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Abstract

How genetic mutations such as Single Nucleotide Polymorphisms (SNPs) affect the risk

of contracting a specific disease is still an open question for numerous different medical

conditions. Two problems related to SNPs analysis are (i) the selection of computational

techniques to discover possible single and multiple SNP associations; and (ii) the size of

the latest datasets, which may contain millions of SNPs.

In order to find associations between SNPs and diseases, two popular techniques are

investigated and enhanced. Firstly, the ‘Transmission Disequilibrium Test’ for family-

based analysis is considered. The fixed length of haplotypes provided by this approach

represents a possible limit to the quality of the obtained results. For this reason, an adap-

tation is proposed to select the minimum number of SNPs that are responsible for disease

predisposition. Secondly, decision tree algorithms for case-control analysis in situations

of unrelated individuals are considered. The application of a single tool may lead to lim-

ited analysis of the genetic association to a specific condition. Thus, a novel consensus

approach is proposed exploiting the strengths of three different algorithms, ADTree, C4.5

and Id3. Results obtained suggest the new approach achieves improved performance.

The recent explosive growth in size of current SNPs databases has highlighted limi-

tations in current techniques. An example is ‘Linkage Disequilibrium’ which identifies

redundancy in multiple SNPs. Despite the high accuracies obtained by this method, it

exhibits poor scalability for large datasets, which severely impacts on its performance.

Therefore, a new fast scalable tool based on ‘Linkage Disequilibrium’ is developed to

reduce the size through the measurement and elimination of redundancy between SNPs

included in the initial dataset. Experimental evidence validates the potentially improved

performance of the new method.
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Chapter 1

Introduction

1.1 Background and Motivation

In April 2003, the Human Genome Project (HGP), a 13-year project coordinated by the

U.S. Department of Energy and the National Institute of Health was completed.

During the early years of the HGP, the Wellcome Trust (U.K.) became a major part-

ner together with additional contributions coming from Japan, France, Germany, China,

among others. The main goals of this project were to identify all the genes in human DNA,

determine the sequences of the chemical base pairs that constitute human DNA, store this

information in databases and improve tools for data analysis. Following the scientific

milestones of enormous proportions achieved by this world class research, many years

will be spent in the analysis of these data, fostering the development of more competitive

biotechnology systems and novel analysis tools for new medical applications.

Under this scenario, Bioinformatics, the application of information technology to the

field of molecular biology, is established as one of the most challenging disciplines in

medical studies. Since the late 1980s, Bioinformatics has focused on genomics and ge-

netics, particularly in those areas of genomics involving large-scale DNA sequencing.

Nowadays its role concerns the creation and maintenance of databases, development of

algorithms, computational and statistical techniques, and theories to address formal and

practical problems arising from the management and analysis of biological data. Major

research efforts in the field include sequence alignment, gene finding, genome assembly,

protein structure alignment, protein structure prediction, prediction of gene expression

1
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and protein-protein interactions, genome-wide association studies and the modelling of

evolution. The development and implementation of tools that enable efficient manage-

ment and access to various types of information is therefore strictly related to this disci-

pline. Along with these issues, a relevant point is the development of new algorithms and

statistics. Such systems have the ability to assess relationships among members of large

data sets, such as methods to locate a gene within a sequence, predict protein structures

and functions, and cluster protein sequences into families of related sequences.

In general terms, the completion of human genome sequencing has opened up a long

list of challenging problems to be resolved by the research community. Specifically, one

challenge is how genetic mutations are responsible for a specific disease. The biological

data must be combined to form a comprehensive picture of cellular activities in order to

understand how a normal biological function can be altered in different disease states.

Therefore, in this specific application, the most pressing task for Bioinformatics now

involves the analysis and interpretation of various types of data. This includes nucleotide

and amino acid sequences, protein domains and protein structures. The actual process of

analysing and interpreting data is referred to as Computational Biology.

Undoubtedly one of the most important threats to human health are genetic diseases.

Such diseases are defined as a disorder caused by genetic factors, in particular abnor-

malities along the DNA chain. There are numerous different types of genetic disorders.

Some of these changes in genome can cause specific advantages in certain environments

(Darwinian Fitness) but many create abnormalities that result in destructive effects for a

living being. In a single gene disorder the starting point is a mutation/change in one gene.

Genes encode the proteins which are some of the most important functional components

in living beings and which play a role in the structure of cells. The results of a mutation

which occurs in the functional part of a gene that encodes a protein can create relevant

problems. The protein is no longer functional and can result in severe consequences for

the individual. Almost 6000 single gene disorders are known currently and it is estimated

that 1 in 200 newborns face a genetic disorder related to a single gene. These disorders

include sickle cell anaemia, cystic fibrosis, Aicardi Syndrome and Huntington’s disease.

Another class of human genetic diseases are caused by mutations in more than one gene.

The appearance of a disease can also be shown by environmental factors which combine
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with mutations. It is clear that polygenic disorders are much more complicated than the

single gene disorders. These abnormalities are also difficult to analyse as there are nu-

merous factors that researchers should take into consideration in order to reach useful

conclusions. Many well known chronic diseases are in fact multi-factorial genetic dis-

eases including Alzheimer’s disease, diabetes, obesity, arthritis and numerous types of

cancer.

The issue of genetic disorders can be viewed in two different ways. In embryonic

development and in infancy the alteration of the DNA chain can cause congenital mal-

formations. Alternatively, different mutations can affect the individual’s susceptibility

to contracting a disease. Some information contained in the DNA chain may not result

in an evident disease but just in the predisposition to be more likely than the rest of the

population to develop a disorder, which may occur later in life.

The genetic alterations responsible for human disorders can be cataloged under dif-

ferent rules of classification. In this context the occurrence frequency is the key rule of

partitioning. In particular, the specific genetic marker under analysis in this Thesis is the

Single Nucleotide Polymorphism (SNP). This is a genetic change of a single nucleotide

along the DNA chain that happens once every 100 to 300 bases. This type of mutation is

already known to be responsible for an increased risk of contracting various diseases.

In this research, numerous considerations are illustrated which may be applied to a

wide generic context. The new methodologies proposed are originally developed for and

repeatedly tested on datasets related to the specific disease of Pre-eclampsia. This is a

condition in pregnancy and in the post-partum period which affects both mothers and their

babies. It manifests itself with different degrees of severity which can lead to different

consequences for the mother and babies. While a percentage of cases can result in a

stillbirth, one of the most common results is a pre-term delivery with underweight babies.

Babies born in this manner are predisposed to experience various disorders later in life.

Currently there are numerous tools used to approach genetic data analysis. This work

is focused on two of the main problems affecting the related research community in the

effort to extract as much information as possible from human DNA.

The first problem is related to the presence of the so called ‘linkage disequilibrium’

between genetic markers. This hidden relationship is responsible for the co-inheritance
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of genetic markers and phenotypes in families over several generations. In simpler terms,

this phenomenon explains (for instance) how the presence of a specific phenotype such as

colour of the skin can be linked to other different phenotypes such as the shape of eyes,

body size, or hair type and colour. Unfortunately, a proportion of the genetic information

involved in this complex linkage is not clearly evident in discernible phenotypes. In some

cases, a noticeable feature is linked to a hidden condition attributed to the linkage between

their genetic markers. In other cases, the two linked markers do not reflect any evident

feature but are still responsible for a condition or for a disease predisposition.

Researchers in the field of genetics are focused on resolving this issue through detect-

ing groups of genetic markers which are linked together. Determining these would help

to decrease the size of the datasets under analysis as lots of genetic information could

be predicted by a single marker which would link them together. Under this scenario

many solutions have been proposed in the literature, covering a large number of different

hypotheses. One of the most common tools used for such purposes is the ‘Linkage Dise-

quilibrium’ (LD) function, which has been implemented in different software languages.

This function is based on the measure of the correlation coefficient between different pairs

of SNPs. The typical genetic dataset is represented by a matrix composed by the attributes

in columns and patients in rows. The attributes in turn consist of genetic information such

as SNPs and other medical information such as clinical variables. The latest achievements

in the realisation of SNP-chip technologies highlight the large amount of genetic markers

that can now be analysed in a single dataset. This has reached a size of more than 1.2

million SNPs [5]. Considering a matrix composed of this many attributes, the application

of the current LD function requires the measurement of the square correlation coefficient

for every possible combination of two SNPs, taken from a set of 1.2 million. This re-

sults in a number of operations exceeding 1012. Such computational complexity cannot

be faced with most of the current machines used for these purposes. These limitations

represent the starting point for the development of this work. A new solution is proposed

to overcome this problem, based upon the current LD technique. An improved use of this

tool is therefore presented and discussed. Several experiments have been carried out and

discussed in this Thesis in order to motivate the final structure of the novel methodology

proposed for redundancy reduction.
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Conversely, the second important problem faced by data-miners in genetic analysis is

the association between genetic markers and diseases. This time the link is not between

DNA molecules but rather between genome mutations and diseases. Attention is focused

on selecting a small number of SNPs from the initial dataset which can be proved to be

responsible either for the presence of a disease or for an increased risk of disease. Also

for these issues many solutions can be found in the literature, spanning the most common

scenarios. In this research, two of these techniques are examined to identify possible

improvements. These approaches are shown in two separate research studies applied to a

relatively small sized dataset. Each of these studies is based upon a different method of

analysis.

The first one is a family-based approach, called the ‘Transmission Disequilibrium

Test’, which requires the provision of an accordingly structured database. One of the

possible solutions, proposed in the literature for the implementation of this technique, is

software called TRANSMIT. The input data consists of a population of families, contain-

ing the offspring together with the parents. In this work, experimental research is carried

out upon the application of this tool to a relatively small dataset in order to highlight the

pitfalls of the method. The string of SNPs analysed by this method is composed of a fixed

number genetic markers. However the actual number of SNPs directly involved in an in-

crease of disease risk may result in a subset of this haplotype. This represents a limitation

for the current solution as irrelevant SNPs could be brought forward for further analysis,

affecting the performance and the quality of results. This pitfall has provided motivation

for the subsequent development of a new approach for the TRANSMIT software. This

solution is discussed and the improvements in its performance validated through experi-

mental results.

The second method of analysis is the case-control study and is applied to a population

of independent individuals. The Decision Tree technique is a method used commonly by

the genetic community and therefore is investigated in this Thesis. In particular, attention

is focused on three different algorithms commonly used for analysis of this nature. As

per the previous technique, the advantages and disadvantages of these solutions are high-

lighted and discussed in detail in an attempt to provide researchers with a novel improved

proposal for future association studies. This is realised through a combined analysis of
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the three algorithms under scrutiny to overcome the limitations that each single technique

may yield. Three different steps form the structure of the proposed approach: the pre-

processing of the data, the statistical assessment of the results and the results analysis.

The pre-processing stage covers major issues such as missing values, balancing of the

dataset and choice of the predictable variable. The proper analysis is carried out by a

comparison of three different solutions in the decision tree range, ADTree, ID3 and C4.5.

A statistical analysis on the significance of the results obtained from these three different

options is the relevant tool for making the final decision. In particular, the experiments

performed in this context are based on a continuous variable as the outcome choice. This

requires a further detailed analysis of different options for converting the outcome variable

to a Boolean variable by setting different thresholds.

1.2 Aims of this Thesis

Different methods are available for the analysis of SNPs data associated with the proba-

bility to contract a disease. Each one is based on different strategies, algorithms or data

structures. Nevertheless, there are still numerous limitations and pitfalls that every tech-

nique presents in a specific angle of the problem.

The first key aim of this work is the effective disease association analysis performed

with the Transmission Disequilibrium Test(TDT) for family based studies and the Deci-

sion Tree approach for case-control analysis. Different experiments are performed with

these two techniques to highlight their drawbacks, together with an analysis of their cur-

rent state of art. The new idea which inspired the realisation of the second component

of this research is based on the exploitation of the positive aspects of two different tech-

niques which are usually employed for this type of analysis. These approaches are based

on different statistical methods and databases features. The TRANSMIT software, em-

ployed for a TDT analysis can only work with a fixed length of haplotype, affecting the

quality of the final results. Alternatively, the single application of a decision tree al-

gorithm provides a limited analysis of a more complex and articulated problem. These

hypotheses have arisen the motivation for realising possible solutions able to overcome

the specified limitations, leading to the realisation for both methods of an alternative way
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of use, finalised to optimise their performance. Both the solutions proposed for optimisa-

tion of the current techniques are based in the assumption that duplicate have been SNPs

removed beforehand.

Current techniques to detect and remove redundancies, which achieve a good accuracy

of results, are both too slow and have an high computational complexity. Thus these

techniques are not widely usable or affordable. Hence, a problem exists when different

methods are combined, affecting the performance of the analysis due to the large size

of the available data. Thus, there is a need to reduce the size of databases, which is

continuously increasing as a result of improved technology for genetic applications. In

this manner, it is possible to contain the computational complexity of the analysis required

for current state of the art research. Reduction of the size of a large dataset can be achieved

by the elimination of attributes of the initial dataset, representing the columns in an input

matrix. In this specific study, these attributes consist of SNPs data. Irrelevant SNPs need

to be selected and deleted from the dataset as this can impede the final results. Under

this hypothesis, the second aim of this work is to improve the currently used techniques

for detecting redundant SNPs (LD function) in order to select a small number of SNPs

that can represent the rest of the original set, with a high accuracy and low computational

complexity.

In conclusion the following objectives of the thesis were identified:

(1) Improving the existing software for disease association study (for family and popu-

lation based datasets) in order to rapidly identify the relevant SNPs, after the elimi-

nation of redundant SNPs.

(2) Developing a new fast scalable tool able to approximate the LD function outcome.

(3) Combining the two previous points, realisation of novel guidelines for genetic data

analysis, able to fulfil the current demanding requirements of increasing database

sizes.
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1.3 Organisation of the Thesis

Following this Introduction, Chapter 2 covers a wide range of the problems faced in this

area of research. In order to give a basic support to the readers for a better understand-

ing of the subjects presented, a number of definitions and notions are reported from the

literature in the medical, genetic and computer science fields. Furthermore, the different

methods of analysis commonly used by the research community are also analysed and dis-

cussed in this Chapter. This is presented to build the foundations for a clearer discussion

of the novel methodologies that are proposed. This includes up-to-date tools, strategies

and software which have been recently published in the analysis of SNPs. Together with

the scientific aspects of the problem, a part of this Chapter addresses the state of the art

in knowledge regarding Pre-eclampsia which is the specific disease under examination

in this thesis. This is performed in order to give an overview of the actual achievements

relevant in the field.

Within disease association studies, the first method investigated is the family-base

analysis Transmission Disequilibrium Test (TDT), illustrated in Chapter 3. A general

overview of the method is followed by a description of the algorithm used for its im-

plementation, namely the TRANSMIT software. The original version of this tool is em-

ployed in a set of experiments that highlight the pitfalls. An advanced version of this tech-

nique is proposed and discussed through further experiments showing an improvement in

the results achieved. Whereas the original software analyses a fixed length of haplotype,

the new approach performs a separate test for different sequences of SNPs taken from the

original set for different sizes. Due to scalability constraints, this method is supposed to

be applied following an elimination of the SNPs not relevant for the analysis.

The second method examined for association studies is based on the case-control anal-

ysis as presented and discussed in Chapter 4. A framework methodology for SNP data

mining is illustrated and is centred around decision tree algorithms. A complete descrip-

tion is given of the main steps that the research process is expected to follow within the

exploration of a genetic dataset. Several experiments are also performed in order to high-

light strengths and limitations of this proposed technique.

The possibility to access a large variety of data is a vital component for any research

actualisation. As this is a main issue relevant to the scope of this Thesis, Chapter 5 is ded-
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icated to the creation of an application for generating artificial SNPs datasets for decision

tree analysis. This generic medical dataset is examined from a number of perspectives and

attention is specifically addressed to the genetic information of SNPs attributes. Different

parameters can be set for this application such as the number of patients in the database,

probability of occurrence of a certain allele, or a couple of alleles, and the amount of

SNPs under analysis. Additionally, the probability of contracting a disease for each ge-

netic marker present in the dataset or disease model can also be set in different ways.

Several experiments are performed in which the three decision tree algorithms studied

in this work (namely ADTree, ID3 and C4.5), are applied to identify their strengths and

limitations in this context.

Another major issue that is examined in this work is the detection of linkage disequi-

librium (LD) between SNPs. A detailed overview of the problem is given in Chapter 6.

The new idea described for improving the performance of the original LD function is fo-

cused on the reduction of the time and computational complexity that this kind of task

usually requires. Several experiments with real and artificial datasets have been carried

out with the aim of showing how different settings of the involved parameters provide

different qualities of results. In particular, experimental evidence demonstrates how im-

proved results can be obtained by setting the parameters to their best value and through

choosing the most functional techniques for clustering purposes.

The new methodology proposed in this Thesis is described and discussed in Chapter 7.

This is a technique built for providing researchers with a new tool helpful in the difficult

task of large SNPs databases analysis. As the source is genetic information, the problem

is decomposed into two different issues, namely the linkage disequilibrium detection be-

tween markers and the disease risk association with SNPs. The first aspect, expounded as

redundancy elimination is resolved with the proposal of the novel technique, called RD-

snp, for redundancy detection in SNPs datasets. The second problem is, in turn, divided in

two different contexts, dependent on the dataset format: the family based analysis and the

case control study. For both of these options a novel solution is proposed. This analytical

process is applied to the specific medical application of risk disease association with a

explicit reference to Pre-eclampsia disease.

The conclusive Chapter 8 completes the overview of this research. Discussion on
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the effectiveness and any possible improvement that this work can bring to this field of

study is presented. Further directions are also included which can be considered for the

stimulation of future research. Subsequent resulting aspects are highlighted which may

be interesting to pursue using extensive and additional analysis. These directions are

presented and discussed.



Chapter 2

Literature Review

2.1 Introduction

In this introductory chapter an overview of several concepts from different backgrounds is

given as, according to the scope of the project, this thesis is the result of multidisciplinary

work.

This Chapter is divided in four main sections. In the first section an overview of the

genetic and medical background is given in order to introduce the state of the art on the

disease Pre-eclampsia and highlight the reasons why further research is needed in this

field. The second section shows the two main methods of analysis for disease association

study, case-control and family based analysis. The current tools available in the literature,

which are used for these purposes are discussed, together with a critical assessment of

them, in order to highlight their weaknesses and hence to provide the motivations for

the improvements proposed in this work. The third section provides an overview of the

pressing problem of SNPs dataset size reduction. The various feature selection solutions

that can be found in the literature for the specific field of SNPs reduction are shown and

their pitfalls are highlighted. The motivation for the new proposed technique is therefore

provided. The final section gives an overview of the software tools used in this work.

11
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2.2 Glossary

In this section the relevant technical terms are listed with their respective meanings. All

uses of these words in the rest of Thesis are thus referred to these definitions [6].

• DNA: double-stranded macromolecule consisting of two chains running in opposite

directions and called deoxyribonucleic acid.

• Gene: small units of the DNA chain.

• Chromosome: genes units composed by pairs set of nucleotides.

• Nucleotide: the basic building block of nucleic acids, such as DNA and RNA.

• Somatic cells: all body cells of an organism, apart from the sperm and egg cells.

• Germ cell: the reproductive cells (sperm and egg cells) in multicellular organisms.

• Allele: one member of a pair of genes occupying a specific spot on a chromosome

that controls the same trait.

• Locus: the location of a gene (or of a significant sequence) on a chromosome, as in

genetic locus.

• Phase: the information that is needed to determine the two haplotypes that underlie

a multi-locus genotype within a chromosomal segment.

• Trait: an attribute of phenotype.

• Phenotype: a physical appearance or biochemical characteristic of an organism as

a result of the interaction of its genotype and the environment.

• Haplotype: the set of alleles on one chromosome.

• Homozygous: having two identical alleles that code for the same trait.

• Heterozygous: having dissimilar alleles that code for the same trait.

• Diploid: a cell or an organism consisting of two sets of chromosomes.
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• Haploid: a cell or an organism having half of the number of chromosomes in so-

matic cells.

• Gamete: a reproductive cell or sex cell that contains the haploid set of chromo-

somes.

• Autosome: any chromosome not considered as a sex chromosome, or not involved

in sex determination.

• Single Nucleotide Polymorphism (SNP): a mutation of a single base of DNA.

• Admixture: when two or more subpopulations inbreed, so that two randomly chosen

individuals in the population might have different degrees of genetic heritage from

the original subpopulations.

• Population Stratification: the presence in a population of distinct strata or groups

that show limited inbreeding.

• Linkage Disequilibrium: the occurrence of some genes together, more often than

would be expected by chance.

• Association: the occurrence together of two or more phenotypic characteristics

more often than would be expected by chance.

• Odds Ratio: measure of effect size, describing the strength of association or non-

independence between two binary data values.

• Type I error: when a null hypothesis is incorrectly rejected when it is in fact true

(also known as a false positive).

• Type II error: when a null hypothesis is not rejected despite being false (also known

as a false negative).

2.3 Genetic and Medical Background

Diseases and their possible association with the human genome are becoming one of the

most attractive topics for Medicine and Bioinformatics. Lots of research findings have
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highlighted the link between these two aspects but still lot of work needs to be done for

many of the both common and rare diseases.

2.3.1 Diseases and Genetics

The principles of inheritance, described by Mendel’s work in 1900 have been subse-

quently analyzed by genetic research groups which confirmed their universal significance

among plants and animals. Because of the discovery that genetic mechanisms were the

same in most organisms, at the beginning geneticists were particularly focused on little

animals such as mice and flies, due to their short life cycles, huge numbers of offspring,

easy genetic analysis and for being easily growing species. Their mutations were care-

fully analysed, characterised and mapped, making these specimens become the so-called

‘model organisms’ as used for studies of basic biological processes. Gradually scientists

added other species to their collection of organisms, such as viruses and microorganisms,

then plants and more complex animals. The subsequent development of DNA technology

and genome sequencing results confirmed that all life has common origin. In other terms,

genes from different organisms but with similar functions are very similar in structure and

DNA sequences. Thus, studying the genetic information of simple species brings a good

understanding of the human genome and a possible solution for developing new drugs for

treating human diseases.

The excitement and explosion of information generated by the genetic discoveries

from the beginning of the twentieth century up to the present has no competitive compar-

ison with any other scientific discipline, as the long list of Nobel Prizes confirms. In the

‘Age of Genetics’ all aspect of modern life are affected by the continuous discovery from

human DNA studies in medicine, agriculture, biotechnology, law, pharmaceutical indus-

try etc. Diagnosis and prediction of the course of a disease, detection of genetic defects

‘in utero’, disease resistant plants, more productive animals, paternity testing and murder

investigations are a few examples of applications.

Human genetic disorders are commonly associated with mutations that alter the codi-

fication of a gene, the number of chromosomes or the protein structures which affect the

delicate balance of gene expression. However, gene expression is a more complex process

which involves a number of sequential steps. Mutations, which may affect all the steps,
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Figure 2.1: Internal structure of the DNA chain. Credit: U.S. National Library of

Medicine

can result in genetic disorders. The work with model organisms thus has proven very use-

ful in revealing how genetic factor contribute to the phenotypes of complex diseases [7].

2.3.2 The Human Genome

All the biological information needed to build and maintain a living example of an organ-

ism is enclosed in a double-stranded macromolecule consisting of two chains running in

opposite directions, called deoxyribonucleic acid (DNA) [8]. DNA essentially encodes a

sequence of four types of nucleotides or nitrogenous bases, abbreviated as A (Adenine),

G (Guanine), T (Thymine) and C (Cytosine) [9]. These four bases in their different com-

binations specify most of the amino acid sequences of proteins.

The long chain of DNA is divided into smaller units better known as ‘genes’. Ac-

cording to the official Guidelines for Human Gene Nomenclature, a gene is defined as

‘a DNA segment that contributes to phenotype/function: in the absence of demonstrated

function a gene may be characterized by sequence, transcription or homology’. In simpler

terms, these are the basic biological units of heredity, a segment of nucleotides needed to

contribute to a function (Figure 2.2).
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Figure 2.2: Gene definition. Credit: U.S. National Library of Medicine

In April 2003, the sequencing of the human genome was finished but the exact num-

ber of genes encoded by the genome is still unknown. Different estimations have been

available from different institutions, research groups and studies, at different points in

time. They range from the first one amounting to 1000,000 revealed in October 1996 [10]

down to the most recent limited to 20,000-25,000 genes estimated by The International

Human Genome Sequencing Consortium, led in the United States by the National Human

Genome Research Institute (NHGRI) and the Department of Energy (DOE) in October

2004 [11]. It will still take some time before the real gene count will be discovered. All

the uncertainty and variety about the predicted number is due to different computational

methods and gene-finding programs. Some of them count genes from detection of their

beginning and ending, whereas other distinguish them by sequence comparison between

new and known segments. If the former tends to overestimate the gene number by count-

ing also segments that look like genes, the latter tends to underestimate the number as the

count is limited to a comparison of only known sequences. Beside this, small genes are

difficult to estimate, there are genes that code for several proteins, some only for RNA,

some overlap and so on. Before the real and final answer, intensive and extensive labora-

tory work will have to be carried out by the scientific community [12, 13].

Genes are arranged in precise units, each one composed by pairs set of nucleotides:

the chromosomes, see Figure 2.3. One chromosome in each pair comes from the mother

and the other from the father. The chromosomes in any particular pair look like each

other, except in the male gender. There is one pair of chromosomes, which indeed codes

for the sex of the individual. This pair has two X chromosomes in females whereas one

X and one Y chromosome in males.
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Figure 2.3: Chromosomes. Credit: Jeff Johnson, Biological and medical visuals.

The whole human genome is divided in a certain number of genes which are grouped

together in 23 different pairs of chromosomes and the position of the gene within the

chromosome is called the locus (Figure 2.4). One member of a pair of genes occupying a

specific spot on a chromosome that controls the same trait is called an allele. Even if there

are more than two type of alleles in a population, in an individual only two allele can be

present and they have the same probability to be inherited (except for special conditions),

see Figure 2.5.

Most of the cells have a set of two homologous chromosomes and for this they are

called diploid. Only the sexual cells, gametes, have only a single set of chromosomes

and are called haploid. Each trait is affected by the two allele inherited one from each

parent and that exhibit a feature dominant, co-dominant or recessive. If both allele are the

same, the gene is called homozygous, whereas if they are different the gene is said to be

heterozygous. Sometimes an allele overcomes the effect of others in affecting the traits,

sometimes it depends on the gene (in homozygous or heterozygous) and other time traits

are combinations of alleles from different genes.
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Figure 2.4: Human Chromosomes. Credit: U.S. National Library of Medicine

Figure 2.5: Allele definition. Credit: 1999 Addison Wesley Longman, Inc.

Human DNA is estimated to comprise around 3 billion base-pairs, of which around

99.9% are the same — there is only a small percentage that makes the difference between

individuals [7, 14].

2.3.3 Genetic Mutations

In 2009, Klug et al. provided an extensive overview of genetic concepts from which the

relevant topics related to this work can be summarised in this section, [7]. The essence of

genetic function is the storage, replication and transmission of the DNA macromolecules.

However, the capacity of DNA to make mistakes is an equally important factor. Changes

in DNA are responsible for different phenotypes, adaptation and environmental diversity
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Figure 2.6: Example of mutation. Credit: [1]

and, most of all, evolution. On the other hand, they are also a cause of cell death, genetic

diseases and cancer. Mutations also act as identifying ‘markers’ for genes, making fea-

sible their tracing from parents to offspring and providing therefore the basis for genetic

analysis. There can be mutations in large regions of chromosomes, called chromoso-

mal mutations, which are different from the gene mutations which occur in the base-pair

sequences of DNA within single genes.

A gene mutation is defined as an alteration of DNA sequence which consists of any

base-pair change in any part of the DNA molecule. This includes single-base-pair sub-

stitutions, deletion or insertion of one or more base pairs up to major alteration in the

chromosome structure. An example is shown in Figure 2.6. Mutations can occur within

or without regions of gene that code for proteins. They may or may not affect phenotypes,

depending on where they occur and to which degree. If they occur in somatic cells, they

may lead to cellular dysfunctions or tumours but they are not transmitted through gener-

ations. Whereas if they occur in germ cells, they are heritable, causing genetic diversity

and evolution.

Different classifications exist based on different effects of mutations. For instance they

can be spontaneous or induced. In the former, no cause is known about their presence and

therefore they are assumed accidental. In the latter, instead they are affected by extrane-

ous factors, natural or artificial, such as radiation or chemical agents. The spontaneous

mutations are low in muber, and vary between organisms and genes. A lively debate is

still intriguing researchers on the possibility of adaptive mutations. The capability for an

organism to induce a set of mutations as result of environmental pressure is an open and

controversial question.
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An alternative classification is based on the location of the mutation. The ones occur-

ring in the gametes are called germ-line mutations and are transmitted to the offspring.

Whereas those located in the other cells are called somatic mutations are not transmitted

to future generations. Then there are Autosomal and X-linked mutations which occur

respectively in autosomes and X-chromosome. Depending on the type of location, the

mutation can bring different phenotypic defects with different degree. There are loss-

of-function mutations which reduce or eliminate the function of a gene product. On the

contrary, the gain-of-function mutations result in a gene product with new or enhanced

function. The neutral mutations don’t affect gene products because they occur in the part

of the genome that do not contain genes. The visible ones are recognized by different phe-

notype and some other examples are the nutritional, behavioural, regulatory, conditional

and lethal ones.

Within the several types of classifications, finally there is one based on type of molec-

ular change. If one base pair changes in the DNA molecule, this is called point muta-

tion or base substitution and includes replacement, insertion or deletion of one or more

nucleotides. Within the single base change, the Single Nucleotide Polymorphisms, better

known as SNPs are one of the most commonly studied kind of mutation by geneticists [7].

2.3.4 Single Nucleotide Polymorphisms (SNPs)

A point mutation or SNP involves the substitution of a base during the replication process.

As the enzyme DNA polymerase cuts down one side of a DNA molecule, forming base

pairs to build a new complementary strand, it occasionally adds the wrong base. However,

DNA polymerase makes very few errors and it corrects most of these quickly. There is a

further check, performed by other enzymes, in order to make sure that the new nucleotides

are actually complementary to the template strand. Any misfits are then detected and

replaced with the proper base. This impressive procedure guarantees a replication of the

DNA with less than one mistake per billion nucleotides.

Nonetheless, this type of mutation does occur and it is responsible for the many subtle

and not so subtle variations found within and among species. In terms of number, while

at most positions in human DNA the same base is found, approximately once every 100

to 300 bases a wrong base may be found, constituting a SNP (Figure 2.7).



2.3. Genetic and Medical Background 21

Figure 2.7: SNP Definition. Credit: [2]

Figure 2.8: Pre-eclampsia - evident effects of inhibited growth in a baby. Credit: [1]

The majority of these changes have no effect or at least effects which are not yet

known, but others can cause subtle differences in physical or psychological character-

istics. Some of them may actually affect a person’s response to drug therapy and even

confer a personal susceptibility or resistance to a certain disease, determining then the

severity or progression of it. For this reason, analysis of SNPs has become the subject of

extensive research [15–17].

2.3.5 Pre-eclampsia

Within the diseases considered to be related to genetic causes, there is one called pre-

eclampsia (PE) which is currently under genetic analysis for any heritable association

[18–23]. PE is a progressive disorder which occurs during pregnancy and in the period

soon after the birth and it affects both the mother and the baby. The major symptoms are

high blood pressure, swelling, proteins in the urine and problems with vision. It is one of

the leading cause of death and disability in mothers and babies. The most evident effect

for babies is a shorter gestational age and lower birth weight, Figure 2.8.
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Occurring in around 5-8% of all pregnancies, pre-eclampsia affects four million women

worldwide each year. Moreover, together with other disorders of high blood pressure dur-

ing pregnancy, it is responsible globally for an estimated 76,000 maternal and 500,000

infant deaths each year [24, 25]. In particular, PE complicates 2-3% of women at first

pregnancy and 5-7% of women who have never given birth before. Extensive vascular

alterations which take place in the spiral arteries suppling maternal blood to the placenta

is a process that usually takes place during pregnancy. In the presence of pre-eclampsia,

this important physiological change is substantially restricted. Extensive clinical studies

have led to the conclusion that pregnancy-induced hypertension is a complex process,

usually commencing in the early stages and depending on different physiological mater-

nal responses. This multi-factorial disease presents a syndrome of symptoms and signs,

with haematological and biochemical abnormalities. Hypertension and proteinuria are

considered the hallmarks, but the clinical manifestation of this disease are heterogeneous.

Some women experience severe symptoms requiring intensive care whereas other remain

asymptomatic. Usually, one in six babies is very pre-term, whereas two-thirds are born

after the 37th week and are normally grown [25].

Pre-eclampsia: State Of The Art

The heritable aspects of pre-eclampsia are complex and difficult to detect. One of the

patterns to be identified is the tendency for the risk of pre-eclampsia to be passed from

mother to daughter, but recent studies have shown that an increased risk of pre-eclampsia

could also be transmitted through the father [23].

In order to assess the pre-eclampsia risk associated with genes transmitted from the

parents to the offspring, a cohort study has been performed on a Norwegian population,

composed of 438,597 mother-offspring units and 286,945 father-offspring units. The in-

teresting results show that the daughters of women who had pre-eclampsia during preg-

nancy had more than twice the risk of pre-eclampsia themselves (odds ratio 2.2, 95% con-

fidence interval 2.0 to 2.4) compared with other women. Men born after a pregnancy com-

plicated by pre-eclampsia had a moderately increased risk of fathering a pre-eclamptic

pregnancy (1.5, CI = 1.3 to 1.7). Sisters of affected men or women, who were themselves

born after pregnancies not complicated by pre-eclampsia, also had an increased risk (2.0,
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CI = 1.7 to 2.3). Women and men born after pre-eclamptic pregnancies were more likely

to trigger severe pre-eclampsia in their own (or their partner’s) pregnancy (3.0, CI = 2.4

to 3.7, for mothers and 1.9, CI = 1.4 to 2.5, for fathers). In conclusion, fetal genes from

both mother or father can trigger PE even if maternal association is stronger than fetal

association [23].

Different experiments have provided evidence that more than one SNP is associated

with an increased risk of pre-eclampsia. A case control study over 72 cases and 70 con-

trols, within women resident in Hungary, shows that “HSPA1B (1267)GG and HSPA1L

(2437)CC genotypes are more frequent among preeclamptic than control patients, sug-

gesting that these genotypes may play a role in the susceptibility for preeclampsia” [19].

“PE is associated with IL-10-(1082) polymorphism” was found in a study over 189 cases

and 151 controls [18]. “The higher frequency of IL-10 -1082 G allele in preeclamptic

patients compared to controls may be considered as a genetic susceptibility factor for the

development of PE” has been shown in a study of 134 preeclamptic women compared

to 164 healthy women [20]. A study over a population of 67 German patients with pre-

eclampsia or superimposed pre-eclampsia and 100 controls with uncomplicated singleton

pregnancies showed that “T235 of the angiotensinogen gene is a potent, independent risk

factor for preeclampsia” [21]. Furthermore, “meta-analysis suggests that the factor V Lei-

den SNP is associated with an increased risk of preeclampsia” confirmed by an odds ratio

of 1.81 (95% confidence interval [CI] 1.14-2.87) for all cases of PE and 2.24 (95% CI

1.28-3.94) for cases of severe preeclampsia [22].

But there have been also some experimental trials that can demonstrate the non-

association between certain SNPs with the disease or some weak association. A study

including 657 women affected by PE and their families revealed that “angiotensinogen,

the angiotensin receptors, factor V Leiden variant, methylene tetrahydrofolate reductase,

nitric oxide synthase and TNFa, tested in a large study of strictly defined pre-eclamptic

pregnancies don’t confer a high risk of disease” [26]. That “the K121Q polymorphism

of the PC-1 gene is unlikely to be a major genetic factor predisposing to preeclampsia in

Finnish women” was shown in a case-control study involved 133 women with preeclamp-

sia and 115 healthy controls [27]. “MTHFR C677T polymorphism does not have a major

role in the development of preeclampsia or placental abruption in the Finnish population”
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according to a study over 362 women (133 with preeclampsia, 117 with placental abrup-

tion, and 112 healthy controls) [28]. “The -56T HLA-G polymorphism is not associated

with pre-eclampsia or eclampsia in population of 277 nulliparous females” [29]. “Poly-

morphisms of the adiponectin gene show a weak, but statistically significant, haplotype

association with susceptibility to preeclampsia over 133 Finnish women with preeclamp-

sia and 245 healthy control subjects” [30]. Finally, ‘results are not suggestive of an impor-

tant contribution of the PAI1 genotype on preeclampsia across population of 115 healthy

cases and 133 sick females” [31].

