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Abstract

This thesis considers the registration of shapes, estimation of shape vari-

ability and the statistical modelling of human brain magnetic resonance im-

ages (MRI). Current shape registration techniques, such as Procrustes anal-

ysis, superimpose shapes in order to make inferences regarding the mean

shape and shape variability. We apply Procrustes analysis to a subset of

the landmarks and give distributional results for the Euclidean distance of a

shape from a template. Procrustes analysis is then generalised to minimise

a Mahalanobis norm, with respect to a symmetric, positive definite matrix,

and the weighted Procrustes estimators for scaling, rotation and translation

obtained. This weighted registration criterion is shown, through a simula-

tion study, to reduce the bias and error in maximum likelihood estimates of

the mean shape and covariance matrix compared to isotropic Procrustes. A

Bayesian Markov chain Monte Carlo algorithm is also presented and shown

to be less sensitive to prior information.

We consider two MRI data sets in detail. We examine the first data

set for large-scale shape differences between two volunteer groups, healthy

controls and schizophrenia patients. The images are registered to a tem-

plate through modelling the voxel values and we maximise the likelihood

over the transformation parameters. Using a suitable labelling and prin-

cipal components analysis we show schizophrenia patients have less brain

asymmetry than healthy controls. The second data set is a sequence of

functional MRI scans of an individual’s motor cortex taken while they re-

peatedly press a button. We construct a model with temporal correlations

to estimate the trial-to-trial variability in the haemodynamic response using

the Expectation-Maximisation algorithm. The response is shown to change

with task and through time. For both data sets we compare our techniques

with existing software packages and improvements to data pre-processing

are suggested. We conclude by discussing potential areas for future research.
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Chapter 1

Introduction and background

1.1 Introduction

The research presented in this thesis focuses on problems relating to the

analysis of shapes. Shape analysis has already proved to be a valuable

tool in a wide range of disciplines, such as biology, medicine, archaeology,

geography, geology and genetics. Traditionally shape analysis has been con-

ducted by examining ratios of distances. For example, a biologist might use

the ratio of a particular bone’s length over its width to distinguish between

species. However, in selecting certain measurements other information re-

garding the object’s shape is being lost.

More recently, geometrical methods making use of the co-ordinates of

an object’s distinctive features have been developed. New technology has

made the recording of co-ordinates easier and presents new challenges and

applications with the analysis of objects captured in digital images. Infer-

ence, regarding a mean shape and/or shape variability, is normally made

after superimposing the shapes or images on top of each other. However, the

most common form of registering shapes to make comparisons places equal

importance on each part of the shape. The development of a weighted su-

perimposition method, necessary for brain registration, has received several

1



1.1 Introduction

contributions (e.g. Goodall, 1991), but a universally applicable method for

jointly estimating shape variability and using shape variability to weight the

superimposition, has been missing. The first half of this thesis proposes two

methods for achieving this. The second half considers practical applications

to the human brain, motivated by problems encountered by researchers in

neurology. The two topics are related, as the human brain is highly variable

in shape, and placing different brain images into a frame of reference for

comparison is non-trivial.

For neurological applications, we consider two data sets in detail. The

first data set consists of human brain images taken from controls and pa-

tients with schizophrenia, with the aim of establishing if there is a statisti-

cally significant difference in brain shape between the two groups. Research

into schizophrenia’s impact on the human brain is well established, as clin-

icians seek to develop a more robust method for diagnosing the disease. It

is believed that anatomical shape analysis will aid earlier diagnosis, which

will lead to better treatment.

Secondly, we consider images of one individual’s motor cortex taken

sequentially over time. The motor cortex is an area of grey matter, to-

wards the posterior of the brain, that is responsible for controlling muscle

movements. The aim is to build a statistical model for brain activation in

response to a stimuli repeated over a period of time. Brain activation is also

highly variable, and establishing how the brain’s response changes to each

identical stimuli is an important step to understanding the wider problem

of how the different areas of the brain divide tasks and interact. Although

we develop methods with these data sets in mind, the methods are directly

applicable to other diseases and brain regions.

Brain imaging techniques are considered in more detail in the next

section. In the rest of this chapter we summarise some existing meth-

ods for analysing shapes and assessing shape variability that will be used

and extended later in the thesis. We also introduce two techniques, the

Expectation-Maximisation (EM) algorithm and Markov chain Monte Carlo

2



1.2 Brain imaging techniques

(MCMC) simulation, used in this thesis for estimating the parameters in

our statistical models. We then apply some of these existing methods to a

simple simulated brain slice to motivate the research that follows in later

chapters. A detailed outline of the rest of the thesis concludes this chapter.

1.2 Brain imaging techniques

The application of interest for shape theory in this thesis is the human brain.

Important questions regarding how the brain functions remain unanswered

at the start of the 21st century. As such, potential neurological applications

for shape theory provide motivation for the statistical techniques developed

and applied throughout this thesis. The last thirty years have seen the

advent of non-invasive brain imaging techniques, which have greatly aided

medical understanding by generating three-dimensional images. The most

commonly used forms of brain imaging are computed tomography (CAT or

CT), magnetic resonance imaging (MRI) and positron emission tomography

(PET). In this thesis we treat images as observed data, but this section

provides some background on their creation.

CAT scanning involves taking a series of x-ray images from different

angles, and then using a computer to solve a series of algebraic equations to

build a three dimensional image of where the x-rays were absorbed. MRI

uses a large cylindrical magnet around the head to induce a magnetic field,

through which radio waves are transmitted. The radio waves cause some

of the magnetically-aligned hydrogen nuclei found in the body, to adopt a

temporary non-aligned status. The frequency and phase of the reflected

radio waves then enables a computer to deconvolve the signal such that

the underlying structure can be identified. Each image is a two-dimensional

slice, but the rapid collection of a series of slices enables a three-dimensional

image to be created. CAT and MRI techniques produce structural images,

which are a snapshot of the brain’s geometry at the time of scanning. CAT

scans show dense materials, such as bone, very clearly whereas MRI scans

3



1.2 Brain imaging techniques

will see through bones to produce good contrast between different types of

soft tissue.

Functional MRI (fMRI) and PET go further than structural images by

producing images showing the areas of the brain activated by a particu-

lar task. PET scanning involves injecting a radioactive chemical into the

bloodstream. Sensors in the scanner then detect the positron emissions from

the radioisotopes and create the image based on the distribution of these

emissions. fMRI involves taking a sequence of MRI scans over a period of

time to measure the blood-oxygen-level dependent (BOLD) signal. During

activity, neurons take up oxygen, and the difference in magnetic proper-

ties between oxygenated and deoxygenated blood can be detected in fMRI.

Therefore, fMRI scans detect neuronal activity through examining changes

in the blood’s oxygen level through time, rather than detecting neuronal ac-

tivity directly. fMRI has largely superseded PET technology for detecting

brain activation by lengthening the possible time period of exposure while

conducting experiments, although using a particular radioisotope enables

PET scans to detect specific brain receptors, which can be useful in the

diagnosis of brain diseases.

Regardless of the imaging technique used, the result is a three-

dimensional digital image where each three-dimensional pixel (a voxel) is

assigned a grey-scale value typically between 0 (black) and 255 (white),

which is our data. The resulting statistical analysis will, however, be af-

fected by the initial quality of the image, which is measured in terms of

spatial resolution, signal to noise ratio, non-homogeneous noise etc. The im-

age quality is largely determined by the scanner parameters used at source,

but can be improved through applying pre-processing tools to reduce noise.

These tools might include averaging voxel values across a number of scans,

or smoothing through space and/or time. A variety of spatial smoothing

techniques exist such as thresholding, median window filtering or Gaussian

kernel smoothing. We will primarily use the last of these techniques to

improve the signal to noise ratio at the expense of spatial resolution.
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1.3 Statistical shape analysis

1.3 Statistical shape analysis

The ability to quantify, describe and compare the shapes of objects has

become of great importance in a wide variety of fields, including biology,

medicine and genetics. Following Kendall’s (1977, 1984) lead of defining

shape as when “we are not interested in the location, orientation or scale”,

we give the broadly accepted mathematical definition of an object’s shape.

Definition 1.3.1 Shape is all the geometrical information that remains

when location, scale and rotational effects are filtered out from an object.

Size and shape, or form, is similarly defined but with the geometrical

information regarding size retained by the object. The geometrical infor-

mation of an object can be recorded by defining a finite set of points on the

object called landmarks.

Definition 1.3.2 A landmark is a point of correspondence on each object

that matches between and within populations.

The landmarks are chosen to characterise the shape of an object with a

few points that might refer to a physical feature or a mathematical prop-

erty of the object, such as a place of maximum curvature. We will assume

throughout this thesis that the correspondence of landmarks between ob-

jects is known, although Dryden et al. (2006) and Green and Mardia (2006)

consider applications of shape theory to cheminformatics and bioinformat-

ics, respectively, where this assumption is relaxed. Information regarding

the location of the landmarks is collected in a configuration matrix.

Definition 1.3.3 The configuration is the set of landmarks on a particular

object. The configuration matrix, X, is the k × m matrix of Cartesian

co-ordinates of the k landmarks in m dimensions.

It is often useful to list the individual parameters of the configuration

matrix in a single vector using the vec operator.
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1.3 Statistical shape analysis

Definition 1.3.4 If A is an (m× n) matrix, with columns, A1, A2, ..., An,

each vectors of length m, then the vector of length mn obtained by stacking

the columns on top of one another is denoted,

vec(A) =




A1

A2

...

An



.

The most common measure of a configuration’s size, is the centroid size.

Definition 1.3.5 The centroid size is given by,

S(X) = ‖CX‖ =

√√√√
k∑

i=1

m∑

j=1

(Xij − X̄j)2,

where Xij is the (i, j)th entry of X, the arithmetic mean of the jth dimension

is X̄j = 1
k

∑k
i=1Xij,

C = Ik −
1

k
1k1

T
k ,

is the centring matrix, ‖X‖ =
√

tr(XTX) is the Euclidean norm, Ik is the

k × k identity matrix, 1k is the k × 1 vector of ones, and tr(A) is the trace

operator that sums the diagonal elements of A.

A configuration matrix can be isotropically scaled (i.e. scaled in all di-

rections equally) by multiplying X with a positive real number. The matrix,

X, can be translated by adding a vector of length m to each landmark’s

co-ordinates, and can be rotated by post-multiplying with a rotation matrix.

Definition 1.3.6 An m × m rotation matrix satisfies ΓT Γ = ΓΓT = Im

and |Γ| = 1. The set of all m×m rotation matrices is known as the special

orthogonal group SO(m).
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1.3 Statistical shape analysis

Definition 1.3.7 The Euclidean similarity transformations of a configura-

tion matrix, X, are the set of isotropically rescaled, rotated and translated

X, i.e.,

{βXΓ + 1kγ
T : β ∈ R

+,Γ ∈ SO(m), γ ∈ R
m},

where β ∈ R
+ is the scale, Γ is a rotation matrix and γ is the translation

m-vector.

Definition 1.3.8 The rigid-body transformations of a configuration matrix,

X, are the set of rotated and translated X, i.e.,

{XΓ + 1kγ
T : Γ ∈ SO(m), γ ∈ R

m},

where Γ is a rotation matrix and γ is the translation m-vector.

The two sets of transformations differ only in that the scaling transfor-

mation is not included in the set of rigid-body transformations.

The analysis of shape configurations based on landmark data from a sta-

tistical viewpoint (Mardia and Dryden, 1989b) has led to the formulation

of shape distributions (Mardia and Dryden, 1989a) and statistical tests for

examining differences between two or more populations (Dryden and Mar-

dia, 1998, Chapter 7). An alternative approach to statistical shape analysis,

through the study of inter-landmark distances, has been formulated by Lele

and Richtsmeier (2001) and Rao and Suryawanshi (1996). Small (1996)

and more comprehensively, Kendall et al. (1999), present important theo-

retical work regarding the distribution of shapes in shape space. However,

we approach shape analysis through the framework of Procrustes analy-

sis, as it generally presents easily interpretable findings in Euclidean space.

Its primary focus is establishing shape differences, mean shapes and shape

variability, and we introduce the field in more detail in the next section.
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1.4 Isotropic Procrustes analysis

Procrustes methods involve estimating the transformations to superimpose

one configuration on another to minimise a distance criterion. In isotropic

Procrustes analysis, the criterion is the Euclidean distance. This is an arbi-

trary choice and the concepts given here are a basis for extending Procrustes

analysis to include a weighted matching criterion in the following chapters.

Procrustes methods can be used to estimate a population’s mean shape

and shape variability. The adjectives “full” and “partial” are used to distin-

guish between the estimation of similarity and rigid-body transformations,

respectively, in the Procrustes matching. In addition, “ordinary” describes

matching one shape to another, whereas “generalised” describes transform-

ing two or more configurations during the matching.

An early review of Procrustes methods was given by Sibson (1978) and

more details of Procrustes methods applied to shape data are found in Dry-

den and Mardia (1998, Chapter 5). In this section we summarise some of

standard definitions and results relating to full isotropic Procrustes analy-

sis. Also, we assume without loss of generality, that all configurations are

initially centred throughout this chapter, that is the sum of the co-ordinates

in each dimension is zero.

The method of full ordinary Procrustes analysis (full OPA) involves the

least squares matching of two configurations, X and µ, using the similarity

transformations. Estimation of the similarity parameters, β, Γ and γ is

carried out by minimising the squared Euclidean distance,

D2
OPA(X,µ) = ‖µ− βXΓ − 1kγ

T‖2,

where ‖Z‖2 = tr(ZTZ) is the squared Euclidean norm, γ is a m×1 location

vector, Γ is an m×m special orthogonal rotation matrix (Γ ∈ SO(m)) and

β > 0 is a scale parameter.

Result 1.4.1 The full ordinary Procrustes solution to the minimisation of
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1.4 Isotropic Procrustes analysis

D2
OPA(X,µ), where ‖X‖ > 0, ‖µ‖ > 0, is given by Dryden and Mardia

(1998, p84),

γ̂ = 0,

Γ̂ = UV T ,

β̂ =
tr(µTXΓ̂)

tr(XTX)
,

where, U, V ∈ SO(m) are matrices given by,

V ΛUT =
µTX

‖X‖‖µ‖ ,

and Λ is a diagonal m ×m matrix of positive elements except possibly the

last element.

Kent and Mardia (2001) showed that the Procrustes match is unique

when λ1, ..., λm, the diagonal elements of Λ, are non-degenerate and opti-

mally signed. A sequence of numbers is non-degenerate if, when written in

non-increasing order, λm−1 + λm > 0, and a sequence is optimally signed if

all the elements are non-negative except possibly for the smallest in absolute

value, λ1 ≥ ... ≥ λm−1 ≥ |λm| ≥ 0.

Figure 1.1 shows the full ordinary isotropic Procrustes registration of

one hand-written digit “3” to a template. Note there are k = 13 landmarks

in m = 2 dimensions. The landmarks were digitised from a sample of hand-

written British postcodes. Note how the dotted shape has been translated,

rotated and scaled to minimise the total distance between respective pairs

of landmarks on itself and the template. Details of the data set can be

found in Dryden and Mardia (1998, p13).

The method of full generalised Procrustes analysis (full GPA) involves

rescaling, rotating and translating the configurations, Xi, i = 1, ..., n, rela-

tive to each other to minimise a total sum of squares, and the procedure is
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Figure 1.1: The full ordinary isotropic Procrustes registration of one hand-
written “3” (dotted) to a template, showing the starting (left) and final
(right) positions.

appropriate under the model,

Xi = βi(µ+ Ei)Γi + 1kγ
T
i ,

where Ei are zero mean k × m independent random error matrices, µ is

the k ×m matrix of the mean configuration and βi, Γi and γi are nuisance

parameters for scale, rotation and translation. We minimise a quantity

proportional to the sum of squared norms of pairwise differences,

G(X1, ..., Xn) =
1

n

n−1∑

i=1

n∑

j=i+1

‖(βiXiΓi + 1kγ
T
i ) − (βjXjΓj + 1kγ

T
j )‖2, (1.1)

subject to the constraint on the size of the average centred shape,

S(X̄) = 1,

where βi > 0, Γi ∈ SO(m), γ ∈ R
m, ‖X‖ =

√
tr(XTX) and S(X) is the

10



1.4 Isotropic Procrustes analysis

centroid size and,

X̄ =
1

n

n∑

i=1

(βiXiΓi + 1kγ
T
i ),

is the centred average shape.

Recall that the shapes, Xi, i = 1, ..., n, are initially centred throughout

this chapter. The transformation parameters βi, Γi and γi are determined

by the iterative GPA algorithm, Algorithm 1.4.1, first suggested by Gower

(1975) and updated by Ten Berge (1977).

Algorithm 1.4.1 Isotropic GPA algorithm

1. Translations. Initially, let,

XP
i = CXi, i = 1, ..., n,

where C is the centring matrix to remove location.

2. Rotations. Update XP
i by letting it be the ordinary Procrustes super-

imposition using rotation only of the current XP
i on X̄(i), where,

X̄(i) =
1

n− 1

∑

j 6=i

XP
j .

Apply this to each of the n configurations in turn until Equation (1.1) can-

not be reduced further.

3. Scaling. Let φ be the eigenvector, corresponding to the largest eigen-

value, of the correlation matrix of the vec(XP
i ). Then for i = 1, ..., n,

β̂i =

(∑n
k=1 ‖XP

k ‖2

‖XP
i ‖2

)
φi,

where φi is the ith value in the vector φ.

4. Repetition. Repeat steps 2 and 3 until Equation (1.1) cannot be reduced

further.
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1.4 Isotropic Procrustes analysis

Figure 1.2 shows the full generalised isotropic Procrustes registration

of 29 male gorilla skulls. Note there are k = 8 landmarks in m = 2

dimensions, taken from the midplane of each skull, with the face to the

left. Starting at the far left and going clockwise, the landmarks are la-

belled “prosthion”, “nariale”, “nasion”, “bregma”, “lambda”, “opisthion”,

“basion” and “staphylion”. The initial registration fixes one landmark,

“opisthion”, at the origin and the line joining it to another, “basion”, to be

horizontal. Following registration, better inference can be made regarding

the mean shape and the variability in the sample. Note that the shapes

have been resized relative to the original configurations. Details of the data

set can be found in Dryden and Mardia (1998, p11).
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Figure 1.2: The full generalised isotropic Procrustes registration of 29 male
gorilla skulls, showing the starting (left) and final (right) positions.

Definition 1.4.1 Let β̂i, Γ̂i and γ̂i, be the parameters which minimise

Equation (1.1), then the full Procrustes fit of each Xi is given by,

XP
i = β̂iXiΓ̂i + 1kγ̂

T
i , i = 1, ..., n.
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1.4 Isotropic Procrustes analysis

Result 1.4.2 The full Procrustes estimate of the mean shape is given by,

µ̂ = X̄ =
1

n

n∑

i=1

XP
i .

Analogous definitions and results for isotropic partial Procrustes analysis

can also be obtained by omitting the β parameter in the definitions of OPA,

GPA, and Procrustes fit, and omitting the constraint on the mean shape in

the definition of full GPA.

Alternative registrations or co-ordinate systems exist. Bookstein (1986)

proposes removing the similarity transformations in m = 2 dimensions by

translating, rotating and rescaling such that landmarks 1 and 2 are sent to

fixed positions (0, 0) and (1, 0). Dryden and Mardia (1998, p27) redefine

Bookstein coordinates by registering landmarks 1 and 2 to (− 1
2
, 0) and (1

2
, 0).

Definition 1.4.2 Let (xj , yj), j = 1, ..., k, k ≥ 3, be landmark co-ordinates

in a plane, then after translating, rotating and rescaling landmarks 1 and

2 to (−1
2
, 0) and (1

2
, 0), the remaining co-ordinates of an object, (uB

j , v
B
j ),

j = 3, ..., k are,

uB
j = {(x2 − x1)(xj − x1) + (y2 − y1)(yj − y1)} /D2

12 −
1

2
,

vB
j = {(x2 − x1)(yj − y1) − (y2 − y1)(xj − x1)} /D2

12,

where D2
12 = (x2 − x1)

2 + (y2 − y1)
2 > 0 and −∞ < uB

j , v
B
j <∞.

In later chapters we will extend Procrustes methods by seeking to min-

imise the more general Mahalanobis norm instead of the Euclidean norm.

Definition 1.4.3 Let A be an (m × n) matrix and let W be a symmetric

(mn×mn), positive definite, invertible matrix, then the squared Mahalanobis

norm, denoted ‖A‖2
W , is defined as,

‖A‖2
W = vec(A)TW−1vec(A).
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1.4 Isotropic Procrustes analysis

The squared Euclidean norm, ‖A‖2 = tr(ATA), is a special case of the

squared Mahalanobis norm, with W = Imn.

Letting A be the residual between a shape, X, and a template, µ, then

the Mahalanobis distance with respect to W is vec(X−µ)TW−1vec(X−µ).

A natural choice for W would be the shape covariance matrix, Σ.

Procrustes methods have previously been extended by Goodall (1991)

to include weighted least squares (WLS) and iteratively reweighted least

squares (IRLS). Within WLS the covariance structure is assumed known,

but in IRLS is unknown and estimated. Generally Goodall uses a factored

covariance structure, Σ = Σm ⊗ Σk, where ⊗ is the Kronecker product.

Definition 1.4.4 Let A be a matrix of dimension (m×n), with individual

entries, aij, i = 1, ..., m, j = 1, ..., n; and let B be a (p × q) matrix. The

Kronecker product of A and B is defined as,

A⊗ B =




a11B a12B . . . a1nB

a21B a22B . . . a2nB
...

...
. . .

...

am1B am2B . . . amnB



,

which is an (mp× nq) matrix.

This structure means one can have non-identical variability at each land-

mark and non-identical variability between the dimensions, but this formu-

lation is not completely general. Goodall’s method for when Σm = Im

replaces configurations X by QX and µ by Qµ, where QTQ is the Cholesky

decomposition of Σ−1
k . This accounts for the centring, and the rotation is

estimated as with isotropic covariance. When Σm 6= Im, Goodall (1991)

claims there is no explicit expression for X Γ̂ and so there is no unique

minimum of the Mahalanobis norm. Goodall recommends the iterative

algorithm of Koschat and Swayne (1991), where they consider a diago-
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1.5 Principal components analysis

nal weighting matrix, D, in this case. Goodall’s approach to estimat-

ing the nuisance parameters for a general covariance structure in two di-

mensions is to solve a WLS multiple regression problem with 2k obser-

vations, vec(µ) as the response variable and four regression parameters

being β cosψ, β sinψ, γ1 and γ2. Goodall acknowledges that this method

is not useful for size-and-shape analysis. In Chapter 2, we present solu-

tions of the optimal registration parameters for both partial and full, or-

dinary and generalised, Procrustes analysis. It should also be noted that

Gower and Dijksterhuis (2004) introduce a weighted Procrustes measure,

‖WX − µ‖2 = tr(XTW TWX − 2XTW Tµ + µTµ), where W is a square

weighting matrix.

1.5 Principal components analysis

Principal Components Analysis (PCA) is a widely used technique in multi-

variate analysis (e.g. Mardia et al., 1979) and is often used in shape theory

to examine shape variability. The aim of PCA is to summarise the data

with a few variables, which are linear combinations of the original vari-

ables, while minimising the amount of variability lost. We describe sample

PCA here. Let X be a (p × n) data matrix, with columns containing the

vectors, X1, ..., Xn, of length p with sample mean, X̄, and sample covariance

matrix,

S = UDUT ,

using the spectral decomposition theorem, where U is an orthogonal matrix

of the eigenvectors of S and D is a diagonal matrix of the eigenvalues of

S, with eigenvalues d1 ≥ ... ≥ dp ≥ 0. The jth principal component

transformation is defined by,

yj = uT
j (X − X̄1T

n), j = 1, ..., p < n,
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1.5 Principal components analysis

where uj is the standardised eigenvector of S corresponding to the jth

largest eigenvalue, dj. Combining the principal components together,

Y = UT (X − X̄1T
n ).

The rows of Y are uncorrelated, with the jth row having variability,

Var(yj) = dj, so the principal components are ordered with the first PC

capturing the largest amount of variability. Retaining the first few prin-

cipal components provides a lower dimensional representation of the data.

The ith element of the row yj, is known as the jth principal component

score of the ith individual.

In shape theory, PCA can be applied to the Procrustes residuals, such

that the sample covariance matrix is,

S =
1

n

n∑

i=1

vec(XP
i − µ̂)vec(XP

i − µ̂)T ,

where XP
i is the Procrustes fit of the ith shape and µ̂ is the Procrustes

estimate of the mean shape. Let the orthonormal eigenvectors of S be uj,

j = 1, ..., p, and let the jth principal component score of the ith individual

be sij. Therefore, the ith individual is,

vec(XP
i ) = vec(µ̂) +

p∑

j=1

sijuj ,

and the percentage of variability captured by the jth PC is,

100dj∑p
i=1 dj

.

The effect of the jth PC can often be seen in shape theory by plotting,

vec(X) = vec(µ̂) + cd
1/2
j uj,
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1.6 EM algorithm

for a range of values of c. Typically, c varies in the range [−3, 3] to cover

the majority of the variability under a multivariate normal model.

1.6 EM algorithm

The Expectation Maximisation (EM) algorithm (Dempster et al., 1977) is

a statistical tool for maximum likelihood estimation of model parameters

when there are missing data. It can also be used if the form of the likeli-

hood is too complicated for conventional maximum likelihood estimation.

It can be applied in either a Bayesian setting to find the maximum a posteri-

ori estimator, or in a frequentist approach to find the maximum likelihood

estimate. The method works by augmenting the observed data, Y , with

additional data, X. One frequentist application of the EM algorithm lets

X represent missing data. Alternatively, in this thesis we will let X repre-

sent latent or hidden variables such that maximising the likelihood of the

complete data set is easier than maximising the likelihood of Y .

Let θ be the model parameters, and let P (Y |θ) be the probability of

the data given the model parameters. The value of θ which maximises P

also maximises the log-likelihood, l(θ) = logP (Y |θ) since log is a strictly

increasing function. Let θ′ be an estimate of the parameters, then for an

updated estimate to increase the likelihood we need to maximise, l(θ)−l(θ′).
Let x be a realisation of the latent variables, then,

P (Y |θ) =
∑

x

P (Y |x, θ)P (x|θ),

l(θ) − l(θ′) = log
∑

x

P (Y |x, θ)P (x|θ) − logP (Y |θ′). (1.2)

Jensen’s inequality states that if f is a concave function, λi ≥ 0 and
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∑n
i=1 λi = 1 then,

f

(
n∑

i=1

λixi

)
≥

n∑

i=1

λif(xi).

Note that the probabilities, P (x|Y, θ′), satisfy the constraints on the λi.

Given log is a concave function, and log(
∑

i ai) − log b = log(
∑

i(ai/b)),

Equation (1.2) can be rewritten as,

l(θ) − l(θ′) = log
∑

x

(
P (x|Y, θ′)P (Y |x, θ)P (x|θ)

P (x|Y, θ′)

)
− logP (Y |θ′),

= log
∑

x

P (x|Y, θ′)
(
P (Y |x, θ)P (x|θ)
P (x|Y, θ′)P (Y |θ′)

)
,

≥
∑

x

P (x|Y, θ′) log

(
P (Y |x, θ)P (x|θ)
P (x|Y, θ′)P (Y |θ′)

)
= Λ(θ|θ′).

Hence, l(θ) ≥ q(θ|θ′), where q(θ|θ′) = l(θ′) + Λ(θ|θ′). Also, q(θ′|θ′) =

l(θ′) since,

log

(
P (Y |x, θ′)P (x|θ′)
P (x|Y, θ′)P (Y |θ′)

)
= log

(
P (Y, x|θ′)
P (Y, x|θ′)

)
= 0.

So the function q(θ|θ′) is bounded above by the likelihood function that

we wish to maximise, l(θ), and the two functions are equal for the current

estimate, θ′. Therefore, choosing a θ which increases q(θ|θ′) also increases

l(θ), and to get the greatest possible increase we choose the updated value

to maximise q(θ|θ′). Ignoring terms in q(θ|θ′) that are constant with respect

to θ, the updated value is then,

θ∗ = arg max

{
∑

x

P (x|Y, θ′) log (P (Y |x, θ)P (x|θ))
}
,

= arg max

{
∑

x

P (x|Y, θ′) log

(
P (Y, x, θ)

P (x, θ)

P (x, θ)

P (θ)

)}
,
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1.7 Markov chain Monte Carlo simulation

= arg max

{
∑

x

P (x|Y, θ′) logP (Y, x|θ)
}
,

= arg max
{
EX|Y,θ′ [logP (Y, x|θ)]

}
.

Conventionally, we let Q(θ|θ′) = EX|Y,θ′ [logP (Y, x|θ)]. The EM algo-

rithm is, therefore, an iterative procedure with each iteration consisting of

an E-step which determines the conditional expectation of Q and an M-step

which maximises the expression with respect to θ. The above derivation

shows that at each iteration the likelihood, l(θ), is non-decreasing. Given

the likelihood is bounded above, the algorithm is guaranteed to converge,

and at that value l(θ) = q(θ). However, the algorithm is not guaranteed to

converge to a global maximum and is dependent on the starting estimate of

θ. A more comprehensive introduction to the EM algorithm can be found

in Tanner (1996).

1.7 Markov chain Monte Carlo simulation

Markov Chain Monte Carlo (MCMC) simulation is a statistical modelling

tool that can be used in Bayesian statistics for integrating over high-

dimensional probability distributions in order to make inferences about

model parameters. MCMC can also be used in other situations as a simu-

lation method. In this thesis, we will use it for Bayesian inference when the

posterior distribution cannot be obtained analytically. The method works

by approximately drawing dependent samples from the posterior distribu-

tion of a parameter, from which inference can be made about the moments

of the distribution. MCMC was first formulated by Metropolis et al. (1953)

with significant additions and improvements from Hastings (1970) and Ge-

man and Geman (1984).

Given observed data, D, and model parameters or missing data, θ, the
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1.7 Markov chain Monte Carlo simulation

joint probability distribution is,

P (D, θ) = P (θ)P (D|θ),

where P (θ) is a prior distribution and P (D|θ) is a likelihood. Therefore,

the distribution of θ conditional on the observed data, D, is,

P (θ|D) =
P (θ)P (D|θ)∫
P (θ)P (D|θ)dθ = π(θ|D),

where π(θ|D) is the posterior distribution of θ that we are interested in. In

the rest of this thesis, prior distributions will be denoted with P , likelihoods

with L and posterior distributions with π.

Let θ be a vector of k random variables, then Monte Carlo integration

evaluates E(θ) by drawing samples {θt, t = 1, ..., n} from π(θ|D) and ap-

proximating,

E(θ) ≈ 1

n

n∑

t=1

θt.

Sampling from π(θ|D) could be done by any process that samples the

distribution in the correct proportions. MCMC works by constructing {θt}
from a Markov chain that has π(θ|D) as its stationary distribution. A

Markov chain is a sequence of random variables, such that at time t, the

value of θt+1 is only dependent on θt and independent of the previous sam-

ples. The value of θt+1 is sampled from the distribution, P (θt+1|θt), which

is independent of t. The Markov chain will eventually become effectively

independent of its starting state, θ0, and t, so the distribution of θt is invari-

ant or stationary. The first m values of θt, which might be dependent on θ0,

are discarded and the rest, which approximately come from the stationary
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1.7 Markov chain Monte Carlo simulation

distribution, are used to give the estimator,

E(θ) ≈ 1

n−m

n∑

t=m+1

θt.

Constructing a Markov chain with π(θ|D) as the stationary distribution

can be done via the Metropolis-Hastings algorithm, Algorithm 1.7.1. See

Chib and Greenberg (1995) for an overview of this technique. At each time,

t, a candidate point, θ∗, is sampled from a proposal distribution q(θ∗|θt)

and is accepted as θt+1 with probability,

α(θt, θ
∗) = min

(
1,
π(θ∗)q(θt|θ∗)
π(θt)q(θ∗|θt)

)
, (1.3)

otherwise θt+1 = θt.

Algorithm 1.7.1 The Metropolis-Hastings algorithm

1. Initialise θ0 and let t = 0.

2. Sample θ∗ from q(θ∗|θt).

3. Sample U from the uniform U(0, 1) distribution.

4. If U ≤ α(θt, θ
∗) let θt+1 = θ∗, otherwise let θt+1 = θt.

5. Increment t.

6. Repeat steps 2 to 5 n times.

Gilks et al. (1996) provides a complete proof, beyond the scope of this

introduction, that the Markov Chain resulting from the Metropolis-Hastings

algorithm converges to, and continues to sample from, the specified station-

ary distribution. In brief, the argument requires us to show that the chain is

irreducible, aperiodic and reversible. A chain is irreducible if, given enough

iterations, it can reach all interesting parts of its state-space irrespective

of its starting point. The aperiodicity requirement prevents the chain from

oscillating between a fixed number of states in a regular periodic manner.

If a chain satisfies just these two conditions then it has a unique stationary
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1.7 Markov chain Monte Carlo simulation

distribution. The third condition, reversibility, is defined with respect to

the distribution, π, and requires the balance equation,

π(θt)P (θt+1|θt) = π(θt+1)P (θt|θt+1)

to be satisfied for all t. If the chain is reversible, as well as irreducible

and aperiodic, then the chain’s unique stationary distribution is π. The

Metropolis-Hastings algorithm can be shown to satisfy these conditions due

to the acceptance/rejection step.

The proposal distribution, q, can have almost any form, but must be

chosen carefully for the chain to move around the support of π efficiently. If

the distance between the proposed value and the current value is typically

too large then the majority of proposals will be rejected. If the distance is

too small then it will require more samples to move about the entire support

of π. Either case will result in slow mixing.

If the proposal distribution is symmetric, q(θ∗|θt) = q(θt|θ∗) for all t,

then Equation (1.3) simplifies. A special case is the random-walk, where

q(θ∗|θt) = q(|θ∗ − θt|). A common form of q(θ∗|θt), with q symmetric, is

a multivariate normal distribution with mean, θt, and constant covariance

matrix, Σ.

Sometimes it is more convenient to update each element of θ individ-

ually. Let θ = (θ1, ..., θk) be the vector of current parameter values and

θ−i = (θ1, ..., θi−1, θi+1, ..., θk). In each iteration of the Metropolis-Hastings

algorithm the elements of θ are updated in turn. For the ith parameter, we

propose a new value, θ∗i , which we sample from the proposal distribution,

qi(θ
∗
i |θi, θ−i). Then, θi is updated to θ∗i with probability,

α(θi, θ
∗
i ; θ−i) = min

(
1,
π(θ∗i |θ−i)qi(θi|θ∗i , θ−i)

π(θi|θ−i)qi(θ
∗
i |θi, θ−i)

)
.

All of the MCMC algorithms in this thesis will update parameters in turn

within one iteration, although sometimes individual parameters are collated

22



1.8 Motivating example: Asymmetric shape registration

in matrices and the matrices are updated in turn.

If the full conditional distribution of a parameter given the rest,

π(θi|θ−i), is known then choosing this distribution as the ith proposal dis-

tribution,

π(θ∗i |θ−i) = qi(θ
∗
i |θi, θ−i), π(θi|θ−i) = qi(θi|θ∗i , θ−i),

results in the proposal being accepted with probability 1. This special case

of the Metropolis-Hastings sampling method is known as the Gibbs sampler.

If sampling from the full conditional distribution is possible, then using the

Gibbs sampler is often computationally quicker and usually mixes more

efficiently than alternative Metropolis-Hastings steps.

