + bki − eki
f2
1

f2
1 − f2

2

Lk
1i −

f2
2

f2
1 − f2

2

Lk
2i = ρki + ctki+

(

f2
1

f2
1 − f2

2

Bk
1i −

f2
2

f2
1 − f2

2

Bk
2i

)

+

(

λ1f
2
1

f2
1 − f2

2

Nk
1i −

λ2f
2
2

f2
1 − f2

2

Nk
2i

)

− εki

(2.2)

where the frequency notation g for the pseudorange observable is ignored to imply the quantities

related to the ionosphere-free observables; P k
i =

f2
1

f2
1 − f2

2

P k
1i −

f2
2

f2
1 − f2

2

P k
2i and this relationship

also holds for bki , e
k
i and εki . According to the error propagation law (Wolf and Ghilani 1997),

the noise of measurements in Equation 2.2 is about three times larger than that of the original

measurements in Equation 2.1. Moreover, the nominal ambiguity term
λ1f

2
1

f2
1 − f2

2

Nk
1i−

λ2f
2
2

f2
1 − f2

2

Nk
2i

is no longer an integer times a specific wavelength, and a real ambiguity estimate is actually a

combination of this ambiguity term and the hardware biases, i.e.
f2
1

f2
1 − f2

2

Bk
1i −

f2
2

f2
1 − f2

2

Bk
2i and

bki (see Collins 2008; Zumberge et al. 1997). Furthermore, this nominal ambiguity term can be

decomposed into a narrow-lane and a wide-lane term (Dach et al. 2007), namely

λ1f
2
1

f2
1 − f2

2

Nk
1i −

λ2f
2
2

f2
1 − f2

2

Nk
2i = λnN

k
1i +

f2
f1 + f2

λwN
k
wi (2.3)

where λn =
c

f1 + f2
and λw =

c

f1 − f2
denote the narrow-lane and wide-lane wavelengths which

are about 11 cm and 86 cm, respectively; Nk
wi = Nk

1i − Nk
2i is called the wide-lane ambiguity

whereas Nk
1i is correspondingly called the narrow-lane ambiguity.

Melbourne (1985) and Wübbena (1985) proposed a combination observable which is theo-
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retically free from both the ionospheric delay and the non-dispersive delay, namely

Lk
mi = λw

(

Lk
1i

λ1

−
Lk
2i

λ2

)

−
f1P

k
1i + f2P

k
2i

f1 + f2
= λw

(

Nk
wi +

Bk
1i

λ1

−
Bk

2i

λ2

−
λn

λw

(

bk1i
λ1

+
bk2i
λ2

))

(2.4)

where the residual errors ekgi and εkgi are ignored. Hence, Nk
wi plus the hardware biases can be

approximated with
Lk
mi

λw

. Multi-epoch averaging can smooth out the large pseudorange noise

and thus lead to a more accurate estimate. Substituting Nk
wi in Equation 2.3 with Equation 2.4,

we can obtain

λ1f
2
1

f2
1 − f2

2

Nk
1i−

λ2f
2
2

f2
1 − f2

2

Nk
2i = λnN

k
1i+

f2L
k
mi

f1 + f2
−

cf2
f2
1 − f2

2

(

Bk
1i

λ1

−
Bk

2i

λ2

−
λn

λw

(

bk1i
λ1

+
bk2i
λ2

))

(2.5)

Finally, substituting the ambiguity term of Equation 2.2 with Equation 2.5, we can then

obtain
{

P k
i = ρki + ctki + bki − eki

Lk
i = ρki + ctki +Bk

i + λnN
k
i − εki

(2.6)

where


























Lk
i =

f2
1

f2
1 − f2

2

Lk
1i −

f2
2

f2
1 − f2

2

Lk
2i −

f2
f1 + f2

Lk
mi

Bk
i =

f1
f1 + f2

Bk
1i +

λnf2
f1 + f2

(

bk1i
λ1

+
bk2i
λ2

)

Nk
i = Nk

1i

(2.7)

Hence, the carrier-phase hardware bias in Equation 2.6 is a combination of the carrier-phase

and pseudorange hardware biases in Equation 2.1. Of particular note, an ambiguity term with

integer property is finally introduced into the ionosphere-free carrier-phase measurements, and

thus ambiguity resolution becomes possible in theory. Nevertheless, as demonstrated in Section

1.3, the float ambiguity estimate based on Equation 2.6 contains not only λnN
k
i , but also bki and

Bk
i . This point will be detailed in Section 2.3. In addition, it is worth emphasizing that Equation

2.6 is fundamental to both following methods, i.e. the FCB-based and IRC-based methods. The

derivation of Equation 2.6 also implies that ambiguity resolution at a single receiver can be

implemented by sequentially performing wide-lane and narrow-lane ambiguity resolution.

2.2.2 Methods based on fractional-cycle biases (FCBs)

Here FCBs are deemed as the fractional-cycle part of hardware biases, i.e. bki and Bk
i in Equation

2.6. The remaining integer-cycle parts do not affect the integer property of ambiguities. Satellite

hardware biases bk and Bk are presumed constant over the observation period for the FCB-

based methods. In the following, the two FCB-based methods developed by Ge et al. (2008) and

Bertiger et al. (2010) are introduced, respectively. For both methods, the FCB determination

with a network of reference stations is addressed before a single-receiver solution augmented

by the FCB estimates is presented. Finally, the key points for the FCB-based methods are

summarized.

A Method by Ge et al. (2008)

The method developed by Ge et al. (2008) can be schematically illustrated with Figure 2.1.

In general, this method consists of four sequential steps which are performed within the two

modules, namely the network and single-receiver solutions. In the network solution, wide-lane
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Figure 2.1: Procedure of FCB-based ambiguity resolution by Ge et al. (2008). The solid arrows
represent the computation sequences while the dashed arrows represent the input/output operations

and narrow-lane FCBs are estimated. In the single-receiver solution, the FCB estimates are then

used to retrieve the integer property of the wide-lane and narrow-lane ambiguity estimates.

For the network solution, wide-lane FCB estimates are derived from the Melbourne-Wübbena

combination measurements (Equation 2.4). Specifically, a float estimate of a wide-lane ambiguity

plus its pertinent hardware bias is

N̂k
wi = Nk

wi +
Bk

1i

λ1

−
Bk

2i

λ2

−
λn

λw

(

bk1i
λ1

+
bk2i
λ2

)

=

〈

Lk
mi

λw

〉

(2.8)

where < · > here represents averaging over all involved epochs. In order to avoid the possibly

varying receiver FCBs (Wang and Gao 2007), Ge et al. (2008) proposed the difference between

satellites in order to eliminate the receiver FCBs. However, note that this difference applies to

only ambiguity estimates, not the raw measurements. A difference between satellites k and l is

N̂kl
wi = Nkl

wi −
Bkl

1

λ1

+
Bkl

2

λ2

+
λn

λw

(

bkl1
λ1

+
bkl2
λ2

)

=

〈

Lk
mi

λw

〉

−
〈

Ll
mi

λw

〉

(2.9)

where the superscript “kl” denotes satellite k minus l; the subscript i disappears from the

hardware-bias terms because the remaining FCBs are only satellite-dependent. In this case, the

wide-lane FCB estimate for the satellite-pair k and l is

φkl
w =

〈

N̂kl
w −

[

N̂kl
w

]〉

(2.10)

and its variance is

σ2
φkl
w

=

〈

(

N̂kl
w −

[

N̂kl
w

]

− φkl
w

)2
〉

Rkl
(2.11)

where Rkl denotes the number of ambiguities pertinent to the satellite-pair k and l at all receivers;

[·] represents rounding to the nearest integer; < · > represents averaging over all involved

ambiguities. Note that the rounding to the nearest integer here is actually not a trivial operation

(Gabor and Nerem 1999; Ge et al. 2008). φkl
w is cyclical in nature. This means that −0.5 cycles

is actually identical to +0.5 cycles. For an FCB of which the true value is half a cycle, the

measurement noise may cause a discrepancy of about 1 cycle between the fractional parts of

some ambiguity estimates. Hence, Gabor and Nerem (1999) suggested an alternative strategy
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to estimate FCBs, namely

φkl
w =

arctan









Rkl

∑

sin
(

2πN̂kl
w

)

/

Rkl

∑

cos
(

2πN̂kl
w

)









2π
(2.12)

It is worth indicating that
[

N̂kl
wi

]

consists of Nkl
wi and the integer-cycle part of the hardware

bias in Equation 2.9. However, in order to simplify the subsequent formula derivations, it is

presumed that φkl
w = −

Bkl
1

λ1

+
Bkl

2

λ2

+
λn

λw

(

bkl1
λ1

+
bkl2
λ2

)

which is fractional and thus
[

N̂kl
wi

]

= Nkl
wi.

Note that this assumption will not affect the final solutions because the integer-cycle offset of

the hardware bias is common for all ambiguities pertinent to the satellite-pair k and l at all

receivers. Hence, this offset will finally cancel at single-receiver solutions.

Once the wide-lane FCBs φkl
w are obtained, the integer wide-lane ambiguities Nkl

wi at all

involved receivers can also be obtained. In this case, the transformation from Equation 2.2

to 2.6 can be carried out. Furthermore, the float estimate of the narrow-lane ambiguity Nk
i

in Equation 2.6 suffers from the hardware biases bki and Bk
i and thus its integer property is

destroyed after a least squares adjustment. Similar to Equation 2.10, the narrow-lane FCB

estimate for the satellite-pair k and l can be obtained with

φkl
n =

〈

N̂kl −
[

N̂kl
]〉

(2.13)

and its variance is

σ2
φkl
n

=

〈

(

N̂kl −
[

N̂kl
]

− φkl
n

)2
〉

Rkl
(2.14)

where N̂kl denotes the float estimate of Nkl and other notations refer to Equation 2.10. Note

that the difference between satellites is also applied to the narrow-lane ambiguities. In addition,
[

N̂kl
i

]

= Nkl
i is assumed in order to simplify the subsequent formula derivations.

On the other hand, at a single receiver, the above FCBs φkl
w and φkl

n are used to respec-

tively correct wide-lane and narrow-lane ambiguity estimates in order to retrieve their integer

properties. Specifically, an integer wide-lane ambiguity at receiver i can be retrieved with

Nkl
wi = N̂kl

wi − φkl
w (2.15)

and its variance is

σ2
Nkl

wi

=

〈

(

Lk
mi

λw

− N̂k
wi

)2
〉

Rk
i

+

〈

(

Ll
mi

λw

− N̂ l
wi

)2
〉

Rl
i

+ σ2
φkl
w

(2.16)

where Rk
i and Rl

i are the number of epochs used for the averaging and other notations refer to

Equation 2.8 and 2.9. If Nkl
wi can be successfully fixed to an integer, the corresponding narrow-

lane ambiguity N̂kl
i can then be obtained following the principle of Equation 2.3 to 2.5, and its

integer property can be retrieved with

Nkl
i = N̂kl

i − φkl
n (2.17)
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and its variance depends on the unit-weight variance and the inversed normal matrix (Wolf and

Ghilani 1997). Finally, if both wide-lane and narrow-lane resolutions succeed, ambiguity-fixed

solutions can be achieved by tightly constraining the ambiguity estimates derived from Equation

2.2 to λn

(

Nkl
i + φkl

n

)

+
f2

f1 + f2
λwN

kl
wi (refer to Equation 2.3). Hence, the accuracy of narrow-

lane FCBs φkl
n , other than the correctness of integer Nkl

i and Nkl
wi, affect the quality of the

final ambiguity-fixed solutions. Comparatively, wide-lane FCBs φkl
w are used only for integer

resolutions, and thus their accuracy requirement is not as high as that for φkl
n .

This FCB-based method was actually first developed by Gabor and Nerem (1999). The only

difference is that Nkl
wi + φkl

w replaces Nkl
wi to derive the narrow-lane ambiguity N̂kl

i in Equation

2.3. In this case, both accuracies of φkl
w and φkl

n affect the quality of the final ambiguity-

fixed solutions. Unfortunately, highly accurate φkl
w cannot be guaranteed because of the noisy

Melbourne-Wübbena combination measurements. Hence, the method by Ge et al. (2008) is

advantageous and has thus been adopted and improved in this thesis. Moreover, Wang and

Gao (2006) used simulated GPS measurements to verify this method, Henkel and Günther

(2008) showed an application of this method to the multi-frequency PPP (see also Henkel et al.

2010) whereas El-Mowafy (2009) showed an alternative to this method when there is only one

available reference station. Similar applications of this method can also be found in Mervart

et al. (2008) for real-time scenarios and Rocken et al. (2008) for oceanic surveying. Specifically,

Ge et al. (2008) reported that FCB-based ambiguity resolution can improve the RMS statistics

of daily position estimates against the IGS weekly solutions (Altamimi and Collilieux 2009)

from 4.1, 3.1 and 8.3 mm to 2.8, 3.0 and 7.8 mm for the East, North and Up components,

respectively; El-Mowafy (2009) showed a few post-processing kinematic cases where centimeter-

level positioning accuracy can be achieved at ambiguity-fixed epochs; finally, Rocken et al. (2008)

presented a simulated real-time case study in which ambiguity-fixed PPP can reach a positioning

accuracy of 1.8, 1.9 and 4.1 cm for the East, North and Up components, respectively. However,

a comprehensive and close study on the potential performance of ambiguity-fixed PPP is still

necessary.

B Method by Bertiger et al. (2010)

The method developed by Bertiger et al. (2010) can be schematically illustrated with Figure 2.2.

Compared with the method by Ge et al. (2008), FCBs are not estimated in the network solution.

Instead, the time spans and float estimates of undifferenced ambiguities are generated and then

delivered to users for ambiguity resolution. This ambiguity product is used to form double-

difference ambiguities with the undifferenced ambiguity estimates in a single-receiver solution.

Hence, ambiguity resolution is actually performed on the double-difference ambiguities. However,

note that only the raw measurements from user’s receivers are needed for ambiguity resolution.

For the network solution, undifferenced wide-lane ambiguity estimates are also derived

from the Melbourne-Wübbena combination measurements (Blewitt 1989). By forming double-

difference wide-lane ambiguities between receivers i and j for the satellite-pair k and l, the

hardware-bias terms in Equation 2.8 can be totally eliminated, namely

N̂kl
wij = Nk

wi −N l
wi −Nk

wj +N l
wj =

〈

Lk
mi

λw

〉

−
〈

Ll
mi

λw

〉

−

〈

Lk
mj

λw

〉

+

〈

Ll
mj

λw

〉

(2.18)

Hence, double-difference wide-lane ambiguities preserve their integer properties and thus integer
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Figure 2.2: Procedure of FCB-based ambiguity resolution by Bertiger et al. (2010). Meanings of
arrows refer to Figure 2.1

resolutions can be directly attempted without considering the wide-lane FCBs. In the next step,

undifferenced ionosphere-free measurements are formed with Equation 2.2. Likewise, double

differencing is applied to the resulting undifferenced ambiguity estimates in order to totally

eliminate the hardware biases. In this case, the double-difference ambiguity estimate between

receivers i and j for the satellite-pair k and l becomes
λ1f

2
1

f2
1 − f2

2

Nkl
1ij −

λ2f
2
2

f2
1 − f2

2

Nkl
2ij , and it can

be further decomposed into

λ1f
2
1

f2
1 − f2

2

Nkl
1ij −

λ2f
2
2

f2
1 − f2

2

Nkl
2ij = λnN

kl
1ij +

f2
f1 + f2

λwN
kl
wij (2.19)

which is actually similar to Equation 2.3. In this manner, the integer wide-lane ambiguity

estimate in Equation 2.18 can be substituted into Equation 2.19 to obtain the double-difference

narrow-lane ambiguity estimate Nkl
1ij . Note that this narrow-lane ambiguity estimate also

preserves its integer property, and thus can also be directly fixed to an integer without considering

any narrow-lane FCBs. Finally, once both wide-lane and narrow-lane resolutions succeed, a tight

constraint based on Equation 2.19 can be imposed on the undifferenced ambiguities (Ge et al.

2005a, 2006). As a result, undifferenced ionosphere-free-observable ambiguity estimates are

generated under the constraints of integer double-difference ambiguities.

In addition, it should be noted that the above processing strategy is part of the routine

global network analysis by JPL using GIPSY-OASIS (Orbit Analysis SImulation Software)

(Bertiger et al. 2010; Blewitt 1989, 2008; Webb and Zumberge 1997). After this network analysis,

undifferenced wide-lane and ionosphere-free-observable ambiguity estimates are provided as an

ambiguity product together with the satellite products for users. Also, the ambiguity time

spans and the receiver knowledge are delivered for the convenience of forming double-difference

ambiguities in a single-receiver solution (Bertiger et al. 2010).

On the other hand, at a single receiver, one first generates an ambiguity-float solution

based on JPL’s satellite products. Then the ambiguity product is searched for the most prefer-

able undifferenced ambiguity estimates that can form double-difference ambiguities with the

undifferenced ambiguity estimates at this receiver (Bertiger et al. 2010). The criteria for the

preferable ambiguities are short baselines, long time of common view, etc. Once this formation

is accomplished, integer resolutions of wide-lane and narrow-lane ambiguities can be sequentially

attempted in terms of Equation 2.18 and 2.19. Finally, ambiguity-fixed solutions can be achieved

only if both wide-lane and narrow-lane resolutions are successful.
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In practice, Bertiger et al. (2010) improved the daily position repeatability from 2.9 to

1.9 mm for the East component by applying this single-receiver ambiguity resolution. Moreover,

post-processing epoch-wise positioning using 30-hour GPS measurements at static stations showed

an RMS reduction from 9.9, 9.2 and 13.6 mm to 7.7, 8.4 and 11.7 mm for the East, North and

Up components, respectively, against the daily estimates.

In conclusion, this method can be considered an FCB-based method although FCBs are not

explicitly determined. FCBs underlie the above ambiguity product. This can be understood by

recognizing the ambiguity product as a sum of integer ambiguities and FCBs. Therefore, FCBs

in a single-receiver solution can be corrected with the ambiguity product.

C Remarks on the FCB-based methods

According to the above discussions, the methods by Ge et al. (2008) and Bertiger et al. (2010)

differ in the following three aspects:

• FCBs are explicitly separated from the integer ambiguities as an independent product in

the method by Ge et al. (2008) whereas preserved in the float ambiguity estimates which

finally form an ambiguity product in the method by Bertiger et al. (2010). Hence, dedicated

algorithms and strategies have to be developed in the first method to accurately identify

the FCBs;

• Furthermore, FCBs are presumed constant over the whole observation period in the method

by Ge et al. (2008) whereas this assumption is not rigorously required in the method by

Bertiger et al. (2010). Because FCBs are estimated by averaging the fractional parts of

all involved ambiguity estimates for a satellite pair, varying FCBs over time and space

will invalidate this averaging operation. Comparatively, FCBs are presumed constant in

the second method only during the common-view period of a satellite pair by a number of

receivers. Double-difference ambiguities can then have integer properties;

• Finally, the size of the satellite-pair FCB product solely depends on the number of satellites

whereas the size of the ambiguity product primarily depends on the number of reference

stations involved in a network solution. Hence, the size of the ambiguity product may

become too large to be conveniently delivered to users. Usually, a dense network is

required to achieve a high performance of ambiguity resolution, and consequently a huge

ambiguity product seems unavoidable. This limitation prevents the real-time application

of the method by Bertiger et al. (2010).

On the other hand, the FCB-based methods are characterized by three points:

• Undifferenced measurements from a single receiver are processed although it is the differ-

ential ambiguities that are fixed to integers. Differencing is performed on the undifferenced

ambiguity estimates, rather than the raw measurements;

• FCBs are eliminated or separated from the integer ambiguities by directly processing the

ambiguity estimates. This means that FCBs are not used to directly reduce the raw

measurements;

• Because only the ambiguity estimates are used to preform ambiguity resolution, the FCB-

based methods are totally compatible with the conventional PPP by Zumberge et al. (1997).

Therefore, FCB-based ambiguity resolution can conveniently supplement the conventional

PPP without causing considerable revisions of the classic algorithms.

Finally, for completeness, Gao and Shen (2001) proposed a pseudo-fixing strategy in which

undifferenced ambiguity estimates are directly fixed to their nearest integers, regardless of the
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Figure 2.3: Procedure of IRC-based ambiguity resolution by Laurichesse et al. (2009c). Meaning of
arrows refers to Figure 2.1

FCBs. Hence, no network solution is required to estimate FCBs. In fact, this strategy was used

to accelerate the convergence of real-time PPP (Abdel-salam and Gao 2003). As reported by

Gao and Shen (2001), successful pseudo-fixing can improve the positioning accuracy to better

than 40 cm during the early convergence period. Nevertheless, pseudo-fixing is actually fixing

ambiguities to erroneous values. To mitigate the resulting negative impacts, ambiguity-float

solutions have to be kept at the same time (Abdel-salam 2004). Anyway, this method potentially

jeopardizes the PPP performance, although it may slightly contribute to the rapid convergences

in the real-time PPP.

2.2.3 Methods based on integer-recovery clocks (IRCs)

The IRCs are named as this because they are used in PPP to directly generate the ambiguity

estimates that hold the integer properties, hence differing from the official clock products in

Table 1.1. Unlike the FCB-based methods, the IRC-based methods do not require a rigorous

assumption of constant satellite hardware biases. In the following, two methods developed by

Laurichesse et al. (2009c) and Collins (2008) are introduced. For each method, the IRC deter-

mination with a network of reference stations is detailed before a single-receiver solution based

on the IRCs is presented. Finally, the key points for the IRC-based methods are summarized.

A Method by Laurichesse et al. (2009c)

The method developed by Laurichesse et al. (2009c) can be schematically illustrated with Figure

2.3. Similar to the FCB-based methods, this method consists of the network solution and the

single-receiver solution. In the network solution, wide-lane FCBs are determined before the IRCs

are estimated. By utilizing the wide-lane FCB and IRC products, users can sequentially attempt

the wide-lane and narrow-lane ambiguity resolution at a single receiver.

For the network solution, the estimates of wide-lane FCBs are also derived from the Melbourne-

Wübbena combination measurements. However, unlike the FCB-based method by Ge et al.

(2008) where single-difference FCBs between satellites are estimated, undifferenced wide-lane

FCBs are determined directly from the undifferenced wide-lane ambiguity estimates. By refor-

mulating Equation 2.8, we can obtain

N̂k
wi = Nk

wi + φwi − φk
w =

〈

Lk
mi

λw

〉

(2.20)
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where


















φwi =
B1i

λ1

−
B2i

λ2

−
λn

λw

(

b1i
λ1

+
b2i
λ2

)

φk
w =

Bk
1

λ1

−
Bk

2

λ2

−
λn

λw

(

bk1
λ1

+
bk2
λ2

)
(2.21)

and φwi and φk
w represent the undifferenced receiver and satellite wide-lane FCBs, respectively.

As demonstrated by Wang and Gao (2007), φwi might be a varying quantity. However, for contin-

uously operating receivers at the IGS permanent stations, φwi can be quite stable (Laurichesse

et al. 2009c). On the other hand, φk
w for most GPS satellites has been observed to be quite

stable over a long time up to a few months and to change quite slowly at about 0.5 cycles/year

(Gabor and Nerem 1999). If the variations of φwi and φk
w are sufficiently slow and small, the

integer resolution of wide-lane ambiguities with a long wavelength of about 86 cm will hardly

be impaired (Laurichesse et al. 2009c). Moreover, similar to the FCB-based methods, φk
w is

used only for the wide-lane ambiguity resolution. Therefore, Laurichesse et al. (2009c) could

safely presume constant values for both φwi and φk
w over 24 hours without affecting the final

ambiguity-fixed solutions. Furthermore, Nk
wi can be identified by an integer rounding, and thus

Equation 2.20 becomes

N̂k
wi −Nk

wi = φwi − φk
w (2.22)

For all undifferenced wide-lane ambiguity estimates, Equation 2.22 can be superimposed as

pseudo measurements to a normal equation in order to estimate the receiver-specific φwi and

the satellite-specific φk
w. In addition, to keep consistency among all N̂k

wi −Nk
wi, some N̂k

wi −Nk
wi

might be shifted by a few integer cycles (Laurichesse and Mercier 2007). Note that the resulting

normal matrix is rank deficiency, and thus a φwi or φk
w has to be assigned an arbitrary value,

such as zero. In this manner, the undifferenced satellite wide-lane FCBs φk
w are obtained.

At the same time, integer wide-lane ambiguities Nk
wi at all involved receivers can also be

obtained. We can then achieve Equation 2.6 by deriving the narrow-lane ambiguity Nk
i . Of

important note, Nk
i is identified as an integer before estimating the final satellite clocks using

a network of reference stations. Laurichesse et al. (2009c) first derived estimates of ρki and tki

through an ambiguity-float PPP. Then the carrier-phase measurement in Equation 2.6 can be

re-written as

Lk
i − ρki = ctki +Bk

i + λnN
k
i − εki (2.23)

Similar to Equation 2.20, this equation can be reformulated as

Lk
i − ρki = λnN

k
i + (cti +Bi)−

(

ctk +Bk
)

(2.24)

where the residual error εki is ignored for brevity. Nk
i should be first fixed to the nearest integer

of its float estimate. Note that a shift of a few integer cycles might be necessary to keep

consistency among all Nk
i in the network solution. Hence, (cti +Bi) and

(

ctk +Bk
)

can be

identified following the strategy of deriving φwi or φk
w with Equation 2.22. Of particular note,

(

ti +
Bi

c

)

and

(

tk +
Bk

c

)

are the so-called IRCs defined in the IRC-based methods. We can

find that narrow-lane FCBs are now absorbed by clocks, and (cti +Bi) and
(

ctk +Bk
)

have to

be estimated at each epoch, rather than only once per the whole observation period. This thus

explains why an assumption of constant satellite hardware biases over the observation period

is not rigorously required in the IRC-based methods. Moreover, instead of fixing a specific
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(cti +Bi) to zero to avoid the rank deficiency, this (cti +Bi) should be fixed to the estimate of

cti derived from the aforementioned ambiguity-float PPP. Finally, the satellite IRC

(

tk +
Bk

c

)

is obtained.

On the other hand, at a single receiver, the above undifferenced wide-lane FCBs φk
w are

used to correct the wide-lane ambiguity estimates in order to recover their integer properties,

whereas the satellite IRCs

(

tk +
Bk

c

)

replace the official satellite clock products in PPP data

processing in order to directly obtain narrow-lane ambiguity estimates with integer properties.

Specifically, a float wide-lane ambiguity estimate corrected by its corresponding undifferenced

wide-lane FCB can be written as

Nk
wi + φwi = N̂k

wi + φk
w (2.25)

and its variance is

σ2
Nk

wi

=

〈

(

Lk
mi

λw

− N̂k
wi

)2
〉

Rk
i

+ σ2
φk
w

(2.26)

where σ2
φk
w

is the variance of φk
w and other notations refer to Equation 2.16. Note that φwi is

identical for all satellites observed at a single receiver. Hence, a fractional value can be assigned

to φwi in order to recover the integer property of Nk
wi, and integer resolutions are attempted for

the resulting undifferenced wide-lane ambiguity estimates at receiver i. Note that the assigned

value of φwi can cause an integer bias for all resulting integer wide-lane ambiguities, but this

bias will not jeopardize the subsequent narrow-lane ambiguity resolution, because this bias is

common for all satellites at receiver i and thus can be totally absorbed by receiver clocks.

Once wide-lane ambiguity resolution succeeds, narrow-lane ambiguities can be introduced

into the measurement equations of PPP as demonstrated by Equation 2.6. Then the above

satellite IRCs are introduced and fixed during the undifferenced data processing, namely

Lk
i + c

(

tk +
Bk

c

)

= ρki + c

(

ti +
Bi

c

)

+ λnN
k
i − εki (2.27)

In order to obtain the integer properties of narrow-lane ambiguity estimates, a narrow-lane

ambiguity is arbitrarily fixed to an integer, and hence the receiver clock can be identified. As a

result, all remaining narrow-lane ambiguities acquire integer properties (Laurichesse and Mercier

2007; Laurichesse et al. 2009c). Ambiguity resolution is then attempted. A successful narrow-

lane ambiguity resolution will directly lead to the ambiguity-fixed solution at a single receiver.

This IRC-based method has been discussed in a number of publications and has been

implemented for the routine GPS analysis at the French Space Geodesy Research Group since

GPS week 1582 (see IGS Mail-6155 and http://www.igsac-cnes.cls.fr). Moreover, Laurichesse

and Mercier (2007) reported that the post-processing horizontal accuracy of the epoch-wise

position estimates at a static receiver was better than 2 cm; Delporte et al. (2008) applied this

method to the time transfer based on PPP and achieved an agreement of about 0.3 ns with

the BIPM (Bureau International des Poids et Mesures) two-way satellite time and frequency

transfer; Laurichesse et al. (2008b) applied this method to the precise orbit determination of

low Earth orbiters (LEOs) and reduced the RMS statistics of Satellite Laser Ranging (SLR)

residuals by around 1.5 mm; Laurichesse et al. (2008a, 2009a) presented simulated real-time

case studies in which IRC-based ambiguity resolution improves real-time GPS orbit quality and

http://www.igsac-cnes.cls.fr
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Figure 2.4: Procedure of IRC-based ambiguity resolution by Collins (2008). Meaning of arrows
refers to Figure 2.1

leads to an epoch-wise positioning accuracy of better than 2 cm at a static receiver; finally,

Laurichesse et al. (2009b) even attempted ambiguity resolution at single-frequency receivers by

summing pseudorange measurements and carrier-phase measurements to mitigate ionospheric

delays. However, all these studies showed only a limited number of cases to quantify the

performance of IRC-based ambiguity resolution.

B Method by Collins (2008)

The method developed by Collins (2008) can be schematically illustrated with Figure 2.4.

Compared with the method by Laurichesse et al. (2009c), wide-lane FCBs are not taken as

constant values over the observation period, but are estimated at each epoch like the IRCs in

the network solution. These clock-like wide-lane FCBs are then delivered together with the

IRCs to a single receiver in order to sequentially fix the wide-lane and narrow-lane ambiguities

to integers.

For the network solution, a wide-lane ambiguity estimate is decomposed like Equation 2.20.

Nonetheless, both φwi and φk
w are not taken as constant parameters in a least squares adjustment.

After identifying Nk
wi as an integer, the undifferenced satellite wide-lane FCB φk

w is estimated

like clock parameters. In this manner, Collins (2008) avoided the issue of presuming the temporal

and spatial properties of FCBs, because these properties have not been confirmed by the GPS

community. However, the problem is that a large number of clock-like wide-lane FCBs have to

be delivered to users, which will significantly increase the communication burden, especially in

real-time applications.

Once these undifferenced wide-lane FCBs are obtained, integer wide-lane ambiguities at all

reference receivers can also be obtained. IRCs can then be estimated following the methodology

by Laurichesse et al. (2009c). Of particular note, Collins (2008) proposed a decoupled clock

model where the IRCs derived from carrier-phase measurements differ from the clocks in pseu-

dorange measurements. Specifically, similar to the derivation of Equation 2.24, the pseudorange

measurement in Equation 2.6 can be reformulated as

P k
i − ρki = (cti + bi)−

(

ctk + bk
)

(2.28)

where the residual error eki is ignored for brevity. With Equation 2.28, the pseudorange clocks,



2.2 Current advances 23

namely

(

ti +
bi
c

)

and

(

tk +
bk

c

)

, can be determined following the methodology of estimating

IRCs. However, it is worth indicating that these pseudorange clocks totally differ from the

IRCs. According to this point, Collins (2008) argued that clock and clock-like products should

be separately generated for each type of observables that are used in the undifferenced GPS data

processing. In this manner, biases in pseudorange measurement residuals can be significantly

reduced. More importantly, the data processing models are more rigorous in theory and can be

potentially generalized for multi-frequency measurements.

On the other hand, at a single receiver, undifferenced wide-lane and narrow-lane ambiguity

resolutions are performed by applying the above epoch-wise wide-lane FCBs and the IRCs. The

ambiguity resolution refers to the method by Laurichesse et al. (2009c). Note that the satellite

clocks applied to the pseudorange measurements should be

(

tk +
bk

c

)

instead of the satellite

IRCs.

In practice, Collins et al. (2008) illustrated that the positioning accuracy for 90% of hourly

position estimates was improved from around 10 cm to better than 2 cm after applying the

decoupled clock model for ambiguity resolution at a single receiver. Moreover, Collins et al.

(2009) showed that the epoch-wise positioning accuracy of horizontal components could be

improved by about 30% after ambiguity resolution if daily GPS measurements at static receivers

were used.

C Remarks on the IRC-based methods

According to the discussions above, Laurichesse et al. (2009c) and Collins (2008) adopted iden-

tical algorithms to determine the IRCs which is critical to the integer recovery of undifferenced

ambiguities at a single receiver. Nonetheless, apart from these IRCs, Collins (2008) estimated

the epoch-wise wide-lane FCBs and the pseudorange clocks which have to be delivered to users.

Hence, compared with the method by Laurichesse et al. (2009c), the practicability of the method

by Collins (2008) is significantly weakened. Furthermore, as illustrated by Gabor and Nerem

(1999) and Ge et al. (2008), the wide-lane FCBs actually change minimally and slowly over

time and space. If the wide-lane FCBs are used only for ambiguity resolution, an accuracy of

better than
1

4
λw is sufficient, which implies that the epoch-wise estimation of wide-lane FCBs is

actually not necessary. Finally, as narrow-lane ambiguities are fixed to integers before estimating

the clocks, pseudorange measurements actually lose their indispensable role of separating clocks

from ambiguities (Collins 2008), implying that pseudorange measurements could be ignored in

estimating the IRCs. In this case, pseudorange clocks generated with the method by Collins

(2008) are actually not required by users and can be safely ignored.

In conclusion, the IRC-based methods are characterized by the three points:

• Undifferenced ambiguities are fixed to integers, and no differencing is imposed on raw

measurements or undifferenced ambiguity estimates. In order to achieve this, an arbitrary

fractional value has to be assigned to a receiver FCB in wide-lane ambiguity resolution or

a receiver clock in narrow-lane ambiguity resolution.

• FCBs are separated from integer ambiguities when reducing the raw measurements with

the IRCs. This means that the integer properties of undifferenced ambiguities have been

preserved in the carrier-phase measurement modeling.

• Because the data processing strategy is considerably changed in the IRC-based methods,

the resulting IRCs are not compatible with current official clock products issued by the



24 Integer Ambiguity Resolution

IGS (Kouba and Springer 2001). Hence, it is not an easy task to combine the IRCs with

the official clock products.

2.3 Theoretical comparison between the two methods

By contrasting the FCB- and IRC-based methods introduced above, we can find that their key

difference is the strategy of separating narrow-lane FCBs from integer ambiguities. Ge et al.

(2008) estimated narrow-lane FCBs with float ambiguity estimates, whereas Laurichesse et al.

(2009c) assimilated narrow-lane FCBs into clock estimates. From current publications, the

positioning quality of the FCB-based method is close to that of the IRC-based method. In this

case, of great interest is whether the ambiguity-fixed position estimates derived from these two

methods coincide in theory and how they agree in practice.

This section therefore aims at comparing these two methods from a theoretical aspect and

finally prove the equivalence between their ambiguity-fixed position estimates. In the following,

Section 2.3.1 specifies the assumptions that the theoretical analysis is based on; Section 2.3.2 and

2.3.3 derive the theoretical compositions of the FCB and IRC estimates, and their corresponding

ambiguity-fixed position estimates, respectively; finally, Section 2.3.4 concludes the equivalence

of the theoretical ambiguity-fixed position estimates and highlights the differences between the

FCB- and IRC-based methods. Note that how the ambiguity-fixed position estimates agree in

practice will be illustrated in Section 5.8 using one year of GPS measurements.

2.3.1 Assumptions for the theoretical analysis

Due to the uncertainty of the temporal properties of hardware biases, they are divided into a

time-invariant and a time-dependent part to rigorously model their physical properties. Hence,

according to Equation 2.6, the linearized undifferenced measurement equations between receiver

i and satellite k at a particular epoch are

{

∆P k
i = uk

i∆xi + c∆tki + λn

(

ℓbki + δbki
)

− eki

∆Lk
i = uk

i∆xi + c∆tki + λn

(

ℓBk
i + δBk

i

)

+ λn∆Nk
i − εki

(2.29)

where ∆P k
i and ∆Lk

i denote the observed minus computed measurements for the pseudorange

and carrier-phase, respectively; uk
i contains the unit vector from the satellite to the receiver and

the mapping function of ZTD; ∆xk
i contains the increments for the a priori receiver position

vector and ZTD; ∆tki = ∆ti − ∆tk where ∆ti and ∆tk denote the increments for the a priori

receiver and satellite clocks, respectively;
(

ℓBk
i + δBk

i

)

is the carrier-phase narrow-lane FCB

where ℓBk
i denotes the constant offset, i.e. the time-invariant part, whereas δBk

i denotes the

time-dependent deviation from ℓBk
i ; similarly,

(

ℓbki + δbki
)

is the fractional-cycle part of the

pseudorange bias which is hereafter called pseudorange FCB for convenience; ∆Nk
i denotes the

integer increments of the a priori narrow-lane ambiguity (Teunissen and Kleusberg 1998). In

addition, wide-lane FCBs are not discussed in Section 2.3 and thus all “FCBs” throughout this

section represent “narrow-lane FCBs” for brevity except when otherwise noted.
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From Equation 2.29, if receiver i observes m satellites at this epoch, we can obtain
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(2.30)

where Ih denotes an m-dimensional row-vector of which the h-th element is 1 while all others

are 0 (h = 1, · · ·m); 0 denotes an m-dimensional row-vector with all elements as zero; finally,

each of ∆ti, ℓbi, δbi, ℓBi, δBi and ∆Ni denotes an m-dimensional column-vector corresponding

to m satellites, ∆ti =
[

∆t1i , · · ·∆tmi
]T

for example. All unknown parameters except ∆xi are

linearly correlated, hence preventing them from being simultaneously estimated in a least squares

adjustment.

In fact, only ∆xi, ∆ti and ∆Ni are taken as to-be-estimated parameters in PPP. Hence,

after a least squares adjustment, all ℓbi, δbi, ℓBi and δBi should finally be assimilated into

∆ti and ∆Ni, or otherwise into the residuals, namely the left side of Equation 2.30. Such an

assimilation should rigorously satisfy the requirement of minimizing the weighted sum squares

of residuals. Under the constraint of this rule, these assimilations are derived by applying

elementary column transformations (Meyer 2000) to Equation 2.30 and conclude what the FCB

and IRC estimates theoretically contain after a network solution. Note that the assumption for

this theoretical analysis is that FCBs are hardware-dependent and only they are assimilated into

the to-be-estimated parameters whilst all eki and εki add to the residuals.