In all these experiments, different kinds of analyses have been used such as case con-

trol analysis, logistic regression methods, Chi Square analysis, etc., to assess genotype

and allele frequency differences, and haplotype analysis has been performed using the

expectation-maximization (EM) algorithm and the transmission/disequilibrium test.

Limitations on the Current Pre-eclampsia Research

From the results of these experiments a few pitfalls can be detected. For instance, the

dataset size of these studies is usually limited. This is due to the fact that the most com-

monly used tools for disease association study often present limitations in term of scala-

bility. In these analyses, the population size can reach a few hundred individuals, selected

from a specific country, and the SNPs analysed may be selected a priori following some

criteria which often is not very well justified. The size of the current datasets is quickly

increasing thanks to the continuously improved techniques for gathering new data, includ-

ing populations of millions of individuals and millions of SNPs. All these experiments

might present relevant limitations in the analysis of such huge databases.

Additionally, there are some studies that have reported associations with pre-eclampsia,

but sometimes attempts to replicate these findings have yielded inconsistent results. These

studies need a more extensive analysis for validation purposes. Additionally, results from

different types of approaches have provided contradictory outcomes, contradicting previ-

ous promising findings. Therefore, pre-eclampsia remains a complex disease, whose ae-

tiology is still difficult to determine. More efficient tools, able to cope with large dataset

sizes, need to be created in this medical field in order to provide more evidence for the ge-

netic association of PE. According to these considerations, in this work medical datasets
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related to PE disease are analysed and used to test the proposed techniques.

2.3.6 The Medical Requirements

An important assumption of this work is that often the decisions made along the way

have been driven by the practical medical needs. Data mining, statistics and intelligent

analysis of genetic data are very important tools that have been able to help medical re-

search to disclose the genetic association of several common diseases. Bioinformatics

aims to provide the useful tools to perform this analysis but the continuous supervision,

discussion and advice offered by the medical professionals is an essential part of the pro-

cess. Interesting and efficient solutions from the computer science point of view may not

have relevant meaning from the medical perspective; they may not be feasible, appre-

ciable or competitive for medical applications. For this reason, in this work most of the

choices made rely on medical advice or requests, even if they may not appear the most

obvious approach from the computer science point of view. For instance, the analysis of

the pre-eclampsia disease with decision trees algorithms (Chapter 4) has been performed

constraining a continuous predictor into binary type in order to use decision trees instead

of other solutions such as regression trees. This type of approach introduces more com-

plication than using the regression trees, as there is a need to find the best threshold for the

continuous to binary conversion. Although this could also affect the predictive accuracy,

decision tree analysis was performed in response to a specific medical request to provide

them an overview of the strengths and limitations of this approach.

2.4 Methods for Disease Association Studies

There are different kinds of methods that are widely used in database analysis and in this

section a general overview of the statistical tools that have been used in this work is pro-

vided. In the context of genetic association studies, in order to detect genes responsible

for complex diseases, two common techniques have become very popular: case-control

analysis which performs analysis on populations of unrelated individuals and the ‘Trans-

mission Disequilibrium Test’ which is methodology to analyse family-based populations.

For this reason, these are the two methods that will be largely analysed and applied in
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this work. In terms of statistical power, there is not much difference between these two

approaches both for rare and common disease analysis [32].

The genotyping process and the collection of data related to sick populations and their

relatives in family-based association studies is usually more expensive and more time

consuming as compared with the data gathering for population based studies. For these

reasons, the case-control study has become more popular and common for genetic studies.

Moreover, this method offers the possibility to include in the analysis variables that are not

exclusively genetic. It is well known, and clearly demonstrated [33], that the environment

plays an important role in the causes of an increased risk for certain diseases. Thus, being

able to consider genetic factors together with life style ones, allows a stronger and more

reliable overview in the extensive research of disease aetiology disclosure. On the other

hand, family-based designs have a tendancy to be robust against population substructure,

such as admixture, stratification or inbreeding, which may bias the distribution of the

standard association studies, thus invalidating the test results.

2.4.1 Case Control Analysis

Porta, in 2008, defined a case control study as “The observational epidemiologic study of

persons with a disease (or another outcome variable) of interest and suitable control group

of persons without the disease (comparison group, reference group)” [34]. Case-control

studies are a low cost and widely used type of epidemiological study that can be carried

out by researchers in single facilities. The first step is the identification of an effect such as

a single phenotype or a whole manifestation of a disease, for example Alzheimer’s, pre-

eclampsia, or COPD. Subsequently, an investigation of any potential causative factors is

performed in order to shape the typology of data to analyse.

The basic idea is to collect two different populations of relevant subjects, the people

with a condition (‘cases’) and the people without the condition (‘controls’). The collection

of the controls and cases groups, which contain individuals respectively healthy and af-

fected from the disease under investigation, is a non trivial task as they can be affected by

many irrelevant features. By means of medical records or interviews, researchers record

the variables identified as risk factors, together with other non-risk variables, which can

then be used to select matching controls, such as age, sex, race, geographic area of resi-
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Figure 2.9: Case-Control Analysis

dence, etc. In terms of ascertainment of exposure, it is important to notice that long term

recall of life style habits is probably not entirely reliable when the information comes from

direct consultation with the subject due to the inevitable constraint of human memory. A

better choice would be an accurate analysis of the general practice notes.

A number of healthy subjects (or controls) are then chosen who do not exhibit the

outcome or effect under investigation — there may be one or more per case subject. In the

best scenario, the non-risk variables should be similar in the two selected groups, allowing

a reasonable elimination of these parameters in the analysis. The case and control groups

are then compared on the proposed causal factors, and statistical analysis is used to detect

and assess the degree of possible association between each one of these factors and the

chosen phenotype, see Figure 2.9. The overall outcome of the analysis may be affected by

some potential confounding features which require some statistical adjustment. In order

to overcome this problem, it is advisable to choose the two groups by pairing each case

with a control with the same value of some relevant parameters such as age or sex [35].

Hardy-Weinberg Equilibrium (HWE) and Case Control Analysis

Many association studies are based on the Hardy-Weinberg Equilibrium (HWE) test, a

principle formulated independently by a British mathematician and a German physician

in 1908. According to this principle, the frequencies of alleles and genetic heritage do not

change through generations unless disturbing influences are introduced. These interfering

events include mutations, natural selection, non-random mating, random genetic drift,

gene flow, limited population size, etc.
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In the real world, more than one of these factors is present to perturb the HWE, which

therefore is considered to be only an ideal state. Genetic changes that occur in nature

can be measured against this non-natural state, taken as a reference. The simplest case in

nature is a single locus with two alleles, the dominant allele A and the recessive allele a,

with respective allele frequencies p and q. According to this hypothesis:

f req(A) = p

f req(a) = q

p+q = 1

Supposing a population is in equilibrium ,the following applies for the AA homozy-

gotes in the population:

f req(AA) = p2

while for the aa homozygotes:

f req(aa) = q2

and for the heterozygotes:

f req(Aa) = 2pq

Any state that differs from this equilibrium is caused by natural reasons and can be

associated to a disease. The use of these equations provides a tool to work out the degree

of association of a disease to a specific genotype, knowing the genetic mutation that causes

the disease and the frequency of the disease. In order to test the deviation from HWE,

the chi-squared test [36] is one of the most commonly used tools. Alternatively, there

is a wide variety of different proposed approaches for the implementation of the exact

test for HWE [37–40], providing that there are enough individuals present in the sample

to adequately represent all genotype classes. If this is not the case, the Fisher’s exact

test [41] can be used as an alternative tool. An example of implementation of the exact

test for HWE suitable for large scale studies of SNPs data was proposed by Janis et al.

in 2005 [42]. Showing that the simple chi-squared test is affected by type 1 error (poor

specificity), the authors demonstrated that their new approach controlled this type of error

for large and small samples.
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Within genetic association test for diseases, case control analysis is applied to detect

any possible difference in allele frequency between cases and controls. Many factors

can actually bias the allele frequency such as ethnicity and population history. However,

although a detection of different allele frequency may not necessarily imply an association

to the disease, these results can provide a basis for further analysis.

An alternative statistic to the chi-squared test which is commonly used for the case

control analysis is the ‘Odds-Ratio’ which compares the probability of a certain event for

two different groups, represented here by cases and controls. This parameter provides the

size of effect from the comparison between cases and controls, that explains whether an

exposure to a given risk factor increases the odds of developing a disease by two-fold,

three-fold or higher.

Besides the chi-squared test and odds-ratio, there are different studies that test for

disease association through the measure of the different HWE equilibrium for cases and

controls.The ‘Trend Test’ [43] for instance is used when there is no HWE equilibrium

between cases and controls. This method has been extended later using Bayesian methods

to correct for multiple testing in cases of large numbers of SNPs [44]. Subsequently, a

weighted average method has been proposed by Song and Elston, combining the strong

point of the two above tests [45].

Case-Control Analysis: Decision Trees

Decision Trees are an example of a machine learning representation. This is a pre-

diction modeling technique commonly used for classification, clustering and prediction

tasks [46]. They are based on a realisation of appropriate tests at each step of the analysis

which consists of mapping observations of inputs to conclusive target values. A decision

tree has a hierarchical structure that attempts to classify initial instances based on a series

of questions (or rules) about the attributes of the class. These attributes can belong to

different type of variables from binary, nominal, ordinal and quantitative values, while

the classes can be categorical, binary or ordinal. In other terms, given a dataset of at-

tributes together with its classes, a decision tree produces a sequence of rules (or series of

questions) that can be used to recognise the class.

Decision trees are sometimes known by two different names: a decision tree with
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a range of discrete (categorical or ordered) class labels is called a ‘classification tree’,

whereas a decision tree with a range of continuous (numeric) output values is called a

‘regression tree’. The structure of a decision tree consists of one root and a variable

number of nodes and leaves. All the nodes have exactly one incoming edge and may have

more that one outgoing edge. A node with outgoing edges is called an internal or test

node. All other nodes are called leaves (also known as terminal nodes or decision nodes).

A decision tree is usually constructed recursively in a top-down manner. The first

step of the construction algorithm begins with the reading of the entire dataset and the

subsequent splitting of the data into two or more parts. It then repeatedly splits each

subset into finer subsets until the split size reaches an appropriate level. In the simplest

and most frequently case, for each node a test is performed considering only one attribute,

in a way that the dataset is then split according to the attribute value. In the bottom of

the tree there is the representation of the classes, each one corresponding to the most

appropriate value of the output. Each class is assigned to a leaf. In the basic process, the

classification of the data instance starts at the root node of the decision tree, by the test of

the attribute belonging this node and moving down the tree branch corresponding to the

value of the attribute. This process is then repeated at the node on this branch and so on.

In the last step a leaf node is reached where the choice of class is made.

In many applications, decision structures which are smaller are definitely preferable

to more complex ones, as they are more easily understood. Besides, the performance

accuracy of a tree is strongly affected by its complexity which, in turn, is controlled by the

stopping criteria used and the pruning method adopted. Usually, complexity is measured

by one of the following metrics:

• total number of nodes,

• total number of leaves,

• tree depth,

• number of attribute used.

Decision tree induction respects the process of rule induction. Each path from root of

a decision tree to one of its leaves can be transformed into a rule simply by conjoining the
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Figure 2.10: a) A decision Tree. b) The same decision tree rapresented as an alternating

tree. Credit: [3]

tests along the path to form the antecedent part, and taking the leaf’s class prediction as

the output of class value.

Case-control Analysis: The Alternating Decision Tree — ADTree

In 1999, Freund and Mason proposed a new model of decision tree, the alternating de-

cision tree, better known as ADTree. The ADTree is a generalization of decision trees,

voted decision trees and voted decision stumps, which is relatively easy to interpret. It

was created following successful demonstrations that applications of boosting procedures

to decision tree produce very accurate classifiers. The standard classifiers were built fol-

lowing a majority vote over a number of decision trees. For this reason, these classifiers

have the pitfall to be often large, complex and difficult to interpret [3].

In order to overcome these limitations, ADTree was created as a learning algorithm

for alternating decision trees, based on boosting procedures. Experimental results have

shown that it is competitive with other boosted decision tree algorithms and generates

rules that are usually smaller in size and thus easier to interpret. In addition, these rules

yield a natural measure of classification confidence, the classification margin, which can

be used to improve the accuracy at the cost of abstaining from predicting examples that

are hard to classify.

It is possible to derive an alternating decision tree from a simple decision tree. A
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simple decision tree, with two decision nodes and three prediction leaves, defines a binary

classification rule which maps instances of the form of two attributes into one of two

classes whose values are -1 and +1, see Figure 2.10. In an alternating decision tree,

each decision node is replaced by two nodes: a prediction node and a splitter node. The

decision node represents the same node of the simple decision tree, while the prediction

node is characterised by a real number value. As in decision trees, an instance corresponds

to a path along the tree from the root to one of the leaves. However, the difference from

decision trees is due to the outcome result. The classification that is associated with the

path is not the label of the leaf but the sign of the sum of the predictions along the path.

The adjective ‘alternating’ of this new representation is indeed due to the presence of

alternating layers of prediction nodes and splitter nodes.

Alternating decision trees give a much more flexible semantics for representing classi-

fiers as compared with standard decision trees. The original and commonly used decision

trees divide the instance space into disjoint regions. The majority of algorithms to learn

decision trees apply an iterative procedure in order to split every instance space into dif-

ferent parts. Each part can be split at most once. In more simple terms, the only nodes

that can be split are the leaves at each step. In general alternating decision trees, instead,

the partition can be applied multiple times for each part.

The classification rules in the alternating tree are based on the definition of an ‘in-

stance’ as a set of paths. In case of standard decision trees, at each decision node, the path

follows the branch whose node value corresponds to the outcome of the decision. In the

ADTree, from a prediction node, the path follows all of the branches present afterwards.

More precisely, the path splits into a set of paths, each of which corresponds to one of

the children of the prediction node. The union of all the paths reached in this way for a

given instance is called the ‘multi-path’ associated with that instance. The classification

outcome which is associated with a given instance corresponds to the sign of the sum of

all the prediction nodes that are included in a multi-path [3].

Case-Control Analysis: Id3 and C4.5

ID3 (Iterative Dichotomiser 3) is a realization of a decision tree algorithm, proposed by

Quinlan in 1986 [47]. The algorithm is based on the principle of Occam’s Razor which is
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Figure 2.11: Example of an ID3 Tree.

formalised using the concept of information entropy. It is based on the principle that the

world is inherently simple, and hence the smallest decision tree that is consistent with the

samples is the one that is most likely to identify unknown objects correctly. According

to this concept, small trees are preferred rather than bigger ones. However, the algorithm

does not always produce the smallest tree, and is therefore a heuristic.

In practice, as a learning machine process, ID3 builds a decision tree from a fixed

set of examples and the resulting tree is used to classify future samples. The example is

composed by several attributes and is characterized by a Boolean class. The leaf nodes

of the decision tree contain the class name whereas a non-leaf node is a decision node.

The decision node is an attribute test with each branch (to another decision tree) being a

possible value of the attribute. ID3 uses information gain to help it decide which attribute

goes into a decision node. An example of a tree created with the ID3 algorithm is shown

in Figure 2.11.

Quinlan originally developed ID3 at the University of Sydney in order to improve

the Concept Learning Systems by adding a feature selection heuristic [47]. ID3 searches

through the attributes of the training instances and extracts the attribute that best sepa-

rates the given examples. If the attribute perfectly classifies the training sets then ID3



2.4. Methods for Disease Association Studies 34

stops; otherwise it recursively operates on the n partitioned subsets (where n is the num-

ber of possible values of an attribute) to get their ‘best’ attribute. The algorithm uses a

greedy search, which consists of determining the best attribute and never looking back to

reconsider earlier choices. The ID3 algorithm can be summarized in the following steps:

(1) Take all unused attributes and calculate their entropy with respect to the test sam-

ples.

(2) Choose the attribute for which entropy is minimum.

(3) Make a node containing that attribute.

C4.5 is a decision tree generating algorithm, based on the ID3 algorithm and also de-

veloped by Quinlan in 1993 [48]. It contains several improvements, especially needed for

software implementation, like choosing an appropriate attribute selection measure, han-

dling training data with missing attribute values, and handling continuous attributes or

those with differing costs. In building a decision tree it is possible to deal with training

sets that have records with unknown attribute values by evaluating the gain, or the gain

ratio, for an attribute by considering only the records where that attribute is defined. Fur-

thermore, in using a decision tree, the classification of records that have unknown attribute

values can be performed by estimating the probability of the various possible results.

Applications of Decision Trees in SNPs Analysis

In 2006, Jiang et al. highlighted that ensemble decision trees are promising algorithms for

mining genetic markers for complex genetic diseases [49]. Microarray experiments have

demonstrated how innovative technology can be used to classify biological types. The

current analysis strategies based on learning algorithms can be divided into supervised

and unsupervised methods. While the former is a useful tool for studying functional ge-

nomics, it is unable to relate different gene profiles to phenotypes. On the other hand, this

task can be generally fulfilled by supervised learning, being a driven-target process where

induction algorithms identify the genes responsible for a target. Moreover, microarrays

provide massive parallel information that current statistical methods can hardly properly

solve. Hence, machine learning solutions have been proposed in support of this aim.
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Among these methods, decision trees algorithms appear to be one of the best choices

for genetic analysis as they can partition the sample and feature gene space simultane-

ously. Thus, Jiang et al. proposed a novel tree-based ensemble method for microarray

data, extracting first a subset of genes able to predict the rest, and then identifying genes

that are relevant for a specific disease. Two years later, they extended this approach to

sibling-pair analysis of pedigree, applying a decision approach to extract relevant SNPs

for alcoholism [49].

In 2005, Kuang-Yu et al. applied boosting alternating decision trees to model disease

trait information. They combined two boosting iterations (log and exponential loss func-

tions) together with two decision trees algoritmhs (ADTree and classic boosting decision

tree) and demonstrated that ADTree offers a more accurate representation of the disease

status that allows for better detection of linkage evidence [50]. In 2007, Dong-Hoi et al.

demonstrated that decision trees are a potential tool to predict the susceptibility to chronic

hepatitis and cirrhosis from SNPs data. This was realised in an experimental result which

showed the capability of C4.5 to distinguish cases from healthy people with an accuracy

of 69.59% for chronic hepatitis and 76.2% for hepatitis [51]. Huang et al. in 2009 pro-

posed a comparison of classification methods for predicting Chronic Fatigue Syndrome

(CFS) based on SNPs data. In their experiment they compared and contrasted three dif-

ferent classifiers based on different representational models, such as probabilistic models

for naive Bayes, regression models for SVM and decision tree models for the C4.5 al-

gorithm. Their findings suggested that this type of analysis provides a plausible way to

identify models in CFS [52].

This review of the literature shows the successful results that decision tree algorithms,

in particular ADTree and C4.5, have achieved in the specific field of disease association

study. However, the application of a single decision tree algorithm sometimes might

have limitations due to the specific method employed for growing the tree. For instance,

ADTree is based on a boosting procedure, while Id3 and C4.5 are based on information

gain calculation for each attribute. This diversity might provide different results from the

analysis of the same database. In order to overcome the limitations that a single technique

may yield, in this Thesis a new framework, realised by a combined analysis of these

three algorithms is proposed. In this way, only relevant solutions that are also confirmed
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and validated by more than one algorithm are taken in consideration for further analysis,

providing a more robust solution to the problem analysed, see Chapter 4. C4.5 and Id3

are both based on the definition of information gain but they differ in the manner that

the tree is grown. Whereas in Id3 solution, the stopping criteria are employed to regulate

the size of the tree, C4.5 resolves the over-fitting problem by pruning the tree at the end

of the analysis. The extent of pruning can be chosen by the user by setting an internal

confidence parameter. These two different approaches might provide different shapes

and especially different sizes for the trees. In order to test the performance of these two

different approaches, both algorithms are employed in the analysis as, to our knowledge,

this is a novel approach in a pre-eclampsia association study. C4.5 is supposed to be an

improvement of the Id3 algorithm, but sometimes algorithms which are expected to be

improved do not show their strength in some specific applications as well as in others.

For this reason, Id3 is also included in the analysis, in order to provide further validation

or rejection of the actual improvement. Moreover, once again, the choice of these specific

tools has been driven by medical considerations, as they have been successfully used in

previous analyses for different disease contexts.

2.4.2 Family Based Analysis

Family based studies have been the only option in genetic analysis for a long time and

have led to the discovery of a large number of genes responsible for Mendelian diseases

and traits. Nevertheless, they have not been as successful for more complex diseases such

as diabetes, asthma or heart diseases. In these cases, a new approach based on population

analysis has brought the best results, the case-control study. This provides better power

and can deal with very large numbers of SNPs for mapping complex diseases or traits. The

realisation of a case-control dataset is cheaper and faster than a family based one, which

is also sensitive to genotyping errors, inflating the false-positive rate. Even if family

based analysis produces more robust results for substructure and admixture problems,

their software package implementation availability is still limited in comparison with the

population-based commercial solutions.

The simplest design for family based analysis is the implementation of the Trans-

mission Disequilibrium Test. Further extensions of this basic method provide solutions
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Figure 2.12: Haplotype transmition through generations. Credit: [4]

of problems such as missing parents, quantitative traits and use of additional siblings.

The most successful extensions are based on non-parametric tests and they are referred as

Family Based Association Tests (FBATs). They incorporate features such as general pedi-

grees, missing values, analysis of complex diseases and phenotypes, and they can handle

datasets with multiple-comparison problems. Alternatively, likelihood based approaches

are also popular in the field, as discussed later [32].

Family Based Analysis: Transmission Disequilibrium Test

Alternatively to case-control analysis, a different way of approaching the problem of dis-

ease association study is based on the Transmission Disequilibrium Test (TDT) which

is a family based study, see Figure 2.12. It was developed by Spielman in 1993 [53].

In terms of statistical power, the differences between the TDT and the commonly used

case-control study are generally small. The recruitment of a specific population and their

relatives in family-based association studies usually requires more resources in terms of

time and money than that of unrelated subjects in population based studies. Besides,
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Figure 2.13: Family structure and identity number of the original database, in TDT anal-

syis.

more genotyping might be required for family-based studies, and together these factors

have increased the choice of population designs over family-based studies. However,

unlike population-based studies, family-based designs are robust against population sub-

structure, a characteristic which might distort the distribution of the standard association

statistic, leading to increased type 1 error (the probability that the null hypothesis is falsely

rejected) or decreased power [32].

The Transmission Disequilibrium Test is one of a number of tests which aims to be

robust against spurious associations due to population stratification by obtaining control

alleles from relatives of cases. Population stratification consists of the presence in a pop-

ulation of distinct strata or groups that show limited inbreeding; they might have different

disease rates and distinct allele frequency distributions. Failure to control for the stratifi-

cation can invalidate tests of association. This technique, also known as the Transmission

Distortion Test, is a simple family-based design for testing association which uses geno-

type data from trios. The trios consist of the two parents and their affected offspring (see

Figure 2.13).

The idea behind the TDT is intuitive: under the null hypothesis, Mendel’s laws deter-

mine which marker alleles (the genetic elements which can be detected by phenotype) are
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transmitted to the affected offspring. The TDT compares the observed number of alleles

that are transmitted with those expected in Mendelian transmissions. The assumption of

Mendelian transmissions is all that is needed to ensure valid results of the TDT. An ex-

cess of alleles of one type among the affected indicates that a disease-susceptibility locus

(DSL) for a trait of interest is linked and associated with the marker locus. The pres-

ence of linkage implies a co-inheritance of genetic markers and phenotypes in families

over several generations whereas the presence of association confirms the contribution of

genetic variants to phenotypes.

If there is linkage but no association, the marker and the DSL will tend to be trans-

mitted together, but different marker alleles will be transmitted with the DSL in different

families. This results in no overall association of a particular allele that is transmitted

with the trait. If there is association between the marker and a DSL but no linkage there

is no tendency for the marker and the DSL to be transmitted together to offspring. In this

case, one would not expect to see an excess of a particular allele transmitted in affected

offspring. If an allele is transmitted to unrelated cases more often than would be expected

by chance, this implies that it is linked and associated with the disease mutation. If the

sample contains cases related to each other, coming from the same pedigree, then the TDT

can become a test only of linkage rather than association.

If a parent is heterozygous for a marker, the chances for him to transmit both marker

alleles to an affected case will be equal unless one of the allele markers is linked with

the DSL and unless the marker and disease are associated. A sample of cases and their

parents is genotyped and deviations from the expected 50-50 transmission are observed.

Usually the sample consists of a set of trios, affected cases with their parents. However,

pedigrees containing more than one affected case can also be used.

Originally, the TDT was used to test for linkage in the presence of association. How-

ever, because both linkage and association between the trait and the marker have to be

present for the TDT to reject the null-hypothesis, the TDT is now typically used as a test

for association. This dual-alternative hypothesis also means that the TDT avoids false

positives that arise when association is present but linkage is not, as might happen in the

presence of admixture and/or population stratification. (Admixture occurs when two or

more subpopulations inbreed, so that two randomly chosen individuals in the population
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might have different degrees of genetic heritage from the original subpopulations.)

As the TDT is completely non-parametric, there is no requirement for a proper disease

model neither assumptions about the distribution of the disease in the population. This

makes this technique robust to potential mistakes of any features of the disease model

or trait distribution setting However, the original TDT still present some drawbacks such

as missing parents, general pedigrees, complex phenotypes and haplotypes with missing

phase. These problems can be resolved with possible extensions of the basic method [32].

Family Based Analysis Test (FBAT)

The FBAT statistic of association is based on the definition of ‘covariance’ between geno-

type and phenotype. In this formula, different parameters can be set depending on dif-

ferent specifications of the problem. The trait and the allele in the population can have

various distribution trends, unaffected offspring can be considered in the analysis together

with alternative and multiple traits. Alternative genetic models for the offspring such as

dominant or recessive genes, together with multiple allele analysis is also allowed in this

extended technique. Moreover, the FBAT statistic approach can be generalized including

arbitrary pedigree, missing parents, haplotypes, different null hypothesis and complex

phenotypes (quantitative traits). It can happen that the genetic distribution of the off-

spring depends on unknown factors, called ‘nuisance’ parameters. The FBAT approach

can handle with this limits creating a ‘sufficient statistics’ for them.

Whenever the genotypes are missing, information coming from grandparents can be

useful as well as additional family members such as unaffected offspring can contribute

information. Haplotypes can be studied in spite of single SNPs when the phase is known,

in order to avoid multiple testing issues. In case the phase is unknown, a sufficient statistic

can be applied to create a haplotypes distribution that do not rely on estimating the phase.

Family Based Analysis: Likelihood extensions

The likelihood methods are based on the definition of ‘probability density’ for the ob-

served data as a function of genotype. In order to test the hypothesis of no association,

either likelihood-ratio or score tests are used. For the former, different methods make

use of different definitions of likelihood such as conditional logistic regression or multi-
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nomial likelihood. The latter is generally more popular and can be extended to account

for multiple offspring and complex phenotypes. The Likelihood based approach offer

more sophisticated tests, nested models and can be more efficient, but FBAT are more

able to perform an easier analysis for screening and validation and they resolve better the

problem of nuisance parameters.

Family Based Technique: Transmission Disequilibrium Test Implementations

The aim of this section is to provide the reader with an overview of the possible options

that are available for the implementation of the TDT technique. Lots of work has been

done with the attempt to improve this method and different tools have been developed

in the past years based on different hypothesis. They include various input data formats,

multiple statistical analysis, several population features and different genetic markers con-

straints.

• ETDT (Extended Transmission/Disequilibrium Test), proposed by Sham and Curtis

in 1995, performs a TDT test on markers with more than two alleles using a logistic

regression analysis [54]. Three different approaches are proposed. The first one

considers one allele at a time and examines whether parents heterozygous for this

allele transmit it to the affected offspring in more than 50% of occasions. The sec-

ond approach addresses every heterozygous parental genotype separately whereas

the last method attempts to establish a pattern of preferential transmission across

genotypes. They prove that this test has a good power when LD is strong and if the

disease is recessive.

• GASSOC (Genetic ASSOCiation). This is a statistical method for disease and ge-

netic marker associations using cases and their parents and it was implemented in

1996 by Schaid et al [55]. It includes an extension of the transmission/disequilibrium

test (TDT) for multiple marker alleles, as well as additional general tests sensitive

to associations that depend on dominant or recessive genetic mechanisms.

• TDT/S-TDT. In 1998 Spielman and Ewens introduced the method ‘sib TDT’ or ‘S-

TDT’ which provides a useful tool when the genetic information of the parents are

missing or not complete. In this case, the method uses marker data from unaffected
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siblings instead of from parents, thus allowing application of the principle of the

TDT to siblings without parental data. The overall analysis provides separate results

for TDT, S-TDT, and the combined test, where necessary [53, 56].

• RC-TDT (Reconstruction-Combined Transmission Disequilibrium Test) was im-

plemented by M. Knapp in 1999. This is a family-based association method that

allows testing for linkage in the presence of linkage disequilibrium between an au-

tosomal marker and a disease even if there is only incomplete parental-marker in-

formation. Recently, Horvath et al. described a similar procedure (XRC-TDT) for

X-linked markers. The distribution contains SAS macros that calculate the RC-TDT

and XRC-TDT test statistics, as well as their respective exact p-values [57–59].

• QTDT (Quantitative (Trait) Transmission/Disequilibrium Test) was developed by

Abecasis et al in 2000 to perform linkage disequilibrium (TDT) and association

analysis for quantitative traits [60]. It includes supports for families of any size,

with or without parental information and simple variance components modeling.

• ET-TDT (Evolutionary Tree - Transmission Disequilibrium Test) is a procedure

based on combining the benefits of measured haplotype analysis (MHA) with TDT

in order to find which haplotype or groups of haplotypes, as defined in an evolu-

tionary tree, are responsible for increased (or decreased) relative risk for a genetic

condition. A stringent requirement of the original TDT is that at least one parent

must be heterozygous. Even in this case, transmission of allele may not be obvi-

ous when both parents are heterozygous for the same biallelic marker. Studying

haplotypes instead of single SNPs have proved that parents and offspring are more

informative. ET-TDT was written by Seltman et al. in 2001 and it is developed in

two steps. Firstly, the haplotypes from the trios are inferred distinguishing between

‘ambiguous’ and ‘unambiguous’ ones. MHA uses the evolutionary relationships

among haplotypes to produce a limited set of hypothesis tests. Then, the proper

analysis is applied building an initial evolutionary tree with the haplotypes as nodes

and step by step decreasing the size of the tree [61].

• FBAT (Family Based Association Test) is a user-friendly, well-documented soft-

ware developed by Xin Xu et al. in 2001. It allows the user to test for associa-
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tion/linkage between disease phenotypes and haplotypes by utilizing family-based

controls. It is robust to population admixture and population stratification, it can

deal with not-known phase individuals by using weights, which are estimated from

the sample. The method can handle any type of phenotype, including multiple phe-

notypes and missing parents, marker data, and/or phase, and provides both bi-allelic

and multi-allelic tests, [62–64].

• TDT-AE (Transmission Disequilibrium Test Allowing for Errors). This program,

written in 2004 by Gordon et al. computes a likelihood-based transmission dise-

quilibrium test [65]. The data are genotypes on trios in which random genotyping

errors leading to Mendelian inconsistencies may or may not have occurred. This

program computes the TDT-AE statistic on all trios (whether Mendelian consistent

or not) and thereby maintains a correct type-I error rate in the presence of random

genotyping errors.

• SNP ASSISTANT has been created by Biodata Ltd. This is a software for SNP

data managing that provides import and export from linkage format, data valida-

tion, pairwise LD calculation and visualization, case-control and TDT tests, visual

comparison of two datasets, and relationships testing [66]. It is suitable for large

projects and it does not depend on the genotyping method.

• TRANSMIT tests for association between genetic marker and disease by exam-

ining the transmission of markers from parents to affected offspring [67]. It was

developed by Clayton in 1999 and the main features which differ from other simi-

lar programs are that it can deal with transmission of multi-locus haplotypes even

if the phase is unknown, and that parental genotypes may be unknown. For a more

detailed analysis of this software the reader is referred to chapter 3.

All these solutions have been developed from the basic approach of TDT in order to

provide data analysts with useful tools in the SNPs study, trying to cover a wide range of

constraints and different scenarios. The parameters involved in SNPs association analysis

are different and can belong to different variables types depending on the specific applica-

tion. The type of outcome can be a Boolean variable if the sick-healthy status is analysed
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but it can be also a categorical one if different degrees of disease severity are considered.

Alternatively, if a phenotype is under study, the outcome could be continuous or it could

consist of more than one physiological parameter. The disease model could change in

different scenarios, varying from dominant to recessive or mixed. Different kinds of pedi-

gree can be studied and it is already widely proved that often different populations present

different susceptibility to specific diseases because of their genealogy. Sometime infor-

mation can be missing especially when the diseases under analysis occur later in life and

the genetic data from parents are not available anymore. On the other hand, information

from siblings or other relatives of the family can become useful to recover this missing

information.

Together with all these parameters that contribute to the general model for SNPs data

analysis, one of the major problems that data analysts need to face in genetic association

study is the possibility to deal with transmission multilocus-haplotypes from parents to

offspring when the phase is unknown. There are not many methods that can deal with this

problem and one of them that is widely used and accepted is the TRANSMIT software.

One of the pitfalls of this software is that the haplotype length is fixed and set by the

user in an initialization phase. The possibility to detect the minimum size of haplotypes

responsible for an increased risk of disease would provide a better usage of this tool for

further analysis. For a detailed analysis of this contribution, the reader is referred to

Chapter 3

2.5 Methods for SNPs Dataset Size Reduction

This section provides an overview of the current techniques employed for dataset size

reduction purposes. Feature selection is an active research area focused on selecting a

subset of input variables by eliminating features with little or no predictive information.

This finds applications in data mining, statistics and pattern recognition. The major bene-

fits of this approach include facilitating visualisation and understanding of data, reducing

time and storage requirements and defying the curse of dimensionality to improve pre-

diction performance. Whereas there is a huge amount of work on feature selection in the

general Machine Learning community, in this section the attention is focused exclusively
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on methods tailored for SNPs analysis, according to the main scope of this work.

2.5.1 SNPs and Haplotypes Tagging

Different methods can be found in the literature for selecting a small set of SNPs from the

initial database for genome-wide association studies. This smaller group of informative

SNPs, often referred as tag SNPs, are representative of the original SNP distributions in

the genome. If they are chosen from haplotype data they are referred as haplotype tag

SNPs (htSNPs).

The experimental determination of haplotypes realized with normal genotyping (based

on PCR/sequencing) of an autosomal SNP is very expensive and time-consuming [68–

70]. Alternative computational methods can provide very good tools for haplotyping in

populations which have the genotypic information available for enough individuals (i.e.

the alleles present for each SNP in a genetic locus). Several experiments have shown

that these methods are reliable and feasible, as there are a relatively small number of

haplotypes present in a given population which are maintained according to the rules of

evolution.

In 2005, Zhang et al. gave five different ways to define tag SNPs [71]:

• A minimum set of SNPs able to distinguish a percentage of all the haplotypes [72].

• A minimum set of SNPs that can account for a certain percentage of overall haplo-

type diversity.

• A minimum set of SNPs that can account for a certain percentage of overall haplo-

type entropy [73].

• A minimum set of SNPs with a maximum overall haplotype prediction strength, de-

fined as the measure of uncertainty in the prediction of haplotypes from genotypes

data [74].

• A minimum set of SNPs with a maximum prediction power, which is based on the

definition of LD [75].
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According to the last definition, the measure of Linkage Disequilibrium between SNPs

is a very common technique which is used to detect disease associations selecting only a

subset of SNPs which are considered informative for this analysis.

For instance, Kruglyak in 1999 estimated the extent of LD surrounding common gene

variants in the general human population, for mapping common diseases genes [76]. In

2001, Goncalo et al. showed the extent and distribution of LD in three genomic regions

for association studies [77]. In 2002, Stacey et al. explained how the human genome can

be objectively parsed into haplotype blocks and how this framework provides statistical

power in association studies [78]. Tozaki, in 2005, demonstrated that LD measurement is

useful for mapping genes in thoroughbred populations and also for complex traits, as LD

is expected to be strong around the loci of diseases [79].

