
Prince, Rawle C.S. (2011) Aspects of the theory of
containers within automated theorem proving. PhD
thesis, University of Nottingham.

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/11793/1/Thesis.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

· Copyright and all moral rights to the version of the paper presented here belong to

the individual author(s) and/or other copyright owners.

· To the extent reasonable and practicable the material made available in Nottingham

ePrints has been checked for eligibility before being made available.

· Copies of full items can be used for personal research or study, educational, or not-

for-profit purposes without prior permission or charge provided that the authors, title
and full bibliographic details are credited, a hyperlink and/or URL is given for the
original metadata page and the content is not changed in any way.

· Quotations or similar reproductions must be sufficiently acknowledged.

Please see our full end user licence at:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/33564985?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.nottingham.ac.uk/Etheses%20end%20user%20agreement.pdf
mailto:eprints@nottingham.ac.uk

Aspects of the Theory of Containers within

Automated Theorem Proving

Rawle C. S. Prince, BSc. MSc.

Thesis submitted to the University of Nottingham

for the degree of Doctor of Philosophy

September 2010

Abstract

This thesis explores applications of the theory of containers within automated theorem proving.

Container theory provides a foundational analysis of data types as containers, specified by a

type S of shapes and a function P assigning to each shape its set of positions for data. More

importantly, a representation theorem guarantees that polymorphic functions between container

data types are given by container morphisms, which are characterised by mappings between

shapes and positions.

Container theory is interesting, in this context, for the following reasons. A mechanism

for representing and reasoning with ellipsis (the dots in x1,x2, . . . ,xn) in lists, existing in the

literature, has proved to be very useful for formalisations involving abstractions. Success with

this mechanism came by means of a meta-level representation through which many functions

that normally require recursive definitions can be given explicit ones. As a result, not only can

induction and generalisation be eliminated from proofs but, by means of an associated portrayal

system, the resulting proofs are also intuitive and much closer to informal mathematical proofs.

This ellipsis mechanism, however, is not based on any formal theory, making it rather ex-

iguous in comparison with rival techniques. There also remains questions about its scope and

applications. Our aim is to improve this ellipsis mechanism. In this connection, we hypothesize

that the theory of containers provides a formal underpinning for such representations. In order

to test our hypothesis, we identify limitations of the ellipsis mechanism and show how they can

be addressed within the theory of containers. We subsequently develop a new reasoning system

based on containers, which does not suffer from these limitations. This judicious container-

based system endorses representations of polymorphic rewrite rules using arithmetic, which

naturally lends itself to applications of arithmetic decision procedures. We exploit this facet to

develop a new technique for deciding properties of lists. Our technique is developed within a

quasi-container setting: shape maps are given as piecewise-linear functions, while a new repre-

sentation is derived for reindexing functions that obviates the need for dependent types, which

are fundamental in a judicious container approach. We show that this new setting enables us to

represent and reason about a large class of properties.

Acknowledgements

This thesis could not have been written without the encouragement and generous assistance of

many people. I am especially gratefully to Alan Bundy for encouraging me to do a PhD and for

maintaining an interest in my work, and to Neil Ghani for suggesting the project and advising

me throughout. Thanks also to Thorsten Altenkirch for his invaluable advice and support.

Thanks to my mom and siblings for their belief in me and for their love and encouragement

throughout the years. I am especially grateful to my sister Edolla for her thoughtfulness and

generosity.

To my wife Verna, for her unfaltering love, patience and sacrifice, a mere thank you is not

enough. My son Zachary kept me entertained, captivated and inspired with his boundless energy,

imagination and innocence which provided such delightful and essential distraction and helped

to make me feel balanced.

Technically, as well as socially, the members of the Functional Programming Lab provided

a constant torrent of support and inspiration. I would also like to thank my examiners, Alan

Smaill and Natasha Alechina, for the engaging and insightful discussions during my viva and

for the valuable feedback which helped to improve the quality of this thesis.

My studies at Nottingham were supported by a studentship from the School of Computer Sci-

ence, which I gratefully acknowledge. I would also like to thank the University of Nottingham’s

International Office for granting me a Tuition-fee Research Scholarship.