Then, these theoretical FCB and IRC estimates are applied to a single-receiver solution and

finally achieve identical ambiguity-fixed position estimates for these two methods. To simplify

the formula derivation, the difference between satellites is applied to Equation 2.30 to avoid

considering the receiver clocks and the receiver-dependent FCBs. Note that this operation does

not affect the estimates of ∆xi. More importantly, in this case, the pseudorange measurements

can be ignored because they are not needed to separate the clocks and the ambiguities. Moreover,

satellite clocks are precisely known and thus should be moved to the observed minus computed

measurements. Hence,
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where Ih is an (m−1)-dimensional row-vector; ℓḂ =
[

ℓB2,1, · · · ℓBm,1
]T

, δḂ =
[

δB2,1, · · · δBm,1
]T

and ∆Ṅi =
[

∆N2,1
i , · · ·∆Nm,1

i

]T

where the superscript for each vector element denotes the

difference between satellites. In the following, the FCBs and IRCs are first derived using Equation

2.30 and then derive the ambiguity-fixed position estimates using Equation 2.31.

2.3.2 FCB determination and ambiguity-fixed position estimates

In order to determine FCBs, what a narrow-lane ambiguity estimate theoretically contains after

a least squares adjustment has to be derived. As demonstrated by Defraigne and Bruyninx
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(2007), biases in the pseudorange measurements govern the absolute clock offsets generated

in the conventional PPP. Hence in Equation 2.30, the pseudorange time-invariant FCBs ℓbi

should be assimilated into the clocks. For the carrier-phase measurements, offsets of ℓbi are

thus introduced by the pseudorange-based clocks, and are finally assimilated into the integer

ambiguities together with the carrier-phase time-invariant FCBs ℓBi, namely
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Note that the residuals are not changed. Conversely, if it is the carrier-phase time-invariant

FCBs ℓBi that are assimilated into the clocks, the resulting offsets ℓBi in the pseudorange

measurements then have to be assimilated into the pseudorange residuals, consequently enlarging

the weighted sum squares of residuals. This apagogically proves the manner in which time-

invariant FCBs are assimilated into the clocks and ambiguities, as illustrated by Equation 2.32.

On the other hand, time-dependent FCBs can be assimilated only into the clocks. However,

the residuals have to be enlarged because the pseudorange and carrier-phase FCBs differ. Due

to the far-weak weights imposed on pseudorange measurements, the carrier-phase FCBs δBi,

rather than the pseudorange FCBs δbi, should be assimilated into the clocks and all remaining

FCBs are assimilated into the pseudorange residuals, namely
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Conversely, if it is δbi that are assimilated into the clocks, the resulting offsets δbi in the carrier-

phase measurements then have to be assimilated into the highly-weighted carrier-phase residuals,

consequently enlarging the weighted sum squares of residuals more significantly than Equation

2.33. This again apagogically justifies the derivation of Equation 2.33. Note that the unknowns

in Equation 2.33 should be estimated using a network of reference stations.

From Equation 2.33, it can be derived that ∆ti +
λn

c
ℓbi +

λn

c
δBi are the estimated

increments for the a priori clocks, whereas ∆Ni + ℓBi − ℓbi are the estimated float increments

for the a priori integer ambiguities. The clock estimates should be divided into the receiver and

satellite clocks by constraining a receiver clock to zero or the sum of a clock ensemble to zero.

Hence, the clock estimate for a specific satellite k can be written as ∆tk +
λn

c
ℓbk +

λn

c
δBk.

In practice, an unknown bias should be present in this satellite clock estimate, but fortunately

this bias is identical for all satellite clocks and can be absorbed by the receiver clock in a

single-receiver solution without impairing the position estimate. Furthermore, the ambiguity

estimates are differenced between the k-th and the first satellites and obtain ∆Nk,1
i +ℓbk,1−ℓBk,1

(k = 2, · · ·m). For convenience, it is presumed that ℓbk,1−ℓBk,1 is still fractional. After removing
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∆Nk,1
i by an integer rounding, the FCB estimates for satellite pairs, namely φk1

n = ℓbk,1− ℓBk,1,

are finally obtained.

At a single receiver, the above satellite clock and satellite-pair FCB estimates are applied

to Equation 2.31 in order to achieve ambiguity-fixed position estimates. Note that ∆tk,1 in

Equation 2.31 should be replaced by ∆tk,1+
λn

c
ℓbk,1+

λn

c
δBk,1. As a result, δḂ can be removed

from the parameter vector in Equation 2.31 because they have been corrected by the satellite

clocks, but ℓḃ has to be inserted because the satellite clocks introduce additional errors of ℓḃ,

namely
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where ℓḃ =
[

ℓb2,1, · · · ℓbm,1
]T

. Furthermore, similar to Equation 2.32, Equation 2.34 actually

becomes
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From Equation 2.35, if the resulting float ambiguity estimate ∆Nk,1
i + ℓbk,1 − ℓBk,1 is corrected

by the satellite-pair FCB ℓbk,1 − ℓBk,1, we can attempt to fix the resulting ∆Nk,1
i to an integer.

If this integer resolution succeeds, the unknown parameters contain only ∆xi and hence the

fixed ambiguities are deducted from the observed minus computed measurements, namely
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Equation 2.36 is then used to estimate the ambiguity-fixed ∆xi according to the theory of

least squares adjustment. Note that Equation 2.36 is actually for epoch-wise positioning, but

multi-epoch positioning can be easily derived by superimposing Equation 2.36.

2.3.3 IRC determination and ambiguity-fixed position estimates

In order to determine IRCs, the undifferenced ambiguities have to be first identified as integers

in a network solution. In Equation 2.30, if ∆Ni is successfully fixed to integers, ∆Ni can

then be removed from the parameter vector and deducted from the observed minus computed
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measurements, namely
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Then similar to Equation 2.33, the carrier-phase FCBs ℓBi + δBi, rather than the pseudorange

FCBs ℓbi+δbi, are assimilated into the clocks. The resulting offsets ℓBi+δBi in the pseudorange

measurements have to be assimilated into the pseudorange residuals together with ℓbi + δbi.

Hence, Equation 2.37 becomes
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Again, the unknowns in Equation 2.38 should be estimated with a network of reference stations.

Hence, IRCs are equal to ∆ti +
λn

c
ℓBi +

λn

c
δBi plus the a priori clocks. The IRC for a specific

satellite k can be written as ∆tk +
λn

c
ℓBk +

λn

c
δBk.

At a single receiver, the above satellite IRCs are applied to Equation 2.31 in order to

achieve ambiguity-fixed position estimates. Note that ∆tk,1 in Equation 2.31 should be replaced

by ∆tk,1 +
λn

c
ℓBk,1 +

λn

c
δBk,1. As a result, both ℓḂ and δḂ are removed from the parameter

vector in Equation 2.31 because they have been corrected by the satellite clocks, namely
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Then, if ∆Ṅi can be successfully fixed to integers, they can be deducted from the observed

minus computed measurements and Equation 2.39 becomes







ε2,1i

...

εm,1
i






=







u2,1
i

...

um,1
i







[

∆xi

]

−







∆L2,1
i − λn∆N2,1

i + c∆t2,1 + λnℓB
2,1 + λnδB

2,1

...

∆Lm,1
i − λn∆Nm,1

i + c∆tm,1 + λnℓB
m,1 + λnδB

m,1






(2.40)
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2.3.4 Remarks on the theoretical comparison

By contrasting Equation 2.36 and 2.40, it can be found that their design matrices and observed

minus computed measurements are exactly the same, which demonstrates that the resulting

estimates for ∆xi from the FCB- and IRC-based methods should also be identical. This

equivalence implies that a systematic difference between the ∆xi estimates in practice, if existing,

should not be caused by the differences of the two methods themselves. Ideally, the difference

between the actual ∆xi estimates should be minimal and random in nature. In addition, in terms

of Equation 2.29, ∆xi also contains ZTD. Hence, identical ZTD estimates can also be achieved

using these two methods. Note that this theoretical equivalence is derived from Equation 2.30,

namely the linearized measurement equation, thereby implying that identical models should be

employed to reduce the raw measurements in order to achieve identical ∆xi estimates.

Nevertheless, this equivalence is largely based on the assumption that only the hardware-

dependent FCBs are assimilated into the clock and undifferenced ambiguity estimates, which

is not true in practice. Ge et al. (2008) illustrated that satellite-pair FCB estimates change

temporally and spatially, and the fluctuation magnitude can reach up to 0.4 cycles, showing that

these FCB estimates are contaminated by unknown temporally- and spatially-correlated errors,

such as the inaccurate modeling of tropospheric delays. This explains why FCB estimates are

not constant values in practice and thus Ge et al. (2008) proposed a 15-minute mean to achieve

high-precision FCB estimates. Likewise, actual IRC estimates are likely to absorb not only the

hardware-dependent FCBs, but also some unknown common errors among a network of stations.

It should be stressed that these unknown redundant errors are not hardware-dependent, and thus

they are likely to change under different distributions of reference stations. In the subsequent

part of this thesis, “FCB estimates” thus also contain these redundant errors.

Furthermore, from the observed minus computed measurements in Equation 2.36 and 2.40,

∆tk,1 +
λn

c
ℓBk,1 +

λn

c
δBk,1 (k = 2, · · ·m) can actually be taken as the satellite clock that can

assist retrieving integer ambiguities. In the FCB-based method, this clock is finally achieved

by combining the satellite clock estimate and the FCB estimate. Comparatively, this clock

is exactly the IRC in the IRC-based method. This difference is attributed to the different

strategies of separating FCBs from integer ambiguities in these two methods. Specifically, this

separation is performed at the ambiguity-estimate level in the FCB-based method, whereas at

the measurement-modeling level in the IRC-based method. As a result, the composition of

redundant errors can be significantly different between the actual IRC estimates and the actual

FCB estimates plus their corresponding satellite clock estimates, finally leading to different ∆xi

estimates.

2.4 Method improvements made in this thesis

The FCB-based method by Ge et al. (2008) is adopted and improved for the PPP data analysis

presented in this thesis. The IRC-based method by Laurichesse et al. (2009c) is also implemented

and its results are compared with those by the FCB-based method. Method implementations

will be addressed in Chapter 4. This section will introduce four improvements or developments

that have been achieved in this thesis for the FCB-based method.
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2.4.1 Derivation of undifferenced FCBs

Undifferenced FCBs are preferred to satellite-pair FCBs because the number of FCBs can be

significantly reduced. For example, if m satellites are observed, m(m− 1)/2 satellite-pair FCBs

will be generated. By contrast, only m undifferenced FCBs are needed to express all these

satellite-pair FCBs. A large number of FCBs cannot be conveniently transmitted, especially

in real-time applications. Furthermore, because undifferenced FCBs are satellite-dependent,

they can actually be combined with the epoch-wise satellite clocks (Mervart et al. 2008). Such

combination can further reduce the data transmission bandwidth, hence potentially enhancing

the competitiveness of the FCB-based method against the IRC-based method where only satellite

orbits and IRCs are transmitted to users.

In fact, the derivation of undifferenced FCBs is only a trivial task. A satellite-pair FCB φkl

can be expressed as a pseudo measurement like φkl = φk − φl. All these pseudo measurements

can be superimposed to a normal equation in order to estimate undifferenced FCBs. Note that

an undifferenced FCB has to be fixed to an arbitrary value to avoid the rank deficiency of the

normal matrix. In addition, the resulting residuals after this adjustment can be used to identify

any possible blunders in the satellite-pair FCB estimates.

2.4.2 One FCB per satellite-pair pass over a regional area

Daily mean wide-lane FCBs can be precisely determined even on a global scale (Gabor and

Nerem 1999; Ge et al. 2008; Laurichesse and Mercier 2007). However, due to the low precisions

of daily mean narrow-lane FCBs, Ge et al. (2008) instead suggested a 15-minute mean.

In this thesis, it is proposed that the narrow-lane FCBs for a satellite pair can be precisely

determined within each continuous tracking period by a regional network, namely each full pass

by this satellite pair over a regional network. Therefore, the fractional parts of all involved

narrow-lane ambiguity estimates for a satellite pair during one full pass are averaged to estimate

one narrow-lane FCB. The key difference of this strategy from the 15-minute mean by Ge et al.

(2008) consists in the satellite orbit arc length for one narrow-lane FCB estimate. Empirically,

there are usually two narrow-lane FCB estimates per 24 hours which actually correspond to

two full passes of a satellite pair over a regional network. Compared with the large number of

15-minute mean narrow-lane FCBs by Ge et al. (2008), this strategy can significantly reduce the

dissemination burden of the FCB products, which is well suited for practical use in a regional

network. The performance of these FCBs will be assessed in Section 5.2.

2.4.3 Implementation of real-time ambiguity resolution

To date, FCB-based methods are assessed primarily for post-processing applications. Mervart

et al. (2008) reported some real-time results but few technical details are released due to

commercial reasons. Hence, it is still necessary to propose a PPP-RTK model where PPP

provides rapid convergence to a reliable centimeter-level positioning accuracy based on an RTK

reference network (e.g. Bisnath and Gao 2007; Wübbena et al. 2005), which can improve on

current real-time ambiguity-float PPP services (e.g. Dixon 2006).

Overall, a PPP-RTK model consists of a server module providing FCB products and a

user module achieving ambiguity-fixed solutions. For the server module, wide-lane FCBs are

generated according to the method by Ge et al. (2008) as addressed in Section 2.2.2. Ge et al.
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Figure 2.5: Data flowchart of a PPP-RTK model based on ambiguity resolution. Cylinders denote
data storage and squares denote data-processing modules; dashed arrows denote data input or output;
and solid arrows denote processing sequences

(2008) showed that wide-lane FCB estimates change within ±0.05 cycles within 2 weeks. Hence,

wide-lane FCB products can be precisely predicted at an update rate of several days for real-time

applications. However, narrow-lane FCBs have to be estimated at a sub-daily frequency in post-

processing applications. Likewise, we have to frequently re-estimate and update the narrow-lane

FCBs at the PPP-RTK server module. For the user module, wide-lane ambiguity resolution

relies on the noisy Melbourne-Wübbena combination measurements. Hence, a sufficiently long

time has to be spent before a wide-lane resolution can be reliably achieved. This time span is

mainly subject to the pseudorange measurement noise, multipath effects and atmospheric delays.

Afterwards, narrow-lane ambiguity resolution can be attempted according to the theories in

Section 2.2.2. Note that the narrow-lane FCBs that are contributing to the achieved ambiguity-

fixed solutions should be frequently updated because they are frequently re-estimated and re-

disseminated at the server module (see Section 5.6.3 for detailed explanations).

Accordingly, Figure 2.5 presents the data flowchart at both the server and user modules for

a conceptual PPP-RTK model. Compared with current real-time ambiguity-float PPP models,

this model generates and disseminates not only the satellite orbits and clocks, but also the

FCB products for users to achieve ambiguity-fixed solutions at a single receiver. Moreover, this

model has to keep consistency among orbits, clocks and FCB products, rather than only between

orbits and clocks (Geng et al. 2010c). In addition, in Figure 2.5, except the square denoting

“orbit & clock determination”, the other four squares exhibit three modules which are crucial to

ambiguity resolution. It is presumed that wide-lane FCB products are easily known, and thus

their determination module is ignored in Figure 2.5 for brevity. From the solid arrows in Figure

2.5, wide-lane ambiguity resolution is the prerequisite for both narrow-lane FCB determination

and narrow-lane ambiguity resolution.

2.4.4 Constraints from integer double-difference ambiguities

As demonstrated in Section 2.2.2, FCBs are estimated by averaging the fractional parts of all

involved ambiguity estimates at the reference stations. Nonetheless, due largely to the possible

biases that are absorbed into the float ambiguity estimates, a sophisticated averaging technique,

such as Equation 2.12, has to be adopted to achieve correct FCB estimates (see also Ge et al.
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2008). Moreover, the temporal instability of narrow-lane FCBs (see Section 2.3.4) is likely to

further complicate such averaging operations.

Fortunately, such averaging for narrow-lane FCBs can be avoided by applying tight con-

straints from integer double-difference ambiguities. In the FCB-based method by Bertiger et al.

(2010), undifferenced ambiguity estimates can directly form double-difference ambiguities and

integer resolutions can subsequently be attempted. This strategy was also discussed by Ge et al.

(2005a, 2006). Successful ambiguity resolution will then improve the accuracy of undifferenced

ambiguity estimates (Feng et al. 2007). Suppose we have two single-difference narrow-lane

ambiguity estimates between satellites k and l at receiver i and j, namely N̂kl
i and N̂kl

j , their

difference N̂kl
i − N̂kl

j should not be an integer after an initial PPP data processing. However, if

double-difference ambiguity resolution is successfully performed on N̂kl
i −N̂kl

j , this difference can

then be tightly constrained to an integer in a second PPP data processing. Hence, the fractional

parts of the resulting estimates for N̂kl
i and N̂kl

j are identical. In this way, most fractional

parts of single-difference ambiguity estimates for a satellite pair are identical if the fixing rate

of double-difference ambiguities is sufficiently high. Fortunately, Ge et al. (2005a) suggested an

innovative strategy and showed that a fixing rate of higher than 97% can be routinely achieved

using daily GPS measurements on a global scale. Therefore, narrow-lane FCBs can then be easily

identified from the identical fractional parts of narrow-lane ambiguity estimates for a satellite

pair.

Finally, it is worth highlighting that narrow-lane FCBs determined through these integer

double-difference constraints theoretically have higher accuracy than that determined without

these constraints. This point will be empirically verified in Section 5.7.

2.5 Ambiguity search and validation

By the FCB- or IRC-based methods, the integer properties of ambiguities at a single receiver

can be retrieved. However, integer resolutions are accomplished through the ambiguity search

and validation. Ambiguity search means determining the range of integer candidates for a float

ambiguity estimate. Theoretically, this range depends on the float ambiguity estimate and

its stochastic statistics. On the other hand, ambiguity validation means deciding whether an

integer candidate should be accepted as the correct integer under a given confidence level. The

criteria for this validation depend on the presumed statistical distribution of the quadratic form

of least-squares residuals (Teunissen and Kleusberg 1998). In the following, the sequential bias

rounding by Dong and Bock (1989) and the LAMBDA (Least-squares AMBiguity Decorrelation

Adjustment) by Teunissen (1994) for ambiguity resolution is briefly introduced.

2.5.1 Sequential bias rounding

Sequential bias rounding, or integer bias bootstrapping (Teunissen 1998), means that a chosen

set of ambiguities are rounded to integers at a particular step, and the estimates and precisions of

remaining ambiguities are hence improved for a new bias-rounding step. The rounding procedure

is based on the assumption that if a float ambiguity estimate is close to an integer and has a

high precision, this integer is highly likely to be the correct one (Dong and Bock 1989). The
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fixing decision is made according to a probability value, namely

P0 = 1−
∞
∑

i=1


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



 (2.41)

where efrc(x) is the complementary error function

efrc(x) =
2√
π

∫

∞

x

e−t2 dt (2.42)

and N̂ is the float ambiguity estimate; σ is the precision or the standard deviation of N̂ ; N is

the nearest integer to N̂ . For a given confidence level α, an ambiguity can be fixed to its nearest

integer if its corresponding P0 is larger than 1−α, and otherwise not (Dong and Bock 1989; Ge

et al. 2005a, 2008). During the initial stage of sequential bias rounding, there may be only a few

ambiguities that can be successfully fixed to integers using the criterion above. Nonetheless, as

ambiguity resolution progresses, more ambiguities will be improved and thus can be resolved.

Similarly, Blewitt (1989) proposed a sequential bias optimizing method where the cumulative

probability for all correctly resolved ambiguities is calculated and another ambiguity is fixed only

if the cumulative probability stays larger than 99%. In addition, based on the above sequential

bias bounding, Ge et al. (2006) suggested an integer resolution of a float ambiguity estimate

according to only its closeness to an integer without considering its standard deviation. As a

result, the ambiguity validation is performed by testing whether the residuals of measurements

led by each ambiguity are compatible before and afterwards. Note that this strategy is suggested

mainly for speeding up a huge-network analysis.

2.5.2 LAMBDA

The LAMBDA method offers the highest probability of coming up with the correct integer

candidates for ambiguities (Joosten and Tiberius 2002). Ambiguity resolution is actually based

on the least squares principle (e.g. Hofmann-Wellenhof et al. 2001), namely

S =
(

N̂−N
)T

Q−1

N̂

(

N̂−N
)

= minimum (2.43)

where N̂ is the m-dimensional vector of float ambiguity estimates and N is its corresponding

integer vector; Q
N̂

is the variance-covariance matrix of N̂. Hence, ambiguity resolution is

achieved by identifying an N that minimizes the sum squares of the ambiguity residual vector

N̂ − N weighted by the inverse of Q
N̂
. Due to the integer constraints on the ambiguities,

Equation 2.43 has to be solved by means of a search. However, this search is not an easy task

because it is carried out over the whole m-dimensional space of integers. In order to simplify this

problem, the whole integer space has to be replaced by a smaller set of integers, which is hereafter

called the ambiguity search space. This space is located at N̂ and its shape and orientation are

governed by Q
N̂
. It is in this local space that the search for the integer least-squares solution is

performed (Teunissen 1998).

Teunissen (1994) defined the ambiguity search space as a set of grid points N that satisfies

S =
(

N̂−N
)T

Q−1

N̂

(

N̂−N
)

6 χ2 (2.44)
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where the constant χ2 guarantees that the search space contains the correct integer candidate.

For details on how to determine χ2 refer to de Jonge and Tiberius (1996). It is worth emphasizing

that the volume of an ambiguity search space is governed by both χ2 and Q
N̂
. Due to the high

correlation between the float ambiguity estimates in the scenario of a very short observation

period, the resulting search space is usually severely elongated and stretched over a considerable

range of cycles (Joosten and Tiberius 2002). Consequently, a search over such space is extremely

inefficient. Hence, Teunissen (1994) proposed an integer invertible volume-preserving matrix Z

to transform the original search space into a sphere-like one, namely

N′ = ZN, N̂′ = ZN̂, Q
N̂′ = ZQ

N̂
ZT (2.45)

The search is then performed in this transformed space and the results are finally transformed

back (de Jonge and Tiberius 1996). This transformation can be recognized as a decorrelation

of ambiguity estimates after which the corresponding variance-covariance matrix Q
N̂

becomes

more diagonal. Note that Z transforms only the shape and the orientation of the ambiguity

search space, but not its volume. In addition, for completeness, latest developments on the

LAMBDA method are given in Henkel et al. (2009), Henkel and Günther (2010) and Teunissen

(2010).

On the other hand, the optimum integers identified by the above LAMBDA method should

be validated before being accepted as correct values. As addressed by Teunissen and Kleusberg

(1998), ambiguity validation includes an acceptance test and a discrimination test. The accep-

tance test can be recognized as the compatibility between the potential integer candidates and

the associated GPS measurements (Wang et al. 1998). For example, one possible test is based on

the compatibility between the unit variances of the ambiguity-fixed and ambiguity-float solutions

(Han 1997b; Teunissen and Kleusberg 1998), namely

σ2
fixed

σ2
float

<
m

r − t
(Fm,r−t−m;α − 1) + 1 (2.46)

where r is the number of measurements; m is the number of ambiguities; t is the number of

remaining parameters; Fm,r−t−m;α denotes the F -distribution of a confidence level α with m

and r − t−m degrees of freedom. Furthermore,

σ2
fixed

σ2
float

=
r − t−m

r − t
·
Ωfloat + S

Ωfloat

(2.47)

where Ωfloat is the quadratic form of least-squares residuals in an ambiguity-float solution. A

smaller
σ2
fixed

σ2
float

indicates a more reliable integer resolution.

Moreover, the discrimination test is to confirm that the optimum integers are statistically

significantly better than the second-optimum integers. This test is normally performed by quan-

tifying the ratio between the second minimum and the minimum quadratic form of ambiguity

residuals, which is hereafter called the ratio test (Euler and Schaffrin 1990), namely

Sopt2

Sopt1

> γ (2.48)

where Sopt2 and Sopt1 correspond to the second-optimum and optimum integers, respectively;

γ is a critical threshold value. From statistical theories, γ should be selected according to
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the statistical distribution of
Sopt2

Sopt1

and a given confidence level. However, although a number

of studies have been dedicated to deriving this statistical distribution (e.g. Wang et al. 1998;

Teunissen and Verhagen 2009), the rigorous distribution cannot be exactly known (Teunissen

and Kleusberg 1998; Verhagen 2004). Hence, throughout this thesis, a constant value such as 2

or 3 is simply assigned to γ. As shown by Han (1997b,a), 2 is usually used and 3 is deemed as a

conservative threshold in the ratio test. Finally, the ratio value
Sopt2

Sopt1

is usually recognized as an

index of denoting the reliability of ambiguity resolution, and thus a larger ratio value indicates

a more reliable ambiguity resolution.

2.6 Summary

This chapter reviews the up-to-date methods for ambiguity resolution at a single receiver, namely

the FCB- and the IRC-based methods. Their respective characteristics are concluded and

summarized. Moreover, a theoretical equivalence between the ambiguity-fixed position estimates

derived from these two methods is proved and the differences between these two methods are also

addressed. Finally, an improved FCB-based method developed in this thesis is introduced. A

few points on ambiguity search and validation end this chapter. Chapter 5 will present empirical

results to assess the improved FCB-based method.





Chapter 3

Rapid Convergences

3.1 Introduction

As introduced in Section 1.3, slow convergences to a decimeter- or centimeter-level positioning

accuracy have long been a limiting factor for real-time PPP to be accepted in most commercial

applications (Bisnath and Gao 2007). Although this issue is of great concern to the GPS

community (e.g. Dixon 2006; Huber et al. 2010; Melgard et al. 2010), only a limited number of

publications focus on this topic. This chapter thus first introduces the attempts on accelerating

convergences in real-time PPP, and then compares these attempts. Finally, a novel method

where ionospheric delays are precisely predicted to the succeeding epochs in order to significantly

accelerate re-convergences to ambiguity-fixed solutions is originally developed, and a potential

strategy of accelerating the first convergence by precisely interpolating ionospheric delays from

a dense network of reference stations is discussed.

3.2 Current advances

To date, few authors have formally proposed effective methods of significantly accelerating

convergences in real-time PPP. This is because the two limiting factors causing slow convergences,

i.e. the imprecise pseudorange measurements and the slow satellite-geometry change, cannot be

easily overcome (see Section 1.3). Since 1997 when PPP was first introduced by Zumberge et al.

(1997), only a few attempts on accelerating convergences have been performed by estimating the

pseudorange precision, constraining the position parameters, improving the ambiguity validation

or applying the ambiguity resolution. These four attempts are respectively detailed in the

following before a comparison between them ends this section.

3.2.1 Attempt by estimating the pseudorange precision

Highly precise pseudorange measurements, if available, can tightly constrain ambiguous carrier-

phase measurements and thus speed up the convergence of ambiguity estimates to accurate

values. In this case, position estimates can also rapidly converge to accurate values. This

principle was adopted by Gao and Shen (2001) who proposed a new pseudorange combination

observable and a pertinent stochastic estimation.

Disregarding the conventional ionosphere-free pseudorange combination observable in Equation

37
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2.2, Gao and Shen (2001) developed an alternative in terms of Equation 2.1

1

2

(

P k
gi + Lk

gi

)

= ρki + ctki +
1

2

(

bkgi +Bk
gi

)

+
1

2
λgN

k
gi −

1

2

(

ekgi + εkgi
)

(3.1)

where the ionospheric delay is also removed but the measurement noise is only
1

2
of the original

pseudorange noise if the carrier-phase noise is sufficiently small and thus ignored. Hence,

Equation 3.1 is then combined with the carrier-phase measurement in Equation 2.2 for PPP

(Gao and Shen 2001). However, Equation 3.1 has two defects: On the one hand, Equation

3.1 is no longer a pseudorange but a noisy ambiguous measurement; consequently, it cannot

effectively constrain carrier-phase measurements. On the other hand, Equation 3.1 is based on

a carrier-phase measurement which is individually used for PPP; hence, Equation 3.1 and the

carrier-phase measurement are actually correlated, and this correlation should not be simply

ignored in theory. Nonetheless, these two points were ignored by Gao and Shen (2001).

Furthermore, Gao and Shen (2001) applied a stochastic estimation in order to faithfully

quantify the pseudorange precision. Stochastic modeling relates to how measurements are

weighted in a least squares adjustment (Amiri-Simkooei et al. 2009; Wolf and Ghilani 1997).

Because pseudorange and carrier-phase measurements are used, their relative precision needs

to be carefully adjusted, which is conventionally treated by simply presuming a very high

precision for carrier-phase and a very low precision for pseudorange measurements. However,

this stochastic modeling may underestimate the actual pseudorange precision, possibly leading

to degraded solutions or even a divergence of position estimates (Bona 2000; Gao and Shen

2001). Hence, in this attempt, the stochastic estimation is performed in order to reproduce the

actual precision of pseudorange measurements. Suppose the a priori unit-weight measurement

variance as σ2
0 and the a priori variance of ionosphere-free pseudorange measurement in Equation

2.2 as σ2
PIF

, if the posteriori unit-weight measurement variance is σ̂2
0 , we can obtain an estimate

of the pseudorange variance as

σ̂2
PIF

= σ2
PIF

·
σ̂2
0

σ2
0

(3.2)

If we further assume an identical precision for pseudorange measurements on both frequencies,

according to the error propagation law (Wolf and Ghilani 1997), we can have

σ2
PIF

=

(

f2
1

f2
1 − f2

2

)2

σ2
P +

(

f2
2

f2
1 − f2

2

)2

σ2
P

≈ 8.87σ2
P

(3.3)

Hence, an estimate of the variance of the measurement in Equation 3.1 is

σ̂2
P+L ≈

1

4
σ̂2
P =

σ2
PIF

σ̂2
0

35.5σ2
0

(3.4)

Equation 3.4 is then used to quantify the actual precision of Equation 3.1. Due to the devel-

opment of GPS hardware, the precision of pseudorange measurements has been significantly

improved during the past decade. The actual precision of Equation 3.1 may be better than

the presumed precision in most GPS software packages. Hence, this stochastic estimation can

potentially reproduce the actual pseudorange precision and accelerate the convergence of PPP.

In practice, Gao and Shen (2001) reported that the convergence period to a 3D positioning

accuracy of better than 40 cm was reduced to less than 5 minutes after applying the above
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technique. Compared with the conventional PPP, an improvement of about 20% was achieved.

However, these results were not conclusive because measurements collected under preferable

conditions were used. Moreover, Abdel-salam (2004) suggested applying the ambiguity pseudo-

fixing strategy (see the end of Section 2.2.2) to the convergence of real-time PPP. The idea

underlying this strategy is not to wait for the convergence of all ambiguities but only a few of

them that are believed to be sufficiently close to accurate estimates. These relatively accurate

ambiguities are then properly constrained in the estimation to accelerate the convergence.

However, how to screen such accurate ambiguities and how to constrain them were not discussed

by Abdel-salam (2004), although in a case study at a static receiver, they reported that a 3D

positioning accuracy of better than 40 cm could be achieved within a few epochs of high-rate

measurements.

3.2.2 Attempt by constraining the position parameters

The slowly changing geometry of satellites can cause a high correlation between ambiguity and

position parameters, consequently leading to a long convergence period. Hence, a tight constraint

imposed on the position parameters can strongly assist decorrelating the ambiguity and position

parameters, finally accelerating the ambiguity convergence to accurate estimates and reducing

the convergence period of real-time PPP. This is the strategy proposed by Colombo et al. (2001).

Kinematic GPS users normally simplify the vehicle dynamics because they are usually

poorly known in reality (e.g. Yang et al. 2007). However, for a buoy floating on the sea,

the running average of its vertical positions should approximate the wave-filtered, time-varying

vertical positions measured with a tide gauge, which changes gradually and predictably over

time. Hence,

Hest = Hmodel + α+ ν (3.5)

where Hest is the unknown vertical component of a buoy; Hmodel is the modeled value of the

vertical component which is derived from a running average over several minutes; α is the

model bias that can be described as a constant plus a random walk variable; finally, ν denotes

the residual error. Note that ν actually decides the precision of Equation 3.5. This equation

represents a pseudo measurement which can be introduced into the normal equation of real-time

PPP, and its weight depends on ν. A smaller ν means a higher precision and thus a larger

weight. In this case, the vertical position can be tightly constrained and its correlation with

ambiguities can thus be reduced, finally leading to a shorter convergence period (Colombo 2004,

2009). However, it is worth indicating that such position constraints are available only under

some special conditions.

In a typical experiment, all three components of a buoy could reach an accuracy of better

than 20 cm within a few tens of minutes when Equation 3.5 was applied; however, nearly 2 hours

were needed if Equation 3.5 was not applied (Colombo et al. 2001). In addition, it was proposed

that an inertial navigation system (INS) could be combined with PPP to provide dynamic

constraints like Equation 3.5, although significant reduction of the convergence periods was not

observed (Le and Lorga 2006; Zhang and Gao 2008).
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3.2.3 Attempt by improving the ambiguity validation

Ambiguity validation decides whether an integer candidate can be accepted with a high confi-

dence level. The ratio test is deemed as a good validation procedure, but is not an easy task if a

theoretically rigorous validation is required (refer to Section 2.5.2). As pointed out by Teunissen

and Verhagen (2009), most existing software packages choose a fixed threshold for the ratio test,

no matter the strength of the underlying GPS model. This is not reasonable in theory because

with a varying strength of GPS model or varying degrees of freedom, certainly varying thresholds

should be used. Considering Section 2.5.2, a fixed threshold can be understood in terms of a

lack of a proper theory. A fixed threshold may cause a rejection of correct integer candidates,

consequently prolonging the convergence period to an ambiguity-fixed solution. Hence, an

improved validation test has the potential to accelerate the convergence to an ambiguity-fixed

solution (Collins et al. 2009).

For example, Teunissen and Verhagen (2009) recommended a fixed failure-rate method. A

user-defined fixed value for the failure rate is chosen and the corresponding threshold for the ratio

test is derived. Unfortunately, this derivation is not easy and a look-up table is thus suggested.

Similarly, a W -test is developed by Wang et al. (1998) to avoid the fixed threshold in the ratio

test. Nevertheless, as pointed out by Verhagen (2004), ambiguity validation is not so easy a

task. More importantly, it is still difficult to state that rapid convergences of only a few seconds

can be achieved even if an ideal and perfect validation strategy is found.

3.2.4 Attempt by applying the ambiguity resolution

Ambiguity resolution removes the correlation between ambiguity and position parameters, which

will significantly improve the positioning accuracy. Hence, it has been highly expected that am-

biguity resolution is the most promising method that can be used to overcome slow convergences

in real-time PPP (Bisnath and Gao 2007; Landau et al. 2007).

Wang and Gao (2006) used simulated GPS measurements, where no FCBs were present,

to perform ambiguity resolution at a single receiver. They found that ambiguity resolution

reduced the convergence period from about 1000 to 120 s in kinematic PPP. However, with

real measurements, Laurichesse et al. (2008a) reported that only after about 15 minutes could

ambiguity resolution be accomplished for about 61% of all test cases even in static PPP;

moreover, this percentage significantly decreased to only about 17% in kinematic PPP. Likewise,

Mervart et al. (2008) illustrated that 15- to 30-minute measurements were usually required before

ambiguities at a single receiver could be reliably fixed to integers in real-time PPP.

So slow convergences to ambiguity-fixed solutions are attributed to two factors. On the

one hand, a wide-lane ambiguity is estimated based on noisy Melbourne-Wübbena combination

measurements, and thus a long observation period is required to sufficiently smooth the noise.

On the other hand, rapid narrow-lane resolution is handicapped by imprecise pseudorange

measurements which cannot sufficiently shrink the search space for integer ambiguities suffering

from a short wavelength of only 11 cm (Teunissen 1996). Hence, a long observation period has to

be used to average out sufficiently precise pseudorange measurements in order to derive accurate

ambiguity estimates (Teunissen et al. 1997). To date, it is still extremely difficult to develop an

effective method to accelerate the convergence.
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3.2.5 Remarks on the above attempts

According to the above discussions, all four attempts were actually not successful and their

effectiveness were not conclusive. Pseudorange precision can be precisely reproduced with a

stochastic estimation, but its contribution to accelerating convergences depends on whether the

actual precision is better than the presumed one. Moreover, additional constraints imposed on

the position parameters are not always available for common users. On the other hand, these

constraints can actually be recognized as pseudorange-like measurements, but with a much

higher precision compared with that of GPS pseudorange measurements. This thus explains

why these constraints can significantly contribute to shortening the convergence period. Finally,

it is actually unrealistic to improve ambiguity validation techniques in order to accelerate

convergences. Whether an ambiguity resolution can be reliably confirmed depends on the

strength of the GPS model, but whether a sufficient strength can be achieved does not depend

on whether the validation tests can be passed. In fact, achieving such a strength may require

a long enough observation period, implying that ambiguity validation cannot effectively assist

accelerating the convergences. This explanation also shows why ambiguity resolution cannot be

rapidly achieved with only a few seconds of measurements.

In addition, of particular interest is how ambiguity resolution relates to the convergence. As

addressed in Section 3.2.4, it has been highly expected that ambiguity resolution can significantly

accelerate the convergences. However, a reliable ambiguity resolution cannot be achieved until

a few tens of minutes later. This implies that the position and ambiguity estimates have to

converge to an adequate accuracy level before an ambiguity resolution can be confirmed with

a high confidence level. Afterwards, the positioning accuracy can be further improved by this

ambiguity resolution. Therefore, a reliable ambiguity resolution is closely related to a sufficiently

long convergence period.

However, a long convergence period to an ambiguity-fixed solution almost totally devalues

the accuracy improvement contributed by ambiguity resolution. Since it is still quite difficult to

accelerate convergences, real-time PPP can be robustly used only in the environments with

uninterrupted satellite signal availability (Bisnath and Gao 2007). Any loss of signal lock

for many satellites may require PPP to re-converge, hence again resulting in a few tens of

minutes during which the positioning accuracy deteriorates to the sub-meter, or even meter level.