In practical applications consideration must be given to the choice of

prior distribution, based on a priori knowledge. If little is known, then using

a non-informative prior, such as a uniform distribution over the parameter

space, will place more emphasis on the data in the likelihood. Conversely,

if a parameter is known to be in a narrow interval, then an informative

prior, such as a Gaussian distribution with small variance parameter, will

be more appropriate. Care should also be given so that the support of

the prior distribution does not extend outside the parameter space. For

example, a variance parameter must be positive.

1.8 Motivating example: Asymmetric shape

registration

In this section we consider a small motivating simulation study to explore

two concepts, shape registration and symmetry, that will occur throughout

this thesis. Shape registration, as we have seen through Procrustes methods,

is concerned with superimposing one shape on a template to minimise some

matching criterion. A shape is symmetric if there is an exact correspon-
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1.8 Motivating example: Asymmetric shape registration

dence of its form on opposite sides of a dividing line or plane. In applying

shape analysis to the human brain, the object is seen to be approximately

symmetric with left and right hemispheres. However, as will be shown later

in this thesis, on closer examination the human brain is asymmetric with

the hemispheres having different shape and function.

To illustrate asymmetric shape registration, consider a 2-dimensional

shape template, Φ, made up of 9 landmarks on a midline and 40 landmarks

evenly spaced on the unit circle, where the ith co-ordinate is given by,

Φi = (sin(θi), cos(θi)), where θi = 2πi/40 for i = 1, ..., 40. We perturb this

shape to make an asymmetric template, µ, with x co-ordinates,

µx =





sin(θi) + λ sin(2θi) i = 1, ..., 5,

sin(θi) + λ sin((2θi + π)/3) i = 6, ..., 20,

sin(θi) + λ sin(2θi − π) i = 21, ..., 25,

sin(θi) + λ sin(2(θi + π)/3) i = 26, ..., 40,

where λ is a chosen real positive distortion parameter. Clearly, the distor-

tion is greatest when θi = π/4 or θi = 5π/4. A data set of n shapes is then

simulated from the model, Xj = µ+σǫj , j = 1, ..., n, where vec(ǫ) ∼ N(0, I)

and σ = 0.01. The templates and an example shape can be seen in Figure

1.3.

This scenario reflects the common situation in brain image registration

where an asymmetric brain is registered to a symmetric template, often

created in studies by averaging left/right flips of a scan. Assuming the

errors are isotropic, a registration to the symmetric template would try to

minimise,

S(XP ,Φ) =
1

n

n∑

j=1

‖XP
j − Φ‖2,

where XP
j is the jth shape following registration. Ideally, though, a regis-
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Figure 1.3: A simulated 2D slice of the brain, with a symmetric template,
Φ (o), an asymmetric template, µ (+), with λ = 0.5, and a simulated
configuration, X (×), with σ = 0.01.

tration would minimise the distance to the true model mean,

S(XP , µ) =
1

n

n∑

j=1

‖XP
j − µ‖2.

For a simulated data set of n = 100 shapes, consider five different rigid-

body registration methods. Two methods use OPA to register the shapes to

µ and Φ, where Φ is the symmetric template displayed in Figure 1.3. Three

use landmarks on the midline alone: (a) OPA on the midline; (b) a line of

best fit registration that minimises the Euclidean norm of the midline x co-

ordinates and centres on the y co-ordinates; and (c) endpoint registration,

ensuring the top and bottom landmarks in the midline were on the y axis,

equidistant from the origin. The distance S(XP , µ) was measured following

each registration for various values of λ and the results are given in Table

1.1 and can be viewed in the left plot of Figure 1.4.

We measure the asymmetry of the shape by dividing the registered shape
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1.8 Motivating example: Asymmetric shape registration

λ OPA(µ) OPA(Φ) OPA(Mid) Best fit Endpoint
0.00 0.0094 0.0094 0.0103 0.0111 0.0149
0.02 0.0096 0.0098 0.0105 0.0114 0.0166
0.04 0.0094 0.0102 0.0102 0.0111 0.0161
0.06 0.0096 0.0113 0.0105 0.0112 0.0173
0.08 0.0096 0.0127 0.0105 0.0115 0.0161
0.10 0.0095 0.0144 0.0105 0.0113 0.0158

Table 1.1: S(XP , µ) following different registration methods.

into m = 18 equally spaced horizontal slices and estimating the area con-

tained between the y axis and the boundary of the shape on the left hand

side of the midline, V L
rj , and on the right hand side of the midline, V R

rj , for

r = 1, ..., m and j = 1, ..., n. The asymmetry function for the jth shape has

components,

ηrj =
V R

rj − V L
rj

V R
rj + V L

rj

.

The overall goodness of fit measure is, S(η(XP ), η(µ)) = 1/n
∑n

j=1 ‖η(XP
j )−

η(µ)‖2, where η(XP
j ) is the asymmetry function applied to the jth registered

shape. The distance S(η(XP ), η(µ)) was measured following each registra-

tion for various values of λ and the results are given in Table 1.2 and can

be viewed in the right plot of Figure 1.4.

λ OPA(µ) OPA(Φ) OPA(Mid) Best fit Endpoint
0.00 0.0363 0.0363 0.0365 0.0406 0.0483
0.20 0.0328 0.0363 0.0327 0.0350 0.0430
0.40 0.0328 0.0737 0.0349 0.0376 0.0430
0.60 0.0284 0.1339 0.0309 0.0389 0.0482
0.80 0.0276 0.2121 0.0323 0.0348 0.0412
1.00 0.0269 0.3172 0.0344 0.0398 0.0436

Table 1.2: S(η(XP ), η(µ)) following different registration methods.
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Figure 1.4: The value of S(XP , µ) (left) and S(η(XP ), η(µ)) (right), follow-
ing registration using OPA onto µ (solid line), OPA onto Φ (dashed line),
OPA using midline landmarks (dash/dot), and best fit line (dotted), for
different values of λ.

Unsurprisingly, OPA onto µ minimises both the shape difference and the

symmetry difference. However, the use of a symmetric template leads to

grossly inaccurate registrations, even for very small values of the distortion

parameter, λ. The use of midline registration methods consistently pro-

duce smaller shape and symmetry differences than using OPA onto Φ when

asymmetry is present. OPA onto the midline landmarks produced the least

error of the midline methods. This simple simulation study highlights the

need for a generalisation of Procrustes methods to cope with data sets where

the errors are not isotropic. In addition to template choice, non-isotropic

errors might also be caused by systematic errors in landmarking (Glasbey

et al., 1995), natural biological variation, or medical deformities, such as

brain lesions (Brett et al., 2001). This section also shows that the choice of

registration influences the measure of symmetry.
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1.9 Outline of the thesis

In Section 1.8 we showed there were advantages to performing Procrustes

registration using only the midline landmarks when the template for the

other landmarks was incorrect. In Chapter 2 we consider the application of

Procrustes methods to a subset of the available landmarks in more detail.

We formulate results regarding the distribution of the landmarks in the sub-

set and in the complement when matching to both the correct and incorrect

templates. Further, we extend Procrustes methods to enable registration

with respect to any symmetric positive definite weighting matrix, Σ.

The choice of Σ will depend on the application and aim of the analysis

but in a general setting Σ would represent the variance-covariance matrix

of the data. Typically, estimation of shape variability is carried out af-

ter isotropic Procrustes registration. However, Chapter 3 seeks to jointly

estimate the registration parameters, the mean shape and the shape vari-

ability, with the aim of using the estimated shape variability to influence

the registration. Both maximum likelihood and Bayesian methods are de-

veloped. Their ability to succeed relies on a priori information in the form

of constraints in the maximum likelihood case, and prior distributions for

the Bayesian MCMC algorithm. The methods are compared to isotropic

Procrustes methods through a simulation study.

Section 1.8 also introduced the concept of asymmetry commonly found

in the human brain. In Chapter 4, we apply a measure of symmetry to a

data set consisting of MRI scans. The volunteers in the study were either

healthy controls or patients with schizophrenia, and we use asymmetry to

establish differences in the shape of the cortical surface between the two

patient groups. Comparisons are only possible if the images have been cor-

rectly registered to a template, so we develop brain registration algorithms,

again using both maximum likelihood and Bayesian frameworks. Both al-

gorithms make use of symmetry around the midline given that asymmetric

features on the cortical surface have already been seen to lead to inaccurate
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registrations. The technique for analysis we develop is compared to the

existing technique of voxel-based morphometry.

In Chapter 5 we consider the more complicated problem of analysing

a 4-dimensional data set created by a series of brain images acquired over

a few minutes. This presents the additional challenge of registering the

data temporally, as well as spatially. Following registration, however, we

can analyse brain function by examining the resultant time series of oxy-

gen levels at each voxel. We develop a statistical model for analysing the

changes in response to a repeated stimuli, with errors correlated in time as

well as space, and use the EM algorithm to maximise the likelihood of the

model. The aims are to establish which voxels are activated by the stimulus

and to quantify the changes in response through time. Improvements to

current data pre-processing methods are also suggested, and the analysis

is compared to the results of existing techniques that use statistical linear

models and independent components analysis. The creation and analysis

of functional imaging data is still developing. The 7T MRI scanner at the

University of Nottingham, which came online in September 2005, is one of

the two most powerful scanners in Europe. The increased power raises the

signal to noise ratio, allowing single trial variability to be examined for the

first time.

Lastly, in Chapter 6 we draw some conclusions and discuss potential

areas for future research.

Calculations, graphics and results in this thesis have been conducted and

produced using software packages R (R Development Core Team, 2005),

including the shapes library, and Matlab (MathWorks, Natick, MA, USA).

In Chapters 4 and 5, existing software packages, SPM2 (e.g. Friston et

al., 1995a) and FSL (Smith et al., 2004), have also been used for data pre-

processing and making comparisons between methods.

29



Chapter 2

Weighted Procrustes analysis

2.1 Introduction

The standard approach to Procrustes analysis, outlined in Chapter 1, as-

sumes that all landmarks are included in the analysis and an equal weighting

is given to each. We previously demonstrated in Section 1.8 the need for

techniques that do not make these assumptions. In this chapter we develop

a weighted Procrustes registration method for shapes with k landmarks in

m dimensions. We start by examining a special case, where we divide the

landmarks into two sets and use only one subset to estimate the registration

parameters. We formulate the distribution of the sum of squared Euclidean

distances between a registered shape and a template for both subsets.

This application of isotropic Procrustes is then generalised to allow for

a weighted Procrustes technique based on a km× km matrix, Σ, where the

only restriction is that Σ is symmetric positive definite. This method is

formulated for matching one shape to a template (ordinary Procrustes) and

for registering multiple shapes to each other (generalised Procrustes). An

earlier summary of these methods is presented in Brignell et al. (2005). A

weighted registration is applicable in brain registration where the cortical

surface is known to be more variable than other areas. Richmond et al.
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2.2 Subset matching

(2004) consider the registration of molecules where the landmarks (atoms)

are defined by charge as well as geometrical location. One method, amongst

others, of applying a weighted Procrustes registration could incorporate the

compatibility of atom charges in the weighting matrix. The results given

in this chapter lay the groundwork for Chapter 3, where we estimate the

shape covariance matrix and recursively use this estimate in place of Σ to

find optimum registration parameters.

2.2 Subset matching

In conducting standard Procrustes analysis, one might choose to register a

shape to a template using only a subset of the available landmarks. Anal-

ysis of the subset would give the Procrustes estimates of the registration

parameters, which would then be applied to the complement. In this sec-

tion, we seek to establish the distribution of the sum of squared Euclidean

distances, following this registration, between the shape and the template

for both the subset and the complement.

Consider a configuration X = [XT
1 , X

T
2 ]T which we wish to match to

the template, µ = [µT
1 , µ

T
2 ]T , by Procrustes analysis (OPA) on the subsets

X1 and µ1, assuming without loss of generality that µ1 is centred. Each

configuration consists of k landmarks in m dimensions and Xj is kj × m,

where j = 1, 2, kj > m and k = k1 +k2. We will be matching using rotation

and translation, but not scaling. The model considered is X = µ+σǫ where

ǫT 1k = 0 and ǫ = [ǫT1 , ǫ
T
2 ]T is an error matrix and σ is a scalar quantity.

2.2.1 Distribution of the subset landmarks

Proposition 3 of Kent and Mardia (2001) states,

Result 2.2.1 Let A be a symmetric matrix with spectral decomposition A =

UΛUT , where U is orthogonal and Λ = diag(λi) is diagonal, such that

the eigenvalues {λi} are optimally signed and nondegenerate. Let B =
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2.2 Subset matching

A + σUCUT = U(Λ + σC)UT , where C is a general m×m matrix. Then,

for small enough σ > 0, the rotation matrix Γ maximising tr(BΓ) is given

by Γ = I + σUDUT +O(σ2), where D has elements,

dij =

{
(cji − cij)/(λi + λj) i 6= j,

0 i = j.

The matrix D = (−C+CT ) ∗L, where (L)ij = 1/(λi +λj), 1 ≤ i, j ≤ m

and ∗ denotes the Hadamard elementwise product. This product is defined

such that the ijth entry of R ∗ S, where R and S are matrices of the same

size, is the product of the individual ijth entries of R and S. To clarify, C

is a random m×m matrix, but U is constant, U ∈ O(m). The matrix, D,

is a function of C and the eigenvalues of µT
1 µ1.

Result 2.2.2 Following minimisation by rigid-body transformations, the

approximate distribution of the sum of Euclidean squared distances between

the subset landmarks is given by,

DS =

∥∥∥∥∥
X1Γ̂1 − µ1

σ

∥∥∥∥∥

2

∼ χ2

(k1−1)m−m(m−1)
2

, (2.1)

where, without loss of generality, X1 and µ1 have been centred and Γ̂1 is the

estimator of the minimising rotation.

Proof: Minimising the Euclidean squared distance between X1 and µ1,

‖X1Γ̂1 − µ1‖2, is equivalent to maximising the term tr(µT
1X1Γ̂). Appli-

cation of Kent and Mardia’s result, using their notation, implies B =

µT
1X1 = µT

1 (µ1 + σǫ1), A = µT
1 µ1 = UΛUT and µT

1 ǫ1 = UCUT , where

Λ = diag(λ1, ..., λm).

If vec(ǫ1) ∼ N(0, σ2I), then the distribution of DS is unaffected by pre-

multiplication by V T ∈ O(k) and post-multiplication by W ∈ O(m). Let,

µ̃1 = V Tµ1W , then µ̃T
1 µ̃1 = W TµT

1 V V
Tµ1W = W TµT

1 µ1W = W TUΛUTW .

We can, without loss of generality, choose W = U , therefore µ̃T
1 µ̃1 = Λ.
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2.2 Subset matching

Further, we can choose V such that µ̃1 only has non-zero entries on the

diagonal equivalent to diag(λ
1
2
1 , ..., λ

1
2
m).

Re-labelling µ̃1 as µ1, and re-applying Kent and Mardia’s result with this

choice of µ1 we see A = Λ, U is an identity matrix and µT
1 ǫ1 = C. Applying

Kent and Mardia’s approximation of the rotation matrix to R = (X1Γ̂1 −
µ1)/σ gives,

σR = (µ1 + σǫ1)(I + σD) − µ1 +O(σ2),

R = ǫ1 + µ1D +O(σ),

≈ ǫ1 + µ1(C
T ∗ L) − µ1(C ∗ L),

assuming σ is small. Given µ1 only has non-zero entries on the diagonal,

then the p,qth element of (CT ∗ L) and C ∗ L are,

(CT ∗ L)pq =
µ1qqǫ1qp

λp + λq
(C ∗ L)pq =

µ1ppǫ1pq

λp + λq
(2.2)

Considering the p, qth element of R, 1 ≤ p, q ≤ m. Then,

(R)pq ≈ ǫ1pq +
m∑

i=1

µ1pi(C
T ∗ L)iq −

m∑

i=1

µ1pi(C ∗ L)iq,

= ǫ1pq + µ1pp

(
µ1qqǫ1qp

λp + λq

− µ1ppǫ1pq

λp + λq

)
,

=
λ

1
2
q

λp + λq

(
λ

1
2
q ǫ1pq + λ

1
2
p ǫ1qp

)
.

For the case, p > m, then (R)pq = ǫ1pq, which agrees with Equation (4.1) of

Goodall (1995). Following the proof of Goodall (1991), the distributional

result in Equation (2.1) is obtained, due to (R)pq = λ
1
2
q λ

− 1
2

p (R)qp removing

m(m − 1)/2 degrees of freedom and ǫT1 1k1 = 0m removing a further m de-

grees of freedom. �
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2.2 Subset matching

Using the approximation of Kent and Mardia (2001), we have been able

to derive this distributional result, first given by Sibson (1979). We now

apply this result to some simulated data in a subset matching context. A

template was created with landmarks chosen at random in 2 dimensions.

Then the configuration X differed at each landmark from the template by

simulated values from a Gaussian distribution with zero mean and standard

deviation, σ = 0.01. From Figure 2.1 it can be seen that the density distri-

bution of the X1 landmarks given by the histogram follows the distribution

specified in Result 2.2.2, where (k1 − 1)m − 1
2
m(m − 1) = 2k1 − 3 when

m = 2.
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Figure 2.1: Histogram shows DS with k1 = 10, σ = 0.01. Line shows χ2
2k1−3.

2.2.2 Distribution of landmarks in the complement

Now consider the rest of the configuration, after applying the same centring

and rotation matrices determined from, and applied to, the subset.

Result 2.2.3 Following minimisation by rigid-body transformations of X1

to µ1, the approximate distribution of the sum of Euclidean squared distances

between landmarks in the complement is given by,

DC =

∥∥∥∥∥
X2Γ̂1 − µ2

σ

∥∥∥∥∥

2

∼
k2m∑

i=1

ηiU
2
i , (2.3)
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2.2 Subset matching

where, without loss of generality, X2 and µ2 have been translated using the

centring of X1 and µ1, respectively, U2
i ∼ χ2

1, and ηi are the eigenvalues of

P2C1kmC
T
1kmP

T
2 , where C1km = C1k ⊗ Im, C1k = Ik − 1

k
1k(1

T
k1

0T
k2

) and P2 is

a k2m× km matrix such that (X2Γ̂ − µ2)/σ = P2vec([ǫ
T
1 , ǫ

T
2 ]).

Proof: Using the result from Kent and Mardia (2001) and the simpli-

fication given in Result 2.2.2, we express the difference between the ro-

tated, translated configuration and the template, in the complement, as

Q = (X2Γ̂1 − µ2)/σ. Hence,

σQ = (µ2 + σǫ2)(I + σD) − µ2 +O(σ2),

Q = ǫ2 + µ2D +O(σ),

≈ ǫ2 + µ2(C
T ∗ L) − µ2(C ∗ L),

assuming σ is small.

Applying Equation (2.2), we consider the p,qth element of Q, p = 1, ..., k2,

q = 1, ..., m,

(Q)pq ≈ ǫ2pq +
m∑

i=1

µ2pi(C
T ∗ L)iq −

m∑

i=1

µ2pi(C ∗ L)iq,

= ǫ2pq +

m∑

i=1

µ2pi

(
ǫ1qiµ1qq

λi + λq

)
−

m∑

i=1

µ2pi

(
µ1iiǫ1iq

λi + λq

)
,

= ǫ2pq +
m∑

i=1

µ2pi

λi + λq

(
λ

1
2
q ǫ1qi − λ

1
2
i ǫ1iq

)
.

We write, vec(Q) = P2vec([ǫ
T
1 , ǫ

T
2 ]), where P2 is a k2m×km matrix. Assume,

without loss of generality, that µ1 and X1 are centred, by initially premul-

tiplying the configurations by a centring matrix, C1k = Ik − 1
k
1k(1

T
k1

0T
k2

),

to centre on the subset rather than the whole configuration. There-

fore, vec(ǫ) ∼ N(0, C1kmC
T
1km), where C1km = C1k ⊗ Im, and vec(Q) ∼

N(0, P2C1kmC
T
1kmP

T
2 = Σ2).
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2.2 Subset matching

Let Σ2 = RΛRT , by the spectral decomposition theorem, and Y =

Σ
− 1

2
2 vec(Q) ∼ N(0,Σ

− 1
2

2 Σ2Σ
− 1

2
2 = I), U = RTY ∼ N(0, RRT = I), then us-

ing standard results regarding quadratic forms (Mathai and Provost, 1992),

‖vec(Q)‖2 = vec(Q)T vec(Q) ≈ Y T Σ2Y = Y TRΛRTY = UT ΛU =

k2m∑

i=1

ηiU
2
i ,

where Ui ∼ N(0, 1) and ηi are the eigenvalues of Σ2. The result then fol-

lows. �.

The linear combination of χ2 variables can be approximated using a

Satterthwaite approximation, see Johnson et al. (1994) for details. Given,

E(DC) =
∑

i ηi and Var(DC) = 2
∑

i η
2
i , we can equate these with the first

two moments of aχ2
r , namely ar and 2a2r, to give DC ≈ aχ2

r where,

a =

∑k2m
i=1 η

2
i∑k2m

i=1 ηi

, r =
(
∑k2m

i=1 ηi)
2

∑k2m
i=1 η

2
i

,

which can be solved numerically. In the case m = 2, a and r can be

calculated using,

k2m∑

i=1

ηi =
2k2(k1 + 1)

k1
+

(k1 − 1)

k1(λ1 + λ2)

k2∑

p=1

2∑

q=1

µ2
2pq,

k2m∑

i=1

η2
i =

1

k2
1

(
2k2(k2 + 2k1 + k2

1) +
2k1(k1 − 1)

λ1 + λ2

k2∑

p=1

2∑

q=1

µ2
2pq

+
2(k1 − 1)

λ1 + λ2




2∑

q=1

(
k2∑

p=1

µ2pq

)2


 +
(k1 − 1)2

(λ1 + λ2)2

(
k2∑

p=1

2∑

q=1

µ2
2pq

)2)
,

where λ1 = µ2
111 and λ2 = µ2

122, the only non-zero entries of µ1.

Returning to the simulation, the density distribution of the X2 land-

marks was plotted as a histogram, see Figure 2.2. The exact values of η
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2.2 Subset matching

were calculated and in the first column, the line shows the density of the

linear combination of χ2 variables. Note that this line is not smooth because

the density is based on 10,000 simulations rather than an exact distribution.

In the second column the line shows the Satterthwaite approximation, based

on the totals of the eigenvalues. It can be seen that the approximation is

very good, although with low values of k1 the result is less obvious.
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Figure 2.2: Histograms show DC with k2 = 10, σ = 0.01. The rows show the
distribution with k1 = 3, 30 respectively. In the first column, the line shows
the distribution of

∑
ηiU

2
i . In the second column it shows the distribution

of aχ2
r .

Different combinations of k1 and k2 were used in the simulations. The

number of X2 landmarks has no influence on the distribution of X1 land-

marks. However, theX2 distribution is affected by the value of k1, see Figure

2.2. Table 2.1 shows the results of simulations carried out with k2 = 10.

In each case, the first three eigenvalues are shown in the table, and the
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2.2 Subset matching

remaining eigenvalues, η4 = ... = η20 = 1. Note that as k1 → ∞, ηi → 1.

Therefore,
∑
ηi → k2m and

∑
η2

i → k2m. Hence, a → 1 and r → k2m.

This implies E(DC) → k2m and Var(DC) → 2k2m.

k1 η1, η2, η3

∑
ηi

∑
η2

i a r E(aχ2
r) Var(aχ2

r)
3 10.53, 4.33, 4.09 36.0 163.3 4.5 7.9 35.55 320.0
10 5.62, 2.00, 1.98 26.6 56.4 2.1 12.5 26.25 110.3
30 1.81, 1.33, 1.19 21.3 23.5 1.1 19.4 21.34 46.9
50 1.54, 1.20, 1.18 20.9 22.2 1.1 19.7 21.67 47.7

Table 2.1: The approximate expected value and variance for DC ≈ aχ2
r for

different values of k1 given k2 = 10.

In the simulations we tried different values for the variance of the normal

distribution from which the errors were simulated. As expected, for low

values of σ our results held but as σ → ∞ the distribution of ‖(X1Γ1 −
µ1)/σ‖2 → χ2

2k1−2 because X1 is centred, see Figure 2.3. Our expected

distribution of ‖(X2Γ1 − µ2)/σ‖2 consistently over-estimates the correct

mean for high values of σ, see Table 2.2

σ D̄S E(χ2
2k1−3) D̄C E(

∑
ηiχ

2
1) E(aχ2

r)
0.01 17.02 17.00 24.72 24.43 24.54
0.1 17.06 17.00 25.02 24.66 24.68
1 17.04 17.00 26.47 25.75 25.79
10 17.11 17.00 23.30 25.14 25.34
100 17.90 17.00 22.07 24.77 24.85
1000 18.00 17.00 22.00 24.18 24.18

Table 2.2: The mean value of DS and DC from simulations compared to
theoretical values and an approximate theoretical value, for k1 = 10, k2 =
10.
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2.2 Subset matching
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Figure 2.3: Histograms show distribution with k1 = 10, k2 = 10. The rows
show the distribution with σ = 0.01, 1, 10 respectively. In the first column,
the histogram shows distribution of DS and the line shows the distribution
of χ2

2k1−3. In the second column, the histogram shows distribution of DC

and the line shows the distribution of aχ2
r .
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2.2 Subset matching

2.2.3 Distribution of landmarks with respect to an

alternative complement template

We extend the simulation to include a 2 dimensional slice of a brain-like

configuration, where there are 9 landmarks forming a midline and 40 land-

marks forming a circle to represent the surface of the brain, as shown in

Figure 1.3. Using the midline landmarks as X1 and the circle as X2, the dis-

tribution followed our expectations. The brain surface was then perturbed

to make it asymmetric. Frequently, a patient’s brain is asymmetric, but it

may be desirable to measure the distance to a symmetric template. In this

case, allow µ to represent the asymmetric template about which points are

perturbed, and let Φ be the circle.

Result 2.2.4 Following minimisation by rigid-body transformations of X1

to µ1, the approximate distribution of the sum of Euclidean squared distances

between landmarks in the complement of the shape, X2, and the complement

of an alternative template, Φ2, is given by,

DC =

∥∥∥∥∥
X2Γ̂1 − Φ2

σ

∥∥∥∥∥

2

∼
k2m∑

i=1

ηiV
2
i , (2.4)

where V 2
i ∼ χ2

1(ζi), ηi are the eigenvalues of Σ2 = P2C1kmC
T
1kmP

T
2 and each

ζi is a function of µ2 − Φ2 and Σ.

Proof: Using the result from Kent and Mardia (2001) and the simplifica-

tion given in Result 2.2.2, we express the difference between the rotated,

translated configuration and the alternative template, in the complement,

as Q = (X2Γ̂1 − Φ2)/σ. Hence,

σQ = (µ2 + σǫ2)(I + σD) − Φ2 +O(σ2),

Q =
µ2 − Φ2

σ
+ (ǫ2 + µ2D) +O(σ).
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2.2 Subset matching

From the proof of Result 2.2.3 we know,

vec(Q) ≈ ∆ + P2vec([ǫ
T
1 ǫ

T
2 ]) ∼ N(∆, P2C1kmC

T
1kmP

T
2 = Σ2),

where ∆ = vec
(

µ2−Φ2

σ

)
. Let Z = Σ

− 1
2

2 (vec(Q) − ∆) ∼ N(0, I), Σ2 = RΛRT

by the spectral decomposition theorem, and U = RTZ ∼ N(0, RRT = I).

Then, vec(Q) = Σ
1
2
2 (Z + Σ

− 1
2

2 ∆), and,

vec(Q)T vec(Q) ≈ (Z + Σ
− 1

2
2 ∆)TRΛRT (Z + Σ

− 1
2

2 ∆),

= (RTZ +RT Σ
− 1

2
2 ∆)T Λ(RTZ +RT Σ

− 1
2

2 ∆),

= (U + λ)TΛ(U + λ),

=

k2m∑

i=1

ηiV
2
i ,

where Vi ∼ N(λi, 1) and λi is the ith element of λ = RT Σ
− 1

2
2 ∆. Therefore,

V 2
i ∼ χ2

1(ζi) where ζi = λ2
i . �

Given the complexity of the non-central chi-squared distribution, it

seems sensible to approximate this result using a scaled central chi-squared

distribution (Johnson et al., 1995), i.e. the Satterthwaite approximation.

If we let
∑
ηiχ

2
1(ζi) = aχ2

r , we can calculate values for a and r. Equating

results for the first two moments gives,

a =

∑
η2

i (1 + 2ζi)∑
ηi(1 + ζi)

, r =
(
∑
ηi(1 + ζi))

2

∑
η2

i (1 + 2ζi)
.

An improved approximation would be of the form cχ2
f + b, Equating the

first three moments gives,

∑

i

ηi(1 + ζi) = cf + b, 2
∑

i

η2
i (1 + 2ζi) = 2c2f,

8
∑

i

η3
i (1 + 3ζi) = 8c3f,
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2.3 Covariance weighted OPA

which can be solved to give,

c =

∑
η3

i (1 + 3ζi)∑
η2

i (1 + 2ζi)
, f =

(
∑
η2

i (1 + 2ζi))
3

(
∑
η3

i (1 + 3ζi))2
,

b =
∑

ηi(1 + ζi) −
(
∑
η2

i (1 + 2ζi))
2

∑
η3

i (1 + 3ζi)
.

This method was applied to our simulated 2-dimensional brain slice.

Due to the midline having the same landmarks in the asymmetric template

and the circle, the distribution of X1 landmarks was the same as before.

Figure 2.4 shows that the theoretical distribution for DC seems to be fairly

accurate, with the other distributions being good approximations. Using

three parameters produces a noticeable benefit.

The distributional results presented in this section could allow us to

quantify theoretically the efficiency of the subset matching estimator and

quantify its variance.

2.3 Covariance weighted OPA

In Chapter 1 full isotropic ordinary Procrustes analysis was defined as ob-

taining the Procrustes estimators of translation, rotation and scale to min-

imise the Euclidean distance, D2
OPA(X,µ) = ‖µ − XP‖2. Euclidean dis-

tance is a special case of the Mahalanobis norm ‖µ − XP‖2
Σ = vec(µ −

XP )T Σ−1vec(µ − XP ) with Σ = Ikm. In Section 2.3.1 partial covariance

weighted Procrustes analysis is defined with respect to the Mahalanobis

norm and expressions for the minimising translation and rotation are given.

This is extended to include scaling in Section 2.3.2, before consideration is

given to some special cases.
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Figure 2.4: Top left, the histogram shows DS with the expected distribution.
The other histograms shows DC with k1 = 9, k2 = 40, σ = 0.01. Top right,
the line shows the distribution of

∑
ηiχ

2
1(ζi), simulated using N(ηi

√
ζi, ηi).

The bottom row shows the approximate distribution using the first two
moments on the left and the first three moments on the right.
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2.3 Covariance weighted OPA

2.3.1 Partial covariance weighted OPA

Definition 2.3.1 The method of partial covariance weighted ordinary Pro-

crustes analysis (partial CW OPA) involves the least squares matching of

one configuration to another using rigid-body transformations. Estimation

of the translation and rotation parameters, γ and Γ, is carried out by min-

imising the Mahalanobis norm,

D2
pCWP (X,µ; Σ) = ‖µ−XΓ − 1kγ

T‖2
Σ, (2.5)

where Σ (km × km) is a symmetric positive definite matrix, γ is a m × 1

location vector and Γ is an m×m special orthogonal rotation matrix.

The translation which minimises Equation (2.5) is given by Result 2.3.1.

In general, the minimising rotation is solved numerically, however when

m = 2 there is only one rotation angle and a solution is given by Result

2.3.2.

Result 2.3.1 Given two configuration matrices, X and µ, and a symmetric

positive definite matrix, Σ, the translation, as a function of rotation, which

minimises the Mahalanobis norm, D2
pCWP (X,µ; Σ) is,

γ̂ = [(Im ⊗ 1k)
T Σ−1(Im ⊗ 1k)]

−1(Im ⊗ 1k)
T Σ−1vec(µ−XΓ). (2.6)

Proof: Let v = vec(µ−XΓ) then,

D2
pCWP (X,µ; Σ) = (v − (Im ⊗ 1k)γ)

T Σ−1(v − (Im ⊗ 1k)γ),

= vT Σ−1v − 2vTΣ−1(Im ⊗ 1k)γ

+γT (Im ⊗ 1k)
T Σ−1(Im ⊗ 1k)γ.
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2.3 Covariance weighted OPA

The minimising translation is found by setting the first derivative equal to

zero,

dD2
pCWP

dγ
= −2(Im ⊗ 1k)

T Σ−1v + 2(Im ⊗ 1k)
T Σ−1(Im ⊗ 1k)γ = 0.

The second derivative is clearly positive because Σ−1 is positive definite.

Therefore D2
pCWP is minimised when γ = [(Im ⊗ 1k)

T Σ−1(Im ⊗ 1k)]
−1(Im ⊗

1k)Σ
−1v. �

Result 2.3.2 Assuming that m = 2, let A = [(Im ⊗ 1k)
T Σ−1(Im ⊗

1k)]
−1(Im ⊗ 1k)

T Σ−1, and denote the partitioned submatrices as,

A =

[
A11 A12

A21 A22

]
, X =

[
X1 X2

]
, µ =

[
µ1 µ2

]
,

where Aij have dimension (1 × k) and Xi, µi have dimension (k × 1) for

i, j = 1, 2, then given two configuration matrices, X and µ, and a symmetric

positive definite matrix Σ, the rotation which minimises the Mahalanobis

norm, D2
pCWP (X,µ; Σ) is given by,

cos θ̂ =
S(2λ− 2Q) + TR

(2λ− 2P )(2λ− 2Q) −R2
,

sin θ̂ =
T (2λ− 2P ) + SR

(2λ− 2P )(2λ− 2Q) − R2
, (2.7)

where,

P =

[
(X1 + 1kδ1)

(X2 + 1kδ2)

]T

Σ−1

[
(X1 + 1kδ1)

(X2 + 1kδ2)

]
,

Q =

[
(X2 − 1kζ1)

−(X1 + 1kζ2)

]T

Σ−1

[
(X2 − 1kζ1)

−(X1 + 1kζ2)

]
,
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2.3 Covariance weighted OPA

R = −2

[
(X1 + 1kδ1)

(X2 + 1kδ2)

]T

Σ−1

[
(X2 − 1kζ1)

−(X1 + 1kζ2)

]
,

S = −2

[
(X1 + 1kδ1)

(X2 + 1kδ2)

]T

Σ−1

[
(µ1 − 1kα1)

(µ2 − 1kα2)

]
, (2.8)

T = 2

[
(X2 − 1kζ1)

−(X1 + 1kζ2)

]T

Σ−1

[
(µ1 − 1kα1)

(µ2 − 1kα2)

]
,

αi = Ai1µ1 + Ai2µ2,

δi = −Ai1X1 −Ai2X2,

ζi = Ai1X2 − Ai2X1,

and λ is the real root less than 1
2

(
P +Q−

√
(P −Q)2 +R2

)
of the quartic

equation,

16λ4 − 32(P +Q)λ3

+[16(P 2 +Q2) + 64PQ− 4(S2 + T 2) − 8R2]λ2

+[8R2(P +Q) − 32PQ(P +Q) + 8(QS2 + PT 2 − STR)]λ (2.9)

+16P 2Q2 +R4 −R2(S2 + T 2) + 4RST (P +Q)

−4P 2T 2 − 4Q2S2 − 8PQR2 = 0.

Proof: From Equation (2.6) the minimising translation is γ̂ = Avec(µ −
XΓ), so for m = 2,

[
γ̂1

γ̂2

]
=

[
α1 + δ1 cos θ + ζ1 sin θ

α2 + δ2 cos θ + ζ2 sin θ

]
, because, Γ =

[
cos θ sin θ

− sin θ cos θ

]
.