Finally, thanks to my maternal grandparents, whose inspiration and encouragement early on

sowed the seeds that guided to me to this work. It is to their memory I dedicate this thesis, with

my love and affection.

ii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1

1.1 Background . 3

1.1.1 Proof Planning . 3

1.1.2 Rippling . 4

1.1.3 Progressing from Failure . 6

1.1.4 Middle-Out Reasoning . 6

1.1.5 Schematic Proofs . 7

1.1.6 Diagrammatic Reasoning . 11

1.1.7 Proving Theorems with Ellipsis . 12

1.2 Containers . 15

1.3 Aims of the Project . 15

1.4 Contributions . 16

1.5 Structure of the Thesis . 17

1.6 Summary . 18

2 Theorem Proving with Dependent Types 19

2.1 Dependently Typed Programming . 19

2.1.1 Dependent Pairs . 20

2.2 Dependent Types in Coq . 20

2.2.1 Finite Types . 21

2.2.2 Views . 23

2.2.3 Heterogeneous Equality . 26

2.3 Program and the Russell Language . 29

2.4 Summary . 30

3 The Theory of Containers 31

3.1 The Ellipsis Technique Revisited . 31

3.1.1 Defining Functions . 32

3.1.2 Proving Theorems . 33

3.2 Containers . 36

3.2.1 Container Morphisms . 38

3.2.2 Constructing Containers . 40

iii

iv

3.2.3 Constructing Container Morphisms 41

3.2.3.1 Morphisms Given by Fold 42

3.3 Containers for other Datatypes . 44

3.3.1 Strictly Positive Types . 44

3.3.2 Beyond Unary Containers . 47

3.4 Summary . 48

4 Reasoning with Containers 49

4.1 Representation Theorem . 49

4.1.1 Formalisation . 50

4.2 A Container-based Reasoning System . 52

4.2.1 Proving Theorems about lists . 53

4.2.2 Reasoning about Binary Trees . 57

4.3 Automation for Container Proofs . 58

4.3.1 The FSimpl tactic . 59

4.4 Discussion . 60

4.5 Summary . 61

5 Piecewise-Linear Analysis 62

5.1 Definition of Piecewise . 63

5.1.1 Related Work . 65

5.2 Canonical Form . 65

5.3 Deciding Equality . 68

5.4 Multivariate Piecewise–Linear Functions. 69

5.5 Summary . 71

6 A Decision Procedure for lists 72

6.1 Non-Dependent Container Morphisms . 74

6.2 A Decidable Class of Polymorphic Functions 76

6.2.1 Linear Morphisms . 76

6.2.2 Extending Linear Morphisms . 78

6.3 Implementation . 82

6.3.1 Representation . 82

6.3.2 Proving Properties of lists . 84

6.3.3 Taking a Closer Look . 87

6.3.4 Interpretation . 91

6.4 Summary . 92

7 Conclusion and Further Work 94

7.1 Concluding Remarks . 94

7.2 Further Work . 96

7.2.1 Portrayal Mechanism . 96

7.2.2 Dealing with other Datatypes . 96

7.2.3 New Combination/Augmention Schemes 97

7.2.4 Diagrammatic Reasoning . 98

7.2.5 Generic Programming . 98

v

Bibliography 104

In loving memory of my maternal grandparents and to Zachary.

vi

Chapter 1

Introduction

Abstractions like ellipsis (the dots in x1,x2, . . . ,xn) are widely used across a variety of domains

ranging from typography, rhetorics and linguistics, to mathematics and computer science. In

ordinary mathematical discourse, we give terms of a sequence to define an expression, counting

on the inferential ability of the reader to determine what the actual expression is. This is often a

very simple task. However, for those interested in modelling informal mathematical reasoning,

abstractions like ellipsis present a considerable challenge. This is because such devices are

inherently ambiguous. For instance, what does the function F[x1, . . . ,xn] = [x2, . . . ,xn] do? Does

it just remove the first element of the list? Does it remove every other element of the list, or does

it do something else? Another problematic area is diagrammatic reasoning. It is ambiguous

whether an abstract collection of rows or columns of dots with ellipsis, like this:

y y y

y y y

y y y

r r r

r r r

r r r

y y y

r r r y

r r r y

r r r y

r

r

r

r
r

r

r r r y

is a square or a rectangle, or even if it is of odd or even magnitude. The problem becomes more

acute when dealing with more complex structures. Even if the system can recognise the patterns

elided in the ellipses (e.g. via some sort of pattern recognition technique), difficulties may arise

when trying to keep track of these patterns during manipulations of diagrams.