Therefore, a rapid re-convergence can make real-time PPP more practical and be of great benefit

and significance for many commercial applications. Section 3.3 introduces a method for rapid

re-convergences by repairing cycle slips and Section 3.4 then introduces an originally developed

method for rapid re-convergences to ambiguity-fixed solutions where ionospheric delays are

precisely predicted over time in order to significantly accelerate both wide-lane and narrow-

lane resolutions.

3.3 Rapid re-convergence by repairing cycle slips

When a re-convergence due to cycle slips for many satellites starts at a particular epoch,

the differencing between this epoch and the previous epoch of carrier-phase measurements

removes the FCBs and thus integer cycle slips are left as unknowns in these epoch-differenced

measurements. Integer cycle slips can then be resolved following the methodology of ambiguity

resolution. As a result, correctly repairing cycle slips recovers the continuousness of undifferenced
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carrier-phase measurements and finally prevents a long convergence period in real-time PPP. This

is the idea developed by Banville and Langley (2009).

According to Equation 2.1, epoch-differenced GPS measurements can be written as



















δP k
gi = δρki + cδtki +

δµk
i

f2
g

− δekgi

δLk
gi = δρki + cδtki −

δµk
i

f2
g

+ λgA
k
gi − δεkgi

(3.6)

where δ denotes the epoch-differencing operation; Ak
gi denotes the integer cycle slips on frequency

g and it disappears if no cycle slips occur. Note that the hardware biases bkgi and Bk
gi are totally

eliminated, which is reasonable if the epoch-differencing is performed over two epochs with a

gap of less than a few minutes (Banville and Langley 2009). Likewise, atmospheric delays at

these two epochs are close to each other, and hence δµk
i can be presumed negligible (Dai et al.

2003; Kashani et al. 2007). This approximation also applies to the tropospheric delays in δρki

(Kaplan and Hegarty 2006; Stoew et al. 2007). Moreover, satellite clocks here are known and

the epoch-differenced receiver clock δti is deemed as a to-be-estimated parameter.

Note that δρki contains unknown positions at both epochs if PPP is performed for a mobile

receiver. If a linearization like Equation 2.29 is applied, we can obtain

uk
i (τ2)∆xi (τ2)− uk

i (τ1)∆xi (τ1) =
(

uk
i (τ2)− uk

i (τ1)
)

∆xi (τ2) + uk
i (τ1) (∆xi (τ2)−∆xi (τ1))

(3.7)

where uk
i (τ) and ∆xi (τ) denote the unit vector from satellite k to receiver i and the increments

for the a priori receiver position vector at epoch τ , respectively. Note that ZTD-related quantities

have been removed from both uk
i (τ) and ∆xi (τ). From the left side of this equation, due to the

slowly changing geometry of visible satellites, uk
i (τ2) should be quite close to uk

i (τ1) if τ2− τ1 is

sufficiently small, e.g. a few minutes (e.g. Santerre 1991). As a result, simultaneous estimation

of ∆xi (τ2) and ∆xi (τ1) is likely to lead to an ill-condition of the resulting normal equation.

However, from the right side of this equation, uk
i (τ2)− uk

i (τ1) is close to a zero vector. We can

hence reasonably and safely presume that
(

uk
i (τ2)− uk

i (τ1)
)

∆xi (τ2) is negligible if τ2 − τ1 is

less than a few minutes and each element of ∆xi (τ2) is smaller than a few meters. Furthermore,

if ∆xi (τ2) −∆xi (τ1) is deemed as one to-be-estimated parameter vector, the resulting normal

equation will no longer suffer from the ill-condition. For more technical details about Equation

3.7 refer to van Graas and Soloviev (2004).

Therefore, Equation 3.6 is used to estimate ∆xi (τ2) − ∆xi (τ1), δti and Ak
gi. Ak

gi is

afterwards fixed to an integer. In this manner, carrier-phase cycle slips can be mitigated and the

continuousness of undifferenced carrier-phase measurements retrieved. As a result, a possible

time-consuming re-convergence is avoided and the already achieved positioning quality prior to

this re-convergence continues.

In order to improve the success rate of integer cycle-slip resolution based on Equation 3.6,

wide-lane carrier-phase measurements can be formed, namely

Lk
wi =

f1
f1 − f2

Lk
1i −

f2
f1 − f2

Lk
2i

= ρki + ctki +
µk
i

f1f2
+Bk

wi + λwN
k
wi − εkwi

(3.8)
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where














Bk
wi =

f1
f1 − f2

Bk
1i −

f2
f1 − f2

Bk
2i

εkwi =
f1

f1 − f2
εk1i −

f2
f1 − f2

εk2i

(3.9)

Then epoch-differencing is applied to Equation 3.8 like that of Equation 3.6, and a cycle slip

Ak
wi = Ak

1i −Ak
2i on this wide-lane carrier-phase measurement can be relatively easily identified

because of its long wavelength of about 86 cm. Once Ak
wi is successfully fixed to an integer,

geometry-free carrier-phase measurements can be formed as

Lk
Ii = Lk

1i − Lk
2i = −

µk
i

f2
1

+
µk
i

f2
2

+Bk
Ii + λ1N

k
1i − λ2N

k
2i − εkIi (3.10)

where
{

Bk
Ii = Bk

1i −Bk
2i

εkIi = εk1i − εk2i
(3.11)

and epoch-differencing is then applied to derive the corresponding cycle-slip estimate as

Âk
Ii = λ1Â

k
1i − λ2Â

k
2i (3.12)

Note that both −
µk
i

f2
1

+
µk
i

f2
2

and Bk
Ii are presumed to be totally eliminated after this epoch-

differencing. Hence, we can obtain an estimate of the cycle slip on L1, namely

Âk
1i =

λ2A
k
wi − Âk

Ii

λ2 − λ1

(3.13)

Note that the accuracy of the estimate of Âk
Ii with Equation 3.12 depends on the magnitude of

−
µk
i

f2
1

+
µk
i

f2
2

which actually cannot be totally eliminated if the gap between the two epochs is over

a few minutes. Moreover, the wavelength for the integer cycle slip in Equation 3.13 is λ2 − λ1,

namely about 5.4 cm. This means that the residual errors in Equation 3.12 should not exceed

approximately 1.4 cm if Âk
1i needs to be reliably fixed to an integer.

In practice, Banville and Langley (2009) carried out a few tests for this method. At a

static receiver collecting 4-hour 1-Hz GPS measurements, the success rate of integer cycle-slip

resolution reached 99.7% even when τ2 − τ1 was 10 s, but this success rate was reduced when

τ2 − τ1 was enlarged further. Banville and Langley (2009) emphasized that a high success rate

cannot be guaranteed when the ionosphere condition is active. Hence, this method should be

carefully used if rapid ionosphere variation is anticipated. Furthermore, for a mobile vessel at a

speed of 2 to 9 knots and a mobile car, the success rate was rapidly reduced to only 16.9% and

32.4%, respectively, even though τ2 − τ1 was only 20 s (Banville and Langley 2009).

3.4 Rapid re-convergence developed in this thesis

In terms of Section 3.2.4, the keys to accelerating convergences to ambiguity-fixed solutions

consist in both avoiding Melbourne-Wübbena combination measurements and shrinking the

search space for integer ambiguities. The volume of this search space is governed by the

variance-covariance matrix of ambiguity estimates, and it approximately observes the following
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rule (Teunissen 1996, 1997):

V ∝
σP

Rλ
(3.14)

where V is the volume of the search space; σP is the precision of pseudorange or unambiguous

measurements; R is the number of epochs; λ is the wavelength of carrier-phase measurements;

and ∝ denotes a proportional relationship. To achieve rapid convergences, increasing R is

unrealistic, and thus the only choices are diminishing σP or enlarging λ. This section thereby

derives how to precisely predict ionospheric delays and how to apply these delays to accelerate

both wide-lane and narrow-lane ambiguity resolutions, and then discuss the implementation of

this method.

3.4.1 Precisely predict ionospheric delays

Reformulating Equation 3.8, at a particular epoch, we can obtain

Lk
wi =

µk
i

f1f2
+ ρki + ctki +Bk

wi + λwN
k
wi − εkwi (3.15)

which is hereafter used to estimate the ionospheric delay, namely the term of
µk
i

f1f2
in theory,

at all ambiguity-fixed epochs. For a low-dynamic receiver, the ionospheric delays for each

satellite normally manifest a strong temporal correlation over a few minutes, especially when

the ionosphere condition is relatively quiet (Dai et al. 2003; Kashani et al. 2007). This principle

is the foremost foundation of my method for rapid re-convergences.

Despite this favorable characteristic of ionospheric delays, it is necessary to further quantify

the residual biases that are possibly assimilated into the estimate of
µk
i

f1f2
, and investigate their

temporal characteristics. First, the receiver clock error seems an unstable quantity over time.

Hence, a single difference between satellites k and l at this epoch can be formed, namely

Lkl
wi =

µkl
i

f1f2
+ ρkli − ctkl +Bkl

w + λwN
kl
wi − εklwi (3.16)

where the receiver clock ti and the receiver hardware bias Bwi are consequently eliminated.

Second, ρkli depends on the receiver and satellite positions, and the tropospheric delay. To

date, predicted GPS satellite orbits over 24 hours have reached an accuracy of around 5 cm (see

Table 1.1). Residual radial orbit errors can be mostly mitigated by satellite clocks (Senior et al.

2008), if a consistent yaw-attitude model is applied to GPS satellites (Kouba 2009a). Moreover,

GPS satellite orbits are tightly constrained by dynamic force models (e.g. Steigenberger et al.

2009), and thus the residual orbit errors should theoretically change smoothly. Note that

unannounced satellite maneuvers can significantly degrade the orbit accuracy. For the precise

prediction of ionospheric delays, maneuvers can be a limiting factor, but are hereafter ignored

because they are normally rare. On the other hand, the receiver position can be known to

centimeter-level accuracy in the ambiguity-fixed solution at this epoch (Geng et al. 2010d). In

addition, tropospheric delays can be mostly mitigated by estimating a ZTD. Residual tropo-

spheric delays are only a few millimeters at high elevations, but can be up to several centimeters

at an elevation of smaller than 10◦ (Stoew et al. 2007). However, the troposphere condition

around a low-dynamic receiver normally changes very slightly over at least several minutes if

neither rapid weather fronts nor large height variations occur for this receiver (Gregorius and
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Blewitt 1999; Shan et al. 2007). Considering this similar temporal property to that of ionospheric

delays, these two atmospheric delays can be alternatively combined and their sum is predicted

over time. Note that this combination is not applied in this thesis.

Third, due to the high correlation between tkl and the satellite orbits (Senior et al. 2008),

favorable user range errors of centimeter level can be achieved (Hauschild and Montenbruck

2009). Nonetheless, this tkl is normally a predicted value due to communication delays in real-

time applications. Fortunately, Senior et al. (2008) reported that the Rubidium and Cesium

clocks on GPS satellites can be precisely predicted to a precision of better than 0.1 ns up

to a period of 40 s which covers typical communication delays. In addition, current satellite

clock products are based on ionosphere-free measurements. Applying these clocks to wide-lane

measurements in Equation 3.15 can potentially cause a bias. Fortunately, this bias seems quite

stable over time (Collins et al. 2005). Hence, it is hereafter assumed that errors of satellite clocks

are always smaller than 0.1 ns.

Fourth, Nkl
wi is firstly resolved using Melbourne-Wübbena combination measurements, rather

than wide-lane measurements in Equation 3.15. As a result, a possible integer-cycle hardware

bias originating from pseudorange measurements can be assimilated into Nkl
wi, finally leading

to an integer bias in the ionospheric delays. Fortunately, from the observed high stability of

wide-lane FCB estimates (Gabor and Nerem 1999; Ge et al. 2008; Laurichesse et al. 2009c), it

can be inferred that these integer biases are normally constant over at least 24 hours. On the

other hand, as Bkl
w is part of wide-lane FCBs in Equation 2.9, it can be also deemed rather

stable over time. Note that the above pseudorange-related integer-cycle bias in the subsequent

formula derivations are ignored for brevity.

Finally, εklwi is the most uncertain quantity and it is believed that the multipath effect

dominates among all possible unmodeled errors (e.g. Bilich et al. 2008; King and Watson 2010;

Ogaja and Satirapod 2007). Dilssner et al. (2008) showed that the carrier-phase biases caused

by multipath effects stemming from solely radiating near fields can theoretically reach a few

centimeters for low-elevation satellites. Although Han and Rizos (2000b) described the strong

temporal correlation of the multipath signatures at static antennas, these signatures can be quite

random and thus unpredictable at mobile receivers.

Therefore, at an ambiguity-fixed epoch, the precisely known quantities of ρkli , tkl and Nkl
wi

can be deducted from Lkl
wi and the ionospheric-delay estimate can be derived as

Îklw = Lkl
wi − ρ̂kli + ctkl −Nkl

wi

=
µkl
i

f1f2
+Bkl

w + ξklwi − εklwi

(3.17)

where ρ̂kli is the estimate of ρkli which is derived from the ambiguity-fixed solution of this epoch;

ξklwi contains the errors of the satellite products and the tropospheric delays. According to the

quantitative assessments above, it can be inferred that ξklwi − εklwi can easily amount to over

10 cm for low-elevation satellites. Nonetheless, ξklwi changes slightly or predictably over a few

minutes, and Bkl
w changes negligibly over a long time, thereby negligibly impairing the temporal-

correlation characteristic of
µkl
i

f1f2
. Hence, Îklw can be precisely predicted to the succeeding epochs

over a few minutes, especially at static stations where multipath effects in εklwi are also temporally

correlated. Note that the error caused by the receiver position estimate is ignored in Equation

3.17 because this error will be absorbed by the position estimate where the predicted ionospheric
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delays are applied (refer to the next section). In this study, Îklw is called “ionospheric delay” for

brevity although it contains more than a true ionospheric delay.

For the predicting strategy, both the constant bias model and the linear fitting model are

suggested (Dai et al. 2003). In the constant bias model, predicted ionospheric delays are equal

to the previous estimated ionospheric delays; in the linear fitting model, however, previous

estimated ionospheric delays within a sliding time window are used to fit a linear function, and

predicted ionospheric delays are extrapolated using this function. In this study, the time span

between a predicted and the latest estimated ionospheric delay is named as the latency of this

predicted delay. This latency can be caused by data gaps, for example. The prediction error

at an epoch is quantified by differencing the predicted and estimated ionospheric delays at this

epoch. Furthermore, the prediction error is increased when the elevation angle is smaller and

the latency is longer, and the increasing rate depends on the ionosphere condition. Therefore,

an elevation-dependent and a latency-dependent weighting on the predicted ionospheric delays

are required, such as

W (E) =







1.0 30◦ 6 E 6 90◦

2 sinE 7◦ < E < 30◦
(3.18)

and

W (τ) =











1.0 τ < 30 s

tan

(

π

4
·
30

τ

)

τ > 30 s
(3.19)

where E denotes the elevation angle in degrees; τ here denotes the latency in seconds and the

“30 s” will be illustrated in Section 6.2.3.

3.4.2 Rapidly retrieve integer ambiguities

Integer ambiguities can be rapidly retrieved by applying the precisely predicted ionospheric

delays after a re-convergence occurs. This is achieved in two steps. First, at a particular epoch

where the ambiguity-fixed solution has been lost, wide-lane measurements are formed using

Equation 3.16 and are corrected with the known satellite products, the latest ZTD estimate, and

the predicted ionospheric delays. If the latency is smaller than a few minutes, the errors caused

by FCBs, satellite products and atmospheric delays can be canceled out or mostly mitigated by

the counterparts in the predicted ionospheric delays (Dai et al. 2003; Kashani et al. 2007). Note

that unmodeled errors are not easy to predict and are thereby supposed to be sufficiently small

in this study. Finally, we can obtain

Lkl
w + ctkl − Ĭklw = ρkli + λwN

kl
wi + ζklwi (3.20)

where Ĭklw is the predicted ionospheric delay; ζklwi contains the unmodeled errors and the prediction

error of ionospheric delays, and it actually quantifies the precision of Equation 3.20; only the

positions and ambiguities are unknown. With the constraint from ionosphere-free pseudorange

measurements, wide-lane ambiguityNkl
wi can be resolved with Equation 3.20 if ζklwi is small enough

(e.g. <
1

4
λw). In terms of Equation 3.14, thanks to the relatively long wavelength for wide-

lane ambiguities, ionosphere-free pseudorange measurements can normally sufficiently shrink

the search space to only a few integer candidates (Teunissen 1996, 1997), thereby improving the

search efficiency and accelerating the identification of integer ambiguities.
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Second, at this epoch, once the wide-lane ambiguity is successfully resolved, Equation 3.20

becomes a precise unambiguous measurement, namely

Lkl
w + ctkl − Ĭklw − λwN

kl
wi = ρkli + ζklwi (3.21)

In this study, it is Equation 3.21, rather than pseudorange measurements, that is introduced

into the normal equation of PPP and thus constrains the integer identification of narrow-lane

ambiguities during rapid re-convergences. In terms of Equation 3.14, if the magnitude of ζklwi is

far smaller than a few centimeters, applying Equation 3.21 can considerably shrink the search

space for narrow-lane ambiguities to a few integer candidates (Teunissen 1996, 1997). As a

result, narrow-lane ambiguity resolution can be accelerated. Note that the prediction error of

ionospheric delays dominates ζklwi if the latency is long. An imprecisely predicted ionospheric

delay will weaken the constraint by Equation 3.21, possibly failing a rapid re-convergence.

Finally, it is worth emphasizing that both rapid resolutions above do not rely on satel-

lite geometry changes, but on the sufficient shrink of the search space for integer candidates.

Such shrinks are achieved by applying ionosphere-free pseudorange and ionosphere-corrected

unambiguous wide-lane measurements which are precise enough relative to the wide-lane and

narrow-lane wavelengths, respectively. Hence, float ambiguity estimates are close to correct

integers and these integers can then be relatively easily identified, even though only one epoch

of measurements are used.

3.4.3 Remarks on the method implementation

From the method description above, the prerequisite is how to precisely predict ionospheric

delays, which depends on three aspects:

• Temporal properties of all errors in the ionospheric delay estimate according to Equation

3.17. Although the true ionospheric delay dominates its temporal variation, other errors

including clock predictions and multipath effects should also be carefully regarded;

• Predicting strategy. Currently, it is not easy to precisely predict the ionosphere condition

over a long time due to its complicated relationships with the geomagnetic field and the

solar activity, especially during an ionospheric storm (e.g. van Barneveld et al. 2009).

For example, sudden ionospheric disturbances and scintillations may occur during high

ionosphere activities in polar and equatorial regions (Basu et al. 2002). As a result,

temporal ionospheric irregularities cannot be precisely quantified beforehand in real-time

applications. In this case, only the linear trend of the ionosphere change can usually be

quantified with a relatively high confidence level (Dai et al. 2003). However, we should

keep in mind that the residual variations can sometimes be very large and thus fail the

precise prediction of ionospheric delays;

• Model consistency between the ionospheric delay estimation with Equation 3.17 and the

wide-lane ambiguity resolution with Equation 3.20. Note that both models are derived

from Equation 3.16. In this manner, their common biases can naturally cancel out without

impairing the integer ambiguities, hence explaining why it is not the biases assimilated into

the estimated ionospheric delays, but only their prediction errors, that are cared about in

my method.
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3.5 Comparison between rapid re-convergence methods

The two methods in Section 3.3 and 3.4 are used to improve real-time PPP during re-convergences

based on the high temporal correlation of atmospheric delays and the negligible variation of

hardware biases within a short period of up to a few minutes. There are five key differences

between them that need to be highlighted:

• Banville and Langley (2009) repair cycle slips on L1 with the geometry-free measurements

after the wide-lane cycle-slip repair. The wavelength of such L1-related cycle slips is

only about 5.4 cm. Nonetheless, my method resolves integer ambiguities on L1 with the

ionosphere-free measurements after wide-lane ambiguity resolution. The wavelength of

these L1-related ambiguities is about 11 cm, approximately doubling the counterpart in

the method by Banville and Langley (2009). In theory, the integer resolution for longer-

wavelength ambiguities should be relatively easier.

• Banville and Langley (2009) do not need to estimate positions along with L1-related cycle

slips. This avoids the high correlation between the ambiguity and position parameters in

the estimation. Comparatively, my method has to simultaneously estimate the L1-related

ambiguity and position parameters. They are decorrelated with the tight constraints

imposed by ionosphere-corrected unambiguous wide-lane measurements.

• Banville and Langley (2009) simply presume that atmospheric delays totally cancel when

differencing is performed over two epochs with a gap of less than a few minutes. Atmospheric

delays are not estimated and hence the success rate of cycle-slip repair decreases when the

gap is increased. Likewise, my method suffers from the degraded accuracy of predicted

ionospheric delays when the time gap is increased. However, because ionospheric delays

are estimated in my method, they can be potentially precisely modeled and predicted for

a relatively longer period. In this way, the mitigation of ionospheric delays is somewhat

controllable in my method and the mitigation efficiency can potentially outperform that

of Banville and Langley (2009).

• Banville and Langley (2009) repair cycle slips to keep the continuousness of undifferenced

carrier-phase measurements, and hence the convergence of ambiguity-float PPP is not

interrupted by cycle slips. In this manner, a possible re-convergence can be avoided. On

the contrary, my method rapidly resolves ambiguities during re-convergences in order to

keep ambiguity-fixed solutions. In this case, users do not need to wait for a long period

before they can again achieve ambiguity-fixed solutions.

• Banville and Langley (2009) do not need a number of epochs of measurements to repair

cycle slips. Normally, only two epochs are used to repair the cycle slips between them.

Conversely, a rapid re-convergence in my method is only possible when its previous solution

is ambiguity-fixed. This means that the first ambiguity-fixed solutions have to be achieved

before my method can be applied.

Finally, it should be noted that the method by Banville and Langley (2009) can complement

my method. As demonstrated above, the first ambiguity-fixed solution is the prerequisite of my

method. This solution cannot be achieved until a sufficiently long period of continuous carrier-

phase measurements are guaranteed. In this case, the method by Banville and Langley (2009)

can be used to keep the carrier-phase continuousness before the first ambiguity-fixed solution is

achieved.
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3.6 A strategy for accelerating the first convergence

As discussed in Section 3.4, re-convergences can be significantly accelerated by applying iono-

spheric delays precisely predicted by users themselves. We can imagine that the convergences,

including the first one, can be significantly accelerated if these ionospheric delays are provided

for users by a service provider with a precise ionosphere model. Note that this model should

generate ionospheric delays at an accuracy of less than a few centimeters, i.e. ≤0.3 TECU for the

L1 frequency. This section thus first introduces the advancement of current real-time ionosphere

products, and then addresses a strategy for rapid convergences based on interpolated ionospheric

delays from a dense network of reference stations.

3.6.1 Real-time ionosphere products

Precise ionosphere imaging in real time is a challenging issue in the Earth ionosphere community

(Bust and Mitchell 2008). The ionosphere is characterized by a significant number of ionized

neutral atoms, hence leading to a mixture of free electrons and ions. The ionization level

is governed by solar extreme ultraviolet radiation and particle precipitation. Moreover, the

ionosphere is embedded within the Earth’s magnetic field and hence is constrained by the inter-

actions of the ionized particles with the magnetic field. Consequently, ionosphere scintillations,

large-scale TEC gradients and irregularities frequently occur, especially in low-latitude regions

and during ionosphere storms (Skone 2000). Despite the complexity of the ionosphere physics,

the most important quantity among all physical parameters is the electron density (Bust and

Mitchell 2008). Ionosphere imaging of the electron density provides snapshots of the global

ionosphere structure and its temporal evolution. Ionosphere imaging relates to using integrated

measurements of electron density, known as TEC measurements, in order to generate 2-, 3-

or 4-dimensional maps of electron density. Such imaging is extremely important because the

electron density governs all effects on radio signals. Hence, in the following, current methods for

real-time ionosphere imaging and their respective accuracy are briefly introduced.

A Klobuchar model

A straightforward method for the real-time mitigation of ionospheric delays is the Klobuchar

model (Klobuchar 1986) which has been included in the GPS broadcast navigation message. The

coefficients of this model are daily updated. However, only 50% of TEC can be eliminated by this

model, which is far from sufficient for assisting wide-lane or narrow-lane ambiguity resolution.

B Ionosphere grid

An ionosphere grid is a thin shell at a specific height of 350–450 km above the Earth’s surface.

This shell is sampled on a regularly spaced grid along latitude and longitude. Vertical TEC at the

grid points are estimated using GPS measurements from a network of reference stations. Users

then interpolate their required slant TEC based on this grid model with a mapping function (El-

Arini et al. 1995). However, an ionosphere grid has two defects (Liu 2003): On the one hand, a

specific height for the ionosphere grid is presumed, which is only an approximation of the reality

and is not physically true; on the other hand, a grid model is 2-dimensional and hence it cannot

depict the vertical profile of the ionosphere structure. The global ionosphere maps by the IGS

are grid-based, and currently the accuracy for the rapid products is between 2 and 9 TECU with
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a latency of below 24 hours (see http://igscb.jpl.nasa.gov/components/prods.html). WAAS and

EGNOS employ regional grids to quantify ionospheric delays, but the real-time accuracy can be

up to 55 cm (∼3 TECU) (e.g. Jensen et al. 2007). Due to these poor accuracies, some authors

are still trying to improve the ionosphere grid model (e.g. Yuan et al. 2008).

C Ionosphere tomography

An ionosphere tomography outperforms an ionosphere grid by its imaging of the ionosphere’s

vertical profile. Hence, an ionosphere tomography is a 3-dimensional model. It is constructed

by a set of spherical harmonic functions and empirical orthogonal functions. The spherical

harmonic functions describe the horizontal ionospheric characteristics whereas the empirical

orthogonal functions depict the vertical ionosphere properties (Liu 2003; Bust and Mitchell

2008). Hernández-Pajares et al. (1999) reported that real-time tomography can provide an

accuracy of better than 1 TECU for double-difference slant TEC based on a sparse network of

up to 1300-kilometer inter-station distances under an active ionosphere condition. However, this

conclusion has not been confirmed with extensive tests. Moreover, Liu and Gao (2004) assessed

5-minute TEC predictions over a regional reference network and achieved an accuracy of about

2.8 TECU in the vertical direction.

3.6.2 Accelerating convergences with a dense network

Considering the accuracy level of current real-time ionosphere products, unfortunately, it is

still quite difficult to interpolate sufficiently precise ionospheric delays based on a quite sparse

reference network at scales of many hundred kilometers. Nonetheless, if a dense network of

reference stations at scales of several tens of kilometers is available, ionospheric delays can

be estimated at the reference stations and then interpolated for single users to assist rapid

convergences. In this case, the first ambiguity-fixed solutions can also be rapidly achieved.

Interpolated ionospheric delays are more reliable than those estimated and predicted by

users themselves. As discussed in Section 3.4, the prerequisite for a rapid re-convergence is that

the previous solution is correctly ambiguity-fixed. An incorrect ambiguity-fixed solution will

fail the subsequent rapid re-convergences. Due to the precisely known positions and the good

observation environments at reference stations, the generation of ionospheric delays becomes

relatively easier and more reliable than that by users themselves. Normally, this generation is

continuous and is independent of the users. Hence, users do not have to worry too much about

the quality of interpolated ionospheric delays.

However, the deficiency of interpolated ionospheric delays is also obvious, i.e. a dense

network of reference stations have to be used. This augmentation will significantly devalue the

most attractive advantage of PPP, i.e. no need of any nearby reference stations. Moreover, even

if such dense networks are available, the foremost question is then whether this augmented PPP

can outperform the NRTK which has been well established in many areas.

Therefore, accelerating the first convergence to the ambiguity-fixed solution based on a

dense network is feasible in theory, but its value in practice should be carefully assessed.

http://igscb.jpl.nasa.gov/components/prods.html
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3.7 Summary

This chapter reviews the up-to-date attempts to achieve rapid convergences in real-time PPP. It

is shown that these attempts are not sufficiently effective in speeding up convergences. On the

other hand, in order to rapidly re-converge to ambiguity-fixed solutions, this thesis originally

develops a novel method in which ionospheric delays estimated at previous ambiguity-fixed

epochs are precisely predicted to the succeeding epochs in order to significantly accelerate

ambiguity resolution in case of a re-convergence. Finally, a strategy for achieving the first

ambiguity-fixed solution is suggested in which a dense network of reference stations is required.

Chapter 6 will present empirical results to assess these methods for the rapid convergences to

ambiguity-fixed solutions.





Chapter 4

PANDA Software

4.1 Introduction

PANDA (Positioning And Navigation Data Analyst) software was originally developed at Wuhan

University in China (Liu and Ge 2003). It is a versatile tool for the scientific analysis of GPS

positioning and navigation data, and currently serves as a fundamental platform for scientific

studies in China. The University of Nottingham signed an agreement with Wuhan University

for a free version of the Unix-based PANDA software package in 2007. This software package is

capable of simultaneously processing various types of measurements from GNSS, SLR, KBR (K-

Band Ranging) (Kang et al. 2003), star trackers and accelerometers in order to estimate ground

station coordinates, ZTDs, ERPs (Earth Rotation Parameters) and orbits for GNSS satellites,

LEOs and GEOs (Geosynchronous Earth Orbiters) (Geng et al. 2006; Li et al. 2008; Shi et al.

2006, 2008b).

Since 2003, PANDA software has been contributing to the Chinese GNSS research and

applications. For example, it was extensively used in two key National High-Tech Research and

Development Programs of China, i.e. Real-Time National PPP Service for Decimeter Positioning

Accuracy (Geng et al. 2007b) and Near Real-Time Precise Orbit Determination of LEOs (Geng

et al. 2007a). On the Wenchuan earthquake in 2008, the PANDA software generated one of the

most excellent 1-Hz position time series with near-field GPS measurements (Shi et al. 2010).

The PANDA software is also used by a number of international renowned research institutes,

such as DEOS (Delft–Institute of Earth-Oriented Space Research), NCTU (National Chiao Tung

University) and IESSG (Insitute of Engineering Surveying and Space Geodesy). DEOS used

PANDA software to determine precise orbits of CHAMP (CHAllenging Minisatellite Payload)

and GRACE (GRAvity Climate Experiment) satellites in order to recover the time-varying

Earth gravity (Liu et al. 2010). NCTU used PANDA software to determine the precise orbits of

COSMIC (Constellation Observing System for Meteorology Ionosphere and Climate) satellites

in order to validate their own results which were based on Bernese GPS software 5.0 (Dach

et al. 2007; Hwang et al. 2009). IESSG used PANDA software for the research of rapid integer

ambiguity resolution at a single receiver, and this thesis is mainly supported by this software

(Geng et al. 2009).

This chapter first briefly exhibits the overall structure of PANDA software, and then details

my adaptation and development of PANDA software. Note that the algorithm design and

program development are also important contributions of this thesis. Finally, two software
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Figure 4.1: Brief structure of the PANDA software. The solid arrows denote processing sequences
and the dashed arrows denote input/output. The squares represent the data processing modules
while others represent the data and results (adapted based on Shi et al. (2008b))

suites, i.e. post-processing PPP and real-time PPP, are schematically introduced.

4.2 Software structure

Figure 4.1 describes the overall structure of the PANDA software. Its core modules are the orbit

integrator and the state estimator. The orbit integrator is in charge of generating dynamic orbits

based on the orbit parameters and force models, whereas the state estimator is responsible for

all measurement models and statistical estimations, such as the least squares adjustment for

post-processing tasks and the square root information filter for real-time applications (Bierman

1977).

Double-difference ambiguity resolution is performed directly using undifferenced ambiguity

estimates generated by PPP (Ge et al. 2005a). Hence, the high flexibility and efficiency of PPP

are exploited, but the benefits from ambiguity resolution are still achieved. Ge et al. (2005a)

developed a new strategy where ambiguities are pre-eliminated once their last pertinent carrier-

phase measurements are introduced into the normal equation, but ambiguity resolution is still

achievable. This strategy can significantly improve the processing efficiency of a huge-network

solution (Ge et al. 2006). Moreover, post-processing ambiguity resolution at a single receiver is

also applied in the PANDA software package (Ge et al. 2008).

For real-time data processing, a new data screening method was developed in the PANDA

software specifically for the square root information filter (Shi et al. 2008a). In this method,

posterior residual vectors which are a byproduct of the filter are used to detect cycle slips or

blunders. A sensitivity vector of each posterior residual with respect to cycle slips and blunders

at a particular epoch can also be computed to assess the correlations between contaminated

measurements and residuals. According to a quantitative correlation analysis, cycle slips and

blunders can be identified and estimated in the filter to mitigate their detrimental impacts on

navigation solutions. Since the algorithm takes the correlations between posterior residuals into
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account, multiple cycle slips and blunders at an epoch can be effectively and reliably identified.

In addition, raw GPS measurements are pre-processed station by station based on an

enhanced automatic editing strategy (Blewitt 1990). To detect remaining cycle slips and bad

measurements, raw measurements are further cleaned by analyzing posterior residuals derived

from the estimation. Thus least-squares estimation and residual analysis need to be iteratively

carried out until neither cycle slips nor bad measurements can be identified.

Finally, the products by the PANDA software include post-processing and real-time ones.

The post-processing products are mainly used for high-precision applications in scientific studies,

such as crustal deformation, orbit determination for the Earth gravity recovery, meteorology and

ERP time series analysis. The real-time products deliver kinematic positions, near real-time

ZTDs and real-time GPS satellite orbits and clocks.

4.3 Software adaptation and development for this thesis

Since September of 2007, I have based my PhD study on the PANDA software and significantly

improved it for my research. These improvements mainly include:

• Fixing software bugs, such as the filter divergence due to the incorrect understanding of

the theory by Bierman (1977), and the UT1-UTC error;

• Enhancing software capabilities. For example, I applied the IERS (International Earth

Rotation and Reference Systems Service) 2003 conventions (McCarthy and Petit 2004), the

horizontal troposphere gradients (Bar-Sever et al. 1998), GPT/GMF (Global Pressure/Tem-

perature & Global Mapping Function) (Boehm et al. 2006a, 2007) and VMF1 (Vienna

Mapping Function 1) (Boehm et al. 2006b, 2009; Kouba 2008). Furthermore, I implemented

piece-wise static PPP with continuous ambiguity and ZTD estimates for sub-daily crustal

deformation monitoring (Melbourne et al. 2002; Teferle et al. 2008) and satellite clock

determination based on the epoch-differencing for rapid high-rate clock products in real

time (Ge et al. 2010);

• Improving ambiguity searching. Prior to the ambiguity search with the LAMBDA method,

candidate ambiguities have to be carefully selected and permutated in order to maximize

the success rate of ambiguity fixing. I select candidate ambiguities according to the

fixing probability computed by Equation 2.41 and permutate them according to satellite

elevations. Partial fixing of ambiguities is also implemented (Dai et al. 2007);

• Implementing the IRC-based method by Laurichesse et al. (2009c). IRCs are estimated by

first fixing ambiguities to integers in a network solution (refer to Section 2.2.3);

• Implementing real-time ambiguity resolution at a single receiver. Narrow-lane FCBs are

estimated and ambiguity resolution is performed in real time (refer to Section 2.4.3) (Geng

et al. 2010d);

• Developing and implementing rapid re-convergences to ambiguity-fixed solutions by pre-

cisely predicting ionospheric delays. Two filters are embedded in this module: One is

for wide-lane ambiguity resolution based on wide-lane carrier-phase measurements and the

other is for narrow-lane ambiguity resolution based on ionosphere-free measurements (refer

to Section 3.4) (Geng 2009).

• Developing and implementing rapid convergences with interpolated ionospheric delays from

a dense network of reference stations. A dedicated module is designed and implemented
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Figure 4.2: Structure of the post-processing PPP suite. The squares contain the names of the data
processing modules while others list the data and results

in order to estimate and interpolate atmospheric delays at static or mobile receivers (refer

to Section 3.4.2) (Geng et al. 2010a).

4.4 Post-processing PPP suite

This section focuses on the structure of post-processing PPP suite in the PANDA software and

the data processing procedure for post-processing PPP.

4.4.1 Structure description

Figure 4.2 illustrates the structure of the post-processing PPP suite of the PANDA software.

This figure is actually composed of only processing modules and data files. The processing

modules include

• Pre-processing. This module includes the software packages teqc (translation, editing,

and quality check) developed by UNAVCO (University NAVSTAR Consortium) (Estey

and Meertens 1999), clockprep developed by Prof Freymueller at the University of Alaska

Fairbanks, cc2noncc developed by Dr Ray at the US National Geodetic Survey (NGS),

and turboedit which is based on the pre-processing algorithms by Blewitt (1990). In the

PANDA software, teqc is used for RINEX (Receiver INdependent EXchange) formatting

in order to avoid software abnormality due to format bugs; clockprep is used to convert
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RINEX observation files of receiver time into those of GPS time in order to avoid pseudo

cycle slips detected by turboedit; cc2noncc is used to convert pseudorange measurements

from a cross-correlation receiver to those that are compatible with the modern Y-codeless

pseudorange tracking (Dach et al. 2007) in order to keep consistency between clock products

and pseudorange measurements; finally, turboedit is used to identify bad measurements

and cycle slips in a RINEX observation file.

• Orbit preparation. The module is solely based on sp3orb which transforms SP3 (NGS

Standard Product – 3) orbit files into a self-defined binary format. In this manner, the

PANDA software can efficiently access the precise orbit products. In addition, the reference

frame is changed from an Earth-fixed system into an inertial system through the ERP files.

• Least squares adjustment. The module lsq is used to reduce raw measurements and

estimate unknown parameters.

• Posterior residual diagnosis. The module redig is to analyze posterior measurement

residuals derived from lsq in order to identify remaining cycle slips and bad measurements.

• Double-difference ambiguity resolution. The module arnet is used for network solutions

where double-difference ambiguities are formed based on undifferenced ambiguity estimates

and ambiguity resolution is then attempted.

• FCB determination. The module defip is used to estimate wide-lane and narrow-lane

FCBs based on ambiguity estimates derived from network solutions.

• Ambiguity resolution at a single receiver. The module arsig is used to form single-

difference ambiguities between satellites based on undifferenced ambiguity estimates and

then apply FCB products in order to recover the integer properties of these single-difference

ambiguities.

Moreover, the data files include

• Input data. RINEX ephemerides and measurements, SP3 orbits and ERP files, and RINEX

satellite clocks. Broadcast ephemerides are used by turboedit. SP3 orbits, RINEX clocks

and ERP files can be freely obtained from the IGS.