From the statistical point of view, the tag SNPs are required to statistically cover the

non tagged SNPs with a quality measured by the squared correlation coefficient. Non tag

SNPs are expected to be highly correlated with the tag ones with an R2 ≥ 0.8. Conse-

quently, significant effort has been devoted to the optimisation point of view in order to

minimize the number of tags in respect with a given prediction error. In other terms, the

tag SNPs selection issue can be divided into three different aspects [80]:

• The informative SNPs selection problem (ISSP) — Detect a smaller amount of

SNPs from the initial datasets, able to predict the rest of the SNPs for any given

population.

• The SNP prediction problem — infer the rest of the SNPs from the tagged ones,

minimizing the prediction error.

• The statistical covering problem — optimise the results, maximising the number of

predicted SNPs from the chosen number of tag SNPs.

There are different ways for classifying tag SNPs and htSNP tools. In this section,

two different classifications are shown, each one followed by a list of applicative solu-

tions. The first is based on two different procedures: the block-based and the block-free

methods. Another type of classification within the several algorithms for inferring the tag

haplotypes from a population of genotypes, developed recently, is based on the difference

between combinatorial methods (which focus on haplotype pairs for each individual) and
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statistical methods (which focus on the haplotype frequencies in the population). All these

four distinct types of method are discussed in the following sections.

2.5.2 Block based methods

The block-based methods refer to the assumption that the human genome can be parti-

tioned into different haplotype blocks of variable length [78]. In each of these blocks,

most of the population share a small amount of common haplotypes [72, 81]. This means

that different individuals have correspondent blocks containing mostly different haplo-

types. Besides, the recombination of haplotypes belonging to the same block over time

is rarely observed. Such haplotype framework provides a useful benchmark for associ-

ation studies of genetic common variation between blocks. Following this definition, in

many approaches the selection of the tag SNPs is performed after partitioning the genome

into haplotype blocks. Example of block-based solutions proposed in the literature are

illustrated in the following list.

HapBlock

In order to analyze the block-like LD patterns in the human genome and perform a tag

SNPs selection, Zhang et al. in 2005 developed a set of dynamic and flexible algorithms

based on different criteria [71]. These techniques can analyze both genotype and haplo-

type data coming from both unrelated and related individuals. This proposed software,

called HapBlock, includes different programs for haplotype blocks partitioning and tag

SNPs selection developed by the same authors in the previous years [82–84]. The prob-

lem can be approached in two different ways: a fixed section of genome partition with a

minimum number of tag SNPs, or a fixed number of tag SNPs for predicting the maximum

length of the genome. Both these approaches are used in the software [83]. Haplotypes

are inferred for each block from a subset of SNPs included in the block, according to the

high LD. Genotypes are instead inferred using the PL-EM algorithm [85], later shown,

under the assumption of no recombination events.

Zhang et al. in 2005 gave three different definitions of haplotype block:

• A percentage of inferred or observed haplotypes must be common [72].
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• A percentage of SNPs in the block must have a strong LD [83].

• There must not be historical recombination of the SNPs within the block.

Additionally, all the definitions for tag SNPs, previously given, are used in this software

to find the optimal set of tag SNPs. The overall algorithm thus provides a unified platform

to assess the power of association studies using tag SNPs, based on different methods.

htSNP2 and genassoc

In 2003, Chapman et al. discussed association studies and how the initial data used to

select tag SNPs should be incorporated in the analysis. The genetic risk factors that are

responsible for complex traits can be common SNPs with small effects, rare SNPs with

large effects or (in the worst case) rare variants with small effects. Additionally, the

definition of ‘small effect’ is often not clear. Focusing on the first hypothesis, they outline

a formal statistical model for population-based association studies together with a power

measurement based on LD function. This method, implemented in Stata [86], selects the

tag SNPs capable of predicting the remaining common SNPs, defined as those with an

allele frequency >= 3%, with a minimum R2 of 0.8 [87].

GERBIL

Kimmel et al. in 2005 proposed a stochastic model for genotype phasing in the presence

of recombination. This is a blocks-based model and haplotypes are generated from a

small number of core haplotypes, considering mutations, rare recombinations and errors.

Within each block, an EM algorithm is used in order to redefine common haplotypes in

a probabilistic setting and seek a solution that has maximum likelihood. This efficient

and simple to use software package is called GERBIL (GEnotype Resolution and Block

Identification using Likelihood) and it both reconstructs block partitioning and resolves

the haplotypes [88].

2.5.3 Block-free methods

With the block-free methods, the tag SNPs are detected from the original set of SNPs

without assuming prior block partitioning and the rest of the SNPs are predicted with a
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minimal error. These can be based on allelic bonds, better known as Linkage Disequilib-

rium, across one or a few gene regions. Some examples of software solutions available in

the market for the block-free methods, also known as entropy methods, are listed below.

SVM/STSA

In 2007, Jing et al. highlighted how the choice of a tagging technique is very much af-

fected by the SNPs prediction models used afterwards. They proposed a greedy ‘Stepwise

Tag Selection Algorithm’ (STSA) and a ‘Local Minimization Tag Selection Algorithm’

(LMTA) version for tag SNPs selection, and suggested two different prediction models,

multi linear regression (MLR) and support vector machines (SVMs).

The STSA detects the final set of tag SNPs adding one SNP per time, choosing the

best one that minimises the prediction error. With the LMTA, the set of tags is chosen

at the first step and each single tag is replaced subsequently with a best one until there is

no significant improvement on the prediction quality. The MLR-tagging procedure was

introduced in 2006 by He and Zelikovsky as a new approach for informative SNP predic-

tion, based on multiple linear regression. In the MLR method, the predicted SNPs are just

a linear combination of the tag SNPs, each one weighted with a different coefficient. The

SVM instead is a learning system developed by Vapnik and Cortes in 1995 [89], which is

very accurate and highly competitive with other solutions such as neural networks. The

aim is to maximise the margin between solid hyperplanes that separate the two classes.

This works also with data which is not linearly separable using non linear function to map

data in the space.

Comparing the results with other different solutions in the fields ( [90, 91]) through

several experiments with the same datasets, it has been demonstrated that MRL predic-

tion combined with stepwise tag selection (STSA) detects fewer tag SNPs, whereas the

SVM solution uses fewer tags than the methods reviewed by Halladorsson in 2004 [92].

With MLR, both STSA and LMT give the same quality results, with LMT being faster.

However, SVM combined with STSA is more accurate even if more time consuming [80].
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STAMPA

In 2005 Haperin et al. proposed a new method to predict the rest of the SNPs given the tag

SNPs set [90]. This is based on analysis of genotype information for unrelated individuals

and does not rely on block partition of the genomic region. In order to select the tag SNPs,

STAMPA uses the phase information in a reference training set and for predicting the

rest of the SNPs the genotype information is used instead of the haplotype information

of the tag SNPs, as previous techniques do. Additionally, to evaluate the average SNP

prediction quality, the prediction accuracy measure has been proposed. Comparing the

performance of this solution with other mentioned tools, STAMPA outperforms them

consistently. STAMPA uses ten times less SNPs than IdSelect ( [91]) and has a prediction

accuracy 15% higher than HapBlock ( [71]).

GA and KNN

In 2009, Chuang et al. proposed a method for selecting a small set of SNPs from the initial

database, estimated to deal with dataset sizes of up to 10 million SNPs, for genome-wide

association studies. A Genetic Algorithm (GA) to select informative SNPs is combined

with the K-nearest neighbor (K-NN) method to evaluate the prediction accuracy of the tag

SNPs set [93]. From the comparison of this method with the previously cited ones, this

method was found to be more accurate, faster and provided a smaller number of tag SNPs

for six different types of datasets.

Methods Based on R2

Within the block-free methods, approaches based on using the square correlation coeffi-

cient R2 between two different SNPs have been employed by different researchers obtain-

ing good results [75, 87, 94]. In 2004, for instance, Carlson et al. proposed a method to

select informative SNPs through the calculation of correlation with LD function, spotting

high correlated SNPs with a value of R2 > 0.8 [75].
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PCA and Logistic Regression

In 2008, Zhang et al. proposed the use of Principal Component Analysis (PCA) and

a regression model for genomic association data analysis in order to accommodate the

presence of LD and reduce the multiple testing problem. This is based on statistical

inferences being made simultaneously for a set of individuals and, in this case, for a set

of SNPs. Adjustments need to be done when the analysis moves from an individual to

populations, generally providing a stronger level of evidence to be observed in order to

compensate for the number of inferences being made. A traditional example of a method

proposed to overcome this problem is Bonferroni correction [95] but such corrections for

multiple testing on a large SNPs dataset can lower the statistical power of the study, which

in turn would require an increased sample size to retain enough power.

The tagging SNPs method is an alternative approach proposed to reduce multiple-

testing problems, but tag SNPs may vary with the different haplotype construction meth-

ods and with different analyzed populations. Also, haplotype analysis has been proposed

to resolve this problem but computational limitations may affect the choice. Further, am-

biguous haplotypes may result from analysis of SNPs which are not in strong LD between

each other. There is still some controversy as to the relative merits of the haplotype-based

and genotype-based testing in terms of analysis power [82, 87]. Zhang et al. used PCA

to detect a group of correlated SNPs which may or may not belong to the same DNA

fragment. Subsequently, logistic regression of the studied disease was applied to each PC

score to detect any possible association. They compared the correlation matrix obtained

from PCA with the LD matrix based on the correlation coefficient R2, showing a few ad-

vantages: SNPs do not require to be in HWE, nor in a contiguous DNA fragment if they

belong to the same block [94].

Other Methods

Hierarchical Clustering, PCA and Multiple Regression are examples of approaches that

have been proposed to improve the tagging SNPs or haplotype-based analysis. All of

these methods aim to select a smaller number of SNPs that can be representative of the rest

of the population. Also, a discrete Fourier Transformation based genotypic or haplotypic

score to reduce the multiple-test issue was proposed by Wang and Elston in 2007 [96]. An
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alternative application of block free-method was proposed by Woosung in 2006 through

the usage of the sequential t-test to determine the minimal required sample size [97]. He

and Zelikovsky introduced a new approach for informative SNP prediction in 2006 based

on multiple linear regression (MLR-tagging) [98].

2.5.4 Combinatorial Methods

The objective of tagging SNPs consists in choosing a small amount of SNPs that max-

imise a certain criterion, in this case the capability to predict the rest of the SNPs included

in the initial dataset. The nature of this problem can be described as combinatorial as all

the possible combinations of SNPs needs to be extracted from the original set and only

the ones that maximise the criterion need to be selected. The main problem is that an

exhaustive search through all subsets of SNPs is not a tractable process for even a mod-

erate number of SNPs. Different approaches are thus proposed in the literature in order

to bypass the complexity of a direct combinatorial search and detect the best selection of

tagSNPs, addressing the problem for instance through iterative procedures.

HAPAR

Among other approaches proposed for extracting the smallest set of haplotypes explaining

the genotypes in a population, in 2003 Wang et. al used a ‘branch and bound’ approach

[99]. This makes use of a parsimony model suggested in several places and first proposed

by Gusfield in 2001 [100]. Gusfield also proposed a linear programming formulation

which considers the number of mutation events to generate the haplotype set [101].

Linear Reduction Method

In 2004, Jiungwu et al. suggested a combinatorial method based on a linear algebra

approach for selecting tag SNPs, which can be combined with the LD measure. Basing

the method on a 10% sample of the initial population, it is possble to predict the entire

population from only 0.4% of it with 2% of accuracy [102].
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2.5.5 Statistical Methods

In statistical models, the haplotypes are inferred through the frequency distribution among

the population, allowing a higher degree of data complexity in terms of size, missing

values or multiple allele problems. The EM algorithm, being one of the most popular

approaches in this field, estimates the haplotype frequency through the maximisation of

the sample likelihood under the assumption of HWE.

Partition Ligation (PL) algorithm

Alternative approaches rely on Bayesian statistics [103, 104] and infer haplotype fre-

quency distribution from genotype of the sample and prior information about haplotype

distribution. Niu et al., for instance, in 2002 proposed a new Monte Carlo strategy [103].

This strategy first breaks down all the marker loci into units and then uses Gibbs sampler

to construct haplotype from the units and to rebuild the phase hierarchically. It uses a

Dirichlet model to choose randomly haplotypes when the previously chosen haplotypes

are not good for inferring others, using other software such as Phase or HAP tools. They

showed that their algorithm is robust against violation of HWE, missing data and haplo-

type recombination.

PL-EM

The EM algorithm is a remarkably popular statistic approach for its interpretability and

stability. One of the pitfalls of the EM algorithm alone is that the excessive number

of possible loci in a single haplotype is limited by memory constraints. Therefore, an

improvement has been suggested by Quin et al. in 2002, termed the PL-EM algorithm

[85], which is based on partitioning the dataset into smaller sets. This solution is based

on the application of the partition-ligation (PL) strategy, firstly introduced by Niu et al. in

2002 and coded in HAPLOTYPER [103], combined with the EM algorithm. Compared

with the HAPLOTYPER, where the PL strategy is combined with the Gibbs sampling, this

new approach is a deterministic procedure and much faster. It also includes a simple and

robust approach for variance-estimation for the haplotypes selected at the final ligation

stage.
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BNTagger

In 2006, Lee et al. proposed a new method for tagging SNP selection called BNTag-

ger [105]. This approach is based on conditional independence among SNPs and does

not rely on strong assumptions such as prior block-partitioning, bi-allelic SNPs or a fixed

number of haplotypes needed to predict a single tagged SNP. Moreover there is no as-

sumption of fixing the neighborhood in which htSNPs are selected. Through the use of

Bayesian networks, they try to select a small number of SNPs which are independent

and highly predictive. Genotype data is the input of the system and the haplotype data

containing tagging SNPs with maximal prediction accuracy is the output. Preserving a

good performance over small datasets of SNPs, this method results in a better prediction

accuracy as compared with other methods.

2.5.6 Current Limitations of SNPs Tagging Techniques

This literature review of feature selection techniques for SNPs dataset size reduction pro-

vides a general idea of how many different approaches have been proposed by different

researchers in the recent past. Combinatorial methods provide good performance in terms

of accuracy of the results but, in general terms, they experience problems when the size

of the datasets increases, missing values are present and the final haplotypes set may not

always be the smallest. Statistical methods usually overcome these problems, allowing

analysis of very large sized datasets. However, the computational complexity associated

with the large number of SNPs to be analysed often presents limitations from the hard-

ware point of view. If on one hand the block-based solutions provide a reduction of the

problem complexity, by focusing the analysis in smaller subsets of genetic information in

so called blocks, on the other hand one of the main pitfalls of these methods is that the

definition of block is not straightforward and there is no standard criteria for forming the

blocks. Besides, each block ignores any inter-block correlations [106]. To overcome this

problem block free solutions have sometimes been proposed at the expense of run time

considerations. Each of these approaches thus presents differing strengths which makes

them more fit for a given application and less for others.

The resdarch in this Thesis is focused on the linkage disequilibrium function because
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this is a tool that can be combined in all the possible types of methods discussed here,

and for this reason it is a tool of relevant interest for all tasks of SNPs size reduction,

regardless the basic approach employed. In particular, the study is performed upon the

SNP association tool which was developed in 2007 by Gonzalez et al. in order to carry

out common analysis in whole genome association studies. This specific implementation

of linkage disequilibrium (LD) function has been chosen for possible improvement be-

cause it is implemented in the R language which, as later explained (2.6.2), is an open

source, commonly used programming environment which is much appreciated by the re-

search community for its flexibility and accessibility. Moreover, this software package

provides comprehensive functionality for a variety of different genetic analysis purposes.

It contains tools for data manipulation, exploratory data analysis with graphics and as-

sessment of genetic association for both quantitative and binary traits. Different models

of inheritance between dominant, recessive, over-dominant or log-additive can be chosen

for the study. One of the main pitfalls of this software, as the authors state, is that de-

tecting interaction between SNPs such as Linkage Disequilibrium become a critical issue

when the size of the dataset reaches a large number of SNPs. For these reasons, in the

research presented in this Thesis, an improvement of this software is proposed in order to

overome the limitations that large datasets introduce in terms of computational complex-

ity, and therefore time and memory constraints. A detailed analysis of the proposed new

approach is presented in Chapter 6.

2.5.7 Clustering Techniques

In the new technique for redundancy elimination proposed in Chapter 6, different clus-

tering techniques are employed. For this reason, in order to provide a grounding to these

approaches, a brief overview of the clustering techniques that have been used in the ex-

periments is now given. Clustering techniques aim to divide a population into natural

subgroups where instances strongly resemble to each other. Nowadays there are several

tools available that perform this task in different ways. These clusters can either be exclu-

sive if the instance belongs in one single group or overlapping when the instances fall in

several groups. They can also be probabilistic if the instances belong to each group with a

certain probability. Finally they can be hierarchical when there are fixed groups at the top
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level, which are further refined in the lower levels even down to the individual instances.

Hierarchical Clustering

The Hierarchical Clustering is based on the use of the similarity matrix which gives a

measure of the all pairwise relationships between the instances of the given dataset. These

association measures are used to build a tree displaying the specified relationship between

the entries. This technique realises a sequence of steps in which the dataset is partitioned

in a first level categories which in turn contain the subsequent level of partition. There

are therefore different output depending on the level chosen. The branches at the bottom

of the tree represent an entry while the root of the tree represents the entire collection of

entries.

There are two kind of hierarchical clustering techniques, the agglomerative and the

divisive, which work in opposite direction. In the agglomerative method, the first step as-

signs a cluster to each instance and subsequently merge two cluster at each iteration until

the final unique cluster is reached which consists of the whole dataset. There are different

aggregation methods that can be used and each one is based on a different definition of

similarity/ dissimilarity between two given groups of data [107, 108]. The following list

includes some of the possible options available for similarity definition:

• Ward (recursively):

d(AB,C) = [(nA +nC)d(A,C)+(nB +nC)d(B,C)−nCd(A,B)]/(nA +nB +nC)

• Single: d(A,B) = minimum of all distances between A and B

• Complete: d(A,B) = maximum of all distances between A and B

• Average: d(A,B) = mean of all distances between A and B

• Mcquitty (recursively)

d(AB,C) = 0.5d(A,C)+0.5d(B,C)

• Median or Gower’s method (recursively)
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d(AB,C) = 0.5d(A,C)+0.5d(B,C)−0.25d(A,B)

• Centroid can be calculated recursively:

d(AB,C) = [nAd(A,C)+nBd(B,C)−nAnB/(nA +nB)d(A,B)]/(nA +nB)

In the divisive method, the procedure starts from the root of the tree and the population

is split up at each step until the leaves are reached and the amount of clusters is equal to

the number of instances. This second approach provides advantages for users interested

in the main structure of the data rather than in a detailed description of individual points.

Nevertheless, this method brings computational problems due to the consideration of all

the possible divisions of the data in two distinct subgroups, at the first step. For this reason

this method has rarely been applied and it is commonly not included in the available

clustering algorithms.

In order to visualise the results from the clustering, a special type of tree structure

called a ‘dendrogram’ is provided by hierarchical clustering algorithms. This graphic

consists of layers of nodes, one for each cluster. Lines connect nodes to represent clusters,

nested into one other. Horizontal cuts of the tree detect different cluster solutions.

A typical feature of hierarchical clustering is that it can never correct a choice made at

a certain step, as once the agglomerative technique has merged two clusters they cannot

be separated any more. Equally, once that the divisive method has split up a cluster, this

cannot be reunited any longer. This lack of flexibility, while on the one hand dropping the

computational complexity, on the other hand precludes any possible correction [109–111].

K-Means

The ‘k-means’ algorithm is a simple, classic and straightforward technique which detects

clusters by dividing the population into disjoint groups composed of numeric instances.

The number of clusters, k, needs to be set beforehand so that k random points are chosen

as cluster centers. The instances are assigned to each cluster according to a Euclidean

distance matrix. Then the centroid of the instances is calculated for each group as the

mean distance and this is considered the new cluster centre. Repeating the whole process
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until the same points are assigned to the same cluster brings the output to a stabilised

value for each group. Once the iteration is stabilised, each point is assigned to its near

cluster centre in order to minimise the Euclidean distance. Yet as this minimum is not

global but only local, the final output is quite biased by the initial random choice. This

means that different trials can easily give different results. For this reason this algorithm

is usually run several times, with different initial choices and the result that is most con-

sistent with the specific application (according to some determination) is chosen. There

are then several variants of the basic ‘k-means’ technique which have been developed for

different applications together with supporting analysis for choosing the best number of

clusters [112].

EM-Algorithm

The ‘k-means’ technique shows some of the typical shortcomings of heuristic clustering

such as the arbitrary division into k groups, the cut-off value to prevent each instance to

become a single cluster, the possible influence of the ordering and the questionable choice

of the final local minimum. An alternative method, that features a more principled statis-

tical approach, can be used to overcome some of these drawbacks. The basic idea of an

‘Expectation Maximisation’ (EM) Algorithm is to assign each instances a probability to

belong to each cluster instead of placing them categorically into one of them. In simple

terms, the dataset can be seen as a group of clusters, each one with a different distribution

pattern which gives a probability that a given instance would have a certain set of attribute

values if it was a member of that cluster. Moreover, the clusters are not equally probable

which means another distribution explains their relative populations. All these consider-

ations necessitate a substantial number of parameters of the mixture model that need to

be calculated. The basic idea is to iterate the same basic procedure used for ‘k-means’.

After an initial estimation of the unknown parameters, the clusters probabilities for each

instance is calculated and used to reestimate the parameters in an iterative process. The

algorithm converges toward a fixed point without really reaching it and the process can

be stopped when the goodness of the clustering is an acceptable one. This ‘goodness’ is

measured by the overall likelihood that the data comes from the dataset, given the clusters

found, and it increases at each iteration of the EM algorithm. As for the ‘k-means’ tech-
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nique, as the maximum to which the algorithm converges is only local (and not global),

the whole procedure should be repeated many times with different initial guesses and the

largest maximum should be chosen [112].

2.5.8 Sampling Techniques

In this section an overview upon the sampling techniques is given in order to provide a

background for the type of sampling method used in the RDsnp function, described in

Chapter 6.

A description of the sampling solutions, provided by Levy et al., can be summarized as

below [113]. Sampling is a relevant aspect related to the data collection task. It consists

of the selection of a subset of observations from an initial population under analysis.

It is a statistical approach used for extracting specific information from initial datasets

especially for statistical inference tasks. The main reasons why a population is sampled

for analysis is to reduce the costs and time for analysing every single individual and to

overcome the problem of a dynamic population, in which individuals change with time.

The sampling process can be divided into probabilistic and non-probabilistic types. In

the former, every individual of the population has a chance of being selected, which is

accurately determined. In the latter, there are some elements of the population that have no

chance of being selected or this probability cannot be determined. Within these different

types of approaches, various sampling methods can be applied, depending on the cost

constraints, availability of information, expected quality of the results etc.

Simple random sampling consists of the selection of elements from the group with the

same sampling probability. This means that all the subsets of the population, including

every single element has the same probability of being selected, minimising bias and

simplifying the analysis of results. A drawback of this method is that the subset sampled

may not be representative of the population because of its random nature. Moreover, this

approach does not provide sampling from different subsamples of the population. This

can be overcome applying systematic and stratified techniques.

Systematic sampling consists of ordering the population in a given scheme and then

selecting every nth element where n is the ratio between the population size and the sam-

ple size. Providing that the starting point of sampling is random, this approach is a
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probabilistic one. In this case, all elements have the same probability of selection but

different subsets of the same size have different selection probabilities. This approach

presents limitations in presence of periodicities, losing the representativeness of the sam-

ple. Whenever the population is divided inro different subgroups, stratified sampling can

be employed. Each stratum is sampled as an independent subgroup and therefore different

sampling approaches can be applied. This method allows for inferences upon subgroups

and more efficient statistical estimates. Some of the drawbacks are due to an increase of

the cost and complexity of the sample selection, the bias related to the type of the specific

stratification chosen and the possible requirement of a larger sample size, depending on

the amount of strata.

Another type of sampling is based on clustering. These techniques selects individuals

in specific area or cluster, with specific characteristics. Even if this reduces cost for the

sampling phase, it could affect the accuracy of the results due to a potential bias in the

cluster choice.

Sampling procedures are subject to different type of errors, in particular the sampling

errors include selection bias when the selection probabilities are different from the ex-

pected ones and random sampling errors due to the elements in the sample being selected

at random. In 2002, Daszykowski et al. gave an overview of different types of subset

selection methods aimed at detecting the most representative elements of a dataset, for

different applications [114]. Within the sampling methods, they distinguished two main

groups, the cluster-based designs and the uniform designs. In the former the dataset is

first clustered (for instance with a K-means approach) and then the representative objects

are selected. In the latter the selection is applied uniformly within the dataset. The basic

concept of uniform design techniques is to select the object which is the closest to the

data mean as first component of the representative subset. Following this, in a recursive

way, the dissimilarity between the object in the original dataset and the objects in the new

subset created is assessed and the most dissimilar object to the ones already included in

the subset is selected, until the final subset size is reached. Different algorithms based on

this design can be found in the literature [115–117]. Regarding the cluster-based design,

the selection is performed after the identification of different groups in the dataset. This

requires the application of cluster techniques within the various options available [109].
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Iteratively, the selection of one object from each cluster, e.g. the closest to the mean is

repeated until a subset of desired size is obtained. If the data is originally clustered, this

technique should be applied to each single cluster. In conclusion, as the uniform designs

can deal with any type of data structure, they will be less computational expensive than

the cluster-based methods when the original data is already composed of clusters [114].

In this approach presented in this Thesis, the random sampling technique is chosen for

selecting representative samples from general groups created. This is due to the need to

reduce the computational complexity and run time of the technique analysed. For a more

detailed analysis of this issue the reader is referred to 6.7.

2.6 Software Packages

In the following section, the two major software packages used in this work are presented.

The Weka tools are used for decision tree analysis, and the R language is used for the

implementation redundancy detection technique, while the improvement of TRANSMIT

software is realised in C++.

2.6.1 Weka

Weka is a software package which consists of a collection of machine learning algorithms

for data mining tasks. The algorithms can either be applied directly to a dataset or called

from Java code via labraries. This software includes different types of data processing

tools (e.g. pre-processing, classification, regression, clustering, association rules and vi-

sualization) but it is also well-suited for developing new machine learning schemes. An

example of the friendly interface provided by Weka is shown in Figure 2.14.

The dataset is roughly equivalent to a two-dimensional spreadsheet or database table

and it is a collection of examples which are usually known as ‘instances’. Each instance

consists of a number of attributes, any of which can be nominal (one of a predefined

list of values), numeric (a real or integer number) or a string (an arbitrary long list of

characters, enclosed in ‘double quotes’). The external representation of an onstances

class is an ARFF file, which consists of a header describing the attribute types and the

data as comma-separated list.
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Figure 2.14: Weka - exemple of friendly interface

In the pre-processing step, which which has a relevant role in machine learning, it

is possible to apply different kind of filters to the dataset. The Weka filters package

is composed of different tools that transform datasets by removing or adding attributes,

re-sampling the dataset, removing examples and so on. All filters offer the options for

specifying the input and output dataset and further different parameters, specific to each

filter, can be set accordingly. The Weka filters package is organised into supervised and

unsupervised filtering, which in turn are subdivided into instance and attribute filtering.

In the second step it is possible to choose within a large amount of classifiers which

are the core of Weka. A classifier model is an arbitrary complex mapping from dataset

attributes except one which represents the class attribute. Each classifier performs this

mapping using different criteria, referring to different models of analysis. There are sev-

eral different options for classifiers, most of which are related to evaluation purposes.

These are learning algorithms composed by specific routines able to generates a classifier

model from a training dataset (‘buildClassifier’), to evaluate the generated model on an

unseen test dataset (‘classifyInstance’) and to generate a probability distribution for all

classes (‘distributionForInstance’).

There are different ways to measure the classifier performance, for instance through

the accuracy measurement. An example of this applications is the ‘hold-out estimate’
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which is realised using a training set and a test set which are mutually independent. In

order to estimate the variance in these performance estimates, hold-out estimates may be

computed several times by creating different datasets, randomly sampling the original one

in order to build the training and the test set. The average and the standard deviation of

the accuracy is then computed from all the test datasets created.

An alternative method which is more elaborate is cross-validation. In this case the

initial dataset is split up into n different subsets containing (approximately) the same

amount of instances. At each step the testing dataset will be chosen as one of these

subsets and the rest will represent the training set for the classification process. The cross-

validation estimate of the accuracy is given by the average of the test results collected

using every test fold. The subsets of data are created with the same class distribution

present in the original dataset, just randomly or simply by small modifications from each

other. In the latter case, the cross-validation can be stratified.

Finally, another feature of the Weka tool is the possibility to cluster the dataset group-

ing different individuals with the same features, extract possible rules between attributes

and visualising every combination between the attributes and the class [118].

2.6.2 R Language

R is one of the languages that have been used in the course of this study. It is a general

purpose informatics tool which has been created to perform calculations and graphics for

statistical applications. It is a GNU project and it has been developed initially by Robert

Gentleman and Ross Ihaka at the Statistics Department of the University of Auckland.

Since 1997, a large group of people has been giving valuable contributions to the devel-

opment of this useful tool. It has been inspired by the introduction of the S environment,

created in 1988 by John Chambers and al. at Bell Laboratories [119] which explains many

similarities and why much code written for S runs unaltered under R. It provides an Open

Source route to statistical methodologies, creating good quality plots for publications, to-

gether with mathematical symbols and formulas. R is available as Free Software under

the terms of the Free Software Foundation’s GNU General Public License in source code

form. It compiles and runs on a wide variety of UNIX platforms and similar systems (in-

cluding Linux, Windows and MacOS). Several packages are available for extensions of
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the basic software, through the CRAN family of Internet sites covering a very wide range

of modern statistics. Moreover, as R, like S, is designed around a true computer language,

it is possible for users to create new functions and procedures. For computationally inten-

sive tasks, C, C++ and Fortran code can be linked and called at run time.

The reason for the selection of the R language in this Thesis is because it is an open

source tool able to effectively handle and store data. It provides a range of operators

for calculations on arrays (in particular matrices) and a large, coherent, integrated set of

intermediate tools for data analysis and graphical display. It is finally a well-developed,

simple and effective programming language which includes conditionals, loops, user-

defined recursive functions and input and output facilities.

2.7 Summary

This review has aimed to provide a general overview of the core upon which this research

work has been developed. Genetics is a field in continuous expansion which is therefore

attracting the attention of an increasing number of researchers and a growing amount of

money for studies. Thanks to the continuous optimisation of data gathering techniques,

human beings are more and more interested in discovering the complex and intriguing

rules hidden in their genetic heritage. Bioinformatics was born with the aim to provide

researchers with original and versatile tools in order to achieve this challenging goal.

In the particular field of disease analysis for genetic susceptibility, lots of important

contributions from all over the world have been published in relevant books and journals.

Part of this Chapter is dedicated to the relevant achievements for an important disease,

namely pre-eclampsia (PE). The main issue identified from the current literature review is

the limitation of the tools employed for PE studies in terms of database size. Additionally

more extensive research needs to be performed to validate or reject the current findings

that appear sometimes contradictory or lacking in evidence. New improved tools need

to be implemented in order to help research community in this task for coping with the

continuously increasing size of genetic datasets. For this reason the majority of work in

this Thesis is developed through experiments and tests applied to PE medical datasets.

Extensive analysis of the literature highlights the different research approaches carried
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out for disease association studies and the different tools which have been used for this

purpose. In particular, the drawbacks of the current TDT tools solution are discussed and

a possible improvement of the TRANSMIT software is proposed in order to provide the

doctors with a tool able to select a smaller amount of SNPs associated with the disease

under analysis. This improvement provides also additional information that can be used

for further validation purposes, as described in Chapter 3. Furthermore, the limitations of

the application of a single technique for case-control analysis with decision tree algorithm

has led to the development of a new framework based on a combined analysis of multiple

decision-tree algorithms in order to provide a more robust result, as shown in Chapter 4.

Moreover, within the specific feature selection techniques employed for the reduction

in size of SNPs datasets, the application of LD function has resulted in a very flexible

and versatile tool for detecting redundancy between SNPs. Unfortunately, however, this

technique suffers from a serious limitation limitation for the analysis of large databases, as

discussed. For this reason, in Chapter 6 a new proposed improvement of the LD function

is shown and evaluated.

This material provides the reader with a solid base on which to understand the scope of

this work and the reason for the choices that have been made along the way. In conclusion

then, this Chapter provides an overview of the hypothesis that brought the realisation of

the final comprehensive framework presented in Chapter 7.



Chapter 3

TDT : The TRANSMIT Software and

the Proposed Optimization

3.1 Introduction

The growth of genomic information has increased the interest in gene-disease association

studies. Within the different ways to approach this problem, the family based analysis is

one of the most commonly used when the data is composed of individuals belonging to

family groups. In particular, the Transmission Disequilibrium Test (TDT) is a successful

technique for the analysis of genetic family based data.

In Chapter 2 an overview of the main tools used in the application of TDT is given.

In this Chapter, attention is focussed on the TRANSMIT software because it differs from

similar solutions in that it can deal with transmission of multi-locus haplotypes, even if the

phase is unknown, and parental genotypes may be unknown. This tool, which has been

widely used for genetic studies [120–122] is hereby analysed, discussed and assessed

through experimental research. After highlighting the limitations of this algorithm, an

optimisation of TRANSMIT is proposed through a multiple-test analysis of genetic in-

formation for the assessment of disease susceptibility. The results that emerge from the

analysis of a medical dataset of pre-eclampsia are shown and discussed.
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3.2 Epistasis Discovery

A topic of current interest in genetic data analysis for association studies is the non-linear

interaction between genetic information. This phenomenon, better known as epistasis, is

defined as a masking effect due to an allele at one locus preventing a second allele at a dif-

ferent locus from manifesting its effects [123]. Different methods for epistasis detection

vary according to different types of analysis (association or linkage) and different type of

trait (quantitative or qualitative).

Examples that have been successful in the literature are probabilistic graphical models,

in which a graph denotes the conditional independence structure between random vari-

ables [124]. One of the most commonly known graphical representation of distributions

is, for instance, the Bayesian network which has been used in linkage analysis [125,126].

This is also known as a directed acyclic graphical model as it represents a set of random

variables and their conditional dependencies via a directed acyclic graph (DAG). There

are different efficient algorithms that perform inference and learning in Bayesian net-

works. The use of probabilistic models together with the algorithms used to induce these

models from data represents a relevant contribution in the application of evolutionary al-

gorithms. Focused on the solution of the linkage learning problem, probabilistic models

aim to explain the interactions between the components, taking support from the theory

of graphical models. These models can represent a priori information about the problem

structure, allowing a more efficient search of optimal solutions [127].

Evolutionary search algorithms for solving high-dimensional optimisation problems

are an alternative and successful methodology able to cope with the current large amount

of data available. They have become one of the best choices for many of the various Bioin-

formatics problems. An example of a successful evolutionary approach able to perform

Bioinformatics optimisation tasks is the Estimation of Distribution Algorithms (EDAs).

These represent a specific class of evolutionary optimisation algorithms, based on esti-

mation of and sampling from probabilistic models and developed as a natural alternative

to genetic algorithms in the last decade [128]. In the specific field of epistasis discov-

ery, EDAs have been used to carry out a fine-grained stochastic search for optimisation

purposes [129–131].

The TDT implementation, discussed in this Chapter, and relative extensions [132], are
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one of the various approaches that focus on the issue of association testing but can be used

to detect and allow for epistasis in the specific field of family based studies [133]. There-

fore, attention is focused on the TDT technique and its implementation with TRANSMIT

software as it is a commonly used and appreciated tool in the specific field of family based

analysis.

3.3 TRANSMIT Software

The TRANSMIT software, implemented by David Clayton at the University of Cam-

bridge in 1999, is an algorithm which tests for association between genetic markers and

diseases by examining the transmission of markers from parents to affected offspring.

There are several tests that have been proposed for this kind of analysis but TRANSMIT

differs from other similar programs because it can deal with transmission of multi-locus

haplotypes, even if phase is unknown and parental genotypes may be unknown. The phase

is defined as the arrangement of alleles at multiple loci on homologous chromosomes. For

example, in a diploid individual with genotype Aa at one locus and genotype Bb at an-

other locus, possible linkage phases are BA/ba or Ba/bA, where ‘/’ separates the two

homologous chromosomes [32].

A description of this software can be found in Clayton documentations [67] and is

summarized in this section. This technique creates a score vector which is composed by

two elements: observed transmissions of a certain haplotype to affected offspring and

expected transmissions under Mendelian inheritance. When transmission is uncertain,

this vector is averaged over all possible haplotype assignments to parents and offspring,

using weights proportional to the probability of each assignment. Data from unaffected

siblings (or siblings whose disease status is unknown) may be used to narrow down the

range of possible parental genotypes which need to be considered. The program produces

the two asymptotic chi-squared tests:

(1) For each haplotype or allele, a test on one degree of freedom (1-df) for excess

transmission of that haplotype.