Therefore,

vec(µ−XΓ − 1kγ
T )

=

[
(µ1 − 1kα1) − (X1 + 1kδ1) cos θ + (X2 − 1kζ1) sin θ

(µ2 − 1kα2) − (X2 + 1kδ2) cos θ − (X1 + 1kζ2) sin θ

]
,
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2.3 Covariance weighted OPA

and D2
pCWP (X,µ; Σ) = C+P cos2 θ+Q sin2 θ+R cos θ sin θ+S cos θ+T sin θ

where,

C =

[
(µ1 − 1kα1)

(µ2 + 1kα2)

]T

Σ−1

[
(µ1 − 1kα1)

(µ2 + 1kα2)

]
.

Let λ be the real Lagrangian multiplier to enforce the constraint cos2 θ +

sin2 θ = 1 and let L = D2
pCWP (X,µ; Σ) + λ(1 − cos2 θ − sin2 θ). Then,

∂L

∂(cos θ)
= 2(P − λ) cos θ +R sin θ + S = 0,

∂L

∂(sin θ)
= 2(Q− λ) sin θ +R cos θ + T = 0,

∂L

∂λ
= 1 − cos2 θ − sin2 θ = 0.

Solving the first two equations simultaneously and substituting the solutions

in the third, gives the expressions for cos θ, sin θ and the quartic equation

respectively. To show this is a minimum of D2
pCWP , consider the matrix of

second derivatives,

S∗ =

[
∂2L

∂(cos2 θ)
∂2L

∂(cos θ)∂(sin θ)
∂2L

∂(cos θ)∂(sin θ)
∂2L

∂(sin2 θ)

]
=

[
2(P − λ) R

R 2(Q− λ)

]
.

Let ξ1 ≥ ξ2 be the eigenvalues of S∗. Then, |S∗ − ξiI| = (ξi + 2λ)2 − 2(P +

Q)(ξi + 2λ) + 4PQ− R2, so (ξi + 2λ) = P +Q±
√

(P −Q)2 +R2. Given

Σ−1 is positive definite, P > 0 and Q > 0, then ξ2 is strictly positive if

P + Q − 2λ−
√

(P −Q)2 +R2 > 0 which is true if the constraint on λ is

satisfied. �

Note that a unique solution of Equation (2.9) that satisfies the constraint

may not exist and it may be necessary to evaluate D2
pCWP (X,µ; Σ) for

several choices of λ or use numerical methods. In our experience, however,
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2.3 Covariance weighted OPA

this is rarely required.

Figure 2.5 shows the partial ordinary covariance weighted Procrustes

registration of one second thoracic mouse vertebra to another for three dif-

ferent weighting matrices, Σ. Note there are k = 6 landmarks in m = 2

dimensions taken at points of maximum curvature from a cross-section.

Starting at the far left and going clockwise, the landmarks are numbered:

4, 3, 2, 6, 1, 5. The weighting matrices used are:

Σ1 = Ikm, Σ2 = Im ⊗ ΣK , Σ3 = ΣM ⊗ ΣK , (2.10)

where,

ΣM =

[
10 0

0 0.1

]
, ΣK =




0.1 0 0 0 0 0

0 0.1 0 0 0 0

0 0 10 0 0 0

0 0 0 10 0 −9

0 0 0 0 10 0

0 0 0 −9 0 10




.

The first example is the same as isotropic OPA, giving the same weight-

ing to all co-ordinates and minimising the total distance between all pairs of

landmarks. The second example weights landmarks one and two more heav-

ily than the others, and this is reflected in these landmarks being closely

matched at the expense of introducing large variability elsewhere. The third

example goes a stage further, and weights the y direction more heavily than

the x direction. This forces a large rotation to ensure landmarks 1 and 2

have similar y values on both the template and the dotted image.

2.3.2 Full covariance weighted OPA

Definition 2.3.2 The method of full covariance weighted ordinary Pro-

crustes analysis (full CW OPA) involves the least squares matching of one

48



2.3 Covariance weighted OPA

−100 −50 0 50 100

−
1
0
0

−
5
0

0
5
0

1
0
0

x

y

−100 −50 0 50 100

−
1
0
0

−
5
0

0
5
0

1
0
0

x
y

−100 −50 0 50 100

−
1
0
0

−
5
0

0
5
0

1
0
0

x

y

Figure 2.5: The partial ordinary covariance weighted Procrustes registration
of a mouse vertebra (dotted) to a template, using Σ1 (top left), Σ2 (top
right) and Σ3 (bottom).
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2.3 Covariance weighted OPA

configuration to another using similarity transformations. Estimation of the

translation, rotation and scaling parameters, γ, Γ and β, is carried out by

minimising the Mahalanobis norm

D2
CWP (X,µ; Σ) = ‖µ− βXΓ − 1kγ

T‖2
Σ, (2.11)

where Σ (km × km) is a symmetric positive definite matrix, γ is a m × 1

location vector, Γ is an m×m special orthogonal rotation matrix and β > 0

is a scale parameter.

In general, the minimising rotation is solved numerically and the min-

imising translation and scaling are given by Result 2.3.3. However, when

m = 2 all the similarity transformation parameters can be obtained by

Result 2.3.4.

Result 2.3.3 Given two configuration matrices, X and µ, and a symmet-

ric positive definite matrix Σ, the translation and scaling, as a function of

rotation, which minimise the Mahalanobis norm, D2
CWP (X,µ; Σ) are,

[
γ̂

β̂

]
= B−1

[
(Im ⊗ 1k)

T Σ−1vec(µ)

vec(XΓ)T Σ−1vec(µ)

]
, (2.12)

where,

B =

[
(Im ⊗ 1k)

T Σ−1(Im ⊗ 1k) (Im ⊗ 1k)
T Σ−1vec(XΓ)

vec(XΓ)T Σ−1(Im ⊗ 1k) vec(XΓ)T Σ−1vec(XΓ)

]
.

Proof: Let v = vec(µ) and ξ = vec(XΓ) then,

D2
CWP (X,µ; Σ) = (v − βξ − (Im ⊗ 1k)γ)

T Σ−1(v − βξ − (Im ⊗ 1k)γ),

= vTΣ−1v − 2βξTΣ−1v − 2vTΣ−1(Im ⊗ 1k)γ + β2ξT Σ−1ξ

+2βξTΣ−1(Im ⊗ 1k)γ + γT (Im ⊗ 1k)
T Σ−1(Im ⊗ 1k)γ.
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2.3 Covariance weighted OPA

This implies,

dD2
CWP

dγ
= −2(Im ⊗ 1k)

T Σ−1v + 2β(Im ⊗ 1k)
T Σ−1ξ

+2(Im ⊗ 1k)
T Σ−1(Im ⊗ 1k)γ,

dD2
CWP

dβ
= −2ξT Σ−1v + 2βξTΣ−1ξ + 2ξTΣ−1(Im ⊗ 1k)γ.

Therefore the minimum is at the solution of,

B

[
γ

β

]
=

[
(Im ⊗ 1k)

T Σ−1vec(µ)

vec(XΓ)T Σ−1vec(µ)

]
.

The matrix of second derivatives is clearly positive because Σ−1 is positive

definite. �

Result 2.3.4 Assuming that m = 2, let A = [(Im ⊗ 1k)
T Σ−1(Im ⊗

1k)]
−1(Im ⊗ 1k)

T Σ−1, and define P , Q, R, S and T as in Equations (2.8),

then given two configuration matrices, X and µ, and a symmetric positive

definite matrix, Σ, the similarity transformation parameters which minimise

the Mahalanobis norm, D2
CWP (X,µ; Σ) are given by,

γ = Avec(µ− βXΓ), β = +
√
ψ2

1 + ψ2
2 ,

cos θ =
ψ1√

ψ2
1 + ψ2

2

, sin θ =
ψ2√

ψ2
1 + ψ2

2

,

where,

ψ1 =
RT − 2QS

4PQ− R2
, ψ2 =

RS − 2PT

4PQ− R2
. (2.13)

Proof: Replacing cos θ with β cos θ and sin θ with β sin θ in the proof

of Result 2.3.2 gives D2
CWP (X,µ; Σ) = C + Pβ2 cos2 θ + Qβ2 sin2 θ +

Rβ2 cos θ sin θ + Sβ cos θ + Tβ sin θ. Let ψ1 = β cos θ and ψ2 = β sin θ,
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2.3 Covariance weighted OPA

then,

dD2
CWP

dψ1

= 2Pψ1 +Rψ2 + S,
dD2

CWP

dψ2

= 2Qψ2 +Rψ1 + T.

Setting these expressions equal to zero and solving them simultaneously

gives the required expressions for ψ1 and ψ2. Solving ψ1 = β cos θ and

ψ2 = β sin θ subject to the constraint that cos2 θ + sin2 θ = 1 gives the

rotation and scale parameters. Given these, the translation is obtained by

letting v = vec(µ− βXΓ) in the proof of Result 2.3.1. �

2.3.3 Special case: Σ = Ikm

If Σ = Ikm, then covariance weighted OPA should give the same result as

isotropic OPA. Note that when m = 2 we can represent the k × 2 con-

figuration matrix X of real co-ordinates as the k × 1 vector of complex

co-ordinates, with the real and imaginary components representing the x

and y co-ordinates respectively. In this notation, assuming X and µ are

centred, the full Procrustes fit for isotropic OPA has the solution,

γ̂ = 0, θ̂ = arg(X∗µ), β̂ =
(X∗µµ∗X)1/2

X∗X
,

where X∗ denotes the transpose of the complex conjugate of X.

Result 2.3.5 If Σ = Ikm and assuming without loss of generality that X

and µ are centred, then the covariance weighted OPA transformation param-

eter estimates are (I) γ̂ = 0, (II) β̂ = tr(µTXΓ̂)/tr(XTX) and for m = 2,

(III) γ̂ = 0, (IV) θ̂ = arg(X∗µ) and (V) β̂ = (X∗µµ∗X)1/2/(X∗X).

Proof: If Σ = Ikm, then Equation (2.6) gives,

γ̂ =
1

k
(Im ⊗ 1k)

T vec(µ−XΓ).
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2.3 Covariance weighted OPA

X and µ centred implies (Im ⊗ 1k)
T vec(X) = 0 = (Im ⊗ 1k)

T vec(µ). There-

fore γ̂ = 0. If Σ = Ikm, and X and µ are centred, then Equation (2.12)

gives,

[
γ

β

]
=

[
kIm 0k

0T
k tr((XΓ)TXΓ)

]−1 [
0k

tr(µXΓ)

]
,

which has solutions γ̂ = 0 and β̂ = tr(µXΓ)/tr(XTX), therefore statements

(I) and (II) are true.

For m = 2, γ̂ = 0, as shown above for general m. Referring to the notation

of Result 2.3.2, if Σ = Ikm, then A11 = A22 = 1
k
1T

k and A12 = A21 = 0T
k .

Then, from Equations (2.8), if X and µ are centred, then αi = δi = ζi = 0,

for i = 1, 2, and P , Q, R, S and T simplify to,

P = Q = XT
1 X1 +XT

2 X2, R = −2(XT
1 X2 −XT

2 X1) = 0,

S = −2(XT
1 µ1 +XT

2 µ2), T = 2(XT
2 µ1 −XT

1 µ2).

CASE 1: PARTIAL OPA. With P = Q and R = 0, the quartic equation,

Equation (2.9), reduces to,

16λ4 − 64Pλ3 + [96P 2 − 4(S2 + T 2)]λ2 + [8P (S2 + T 2) − 64P 3]λ

+16P 4 − 4P 2(S2 + T 2) = 0,

=⇒ 16(λ− P )4 − 4(S2 + T 2)(λ− P )2 = 0,

which has solutions λ = P , λ = P ± (S2 + T 2)1/2/2. The constraint in

Result 2.3.2 implies λ = P − (S2 + T 2)1/2/2. Therefore,

cos θ =
S

2λ− 2P
=

−S
(S2 + T 2)1/2

, sin θ =
T

2λ− 2P
=

−T
(S2 + T 2)1/2

,

and tan θ = T/S = (XT
1 µ2 − XT

2 µ1)/(X
T
1 µ1 + XT

2 µ2). Note that X∗µ =

(XT
1 µ1 +XT

2 µ2) + (XT
1 µ2 −XT

2 µ1)i. Therefore θ = arg(X∗µ).
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2.3 Covariance weighted OPA

CASE 2: FULL OPA. With P = Q and R = 0, Equations (2.13) reduce to

ψ1 = −S/2P and ψ2 = −T/2P . Therefore, ψ2/ψ1 = sin θ/ cos θ = tan θ =

T/S and so θ = arg(X∗µ) as in case 1. Further,

β̂ =
√
ψ2

1 + ψ2
2 =

√
S2 + T 2

2P
,

=

√
(XT

1 µ1 +XT
2 µ2)2 + (XT

2 µ1 −XT
1 µ2)2

(XT
1 X1 +XT

2 X2)
=

√
X∗µµ∗X

X∗X
,

and so statements (III), (IV) and (V) are also true. �

2.3.4 Special case: Σ = Im ⊗ Σk

This special case will be considered in two ways. Firstly, expressions for

the similarity transformation parameters will be derived by minimising

D2
CWP (X,µ; Im ⊗ Σk), then the results given in Sections 2.3.1 and 2.3.2

will be shown to simplify and give equivalent expressions under this con-

straint. Assume, without loss of generality, that X and µ are located such

that 1T
k Σ−1

k X = 0 = 1T
k Σ−1

k µ. Then,

D2
CWP (X,µ; Im ⊗ Σk) = ‖µ− βXΓ − 1kγ

T‖2
Im⊗Σk

,

= vec(µ− βXΓ − 1kγ
T )T (Im ⊗ Σ−1

k )

×vec(µ− βXΓ − 1kγ
T ),

= tr
[
(µ− βXΓ − 1kγ

T )T Σ−1
k (µ− βXΓ − 1kγ

T )
]
,

= tr(µTΣ−1
k µ) + β2tr(XT Σ−1

k X)

−2βtr(µT Σ−1
k XΓ) + tr(γ1T

k Σ−1
k 1kγ

T )

−2tr(γ1T
k Σ−1

k µT ) + 2βtr(γ1T
k Σ−1

k XΓ).

Clearly, the last two terms are zero, and the requirement of Σ to be

positive definite implies 1T
k Σ−1

k 1k > 0. Therefore, D2
CWP is minimised if

54



2.3 Covariance weighted OPA

γ̂ = 0 and D2
CWP simplifies to,

D2
CWP (X,µ; Im ⊗ Σk) = tr(µT Σ−1

k µ) + β2tr(XT Σ−1
k X) − 2βtr(µT Σ−1

k XΓ).

The minimising rotation is Γ̂ = UV T , where µT Σ−1
k X = V ΛUT , by the

same argument as for isotropic OPA. For the minimising scaling, note that

the first derivative is,

dD2
CWP

dβ
= 2βtr(XT Σ−1

k X) − 2tr(µTΣ−1
k XΓ).

The second derivative is positive because Σ−1
k is positive definite, so

the minimum of D2
CWP is at β̂ = tr(µTΣ−1

k XΓ)/tr(XT Σ−1
k X). Note that

if X and µ are replaced by XQ = QX and µQ = Qµ respectively, where

Σ−1
k = QTQ is the Cholesky decomposition, then the estimates of Γ̂ and β̂

for matching X to µ with Σ = Im ⊗Σk are equivalent to the estimates of Γ̂

and β̂ for matching XQ to µQ with Σ = Ikm, as claimed by Goodall (1991).

Result 2.3.6 If Σ is of the form Im ⊗Σk, where Σk(k× k) is a symmetric

positive definite matrix, and assume without loss of generality that X and

µ are located such that 1T
k Σ−1

k X = 0 = 1T
k Σ−1

k µ, then

γ̂ = 0, β̂ =
(S2 + T 2)1/2

2P
,

cos θ̂ =
−S

(S2 + T 2)1/2
, sin θ̂ =

−T
(S2 + T 2)1/2

,

where,

P = XT
1 Σ−1

k X1 +XT
2 Σ−1

k X2,

S = −2(XT
1 Σ−1

k µ1 +XT
2 Σ−1

k µ2),

T = 2(XT
2 Σ−1

k µ1 +XT
1 Σ−1

k µ2).

Proof: If Σ = Im ⊗ Σk, then the similarity transformation estimates of
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2.3 Covariance weighted OPA

Result 2.3.4 can be simplified. For the translation,

γ̂ = [(Im ⊗ 1k)
T (Im ⊗ Σk)

−1

×(Im ⊗ 1k)]
−1(Im ⊗ 1k)

T (Im ⊗ Σk)
−1vec(µ− βXΓ),

= [Im ⊗ (1T
k Σ−1

k 1k)]
−1[Im ⊗ (1T

k Σ−1
k )]vec(µ− βXΓ),

= [Im ⊗ (1T
k Σ−1

k 1k)
−1(1T

k Σ−1
k )]vec(µ− βXΓ).

Therefore, γ̂T = (1T
k Σ−1

k 1k)
−11T

k Σ−1
k (µ − βXΓ), which is zero given

1T
k Σ−1

k X = 0 = 1T
k Σ−1

k µ. Referring to the notation of Result 2.3.2, if

Σ = Im ⊗ Σk then A11 = A22 = (1T
k Σ−1

k 1k)
−11T

k Σ−1
k and A12 = A21 = 0T

k .

Then, from Equations (2.8), if X and µ are located such that 1T
k Σ−1

k X =

0 = 1T
k Σ−1

k µ, then αi = δi = ζi = 0, for i = 1, 2, and P , Q, R, S and T

simplify to,

P = Q = XT
1 Σ−1

k X1 +XT
2 Σ−1

k X2,

R = −2(XT
1 Σ−1

k X2 −XT
2 Σ−1

k X1) = 0,

S = −2(XT
1 Σ−1

k µ1 +XT
2 Σ−1

k µ2),

T = 2(XT
2 Σ−1

k µ1 −XT
1 Σ−1

k µ2).

The minimising rotation and scaling can then be obtained by following the

arguments of CASE 1 and CASE 2 in the proof of Result 2.3.5. Further,

if X and µ are replaced by XQ = QX and µQ = Qµ respectively, where

Σ−1
k = QTQ is the Cholesky decomposition, then the expressions for P , S

and T are equivalent to those given in Result 2.3.5 for the isotropic case. �
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2.4 Covariance weighted GPA

2.4 Covariance weighted GPA

2.4.1 Definition and algorithm

In Section 2.3 covariance weighted ordinary Procrustes analysis was defined

as obtaining the Procrustes estimators to minimise the Mahalanobis norm

D2
CWP (X,µ; Σ) = ‖µ − XP‖2

Σ, where one configuration, X, is translated,

rotated and possibly scaled with respect to a reference configuration, µ. In

this section CW OPA is extended to define covariance weighted generalised

Procrustes analysis for a more general data set with n ≥ 2 configurations,

X1, X2, ..., Xn. This allows inferences to be made regarding the sample mean

shape.

Definition 2.4.1 The method of full covariance weighted generalised Pro-

crustes analysis (full CW GPA) involves the least squares matching of n

configurations relative to each other using similarity transformations, and

the procedure is appropriate under the model,

Xi = βi(µ+ Ei)Γi + 1kγ
T
i ,

where Ei are zero mean k × m independent random error matrices, µ is

the k ×m matrix of the mean configuration and γi, Γi and βi are nuisance

parameters for translation, rotation and scale. A quantity proportional to

the sum of squared Mahalanobis norms of pairwise differences,

GCWP (X1, ..., Xn; Σ) =

1

n

n−1∑

i=1

n∑

j=i+1

∥∥(βiXiΓi + 1kγ
T
i ) − (βjXjΓj + 1kγ

T
j )
∥∥2

Σ
, (2.14)

is minimised subject to the constraint on the size of the centred average

shape,

‖X̄‖2 = 1,

57



2.4 Covariance weighted GPA

where Γi ∈ SO(m), βi > 0 and

X̄ =
1

n

n∑

i=1

(βiXiΓi + 1kγ
T
i ).

Partial covariance weighted generalised Procrustes analysis can be simi-

larly defined using rigid-body transformations and without a constraint on

the size of the mean shape. Minimising the sum of squared Mahalanobis

norms of pairwise differences is equivalent to minimising the distance be-

tween each configuration and the mean of the configurations,

GCWP (X1, ..., Xn; Σ)

= inf
βi,Γi,γi

1

n

n−1∑

i=1

n∑

j=i+1

∥∥(βiXiΓi + 1kγ
T
i ) − (βjXjΓj + 1kγ

T
j )
∥∥2

Σ
,

= inf
βi,Γi,γi

n∑

i=1

∥∥∥∥∥(βiXiΓi + 1kγ
T
i ) − 1

n

n∑

j=1

(βjXjΓj + 1kγ
T
j )

∥∥∥∥∥

2

Σ

,

= inf
βi,Γi,γi

n∑

i=1

∥∥(βiXiΓi + 1kγ
T
i ) − X̄

∥∥2

Σ
.

An alternative is to minimise the distance from the ith shape to the

mean of the rest of the sample,

GCWP (X1, ..., Xn; Σ)

= inf
βi,Γi,γi

n∑

i=1

∥∥∥∥∥(βiXiΓi + 1kγ
T
i ) − 1

n

n∑

j=1

(βjXjΓj + 1kγ
T
j )

∥∥∥∥∥

2

Σ

,

= inf
βi,Γi,γi

n∑

i=1

∥∥∥∥∥
n− 1

n
(βiXiΓi + 1kγ

T
i ) − 1

n

n∑

j=1,j 6=i

(βjXjΓj + 1kγ
T
j )

∥∥∥∥∥

2

Σ

,

= inf
βi,Γi,γi

n∑

i=1

(n− 1)2

n2

∥∥(βiXiΓi + 1kγ
T
i ) − X̄−i

∥∥2

Σ
,
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where,

X̄−i =
1

n− 1

n∑

j=1,j 6=i

(βjXjΓj + 1kγ
T
j ). (2.15)

Once the transformation parameters that minimise Equation (2.14) have

been identified, it is possible to make the following definitions.

Definition 2.4.2 The full covariance weighted Procrustes fit of the each Xi

is given by,

XP
i = β̂iXiΓ̂i + 1kγ̂

T
i , (2.16)

where γ̂i, Γ̂i and β̂i are the minimising parameters of Equation (2.14), for

i = 1, ..., n.

Definition 2.4.3 The full covariance weighted Procrustes estimate of the

mean shape is given by µ̂ where

µ̂ =
1

n

n∑

i=1

XP
i , (2.17)

where XP
i is the full covariance weighted Procrustes fit of Xi, i = 1, ..., n.

The partial covariance weighted Procrustes fit and the partial covariance

weighted Procrustes estimate of the mean shape can be similarly defined by

omitting the β parameter. The similarity transformation parameters which

minimise Equation (2.14) can be obtained by the following algorithm.

Algorithm 2.4.1 Covariance weighted GPA algorithm

1. Initial registration: Given symmetric positive definite matrix, Σ, and

n shapes, X1, X2, ..., Xn, calculate X̄ as the mean shape resulting from the

isotropic GPA algorithm.

2. Centre, scale and orientate mean shape: Centre and scale
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2.4 Covariance weighted GPA

X̄ such that S(X̄) = 1, and apply the same translation and scaling to

each Xi. Further, apply an identical rotation to X̄,X1, ..., Xn to minimise

GCWP (X1, ..., Xn; Σ).

3. CW OPA: For i = 1, ..., n register Xi to X̄−i using covariance weighted

OPA to minimise D2
CWP (Xi, X̄−i; Σ).

4. Repetition. Repeat steps (2) and (3) until GCWP (X1, ..., Xn; Σ) cannot

be reduced further.

The algorithm is guaranteed to converge because GCWP (X1, ..., Xn; Σ)

is non-increasing at each step and bounded below. Step 2 of the algorithm

translates and rotates all the shapes relative to the axes to speed up the rate

of convergence. The location of the mean shape is arbitrary, but the orien-

tation of the mean shape is not. If Σ has been defined with respect to some

user-specified reference configuration, µ0, then minimising DOPA(X̄, µ0) or

D2
CWP (Xi, µ0; Σ) instead of GCWP (X1, ..., Xn; Σ) at step 2 keeps the shapes

in that frame of reference. Alternatively, if Σ has been chosen with respect

to the axes, then the rotation in step 2 can be calculated numerically for

m ≥ 3, or by Result 2.4.1 for m = 2.

Result 2.4.1 For m = 2, let the rotation matrix, Γ =

[
cos θ sin θ

− sin θ cos θ

]
,

then,

GCWP (X1, ..., Xn; Σ) = inf
βi,Γi,γi,Γ

n∑

i=1

‖(βiXiΓi + 1kγ
T
i − X̄)Γ‖2

Σ,

is minimised when θ is a solution of

tan(2θ) =
2r

p− q
,

where,

p =

n∑

i=1

vec(Ri)
T Σ−1vec(Ri), q =

n∑

i=1

vec(R⊥
i )T Σ−1vec(R⊥

i ),
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r =

n∑

i=1

vec(Ri)
T Σ−1vec(R⊥

i ),

Ri = (βiXiΓi + 1kγ
T
i − X̄) =

[
Ri1 Ri2

]
, R⊥

i =
[
−Ri2 Ri1

]
.

Proof:

GCWP (X1, ..., Xn; Σ) =
n∑

i=1

vec(RiΓ)T Σ−1vec(RiΓ),

=
n∑

i=1

[
Ri1 cos θ −Ri2 sin θ

Ri2 cos θ + Ri1 sin θ

]T

Σ−1

[
Ri1 cos θ − Ri2 sin θ

Ri2 cos θ +Ri1 sin θ

]
,

= p cos2 θ + q sin2 θ + 2r cos θ sin θ,
dGCWP

dθ
= (q − p) sin 2θ + 2r cos 2θ.

Therefore, the minimum of GCWP is when θ is a solution of this last equa-

tion. �

Figure 2.6 shows the partial generalised covariance weighted Procrustes

registration of 30 second thoracic mouse vertebrae for three different weight-

ing matrices, Σ. Two of the vertebrae were first considered in Section 2.3.1.

The three weighting matrices used are given in Equation (2.10). The first

example is the same as isotropic GPA, giving the same weighting to all co-

ordinates and showing approximately the same variability at each landmark.

The second example weights the first two landmarks more heavily than the

others, and this is reflected in these landmarks forming lines pointing to-

wards each other, and more variability being introduced elsewhere, particu-

larly at landmark 4. The third example weights the y direction more heavily

than the x direction. This forces large rotations to ensure landmarks 1 and

2 have similar y values across all configurations, and gives large variability

to the other landmarks.
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Figure 2.6: The partial generalised covariance weighted Procrustes registra-
tion of 30 mice vertebra, using Σ1, Σ2 and Σ3. The mean shape is shown
with a solid line.
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2.4.2 Relating CW GPA to the multivariate normal

distribution

If the data set X1, X2, ..., Xn comes from a multivariate normal distribution

with unknown mean shape, µ, and known covariance matrix, Σ, that is

vec(Xi) ∼ Nkm(vec(µ),Σ) then the CW GPA algorithm can be used to

maximise the likelihood of the model, and provide the maximum likelihood

estimate of the mean shape.

Result 2.4.2 Maximising the likelihood of the multivariate normal model,

vec(Xi) ∼ Nkm(vec(µ),Σ) for a given Σ is equivalent to minimising

GCWP (X1, ..., Xn; Σ), and the maximum likelihood estimate of the mean

shape is,

µ̂ =
1

n

n∑

i=1

XP
i , (2.18)

where XP
i is the full covariance weighted Procrustes fit of Xi.

Proof: The log-likelihood of the multivariate normal model, vec(Xi) ∼
Nkm(vec(µ),Σ), where Xi are shapes invariant under Euclidean similarity

transformations, is,

logL(X1, ..., Xn;µ,Σ) = −n
2

log |2πΣ|

−1

2

n∑

i=1

vec(βiXiΓi + 1kγ
T
i − µ)T Σ−1vec(βiXiΓi + 1kγ

T
i − µ).

Therefore, the maximum likelihood estimate of the mean shape is the solu-

tion of,

d logL

dµ
=

n∑

i=1

Σ−1vec(βiXiΓi + 1kγ
T
i ) − nΣ−1µ = 0.
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Hence, µ̂ = X̄ = 1
n

∑n
i=1(βiXiΓi + 1kγ

T
i ) and,

logL = −n
2

log |2πΣ| − 1

2
inf

βi,Γi,γi

n∑

i=1

‖βiXiΓi + 1kγ
T
i − X̄‖2

Σ,

= −n
2

log |2πΣ| − 1

2
GCWP (X1, ..., Xn; Σ).

Therefore, minimising GCWP is equivalent to maximising L(X1, ..., Xn;µ,Σ).

�

If Σ is diagonal, with variance σ2
1 for a subset of the landmarks, and

variance σ2
2 for the remainder, then as σ2 → ∞, the distribution could

be approximated using the subset matching results shown earlier, with the

mean shape forming the template.

2.5 Discussion

In this chapter, we have presented some distributional results for shape

differences when isotropic Procrustes methods are applied to a subset of

the landmarks, and extended Procrustes methods to define mean shapes

and fitted shapes in the context of a weighted superimposition matrix, Σ.

Importantly, the latter has been presented for both partial and full regis-

trations, and the results shown to agree with isotropic Procrustes methods

in the case Σ = I. Procrustes methods have previously been criticised by

Lele (1993) for not producing consistent estimates of mean shapes. Kent

and Mardia (1997) show that the full isotropic Procrustes estimate of the

mean shape is consistent in the presence of isotropic errors, i.e. µ̂ → µ as

n → ∞, for the case m = 2. The partial estimate is also consistent for

shape up to a scale factor if the errors are assumed to be Gaussian as well

as isotropic. Future work will need to investigate whether or not covariance

weighted GPA produces a consistent estimator for µ under Gaussian errors

with covariance matrix, Σ.

However, this must be seen within the context of shape theory and other
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2.5 Discussion

estimators of the mean shape. Lele’s (1993) own estimate of the mean shape,

using Euclidean distance matrix analysis (EDMA), is inconsistent under

certain circumstances (Goodall, 1995). Mardia and Dryden (1994) evaluate

the bias of several estimators through a simulation study and find most

estimators perform well when the data contains low amounts of isotropic

shape variability. They also show that several well-known estimators, such

as Bookstein’s (1986) estimate of the mean shape, are biased for larger

amounts of variability. Typically, shape analysis is applied to data sets

where the natural variability in the data is much greater than the bias

in the estimators (Kent and Mardia, 1997), so this is not too concerning.

For example, Kent (1994) demonstrated that if the standard deviation of

measurements, σ, under a Gaussian model is small compared to the size of

the shape, then the bias of the isotropic Procrustes estimator is of order σ2.

Fortunately, Procrustes/maximum-likelihood estimates continue to per-

form well in the presence of large isotropic variability, and in Chapter 3

we will consider a simulation study, comparing the covariance weighted and

isotropic Procrustes estimators in the presence of non-isotropic variability.

Dryden and Mardia (1991) also consider maximum likelihood estimates of

shape variability, with particularly stringent constraints on the form of the

covariance matrix, through the use of numerical routines. In Chapter 3, we

start by developing an algorithm for the maximum likelihood estimate of a

more general form.
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Chapter 3

Estimating shape variability

3.1 Introduction

In Chapter 2 it was shown that isotropic Procrustes analysis could be ex-

tended to produce Procrustes estimates of the shape transformation param-

eters based on a symmetric weighting matrix, Σ, of dimension km × km,

where k is the number of landmarks and m is the number of dimensions.

The matrix is constrained to be positive definite (Σ > 0) so that the trans-

formation parameters are defined. A matrix of this form is also a covariance

matrix, so it would be natural to use the variability of the data as the inverse

of the weighting matrix. In this chapter we develop methods for estimat-

ing shape variability, subject to Σ being positive definite, in conjunction

with the mean shape, µ, and the transformation parameters, βi, Γi and

γi. Clearly, Σ is dependent on the other parameters and vice-versa, so we

develop iterative procedures using conditional maximum likelihood (ML)

estimation in Section 3.2 and Markov Chain Monte Carlo (MCMC) simula-

tion in Section 3.4. Both methods are dependent on a priori information, to

enforce the constraint in the ML algorithm or to specify prior distributions

in the MCMC algorithm, and we assess both methods through a simulation

study. The MCMC method is extended to include the possibility of missing
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3.2 Maximum likelihood estimation

data in Section 3.6.

3.2 Maximum likelihood estimation

In this section we derive a maximum likelihood estimator (MLE), under a

multivariate Gaussian model, for the shape covariance matrix, Σ, given the

matrix is positive definite. Firstly, the unconstrained maximum likelihood

estimates of Σ, for various structures are given. Estimation of transforma-

tion parameters is dependent on Σ being positive definite, so Σ is estimated

with this restriction, and possible constraints on the elements of Σ are con-

sidered in Section 3.2.2. Lastly, an algorithm is given for estimating the

transformation parameters, mean shape and covariance matrix, subject to

the constraints.

3.2.1 Covariance matrix parameterisation

Let, X1, X2, ..., Xn, be k × m configurations at arbitrary locations in Eu-

clidean space, such that the shapes have a multivariate normal distribution

vec(Xi) ∼ Nkm(vec(µ),Σ), where µ and Σ are both unknown. The log-

likelihood of the model, where the shapes are invariant under Euclidean

similarity transformations is,

logL(X1, ..., Xn;µ,Σ) = −n
2

log |2πΣ|

−1

2

n∑

i=1

vec(βiXiΓi + 1kγ
T
i − µ)T Σ−1vec(βiXiΓi + 1kγ

T
i − µ).

We will maximise the likelihood of the model by iteratively estimating the

similarity transformation parameters, µ and Σ in turn, each conditional on

the current estimates of the remaining parameters. Therefore, we can use

the estimators of the transformation parameters given in Chapter 2 and the
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3.2 Maximum likelihood estimation

conditional maximum likelihood estimate of the mean shape is,

µ̂ =
1

n

n∑

i=1

(βiXiΓi + 1kγ
T
i ).

The application may require the covariance matrix to follow a particular

parameterisation. Restricting the form of the covariance matrix reduces the

number of parameters to be estimated, and hence reduces the number of

constraints necessary to force Σ > 0. Let XP
i be the ith configuration

following a similarity transformation using the current maximum likelihood

estimates, then the maximum likelihood estimate of Σ is given below for a

variety of parameterisations. Details can be found in Mardia et al. (1979)

and Dutilleul (1999).

1. Unconstrained case. The MLE of Σ for the model vec(Xi) ∼
Nkm(vec(µ),Σ) is,

Σ̂ =
1

n

n∑

i=1

vec(XP
i − X̄)vec(XP

i − X̄)T .

2. Factored case. The MLEs of Σm (m×m) and Σk (k×k) for the model

vec(Xi) ∼ Nkm(vec(µ),Σ = Σm ⊗ Σk) are,

Σ̂m =
1

nk

n∑

i=1

(XP
i − X̄)T Σ̂k(X

P
i − X̄),

Σ̂k =
1

nm

n∑

i=1

(XP
i − X̄)Σ̂m(XP

i − X̄)T .

3. Isotropic factored case. The MLE of Σk, (k × k) for the model

vec(Xi) ∼ Nkm(vec(µ),Σ = Im ⊗ Σk) is,

Σ̂k =
1

nm

n∑

i=1

(XP
i − X̄)(XP

i − X̄)T .

68



3.2 Maximum likelihood estimation

4. Block diagonal case. The MLEs of Σkj , (k × k), for j = 1, ..., m, for

the model vec(Xi) ∼ Nkm(vec(µ),Σ = diag(Σk1, ...,Σkm)) are,

Σ̂kj =
1

n

n∑

i=1

(XP
ij − X̄j)(X

P
ij − X̄j)

T ,

where the subscript j denotes the jth column.