• Binary orbits. Intermediate results which are generated by sp3orb.

• RINEX health diagnosis files. Each RINEX file corresponds to a health diagnosis file

recording the locations of problematic measurements. It is initially generated by tur-

boedit and subsequently updated by redig. RINEX health diagnosis files should accom-

pany raw RINEX measurements as input files to lsq.

• Posterior residuals. These are generated by lsq and then input to redig. RINEX health

diagnosis files are updated according to the analysis on these residuals.

• Positions, clocks and tropospheric delays. These are the output of lsq. Positions can be

daily, sub-daily or epoch-wise estimates. Satellite clocks can also be estimated in a network

solution by lsq. Tropospheric delays include ZTDs and horizontal gradients.

• Ambiguities and their optional variance-covariance statistics. These are generated by lsq

and are the input of ambiguity resolution. If the variance-covariance statistics are available,

ambiguity search by the LAMBDA method can be performed.

• Wide-lane and narrow-lane FCBs. These are estimated in defip. Wide-lane FCBs are

daily estimated whereas narrow-lane FCBs can be estimated every 15 minutes or within

each satellite-pair pass over a regional network.

• Ambiguity constraints. Double-difference and single-difference integer constraints. These

files are the output of ambiguity resolution. They record the combinations of four or

two undifferenced ambiguities. These combinations form integer constraints which are
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subsequently imposed on the normal equation of lsq in order to achieve ambiguity-fixed

solutions.

4.4.2 Processing procedure

This section addresses the processing procedures for post-processing PPP and ambiguity res-

olution at a single receiver. The satellite clock determination and double-difference ambiguity

resolution are ignored for the brevity of this thesis.

A Post-processing PPP

Post-processing PPP in the PANDA software mainly relies on lsq and redig. Specifically, the

procedure for a post-processing ambiguity-float PPP is divided into four steps, namely

1. Build a processing environment. All raw measurements should be put in an independent

folder and a work folder has to be created for each project. Afterwards, a number of table

files have to be copied into this work folder, mainly including antenna phase center offsets

and variations, planetary ephemerides, leap seconds, coefficients for the ocean tide loading

model, P1-C1 corrections and satellite states. Moreover, ERP files and satellite clocks

need to be copied into the work folder. SP3 orbits can then be transformed into a binary

format.

2. Pre-processing. teqc is first used to check the format of raw measurements. clockprep

is then applied to all RINEX measurements. cc2noncc should be applied to only cross-

correlation receivers and receivers without P1 measurements. Hence, such receivers must

be identified before cc2noncc is run. Finally, turboedit is used to generate RINEX

health diagnosis files.

3. Estimation. lsq is run at this step. Unknown parameters are estimated and posterior

residuals are generated.

4. Residual editing. redig is applied to posterior residuals. Once new bad measurements or

new cycle slips are identified, the third step has to be run again. Otherwise, final results

can be collected.

B Ambiguity resolution at a single receiver

Ambiguity resolution at a single receiver is performed by running defip and arsig. The

processing procedure is

1. A network solution where FCBs are estimated.

(a) Ambiguity-float PPP for a network of reference stations (refer to Section A).

(b) Estimate FCBs. defip is applied to all undifferenced ambiguity estimates generated

in the network solution. We can ultimately obtain wide-lane and narrow-lane FCB

estimates.

2. Resolve ambiguities at a single receiver by applying FCBs.

(a) Ambiguity-float PPP for a single receiver (refer to Section A).

(b) Ambiguity resolution. arsig employs FCBs to retrieve the integer properties of single-

difference ambiguities between satellites at a single receiver. Ambiguity resolution can

then be attempted.
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Figure 4.3: Structure of the real-time PPP suite. Meaning of symbols refer to Figure 4.2

(c) PPP by applying integer constraints. lsq is run again and integer-constraint files will

be used automatically. Finally, ambiguity-fixed solutions can be achieved.

4.5 Real-time PPP suite

This section focuses on the structure of the real-time PPP suite in the PANDA software and the

data processing procedure for real-time PPP.

4.5.1 Structure description

Figure 4.3 illustrates the structure of the real-time PPP suite of the PANDA software. This

figure is also composed of only processing modules and data files. The processing modules

include

• Pre-processing. Refer to Section 4.4.1. teqc and cc2noncc cannot be used in real time,

but adapting them into real-time modules is not a complicated task. turboedit cannot

be used and a real-time data screening is embedded into the filter sri (see Section 4.2).

Finally, clockprep is not applied because it is not a real-time module. Fortunately, most

receivers do not need this processing module.

• Orbit preparation. Refer to Section 4.4.1. Because only predicted satellite orbits are used,

according to Table 1.1, we have to update the orbits and ERPs once newer ones are released

by the IGS.

• Satellite clock determination. ckdet is based on epoch-differenced data processing, but

undifferenced satellite clocks are generated at each epoch. Its efficiency has been illustrated

by Ge et al. (2010).
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• Square root information filter. This real-time filter is characterized by its high numerical

stability (Bierman 1977). Data screening and quality control in real time are embedded

into this filter to identify bad measurements and cycle slips. Moreover, real-time ambiguity

resolution is also applied to this filter (Geng et al. 2010d). Note that backward smoothing

is not allowed in this filter.

• Real-time FCB determination. rtfip is used to estimate only narrow-lane FCBs at a given

update rate based on undifferenced ambiguity estimates from a network solution. Note

that wide-lane FCBs can be precisely predicted over 24 hours due to their high temporal

stability (Ge et al. 2008; Geng et al. 2010d), and hence they are not estimated in rtfip.

• Interpolation of atmospheric delays. interp is used to interpolate ionospheric and tro-

pospheric delays for a single receiver from its surrounding reference stations. These

interpolated atmospheric delays contribute to accelerating convergences to ambiguity-fixed

solutions (refer to Section 3.6).

Moreover, the data files include

• Input data, including RINEX ephemerides and measurements, predicted SP3 orbits and

ERP files (refer to Section 4.4.1 and Table 1.1).

• Binary orbits. Refer to Section 4.4.1.

• Real-time satellite clocks. As demonstrated in Section 1.2.2, satellite clocks have to be

estimated in real time. It is worth stressing that we should keep consistency between the

predicted orbits and the clocks.

• Positions and receiver clocks. These are the output of sri.

• Atmospheric delays. Slant ionospheric delays and tropospheric delays. According to

Section 3.4.1, slant ionospheric delays can be estimated with wide-lane measurements

(Equation 3.17) after a successful wide-lane ambiguity resolution. In addition, slant tro-

pospheric delays are computed with ZTD estimates and posterior carrier-phase residuals.

• Interpolated atmospheric corrections. These corrections are generated by interp. If slant

atmospheric delays are available at some reference stations, interpolated atmospheric delays

can then be computed at a user receiver located inside the coverage of these reference

stations. Interpolation methods refer to Dai et al. (2004).

• Ambiguities. At reference stations, undifferenced ambiguity estimates can be output at

an interval of a few minutes, for example, rather than every epoch. This can significantly

reduce the computation burden of sri.

• Real-time wide-lane and narrow-lane FCBs. Wide-lane FCBs are presumed known whereas

narrow-lane FCBs are generated by rtfip. Because narrow-lane FCBs are normally stable

over a few tens of minutes, an update rate of a few minutes is usually sufficient. Real-time

FCBs are then input to sri for ambiguity resolution.

4.5.2 Processing procedure

This section addresses the processing procedures for real-time PPP, real-time ambiguity resolu-

tion at a single receiver and rapid ambiguity resolution with interpolated atmospheric delays.

Satellite clock determination in real time by ckdet is ignored for the brevity of this thesis.

A Real-time PPP

Real-time PPP in the PANDA software mainly relies on sri. Specifically, the procedure for a

real-time PPP is
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1. Build a processing environment (refer to Section 4.4.2).

2. Satellite clock determination. If real-time satellite clocks are not available, a network of

reference stations has to be used to estimate epoch-wise clocks in a real-time manner.

3. Estimation. sri is run for this step. Briefly, raw measurements are preliminarily cleaned

using the Melbourne-Wübbena and the geometry-free combination measurements. Undiffe-

renced ionosphere-free measurements are then reduced and the filtering is started. Posterior

residuals are analyzed to further clean the measurements. Estimates are output at every

epoch. Furthermore, ambiguity resolution will be attempted if FCB products are available

and rapid re-convergences are started once cycle slips occur.

B Real-time ambiguity resolution

Real-time ambiguity resolution at a single receiver is based on both rtfip and sri. The processing

procedure is

1. A network solution where real-time FCBs are estimated.

(a) Satellite clock determination. Refer to Section A.

(b) Real-time FCB determination. Ambiguity estimates at all reference stations are input

to rtfip. Wide-lane FCBs are presumed known and narrow-lane FCBs are estimated.

2. Single-receiver solution. Refer to Section A.

C Rapid ambiguity resolution with interpolated atmospheric delays

Dense network has to be used if precise atmospheric delays are required. The processing

procedure of rapid ambiguity resolution with interpolated atmospheric delays is

1. Determination of satellite clocks and FCBs. Refer to Section A and B.

2. Determination of atmospheric delays at reference stations. By applying known satellite

products, slant ionospheric delays are estimated after wide-lane ambiguity resolution and

slant tropospheric delays are estimated after narrow-lane ambiguity resolution.

3. Interpolation of atmospheric delays. This is performed by interp. Slant ionospheric and

tropospheric delays are separately interpolated for an interested position.

4. Single-receiver solution. Note that ZTD parameters are no longer required and sri does

not need to predict ionospheric delays itself.

4.6 Summary

This chapter introduces the PANDA software used and developed in this thesis. The structure,

characteristics and capabilities of this software are briefly addressed. Then my contributions to

this software are detailed and highlighted. Afterwards, the two software suites for post-processing

and real-time PPP are introduced by illustrating their functional modules and processing proce-

dures. These can be recognized as a brief manual for the PPP modules of the PANDA software.

Most results shown in the subsequent chapters 5, 6 and 7 on ambiguity resolution and rapid

convergences are achieved with this software.





Chapter 5

Results on Ambiguity Resolutions

5.1 Introduction

Chapter 2 has introduced the methods recently developed for integer ambiguity resolution at a

single receiver, i.e. the FCB- and IRC-based methods (Collins 2008; Ge et al. 2008; Laurichesse

et al. 2009c). This thesis adopts the FCB-based method and develops four improvements,

i.e. the derivation of undifferenced FCBs, one FCB per satellite-pair pass over a regional

area, implementation of real-time ambiguity resolution and constraints from integer double-

difference ambiguities, in the PANDA software. This chapter thus assesses the “one FCB

estimate per satellite-pair pass” in post-processing PPP with sub-daily and epoch-wise GPS

measurements. Three crucial issues, i.e. the rapidity of wide-lane ambiguity resolution, the

temporal stabilization of narrow-lane FCBs and the performance of narrow-lane ambiguity

resolution, are closely investigated in order to assess real-time ambiguity-fixed PPP. Constraints

from integer double-difference ambiguities is highlighted with their contribution to improving

position quality of ambiguity-fixed PPP. Finally, a comparison study between the FCB- and

IRC-based methods ends this chapter.

5.2 FCB determination with a regional network

Wide-lane FCBs are normally quite stable over a few days or even a few months, whereas narrow-

lane FCB estimates are not so stable and have to be re-computed at a sub-daily frequency. Gabor

and Nerem (1999) estimated single-difference wide-lane FCBs for 305 days in 1997. They showed

that 73% of wide-lane FCBs slightly drifted by less than 0.5 cycles per year whilst only 8% drifted

by more than 1.75 cycles per year. One possible reason for this drift was the bias divergence

due to hardware aging, which meant that biases between different observables were present and

these biases were time-dependent. Ge et al. (2008) exhibited typically 14 days of wide-lane FCBs

and showed that these agreed with each other to better than 0.05 cycles. On the other hand,

Ge et al. (2008) estimated narrow-lane FCBs every 15 minutes and reported that over 90% of

narrow-lane ambiguities could be successfully fixed to integers. These narrow-lane FCBs were

based on a global network of reference stations. Hence, this section applies the innovation of

“one FCB estimate per satellite-pair pass” in Section 2.4.2 in order to assess the stability of

narrow-lane FCBs that are estimated with a regional network.
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Figure 5.1: Distribution of stations used for static PPP. Red circles denote EPN stations used for
the determination of FCBs and triangles denote IGS stations for testing ambiguity-fixed PPP. Black
triangles denote stations inside the EPN and inverted blue triangles denote stations outside the EPN

5.2.1 Data and models

A regional network of about 80 stations from the EUREF (European Reference Frame) Permanent

Network (EPN) (Figure 5.1) (Bruyninx et al. 2001) of which daily GPS measurements from day

245 to 251 in 2007 was used to estimate wide-lane and narrow-lane FCBs. The final satellite

products, the ERPs and the DCBs provided by CODE (Dach et al. 2009) were used. The

absolute antenna phase centers (Schmid et al. 2007), phase wind-up corrections (Wu et al.

1993) and station displacement corrections suggested in the IERS 2003 conventions (McCarthy

and Petit 2004) were applied. The elevation cut-off angle was 7◦ and an elevation-dependent

weighting strategy was applied to measurements at low elevations (Gendt et al. 2003). Receiver

positions, receiver clocks, ZTDs, horizontal troposphere gradients and undifferenced ambiguities

were estimated.

5.2.2 Wide-lane FCBs

Seven days’ wide-lane FCBs for all satellites with respect to PRN01 (Pseudo-Random Noise)

agree well to better than 0.06 cycles (3σ). If these wide-lane FCBs are applied to all EPN

stations under a bias-rounding strategy with a round-off criterion of 0.2 cycles, the ambiguity

fixing rate for each day ranges from 96% to 99% with an average of about 97.4%, hence verifying

the high accuracy of these wide-lane FCB estimates.

5.2.3 Narrow-lane FCBs

In terms of Section 2.3.4, narrow-lane FCB estimates actually contain some unknown station-

specific errors caused by the inaccurate modeling of tropospheric delays, etc. Discrepancies

among these errors can thus be manifested for a global network with 24 hours of measurements,
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Figure 5.2: Fractional parts of all narrow-lane ambiguity estimates at all EPN stations on day
245. Each symbol denotes the fractional part of an ambiguity and each cluster of identical symbols
corresponds to one pass of a satellite pair over the EPN. Note that each symbol is drawn at the
central epoch of the ambiguity observation period. Only six representative satellite pairs are selected
to avoid overlapping of different symbols and keep the figure clear to read

Figure 5.3: Narrow-lane FCB estimates for all satellites with respect to PRN01 over the EPN on day
245. Each estimate corresponds to one full pass over the EPN by a satellite pair. Solid black circles,
red squares and blue triangles denote estimates for the first, second and third pass respectively. Error
bars denote formal precisions of 3σ
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thereby handicapping the precise determination of narrow-lane FCBs. However, for a regional

network of stations among which the error correlation over time and space is relatively significant,

narrow-lane FCB estimates might achieve good precisions even if these estimates are computed

once per each satellite-pair pass over the regional network. Figure 5.2 shows the fractional parts

of all narrow-lane ambiguities for six satellite pairs over 24 hours at all EPN stations on day 245.

Each symbol denotes the fractional part of a narrow-lane ambiguity and each cluster of identical

symbols corresponds to one pass of a satellite pair over the EPN. Within each pass, fractional

parts change by less than 0.2 cycles, exhibiting a relatively high stability.

Moreover, Figure 5.3 shows the estimates and the formal precisions (3σ) of all narrow-lane

FCBs with respect to satellite PRN01 on day 245. Each narrow-lane FCB estimate corresponds

to one full pass of a satellite pair over the EPN. From Figure 5.3, it is apparent that estimates

for the same satellite pair can differ significantly. Most formal precisions are less than 0.1 cycles.

Considering the averaging over ambiguity fractional parts to estimate narrow-lane FCBs, these

high formal precisions actually reflect the good stability of narrow-lane FCBs within each

satellite-pair pass.

In addition, if these EPN-based narrow-lane FCBs are applied to the EPN stations to correct

narrow-lane ambiguities, up to 97.1% of all residual fractional parts are within ±0.15 cycles.

These ambiguities can be reliably fixed to the nearest integers with the sequential bias rounding.

Therefore, this fact further confirms the effectiveness of precisely estimating “one FCB estimate

per satellite-pair pass” over a regional network.

Finally, if the 15-minute mean is applied for the narrow-lane FCB determination, the

resulting formal precisions may be even smaller. However, much more narrow-lane FCB estimates

will be generated and the FCB-dissemination burden is consequently increased. Hence, my

innovation of “one FCB estimate per satellite-pair pass” excels in significantly reducing the

number of narrow-lane FCB estimates.

5.3 Impact of ambiguity resolution on hourly PPP

Conventionally, it is a great challenge for hourly PPP to achieve a millimeter-level positioning ac-

curacy. Ambiguity-float PPP can usually reach only sub-decimeter- to centimeter-level accuracy

based on less than three hours of measurements (Ghoddousi-Fard and Dare 2006; Tétreault et al.

2005). Comparatively, static relative positioning with double-difference ambiguity resolution

based on less than three hours of measurements is normally able to achieve sub-centimeter-level

accuracy for the horizontal and about 2-centimeter accuracy for the vertical components on

baselines of many tens to a few hundred kilometers (Creager and Maggio 1998; Eckl et al. 2001;

Soler et al. 2006). In this thesis, it is expected that ambiguity resolution at a single receiver can

significantly improve the positioning accuracy of hourly PPP, because PPP ambiguity resolution

improved daily position estimates by 10.2% against the IGS weekly estimates (Ge et al. 2008).

Note that the innovation of “one FCB estimate per satellite-pair pass” over a regional network

is applied in this section.

5.3.1 Data, models and methods

In Figure 5.1, 27 test stations from the IGS network were used to perform hourly PPP for day

245 to 251 in 2007. Hence, 168 hourly solutions could be obtained for each station if there was



5.3 Impact of ambiguity resolution on hourly PPP 67

no large data loss. Solutions with measurements of less than 30 minutes or with less than five

satellites for more than 30 minutes were removed as unreliable solutions. Among 27 stations,

12 were distributed evenly within the coverage of the EPN and were denoted as “inside-EPN”

stations. Remaining 12 were scattered outside the EPN in roughly all directions and were

denoted as “outside-EPN” stations. Note that FCB estimates were from Section 5.2 and all 27

stations were not involved in the FCB determination. Models adopted at test stations were the

same as those at the EPN stations in Section 5.2.1, except for horizontal troposphere gradients

which cannot be precisely estimated with only one hour of measurements. In order to assess

the accuracy of hourly position and ZTD estimates, their daily estimates were used as truth

benchmarks instead of the official EUREF estimates. In this manner, potential biases between

my solutions and the EUREF ones can be avoided (Teferle et al. 2007).

Wide-lane ambiguity resolution followed the method of sequential bias rounding. Due to

strong correlations among ambiguity estimates in hourly solutions, a search strategy based on

the LAMBDA method was applied to perform narrow-lane ambiguity resolution. Moreover,

GPS measurements at lower elevations were usually affected by higher noise levels and larger

biases than those at higher elevations, and this can increase the likelihood of incorrect ambiguity

resolution for low-elevation satellites. Hence, only the satellites at elevations of over 15◦ were used

for ambiguity resolution. In addition, if a set of narrow-lane ambiguities cannot all be reliably

fixed to integers, at most two of them could be excluded and the search was then repeated

until the validation tests were passed, unless all possible integer candidates were rejected. The

criterion for the ratio test is 3. Note that the acceptance test that was discussed in Section

2.5.2 often failed if Equation 2.46 was applied to this study, even when correct integers were

found. This implies that the right side of Equation 2.46 might be too conservative. Hence, as a

trade-off between maximizing the pass rate for ambiguity validation and minimizing the number

of incorrectly fixed solutions, a criterion of 1.8, which was empirically determined in terms of

all
σ2
fixed

σ2
float

estimates derived from all solutions in this study, was used instead of the right side of

Equation 2.46.

5.3.2 Performance of inside-EPN stations

For all inside-EPN stations, Table 5.1 shows the ambiguity fixing rates, the ratio values and

the RMS (Root Mean Square) of all hourly position and ZTD estimates against the truth

benchmarks. A fixing rate is the ratio between the number of fixed ambiguities and the number

of all ambiguities during 7 days. A ratio value in this table is the mean of all ratio values in all

ambiguity-fixed solutions.

From Table 5.1, the fixing rate for each station is larger than 96% and the mean fixing

rate is larger than 98%. All ratio values are larger than 30 with an average of over 40 which is

much larger than 3, i.e. the chosen criterion. Therefore, these statistics demonstrate that the

EPN-based FCBs are effective for a reliable ambiguity resolution at the inside-EPN stations.

Moreover, Table 5.1 shows that the mean RMS is significantly reduced from 3.8, 1.5, 2.8 cm

to 0.5, 0.5, 1.4 cm for the East, North and Up components respectively, with a mean reduction

of 68.3% for the 3D position. The horizontal RMS statistics of all stations are at sub-centimeter

level and most of them are smaller than 5 mm. The East RMS achieves the largest reduction of

86.7%. The Up RMS statistics of most stations are smaller than 1.5 cm with a mean reduction of

50.0%. This relatively smaller reduction, compared with the horizontal reduction, is associated
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Table 5.1: Performance of hourly PPP ambiguity resolution at inside-EPN stations. Ambiguity fixing
rates, ratio values, and RMS of the position and ZTD estimates in ambiguity-float and ambiguity-
fixed hourly solutions against daily estimates are shown for all stations during 7 days

Station Fixing
rates

Ratio

values

Ambiguity-float (cm) Ambiguity-fixed (cm)

East North Up ZTD East North Up ZTD

BRUS 98.4% 52.2 3.3 1.4 2.8 0.55 0.4 0.4 1.3 0.40

CAGL 96.2% 32.1 4.8 1.9 4.0 0.74 1.0 0.8 2.0 0.57

DUBR 98.2% 36.2 5.6 1.9 3.3 0.49 0.4 0.6 1.3 0.36

GOPE 97.1% 33.8 4.5 1.8 2.9 0.61 0.3 0.4 1.5 0.52

GRAS 98.9% 58.3 2.4 1.1 2.4 0.48 0.4 0.4 1.3 0.39

HERS 99.7% 61.4 4.1 1.3 2.4 0.49 0.3 0.4 1.2 0.35

LAMA 99.1% 40.1 3.8 1.5 2.6 0.56 0.7 0.6 1.4 0.46

MAR6 98.6% 32.9 3.3 1.6 2.3 0.49 0.7 0.7 1.5 0.42

POTS 99.0% 38.6 3.6 1.4 2.8 0.50 0.3 0.4 1.3 0.41

TRO1 98.4% 32.3 1.5 1.1 1.8 0.34 0.3 0.3 1.2 0.27

VILL 98.5% 33.5 4.1 1.5 3.4 0.70 0.4 0.5 1.5 0.49

ZIMM 98.8% 42.0 3.1 1.2 2.4 0.48 0.4 0.4 1.2 0.39

Mean 98.4% 41.1 3.8 1.5 2.8 0.54 0.5 0.5 1.4 0.42

with the relatively smaller correlation between the vertical component and the ambiguities

(Blewitt 1989). In addition, the ZTD RMS is reduced by 22.2% on average after ambiguity

resolution. From these statistics, it is demonstrated that ambiguity resolution at a single receiver

significantly improves hourly position accuracy.

In order to analyze the efficiency of ambiguity resolution, integer ambiguities derived from

daily data processing were used as the truth measure to identify the hourly solutions with

incorrect ambiguity resolution. Hourly solutions without any ambiguities resolved were also

identified. The percentages of these two types of solutions are 0.85% and 0.40%, respectively.

These solutions may be failed due to the qualities of measurements and satellite products (e.g.

severe multipath effect and satellite eclipse).

Table 5.2: Hourly solutions in which ambiguity resolution leads to degraded positioning accuracy.
“Successful” denotes the number of Successful solutions, “Degraded” denotes the number of
degraded solutions, “Mean” is the mean RMS increment and “Max” is the maximum RMS increment
(cm)

Station
ZTD estimated ZTD fixed

Successful Degraded Mean Max Successful Degraded Mean Max

BRUS 166 1 2.7 2.7 166 0 0.0 0.0

CAGL 158 2 2.2 2.9 160 1 2.5 2.5

DUBR 158 1 1.5 1.5 160 1 2.5 2.5

GOPE 166 2 1.1 1.1 165 0 0.0 0.0

GRAS 156 1 1.3 1.3 158 0 0.0 0.0

HERS 168 0 0.0 0.0 168 0 0.0 0.0

LAMA 164 3 1.4 1.9 165 0 0.0 0.0

MAR6 154 1 1.3 1.3 153 1 1.6 1.6

POTS 160 1 1.6 1.6 163 0 0.0 0.0

TRO1 168 4 1.4 1.6 168 0 0.0 0.0

VILL 167 4 1.3 1.7 168 0 0.0 0.0

ZIMM 166 2 1.5 1.8 167 0 0.0 0.0

Total 1951 22 – – 1961 3 – –
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In addition, there are a few solutions in which the position RMS statistics are enlarged,

rather than reduced, after correct ambiguity resolution. These solutions are hereafter called

degraded solutions. The 3D RMS increment may reach 3 cm at the inside-EPN stations. The

percentage of degraded solutions in all successful ones is 1.13%. To investigate this issue, hourly

PPP solutions with ZTDs fixed to precise estimates derived from daily PPP were also generated.

Table 5.2 shows the number of successful and degraded solutions, the mean and maximum RMS

increment when ZTDs are estimated or fixed for all inside-EPN stations. It can be found that all

RMS increments are at centimeter level which is significant compared with the hourly position

RMS shown in Table 5.1. Moreover, the percentage of degraded solutions in all successful ones

is dramatically reduced to 0.15% if ZTDs are not estimated, but fixed to a priori precise values.

This demonstrates that ZTD is a crucial factor affecting the occurrence of degraded solutions in

hourly PPP. This will be further investigated in Section 5.4.5.

5.3.3 Performance of outside-EPN stations

For each outside-EPN station, Table 5.3 shows the distances to the nearest EPN stations which

are denoted as “to-EPN” distances, ambiguity fixing rates, ratio values, and RMS of all hourly

position estimates against the truth benchmarks. In Table 5.3, the outside-EPN stations are

arranged according to their to-EPN distances, of which the average is approximately 2000 km.

Table 5.3 shows that the fixing rates at outside-EPN stations fall with the increase of their

to-EPN distances. When these distances are less than 2000 km, almost all fixing rates are over

95%. When these distances increase up to 3000 km, the fixing rates are reduced to below 95%

but still higher than 90%. However, when they are over 3000 km, the fixing rates fall to below

90%. This descent tendency is directly related to the reduced ambiguity fixing rates which are

due to the unavailability of some narrow-lane FCBs at the outside-EPN stations. However,

Table 5.3: Performance of hourly PPP ambiguity resolution at outside-EPN stations. Distances to
the nearest EPN stations, ambiguity fixing rates, ratio values, and RMS of the position estimates in
ambiguity-float and ambiguity-fixed solutions against the daily estimates are shown for all stations
during 7 days

Stations
Dist.

(km)
Fixing
rates

Ratio

values

Ambiguity-float (cm) Ambiguity-fixed (cm)

East North Up East North Up

POLV 660.7 97.9% 21.6 4.0 1.9 3.0 0.4 0.5 1.7

MDVJ 769.9 93.5% 26.1 3.1 1.2 2.2 0.4 0.7 1.6

ZECK 1034.4 95.0% 14.7 5.3 1.9 4.5 0.7 1.0 2.5

NYAL 1100.6 97.0% 37.2 1.0 0.9 1.6 0.3 0.4 1.5

REYK 1208.4 97.0% 13.5 4.0 2.0 3.2 0.5 0.6 2.2

MAS1 1222.3 96.6% 19.9 5.4 1.4 4.6 0.5 0.6 2.5

PDEL 1421.6 98.5% 22.6 3.8 1.5 3.6 0.6 0.5 1.9

ARTU 1724.5 95.8% 20.8 3.7 2.0 3.2 0.5 0.6 1.6

NRIL 2116.4 93.7% 24.8 1.7 1.6 2.2 0.5 0.5 1.7

QAQ1 2368.2 93.4% 26.1 2.3 1.2 2.1 0.4 0.5 1.7

KELY 2554.2 94.5% 20.8 1.9 1.2 2.3 0.7 0.6 1.7

BAHR 2708.5 91.6% 17.3 4.5 1.3 4.7 0.9 0.6 2.5

STJO 3264.0 85.7% 22.5 3.8 1.9 3.1 0.8 0.8 2.1

GUAO 4116.3 84.3% 13.6 4.5 1.4 3.4 0.8 0.7 1.8

RCMN 4201.5 72.1% 21.9 3.7 1.1 3.1 0.7 0.7 2.4

Mean 92.4% 21.6 3.7 1.5 3.2 0.6 0.6 2.0
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this tendency is not observed in the ratio values. It can be found that almost all ratio values

are smaller than 30, with an average of about 20, which is almost half of that for the inside-

EPN stations. This issue can be explained in terms of the degraded accuracies of EPN-based

narrow-lane FCBs when they are applied to outside-EPN stations.

Furthermore, the improvement of positioning accuracy also slightly suffers from the accuracy

degradation of narrow-lane FCBs. In Table 5.3, the mean position RMS for the East, North and

Up components are significantly reduced from 3.7, 1.5, 3.2 cm in the ambiguity-float solutions

to 0.6, 0.6, 2.0 cm in the ambiguity-fixed solutions, with a mean reduction of 57.9% for the 3D

position which is roughly 10% smaller than that of Table 5.1. In comparison to the inside-EPN

stations, the vertical RMS is affected more than the horizontal one by the accuracy degradation

of narrow-lane FCBs. However, Table 5.3 still suggests that the EPN-based narrow-lane FCBs

are sufficiently applicable to the outside-EPN stations even when their to-EPN distances are up

to 4000 km.

In addition, Table 5.3 shows that the position RMS statistics in the ambiguity-fixed solutions

stand at nearly the same level, despite their varying to-EPN distances. Considering the same

narrow-lane FCBs used at these stations, this implies that the narrow-lane FCB accuracy does

not rapidly deteriorate with the increased to-EPN distances. Therefore, it can be argued

that narrow-lane FCBs should be quite stable within a region stretching several thousands of

kilometers in both longitudinal and latitudinal directions.

Of particular interest is the question that over what regional extent narrow-lane FCBs

are still sufficiently stable. This issue is related to the efficient determination of narrow-lane

FCBs, and the positioning accuracy in ambiguity-fixed solutions. Clarifications may be made

by investigating the relationship between the positioning accuracy in ambiguity-fixed solutions

and the accuracy of narrow-lane FCB estimates.

5.3.4 Conclusions

The performance of hourly ambiguity-fixed PPP at the inside-EPN and outside-EPN stations

demonstrates that narrow-lane FCBs can be accurately determined within each full pass of a

satellite pair over a regional network. This study also demonstrates that ambiguity resolution at

a single receiver can reduce the RMS of differences between hourly and daily position estimates

to approximately 0.5 cm for the horizontal and about 1.5 cm for the vertical components even

if only hourly measurements are used.

From the comparison between the inside-EPN and the outside-EPN stations, the accuracy

of EPN-based narrow-lane FCBs is slightly degraded when they are applied to the outside-

EPN stations. However, they are still sufficiently applicable to ambiguity resolution at the

outside-EPN stations which are even up to 4000 km away, potentially showing a great advantage

over current network-based GPS augmentation systems. The horizontal position RMS at the

outside-EPN stations can still achieve the sub-centimeter level with significant improvement

over ambiguity-float solutions. More importantly, it is demonstrated that narrow-lane FCBs

are quite stable within a region stretching several thousands of kilometers in both longitudinal

and latitudinal directions. This finding confirms that ambiguity resolution can be applied to a

receiver which is outside an FCB-determination network, but within 4000 km.
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5.4 Impact of observation period on ambiguity resolution

A static PPP solution with good positioning quality is more possible when a longer observation

period is available. However, in practice, at most a few hours of observing work are likely to

be carried out in a field survey (Creager and Maggio 1998; Eckl et al. 2001; Soler et al. 2006).

In this case, the static positioning accuracy can hardly achieve millimeter level if PPP has to

be applied to this field survey. For example, Ghoddousi-Fard and Dare (2006), and Tétreault

et al. (2005) reported that hourly position estimates can achieve only sub-decimeter accuracy

and 4-hourly estimates can achieve centimeter-level accuracy. From Section 5.3, ambiguity

resolution can significantly improve the positioning accuracy of sub-daily PPP, but a reliable

ambiguity resolution can hardly be achieved if measurements are insufficient. Therefore, this

section assesses the performance of ambiguity-fixed static PPP with different short observation

periods, i.e. one, two, three and four hours. Note that the innovation of “one FCB estimate per

satellite-pair pass” over a regional network is also applied in this section.

5.4.1 Data, models and methods

The measurements at the inside-EPN stations from day 245 to 251 in 2007 were used (refer to

Section 5.2.1 and 5.3.1). Hence, 168 hourly, 84 2-hourly, 56 3-hourly and 42 4-hourly solutions

can be obtained for each station if there was no large data loss. Solutions with data of less

than half of the required duration or with less than five satellites during most of the observation

period were removed. Daily position estimates were again used as ground truths. RMS statistics

of the differences between short-period and daily PPP position estimates are used to quantify

the positioning quality of short-period static PPP. Moreover, models and methods for ambiguity

resolution were the same as those in Section 5.3.1.

5.4.2 Efficiency of ambiguity resolution

Table 5.4 shows the number of all solutions, solutions with successful ambiguity resolution,

solutions without any ambiguities fixed, solutions with incorrect ambiguity resolution and outlier

solutions in PPP for different short observation periods at all test stations. In this study,

successful ambiguity resolution implies not only correct integer resolution, but also a 3D position

RMS of better than 10 cm in the ambiguity-float or ambiguity-fixed solution, or in both;

incorrectly fixed ambiguities are identified using the integer ambiguities derived from daily PPP;

and outlier solutions denote those in which ambiguities are correctly fixed, but the 3D position

RMS statistics in both ambiguity-float and ambiguity-fixed solutions are larger than 10 cm. This

threshold of 10 cm is chosen in terms of the normal 3D position RMS derived in hourly PPP

(e.g. Ghoddousi-Fard and Dare 2006; Tétreault et al. 2005).

Table 5.4: Efficiency of short-period ambiguity resolution. Column 2–6 denote numbers
of all solutions, solutions with successful ambiguity resolution, solutions without any
ambiguities fixed, solutions with incorrect ambiguity resolution and outlier solutions

Observation period Total Successful Unfixed Incorrect Outlier

One hour 1992 1951 8 17 16

Two hours 1001 997 0 2 2

Three hours 667 667 0 0 0

Four hours 501 501 0 0 0
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In Table 5.4, when the observation period is increased from one hour to two, three and

four hours, the percentage of solutions with successful ambiguity resolution is increased from

97.9% to 99.6%, 100.0% and 100.0%, respectively. The number of failed solutions, shown in

the last three columns of Table 5.4, decreases to zero when the observation period is over three

hours. Hence, it can be concluded that longer observation periods lead to higher success rates of

ambiguity resolution in short-period static PPP, and a 100.0% success rate is achievable when

over three hours of measurements are used.

5.4.3 Reliability of ambiguity resolution

Figure 5.4 shows the mean values of test statistics for ambiguity validation in all ambiguity-

fixed solutions at all test stations when different short observation periods are used. Black bars

denote the
σ2
fixed

σ2
float

test statistic and gray bars denote the
Sopt2

Sopt1

test statistic (refer to Section

2.5.2). With the gradual increase of the observation period from one to two, three and four hours,
σ2
fixed

σ2
float

decreases from 1.19 to 1.15, 1.13 and 1.12, respectively. According to Equation 2.47, this

descent tendency of
σ2
fixed

σ2
float

suggests that the increase of the observation period contributes to

more reliable ambiguity resolution in short-period static PPP. On the other hand, Figure 5.4

shows that all the
Sopt2

Sopt1

test statistics are significantly larger than the chosen criterion of 3

for all observation periods. These results demonstrate that ambiguity resolution at the test

stations within a short observation period is rather reliable. Nevertheless,
Sopt2

Sopt1

increases first,

but then decreases when the observation period is over two hours. It appears that ambiguity

resolution with longer observation period is even less reliable than that with only two hours

of measurements, which is not reasonable in theory. Actually, this issue can be explained in

terms of the different degrees of freedom for the
Sopt2

Sopt1

test statistics because different periods

of measurements are used. Therefore, the statistical distributions of these
Sopt2

Sopt1

test statistics

are totally different from each other, leading to no comparability between them.

Figure 5.4: Reliability of short-period ambiguity resolution. Each bar denotes a mean value of test
statistics in all ambiguity-fixed solutions (refer to Section 2.5.2). Black bars refer to the left axis and
grey bars the right
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Table 5.5: Positioning accuracy of short-period static PPP. Mean RMS statistics of
differences between short-period and daily position estimates are shown for ambiguity-float
and ambiguity-fixed solutions

Observation period
Ambiguity-float (cm) Ambiguity-fixed (cm)

East North Up 3D East North Up 3D

One hour 3.8 1.5 2.8 5.0 0.5 0.5 1.4 1.6

Two hours 2.0 0.9 1.8 2.9 0.4 0.4 1.0 1.2

Three hours 1.3 0.6 1.3 1.9 0.3 0.4 0.9 1.0

Four hours 0.9 0.5 1.0 1.4 0.3 0.4 0.8 0.9

5.4.4 Positioning accuracy

Table 5.5 shows the mean position RMS of all short-period PPP solutions at all test stations.

Table 5.5 shows that, even in the 4-hourly PPP, the RMS of the East component is still signif-

icantly reduced by approximately 66.7% and the 3D reduction achieves 35.7% when ambiguity

resolution is applied. These results confirm that the positioning accuracy of short-period static

PPP, especially for the horizontal components, benefits significantly from ambiguity resolution.

In addition, it is clear in Table 5.5 that increasing the observation period significantly

improves the positioning accuracy of ambiguity-float solutions. When the observation period

increases from one hour to two, three and four hours, the 3D position RMS is markedly improved

from 5.0 to 2.9, 1.9 and 1.4 cm, respectively. However, this tendency is not so evident in

ambiguity-fixed solutions. Specifically, the RMS for each horizontal component remains around

4 mm for all short observation periods, and only the vertical component exhibits the tendency

of RMS reduction with the increased observation period. Therefore, it is demonstrated that,

for ambiguity-fixed solutions, the horizontal positioning accuracy can hardly be affected by the

length of observation periods when they are over one hour, while the vertical one can be improved

when the observation periods are increased from one to four hours.