(2) A global test for association on H −1 degrees of freedom, where H is the number

of haplotypes for which transmission data are available.
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If there are rare haplotypes in the analysis, the approximate chi-squared distribution of

test statistics will not hold. Two flags are available to protect against this. One causes

aggregation and renumbering of alleles before the haplotype construction, the other one

simply omits rare haplotypes from tests. The former approach inevitably results in some

information loss but, when parents are missing, it may reduce the number of possible

parental haplotypes that must be considered, and so reduce the computational time.

A good guideline to check how common a haplotype must be for the chi-squared tests

to be used legitimately is to look at the table of ‘observed’ (O) and ‘expected’ (E) trans-

missions. If there are N heterozygous parents carrying a specific haplotype then, under

the null hypothesis, the haplotype is expected to be transmitted N/2 times. The vari-

ance of (O−E) will then be N/4. Therefore, an equivalent number of fully informative

transmissions is given by multiplying by four the tabulated value for Var(O−E) in the

TRANSMIT output. A widely used guideline for the applicability of chi-squared tests

is that they should only be used when all expected frequencies exceed five. This would

correspond to ten fully informative transmissions and to a value of 2.5 for Var(O−E).

In the most recent version of the program a bootstrap test procedure is implemented, and

this should be more accurate than the chi-squared approximations [67].

3.4 The Standard Experimental Approach

Following, an experiment with TRANSMIT software is shown and discussed in order to

highlight the limits of this method and introduce thus a new and more efficient way to

apply the TDT for SNPs analysis.

3.4.1 Experimental Data

In this study, the TRANSMIT software has been run with a pre-eclampsia dataset com-

posed of 2,500 individuals coming from different clinics spread around the United King-

dom: Glasgow, Newcastle, Leeds, Nottingham, Leicester, Stoke, Birmingham, Oxford,

Cambridge and London. Beside the clinical information, the original database contains

genetic data on eight different SNPs that medical staff assumes to be potentially related

to this disease. Each one of these SNPs can have two different kinds of allele, which are
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represented with the number 1 and 2 (see Table 3.1). As ‘C’ pairs with ‘G’, and ‘A’ with

‘T’, there are only two base-pair alternatives ‘CG’ or ‘AT’: hence a given SNP is either

‘CG’ or ‘AT’. Of these alternatives, one will naturally be more common than the other —

1 encodes the most common allele, while 2 encodes the rare allele.

The data input file for TRANSMIT should contain, for each person, the information

displayed in Table 3.2, for this reason, all the clinical variable have been erased. In Ta-

ble 3.2 the identify of the mother and the father must have the same family code. A sex

attribute of 1 stands for male, a ‘affected disease status’ of 1 represents unaffected, 2 rep-

resents affected and 0 represents unknown; furthermore, ‘a’ and ‘b’ are the values of the

alleles. In the input file, alleles must be coded as consecutive integers, with 0 represent-

ing unknown. Thus 0/0 represents completely missing data but, when each allele can have

two value, 2/0 represents either 2/1 or 2/2. A particular observation is necessary for SNPs

Table 3.1: Description of the eight SNPs included in the initial dataset.

SNP Name Allele 1 Allele 2

SNP1 4072 T C

SNP2 -1074 G T

SNP3 3889 C T

SNP4 172 C T

SNP5 676 G A

SNP6 1035 G A

SNP7 6066 C A

SNP8 11535 C A

Table 3.2: Information contained in the input data for TRANSMIT.

Attributes Type

family or pedigree code alphanumeric

person’s identifier within family alphanumeric

identity of father alphanumeric

identity of mother alphanumeric

sex 1,2

affected disease status 0,1,2

markers a/b
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which occur in the sex chromosome. Within the 23 pairs of chromosomes, there is one

which is related to the sex of the individual. In the female population these chromosomes

are the same (XX) whereas in the males population they are different (XY). For this rea-

son, SNPs which come from the sexual chromosomes need a different codification. For

instance if the SNP is X-related, which means it is present only in the X chromosome, the

possible SNP values for a female are: 1/1, 1/2 and 2/2; whereas for a male the SNP values

are 1/0 or 2/0. For markers on the X chromosome, males should have phenotypes coded

a/0 or a/a, so that males and females have equal length records.

Although these data must appear in the order specified in Table 3.2, persons need not

appear in the file in any particular order. Parents must be included in the data file even

if no data concerning them are available; such entries are necessary to correctly identify

relationships. Persons who appear on the data file only as parents do not need to have

valid entries in the ‘mother’ and ‘father’ fields and their disease status may be coded as 0,

as it is not used by the program [67].

3.4.2 Experimental Results

In the first experiment, the original database was pre-processed, in order to eliminate the

clinical variables, and passed to the system. Interpreting the obtained output, it is quite

clear that this kind of software can extract significant information from the database. In

Figure 3.1, the first column shows the list of the haplotypes transmitted to the babies of

mothers with pre-eclampsia and for each of them is shown the observed, expected occur-

rences, the variance and the χ2 value. Each haplotype is composed by eight numbers, one

for each SNP which in turn can take the value 1 or 2 (alleles). The first number of the

haplotype sequence corresponds to the first SNP and the last number corresponds to the

eighth SNP. The results show that there is an haplotype which seems to have a strict asso-

ciation with the disease as χ2 = 4.20 (df = 1). Following the interpretation of the results

obtained in this manner, we decided to extend the analysis by introducing a multiple-test

analysis of different combinations of SNPs, as this may provide new and interesting in-

formation about their association with the disease. In this way it is possible to provide

the doctors with a table showing all the possible combinations of SNPs and their signifi-

cance measured by the value of the χ2 parameter which comes out from the statistical test
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applied to each haplotype transmitted from affected mother to affected child.

The original database is made by a list of attributes which includes the genetic infor-

mation composed by a fixed sequence of different SNPs and in the first study performed

these genetic data have been analyzed in a simultaneous manner. In the subsequent stage,

additional data sets were formed by taking all the combinations of, initially, seven SNPs

from the original eight SNPs, and then by iteratively reducing the number of SNPs. When

each data set of SNPs had been extracted from the original database, they were then ana-

lyzed by the TRANSMIT software independently. In Figure 3.2, the results show that the

significance of the analysis is altered depending on the selection of SNPs. This observa-

tion opens up a new method of experimentation.

3.5 The Improved TRANSMIT Approach

The original version of TRANSMIT was designed to analyze a string of SNPs in a single

simultaneous analysis. In order to improve the performance of the software for a more ex-

tensive prospective assessment of the problem, a multiple-test analysis was implemented.

The idea was to build different datasets from the original one and test the software with

these new inputs in order to analyze different subsets of the available SNPs. The proposed

methodology is to create an amount of databases subsets with all the possible combina-

tions of 7 SNPs, 6 SNPs, 5 SNPs and so on.

3.5.1 Experimental Data

Given a set of n SNPs, the total number of all possible combinations of i SNPs (i = 1 . . .n)

taken from the set of n is
n−1

∑
i=2

iCn =
n−1

∑
i=2

n!

i!(n− i)!
.

In our case, given n = 8, there are 246 combinations of data set to be analysed. The

evaluation of the output provided from these 246 input sets may provide new information

related to the association between the disease and a single or a set of SNPs.
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Figure 3.1: First result from TRANSMIT on sequences of eight SNPs.

Figure 3.2: Result from TRANSMIT on sequences of different amounts of SNPs.

3.5.2 Experimental Results

Table 3.4 and Table 3.5 show the results obtained from the analysis of all these 246 input

files. The list contains all the sequences of SNPs that have been transmitted from the

affected mothers to the affected babies and that have a significant χ2 test within 1 degree

of freedom. If we consider a p value smaller than 0.05, we need a χ2 value greater than

3.84 in order to indicate an association between the haplotype and the disease. In each

column the value of the correspondent SNP is displayed and this can be 1 or 2 as in

these cases each SNP has two different alleles. The last column represents the maximum

value of the global χ2 with the respective degrees of freedom. At a first sight we can

easily notice that for every single haplotype the χ2 is greater than the minimum threshold,
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Table 3.3: Rsults form TRANSMIT - Example of two haplotypes with the SNP 1, 3, 6

and 7.
Haplotypes Observed Expected Var(O−E) χ2

2.1.1.1 19.615 26.968 12.531 4.31

2.1.2.1 47.407 38.608 17.42 4.44

whereas the global χ2 for each test is under the minimum value. From the biological

point of view this means that there isn’t enough evidence to reject the null hypothesis

which claims no-association between the disease and the SNPs under analysis.

There is another interesting observation which comes from the analysis of these re-

sults. In the test performed with four SNPs there are two different versions of the same

sequence of SNPs that seem to be significant: details are shown in Table 3.3.

The two haplotypes shown in Table 3.3 refer to the sequences of SNP1, SNP3, SNP6

and SNP7 (read from left to the right). If we focus our attention on SNP6 (the third one in

the haplotype sequence) we notice that the test on both its alleles are significant. For allele

1, the observed occurrences are clearly less than the expected values, which means this

allele is not associated to the disease. This is also highlighted by the results on allele 2,

for which the occurrences are evidently higher than the expected ones. These two results

support each other in the confidence to reject the null hypothesis.

3.5.3 Scalability

In terms of scalability, the maximum number of persons and families that are set by default

for this software are 5000 and 1000, respectively. No explicit information is given by the

TRANSMIT documentation on the maximum number of genetic markers to be analysed.

However, the general TDT approach is acknowledged to have some limitations when the

analysis is performed on large datasets of SNPs. Furthermore, the technique shown in this

Chapter requires the creation of a number of subsets of a dataset that grows quickly as the

number of SNPs to be analysed increases (see 3.5.1). Even a few hundred SNPs could

require an extremely long time to be analysed. For this reason, the proposed technique

is supposed to be applied at an advanced step of the genetic analysis work-flow, after the

initial dataset has been pre-processed for elimination of SNPs that are not relevant to the

analysis. A few dozen SNPs could be considered a dataset of reasonable size to provide
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Table 3.4: Results from TRANSMIT on all possible combinations of sequences of SNPs.

SNP 1 2 3 4 5 6 7 8 χ2 P-value Max Global χ2

2 SNPs 1 2 4.30 0.04 7.17 2df

2 1 2 4.54 0.03 12.61 12df

1 1 2 3.98 0.05

1 1 2 4.28 0.04

3 SNPs 1 1 1 4.13 0.04

1 2 2 4.38 0.04

1 2 1 4.14 0.04

1 2 1 4.31 0.04

1 2 1 1 4.63 0.03

1 2 2 1 4.23 0.04

1 1 2 1 4.05 0.04

1 1 2 1 4.29 0.04

1 1 2 1 3.97 0.05

4 SNPs 1 1 2 2 4.38 0.04

2 1 2 1 4.17 0.04

2 1 1 1 4.31 0.04 19.71 12df

2 1 2 1 4.44 0.03 19.71 12df

2 1 2 2 4.55 0.03

2 1 1 2 4.19 0.04

2 1 1 2 4.54 0.03

2 1 1 2 4.18 0.04

1 2 2 1 1 3.99 0.04

1 1 2 1 1 4.04 0.04

1 1 2 2 1 4.08 0.04

1 1 2 1 1 3.92 0.05

1 1 2 1 1 3.89 0.05 22.44 15df

1 1 2 2 1 4.35 0.04

1 1 1 2 1 4.03 0.04

1 1 1 2 1 3.98 0.05

2 1 2 1 1 4.49 0.03

5 SNPs 2 1 2 2 1 4.17 0.04

2 1 2 2 1 4.05 0.04

2 1 1 2 1 4.20 0.04

2 1 1 2 1 4.08 0.04

2 1 1 2 2 4.20 0.04

2 1 1 2 1 4.18 0.04

2 1 1 2 1 4.10 0.04

2 1 1 2 1 3.82 0.05

2 1 1 2 2 4.54 0.03

2 1 1 1 2 4.20 0.04

2 1 1 1 2 4.20 0.04
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Table 3.5: Results from TRANSMIT on all possible combinations of sequences of SNPs.

SNP 1 2 3 4 5 6 7 8 χ2 P-value Max Global χ2

1 1 2 2 1 1 4.09 0.04

1 1 1 2 2 1 4.08 0.04

2 1 2 2 1 1 4.20 0.04

2 1 1 2 1 1 4.19 0.04

2 1 1 2 2 1 4.21 0.04

2 1 1 2 2 1 4.13 0.04

6 SNPs 2 1 1 2 1 1 4.09 0.04

2 1 1 2 1 1 4.09 0.04 27.50 23df

2 1 1 2 2 1 4.17 0.04

2 1 1 2 2 1 4.10 0.04

2 1 1 1 2 1 4.20 0.04

2 1 1 1 2 1 4.20 0.04

2 1 1 1 2 1 4.20 0.04

2 1 1 1 2 1 4.20 0.04

2 1 1 1 2 2 4.20 0.04

1 1 1 2 2 1 1 4.08 0.04

2 1 1 2 2 1 1 4.20 0.04

7 SNPs 2 1 1 2 2 1 1 4.10 0.04

2 1 1 1 2 1 1 4.20 0.04

2 1 1 1 2 1 1 4.20 0.04

2 1 1 1 2 2 1 4.20 0.04 22.25 22df

8 SNPs 2 1 1 1 2 2 1 1 4.20 0.04 28.84 32 df
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relevant benefits from the application of this technique in disease association studies.

According to these considerations, this method is included within the final framework

proposed in this Thesis, as shown in Chapter 7, following a pre-processing stage for the

elmination of redundancy in the SNPs. Other solutions can be found in the literature,

based for instance on probabilistic graphic models [134], able to detect epistasis between

SNPs, without the requirement for feature selection methods in a pre-processing stage.

3.6 Summary

In this Chapter, an approach to the analysis of SNPs association with the pre-eclampsia

disease for family based datasets is presented. Table 3.4 and Table 3.5 provide clinicians

with an exhaustive summary of the χ2 test. This method extracts the list of the haplotypes

(of different length) that have a significance and displays the global χ2 value for every

test performed. The value of this parameter shows the degree of confidence that should

be kept in accepting or rejecting the null hypothesis. Once the candidate genes have been

identified, it is possible from such a table to detect whether there are SNPs that keep the

same allele for all the haplotypes shown in the list or whether there is any SNP which is

always present in all the different combinations of SNPs (such as SNP3 in this example).

For this reason, this is a useful tool for understanding whether the genetic data under

study should be considered for further studies or should be eliminated from consideration

immediately.

In the analysis of complex diseases, clinicians often have to deal with huge databases

containing very many SNPs coming from different genes. Scalability limitations of this

technique entail the application of a pre-processing stage for size reduction when the num-

ber of SNPs is more than a few dozen. This issue is addressed in detail in Chapter 6. Once

a first stage of redundancy detection and elimination has been carried out, the technique

presented in this Chapter can then be used to identify those SNPs that do not show any

association with the specific disease being considered. The result of this is a small number

of SNPS that may be associated with a disease, requiring further medical investigation.

Hence, the attention of the clinicians can then be focused only on the genetic targets that

contain the most significant information for the disease under consideration.



Chapter 4

Case-Control Study: A New

Framework for the Application of

Decision Trees to SNPs Datasets

Analysis

4.1 Introduction

In the previous Chapter an example of a family based study has been shown through

the utilisation of the popular TDT technique as implemented with TRANSMIT software.

This is feasible whenever the data under analysis is composed of individuals belonging

to the same family. When this is not the case, different techniques need to be employed.

This Chapter is thus focused on an alternative method that is available to use when the

population of the dataset is completely unrelated, that is a case-control analysis. An

overview of this method based on decision trees is shown in the first section.

Following this, a new proposed methodology for undertaking association studies with

SNPs data is shown through the three main streams of action: (i) a pre-processing step,

(ii) assessment of statistical significance, and (iii) actual analysis of the results. This tech-

nique is based on the assumption that a previous stage to eliminate redundancy has been

applied to the dataset in order to remove the variables which contain superfluous informa-

tion and thus could affect the quality of the final results. The actual analysis is based on
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the application of three of the most commonly used decision tree algorithms with the aim

of comparing and contrasting them. Before applying these algorithms, a complex pre-

processing stage of the initial database is performed in order to encode attributes (where

necessary), explore the data, treat missing and unbalanced data, and set parameters. The

application of this technique to an example of a medical database containing heteroge-

neous information about a list of patients affected by pre-eclampsia (PE) is described and

the results are shown.

In the concluding part of this Chapter, several experiments have been performed with

the available SNPs dataset for PE in order to give more examples of the application of

this new methodology. Additionally, many considerations about data and medical impli-

cations are discussed to complete the overview of the association study for PE. All the

operations and programming for the processing of the data is performed using the R lan-

guage. The final goal of this Chapter is both to propose a valid method for SNPs analysis

as an alternative to the TDT method previously discussed and, from the medical point of

view, to discover any possible association, either genetic or phenotypic, with the specific

disease of pre-eclampsia.

4.2 Case-Control Analysis and Decision Trees

There are different models that have been used by researchers for studying general genotype-

phenotype associations depending on the kind of application. Population-based and family-

based strategies with their numerous extensions are all widely used to detect genes associ-

ated with complex diseases. Association studies are defined as “a gene-discovery strategy

that compares allele frequencies in cases and controls to assess the contribution of genetic

variants to phenotypes in specific populations” [32]. In particular, Case-control study

implies the creation of two different groups among the population, the cases and the con-

trols group. In PE, for instance, a population of mothers can be considered and they can

be split into sick mothers and healthy ones. However, the problem can also be studied

by considering different prediction variables, like for instance a clinical feature of the

disease.

Within the general data mining tools, there is a sub-class of algorithm widely used for
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case-control analysis in SNPs studies: the decision tree algorithms [51, 135, 136]. These

are based on classification trees to predict membership of cases in the classes of a categor-

ical dependent variable. In the study shown in this Chapter, three of these algorithms are

taken in consideration: ID3, ADTree and C4.5 [47,48,118,137,138]. The aim of the new

methodology here proposed is to detect the best and more reliable results by comparing or

contrasting the outcomes obtained from a variety of decision tree algorithms, identifying

commonality between trees.

4.3 Methodology

This is a kind of progressive analysis through which significant results are detected in the

first stage then deepened and possibly confirmed in the subsequent steps. This section is

divided in three main parts, according to the methodology structure: the pre-processing of

the dataset, statistical significance evaluation of the results and results analysis. All these

parts are discussed step by step in order to allow the methodology to be fully described.

4.3.1 Pre-processing Methodology

In this section, the analysis related only to a specific dataset is shown. In particular, in

this context, a database (DB) will be referred as a specific subset of records obtained from

the original (entire) set of records. In general, the original set of data consists of one

or more attributes of SNPs and one or more attributes of phenotypic information. The

pre-processing steps are shown in Figure 4.1.

Choice of Attributes

Every time a new DB is created there are attributes that may be deleted as considered

useless or not informative for that specific population. In the first stage, all the remaining

attributes can be kept in order to detect any possible feature that is significant in this anal-

ysis. The results which are further obtained will remove the less informative attributes.

Considering the final DB, different kind of analysis can be performed in this study: some

of them consider all the attributes, other are focused only on the SNPs or phenotypic

attributes.
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  Medical Remarks 

      Prediction Class Choice 

         Missing Values Issue 

           Attributes Choice 

            Data Balancing 

Figure 4.1: Sequence of steps to follow in the pre-processing of a general dataset com-

posed of medical and SNPs attributes.

Sometimes within SNPs analysis, the set of data may include information about fam-

ilies. In this case, there can be some features coming from the relatives of the individuals

under analysis (mothers or babies in the example of this study). This information can be

easily transferred from the columns of one row to additional columns of a given individ-

ual, and hence analyzed as a new attribute. For instance, considering a dataset of only

babies, new columns with the genetic information about their parents can be added.

Choice of Predictive Class

In general it is interesting to analyze the data considering different predictive variables

for the same population. Many decision tree algorithms require the prediction class to

be a categorical attribute and, more specifically, a Boolean one. If this is not the case, a

threshold needs to be found in order to transform the variable into a Boolean one. As this

analysis is a case-control one, only Boolean prediction variables are considered.

Consideration of Missing values

Some decision tree algorithms can deal directly with attributes containing missing values,

whereas others cannot. It may be necessary to eliminate the missing values or to adopt

another strategy such as imputation of missing data. It may not be appropriate to simply

remove rows with missing values, in case there are many missing values and their deletion

could therefore affect significantly the size of the DB. Attributes containing many missing

values may still be dropped at a later stage. On the other hand, in the specific application



4.3. Methodology 82

in this study it is possible to keep the missing values as the algorithms chosen can deal

with a codification for them.

Balancing of Data

The balancing of the DB is quite an important issue to be considered before performing

the analysis. Often, the ideal situation is to have approximately half of the individuals

belonging to the cases and half to the controls in order to have the least biased perfor-

mance. If this is not the case, it is possible to create a new DB by selecting randomly a

fixed number of people from both the groups.

Medical remarks

As the analyzed data is of clinical type it is useful to have feedback from the medical side

throughout the whole process of analysis. There are attributes and prediction classes that

have more relevance than others for the user, the doctor in this case. The final thresholds

found for the prediction variable need to be considered from the medical point of view

before defining them to be interesting. In general, any finding that can be significant from

the statistical point of view it is not always meaningful for the medical community.

4.3.2 Statistical Significance Assessment

In this section an overview of the Kappa statistic is given as this is the parameter used for

the assessment of the statistical significance of the results.

The Kappa statistic is a statistical measure of inter-annotators agreement for categori-

cal items. It is typically used to assess the degree to which two or more judges, examining

the same data, classify them in different exclusive categories. It is considered to be more

robust than simple percent agreement calculation because it takes into account the agree-

ment occurring by chance, even if there is some controversy upon the way chance can

affect the judges [139]. A Kappa value equal to 1 indicates complete agreement and a

Kappa value equal to 0 indicates agreement equivalent to chance. In general terms, the

precision of a test is its ability to give results that do not rely on guess-work. Precision,

as it pertains to agreement between observers, is often reported as a Kappa statistic [140].
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Although there is some controversy upon the interpretation of Kappa values, a common

reference scale defines a fair agreement the range of Kappa between 0.2 and 0.4 [141].

In this context, in order to assess the prediction accuracy of the algorithms employed,

the Kappa statistic is calculated and used as the comparison between different algorithms

and different experiments results, as it is the most commonly reported measure in medical

literature [140]. However, the Kappa coefficient does not reflect sampling error and where

it is intended to generalise the findings of a reliability study of a population of judges, the

coefficient is frequently assessed for statistical significance through hypothesis tests.

Therefore in this work, in order to have a robust interpretation of the Kappa obtained

from the empirical observations, appropriate tests are performed on the results. In par-

ticular in order to verify that the differences obtained in the Kappa value are statistically

significant, tests for the analysis of the variance such as ANOVA or t-tests are applied to

the results and the outcome is discussed. These tests are used to analyse the mean and

variance of different populations in order to assess whether their means are equal. When

only two populations are studied, a t-test is applied; when more than two populations are

analysed, ANOVA can be used. In these experiments the setting of the critical p-value is

kept to the standard value of 0.05.

4.3.3 Results Analysis Methodology

There are different kinds of algorithms for data mining that can be used but the essen-

tial idea is to perform repeated case-control analysis, each time defining the class and

determining the subset of the original database to use. In this study, three decision tree

algorithms which all work with a nominal class were used: ADTree [3], ID3 and C4.5.

The steps for the data analysis process are shown in Figure 4.2. For this study, the

Weka software [118] was used to perform the analysis of the DB (note that in Weka the

C4.5 algorithm is known as J48).

ADTree Analysis

In the first step the DB is analyzed with one of the three mentioned algorithms, arbitrarily

chosen. In this study, for instance the ADTree algorithm is taken as first one. If the chosen

predictive variable is a continuous one, it needs to be converted to a Boolean attribute.
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Validation: C4.5 & ID3 Analysis 

    Best thresholds for the Class 

   DTree Analysis: Kappa Value 

        DTree Results Analysis 

Results Comparison: C4.5 & ID3 

             Cross Analysis 

Figure 4.2: Sequence of steps to follow in the analysis of a genetic and clinical DB with

the CBC as predictable variable. The applied algorithms are: ADTree, Id3 and C4.5.

Therefore, a range of thresholds has to be chosen for this class in order to detect the ones

which give the most significant results. It is possible to select a fixed number of different

thresholds, for instance 10, within the range of the variable and check for the reliability

of the results.

All algorithm parameters are set to their default value (in Weka), as an exhaustive

examination of the effects of varying parameters is outside the scope of this work. The

validity of the analysis has been calculated through the use of the Kappa statistic and

from the results it is easy to establish which thresholds provide a statistically significant

result according to a Kappa value greater than 0.2. Then a further selection can be done

by means of clinical feedback; there may be thresholds which don’t have any particular

medical meaning and other ones which correspond to medically accepted values.

In this analysis ten-fold cross-validation is used and repeated ten times with different

seeds to create different random partitions of the data. The seeds can be chosen either

arbitrarily or randomly. An average of the obtained results is then calculated.
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Validation - C4.5 and ID3 analysis

In order to confirm (or not) these findings, the DB is processed with two other decision

tree algorithms, C4.5 and ID3, with the same thresholds used in the previous analysis.

These algorithms are also run with a ten-fold cross-validation using different seeds and

the average and standard deviation of the Kappa value obtained from each result are cal-

culated.

Determining Threshold for the Predictive Variable

In the next stage the focus is only on the data subsets whose thresholds give significant

results (the ones for which Kappa is greater than 0.2) in order to check the Kappa trend.

The algorithms that give the best results are run again and this time with the subsets of

data whose class thresholds is included in the range previously found, choosing a number

of different threshold values, for instance 10 or 20. From the results it is possible to detect

the subset whose thresholds give a Kappa greater than 0.2.

Once that the thresholds have been chosen it is important to check the number of

individuals involved in each test and the ratio of cases to controls in order to deal with

a reliable test. If one of the final subsets has a case-control ratio above or below 50%,

it could be not elegible for further analysis. Lots of studies have been published about

the optimal case-control ratio and size of the dataset depending on the kind of application

used in the analysis [142–145]. In this case, it is reasonable to consider a limit for the

cases-controls ratio around one-third to be an acceptable one, as far as the amount of

cases and controls don’t fall below an arbitrary threshold of around 100 individuals.

ADTree Results Analysis

Focusing on those three versions of the dataset which give the best Kappa, it is now possi-

ble to analyze the results of the tests in order to determine whether they can be considered

reliable. The first step consists of the comparison of the decision trees obtained from the

DBs processed with ADTree, each one with a different class threshold. It can happen

that, comparing the different trees, they have different shape and therefore different rules

of classification but it is still possible to list the attributes which are present in all the trees
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obtained. The attributes can be detected from each node of the final classification tree.

Results Comparison - C4.5 and ID3

The same procedure is applied also to the second and the third algorithm, as far as they

provide reliable results. For instance, for the set of trees obtained with ID3, each one with

a different class threshold, a list of the attributes which are present in all the obtained trees

is drawn up. In the end three lists of the attributes common to different class thresholds

will be collected, each one from a different algorithm. Comparing these lists, a set of

SNPs can be found, the ones detected from different algorithms and therefore which are

present in all the results of this analysis.

Cross analysis

A cross analysis can now be performed between the decision trees obtained with the best

algorithms, considering each time the same thresholds. For instance the ADTree trees

obtained with specific class threshold can be selected and compared with the respective

ones obtained from the ID3 algorithm. As before, a list can be drawn up with the attributes

present in the results from different algorithms but with the same threshold. If there is a

SNP which appears in all the lists created, it is more likely to have a reliable association

with the predictable variable.

4.4 First Experiment: Babies Dataset

In this section an example of the application of this methodology to a real dataset related

to PE is described.

4.4.1 Experimental Data

The DB under analysis contains 4529 instances and 105 attributes. The original dataset is

composed of mothers, babies, fathers, grandparents and other relatives of the baby; there

are fifty-two genetic attributes (SNPs) split across seven genes and fifty-three phenotypic

(clinical) attributes, as follows:
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(1) Genotype: 52 attributes:

• AGT gene: SNPs 1-8, alleles 1 and 2

• AGTR1 gene: SNPs 9-12, alleles 1 and 2

• TNF gene: SNPs 13-16, alleles 1 and 2

• F5 gene: SNP 17, alleles 1 and 2

• NOS3 gene: SNPs 18-22 and 24, alleles 1 and 2

• MTHFR gene: SNPs 25, 26, alleles 1 and 2

• AGTR2 gene: SNP 27

(2) Phenotype: 53 clinical attributes

• 5 concerning the individual’s identity;

• 34 concerning maternal data, such as physical and physiological parameters,

pregnancy details and current treatments;

• 6 concerning fetal data, such as the weight and gestational age at birth;

• 8 concerning the medical history of parents, partners or siblings of affected

mothers.

The individuals of most interest for this disease are the mothers and the babies. There

are actually four different conditions present in the original database: pre-eclampsia,

eclampsia, other hypertensive diseases and normotensive (normal blood pressure). The

only condition which is investigated in this study is pre-eclampsia.

4.4.2 Pre-processing Analysis

From the initial DB a subset is created containing only babies born from mothers with

pre-eclampsia.

Attributes

In the first stage most of the attributes are kept. There are only a few attributes which are

not meaningful when a database composed of babies is considered. These are the mothers

features, such as blood pressure and blood test results.
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Table 4.1: Prediction attributes for the babies

Attributes for the Babies Type Range

CBC Percentage 1−100

Delivery gestation week Integer 22−42 weeks

Predictive Class

The idea is to analyze the data considering different prediction variables as shown in

Table 4.1 and in Table 4.2.

One of the most interesting variables listed in these tables is the ‘corrected birth-

weight centile’ (CBC). This is the value of the weight of the baby at birth (as a percentage

of the population) corrected for gestational age at birth, baby sex, ethnicity, mother’s

height, mother’s weight and number of pregnancies. Hence, a CBC of 50 is the normal

weight at birth, below this threshold it is considered underweight and a CBC exceeding

this threshold is considered overweight. For each of these outputs different thresholds can

be decided to define the cases and the controls in the dataset in order to perform a case

control analysis. For instance the following values can be chosen: CBC = 50, Delivery

gestation = 35, Systolic Pressure post partum ≤ 140, or Diastolic Pressure post partum

≥ 90

The results shown in this study are from a DB consisting only of babies, created from

the original one by deleting the attributes considered not informative for a population

of babies. The CBC attribute has been chosen as the predictive class and the final DB

consists of 372 babies and 58 attributes. Beside the 53 SNPs listed above, there are

six clinical variables for the babies: ‘Fetal disease status’, ‘Gestation at birth (weeks)’,

‘Gestation at birth (days)’, ‘Weight of the infant’, ‘Live at birth’ and CBC.

Missing values

Different trials were performed in order to understand if it is informative to retain the

missing values or if their removal could have improved the study. The algorithms are

applied to a dataset cleaned from the missing values and to a dataset with the missing

values retained. The results obtained were the essentially unaltered, indicating that (for
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Table 4.2: Prediction attributes for the mothers

Attributes for the mothers Type Range

CBC Percentage 1−100

Delivery gestation week Integer 22−42 weeks

Sys/Dias Pressure Post Partum Integer 87−178

Highest Systolic Integer 101−200

Highest Diastolic Integer 65−150

Highest Proteinuria Real 0.24−32.03

Highest ALT Integer 2−875

Highest Urate Integer 50−812

Highest Creatinine Integer 49−990

Highest Urea Real 1.6−33.8

Lowest Platelets Integer 12−443

this data set) the missing values can be retained using the appropriate codification for the

chosen algorithm.

Balancing of the data

As the CBC class is not Boolean, at this point it is not possible to balance the data because

it is not yet clear the amount of cases and controls. Balancing of the data can be performed

later, when a fixed CBC threshold is chosen and therefore the babies with a CBC greater

than that threshold are considered as controls and these with CBC below that threshold

considered as cases.

4.4.3 Statistical Significance Analysis: ADTree, C4.5 and Id3

As first step the DB is analyzed with the ADTree software from Weka. A range of thresh-

olds has been chosen for the CBC class in order to detect the ones which give the most

significant results. There are 9 different thresholds, from a CBC of 10 to a CBC of 90,

and for each of them the Kappa value is calculated as shown in Table 4.3.
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Table 4.3: Statistical results from ADTree: CBC=10-90

CBC Thresholds 10 20 30 40 50 60 70 80 90

Kappa 0.35 0.23 0.20 0.02 −0.03 0.02 −0.01 0 −0.01

From Table 4.3 it is clear that the first three thresholds (CBC of 10, 20, and 30) provide

a statistically significant result (Kappa > 0.2) whereas the others have a quite low Kappa

value. The ADTree algorithm is then run again with a set of 9 different seeds and the

average and standard deviation of the results has been calculated as shown in Table 4.4.

Table 4.4: Kappa Average and Standard Deviation Over Nine Runs for ADtree, C4.5 and

ID3 Algorithms

CBC Thresholds 10 20 30

ADTree Kappa 0.38(0.02) 0.32(0.03) 0.29(0.02)

C4.5 Kappa 0.27(0.03) 0.22(0.04) 0.28(0.05)

ID3 Kappa 0.15(0.04) 0.14(0.02) 0.18(0.04)

CBC Thresholds 40 50 60 70 80 90

ADTree Kappa 0.18(0.05) < 0.07 < 0.04 < 0.04 < 0.05 < 0.04

C4.5 Kappa 0.18(0.04) < 0.17 < 0.18 < 0.05 0 0

ID3 Kappa 0.03(0.02) < 0.16 < 0.11 < 0.12 < 0.11 < 0.05

As a validation of these findings, the database was processed with the other two de-

cision tree algorithms, C4.5 and Id3. The thresholds are the same used ADTree analysis.

These algorithms have been run nine times with different seeds and the mean and standard

deviation of the Kappa value has been calculated as shown in Table 4.4 and Figure 4.3.

In order to verify that the differences obtained from these experimental results are

statistically significant, an ANOVA test has been performed on the results from the three

algorithms, considering the CBC thresholds 30 and 40. Setting the critical p-value to

0.05, in all cases a very low p-value was obtained (p = 1.86× 10−5 for ADTree, p =

2.3× 10−4 for C4.5, p = 3.06× 10−6 for Id3). From these results it is clear that the
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Figure 4.3: Kappa Values (means and standard deviations) of the three applied algorithms

(ADTree C4.5 and Id3) versus weight of the baby expressed as CBC within the range

CBC= 10-40.

null hypothesis can be rejected and the actual differences that can be noticed between

different CBC threshold settings are statistically significant. In particular, the difference

noticed between the CBC threshold 30 and 40 highlight a cut-off point for choosing a CBC

threshold of significance for this analysis. Regarding ID3, no significant results have been

obtained over the thresholds as shown in Table 4.4. Thus, ID3 does not appear to be able

to detect relevant findings in this application, further investigation on this limitation is left

for future studies.

As the CBC thresholds of 10, 20 and 30 have shown to be relevant, in the next stage

interest is focused only on the CBC range between 4 and 30, in order to detect any other

threshold with a high Kappa. The two algorithms that give the best results are run again,

this time with 14 different thresholds of CBC in the range 4−30.

In Figure 4.4, the mean and standard deviation of the Kappa value are shown for each

different CBC threshold and for ADTree, C4.5 and the average between the two algo-

rithms. This figure shows that the three thresholds with the best Kappa value are 6, 10

and 28. The fact that the trend in Kappa is not monotonic with CBC may be due to the
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Figure 4.4: Kappa Values of the two applied algorithms (ADTree and C4.5) versus weight

of the baby expressed as CBC within the range CBC= 4-30.
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Figure 4.5: Number of cases versus the CBC of the babies.
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presence of noise in the data but could also be due to the complex correlation between

attributes such as CBC and week of delivery (later discovered). In order to verify whether

the differences observed in this figure are statistically significant, an ANOVA test is per-

formed for each of the two algorithms considering the 14 groups, each one with a different

CBC threshold. The result of the ANOVA test with a critical value alpha = 0.05 shows

that the null hypothesis of equal means between the 14 different groups can be rejected (p

= 2.31× 10−7 for the ADTree and p = 2.14× 10−8 for C4.5). However, from this test it

is not clear if all the distributions of Kappa are different from each other or if only some

of them are different from the rest. In order to check if the differences between the three

highest thresholds are significant, another ANOVA test has been performed between each

of these Kappa distributions and the rest of the Kappa distributions obtained with the rest

of the thresholds (df = 1). For CBC= 6, p = 0.001 was obtained for ADTree and p =

0.48 for C4.5. For CBC= 10, p = 0.0002 was obtained for ADTree and p = 0.34 for C4.5

whereas for CBC= 28, p = 0.32 was obtained for ADTree and p = 6.46×10−8 for C4.5.