5. Scaled case. The MLE of Σ for the model vec(Xi) ∼ Nkm(vec(µ),Σ =

pΣ0), where p is a scalar and Σ0 is known, is,

Σ̂ =
1

km
tr

(
Σ−1

0

n

n∑

i=1

vec(XP
i − X̄)vec(XP

i − X̄)T

)
Σ0.

This factored parameterisation of case 2 is often applicable in shape

studies (for example, Goodall, 1991) as it separates variability between di-

mensions from variability between landmarks. This makes interpretation

easier, greatly reduces the number of parameters to estimate and makes

matrix inversion computationally quicker. This model is particularly suited

to datasets where variability between dimensions is homogeneous at each

landmark, perhaps due to the method of recording the coordinates. For

example, a magnetic resonance scanner may have less spatial resolution be-

tween image slices than within an image slice. Mitchell et al. (2003) propose

a likelihood ratio test for determining if a covariance matrix can be factored.

The solutions for case 2 have to be solved iteratively and can only be

solved up to a multiplicative constant given Σm ⊗ Σk = cΣm ⊗ (1/c)Σk.

As a result, some applications use the simplification of case 3 because this

estimator has the desirable properties of being unique and having a non-

iterative solution. The model assumes equal, independent variability be-

tween the dimensions, which could be considered valid if the coordinates of

the overlaid shapes form a spherical cluster surrounding each coordinate of

the mean shape. This model is also appealing if the estimation of only Σk

is of primary interest.
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3.2 Maximum likelihood estimation

Case 4 also estimates the variability with the constraint of preserving in-

dependence between dimensions, but allows for a different correlation struc-

ture between landmarks in each dimension. This is a generalisation of case 3

but involves the estimation of many more parameters than the previous two

cases. Consequently, many studies would not benefit from an application of

this model. Case 5 estimates Σ̂ as proportional to a given matrix, Σ0. The

specification of Σ0 could result from a priori knowledge. Other parameter-

isations of the covariance matrix exist in the literature due to the specific

nature of the data being considered. For example, Hurn et al. (2001) only

consider the outline of shapes and, hence, apply a model similar to case 3

but constrain Σk to be a first order cyclic Markov structure. Despite the re-

duction in parameters that alternative parameterisations offer, we consider

the most general, unconstrained, case in detail. The estimation of shape

variability for alternative models should be simpler, with less constraints

necessary to ensure the estimate is positive definite.

3.2.2 Estimating the covariance matrix

Let the spectral decomposition of the unconstrained maximum likelihood

estimator be, Σ = UDUT , where D is a diagonal matrix of eigenvalues,

d1 ≥ d2 ≥ ... ≥ dp. Note that p = km in our application to shape analysis.

It has been widely noted (e.g. Dey and Srinivasan, 1985) that while this

estimator is unbiased, its eigenvalues are more widely dispersed than the

eigenvalues of the population covariance matrix. Consequently, a number of

alternative estimators have been proposed. Let n be the number of obser-

vations, X1, ..., Xn, then some alternatives artificially adjust the eigenvalues

by replacing di with λi where,

λi =
ndi

n + p+ 1 − 2i
, or λi =

ndi

n− p+ 1 + 2di

∑
j 6=i 1/(di − dj)

,
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3.2 Maximum likelihood estimation

as proposed by Dey and Srinivasan (1985) and Stein (1977), respectively.

Another method for improving the maximum likelihood estimator is to

shrink the estimator, Σ, towards the identity matrix, I, using a linear com-

bination of the two. Haff (1980) and Ledoit and Wolf (2004) proposed,

Σ̂ =
(np− 2n− 2)d̄

pn2
I +

n

n+ 1
Σ,

Σ̂ =
b2d̄

d2
I +

a2

d2
Σ,

respectively, where d̄ is the arithmetic mean of the diagonal elements of Σ,

d2 = ‖Σ − d̄I‖2/p, b2 = min(b̄2, d2), a2 = d2 − b2 and,

b̄2 =
1

n2

n∑

i=1

‖vec(Xi)vec(Xi)
T − Σ‖2/p.

Unfortunately, the proposed methods for adjusting the eigenvalues do

not remove singularities in the eigenvalues and the methods involving

shrinking will, on repeated application in a conditional maximum likelihood

algorithm, produce estimates of shape variability similar to those based on

isotropic Procrustes. Therefore, we develop a constrained maximum likeli-

hood estimator with Σ̂ positive definite, so that estimates of the transfor-

mation parameters of translation, rotation and scaling are constrained.

In general, we would require r columns of Σ to be defined or constrained,

where r is the number of transformation parameters to be estimated. For

example, r = m(m− 1)/2 +m+ 1, for the case of full Procrustes analysis.

Given Σ is symmetric, this equates to c = r(2km − r + 1)/2 individual

entries of Σ. In general, this means constraints can be written in the form

Avech(Σ) = b where the vech operator lists the s = km(km+ 1)/2 distinct

elements of Σ and A is a c × s matrix and b is a vector of length c. If

Σ is constrained by one of the parameterisations of Section 3.2.1 then less

constraints are necessary.

Suppose X = βµΓ + 1kγ
T , then after full Procrustes registration of the
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3.2 Maximum likelihood estimation

shape, variability due to translation, rotation and scaling has been removed.

Therefore, a natural method of constraining Σ in shape analysis is to specify

the amount of variability in the r directions. In this section we present such

a method for the typical cases of m = 3 and m = 2, although the method

can easily be extrapolated to higher dimensions.

Let m = 3, then r = 7, and assuming the angles of rotations, θx, θy

and θz are small, cos() and sin() can be approximated using the Taylor

expansions to the first order, so,

Γ =




1 0 0

0 cos θx sin θx

0 − sin θx cos θx







cos θy 0 sin θy

0 1 0

− sin θy 0 cos θy







cos θz sin θz 0

− sin θz cos θz 0

0 0 1


 ,

=




1 0 0

0 1 θx

0 −θx 1







1 0 θy

0 1 0

−θy 0 1







1 θz 0

−θz 1 0

0 0 1


+O(θ2

x, θ
2
y, θ

2
z).

Therefore,

vec(X) = vec
([

1kγx 1kγy 1kγz

])
+ βvec

([
µx µy µz

]
Γ
)
,

=




1kγx

1kγy

1kγz


+ β



µx − µyθz − µzθy +O(θ2)

µxθz + µy − µzθx +O(θ2)

µxθy + µyθx + µz +O(θ2)


 ,

=




1k 0k 0k

0k 1k 0k

0k 0k 1k






γx

γy

γz


+ β



µx

µy

µz




+β




0k −µz −µy

−µz 0k µx

µy µx 0k






θx

θy

θz


+ 0(θ2),

= γxv1 + γyv2 + γzv3 + βv4 + βθxv5 + βθyv6 + βθzv7 +O(θ2), (3.1)
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3.2 Maximum likelihood estimation

where,

v1 =




1k

0k

0k


 , v2 =




0k

1k

0k


 , v3 =




0k

0k

1k


 , v4 =



µx

µy

µz


 ,

v5 =




0k

−µz

µy


 , v6 =




−µz

0k

µx


 , v7 =




−µy

µx

0k


 .

Therefore, there is approximately no variability in the direction of vj for

j = 1, ..., r following isotropic Procrustes registration. These vectors are

linearly independent and, using the Gram-Schmidt process, can be trans-

formed into r orthonormal vectors, uj(µ), which is simplified if the mean

shape is centred,

u1 =
v1

‖v1‖
, u2 =

v2

‖v2‖
, u3 =

v3

‖v3‖
, u4 =

v4

‖v4‖
, u5 =

v5

‖v5‖
,

u6 =
v6 − (vT

6 u5)u5

‖v6 − (vT
6 u5)u5‖

, u7 =
v7 − (vT

7 u5)u5 − (vT
7 u6)u6

‖v7 − (vT
7 u5)u5 − (vT

7 u6)u6‖
.

Letting uj(µ) form r eigenvectors of Σ, and specifying a strictly positive

amount of variability, σ2
j , for the direction uj(µ), j = 1, ..., r, will be suffi-

cient to ensure Σ is positive definite, even if σ2
j is near zero. Of course, if

partial Procrustes registration is used then it is unnecessary to specify σ2
4 .

For m = 2, then r = 4 in the case of full Procrustes analysis, and

Equation (3.1) simplifies to vec(X) = γxu1 + γyu2 + βu3 + βθu4 + O(θ2)

where,

u1 =
1√
k

[
1k

0k

]
, u2 =

1√
k

[
0k

1k

]
,

u3 =
1

‖µ‖

[
µx

µy

]
, u4 =

1

‖µ‖

[
−µy

µx

]
.
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3.2 Maximum likelihood estimation

To parameterise a maximum likelihood estimator of Σ with these con-

straints, let Σ∗ be the covariance matrix Σ̂, but with variability removed in

the directions on which constraints have been imposed,

Σ∗ = UΣ̂UT , (3.2)

where U is the projection matrix, U = Ikm−∑r
j=1 uj(µ)uj(µ)T . Combining

Σ∗ with our constrained eigenvalues and eigenvectors will produce a positive

definite covariance matrix,

Σ = Σ∗ +

r∑

j=1

σ2
juj(µ)uj(µ)T .

3.2.3 Estimating the transformation parameters

In Section 3.2.2 we showed how constraints could be imposed on Σ̂ to ensure

it was positive definite. If we parameterise Σ with eigenvectors aligned to

the axes, as the constraints imply, then the estimate of the translation

is simplified by Result 3.2.1 that follows. The rest of the transformation

parameters, the mean shape and covariance matrix can then be estimated

with the use of an algorithm.

Result 3.2.1 Let Σ =
∑r

j=1 σ
2
juj(µ)uj(µ)T +

∑km−r
j=1 λjνjν

T
j where uj are

orthonormal vectors on which variability has been constrained to be σ2
j , and

λj and νj are the remaining eigenvalues and eigenvectors of Σ orthogonal

to uj(µ). Then, assuming m of the vectors uj(µ) are the columns of (Im ⊗
1k)/

√
k, Xi are centred and vec(Xi) ∼ Nkm(vec(µ),Σ), the likelihood is

maximised when the translation parameter, γ, is zero.

Proof: The likelihood for the model is,

L(X1, ..., Xn;µ,Σ) = |2πΣ|−n
2

× exp

(
−1

2

n∑

i=1

vec(βiXiΓi − 1kγ
T
i − µ)TΣ−1vec(βiXiΓi − 1kγ

T
i − µ)

)
.
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3.2 Maximum likelihood estimation

Let them columns of (Im⊗1k) be 1j, γij be the jth element of the translation

vector for shape Xi, for j = 1, ..., m, and vi = vec(βiXiΓi −µ) then the log-

likelihood simplifies as follows,

logL = −n
2

log |2πΣ| − 1

2

n∑

i=1

(
vi −

m∑

j=1

γij1j

)T

Σ−1

(
vi −

m∑

j=1

γij1j

)
,

= −n
2

log |2πΣ| − 1

2

n∑

i=1

(
vT

i Σ−1vi

)

−1

2

n∑

i=1

(
−2

(
m∑

j=1

γij1
T
j

)
Σ−1vi +

(
m∑

j=1

γij1
T
j

)
Σ−1

(
m∑

j=1

1jγij

))
.

Now, 1T
j Σ−1 = k

σ2
j

1T
j 1j1

T
j as all the eigenvectors of Σ are orthogonal to 1j

except the one proportional to 1j. Therefore,

logL = −n
2

log |2πΣ| − 1

2

n∑

i=1

(
vT

i Σ−1vi

)

−1

2

n∑

i=1

(
−2

m∑

j=1

kγij

σ2
j

1T
j 1j1

T
j vi +

m∑

j=1

kγ2
ij

σ2
j

1T
j 1j1

T
j 1j

)
.

Given all Xi are centred, then µ is centred by Equation (2.18), and

1T
j vec(βiXiΓi − µ) = 0. Therefore, the maximising translation is clearly

γij = 0 for all i = 1, ..., n and j = 1, ..., m. �

This leads to the following algorithm, which combines CW OPA es-

timates of the transformation parameters, and maximum likelihood esti-

mates of the mean shape and covariance matrix, to maximise the like-

lihood in the space orthogonal to the constraint vectors, for the model

vec(Xi) ∼ Nkm(vec(µ),Σ).

Algorithm 3.2.1 Covariance weighted maximum likelihood esti-

mation (CWMLE)

1. Centre shapes: Centre X1, X2, ..., Xn.
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3.2 Maximum likelihood estimation

2. Evaluate mean shape and covariance matrix: Calculate the max-

imum likelihood estimates of the mean shape, µ̂, and the covariance matrix,

Σ̂. Note that the mean shape will also be centred. Evaluate the projection

matrix, U = Ikm −
∑r

j=1 uj(µ̂)uT
j (µ̂).

3. Evaluate log-likelihood: Calculate the variability in Σ̂ orthogonal to

the constraint vectors, Σ∗ = UΣ̂UT . Replace the last r eigenvalues of Σ∗

with σ2
j for j = 1, ..., r, and label it Σ. Evaluate the log-likelihood as,

logL = −n
2

r∑

j=1

log(2πσ2
j ) −

n

2

km−r∑

j=1

log(2πλj)

−1

2

n∑

i=1

(
vec(βiXiΓi − µ)T Σ−1vec(βiXiΓi − µ)

)
,

where λj is the jth eigenvalue of Σ∗.

4. CW OPA: Estimate βi and Γi using CW OPA to register Xi to X̄−i,

as defined in Equation (2.15), using Σ as the covariance matrix.

5. Repetition: Repeat steps (2)-(4) and identify the parameters that give

the highest log-likelihood.

Different starting points for the data may be tried to see if the likelihood

can be further improved. Possible starting points may include the output of

isotropic GPA or Bookstein registrations of a baseline, see Bookstein (1986).

The convergence properties of the algorithm are dependent on the choice

of values for σ2
j , j = 1, ..., r but the algorithm is almost guaranteed to con-

verge for low values. Choosing small values for σ2
j , j = 1, ..., r causes the ma-

jority of variability in the directions of scaling and rotations to be minimised

at each iteration. Consequently, the value of Σ will, given enough iterations,

converge and the algorithm essentially reduces to the covariance weighted

GPA algorithm of Section 2.4 which is guaranteed to converge. Algorithm

3.2.1 will also generally converge for moderate values of σ2
j , j = 1, ..., r

but for large values, however, each configuration is almost unconstrained to

move in the direction of the transformations. For example, a large value
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3.3 Simulation study

of σ2
j corresponding to a rotation could give each shape a large amount of

freedom to rotate between successive iterations. In the absence of any other

influential constraint each shape can “spin” independently and convergence

becomes impossible.

Figure 3.1 shows the registration of 30 second thoracic mouse vertebrae,

first considered in Section 2.3.1, following the isotropic partial GPA algo-

rithm and the partial CWMLE algorithm. Note that if σ2
j is small then

the registration following CWMLE is almost identical to that obtained by

isotropic GPA. However, if σ2
j is allowed to increase then variability is al-

lowed to remain in the direction of rotation, and lines of landmarks form at

tangents to circles centred at the origin.

3.3 Simulation study

The methods of isotropic partial GPA and partial CWMLE were applied

to three data sets, originally suggested by Lele (1993), each generated from

different multivariate normal distributions,

Example 1: vec(X) ∼ Nkm(vec(µA),ΣA = Ikm),

Example 2: vec(X) ∼ Nkm(vec(µB),ΣB = Im ⊗ ΣK),

Example 3: vec(X) ∼ Nkm(vec(µC),ΣC = ΣM ⊗ ΣK),

where,

µA = µB = µC =




0 5

40 0

0 −5

−40 0



,

ΣM =

[
0.001 0

0 1

]
, ΣK =




0.01 0 0 0

0 10 0 −9.999

0 0 0.01 0

0 −9.999 0 10



.
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Figure 3.1: The partial covariance weighted Procrustes registration of 30
mice vertebra, using isotropic partial GPA (top) and partial CWMLE (bot-
tom) under the constraint σ2

j = 40 (left), and σ2
j = 400 (right). The mean

shape is shown with a solid line.
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This makes,

ΣC =





10
−5

0 0 0 0 0 0 0

0 0.01 0 −0.01 0 0 0 0

0 0 10
−5

0 0 0 0 0

0 −0.01 0 0.01 0 0 0 0

0 0 0 0 0.01 0 0 0

0 0 0 0 0 10 0 −9.999

0 0 0 0 0 0 0.01 0

0 0 0 0 0 −9.999 0 10





.

To simulate data from vec(Xi) ∼ Nkm(vec(µ),Σ), we calculate vec(Xi) =

vec(µ) + Σ1/2Wi, where Wi is a km× 1 vector such that Wi ∼ Nkm(0, Ikm),

for i = 1, ..., n. Note that Σ1/2 is the symmetric square root of Σ, such that

Σ1/2 = ΓΛ1/2ΓT where Γ is the matrix of eigenvectors of Σ and Λ1/2 is the

diagonal matrix of square roots of eigenvalues of Σ.

Removing the effects of translation and rotation from each of the covari-

ance matrices, using Equation (3.2), gives:

Σ
∗

A =





0.742 −0.25 −0.242 −0.25 0 0.062 0 −0.062

−0.25 0.75 −0.25 −0.25 0 0 0 0

−0.242 −0.25 0.742 −0.25 0 −0.062 0 0.062

−0.25 −0.25 −0.25 0.75 0 0 0 0

0 0 0 0 0.75 −0.25 −0.25 −0.25

0.062 0 −0.062 0 −0.25 0.258 −0.25 0.242

0 0 0 0 −0.25 −0.25 0.75 −0.25

−0.062 0 0.062 0 −0.25 0.242 −0.25 0.258





,

Σ
∗

B =





0.158 −0.001 −0.155 −0.001 0 0.02 0 −0.02

−0.001 10.001 −0.001 −9.998 0 0 0 0

−0.155 −0.001 0.158 −0.001 0 −0.02 0 0.02

−0.001 −9.998 −0.001 10.001 0 0 0 0

0 0 0 0 0.006 −0.001 −0.004 −0.001

0.02 0 −0.02 0 −0.001 0.004 −0.001 −0.001

0 0 0 0 −0.004 −0.001 0.006 −0.001

−0.02 0 0.02 0 −0.001 −0.001 −0.001 0.004





,
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Σ
∗

C =





0.151 0 −0.151 0 0 0.019 0 −0.019

0 0.01 0 −0.01 0 0 0 0

−0.151 0 0.151 0 0 −0.019 0 0.019

0 −0.01 0 0.01 0 0 0 0

0 0 0 0 0.006 −0.001 −0.004 −0.001

0.019 0 −0.019 0 −0.001 0.004 −0.001 −0.001

0 0 0 0 −0.004 −0.001 0.006 −0.001

−0.019 0 0.019 0 −0.001 −0.001 −0.001 0.004





.

3.3.1 Single simulations

For each example, 130 configurations were sampled from these distributions.

The isotropic partial GPA algorithm, given in Chapter 1, and the partial

CWMLE algorithm, Algorithm 3.2.1, were applied with the starting point

for the latter being the registration given by isotropic partial GPA. Let

sA ≈ 5, sB ≈ 20 and sc ≈ 0.5, be the sum of the eigenvalues of Σ̂A, Σ̂B

and Σ̂C estimated following the isotropic partial GPA algorithm. We choose

σ2
1 = σ2

2 = 10−5 for each example. We choose a priori σ2
3 to be σ2

A = 10−5,

σ2
B = 20 and σ2

C = 5 for the three examples, respectively, as we expect the

ideal registration for the three examples to have no (σ2
A/(σ

2
A + sA) ≈ 0),

moderate (σ2
B/(σ

2
B + sB) ≈ 0.5) and high (σ2

C/(σ
2
C + sC) ≈ 0.9) proportion

of variability in the direction of rotation. The values of µ, Σ and Σ∗ that

gave the highest likelihood of the model for each example/algorithm are

given below. Plots of the initial data, the registered data and the first two

principal components of Σ are shown in Figures 3.2 to 3.7. We discuss the

findings in Section 3.3.2.
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Figure 3.2: The data for example 1 (top), following the isotropic partial
GPA algorithm (middle) and partial CWMLE algorithm (bottom). The
mean shape is shown with a solid line.
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Figure 3.3: The first two principal components of ΣA (top) and for the max-

imum likelihood estimate, Σ̂A, following isotropic partial GPA (middle) and
partial CWMLE (bottom). The mean shape plus three times the principal
component vectors are shown.
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Example 1: Isotropic GPA

µ̂A =





−0.035 4.942

40.059 −0.029

−0.04 −4.945

−39.985 0.031



 ,

Σ̂A =





0.666 −0.288 −0.218 −0.16 0.048 0.029 0.005 −0.081

−0.288 0.825 −0.322 −0.215 0.058 −0.026 −0.003 −0.029

−0.218 −0.322 0.86 −0.321 −0.005 −0.022 −0.085 0.112

−0.16 −0.215 −0.321 0.696 −0.1 0.019 0.083 −0.002

0.048 0.058 −0.005 −0.1 0.831 −0.267 −0.29 −0.274

0.029 −0.026 −0.022 0.019 −0.267 0.284 −0.295 0.279

0.005 −0.003 −0.085 0.083 −0.29 −0.295 0.893 −0.308

−0.081 −0.029 0.112 −0.002 −0.274 0.279 −0.308 0.303





,

Σ̂
∗

A =





0.666 −0.288 −0.218 −0.16 0.048 0.029 0.005 −0.081

−0.288 0.825 −0.322 −0.215 0.058 −0.026 −0.003 −0.029

−0.218 −0.322 0.86 −0.321 −0.005 −0.022 −0.085 0.112

−0.16 −0.215 −0.321 0.696 −0.1 0.019 0.083 −0.002

0.048 0.058 −0.005 −0.1 0.831 −0.267 −0.29 −0.274

0.029 −0.026 −0.022 0.019 −0.267 0.284 −0.295 0.279

0.005 −0.003 −0.085 0.083 −0.29 −0.295 0.893 −0.308

−0.081 −0.029 0.112 −0.002 −0.274 0.279 −0.308 0.303





.

Example 1: CWMLE

µ̂A =





−0.035 4.942

40.059 −0.029

−0.04 −4.945

−39.985 0.031



 ,

Σ̂A =





0.666 −0.288 −0.218 −0.16 0.048 0.029 0.005 −0.081

−0.288 0.825 −0.322 −0.215 0.058 −0.026 −0.003 −0.029

−0.218 −0.322 0.86 −0.321 −0.005 −0.022 −0.085 0.112

−0.16 −0.215 −0.321 0.696 −0.1 0.019 0.083 −0.002

0.048 0.058 −0.005 −0.1 0.831 −0.267 −0.29 −0.274

0.029 −0.026 −0.022 0.019 −0.267 0.284 −0.295 0.279

0.005 −0.003 −0.085 0.083 −0.29 −0.295 0.893 −0.308

−0.081 −0.029 0.112 −0.002 −0.274 0.279 −0.308 0.303





,

Σ̂
∗

A =





0.666 −0.288 −0.218 −0.16 0.048 0.029 0.005 −0.081

−0.288 0.825 −0.322 −0.215 0.058 −0.026 −0.003 −0.029

−0.218 −0.322 0.86 −0.321 −0.005 −0.022 −0.085 0.112

−0.16 −0.215 −0.321 0.696 −0.1 0.019 0.083 −0.002

0.048 0.058 −0.005 −0.1 0.831 −0.267 −0.29 −0.274

0.029 −0.026 −0.022 0.019 −0.267 0.284 −0.295 0.279

0.005 −0.003 −0.085 0.083 −0.29 −0.295 0.893 −0.308

−0.081 −0.029 0.112 −0.002 −0.274 0.279 −0.308 0.303





.
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Example 2: Isotropic GPA

µ̂B =





−0.005 4.976

40.219 −0.129

0 −4.976

−40.213 0.13



 ,

Σ̂B =





0.182 −0.036 −0.184 0.039 0.006 0.023 −0.006 −0.023

−0.036 9.659 0.021 −9.644 0.043 −0.038 −0.036 0.031

−0.184 0.021 0.193 −0.03 −0.006 −0.023 0.005 0.024

0.039 −9.644 −0.03 9.635 −0.043 0.038 0.036 −0.032

0.006 0.043 −0.006 −0.043 0.007 −0.001 −0.005 −0.002

0.023 −0.038 −0.023 0.038 −0.001 0.005 −0.002 −0.001

−0.006 −0.036 0.005 0.036 −0.005 −0.002 0.008 −0.001

−0.023 0.031 0.024 −0.032 −0.002 −0.001 −0.001 0.004





,

Σ̂
∗

B =





0.182 −0.036 −0.184 0.039 0.006 0.023 −0.006 −0.023

−0.036 9.659 0.021 −9.644 0.043 −0.038 −0.036 0.031

−0.184 0.021 0.193 −0.03 −0.006 −0.023 0.005 0.024

0.039 −9.644 −0.03 9.635 −0.043 0.039 0.036 −0.032

0.006 0.043 −0.006 −0.043 0.007 −0.001 −0.005 −0.002

0.023 −0.038 −0.023 0.039 −0.001 0.005 −0.002 −0.001

−0.006 −0.036 0.005 0.036 −0.005 −0.002 0.008 −0.001

−0.023 0.031 0.024 −0.032 −0.002 −0.001 −0.001 0.005





.

Example 2: CWMLE

µ̂B =





−0.02 4.969

40.178 −0.005

0.014 −4.97

−40.172 0.005



 ,

Σ̂B =





0.248 −0.084 −0.251 0.087 0.004 −0.45 −0.004 0.45

−0.084 9.672 0.07 −9.658 0.036 0.39 −0.028 −0.398

−0.251 0.07 0.26 −0.079 −0.005 0.451 0.003 −0.45

0.087 −9.658 −0.079 9.649 −0.036 −0.391 0.029 0.398

0.004 0.036 −0.005 −0.036 0.004 −0.004 −0.002 0.002

−0.45 0.39 0.451 −0.391 −0.004 3.36 −0.006 −3.349

−0.004 −0.028 0.003 0.029 −0.002 −0.006 0.006 0.003

0.45 −0.398 −0.45 0.398 0.002 −3.349 0.003 3.344





,

Σ̂
∗

B =





0.182 −0.035 −0.185 0.038 0.004 0.023 −0.004 −0.023

−0.035 9.672 0.021 −9.658 0.036 −0.009 −0.029 0.001

−0.185 0.021 0.194 −0.03 −0.004 −0.023 0.004 0.024

0.038 −9.658 −0.03 9.649 −0.036 0.009 0.029 −0.002

0.004 0.036 −0.004 −0.036 0.004 −0.001 −0.002 −0.002

0.023 −0.009 −0.023 0.009 −0.001 0.004 −0.002 −0.001

−0.004 −0.029 0.004 0.029 −0.002 −0.002 0.006 −0.001

−0.023 0.001 0.024 −0.002 −0.002 −0.001 −0.001 0.004





.
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Figure 3.4: The data for example 2 (top), following the isotropic partial
GPA algorithm (middle) and partial CWMLE algorithm (bottom). The
mean shape is shown with a solid line.
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Figure 3.5: The first two principal components of ΣB (top) and for the max-

imum likelihood estimate, Σ̂B, following isotropic partial GPA (middle) and
partial CWMLE (bottom). The mean shape plus three times the principal
component vectors are shown.
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Example 3: Isotropic GPA

µ̂C =





−0.003 4.976

40.151 −0.126

0.003 −4.977

−40.15 0.127



 ,

Σ̂C =





0.177 −0.013 −0.177 0.013 0.005 0.022 −0.005 −0.022

−0.013 0.055 0.013 −0.055 −0.002 −0.003 0.004 0.001

−0.177 0.013 0.177 −0.012 −0.005 −0.022 0.005 0.022

0.013 −0.055 −0.012 0.054 0.002 0.003 −0.004 −0.001

0.005 −0.002 −0.005 0.002 0.007 −0.001 −0.005 −0.002

0.022 −0.003 −0.022 0.003 −0.001 0.004 −0.002 −0.001

−0.005 0.004 0.005 −0.004 −0.005 −0.002 0.008 −0.001

−0.022 0.001 0.022 −0.001 −0.002 −0.001 −0.001 0.004





,

Σ̂
∗

C =





0.177 −0.013 −0.177 0.013 0.005 0.022 −0.005 −0.022

−0.013 0.055 0.013 −0.055 −0.002 −0.002 0.004 0.001

−0.177 0.013 0.177 −0.012 −0.005 −0.022 0.005 0.022

0.013 −0.055 −0.012 0.054 0.002 0.003 −0.004 −0.001

0.005 −0.002 −0.005 0.002 0.007 −0.001 −0.005 −0.002

0.022 −0.002 −0.022 0.003 −0.001 0.004 −0.002 −0.001

−0.005 0.004 0.005 −0.004 −0.005 −0.002 0.008 −0.001

−0.022 0.001 0.022 −0.001 −0.002 −0.001 −0.001 0.004





.

Example 3: CWMLE

µ̂C =





−0.016 4.987

40.099 −0.028

0.016 −4.989

−40.099 0.03



 ,

Σ̂C =





0.062 −0.007 −0.062 0.007 0.002 0.233 −0.001 −0.234

−0.007 0.027 0.007 −0.027 0.001 −0.027 0 0.026

−0.062 0.007 0.063 −0.007 −0.001 −0.234 0.001 0.234

0.007 −0.027 −0.007 0.027 −0.001 0.027 0 −0.026

0.002 0.001 −0.001 −0.001 0.007 0.021 −0.004 −0.024

0.233 −0.027 −0.234 0.027 0.021 4.159 −0.029 −4.151

−0.001 0 0.001 0 −0.004 −0.029 0.007 0.026

−0.234 0.026 0.234 −0.026 −0.024 −4.151 0.026 4.149





,

Σ̂
∗

C =





0.179 −0.011 −0.179 0.011 0.005 0.023 −0.005 −0.022

−0.011 0.027 0.011 −0.027 0.001 −0.002 0 0.001

−0.179 0.011 0.179 −0.011 −0.005 −0.023 0.005 0.022

0.011 −0.027 −0.011 0.027 −0.001 0.002 0 −0.001

0.005 0.001 −0.005 −0.001 0.007 −0.001 −0.004 −0.002

0.023 −0.002 −0.023 0.002 −0.001 0.004 −0.002 −0.001

−0.005 0 0.005 0 −0.004 −0.002 0.007 −0.001

−0.022 0.001 0.022 −0.001 −0.002 −0.001 −0.001 0.004





.
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Figure 3.6: The data for example 3 (top), following the isotropic partial
GPA algorithm (middle) and partial CWMLE algorithm (bottom). The
mean shape is shown with a solid line.
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Figure 3.7: The first two principal components of ΣC (top) and for the max-

imum likelihood estimate, Σ̂C , following isotropic partial GPA (middle) and
partial CWMLE (bottom). The mean shape plus three times the principal
component vectors are shown.
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3.3.2 Repeated simulations

To assess the difference between isotropic GPA and CWMLE, N = 1000

Monte Carlo samples of each example shown in Section 3.3.1 were generated.

Following registration, the data were rotated to minimise the Euclidean

distance between µ̂, the estimated mean shape, and µ, the true mean shape

of the model. The estimates of the covariance matrix, Σ̂, and the projected

covariance matrix, Σ̂∗, were adjusted accordingly. This step removes the

arbitrary rotation of the mean shape. The bias of µ̂ and the root mean

square error of µ̂, Σ̂ and Σ̂∗ were calculated using,

Bias(Â) =
1

N

N∑

i=1

Â− A,

RMSE(Â) =

√√√√ 1

N

N∑

i=1

‖Â−A‖2.

The results for each of the examples are given in Tables 3.1, 3.2 and 3.3.

Isotropic GPA CWMLE

Bias(µ̂A)




−0.004 0
0.004 −0.002
0.006 0.004

−0.006 −0.001







−0.004 0
0.004 −0.002
0.006 0.004

−0.006 −0.001




RMSE(µ̂A) 0.431 0.431

RMSE(Σ̂A) 1.341 1.341

RMSE(Σ̂∗
A) 0.69 0.69

Table 3.1: The bias and root mean square error of the parameter estimates
for example 1.

The simulation study shows that CWMLE can reduce the bias and root

mean square error of the mean shape and covariance matrix estimates com-

pared to isotropic GPA. This is particularly clear in the examples where the
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Isotropic GPA CWMLE

Bias(µ̂B)




0 −0.015
0.119 0

0 0.016
−0.119 0







0 −0.033
0.017 0

0 0.033
−0.018 0




RMSE(µ̂B) 0.588 0.596

RMSE(Σ̂B) 4.489 3.849

RMSE(Σ̂∗
B) 1.412 1.416

Table 3.2: The bias and root mean square error of the parameter estimates
for example 2.

Isotropic GPA CWMLE

Bias(µ̂C)




0.016 −0.011
0.133 0

−0.016 0.014
−0.132 −0.004







0.016 −0.003
0.05 0

−0.016 0.006
−0.05 −0.004




RMSE(µ̂C) 0.428 0.304

RMSE(Σ̂C) 4.472 2.968

RMSE(Σ̂∗
C) 0.285 0.217

Table 3.3: The bias and root mean square error of the parameter estimates
for example 3.
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true covariance matrix is far from isotropic. In particular, the output for

example 3 shows a universal reduction in errors of both the mean shape and

covariance matrix. Example 3, where much of the variability is in the direc-

tion of a rotation, is a classic example where isotropic Procrustes produces

an inconsistent estimate of shape variability, see Lele (1993).

Conversely, example 1 where the true covariance matrix is isotropic,

shows that CWMLE gives nearly identical results to isotropic Procrustes,

when the rotation eigenvalue is small. Interestingly, because there is little

rotation in the original data set, increasing the rotation eigenvalue has little

effect, showing that the choice of constraint is somewhat academic in the

isotropic case. This gives the analyst freedom to use CWMLE instead of

isotropic Procrustes with the assurance that the resulting registration will

be no worse than isotropic registration.

In all three examples the single eigenvalue constraint has been set a

priori. The effect of reducing the eigenvalue will produce a registration

that tends towards the isotropic registration. In examples 2 and 3, we see

that CWMLE with this choice of eigenvalue greatly reduces the bias in the

estimate of the mean shape. The choice of eigenvalue, however, is a little

conservative, and increasing the value will reduce the error in the estimates

of µ and Σ. This can be seen in the principal components of example

2, where the CWMLE algorithm produces a split in the two orthogonal

directions roughly half way between those produced by isotropic GPA and

the initial data set. Isotropic GPA induces large rotations for some of the

shapes in examples 2 and 3, which causes the comparatively large bias in the

x co-ordinate for landmarks 2 and 4. Increasing the eigenvalue beyond the

optimal value will induce even larger rotations in the CWMLE algorithm,

so the choice of eigenvalue is critical.

In summary, generalising Procrustes methods to minimise a Mahalanobis

norm, rather than a Euclidean norm, dramatically reduces the error of Pro-

crustes methods in covariance matrix estimation and this is also true of the

mean shape for extreme covariance structures. However, Lele and McCul-
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loch (2002) highlights that the isotropic Procrustes estimator of the shape

covariance matrix is inconsistent for non-isotropic variability, as discussed

in full by Kent and Mardia (1997), and future work is required to discover

whether or not the CWMLE estimator is consistent.

3.4 A Bayesian approach to CW Procrustes

3.4.1 The model

An alternative to classical maximum likelihood estimation of the unknown

parameters, is to estimate their posterior distributions using Bayesian infer-

ence and Markov Chain Monte Carlo (MCMC) simulation. For a detailed

description of MCMC methods, see Gilks et al. (1996). For brevity, we will

use the notation {Xi} to imply the collection of shapes, Xi, i = 1, ..., n,

and similar notation for the transformation parameters. We will assume in

this section that scaling is included, although results for partial Procrustes

analysis can be inferred by removing the βi parameters throughout.