5.4.5 Degraded solutions

As mentioned in Section 5.3.2, a correct ambiguity resolution does not always lead to an improved

positioning accuracy when compared with the ambiguity-float ones. Table 5.6 shows the number

of degraded solutions, their percentages in all solutions with successful ambiguity resolution, and

the mean and maximum RMS increment for different short observation periods. In the hourly

solutions, the percentage of degraded solutions is up to 1.1% and the maximum RMS increment

is up to about 3 cm. When the observation period is increased to three hours, however, the

percentage is decreased to 0.7% and the maximum RMS increment is reduced to 1.7 cm. As

expected, the least percentage of 0.2% corresponds to the observation period of four hours. It

Table 5.6: Degraded solutions in short-period static PPP. Column 2–5 denote
the number of degraded solutions, their percentages in all solutions with successful
ambiguity resolution, mean RMS increment and maximum RMS increment

Observation period Number Percentage Mean (cm) Max (cm)

One hour 22 1.1% 1.5 2.9

Two hours 11 1.1% 1.5 2.7

Three hours 5 0.7% 1.3 1.7

Four hours 1 0.2% 1.2 1.2
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Table 5.7: Occurrence rate and mean RMS increment for degraded solutions.
Percentages of degraded solutions with RMS increment for the East, North or Up
components and the corresponding mean increment for each component

Observation period
Percentage Mean increment (cm)

East North Up East North Up

One hour 45.5% 59.1% 100% 0.4 0.5 1.8

Two hours 45.5% 54.5% 100% 0.5 0.6 1.6

Three hours 40.0% 0 100% 0.7 0 1.9

Four hours 0 0 100% 0 0 1.8

has been demonstrated that degraded solutions are closely related to the estimation of ZTDs.

A long observation period can contribute to highly accurate estimates of ZTDs. Hence, the

occurrence of degraded solutions can be decreased by prolonging the observation period, rather

than fixing ZTDs to precisely known values as discussed in Section 5.3.2.

Moreover, Table 5.7 shows the percentages of solutions with RMS increment for the East,

North or Up components and the corresponding mean increment for each component. It can

be found that all degraded solutions suffer the RMS increment for the Up component. Note

that this component also exhibits the largest increment among all three components. Thus it is

demonstrated that the RMS increment mainly occurs for the Up component. The Up component

is strongly correlated with ZTD in estimation, thus explaining why degraded solutions are also

closely associated with ZTD.

5.4.6 Conclusions

It is demonstrated that fairly reliable ambiguity resolution can be achieved when the observation

period is over one hour. When the observation period is over three hours, the success rate of

ambiguity resolution can even reach 100.0%.

In the ambiguity-fixed solutions of short-period static PPP, over one hour of measurements

are sufficient for the horizontal position components to achieve an RMS of smaller than 1.0 cm

against the daily estimates while over three hours of measurements are still required for the

vertical component to achieve such an RMS level. Moreover, increasing the observation periods

hardly reduces the horizontal RMS, but clearly reduces the vertical RMS in ambiguity-fixed

solutions.

In addition, for degraded solutions, the RMS increment mainly occurs for the Up component.

Increasing the observation periods to three hours can reduce the occurrence of degraded solutions

to less than 1.0% of all solutions with successful ambiguity resolution.

5.5 Ambiguity resolution at a remote mobile receiver

Most offshore applications employ differential GPS positioning techniques, and thus relatively

short baselines are preferable. Vessels used for seafloor geodesy are typically less than 500 km

away from shores, and buoys supporting altimeter calibration are usually within 20 km of an

onshore reference station (Chadwell and Bock 2001). Such baseline lengths can only cover a

minimal margin of the vast oceanic areas, confining the oceanographic and geophysical research

to inshore areas. Therefore, kinematic GPS positioning, providing an accuracy of a few cen-

timeters for ultra long-range (e.g. >1000 km) marine platforms, is an indispensable prerequisite
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for future oceanographic and geophysical applications in open oceans (Fell and Maul 2000).

However, differential GPS positioning suffers from the so-called baseline length problem, i.e.

the positioning accuracy deteriorates with the increased baseline length. The total decorrelation

between the atmospheric delays at two ultra distant stations poses a great challenge for a reliable

ambiguity resolution (e.g. Colombo et al. 2001). In this case, ambiguity resolution is sometimes

ignored. Consequently, usually only decimeter-level kinematic positioning accuracy is achievable

over ultra long baselines (Teunissen and Kleusberg 1998). In addition, due largely to logistical

expenses, it is usually infeasible for ultra long-range differential positioning to employ multiple

reference stations around a to-be-positioned station, although this can lead to more reliable

and accurate positioning (Teunissen and Kleusberg 1998). Hence, in this section, differential

positioning corresponds to only one reference station, except when otherwise noted.

By contrast, it is normally recognized that PPP is free from the constraint of baseline

lengths, suggesting an efficient and cost-effective solution for highly precise kinematic positioning

of marine platforms. Nevertheless, the satellite clocks supporting PPP have to be determined

using a network of land-based reference stations, implying that PPP may also be subject to the

distance between the network and the user station. This issue is critical for marine platforms

located in central open oceans where the nearest reference station might be a few thousand

kilometers away. Note that, due largely to the dynamic smoothing in the orbit determination, a

homogeneous GPS orbit accuracy at centimeter level can be obtained within a continuous daily

arc (Griffiths and Ray 2009), showing that the possible orbit accuracy deterioration over the

vast oceanic areas is minimal and is thus ignored in this study.

Therefore, this section aims at assessing the accuracy of network-based satellite clock

and FCB estimates when they are applied to the positioning of a remote marine platform.

The kinematic PPP performance is compared with that of kinematic long-range differential

positioning, when ambiguity resolution is applied to both techniques. Note that the innovation

of “one FCB estimate per satellite-pair pass” over a regional network is again applied in this

section.

5.5.1 Data, models and methods

A vessel-borne 1-Hz GPS data set was collected in the Bohai Sea of China on November 27th

2004, covering over six hours from about 1:37:00 am to around 7:53:00 am (UTC), during which

the vessel sailed for more than 250 km at a mean velocity of approximately 10 m/s. Three 1-Hz

reference stations, i.e. REF1, REF2 and REF3, were established around this vessel. Figure 5.5

shows the vessel trajectory and the baseline lengths between the 1-Hz reference stations.

The truth benchmark for the vessel-borne antenna positions is obtained by differential

positioning with the three 1-Hz reference stations using Bernese GPS software 5.0 (Dach et al.

2007). An integrated adjustment of the three kinematic baselines was adopted and residual ZTDs

were estimated. The horizontal and vertical accuracies of ambiguity-fixed position estimates were

believed to be better than 5 cm and around 5 cm, respectively (see Grejner-Brzezinska et al.

2005). Moreover, 1-Hz data set were decimated every 5 s for efficiency.

Figure 5.6 shows the distribution of reference stations used for the satellite clock and FCB

determination. The blue dots, brown triangles and black inverted triangles denote three rings

of reference stations centered on the vessel with radii of roughly 900 km, 2000 km and 3600 km,

respectively. For brevity, they are hereafter called the small-, medium-, and large-ring networks,
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Figure 5.5: Vessel trajectory on the Bohai Sea of China (red line) and three 1-Hz reference stations
(black dots) used to compute a reference vessel trajectory (truth benchmark)

Figure 5.6: Three ring networks of reference stations used for the satellite clock and FCB
determination. The red star denotes the approximate position of the vessel. Blue dots, brown
triangles and black inverted triangles denote three rings of reference stations centered on the vessel
with radii of about 900 km, 2000 km and 3600 km, respectively. For kinematic differential positioning,
three stations with bold italic names, BJFS, TWTF and PIMO, are used as reference stations with
distances to the vessel of about 400 km, 1700 km and 2800 km, respectively
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which consist of 8, 17 and 14 stations, respectively. All reference stations are from the IGS

permanent network with daily GPS measurements of 30-second interval. It is worth indicating

that the three ring networks were used independently, and daily measurements were processed.

In addition, the station BJFS, TWTF and PIMO are used as the reference stations in differential

positioning, and their distances from the vessel are approximately 400 km, 1700 km and 2800 km,

respectively (Figure 5.6). More than seven satellites per epoch were available on average at these

three reference stations during the vessel-borne data collection.

Kinematic PPP and differential positioning use almost identical models. Satellite orbits,

ERPs, and the P1-C1 DCBs from CODE were used. The relative antenna phase centers and

the phase wind-up corrections were applied to keep consistency with the CODE products in

2004 (Gendt and Nischan 2005). A cut-off angle of 7◦ was set for usable measurements and an

elevation-dependent weighting strategy was applied to measurements at low elevations (Gendt

et al. 2003). For PPP, residual ZTDs were estimated every 60 minutes at the reference stations

and every 10 minutes at the vessel. For differential positioning, however, they are estimated

every 10 minutes at both the reference station and the vessel. In addition, due to the low

data sampling rate at the reference stations in Figure 5.6, the 1-Hz vessel-borne GPS data were

decimated into a 30-second interval.

For differential kinematic positioning, considering the decorrelation of atmospheric delays

between two distant stations, ionosphere-free measurements were thus used to eliminate the

first-order ionospheric delays, and the residual zenith tropospheric delays had to be estimated

at both stations. In addition, using precise satellite orbits was also mandatory for ultra long

baselines. Bernese GPS Software 5.0 was used for this study (Dach et al. 2007).

As recommended by (Dach et al. 2007), double-difference ambiguity resolution for ultra long

baselines consists of two steps. First, wide-lane ambiguities are fixed to integers using Melbourne-

Wübbena combination measurements. Second, narrow-lane ambiguities are computed using

integer wide-lane ambiguities and ionosphere-free-observable ambiguity estimates. Narrow-lane

ambiguity resolution is then attempted to generate ambiguity-fixed solutions. Thus this method

actually highly resembles that for ambiguity resolution at a single receiver, except for the

FCB determination. The sigma-dependent bias rounding strategy was adopted for ambiguity

resolution of wide-lane and narrow-lane ambiguities.

5.5.2 Satellite clock estimates

Due to the different coverage and sky views of the three ring networks, it is unfair to assess the

accuracy of all satellite clock estimates. Hence, only the estimates that are used at the vessel

are compared with the truth benchmark, i.e. the CODE final clocks, of which the accuracy in

2004 was better than 0.1 ns (Gendt and Nischan 2005).

Before the comparison, the constellation and satellite-dependent offsets between the ring-

network-based satellite clocks and the CODE final clocks were eliminated (Kouba and Héroux

2001). The constellation clock offset can be absorbed by receiver clocks, and the satellite-

dependent clock offsets can be assimilated into ambiguity estimates (Rocken et al. 2006), thus

hardly jeopardizing the PPP solution quality at the vessel. Constellation offsets are removed

at each epoch by differencing between a reference clock and all other clocks, and a satellite-

dependent offset is removed within each continuous observation session by deducting the mean

clock bias. After the removal of both offsets, the RMS of the clock differences is used to quantify
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Figure 5.7: Clock comparison for three ring networks. RMS values of the satellite clock differences
between the ring-network-based estimates and the CODE final products. Both the constellation and
the satellite-dependent offsets have been removed

the clock accuracy.

For each satellite, all RMS values of the clock differences are better than 0.1 ns, and the

three mean RMS values are only 0.041 ns, 0.029 ns and 0.035 ns respectively (Figure 5.7),

indicating that the accuracy of ring-network-based clocks is very close to that of the CODE final

clocks. Moreover, the differences between the three mean RMS values are within ±0.02 ns, and

we cannot see any pronounced RMS rise caused by the increasing ring-network radius. This

might be because the CODE final clocks are not accurate enough to assess the actual accuracy

of ring-network-based clock estimates. However, it can be demonstrated that the change of clock

accuracy due to the increased ring-network radius up to a few thousand kilometers is smaller

than 0.02 ns.

5.5.3 Narrow-lane FCB estimates

Narrow-lane FCB estimates that are used for the vessel are assessed in this section. Due to the

lack of any external reference solutions, the relative accuracy between the three sets of estimates

is assessed. Figure 5.8 shows the narrow-lane FCB estimates of all observed satellites with

respect to PRN03 for the three ring networks. PRN03 is chosen as reference because it was

constantly observed during the vessel-borne data collection. Each narrow-lane FCB estimate

corresponds to one full pass over a ring network by a satellite pair. The mean formal precision

(3σ) of all narrow-lane FCB estimates for each ring network is about 0.05 cycles. Note that

the missing estimates for some ring networks, e.g. PRN20 for the small ring, are caused by the

insufficient number of reference stations observing the corresponding satellite pair. From Figure

5.8, it can be found that, for a satellite pair within one pass, its three independent narrow-lane

FCB estimates usually totally differ from each other. Overall, the RMS values of the narrow-

lane FCB differences between the three sets of estimates reach up to 0.3 cycles. For this, one

explanation is that different networks are used to determine satellite clocks, thus different clock

offsets are introduced into ambiguity estimates, and thereby totally different narrow-lane FCB

estimates are obtained.
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Figure 5.8: Narrow-lane FCBs of all observed satellites with respect to PRN03 for three ring
networks. Each estimate corresponds to one full pass over a ring network by a satellite pair. Solid
black circles and red squares denote the estimates for the first and second pass respectively, whereas
error bars denote the formal precisions of 3σ

Figure 5.9: Distribution of narrow-lane FCB differences between the three ring networks. Note that
satellite clocks based on the large ring-network are used in all three ring-network solutions
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In this case, the large-ring-network-based satellite clocks are applied to both the small-

and medium- ring networks to determine their narrow-lane FCBs again. Figure 5.9 shows the

distribution of the new narrow-lane FCB differences between the three sets of estimates. For the

three comparisons between the small and the medium, the small and the large, and the medium

and the large ring networks, about 84.3%, 65.9% and 75.0% of all narrow-lane FCB differences

are within ±0.05 cycles, and about 96.1%, 86.4% and 91.7% are within ±0.1 cycles, respectively

(Figure 5.9). Correspondingly, the RMS values of the new narrow-lane FCB differences are

significantly reduced to 0.04 cycles, 0.06 cycles and 0.05 cycles with a mean of only 0.05 cycles,

thus confirming the above explanation. More importantly, from Figure 5.9, the narrow-lane FCB

differences between the small and the large rings are clearly larger than those from the other two

comparisons, and the differences between the medium and the large ring networks are clearly

larger than those between the small and the medium ones. Considering the different coverage of

the three ring networks, it is demonstrated that the narrow-lane FCB estimates that are used

at the vessel are clearly affected by the increased ring-network radius.

5.5.4 Comparison between kinematic PPP and differential positioning

Firstly, the positioning accuracies that are achieved by kinematic PPP and differential posi-

tioning are compared. Table 5.8 shows the RMS values of the position differences between the

truth benchmark and the estimates from kinematic PPP solutions. It can be clearly seen that

ambiguity resolution reduces the horizontal RMS values to 1-cm level. The East components

show larger reductions of 64.7%, 66.7% and 57.9%, whereas the North components of only

37.5%, 36.4% and 23.1% for the three ring networks respectively. By contrast, the vertical RMS

values are around 3 cm after ambiguity resolution. Vertical RMS reductions due to ambiguity

resolution are discernible for the medium- and large-ring networks, but not for the small one,

which needs more investigation. Considering the actual accuracy of the truth benchmark, it can

be inferred that the actual ambiguity-fixed horizontal accuracy for the vessel-borne antenna is at

the centimeter level and the vertical at the sub-decimeter level in kinematic PPP. Furthermore,

the RMS values are enlarged with the increasing ring-network radius. This issue is more

pronounced when ambiguities are not fixed, showing that increasing the ring-network radius

affects the positioning accuracy at the vessel.

For comparison, Table 5.9 shows the RMS values of the position differences between the

truth benchmark and the estimates in kinematic differential solutions. It can be seen that am-

biguity resolution does not reduce the RMS values for the TWTF- and PIMO-based differential

positioning. As expected, the RMS values are enlarged with the increasing baseline length, but

this enlarging rate is faster than that in Table 5.8 when ambiguities are fixed. Furthermore,

after ambiguity resolution, the RMS values for PPP are smaller than those for the differential

Table 5.8: Position accuracy of kinematic PPP for a vessel. RMS statistics of the position
differences between the truth benchmark and the estimates from ambiguity-float and ambiguity-
fixed kinematic PPP solutions

Reference

network

Ring radius

(km)

Ambiguity-float (cm) Ambiguity-fixed (cm)

East North Up East North Up

Small ring 900 1.7 0.8 1.8 0.6 0.5 2.6

Medium ring 2000 1.5 1.1 3.5 0.5 0.7 2.8

Large ring 3600 1.9 1.3 5.0 0.8 1.0 3.2
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Table 5.9: Position accuracy of kinematic differential positioning for a vessel. RMS statistics of
the position differences between the truth benchmark and the estimates from ambiguity-float and
ambiguity-fixed kinematic differential solutions

Reference

station

Baseline

length (km)

Ambiguity-float (cm) Ambiguity-fixed (cm)

East North Up East North Up

BJFS 400 0.7 0.9 2.0 0.5 0.5 1.9

TWTF 1700 0.8 1.5 2.9 0.9 1.7 3.4

PIMO 2800 1.4 2.2 3.5 1.8 2.3 3.7

positioning when the vessel is over a few thousand kilometers away from a reference station. For

instance, the RMS values for large-ring-network-based PPP are 55.6%, 56.5% and 13.5% smaller

in East, North and Up, respectively, than those for the PIMO-based differential positioning.

Considering the use of multiple reference stations and the relatively short baseline lengths for the

truth benchmark determination, the actual accuracy of this benchmark is believed to be better

than that derived from the BJFS-, TWTF- or PIMO-based differential positioning. Hence, it

is demonstrated that ambiguity-fixed PPP achieves better positioning accuracy than that of

differential positioning when the vessel is over a few thousand kilometers away.

In addition, for the vessel-borne data, 1-Hz position estimates are of more interest. In this

case, differential positioning requires 1-Hz data from reference stations. However, for all three

ring networks, we can interpolate the above satellite clock estimates at a 1-second interval, and

obtain ambiguity-fixed position estimates every 1 s. In this study, even if positions are estimated

every 5 s in PPP, the resulting RMS values are very close to those in Table 5.8, and the largest

difference is only 0.1 cm.

Secondly, the efficiencies of ambiguity resolution between kinematic PPP and differential

positioning are compared. Table 5.10 shows the number of fixed ambiguities and the number of

all ambiguities in PPP and differential positioning. Due to the different definitions for single-

difference and double-difference ambiguities, it is not reasonable to directly compare the number

of fixed ambiguities or the fixing rates between PPP and differential positioning. Hence, only

the change rates of the number of fixed ambiguities relative to the increasing network radius

or baseline length are compared. Irrespective of the ring-network radius, the number of fixed

ambiguities for PPP is almost the same, whereas the number for differential positioning is sharply

reduced from 13 to 7 with the increasing baseline length. Hence, it is demonstrated that, for ultra

long-range kinematic positioning up to a few thousand kilometers, the efficiency of ambiguity

resolution for PPP is higher than that for differential positioning.

Finally, it is worth indicating that the better performance of PPP than that of differential

positioning is attributed to using a ring reference network around the vessel, rather than a

single reference station. As a result, more observation information is used in PPP than that

Table 5.10: Efficiency of ambiguity resolution for kinematic PPP and differential positioning.
Number of fixed ambiguities (before slash) and number of all ambiguities (behind slash) in
kinematic PPP and differential positioning

Reference network PPP Reference station Differential positioning

Small ring 14/16 BJFS 13/19

Medium ring 16/16 TWTF 13/21

Large ring 16/16 PIMO 7/16
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in differential positioning. For instance, more than eight carrier phase observations per epoch

are available on average at the vessel for all ring networks, whereas only seven are available for

BJFS- and TWTF-based differential positioning, and fewer than six for PIMO.

5.5.5 Conclusions

For the satellite clocks that are used at the vessel, their accuracy change due to the increased

ring-network radius to a few thousand kilometers is smaller than 0.02 ns. Moreover, a high

relative accuracy between the three sets of narrow-lane FCB estimates can be achieved if the

biases between their corresponding satellite clocks are removed, suggesting that narrow-lane

FCBs are closely related to the satellite clocks. More importantly, the narrow-lane FCBs that

are used at the vessel are clearly affected by the increasing ring-network radius, but the RMS

values of the differences between the three sets of estimates are around 0.05 cycles only.

Ambiguity-fixed PPP can achieve a kinematic positioning accuracy of several centimeters

at a remote marine platform. From the comparison between kinematic PPP and differential

positioning, it is demonstrated that PPP can achieve both better accuracy of position estimates

and higher efficiency of ambiguity resolution when a to-be-positioned marine platform is over a

few thousand kilometers away from the reference stations. Moreover, the positioning accuracy

of PPP at the vessel is affected by the increasing ring-network radius, but the change rate of

accuracy is smaller for PPP than that for differential positioning.

Therefore, for the precise positioning of remote marine platforms, ambiguity-fixed PPP can

achieve an accuracy of several centimeters, even if the distance between the reference network

and the platform is up to a few thousand kilometers.

5.6 Real-time ambiguity resolution in PPP

Based on the results in sections 5.4 and 5.5 about post-processing ambiguity-fixed PPP, it

can be reasonably expected that real-time PPP can also be improved by applying ambiguity

resolution. This can potentially lead to an innovative PPP-RTK model where PPP provides

rapid convergence of a few seconds to a reliable centimeter-level positioning accuracy based on

an RTK reference network (e.g. Bisnath and Gao 2007; Wübbena et al. 2005). In order to

verify this concept, Laurichesse et al. (2008a) and Mervart et al. (2008) reported that ambiguity

resolution could improve the positioning accuracy of real-time PPP, but the convergence period

to an ambiguity-fixed solution was usually over several tens of minutes at a mobile receiver.

One reason for this long period is that smoothing noisy pseudorange measurements for reliable

wide-lane ambiguity resolution usually requires a few tens of minutes; and the other is that the

slowly changing geometry of visible satellites leads to an even longer period before narrow-lane

ambiguity resolution can be attempted (Laurichesse et al. 2008a).

Hence, before implementing the PPP-RTK model above, at least three technical issues

should be carefully investigated:

• Can wide-lane ambiguity resolution be performed not only reliably, but also rapidly? This

issue is critical to both narrow-lane FCB determination at the server end and narrow-lane

ambiguity resolution at users;

• Can narrow-lane FCB estimates rapidly stabilize to accurate values? To my knowledge,

this issue has not been discussed in depth in recent publications, but it critically relates to
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how to rapidly provide usable narrow-lane FCB products for users;

• How does ambiguity resolution affect the positioning quality of real-time PPP? This issue

has been preliminarily reported before, but more investigations over a relatively large

spatio-temporal scale are necessary.

Note that other technical issues, such as the stochastic modeling (e.g. Jin et al. 2005) and the

quality control (e.g. Han 1997b), are also important, but are hereafter ignored because they are

beyond the scope of this thesis.

This section therefore discusses the technical factors that affect the rapidity of both wide-

lane ambiguity resolution and stabilization of narrow-lane FCB estimates, and then investigates

the performance of narrow-lane ambiguity resolution in real-time PPP. Note that the innovation

of real-time ambiguity resolution at a single receiver in Section 2.4.3 is applied in this study.

5.6.1 Data and models

For this study, 24-hour 1-Hz GPS measurements at 91 stations from the EUREF–Internet

Protocol project (EUREF-IP) (Bruyninx 2004) and the Ordnance Survey of Great Britain

(OSGB) real-time network (Figure 5.10) were used. These data covered seven days from July

6th to 12th 2008. Note that EUREF-IP data bore the gaps caused by communication or power

interruptions. (http://www.epncb.oma.be/). At these stations, five receiver types including 9

Ashtech, 27 Javad, 21 Leica, 7 Topcon and 26 Trimble receivers were studied. Type 1, 2, 3, 4

and 5 are hereafter used to represent them, but their order is changed. Type-5 receivers contain

six cross-correlation receivers and six receivers without choke-ring antennas.

For data modeling, the predicted parts of IGS ultra-rapid satellite orbits and ERPs were

used from their release epochs until newer products were available. The P1-C1 DCBs, the

absolute antenna phase centers, the phase wind-up corrections and the station displacement

from the IERS conventions 2003 (McCarthy and Petit 2004) were applied. A cut-off angle of 7◦

for usable measurements and an elevation-dependent weighting strategy to measurements at low

Figure 5.10: Distribution of 1-Hz stations for real-time PPP. Red squares denote stations for satellite
clock determination; black annotated triangles denote simulated mobile stations; and all symbols
denote stations for FCB determination

http://www.epncb.oma.be/
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elevations were used (Gendt et al. 2003). Horizontal tropospheric gradients were estimated every

12 hours at the reference stations, whereas residual ZTDs every 3 hours. Satellite clocks were

estimated by fixing predicted orbits and station positions, whereas narrow-lane FCBs by fixing

satellite orbits and clocks. No communication delays of satellite clocks was simulated. About

30 stations were used to determine the satellite clocks, but all stations were used to determine

FCBs, and finally six stations were used to simulate mobile users (Figure 5.10).

5.6.2 Rapidity of wide-lane ambiguity resolution

The rapidity of wide-lane ambiguity resolution is affected mainly by pseudorange measurement

noise, multipath effects and atmospheric conditions. Empirically, the measurement noise is

receiver-dependent, and the multipath effects and the atmospheric delays are very significant for

satellites at low elevations. Hence, ambiguities were divided in terms of receiver types and an

elevation angle of 15◦ to illustrate the impacts of these factors on wide-lane ambiguity resolution.

Note that 15◦ was chosen because cut-off angles are normally set below it to remove low-elevation

measurements which can degrade ambiguity estimates. In addition, six points are needed to be

clarified:

• For a satellite, its elevation angles are averaged over its observation periods to obtain

time-mean values, each of which actually corresponds to an undifferenced ambiguity;

• For a being-observed satellite pair, its later-observed satellite, rather than the earlier-

observed one, decides the starting time of forming a single-difference ambiguity between

this satellite pair;

• A round-off criterion of 0.25 cycles is applied to the bias-rounding strategy by Ge et al.

(2005a);

• If a wide-lane ambiguity can be reliably fixed to an integer at a particular epoch, this

actually mean that it can be fixed to the same integer at all subsequent epochs;

• The reliability of wide-lane ambiguity resolution is quantified by the ratio of reliably-fixed

ambiguities to all ambiguities;

• Integer values of fixed wide-lane ambiguities in post-processing mode were used as the

truth benchmarks.

A Ambiguities corresponding to high elevations

In this study, ambiguities corresponding to high elevations are those derived from only the

measurements over an elevation angle of 15◦. For each receiver type, Table 5.11 shows the mean

time spent on wide-lane ambiguity resolution and the distribution of all times. Each receiver

type spends a mean time of between 100 s and 360 s. On average, about 89.3% of all times are

shorter than 600 s, and about 95.7% shorter than 1200 s. However, only 34.3% of all times are

shorter than 20 s for all receiver types excluding Type 3. These statistics suggest that 600 s

of measurements are required for most receiver types to reliably fix about 90% of wide-lane

ambiguities that correspond to elevations of over 15◦.

Interestingly, Type-3 receivers show the shortest mean time of only 105 s that is almost over

two times shorter than those of other receiver types; and even 86.4% of all times are shorter than

20 s. This superiority might be related to the pseudorange smoothing strategies or the high-

quality clocks applied within the Type-3 receivers. Hence, rapid wide-lane ambiguity resolution

within only several seconds can be potentially feasible for the Type-3 receivers.
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Table 5.11: Rapidity of wide-lane ambiguity resolution corresponding to high
elevations. The number of wide-lane ambiguities, the mean time spent on the
wide-lane ambiguity resolution, and the distribution of all times

Receiver
types

Number of

ambiguitiesa
Mean time (s)

Distribution of all times

<20 s <600 s <1200 s

1 28848 224 33.4 89.9% 96.4%

2 66359 360 28.4 82.1% 92.2%

3 49003 105 86.4 94.5% 97.5%

4 18489 262 27.5 88.1% 95.6%

5 106440 182 47.8 92.0% 96.8%

5b 81816 156 53.5 93.8% 97.3%

5c 67049 124 55.0 95.3% 98.3%
a all of which are computed using the measurements over an elevation angle of 15◦
b excluding receivers of cross-correlation type from Type-5 receivers
c excluding receivers of cross-correlation type, and receivers without choke-ring antennas
from Type-5 receivers

In addition, the impact of cross-correlation receivers and choke-ring antennas is investigated.

In general, cross-correlation receivers suffer from relatively poor pseudorange quality and choke-

ring antennas are useful in rejecting multipath-contaminated measurements. In Table 5.11, the

mean time is significantly reduced from 182 to 156 s by the exclusion of cross-correlation receivers

(Type 5b), and to 124 s by further exclusion of receivers without choke-ring antennas (Type 5c).

Moreover, due to these exclusions, the percentages of times that are shorter than 20, 600 and

1200 s are steadily increased. Hence, these statistics demonstrate that cross-correlation receivers

and the disuse of choke-ring antennas will prolong the time spent on the wide-lane ambiguity

resolution.

B Ambiguities corresponding to low elevations

Due to a small number of measurements below an elevation angle of 15◦, it is not appropriate to

use only these measurements to compute ambiguities corresponding to low elevations. Instead,

they are represented by the wide-lane ambiguities of which the later-observed satellites rise from

below an elevation angle of 15◦. For each receiver type, Table 5.12 shows the mean time spent on

wide-lane ambiguity resolution, the distribution of all times and the distribution of time-mean

elevation angles for the later-observed satellites.

In Table 5.12, except Type-3 receivers, each receiver type spends a mean time of between

400 and 700 s. On average, only 73.0% of all times are shorter than 600 s, and 87.6% shorter

than 1200 s. Compared with the statistics in Table 1, these worse results can be attributed to the

more severe multipath effects and the more turbulent atmospheric conditions at low elevations.

Overall, over 1200 s of measurements are needed before fixing about 90% of wide-lane ambiguities

of which the later-observed satellites rise from below an elevation angle of 15◦.

Alternatively, it is proposed to use the time-mean elevation angles of the later-observed

satellites to decide when a wide-lane ambiguity can be reliably fixed. In Table 5.12, when wide-

lane ambiguities are fixed, over 90% of time-mean elevation angles are smaller than 15◦, and

almost 100% smaller than 20◦ for each receiver type. In practice, ambiguities corresponding to

high elevations are preferred for integer resolutions, and the remnant ambiguities are usually

left as float in order to avoid risky fixing until their corresponding satellites rise above a specific

elevation angle, such as 15◦. Hence, the time-mean elevation angle is believed to be a more
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Table 5.12: Rapidity of wide-lane ambiguity resolution corresponding to low elevations. The
number of wide-lane ambiguities, the mean time spent on wide-lane ambiguity resolution, the
distribution of all times, and the distribution of time-mean elevation angles for the later-observed
satellites when wide-lane ambiguities are fixed

Receiver
types

Number of

ambiguitiesa
Mean

time (s)

Distribution of
all times

Distribution of time-
mean elevation angles

<600 s <1200 s 615◦ 620◦

1 17314 518 72.3% 88.9% 92.3% 99.1%

2 74252 690 61.8% 81.9% 94.2% 98.9%

3 47694 236 87.7% 94.4% 97.1% 99.4%

4 14316 487 74.5% 87.7% 94.0% 99.4%

5 44283 573 68.5% 85.3% 93.2% 98.7%

5b 39115 551 70.7% 85.9% 94.6% 98.7%

5c 25664 495 71.0% 88.0% 95.4% 99.2%
a of which the later-observed satellites rise from below an elevation angle of 15◦

b,c see footnotes of Table 5.11

realistic threshold than the time span in fixing ambiguities corresponding to low elevations.

In addition, from Table 5.12, the exclusion of cross-correlation receivers (Type 5b) reduces

the mean time by 22 s, whereas the further exclusion of receivers without choke-ring antennas

(Type 5c) by 56 s, suggesting the significant contribution of choke-ring antennas to mitigating

multipath effects.

C High rapidity or high reliability?

Disappointingly, the results above demonstrate that the high rapidity of a few seconds for wide-

lane ambiguity resolution cannot be normally achieved in the PPP-RTK model in Section 2.4.3

if high reliability of over 90% is required. In this case, the high reliability is preferred to the

risky high-rapidity. Then the thresholds for both the time span and the time-mean elevation

angle should be carefully selected to decide when a wide-lane ambiguity can be reliably fixed.

In Table 5.13, for a threshold combination of 600 s and 15◦, 99.86% of all wide-lane ambiguities

can be reliably fixed. Both longer time and larger elevation angle can improve this rate, but

very slightly by not more than 0.05%. Hence, 600 s and 15◦ are finally chosen as thresholds

throughout this thesis.

Furthermore, considering the practicability of a PPP-RTK service, three points need to be

highlighted:

• A time requirement of 600 s before a reliable wide-lane ambiguity resolution can be accepted

at the server end, but is unacceptable at the user end if instantaneous precise positions are

always required. For this problem, the results here suggest that improving the pseudorange

quality might be a solution, as demonstrated by Type-3 receivers;

• A time-mean elevation angle requirement of 15◦ before a reliable wide-lane ambiguity

Table 5.13: Rate of reliably fixed ambiguities in all wide-
lane ambiguities under different thresholds

Time-mean elevation angle
Time span

600 s 1200 s

15◦ 99.86% 99.90%

20◦ 99.88% 99.91%
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resolution can be accepted at both the sever and the user ends. Ambiguities corresponding

to low elevations are seldom selected for narrow-lane ambiguity resolution in practice,

due to their high possibility of incorrect fixing. Hence, wide-lane resolutions for these

ambiguities are actually not urgent in real time;

• Pseudorange multipath effects can be much more complicated at a moving antenna, and

thus the above thresholds should be carefully regarded in a kinematic environment.

5.6.3 Temporal stabilization of narrow-lane FCBs

Narrow-lane FCBs can be estimated once wide-lane ambiguity resolution is achieved at the

reference stations. Section 5.2.3 reported that a narrow-lane FCB can be precisely determined

for each full pass of a satellite pair over a regional network. In a real-time scenario, only up-to-

present measurements, rather than all measurements during a full pass, can be used to estimate

narrow-lane FCBs. As a result, narrow-lane FCB estimates may need some time to stabilize to

accurate values. In this study, if the peak-to-peak amplitude during this stabilization decreases

to smaller than 0.1 cycles, the narrow-lane FCB estimates are considered sufficiently stable. Note

that this threshold coincides with the accuracy requirement for narrow-lane FCB estimates by

Ge et al. (2008).

A Fluctuant fractional parts

Typically, Figure 5.11 shows the fractional parts of a narrow-lane ambiguity estimate and the

two corresponding satellites’ time-mean elevation angles every 100 s. It can be seen that the

fractional parts gradually stabilize to relatively stable values after a fluctuation during the initial

phase. This initial phase lasts for a few tens of minutes, during which the peak-to-peak amplitude

of the fractional parts is up to 0.2 cycles. Considering the elevation angles in Figure 5.11, I argue

that this fluctuation is related to the small elevation angles of the lower satellite during the initial

phase.

In order to illustrate this argument, for all satellite pairs at all stations, Figure 5.12

shows the fractional-part peak-to-peak amplitudes against the time-mean elevation angles of

the lower satellites. Note that such an elevation angle is computed at only the epoch when the

corresponding satellite pair has been observed for 10 or 30 minutes and wide-lane ambiguity

resolution has been achieved; moreover, the fractional-part estimates after only this epoch are

used to compute the peak-to-peak amplitude and the narrow-lane FCB estimates. The blanks

below 15◦ in Figure 5.12 are caused by the threshold of the time-mean elevation angle. In

both Figure 5.12(a) and 5.12(b), about 70% of all peak-to-peak amplitudes are smaller than

0.1 cycles, and over 90% smaller than 0.25 cycles. Moreover, peak-to-peak amplitudes of

larger than 0.5 cycles gather primarily below a time-mean elevation angle of 30◦. Larger time-

mean elevation angles lead to fewer peak-to-peak amplitudes that are larger than 0.1 cycles.

Furthermore, prolonging the time span from 10 to 30 minutes significantly reduces the percentage

of the peak-to-peak amplitudes of larger than 0.5 cycles from 0.8% to 0.4%. Therefore, it is

demonstrated that large fractional-part fluctuations are closely related to small elevation angles,

and usually occur during the initial observing phase of a satellite pair; in addition, the peak-to-

peak amplitude is reduced when a satellite pair begins to be observed at a high elevation. These

findings are likely related to carrier-phase multipath effects, imprecise satellite clock estimates,

and residual tropospheric delays at low elevations.
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Figure 5.11: Fractional parts of a narrow-lane ambiguity between PRN30 and PRN31 at station
HOL2 with the two satellites’ time-mean elevation angles

Figure 5.12: The peak-to-peak amplitudes of narrow-lane fractional parts against time-mean
elevation angles. Note that all satellite pairs have been observed for 10 (a) and 30 minutes (b)

Figure 5.13: Variation of narrow-lane fractional parts and resulting FCBs over a regional network.
The narrow-lane fractional parts for a satellite pair PRN02 and PRN04, the number of involved
stations, and the narrow-lane FCB estimates and their formal errors of 3σ. Note that the FCB
estimates are offset by 0.4 cycles, and the fractional parts refer to the left axis
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B Fluctuant narrow-lane FCB estimates

Large fractional-part fluctuations can degrade the performance of averaging fractional parts. For

a being-observed satellite pair, different stations generate different fractional-part fluctuations,

and thus we may have to average very different fractional parts to estimate a narrow-lane FCB.

As a result, both the estimate’s precision and accuracy can be degraded, compared with those

when fractional parts have sufficiently stabilized. Hence, we need to use a robust averaging

technique (e.g. Xu 2005), and involve as many stations as possible for this averaging. In this

study, at least 10 stations are required.

For instance, Figure 5.13 shows the fractional parts for a satellite pair, the number of

involved stations, and the narrow-lane FCB estimates and their formal errors of 3σ every 40 s.