These results also appear evident from Figure 4.4. The CBC threshold of 6 and 8 are the

highest for ADtree and only a few Kappa means from other CBC thresholds results fall

in the range of ± one standard deviation. The same can be seen for C4.5 but this time

for the threshold CBC = 28. In conclusion, ADTree indicates a CBC threshold equal to 6

and 10 as statistically different from the others, while C4.5 indicates a CBC threshold of

28. Although in this case there is not strong agreement between the two algorithms, the

final three thresholds highlighed provide a significant Kappa for both of the algorithms.

The analysis is carried out focusing on these three relevant thresholds in order to show

an example of the application of the methodology proposed here. In general terms, the

application of this statistical assessment methodology allows the validation or rejection

of any type of result that is not revealed to be significant.

Case-Control Ratio Checking

Once the CBC values are fixed, the balancing of the data can be checked. The number of

cases and controls involved in each test results are shown in Figure 4.5. In particular:

• for CBC = 6: 147 cases (39.5%) and 225 controls
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• for CBC = 10: 177 cases (47.6%) and 195 controls

• for CBC = 28: 243 cases (65.3%) and 129 controls

These results are acceptable regarding both the absolute size of the population (372)

and the proportions of cases and controls, as the case-control ratio is above 0.33 and there

are more than 100 individuals for each group.

4.4.4 Results Analysis

ADTree Results

Focusing on these three versions of the DB, the next step consists of the comparison of the

three decision trees obtained from the three DBs processed with ADTree. Comparing the

three different trees it is clear that they have different shape and therefore different rules

of classification but it is possible to list the attributes common to all of them. Besides

‘gestational week at birth’(which is always present), the attributes found for CBC equal

to 6,10 and 28 are shown in Table 4.5. In the last column, the attributes common to the

first three columns are shown. It is important to notice that final solutions appeared to be

very stable as every (common) attribute to the three different CBC thresholds appeared

100% of the time in every run.

Results Comparison — C4.5 and ID3

The same procedure is applied also to the C4.5 algorithm as it provided similar results.

The list of the SNPs are shown in Table 4.6 and Table 4.7. Concerning the clinical vari-

ables, there is still the attribute ‘Gestational week at birth’ which is common to the algo-

rithm results and the variable ‘sex’ which is present only in the first two thresholds (CBC

= 6 and CBC = 10) . Once again, all the (common) attributes to the three different CBC

thresholds appeared 100% of the time in every run.

Cross Analysis

A cross analysis can now be performed between two decision trees obtained with the two

algorithms (ADTree and C4.5), considering each time the same thresholds (CBC = 6, 10,
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Table 4.5: Common attributes to the three CBC thresholds 6,10 and 28 for the ADTree

algorithm results.

CBC

Gene SNP Allele 6 10 28 All

AGT 1 1 y

AGT 3 2 y

AGT 6 2 y

AGTR1 10 2 y

AGTR1 11 2 y

AGTR1 12 2 y

F5 17 2 y y

NOS3 19 2 y

NOS3 21 2 y y y y

NOS3 24 2 y y

MTHFR 26 2 y

AGTR2 27 2 y y y y
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Table 4.6: Common attributes to the three CBC thresholds 6,10 and 28 for the C4.5

algorithm results.

CBC

Gene SNP Allele 6 10 28 All

AGT 1 1 y y

AGT 1 2 y y

AGT 3 2 y y y y

AGT 4 2 y

AGT 6 1 y

AGT 7 2 y

AGT 8 1 y

AGT 8 2 y y y y

AGTR1 9 1 y y y y

AGTR1 9 2 y y

AGTR1 10 1 y y

AGTR1 10 2 y

AGTR1 11 1 y

AGTR1 11 2 y y

AGTR1 12 1 y y

AGTR1 12 2 y y y y

TNF 13 1 y y

TNF 13 2 y y

TNF 14 2 y y y y

TNF 15 2 y

TNF 16 1 y y

TNF 16 2 y
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Table 4.7: Common attributes to the three CBC thresholds 6,10 and 28 for the C4.5

algorithm results.

CBC

Gene SNP Allele 6 10 28 All

F5 17 2 y y

NOS3 18 2 y

NOS3 19 1 y

NOS3 19 2 y y

NOS3 20 1 y y y y

NOS3 20 2 y

NOS3 21 1 y

NOS3 21 2 y y

NOS3 22 1 y

NOS3 22 2 y y y y

NOS3 24 1 y y y y

NOS3 24 2 y

MTHFR 25 1 y y y y

MTHFR 25 2 y y y y

MTHFR 26 2 y y

AGTR2 27 1 y y

AGTR2 27 2 y y
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28). The results are shown in Table 4.8 and each attribute appears 100% of the time in

every run.

Furthermore, if the attention is focused on the results when the CBC is 28 a new

dataset composed of the common attributes found in the results from both the two algo-

rithms can be created. These attributes are: ‘sex’ , ‘Gestational week at birth’, AGT SNP3,

AGTR1 SNP11 and NOS3 SNP 21. Processing this new dataset with both the ADTree

and C4.5 algorithm, two interesting rules which are common to the two final trees are

found, with a statistical significance of k = 0.38 for C4.5 and k = 0.41 for ADTree. The

first rule claims that male babies, born after the 35th week of gestation and with an AGT

SNP3 allele2 of 1 have a good probability to have a normal weight (CBC > 28). The con-

fidence of the C4.5 algorithm is measured by the ratio between the corrected classified

instances over the uncorrected ones, which is 84/24. The ADTree measure of confidence

is instead made by the ‘classification margin’, analyzed on prior work [146] and it has a

absolute value of 1.29. The second finding shows that male babies, born after the 35th

week of gestation and with an AGT SNP3 allele2 of 2 and an AGTR1 SNP11 allele2 of

1 have a good probability to be under weight (CBC < 28). For the C4.5 the confidence

parameters measures 21/5 and for the ADTree the classification margin has an absolute

value of 0.76.

Table 4.8: Common attributes to the three CBC thresholds 6,10 and 28 for the two algo-

rithms: ADTree and C4.5.

Gene SNP Allele CBC 6 CBC 10 CBC 28

AGT 3 2 y

AGTR1 11 2 y

AGTR1 12 2 y

F5 17 2 y

NOS3 19 2 y

NOS3 21 2 y

AGTR2 27 2 y y

Following these results, the analysis is performed with only one attribute, the ‘delivery
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gestation week’, and the CBC predictive variable. An association between these two

parameters is found with a good significance as shown by the Kappa value of 0.4212

for both the ADTree and C4.5 analysis. The ADTree algorithm detects an interesting

threshold for the ‘GestationatBirthw’ equal to 35.5 to discriminate the small babies (cases)

from the normal one (CBC > 10) and in C4.5 the threshold is set at 35 weeks of pregnancy.

This means that babies delivered before 35 or 35.5 week of gestation are likely to have a

CBC < 10.

4.4.5 Discussion

The methodology shown in this study provides researchers with a guideline for data min-

ing in the specific application of case-control analysis for SNPs. This technique may find

an association between the SNPs and the disease or its phenotypes. However, it is also

possible that the results don’t show a significant direct connection between the SNPs and

the disease as found in this study. In this case it is still possible to detect a reduced number

of SNPs that may play an important role in the genetic association, as for example in this

specific experiment.

From the methodological point of view, it is possible to conclude that thanks to this

strategy, some attributes are rejected as not relevant for the analysis, the number of the in-

stances are decreased and a set of attributes, clinical or genetic, are found to be correlated

to the predictive variable, as show in the lists of the common attributes in the example

described in this study, see Table 4.5, Table 4.6 and Table 4.7 and Table 4.8. From a

comparison of these Tables it is also clear that there are SNPs such as AGT 2 and AGT 5

that never appear in the results; these SNPs can thus be ignored in further analysis.

From the clinical perspective, there are at least two important findings which emerge

from this methodology. The first is the significance of the threshold CBC of 10. From the

study on the validity of the thresholds three different values have been found: i.e. 30, 20

and 10. The feedback from the medical point of view confirmed the clinical importance of

a CBC of 10 for babies affected by pre-eclampsia, as it is a clinically accepted threshold

used to identify growth restricted babies, which have then a higher risk of problems in

the neonatal period. The second finding is the dependency of the CBC on the ‘week of

delivery’ parameter. In the formula for calculating the CBC, the birth weight is adjusted
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considering parameters including the ‘week of delivery’. This means that there shouldn’t

be any association between these two attributes. From the results of this analysis on

PE disease, an association between these two parameters has been found: women with

pre-eclampsia who deliver before 35 weeks of pregnancy are more likely to give birth to

babies with a CBC under the value of 10.

The proposed methodology provides (besides the opportunity to find new and chal-

lenging results) a useful tool for the screening stage where a reduction in the number of

cases is the main goal. However, it is important to remark that a relevant assumption of

this proposed technique is that the dataset is previously processed in order to remove all

the possible attributes which appear to be redundant. If two different variables are very

similar and they are both kept in the analysis, one of these variables may appear in one

of the resulting trees and the other variable may appear in another resulting tree, because

the algorithms might pick up only one them. In this case, as they do not belong in the

common attributes list between different algorithms or between different CBC thresholds,

they will never appear in the final list of relevant variables for the study. For this reason,

in the final framework proposed in this Thesis, this technique is applied in a second stage,

after the pre-processing of the data for redundancy elimination, see Chapter 7. In the

following sections, the analysis is continued further in order to explore different ways of

approaching the problem, still based on the proposed methodology. The considerations

and remarks that emerge from this further analysis are of course highlighted for the study

of the specific medical dataset for PE. However, they can be generalized for other disease

studies.

4.5 Second Experiment: Mothers Dataset

Following the previous analysis, an important observation arises concerning the signifi-

cance of considering the genotype of the mothers rather that the babies. It is still difficult

and risky to collect information related to the DNA of babies in pregnancy, as this re-

quires an invasive test. On the other hand such information can easily be collected from

the mothers. For this reason, in this new research, the analysis will be focused only on

the mothers, using the CBC of the baby as the predicted class. The clinical condition of
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the grandmothers when their mothers were born is another significant information which

would be interesting to analyze. A heritable trend can be detected across the two genera-

tions validating the genetic association of this disease. Unfortunately, the current database

does not contain sufficient information to perform this kind of analysis.

In this section another example of the application of this methodology to a real exam-

ple dataset is described, still related to pre-eclampsia.

4.5.1 Experimental Data

At this stage the analysis is applied to a DB composed by only mothers with PE, rep-

resenting 568 individuals with 54 clinical attributes (the previous ones together with the

mother age) and 52 genetic ones (26 SNPs).

4.5.2 Pre-processing Analysis

Attributes

Considering an analysis of the mothers, there are a few attributes that can be dropped from

the original DB, as not relevant for the study. These are the clinical information of the

parents, partners or siblings of the affected women. From the 54 initial clinical variables,

therefore a DB of 37 clinical attributes and 52 SNPs is built. The clinical variables are:

• 33 physiological attributes about the mothers: number of pregnancies, blood pres-

sure, urine and blood tests, delivery and post-partum features and current treatment.

• 4 baby information as weight and gestation week at birth.

Predictive Class

In Table 4.2 all the potential predictive variables for the mothers are shown with their

range of values. At this stage the study is focused only on the CBC, which has been

chosen also previously for the babies analysis.
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Missing values

Also in this case, different trials have been performed in order to understand if it is infor-

mative to retain the missing values or if their removal could have improved the study.

At the beginning the idea was to eliminate all the instances (individuals) containing

any missing value. Under this hypothesis, the attention is focused on the attributes which

are mostly composed by missing value: ‘DiagnosisProteinuria’, ‘ HighestProteinuria’ and

‘Complication’. In order to avoid a drastic reduction of the size of the DB these attributes

have been deleted from the DB. Two more attributes have been under analysis for the

large number of missing values: ‘HighestAlt’ and ‘HighestUrea’. If the analysis is per-

formed keeping these two attributes, a Kappa value equal to 0.31 (s.d. 0.02) is obtained

for ADTree and equal to 0.22 (s.d. 0.04) for C4.5. If the analysis is preformed without

these attributes, a Kappa equal to 0.27 (s.d. 0.04) is obtained for ADTree and a Kappa

equal to 0.20 (s.d. 0.03) is obtained for C4.5, see Table 4.9 and Table 4.10 for ADTree and

Table 4.11 and Table 4.12 for C4.5. In order to assess whether the differences observed

between the Kappa obtained with and without attributes are statistically significant, a

paired t-test is applied to the results for both ADTree and C4.5, after checking for nor-

mality using the Shapiro test [147]. The one-tailed t-test shows a p-value = 0.001 for

ADTree and p-value = 0.01 for C4.5. The two-tailed test shows a p-value = 0.003 for

ADTree and p-value = 0.03 for C4.5. Having set the critical p-value to 0.05 (df = 8), these

results confirm that we can reject the null hypothesis, stating that the inclusion of the two

attributes affects the statistical significance of the results, decreasing the Kappa for both

ADTree and C4.5.

Table 4.9: Statistical results from ADTree run without ‘Highest ALT’ and ‘Highest Urea’

and with CBC=10

Seeds 1 10 20 30 40 50 60 70 80

Kappa 0.22 0.33 0.23 0.30 0.32 0.28 0.28 0.24 0.23

In a second stage, the idea is to keep all the attributes and all the instances with missing

values, as they are coded by the algorithm. The algorithms are applied to the dataset

cleaned from the missing values and to the dataset with the missing values retained. The
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Table 4.10: Statistical results from ADTree run with ‘Highest ALT’ and ‘Highest Urea’

and with CBC=10

Seeds 1 10 20 30 40 50 60 70 80

Kappa 0.29 0.35 0.31 0.34 0.31 0.30 0.33 0.28 0.31

Table 4.11: Statistical results from C4.5 run without ‘Highest ALT’ (HA) and ‘Highest

Urea’ (HU) and with CBC=10

Seeds 1 10 20 30 40 50 60 70 80

Kappa 0.14 0.21 0.16 0.21 0.22 0.21 0.19 0.22 0.17

Table 4.12: Statistical results from C4.5 run with ‘Highest ALT’ and ‘Highest Urea’ and

with CBC=10

Seeds 1 10 20 30 40 50 60 70 80

Kappa 0.26 0.22 0.13 0.28 0.22 0.17 0.23 0.20 0.24
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results obtained were once again unaltered, confirming that the missing values can be

retained as the codification used by the chosen algorithm was appropriate. At this point

then the DB is composed by 89 attributes (52 SNPs + 37 clinical variables).

Balancing of the data

In the first stage, after eliminating all the individuals which contain any missing value the

balance of the data can be performed. Considering the CBC equal to 10, the number of

cases and controls involved in the tests are:

• without HA and HU: 161 cases (47%) and 178 controls over 339 individuals.

• with HA and HU: 154 cases (48%) and 167 controls over 321 individuals.

These results are acceptable regarding both the absolute size of the population and the

proportions of cases and controls, as the case-control ratio is above 0.33 and there are

more than 100 individuals for each group.

In the second stage, all the attributes are kept, with the codification for the missing

values made by the algorithm. In this case the initial DB was composed by 568 instances

but as not all the babies have their clinical or genetic information, the final obtained DB is

composed by 339 mothers each one with the information about the CBC of the respective

baby. The balance of the DB results then the same as shown before in the option ‘without

the HA and HU’

Recoding of SNPs

The re-codification of the SNPs is an important issue that needs to be considered with

the genetic analysis. This consists of replacing the two numbers that characterize the

information on the genetic marker specified by the given SNP with a single number, losing

the information contained in every single allele.

This step is necessary whenever the relative position of the allele(phase) is unknown.

In more simple terms it would be relevant to know whether a certain SNP has the value

1/2 or 2/1. If this information is not available, as in most cases, the SNPs need to be

encoded considering a SNP 1/2 to be the same as a SNP 2/1. The Tables 4.13 and 4.14

show the way the SNPs need to be recoded in order to overcome this missing information.
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It is clear that the the amount of genetic variable included in the analysis will be therefore

halved.

Table 4.13: SNPs recoding for all the SNPS except sexual SNPs

SNPs Allele1 Allele2 Coding

Same Allele 1 1 2

Different Allele 1 2 3

Different Allele 2 1 3

Same Allele 2 2 4

Table 4.14: SNPs recoding for sexual SNPs

Sex SNPs Allele1 (X chr) Allele2 (Y chr) Coding

Male: Common Allele 1 0 2

Male: Rare Allele 2 0 4

Female: Same Allele 1 1 2

Female: Dif Allele 1 2 3

Female: Dif Allele 2 1 3

Female: Same Allele 2 2 4

4.5.3 Statistical Significance Analysis

Best Threshold(s) for the Predictive Variable

From the clinical point of view the threshold CBC = 10 has been found to have a relevant

significance when a population affected by Pre-eclampsia is considered. For this reason

the analysis will be focused only on this threshold, leaving aside the other 2 significant

thresholds previously found (CBC = 6 and 28).
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ADTree Analysis

In the first stage the DB is analyzed with the ADTree software from Weka. The ADTree

algorithm is run with a set of 10 different seeds and the average of the Kappa has been

calculated as shown in Table 4.15.

Table 4.15: Mothers Dataset - Statistical results from ADTree: CBC = 10 over 10 different

seeds

Seeds 1 10 20 30 40 50 60 70 80 90

Kappa 0.32 0.27 0.32 0.30 0.28 0.28 0.32 0.37 0.32 0.30

Validation — C4.5 Analysis

In order to have a validation of these findings, the DB has been processed also with the

C4.5 algorithm. The analysis with ID3 is not considered at this stage because this al-

gorithm works with all the nominal attributes. As in the mother DB there are plenty of

numeric attributes this software will not be applied.

The C4.5 algorithm has been run ten times with different seeds and the average of the

Kappa value has been calculated as shown in Table 4.16. From these results of Table 4.16

it is clear that with C4.5 a result similar to ADTree has been obtained with a significant

Kappa.

Table 4.16: Mothers Dataset - Statistical results from C4.5: CBC = 10 over 10 different

seeds

Seeds 1 10 20 30 40 50 60 70 80 90

Kappa 0.19 0.14 0.20 0.23 0.22 0.15 0.15 0.20 0.20 0.15
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4.5.4 Results Analysis

Results Comparison — C4.5 and ADTree

Comparing the results obtained with the two software, it is clear that C4.5 gives a long list

of attributes, whereas ADTree produces a simple tree, with a reduced number of nodes.

There are actually no SNPs in common to these two trees and the clinical attributes which

are common are: ‘Week of Delivery’, ‘HighestALT’, ‘HighestUrea’, ‘HighestCreatinine’,

‘MaternalHeight’.

Medical Remarks

One of the most interesting information which it would be worth to analyze is the ‘Onset

of Disease’. The database could be split into two different sets of populations: the early

onset (EOS) disease mothers, which are the ones that fell ill in an early stage of pregnancy

and the late onset (LOS) disease mothers which are the one who fell ill later. The interest-

ing remark about these two different groups is that PE that happens EOS is more related

to the baby’s genotype whereas the LOS disease is more due to the mother’s genotype

[148–150].

Moreover, when the tree is analyzed it is always important to check that the rules

extracted from the tree have a consistency with the medical meaning.

About the SNP code another remark needs to be done. The Threshold SNP = 3 means

heterozygote which corresponds to SNP = 1,2 or SNP = 2,1. The SNP 6= 3 instead is not

a very useful information as it can mean either SNP = 2 (1,1) or SNP = 4 (2,2). Only if

the rare allele (2) is very rare, then SNP = 1 can be considered the most likely solution.

4.6 Mothers Dataset with Attributes Reduction

In this stage the second experiment has been repeated with a new DB cleaned from a few

attributes which are not considered relevant for the analysis and could therefore affect

the results. All the Post Partum attributes are eliminated and the information on the blood

pressure is reduced to only two attributes out of eight (Booking Systolic and Diastolic, Di-

agnosis systolic/diastolic 1 and 2, Highest systolic and diastolic). Performing the analysis
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with the missing values with both the algorithms, a good significance of the tests is still

preserved, considering the Kappa values averaged over 10 different seeds, see Table 4.17.

In this table, from the comparison of the means and standard deviations, it is clear that

there is no significant difference between the dataset with and without the missing values.

Table 4.17: Mothers Dataset - Kappa mean and standard deviation over 10 different seeds

for ADTree and C4.5 test with and without missing values

Algorithms ADTree C4.5

without MV 0.32(0.03) 0.26(0.01)

with MV 0.33(0.03) 0.23(0.02)

In the Table 4.18 the common clinical attributes from the results obtained with ADTree

and C4.5 with and without missing values (MV) are listed and these appeared 100% of

the time in every run.In the ADTree analysis, the SNPs obtained without missing value

are SNP 9 and SNP 19 whereas with missing value only SNP 24 is obtained. Regarding

C4.5, the SNPs obtained without missing value are: 3, 4, 7, 10, 12, 14, 15, 16, 18, 19, 20,

22, 26, 27. The SNPs obtained with missing value are: 2, 4, 11, 13, 14, 15, 16, 17, 18,

19, 26. From all these results it is clear that SNP 19 is mostly present in the output, which

could highlight the significant association to the PE in mothers datasets.

Following these results, different trials have been performed in order to understand

better the association between the SNPs in the dataset with PE. In particular an analysis

with only SNPs and one with SNPs together with gestational week parameter are per-

formed. While the analysis with a DB of only SNPs does not give significant results as

shown in Table 4.19, analyzing a DB of only SNPs together with delivery gestation week,

a significant Kappa is obtained, see Table 4.20.

One interesting aspect of the C4.5 algorithm is the problem of over-fitting which may

affect the prediction accuracy. This means that a decision tree, able to classify every sin-

gle instance from the training set, is not necessarily better than a smaller tree that does

not fit all the training data. In order to avoid this problem different solutions have been

proposed in the literature, such as a stopping criteria for the tree growth or pruning from

the less relevant branches. In C4.5, the pruning method is based on estimating the error
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Table 4.18: Mothers Dataset - Common attributes to the ADTree and C4.5 algorithms

with and without missing values for CBC = 10

ADTree C4.5

Attributes no MV MV no MV MV

DeliveryGestation y y y y

HighestALT y y y y

HighestUrea y y y y

HighestDiastolic y y

HighestCreatinine y y y y

AGE y

Parity y y

LowestPlatelets y y y

HighestProteinuria y

FetalDiseaseStatus y y

Parity y

HighestSystolic y y

MaternalHeight y y
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rate of every sub-tree and replacing the sub-tree with a leaf whenever the estimated error

is considered not relevant. In other words, after deleting the less informative branches, the

prediction accuracy of the model is expected to increase [48]. The threshold for defining

an error rate as ‘not relevant’ can be set by the user through the internal confidence pa-

rameter. Tuning this parameter, in particular decreasing the confidence value, decreases

in turn the size of the tree. While, on one hand, a reduction in the tree size improves the

interpretability of the classification rules, on the other hand, it can delete the contribution

that an attribute provides to the classification, deleting this attribute from the tree. In these

experiments, this would have affected also the probability that the trees resulting from the

C4.5 could contain the same attributes, both genetic and clinical, included in the ADTree

solutions. The results shown here have been obtained by setting the parameters of the

algorithms to their default values, while exploratory experiments have been performed to

check the variability of the trees size with the changing of the confidence parameter for

pruning. Nevertheless it would be interesting as future work to analyse the different re-

sults that can be obtained from C4.5 with different confidence values in comparison with

the results obtained with ADTree algorithm, for every significant CBC threshold.

Table 4.19: Statistical results from ADTree run with only SNPs and with CBC=10

Seeds 0 10 20 30 40 50 60 70 80

Kappa −0.03 −0.02 −0.12 −0.01 −0.06 −0.04 0.01 −0.05 −0.01

Table 4.20: Statistical results from ADTree run with SNPs and ‘Delivery gestation week’

and CBC=10

Seeds 0 10 20 30 40 50 60 70 80

Kappa 0.34 0.36 0.32 0.34 0.37 0.38 0.35 0.37 0.33
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4.7 Mothers Dataset and Phenotype Analysis

The further step is to perform an analysis of the Phenotype of patients with PE. Thus, the

second experiment has been repeated including only the phenotypic information. From

the clinical point of view, it is useful to have an easy to use interface between the doctor

and the patients data. The usual request of the doctor is to be provided with a device able

to analyse the data from the patient with a computer and ultimately receive the probability

to have a small baby or a mother with complications or with blood pressure problem

post partum. The genetic data are more difficult to be collected by the doctor because it

requires a laboratory analysis.

From the biological point of view it is interesting analyzing all the attributes but from

the medical point of view it is better to start from the most available ones (clinical) and

then add the genetic data. In the medical study, in order to provide a diagnosis, it is also

important to choose the right predictive variables to be clearly distinguishable from the

outcome one.

4.7.1 Pre-processing Analysis

Attributes

In the analysis of only clinical attributes it is important to add some information to the

original DB of mothers. These features are related to the parents and partner of the mother.

In particular there are 3 attributes that have to be recovered from the initial DB: systolic

and diastolic blood pressure and essential hypertension requiring (EHT) medication (for

both parents and the partner). This will add nine more attribute to the original DB.

Regarding the information about the blood pressure, as before, only two over eight

attributes are kept as the remaining information is very much related to each other. In

the first analysis the post natal attributes as ‘current oral contraceptive pill’ (OCP) and

‘anti hypertensive treatment’ (antiHT) are not included as they have no sense from the

predictive point of view as they happen after the delivery. They can be used for further

research as outcome(class).
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Predictive Class

Concerning the predictive class of the Phenotype analysis, there are actually four differ-

ent attributes that can be used as an outcome: CBC, complications (convulsions), blood

pressure measure (with Sys >= 140 as a case or Dias <= 90 as a case) or ‘on antiHT

treatment’. In the first analysis the CBC will be considered. In particular the CBC = 10

will be still the threshold for the case-control study.

Missing Values

The missing value will be kept in this analysis and coded according to the algorithm rules.

Data Balancing

Considering the list of the mothers without the genetic information, a DB of 364 mothers,

27 attributes and the CBC class is obtained. The attributes are:

• 18 mother information as number of pregnancies, age, hight, blood and urine tests.

• 9 parents and partner information about blood pressure.

The dataset is composed by 174 cases (48%), 190 controls (52%), which is an acceptable

case-control ratio.

4.7.2 Statistical Significance Analysis

ADTree Analysis

Processing the new DB with ADTree, the results of Kappa shown in Table 4.21 are ob-

tained, with a Kappa mean of 0.30. The attributes present in the final results are the

following: DeliveryGestation, HighestALT, SystolicGranpa, HighestCreatinine, Highes-

tUrea, DiastolicGranma, MaternalWeight.

Medical remarks

An important remark is about the blood pressure (BP) problems. If the mother of the

mother has low BP, the mother should have it as well. In this case if the mother has PE
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Table 4.21: Statistical results from ADTree run with CBC=10 for Phenoptype analysis

Seeds 0 10 20 30 40 50 60 70 80

Kappa 0.35 0.35 0.29 0.26 0.27 0.32 0.30 0.26 0.33

it means that there is a strong element triggering PE which is not due to high BP. Indeed

usually the early PE is due to placenta problems. These problems are more related to the

baby genome than the mother one. The late PE is more likely to be due to BP problem

which is something more related to genetics of the mother.

4.8 Mothers Dataset and Alternative Classes

In this last section, further experiments are performed using alternative class choices in

order to give an overview of how the class may affect the final results of the analysis in

PE datasets.

4.8.1 ‘Week of delivery’ as class

According to the medical remarks, a new dataset has been created containing only a small

amount of attributes from the original one. These are:

• 7 Mothers features - Parity, Number of Pregnancies, Smoker, Highest Systolic and

Diastolic Pressure, BMI(Kg/m2) and Age.

• 3 Grandmother features - EHTRequiringMedication, Systolic and Diastolic Pres-

sure.

• 3 Grandfather features - EHTRequiringMedication, Systolic and Diastolic Pressure.

• 3 Partner features - EHTRequiringMedication, Systolic and Diastolic Pressure.

Within these attributes there is a new one, BMI, which comes from the combination of

two previous one, ‘Maternal Weight’(MW) in Kg and ‘Maternal Height’ (MH) in meter.

More precisely the relation is shown in Equation 4.1.

BMI = MW/MH2 (4.1)
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The class is then set as ‘Week of Delivery’. As the class needs to be Boolean, ac-

cording to the medical advise, the threshold week of delivery is chosen equal to 34 to

distinguish between the cases and the controls. Performing the analysis with this new DB

doesn’t give any significant statistical result. Further experiments on new DBs, each com-

posed by one of the listed attributes (in particular: BP of the parents, booking BP of the

mother, BMI and Parity), do not provide any relevant result, both applying the ADTree

algorithm and the C 4.5 one.

4.8.2 ‘Blood Pressure after delivery’ as class

In the final experiment the ‘Post natal systolic’ or ‘Post natal diastolic’ is considered as a

predictive class. An analysis is then carried out to show how this attribute is related with

one of the following:

• Booking blood pressure of the mother

• BMI of the mother

• Parents blood pressure

• Week of delivery

• Creatinine level

Post natal systolic or diastolic attribute need first to be converted in Boolean variables

and then the BMI value needs to be calculated. Considering the ‘Systolic blood pressure

post partum’ as a class, the threshold has to be set equal to 140. This means that the

individuals with a ‘Systolic blood pressure post partum’ <= 140 are controls and the

rest are cases. In the DB the cases amount to 110 and the controls amount to 896. Over

the total number of individuals equal to 1006, there are only 11% of cases which are

not enough to perform a reliable case-controls analysis. Regarding the ‘Diastolic blood

pressure post partum’, setting the threshold to 90, the cases are referred to every individual

with a ‘Diastolic blood pressure post partum’ > 90. At this point, the amount of cases is

31 which over the total of 1006 individuals represents just a 3% of the population.

This kind of analysis needs therefore to be referred as future study when more com-

plete and extended databases will be available.
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4.9 Summary

The aim of this Chapter is to describe the general framework that has been adopted in

the application of decision tree algorithms to the analysis of SNPs data related to cases

of pre-eclampsia. As previously discussed (Section 2.3.6), the choice of the decision

tree algorithms has been driven by the medical request to have an overview of the limi-

tations and strength that this type of approach provides.The results show the validity of

this methodology to detect a subset of attributes associated with the predictable variable,

providing a reduction in the size of the dataset. This is realised comparing and contrasting

the solutions obtained from three different algorithms. Additionally, an extended analysis

of the statistical significance of the results provides the user with a reliable tool for the

selection of the best CBC threshold in this pre-eclampisa association study. Moreover,

from the clinical point of view, this study confirmed that the medical interpretation of the

‘corrected birth-weight centile’ (CBC) value of 10 is indeed a meaningful cut-off, and

confirmed association between an infant’s CBC and the ‘week of delivery’ parameter.

In the second part of this Chapter several experiments are carried out with different

populations and different variables settings. This is to highlight that factors such as chang-

ing attributes and the class choice, keeping or eliminating the missing values, and knowing

some medical aspects of the disease under analysis can help improve the likelihood of the

study providing statistical significance to the analysis.

In conclusion, this study provides researchers with a generic framework to be used

for further research analysis of such data, following a pre-processing stage of redundancy

elimination.



Chapter 5

Decision Trees and Artificial SNPs

Datasets

5.1 Introduction

In the previous Chapter, three decision tree algorithms were examined in the context of

association studies. The next stage in the analysis would be to investigate in depth these

algorithms under different initial conditions. In order to permit this analysis, the concept

of an artificial dataset is illustrated and discussed. The aim of this Chapter is to present

an overview of the issues and considerations related to the creation of synthesised sets of

SNPs data, together with a study of the pitfalls of the three algorithms employed. Know-

ing the rules that a database is based on allows the possibility to test for the performance

and the limitations of a given procedure. In this Thesis more than one real dataset is used

to perform different analysis but the use of artificial datasets is also included in order to

have a clearer and deeper analysis of the methodologies and algorithms used and pro-

posed. Building such a dataset provides the possibility, for instance, to detect the ability

of a specific technique to classify the data in the correct way. In this scenario, the most

significant steps to be followed for this purpose will be shown and discussed, analysing

all aspects of this multi-faceted problem.

This chapter is meant to give an initial review of a problem that is complex and exten-

sively researched. This overview provides future researchers with a good starting point

for further consideration and realisation of more extensive experiments.
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5.2 SNPs Datasets Rules: An Overview

It is nowadays feasible to collect a huge amount of genetic data in reasonable time thanks

to the continuously improved techniques in biological fields. However it is not always

possible to have access to specific datasets shaped by the fittest features for the kind of

analysis that needs to be performed. In these cases the best solution is to create the source

of data in an artificial way, so that any method or technique which is proposed can be

tested in a easily repeatable way.

In this context, the attention is addressed to genetic dataset for diseases association

study. A generic medical dataset can be composed by either exclusively genetic informa-

tion that in the specific case are SNPs, or also clinical attributes. In this case the attention

will be focused only on a dataset composed by SNPs data, according to the aim of this

research. The rules used to build these new DBs are discussed and agreed with a med-

ical support in order to create the most reliable set of data. Different operations can be

performed for each DB created. It is possible to vary the size (which is the number of

instances or patients), change the probability of occurrence of a certain allele or a couple

of allele, increase the number of columns of the DB, which correspond to the number of

SNPs analyzed. Finally, one of the most relevant issue, the probability of contracting a

disease for each value of the SNP can be set and changed every time. From now on, in

order to give a concrete overview of the dataset creation the pre-eclampsia (PE) disorder

will be taken as example.

5.2.1 Phenotypic Background

The probability to contract a specific disease is always related to some clinical features

such as clinical history or physical and physiological parameters of the individual. For this

reason, before starting a genetic analysis a sort of initial condition for each person needs

to be set and this is different depending on previous and current health state. In synthesis,

the susceptibility to a certain disease can be expressed by the general formula 5.1.

Pdisease = P(SNPs)+P(Phen) (5.1)

which takes in consideration both the genetic and clinical data. In case of healthy
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Table 5.1: Added risk to contract PE due to clinical conditions.

Clinical conditions Added Risk of PE CI (95%)

Reference: Healthy 3% −

Age >40 ∗80% 20−260%

Obesity: BMI > 29 ∗280% 175−459%

Twin Pregnancy ∗400% 230−760%

Assisted Reproduction ∗330% −

Previous Hypertension ∗700% −

Diabetes ∗200% −

Previous PE ∗700% 570−870%

Not Previous PE < 100% −

women, for instance, the probability to contract PE is estimated to the value of 3%. As

soon as one clinical condition is added this probability is increased of a certain factor.

The relative increment of probability conditionate to the healthy state, for each clinical

circustance is shown in Table 5.1, in accordance with [151]. The last column shows the

95% confidence interval (CI) for the relative risk. The susceptibility to PE due to a clinical

condition is then calculated by the formula 5.2.

P(Phen) = P(Healthy)∗ (1+P(cond)) (5.2)

The added risk for more than one condition requires more complicated analysis, as

there are correlations between the risk factors. For instance, women who have previous

hypertension are also more likely to be obese. Therefore the risk associated with obesity

partly contributes to the relative risk associated with hypertension, and vice versa.

5.2.2 One SNP Analysis

In the first instance, a DB with a single column of SNP is created. In order to realize this,

there are a few steps to consider that can be summarized in the following issues:

• SNP code (see 4.5.2)
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Table 5.2: Example of allele frequencies (AlleleCondition 1) and probability to contract

PE disease for each SNP value, according to the medical advise.

SNP value Allele frequency Disease Risk

2 36% 3%

3 48% 4.5%

4 16% 6.8%

• DB size

• Allele Frequency

• Disease Risk

• Disease Model

Setting the allele frequencies

Considering the recoding of the SNP, the possible values that belong to this new variable

are just three: 2 and 4 which correspond to the homozygous (1,1) and (2,2) and the 3

value which corresponds to the heterozygous (1,2) and (2,1). For each of these values

the occurrence frequency needs to be set in a way that reflects the real case, being the

allele 1 the common one and the allele 2 the rare one. There is no precise answer to this

problem as different SNPs can have different frequencies of their values. The criterion

is to collect the information from the huge genetic DBs created from the human genome

analysis and choose a threshold that is an estimation around the average. According to

the medical advice, these probabilities have been set to 48% for SNP equal to 3, 16% for

SNP equal to 4 and 36% for SNP equal to 2. These hypotesis are referred with the name

AlleleCondition 1 as shown in Table 5.2.