We assume that after differences in size, orientation and location have

been removed from each configuration, the shapes follow a multivariate

normal model with mean, µ, and covariance matrix, Σ. The shape differ-

ences are removed by applying the transformations, βi, Γi and γi to Xi for

i = 1, ..., n, where Γi is the m×m rotation matrix that is a function of the

rotation angles, θij , j = 1, ..., m(m− 1)/2. Therefore,

vec(βiXiΓi + 1kγ
T
i ) ∼ Nkm(vec(µ),Σ).

Likelihood. Let X̃i = βiXiΓi +1kγ
T
i for i = 1, ..., n, then the likelihood

of the multivariate normal model is,

L ({Xi}|{βi, θij, γi}, µ,Σ)
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3.4 A Bayesian approach to CW Procrustes

=

n∏

i=1

L(Xi|βi,Γi, γi, µ,Σ),

= |2πΣ|−n
2 exp

{
−1

2

n∑

i=1

vec(X̃i − µ)T Σ−1vec(X̃i − µ)

}
.

Prior distributions. In Section 3.2 we included a priori information

in the classical maximum likelihood framework through introducing con-

straints on Σ. With a Bayesian approach, we include a priori information

by specifying multivariate normal and Wishart prior distributions for the

mean shape and inverse covariance matrix respectively,

vec(µ) ∼ Nkm(vec(µ0),Σµ0), Σ−1 ∼Wkm(Σ−1
0 , km), (3.3)

where µ0, Σµ0 and Σ0 are fixed quantities based on prior beliefs. The degrees

of freedom for the Wishart distribution is minimised to make it as least

informative as possible, see Johnson and Kotz (1972).

In addition, we specify uniform prior distributions for the n scaling pa-

rameters, nm(m − 1)/2 rotation angles and n translation vectors of length

m, to allow for arbitrary starting sizes, orientations and locations,

βi ∼ U(0, L), θij ∼ Um(m−1)/2(−π, π), γi ∼ Um(−R/2, R/2),

i = 1, ..., n, where R and L are large positive constants such that all the

shapes are initially contained within a box of length R, and L is an upper

bound on any possible scaling. The angles θ and θ + 2π are equivalent, so

angles outside the range (−π, π) are wrapped to be within this range. If

necessary, an initial manual scaling and rotation of each configuration will

remove any need to sample, in an MCMC algorithm, parameter values lying

near the boundary of the prior distributions’ support.

Posterior distribution. By Bayes’ theorem, the joint posterior distri-
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3.4 A Bayesian approach to CW Procrustes

bution for the model parameters is,

π({βi, θij , γi}, µ,Σ−1|{Xi})
∝ P ({βi})P ({θij})P ({γi})P (µ)P (Σ−1)L({Xi}|{βi, θij, γi}, µ,Σ−1),

∝ P (µ)P (Σ−1)L({Xi}|{βi, θij , γi}, µ,Σ−1),

where π, P and L denote the posterior distribution, prior distributions

and likelihood respectively. The prior distributions for the transformation

parameters can be included within the proportionality constant because

they are uniform.

3.4.2 Conditional posterior distributions

A conventional MCMC algorithm for the data is outlined in Algorithm 3.4.1.

Algorithm 3.4.1 A conventional MCMC algorithm for shape

data

1. Produce initial samples of βi, θij, γi, µ and Σ from prior distributions

for i = 1, ..., n and j = 1, ..., m(m− 1)/2.

2. Sample {βi} from their conditional posterior distributions (Gibbs steps).

3. Update {θij} by Metropolis-Hastings steps.

4. Sample {γi} from their conditional posterior distributions (Gibbs steps).

5. Sample µ from its conditional posterior distribution (Gibbs step).

6. Sample Σ from its conditional posterior distribution (Gibbs step).

7. Repeat steps (2)-(6).

This algorithm updates the value of each parameter once in each it-

eration. Most of the parameters can be updated by sampling from their

conditional posterior distribution. In the rest of this subsection, we calcu-

late each parameter’s conditional posterior distribution and explain why we

update the rotation angles with a Metropolis-Hastings step.
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3.4 A Bayesian approach to CW Procrustes

Updating the ith scaling parameter. Let {β ′
i} be {βi} excluding

the ith scaling parameter, then the conditional posterior distribution of the

ith scaling parameter, βi > 0, is,

π(βi|{Xi}, {β ′
i}, {θij}, {γi}, µ,Σ−1)

∝ P (βi)L({Xi}|{βi}, {θij}, {γi}, µ,Σ−1),

∝ exp

{
−1

2
vec(µ− βiXiΓi − 1kγ

T
i )T Σ−1vec(µ− βiXiΓi − 1kγ

T
i )

}
,

∝ exp

{
− 1

2
[β2

i vec(XiΓi)
T Σ−1vec(XiΓi)

−2βivec(XiΓi)
T Σ−1vec(µ− 1kγ

T
i )]

}
,

∝ exp

{
− 1

2σ2
iβ

(βi − βip)
2

}
,

where σ2
iβ =

[
vec(XiΓi)

T Σ−1vec(XiΓi)
]−1

and βip = σ2
iβvec(XiΓi)

T Σ−1vec(µ−
1kγ

T
i ). Given the prior distribution assigns a zero probability for negative

values of βi, the conditional posterior distribution has the form of a trun-

cated normal distribution,

π(βi|{Xi}, {β ′
i}, {θij}, {γi}, µ,Σ−1) ∼ N(βip, σ

2
iβ), βi > 0.

In practice, we simulate from the truncated normal using the method of

Gelfand et al. (1992) by sampling from the unconstrained full conditional

distribution, the related untruncated normal, and only retain a proposed

value if it falls within the constraint region. If a proposed value is negative

then it is automatically rejected and the ith scaling parameter is not changed

on that iteration.

Updating the ijth rotation angle. Let θij be the jth rotation angle

of the ith shape, i = 1, ..., n, j = 1, ..., m(m − 1)/2, and let {θ′ij} be {θij}
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3.4 A Bayesian approach to CW Procrustes

excluding for the ijth angle, θij , then the posterior distribution of θij is,

π(θij|{Xi}, {βi}, {θ′ij}, {γi}, µ,Σ−1)

∝ P (θij)L({Xi}|{βi}, {θij}, {γi}, µ,Σ−1),

∝ P (θij)L(Xi|βi, θi1, ..., θi,m(m−1)/2, γi, µ,Σ
−1),

∝ exp

{
−1

2
vec(µ− βiXiΓi − 1kγ

T
i )T Σ−1vec(µ− βiXiΓi − 1kγ

T
i )

}
,

where Γi is the m×m rotation matrix based on the angles θi1, ..., θi,m(m−1)/2.

Due to the complicated form of this expression with respect to the in-

dividual angles, the rotation parameters are updated with a Metropolis-

Hastings step, where the proposed value, θ⋆
ij , is sampled from the distri-

bution N(θij , σ
2
ij), where σij is a positive constant. Note that if the pro-

posed value is outside the range (−π, π) it is wrapped to be within this

range. This random walk is symmetric, so θ⋆
ij is accepted with probability

αθ = min(1, rθ), where,

rθ =
π(θ⋆

ij|Xi, βi, θi, γi, µ,Σ)

π(θij|Xi, βi, θi, γi, µ,Σ)
.

Let Γ⋆
i be a new rotation matrix based on the angles θi1, ...θ

⋆
ij , ..., θi,m(m−1)/2,

then the acceptance ratio is,

2 log rθ = vec(µ− βiXiΓi − 1kγ
T
i )T Σ−1vec(µ− βiXiΓi − 1kγ

T
i )

−vec(µ− βiXiΓ
⋆
i − 1kγ

T
i )T Σ−1vec(µ− βiXiΓ

⋆
i − 1kγ

T
i ).

Updating the ith translation vector. Let {γ ′
i} be {γi} excluding

the ith translation vector, then the conditional posterior distribution of the

ith translation vector is,

π(γi|{Xi}, {βi}, {θij}, {γ′i}, µ,Σ−1)

∝ P (γi)L({Xi}|{βi}, {θij}, {γi}, µ,Σ−1),
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∝ exp

{
−1

2
vec(µ− βiXiΓi − 1kγ

T
i )T Σ−1vec(µ− βiXiΓi − 1kγ

T
i )

}
,

∝ exp

{
− 1

2
[γT

i (Im ⊗ 1k)
T Σ−1(Im ⊗ 1k)γi

−2γT
i (Im ⊗ 1k)

T Σ−1vec(µ− βiXiΓi)]

}
,

∝ exp

{
−1

2

[
(γi − γip)

T Σ−1
γ (γi − γip)

]}
,

where Σ−1
γ = (Im ⊗ 1k)

T Σ−1(Im ⊗ 1k) and γip = Σγ(Im ⊗ 1k)
T Σ−1vec(µ −

βiXiΓi). Therefore, we update the ith translation vector by sampling from

the conditional posterior distribution,

π(γi|{Xi}, {βi}, {θij}, {γi}, µ,Σ−1) ∼ Nm(γip,Σγ).

Updating the mean shape. Let,

vec(µp) = (Σ−1
µ0 + nΣ−1)−1

×
(

Σ−1
µ0 vec(µ0) +

n∑

i=1

Σ−1vec(βiXiΓi + 1kγ
T
i )

)
, (3.4)

then the conditional posterior distribution of the mean shape is,

π(µ|{Xi}, {βi}, {θij}, {γi},Σ−1) ∝ P (µ)L({Xi}|{βi}, {θij}, {γi}, µ,Σ−1),

∝ exp

{
−1

2
vec(µ− µ0)

T Σ−1
µ0 vec(µ− µ0)

}
×

exp

{
−1

2

n∑

i=1

vec(µ− βiXiΓi − 1kγ
T
i )T Σ−1vec(µ− βiXiΓi − 1kγ

T
i )

}
,

∝ exp

{
−1

2
vec(µ)T (Σ−1

µ0 + nΣ−1)vec(µ)

}

× exp

{
vec(µ)T

(
Σ−1

µ0 vec(µ0) +
n∑

i=1

Σ−1vec(βiXiΓi + 1kγ
T
i )

)}
,
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∝ exp

{
−1

2
vec(µ− µp)

T (Σ−1
µ0 + nΣ−1)vec(µ− µp)

}
.

This has the form of the multivariate normal distribution,

π(vec(µ)|{Xi, βi, θij , γi},Σ−1) ∼ Nkm(vec(µp), (Σ
−1
µ0 + nΣ−1)−1). (3.5)

We remove the invariance of size, orientation and translation by trans-

forming the distribution such that the mean is the isotropic Procrustes fit

of µp on µ0. Let β̂µ, Γ̂µ and γ̂µ be the isotropic Procrustes estimators of

the similarity transformation mapping µp to µ0, then the transformed dis-

tribution has mean, vec(β̂µµpΓ̂µ + 1kγ̂
T
µ ) = β̂µ(Γ̂µ ⊗ Ik)vec(µp) + (γ̂µ ⊗ 1k).

Applying this same linear transformation to the covariance matrix, we up-

date the mean shape by sampling from,

π(vec(µ)|{Xi, βi, θij , γi},Σ−1) ∼ Nkm

(
vec(β̂µµpΓ̂µ + 1kγ̂

T
µ ),Σµp

)
,

where,

Σµp = β̂2
µ(Γ̂µ ⊗ Ik)(Σ

−1
µ0 + nΣ−1)−1(Γ̂µ ⊗ Ik)

T .

The distribution has the same shape before and after the transformation,

but the resized kernel has been rotated and translated across the parameter

space.

Updating the inverse covariance matrix. The conditional posterior

distribution of the inverse covariance matrix is,

π(Σ−1|{Xi}, {βi}, θij}, {γi}, µ) ∝ P (Σ−1)L({Xi}|{βi}, θij}, {γi}, µ,Σ−1),

∝ |Σ−1|− 1
2 |2πΣ|−n

2 exp

{
−1

2
tr(Σ0Σ

−1)

}

× exp

{
−1

2

n∑

i=1

vec(βiXiΓi + 1kγ
T
i − µ)T Σ−1vec(βiXiΓi + 1kγ

T
i − µ)

}
,
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∝ |Σ−1|(n−1)/2 exp

{
−1

2
tr
[
(Σ0 + T )Σ−1

]}
,

where,

T =

n∑

i=1

vec(βiXiΓi + 1kγ
T
i − µ)vec(βiXiΓi + 1kγ

T
i − µ)T . (3.6)

Therefore, the inverse covariance matrix is updated by sampling from the

conditional posterior Wishart distribution,

π(Σ−1|{Xi}, {βi}, {θij}, {γi}, µ) ∼Wkm

(
(Σ0 + T )−1, km+ n

)
. (3.7)

3.4.3 Hybrid MCMC algorithm

Given a mean shape and covariance matrix, Chapter 2 gives the maximum

likelihood estimates of the translation parameters. Therefore, an alternative

to the conventional algorithm is to use an MCMC style algorithm to update

µ and Σ but use CW OPA to estimate the transformation parameters at

each step. This hybrid algorithm is specified in Algorithm 3.4.2, and differs

from a conventional MCMC algorithm in two ways. Firstly, the shapes are

registered during each step so the data (the shapes) are not static. Secondly,

a generated value for the mean shape is identical to a scaled, rotated and

translated version of itself, requiring the mean to be registered to a template,

µ0, to remove this invariance. In truth, these differences prevent us from

demonstrating that the resulting Markov chain samples from the stationary

distributions in the correct proportions as the required properties of MCMC

listed in Section 1.7 are not satisfied. This, however, is of less consequence

if we are merely interested in providing a point estimate of µ and Σ that

maximises the posterior likelihood of the model, the maximum a posteriori

(MAP) estimate.
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3.4 A Bayesian approach to CW Procrustes

Algorithm 3.4.2 A hybrid MCMC algorithm for shape data

1. Produce initial samples µ and Σ based on prior distributions, and let

t = 0.

2. Register shapes using CW OPA to µt given Σt.

3. Obtain conditional posterior distribution of µ, given Σt and the data.

4. Generate value for µt+1 from the conditional distribution in step (3).

5. Register shapes using CW OPA to µt+1 given Σt.

6. Obtain conditional posterior distribution of Σ, given µt+1 and the data.

7. Generate value for Σt+1 from the conditional distribution in step (6).

8. Increment t.

9. Repeat steps (2)-(8).

New values for µ and Σ could be generated by simply sampling from

their posterior distributions, given in Section 3.4.2. However this Gibbs-

step approach, does not consider how well the shapes could be registered

using the new parameters, given the shapes are optimally matched using

the current estimates. Instead, with a Metropolis-Hastings step, transfor-

mation parameters can be calculated by registering the shapes using both

the current and proposed µ and Σ, and the whole model can be evaluated

under both scenarios, and the parameters updated in one block. The pro-

posed mean and covariance matrix could be sampled from a random walk,

but the parameters’ posterior distributions are more informative of suitable

values. Therefore, we take the posterior distribution to be the sampling

distribution.

Updating the mean shape. Given a mean shape, µ, and a proposed

new mean shape, µ⋆, sampled from the proposal distribution q(µ⋆|µ), this

new mean shape is accepted with probability αµ(µ, µ⋆) = min(1, rµ), where,

rµ =

(
π(µ⋆, {β̂⋆

i }, {Γ̂⋆
i}, {γ̂⋆

i }|{Xi},Σ−1)q(µ|µ⋆)

π(µ, {β̂i}, {Γ̂i}, {γ̂i}|{Xi},Σ−1)q(µ⋆|µ)

)
,
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andXi are the initial shapes and {β̂i},{Γ̂i},{γ̂i} and {β̂⋆
i }, {Γ̂⋆

i },{γ̂⋆
i }, are the

transformation parameters to register the shapes to µ and µ⋆ respectively,

both using Σ. If the proposal distribution is q(µ⋆|µ) ∼ Nkm(µ,Σq), with

Σq fixed, then it generates a random-walk proposal with q(µ⋆|µ) = q(µ|µ⋆)

cancelling, so the ratio is,

2 log rµ =

vec(µ− µ0)
T Σ−1

µ0 vec(µ− µ0) − vec(µ⋆ − µ0)
T Σ−1

µ0 vec(µ⋆ − µ0)

+
n∑

i=1

vec
(
µ− β̂iXiΓ̂i − 1kγ̂

T
i

)T

Σ−1vec
(
µ− βiXiΓ̂i − 1kγ̂

T
i

)

−
n∑

i=1

vec
(
µ⋆ − β̂⋆

iXiΓ̂
⋆
i − 1kγ̂

⋆T

i

)T

Σ−1vec
(
µ⋆ − β̂⋆

iXiΓ̂
⋆
i − 1kγ̂

⋆T

i

)
.

Letting the posterior distribution be the proposal distribution gives,

q(µ⋆|µ) ∼ Nkm

(
µp({Xi, β̂i, Γ̂i, γ̂i}), (Σ−1

µ0 + nΣ−1)−1
)
,

where µp is defined in Equation (3.4). The mean is denoted µp({Xi, β̂i, Γ̂i, γ̂i})
as a reminder that µp is a function of the initial shapes and the cur-

rent estimates of the rigid-body transformation parameters. The pro-

posed value, µ⋆, is sampled from this distribution and matched to µ0 us-

ing isotropic OPA. This proposal is no longer symmetric, as q(µ|µ⋆) ∼
Nkm(µp({Xi, β̂

⋆
i , Γ̂

⋆
i , γ̂

⋆
i }), (Σ−1

µ0 + nΣ−1)−1), and so the probability of going

from µp({Xi, β̂i, Γ̂i, γ̂i}) to µ⋆ is different to the probability of going from

µp({Xi, β̂
⋆
i , Γ̂

⋆
i , γ̂

⋆
i }) to µ. Therefore, the proposal distribution must be in-

cluded in the acceptance ratio,

2 log rµ =

vec(µ− µ0)
T Σ−1

µ0 vec(µ− µ0) − vec(µ⋆ − µ0)
T Σ−1

µ0 vec(µ⋆ − µ0)

+

n∑

i=1

vec
(
µ− β̂iXiΓ̂i − 1kγ̂

T
i

)T

Σ−1vec
(
µ− β̂iXiΓ̂i − 1kγ̂

T
i

)
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+vec
(
µ⋆ − µp({Xi, β̂i, Γ̂i, γ̂i})

)T

(Σ−1
µ0 + nΣ−1)

×vec
(
µ⋆ − µp({Xi, β̂i, Γ̂i, γ̂i})

)

−
n∑

i=1

vec
(
µ⋆ − β̂⋆

iXiΓ̂
⋆
i − 1kγ̂

⋆T

i

)T

Σ−1vec
(
µ⋆ − β̂⋆

iXiΓ̂
⋆
i − 1kγ̂

⋆T

i

)

−vec
(
µ− µp({X⋆

i , β̂
⋆
i , Γ̂

⋆
i , γ̂

⋆
i })
)T

(Σ−1
µ0 + nΣ−1)

×vec
(
µ− µp({X⋆

i , β̂
⋆
i , Γ̂

⋆
i , γ̂

⋆
i })
)
.

Updating the inverse covariance matrix. In a similar fashion, the

covariance matrix can be updated using a proposed value, Σ⋆, which allows

for the shapes to be matched using the proposed value as well as the cur-

rent value, and a more genuine comparison made. The proposed matrix is

accepted with probability αΣ(Σ−1,Σ⋆−1) = min(1, rΣ), where,

rΣ =

(
π(Σ⋆−1, {β̂⋆

i }, {Γ̂⋆
i }, {γ̂⋆

i }|{Xi}, µ)q(Σ−1|Σ⋆−1)

π(Σ−1, {β̂i}, {Γ̂i}, {γ̂i}|{Xi}, µ)q(Σ⋆−1|Σ−1)

)
.

If the proposal distribution is taken to be the posterior distribution, then,

q(Σ⋆−1|Σ−1) ∼Wkm

(
[Σp({Xi, β̂i, Γ̂i, γ̂i})]−1, km+ n

)
,

where Σp = Σ0 + T and is a function of the initial shapes and the current

estimates of the transformation parameters, as implied by Equation (3.6).

Likewise, q(Σ−1|Σ⋆−1) ∼ Wkm

(
[Σp({Xi, β̂

⋆
i , Γ̂

⋆
i , γ̂

⋆
i })]−1, km+ n

)
. There-

fore, the acceptance ratio is calculated as,

2 log rΣ =

(km+ n)
(
log
∣∣∣Σp({X⋆

i , β̂
⋆
i , Γ̂

⋆
i , γ̂

⋆
i })
∣∣∣− log

∣∣∣Σp({Xi, β̂i, Γ̂i, γ̂i})
∣∣∣
)

+tr(Σ0Σ
−1) +

n∑

i=1

(β̂iXiΓ̂i + 1kγ̂
T
i − µ)T Σ−1(β̂iXiΓ̂i − 1kγ̂

T
i − µ)
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−tr(Σ0Σ
⋆−1) −

n∑

i=1

(β̂⋆
iXiΓ̂

⋆
i − 1kγ̂

⋆T

i − µ)TΣ⋆−1(β̂⋆
iXiΓ̂

⋆
i − 1kγ̂

⋆T

i − µ)

+tr
(
Σp({Xi, β̂i, Γ̂i, γ̂i})Σ⋆−1

)
− tr

(
Σp({X⋆

i , β̂
⋆
i , Γ̂

⋆
i , γ̂

⋆
i })Σ−1

)
.

3.5 Comparison of the two MCMC algo-

rithms

We compare the two MCMC algorithms, specified in Algorithms 3.4.2 and

3.4.1, by applying them to simulated data. The first, conventional, algo-

rithm uses MCMC to update all the model parameters. The second, hybrid,

algorithm uses CW OPA to estimate the transformation parameters and

Metropolis-Hastings steps to update the mean and covariance matrix.

3.5.1 Mean and maximum likelihood estimates

The algorithms are applied to a data set consisting of n = 50 shapes simu-

lated from the multivariate normal distribution vec(X) ∼ Nkm(vec(µC),ΣC),

where µC and ΣC are given in example 3 of the simulation study in Sec-

tion 3.3. No scaling was applied to the shapes in the MCMC algorithms

to be consistent with the simulation study. The prior distributions for the

mean shape and covariance matrix are given by Equation (3.3), with the

parameters,

µ0 =




0 5

40 0

0 −5

−40 0



,

Σµ0 = diag(0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1), (3.8)

Σ−1
0 = diag(12500, 12.5, 12500, 12.5, 12.5, 0.0125, 12.5, 0.0125).
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3.5 Comparison of the two MCMC algorithms

The prior distribution for the mean shape is centred on the true value,

with low variability, because the mean shape can be estimated using

isotropic Procrustes with a reasonable amount of certainty. The prior dis-

tribution for the covariance matrix assigns an amount of variability to each

co-ordinate which approximately reflects the true distribution, but without

the correlations.

Each algorithm ran for N = 10, 000 iterations, and during each iter-

ation every parameter was updated and recorded and the log-likelihood

calculated. For each of the algorithms, two estimates of the model param-

eters, µ, Σ and Σ∗ are given, where Σ∗ is the projected covariance matrix

given by Equation (3.2). The first estimates, µ̄, Σ̄, Σ̄∗, are the means of the

parameters over the second half of the iterations. The first half is discarded

as a burn-in period. The second estimates, µ̂, Σ̂, Σ̂∗, are the parameter

values at the iteration with the highest likelihood for the model, the maxi-

mum likelihood (ML) estimate. Note that we can expect the ML estimate

to be close to the maximum a posteriori (MAP) estimate due to the com-

paratively uninformative priors used. Results for each algorithm are given

below and summarised in Table 3.4. Note that entries are rounded to three

decimal places. The shapes registered to µ̄, using Σ̄, for both algorithms,

are plotted in Figure 3.8. MCMC traces for some of the model parameters

are plotted in Figure 3.9, conventional algorithm, and Figure 3.10, hybrid

algorithm. The results are discussed in Section 3.5.3.
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3.5 Comparison of the two MCMC algorithms

Conventional Hybrid
‖µ̄− µC‖2 0.004 0.004
‖µ̂− µC‖2 0.164 0.027
‖Σ̄ − ΣC‖2 35.529 42.984

‖Σ̂ − ΣC‖2 14.887 19.979
‖Σ̄∗ − Σ∗

C‖2 0.703 0.699

‖Σ̂∗ − Σ∗
C‖2 0.983 0.502

Table 3.4: The distance of the mean and ML estimates from the true pa-
rameters for both algorithms.
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Figure 3.8: The shapes registered to µ̄ using Σ̄, using the mean estimates of
the transformation parameters following the conventional algorithm (left)
and CW OPA following the hybrid algorithm (right).
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Figure 3.9: For the conventional algorithm, the squared Euclidean norm
distance of the mean shape (top) and covariance matrix (second from top)
from the true model parameters, and the x translation parameter (next to
bottom) and rotation parameter (bottom) for one of the shapes, at each
iteration.
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Conventional algorithm: mean estimates

µ̄ =





−0.033 4.989

40.027 −0.003

0.033 −4.988

−40.027 0.007



 ,

Σ̄ =





0 0 0 0 0 0.004 0 −0.004

0 0.011 0 −0.009 0.002 −0.069 0.002 0.07

0 0 0 0 0 −0.006 0 0.006

0 −0.009 0 0.01 −0.002 0.069 −0.001 −0.069

0 0.002 0 −0.002 0.034 0.074 0.024 −0.019

0.004 −0.069 −0.006 0.069 0.074 13.924 0.045 −11.98

0 0.002 0 −0.001 0.024 0.045 0.034 0.012

−0.004 0.07 0.006 −0.069 −0.019 −11.98 0.012 13.497





,

Σ̄
∗

=





0.195 −0.009 −0.194 0.009 −0.002 0.029 −0.008 −0.02

−0.009 0.01 0.008 −0.01 0.001 −0.002 0.001 0

−0.194 0.008 0.195 −0.009 0.002 −0.029 0.008 0.02

0.009 −0.01 −0.009 0.01 −0.001 0.002 −0.001 0

−0.002 0.001 0.002 −0.001 0.215 −0.21 0.205 −0.21

0.029 −0.002 −0.029 0.002 −0.21 0.214 −0.21 0.207

−0.008 0.001 0.008 −0.001 0.205 −0.21 0.214 −0.208

−0.02 0 0.02 0 −0.21 0.207 −0.208 0.212





.

Conventional algorithm: ML estimates

µ̂ =





−0.034 4.996

40.029 −0.33

0.034 −4.986

−40.033 0.224



 ,

Σ̂ =





0 0 0 0 0 0.004 0 −0.004

0 0.01 0 −0.009 0.001 0.005 0.001 −0.022

0 0 0 0 0 −0.011 0 0.01

0 −0.009 0 0.011 −0.001 0.02 0.001 0.01

0 0.001 0 −0.001 0.011 0.063 0.001 −0.08

0.004 0.005 −0.011 0.02 0.063 13.582 0.036 −10.473

0 0.001 0 0.001 0.001 0.036 0.005 −0.037

−0.004 −0.022 0.01 0.01 −0.08 −10.473 −0.037 11.257





,

Σ̂
∗

=





0.173 −0.01 −0.174 0.008 −0.028 0.053 −0.035 0.01

−0.01 0.01 0.01 −0.01 0.007 −0.009 0.007 −0.006

−0.174 0.01 0.176 −0.008 0.03 −0.055 0.036 −0.011

0.008 −0.01 −0.008 0.011 −0.009 0.009 −0.008 0.007

−0.028 0.007 0.03 −0.009 0.255 −0.253 0.243 −0.246

0.053 −0.009 −0.055 0.009 −0.253 0.258 −0.249 0.244

−0.035 0.007 0.036 −0.008 0.243 −0.249 0.245 −0.239

0.01 −0.006 −0.011 0.007 −0.246 0.244 −0.239 0.241





.

108



3.5 Comparison of the two MCMC algorithms

Hybrid algorithm: mean estimates

µ̄ =





−0.033 4.988

40.027 −0.004

0.033 −4.988

−40.027 0.004



 ,

Σ̄ =





0 0 0 0 0 0 0 0

0 0.012 0 −0.011 0.001 −0.076 0 0.073

0 0 0 0 0 0 0 0

0 −0.011 0 0.012 −0.001 0.075 0 −0.073

0 0.001 0 −0.001 0.006 0.004 −0.003 −0.004

0 −0.076 0 0.075 0.004 14.094 −0.024 −12.332

0 0 0 0 −0.003 −0.024 0.007 0.026

0 0.073 0 −0.073 −0.004 −12.332 0.026 13.911





,

Σ̄
∗

=





0.199 −0.01 −0.198 0.009 0 0.028 −0.007 −0.021

−0.01 0.012 0.009 −0.011 0.001 −0.002 0.001 0

−0.198 0.009 0.198 −0.01 0 −0.028 0.007 0.021

0.009 −0.011 −0.01 0.012 −0.001 0.002 −0.001 0

0 0.001 0 −0.001 0.214 −0.209 0.204 −0.209

0.028 −0.002 −0.028 0.002 −0.209 0.213 −0.21 0.206

−0.007 0.001 0.007 −0.001 0.204 −0.21 0.214 −0.208

−0.021 0 0.021 0 −0.209 0.206 −0.208 0.211





.

Hybrid algorithm: ML estimates

µ̂ =





−0.08 5.046

40.043 −0.06

0.08 −4.945

−40.043 −0.04



 ,

Σ̂ =





0 0 0 0 0 0.001 0 −0.001

0 0.012 0 −0.01 0.004 −0.157 0 0.174

0 0 0 0 0 −0.003 0 0.002

0 −0.01 0 0.01 −0.004 0.153 0 −0.159

0 0.004 0 −0.004 0.006 −0.151 −0.003 0.136

0.001 −0.157 −0.003 0.153 −0.151 12.664 −0.056 −11.382

0 0 0 0 −0.003 −0.056 0.005 0.086

−0.001 0.174 0.002 −0.159 0.136 −11.382 0.086 12.958





,

Σ̂
∗

=





0.187 −0.023 −0.183 0.018 −0.003 0.025 0 −0.022

−0.023 0.012 0.022 −0.01 −0.001 0 −0.004 0.005

−0.183 0.022 0.179 −0.018 0.004 −0.025 0.001 0.02

0.018 −0.01 −0.018 0.01 0 0.001 0.003 −0.004

−0.003 −0.001 0.004 0 0.193 −0.183 0.173 −0.182

0.025 0 −0.025 0.001 −0.183 0.181 −0.171 0.174

0 −0.004 0.001 0.003 0.173 −0.171 0.17 −0.171

−0.022 0.005 0.02 −0.004 −0.182 0.174 −0.171 0.179





.
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Figure 3.10: The squared Euclidean norm distance of the mean shape (top)
and covariance matrix (bottom) from the true model parameters at each
iteration for the hybrid algorithm.

3.5.2 Prior distribution sensitivity

The prior distributions chosen for this simulation have expected values of

the mean shape and covariance matrix close to the true values. Practically,

it is realistic to specify a prior for the mean shape close to the true value

following analysis of isotropic GPA, for example. However, specifying a

prior distribution for the covariance matrix is less straightforward, so we

now conduct a sensitivity analysis on Σ0, to see its effect in the hybrid

algorithm. Given Σ−1 ∼ Wkm(Σ−1
0 , km), different values of Σ0 are chosen

to shrink the expected value of Σ towards the identity matrix. 7 different

values were selected such that,

Prior 1: E(Σ) = diag(0.00001, 0.01, 0.00001, 0.01, 0.01, 10, 0.01, 10),

Prior 2: E(Σ) = diag(0.01, 0.02, 0.01, 0.02, 0.02, 10, 0.02, 10),

Prior 3: E(Σ) = diag(0.1, 0.1, 0.1, 0.1, 0.1, 9.7, 0.1, 9.7),
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3.5 Comparison of the two MCMC algorithms

Prior 4: E(Σ) = diag(0.25, 0.25, 0.25, 0.25, 0.25, 9.25, 0.25, 9.25),

Prior 5: E(Σ) = diag(0.5, 0.5, 0.5, 0.5, 0.5, 8.5, 0.5, 8.5),

Prior 6: E(Σ) = diag(1, 1, 1, 1, 1, 7, 1, 7),

Prior 7: E(Σ) = diag(2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5).

The 50 shapes simulated from vec(X) ∼ Nkm(vec(µC),ΣC), were ini-

tially registered using isotropic GPA, and then the hybrid MCMC algorithm

applied with the 7 different priors, each for N = 5000 iterations. The dis-

tances of the estimated mean shape and covariance matrix from the true

parameters are given in Table 3.5. The shapes registered to µ̄, using Σ̄, for

each of the simulations are plotted in Figure 3.11.

Prior 1 2 3 4 5 6 7
‖µ̄− µC‖2 0.00 0.22 0.01 0.03 0.05 0.06 0.05
‖µ̂− µC‖2 0.01 0.01 0.03 0.04 0.05 0.09 0.09
‖Σ̄ − ΣC‖2 43.25 49.48 3.44 102.56 284.07 344.35 384.95

‖Σ̂ − ΣC‖2 38.61 20.42 8.48 160.39 337.80 353.16 383.07
‖Σ̄∗ − Σ∗

C‖2 0.70 0.42 0.68 0.65 0.63 0.62 1.00

‖Σ̂∗ − Σ∗
C‖2 0.27 0.38 0.30 0.13 0.44 0.48 0.67

Table 3.5: The squared Euclidean distance of the mean and ML estimates
from the true model parameters for different prior distributions.

3.5.3 Discussion

Based on one simulation for both algorithms, we see less error in the es-

timates of the mean shape and projected covariance matrix for the hybrid

algorithm and more error in the estimation of the true covariance matrix.

The maximum likelihood estimates are obviously dependent on the algo-

rithm sampling a covariance matrix close to the true value, so the perfor-

mance of each algorithm should not be judged on this statistic. Based on

the mean estimates, both algorithms have similar errors and take similar
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Figure 3.11: The shapes registered to the mean estimate of the mean shape
using the mean estimate of the covariance matrix, following the use of priors
2 (top left), 3 (top right), 4 (middle left), 5 (middle right), 6 (bottom left)
and 7 (bottom right).
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3.6 Bayesian method applied to missing data

lengths of time to run for one iteration. However, the hybrid algorithm con-

verges quicker when large rotation angles are involved as the random walk

of the rotation angle shown in Figure 3.9 takes 1000 iterations to converge.

The mean shape and covariance matrix mix well for both algorithms.

The MCMC algorithms are obviously dependent on the choice of prior

distributions. The errors in the estimates of the mean shape and projected

covariance matrix do not increase substantially as the prior on Σ becomes

less accurate. However, the error in the estimate of the true covariance

matrix is sensitive to the prior, making the MCMC methods just as depen-

dent on a priori information as the maximum likelihood methods. As the

prior tends towards isotropy, the registration of the shapes tends towards

the output of isotropic GPA, as expected. However, the prior does not need

to be as extreme, see prior 3 in Table 3.5, as the true covariance model for

the posterior distribution to have an expected value close to the true value.

3.6 Bayesian method applied to missing data

Previously, it was assumed that all the shapes in the data set have the

same number of landmarks. However, in some brain imaging applications,

a portion of the landmarks may be missing in each image due to poor image

quality or diseased tissue, such as brain lesions. In this section, we apply our

Bayesian methods to the case where the number of landmarks in each shape

differs. Data sets with this characteristic are commonly found in biological

morphometry, where parts of structures may be missing, or cheminformat-

ics, where molecules with differing number of atoms are considered.