During the initial phase, due to a satellite’s rise from a low elevation with respect to my regional

network, only a few stations observed this satellite pair. Consequently, large fractional-part

fluctuations occur at many stations, leading to fluctuant narrow-lane FCB estimates of which

the peak-to-peak amplitude is over 0.1 cycles. During the intermediate phase when several tens

of stations observe this satellite pair and most fractional parts have sufficiently stabilized, highly

precise and very stable narrow-lane FCB estimates can be obtained of which the peak-to-peak

amplitude drops to smaller than 0.05 cycles. During the final phase, however, due to a satellite’s

gradual fall to a low elevation, the number of stations observing this satellite pair decreases, and

thus the narrow-lane FCB estimates show slightly worse precisions and a slight fluctuation, but

still within 0.05 cycles. Of particular note, large fluctuations of narrow-lane FCB estimates are

mainly caused by satellites’ rise from a low elevation with respect to my regional network. Hence,

it is believed that a globally well-distributed network can reduce the fluctuation magnitudes.

Furthermore, if narrow-lane FCBs begin to be estimated when satellite pairs have been

observed for at least 10 minutes, 69.0% of all estimates’ peak-to-peak amplitudes are larger than

0.1 cycles. If the first 20-minute or 50-minute estimates are removed, this percentage will drop

to 38.2% or 15.1%, respectively. Hence, for the regional network in Figure 5.10, over several tens

of minutes are normally required before a narrow-lane FCB estimate stabilizes to an accuracy of

far better than 0.1 cycles. Note that such high accuracy is required because narrow-lane FCBs

are crucial to the ambiguity-fixed positioning accuracy. However, for ambiguity resolution only,

this accuracy requirement can be relaxed to 0.25 cycles, for example. Actually, 87.9% of all

peak-to-peak amplitudes are smaller than 0.25 cycles if narrow-lane FCBs begin to be estimated

when satellite pairs have been observed for 10 minutes. In this case, narrow-lane FCB products

can be generated and disseminated once wide-lane ambiguity resolution has been achieved. On

the other hand, potential positioning biases caused by inaccurate narrow-lane FCB estimates

can be mitigated in subsequent epochs by updating these estimates in ambiguity-fixed solutions.

In this study, an update rate of 5 s is chosen due to the relatively rapid variation of narrow-lane

FCB estimates during the initial phases.

5.6.4 Performance of narrow-lane ambiguity resolution

Once narrow-lane FCB estimates are obtained and wide-lane ambiguity resolution is achieved,

narrow-lane ambiguity resolution can be attempted to achieve ambiguity-fixed solutions in real-

time PPP. Considering the time spent on the narrow-lane FCB determination, the first 30

minutes of measurements are ignored at all six test stations, and the remaining data are divided

into hourly files. Hence, there are about 161 hourly solutions at each test station during seven
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Table 5.14: Position quality of real-time ambiguity-fixed PPP. The mean time spent on
achieving ambiguity-fixed solutions, and the RMS of epoch-wise position estimates against
the daily estimates for the ambiguity-float and ambiguity-fixed solutions

Station Mean time (s)
Ambiguity-float (cm) Ambiguity-fixed (cm)

East North Up East North Up

BORR 1109 14.7 6.3 12.0 0.8 1.1 2.9

BRUS 940 12.7 7.1 11.7 0.6 0.7 1.9

BSCN 1002 17.3 7.8 12.9 0.8 0.9 2.6

MAR6 1140 10.7 8.2 9.9 0.8 0.9 2.4

SOFI 1197 16.7 6.7 11.4 0.9 0.9 2.8

WSRT 932 10.3 6.5 10.7 0.6 0.8 2.5

days. Daily position estimates are used as the ground truth to assess the accuracy of epoch-wise

estimates.

Table 5.14 shows the overall statistics about the solution performance after narrow-lane

ambiguity resolution at each test station. All mean times that are spent on achieving ambiguity-

fixed solutions are more than 900 s, even up to 1200 s, thus confirming the results reported by

Laurichesse et al. (2008a) and Mervart et al. (2008). Compared with the required 600-second

period spent on wide-lane ambiguity resolution, narrow-lane ambiguity resolution significantly

prolongs this period before ambiguity-fixed solutions can be achieved.

However, epoch-wise positioning accuracy is significantly improved after narrow-lane am-

biguity resolution. In Table 5.14, the RMS statistics against the ground truth for the East,

North and Up components are reduced on average by 94.5%, 87.6% and 78.0% from 13.7, 7.1

and 11.4 cm to 0.8, 0.9 and 2.5 cm, respectively. Moreover, Figure 5.14 shows the 1-hour

differences of epoch-wise position estimates against the ground truth for the East, North and Up

components in both ambiguity-float and ambiguity-fixed solutions at station BSCN. We can see

that ambiguity-float positions do not converge to centimeter-level accuracy within one hour, but

Figure 5.14: Position accuracy of real-time ambiguity-fixed PPP at station BSCN. Differences of
epoch-wise position estimates against the daily estimates for the East, North and Up components
in both ambiguity-float and ambiguity-fixed solutions. Note that estimates outside ±20 cm are not
shown, and the three vertical lines denote the time when ambiguities are fixed
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the ambiguity-fixed ones achieve this after about 600 s. Hence, according to the statistics above,

it is demonstrated that ambiguity resolution can speed up the convergence to centimeter-level

accuracy of epoch-wise position estimates within a few tens of minutes.

5.6.5 Conclusions

First, it is concluded that at least 10 minutes of observations are required for most receiver types

to reliably fix about 90% of wide-lane ambiguities corresponding to elevations of over 15◦, and

over 20 minutes to fix about 90% of those corresponding to elevations of below 15◦. Moreover,

receivers of cross-correlation types or without choke-ring antennas require longer periods than

those of others. Two thresholds, namely 10 minutes for the time span and 15◦ for the time-mean

elevation angle, are proposed to decide when a wide-lane ambiguity can be reliably fixed.

Second, it is concluded that several tens of minutes are usually required for a regional

network before a narrow-lane FCB estimate stabilizes to an accuracy of far better than 0.1 cycles.

Large fluctuations of narrow-lane FCB estimates are mainly caused by satellites’ rise from a low

elevation with respect to a regional network. However, we can still generate and disseminate

narrow-lane FCB products once wide-lane ambiguity resolution is achieved. These products

are usable for ambiguity resolution, but we have to update them, every 5 s for example, in

ambiguity-fixed solutions in order to achieve highly accurate position estimates.

Finally, ambiguity-fixed solutions with centimeter-level positioning accuracy can be achieved

within a few tens of minutes. For hourly measurements, ambiguity resolution significantly

reduces the RMS statistics of differences between the epoch-wise and daily position estimates

from 13.7, 7.1 and 11.4 cm to 0.8, 0.9 and 2.5 cm on average for the East, North and Up

components, respectively.

For the PPP-RTK model in Section 2.4.3, 10 minutes for wide-lane resolution of high-

elevation ambiguities, 10 minutes for narrow-lane FCB generation and 5-second update rate are

all acceptable at the server end. However, 10 minutes for wide-lane ambiguity resolution and

even longer period for narrow-lane ambiguity resolution constitute the technical bottleneck which

prohibits many real-time users who require instantaneous precise positioning from applying this

PPP-RTK model. However, this model is still useful in some remote sensing applications where

the timeliness requirement on the first ambiguity-fixed solution is not as critical as that in the

instantaneous positioning, such as the near-real-time GPS meteorology. For future technical

development, rapid ambiguity resolution at a single receiver will be the key problem to be

resolved before we can implement an instantaneous PPP-RTK model where ambiguity-fixed

solutions can be achieved using a few seconds or even one second of measurements.

5.7 Impact of integer double-difference constraints

As suggested in Section 2.4.4, hard constraints from integer double-difference ambiguities in a

network solution can improve the accuracy of narrow-lane FCB estimates, which is beneficial

for the positioning accuracy of ambiguity-fixed PPP. This section thus aims at quantifying the

impacts of such constraints.
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5.7.1 Data, models and methods

One year of daily GPS data at about 350 globally-distributed reference stations from the IGS

permanent network in 2008 were used (Dow et al. 2009). Data files covering less than 6 hours of

measurements were removed. Moreover, CODE final satellite orbits, 30-s satellite clocks, ERPs

and P1-C1 DCBs were used (Dach et al. 2009). Note that using CODE satellite products, rather

than IGS ones, is to avoid the possible inhomogeneities of the IGS final products which can

degrade the positioning quality of PPP (Teferle et al. 2007).

For data modeling, the absolute phase centers (Schmid et al. 2007), phase-wind up ef-

fects (Wu et al. 1993) and station displacement models proposed by IERS conventions 2003

(McCarthy and Petit 2004) were applied. A cut-off angle of 7◦ was set for usable measurements

and an elevation-dependent weighting strategy was applied to measurements at low elevations

(Gendt et al. 2003). Moreover, ZTDs were estimated every one hour by applying the global

pressure/temperature model and the global mapping function (Kouba 2009b), while horizontal

tropospheric gradients every 12 hours (Bar-Sever et al. 1998).

CODE satellite products and ERPs were fixed during the data processing and about 180

globally-distributed stations were selected to estimate FCBs. According to Ge et al. (2008),

narrow-lane FCBs were computed every 15 minutes. Then these FCBs were applied to all 350

stations in order to achieve ambiguity-fixed daily solutions. In this section, the narrow-lane

FCBs that are derived by applying the double-difference ambiguity resolution are named as

improved narrow-lane FCBs, and those otherwise as original narrow-lane FCBs.

5.7.2 Results

The original and improved narrow-lane FCB estimates are first compared. Daily RMS statistics

of narrow-lane FCB differences for all satellite pairs at all 15-minute time spans are computed.

All daily RMS statistics range from 0.021 to 0.089 cycles and the mean RMS of one year is about

0.035 cycles. These small differences are due to the highly-accurate daily ambiguity estimates

even if double-difference ambiguity resolution is not applied.

Moreover, the daily position estimates based on the original and improved narrow-lane

FCBs are also compared. Figure 5.15 shows the magnitude distribution of all these position

Figure 5.15: Magnitude distribution of all differences between the position estimates based on the
original and improved narrow-lane FCBs for the East, North and Up components. The top-left corner
of each subfigure shows the bias and the standard deviation (σ), whereas the top-right corner shows
the percentages of deviations that are within 2σ, or larger than 3σ (σE=1.2 mm, σN=0.4 mm and
σU=1.5 mm). Note that the three subfigures have different horizontal scales
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Table 5.15: Mean RMS of transformed residuals of the daily position estimates against
the IGS weekly solutions in 2008

Solution types East North Up

Ambiguity-float 3.6 2.3 6.4

Ambiguity-fixed by original narrow-lane FCBs 2.6 2.2 6.1

Ambiguity-fixed by improved narrow-lane FCBs 2.2 2.2 6.1

differences for the East, North and Up components. We can see that the absolute biases of these

position differences are not larger than 0.1 mm for all three components. Correspondingly, the

standard deviations are 1.2, 0.4 and 1.5 mm for the East, North and Up components, respectively.

Furthermore, 94.1%, 94.7% and 95.2% of all position differences are within two times the

standard deviations for the three components, and minimally 1.0%, 0.8% and 1.1% of all are

larger than three times the standard deviations. These statistics illustrate the small difference

between the daily ambiguity-fixed position estimates based on the original and improved narrow-

lane FCBs.

Nevertheless, the improvement of the positioning quality based on the improved narrow-

lane FCBs can be identified when these daily position estimates are compared with the IGS

weekly solutions. Seven-parameter Helmert transformations are applied during these daily

comparisons. Table 5.15 shows the mean RMS statistics of the transformed residuals of the

daily position estimates against the IGS weekly solutions in 2008. We can see that ambiguity

resolution significantly reduces the RMS statistics, especially for the East component by 27.8%,

hence confirming the results by Ge et al. (2008). After double-difference ambiguity resolution is

applied to the network solution, the resulting narrow-lane FCB estimates contribute to a further

reduction of the RMS statistics for the East component by 0.4 mm, although the RMS statistics

for the North and Up components remain the same.

In addition, Figure 5.16 shows the RMS of the transformed residuals of the daily position

estimates against the IGS weekly solutions for the East component. We can clearly find the RMS

reduction led to by ambiguity resolution at a single receiver. Moreover, we can also easily identify

the smaller further RMS reduction due to the improved narrow-lane FCBs. Specifically, almost

on each day of the year, the RMS based on the improved narrow-lane FCBs is smaller than

that based on the original narrow-lane FCBs. This result clearly demonstrates the improvement

Figure 5.16: Daily RMS of transformed residuals of the position estimates against the IGS weekly
solutions for the East component in 2008
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of the positioning quality contributed by applying double-difference ambiguity resolution to

narrow-lane FCB determination.

5.8 Comparison between FCB- and IRC-based methods

As discussed in Section 2.3, the ambiguity-fixed position estimates from the FCB- and IRC-

based methods are theoretically identical. However, pronounced differences, especially in how

to separate FCBs from integer ambiguities in a network solution, are still present between the

two methods (refer to Section 2.3.4). Hence, this section compares the daily position estimates

derived from these two methods in order to investigate how the two methods agree or differ in

their ambiguity-fixed solutions. Note that the innovation of integer double-difference constraints

in Section 2.4.4 has been applied to the FCB-based method.

5.8.1 Data, models and methods

Data and models refer to Section 5.7.1. For data processing, ambiguity-float daily position

estimates were first obtained by fixing the CODE products. To keep consistency between the

CODE products and the PANDA software, the satellite clocks were re-estimated in the FCB-

based method by fixing the satellite orbits, the ERPs and the CODE-based ambiguity-float

positions. These new satellite clocks were then fixed along with the satellite orbits and the

ERPs to estimate the 15-minute mean narrow-lane FCBs using a global network of about 180

stations, most of which were located in Europe and North America. Finally, these FCB estimates

were used at all 350 stations to fix ambiguities between satellites to integers. On the other hand,

in the IRC-based method, the positions of the above 180 stations were fixed to the CODE-based

ambiguity-float estimates in order to keep consistency between the reference frames of the FCB-

based and IRC-based methods. Based on this, the IRCs were estimated after fixing ambiguities

to integers. Finally, these IRC estimates were used at all 350 stations to perform the ambiguity

resolution. Note that ambiguity resolution were based on the bias-rounding strategy by Ge et al.

(2005a) under a round-off criterion of 0.2 cycles.

5.8.2 Position differences

Assessing the differences between the position estimates can directly illustrate to what extent

these two methods agree in their positioning results. For each station, ambiguity-fixed position

differences were computed between the two methods over one year, and outliers were removed

with a threshold of five times the standard deviations. Finally, less than 0.1% of daily estimates

were removed. The RMS statistics of all position differences for all stations are only 1.3, 0.8 and

2.0 mm for the East, North and Up components, respectively. These statistics are well below

the formal precisions of 1.8–2.0 mm for the horizontal components and 5.0 mm for the vertical

component which were reported for the IGS weekly solutions (Altamimi and Collilieux 2009),

implying that the position differences are actually minimal. Furthermore, Figure 5.17 shows the

magnitude distribution of more than 100,000 position differences for all stations on all days. The

biases are only 0.2, 0.1 and 0.0 mm, whereas the standard deviations are 1.3, 0.8 and 2.0 mm

for the East, North and Up components, respectively. Hence, the systematic biases between

the daily position estimates of these two methods are actually minimal, or even negligible. In

addition, about 94.7% in the East, 94.7% in the North and 95.2% in the Up components of all
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Figure 5.17: Magnitude distribution of all position differences between the FCB-based and the
IRC-based methods for the East, North and Up components. The top-left corner of each subfigure
shows the bias and the standard deviation (σ), whereas the top-right corner shows the percentages
of deviations that are within 2σ, or larger than 3σ (σE=1.3 mm, σN=0.8 mm and σU=2.0 mm).
Note that the three subfigures have different horizontal scales

deviations in Figure 5.17 are within two times the standard deviations. Therefore, these overall

good agreements verify the theoretical equivalence of the ambiguity-fixed position estimates

derived from the two methods.

Nonetheless, large position differences are still present at some stations. For instance, the

absolute differences can be up to 10 mm for the East, 6 mm for the North and 20 mm for the Up

components. Moreover, 1.2% in the East, 1.1% in the North and 1.1% in the Up components

of all differences exceed three times the standard deviations as shown in Figure 5.17. Those

stations with large position differences are usually located at oceanic islands like Hawaii and

Tahiti. Hence, the RMS statistics of the position differences over one year are shown for the

East component at each station using color scales on a global map (Figure 5.18). We can see

that, in Europe and North America with relatively-dense networks of reference stations, the

Figure 5.18: Geographical distribution of the station-specific RMS statistics of the position
differences over one year between the FCB- and IRC-based methods for the East component
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RMS statistics are well below 1.5 mm, whereas in oceanic areas and Africa with very sparse

networks, the RMS statistics are usually over 2.0 mm. This geographical-distribution pattern

can also be observed for the North and Up components (see Figure A.1 and A.2 in Appendix

“Method Comparison”). This finding can be attributed to two aspects. On the one hand,

the narrow-lane FCBs cannot be precisely determined or assimilated into clocks over a sparse

network because the spatial correlation of errors among the reference stations is very weak. In

this case, the difference of separating narrow-lane FCBs from integer ambiguities may amplify

the position differences between these two methods. On the other hand, compared with the

epoch-wise IRCs, 15-minute mean estimates may lead to degraded accuracies of narrow-lane

FCBs.

5.8.3 Position repeatability

Position repeatability can quantitatively reflect the intrinsic positioning quality of these two

methods. The position repeatability was generated by deducting a linear model from each

station-specific positions over one year and then computing the RMS statistics of the resulting

residuals. Outlier rejection was performed by a threshold of five times the standard deviations.

Overall, the mean repeatability of all stations is 2.4, 2.2 and 7.7 mm for the FCB-based method,

and 2.2, 2.3 and 7.6 mm for the IRC-based method for the East, North and Up components

respectively. Hence, the repeatability differences are within only 0.2 mm for all three components

which is minimal compared with the repeatability statistics themselves, further verifying the

theoretical equivalence of the ambiguity-fixed position estimates derived from these two methods.

Nonetheless, these two methods perform geographically differently for the East repeatability.

Figure 5.19 exhibits the East repeatability of the FCB-based method minus that of the IRC-

based method for all stations. Hence, positive values in Figure 5.19 mean that the IRC-based

method outperforms the FCB-based method. We can see that the FCB-based method performs

relatively better in Europe, whereas the IRC-based method performs better in oceanic areas

Figure 5.19: Geographical distribution of the station-specific position repeatability of the FCB-based
method minus that of the IRC-based method for the East component over one year
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like the Pacific and the Indian Ocean. Considering the same models used in both methods, this

geography-related performance can be attributed to the reference network density which affects

the performance of separating the FCBs from integer ambiguities. In other words, the FCB-

based method performs better over a relatively dense network whereas the IRC-based method

performs better over a sparse network. However, the IRC-based method can usually perform

better by over 0.5 mm, whereas the FCB-based method performs better by less than 0.5 mm,

explaining why the IRC-based method overall slightly outperforms the FCB-based method for

the East repeatability.

Of particular note, the geographical-distribution pattern of the repeatability differences

cannot be observed for the North and Up components (see Figure A.3 and A.4 in Appendix

“Method Comparison”). Normally, the positioning qualities of the North and Up components

are less affected by ambiguity resolution than that of the East component (e.g. Blewitt 1989;

Ge et al. 2008), which might explain why similar geographical distributions cannot be easily

observed for the North and Up components.

5.8.4 Comparison with the IGS weekly solutions

In this study, my daily position estimates were compared with the IGS weekly solutions through a

7-parameter Helmert transformation. The position estimates of which the transformed residuals

are larger than 15 mm for the horizontal, 30 mm for the vertical components, or five times

the standard deviations were removed. RMS statistics of the transformed residuals are used to

quantitatively assess the extrinsic positioning quality. Table 5.16 shows the mean RMS statistics

of all days for the ambiguity-float and ambiguity-fixed solutions. In this table, ambiguity

resolution with the FCB-based method significantly improves the RMS statistics from 3.4, 2.2

and 6.2 mm to 2.0, 2.1 and 5.9 mm for the East, North and Up components respectively,

thereby confirming the results reported by Ge et al. (2008). Likewise, ambiguity resolution with

the IRC-based method improves the RMS statistics from 3.5, 2.3 and 6.3 mm to 1.9, 2.1 and

5.8 mm. Hence, the RMS difference for the ambiguity-fixed position estimates is within only

0.1 mm for each component which is negligible compared with the RMS statistics themselves,

again verifying the theoretical equivalence of the ambiguity-fixed position estimates derived from

these two methods.

Nonetheless, the IRC-based method performs slightly better for the East component. Figure

5.20 shows the daily RMS statistics for the East component of the ambiguity-fixed position

estimates. Although the RMS statistics of the two methods are close, it is still discernible

that the IRC-based statistics are slightly smaller than the FCB-based statistics on most days.

Furthermore, the RMS statistics of the transformed ambiguity-fixed residuals are computed

over all days at each station. Figure 5.21 exhibits the East RMS statistics of the FCB-based

method minus those of the IRC-based method for each station. We can see that the FCB-

Table 5.16: Mean RMS statistics of the transformed residuals of the daily
ambiguity-float and ambiguity-fixed position estimates against the IGS weekly
solutions in 2008

Methods
Ambiguity-float (mm) Ambiguity-fixed (mm)

East North Up East North Up

FCB-based 3.4 2.2 6.2 2.0 2.1 5.9

IRC-based 3.5 2.3 6.3 1.9 2.1 5.8
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Figure 5.20: Daily RMS of the transformed residuals of the ambiguity-fixed position estimates
against the IGS weekly solutions for the East component in 2008

Figure 5.21: Geographical distribution of the station-specific East RMS for the FCB-based method
minus that for the IRC-based method. An RMS is computed over the residuals of ambiguity-fixed
position estimates against the IGS weekly solutions for the East component over one year



5.9 Summary 99

based method performs relatively better in Europe and North America, whereas the IRC-based

method performs better in oceanic areas and Africa. However, the IRC-based method can

usually perform better by up to 1.4 mm, whereas the FCB-based method performs better by

less than 0.7 mm. Hence, the IRC-based method overall slightly outperforms the FCB-based

method in the East RMS against the IGS weekly solutions. In addition, similar to Figure 5.19,

this geographical-distribution pattern cannot be observed for the North and Up components (see

Figure A.5 and A.6 in Appendix “Method Comparison”).

5.8.5 Conclusions and suggestions

In order to verify the equivalence between the ambiguity-fixed position estimates derived from

the two methods, ambiguity-fixed daily position estimates were computed using both methods

with the data from a global network of about 350 reference stations over the whole year 2008.

The biases between all position estimates are only 0.2, 0.1 and 0.0 mm, whereas the standard

deviations of all position differences are only 1.3, 0.8 and 2.0 mm for the East, North and Up

components, respectively. Moreover, the differences of position repeatabilities are within only

0.2 mm on average for all three components. The RMS of the position estimates minus those

from the IGS weekly solutions for the FCB-based method differs by below 0.1 mm on average

for each component from that for the IRC-based method. Hence, the systematic biases between

the daily position estimates are actually minimal, or even negligible, and the closeness of the

position estimates, repeatabilities and RMS statistics against the IGS weekly solutions overall

verify the equivalence of the ambiguity-fixed position estimates derived from the FCB-based and

IRC-based methods.

Nonetheless, the different strategies of separating the narrow-lane FCBs from integer ambi-

guities in these two methods lead to the geographical-distribution patterns of their positioning

discrepancy. For instance, for the East component, the station-specific RMS statistics of the

position differences are well below 1.5 mm in Europe and North America with relatively-dense

networks, whereas usually over 2.0 mm in oceanic areas and Africa with very sparse networks.

Moreover, in terms of the East position repeatability and the East RMS statistics against the IGS

weekly solutions, the FCB-based method performs slightly better over dense networks, whereas

the IRC-based method performs a little better over sparse networks. Overall, the IRC-based

method overall slightly outperforms the FCB-based method for the East component.

Finally, I propose that these two methods should be used in terms of different task con-

straints. The FCB-based method can conveniently supplement current network solutions as an

additional software module, and its narrow-lane FCB determination is compatible with current

official clock-generation methods. By contrast, the IRC-based method employs IRCs which are

incompatible with current clock products. However, using IRCs is straightforward for ambiguity

resolution at a single receiver and the IRC-based method can potentially perform slightly better

in practice.

5.9 Summary

This chapter quantitatively assesses the positioning quality of post-processing and real-time PPP

enhanced by ambiguity resolution at a single receiver. Based on a regional network in Europe,

ambiguity resolution clearly improves the positioning qualities of sub-daily and kinematic PPP.
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Ambiguity resolution can be performed even at a remote receiver that is far from the FCB-

determination network. Moreover, narrow-lane FCBs are strongly correlated with satellite

clocks, and hence they should be kept compatible before they are used together for ambiguity

resolution. On the other hand, real-time PPP also benefits from ambiguity resolution because its

positioning accuracy can be significantly improved. However, its practicability is devalued by its

slow convergence to ambiguity-fixed solutions. Finally, the theoretical equivalence between the

ambiguity-fixed position estimates derived from the FCB- and IRC-based methods was verified

by processing one year of GPS data, with the IRC-based method shown to lead to a better

positioning quality over sparse networks.



Chapter 6

Results on Rapid Convergences

6.1 Introduction

Chapter 3 has summarized the previous published attempts for accelerating convergences in real-

time PPP. Due to the difficulty of achieving the first ambiguity-fixed solution with only a few

seconds of GPS measurements, in this thesis, a method for rapidly accelerating re-convergences

to ambiguity-fixed solutions by precisely predicting ionospheric delays that are estimated in all

ambiguity-fixed epochs is originally developed. The effectiveness of this novel method consists

in two aspects: On the one hand, wide-lane ambiguities can be rapidly resolved with the

ionosphere-corrected wide-lane measurements, instead of the noisy Melbourne-Wübbena combi-

nation measurements; on the other hand, narrow-lane ambiguity resolution can be accelerated

significantly under the tight constraints derived from ionosphere-corrected unambiguous wide-

lane measurements. This chapter thus assesses this method with 1-Hz measurements from static

and mobile receivers. In addition, rapid convergence by interpolating ionospheric delays from

a dense network of reference stations is also assessed before ending this chapter. Note that a

“convergence” in this chapter implies a “convergence to an ambiguity-fixed solution”.

6.2 Prediction error of ionospheric delays

As discussed in Section 3.4, the accuracy of predicted ionospheric delays is crucial to rapid re-

convergences. This section thus assesses the prediction error of ionospheric delays in Europe

typically when the ionosphere condition is relatively quiet.

6.2.1 Data, models and methods

One-Hz GPS measurements from stations BSCN (47.25◦N, 5.99◦E) and ACOR (43.36◦N, 8.40◦W)

on July 6th 2008 and from station MUEJ (48.15◦N, 11.57◦E) on October 11th 2008 were used.

These stations were chosen as representatives of stations located in Europe. The Kp index, which

quantifies the ionosphere activity level, was below 4 on July 6th, showing a moderate ionosphere

condition, and about 4 on October 11th, showing a relatively active ionosphere condition. In

addition, predicted satellite orbits and ERPs by the IGS were fixed when estimating real-time

satellite clocks.

Ionospheric delays were estimated with single-difference wide-lane measurements in Equation

3.17. Station positions were corrected for displacements suggested in IERS conventions 2003

101
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(McCarthy and Petit 2004). Absolute antenna phase centers were also applied. Wide-lane

ambiguities were estimated with Melbourne-Wübbena combination measurements and resolved

with bias rounding under a round-off criterion of 0.25 cycles. Ambiguity-fixed PPP was carried

out in order to mitigate tropospheric delays in wide-lane measurements. Note that such iono-

spheric delays contain not only the real delays caused by ionosphere, but also some residual errors

associated with hardware biases, tropospheric delays, multipath effects, etc. These residual errors

are ignored in this section due to their relatively negligible variation characteristics compared

with those of ionosphere (refer to Section 3.4.1).

6.2.2 Variation characteristics of ionospheric delays

The prediction error of an ionospheric delay is subject to both the latency and the elevation

angle. Note that the latency of a predicted ionospheric delay is the time span between this

predicted delay and the latest estimated delay, and the prediction error of a predicted delay is

its difference from the estimated delay at this epoch. Figure 6.1 shows the prediction errors

of ionospheric delays under different latencies, i.e. 20, 60 and 120 s. Elevation angles for four

satellite pairs at station BSCN, five at station MUEJ, and the planetary 3-hourly Kp indices

on July 6th and October 11th are also shown. Here, the elevation angle of a satellite pair is

defined as the elevation angle of the lower satellite. Stations BSCN and MUEJ are chosen as

representatives due to both stations being located in central Europe. Note that these prediction

errors here are actually the differences of estimated ionospheric delays at two epochs.

In Figure 6.1a, the prediction errors for the 60-second latency are somewhat noisier than

those for the 20-second one. When the latency is increased to 120 s, oscillations, bending and

biasing of the error time series are apparent which can be attributed to the irregularities of

temporal ionospheric variations. Such an increase of prediction errors is more obvious in Figure

6.1b when the ionosphere condition is relatively more active. It is evident that prediction errors

become larger and larger when latency is increased from 20 to 120 s. Hence, Dai et al. (2003)

and Kashani et al. (2007) suggested that the weight of a predicted ionospheric delay should be

inversely proportional to its latency.

Moreover, in Figures 6.1a and 6.1b, the prediction errors of ionospheric delays are larger

when elevation angles are smaller, as the predicted ionospheric delays vary more irregularly and

rapidly at low elevations. Consequently, neither the constant bias model nor the linear bias

model (refer to Section 3.4.1) can sufficiently precisely predict ionospheric delays, and thus the

weights at low elevations have to be reduced. Therefore, Equation 3.18 is adopted in this thesis.

6.2.3 Constant bias or linear fitting model?

Figure 6.2 exhibits the ionospheric delays at a typical station ACOR on July 6th. These delays

are divided into two groups with an elevation angle of 30◦, and the RMS of their prediction

errors for all satellite pairs during 24 hours is plotted against both the latency and the time

window width for the linear fitting model. As expected, the RMS is increased when the latency

is prolonged. However, enlarging the time window width can slow down this increasing rate. As

a large window width will lower the computation efficiency, a width of 120 s is finally chosen

as a trade-off for ionospheric delays above 30◦, and 240 s for those below 30◦ in this study.

Specifically, 5-minute prediction can reach an accuracy of 3.7 cm for the ionospheric delays over

30◦ and 7.3 cm for those below 30◦. Furthermore, in this study, the prediction error remains
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(a) Station BSCN on 06/07/2008. Note that the satellite-pair G03-G06 passed BSCN twice

(b) Station MUEJ on 11/10/2008

Figure 6.1: Variation characteristics of ionospheric delays over Europe when ionosphere condition
is relatively quiet. Prediction errors of ionospheric delays under different time latencies (20, 60 and
120 s) and different elevation angles. Planetary Kp index is shown every three hours. Note that these
errors are actually the differences of estimated ionospheric delays at two epochs. The gap between
these two epochs is named as latency
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Figure 6.2: RMS of prediction errors of the ionospheric delays under different time window widths,
latencies and elevation angles. Time window widths are plotted alongside the open circles. Subfigure
a) shows ionospheric delays at elevation angles of >30◦ and b) 630◦. Two predicting strategies are
shown, i.e. the constant bias model (black crosses) and the linear fitting model (blue circles). Note
the overlap between the prediction errors by the constant bias model and the linear fitting model
with a 30-second window in the left subfigure

steady when the latency is below 30 s, hence explaining why identical weights are posed within

30 s in Equation 3.19. Finally, Figure 6.2 also presents the prediction error by the constant

bias model. Surprisingly, the linear fitting model does not always outperform the constant bias

model. For example, a 10-second window leads to larger prediction errors than those by the

constant bias model for all time latencies that are up to 10 minutes. One possible reason for this

is that a window of only a few tens of seconds cannot precisely image the overall tendency of

the ionospheric delays. In this study, when the window width covers only the latest 30 or fewer

seconds of ionospheric delays, the constant bias model is preferred to the linear fitting model.

6.3 Test rapid re-convergences with static stations

This section assesses the method for rapid re-convergences developed in Section 3.4. Static

receivers were used to simulate mobile ones in order to quantify the impacts of latency on the

method performance, e.g. the success rate of rapid re-convergences and the time spent on re-

achieving ambiguity-fixed solutions.

6.3.1 Data, models and methods

Seven days of 24-hour 1-Hz GPS data from July 6th to 12th and on October 11th 2008 at

about 90 stations across Europe were collected from the EUREF-IP project and the OSGB real-

time network (Figure 5.10). These data bear the gaps caused by communication or power

interruptions. Predicted satellite orbits and ERPs by the IGS were fixed during the real-

time satellite clock determination. Communication delays of satellite clocks were presumed

nonexistent in this simulated real-time test.

Moreover, P1-C1 DCBs, absolute antenna phase centers, phase wind-up corrections and
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station displacements from the IERS conventions 2003 (McCarthy and Petit 2004) were applied.

A cut-off angle of 7◦ for usable measurements was used (Gendt et al. 2003). For ambiguity

resolution, the LAMBDA method was used to search for integer candidates. All available

satellites above an elevation angle of 7◦ were used for wide-lane ambiguity resolution, and the

satellites above 15◦ for narrow-lane ambiguity resolution. A partial search technique was also

applied to avoid biased ambiguity estimates due to measurements from low-elevation satellites,

for example (Dai et al. 2007), but at least four ambiguities should be fixed after an ambiguity

search.

For all stations, positions were estimated as white noise at each epoch, and ZTDs were

estimated every three hours. In order to test my method for rapid re-convergences, a total

signal interruption was introduced 20 minutes after each successful convergence, and thus each

station suffered from about 70 re-convergences per day, if there were no large data gaps. After

each total signal interruption, a number of epochs of measurements were removed to simulate a

latency for predicted ionospheric delays. This data set was quite representative for mid-latitude

regions during moderate ionosphere conditions because it covered 24 hours per day and contained

stations working in different environments.

6.3.2 Performance of rapid re-convergences

This section shows the impacts of precisely predicted ionospheric delays on the success rate of

rapid re-convergences and the time spent on these re-convergences. Table 6.1 shows the statistics

about rapid re-convergences achieved within five epochs of 1-Hz measurements under different

latencies. When the latency is 10 s, 99.4% and 98.7% of re-convergences to wide-lane and narrow-

lane ambiguity resolutions can be rapidly achieved, respectively. Even when the latency is up

to 180 s, these two percentages can still reach 93.3% and 95.0%. For comparison, if precisely

predicted ionospheric delays are not applied, only 78.9% of all re-convergences can be achieved

within 20 minutes with a mean time of 694 s. Hence, the improvement on the re-convergence

efficiency by my method is encouragingly significant.

However, when the latency is up to 300 s, the above two percentages steadily fall to 85.8%

and 89.4%. This deterioration can be understood in terms of the amplified prediction error

Table 6.1: Performance of rapid re-convergences within five epochs of 1-Hz measurements
under different latencies (s). A “success rate” is the ratio (within parentheses) between
the number (before slashes) of rapid resolutions and the total number (behind slashes) of
resolutions for wide-lane or narrow-lane ambiguities. A “time to fix” is the real-valued mean
of all times (s) spent on resolving wide-lane or narrow-lane ambiguities. Note that one second
here represents one epoch of measurements, and the time to fix a narrow-lane ambiguity begins
to be measured when the corresponding wide-lane ambiguity is successfully resolved

Latency
Wide-lane resolution Narrow-lane resolution

Success rate (%) Time to fix Success rate (%) Time to fix

10 36459/36665 (99.4) 1.00 36159/36618 (98.7) 0.02

30 35236/35822 (98.4) 1.01 35223/35720 (98.6) 0.02

60 33782/34632 (97.5) 1.02 33860/34472 (98.2) 0.03

120 31003/32333 (95.9) 1.03 31011/32060 (96.7) 0.05

180 28060/30070 (93.3) 1.05 28024/29500 (95.0) 0.09

240 25134/28024 (89.7) 1.10 25058/27088 (92.5) 0.12

300 22417/26137 (85.8) 1.17 21875/24465 (89.4) 0.15
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of ionospheric delays. From Equation 3.20, ionospheric delays of large prediction errors will

enlarge the magnitude of ζklwi, hence possibly biasing the corresponding wide-lane ambiguity

estimates and degrading the reliability of ambiguity resolution. Furthermore, even if a rapid

wide-lane ambiguity resolution can be achieved, a large ζklwi will lead to a poor precision of

an unambiguous wide-lane measurement (see Equation 3.21), hence weakening the resulting

constraint on subsequent narrow-lane ambiguity resolution. Finally, when the latency is only

10 s, the failure rates for wide-lane and narrow-lane resolutions account for 0.6% and 1.3%

respectively, most of which are caused by low satellite availability and poor satellite geometry.

On the other hand, Table 6.1 also shows the mean times to resolve wide-lane and narrow-

lane ambiguities. When the latency is 10 s, only one epoch of measurements is required to

resolve wide-lane ambiguities, whereas almost no more epochs are required to resolve narrow-

lane ambiguities. Overall, increasing the latency will lead to longer time spent on achieving

an ambiguity-fixed solution. However, these times are increased moderately or even minimally,

implying that most rapid re-convergences are achieved with only one epoch of measurements,

even though the latency is up to 300 s. In fact, this finding demonstrates that the contribution of

satellite-geometry change to rapid re-convergences is minimal, or even negligible, in this study.

In order to further demonstrate the performance of rapid re-convergences, Figure 6.3 shows

the epoch-wise position differences from the daily estimates for the East, North and Up com-

ponents at station ACOR on July 6th. For clarity, only the first six hours of differences are

presented. In this figure, three sub-figures show the position differences for the ambiguity-float

solutions, ambiguity-fixed solutions without rapid re-convergences and ambiguity-fixed solutions

with rapid re-convergences. At the beginning of this data set, a large gap occurs, which fails

Figure 6.3: Six hours of position differences between the real-time epoch-wise and the daily
estimates at station ACOR for the East, North and Up components. The top sub-figure shows
the ambiguity-float solutions, the middle sub-figure shows the ambiguity-fixed solutions without
rapid re-convergences and the bottom sub-figure shows the ambiguity-fixed solutions with rapid re-
convergences enabled by my method
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the corresponding rapid re-convergence. Total signal interruptions are introduced at the end

of each hour of measurements. We can see that these simulated interruptions totally ruin the

positioning quality of the ambiguity-float solutions as large undulations occur in the time series

of position difference. By contrast, ambiguity resolution contributes significantly to improving

the positioning accuracy, but re-convergence periods are still as long as several hundred seconds.