Setting the disease probabilities for each allele

The third step concerns the choice of the probability to contract a disease given a certain

value for the SNP. This choice is not strict and constant for any case. There are different
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values of the probability depending on the disease and, for each allele value, depending

on the SNP. That means that SNP8 equal to 2 can give 80% of probability to contract

a disease whereas SNP6 equal to 2 can give 30% of the probability. For this reason, it

is important once more the medical expertise to select the reasonable threshold for each

SNP and for each allele value. Regarding the case of PE disease, a real example of PE

risk can be calculated according to the medical advice. For instance, referring to the

AlleleCondition 1, the probability to contract PE for the artificial SNP = 3 is set to 4.5

% and for SNP = 4 to 6.8%, Table 5.2. The probability related to SNP = 2, which means

homozygous SNP (1,1), is not taken in consideration for added risk of disease as the allele

1 is the most common and usually not related to the disease. The allele 2 is the most rare

and the one who has more probability to be linked to the disease either in a positive or in

a negative way. For this reason, the risk to contract a disease for SNP equal to 2 is set at

the healthy rate of 3%.

Unfortunately, in the study of PE there are still lots of uncertainty about the probability

of contract the disease under a certain genotype hypothesis. One example of the findings

is related to the SNP ‘Factor V Leden’ which shows an occurrence of 5% for the SNP

value of 3 with a risk factor of 1.49 as shown in Table 5.3, [152].

It is important to notice that even if the contribution from the genetic side to the disease

susceptibility sometimes is not very impressive, the added risk due to clinical background

can considerably increase the range of the probability.

Setting the size of the DB

In the last step, the change of the DB size is considered. This consists of creating a flexible

number of instances that corresponds to the number of patients analysed. The size of the

DB is a quite important issue in genetic analysis for instance for case control studies.

Indeed lots of research has been done in order to detect the minimum size of a dataset

for a reliable analysis, [142], [143], [144], [145]. Together with the case control ratio,

this parameter plays an important role in the performance evaluation of the technique as

increasing the size of the DB usually increases the statistical significance of the test.
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Table 5.3: Set of values for three different candidate genes.

Param set Allele Frequency Odd Ratio 95% Conf Int

Factor V Leiden 0.05 1.49 1.13−1.96

STOX1 T 0.35 − −

STOX1 C 0.66 − −

STOX1 CC 0.43 1 −

STOX1 CT 0.46 1.2 −

STOX1 TT 0.12 6.86 −

TCF7L2 0.43 1.6 −

5.2.3 Multiple SNPs Analysis

The further step is the addition of a new column to the DB which means the introduction

a new SNP in the analysis. Beside the previous steps this new attribute introduces more

rules for setting the existing parameters. The occurrences frequencies have to be set either

in the same way of the first SNP or with different values, according to the medical advice.

Regarding the probability to contract a disease, this SNP can be completely independent

from the previous one which means the rules for its parameters can be chosen apart.

There are anyway cases in which the values of this SNP are somehow related to the value

of the previous SNP and in this case new complex rules need to be created considering

the interaction between these two SNPs. A similar analysis can be done with three SNPs,

four SNPs and so on. The more SNPs are considered in the analysis the more complex the

rules can become. The size of the DB can be affected from the amount of SNPs that are

considered in the analysis as the algorithm can present some difficulties in dealing with

huge size of dataset.

5.2.4 Family SNP Analysis

Considering a family-based analysis, once that the number of SNPs has been fixed for an

individual, the attention can be focused on the other family members in order to detect

any trend. In the case of a population of babies for instance, the further columns that
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can be added to the DB are the genetic information from the mother and the father of

the subjects. There are of course different rules that regulate the value of the SNPs of

the baby, given the parents genotype: the inheritance low together with mutations and

recombinations. Following all these considerations, the problem can be analyzed under

family point of view. Information from siblings and other relatives can also be considered

useful.

5.3 Artificial Dataset: One SNP Analysis

In this section an example of the application of this theory proposed for the creation of an

artificial dataset is described. The analysis is still related to pre-eclampsia disease. The

synthetic datasets created are processed with decision tree algorithm previously used in

order to test their performance with different input data.

5.3.1 Experimental Data

The first test for the algorithms is performed with a DB composed only by one SNP and

the class, which is Boolean and is equal to 1 for a case and 0 for a control. The values of

the SNP can be 2, 3 and 4 according to the previous codification.

Database Size

In this section, the experiments are carried out with DBs of different size to detect the

different performance of the algorithms. The analyzed DBs are composed by 100, 1,000,

10,000 and 100,000 individuals. The respective occurrences frequencies and the proba-

bilities of contracting the PE disease are shown in Table 5.2.

Table 5.4 shows the Kappa values obtained from the analysis of the DB with ADTree,

C4.5 and ID3 with different size of the input dataset. It is clear that there is no significant

results for any of the algorithm analyzed. Moreover when the size of the DB reaches the

level of 100,000 individuals, the software is not able to perform the analysis. Therefore a

population between 10,000 and 100,000 individuals is the maximum size allowed when

the analysis is carried out on a single SNP.
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Table 5.4: Kappa value under AlleleCondition 1 with ADtree, C4.5 and ID3 for different

size of the 1 SNP DB.

DB Size ADTree C4.5 ID3

100 −0.08 0 −0.014

1,000 0.06 0.06 0.06

10,000 0 0 0

100,000 − − −

Allele Frequency

In this step the size of the DB is fixed to a reasonable value allowed by the software,

10,000 individuals. The probability to contract a disease for each value of the SNP is

considered constant so that the parameter that is now flexible is the allele frequency. As

stated before, the allele 1 is usually considered as the common one and the allele 2 as

the rare one. The allele frequency setting is reduced to only one parameter problem, for

instance the occurrence of allele 1. A set of allele frequencies for the SNP values of 1

can be chosen and the occurrences for allele 2 are just the complementary probabilities

to 1. Then the joined probabilities for the respective combination of allele (1/1, 1/2-2/1

and 2/2) recoded as (2,3,4) can be calculated. Considering for instance an occurrence p

of 25% for the allele 2 and an occurrence q = 1-q of 75% for the allele 1, under the HWE

hypothesis, the joined probability for SNP equal to 1/2 or 2/1 is double the product of

the two probabilities (2× p× q), whereas for SNP equal to 1/1 or 2/2 the probabilities

are respectively p2 and q2. In Table 5.5 are shown three examples of allele frequency for

allele 1 and the consequent frequency for the new codification.

Probability to contract a disease

In this section the size of the DB is fixed to the same amount previously chosen. Keeping

the allele frequency constant as defined in AlleleCondition 1, the software is tested with

different datasets, each one with a different value of ‘Probability to contract the disease’.

The idea is to explore the cases in which the probability belongs to the range 3-90 %. This
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Table 5.5: Three Examples of Allele Frequencies and Joined Probabilities for the new

codification

SNP value(s) All Freq 1 All Freq 2 All Freq 3

1 0.75 0.50 0.99

2 0.25 0.50 0.01

1/1 (2) 0.56 0.25 0.98

1/2 - 2/1 (3) 0.37 0.50 0.02

22 (4) 0.06 0.25 ≈ 0

is because, referring to PE, the probability to contract PE for healthy women is 3% and

considering any possible added risk due to clinical conditions, the risk could resonably

rises up to around 90%. An array of probability is then created initially composed by ten

elements. Each element corresponds to the following value of risk: 3, 10, 20, 30, 40,

50, 60, 70, 80 and 90 %. All these occurrences are referred to the SNP value of 4 which

correspond to the rare-rare combination of allele.

In order to have a more general overview of the problem, the disease risk for the SNP

allele equal to 2 and 3 are set in a similar way around the value of 50. In this way the

disease risk for the most rare case of allele (4) can span in a range that is smaller and

greater than this threshold. This means that both the ‘protective’ and ‘adverse’ effect

of the rare allele can be considered. The summary of this new condition for the risk to

contract a disease are shown in Table 5.6 and it is referred as RiskCondition 1. Thus, ten

input files have been created to be processed with the three different algorithms.

Table 5.6: RiskCondition 1: Allele frequencies and probability to contract a disease for

each SNP value.

SNP value Allele frequency Disease Risk

2 36% 50%

3 48% 54.5%

4 16% 3,10,20..90%
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In Table 5.7 is shown the trend of Kappa value for the results obtained processing the

10 files with ADTree, C4.5 and ID3. It is clear that the algorithms provide significant

result when the probability to contract a disease exceeds the threshold of 60%, which is

also related to a DB with an ammount of cases grater than 30%. This results are also

exactly confirmed by each of the algorithm used.

Table 5.7: Kappa value under RiskCondition 1 with ADtree, C4.5 and ID3 for different

Disease Risk of the 1 SNP DB.

Disease Risk % ADTree C4.5 ID3 Cases %

3 0 0 0 3.93

10 0 0 0 6.86

20 0 0 0 10.53

30 0 0 0 15.91

40 0 0 0 20.85

50 0 0 0 26.18

60 0.60 0.60 0.60 32.14

70 0.70 0.70 0.70 39.35

80 0.78 0.78 0.78 46.37

90 0.87 0.87 0.87 54.27

Disease Model

In order to have a deeper analysis of the problem, a new model for the influence of the

disease risk is introduced. If rare allele (2) is the responsible for the disease it could be

possible that the allele combination 1/1 gives risk disease equal to 0%, whereas 2/2 give

a risk of 100% and 1/2 and 2/1 50%. In general terms, there can be these extreme cases

to analyze as shown in table 5.8 together with all the intermediate rates. Some examples

are: 1:99, 5:95, 10:90.. 85:15 and so on.

Analysing more in depth the problem, the disease model depends actually on the type

of allele in terms of dominance or recessiveness. The disease is usually associated to the

most rare allele (2) and it can either be dominant or recessive. In the former the presence
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Table 5.8: Three Examples of Disease Risks for each SNP value

SNP value(s) Disease Risk 1 Disease Risk 2 Disease Risk 3

2 0 : 100 0 : 100 0 : 100

3 50 : 50 100 : 0 0 : 100

4 100 : 0 100 : 0 100 : 0

of allele 2 is enough to cause the disease, in the latter only the 2/2 allele value implies the

disease. A simple example is shown in Table 5.9.

Table 5.9: Disease Models

SNP values Recessive Mixed Dominant

2 control control control

3 control hal f − case case

4 case case case

In the Recessive model, the disease risk for SNP value equal to 2 or 3 is the same

one and it represents the healthy condition which therefore could be reasonably set to 3%.

The allele value of 4 represents instead the disease condition and for this value different

values of probability can be set as shown in Table 5.10.

In the Dominant model, the disease risk for SNP value equal to 3 or 4 is the same one

and it represents the disease condition. For this SNP values once again different amounts

of probability are set as shown in Table 5.10. The allele value of 2 represents instead the

health condition which, as before, can be set to 3%.

Regarding the Mixed model, the allele 2 represents still the healthy condition (disease

risk of 3%), the allele 4 represents the disease condition and can be set with 9 different

values between 10% and 90%. The allele 3 affects the disease probability only half the

way of allele 4, as shown in Table 5.10.



5.4. Experimental Results for Disease Models: One SNP Dataset 127

Table 5.10: Disease Risk for each Disease Model

SNP values Recessive Mixed Dominant

2 3% 3% 3%

3 3% 5,10..45% 10,20..90%

4 10,20..90% 10,20..90% 10,20..90%

5.4 Experimental Results for Disease Models: One SNP

Dataset

A population of 10,000 individuals will be considered for every experiment performed as

this is a reasonable size for a good performance of the algorithms.

5.4.1 The Recessive Model

Variable Allele Frequency

At the this stage, the disease risk is kept fixed for each SNP values and only the allele

frequency is changed to check the performance of the three algorithms under analysis.

The chosen risk disease is 3% for allele 2 and 3, as for the recessive model, and 10% for

the allele 4. According to the definition, the allele 1 is the most common one, therefore the

allele 1 frequency is expected to be greater than the allele 2 frequency. For this reason five

different DBs are created, each one with five different combinations of allele frequencies

for each SNP value 1 and 2 (p and q) as shown in Table 5.11.

Variable Allele Frequency and Variable Disease Risk

This same procedure is made for 9 different disease risks in the range from 20 to 90 for

the allele value of 4 and a disease risk of 3% for the alelle value of 2 and 3. In this way 45

(5×9) different datasets are created, each one with all the possible combinations between

allele frequency and risk of disease. The Kappa results from the three algorithms are

shown in the Table 5.12 and Table 5.13.

The number of cases changes for every experiment because the SNP column is created
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Table 5.11: Allele Frequencies (AF) setting for the nine datasets

SNP value(s) Recode AF AF 1 AF 2 AF 3 AF 4 AF 5

1 − p 0.50 0.60 0.70 0.80 0.90

2 − q 0.50 0.40 0.30 0.20 0.10

1/1 2 p2 0.25 0.36 0.49 0.64 0.81

1/2 - 2/1 3 2× p×q 0.50 0.48 0.42 0.32 0.18

2/2 4 q2 0.25 0.16 0.09 0.04 0.01

randomly every time but it is still limited to a narrow range due to the same rules used.

An example of percentage of cases for each of the 45 files created is shown in Table 5.14.

Table 5.12: Recessive Model: Kappa Value over 5 different Allele Frequencies datasets

with disease risk between 10 and 40%.

DR(%) SNP values AF 1 AF 2 AF 3 AF 4 AF 5

(3,3,10) Cases % 4.60 3.83 3.42 2.77 3.04

κ 0 0 0 0 0

(3,3,20) Cases % 7.42 6.09 4.19 3.53 3.39

κ 0 0 0 0 0

(3,3,30) Cases % 9.88 7.42 5.51 4.41 2.89

κ 0 0 0 0 0

(3,3,40) Cases % 12.60 9.04 6.03 4.22 3.23

κ 0 0 0 0 0

5.4.2 The Dominant Model

The previous procedure is now repeated for the dominant disease model as described in

Table 5.10.



5.4. Experimental Results for Disease Models: One SNP Dataset 129

Table 5.13: Recessive Model: Kappa Value over 5 different Allele Frequencies datasets

with disease risk between 50 and 90%.

DR(%) SNP values AF 1 AF 2 AF 3 AF 4 AF 5

(3,3,50) Cases % 15.53 10.87 7.52 5.16 3.37

κ 0 0 0 0.44 0.23

(3,3,60) Cases % 17.75 11.96 7.86 5.25 3.42

κ 0.65 0.63 0.57 0.51 0.28

(3,3,70) Cases % 18.94 13.72 8.92 5.76 3.58

κ 0.70 0.72 0.67 0.57 0.29

(3,3,80) Cases % 22.25 15.39 9.33 5.92 3.68

κ 0.80 0.78 0.75 0.64 0.31

(3,3,90) Cases % 24.88 17.94 10.91 6.27 3.74

κ 0.86 0.86 0.81 0.67 0.38

Table 5.14: Recessive Model: Cases over different Allele Frequencies datasets with a

variable disease risk for the allele (2,3,4)

Disease Risk AF 1 AF 2 AF 3 AF 4 AF 5

10 4.60 3.83 3.42 2.77 3.04

20 7.42 6.09 4.19 3.53 3.39

30 9.88 7.42 5.51 4.41 2.89

40 12.60 9.04 6.03 4.22 3.23

50 15.53 10.87 7.52 5.16 3.37

60 17.75 11.96 7.86 5.25 3.42

70 18.94 13.72 8.92 5.76 3.58

80 22.25 15.39 9.33 5.92 3.68

90 24.88 17.94 10.91 6.27 3.74
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Variable Allele Frequency and Variable Disease Risk

This time, the disease risk is fixed to 3% for allele 2, as for the dominant model, and an

identic value is fixed for the allele 3 and 4, but variable from 10% to 90%. As before, the

allele frequency is then changed, creating five files each one with a different combination

of allele frequencies for each SNP value 1 and 2 (p and q) as shown in Table 5.11.

In this way 45 (5× 9) different datasets are created, each one with all the possible

combinations between allele frequency and risk of disease. The Kappa results from the

three algorithms are shown in Tables 5.15 and 5.16. As before, an example of percentage

of cases for each of the 45 files created is shown in Table 5.17.

Table 5.15: Dominant Model: Kappa Value over 5 different Allele Frequencies datasets

with disease risk between 10 and 40%.

DR(%) SNP values AF 1 AF 2 AF 3 AF 4 AF 5

(3,10,10) Cases % 7.93 7.85 6.62 5.53 4.67

κ 0 0 0 0 0

(3,20,20) Cases % 15.93 14.60 10.89 9.26 6.15

κ 0 0 0 0 0

(3,30,30) Cases % 23.30 20.06 16.60 13.03 7.73

κ 0 0 0 0 0

(3,40,40) Cases % 30.69 26.21 21.55 16.80 9.49

κ 0 0 0 0 0

5.4.3 The Mixed Model

In this last section the same procedure is repeated for the mixed disease model still for

10,000 patients.

Variable Allele Frequency and Variable Disease Risk

This time the risk disease is set to 3% for allele 2, to the range 5%-45% for allele 3 and

to the range 10%-90% for the allele 4. We create then the 45 files with every different
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Table 5.16: Dominant Model: Kappa Value over 5 different Allele Frequencies datasets

with disease risk between 50 and 90%.

DR(%) SNP values AF 1 AF 2 AF 3 AF 4 AF 5

(3,50,50) Cases % 38.74 33.10 26.58 19.99 12.27

κ 0.31 0.39 0.11 0.21 0

(3,60,60) Cases % 45.94 39.45 32.26 23.51 13.56

κ 0.42 0.49 0.57 0.61 0.64

(3,70,70) Cases % 52.94 46.57 37.72 27.07 15.73

κ 0.52 0.61 0.66 0.70 0.72

(3,80,80) Cases % 61.32 51.60 42.55 31.17 17.89

κ 0.66 0.72 0.77 0.79 0.80

(3,90,90) Cases % 68.50 58.19 47.09 34.60 20.39

κ 0.80 0.84 0.87 0.88 0.86

Table 5.17: Dominant Model: Cases over different Allele Frequencies datasets with a

variable disease risk for the allele (2,3,4)

Disease Risk AF 1 AF 2 AF 3 AF 4 AF 5

10 7.93 7.85 6.62 5.53 4.67

20 15.93 14.60 10.89 9.26 6.15

30 23.30 20.06 16.60 13.03 7.73

40 30.69 26.21 21.55 16.80 9.49

50 38.74 33.10 26.58 19.99 12.27

60 45.94 39.45 32.26 23.51 13.56

70 52.94 46.57 37.72 27.07 15.73

80 61.32 51.60 42.55 31.17 17.89

90 68.50 58.19 47.09 34.60 20.39
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combination of allele frequencies and disease risk and the Kappa results from the three

algorithms are shown in the Table 5.18 and 5.19.

The number of cases for each of the 45 files created is shown in Table 5.20.

Table 5.18: Mixed Model: Kappa Value over 5 different Allele Frequencies datasets with

disease risk between 10 and 40%.

DR(%) SNP values AF 1 AF 2 AF 3 AF 4 AF 5

(3,5,10) Cases % 8.30 7.12 6.63 5.33 4.79

κ 0 0 0 0 0

(3,10,20) Cases % 15.68 13.19 12.01 8.25 6.58

κ 0 0 0 0 0

(3,15,30) Cases % 23.19 20.07 16.52 12.83 7.93

κ 0 0 0 0 0

(3,20,40) Cases % 31.32 26.30 21.19 16.70 9.94

κ 0 0 0 0 0

Table 5.19: Mixed Model: Kappa Value over 5 different Allele Frequencies datasets with

disease risk between 50 and 90%.

DR(%) SNP values AF 1 AF 2 AF 3 AF 4 AF 5

(3,25,50) Cases % 38.31 32.77 26.73 19.95 11.59

κ 0.32 0 0.33 0 0.49

(3,30,60) Cases % 45.95 38.39 31.44 24.35 13.85

κ 0.40 0.48 0.57 0.62 0.65

(3,35,70) Cases % 53.58 45.82 37.88 27.62 15.89

κ 0.52 0.59 0.67 0.70 0.71

(3,40,80) Cases % 60.95 51.45 41.97 29.92 18.19

κ 0.64 0.72 0.76 0.80 0.80

(3,45,90) Cases % 68.24 59.06 47.26 34.37 19.49

κ 0.80 0.85 0.87 0.87 0.86
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Table 5.20: Mixed Model: Cases over different Allele Frequencies datasets with a variable

disease risk for the allele (2,3,4)

Disease Risk AF 1 AF 2 AF 3 AF 4 AF 5

10 8.30 7.12 6.63 5.33 4.79

20 15.68 13.19 12.01 8.25 6.58

30 23.19 20.07 16.52 12.83 7.93

40 31.32 26.30 21.19 16.70 9.94

50 38.31 32.77 26.73 19.95 11.59

60 45.95 38.39 31.44 24.35 13.85

70 53.58 45.82 37.88 27.62 15.89

80 60.95 51.45 41.97 29.92 18.19

90 68.24 59.06 47.26 34.37 19.49

5.4.4 Disease Risk from 50% to 60% for the 3 models

Following the previous results, the attention is addressed to a deeper insight within the

disease risk range of 50 to 60% for the three disease models. This analysis is realized in

the attempt to understand the reasons of the unexpected Kappa trend obtained under the

specific conditions. Another observation arises from the stability of the results obtained.

Every time that a test is performed, a new random dataset is created. The new input

provides in turn a different set of results. Running the algorithms more than once for

every test provides a validation of the stability of the results.

We then repeat the experiment for all the allele frequency set but setting the disease

risk to 10 different value between 50 and 60%, i.e. DR= 50, 51..59%. The results obtained

for the three models are shown respectively in Tables 5.21, 5.22, 5.23.

5.4.5 Discussion

Before discussing the outcomes of the experiments, a multi-variate ANOVA test has been

performed on the results, in order to examine the strength of different effects on the value

of Kappa, considering the two factors: disease risk (DR) and allele frequency (AF). Set-
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Table 5.21: Recessive Model: Kappa Value over 5 different Allele Frequencies datasets

with 9 different disease risks between 50 and 60%.

DR(%) SNP values AF 1 AF 2 AF 3 AF 4 AF 5

(3,3,50) Cases % 14.74 10.24 7.36 4.86 3.38

All 0 0.55 0 0 0

(3,3,51) Cases % 15.15 10.27 7.15 4.67 3.54

ADTree κ 0.56 0.57 0.54 0.15 0.22

ID3 κ 0.56 0.57 0.54 0.10 0.22

C4.5 κ 0.56 0.57 0.50 0.05 0.05

(3,3,52) Cases % 15.32 10.47 7.44 4.78 3.39

ADTree κ 0.31 0.55 0.1 0.44 0.08

ID3 κ 0.31 0.55 0.1 0.44 0.08

C4.5 κ 0.31 0.55 0 0.44 0

(3,3,53) Cases % 15.34 10.69 7.47 4.81 3.39

All 0.59 0.55 0.54 0.46 0

(3,3,54) Cases % 16.04 11.26 7.55 4.92 3.25

All 0.56 0.56 0.55 0.45 0.07

(3,3,55) Cases % 15.99 11.33 8.06 5.26 3.45

All 0.60 0.59 0.48 0.48 0.24

(3,3,56) Cases % 16.53 11.33 7.81 5.23 3.43

All 0.60 0.60 0.55 < 0.45 0.25

(3,3,57) Cases % 16.55 11.76 7.85 5.13 3.45

All 0.62 0.62 0.56 0.46 < 0.22

(3,3,58) Cases % 17.38 11.66 7.73 4.81 3.64

All 0.63 0.62 0.57 0.49 0.22

(3,3,59) Cases % 17.18 12.03 8.29 5.25 3.20

All 0.65 0.60 0.59 0.49 0
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Table 5.22: Dominant Model: Kappa Value over 5 different Allele Frequencies datasets

with 9 different disease risks between 50 and 60%.

DR(%) SNP values AF 1 AF 2 AF 3 AF 4 AF 5

(3,50,50) Cases % 17.18 12.03 8.29 5.25 3.20

ADTree κ 0.40 0.05 0.42 0 0.1

ID3 κ 0.40 0.05 0.42 0 0.1

C4.5 κ 0.07 0 0.39 0 0

(3,51,51) Cases % 38.31 33.34 26.83 19.63 11.82

ADTree κ 0.32 0.41 0.48 0.34 0.55

ID3 κ 0.32 0.41 0.48 0.30 0.55

C4.5 κ 0.32 0.41 0.48 0.16 0.55

(3,52,52) Cases % 39.19 33.93 28.66 20.96 12.00

All 0.32 0.41 0.49 0.54 0.57

(3,53,53) Cases % 40.27 35.29 28.49 21.94 12.49

All 0.34 0.42 0.48 0.55 0.58

(3,54,54) Cases % 41.65 35.25 28.90 22.03 12.36

All 0.35 0.43 0.51 0.57 0.57

(3,55,55) Cases % 41.63 37.09 29.75 21.80 13.41

All 0.37 0.44 0.52 0.58 0.59

(3,56,56) Cases % 43.50 37.09 30.18 21.78 13.05

All 0.37 0.46 0.53 0.60 0.61

(3,57,57) Cases % 43.50 37.56 31.08 22.48 13.13

All 0.38 0.46 0.52 0.59 0.59

(3,58,58) Cases % 43.14 38.83 30.69 23.02 13.59

All 0.38 0.47 0.54 0.59 0.62

(3,59,59) Cases % 44.94 38.66 31.24 24.09 13.79

All 0.40 0.47 0.56 0.60 0.62
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Table 5.23: Mixed Model: Kappa Value over 5 different Allele Frequencies datasets with

9 different disease risks between 50 and 60%.

DR(%) SNP values AF 1 AF 2 AF 3 AF 4 AF 5

(3,25,50) Cases % 38.34 32.77 27.62 19.65 11.78

All < 0.12 0 0.44 0.53 < 0.07

(3,25.5,51) Cases % 39.03 33.21 26.87 20.14 12.14

All 0.30 0.34 0.48 0.53 0.55

(3,26,52) Cases % 39.83 33.63 28.90 20.85 12.54

All 0.34 0.40 0.45 0.54 0.58

(3,26.5,53) Cases % 40.61 34.71 28.17 20.57 11.79

All 0.34 0.41 0.49 0.54 0.57

(3,27,54) Cases % 41.53 35.61 29.16 21.14 12.58

All 0.36 0.43 0.50 0.52 0.58

(3,27.5,55) Cases % 41.80 36.11 29.38 21.44 12.39

All 0.36 0.45 0.50 0.57 0.59

(3,28,56) Cases % 43.38 37.00 29.00 21.84 13.19

All 0.37 0.47 0.52 0.57 0.61

(3,28.5,57) Cases % 43.84 36.84 30.47 22.84 13.40

All 0.38 0.46 0.54 0.60 0.57

(3,29,58) Cases % 43.50 38.18 31.37 22.44 14.47

All 0.38 0.46 0.54 0.60 0.62

(3,29.5,59) Cases % 46.16 38.66 30.99 23.38 13.94

All 0.39 0.48 0.56 0.61 0.62
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ting the critical p-value to 0.05, for all the models, the test provides good evidence that

both disease risk and allele frequency affect the value of Kappa when the disease risk is

grater than 50. The p-values obtained from this analysis are reported in table Table 5.24.

Table 5.24: Multi-variate ANOVA Test: p values from the test for recessive, dominant

and mixed model

Model (%) p-val (DR) p-val (AF)

Recessive (DR = 60-90) 1.7×10−6 (d f = 3) 2.7×10−10 (d f = 4)

Recessive (DR = 50-60) 1.0×10−4 (d f = 9) 3×10−9 (d f = 4)

Dominant (DR = 60-90) 6×10−9 (d f = 3) 2.6×10−5 (d f = 4)

Dominant (DR = 50-60) 2.2×10−5 (d f = 9) 2×10−4 (d f = 4)

Mixed (DR = 60-90) 4.3×10−8 (d f = 3) 7.5×10−5 (d f = 4)

Mixed (DR = 50-60) 3.1×10−6 (d f = 9) 1.9×10−8 (d f = 4)

It is clear from the results shown in Tables 5.12, 5.13, 5.15, 5.16, 5.18 and 5.19 that as

far as the DR is under 40% in all the disease models, the Kappa value is zero. As the DR

rises, up to the value of 60%, a good range of Kappa value is obtained for all three models

and for most of the cases the Kappa value is the same for the 3 algorithms. As expected,

the Kappa value rises as the DR increases for each allele frequency setting. Concerning

the trend with the allele frequency, it is clear that for the Recessive model, an increase of

the frequency of the allele one decreases the value of Kappa, whereas for the Dominant

and the Mixed model the trend in Kappa is opposite.

There is then a no clear change in the Kappa value when the disease risk is set to 50%,

which is easily understandable considering that in this case the probability to be sick and

healthy are the same. That implies the dataset is obtained with extreme cases. In order to

check the stability of the Kappa values obtained in the result, the same test is performed

nine different times (every time a new dataset is built randomly) and the Kappa values

obtained are compared at each step. An example of this analysis is shown in Table 5.25

and Table 5.26 for the allele frequency 25%-50%-25% (AF1) and for the disease risk

equal to 40, 50 and 60. The results show that the DR equal to 40 and 60 provides quite

stable results, whereas the disease risk equal to 50 gives a clearly random answer.
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Table 5.25: Recessive Model: κ stability over 9 tests with AF (25,50,25) and DR =

40,50,60

Disease Risk(%) Algorithm K1 K2 K3 K4

(3,3,40) ADTree κ 0 0 0 0

ID3 κ 0 0 0 0

C4.5 κ 0 0 0 0

(3,3,50) ADTree κ 0.48 0 0.10 0

ID3 κ 0.48 0 0.10 0

C4.5 κ 0.40 0 0 0

(3,3,60) ADTree κ 0.64 0.64 0.64 0.62

ID3 κ 0.64 0.64 0.64 0.62

C4.5 κ 0.64 0.64 0.64 0.62

Table 5.26: Recessive Model: κ stability over 9 tests with AF (25,50,25) and DR =

40,50,60

Disease Risk(%) Algorithm K5 K6 K7 K8 K9

(3,3,40) ADTree κ 0 0 0 0 0

ID3 κ 0 0 0 0 0

C4.5 κ 0 0 0 0 0

(3,3,50) ADTree κ 0.31 0 0.54 0.35 0.55

ID3 κ 0.31 0 0.54 0.35 0.55

C4.5 κ 0.10 0 0.51 0.35 0.52

(3,3,60) ADTree κ 0.64 0.62 0.63 0.64 0.62

ID3 κ 0.64 0.62 0.63 0.64 0.62

C4.5 κ 0.64 0.62 0.63 0.64 0.62
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5.5 Future work - Multiple SNPs Datasets

Following the previous analysis, a new SNP can be included in the study, increasing the

number of the dataset columns by one. Introducing new SNPs, arises a few issues that can

affect badly the results of the process. In this section, in order to avoid confusion between

numbers, the SNPs values (2,3,4) are recoded as SNPs new values (A,B,C). When running

the algorithm, in general terms, it is suggested not to use numeric codification for the

SNPs but categorical, in order to have a better interpretation of the results.

5.5.1 Redundancy

The first potential problem is the redundancy of information that the new SNP can add

to the dataset. If there are two attributes of the dataset which contain roughly the same

information, that is they are either mostly the same or close to a combination, the algo-

rithm may skip one of the two SNPs following some criteria which may be not acceptable.

In order to check how the algorithm cope with this problem, a dataset should be created

starting with two SNPs having very similar values (or being very much correlated between

each other).

In order to give an example, a correlation between two SNPs is realized, creating two

columns which are very similar between them, but this would not be the only solution.

This means that 90% of the values of the two SNPs are AA, BB or CC. There are of course

many possible combinations of 2 SNPs taken from the 3 disease models. In this context, a

simple example is shown in the case of 2 SNPs according to the Recessive Model. Under

this hypothesis, there are still lots of situations where these two SNPs, similar at 90%,

have different combination of the disease risk for SNP equal to 4. In one of the possible

scenario, the disease susceptibility could be affected by either both of them or only one

of them. Althoght, in both cases, the aim is to check how the algorithm copes with the

two SNPs. In this scenario, the analysis could be addressed to the case where only one

SNP gives a substantial contribution to the disease and the other one is only redundant.

This means to set disease risk for example of SNP1 equal to (3,3,80) and SNP2 equal to

(3,3,10) (as shown in Table 5.27). Subsequently the case of SNP1 equal to (3,3,80) and

SNP2 equal to (3,3,20), (3,3,30) and so on could be considered.
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In general term, in order to fix the redundancy problem, a pre-processing stage needs

to be introduced where all the attributes are checked for their surplus of information and

erased if necessary. A better analysis of the general problem of redundancy in SNPs

dataset is extensively discussed in Chapter 6.

Table 5.27: SNP− SNP Condition: Allele frequencies and probability to contract a dis-

ease for each SNP value of the 2 recessive SNPs.

SNP value DR SNP1 DR SNP2

A 3% 3%

B 3% 3%

C 80% 10%

5.5.2 Non linear interaction between attributes

The second issue that may arise when more than one SNP is considered, is the non linear

interaction between different attributes. There may be cases when every SNP alone does

not contribute to the susceptibility to contract a disease but considering for instance two

SNPs together, there may be a particular combination of their values that is responsible

for an increased risk of the disease. In order to give an idea of this problem, an example

of dataset can be built, composed by two SNPs with this kind of non linear interaction

between them, as shown in Table 5.28. It is important to make sure that the case-control

ratio of the dataset is always set at a reasonable value over the threshold of 33%. In this

specific example for instance, setting the allele frequency and the probability to contract a

disease as shown in column 1−DRSNPs of Table 5.28, a dataset with 6.41% of cases over

10000 individuals is obtained. In order to build a dataset with an acceptable cases-controls

ratio, one possibility is to set the probability to contract a disease to the ones shown in

column 2−DRSNPs of Table 5.28. In this way a dataset with 49.87% of cases over

10000 individuals is obtained. There will be of course different solutions with different

combinations of the disease risk and allele frequencies that could provide an acceptable

case-control ratio. An extensive analysis of the problem of non linear interaction could be
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performed as a future work, considering the possibility to glue together the information

related to 2 different SNPs in a single column of the dataset, as shown in Table 5.29.

Table 5.28: Example of non-linear interaction: Allele frequencies and probability to con-

tract a disease for each values of the two SNPs.

SNP value Allele frequency 1-DR SNPs 2-DR SNPs

A 36% 3% 3%

B 48% 4.5% 60%

C 16% 6.8% 80%

AA − 3% 3%

BC − 70% 70%

CB − 90% 90%

number of cases − 6.41% 49.87%

Table 5.29: Example of possible SNPs recoding for the non linear interaction issue

SNP1 SNP2 Coding

A A AA

A B AB

A C AC

B A BA

B B BB

B C BC

C A CA

C B CB

C C CC
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5.6 Summary

This Chapter provides the reader with an overview of the problems that need to be faced

in the creation of artificial SNPs datasets, with particular relevance to the case of the PE

disease association study. The final aim of this work is to test the algorithms that have

been used in the previous chapter for studying disease association in order to highlight

their strengths and weaknesses.

There are many different aspects that need to be taken into consideration in this kind

of task. Different diseases may arise in different ways, are caused by different genetic

markers and genes, and have different probabilities to occur. More than one disease model

can be employed in the analysis depending on the dominance or recessiveness of the

genetic information. Allele frequencies for each single SNP differ for every marker and

for each disease model chosen. SNPs can be similar to each other, creating redundancy in

the initial dataset which in turn affects the performance of the analysis and the quality of

the results. Having the possibility to build such an artificial dataset that is tunable by the

user, allows a wide range of analysis of the pitfalls of a given technique.

In particular, the experiments performed in this work showed that the algorithms under

analysis present a limitation in term of database size, as a population of 100,000 patients

with one SNP cannot be analysed by the software. A combined analysis is also performed

to check how disease risk and allele frequency can affect the statistical significance of

the results obtained. The experiments show that for a disease risk lower than 50%, the

algorithms are not able to provide statistical significance of the results. The general trend

of Kappa value increases with the disease risk, as expected. An increased frequency of

the common allele (1) causes a drop of the Kappa value for the recessive model and

an increase of the Kappa value for the dominant and the mixed model. This is also an

expected result as, when the rare allele (2) is the one responsible for an increased disease

risk, if its frequency is very low, its effect will not be detected. All these results are proved

to be significant through a multi-variate ANOVA test. In conclusion, the experiments

show that the disease association with a single SNP needs to be evident (>50% of disease

risk), in order to be detected by the algorithms and in this context, the recessive model is

less likely to provide results which are statistically significant.