3.6.1 Model and algorithm

Suppose there exists a set of shapes, X1, ..., Xn, where the number of land-

marks is allowed to vary, but there still exists an underlying model with

a mean shape, µ (k ×m), such that the jth landmark of shape Xi corre-
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3.6 Bayesian method applied to missing data

sponds to a landmark in µ for all i = 1, ..., n, j = 1, ..., ki, where ki is the

number of landmarks present in the ith shape. Denote the missing land-

marks of the ith shape, Yi, and the composite shape of both actual and

estimated landmarks, Zi. Therefore, the jth landmark of Zi corresponds

to the jth landmark of µ. The full shapes after Procrustes registration, Zi,

will continue to be modelled with the distribution,

vec(Zi) ∼ Nkm(vec(µ),Σ).

The prior distribution for the missing data in each shape is a multivariate

normal distribution,

vec(Yi) ∼ N(k−ki)m(vec(µ0i),Σ0i),

where µ0i and Σ0i are composed of the submatrices of µ0 and Σ0, as defined

in Equation (3.3), that correspond to the k − ki missing landmarks.

The full likelihood of the model is,

L({Xi}|{Yi}, {βi}, {θij}, {γi}, µ,Σ) = |2πΣ|−n
2

× exp

{
−1

2

n∑

i=1

vec(βiZiΓi + 1kγ
T
i − µ)TΣ−1vec(βiZiΓi + 1kγ

T
i − µ)

}
.

The optimum transformation parameters can be determined, either by

use of CW OPA or MCMC. Further, the estimates can either be based

only on actual landmarks, or on the combined set of actual and estimated

landmarks. The posterior distributions for the mean shape and covariance

matrix continue to be defined as in Equations (3.5) and (3.7) (with X’s

replaced by Z’s and being conditional on the estimated data). The model

parameters and the missing data can be estimated using the hybrid algo-

rithm, Algorithm 3.4.2, with the additional step of sampling each missing

landmark from its posterior distribution at every iteration.

Updating the missing data. The missing data for each shape is
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3.6 Bayesian method applied to missing data

updated by sampling from its posterior distribution, a Gibbs step. For

notational simplicity, re-order the rows (and columns) of Zi, µ and Σ such

that the observed and missing data are stacked separately,

Zi =

[
Xi

Yi

]
, µ =

[
µX

µY

]
, Σ−1 =

[
ΩX ΩXY

ΩT
XY ΩY

]
,

and for notational brevity let Ãi = βiAiΓi + 1kγ
T
i , for A = X, Y, Z.

Let {Y ′
i } be the missing data from all shapes excluding the ith shape,

then the conditional posterior distribution of the ith shape is,

π(Yi|{Xi}, {Y ′
i }, {βi}, {θij}, {γi}, µ,Σ) ∝ P (Yi)L(Xi|Yi, βi, θi, γi, µ,Σ),

∝ exp

{
−1

2
vec(Ỹi − µ0i)

T Σ−1
0i vec(Ỹi − µ0i)

}

× exp

{
−1

2
vec(Z̃i − µ)TΣ−1vec(Z̃i − µ)

}
,

∝ exp

{
− 1

2

[
vec(Ỹi)

T (Σ−1
0i + ΩY )vec(Ỹi)

−2vec(Ỹi)
T
(
Σ−1

0i vec(µ0i) + ΩY vec(µY ) + ΩT
XY vec(µX − X̃i)

) ]}
,

∝ exp

{
−1

2
vec(Ỹi − µG)T (Σ−1

0 + ΩY )vec(Ỹi − µG)

}
,

where, µG = (Σ−1
0 +ΩY )−1

[
Σ−1

0i vec(µ0i) + ΩY vec(µY ) + ΩT
XY vec(µX − X̃i)

]
.

So,

π(Yi|{Xi}, {Y ′
i }, {βi}, {θij}, {γi}, µ,Σ) ∼ N(k−ki)m(µG, (Σ

−1
0i + ΩY )−1).

3.6.2 Simulated data

We simulate n = 50 shapes from the multivariate normal distribution

vec(X) ∼ Nkm(vec(µC),ΣC), where µC and ΣC are given in example 3

of the simulation study in Section 3.3. The prior distributions for the mean
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shape and covariance matrix are given by Equation (3.3), with the param-

eters given in Equation (3.8). At random, 7 shapes were selected to have

landmark two removed and 5 shapes had landmark four removed. The hy-

brid algorithm, Algorithm 3.4.2, was applied with the additional step of

sampling each missing landmark from its posterior distribution at every

iteration. Only the remaining landmarks were used to estimate the trans-

formation parameters to minimise the impact of any incorrectly estimated

data. The algorithm was run for N = 10, 000 iterations. The mean and ML

estimates of the mean shape and covariance matrix are given below, with

a summary in Table 3.6. The first half of the iterations were discarded as

the burn-in period. The shapes, with the missing landmarks in their mean

position, registered to µ̄, using Σ̄ are plotted in Figure 3.12.

Hybrid
‖µ̄− µC‖2 0.005
‖µ̂− µC‖2 0.033
‖Σ̄ − ΣC‖2 29.657

‖Σ̂ − ΣC‖2 18.851
‖Σ̄∗ − Σ∗

C‖2 1.197

‖Σ̂∗ − Σ∗
C‖2 0.278

Table 3.6: The squared Euclidean distances of the mean and ML estimates
from the true model parameters.
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Figure 3.12: The shapes, with the missing landmarks in their mean position,
registered to the mean estimate of the mean shape using the mean estimate
of the covariance matrix, using CW OPA.

Missing landmarks algorithm: mean estimates

µ̄ =





−0.03 5.008

40.027 −0.024

0.03 −4.967

−40.027 −0.017



 ,

Σ̄ =





0 0 0 0 0 0 0 0

0 0.011 0 −0.009 0 −0.05 0 0.054

0 0 0 0 0 0 0 0

0 −0.009 0 0.012 0 0.059 0 −0.066

0 0 0 0 0.006 0.013 −0.004 −0.015

0 −0.05 0 0.059 0.013 13.459 −0.019 −11.393

0 0 0 0 −0.004 −0.019 0.006 0.024

0 0.054 0 −0.066 −0.015 −11.393 0.024 13.711





,

Σ̄
∗

=





0.189 −0.008 −0.188 0.006 0.007 0.02 0 −0.027

−0.008 0.011 0.007 −0.01 −0.001 0 −0.001 0.002

−0.188 0.007 0.187 −0.007 −0.007 −0.02 −0.001 0.027

0.006 −0.01 −0.007 0.011 0.001 −0.001 0.001 −0.002

0.007 −0.001 −0.007 0.001 0.281 −0.274 0.269 −0.276

0.02 0 −0.02 −0.001 −0.274 0.276 −0.273 0.271

0 −0.001 −0.001 0.001 0.269 −0.273 0.277 −0.273

−0.027 0.002 0.027 −0.002 −0.276 0.271 −0.273 0.278





.
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Figure 3.13: The squared Euclidean norm distance of the mean shape (top)
and covariance matrix (second from top) from the true model, and the x
(next to bottom) and y (bottom) co-ordinates for a missing landmark, at
each iteration.
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Missing landmarks algorithm: ML estimates

µ̂ =





−0.121 5

40.044 −0.025

0.119 −4.981

−40.042 0.005



 ,

Σ̂ =





0 0 0 0 0 0.004 0 −0.004

0 0.012 0 −0.012 0 −0.25 0.005 0.254

0 0 0 0 0 0.004 0 −0.004

0 −0.012 0 0.016 0 0.283 −0.006 −0.279

0 0 0 0 0.006 −0.017 −0.003 0.016

0.004 −0.25 0.004 0.283 −0.017 12.731 −0.142 −11.548

0 0.005 0 −0.006 −0.003 −0.142 0.006 0.145

−0.004 0.254 −0.004 −0.279 0.016 −11.548 0.145 12.436





,

Σ̂
∗

=





0.181 −0.033 −0.182 0.033 0.003 0.032 −0.021 −0.014

−0.033 0.013 0.033 −0.013 −0.002 −0.005 0.004 0.003

−0.182 0.033 0.183 −0.034 −0.002 −0.033 0.022 0.013

0.033 −0.013 −0.034 0.014 0.001 0.006 −0.005 −0.002

0.003 −0.002 −0.002 0.001 0.135 −0.129 0.124 −0.13

0.032 −0.005 −0.033 0.006 −0.129 0.135 −0.132 0.127

−0.021 0.004 0.022 −0.005 0.124 −0.132 0.134 −0.126

−0.014 0.003 0.013 −0.002 −0.13 0.127 −0.126 0.13





.

The mixing of the missing landmarks is good, with not much movement

in the x direction and considerably more movement in the y direction as

expected. In the example plotted in Figure 3.13, the y movement is quite

variable as dictated by the covariance matrix, but negatively correlated

with landmark 2 of the same shape, which had a negative y value. The

missing landmark algorithm did not mix well when shapes were missing

landmarks 1 or 3 because these landmarks have much less variability and

are, therefore, more important to the registration. However, most data sets

would not have landmarks with such comparatively high and low values of

variability, so this shouldn’t be a problem, especially when data sets with

more landmarks are analysed.
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3.7 Discussion

In this chapter we have shown how combining a priori information and the

CW OPA estimates of Chapter 2, it is possible to produce estimates of the

covariance matrix of Procrustes residuals following registration. In the max-

imum likelihood algorithm, a variety of parameterisations of the covariance

matrix were suggested and appropriate constraints given for the most gen-

eral case. Constraining the variability in the directions of scaling, rotation

and translation allows for the pre-isotropic registration covariance matrix

to be reconstructed, while filtering out the remaining transformations. The

method is dependent on the choice of eigenvalues for the constrained direc-

tions. These should be specified a priori, but could be varied to give the

analyst a choice of optimum registrations.

We have also considered a Bayesian MCMC approach to shape data,

as an alternative to the frequentist maximum likelihood method. We have

shown that the posterior distributions of the transformation parameters, µ

and Σ are standard distributions from which we can easily sample, using

Gibbs steps, for the multivariate Gaussian model. The exception is the

rotation angle which can be updated using a Metropolis-Hastings step. For a

given mean shape and covariance matrix, the maximum likelihood estimates

of the transformation parameters are known, so a hybrid algorithm has also

been suggested that considers the transformation parameters as artifacts of

the data given the other model parameters.

The hybrid algorithm has also been shown to be robust when adapted

to cope with missing data. The mean shape and covariance matrix con-

tinue to mix well, and the estimates of their true values are comparable to

their estimates using the full data set. The ability to cope with missing

landmarks is an advantage of the MCMC methods. In future work, missing

landmarks could be incorporated into the maximum likelihood methods us-

ing an EM algorithm, with the expected locations of the missing landmarks

given by the expectation step and the model parameters estimated with the
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maximisation step.

Both the CWMLE algorithm and the MCMC algorithms require a pri-

ori knowledge of the covariance structure. The method of CWMLE gives a

framework for this knowledge to be incorporated into Procrustes method-

ology. MCMC methods are more robust when the a priori knowledge is

less accurate, but computationally they take much longer. However, differ-

ent constraints on Σ in the maximum likelihood method may give different

registrations which highlight different features of shape variability. Both

methodologies give improved estimates of the covariance matrix, compared

with isotropic GPA, for data sets with non-isotropic covariance structures,

which achieves the aim of covariance weighted Procrustes analysis.
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Chapter 4

Surface shape and symmetry

analysis

4.1 Introduction

Landmark based methods, such as Procrustes analysis, summarise the shape

of an object with a few co-ordinates. However, it is becoming increasingly

important, with the advent of greater computational power, to treat shapes

as continuous curves and surfaces. Statistical shape analysis of surfaces en-

sures all the data regarding an object’s shape is included within the analysis

but raises questions regarding the sensible labelling of an object’s features

to ensure a valid correspondence between individuals is maintained. Corre-

spondence can be either in terms of biological homology or in a geometrical

sense. There have been a growing number of examples in the literature

where shapes of curves and surfaces are investigated (e.g. van Essen et al.,

1998, Bookstein et al., 1999, Kent et al., 2000, Fischl et al., 2001, Hobolth

et al., 2002, Klassen et al., 2004). In this chapter we develop maximum like-

lihood and Bayesian based approaches to the statistical analysis of surfaces.

We shall investigate methods for surface shape analysis by concentrating on

an important application in neuroscience which motivated our work.
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4.2 The application

4.2 The application

The data are 68 magnetic resonance images (MRI) of the human brain that

were collected by Sean Flynn, University of British Columbia. The volun-

teers were composed of healthy controls and patients clinically diagnosed

with schizophrenia. Our aim is to develop and apply a statistical analysis

of the cortical surfaces to test for correlations between volunteer group and

surface shape. The analysis of shape is more likely to yield significant dif-

ferences than global indices such as hemispheric volumes (Csernansky et al.,

1998). We are particularly interested in large-scale shape differences, such

as asymmetry. The cortical surface of the brain tends to exhibit asymme-

try, and in particular the right frontal region is larger than the left, and the

left occipital region is larger than the right. This particular asymmetry is

often called ‘brain torque’ and the torque differs with handedness and gen-

der (Kertesz et al., 1990). In particular, females tend to exhibit less torque

on average (Barrick et al., 2005). It has been suggested that schizophrenia

patients tend to have less torque (Bilder et al., 1994, Mackay et al., 2003).

We use the following Euclidean co-ordinate system throughout: x-axis:

posterior → anterior (back to front), y-axis: inferior → superior (bottom to

top), z-axis: right → left (n.b. ‘left’ = patient’s left). The sagittal plane is

the x − y plane, the coronal plane is the y − z plane, and the axial plane

is the x − z plane. This is an unconventional labelling of the x, y, z axes,

but of course the choice of axis labels is arbitrary. Each volunteer’s image

consists of 256× 256× 256 voxels (three-dimensional pixels) and each voxel

has an intensity value. Voxels with high intensity are commonly shown as

white on a grey-scale, with low intensity values as black.

All volunteers were aged under 50 and in total there were 29 male

controls, 25 male schizophrenia patients, 9 female controls and 5 female

schizophrenia patients. The mean ages are: male controls (36.6), male pa-

tients (33.2), female controls (33.9), female patients (33.4). All the subjects

were right-handed (writing hand) except one male patient and one male

123



4.3 The model

control. We denote the images as, Yj, j = 1, ..., n = 68 (each 2563 vec-

tors), and the covariate vector, xj , consisting of patient group (control=1/

schizophrenia=2), age and gender (male=1/female=2).

4.3 The model

In this section we will specify a model, and a likelihood, for the distribution

of voxel values in each image. There are two major confounds in MRI anal-

ysis, the identification and removal of non-brain voxels and the registration

of images to a template. We shall consider the removal of non-brain voxels

from the data set to be a pre-processing step. However, we shall include

the registration parameters in the model and estimate their values using

maximum likelihood and Bayesian approaches.

4.3.1 Cortical surface segmentation

There are many sophisticated image analysis programs available to assist

with common tasks in image analysis. We use the brain extraction tool

(BET) of Smith (2002), which is available in the FSL software package

(Smith et al., 2004), to extract the cortical surface boundary, which is the

boundary between the grey matter and the CSF. The tool fits a balloon-

like template through an energy minimisation scheme. The algorithm is

optimised for each brain through the control of a tuning parameter. The

resulting image is the same size as the original but with zero voxel values

for those outside the cortical surface boundary. Note that any error in esti-

mating the cortical surface is considerably less than the variability between

different brains and so it is a reasonable practical approach to treat the

cortical surface boundary as part of the data (i.e. as known).
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4.3 The model

4.3.2 Model parameters

Each brain has been approximately orientated in the scanner, but we wish

to remove all differences in translation and rotation to make comparisons

between different individuals. The registration of each brain is obtained

by estimating rigid-body transformations, with translation represented by

ξ = (ξx, ξy, ξz)
T ∈ R

3 (new location of the origin) and rotation matrix

Γ(θp, θr, θy) ∈ SO(3) about this point which is a function of the three Eu-

lerian angles: θp (pitch angle about x axis), θr (roll angle about y axis), θy

(yaw angle about z axis). Let φj = (ξxj, ξyj, ξzj, θpj, θrj , θyj)
T be the vector

of the six rigid-body registration parameters and Cj be the cortical surface,

for scan j = 1, ..., n.

We register each brain into Talairach space (Talairach and Tournoux,

1988), a three dimensional frame of reference, based on the Cartesian co-

ordinate system, for locating internal and external features of the brain.

This procedure involves locating the inter-hemispherical join, which we call

the midplane, that separates the left and right halves of the brain, and

locating two commissure landmarks, the anterior commissure (AC) and the

posterior commissure (PC). The AC and PC are areas of white matter in

the midplane that link the left and right hemispheres. The final registration

involves rotating the image so that the midplane is vertical and the line

joining the AC and PC is horizontal. In this new co-ordinate system, we

take the origin to be the AC and the location of the PC is given by an

additional parameter, ξc > 0, specifying the distance between them. For

any registration the new registered image is defined on the same voxel grid

as the old image using a suitable wrap around the edges of the image.

4.3.3 The likelihood

We assume the scans are independent of each other, and we specify the voxel

values of the jth individual, Yj, to have the distribution, Yj|{φj, xj}, where

φj is the vector of 6 parameters and xj is the covariate vector of patient
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4.3 The model

group, gender and age. The first part of the registration into Talairach

space is based on the approximate symmetrical structure of the brain in

the close vicinity of the midplane, and so a very important part of the

model is the distribution of the voxel values in the midplane region. The

remaining registration steps consist of finding the midplane, the AC and the

PC, so we partition the voxel grid into corresponding distinct regions which

depend on the parameters of interest and specify independent distributions

for each region. The regions, defined with respect to the constants ǫM = 15,

ǫA = ǫP = 10 in millimetres/voxels, used in the model are:

1. the midplane region, M, defined as the voxels within distance ǫM

of the midplane such that the voxel and its mirror image about the

midplane are both non-zero;

2. the AC region A, defined as the voxels within distance ǫA in the x, y

and z directions of the AC landmark;

3. the PC region P, defined as the voxels within distance ǫP in the x, y

and z directions of the PC landmark;

4. the region inside the cortical surface, O1, containing non-zero valued

pixels that are not included in M, A or P;

5. the region outside the cortical surface, O2, containing zero-value pixels

which do not contribute to the likelihood.

Both voxels are required to be non-zero in the midplane region in order

to examine the symmetry of the voxel-values. A schematic diagram of these

regions is shown is Figure 4.1. Therefore, omitting the j subscripts, the

density for one individual consists of parts for the midplane, the AC and

the PC, plus one part for non-zero voxels not near these three features,

f(Y |φ, x) = f1(Y ∩M|(θp, θr, ξz), x)f2(Y ∩ A|(θp, θr, ξx, ξy, ξz), x)

×f3(Y ∩ P|φ, x)f4(Y ∩O1|φ, x).
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4.3 The model

Cortical surface

MM AP

O1

O2

Figure 4.1: A schematic diagram showing the brain regions.

We shall carry out inference using the likelihood function,

L(Y1, ..., Yn|φ1, ..., φn, x1, ..., xn) =

n∏

j=1

f(Yj|φj, xj).

Given the distribution is uniform for the voxels in O1, the contribution

to the likelihood from these voxels is constant with respect to the model

parameters.

For one individual, let Yt denote the voxel value at location t =

(tx, ty, tz) ∈ S = {0, ..., 255}3. The first stage of registration involves

a rigid-body transformation with translation in z to ξz and rotations by

θp, θr. Following a transformation, each voxel t is sent to a new location

s = s(t, θ) = (sx, sy, sz) rounded to the nearest integer. The midplane is

given by new co-ordinates, (sx, sy, ξz) and we take the midplane as lying in

the half-integer position for ξz, lying half way between two planes of voxels.
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4.3 The model

Let s indicate voxels which are to the left of the midplane (sz > ξz). Let

s′ = (sx, sy, ξz − |sz − ξz|) be the reflection of s about the midplane. The

midplane region is M = {s : |sz − ξz| ≤ ǫM}, where the paired voxels, s

and s′, are both non-zero. We transform each pair of voxel values in M
from (Ys, Ys′) to Us = (Ys − Ys′)/2, Vs = (Ys + Ys′)/2, with Jacobian 1. We

assume that all Vs are independent of all Us, and the joint likelihood of all

Vs is assumed constant with respect to the model parameters. For voxels

in M, we consider a model where the expected values of the grey levels Ys

are symmetrical about the midplane, E(Ys) = E(Ys′), so E(Us) = 0. For

simplicity, we assume that the Us are independent.

Exploratory data analysis is carried out by examining the histogram of

Us for a good choice of midplane for several MRI scans. A Laplace (double

exponential) distribution fits the data well in M, as seen in the example in

Figure 4.2 middle plot. Therefore, a suitable model for Us with s(t, θ) ∈ M
is the Laplace distribution with scale parameter λws,

f(us) =
λws

2
exp(−λws|us|), (4.1)

where ws = ws′ are predetermined weights. The weights were obtained by

examining the sample variance of the voxels at parallel planes to a good

midplane choice. The weight of the sth voxel at a perpendicular distance

from the midplane, ξz, is taken as ws = max{(10.5−|sz −ξz|)/10, 0.5}. The

Laplace distribution is often used in image analysis instead of a Gaussian

distribution because it is more robust to outliers. In this application, the

observed data has heavier tails and a sharper peak than a fitted Gaussian

or Student’s t distribution.

To model the commissure regions, A and P, training data is obtained

by manually locating the AC and PC on the midplane of nt = 7 scans.

After translating and rotating these images into their final registration the

voxel intensities, Ys, in the region A ∪ P are standardised for each scan to

a common mean and variance, by means of a transformation of the form,
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Figure 4.2: Histograms of us for several choices of midplane and fitted
Laplace distributions. The middle plot with ξz = 130.5 corresponds to the
best choice here.
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4.3 The model

Y ∗
s = βjYs+γj, j = 1, ..., nt. For each voxel, s, in A and P, we can calculate

an estimate for the mean (µAs or µPs) and variance (σ2
As or σ2

Ps) of Y ∗
s from

the training data. The use of training data and models of voxel intensities

is common in landmark identification (e.g. Izard et al., 2005).

We model the voxel intensity at each voxel in A and P to be independent

with the Gaussian distributions,

N(µAs, σ
2
As/wAs), N(µPs, σ

2
Ps/wPs),

respectively, where wAs, wPs are weights based on the distance of voxel

s from the each commissure. We take the weights as the reciprocal of

1+(cx −sx)
2 +(cy −sy)

2 +(cz −sz)
2, where (cx, cy, cz) is the location of the

commissure and (sx, sy, sz) is the location of the sth voxel. Likewise, for the

jth individual, we linearly transform the voxel values in A∪P such that the

mean (and variance) of the voxel values in the image and the template are

identical. Rather than treating βj , γj as additional parameters we substitute

estimates, β̂j , γ̂j , based on the voxel values in A∪ P.

Therefore, ignoring all terms independent of the registration parameters

and omitting the j subscript, the log-likelihood for the non-zero voxels in

one individual is,

logL(U, V |φ, λ, ξc) =
∑

s,s′∈M

{
log

(
λws

2

)
− λws|us|

}
(4.2)

−
∑

s∈A

wAs

2σ2
As

(
β̂ys + γ̂ − µAs

)2

−
∑

s∈P

wPs

2σ2
Ps

(
β̂ys + γ̂ − µPs

)2

.

In order to formulate this likelihood it has been necessary to make a num-

ber of modelling assumptions regarding the choice of distributions, training

data, weights and tuning parameters such as ǫM , ǫA and ǫP . Such assump-

tions are commonly made in image analysis to simplify the model such that

it is computationally feasible. In practice, these choices will influence the

bias and variability in the estimates of the model parameters, such as the ro-
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4.4 Maximum likelihood registration

tations and translations, however, the values chosen seem reasonable based

on some preliminary sensitivity analysis to tune the model to the acquired

dataset.

4.4 Maximum likelihood registration

We consider registration of each brain to Talairach space using a four stage

procedure:

1. The midplane is estimated by maximising over θ = (θp, θr, ξz) in the

region M to give θ̂;

2. Approximate estimates of (ξx, ξy, θy) are found by maximising the like-

lihood over A∪ P, given θ̂;

3. The location of the AC is estimated by maximising over (ξx, ξy), given

θ̂, in the region A to give ξ̂x, ξ̂y;

4. The location of the PC is estimated by maximising over (θy, ξc), given

(θ̂, ξ̂x, ξ̂y), in the region P to give θ̂y, ξ̂c.

In each case, a simple grid search over the parameters is performed,

with steps of 0.01 radians for the angles, and 1mm for the translations.

Han and Park (2004) propose an alternative rigid-body registration based

on a similar 4-step procedure, but do not specify a likelihood for the voxel

values.

For the midplane registration, the log likelihood given the cortical sur-

face, C, from BET is,

logL(U |θ, λ, C) = m log λ+

(
∑

s∈M:sz>0

log
ws

2

)
− λ

(
∑

s∈M:sz>0

ws|us|
)
,
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4.4 Maximum likelihood registration

where m is the number of voxel pairs in M. Taking derivatives,

∂ logL

∂λ
=
m

λ
−

∑

s∈M:sz>0

ws|us|, ⇒ λ̂−1 =
1

m

∑

s∈M:sz>0

ws|us|.

Therefore, the maximum likelihood registration given C is obtained by max-

imising,

logL(U |θ, λ̂, C) = m(log λ̂− 1) +
∑

s∈M1:sz>0

log
ws

2
,

over θ.

After the midplane has been estimated, the registration is completed by

locating the AC and PC landmarks in the new midplane. Translating the

AC to the origin and rotating the AC-PC line to horizontal fixes the final

registration in Talairach space. In practice, locating the AC and PC is more

accurate when the size of the regions A and P is small, only containing the

voxels that include the commissures. Therefore, after estimating approxi-

mate locations, we let wAs and wPs tend to zero for those voxels outside the

immediate neighbourhood of the AC and PC.

The above four step procedure is applied to each image in turn. Here

we present the results for one individual. For stage 1, we find that the

maximum likelihood estimators are approximately θ̂p = −0.07, θ̂r = −0.06,

and ξ̂z = 130.5, with λ̂−1 = 3.3613. In Figure 4.3, we see the image trans-

formed from its original orientation to the maximum likelihood registration

of the midplane. Note that after the transformation the crosshairs bisect the

brain’s two hemispheres. In Figure 4.2 we saw histograms of the voxels in M
and the fitted Laplace densities for different choices of ξz ∈ {126.5, ..., 134.5}
with ξz = 130.5 fitting well in the middle plot, although ξz = 129.5 also looks

reasonable.

Evaluating the log-likelihood to register our example image on the AC

and PC, we find the maximum likelihood estimators are approximately ξ̂x =

132



4.4 Maximum likelihood registration

Figure 4.3: An image transformed from its original orientation (top row) to
the maximum likelihood registration of the midplane (bottom row).
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124.5 and ξ̂y = 169.5. In Figure 4.4 we see the image translated from its

midplane registration such that the origin coincides with the AC. In the

final step we rotate the image about this origin such that the AC-PC line is

horizontal. The maximum likelihood estimator was found to be θ̂y = 0.29.

The final registration is seen in Figure 4.5.

Figure 4.4: Following midplane registration (left), the image is transformed
so the origin coincides with the AC (right).

4.5 Bayesian registration

Alternatively, we could consider a Bayesian procedure for the registration.

For an introduction to Bayesian image analysis, see Hurn et al. (2003).

We assume that the eight parameters, the registration parameters, φ =

(ξx, ξy, ξz, θp, θr, θy), the concentration parameter for voxels in M, λ, and

the inter-commissure distance, ξc, have independent prior distributions. The

prior distributions for φ and ξc are taken to be uniform on a bounded region,

and the prior distribution for the concentration parameter is λ ∼ Γ(α0, β0).

For each voxel, s, in the AC and PC regions, A and P, we calculate an
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4.5 Bayesian registration

Figure 4.5: The image is rotated about the AC (left) such that the AC-PC
line is horizontal (right), with the PC being the white area on the horizontal
axis approximately three quarters of the way between the centre and the
left edge of the image.

estimate for the mean (µAs or µPs) and variance (σ2
As or σ2

Ps) from the

training data and, therefore, assume these parameters to be known.

Let m be the number of paired voxels in M, then the conditional pos-

terior density for λ is given by,

π(λ|Y, φ, ξc, C) ∝ P (λ)L(Y |φ, λ, ξc, C),

∝ λα0−1 exp(−β0λ)λm exp

{
−λ

∑

s∈M:sz>0

ws|us|
}
,

where the likelihood is obtained from Equation (4.1). Therefore,

π(λ|Y, φ, ξc, C) ∼ Γ

(
m+ α0, β0 +

∑

s∈M:sz>0

ws|us|
)
. (4.3)

Recall that we only sum over sz > 0 because us is a function of the difference

in voxel values of pairs located in left and right hemispheres.
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4.5 Bayesian registration

The log posterior density for the whole model is given by,

log π(φ, λ, ξc|Y, C) = logP (φ, λ, ξc) + logL(Y |φ, λ, ξc, C) + k,

= (α0 − 1) log λ− β0λ + logL(Y |φ, λ, ξc, C) + k,

where k is a constant and logL(Y |φ, λ, ξc, C) is given by Equation (4.2).

The form of the posterior is very complicated but we can simulate from the

posterior using a Markov chain Monte Carlo (MCMC) algorithm.

Algorithm 4.5.1 MCMC algorithm for brain registration

1. Start at φ = φ0, ξc = ξc0, and simulate λ from its prior distribution.

2. Metropolis-Hastings (MH) step: Propose ξ∗z ∼ N(ξz, σ
2
1). Let φ∗ =

(ξx, ξy, ξ
∗
z , θp, θr, θy). Accept φ = φ∗ with probability,

p = min

(
1,
π(φ∗, λ, ξc|Y, C)

π(φ, λ, ξc|Y, C)

)
. (4.4)

3. MH step with proposal θ∗p ∼ N(θp, σ
2
2) and φ∗ = (ξx, ξy, ξz, θ

∗
p, θr, θy).

Accept φ = φ∗ with probability p, see Equation (4.4).

4. MH step with proposal θ∗r ∼ N(θr, σ
2
3) and φ∗ = (ξx, ξy, ξz, θp, θ

∗
r , θy).

Accept φ = φ∗ with probability p, see Equation (4.4).

5. Gibbs step: Simulate λ from its conditional posterior distribution, given

by Equation (4.3).

6. MH step with proposal ξ∗x ∼ N(ξx, σ
2
4) and φ∗ = (ξ∗x, ξy, ξz, θp, θr, θy).

Accept φ = φ∗ with probability p, see Equation (4.4).

7. MH step with proposal ξ∗y ∼ N(ξy, σ
2
5) and φ∗ = (ξx, ξ

∗
y, ξz, θp, θr, θy).

Accept φ = φ∗ with probability p, see Equation (4.4).

8. MH step with proposal θ∗y ∼ N(θy , σ
2
6) and φ∗ = (ξx, ξy, ξz, θp, θr, θ

∗
y).

Accept φ = φ∗ with probability p, see Equation (4.4).
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4.5 Bayesian registration

9. MH step with proposal ξ∗c ∼ N(ξc, σ
2
7). Accept with probability,

p = min

(
1,
π(φ, λ, ξ∗c |Y, C)

π(φ, λ, ξc|Y, C)

)
.

10. Repeat steps 2-9 for a large number of times.

Note that the above proposals are symmetric and so the proposal densi-

ties cancel in the Hastings ratios. Commonly, the variances for the sampling

distributions would be specified a priori. However, we use an adapting stage

(Browne and Draper, 2000) to adjust the sampling variances during the first

few thousand iterations. The adapting procedure monitors the acceptance

rates for each parameter in batches of 100 iterations. If the acceptance rates

are in the interval (0.4,0.6) for three successive batches then the proposal

density variances are fixed and the adapting stage ends. However, if this

criterion is not satisfied, let r be the acceptance rate in the latest batch

then the current proposal variance, σi, is modified to σ∗
i as follows.

If r ≥ 0.5, σ∗
i = 2σir.

If r < 0.5, σ∗
i =

σi

2(1 − r)
.

Since the Markov chain from Algorithm 4.5.1 is aperiodic, and irre-

ducible, after a large number of iterations the chain converges to its sta-

tionary distribution. Therefore, we will have simulated an observation from

the posterior distribution. In practice the changes in log-likelihood with

different registrations are so large that the algorithm converges quickly to

the neighbourhood of the maximum a posteriori (MAP) estimator, and the

credibility intervals for the parameters are extremely narrow.

We apply the MCMC algorithm to the same image as in the previous

section and the prior distributions are taken to be uniform distributions.

Figure 4.6 shows the parameters over 20, 000 iterations. The starting values

were taken to be the maximum likelihood estimators given in Section 4.4.
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4.5 Bayesian registration

The MAP estimator is estimated as ξ̂x = 124.6, ξ̂y = 169.4, ξ̂z = 130.5, θ̂p =

−0.071, θ̂r = −0.056, θ̂y = 0.277, ξ̂c = 25.84, λ̂−1 = 2.8835. Over the first

2000 iterations, we use the adapting stage to choose the variances for the

sampling distributions, and we take the next 2000 iterations as the burn-in

period. The marginal histograms of the parameters after the burn-in are

given in Figure 4.7 as well as the log-likelihood (up to a constant). The

posterior variability is small for all the registration parameters, especially

those involved with midplane registration. As expected the (approximate)

MAP estimator is close to the maximum likelihood estimate (MLE).
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Figure 4.6: Plots of parameter values and the log likelihood from the MCMC
algorithm over the first 20, 000 iterations.

Similar results were obtained using a second MCMC simulation with

starting values away from the maximum likelihood estimator. Figure 4.8
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4.5 Bayesian registration
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Figure 4.7: Histograms of the parameter values and the log likelihood from
the MCMC run (after the burn-in period).
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4.5 Bayesian registration

shows how each of the parameters converged to the vicinity of their posterior

distributions during the first 500 iterations. It also illustrates how the adapt-

ing stage initially allows quite large jumps, before reducing the proposal

variances to allow good mixing in the posterior distribution. Note that the

variances of the posterior distributions for ξz, θp and θr are so small that the

majority of jumps cannot be observed in Figure 4.8. The starting values of

ξx = 128.5, ξy = 158.5, ξz = 128.5, θp = 0.0, θr = 0.0, θy = 0.2, ξc = 20.0, are

outside the range of human error for a manual registration, so the MCMC

method is not reliant on the maximum likelihood registration.

0 100 200 300 400 500

−4

−3

−2

−1

0

1

Index

ξ x
−

1
2
8
.5

0 100 200 300 400 500

32

34

36

38

40

42

Index

ξ y
−

1
2
8
.5

0 100 200 300 400 500

0

0.5

1

1.5

2

Index

ξ z
−

1
2
8
.5

0 100 200 300 400 500

−0.06

−0.04

−0.02

0

Index

θ
p

0 100 200 300 400 500

−0.06

−0.04

−0.02

0

Index

θ
r

0 100 200 300 400 500

0.2

0.22

0.24

0.26

0.28

0.3

Index

θ
y

0 100 200 300 400 500

16

18

20

22

24

26

Index

ξ c

0 100 200 300 400 500

0.26

0.28

0.3

0.32

0.34

Index

λ

0 100 200 300 400 500

−6

−4

−2

0

x 10
4

Index

lo
g
 L

Figure 4.8: Plots of parameter values and the log likelihood from the MCMC
algorithm over the first 500 iterations.

The MCMC algorithm has been applied to several of the images in the

data set. The posterior distribution is always tightly concentrated around

the MAP due to the large amount of information in each image. Also, the
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4.6 Asymmetric shape analysis

MAP is always very close to the maximum likelihood estimator because of

the weak prior information. Therefore, given the very small discrepancies

between the two approaches, the maximum likelihood method of registration

is applied to each image because it is considerably faster to compute.

4.6 Asymmetric shape analysis

In order to carry out shape analysis we must first provide a labelling of each

brain. If anatomical landmarks on the cortical surface were easily identifi-

able, we could analyse asymmetry using Procrustes methods. Mardia et al.