When my method for rapid re-convergences is applied, the ambiguity-fixed solutions can normally

be rapidly achieved with only a few epochs of measurements, although sometimes such a rapid

re-convergence cannot be achieved until a few tens of epochs of measurements are used (see the

case between Epoch 16200 and 18000).

6.3.3 Is single-epoch ambiguity resolution possible?

Single-epoch or instantaneous precise positioning has long been studied in real-time relative

positioning (e.g. Han and Rizos 1996; Morujão and Mendes 2008; Pratt et al. 1997). For single-

epoch precise positioning, carrier-phase cycle slips do not need to be identified, because ambiguity

resolution is attempted independently for each epoch. Hence, single-epoch precise positioning

is an appealing technique for GPS-adverse environments where signal obstructions frequently

occur.

According to Table 6.1, most rapid re-convergences are achieved with only one epoch of 1-Hz

measurements. We can thus expect that single-epoch precise positioning can be implemented

after the first ambiguity-fixed solution has been achieved in real-time PPP. At an ambiguity-

fixed epoch, ionospheric delays can be estimated and predicted to succeeding epochs. At

each succeeding epoch, GPS measurements are independently processed and rapid ambiguity

resolution is attempted by applying the predicted ionospheric delays. In this manner, single-

epoch precise positioning can be implemented.

However, this single-epoch precise positioning cannot be maintained for a long observation

period. Section 3.4.1 has demonstrated that ionospheric delays for accelerating re-convergences

can be obtained only when wide-lane ambiguities are successfully fixed to integers. For newly-

observed satellites, wide-lane ambiguities have to be first resolved with multi-epoch Melbourne-

Wübbena combination measurements, and single-epoch measurements cannot guarantee a cor-

Figure 6.4: Performance of single-epoch precise positioning at station ACOR supported by rapid
re-convergences. Solid blue circles denote the 3D positioning difference and thus refer to the left
axis. The number of satellites with predicted ionospheric delays (open circles) and the number of
fixed wide-lane ambiguities (crosses) refer to the right axis
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rect resolution. As a result, wide-lane ambiguities for those newly-observed satellites cannot be

fixed to integers during the single-epoch precise positioning. With the fall of the old satellites for

which ionospheric delays are available, fewer and fewer satellites are eligible for a single-epoch

ambiguity resolution, and hence ambiguity-fixed solutions can no longer be achieved. Figure 6.4

verifies this point by showing the performance of the single-epoch precise positioning at station

ACOR on July 6th. The first hour of measurements were used to achieve the first ambiguity-

fixed solution. Then single-epoch positioning started from the epoch of 3600 s. During the whole

period of 4200 s, the number of satellites for which ionospheric delays were available decreased

from eight to five, and correspondingly the number of fixed wide-lane ambiguities also decreased

from seven to four, and finally zero. When over four ambiguities were resolved, the 3D position

difference from the daily estimate was better than 5 cm. However, from the epoch of around

6300 s, fixing at least four ambiguities cannot be achieved at some epochs, and the resulting 3D

position accuracy became significantly worse than 5 cm. Finally, after the epoch of about 7050 s,

it became impossible to successfully fix four ambiguities at any epoch because old satellites were

falling and wide-lane ambiguities for new satellites cannot be fixed to integers. Therefore, single-

epoch precise positioning supported by rapid re-convergences is possible, but only within a short

observation period.

6.4 Test rapid re-convergences with a mobile van

In this section, the method for rapid re-convergences is assessed for a van moving in a GPS-

adverse environment, then ionospheric delays are interpolated over a dense reference network

and finally the results are compared with those from a commercial NRTK service.

6.4.1 Data, models and methods

A van-borne 1-Hz GPS data set was collected in the city of Nottingham on May 11th 2009,

covering about 2.5 hours from 11:30 to 14:04 (Local time). The Kp index was around 1 during

this period, showing a quiet ionosphere condition. As shown in Figure 6.5, the van stopped or

moved in four phases: 1) it stopped from 11:40 to 12:27 on a car park with an open sky view;

2) it moved from 12:27 to 13:12 along the red routes escorted by tall buildings, large trucks and

thick trees; 3) it stopped again from 13:12 to 13:44 on the car park; 4) finally, it moved again

from 13:44 to 14:04 along the blue routes on the car park with a few thick trees around. A

reference station was located on top of the IESSG building which was within 2 km from the van

at all times. This reference station was surrounded by another six reference stations within a

distance from about 50 to 100 km (upper inset). They were used to interpolate ionospheric and

tropospheric delays. In addition, the lower inset shows the satellite number which kept steady

during the stopping phases, but changed dramatically during the moving phases due to signal

obstructions.

For this van, because the antenna’s attitudes during the moving phases were unknown, phase

wind-up corrections were applied by assuming that the antenna’s rotation was always around its

boresight. In this case, the phase wind-up effects caused by this rotation can be fully assimilated

into the receiver clock without affecting the correction proposed by Wu et al. (1993) (Kim et al.

2006; Banville and Langley 2009). Moreover, no antenna phase center corrections were applied

in PPP solutions. Only one ZTD was estimated during this experiment because the time span
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Figure 6.5: A mobile van used to test the method for rapid re-convergences developed in this thesis.
The van trajectory consists of four phases: 1) it stopped on the car park with an open sky view; 2) it
moved along the red routes escorted by tall buildings, large trucks and thick trees; 3) it stopped again
on the car park; 4) it moved along the blue routes on the car park with a few thick trees around. A
reference station was located at IESSG. The upper inset shows the distances between six reference
stations and IESSG, and the lower inset shows the satellite number and the time spans for the four
phases. “LT” denotes local time

was short and the area was small. A ground truth was computed using the Leica Geo Office

software version 3.01 and the IESSG station was used as reference. Note that antenna phase

center corrections were not applied for this ground truth. Hence this ground truth is actually for

the true position of antenna phase center, and its 3D accuracy is believed to be better than a few

centimeters. Moreover, an NRTK solution provided by the Leica SmartNet service (Aponte et al.

2009) was also collected for comparison. Antenna phase center corrections might be applied to

this NRTK solution, but the details cannot be obtained for a real-time system.

6.4.2 Rapid convergences in a GPS-adverse environment

In a GPS-adverse environment, frequent and severe signal obstructions can jeopardize the

performance of precise positioning and ambiguity resolution. In Figure 6.6, for the ambiguity-

float solutions, a clear trend is present for the East component and a bias is present for the

1http://www.leica-geosystems.co.uk/en/Leica-Geo-Office 4611.htm

http://www.leica-geosystems.co.uk/en/Leica-Geo-Office_4611.htm
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Figure 6.6: Differences between a mobile van’s real-time position estimates and the ground truth
for the East, North and Up components. From top to bottom show the ambiguity-float solutions,
ambiguity-fixed solutions without and with rapid re-convergences (RRC), and NRTK solutions. The
symbol “

√
” denotes the time when ambiguity-fixed solutions are achieved, whereas “×” denotes the

time when ambiguity-fixed solutions are totally lost

North component. During the first moving phase when signals were frequently obstructed,

all three components, especially the vertical, experience large position errors of over a few

decimeters. If ambiguities are resolved, the positioning accuracy can be clearly improved for

all three components, but this improvement only appears during the stopping phases as shown

in Figure 6.6. Ambiguity-fixed solutions were quickly and totally lost after the moving phases

began. This is because re-convergences occurred due to signal obstructions. Overall, the rate of

ambiguity-fixed epochs is only 7.7% of all epochs during the moving phases.

However, by further applying my method for rapid re-convergences, ambiguity-fixed solu-

tions can be well maintained during the moving phases. From Figure 6.6, the accuracies of both

horizontal components during the moving phases are better than 5 cm, whereas that of vertical

is better than 10 cm almost at all times. Large position errors are present at only a few epochs

where ambiguity-fixed solutions cannot be achieved. More encouragingly, the rate of ambiguity-

fixed epochs is increased to 93.6% of all epochs during the moving phases, showing a significant

improvement over the ambiguity-fixed solutions without rapid re-convergences.
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Table 6.2: Statistics of the position quality for both the ambiguity-fixed solution with rapid re-
convergences and the NRTK solution for a van during its moving phases. “RRC” denotes “rapid
re-convergence”. The unit of all numerals is centimeter

Solutions
Biasa Standard deviation RMS

East North Up East North Up East North Up

Amb-fixed with RRC 0.7 −0.8 −0.8 1.0 1.3 2.7 1.2 1.6 2.8

Network RTK 2.0 2.4 12.6 0.6 1.0 1.4 2.1 2.5 12.6
a Antenna phase center corrections were not applied to the ambiguity-fixed solution with rapid
re-convergences and the ground truth, but might be applied to the NRTK solution although relevant
details cannot be obtained for a real-time system. This might explain why large biases occur in the
NRTK solution

6.4.3 Comparisons with an NRTK solution

Normally, an NRTK service can provide centimeter-level positioning accuracy with double-

difference measurements based on an RTK network. At the bottom of Figure 6.6, the position

differences of an NRTK solution against the ground truth is presented. Note that the gaps are

caused by the unavailability of NRTK correction messages. Following this, large positioning

errors occur from 13:40 to 13:50, and thus are excluded from the following statistics (see Table

6.2). From Table 6.2, it can be clearly seen that biases are present in all three components of

the NRTK solution. In terms of Section 6.4.1, I guess that these biases are largely caused by

antenna phase center corrections applied to the NRTK solution. The largest bias appears for

the Up component, and normally the height component for an antenna phase center offset

is also the largest one. This coincidence may thus confirm my guess above. Disregarding

these discrepancies, it can be found that the ambiguity-fixed solutions enhanced by rapid re-

convergences perform comparably with the NRTK solution. Specifically, the standard deviations

of the differences for the East, North and Up components during the moving phases are 1.0, 1.3

and 2.7 cm for the ambiguity-fixed solutions with rapid re-convergences respectively, whereas

0.6, 1.0 and 1.4 cm for the NRTK solution.

However, from Figure 6.6, the position differences during the moving phases for the NRTK

solution clearly scatter less than those of the ambiguity-fixed PPP solutions enhanced by rapid

convergences. On the contrary, the position differences during the stopping phases for all these

solutions scatter comparably. This demonstrates that the internal consistency between the

ground truth and the NRTK solution due to the software similarity cannot adequately explain

the distinct scatters during the moving phases. Therefore, I argue that this issue might be

because phase wind-up corrections for PPP cannot be precisely computed during the moving

phases, since the antenna’s true attitudes were unknown (Kim et al. 2006).

6.5 Conclusion on performance of rapid re-convergences

In this thesis, a novel method in which ionospheric delays are predicted to succeeding epochs

to rapidly accelerate ambiguity resolution in the case of re-convergences is originally developed.

In theory, the effectiveness of this method consists in two aspects: First, wide-lane ambigu-

ities can be rapidly resolved with ionosphere-corrected wide-lane measurements, rather than

noisy Melbourne-Wübbena combination measurements; second, narrow-lane ambiguities can be

rapidly resolved under the tight constraints derived from ionosphere-corrected unambiguous

wide-lane measurements.

This method is verified using two tests under moderate ionosphere conditions. At static
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stations suffering from simulated total losses of tracking locks, even if the latency for predicted

ionospheric delays is up to 180 s, 93.3% and 95.0% of re-convergences to wide-lane and narrow-

lane ambiguity resolutions can be achieved within five epochs of 1-Hz measurements, respectively.

If this latency is prolonged, the prediction error of ionospheric delays is increased, consequently

reducing both percentages above. On the other hand, for most rapid re-convergences, only one

epoch of measurements is needed, implying that the contribution of satellite-geometry changes to

these rapid re-convergences is minimal in this study. At a mobile van moving in a GPS-adverse

environment, ambiguity-fixed solutions can be well maintained when rapid re-convergences are

applied. The rate of ambiguity-fixed epochs is significantly improved from 7.7% to 93.6% of all

epochs during the moving phases. In addition, the RMS of position differences from the ground

truth that is derived from a post-processed short-baseline solution are 1.0, 1.3 and 2.7 cm for

the East, North and Up components respectively, which are slightly larger than but comparable

with those of an NRTK solution.

6.6 Rapid convergence by interpolating ionospheric delays

Firstly, I need to state that my method can be applied to only re-convergences because iono-

spheric delays are required and they can be estimated only at ambiguity-fixed epochs. However,

if a dense network of reference stations is available, ionospheric delays can also be estimated at

the reference stations and then interpolated for single users to assist rapid convergences. If this

is the case, then, in principle, the first ambiguity-fixed solution could also be rapidly achieved.

In this section, the van-borne data in Figure 6.5 are again used. From Section 6.4.2, the

first ambiguity-fixed solution is achieved after a few tens of minutes. To overcome this slow

convergence, the six surrounding reference stations were used to interpolate ionospheric delays

for this van. As a result, only five epochs of 1-Hz measurements were needed to achieve the first

ambiguity-fixed solution. Moreover, the epochs with large position errors become much fewer.

The rate of ambiguity-fixed epochs reaches up to 97.2% of all epochs during the moving phases.

Figure 6.7: Differences between the ground truth and the position estimates of the ambiguity-fixed
PPP solution supported by a dense network. The NRTK solution is shown here for comparison
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This further improvement is largely attributed to the interpolated ionospheric delays which are

more reliable than the predicted ones. Figure 6.7 shows the differences between the ground truth

and the position estimates of the ambiguity-fixed PPP solution supported by a dense network.

The NRTK solution is again here shown for comparison.

The results above rely on the ionospheric delays being interpolated from a dense network

of reference stations, but such networks are normally not available for PPP. However, we can

envisage that if precise ionospheric delays can be derived from a sparse network at scales of

several hundred kilometers using an ionospheric tomography technique (Hernández-Pajares et al.

2000), a PPP-RTK service (Geng et al. 2010d) that can instantaneously provide ambiguity-

fixed solutions may potentially prevail against current RTK positioning services based on dense

networks.

6.7 Summary

This chapter quantitatively assesses the performance of the novel method originally developed

rapid convergences and re-convergences in real-time PPP. Single PPP users can estimate and

predict ionospheric delays themselves in order to accelerate ambiguity resolution in the case of

re-convergences. Not only can the ambiguity-fixed solutions be rapidly achieved, but the rate

of ambiguity-fixed epochs in all epochs can also be significantly improved. On the other hand,

if a dense network of reference stations is available, ionospheric delays can be interpolated, and

hence the first ambiguity-fixed solution can also be rapidly achieved. However, in principle, this

negates the advantages of PPP in not requiring a dense network of reference stations, but in

practice precise ionosphere tomography may be a solution for this problem in future.





Chapter 7

Global PPP-RTK

7.1 Introduction

In terms of the results in chapters 5 and 6, the performance and practicability of real-time

PPP can be improved significantly by ambiguity resolution and rapid re-convergences. It is

demonstrated in Section 1.2.4 that PPP is a global precise positioning technique in nature for

which only a sparse global reference network is required. In this case, considering the deficiencies

of NRTK services based on dense networks, this chapter thus proposes a prototype for a global

PPP-RTK service enhanced by rapid ambiguity resolution at a single receiver, then investigates

an important question, i.e. how many reference stations are sufficient to support this global

PPP-RTK, and finally illustrate a potential application of global PPP-RTK in geohazard early

warning with GPS measurements collected for the April 6th 2009 L’Aquila earthquake.

7.2 A prototype of global PPP-RTK

A prototype for a global PPP-RTK service is illustrated in Figure 7.1. Global service providers

collect real-time GPS measurements from a sparse global network. These measurements are

then processed to produce precise satellite orbits and high-rate satellite clocks in real time. Note

that ambiguity resolution based on the FCB- or IRC-based methods is applied. The resulting

ambiguity-fixed satellite products are then transmitted to GEO or the Internet and afterwards

broadcast to global users. These users can be divided into two categories. For single users

augmented by a dense network of reference stations, atmospheric delays can be interpolated

and further sent to these users to assist them in achieving rapid centimeter-level positioning.

Note that this dense network should also receive real-time satellite products from GEO. On the

other hand, for single users without any assistance from such regional dense networks, it is still

possible for them to accelerate re-convergences to ambiguity-fixed solutions, but there will be a

long period for the first convergence. In the following, the three modules of global PPP-RTK,

i.e. global service providers, augmentation service providers and single users are detailed before

a brief comparison between global PPP-RTK and NRTK is made.

7.2.1 Global service providers

Global service providers have to first build a globally distributed real-time network of reference

stations. High-rate measurements (e.g. 1-Hz) must be immediately transmitted to a processing

115
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Figure 7.1: A prototype of a global PPP-RTK service based on rapid ambiguity resolution at a
single receiver. Global service providers are to provide globally-applicable real-time satellite products
that enable ambiguity resolution in PPP. An augmentation service provider usees a dense regional
network to provide atmospheric delays for rapid convergences. “Ambiguity-fixed satellite products”
denote those that enable ambiguity resolution at a single receiver

center through the Internet, for example. In theory, more reference stations can more reliably

guarantee a robust service which provides high-quality satellite products. This issue will be

further discussed in Section 7.3. In addition, a product dissemination facility has to be estab-

lished in order to transmit real-time satellite products to global single users through GEO or

the Internet.

In the processing center, raw GNSS measurements are used to estimate dynamic satellite

orbits (Geng et al. 2006) and these orbits are then predicted over a short period, e.g. a few tens of

minutes. Satellite maneuvers should be carefully regarded although they are normally rare. The

quality control of these predicted orbits is thus essential. Moreover, satellite clocks have to be

estimated with high-rate measurements by fixing the predicted satellite orbits. These real-time

clocks need to be predicted over a few seconds considering inevitable communication delays for

satellite clocks. Over how long these clocks can be predicted depends on the clock quality of GPS

satellites (Senior et al. 2008). Finally, for ambiguity resolution, FCBs are estimated by fixing

the predicted orbits and the real-time clocks (refer to Figure 2.5). However, the transmission
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of FCBs as additional products will significantly enlarge the data bandwidth and increase the

expense. In this case, combining FCBs and satellite clocks becomes a good alternative for the

global PPP-RTK (refer to Section 2.4.1).

Therefore, ambiguity-fixed satellite orbits and clocks are the primary products generated

by global service providers. Other products like integrity messages (e.g. Ziebart et al. 2007) are

also required but beyond the scope of this thesis and thus ignored throughout.

7.2.2 Augmentation service providers

An augmentation service for the above global service is established by building a dense network

of reference stations covering a relatively small area. Note that these stations have to receive

the satellite products transmitted by the global service.

Unlike the global service where all raw GNSS measurements should be sent to the processing

center, within an augmentation service, each reference station can independently generate and

disseminate its own atmospheric corrections after it has performed ambiguity resolution. The

method for this correction generation refers to Section 3.4 and 3.6. Hence, no processing

center is required for such an augmentation services and thus each reference station is actually

independent. In this manner, an augmentation service can be easily established and is quite

flexible and somewhat cost-effective, compared with current NRTK services.

In addition, slant ionospheric and tropospheric delays are the primary products at each

reference station in an augmentation service. Normally, these two products are generated

separately on account of their different properties. Note that a prediction of these atmospheric

delays over a short time is necessary considering communication delays.

7.2.3 Global single users

For global single users without any assistance from an augmentation service above, they need

to first achieve ambiguity-fixed solutions in an environment of open sky view, and then begin

to estimate ionospheric delays at all ambiguity-fixed epochs to allow for rapid re-convergences

in the case of GPS-adverse environments (refer to Section 3.4 and 6.4). Hence, for these users,

they benefit from the advantage of PPP, i.e. no need of any synchronous GPS measurements

from a nearby reference station, and can still achieve ambiguity-fixed solutions that are greatly

enhanced by rapid re-convergences developed in this thesis. However, as demonstrated in Section

3.4.3 and 6.3.3, neither ionospheric delays can be precisely predicted over a rather long period

nor the preferable single-epoch precise positioning can be maintained for a long period. As a

result, ambiguity-fixed solutions at these single users are still somewhat vulnerable and thus can

be relatively easily lost.

On the other hand, for global single users with full assistance from an augmentation service,

they can use the products of atmospheric delays from several reference stations and precisely

interpolate the delays for their positions. These interpolated atmospheric delays are then used

to rapidly achieve ambiguity-fixed solutions. Hence, the first ambiguity-fixed solution can be

rapidly achieved and the single-epoch precise positioning can also be implemented. Moreover,

ZTDs are no longer estimated at these single users. Note that these users can still generate

their own atmospheric delays in case of any interrupted transmissions of atmospheric delays by

reference stations. However, as indicated in Section 3.6.2, a dense network of reference stations

for an augmentation service will totally devalue the advantages of PPP-RTK over NRTK.
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7.2.4 Comparison with NRTK

GPS-based NRTK has been a very popular precise positioning service in many countries. The

comparisons between the global PPP-RTK and NRTK are briefly summarized as follows:

• Global PPP-RTK is a precise positioning service on a global scale whereas NRTK is a

regional service. Hence, global PPP-RTK can be used in oceanic or desert areas.

• Ambiguity resolution in global PPP-RTK is only achieved by first wide-lane and then

narrow-lane resolutions. However, ambiguity resolution in NRTK is rather flexible and

more robust. Specifically, ambiguity resolution can be directly performed on L1 or L2

measurements, other than wide-lane or narrow-lane measurements.

• Without an augmentation service, global PPP-RTK needs a few tens of minutes to achieve

the first ambiguity-fixed solution. However, NRTK can normally provide instantaneous

ambiguity-fixed solutions.

• The transmission bandwidth for satellite products of the global PPP-RTK depends only

on the satellite number, whereas that for the corrections of NRTK depends on the number

of reference stations and the technique applied (refer to Section 1.2.4). Hence, the scale

expansion of an NRTK service is handicapped by this bandwidth limit.

7.2.5 Potential application: Geohazard early warning

Devastating natural hazards like earthquakes and tsunamis expose the deficiencies of human

ability in mitigating these catastrophes. For example, without any early warning, the 2004

Sumatra-Andaman tsunami, the 2008 Wenchuan earthquake and the 2010 Haiti earthquake

caused a total loss of about 0.53 million fatalities and 50 billion sterling. For earthquakes of

large magnitude, seismometers suffer from saturations; and for tsunamis in open oceans, tide

gauges are confined within coastal areas, cabled seafloor pressure sensors are very expensive to

deploy and inland seismometers cannot directly measure the tsunami waves. In this case, one

tool of great promise is the high-rate continuous GPS stations which can be relatively cheaply

and flexibly established both inland and offshore. Currently, high-rate GPS has the potential

of directly measuring displacements at millimeter level at a rate of 1 Hz up to 50 Hz (Bock

et al. 2004; Genrich and Bock 2006). More importantly, GPS is characterized as a global and

all-weather system. Therefore, high-rate GPS can potentially provide valuable input to early

warning systems for earthquakes and tsunamis around the globe (Allen et al. 2009).

A Earthquake

Precise GPS positioning has been used to determine accurate ground motions over a wide range

of frequencies and amplitudes (Anzidei et al. 2009; Larson 2009). High-rate GPS is a valuable

tool in studying the earthquake process, and supplementing seismometers by enlarging the range

of dynamic deformation and frequency spectrum (e.g. Banerjee et al. 2007; Larson et al. 2003;

Miyazaki et al. 2004). Langbein and Bock (2004) reported that 1-Hz GPS positioning could

provide a horizontal accuracy of better than 6 mm with a confidence level of 99%. Elósegui

et al. (2006) found that the RMS error of 1-Hz GPS positions over a 15-minute duration of

a simulated seismic event was 2.5 mm and about 96% of all position errors were smaller than

5 mm.

However, all these results focus on post-event studies, whereas earthquake early warnings

require real-time GPS positioning in order to rapidly respond to devastating catastrophes (Allen
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et al. 2009). In recent years, high-rate GPS has been preliminarily assessed for the earthquake

early warning in California (Crowell et al. 2009). A network data processing technique was used

and thus raw GPS measurements had to be transferred in real time to a central processing facility

(Bock et al. 2000). Obviously, this transfer of huge data will delay the issue of a potential alert.

Even worse, a specific station has to be presumed stable in this network processing, which is often

not achievable during an earthquake of large magnitude. In this case, PPP is preferred because

it is an onsite data processing technique in nature. No raw measurements have to be transferred.

More importantly, PPP is three orders of magnitude faster than the network processing (Blewitt

2008). Furthermore, the developments in rapid ambiguity resolution improve the efficiency of

achieving the centimeter- or even millimeter-level positioning accuracy. Therefore, the global

PPP-RTK proposed in this thesis is of great potential for the earthquake early warnings.

B Tsunami

To date, a good number of studies have proposed that high-rate GPS should be included in

tsunami early warning systems (e.g. Blewitt et al. 2006, 2009; Sobolev et al. 2007). Blewitt

et al. (2006) suggested tracking the mean displacement of the Earth’s surface related to the

arrival of seismic waves by determining the earthquake’s true size and the tsunami potential

with up to 15-minute GPS measurements; moreover, Blewitt et al. (2009) demonstrated that

the spatial pattern, magnitude and timing of GPS stations’ displacement can be inverted to

quantitatively derive the earthquake source and thus predict the displacement field of the ocean

bottom, ultimately providing initial conditions for tsunami models; finally, Sobolev et al. (2007)

proposed a near-field GPS array to measure both vertical and horizontal displacements and

resolve higher-order features of the slip distribution on the fault. However, all these suggested

approaches employ land-based GPS positioning at permanent stations to identify the earthquakes

that result in tsunamis. As a result, the only official information forecasted at present by a

typical tsunami early warning system is the tsunami arrival time. Titov et al. (2005) pointed

out that the next-generation tsunami forecast should provide estimates of all critical tsunami

parameters including amplitudes, inundation distances and current velocities with direct tsunami

measurements. It can be found that measuring earthquakes with inland and onshore GPS

stations is actually an indirect approach of identifying the possibly resulting tsunamis.

Buoy-borne GPS positioning can directly measure the tsunami evolution. Kato et al. (2005)

used an offshore buoy, which is only 13 km away from the coastal reference station, to measure

the amplitude of the tsunami waveforms to an accuracy at the centimeter level. Falck et al.

(2010) also deployed buoys along the coastal line of Indonesia, on the basis that these buoy-

borne GPS receivers cannot be far from the onshore reference stations if the centimeter-level

positioning accuracy is required. Although buoy-borne GPS receivers can directly record the

tsunami evolution, they cannot be located in the open ocean if relative positioning is adopted.

However, successfully identifying a devastating tsunami in the open ocean will provide sufficient

valuable time for the people to evacuate from coastal areas. In this case, the global PPP-RTK

proposed in this thesis becomes a good choice which can achieve centimeter- or even millimeter-

level positioning accuracy even if no nearby reference stations are available (refer to Section

5.5).
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7.3 How many reference stations for this global PPP-RTK?

Deploying and maintaining a global network of reference stations is quite costly and complicated.

Hence, reducing the number of reference stations, but still achieving a satisfactory positioning

quality is of great concern before a global PPP-RTK service discussed in Section 7.2 can be

implemented. In this section, three global networks are used to generate the GPS satellite

orbits, clocks and FCBs. Then another global network is used to quantify the performance of

real-time PPP with ambiguity resolution in order to illustrate how many reference stations are

sufficient to support a relatively robust global PPP-RTK service.

7.3.1 Data and models

Daily GPS measurements on December 30th 2009 were collected from three networks that were

composed of 58, 38 and 18 IGS globally distributed reference stations (Figure 7.2a, 7.2b and

7.2c). The data sampling interval is 30 s. These networks were already used by ESOC to

estimate real-time satellite orbits and clocks (Agrotis et al. 2010b), and here they were further

used for the FCB determination. Note that ESOC orbits and clocks were therefore used in this

section. The orbit quality was comparable with that of the IGS ultra-rapid products and the

clock accuracy was around 0.2 ns (Agrotis et al. 2010a,b). Moreover, a global network of 59

reference stations (Figure 7.3) was used to test real-time PPP by applying the orbits, clocks and

FCBs generated from these three networks.

For data modeling, absolute phase centers (Schmid et al. 2007), phase-wind up effects (Wu

et al. 1993) and station displacements proposed in IERS conventions 2003 (McCarthy and Petit

2004) were applied. A cut-off angle of 7◦ was set for usable measurements and an elevation-

dependent weighting strategy was applied to measurements at low elevations (Gendt et al. 2003).

Moreover, ZTDs were estimated every one hour by applying the global pressure/temperature

model and the global mapping function (Boehm et al. 2006a), while horizontal tropospheric

gradients every 12 hours (Bar-Sever et al. 1998). In addition, daily position estimates were used

as ground truths to assess the accuracy of real-time epoch-wise position estimates.

7.3.2 Results

Table 7.1, 7.2 and 7.3 respectively present the performance of real-time PPP with ambiguity

resolution at 59 simulated mobile stations when the 58-station, 38-station and 18-station global

networks are used for the satellite orbit, clock and FCB determination. Overall, the performance

for the 58-station network is the best among the three. Specifically, for the 58-station network,

a mean observation period of about 1028 s is required before ambiguity-fixed solutions can be

achieved. During 24 hours, ambiguity-fixed solutions are achieved at 97.1% of all epochs on

average and the mean RMS statistics of differences between the epochs-wise and daily position

estimates reach 0.9, 1.0 and 3.7 cm for the East, North and Up components, respectively.

When the 38-station network is used, the mean time to fix ambiguities is slightly increased

to 1101 s. The rate of ambiguity-fixed epochs is slightly reduced to 96.4% of all epochs and

the RMS statistics slightly rise to 1.0, 1.1 and 4.0 cm. However, when the 18-station network

is used, ambiguity-fixed solutions cannot be achieved at all 59 test stations; on average, the

time to fix ambiguities dramatically increases to 13165 s and the rate of ambiguity-fixed epochs

significantly decreases to 30.1%. The RMS statistics are also increased to 1.6, 1.5 and 5.1 cm.
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(a) 58 stations

(b) 38 stations

(c) 18 stations

Figure 7.2: Three global networks of reference stations for the determination of GPS satellite orbits,
clocks and FCBs
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Figure 7.3: A global network of 59 reference stations used to assess real-time PPP with ambiguity
resolution

From these statistics, the relatively long observation period before an ambiguity-fixed solution

can be achieved coincide with the conclusion in Section 5.6.4. It is possible to achieve a high rate

of ambiguity-fixed epochs among all epochs when only 38 globally distributed reference stations

are employed. Increasing this number of reference stations up to 58 only minimally improves

the performance, but decreasing this number to only 18 significantly degrades the performance.

Furthermore, from Table 7.1 and 7.2, most times to fix ambiguities at 59 test stations are

smaller than 1800 s. However, in Table 7.3, many times can be as large as ten thousand seconds.

This is actually because narrow-lane FCBs for some satellite pairs are not always obtainable

during 24 hours. As discussed in Section 2.2.2, narrow-lane FCBs are estimated by averaging

the fractional parts of ambiguity estimates at all involved stations. If the number of these

involved stations is smaller than five, the resulting narrow-lane FCB estimates are deemed not

reliable and removed in this thesis. As a result, ambiguity resolution is not always possible at

all test stations. This also explains why the rate of ambiguity-fixed epochs among all epochs is

so small at most test stations in Table 7.3.

Therefore, according to the statistics in these three tables, a global network of about 38

stations distributed like Figure 7.2b can lead to a global PPP-RTK service which can guarantee

a rate of over 95% for ambiguity-fixed epochs among all epochs.

Table 7.1: Performance of real-time PPP with ambiguity resolution when the 58-station global
network is used (see Figure 7.2a). “Time” means the time (s) used to achieve the ambiguity-fixed
solution. “Rate” means the rate (%) of ambiguity-fixed epochs in all epochs. “East”, “North” and
“Up” denote the RMS (cm) of position differences from the daily position estimates for the East,
North and Up components, respectively

Station Time Rate East North Up Station Time Rate East North Up

ABMF 630 99.2 1.2 1.4 6.7 MAS1 780 97.0 0.7 0.7 3.6

ADIS 720 99.0 1.0 0.9 3.7 MATE 720 97.6 0.6 0.7 2.7

AJAC 630 97.8 0.9 1.0 3.5 MDVJ 1440 96.9 0.8 0.9 2.8

ANKR 810 97.5 0.6 0.6 2.3 MOBS 630 99.3 1.1 2.7 5.5

continued on next page
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continued from previous page

Station Time Rate East North Up Station Time Rate East North Up

BAKE 630 99.3 0.4 0.7 2.4 MTKA 1200 94.6 0.9 1.2 2.7

BOGI 1800 86.8 0.7 0.9 3.0 NANO 630 99.3 0.5 0.8 2.5

BRST 780 97.5 0.6 0.9 3.0 NICO 1770 96.6 0.6 0.7 3.2

CAS1 690 99.2 0.6 0.9 3.6 NOVM 1650 92.6 0.7 0.9 2.9

COCO 660 98.2 1.2 0.9 4.3 NTUS 1740 96.1 1.0 1.0 3.9

CONZ 630 85.8 0.7 0.8 2.6 NURK 1410 95.5 1.9 0.9 4.5

DARW 960 86.7 2.5 2.0 7.4 OHI3 630 98.5 0.5 0.8 2.8

DGAV 630 99.3 0.8 0.9 2.9 PALV 630 99.3 0.6 0.8 2.4

DLFT 660 97.7 0.6 0.9 3.0 RCMV 1080 97.6 1.8 1.3 8.5

FAA1 3120 96.0 1.5 1.5 6.8 RECF 690 99.2 1.3 1.5 4.4

FAIV 930 99.0 0.6 1.0 3.0 REUN 4320 94.9 1.4 1.5 6.8

FFMJ 690 97.5 0.6 0.9 2.8 ROAP 3630 90.8 1.5 2.0 6.0

FRDN 630 99.3 0.6 0.8 2.4 SALU 630 99.3 1.4 1.2 5.7

GANP 720 97.6 0.7 0.9 3.1 SASS 720 97.7 0.5 0.8 2.8

GODZ 1020 98.9 0.6 0.7 2.7 SAVO 630 99.3 1.1 0.8 4.0

HOB2 1530 98.3 1.0 1.0 3.1 SCH2 630 99.3 0.8 0.9 2.2

HUEG 690 97.7 0.5 0.9 2.7 STR1 780 99.1 1.0 1.7 6.0

IQAL 630 99.3 0.5 0.7 2.3 SVTL 960 97.8 0.8 0.8 2.8

IRKJ 2820 96.0 0.7 0.7 2.4 TABV 630 99.3 0.7 0.9 3.5

KHAJ 630 94.0 0.7 0.9 3.1 THU2 630 99.3 0.5 0.6 3.0

KHAR 990 97.2 0.6 0.8 2.8 VALD 630 97.2 0.6 0.7 1.9

KOKV 900 97.7 2.5 2.9 7.7 WHIT 810 99.1 0.4 0.6 1.7

KOUC 960 97.7 1.2 1.5 6.0 WTZJ 690 97.3 1.1 1.0 3.3

KOUR 630 99.3 1.1 0.8 3.4 WTZZ 630 97.8 0.7 0.8 2.7

MAL2 660 98.9 0.9 0.6 2.8 XMIS 780 98.0 1.2 0.8 3.9

MARS 750 97.0 0.7 0.9 3.5 Mean 1028 97.1 0.9 1.0 3.7

Table 7.2: Performance of real-time PPP with ambiguity resolution when the 38-station global
network is used (see Figure 7.2b). Meanings of columns refer to Table 7.1

Station Time Rate East North Up Station Time Rate East North Up

ABMF 630 99.2 1.1 1.3 6.7 MAS1 630 92.6 2.1 1.0 7.0

ADIS 660 99.2 1.0 0.9 3.6 MATE 870 97.4 0.7 0.8 3.1

AJAC 630 97.8 1.0 1.1 3.9 MDVJ 1380 96.9 0.9 0.9 3.1

ANKR 2010 96.1 0.8 0.7 2.5 MOBS 630 99.3 1.4 1.9 6.9

BAKE 630 99.3 0.7 1.0 3.6 MTKA 1260 94.0 1.1 1.3 5.0

BOGI 4860 81.2 0.9 1.0 3.1 NANO 690 99.2 0.7 1.0 3.7

BRST 960 97.2 0.6 1.0 3.4 NICO 1590 96.8 0.7 0.8 3.4

CAS1 690 99.2 0.7 1.0 3.5 NOVM 750 93.6 0.9 0.9 4.2

COCO 630 98.2 1.1 0.9 4.6 NTUS 1740 96.6 1.1 1.1 4.3

CONZ 690 86.5 0.7 0.8 2.5 NURK 690 95.9 0.9 0.8 3.8

DARW 750 93.8 2.3 2.2 7.5 OHI3 630 98.5 0.5 0.9 2.6

DGAV 840 99.0 0.8 0.9 2.7 PALV 690 99.2 0.6 0.9 2.5

DLFT 630 97.7 0.7 1.0 3.2 RCMV 1050 77.4 1.9 1.5 8.4

FAA1 1110 95.7 1.2 1.8 6.4 RECF 750 99.2 1.3 1.2 4.2

FAIV 630 99.3 0.8 1.1 3.0 REUN 3180 94.8 1.4 1.4 6.1

FFMJ 1110 96.9 0.9 1.0 3.3 ROAP 3450 89.6 1.7 2.7 6.5

FRDN 630 99.3 0.6 0.9 2.6 SALU 690 99.2 1.4 1.2 6.1

continued on next page
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Station Time Rate East North Up Station Time Rate East North Up

GANP 1200 96.9 0.9 1.6 3.9 SASS 1350 97.0 0.6 0.8 2.6

GODZ 960 98.9 0.6 0.8 3.5 SAVO 780 99.1 0.9 0.8 3.9

HOB2 1530 98.2 1.0 1.1 3.8 SCH2 630 99.3 0.8 1.0 2.2

HUEG 1110 96.9 0.7 1.0 3.3 STR1 870 99.0 1.0 1.2 4.9

IQAL 630 99.3 0.6 0.7 3.0 SVTL 1110 97.5 0.9 0.9 2.7

IRKJ 780 98.4 0.7 0.9 2.3 TABV 630 99.3 0.9 1.1 4.6

KHAJ 690 93.4 0.8 1.1 4.0 THU2 630 99.3 0.6 0.6 3.8

KHAR 1320 96.9 0.8 0.9 3.2 VALD 630 97.2 0.6 0.8 2.4

KOKV 630 98.4 1.5 1.8 6.3 WHIT 630 99.3 0.7 0.9 2.5

KOUC 3120 85.5 3.5 3.1 6.2 WTZJ 1680 96.0 1.1 1.0 4.0

KOUR 690 99.2 1.1 0.8 3.6 WTZZ 1530 96.8 0.8 0.8 2.9

MAL2 1140 98.5 0.8 0.6 2.6 XMIS 1110 97.6 1.3 0.9 4.4

MARS 810 96.8 0.8 1.0 4.0 Mean 1101 96.4 1.0 1.1 4.0

Table 7.3: Performance of real-time PPP with ambiguity resolution when the 18-station global
network is used (see Figure 7.2c). Meanings of columns refer to Table 7.1

Station Time Rate East North Up Station Time Rate East North Up

ABMF 3540 56.7 1.1 1.1 7.1 MAS1 8070 17.4 0.9 1.4 4.3

ADIS 15150 47.1 1.3 0.9 5.7 MATE 8220 37.8 1.0 1.4 4.1

AJAC 8220 35.7 1.4 1.9 6.0 MDVJ 8160 27.5 3.1 2.2 3.9

ANKR 8220 49.7 2.1 1.5 7.7 MOBS – 0.0 – – –

BAKE 3360 12.1 2.1 1.2 3.6 MTKA 29850 8.2 1.3 0.8 2.9

BOGI 8070 29.4 0.9 2.6 3.2 NANO 3360 15.9 1.8 1.4 2.9

BRST 8070 31.6 1.0 1.1 3.1 NICO 8220 54.0 1.0 1.0 2.7

CAS1 – 0.0 – – – NOVM 14340 22.0 1.7 1.0 3.2

COCO 35580 9.5 2.1 0.5 6.4 NTUS 20220 49.8 1.6 1.3 5.3

CONZ 26010 44.2 1.1 1.3 4.5 NURK 14340 43.5 1.5 1.0 3.6

DARW – 0.0 – – – OHI3 39390 16.7 0.7 1.1 3.9

DGAV 26490 20.7 2.1 1.1 3.6 PALV 6870 10.2 0.8 1.6 9.0

DLFT 6960 27.2 0.8 1.9 6.9 RCMV 26100 9.5 0.8 1.1 5.0

FAA1 57300 20.1 1.3 0.7 4.1 RECF 4230 63.2 1.4 1.6 4.7

FAIV 4710 13.4 0.8 2.0 5.9 REUN – 0.0 – – –

FFMJ 6960 28.0 1.0 2.2 7.2 ROAP 13890 12.1 2.5 1.6 9.9

FRDN 3540 28.5 1.2 2.9 2.9 SALU 16350 60.4 2.0 1.6 5.9

GANP 13890 16.4 3.0 1.4 8.6 SASS 8070 26.1 2.1 3.0 10.4

GODZ 3540 32.9 1.0 1.7 3.4 SAVO 15120 52.1 1.0 1.4 4.5

HOB2 – 0.0 – – – SCH2 6960 18.8 2.2 2.3 2.5

HUEG 6960 28.0 1.0 1.7 6.8 STR1 – 0.0 – – –

IQAL 3540 15.7 2.2 1.9 3.5 SVTL 11940 10.9 3.9 3.1 7.9

IRKJ 8220 24.1 2.1 2.5 6.1 TABV 3540 14.8 2.5 1.3 5.5

KHAJ 54540 5.9 1.9 2.1 5.0 THU2 – 0.0 – – –

KHAR 8070 51.4 1.1 1.2 3.3 VALD 3540 34.3 1.2 2.1 2.5

KOKV 4710 15.3 1.8 1.6 7.7 WHIT 3540 18.1 1.6 1.1 4.9

KOUC – 0.0 – – – WTZJ 8220 32.3 2.6 1.3 5.4

KOUR 4230 86.4 1.1 0.8 4.4 WTZZ 8220 29.7 1.3 1.7 7.1

MAL2 14340 69.3 0.7 0.5 2.7 XMIS 28350 19.4 1.8 1.1 6.3

MARS 8070 31.5 1.4 1.4 4.8 Mean 13165 30.1 1.6 1.5 5.1
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7.4 A case study on the 2009 L’Aquila earthquake

The global PPP-RTK can achieve centimeter- or even millimeter-level positioning accuracy even

if no nearby reference stations are available (refer to Section 5.6 and 7.3). This section will show

a case study on monitoring the April 6th 2009 L’Aquila earthquake with this PPP-RTK.