This review, is supposed to give a general idea of how complex the problem is and
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how much work needs to be done in order to provide a useful tool for facing this task.

The final aim is to raise discussions and open questions in order to suggest possibilities

for further extensive research.



Chapter 6

The RDsnp Method - A fast

approximation to the LD algorithm.

6.1 Introduction

One of the most common and challenging problems for the analysis of large datasets is

the detection and elimination of redundancy. This issue is becoming very pressing due

to the continuously growing size of the biological datasets nowadays available in genetic

studies. The current research is focused on decreasing the computational complexity of

methods used for elimination of redundancy.

Within the study of Single Nucleotide Polimorphisms (SNPs), the concept of redun-

dant information is directly associated with the definition of linkage disequilibrium. This

function measures the association of two alleles at two different loci, revealing inheri-

tance of genetic markers over generations. The current methods used to measure the re-

dundancy observed between SNPs computes the pairwise linkage disequilibrium between

genetic markers, providing the square correlation coefficient (R2) as output value. These

methods, in spite of a good accuracy, present big limitations in terms of computational

complexity due to combinatorial explosion.

In this Chapter a new method for redundancy detection, called RDsnp, is presented.

This makes use of an existing linkage disequilibrium tool, proposing an optimisation of

its application. An overview of the problem is illustrated in the first paragraph, whereas

in the Methods section the RDsnp method is explained in detail.

144
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Following that, in order to test the proposed method, new databases need to be pro-

vided with different redundancy values. Therefore three new techniques are introduced

to create an artificial dataset with a given redundancy, called ‘Copy’, ‘Permutation’ and

‘Rules’. One of these methoda, the Copy, is used in the experiments and a second one,

Permutation, is employed to provide a validation of the results obtained with the previous

one.

The Results section shows the characteristic of artificial datasets created with the pro-

posed Copy method. Subsequently, several experiments using the new technique with

different clustering techniques are shown in order to motivate the final choice of the best

clustering algorithm, EM. The RDsnp method is tested with artificial datasets with a given

redundancy as well as with examples of a real datasets. The performance and the com-

putational time of the newly proposed approach is studied in order to demonstrate its

benefits. Finally, the findings are summarised and new suggestions are made about some

potentially interesting future improvements of RDsnp.

6.2 Redundancy Elimination in SNPs datasets

Nowadays the analysis of genetic data for different medical purposes is becoming in-

creasingly important [15, 16]. It has been widely shown and confirmed that many human

diseases are somehow related to the information contained in human genome [17]. If

doctors could decode the information enclosed in the DNA chain, it would be possible

to detect to a certain extent the susceptibility of every one of us to contract a specific

disease [19, 153–156]. It could be feasible also to understand how every one of us re-

acts to different drugs and therefore it may be possible to provide every patient with a

personalized treatment.

Due to the continuously improvement and optimization of the gathering data tech-

niques in the genetic field, it is now possible to collect a huge amount of data in reason-

able time. This has focused researchers’ attention on the increasing datasets size, which

is becoming a top priority issue [157, 158].

Many tools and techniques for data mining, such as SAS [159], STATA [86], SPSS

[160], Weka [112] or MySQL [161], are currently available for applications in every
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possible field. A common problem for these techniques is the necessity to reduce the time

spent to perform a study. In order to achieve this goal, many studies have focused on

decreasing the size of datasets without losing important information.

A SNP is usually coded with two different numbers, referred as allele: one number

refers to the genetic information located in one chromosome and the other number refers

to the information located in the paired chromosome. The number of different values for

each allele can be 2 or 3, when an allele can have only 2 different values, the respective

SNP is called bi-allelic [8].

Since sequencing the entire human genome was completed on 2003, large amounts of

data have been available for medical studies. The current SNPs datasets can reach sizes

of hundreds of thousands of SNPs, creating lots of problems for the pre-processing and

analysis approaches. The idea of reducing the size of datasets by elimination of redundant

information is related to the specific definition of redundancy commonly applied to SNPs

studies. This definition arises from the correlation, or lack of independence, between

SNPs in close proximity, known as linkage disequilibrium [162].

This Chapter presents an approach to reduce the SNPs database size by the elimination

of information which is redundant. In general terms the presence of redundancy implies a

surplus of information in the database which can be inferred from other subgroups of data.

This superfluous data is therefore not relevant for further analysis and can be eliminated

without compromising the content of the original data. In this specific case the dataset

can be seen as a matrix composed by rows representing patients and columns consisting

of SNPs. The aim of this new method is to decrease the size of the matrix by reducing the

number of columns. This goal is achieved by eliminating sets of SNPs whose values can

be inferred by others.

The problem of SNPs tagging, which consists of selecting a smaller amount of in-

formative SNPs from the original dataset, is essentially a feature selection problem from

the machine-learning point of view [163]. A huge amount of work can be found in the

literature on feature selection in the machine learning community. However, in this con-

text, attention is focused on the specific applications for SNPs analysis. There are several

papers in the literature which show different approaches to the redundancy elimination

problem [75, 164–168]. In Chapter 2, an extensive analysis can be found on the feature
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selection problem tailored to SNPs.

The new method proposed is called RDsnp and makes use of the linkage disequilib-

rium function, currently implemented in more than one language. This function computes

the pair wise linkage disequilibrium between all the genetic markers included in the input

matrix through the correlation coefficient (R2). The new RDsnp method makes a differ-

ent use of this function from the common one. Instead of calculating the redundancy

between every pair of SNPs, it measures the redundancy between each SNP and few ran-

dom columns, comparing then the set of R2 values obtained for each SNP.

In order to group different sets of SNPs, characterized by different redundancy values

R2, an appropriate clustering method needs to be applied. Within this study the most com-

mon clustering techniques used for genetic applications have been analyzed and tested.

These include agnes, daisy, pam, clara [169], hierarchical clustering, K-Means [112] etc.

Following an assessment of the different results obtained, as shown in the Result sec-

tion, the evidence of the best final results has been obtained with the application of the

Expectation Maximization algorithm.

This technique is somehow similar to the better known K-Means technique. In Chap-

ter 2 a detailed analysis of the used clustering techniques is shown.

6.3 RDsnp - Redundancy Detection for SNPs datastes

In the first part of this section the steps of the RDsnp method are shown. The second

section explains the creation criteria for the synthetic datasets which will be used to test

the new technique.

6.3.1 Method

There are different tools that can be considered for redundancy measurements such as

MRMR in Matlab [170] or Duplicate Remover in SQL [171]. The one that has been

chosen in this study is built for SNPs application and is therefore widely used and known

in genetic analysis. It is called LD and in R language it is a function implemented by

Gregory R. Warnes [172], contained in the package called ‘SNPassoc’, released on April

2009 [173]. The LD function computes the pair wise linkage disequilibrium between
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genetic markers. One of the output values of LD function is the correlation coefficient

(R2) which is used in the proposed method for testing redundancy between SNPs.

The squared correlation coefficient R2 is a formal measure of linkage disequilibrium.

Considering two bi-allelic (i.e. SNP) loci with allele frequencies p1, p2, q1, q2 and haplo-

type frequencies h11, h22, h12, h21 a measure of the magnitude of linkage disequilibrium

is given by the following definition [174]:

R2 = (h11h22 −h12h21)/p1 p2q1q2

In selecting SNPs for genotyping studies avoiding redundancy, it is necessary to detect

the variation within a region of the genome by ensuring that the SNPs chosen are adequate

proxies for the other SNPs in the region. In this scenario, R2 ≥ 0.8 is often used as a

threshold for selecting redundant SNPs [175, 176].

The LD procedure, which has been chosen in this study, analyses a matrix of SNPs

and, by performing a test for linkage disequilibrium, it calculates the redundancy through

the assessment of the parameter R2. In this current method, the redundancy is calculated

considering every possible combinations of SNPs pairs within the data matrix. Given a

set of n SNPs, the total number of all possible combinations of k SNPs (i = 1 . . .k) taken

from the set of n is

Ck,n =
n!

k!(n− k)!

In this specific case, as the measure the redundancy is always between two SNPs,

k = 2. Therefore the combinations of SNPs become:

C2,n =
n(n−1)

2
∼=

n2

2

For instance, in an input dataset of 1000 SNPs (n = 1000) there are almost 5 · 105

combinations of SNPs to be measured for redundancy. If the dataset is composed of 10000

SNPs, the combinations to be measured rise to 5 ·107 pair of SNPs. Considering that with

the new technologies a reasonable number of 500k SNPs can be gathered, the amount of

needed measurements can reach more than 100G. This enormous set of operations may

affect the performance of the standard machines nowadays available for these analysis.
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The new idea is to decrease the computational complexity of the current method,

avoiding the redundancy measurement for every possible combination of SNPs pairs taken

from the dataset. The new approach is developed starting from the following steps:

(1) Every single SNP from the initial dataset is compared with a random SNP column

created artificially: the redundancy is measured between each SNPs of the dataset

and the random column applying the LD function.

(2) All the SNPs which show the different redundancy value R2 measured with the ran-

dom column are grouped in different clusters. Every SNPs that belong to the same

cluster has the same redundancy against the same random column which implies it

is likely to be also redundant against the SNPs belonging to the same group. The

degree of redundancy between SNPs of the same cluster is probably different from

the one obtained with the given random column.

(3) In order to measure the real value of redundancy between SNPs belonging to the

same cluster it is sufficient to select two SNPs, from the same cluster, that can be

representative of the cluster. The LD function can be applied to these two represen-

tative SNPs to calculate their real redundancy. The sampling of the representative

two SNPs in this procedure is made randomly; for further discussion on this, the

reader is referred to Section 6.7.

(4) Point 3 is applied to each cluster, in order to calculate the redundancy between the

SNPs belonging to each cluster.

(5) Any cluster that contains SNPs with a value of redundancy greater than 0.8 is con-

sidered a group of redundant SNPs. Only one SNPs is kept for each of these clusters

and the remaining SNPs are eliminated. This final SNP, representative of the cluster,

is selected, once again randomly.

By applying this mew methodology it is possible to reduce drastically the amount

of computational complexity. In this case indeed, if the input dataset is composed by n

SNPs and a random column is considered in the analysis, the number of measurements to

be performed is equal to n.
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A drawback of this first approach is the bias that a random column can introduce, as

the value of redundancy between a SNP and the given random column depends also on

the random column values. For this reason it is more reasonable to extend this technique

to a greater number of experiments, each one with a different random column. Every time

a random column is chosen, different value of redundancy is obtained against the same

SNP and against the same SNPs belonging to the same cluster created. In this way, with

n SNPs and c random columns, the amount of measurements to be performed is equal to:

Cc,n = n · c

Applying this formula to 1000 SNPs and 5 random columns, only 5000 comparisons

are needed to test for redundancy and with a dataset of 500k SNPs and 5 random columns

the amount of measurements results only 1M instead of 100G with the original method.

In the end, all the results from each experiment are combined in one single output. The

final RDsnp method is therefore developed through the following steps:

(1) Every single SNP from the initial dataset is compared with c SNP random columns

created artificially : the redundancy is measured between each SNPs of the dataset

and each random column applying the LD function.

(2) A vector for each SNP has been created. This vector dimension is equal to the

number of random columns used and each of its component shows the redundancy

value of the given SNP against each used random column.

(3) A clustering technique is then applied to this population of vectors in order to group

the SNPs with the most similar value of redundancy. This procedure may require the

calculation of the distance matrix of the whole population of SNPs. For the distance

matrix calculation a measurement to high combinatorial number of SNPs needs to

be applied. This may create disadvantages in terms of computational complexity

making RDsnp comparable to the original technique. In fact, this population of

vectors have a very short length (c random columns). The input matrix used in the

original method, instead, is composed by SNPs columns whose length corresponds

to the number of patients analyzed, usually consisting of few thousands units.



6.3. RDsnp - Redundancy Detection for SNPs datastes 151

(4) The real value of redundancy of each group of SNPs is calculated, as before, ran-

domly picking two SNPs up from the same group and applying the LD function.

(5) The groups of SNPs (each one for each vector), that show a redundancy value R2 ≥

0.8 are considered redundant. Only one representative SNPs of these clusters is

kept, randomly chosen.

A framework of the new methodology is shown in Figure 6.1, 6.2 and 6.3.

INPUT
DATA

MATRIX
Patients

n SNPs 1 SNP Random 
column

LD 
Function Patients

STEP 1  - LD function between each SNP and a random 
column - to be repeated for c random columns

R²

n SNPs

1 Redundancy
Value 

Figure 6.1: The flow chart model of the RDsnp method - In the first step the redundancy

between n SNPs and c random columns is calculated

As there are different techniques that can be used for clustering, a variety of clustering

algorithms have been examined in order to find the best algorithm to be used in this

application.

The Hierarchical Clustering is based on the definition of similarity or dissimilarity be-

tween instances of the datasets. The elements that are more similar are grouped together in

a procedure composed by sequential steps. At each step two clusters are grouped together

depending on their similarity. Different solutions can be chosen in the end depending on
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LD(SNPs, random_1)

LD(SNPs, random_c)

…

R²_1
R²_2

..
R²_c

…

R²_1
R²_2

..
R²_c

c measures
(random columns)

STEP 2  - Creation of n Vectors

n SNPs

STEP 3  - Clustering Techniques application
to group SNPs with the same R²

n SNPs

Figure 6.2: The flow chart model of the RDsnp method - In the second step, n vectors are

created out of n SNPs. In the third step the Clustering techniques are applied



6.3. RDsnp - Redundancy Detection for SNPs datastes 153

R² = 0.9

R² = 0.1 R² = 0.8 R² = 0.3 R² = 0.9

R² = 0.2 R² = 0.8 R² = 0.3

Groups of SNPs with different R² values

Pick up two random 

SNPs from the group 

to measure the redundancy

STEP 4  - Redundancy Calculation of each group of SNPs

STEP 5  - Elimination of redundant SNPs

Figure 6.3: The flow chart model of the RDsnp method - In the forth step the real redun-

dancy between SNPs belonging to the same cluster is calculated. In the fifth step SNPs

with R2 ≥ 0.8 are detected for elimination.
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the number of clusters that are required by the user. The ‘k-means’ algorithm is based on

a creation of different clusters defined initially by random centroids. Following an opti-

mization of the first random choice is performed until the results stabilized into an optimal

center for each group. As the final solution is biased by the initial choice, the software is

usually run several time and the best result is chosen. The EM algorithm is a statistical

approach that assigns each instances with a probability to belong to a given cluster instead

of placing them directly into one of them. In the R language, the function that performs

the EM clustering technique is called ‘Mclust’ and it is included in the package ‘mclust’

[177] published on July 2009. For a better analysis of these three techniques, the reader

is referred to the Chapter 2.

In this study, it is important to remember that the number of clusters present in the

dataset is not known beforehand as the number of different redundancies in the input

matrix is unknown. For this reason, it would be reasonable not to consider any clustering

technique which requires the number of clusters as an input parameter. Nevertheless, in

the results section an example of K-means clustering technique is applied to the RDsnp

method in order to show how this technique perform in this specific application. This

can be achieved building an artificial dataset with a known number of redundant clusters.

Moreover, there are several variants of the basic ‘k-means’ technique which have been

developed for different applications together with supporting analysis for choosing the

best number of clusters.

6.3.2 Artificial Dataset Creation

In order to test the main method explained in the previous section, a good source of

datasets needs to be provided. As sometimes it is not immediately available the kind of

dataset needed for this study, an analysis upon synthetic datasets creation has been carried

out also in this Chapter for this specific application. In this way it is possible to create a

database with given features necessary to test specific limitations of the method.

There are different ways that can be used to create an artificial dataset. In this section,

three different approaches to build a redundant database are shown in order to give a

confirmation and validation of the results obtained with each one of them.

As the target dataset is composed by SNPs, the first issue that needs to be faced is the
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allele frequency setting. In order to build a realistic dataset, the allele frequency needs to

be set to a value which is reasonable and commonly accepted. Every SNP usually has a

different frequency of the two alleles (1 and 2). If the allele 1 is the most common and

the allele 2 the most rare one, a realistic occurrence of the allele 1 can be set as 80%.

Consequently, the frequency of the allele 2 can fairly be set to 20%. A dataset composed

by a fixed number of SNPs with a biological distribution of allele can then be created.

The second step is the creation of a given redundancy between SNPs.

Artificial Dataset - Copy Method

Using the first method, called ‘Copy Method’, two different SNPs columns are created

with the same allele frequency. Every component of a SNP column is composed by the

value of the given SNP for each patient in the dataset.

��������
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Figure 6.4: Copy Method for artificial dataset creation

In order to create a new SNP, redundant to the first SNP, a percentage of the first SNP

has been copied and the rest has been copied from the second SNP. In this way, provided

that the length of the SNPs are big enough, the distribution of alleles has been preserved,

Figure 6.4. The length of the SNP is given by the number of patients included in the

dataset and a population of 1000 individuals can be considered a reasonable choice for
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Table 6.1: Percentage of SNP to be copied or permuted for a given redundancy

Redundancy R2 % of SNP

0.9 6.8

0.8 12.5

0.7 18.5

0.6 25.8

preserving the alleles distribution. Following a sequence of simulations steps, the right

percentage of SNP, to be copied from the first SNP, has been detected in order to obtain a

given redundancy in a population of patients, as shown in Table 6.1.

As mentioned before, the redundancy value is given by the squared correlation co-

efficient R2 in the range 0-1. As shown in Table 6.1 in order to create two SNPs for

instance with a redundancy of R2 = 0.9, 6.8% of the first SNP needs to be copied in to the

second one. These results are plotted in Figure 6.5, showing the linear increasing of the

percentage of SNP column copied with the decreasing trend of the R2.

Artificial DB Redundancy

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

0 5 10 15 20 25 30

Percentage of Permuted/Copied SNP

R
²

Figure 6.5: Percentage of SNP column to be copied or permuted
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Artificial Dataset - Permutation Method

In order to have a validation of the first method a different approach has been used to

create a similar artificial dataset and compare then the results. In Figure 6.6 the second

method called ‘Permutation Method’ is shown.

����������	
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Figure 6.6: Permutation Method for artificial dataset creation

A SNP column is created with the agreed distribution of allele as a reference. A

second SNP is then created, redundant to the first just by coping a certain percentage of

the previous SNP column and permuting the rest of it. In this way the allele distribution

of the patients population is preserved and at the same time a SNP with a given value

of redundancy, depending on the permutation ratio, is created. In order to determine the

percentage of SNP column to be permuted for each value of R2, a sequence of simulation

tests were performed until the best approximation was found. These amounts resulted to

be the same found for the ‘Copy Method’ as shown in Table 6.1 and Figure 6.5, providing

a validation of the previous method for the chosen size of 1000 patients.

Artificial Dataset - Rules Method

In the last method, a new artificial dataset is built following some rules that provide a

given amount of redundancy. The basic idea is to the following: If the first SNP has an
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Figure 6.7: Rules set for redundancy realization

‘A’ then the second SNP has a ‘A’ with a probability equal to ‘r’, where ‘r’ is the chosen

redundancy. Otherwise, the second SNP has a ‘B’ or ‘C’ with (100-‘r’)/2 probability in

either cases. The same rule is extended to the case of the first SNP having a ‘B’ or ‘C’

as shown in Figure 6.7. In this way the percentage of redundancy, that was initially set,

is preserved but the original distribution of the SNP allele (occurrences of ‘A’, ‘B’, ‘C’)

is lost. In Figure 6.8 an example of rules set is shown for redundancy equal to 90%.

Performing several simulations, the best results for simulating datasets is obtained with

R2 equal to 0.9, 0.8, 0.7 and 0.6, as shown in Table 6.2.

6.4 Experimental Results

This section shows the results obtained from creating an artificial dataset with different

degrees of redundancy applying the methods previously discussed. In order to synthesize

the analysis carried out in this Chapter, only two of these methods are used in the study,

as this is enough for providing a validation of the results. The Copy method is employed
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Figure 6.8: Example of rules for redundancy equal to 90%

at the first stage and the Permutation method is subsequently applied in order to have a

validation of the results from the first method.

In order to find the best sequence of steps to follow, the appropriate settings of the

parameters used and the most successful clustering technique, different ways to test the

RDsnp technique are shown. In the first step an artificial dataset is created in order to

know exactly the amount of redundancy present between each SNP. In a second stage the

technique is applied to a real dataset to possibly detect any degree of redundancy between

Table 6.2: Allele Frequencies setting for different value of redundancy for a dataset built

with the Rules Method

Allele Frequency Set R2 = 0.9 R2 = 0.8 R2 = 0.7 R2 = 0.6

(Aa, Ab, Ac) (98,1,1) (95,3,2) (92,4,4) (88,8,4)

(Ba, Bb, Bc) (1,98,1) (3,95,2) (4,92,4) (8,88,4)

(Ca, Cb, Cc) (1,1,98) (3,2,95) (4,4,92) (8,4,88)
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Table 6.3: Degrees of Redundancy present in the artificial dataset

SNPs Names Redundancy (R2)

1−20 Identical(1)

21−40 0.9

41−60 0.8

61−80 0.7

81−100 0.6

101−120 Random

real SNPs.

6.4.1 Results: LD and the Artificial Datasets

With the Copy Method a new dataset has been created, composed by 1000 patients and

n 120 SNPs, whose redundancy is set as shown in Table 6.3. Applying the original LD

function to the new dataset, it is clear that the six different group of SNPs can be easily

detected within the initial dataset, see Figure 6.9. The first 20 are identical and therefore

have a redundancy value of one, the second 20 are supposed to be redundant of R2 = 0.9

and this is confirmed by the LD function as shown in Figure 6.9. The same validation

applies for the other groups of SNPs.

Also with the Permutation Method a new dataset composed by 1000 patients and 120

SNPs is created, with the same redundancy setting as before (Table 6.3). Then, applying

to original LD function to this dataset, it is again shown that the Permutation Method

provides a good accuracy for the redundancy setting (Figure 6.10).

A similar experiment is repeated also for the dataset created with the Rules method and

the LD function is applied to confirm the validity of the method, as shown in Figure 6.11.

6.4.2 RDsnp Results from Artificial Dataset

As validated by the LD function, the proposed Copy technique has provided good results

in terms of creating a dataset with a given redundancy and this has been confirmed by the
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Figure 6.9: Results from LD applied to an artificial DB composed by 1000 patients and

120 SNPs. The first 20 SNPs are identical, the second 20 have R2 = 0.9, the following 20

have R2 = 0.8 and so on. The last 20 are just random.
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Figure 6.10: Results from LD applied to the artificial DB
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Figure 6.11: Results form LD applied to the artificial DB built with Rules Method
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alternative Permutation method. Under this validation, the Copy method will be used to

built the datasets for the further experiments.

There are different parameters that can be set in order to check for the performance

trend of the RDsnp technique: number of SNPs n and patients in the dataset, number

of random columns c to be used in the analysis and different clustering techniques. For

this reason, in the course of the analysis different databases have been created to perform

various kind of tests in order to have a wide overview of the proposed methodology. For

each different parameters setting, discussed in each of the following sections, only the

techniques which provided the best results are mentioned and shown.

Dataset(1000x60) and Hierarchical Clustering

Initially a DB of 1000 patients and 60 SNPs has been created, whose the first 20 SNPs are

redundant of 0.9, the next 20 are redundant of 0.8 and the last 20 are just random. After

applying the new method with three different random columns, the results are plotted as

distribution of R2 with its mean and variance in Figure 6.12.

The first column of this Figure shows the R2 value for each random column (repre-

sented by each row of the picture) and it is clear that it is not easy to distinguish between

the redundant SNPs (the first 40) and the random ones (the last 20). The variance graph-

ics, which are plotted in the second column of the Figure 6.12 show that the last 20 SNPs

are more spread that the previous ones, but it is still difficult to set a fixed threshold to

identify them. For this reason five different measurements of the redundancy against five

different random columns have been performed and, this time, the results have been put

together in a single matrix. This output is then compose by 60 columns (or vectors), as

the number of SNPs and c=5 rows as the number of different random columns. As the

next step, in order to detect the two groups in this new population (the redundant and

the random SNPs), another experiment has been performed. If SNP A and SNP B are

redundant and therefore similar, they should have a similar redundancy value against the

same reference SNP (in this case the random column created). If c random columns are

used, SNP A should have very similar redundancy values to SNP B when compared to

each of the c random columns. Plotting these values in a c dimensional space will result

in locating SNP A and SNP B in a position close to each other. This is due to the similar
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Figure 6.12: Results from LD applied to the artificial DB with three different random

columns. Each row of the picture represent a result from each random column. The

columns of the picture represent, from left to right, the R2 value, the R2 mean and the R2

variance, for each SNP represented on the x axis.
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values that A and B have for each of their correspondent c coordinates. For this reason,

if the points obtained in the space are clustered, SNP A and B are expected to belong to

the same cluster. This type of analysis requires the calculation of the distance of every

point between each other. In order to avoid this high computational process, an alternative

solution has been explored. The distances between the points and the origin of the metric

system are plotted in order to see if any patterns could be detected to distinguish the first

40 SNPs (redundant) from the last 20 ones (random). The results are shown in Figure 6.13

and once again it is difficult to detect the first 40 redundant SNPs from the last 20. This

is probably due to the fact that even if redundant SNPs are close in the space and grouped

in a cluster, they may have the same distance to the origin as another group of SNPs, still

redundant but with a different degree of redundancy.

Consequently, the distance matrix is calculated and a clustering technique is then ap-

plied to detect the groups of SNPs (represented by the vectors) with the same redundancy

value. The clustering algorithm that gave the best results is Hierarchical Clustering with

‘McQuitty’ method of Aggregation. As shown in the Dendrogram of Figure 6.14, this

technique is able to detect two different groups: the first one includes all the redundant

SNPs except for one. Moreover, it includes two random SNPs. The second cluster in-

cludes all the random except for two and beside, it includes also one redundant SNP. In

more precise terms, this procedure gives 2 false positive SNPs over 40 and 1 false negative

SNP over 20.

Dataset(1000x6000) and Kmeans

As next step, in order to evaluate the influence of the number of SNPs to the performance,

a database composed by 1000 patients and 6000 SNPs is created, whose SNPs, the first

2000 are 0.9 redundant, the second 2000 are 0.8 redundant and the last 2000 are just

random. After applying the new method with c=5 random columns, the distance matrix

of the SNPs vectors is calculated and then different clustering techniques are applied.

The best results are obtained by the Kmeans approach setting 2 target clusters. Over the

redundant SNPs cluster, 68 are random SNPs which means a false positive rate of 1.7%

over 4000 SNPs. Whereas within the non-redundant cluster there are 1162 false negative

SNPs, making the false negative rate equal to 58.8%. If on one hand these results are very



6.4. Experimental Results 166

� �� �� �� �� �� ��

�
��
�
�

�
��
�
�

�
��
�
�

	
���������

�
��
�
��
�
��
��
�
�
�

Figure 6.13: Distance from the origin of the SNP vectors created. The vector dimension

is equal to the number of random columns used and each of its component shows the

redundancy value of the given SNP against each used random column.
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Figure 6.14: Results for the Hierarchical Clustering technique with McQuitty method of

aggregation. The red circles highlight the 2 false positive results whereas the green circle

detects the false negative SNP found. The numbers at the bottom of the Dendrogram

represents the name of the SNPs
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Table 6.4: Redundancy versus clusters detected by EM algorithm on 1000x1000 input

matrix

Clusters 1 2 3

Redundant SNPS 332 168 0

Random SNPS 0 0 500

promising, on the other hand, there are still a relevant mistake to be amended. For this

reason in the next step other clustering techniques are used to detect the best one for the

purpose of this study.

Dataset(1000x1000) and EM algorithm

In this specific experiment, a dataset composed by 1000 patients and 1000 SNPs was

created, whose SNPs, the first 250 are 0.9 redundant, the second 250 are 0.8 redundant

and the last 500 are just random. Applying the Expectation Maximization algorithm to the

results from 5 set of random columns an excellent result is obtained as shown in Table 6.4.

The EM algorithm detects three clusters, whose the first 2 include exactly all the

redundant SNPs, whereas the third cluster includes all the random SNPs, providing an

accuracy value of 1.

6.4.3 RDsnp Results from Real Dataset

The real DB that has been used in these experiments is composed by a group of mothers

checked for the pregnancy condition of Pre-eclampsia and it has been created from data

taken at different European clinics. The dataset is characterized by 339 patients represent-

ing the rows of the input matrix and 26 SNPs, each one with two different allele encoded

with the number 1 or 2. The genotype attributes are therefore the following:

• AGT gene: SNPs 1-8, alleles 1 and 2

• AGTR1 gene: SNPs 9-12, alleles 1 and 2

• TNF gene: SNPs 13-16, alleles 1 and 2
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• F5 gene: SNP 17, alleles 1 and 2

• NOS3 gene: SNPs 18-22 and 24, alleles 1 and 2

• MTHFR gene: SNPs 25, 26, alleles 1 and 2

• AGTR2 gene: SNP 27

Both the original method and the proposed one detect a redundancy of 0.879 between

the first and the fifth column of the input dataset which correspond to SNP1 and SNP5.

Due to the small number of SNPs the performance comparison give better results for the

original method than for the new one. The results were obtained in 6.38 seconds using the

LD function against 8 seconds spent for performing the new method with three random

columns setting.

In order to check how the new technique performs with a larger real database, the

original database has been replicated two to six times and the run time and accuracy of

the results have been checked. Their average and standard deviation over 20 runs are

plotted in Figure 6.15 and Figure 6.16, respectively. It is clear from Figure 6.15 that

the speed of the RDsnp becomes competitive when the number of SNPs exceeds 60 (in

this specific case). Also, the accuracy shows improvements with the increased number of

SNPs considered in the analysis.

6.5 Performance Analysis

In this section a performance analysis is carried out, in order to show the benefits of

the new technique. Considering the results from a general method divided by True Pos-

itive(TP), True Negative(TN), False Positive(FP) and False Negative(FN), the study is

based on the following definitions:

Accuracy =
(T P+T N)

(T P+T N +FP+FN)

Sensitivity =
T P

(T P+FN)
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Figure 6.15: Run Time comparison for Real Database: Time in minutes versus number of

SNPs for both RDsnp with 5 columns and the original LD function
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Speci f icity =
T N

(T N +FP)

Precision =
T P

(T P+FP)

Several groups of experiments have been performed, setting every time a different

value for the number of random columns c and a different value for the number of SNPs

n used in the artificial dataset. The different number of SNPs considered for each trial

are: n = 200, 400, 600, 800 and 1000 SNPs. The different sets of random columns used

for each SNPs dataset are: c = 3, 4, 5 and 6. All these datasets are created in a way

that half of the SNPs are random and half are redundant - in particular one quarter has

a redundancy of 0.8% and one quarter has a redundancy of 0.9%. For each number of

random column setting (3,4,5 and 6), 20 different experiments have been run and the

averages and standard deviations of the results performance have been calculated and

displayed in different graphics. In Figure 6.17 and Table 6.5 the Specificity of the new

method applied to the described datasets is shown. With the same specification explained

above, Figure 6.18 and Table 6.6 show the Sensitivity, Figures 6.20 and Table 6.7 show

the Accuracy and Figures 6.19 and Table 6.8 show the Precision of the new method.

While the Sensitivity appears to have wider fluctuations, the other three parameters are

more stable. In particular, the Sensitivity, Accuracy and Precision tend to increase with

a higher number of random columns used, without showing particular improvement with

the number of SNPs analysed. Moreover, the level of these three parameter is reasonably

high for any size of dataset analysed.

In conclusion, it is clear that when the number of random columns is fixed to the value

of five, a good performance is preserved, obtaining an Accuracy of 0.75. This means that

three quarter of the SNPs included in the dataset are correctly detected as redundant or

not redundant. Additionally, with a Precision of 0.8, the results obtained are confirmed

by repeated experiments for 80 times over 100 trials.
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Table 6.5: Specificity comparison versus number of SNPs. Four different number of

random columns c (3,4,5,6) have been chosen to run the RDsnp(c) method

Number of SNPs 200 400 600 800 1000

RDsnp(3) 0.83 0.80 0.82 0.86 0.85

RDsnp(4) 0.80 0.82 0.84 0.86 0.84

RDsnp(5) 0.88 0.86 0.83 0.85 0.84

RDsnp(6) 0.87 0.90 0.90 0.89 0.87

Table 6.6: Sensitivity comparison versus number of SNPs. Four different number of

random columns c (3,4,5,6) have been chosen to run the RDsnp(c) method

Number of SNPs 200 400 600 800 1000

RDsnp(3) 0.55 0.63 0.64 0.53 0.51

RDsnp(4) 0.69 0.64 0.66 0.51 0.68

RDsnp(5) 0.73 0.73 0.74 0.75 0.65

RDsnp(6) 0.81 0.75 0.73 0.68 0.78

Table 6.7: Accuracy comparison versus number of SNPs. Four different number of ran-

dom columns c (3,4,5,6) have been chosen to run the RDsnp(c) method

Number of SNPs 200 400 600 800 1000

RDsnp(3) 0.68 0.71 0.73 0.70 0.68

RDsnp(4) 0.74 0.75 0.75 0.68 0.76

RDsnp(5) 0.80 0.79 0.79 0.80 0.75

RDsnp(6) 0.84 0.82 0.81 0.78 0.83
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Figure 6.17: Specificity comparison: Time in minutes versus number of SNPs for differ-

ent numbers of random columns(c)
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Figure 6.18: Sensitivity comparison: Time in minutes versus number of SNPs for different

numbers of random columns (c)
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Figure 6.19: Precision comparison: Time in minutes versus number of SNPs for different

numbers of random columns (c)
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Figure 6.20: Accuracy comparison: Time in minutes versus number of SNPs for different

numbers of random columns (c)
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Table 6.8: Precision comparison versus number of SNPs. Four different number of ran-

dom columns c (3,4,5,6) have been chosen to run the RDsnp(c) method

Number of SNPs 200 400 600 800 1000

RDsnp(3) 0.74 0.78 0.79 0.77 0.75

RDsnp(4) 0.79 0.80 0.80 0.79 0.80

RDsnp(5) 0.80 0.85 0.80 0.84 0.81

RDsnp(6) 0.86 0.89 0.86 0.87 0.87

6.6 Computational Time Analysis

Together with the analysis of the performance, a research on the computational time of

the results obtained is carried out. In this way the efficiency of the two techniques can be

compared.

The degree of complexity is calculated through the measure of the time spent by both

the techniques to perform the analysis. In order to compare the performance, the two

methods need to be tested considering the same input and the same output. The input

therefore will be a matrix with a number of patients set to 1000 and a number of n SNPs

variable to detect a trend of the function. Five different experiments have been performed,

respectively with n = 200, 400, 600, 800, and 1000 SNPs, each one with a distribution

of redundancy set in the same proportions as before. The number of random columns

c is also variable and 4 different trials have been carried out. For every trial different

numbers of random columns are fixed, setting once again c = 3, 4, 5 and 6. The clustering

technique used is the one based on the EM algorithm and the output of the system is the

list of SNPs to be either eliminated or kept. The results of the complexity analysis are

shown in Table 6.9 and they are an average over 20 trials.

In Figure 6.21 the results from the original method together with the 4 results ob-

tained from the new technique applied with four different number of random columns are

displayed.

This picture shows how the RDsnp function follows a linear trend with time, compared

with the polynomial trend for the original LD function. This is also confirmed by anal-
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Figure 6.22: RDsnp Computational Time comparison between different numbers of in-

ternal cycles (c): Time in minutes versus number of SNPs
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Table 6.9: Computational time comparison: Time in minutes versus number of SNPs.

Four different number of random columns c (3,4,5,6) have been chosen to run the RD-

snp(c) method

Number of SNPs 200 400 600 800 1000

LD Function 6.33 24.94 58.06 104.47 162.11

RDsnp(1) 2.78 6.02 9.74 13.45 18.00

RDsnp(2) 3.60 8.02 12.98 18.32 24.04

RDsnp(3) 4.43 9.77 15.71 22.26 28.47

RDsnp(4) 5.26 11.35 18.46 25.53 33.25

ysis of the theoretical computational complexity of the new method, compared with the

original method. The LD complexity for a dataset composed by n SNPs is O(n2) (6.3.1).

The RDsnp is the combination of the application of the LD function between n SNPs and

c random columns (O(cn)) together with the clustering technique applied to n vectors of c

components. In the case of the application of K-means clustering, the complexity results

are O(n) [178], whereas for EM algorithm the complexity is O(cn) [179–181]. In con-

clusion, the RDsnp presents less computational complexity than the original LD (O(cn)

against O(n2)) when c < n.