(2000) and Klingenberg et al. (2002) supplement their data sets with a re-

flected copy of each landmark configuration before implementing Procrustes

superimposition. The total shape variability, and principal components,

could then be allocated into symmetric and asymmetric components. How-

ever, the cortical surface is extremely intricate, with many folds and lobes,

and highly variable between subjects so the use of anatomical landmarks is

problematic. Theobald et al. (2004) investigates symmetry for star-shaped

objects based on pseudo-landmarks given by the length of rays between the

origin and the surface for a set of given angles. A similar analysis of our

data set is presented in Brignell et al. (2006). We consider a labelling which

gives rough correspondence between parts of the brain. This will enable us

to examine the large-scale shape changes, such as brain torque, which we

are interested in.

In order to measure asymmetry we consider a similar method described

in outline by Collinson et al. (2003). Following registration by maximum

likelihood to Talairach space, each scan is divided into m = 100 equally

spaced axial slices. We estimate the volumes contained within the cortical

surface boundaries in each slice above the horizontal plane containing the

AC and PC, for the left hand side (V L
rj) and right hand side (V R

rj ), for

r = 1, ..., m, j = 1, ..., n, where n = 68 is the total number of subjects.

We restrict the analysis to the cortical surface lying above the axial plane
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4.6 Asymmetric shape analysis

in which the AC and PC lies, as the surface is most clearly defined in this

region. The asymmetry function has components,

ηrj = (V R
rj − V L

rj )/Tj,

where Tj is the maximum slice volume in the jth scan. Therefore, the

asymmetry function for scan j is ηj = (η1j, ..., ηmj)
T . Each function is

smoothed using a Loess smoother with fraction f = 0.05. Smoothing is

commonly carried out at a preliminary stage in functional data analysis

(see Ramsay and Silverman, 2004).

In Figure 4.9 we see a plot of the mean smoothed asymmetry functions

for each sub-group. The slices with low index (left end of each picture) are

in the occipital region of the brain and the slices with high index (right end

of each picture) are in the frontal region of the brain. In Figure 4.10 we

display the smoothed asymmetry functions for the four sub-groups of data

(male control, male patients, female control, female patients).

In Figure 4.11 we see the results of conducting a t-test on η̄c − η̄s = 0 at

each slice, where η̄c and η̄s are the means of the control and patient group

respectively. Controls appear to have significantly greater rightward asym-

metry between slices 82 and 86. However, the effect is only just significant,

and multiple tests are being carried out, so the evidence for an effect is not

very strong.

While the underlying Gaussian distribution assumption behind the

Student-t test seems reasonable here, we could consider performing a non-

parametric test instead. An appropriate statistic, assuming the observa-

tions have been randomly and independently sampled from their respective

populations, would be the Mann-Whitney U test obtained by ordering all

(nc + ns) observations of η at each slice, where nc and ns are the number

of control and patient scans respectively. The Mann-Whitney U statistic
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Figure 4.9: The mean smoothed asymmetry functions for the male con-
trols (solid, black), male patients (dashed, red), female controls (dash/dot,
green), female patients (dotted, blue).

143



4.6 Asymmetric shape analysis

0 20 40 60 80 100
−0.1

−0.05

0

0.05

0.1

Index

η

Male controls

0 20 40 60 80 100
−0.1

−0.05

0

0.05

0.1

Index
η

Male patients

0 20 40 60 80 100
−0.1

−0.05

0

0.05

0.1

Index

η

Female controls

0 20 40 60 80 100
−0.1

−0.05

0

0.05

0.1

Index

η

Female patients

Figure 4.10: The smoothed asymmetry functions for the male controls, male
patients, female controls and female patients.
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Figure 4.11: t-values (top) and p-values (bottom) for t-tests between control
and patient groups at each slice. High t-values indicates greater rightward
asymmetry in the control group. The value p = 0.05 is shown for reference.
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4.6 Asymmetric shape analysis

would be the smaller of,

Uc = ncns +
nc(nc + 1)

2
−Wc,

Us = ncns +
ns(ns + 1)

2
−Ws,

where Wc and Ws are the sums of ranks of the observations in the control

and patient groups. If nc and ns are both large, as in this case, we could

use the Mann-Whitney U test for large samples with the test statistic,

Z =
Uc − (ncns)/2)√

ncns(nc + ns + 1)/12
.

The use of non-parametric tests could be applicable to some applications

of this symmetry analysis. Non-parametric tests, however, have less power

than their parametric equivalents when the distributional assumption is

valid, so we shall only consider parametric tests for this data set.

We carried out principal components analysis (PCA) on the pooled sam-

ple of n = 68 smoothed asymmetry functions. In Figure 4.12 we show the

pooled mean and the loadings of the first 5 principal components (PCs).

The loadings on the left of each picture are in the occipital region and those

on the right are in the frontal region. From the plots of the PC loadings it

seems clear from PC 1 that the main source in variability is in the occipital

region. PC 2 shows a gradual increase in variability nearer the front. PC

3, however, highlights a more general twisting in the brain, and will best

detect regions where the control group is more asymmetric. A plot of the

PC score 3 with covariate information is given in Figure 4.13.

We consider fitting a linear regression model with response PC score

3 (see Arnold (1981) for definitions of concepts relating to linear models).

The fitted parameters and statistical analysis are given in Table 4.1. We

see that there are statistically significant differences in PC score 3 between

patients and controls, but there is not a significant association with age or
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Figure 4.12: The mean (top left) and loadings for PCs 1-5.
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Figure 4.13: PC score 3 versus age. The colours represent the group and
sex information: male controls (×, black), male patients (+, red), female
controls (♦, green), female patients (�, blue).
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4.7 Curved midplane analysis

sex. The results for the first twenty slices should be treated with care given

the majority of the brain is below the AC-PC plane in this occipital region.

The fitted PC 3 scores are positive for the patient group and negative for

the control group. Applying the loading and fitted PC scores to the mean

in the front 80 slices gives a more consistent rightward asymmetry in the

patient group and a more extreme torque in the control group. This is

reflected in the mean male asymmetry functions of Figure 4.9, where the

control mean has greater rightward asymmetry in slices 55-100 and less

rightward asymmetry in the remainder. The numbers of females in this

study is small, so particular care should be taken with interpreting that

torque is not associated with sex.

Estimate SE t value Pr(> |t|)
Intercept -0.0672 0.0293 -2.2920 0.0252
group: Control (1) Patient (2) 0.0210 0.0093 2.2588 0.0273
Age 0.0007 0.0005 1.4417 0.1543
Sex: Male (1), Female (2) 0.0091 0.0113 0.8027 0.4251

Table 4.1: The fitted parameters and standard errors (SE) from a normal
linear model with PC score 3 as the response.

4.7 Curved midplane analysis

In calculating the asymmetry function, we assumed that the join of the

left and right brain hemispheres was the flat plane ξz = ξ̂z, given by the

maximum likelihood registration. In reality, inspection of the scans shows

a tendency for the inter-hemispherical join to curve, especially at anterior

and posterior extremities and, to a lesser extent, in superior regions. An

alternative symmetry analysis, adjusting the slice volumes for this correction

in the join’s location would be preferable. For simplicity, we will translate

the z-axis such that ξ̂z = 0 for each scan.
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4.7 Curved midplane analysis

To establish the location of the inter-hemispherical join, we apply the

model for registering the entire midplane on a localised region of M, and

maximise the likelihood over ξz, keeping all other registration parameters

fixed. The size of the localised region, L, was chosen large enough to avoid

detecting local symmetries not centred on the join but small enough to

detect general movement of the join, keeping ǫM = 15mm. The region, L,

was centred on locations at 5mm intervals in the x−y plane and ξ̂z recorded,

after a discrete grid search in unit steps, as the displacement from ξz = 0

at that location.

Let the maximum likelihood estimate of ξz for the jth individual at

location (x, y) be zxyj . Let C be the set of control scans and let S be the

set of patient scans, then for each location we define,

z̄xyc =
1

nc

∑

j∈C

zxyj,

z̄xys =
1

ns

∑

j∈S

zxyj ,

to be the sample mean leftward displacements of the control and patient

groups, respectively, where nc and ns are the number of scans in the control

and patient groups. At each location, the displacements were analysed using

t-tests of z̄xyc − z̄xys = 0. In the region between 25mm and 45mm anterior

of the AC, and extending up to 20mm above the AC-PC axis, the join is

significantly further to the left in the patient group, as seen in Figures 4.14

and 4.15. This might explain the reduced rightward asymmetry seen in male

patients, compared to male controls, seen between slices 70 to 85 (approx)

in Figure 4.9.

Suppose the region L was centred at the x, y co-ordinates, t1, ..., tk in

the midplane for a particular scan. Let T be the (k × 2) matrix of x, y

co-ordinates and let Y , (k × 1), be the vector of corresponding maximum

likelihood estimates of the midplane displacements, zxyj . To incorporate a
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Figure 4.14: Top row: The mean of the inter-hemispherical join’s displace-
ment from the plane ξz = 0 at 5mm intervals in the x−y plane for the control
group (left) and the patient group (right), with darker (lighter) areas indi-
cating a displacement to the ‘right’ (‘left’). Bottom row: The variance of
the inter-hemispherical join’s displacement at each location for the control
group (left) and patient group (right), with darker (lighter) areas indicating
low (high) variance.
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at p = 0.1. Darker areas indicate higher significance.
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4.7 Curved midplane analysis

curved inter-hemispherical join in the symmetry analysis, a curved midplane

is fitted to the maximum likelihood estimates by means of a thin-plate spline

for each scan to smooth the data. The fitted displacement at the x, y co-

ordinate, t (2 × 1), is given by,

Φ(t) = c+ At+W Ts(t),

where c (1 × 1), A (1 × 2) and W (k × 1) are the solutions of,



S + λIk 1k T

1T
k 0 0

T T 0 0






W

c

AT


 =



Y

0

0


 ,

λ is a smoothing parameter, s(t) = (σ(t − t1), ..., σ(t − tk))
T , (k × 1), and

(S)ij = σ(ti − tj) where,

σ(h) =

{
‖h2‖ log(‖h‖), ‖h‖ > 0,

0, ‖h‖ = 0.

The fitted thin-plate spline for one of the scans is shown in Figure 4.16. It

clearly demonstrates that a curved midplane fits the inter-hemispherical join

better than a flat midplane. The curved midplanes for eight of the female

controls are shown in Figure 4.17. The variability between individuals is

quite large, particularly towards the top and rear of the brain.

The symmetry analysis was repeated with a curved midplane, measur-

ing the slice volume bounded by the cortical surface, the AC-PC plane, and

the fitted inter-hemispherical join. The resulting mean smoothed asymme-

try functions for each sub-group are shown in Figure 4.18. Although the

principal components for this analysis were similar to those produced with

a flat midplane, fitting a linear regression model with response PC score 3

only produced a weak significant difference between patients and controls.

The fitted parameters and statistical analysis are given in Table 4.2. This
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4.7 Curved midplane analysis

Figure 4.16: A comparison of the actual inter-hemispherical join and the
fitted midplanes on axial slices at y = 0, 10, 20, 30, 40, 50, 60, 70 mm above
the AC-PC line.
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Figure 4.17: The fitted inter-hemispherical join for eight female controls.
The vertical axis shows the leftward displacement in millimetres.
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4.8 Voxel-based morphometry

suggests that differences in brain torque between controls and patients can

partly be explained by a curved midplane.
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Figure 4.18: The mean smoothed asymmetry functions for the male con-
trols (solid, black), male patients (dashed, red), female controls (dash/dot,
green), female patients (dotted, blue).

4.8 Voxel-based morphometry

An alternative whole-brain technique for analysing brain shape is voxel-

based morphometry (VBM). We apply this method to our data set of

schizophrenia patients and healthy controls to compare the results with the

asymmetry analysis presented in Section 4.6. VBM aims to characterise

regional cerebral volume and tissue concentration differences in structural
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4.8 Voxel-based morphometry

Estimate SE t value Pr(> |t|)
Intercept -0.0434 0.0358 -1.2124 0.2298
group: Control (1) Patient (2) 0.0198 0.0113 1.7494 0.0850
Age 0.0003 0.0006 0.5236 0.6023
Sex: Male (1), Female (2) 0.0027 0.0138 0.1958 0.8454

Table 4.2: The fitted parameters and standard errors (SE) from a normal
linear model with PC score 3 as the response, using a curved midplane.

MRI scans (Ashburner and Friston, 2000). Neuroscientists routinely use

VBM to identify differences in the composition of the brain between sub-

jects. For example, Good et al. (2002) identifies brain regions with volume

loss in patients with Alzheimer’s disease and semantic dementia, with re-

sults similar to those obtained using traditional region-of-interest volume

measurements. We implemented VBM using the Statistical Parametric

Mapping 2 (SPM2) software, following the Good et al. (2001a,b) proto-

col for data preprocessing. Initially, each scan was manually translated and

rotated such that the origin coincided with the anterior commissure (AC),

with the axis aligned to pass through the posterior commissure (PC) and

the inter-hemispherical boundary.

4.8.1 Data pre-processing

The data is preprocessed using the optimised VBM protocol. The protocol,

as applied to our data set using SPM2, is outlined in Algorithm 4.8.1. The

protocol is designed to extract the brain’s grey matter from the rest of the

image and register it to a study-specific grey matter template, rather than

the generic whole-brain T1 template supplied within SPM2. The grey mat-

ter is of particular interest as it lies closest to the cortical surface. The reg-

istration is carried out using “normalisation” steps to transform the images

from native (acquired) space to Talairach space (Talairach and Tournoux,

1988). Spatial normalisation aims to remove the majority of shape differ-
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4.8 Voxel-based morphometry

ences between an individual and the template. The registration includes a

12 parameter affine transformation (3 translations, 3 rotations, 3 scalings

and 3 shears), see Ashburner et al. (1997) for details. Non-linear shape

differences are modelled using a linear combination of smooth spatial ba-

sis functions (Ashburner and Friston, 1999). The normalisation uses prior

knowledge of expected variability in brain shape in a Bayesian framework

(Ashburner et al., 1999, 2000). A mask is used so normalisation is based

mainly on brain tissue.

Algorithm 4.8.1 Optimised VBM protocol

Step 1. Creation of a separate grey matter template.

1a. Spatial Normalisation. Each of the 68 scans are spatially nor-

malised to the T1 template. The images are transformed from native (ac-

quired) space to Talairach space by minimising the residual sum of squared

differences in voxel values. The spatially normalised images are resliced with

voxel size 1 × 1 × 1mm3.

1b. Segmentation. The normalised images are segmented into grey mat-

ter, white matter and cerebrospinal fluid (CSF). SPM2 uses a mixture of

model cluster analysis and prior knowledge of tissue type locations in healthy

brains, to identify voxel intensities and match particular tissue types.

1c. Smoothing. The normalised, segmented, grey matter images are

smoothed using a 12mm full-width at half-maximum (FWHM) isotropic

Gaussian kernel. The average of the 68 normalised, segmented, smoothed,

grey matter images is calculated, which will be our study-specific template.

Step 2. Estimation of normalisation parameters.

2a. Segmentation and extraction of brain image. Each original

image in native space is segmented into grey matter, white matter and CSF

and all non-brain voxels removed.

2b. Normalisation of grey matter images. The extracted, segmented

grey matter images are normalised to the grey matter template created in

(1c), and the normalisation parameters recorded.
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4.8 Voxel-based morphometry

Step 3. Creation of optimally normalised, segmented, smoothed

images.

3a. Normalisation. The normalisation parameters recorded in (2b) are

reapplied to the whole image. This brings each image from native space into

Talairach space. The spatially normalised images are resliced with voxel size

1 × 1 × 1mm3.

3b. Segmentation and extraction of brain image. Optimal seg-

mentation of the optimally normalised images in Talairach space creates

separate grey matter, white matter and CSF images. The brain extraction

step is repeated to filter out any non-brain voxels.

3c. Smoothing. Each optimally normalised, segmented image is smoothed

using a 12mm FWHM isotropic Gaussian kernel. These images are then

used in the following statistical analysis.

The aim of the VBM protocol is to accurately split (segment) the image

into separate grey matter, white matter and CSF images, and to estimate

the registration parameters necessary to transform the grey matter image

to the template. However, these two aims confound each other because the

normalisation step requires the image to already be segmented, but to seg-

ment the image in SPM2 requires the use of Bayesian priors that assume the

image is already normalised. The optimised VBM protocol carries out an

approximate segmentation before estimating the normalisation parameters

(step 2), and then reverses the process, applying the estimated normali-

sation parameters before estimating the segmentation (step 3). Once in

Talairach space the optimal segmentation is then available (Ashburner and

Friston, 2000).

The optimised VBM protocol has two advantages over the simpler VBM

protocol, which only implements step 1. Firstly, the normalisation param-

eters from (2b) are optimised compared to (1a), being based only on grey

matter rather the whole image. Secondly, step 1 is used to create a study-

specific template.
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4.8 Voxel-based morphometry

4.8.2 Statistical analysis of VBM data

The grey matter images from the optimised VBM protocol were analysed

using SPM2. At each voxel, a linear model is constructed with the voxel

values as the response, and the patient group as the covariate. The pa-

rameter values are estimated using ordinary least squares. The significance

at each voxel is assessed using a t-test of the parameter value with r de-

grees of freedom, where r is the number of scans minus the rank of the

design matrix. The standard error of the parameters are estimated using

the residuals from the fitted model and the significance level is obtained

using the theory of Gaussian random fields (Friston et al., 1996) to correct

for multiple comparisons. A significant difference in the voxels around the

left superior temporal lobe was detected. These voxels are highlighted in

Figure 4.19 with their t-statistic and can be compared to the location of

the superior temporal lobe, labelled in Figure 4.20. The analysis shows con-

trols have higher voxel values in this region, or appear lighter, than patients

with schizophrenia. This implies the grey matter is significantly less con-

centrated, or has significantly less volume, in patients with schizophrenia.

The superior temporal lobe has been identified in other studies inves-

tigating schizophrenia as being significant. This region is generally re-

sponsible for language. Language development in humans has been aided

by increasing hemispheric specialisation. Tim Crow (1997) has developed

the theory that the lack of structural asymmetry seen in the brains of

schizophrenia patients, is symptomatic of one hemisphere failing to have

dominance for language. Therefore, it seems reasonable to expect to see

differences in the superior temporal lobe. Further, Highley et al. (2001)

cites other studies (Wible et al., 1995; Highley et al., 1999; McDonald et

al., 2000) reporting a reduction in the volume of the temporal lobe struc-

tures, many noting the reduction greatest on the left, as seen in our study.

Interestingly, Rajarethinam et al. (2004), have studied the superior

temporal gyrus of the children of schizophrenia patients. This report found
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4.8 Voxel-based morphometry

Figure 4.19: The t-statistic of the highlighted voxels in the superior tempo-
ral lobe show this region is significantly smaller in patients with schizophre-
nia.

Figure 4.20: The location of the superior temporal lobe taken from the
Whole Brain Atlas. Copyright c© 1995-1999 Keith A. Johnson and J. Alex
Becker.
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them to be significantly smaller than controls, implying the genetic link

of schizophrenia led to an increased risk of abnormality within the supe-

rior temporal gyrus. A review by McCarley et al. (1999) of studies on

schizophrenia between 1987 and 1998 shows that of the 16 studies that con-

sidered the superior temporal gyrus, 13 discovered significant results. Like

the VBM analysis above, 7 of the 16 studies considered grey matter only,

and all of these studies showed significant results.

While VBM has produced results consistent with the literature, a debate

remains regarding the validity of the technique. Bookstein (2001) argues

that voxel-based statistical analysis is confounded by failures in local reg-

istration, so the technique is only valid away from edges. Ashburner and

Friston (2001) disagree but acknowledge that significant differences detected

by VBM may not necessarily result from differences in grey matter density,

but could be caused by systematic differences in registration errors, motion

artifacts, tissue classification or relative grey/white matter intensities.

In our experience, the optimised VBM algorithm itself is quite convo-

luted and it is undesirable that the normalisation and segmentation steps

are mutually dependent. In addition, the normalisation step removes much

of the shape difference through a series of non-linear warps. Ashburner et

al. (1998) shows statistical analysis of the parameters corresponding to the

non-linear warps, Deformation Based Morphometry (DBM), can detect dif-

ferences in brain asymmetry between males and females but the results are

difficult to interpret.

4.9 Discussion

The analysis of the MRI data has been pragmatic given the complexity of

brain extraction, image registration and the geometry of the cortical sur-

face. The approach taken has been sufficient to answer questions regarding

our primary focus of large-scale differences such as symmetry. The use of

BET to perform brain extraction is reasonable given the small uncertainty
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in locating the cortical surface compared to the large variability in surface

shape between individuals. Similarly, the small uncertainty in the regis-

tration justifies conducting the shape analysis conditional on the estimated

cortical surface and registration. Alternative labelling functions are pos-

sible, for example, Fischl et al. (2001) uses a flattened cortical surface,

but the labelling of the cortical surface used here is suitable for large-scale

shape analysis given the lack of anatomical correspondence of brain features

between individuals.

The results from the symmetry analysis show large-scale differences be-

tween controls and patients with schizophrenia in the frontal section of the

brain, and less torque in patients. These differences are not apparent in

the VBM analysis conducted using the SPM2 software, which only finds

a difference in the superior temporal lobe. The difference in these find-

ings can be explained when one considers the aims of each technique. The

VBM technique only identifies small-scale tissue concentration differences

because it filters out large-scale shape differences. The symmetry analysis

only detects large-scale shape difference, such as symmetry, because it uses

a rigid-body registration. Therefore, the two techniques complement each

other.

An alternative analysis of this data set is presented in Brignell et al.

(2006), which compares the lengths of radii between a central origin and

the cortical surface for various angles. A smaller right frontal region in pa-

tients is observed in the data. Principal components analysis showed the

brains to be “taller” in patients with schizophrenia. Independent compo-

nents analysis showed this effect is associated with less torque in patients.

Again, the method presented in this chapter complements these pseudo-

landmark methods.

The introduction of a simple non-linear method for finding the inter-

hemispherical join reduces the significance of our analysis, so care must

be taken with interpreting the results. Clearly, torque is related to the

twisting of the midplane as well as the cortical surface. An advantage of a
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rigid-body registration over a non-linear normalisation is that the location

of the midplane and other features can be easily examined, and the location

of the midplane was shown to be significantly different between the two

groups in this study. Therefore, we recommend shape analysis conditional

on a rigid-body registration to examine large-scale shape differences such

as those investigated in this study.

164



Chapter 5

Modelling haemodynamic

response functions

5.1 Introduction

In response to a stimuli, the level of neuronal activation in particular parts

of the brain can be studied through examining the change in blood flow to a

particular region over a period of time. The neuronal activation is detected

by changes in the blood oxygenation level dependent (BOLD) haemody-

namic response signal that lead to an increase in MR signal intensity which

correlates with the paradigm presented to the subject. In this study, a se-

ries of magnetic resonance images (MRI) was taken of the motor cortex.

The motor cortex was chosen because many functional MRI (fMRI) studies

often involve a physical response to a visual or audio stimulus, for example

selecting an option from a keypad. It is therefore vital, for a wide range

of applications, that the time course of the BOLD signal change associated

with neuronal activity, the haemodynamic response function (HRF), in the

motor cortex can be modelled.

We will fully consider existing techniques for examining fMRI data in

Section 5.8, but most methods fall into two classes, either model-driven or
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data-driven. Data-driven methods, such as independent component analy-

sis, can identify areas of the MR image where the grey-level fluctuates at

the same frequency as the stimuli. Independent components analysis can be

implemented, for example, within the MELODIC (Multivariate Exploratory

Linear Optimised Decomposition into Independent Components) software

(Beckmann and Smith, 2004). Another leading piece of software, SPM2

(Statistical Parametric Mapping 2) introduced in Section 4.8, is model-

driven and uses a linear model with a typical haemodynamic response basis

function, shown in Figure 5.1, as a covariate. The general nature of the ba-

sis function derives from prior empirical evidence, but it assumes the exact

form can be prescribed by an analytic function. For example, SPM2’s basis

function is the discretised summation of two curves taken from a gamma

probability density function. We wish to relax this assumption and allow

the data to specify the form of the response function while keeping within

the structure of the model-driven framework.

In a typical study, a volunteer is asked to repeat a task several times

because the BOLD signal change is of the order of 2.5% and the signal-to-

noise ratio is low. Currently, most methods for analysing standard fMRI

experiments assume that the response to each stimuli is dependent only on

location and time since the last stimulus, and that each trial is independent.

In truth, this is probably a false assumption. For example, behavioural

studies have shown “warm up” (Eysenck and Frith, 1977) and “carry over”

(Ward et al., 2001) effects, where peak performance is not achieved when

starting a new task from rest or when switching immediately from one task

to another. The ability to test the assumption that each trial is independent,

however, has only been available recently due to the advent of scanners with

stronger magnetic fields, such as the ultra-high field of 7T. This increases

the BOLD signal change and the signal to noise ratio.

Examining this single-trial variability at 7T is a topic of current research.

Debener et al. (2005) have studied electroencephalogram data (recordings of

the small electrical signals caused by activation) and noted that if a subject

166



5.1 Introduction

0 5 10 15 20 25 30
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
SPM’s standard haemodynamic response function

post−stimulus time (secs)

Figure 5.1: SPM2’s standard haemodynamic response function evaluated
at two second intervals.

makes a mistake in one trial, there is a systematic relationship to the be-

haviour in the next trial. fMRI data has been studied by Duann et al. (2002)

using independent components analysis to “reveal dramatic and unforeseen

haemodynamic response variations not apparent to researchers analysing

their data with event-related response averaging and fixed haemodynamic

response templates” in the visual cortex, across a number of subjects. A

variation of the SPM2 model-driven approach has been suggested by Lu et

al. (2005) but they still incorporate prior knowledge by only allowing the

haemodynamic response to fluctuate in a neighbourhood of the original ba-

sis function. Despite these initial successes in this new field, a model-driven

approach, free of a priori assumptions, has not been previously advocated.

In our study, gradient echo planar images (EPI) of a volunteer’s motor

cortex were taken at the Sir Peter Mansfield Magnetic Resonance Centre
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(SPMMRC) on the Philips 7T scanner. A dynamic scan was taken at 2

second intervals for 5 minutes and each dynamic scan was composed of 12

slices, each 3mm thick with a 0.7mm slice gap, taken sequentially at 1/6

second intervals. Each slice is composed of 64 x 64 pixels of size 1mm x 1mm.

A total of ten visual stimuli were presented at 28.25 second intervals, this

cued the volunteer to press a button either once or five times as indicated.

The different responses were requested alternately, starting with a single

button press.

Our experiment paradigm, with single and multiple button presses, also

raises interesting questions regarding the relationship between neuronal ac-

tivity and haemodynamic response. It is well documented that the relation-

ship is non-linear, but predicting the change in response to a longer period

of activation, for example, is less well understood (Mechelli et al, 2001).

SPM2 adjusts its basis function by convolving the period of neuronal activity

with its standard haemodynamic response function, using the Volterra series

(Friston et al., 1998). Independently, Buxton et al. (1998) developed the

balloon/Windkessel dynamical non-linear model of how the haemodynamic

response is influenced by the underlying physical changes in blood vessel

volume and deoxyhemoglobin content. The model suggests that increased

blood flow inflates a venous “balloon”, diluting and expelling deoxygenated

blood causing an increase in the BOLD signal. As the flow decreases, the

balloon deflates reducing the discharge and increasing the concentration of

deoxygenated blood, causing the post-stimulus undershoot. Friston et al.

(2000) showed that the Volterra and balloon/Windkessel models were con-

sistent, in that the Volterra kernels which best represented those derived

from empirical evidence, also had biologically plausible estimates for the

balloon/Windkessel model parameters. In this study, we seek to develop

a model that distinguishes between different responses, caused by different

neuronal activity, without making assumptions regarding the underlying

non-linear relationship.
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5.2 Image preprocessing

5.2 Image preprocessing

Usually, fMRI images are subjected to three preprocessing steps, namely

slice-timing, realignment and smoothing, before areas of activation can be

examined. Slice-timing corrects for the time difference between each slice

being recorded within each dynamic scan and transforms all the data within

each scan to a single time point. More details are given below. Realignment

corrects for the small movement in the volunteers position between each

dynamic scan by translating and rotating each scan, in relation to the first,

with a six-parameter rigid-body transformation. Finally, the images are

smoothed to reduce noise and to allow for any remaining imperfections

in anatomical alignment. The size of the spatial smoothing kernel should

match the size of any potential activation we wish to detect. Typically, this

is 1.5 times the voxel size, so our images were smoothed with an isotropic

Gaussian kernel of 1.5mm full-width half-maximum (FWHM).

Slice-timing corrects for the difference in acquisition times of each slice

within a dynamic scan. Modelling the time series from each slice as a linear

combination of sinusoids of different phases and frequencies, the data is

shifted forwards or backwards in time by effectively adding a constant to

the phase of every frequency. Conventionally, each slice is shifted so that the

time-series has the values that would have been obtained had the slice been

acquired at the same moment as a reference slice. Typically, the reference

slice is chosen to be the middle slice and all other slices in every scan are

corrected to this reference slice.

A schematic diagram of slice-timing can be seen in Figure 5.2. In this

simplified experiment paradigm, each dynamic scan is composed of three

slices (acquired at 1 second intervals), with a 3 second inter-scan interval.

The stimuli is presented every 5.5 seconds. Let slice 2 be the reference slice,

then with ordinary slice timing, slice one is lagged back 1 second and slice

three is brought forward 1 second. So the reference time points are at 1, 4,

7 and 10 seconds. However, the post-stimulus times are 1 and 4 seconds for
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the first trial, but 1.5 and 4.5 seconds for the second trial. This negates the

ability to examine single-trial variability.

For this reason, we implement slice-timing with a different time shift

for each slice/trial combination so that all slices are corrected to the same

post-stimulus time points. Returning to Figure 5.2, with slice/trial-timing

the slices are lagged by 1, 0 and -1 seconds in the first trial and 0.5, -0.5

and -1.5 seconds in the second trial. This makes the reference time points

1, 4, 6.5 and 9.5 seconds, maintaining the post-stimulus times of 1 and 4

seconds in both trials.
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Figure 5.2: Schematic diagrams showing the difference between slice tim-
ing (top) and slice/trial timing (bottom) for a simplified paradigm with a
dynamic scan of 3 slices and a 5.5 second interval between stimuli. Slice
acquisition times are shown with a solid line, and the corrected timings with
a dotted line. The stimuli were given at times marked “S”.

Let T be the number of post-stimulus time points, and E be the number
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of events or trials. If the number of scans, N , exceeds T×E, then we discard

those scans requiring a large time lag to bring them into alignment with a

reference time point. The post-stimulus times chosen for our study were 5
6
,

25
6
, 45

6
, ..., 265

6
seconds, as these were the default SPM2 post-stimulus times

during the first trial. Therefore, T = 14, and there were E = 10 events, so

we assume N = T × E = 140.

Let X∗ be an N × q design matrix composed of covariate information,

with the mean of each column being zero. Possible covariates might include

the realignment parameters from preprocessing or physiological data such

as pulse and respiratory rate as movement, blood flow and oxygen levels all

affect the grey-level recorded in an MR image. In our study, we let q = 6

using the six realignment parameter vectors as covariates, as physiological

data was unavailable.

Let Ỹij be the grey-level at the ith voxel at the jth time point,

j = 1, ..., N = T × E. The design matrix and data are both subjected

to temporal filtering, a standard SPM2 preprocessing step, to remove low-

frequency confounds. A matrix, K, is formed of the first k non-constant

basis functions of a one-dimensional discrete cosine transform, of length N .

Let t = 2 seconds be the inter-scan time interval and let c = 128 seconds

be a cutoff time, then k is 2(N ∗ t)/c rounded down to the nearest integer.

The filtered design matrix and data are then X = X∗ − K(KTX∗) and

Y ∗
i = Ỹi −K(KT Ỹi). We set the baseline signal for each voxel to be zero by

subtracting the voxel’s mean grey-level value, i.e. Yij = Y ∗
ij −

∑N
j=1 Y

∗
ij/N .

Therefore, Yij is the haemodynamic response at the ith voxel that we wish

to model. Voxels at locations exterior to the brain are automatically masked

out by SPM2 and not included in the analysis.

5.3 The model

We fit a linear model at each voxel to the data and design matrix described

in Section 5.2. The pre-processed data for two voxels are shown in Figure
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5.3. Clearly, not all voxels within the brain are activated in response to

the stimuli and we assume no prior information regarding which voxels are

active. Therefore, we formulate a multivariate Gaussian model for each of

the two classes of voxel (active and inactive). For active voxels we model the

response Yi with mean µ1 = βiµ̃+Xbi and covariance matrix Σ1 = ΣE⊗ΣT ,

and for inactive voxels let mean µ2 = Xbi and covariance matrix Σ2 = σ2IN .

Dividing the voxels into the two groups to maximise the likelihood of this

model is equivalent to minimising |Σ̂1|V1 |Σ̂2|V2 , where Σi is the covariance

matrix of the Vi voxels in group i = 1, 2. However, this would require

calculating the maximum likelihood estimate (MLE) for 2V −1 combinations,

where V is the total number of voxels, which is computationally impractical.

Instead, all the model parameters will be estimated from the data by

maximising the likelihood using an Expectation-Maximisation (EM) algo-

rithm. The vector, µ̃, represents a “standard” haemodynamic response to

a stimuli. We expect the response at each stimuli to be similar, so we con-

strain µ̃ = 1E ⊗ µ, where µ is a vector of length T , to detect true responses

rather than noise. The scale parameter, βi, denotes the scale of the response

at the ith voxel. To remove the arbitrary scaling of these parameters we

constrain ‖µ‖ = 1. Lastly, bi is the parameter vector for the design matrix,

and ΣE and ΣT denote variability between and within events, respectively,

where the subscript indicates the size of the matrix.

The log likelihood of the Gaussian mixture model,

f(Y ) = pf1(Y ) + (1 − p)f2(Y ),

where f1 ∼ N(µ1,Σ1) and f2 ∼ N(µ2,Σ2) is,

l(p, µ1, µ2,Σ1,Σ2|Y ) =

V∑

i=1

log [pf1(Yi|µ1,Σ1) + (1 − p)f2(Yi|µ2,Σ2)], (5.1)

where V is the number of voxels.

As noted in Chapter 4, image preprocessing and modelling assumptions
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Pre−processed data for two voxels
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Figure 5.3: The pre-processed data from two voxels. One shows signs of
activation (top), whilst the other is mainly noise (bottom). The stimuli was
presented at the times marked with dotted lines.

influence the resulting parameter estimates. In this chapter, we base our

assumptions entirely on the models used in SPM2, with the exception of

modifications outlined above, for ease of comparison.

5.4 Parameter estimation using the EM al-

gorithm

Maximising the likelihood in Equation (5.1) is non-trivial, although a solu-

tion exists if we constrain Σ1 = Σ2 (Day, 1969). Proceeding with an EM

algorithm, we augment the data with latent variables, which are effectively

missing data. Let Zi be a Bernoulli random variable with P (Zi = 1) = p.

Let Yi ∼ f1 if Zi = 1 and Yi ∼ f2 if Zi = 0. The joint density of (Zi, Yi) is

f(zi, Yi) = [pf1(Yi)]
zi [(1 − p)f2(Yi)]

1−zi, and the log likelihood for the data
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is,

l(p, µ1, µ2,Σ1,Σ2|x, Y ) =
V∑

i=1

zi log [pf1(Yi|µ1,Σ1)] + (1 − zi) log [(1 − p)f2(Yi|µ2,Σ2)] .

We obtain maximum likelihood estimates of the model parameters by taking

expectations over the missing data and maximising the likelihood over the

model parameters.