7.4.1 Data, models and methods

A Mw 6.3 earthquake struck the city of L’Aquila, Italy on April 6th 2009, resulting in hundreds

of deaths and severe damage. To test the PPP-RTK, 18 1-Hz stations across Europe were

selected from the EUREF-IP project (Figure 7.4) to estimate satellite clocks and FCBs by fixing

predicted satellite orbits and ERPs from the IGS in a simulated real-time manner (i.e. forward

data filtering without backward smoothing), but ignoring communication delays which usually

occur in practice. A station M0SE at Rome was chosen as a GPS seismometer (Figure 7.4).

It was about 85 km from the epicenter. Meanwhile, absolute antenna phase centers (Schmid

et al. 2007), phase wind-up corrections (Wu et al. 1993) and station displacements according to

the IERS 2003 conventions (McCarthy and Petit 2004) were applied. Ambiguity resolution at a

single receiver was also applied in real time.

High-rate epoch-wise position estimates are significantly affected by multipath effects (e.g.

Bilich et al. 2008; Larson et al. 2007). Hence, the GPS measurements at M0SE on April 5th

were also processed in order to perform sidereal filtering at the coordinate level to mitigate the

multipath effects (Ragheb et al. 2007).

7.4.2 Results

Figure 7.5 shows the displacements at M0SE for the East and North components. A period of

360 s is presented and the mean of epoch-wise position estimates during this period has been

removed. The range of ±2σ for each component is shown in order to attempt to distinguish the

spurious and true movement of M0SE. In Figure 7.5, the time when the earthquake occurred

is denoted by the left vertical line whilst the approximate time when the earthquake waveform

reached M0SE by the right vertical line. Note that the waveform speed is presumed to be about

3 km/s. Hence, the duration for the waveform reaching M0SE is about
85

3
≈ 28 s. As shown in

Figure 7.5, after the earthquake waveform reached M0SE, the scatter of the epoch-wise estimates

for the horizontal components becomes a little greater. From this scatter, it can be inferred that

the shake of M0SE due to this earthquake lasted for about 30 to 40 s.

In order to clearly describe the shake of M0SE during the earthquake, Figure 7.6 shows the

estimated horizontal movement of M0SE before, during and after the earthquake. Corresponding

to Figure 7.5, the left, middle and right subfigures of Figure 7.6 show the shake from 5510 to

5590 s, from 5590 to 5670 s and from 5670 to 5750 s, respectively. These three subfigures

correspond to the aseismic, co-seismic and post-seismic periods. It can be easily found that

the scatter of horizontal positions during the earthquake is much more pronounced than those

before and after the earthquake, clearly demonstrating the shake of M0SE due to the L’Aquila

earthquake.
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Figure 7.4: GPS stations for monitoring the 6th April 2009 L’Aquila earthquake. Red solid circles
denote reference stations used for the satellite clock and FCB determination and the black triangle
with name aside denotes the station used as a GPS seismometer

Figure 7.5: Displacements for the East and North components at M0SE due to the L’Aquila
earthquake. The horizontal dashed lines denote two times the formal errors of the East and North
components. The East component is offset by 1 cm whereas the North component by −1 cm for
clarity

Figure 7.6: Estimated horizontal movement of M0SE before, during and after the L’Aquila
earthquake
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7.5 Summary

This chapter is based on the theories and results presented in Chapters 2, 3, 5 and 6, and suggests

a prototype of a global PPP-RTK service which relies on real-time PPP that is greatly enhanced

by ambiguity resolution and rapid convergences or re-convergences. The potential application

of this PPP-RTK service to geohazard early warnings is also discussed. Then the interesting

question that how many reference stations are sufficient to support such a global PPP-RTK

service is preliminarily discussed by comparing three typical network distributions. Finally, a

case study on the April 6th 2009 L’Aquila earthquake is presented.





Chapter 8

Conclusions and Perspectives

8.1 Summary

Over the past decade, PPP has been widely applied to many scientific and commercial fields due

to its high computational efficiency, no need for any synchronous measurements from a nearby

reference station and homogeneous positioning quality on a global scale. However, it is well-

known that PPP suffers from unresolved ambiguities and slow convergences to ambiguity-fixed

solutions. Hence, this thesis aims at improving PPP by resolving ambiguities for a single receiver

and accelerating convergences to ambiguity-fixed solutions in order to achieve centimeter-level

positioning accuracy with only a few seconds of measurements.

In this thesis, ambiguity resolution is primarily based on the method by Ge et al. (2008),

but four improvements, i.e. the derivation of undifferenced FCBs, one FCB per satellite-pair

pass over a regional area, implementation of real-time ambiguity resolution and constraints

from integer double-difference ambiguities, are developed in this thesis. These improvements

are quantitatively assessed in post-processing and real-time PPP. In addition, one of the main

contributions of this thesis is the theoretical proof and empirical verification for the equivalence of

ambiguity-fixed position estimates derived from the two recognized methods for PPP ambiguity

resolution, i.e. the FCB- and IRC-based methods.

On the other hand, for the first time, a method for effectively re-achieving ambiguity-fixed

solutions in real-time PPP with only a few seconds of measurements is originally developed

and quantitatively assessed in this thesis. This method is based on the precisely predicted

ionospheric delays generated by PPP users themselves, and hence the advantage of no need for

any raw measurements from a nearby reference station is preserved and the practicability of

real-time PPP is greatly improved. In addition, a strategy for achieving the first ambiguity-

fixed solution is also proposed in this thesis. This strategy relies on a dense network of reference

stations from which ionospheric delays can be precisely interpolated for PPP users.

Finally, a global PPP-RTK prototype is suggested in this thesis based on the above methods.

The question that how many reference stations are sufficient to support this global PPP-RTK

and its potential application in geohazard early warnings are discussed. In this chapter, the

conclusions of this thesis are highlighted from two aspects, i.e. the theoretical analysis and the

data analysis. The contributions and perspectives of this thesis then end this chapter.

129
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8.2 Conclusions on the theoretical analysis

8.2.1 Integer ambiguity resolution

Methods for ambiguity resolution at a single receiver have two categories, i.e. the FCB- and IRC-

based methods. The FCB-based methods perform ambiguity resolution on differential ambiguity

estimates by correcting the FCBs assimilated into these ambiguity estimates. Note that FCBs do

not apply to measurement modeling. This is because FCBs are derived from the undifferenced

ambiguity estimates for a network of reference stations. An assumption of constant FCBs over

the observation period is required in the theoretical derivation of the FCB-based methods. The

FCB-based methods are compatible with the conventional PPP proposed by Zumberge et al.

(1997) and thus can easily supplement the generation of IGS satellite products.

On the other hand, the IRC-based methods perform ambiguity resolution on undifferenced

ambiguity estimates by applying the IRCs to the measurement modeling. Note that the integer

property of an undifferenced ambiguity is preserved in the estimation. This is because the IRCs

are estimated in a network solution by first fixing undifferenced ambiguities to integers. No

assumption on FCBs’ temporal or spatial properties is required. The IRC-based methods are

not compatible with the conventional PPP and consequently the IRCs cannot be combined with

the IGS satellite clocks.

8.2.2 Method comparison

The ambiguity-fixed position estimates of the FCB- and IRC-based methods are theoretically

identical. This implies that a systematic difference between the ambiguity-fixed position esti-

mates in practice, if existing, should not be caused by the differences between the two methods

themselves. Ideally, the difference between the actual estimates should be minimal and random

in nature. However, we have to keep in mind that this theoretical equivalence is rigorously based

on the assumption that FCBs are hardware-dependent and only they are assimilated into the

to-be-estimated parameters of PPP after a least squares adjustment.

8.2.3 Attempts for rapid convergences

To date, few feasible or effective methods have been developed to significantly accelerate con-

vergences to ambiguity-fixed solutions in real-time PPP. To my knowledge, four attempts have

been performed by: estimating the pseudorange precision; constraining the position parameters;

improving the ambiguity validation; or applying the ambiguity resolution. Although the results

of all four attempts are inconclusive, they at least confirm that the precision of pseudorange or

unambiguous measurements is critical to the convergence speed, and demonstrate that neither

ambiguity resolution nor improved ambiguity validation can effectively lead to a convergence

period of less than a few seconds.

8.2.4 Rapid re-convergences to ambiguity-fixed solutions

Rapid re-convergences can be achieved by exploiting the high temporal correlation of ionospheric

delays within a short period of up to a few minutes. In this thesis, ionospheric delays at

all ambiguity-fixed epochs are estimated and precisely predicted to succeeding epochs in the

case of re-convergences. These predicted ionospheric delays are first used to correct wide-lane
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measurements in order to rapidly resolve wide-lane ambiguities. Then the resulting precise

ionosphere-corrected unambiguous wide-lane measurements are used to tightly constrain and

thus significantly accelerate subsequent narrow-lane ambiguity resolution. This method does

not rely on the satellite-geometry change, but on the sufficient shrink of the search space for

integer candidates. Key issues for this method include the temporal properties of all errors

assimilated into ionospheric delay estimates, the predicting strategy for these delays, and the

model consistency between estimating ionospheric delays and resolving wide-lane ambiguities.

8.3 Conclusions on the data analysis

8.3.1 One FCB per satellite-pair pass over a regional area

For ambiguity resolution, FCBs are divided into wide-lane and narrow-lane ones. Wide-lane

FCBs have good stability over at least several days, even if they are estimated with a global

network. However, narrow-lane FCB estimates manifest instability even within 24 hours. This

instability is caused by non-hardware-dependent errors, e.g. tropospheric delays, that are

assimilated into narrow-lane FCB estimates. Therefore, a narrow-lane FCB estimate contains

more than a real hardware bias.

For a global network, Ge et al. (2008) suggested a 15-minute mean to estimate narrow-lane

FCBs of high precisions. On the other hand, for a regional network like the EPN, this thesis

suggests that narrow-lane FCBs can be precisely estimated once per satellite-pair pass over this

network. Tests in this thesis demonstrate that most narrow-lane FCB estimates achieve high

precisions of better than 0.1 cycles (3σ). Note that this strategy is developed not because it can

outperform the 15-minute mean in the precisions of narrow-lane FCB estimates, but because

it produces much fewer, but still sufficiently precise, narrow-lane FCBs for a regional network,

thereby improving the efficiency of disseminating FCBs to users.

8.3.2 Post-processing PPP with ambiguity resolution

Ambiguity resolution can significantly improve the positioning quality of sub-daily PPP. Tests on

the EPN demonstrate that ambiguity resolution reduces the RMS of differences between hourly

and daily position estimates from 3.8, 1.5 and 2.8 cm to 0.5, 0.5 and 1.4 cm for the East, North

and Up components for the inside-EPN stations, respectively. The success rate of ambiguity

resolution is up to 98.75%. Surprisingly, EPN-based FCB estimates are applicable to ambiguity

resolution for outside-EPN stations which can be up to 4000 km away. The RMS statistics are

also reduced from 3.7, 1.5 and 3.2 cm in ambiguity-float solutions to 0.6, 0.6 and 2.0 cm in

ambiguity-fixed solutions. This finding thus suggests a great advantage of ambiguity-fixed PPP

over NRTK.

Note that correct ambiguity resolution does not always lead to an improved positioning

accuracy. However, for hourly PPP at inside-EPN stations, the rate of these problematic

solutions is greatly reduced from 1.13% to only 0.15% if tropospheric delays are mitigated with

accurate a priori values, hence demonstrating that estimating ZTDs is a crucial factor for the

occurrence of these problematic solutions.

Sub-daily PPP with more than one hour of measurements can further improve on the

hourly PPP. Specifically, the success rate of ambiguity resolution reaches 100.0% and the rate

of problematic solutions above falls to 0.7% if three hours of measurements are used. Note that
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increasing the observation period from one to three hours minimally reduces the horizontal RMS,

but clearly improves the vertical RMS in the ambiguity-fixed solutions.

In addition, the radius of a ring reference network centered on a remote user receiver can

affect the performance of ambiguity-fixed kinematic PPP. When the radius is enlarged from 900,

2000 to 3600 km, the RMS statistics of epoch-wise position differences from ground truths are

slightly increased from 0.6, 0.5 and 2.6 cm, 0.5, 0.7 and 2.8 cm to 0.8, 1.0 and 3.2 cm for the

East, North and Up components respectively. However, the efficiency of ambiguity resolution is

negligibly affected by this radius increase.

8.3.3 Real-time PPP with ambiguity resolution

Ambiguity resolution has the potential of leading to PPP-RTK in which PPP provides rapid

convergences to the reliable centimeter-level positioning accuracy. It is illustrated that at least

10 minutes of measurements are required for most receiver types to reliably fix about 90% of

wide-lane ambiguities corresponding to elevations of >30◦, and over 20 minutes to fix about

90% of those corresponding to elevations of <30◦. Moreover, several tens of minutes are usually

required for a regional network to stabilize a narrow-lane FCB estimate to an accuracy of far

better than 0.1 cycles. Within one hour, ambiguity resolution can significantly reduce the RMS

of differences between epoch-wise and daily position estimates by an order of magnitude from

13.7, 7.1 and 11.4 cm to 0.8, 0.9 and 2.5 cm for the East, North and Up components respectively,

but a few tens of minutes is required to achieve the first ambiguity-fixed solution. In addition, a

globally distributed network of 38 stations can lead to a global PPP-RTK which can guarantee

a success rate of over 95% for the ambiguity-fixed epochs.

Therefore, PPP-RTK currently cannot satisfy the critical requirement of instantaneous

precise positioning where ambiguity-fixed solutions have to be achieved with at most a few

seconds of measurements. However, this PPP-RTK can still be applied to some near-real-time

remote sensing applications, such as GPS meteorology and geohazard early warnings.

8.3.4 Integer constraints from double-difference ambiguities

Applying double-difference ambiguity resolution to a PPP-based network solution can improve

the accuracy of narrow-lane FCB estimates. In a global network analysis over one year, the RMS

of differences for the East component between the daily and IGS weekly estimates is reduced

from 2.6 mm in solutions based on original narrow-lane FCBs to 2.2 mm in solutions based on

improved narrow-lane FCBs.

8.3.5 Method comparison

Ambiguity-fixed position estimates derived from the FCB- and IRC-based methods are identical

in theory. To verify this equivalence, one year of GPS data from a global network of about

350 stations were processed. The mean biases between all daily position estimates derived from

these two methods are only 0.2, 0.1 and 0.0 mm, whereas the standard deviations of all position

differences are only 1.3, 0.8 and 2.0 mm for the East, North and Up components, respectively.

Moreover, the differences of the position repeatabilities are below 0.2 mm on average for all three

components. The RMS of the position estimates minus those from the IGS weekly solutions for

the FCB-based method differs by below 0.1 mm on average for each component from that for the
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IRC-based method. Therefore, considering the recognized millimeter-level precision of current

GPS-derived daily positions, these statistics empirically demonstrate the theoretical equivalence

of the ambiguity-fixed position estimates derived from these two methods.

However, the different strategies of separating the FCBs from integer ambiguities in these

two methods lead to geographical-distribution patterns of their positioning discrepancy. For

instance, for the East component, the station-specific RMS statistics of the position differences

are well below 1.5 mm in Europe and North America with relatively dense networks, whereas

usually over 2.0 mm in oceanic areas and Africa with very sparse networks. Moreover, in terms

of the East position repeatability and the East RMS statistics against the IGS weekly solutions,

the FCB-based method performs slightly better over dense networks, whereas the IRC-based

method performs a little better over sparse networks.

Overall, the IRC-based method slightly outperforms the FCB-based method for the East

component. However, in practice, the FCB-based method is compatible with current IGS clock-

generation methods, whereas the IRC-based method is not, but can potentially lead to slightly

better positioning quality.

8.3.6 Rapid re-convergences to ambiguity-fixed solutions

In the case of re-convergences, ionospheric delays are precisely predicted to significantly accel-

erate ambiguity resolution. In a test for 90 static stations suffering from simulated total loss of

tracking, 93.3% and 95.0% of re-convergences to wide-lane and narrow-lane ambiguity resolutions

were achieved within five epochs of 1-Hz measurements respectively, even though the latency for

predicted ionospheric delays was up to 180 s. If this latency is prolonged, the prediction error

of ionospheric delays is increased, consequently reducing both percentages above. On the other

hand, for most rapid re-convergences, only one epoch of measurements is needed, implying that

the contribution of satellite-geometry changes to these rapid re-convergences is negligible.

In a test for a mobile van moving in a GPS-adverse environment where satellite number

significantly decreases and cycle slips frequently occur, only when the predicted ionospheric

delays are applied can the rate of ambiguity-fixed epochs be dramatically improved from 7.7%

to 93.6% of all epochs. Moreover, the RMS of position differences from the ground truth derived

from a post-processed short-baseline solution are 1.0, 1.3 and 2.7 cm for the East, North and Up

components respectively, which are slightly larger than but comparable with those of an NRTK

solution.

Therefore, my method for rapid re-convergences can potentially relieve the unrealistic

requirement of a continuous open sky view by most PPP applications and improve the practica-

bility of real-time PPP. Note that the effectiveness of this method is subject to the ionosphere

condition. A high ionosphere activity may fail a rapid re-convergence, even if the latency is less

than a few minutes.

8.4 Main contributions to knowledge

The foremost contributions of this thesis to the new knowledge are summarized as follows:

1. Theoretical proof for the equivalence of ambiguity-fixed position estimates

between the FCB- and IRC-based methods. For the first time, the controversy

on how to assess the methods for PPP ambiguity resolution, i.e. the FCB- and IRC-based
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methods, is concluded by proving the theoretical equivalence between their individual

ambiguity-fixed position estimates. Furthermore, through a substantial and representative

data processing, the actual performance of these methods on a global scale is quantified and

compared, consequently demonstrating the advantages and disadvantages of these methods

in practice. This empirical analysis can be a guidance for the future implementation of

these methods.

2. Real-time implementation of the FCB-based method. For the first time, a real-

time model for the FCB-based method is developed by carefully investigating the temporal

property of narrow-lane FCBs in a real-time scenario. Real-time PPP is of great inter-

est, especially to the engineering community, and hence a real-time implementation of

ambiguity-fixed PPP is essential and important.

3. Rapid re-convergences to ambiguity-fixed solutions. For the first time, a method

for rapid re-convergences of only a few seconds to ambiguity-fixed solutions in real-time

PPP is developed. This method can potentially relieve the unrealistic requirement of a

continuous open sky view by most PPP applications and improve the practicability of

real-time PPP, thus greatly enhancing its competitiveness against NRTK.

4. A prototype of global PPP-RTK service. This prototype design is based on all

techniques introduced or developed in this thesis. Current global real-time PPP services

cannot provide ambiguity-fixed solutions whereas NRTK services can hardly extend to a

global scale. However, this global PPP-RTK combines the merits of both global real-time

PPP and NRTK, i.e. providing ambiguity-fixed solutions as soon as possible on a global

scale.

8.5 Recommendations and Perspectives

The recommendations and perspectives of this thesis are presented as follows:

1. Quality control of the integer ambiguity resolution in real-time PPP. Narrow-

lane ambiguities suffer from a rather short wavelength of about 11 cm. Hence, narrow-lane

ambiguities risk a greater possibility of an incorrect integer resolution. In this case, a good

quality-control technique is required in order to reduce the risk of incorrect ambiguity

resolution and recover from an incorrect resolution (Han 1997b).

2. Wide-area ionospheric tomography. As demonstrated in Section 3.6 and 6.6, interpo-

lated precise ionospheric delays can be used to significantly accelerate the first convergence

to ambiguity-fixed solution in real-time PPP. Although a sufficiently precise ionospheric

tomography based on a sparse network at scales of several hundred kilometers is still under

development, it is the most promising technique for providing far better than 1-TECU-

level ionospheric delays in real time (Hernández-Pajares et al. 2000). If this ionospheric

tomography is available, a PPP-RTK service (Geng et al. 2010d; Wübbena et al. 2005) that

can rapidly provide ambiguity-fixed solutions may prevail against current RTK positioning

services based on dense networks.

3. Multi-frequency PPP. Future multi-frequency GNSS data will lead to the possibility

of forming ionosphere-reduced, low-noise and long-wavelength inter-frequency combina-
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tion observables (Feng 2008). Hence, we can reasonably envisage that rapid ambiguity

resolution may be achieved using an innovative dedicated combination observable.

4. FCBs or IRCs? The IRC-based methods can potentially produce better positioning

quality than that of the FCB-based methods. Moreover, FCBs have to be combined with

satellite clocks in order to relieve the transmission-bandwidth requirement, whereas IRCs

do not suffer from this processing. However, IRCs are not compatible with the clock-

generation strategy currently adopted by most research institutes and commercial firms.

Hence, of great concern is whether the IRCs will finally be recognized and accepted as new

standards for the next-generation PPP.
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Agrotis L, Sanz PA, Švehla D, Dow J, Zandbergen R (2010b) RTPP analysis results:

Achievements and challenges. Abstracts for European Geosciences Union General Assembly,

Vienna, Austria

Alkan RM (2001) GPS-single point positioning without selective availability. In: Proceedings of

US Hydrographic Conference, Norfold, US
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Appendix A

Method Comparison

Figure A.1: Geographical distribution of the station-specific RMS statistics of the position differences
over one year between the FCB- and IRC-based methods for the North component

Figure A.2: Geographical distribution of the station-specific RMS statistics of the position differences
over one year between the FCB- and IRC-based methods for the Up component

A-1



A-2 Method Comparison

Figure A.3: Geographical distribution of the station-specific position repeatability of the FCB-based
method minus that of the IRC-based method for the North component over one year

Figure A.4: Geographical distribution of the station-specific position repeatability of the FCB-based
method minus that of the IRC-based method for the Up component over one year



A-3

Figure A.5: Geographical distribution of the station-specific North RMS for the FCB-based method
minus that for the IRC-based method. An RMS is computed over the residuals of ambiguity-fixed
position estimates against the IGS weekly solutions for the North component over one year

Figure A.6: Geographical distribution of the station-specific Up RMS for the FCB-based method
minus that for the IRC-based method. An RMS is computed over the residuals of ambiguity-fixed
position estimates against the IGS weekly solutions for the Up component over one year





Appendix B

Publications during this PhD

study

Peer-reviewed journal publications

1. Geng J, Meng X, Dodson AH, Ge M, Teferle FN (2010) Rapid re-convergences to ambiguity-

fixed solutions in precise point positioning. J Geod 84(12):705-714. doi:10.1007/s00190-

010-0404-4

2. Geng J, Meng X, Dodson AH, Teferle FN (2010) Integer ambiguity resolution in precise

point positioning: method comparison. J Geod 84(9):569-581. doi:10.1007/s00190-010-

0399-x

3. Geng J, Teferle FN, Meng X, Dodson AH (2010) Towards PPP-RTK: Ambiguity resolu-

tion in real-time precise point positioning. Adv Space Res. doi:10.1016/j.asr.2010.03.030

4. Shi C, Lou Y, Zhang H, Zhao Q,Geng J, Wang R, Fang R, Liu J (2010) Estimating seismic

displacement of the Mw8.0 Wenchuan earthquake from high-rate GPS observations. Adv

Space Res 46(2):228-235. doi:10.1016/j.asr.2010.03.006

5. Geng J, Teferle FN, Meng X, Dodson AH (2010) Kinematic precise point positioning at

remote marine platforms. GPS solut. doi:10.1007/s10291-009-0157-9

6. Geng J, Meng X, Teferle FN, Dodson AH (2010) Performance of precise point positioning

with ambiguity resolution for 1- to 4-hour observation periods. Surv rev 42(316):155-165

7. Geng J, Teferle FN, Shi C, Meng X, Dodson AH, Liu J (2009) Ambiguity resolution in

precise point positioning with hourly data. GPS solut 13(4):263-270

8. Geng J, Shi C, Zhao Q, Liu J (2007) GPS precision orbit determination from combined

ground and space-borne data. Geomatics and Information Science of Wuhan University

32(10):906-909 (in Chinese)

Peer-reviewed conference publications

1. Geng J (2009) Rapid re-convergence in real-time precise point positioning with ambiguity

resolution. In: Proceedings of the 22nd International Technical Meeting of the Satellite

Division of Institute of Navigation, 22-25 Sep, Savannah, GE, US. (best student paper)

B-1

http://dx.doi.org/10.1007/s00190-010-0404-4
http://dx.doi.org/10.1007/s00190-010-0404-4
http://dx.doi.org/10.1007/s00190-010-0399-x
http://dx.doi.org/10.1007/s00190-010-0399-x
http://dx.doi.org/10.1016/j.asr.2010.03.030
http://dx.doi.org/10.1016/j.asr.2010.03.006
http://dx.doi.org/10.1007/s10291-009-0157-9


B-2 Publications during this PhD study

2. Gao R, Meng X, Geng J, Yu H-S, Xu L (2008) Application of real-time precise point

positioning and GIS for rail track deformation monitoring of the Qinghai-Tibet railway.

In: Proceedings of the 11th International IEEE Conference on Intelligent Transportation

Systems, 12-15 Oct, Beijing, China

Other publications

1. Geng J, Meng X, Teferle FN, Dodson AH (2009) Continental centimetric real-time precise

point positioning with ambiguity resolution. In: Proceedings of the European Navigation

Conference, 3-6 May 2009, Naples, Italy

2. Geng J, Meng X, Teferle FN, Dodson AH, Ge M, Shi C, Liu J (2008) Performance of

hourly precise point positioning with ambiguity resolution. In: Proceedings of the 21st

International Technical Meeting of the Satellite Division of Institute of Navigation, 16-19

Sep, Savannah, GE, US

3. Geng J, Meng X, Teferle FN, Dodson AH (2008) Hourly precise point positioning with

ambiguity resolution. In: Proceedings of the Navigation Conference & Exhibition NAV08/-

ILA37, 28-30 Oct, London, UK

4. Shi C, Zhao Q, Geng J, Lou Y, Ge M, Liu J (2008) Recent development of PANDA soft-

ware in GNSS data processing. In: Proceedings of the Society of Photographic Instrumen-

tation Engineers, 7285, 72851S. doi:10.1117/12.816261

5. Li M, Geng J, Shi C, Zhao Q (2008) Orbit determination of geostationary satellite during

manoeuvres. In: Proceedings of the Society of Photographic Instrumentation Engineers,

7285, 728520. doi:10.1117/12.816380

6. Shi C, Geng J, Meng X, Ge M, Teferle FN, Dodson A.H. (2008) A novel real-time data

screening approach in urban navigation. In: Proceedings of the European Navigation

Conference, 23-25 Apr, Toulouse, France

http://dx.doi.org/10.1117/12.816261
http://dx.doi.org/10.1117/12.816380


Appendix C

Awards and professional

experiences during this PhD

study

1. Awards

(a) Chinese Government Award for Outstanding Self-financed Students Abroad, 2009

(b) Best student paper prize, Institute of Navigation, US, 2009

(c) Travel prize by Graduate School, University of Nottingham, UK, 2009

(d) New Navigator prize for the best presentation, Royal Institute of Navigation, UK,

2008

2. Professional experiences

(a) Journal Reviewer for Journal of Geodesy, GPS solutions and Survey review

(b) Member of IGS work group on PPP ambiguity resolution

(c) Student member of American Geophysical Union since 2008

(d) Student member of European Geosciences Union, 2009

(e) Student member of Royal Institute of Navigation, 2008

(f) Invited guest scientist to Helmholtz Center of GeoForschungsZentrum, Potsdam,

Germany, 2010

(g) Invited talk at University of Glasgow, UK, 2009

(h) Invited talk at General Assembly of European Geosciences Union, 2009

C-1




	List of Figures
	List of Tables
	Acronyms and abbreviations
	1 Introduction
	1.1 Precise GPS positioning
	1.2 Precise point positioning (PPP)
	1.2.1 Solution at a single receiver
	1.2.2 Satellite products
	1.2.3 Multi-constellation and multi-frequency PPP
	1.2.4 Advantages of PPP

	1.3 Problem statement: Deficiencies of PPP
	1.4 Research objectives
	1.5 Thesis overview

	2 Integer Ambiguity Resolution
	2.1 Introduction
	2.2 Current advances
	2.2.1 Theoretical fundamentals of PPP
	2.2.2 Methods based on fractional-cycle biases (FCBs)
	2.2.3 Methods based on integer-recovery clocks (IRCs)

	2.3 Theoretical comparison between the two methods
	2.3.1 Assumptions for the theoretical analysis
	2.3.2 FCB determination and ambiguity-fixed position estimates
	2.3.3 IRC determination and ambiguity-fixed position estimates
	2.3.4 Remarks on the theoretical comparison

	2.4 Method improvements made in this thesis
	2.4.1 Derivation of undifferenced FCBs
	2.4.2 One FCB per satellite-pair pass over a regional area
	2.4.3 Implementation of real-time ambiguity resolution
	2.4.4 Constraints from integer double-difference ambiguities

	2.5 Ambiguity search and validation
	2.5.1 Sequential bias rounding
	2.5.2 LAMBDA

	2.6 Summary

	3 Rapid Convergences
	3.1 Introduction
	3.2 Current advances
	3.2.1 Attempt by estimating the pseudorange precision
	3.2.2 Attempt by constraining the position parameters
	3.2.3 Attempt by improving the ambiguity validation
	3.2.4 Attempt by applying the ambiguity resolution
	3.2.5 Remarks on the above attempts

	3.3 Rapid re-convergence by repairing cycle slips
	3.4 Rapid re-convergence developed in this thesis
	3.4.1 Precisely predict ionospheric delays
	3.4.2 Rapidly retrieve integer ambiguities
	3.4.3 Remarks on the method implementation

	3.5 Comparison between rapid re-convergence methods
	3.6 A strategy for accelerating the first convergence
	3.6.1 Real-time ionosphere products
	3.6.2 Accelerating convergences with a dense network

	3.7 Summary

	4 PANDA Software
	4.1 Introduction
	4.2 Software structure
	4.3 Software adaptation and development for this thesis
	4.4 Post-processing PPP suite
	4.4.1 Structure description
	4.4.2 Processing procedure

	4.5 Real-time PPP suite
	4.5.1 Structure description
	4.5.2 Processing procedure

	4.6 Summary

	5 Results on Ambiguity Resolutions
	5.1 Introduction
	5.2 FCB determination with a regional network
	5.2.1 Data and models
	5.2.2 Wide-lane FCBs
	5.2.3 Narrow-lane FCBs

	5.3 Impact of ambiguity resolution on hourly PPP
	5.3.1 Data, models and methods
	5.3.2 Performance of inside-EPN stations
	5.3.3 Performance of outside-EPN stations
	5.3.4 Conclusions

	5.4 Impact of observation period on ambiguity resolution
	5.4.1 Data, models and methods
	5.4.2 Efficiency of ambiguity resolution
	5.4.3 Reliability of ambiguity resolution
	5.4.4 Positioning accuracy
	5.4.5 Degraded solutions
	5.4.6 Conclusions

	5.5 Ambiguity resolution at a remote mobile receiver
	5.5.1 Data, models and methods
	5.5.2 Satellite clock estimates
	5.5.3 Narrow-lane FCB estimates
	5.5.4 Comparison between kinematic PPP and differential positioning
	5.5.5 Conclusions

	5.6 Real-time ambiguity resolution in PPP
	5.6.1 Data and models
	5.6.2 Rapidity of wide-lane ambiguity resolution
	5.6.3 Temporal stabilization of narrow-lane FCBs
	5.6.4 Performance of narrow-lane ambiguity resolution
	5.6.5 Conclusions

	5.7 Impact of integer double-difference constraints
	5.7.1 Data, models and methods
	5.7.2 Results

	5.8 Comparison between FCB- and IRC-based methods
	5.8.1 Data, models and methods
	5.8.2 Position differences
	5.8.3 Position repeatability
	5.8.4 Comparison with the IGS weekly solutions
	5.8.5 Conclusions and suggestions

	5.9 Summary

	6 Results on Rapid Convergences
	6.1 Introduction
	6.2 Prediction error of ionospheric delays
	6.2.1 Data, models and methods
	6.2.2 Variation characteristics of ionospheric delays
	6.2.3 Constant bias or linear fitting model?

	6.3 Test rapid re-convergences with static stations
	6.3.1 Data, models and methods
	6.3.2 Performance of rapid re-convergences
	6.3.3 Is single-epoch ambiguity resolution possible?

	6.4 Test rapid re-convergences with a mobile van
	6.4.1 Data, models and methods
	6.4.2 Rapid convergences in a GPS-adverse environment
	6.4.3 Comparisons with an NRTK solution

	6.5 Conclusion on performance of rapid re-convergences
	6.6 Rapid convergence by interpolating ionospheric delays
	6.7 Summary

	7 Global PPP-RTK
	7.1 Introduction
	7.2 A prototype of global PPP-RTK
	7.2.1 Global service providers
	7.2.2 Augmentation service providers
	7.2.3 Global single users
	7.2.4 Comparison with NRTK
	7.2.5 Potential application: Geohazard early warning

	7.3 How many reference stations for this global PPP-RTK?
	7.3.1 Data and models
	7.3.2 Results

	7.4 A case study on the 2009 L'Aquila earthquake
	7.4.1 Data, models and methods
	7.4.2 Results

	7.5 Summary

	8 Conclusions and Perspectives
	8.1 Summary
	8.2 Conclusions on the theoretical analysis
	8.2.1 Integer ambiguity resolution
	8.2.2 Method comparison
	8.2.3 Attempts for rapid convergences
	8.2.4 Rapid re-convergences to ambiguity-fixed solutions

	8.3 Conclusions on the data analysis
	8.3.1 One FCB per satellite-pair pass over a regional area
	8.3.2 Post-processing PPP with ambiguity resolution
	8.3.3 Real-time PPP with ambiguity resolution
	8.3.4 Integer constraints from double-difference ambiguities
	8.3.5 Method comparison
	8.3.6 Rapid re-convergences to ambiguity-fixed solutions

	8.4 Main contributions to knowledge
	8.5 Recommendations and Perspectives

	References
	A Method Comparison
	B Publications during this PhD study
	C Awards and professional experiences during this PhD study