In Figure 6.22 only the results from the new technique are highlighted in order to show

the monotonic rise of the performance with the number of random columns.

Considering a number of SNPs n = 1000 and a number of random columns c = 3,

the RDsnp technique takes 28 minutes to obtain the results whereas the original method

requires 162 minutes. Making an extrapolation of the function which gives the time vs.

the number of SNPs an estimation of the time necessary for very large datasets can be

provided. Considering for instance a dataset of 5,000,000 SNPs it will take 103.99 days to

perform the original analysis compared with the 7.56 days necessary for the new method,

using 5 random columns.
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6.7 Random Sampling Discussion

In this specific technique, random sampling has been chosen to select two representative

components from the clusters created for the SNPs redundancy detection (see point 3 in

Section 6.3.1). For consistency, the same random sampling is applied also to select the

final SNPs, representative of each cluster containing redundant SNPs, to be kept in the

dataset.

There are different possible sampling solutions that can be found in the literature and

an overview is given in Chapter 2. Random selection has the advantage that it is free from

bias due to its random nature but on the other hand it may present difficulties to obtain two

results that are representative for the whole population. One way to overcome this prob-

lem would be the application of stratified sampling which yields more accurate results

than simple random sampling. However, one of the major drawbacks of this approach is

an increase of the cost and complexity of the sample selection and the bias related to the

type of the specific stratification chosen [114]. Alternatively, cluster sampling could be

employed, breaking down the population into many different clusters, selecting the num-

ber of clusters that can be representative of the whole and then for each cluster selecting a

random sample. All these alternative solutions provide a more accurate and possibly more

reliable solution with the aim of selecting more representative components of the groups.

The reason why the random sampling has been chosen from among the possible solutions

is due to the aim of reducing the computational complexity and consequently minimising

the time spent to perform the analysis. The strength of the new technique proposed here

is the improved speed of analysis that can be provided when the dataset under analysis

reaches enormous size. For this reason, the optimisation obtained through reduction of the

computational complexity has been the major goal. In this case applying a cluster based

sampling, for instance, would have increased the computational complexity and thus the

time of processing. Nevertheless, as future work, it would be of relevant interest to apply

different types of sampling techniques and check if these solutions could provide better

performance while still preserving a competitive run time as compared with the original

LD function.
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6.8 Summary

This Chapter describes a new technique, RDsnp, for detecting groups of redundant SNPs

within medical datasets in order to eliminate this redundancy. The analysis is based on

the usage of the LD function, for linkage disequilibrium analysis, implemented in the R

language. In the first instance, three different techniques are proposed for creating artifi-

cial datasets with a given redundancy, testing also for their accuracy. Subsequently, two

of these techniques have been used to create new groups of datasets to test the proposed

method.

Different sets of experiments have been performed in order to check how the new

method performs under different conditions. As there are various internal parameters that

can be set, such as the number of SNPs, patients and random columns, different databases

have been created and analysed in order to give a wide overview of the proposed method-

ology. The best results obtained provided motivation for choosing the EM algorithm as

the best clustering technique for this application. Considering an initial dataset of 1000

patients and 60 SNPs, the results of these experiments showed that Hierarchical Cluster-

ing provided good resulta with two false positive SNPs detected on 40 SNPs and one false

negative SNP detected on 20 SNPs. Increasing the number of SNPs to 6000 in the dataset

provided better results if the clustering technique applied was K-Means, which provided

a false positive rate of 1.7% over 4000 SNPs. However, the false negative rate obtained

was then 58.8% over 2000 SNPs. In order to overcome this problem, other clustering

techniques have been applied and the EM algorithm provided the best results, being able

to distinguish the 500 SNPs with a redundancy of 0.8 and 0.9 between each other from the

rest of the SNPs, in a dataset composed of 1000 SNPs. For this reason, the EM algorithm

was chosen as the best clustering technique for this application.

A comparison analysis of the RDsnp method against the original LD function has

been carried out in order to investigate whether there is any substantial improvement

in performance. These trials provided very positive results in respect of reducing the

computational complexity of the current method, without losing significant information.

Performing a real dataset analysis, the experiments showed that for more than 60 SNPs,

the RDsnp becomes much faster than the LD function, still preserving a good accuracy

while also increasing with the number of SNPs analysed. Regarding the analysis of the
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RDsnp performance with artificial datasets, the results showed that for large datasets the

performance of the new method is much better that the original. Setting the number

of random columns c = 4, on a population of 1000 patients and 1000 SNPs, 760 SNPs

(Table 6.7) are correctly detected as redundant or not redundant in 33 minutes (Table 6.9),

against 162 minutes of the current method.

In terms of accuracy, a very good result of 0.75 is achieved for this dataset. This means

that over a dataset composed of 100 SNPs all redundant between each other, 75 SNPs are

correctly detected as redundant SNPs so that they may be deleted from the dataset for

further analysis. In more general terms, three quarter of the total number of SNPs in a

dataset is correctly assessed as redundant or not redundant.

In conclusion, this study provides researchers with a new technique to detect the re-

dundancy in large datasets of SNPs data which is more efficient than the commonly used

one thanks to an overall reduction in computational complexity. This study therefore

proves to be an important achievement in the increasingly popular problem the reduction

in size of large SNPs datasets.



Chapter 7

New Guideline for Large SNPs

Database Analysis

7.1 Introduction

The improvement in genotyping technologies allowed scientists to collect large amount

of data in relatively short time, still preserving an high accuracy at a cheap prize. The

continuously growing of databases size nowadays available for genetic studies has in turn

brought the researchers attention into the development of new methods for data mining.

Several different analysis have been performed in the past in order to provide suitable

tools for extracting the relevant information hidden inside this huge amount of data.

One of the main issues that needs to be faced nowadays by data miners is the reduc-

tion of the time spent for performing analysis with such large databases. Together with

this, also the computational complexity has grown exponentially with the amount of data

gathered. These relevant difficulties have brought limitations and problems to the tools

currently used in this field. Lots of new different approaches have been so far proposed in

order to overcome these obstacles and in this work an overview of the problem has been

presented.

In this final Chapter a global idea of the work that has been carried out in the past

three years of research is shown. Different solutions focused on resolving the problem

of dataset size reduction have been analyzed and improved. Thus, the ultimate aim is to

provide researchers with a guideline for future research work in genetic data analysis.

181
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7.2 New Methodology

The methodology that is proposed in this work is composed by two main steps. In the first

instance an extensive analysis of redundancy possibly present in the dataset is applied

in order to eliminate the superfluous information which affects the performance of the

subsequent analysis slowing down any ulterior process. In this way, only a small amount

of SNPs can be selected to be considered for association studies. In second instance

the proper SNPs analysis is carried out to detect the minimum amount of SNPs which

show association with a specific disease. This second step, in turn, is divided in two

different main paths as depending on the initial available data, different processes need to

be followed.

In case the original dataset is composed by family members, as it is supposed to

be analyzed with a family-based method, the ‘Improved TRANSMIT Method’, which

is illustrated in Chapter 3, is applied. On the contrary, if the dataset is composed by

completely unrelated individuals, as required for Case-Control studies, the ‘Combined

Decision Trees Analysis’, discussed in Chapter 4, is carried out. The whole process is

shown in Figure 7.1.

7.2.1 Step 1 - Redundancy Elimination

Various kind of data sources can be available for association studies, in this work two

different datasets types are covered : family-based and case-control datasets.

In the first one, the population is composed by trios, characterized by a mother, a

father and at least one of their children. These kind of data are generally used to study

how genetic information is passed through generations from parents to offspring. In this

case the elimination of redundancy should be carried out in separate populations extracted

from the original one. Within each of these subsets, individuals must be independent

between each other. This can be achieved by building a population of unrelated parents

for instance. These subpopulation can thus be processed with the ‘RDsnp’ method for

redundancy elimination.

The second type of dataset considered in this study is the one for case-control analysis

that is composed by individuals which do not have a parental link with each other to avoid



7.2. New Methodology 183

Figure 7.1: Flow chart of the RDsnp method for SNPs analysis.

a biased result. If this condition is fulfilled, the dataset can be directly processed with the

‘RDsnp’ technique, that, as extensively shown in Chapter 6, is based on the popular LD

function, used to calculate the linkage disequilibrium between genetic markers. This

function, providing the measure of the squared correlation coefficient R2, detects how

much two different SNPs are linked together. In more simple terms, the probability for

SNP to be present, given the presence of a second SNP, is calculated and highlighted

by LD function. Any SNPs which then present an R2 ≥ 0.8 is defined redundant and

therefore eligible for subsequent elimination. In order to avoid an excessive computational

complexity of the problem, the new proposed RDsnp method can be applied.

The basic flow chart in Figure 7.2 shows the main steps included in this procedure.

Instead of applying the LD function directly to the initial dataset, a few random columns

are created with a realistic biological distribution of the allele. The LD function is then
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Figure 7.2: Flow chart of the RDsnp method for SNPs analysis.

applied separately to the dataset and one of these created columns, in turn. The R2 results

obtained from each random column, are joined and displayed in a space whose dimen-

sions are equal to the number of random columns. Clustering this population of vectors

containing the R2 for each SNP, provides a selection of SNPs showing a R2 ≥ 0.8 and

therefore defined as redundant. These SNPs can be removed from the dataset expediting

further analysis. For a detailed analysis of this method the reader is referred to the Chapter

6.

Different parameters can be set in this method and the choice is dependent on the spec-

ifications of the study that needs to be performed, such as amount of SNPs and patients.

Further parameters setting includes the amount of random columns c and the choice of a

proper clustering technique. As shown in Chapter 6, for instance, if the dataset is com-

posed by around 100 SNPs, using c = 3 random columns and the EM Clustering technique,
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75 SNP are correctly detected as redundant or not redundant in only 28 minutes. Com-

pared with the 168 minutes taken from the original LD function, this new method results

very promising as first step for data mining tasks.

7.2.2 Step 2 (a) - Improved TRANSMIT Analysis

Assuming that genetic information from trios are available to the data miner, a family

based study can be performed. In this case a Transmission Disequilibrium Test can be

considered. As described in Chapter 5 the samples used consist of a set of trios, two par-

ents and their affected offspring. Collecting this kind of data is generally more expensive

and more time consuming. Nevertheless, whenever this data is available it is advisable

that TDT is used for association studies as preliminary analysis. In order to apply a TDT,

TRANSMIT software is employed in the study.

An important distinction is made in the following two paragraphs in order to separate

the case between Boolean and continuous outcome of the study. In general terms, if a

disease is studied, the outcome is usually binary variable as it can have a value for instance

equal to 1, representing the disease and a value such as 0, representing the healthy status.

If a phenotype is to be studied, then the outcome variable can be continuous or categorical.

In this case thus, a separate analysis needs to be carried out.

Boolean Outcome

The most common case is when a set of SNPs needs to be detected in association with a

specific disease. This means that the outcome of the analysis is a Boolean variable, i.e.

disease or not disease. In this case, applying TRANSMIT provides information upon the

transmission of SNPs from affected parents to their children. With the original version of

TRANSMIT a list of haplotypes transmitted from affected parents to offspring is obtained.

The list of SNPs for each haplotypes is fixed and in the specific dataset hereby analysed

it includes 8 different SNPs.

The new idea proposed in this methodology is to extract a subset of data from the

original database and apply TRANSMIT to these datasets. The subsets of data are created

by selecting every possible sub-combination of the original set of SNPs. In the specific

case of the given dataset, the procedure is applied to select 7 SNPs taken from the original
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database, then 6 SNPs, 5 SNPs and so on. Checking the value of the χ2 for each haplotype

of different length, it is possible to detect the minimum set of SNPs that show a strict

association with the disease. When the analysis is focused on complex conditions, often,

more than one gene is involved in the contribution to the predisposition for the disease.

For each gene there is then a considerable amount of SNPs that is usually detected as

possibly responsible of the disease, in the first stage through biological and molecular

processes.

The new approach that is described in this section, provides clinicians with a useful

technique to select a small amount of SNPs, significant for the specific study, eliminating

the majority of genetic information that doesn’t show any association with the disease

under analysis. In Figure 7.3 and 7.4 the flow chart of this method is shown.

Continuous Outcome

Supposing that a symptom or phenotype of the disease represents the variable under anal-

ysis, this quantity might not Boolean but continuous or categorical. In this case, TRANS-

MIT software cannot be applied directly without a pre-processing of the dataset.

The idea is analogue to the one used for the case-control analysis. A fixed number of

thresholds is set for the outcome in order to be converted in a Boolean variable. Referring

to the example shown in Chapter 4 for case-control analysis, the CBC as measure of

disease severity degree can be used in the case of Pre-eclampsia. Fixing 10 different

values of CBC and building 10 different datasets accordingly, provides the set of inputs

needed for the analysis. Each created dataset is processed with the method used for the

Boolean outcome explained in the previous paragraph. The result showing the greatest χ2

is the one with the highest degree of significance and therefore can be chosen as the final

outcome. The threshold set for this result is the best threshold to be chosen for association

study for that specific disease.

7.2.3 Step 2 (b) - Combined Decision Trees Analysis

Alternatively to the TDT, one of the most commonly used technique for association stud-

ies is the case-control analysis. Plenty of different tools have been proposed by the re-

search community in order to perform this kind of approach and the Decision Trees al-
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Figure 7.3: Flow chart of the new proposed method for SNPs analysis in family based

datasets with the TDT technique. In the first step several datasets are built from the

original one, wiht different amount of SNPs.

gorithms have resulted one of the most popular and often successful technique. Similarly

to the TDT analysis the outcome of the study can be either Boolean or continuous type.

Both of these cases are treated in the following two paragraphs in order to give a complete

overview of the general problem.

Boolean Outcome

In the most simple case scenario of Boolean variable, the combined analysis of Decision

Trees can be carried out processing the original dataset with the three different software

that have been presented in this work, namely ADTree, C4.5 and ID3.

For every result that shows an acceptable significance with a K value greater than 0.2,
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Figure 7.4: Flow chart of the new proposed method for SNPs analysis in family based

datasets with the TDT technique. in the second step TRANSMIT is applied to select a

smaller amount of SNPs associated with the disease.

the list of SNPs obtained from each of the three solutions can be compared and contrasted

between each other. Selecting the largest amount of SNPs that is common to the three

solutions from each algorithm, decreases the size of the original database, focusing the

study upon the SNPs associated with the disease. A narrowed analysis can be performed

then applying the algorithms to the sub set of SNPs detected in the first stage.

Continuous Outcome

A less common scenario, but still very useful especially in case of lack of information,

is characterized by a continuous outcome of the analysis. This is the case for instance

when the disease does not have a perfectly defined profile, able to distinguish between
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Figure 7.5: Flow chart of the new combined Decision Tree method for SNPs analysis .

the two evident conditions of confirmed disease and healthy status. There are for instance

diseases characterized by different stages of severity such as cancers, diabetes, Alzheimer

or other progressive disorders. In this case the outcome is represented by a categorical

parameter.

Alternatively, the disease can be clearly described by a binary variable but the study

can be focused only on a specific symptoms or phenotype involved. In all these cases, a

more articulate analysis needs to be carried out. The process is divided in two main parts,

the pre-processing of the initial dataset and the proper analysis. The pre-processing stage

includes all the most relevant steps that are usually faced in data mining tasks as shown

in Figure 7.5:

1. Selection of elective SNPs. This operation is often driven by medical staff, ge-

neticists or biologists as complex phenomena regulate the cause-effect system of
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genotype-phenotype link. Within the whole human genome, only a subset of SNPs

is identified by professionals as supposed to be involved in the studied diseases.

This together with logistic and financial factors contributes to the final choice of

SNPs for the initial dataset.

2. Prediction Class Choice. Similarly, for this step the medical advice is needed to

select the most relevant variable that can be expected to have a close connection

with the severity of the disease.

3. Missing value issue. This problem needs to be considered whenever there is a lack

of data. If the algorithm does not account of this, the patients with missing values

need to be removed from the dataset. Alternatively, if the algorithm can deal with

missing values it is advised to perform the analysis with and without the patients

with missing values in order to check for the impact that this lack can introduce.

4. Data Balancing. Any time a case-control analysis is carried out it is important to

check for the case control ratio in order to limit the bias that an excess of one of

the two class can bring to the analysis. The ideal scenario is 50% cases and 50%

controls. If this is not the case, two subsets of population from cases and controls

can be extracted with the same size.

The proper analysis is shown in Figure 7.6. Alike previously shown, a number of

thresholds are set for the continuous outcome in order to convert it in a Boolean variable.

The same number of datasets are accordingly created each one with a different threshold

of the outcome. The three algorithms presented in this work, without any specific priority,

are applied to the dataset subject to the previous processing. The Kappa value for each

trial is calculated and checked.

The result with the highest significance is chosen for further analysis. The threshold

related to the chosen outcome is therefore the best choice for obtaining a relevant result.

Once that the threshold is fixed, the case-control ratio needs to be checked as part of

pre-processing analysis and the dataset can require to be balanced. Listing the SNPs

obtained with the best solution allows to perform narrowed studies on the subset of data

selected. Moreover, carrying out cross analysis between these three tools upon the small
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Figure 7.6: Flow chart of the new combined Decision Tree method for SNPs analysis .

final dataset, a better significant result can be obtained and validated within the three

algorithms.

A final important remarks needs to be made about the flexibility of this technique.

Conversely to the TDT, this kind of disease association study can be extended also to an

analysis of life style factors together with any possible initial health status of the patients

under study. This would provide a wider scenario for the disease aetiology analysis as

it is remarkably proved that most diseases are due to a combined effects of genetic and

environmental factors.
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7.3 Summary

A complete overview of the new methodology proposed in this work is explained in this

final Chapter. In the current literature, many different solutions can be found in the field of

genetic data analysis for the specific task of dataset size reduction. Two of the main types

of approach are discussed in this work, the family based analysis and the case control

study. The choice between these two options is restricted by the initial dataset type. For

family based analysis, the TDT is the proposed method and for case-control study, the

decision tree algorithms are the alternative path to follow. Both of these basic techniques

are suggested in this work in a new and improved overarching framework.

The transmission disequilibrium test is performed through the application of the TRANS-

MIT software. An optimisation of the performance of this software is proposed as a novel

approach for family based analysis. Instead of using the fixed length of haplotypes (com-

posed for instance by 8 SNPs), every possible combination of SNPs, taken in groups of

different size from 7 to 2, is calculated. The TRANSMIT is then applied to all these sub-

sets of data in order to select the best sequence of SNPs that shows association with the

disease.

The case control analysis is performed for the dataset containing independent indi-

viduals, applying a combined analysis with three different algorithms commonly used for

significant SNPs detection in association studies. The comparison of these three tech-

niques in a sequential cross-analysis method allows researchers to choose the best option

for every different application.

For both of these novel approaches a consideration on the outcome type is also in-

cluded. Generally the disease is the discriminative variable representing the Boolean

class. However, in some cases, different continuous variables such as phenotypes can be

taken in consideration. In case of non Boolean class, a new approach is proposed in this

methodology, for both family based and case control analysis. The best threshold to be

chosen for converting the class from continuous to Boolean variable is found through a

detailed analysis of the statistical significance of results. The optimal result is the one that

selects the subset of SNPs with the highest statistical significance.

This articulated analysis is completed by a pre-processing of the dataset for the elim-

ination of any possible redundancy present in the original dataset between SNPs. This
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method is based on the commonly used LD function for measuring linkage disequilibrium

between genetic markers. The optimisation of the this tool hereby proposed provides a

significant improvement of the current techniques used for redundancy detection in large

datasets, thanks to the reduction in computational complexity.



Chapter 8

Conclusions

One of the most challenging goals for the Bioinformatics community is the resolution of

problems related to the rapdily increasing size of datasets. The reduction in size of data

source(s) is particularly needed to permit the use of genetic data in association studies.

This is due to the continuously growing size of genetic data that is currently available in a

cheaper and faster manner. This aspect represents the first problem tackled in this Thesis.

The most commonly used approach is based on the application of the linkage disequi-

librium (LD) function, implemented in different software languages, for measuring the

square correlation coefficient between pair-wise SNPs taken from the dataset. The aim is

to detect SNPs which are highly correlated in order to remove the genetic markers that do

not bring relevant information for further analysis. Selecting the target SNPs is enabled

by predicting the remainder of the SNPs population which is not required for the study.

Although the current approach provides results with a high accuracy, it also reveals con-

siderable limitations in terms of computational complexity when the analyzed database

reaches enormous size such as one million SNPs per set. The selection of the eligible

SNPs is an important stage of the analysis, as the massive number of genetic markers that

represent the attributes included in the input matrix inevitably affects the performance of

any subsequent analysis methods applied. In particular, this can affect the time and the

computational complexity of the process, restricting the choice of the tools and machines

eligible for this kind of analysis. In order to overcome this limitation, a new fast scalable

tool for approximation of the LD function has been developed, namely RDsnp, and its per-

formance has been tested through several experiments. The results of this analysis have

194
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shown how the RDsnp provides a substantial improvement in terms of run time, due to a

significant reduction of the computational complexity compared to the original version.

The experiments have shown also that the accuracy of the results has been maintained at a

reasonable level. However, a possible further improvement of the accuracy may possibly

be obtained in future tuning different parameters involved in the new technique such as

number of random columns created.

The second important issue that genetic data miners need to face is disease association

studies. This is based on the detection of a link between DNA components and disease

risk. From one perspective, if the dataset under analysis has a family based structure,

one of the most successful techniques is based on the Transmission Disequilibrium Test

which detects the genetic markers responsible for an increased disease risk from the analy-

sis of the information transmitted through generations. In this Thesis, attention is focused

on the TRANSMIT software, as among the available tools it presents some important

strengths such as dealing with transmission of multi-locus haplotypes, even if both phase

and parental genotypes may be unknown. Nevertheless, the original version of this tool

can only select a fixed amount of SNPs resulted in association with the disorder. Hence,

this provides a subset of genetic markers which is not necessarily minimal in size. In order

to solve this problem, an optimisation of the TRANSMIT software based on multiple-test

analysis is proposed, providing a previous elimination of redundant SNPs. The results

that emerge from the application of this new technique to a medical dataset illustrates the

type of added information that this tool provides as compared with the original version

of the software. A smaller number of SNPs that are statistically significant are selected

in the disease association analysis. By checking the observed occurrences versus those

expected, for the SNPs present in the final haplotypes, it is possible to identify any val-

idation of the positive or negative effect of a SNP in the risk of disease. This technique

therefore provides a clinician with a wider selection of information for selecting a smaller

number of relevant genetic markers on which to perform further analysis.

Case control analysis performed by the decision tree algorithms is a widely established

approach for datasets composed of unrelated individuals. However, every individual deci-

sion tree algorithm implemented in the literature presents limitations for different aspects

of the problem. Alternatively a combination of different tools in a cross-analysis of the
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data, validating or rejecting the results obtained from one algorithm, can provide a robust

solution to overcome the weakness of a single analysis method. Under this scenario, a

new framework for selection of relevant SNPs in disease association studies is proposed.

Experiments have shown that with this tool it is possible to identify a smaller number of

SNPs that may be relevant in the analysis, using a combination of ADTree and C4.5 algo-

rithms. This refinement, besides the validation provided but two algorithms, could not be

achieved with the application of a single algorithm. Several experiments have been per-

formed in order to show how different results can be obtained applying different variable

settings. Selecting different attributes, changing the class choice, keeping or eliminating

missing values or having relevant feedback from the medical side can help improve the

final outcome of the analysis, consequently increasing the statistical significance of the re-

sults. This study has also validated the important medical meaning of the CBC threshold

of 10 as relevant cut-off for distinguish small babies born from pre-eclamptic pregnancies.

It is important to remark that, from scalability limitations, the two proposed ap-

proaches for selecting a smaller amount of relevant SNPs in the disease association study

(TDT and case-control analysis) assume a pre-processing stage where the redundant SNPs

are eliminated in order to reduce the dataset size, when necessary. For this reason, in con-

clusion, a comprehensive framework is proposed for genetic data analysis. This includes

the redundancy elimination process, followed by relevant SNPs selection stage in disease

association studies for both family and population based datasets.

8.1 Main contributions to Bioinformatics

This Thesis illustrates a proposal of a new guideline aimed to provide a significant tool

for supporting new scientific analysis for medical and genetic applications, in light of the

current pressing needs of the genetic research community following the disclosure of the

entire human genetic heritage. One of the most relevant goals of this work is appropriate

dataset size reduction without losing information relevant to the scope of the analysis.

The main contributions to the field of Bioinformatics, achieved in the past three years of

research are stated as follows:

(1) In terms of redundancy elimination, a new effective tool has been created and dis-
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cussed in this Thesis namely the RDsnp method. This is based on the linkage

disequilibrium (LD) function for measuring the degree of bond between SNPs. The

original version of this tool is designed to measure the linkage disequilibrium be-

tween every possible pair of SNPs taken from the original input matrix. The new

improved version of the LD function avoids the requirement to calculate such an ex-

tensive amount of values. This is appealing to a confrontation of the LD value for

each SNPs with one or more random SNPs created. Through a more comprehensive

approach to the problem, RDsnp provides a drastic reduction of the computational

complexity, a common problem frequently encountered while attempting to fulfil

this task. In a pre-processing stage, which precedes the targeted investigation, this

technique represents a useful and efficient method for SNPs data size cuts.

(2) Within the family base studies the Transmission Disequilibrium Test (TDT) is em-

ployed for detecting the SNPs set associated to the disease. One of the most com-

mon solutions for the implementation of the TDT is TRANSMIT software. The

original version of TRANSMIT is based on the analysis of a fixed length sequence

of SNPs. A pre-defined amount of different genetic markers are analyzed through

the χ2 statistical test in their transmission from parents to offspring. This approach,

which is based on the Mendelian law of inheritance, selects the set haplotypes in-

herited by affected offspring whose observed occurrence overreaches the expected

one. This excess of SNPs present in children with a given condition is a proof of

the genetic disease risk association. In the novel method proposed every possible

combination of SNPs subsets, taken from the original fixed-components sequence

are created. The TRANSMIT software is then applied to the all subsets of data gen-

erated. Considering a sequence of SNPs resulted in high association with a given

disease, whenever an irrelevant SNP is removed, the significance degree of the re-

duced set is not expected to drop. This rationale provides a rule for selecting the

genetic markers that present an evident association to the disease, allowing a dataset

size reduction through the deletion of irrelevant SNPs.

(3) For case-control analysis, decision tree algorithms are one of the most commonly

applicable tools for evaluation of risk disease association. The new method illus-
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trated proposes the combined exploitation of three different decision tree algorithms

as a more reliable tool for analysis. Lists of effective SNPs are compared between

the three solutions in order to reject or validate the obtained results. Additionally

an extensive method of analysis is suggested in the case of a continuous variable as

the predictive class. The best choice of the threshold for the Boolean conversion of

the outcome variable is achieved through a detailed statistical study of the results

significance.

(4) A final combination of the three previous points provides the new comprehensive

framework for further genetic research. This allows analysis to be performed of

different dataset structures such as population of related and unrelated individuals,

or different types of outcome studied. This includes such variables as Boolean,

categorical or continuous classes. Additionally, an extensive analysis focused on

redundancy elimination depends on the pre-processing stage of the entire frame-

work. This work presents a novel methodology, adaptable for different needs and

data constraints, for the accomplishment of the increasingly demanding tasks that

the genetic community must face in the complex research area of disease aetiology.

8.2 Potential medical implications

In the analysis of complex diseases, clinicians are often required to deal with a huge

amount of genetic information often derived from different genes. The possibility to

remove the surplus information from the constantly growing genetic datasets and select

the target SNPs that present an evident association to the disease under study provides a

new hope for the medical application of genetic disorder analysis.

Through the optimization of the TRANSMIT software application, in family based

studies the doctor is provided with an exploratory test able to exclude the sequence of

SNPs that do not show any association with the specified disease. It is possible to select

the SNPs that always appear in different haplotypes and to detect whether the same allele

is always present for a given SNP. Such detailed analysis provides a compendium of

helpful tools for clinicians to outline the cause of diseases.

Similarly, for case-control studies, the new combined analysis based on decision trees,



8.2. Potential medical implications 199

provides the doctor with a list of elective SNPs which play a role on either the disease risk

or the disclosure of a single aspect of the condition, such as phenotype.

Furthermore, the introduction of the RDsnp method for redundancy elimination allows

data miners to keep their attention focused on the manageable amount of SNPs that can

be considered as independent attributes of the input matrix, represented by the medical

dataset. The remainder of the SNPs population can easily be predicted with different

statistical tools. This is a significant achievement for the dataset screening stage of the

analysis.

If the scientists are able to detect the part of genome responsible for a given disease,

lots of research could be performed in a more accurate way, with the aim to develop

both a targeted therapy and a more precise diagnosis. This would allow the prevention

of certain diseases and to delay the progression of the disease at its onset. Individuals

which are positively tested for high predisposition to certain conditions can find a support

in following a treatment or life style choice in order to prevent or reduce this threat.

Additionally, breakthroughs are continuously made by the genetic community in order

to establish a new challenging discipline namely gene therapy. This is realized through

the insertion of genes into an individual’s cell and biological tissues to treat disease, such

as cancer where destructive mutant alleles are replaced with functional ones.

Many diseases are already proved to be associated with genetic information coming

from one or more genes such as pre-eclampisa, sickle cell anaemia, cystic fibrosis, Aicardi

Syndrome, Huntington’s disease, Alzheimer, diabetes, obesity, arthritis and various can-

cers. Despite this, many of these diseases require further extensive research in order to

validate previously discovered findings. Moreover, many genetic components have still

an unknown and undiscovered function and meaning.

Many years will be spent in this amazingly attractive research area of biological func-

tion understanding that is continuously bringing a considerable support to human life in

priority areas such as healthcare and wellbeing applications.



8.3. Suggestions for further research 200

8.3 Suggestions for further research

Considerable effort has been spent to provide a relevant contribution to the Bioinformat-

ics community through the new optimizations proposed in this work, applied to different

aspects of the important problem of DNA analysis. However, there are still plenty of

unknown processes and functions in the genetic field that require extensive further inves-

tigation.

Regarding the redundancy study, although the proposed technique provides a signif-

icant advance on what is currently available in the field of SNPs datasets size reduction,

there are still numerous aspects of this analysis which can be extended and potentially

improved. For example, it would be interesting to perform more experiments with even

larger datasets both in width and length to check how this method performs. Even if 1000

patients is a reasonable amount of instances for a common dataset, in the future there

will be an increased availability of databases containing several thousand even millions

of patients. The amount of SNP information is also rapidly increasing and in the near

future there will be hundreds of millions of available SNPs to be analyzed. Moreover, the

number of used random columns affects the accuracy and obviously the performance of

the method. Therefore it would be interesting to assess the maximum number of random

columns that gives the best accuracy while the technique retains its competitive computa-

tional performance. Within all these suggested improvement, it is potentially worthwhile

to investigate different clustering techniques that can results more efficient processes with

the new parameters settings. Moreover, in order to give a wider overview of the studied

problem, an analysis should be performed on artificial datasets with more than one type

of redundancy, each one still with different subsets of intensity.

Concerning the family based studies, the optimization of the TRANSMIT software

can be applied in a progressive analysis. This candidate gene filter may be used by clini-

cians starting with the analysis of one single SNP, in order to detect the interesting ones.

In the second step it may be possible to add the second SNP and check which ones may

be significant. In this way experimental work may be reduced and improving the analysis

process.

New ideas can be developed also around the case control studies through decision tree

algorithms. It would be remarkable to develop a new solution of analysis which is also
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based on the case control procedure but makes use of the genetic data from relatives of the

initial population. In the TDT techniques, the genetic information from the parents and

relatives is used to be stored as new individuals in the dataset (parents, siblings, etc.) and

are analyzed through a family based method. In the case control method, one of the main

constraint of the population is that it is represented by unrelated individuals. Trying to

include in the dataset the heredity aspect of genetic data, would require the transposition

of this information from the rows of the input matrix to the columns. New attributes can

be created in the dataset, storing the SNP value of the mother or grandmothers’ of babies

under analysis. The genetic information between generations is of course related due

to inheritance rules but new findings can be revealed when the study is focused on their

association with a given disease. Additionally, this concept can be extended to the fathers’

and grandfathers’ genetic information, as research has already proved the influence of

fathers genes in PE risk [23].

Finally, it would be pertinent to explore in more detail the possibility to generate

suitable artificial datasets in order to test different tools available for data miming. In the

field of genetics, with reference to the SNPs, a general overview is given in Chapter 5

but still many more considerations are needed for quality artificial datasets to be created.

There is more than one factor that affects the link between a disease and human DNA.

Frequently the causes are due to the presence of mutations located in different genes and

different SNPs can have various allele frequencies. The risk of disease changes in turn

both with genetic and environmental features. All these considerations, together with the

possible presence of different linkage disequilibrium values between genetic markers, in

different degrees of intensity, provides the background for further development. This may

lead to series of experiments designed to achieve the best realization of a synthesized

dataset which can reasonably resemble and approximate actual genetic data.

8.4 Dissemination

8.4.1 Publications

The three major contributions of this work have been the foundation of content for three

different publications:



8.4. Dissemination 202

• Within the analysis over the Transmission Disequilibrium Test, the novel approach

based on TRANSMIT software for family based datasets in SNPs association stud-

ies has been published in the following book chapter:

L. Fiaschi, J. M. Garibaldi and N. Krasnogor, Multiple-Test Analysis of Se-

quences of SNPs for Determining Susceptibility to Pre-eclampsia, Computational

Intelligence and Bioengineering of the series Frontiers in Artificial Intelligence and

Applications, IOS PRess, volume 196 in 2009, in the proceeding Computational

Intelligence and Bioengineering - Essays in Memory of Antonina Starita edited by

Francesco Masulli, Alessio Micheli and Alessandro Sperduti.

• The study carried out upon the Combined Decision Trees analysis for case control

study of SNPs data has been published in the following:

Fiaschi Linda, Garibaldi Jonathan M. and Krasnogor Natalio, A framework for

the application of decision trees to the analysis of SNPs data, CIBCB’09: Proceed-

ings of the 6th Annual IEEE conference on Computational Intelligence in Bioinfor-

matics and Computational Biology, IEEE Press, 2009, pages 106-113.

• The RDsnp method proposed for redundancy elimination in large size SNPs databases

is under preparation for submission to a further journal paper:

Fiaschi Linda, Garibaldi Jonathan M. and Krasnogor Natalio, Redundancy De-

tection in Biallelic Single Nucleotide Polymorphism Datasets.

8.4.2 Conferences, International Workshops and Seminars Presen-

tations

The following events have contributed to the dissemination of the results obtained with

this research:

• L. Fiaschi, J. M. Garibaldi and N. Krasnogor SNPs Redundancy Analysis - at the

conference EURO XXIII in Bonn, Germany, 6th of July 2009.

• L. Fiaschi, New methodology for SNPs analysis - at BIOPTRAIN Workshop Flo-

rence, Italy, 10th June 2009.
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• L. Fiaschi, J. M. Garibaldi and N. Krasnogor A Framework for the Application

of Decision Trees to the Analysis of SNPs Data - at the conference IEEE CIBCB

2009 Nashville (TN), USA, 31st March 2009.

• L. Fiaschi, Standards for SNPs Analysis with Decision Trees Tools. - at IMA group

seminar, Nottingham, UK, 24th February 2009.

• L. Fiaschi, Diseases Association Studies for SNPs Data. - at BIOPTRAIN Work-

shop, Innsbruck, Austria, 12th January 2009.

• L. Fiaschi, Decision Tree Algorithms in Pre-eclampsia analysis. - at ASAP group

seminar, Nottingham, 15th November 2007.

• L. Fiaschi, J. M. Garibaldi and N. Krasnogor SNPs Analysis in Pre-eclampsia. -

at EURO-CBBM Workshop, Prague, Czech Republic, 8th July 2007.

• L. Fiaschi, Genetic Data Analysis. - at ASAP group seminar, Nottingham 22nd

November 2006.

• L. Fiaschi, Alzheimer Analysis and Weka. - at Queens Medical Center, Nottingham

4th August 2006.

• L. Fiaschi, An overview on Decision Trees. - at Queens Medical Center, Notting-

ham 17th March 2006.

• L. Fiaschi, Learning classifier Systems for genetic data - at BIOPTRAIN internal

meeting, School of Computer Science, Nottingham 9th January 2007.

• L. Fiaschi, Genetic association study: an overview - at BIOPTRAIN internal meet-

ing, School of Computer Science, Nottingham 2nd March 2006.
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