Estimating the model parameters is an iterative procedure with each

iteration composed of expectation and maximisation steps. The expectation

step estimates the values of the latent variables and then the conditional

log-likelihood is maximised by differentiation. Let Θ′ = (p, µ1, µ2,Σ1,Σ2)

be the current parameter estimates and let Θ denote the parameter values

at the next iteration then,

Q(Θ|Θ′, Y ) = E [l(Θ|Z, Y )|Y,Θ′] ,

=
V∑

i=1

E(Zi|Y,Θ′) log

[
pf1(Yi|Θ)

(1 − p)f2(Yi|Θ)

]
+ log [(1 − p)f2(Yi|Θ)] ,

where Q has its usual EM interpretation and,

E(Zi|Y,Θ′) = f(Zi = 1|Y,Θ′) =
pf1(Yi|Θ)

pf1(Yi|Θ) + (1 − p)f2(Yi|Θ)
= p̃i.

Due to the small values of f1 and f2, it is computationally more feasible to

calculate p̃i = 1/(1 + ec), where c = log(1 − p) − log(p) + log(f2) − log(f1).

Recalling Σ1 = ΣE ⊗ ΣT and Σ2 = σ2IN , we can write Q in terms of our

model parameters,

Q(Θ|Θ′, Y ) =

V∑

i=1

p̃i log [pf1(Yi|µ1,Σ1)] + (1 − p̃i) log [(1 − p)f2(Yi|µ2,Σ2)] ,
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= const+

V∑

i=1

{
p̃i log(p) − p̃iE

2
log |ΣT | −

p̃iT

2
log |ΣE|

− p̃i

2
(Yi − βiµ̃−Xbi)

T Σ−1
1 (Yi − βiµ̃−Xbi)

+(1 − p̃i) log(1 − p) − (1 − p̃i)ET

2
log(σ2)

−(1 − p̃i)

2σ2
(Yi −Xbi)

T (Yi −Xbi)
}
.

We now estimate the model parameters in turn. For each, we maximise

Q conditional on the current values of the other parameters by setting the

derivative of Q with respect to the parameter equal to zero and solving for

the parameter.

∂Q

∂p
=

V∑

i=1

{
p̃i

p
− (1 − p̃i)

(1 − p)

}
= 0,

=⇒ (1 − p)

V∑

i=1

p̃i = p

V∑

i=1

(1 − p̃i),

=⇒ p̂ =
1

V

V∑

i=1

p̃i. (5.2)

∂Q

∂βi
= −p̃i

(
βiµ̃

T Σ−1
1 µ̃− µ̃T Σ−1

1 (Yi −Xbi)
)

= 0,

=⇒ p̃iµ̃
T Σ−1

1 (βiµ̃− (Yi −Xbi)) = 0.

Therefore,

β̂i = (µ̃T µ̃)−1µ̃T (Yi −Xbi). (5.3)

For the parameter vector,

∂Q

∂bi
= p̃iX

T Σ−1
1 (Xbi − (Yi − βiµ̃)) + (1 − p̃i)X

T Σ−1
2 (Xbi − Yi) = 0.
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Therefore,

b̂i = (ATA)−1AT
(
p̃iX

T Σ−1
1 (Yi − βiµ̃) + (1 − p̃i)X

T Σ−1
2 Yi

)
, (5.4)

where A = p̃iX
T Σ−1

1 X + (1 − p̃i)X
T Σ−1

2 X. Let Yij be the response from

voxel i at event j, Xj the rows of X corresponding to event j, and let ejk

be the jkth entry of Σ−1
E then differentiating Q with respect to µ gives,

∂

∂µ

{
V∑

i=1

E∑

j=1

E∑

k=1

p̃iejk(Yij − βiµ−Xjbi)Σ
−1
T (Yik − βiµ−Xkbi)

}
= 0,

V∑

i=1

E∑

j=1

E∑

k=1

p̃iejkΣ
−1
T

(
β2

i µ− βi(Yij −Xjbi)
)

= 0.

Therefore,

µ̂ =

(∑
i

∑
j

∑
k p̃iejkβi(Yij −Xjbi)

)

(
∑

i p̃iβ2
i )
(∑

j

∑
k ejk

) . (5.5)

The relative sizes of βi and µ̃ = 1E ⊗ µ are arbitrary so we can artificially

rescale them at each iteration such that ‖µ‖ = 1 without changing the

value of the likelihood. Let Ri be a T × E matrix of residuals, where the

jth column is Yij − βiµ−Xjbi, and let Si = RiΣ
−1
E RT

i . Then,

∂Q

∂Σ−1
T

=
∂

∂Σ−1
T

{
V∑

i=1

p̃iE log |Σ−1
T | − p̃itr

[
Σ−1

T Si

]
}

= 0.

Given, ∂ log |Σ−1
T |/∂Σ−1

T = 2ΣT − Diag(ΣT ), and ∂tr(Σ−1
T S)/∂Σ−1

T = 2S −
Diag(S), if ΣT and S are symmetric, then,

V∑

i=1

{p̃iE [2ΣT − Diag(ΣT )] − p̃i [2Si − Diag(Si)]} = 0,
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[2ΣT − Diag(ΣT )] − 1

E
∑V

i=1 p̃i

V∑

i=1

p̃i [2Si − Diag(Si)] = 0.

Let M = ΣT −
P

i epiSi

E
P

i epi
, then we require 2M − Diag(M) = 0. Hence M = 0

and,

Σ̂T =
1

E
∑V

i=1 p̃i

V∑

i=1

p̃iSi. (5.6)

By analogy, let Ti = RT
i Σ−1

T Ri then,

Σ̂E =
1

T
∑V

i=1 p̃i

V∑

i=1

p̃iTi. (5.7)

Finally,

∂Q

∂σ2
=

V∑

i=1

{−(1 − p̃i)ET

2σ2
+

(1 − p̃i)

2σ4
(Yi −Xbi)

T (Yi −Xbi)

}
= 0.

Hence,

σ̂2 =
1

ET
∑V

i=1(1 − p̃i)

V∑

i=1

(1 − p̃i)(Yi −Xbi)
T (Yi −Xbi). (5.8)

EM algorithms are sensitive to the starting estimates of the model pa-

rameters. Suitable starting estimates for this algorithm are obtained by ini-

tially estimating a reduced version of the model, Yi ∼ N(βiµ̃+Xbi,ΣE⊗ΣT ),

where all voxels are assumed to be active. The model parameters can be

found with a simpler version of the algorithm presented above with no ex-

pectation step. For the reduced model, the starting mean response, µ, is

taken as the standard response function from SPM2 and the covariance is

initially assumed to be isotropic. Statistical tests, outlined below, of the re-

sulting βi parameters provide an initial classification of active and inactive
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voxels in the EM algorithm. This classification is used to produce starting

estimates of the proportion of active voxels, p, and the covariance matrices

for the two groups, Σ1 and Σ2. The EM algorithm takes approximately 50

iterations to converge for the model and data used in this study. This only

takes a few minutes to compute but it will require more iterations if the

amount of data or covariates is increased.

5.5 Model evaluation

The model proposed above is obviously more complex than the simpler

linear model currently implemented by SPM2. In this section we compare

5 models of ranging complexity using the deviance and Akaike information

criterion (AIC), calculated using the log-likelihood, logL, and the number

of model parameters, p. The first two linear models we consider are,

Model 1: Yi ∼ NTE(βiµs +Xbi, ITE);

Model 2: Yi ∼ NTE(βiµ̃+Xbi, ITE);

where µs is the HRF used by SPM2 and µ̃ is an HRF estimated from the

data. In both models the shape of the HRF is constant for each voxel

and trial but the magnitude of the response varies at each voxel through

the estimation of βi, i = 1, ..., V . We compare these to Gaussian mixture

models where active voxels are modelled by,

Model 3: Active voxels, Yi ∼ NTE(βiµ̃+Xbi,ΣE ⊗ IT );

Model 4: Active voxels, Yi ∼ NTE(βiµ̃+Xbi, IE ⊗ ΣT );

Model 5: Active voxels, Yi ∼ NTE(βiµ̃+Xbi,ΣE ⊗ ΣT );

and, in each case, inactive voxels are modelled by Yi ∼ NTE(Xbi, σ
2ITE).

In these models the expected response and covariance matrix structure is

different at active and inactive voxels, and the models only differ in the
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complexity of the covariance structure for active voxels.

The deviance, Dev = −2 logL, and Akaike information criterion,

AIC = Dev + 2p, for each of the five models are shown in Table 5.1.

It can be seen that making the model more complex adds comparatively

few parameters. Therefore, the more complex models are favoured by a low

AIC. The reduction in AIC from model 1 to model 2 highlights the benefit

of allowing the data to estimate the haemodynamic response. Similarly, the

significant reduction in deviance from model 2 to models 3-5 shows the need

for separating the active and inactive voxels with a mixture model. A mix-

ture model allows the variability of active responses to be estimated using

only voxels classed as “active”. The reduction in AIC between model 5 and

model 4 supports our hypothesis that sequential events cannot be treated

as independent responses to a stimulus and gives evidence that responses

are correlated.

Model p logL Dev AIC
1 70434 -12481601 24963201 25104069
2 70447 -12348551 24697102 24837996
3 80566 -3898088 7796176 7957308
4 80616 -3894852 7789705 7950937
5 80671 -3890070 7780140 7941482

Table 5.1: The deviance and AIC for five models.

To evaluate whether the difference in log-likelihood between models 3-5

was due to the model parameterisation or an artifact of the EM algorithm’s

ability to find the global maximum from a given starting point, the EM

algorithm was run a further 10 times for each model. On each occasion

the starting point was adjusted by choosing 10% of the voxels considered

at random and altering their initial active/inactive classification. Further,

random noise was added to the initial estimate of µ by the addition of a

NT (0, I) random variable. Although the algorithm generally took longer

to converge from these random starting points, in each case the evaluated
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log-likelihood was identical (to 6 significant figures) to the values quoted in

Table 5.1. It, therefore, seems reasonable to assume that the differences in

the likelihood between the models is due to the model parameterisation and

not the algorithm. Based on Table 5.1, it seems valid to model the data

using model 5.

5.6 Hypothesis testing

To examine single-trial variability, we first need to extract from the data

the voxels activated by the stimuli. Figure 5.4 shows that voxels with large

βi nearly always have p̃i = 1, which seems to justify using the Gaussian

mixture model. The model suggests that active voxels will have a large

positive βi parameter and this parameter can be tested with a student-t

test on the null hypothesis βi = 0 versus the alternative hypothesis that

βi > 0 for i = 1, ..., V . Under our model, Yi ∼ NTE(µ̃βi + Xbi,Σ1). A

transformation gives Y ∗
i ∼ NTE(µ∗βi + X∗bi, ITE) where Y ∗

i = Σ
−1/2
1 Yi,

µ∗ = Σ
−1/2
1 µ̃ and X∗ = Σ

−1/2
1 X. The test statistic under TE−q−1 degrees

of freedom is,

Ti =
β̂i√

S2
i (µ

∗Tµ∗)−1
,

where S2
i = ‖Y ∗

i − µ∗βi −X∗bi‖2/(TE − q − 1).

There has been much debate in the neuro-imaging community regard-

ing how to set the statistical significance level in fMRI studies (Marchini

and Ripley, 2000), due to problems in estimating the magnitude of the

response and the correlation in spatially and temporally correlated data.

SPM2 utilises set-level inference, using distributional approximations from

the theory of Gaussian random fields (Friston et al., 1996). The method

assesses the probability of obtaining c or more clusters, containing v or more

voxels. Our voxel-by-voxel approach is the simplest case of this, allowing

clusters of just one voxel. The use of Gaussian random fields has potential
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advantages over SPM2’s previous methods (Friston et al., 1994, Friston et

al., 1995d, Worsley et al., 1995), which corrected the significance level for

temporal correlations only. Our method of pre-whitening the data using

the estimated covariance matrix is similar to that of Worsley et al. (2002),

although they restrict the covariance matrix to be of auto-regressive form.

We correct for multiple comparisons by adjusting the initial p-value thresh-

old of 0.001 to control the false discovery rate (Benjamini and Hochberg,

1995). We use Benjamini and Hochberg’s (2000) adaptive method, and

defer analysis of the spatial correlations until later.
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−20
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−10
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Figure 5.4: A scatter plot of p̃i versus βi.

The goal of single-trial variability analysis is to identify trends in the way

active voxels respond in space and time to stimuli. Principal components

(PC) analysis of ΣT will highlight key differences in the response of voxels at
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different events. The PC score at each voxel/event is, sijk = γT
k (Yij − βiµ−

Xjbi), where γk is the kth PC loading and i denotes voxel and j denotes

event. These are used as the response, Sk, k = 1, ...T , in the linear models,

Sk = Zξk + Uk, (5.9)

where ξk is a parameter vector, Uk is an error matrix, and Z is a design

matrix with covariates,

[
1, x, y, z, e, s, (x ∗ y), (x ∗ z), (y ∗ z), (e ∗ s), x2, y2, e2

]
,

where x, y and z are the voxel co-ordinates, e is the event number and

s is a binary variable indicating whether the volunteer pressed the button

once (s = 0) or five times (s = 1). Exploratory data analysis showed

the assumption of isotropic variability in the model seemed false, so we

transform the response and the covariates using the maximum likelihood

estimate of ΣE from the PC scores and weight the voxels by their values

of p̃i. The model parameters were tested for significance using a two-sided

student-t test at the 0.01 significance level. This was repeated for each PC.

5.7 Results

The EM algorithm described above was run until the change in parameter

estimates between successive iterations fell below a specified tolerance of

0.001. Figure 5.5 shows the mean response, βµ, and the effect of the first

five principal components of ΣT on the mean, βµ ± λ
1/2
i γi, where β = 10

and λi, γi are the ith eigenvalue and eigenvector of ΣT . Likewise, Figure

5.6 shows the first five principal component loadings of ΣE . The loadings

do not display much structure, however maximum likelihood estimation of

ΣE shows a significant increase in the likelihood compared to ΣE = IE .

The voxels where βi is significantly greater than zero are highlighted on
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Figure 5.5: The first plot shows the percentage of variability in each
principal component of ΣT . The remainder show the mean response
plus(dash/dot)/minus(dash) the first five principal components of ΣT .
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Figure 5.6: The first plot shows the percentage of variability in each princi-
pal component of ΣE . The remainder show the first five principal component
loadings of ΣE .
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the activation map in Figure 5.7. Cluster analysis of the voxel co-ordinates

revealed two large group of voxels concentrated on slices eight to ten around

(x = 30, y = 20) and (x = 60, y = 50). Interestingly, the former is similar to

the area of activation detected using the existing methods of analysis pre-

sented in Section 5.8. Note that head movement during scanning has caused

part of the image in slice 12 to not be consistently recorded throughout the

experiment and consequently this portion of the image is masked during

analysis.

Figure 5.5 shows that the first three principal components of ΣT explain

much more variability than the others. Consequently, linear models with

spatial and temporal covariates, were fitted to each of the first three PC

scores in turn, see Equation (5.9). Figure 5.8 shows the PC1 scores chang-

ing through time. It also shows the fitted function from the linear model,

evaluated through time and space. Voxels with a low PC1 score show a

much earlier rise in the response and a slightly later decay. PC2 accounts

for the width of the response, with low scores corresponding to a longer pe-

riod of activation. Voxels with a high PC3 score have a much later peak and

a stronger response. Tables 5.2 to 5.4 show that these principal components

change significantly with time and type of event, but less so spatially.
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Figure 5.7: The locations of active voxels in the motor cortex.
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Figure 5.8: Raw and fitted PC 1 scores from the linear model in Equation
(5.9). The response in odd numbered events was a single button press and
even numbered events required multiple button presses.
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Covariate Parameter S.E. T-value p-value
1 6.0160 0.5867 10.2543 0.0000
x -0.0416 0.0290 -1.4317 0.1522
y 0.1065 0.0332 3.2035 0.0014
z 0.0420 0.0739 0.5676 0.5703
e -2.3745 0.1070 -22.1840 0.0000
s -3.4478 0.3587 -9.6131 0.0000

x ∗ y -0.0019 0.0007 -2.5603 0.0105
x ∗ z 0.0047 0.0048 0.9776 0.3283
y ∗ z -0.0119 0.0046 -2.5987 0.0094
e ∗ s -0.0664 0.0662 -1.0030 0.3158
x2 0.0010 0.0005 1.9615 0.0498
y2 0.0008 0.0006 1.2421 0.2142
e2 0.2222 0.0107 20.7177 0.0000

Table 5.2: t-test of parameters in the linear model with response PC score
1.

Covariate Parameter S.E. T-value p-value
1 -3.1716 0.6115 -5.1863 0.0000
x -0.1083 0.0303 -3.5747 0.0004
y 0.0626 0.0347 1.8049 0.0711
z 0.1840 0.0772 2.3841 0.0171
e 0.9576 0.1165 8.2196 0.0000
s -2.0552 0.2828 -7.2680 0.0000

x ∗ y -0.0036 0.0008 -4.5581 0.0000
x ∗ z 0.0106 0.0050 2.1176 0.0342
y ∗ z 0.0028 0.0048 0.5908 0.5547
e ∗ s 0.5633 0.0480 11.7301 0.0000
x2 0.0030 0.0005 5.6534 0.0000
y2 0.0029 0.0007 4.3566 0.0000
e2 -0.1282 0.0120 -10.6905 0.0000

Table 5.3: t-test of parameters in the linear model with response PC score
2.
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Covariate Parameter S.E. T-value p-value
1 -2.7932 0.5537 -5.0449 0.0000
x 0.0456 0.0276 1.6500 0.0989
y 0.0203 0.0316 0.6425 0.5206
z 0.2644 0.0703 3.7583 0.0002
e -0.3918 0.0965 -4.0591 0.0000
s 4.4343 0.2880 15.3948 0.0000

x ∗ y -0.0028 0.0007 -3.9251 0.0001
x ∗ z -0.0144 0.0046 -3.1557 0.0016
y ∗ z 0.0040 0.0044 0.9125 0.3615
e ∗ s 0.0550 0.0473 1.1618 0.2453
x2 0.0007 0.0005 1.5143 0.1300
y2 0.0026 0.0006 4.3140 0.0000
e2 0.0206 0.0091 2.2558 0.0241

Table 5.4: t-test of parameters in the linear model with response PC score
3.

Changes in haemodynamic response for a particular cluster can also be

seen through plotting the fitted values,

Ŷij = β̄µ+

T∑

k=1

ŝijkγk, (5.10)

where ŝijk are the fitted PC scores from the linear models in Equation (5.9),

and β̄ is the mean value of βi for the voxels in the cluster. Figures 5.9 show

that the response is much stronger and peaks later with a larger undershoot

in trials where the volunteer presses the button multiple times. In the one-

press trials the response is largest in the middle of the experiment. In both

cases the strength of the response tails off towards the end of the experiment,

and the undershoot is largest towards the middle of the experiment.
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Figure 5.9: The fitted haemodynamic response for a particular cluster from
Equation (5.10) for one-press trials (top) and five-press trials (bottom).
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5.8 Current methods of analysis

We analyse the data using two current statistical software packages for com-

parison. The first is MELODIC, developed by Beckmann and Smith (2004).

This uses probabilistic independent components analysis (ICA) to split the

data into signal and noise. The raw data is first preprocessed by removing

non-brain voxels, standardising the mean and variance of voxel-values at

each location, and then projecting the data into a 36-dimensional subspace

by probabilistic principal components analysis. ICA then decomposes the

time-courses by optimising for non-Gaussian spatial source distributions

(Hyvarinen et al., 2001). We distinguish signal from noise by searching

the 36 time-courses for those with a frequency near the reciprocal of the

inter-stimuli interval, i.e. 1/28.25 = 0.0354 Hz. The time-course, frequency

distribution and spatial IC map for component 13 are shown in Figure 5.10.

The highlighted regions are in the motor and somatosensory cortex, re-

sponsible for movement and sensing touch, respectively, where neurologists

would expect activation.

The second software package, SPM2, fits a linear model at each voxel,

with a design matrix composed of covariate information and a basis function

of a typical haemodynamic response (Friston et al., 1995e). The data and

design matrix are preprocessed as described in Section 5.2 but with conven-

tional slice-timing. A student-t test of the parameter corresponding to the

haemodynamic basis function shows which voxels have significant non-zero

activity. The active voxels are shown in yellow in Figure 5.11. Note the

bottom-right image from the SPM2 output corresponds to slice 10 of the

MELODIC output in Figure 5.10 but with the x-axis flipped in orientation.

MELODIC’s activation map is much smoother than SPM2’s but both show

similar regions of activation, particularly between where the cross-hairs are

located and the surface of the brain.

Alternative approaches to analysing fMRI data have also been proposed.

Friston et al. (1995b) suggests a multivariate approach, treating each scan
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Figure 5.10: The time-course, with its frequency and spatial map, of com-
ponent 13. Red areas indicate locations where this signal is present. The
spatial map is plotted on slices 1-7 (top row) and slices 8-12 (bottom row).
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Figure 5.11: Highlighted voxels have significant non-zero activity under
SPM2’s model with a p-value below 0.001.
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as a single observation, rather than the mass univariate approach of SPM2.

While this method has advantages in modelling the temporal aspects of the

haemodynamic response, its inability to make inferences about regional ef-

fects has meant it has not found favour in the neuro-imaging community.

Friston et al. (1995c) uses two basis functions in the linear model to dis-

criminate between early and late responses. This is an improvement over

the usual SPM2 model when the form of the haemodynamic response is

unknown. However, even more basis functions would be required to fully

model the response, generating a larger number of possible contrasts and

making physiological interpretation harder. Josephs et al. (1997) take this

approach, employing multiple basis functions taken from terms of a Fourier

series. Examination of the resulting F-statistic at each voxel tests whether

the variance explained by the effects of interest is zero or not.

5.9 Discussion

In this chapter we have developed a statistical model for analysing single

trial variability in fMRI data. The chosen model produced a significantly

higher likelihood than other simpler models, see Table 5.1, including those

implemented by software packages currently available. The model indicates

areas of the brain active in performing the task of pressing a button, which

concur with other methods of analysis, but the interpretation of results

seems clearer here. In addition, the model gives us a maximum likelihood

estimate of the variability in button presses within and between events. The

three main sources of variation, displayed through principal components

analysis, were found to be the timing of the initial rise in response, the

length of the response and the strength of the peak. It remains unclear,

however, if the variation is caused by changes in neuronal processes or by

natural variation in the reaction time of the volunteer and the strength of

the button press. The amount of noise in the data could be reduced with the

inclusion of physiological data as covariates but this data was unavailable
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for the experimental results presented here.

Importantly, through examining the PC scores, we are able to show how

the response changes with the task and through time and demonstrate that

these changes are statistically significant. The shape of the estimated mean

response is similar to that of prior studies but displays a greater undershoot

than previously reported, particularly when the peak is stronger and wider

in the cases where the volunteer presses the button multiple times.

The methods and results given in this chapter obviously pertain to one

experiment carried out with one volunteer. It would be interesting in further

work to apply the model and methodology to other volunteers, or repeat it

with the same volunteer, to examine if the sources of trial variability found

in this study are common to all subjects or experiment repetitions. If this

proves to be the case, it will greatly enhance the ability for neurologists

to reach conclusions on voxel activation where a traditional repeated trial

experiment paradigm is either impossible to conduct or impractical with

the resources available.

Further work is also required to produce accessible software that will

allow potential users to implement quickly and accurately the methodology

presented in this chapter. Software packages such as SPM2 or MELODIC

appeal to researchers because of their flexibility and robustness in working

with different data sets, and their use has become widespread in the neuro-

imaging community. We wish to develop a similar software toolbox for use

in single-trial variability studies that will deliver clear results to the user

and facilitate easier interpretation.
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Chapter 6

Conclusions and further work

6.1 Summary and Discussion

In this chapter we give the main findings and suggest possible extensions

to the research presented in this thesis. Our objectives have been to reduce

the error in shape registration and provide suitable models for the statisti-

cal shape analysis of symmetry and function in brain imaging data. This

has required the generalisation and application of some existing statistical

techniques, as well as suggesting novel methodology. In particular we have

drawn heavily upon the concepts of shape analysis, Procrustes analysis and

principal components analysis and carefully considered their application to

high-dimensional data sets of the human brain, which possesses an intricate

shape. The non-isotropic nature of the variability has frequently required

the application of models with a large number of parameters, and tech-

niques such as the EM algorithm and Markov chain Monte Carlo (MCMC)

simulation have been used to estimate parameter values.

In Chapter 2 we discussed Procrustes shape registration using a known

weighting matrix. Particular consideration was given to the special case

where only a subset of landmarks were registered using isotropic Procrustes

analysis. We derived expressions for the distribution of the Euclidean dis-
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tance between the object and both a true template and an alternative tem-

plate, which quantify theoretically the efficiency of the subset-matching es-

timator and examine its variance. In the more general weighted Procrustes

case, we provide estimates of the scaling, rotation and translation that min-

imise the Mahalanobis distance between two or more configurations in the

presence of both full and partial registrations. These estimators are shown

to be identical to isotropic Procrustes estimators if the weighting matrix is

proportional to the identity matrix. The variability in typical data sets is

often far greater than any bias in the estimators.

In Chapter 3 we extended weighted Procrustes analysis to include es-

timation of an unknown shape covariance matrix which could be used to

weight the registration. Both conditional maximum likelihood and MCMC

algorithms were suggested for parameter estimation and a simulation study

showed their ability to reduce the error in covariance matrix estimation

compared to isotropic Procrustes. In the maximum likelihood case, consid-

eration was given to the parameterisation of the covariance matrix and con-

straints were applied to avoid singularities by projecting the covariance ma-

trix into the subspace orthogonal to the constraint vectors. In the MCMC

case, the method was extended to cope with missing data through simulat-

ing the co-ordinates of missing landmarks as a step in the algorithm. Both

the conditional maximum likelihood and MCMC algorithms are dependent

on prior information but the MCMC method is more robust to weak or

inaccurate prior information.

In Chapter 4 we applied statistical shape analysis to a data set of

magnetic resonance imaging (MRI) brain scans consisting of controls and

schizophrenia patients. In order to preserve shape information, maximum

likelihood and Bayesian algorithms were developed to provide rigid-body

registrations of each scan to a co-ordinate system based on Talairach space.

The posterior distribution was found to be tightly concentrated around the

maximum a posteriori estimate, so a simple grid search of parameter values

to maximise the likelihood was chosen for speed of computation. Follow-
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ing registration, a labelling was suggested that enabled the symmetry of

the two groups to be investigated. Principal components analysis revealed

more torque in the control group. A novel analysis of the inter-hemispherical

join’s location revealed the join to be further to the left in the patient group

in the anterior region of the brain. There was some evidence that this pro-

vided an explanation for the observed asymmetry. The symmetry analysis

was compared to voxel-based morphometry (VBM) analysis and the two

methods were found to be complementary in locating large-scale and small-

scale shape differences respectively.

In Chapter 5 we analysed brain activity using functional MRI scans.

This required modelling voxel values with spatially and temporally depen-

dent errors. Current model-driven methods using linear models with a pri-

ori response functions were generalised so that the response’s form could be

estimated. In addition, voxel values were modelled as a mixture of active

and inactive components, thus covariance matrices could be estimated using

active voxels alone. Modifications to image pre-processing and improved es-

timation of the error structure enabled single-trial variability to be analysed

through principal component scores. The timing, length and strength of the

response were shown to change through the sequence of consecutive trials,

as well as being dependent on the task carried out in each trial. Reassur-

ingly, the voxels that displayed significant activation were also shown to be

active using two current software programs.

The research presented in this thesis has made significant progress in

achieving our objectives. However, there remains plenty of potential for

improving the analysis of shapes and brain imaging data, and we discuss

some of these issues in Section 6.2.

6.2 Future work

The research presented in this thesis raises several questions which remain

potential areas of future study. Firstly, the work relating to covariance-
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weighted Procrustes analysis produces estimators of the mean shape, shape

covariance and transformation parameters. Theoretical properties such as

consistency will need to be investigated. This is a non-trivial problem be-

cause the estimates are obtained using a recursive algorithm.

Walker (2000) investigated the ability of morphometric methods to es-

timate covariance matrices with respect to factors such as the number of

landmarks, the magnitude of variation, the proportion of landmarks with

excessive variance compared to others and the magnitude of correlation. A

similar analysis could be conducted using isotropic and covariance-weighted

Procrustes analysis to gain a better understanding of the conditions that

cause the latter to produce improved estimates of shape variability.

In Chapter 3 we extended the MCMC simulation to include the esti-

mation of missing landmarks. The same objective could be achieved using

maximum likelihood methods through an expectation-maximisation (EM)

algorithm. The data could be augmented with latent data representing the

location of the missing landmarks. It would then be possible to use the pa-

rameter estimates given in Chapter 3 to maximise the complete likelihood

using the expected values of the landmark locations.

Further, covariance weighted Procrustes analysis could also be applied

to data sets with unlabelled landmarks. Dryden et al. (2006) consider us-

ing isotropic Procrustes in conjunction with a match matrix that assigns

labels to landmarks to register molecules. The match matrix is updated

using an MCMC algorithm to determine possible labellings. Instead of

using isotropic Procrustes, a constrained maximum likelihood estimate of

the shape variability, as given in Chapter 3, could be used to weight the

Procrustes registration for a particular labelling. Assuming the labelling

is known, Figure 6.1 shows the isotropic Procrustes registration of several

molecules, each consisting of 17 atoms arranged in four rings. A larger

data set also includes molecules that have less than 17 atoms. Figure 6.2

shows the registration of these molecules using our hybrid MCMC algo-

rithm, where some atom locations are simulated. The complete data set
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consists of 31 molecules, each possessing up to 61 different atoms. It re-

mains to be seen whether a good registration is possible with the complete

data set of 61 atom locations and an unknown labelling.
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Figure 6.1: The location of 17 atoms registered using isotropic Procrustes.

The brain registration algorithm presented in Chapter 4 is reliant on the

Brain Extraction Tool (BET) software correctly masking the non-brain vox-

els which is dependent on the choice of a tuning parameter. An alternative

method is to use the Statistical Parametric Mapping 2 (SPM2) software to

estimate a non-linear transformation of each image to a standard template,

and then invert the transformation to map the mask corresponding to the

template back to the image. Theoretically this possibility is potentially

more robust and requires further investigation. Indeed, in further work we

could also consider extending the Bayesian registration method to incor-

porate the estimation of many of the parameters currently used in image
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Figure 6.2: The location of 17 atoms registered using the hybrid MCMC al-
gorithm with missing landmarks. The lines show the molecules with missing
atoms.
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preprocessing and modelling, such as the mask, weights and distances that

define regions of interest. This would reduce the number of assumptions

necessary, increasing the flexibility of the model and reduce the influence of

parameters chosen a priori.

With respect to brain image registration we considered a single data set

with all images obtained from one scanner. This is conventional practice to

negate any confounding factors caused by the scanner. However, the ability

to register scans of other types or modalities through the identification

of the midplane and the anterior and posterior commissures is currently

untested. Ashburner and Friston (1997) approach this problem through

defining a template in each modality and estimating the transformation that

maps each template to Talairach space. Our method provides a rigid-body

registration directly to Talairach space without the need for a template, but

training data would be required for each modality.

In Chapter 4 we considered a data set consisting of controls and pa-

tients with schizophrenia. Obviously, the registration and symmetry analy-

sis could be applied to patients of other brain disorders, such as Alzheimer’s

disease, semantic dementia or lesions, which potentially influence the shape

of the cortical surface. Gitelman et al. (2001) applies voxel based mor-

phometry (VBM) to individuals who have recovered from herpes simplex

encephalitis (HSE) and consequently have severely distorted brain shape.

VBM encountered problems with its normalisation step due to the abnor-

malities and was forced to use the skull as well as the brain to produce a

sensible registration. Our method is heavily dependent on the symmetry of

the midplane and it is conceivable that it would encounter similar problems

if a disease caused an asymmetric distortion to the shape of the ventricles.

Any future application might require a masking of an affected brain region

during registration.

The registration also included the identification of the anterior and pos-

terior commissure using training data. The same method could be applied

to other brain landmarks, to produce three dimensional co-ordinates of brain
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features. A more conventional shape analysis could then be applied, possibly

using covariance-weighted Procrustes, to discriminate between two or more

patient groups. Unfortunately, the brain does not contain many landmarks

that are clearly defined.

The study of single-trial variability is still in its infancy due to the limited

availability of new technology required to improve the signal-to-noise ratio

in functional MRI data. Our study has been handicapped by the limited

data and further work is required to evaluate the model using more subjects

to see if similar results are obtained. The errors could also be reduced

if physiological data, such as pulse and respiration, could be included as

covariates as these influence the natural oxygen levels in the blood.

A future experiment might focus on the somatosensory cortex that re-

sponds when a probe applies pressure to an area of skin, such as the tip of

the index finger. This paradigm would help to remove variation caused by

the volunteer’s reaction time and the force used to press the button by min-

imising subject variability. The lag between the stimulus and the response

would be more consistent and the pressure of the probe could be a carefully

controlled variable. It would also be easier to compare responses between

subjects.

Although the model proposed in Chapter 5 allows for variability between

trials and can display spatially and temporally correlated trends in the

principal components, we currently only display a single activation map. A

more useful tool might show significant PC scores, providing a spatial map of

voxels at each trial with, for example, an early peak in the response. A late

response might be indicative of a draining vein rather than true neuronal

activity. Further, while the mixture model produces separate estimates

of variability for active and inactive voxels, the resulting statistical tests

could be strengthened if the estimated variability is adjusted for each voxel,

perhaps via an additional scalar parameter. Future research in this area

could consider the fitting of a more complicated model.

The areas of activation identified with our model are slightly larger than
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those shown by SPM2. This is probably due to SPM2 using Gaussian

random fields to account for spatial correlation in the data. Incorporating

random fields into the analysis would base the tests on the probability of

obtaining c or more clusters with v or more voxels above a threshold. It

could be used to reduce the probability of deeming voxels active in isolation

and make our analysis more consistent with SPM2.

Functional MRI analysis is also limited by the poor temporal resolu-

tion of, typically, 2 seconds between scans. Electroencephalogram (EEG)

data has much better temporal resolution, but poorer spatial resolution. It

also does not require activation to be measured via the blood oxygen level

which reacts much slower than the electrical signals. The concept of com-

bining EEG and functional MRI scanning presents new challenges to both

technology and statistical analysis but might provide the key to a better

understanding of single-trial variability, given that neuronal firing occurs

on a very small temporal and spatial scale.

The experiment paradigm considered in Chapter 5 consisted of a very

simple task measured in the motor cortex. Individual brain regions, such

as the motor cortex, are fairly well understood in isolation. The more com-

plicated and realistic challenge is to understand the connectivity between

brain regions in order to gain insight into the brain’s decision-making pro-

cesses. For example, the current experiment paradigm probably involves

the visual cortex receiving the stimulus and a thought process in the frontal

lobe before the motor cortex gives the response. We might expect the con-

tribution of the frontal lobe to reduce during the experiment as the brain

“remembers” the previous response. However, testing this hypothesis will

require a more complicated model beyond the scope of the current study.

All of the research presented in this thesis has been conducted using

functions written for the R (R Development Core Team, 2005) and Matlab

(MathWorks, Natick, MA, USA) software programs for personal use. It

would be a useful development for future studies to make the code available

to applied researchers through a library or toolbox of functions, and this
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will be one of the first tasks to undertake in further work. The benefit of

producing free and intuitive software can be seen by the wealth of references

in the literature to SPM2 and papers written by its authors. The distri-

bution of our source code, combined with a graphical user interface, would

aid the research of others and make it easier for researchers to adopt the

techniques proposed in this thesis.
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