The ability to represent and reason with such abstract devices is seen by some to be crucial

for the modelling of informal mathematical reasoning [109]. Existing formalisations of ellipsis

tend to be ad-hoc or are targeted to specific domains, making them very restrictive. Lukaszewicz

[70] sought to formalise ellipsis in a language where terms can be reduced to a normal form,

but this language was very small and its applications very limited. Bundy and Richardson [24]

1

Introduction 2

presented a higher-order formulation of elliptic1 formulae, amenable to formal proofs about lists,

finite sequences or other n-ary operations. The ability to define list theoretic operations using this

formulation enabled them to deal with non-consecuitive ellipsis, unlike [70]. The practicality

of this formulation was tested in the λ -Clam [90] system, and subsequently proved very useful

to Zinn [109] during his attempts to translate textbook style proofs to a corresponding, formal

setting. However, this formulation was not based on any formal theory and there remained

questions about its scope and applications.

Prior to [70], the focus has largely been on mechanising human inferential ability, via se-

quence extrapolation, rather than formalisation. Studies such as [94] and [95] have examined

human acquisition of sequential patterns in some detail. A typical benchmark was the so called

Thurstone Sequences [100] (i.e. sequences of algebraic letters, e.g. A, C, B, D, C, E, . . .)

in which the algebraic ordering provides the fundamental relationship from which some rule

of inducement is formed. Noteworthy work in artificial intelligence on sequence extrapola-

tion includes interesting work by Persson [85]. Presson’s approach was to seek a method for

automatically constructing a new representation in which the problem reduces to a known or

easy case using methods like successive difference, successive quotients, and tests for common

sequences. In their paper, Fusaoka and Fujita [42] treated up to fourth order geometric progres-

sions for number sequences and included a formula extrapolator which extrapolated examples

such as (A, AA, AB, BA, BB, . . .), making use of the symbolic difference between neighbouring

terms. Also noteworthy is Hedrick’s use of semantic nets [47] to chart relationships among ob-

jects, the objective being to find a method applicable to sequences of objects over several types.

Subsequently, Laird et. al. [68] sought to formalise Hedrick’s type generalisation by separating

the type-dependent and type-independent terms in a sequence, and constructed an extrapolation

algorithm in which the type is the parameter.

Subsequent to [24], other authors have also experimented with various ad-hoc represen-

tations of ellipsis. Ellipses in matrices were considered in [86, 92] in their efforts to model

“textbook-style matrices” containing ellipses, while Dixon et al. [37] adapted a graphical lan-

guage for representations in quantum computation to model informal reasoning with graphical

equations that contain ellipses. These representations, however, are generally specific to their

respective domains, and it is not clear if they are applicable to other domains.

Our central thesis is that is is possible to establish a formal underpinning for elliptic reasoning

via the theory of containers [1–3]. Our work, therefore, compares to earlier work on the use of

the constructive ω-rule as an alternative to induction [9, 10]. The ellipsis formalisation we

endorse corresponds to that of [24] and can be thought of as an alternative to schematic proofs

[9, 10]. Formalising ellipsis using containers also enables us to develop decision procedures

for functions mapping between elliptic structures. This opens up new ways of reasoning about

1The word ‘elliptic’ , in the present context, is used as a concise alternative to “ellipsis-like” and not to describe

a curve or graph. This usage has appeared elsewhere [24] and, unless stated otherwise, shall be adopted throughout

this thesis.

Introduction 3

elliptic structures, and potentially addresses some of the problems that arise when manipulating

diagrams containing ellipsis.

1.1 Background

Owing to the ubiquity and complexity of computer systems, automated reasoning has become

a vital component of program construction and of programming language design. Many useful

programs are defined using repetition, for example as functions over recursive datatypes, and

reasoning about iteration or repetition requires induction. While mathematical induction itself

is well understood, the automation of proofs by mathematical induction is a nontrivial exercise.

The problems arise form the fact that mathematical induction is incomplete: there will always

exist truths that an automated theorem prover cannot prove (see §5 of [21] for a discussion).

Another issue is the failure of cut elimination for inductive theories. The cut rule (1.1) is required

in inductive proofs in order to introduce intermediate lemmata or generalisation. Informally, the

cut–rule allows us to ‘cut out’ a ‘lemma’ A from the proof of a goal ∆ if in some context Γ we

can prove ∆ by means of A, and A can be proved from Γ. The proof of A can essentially be

included in the proof of ∆:

Γ ⊢ A Γ, A ⊢ ∆

Γ ⊢ ∆
. (1.1)

A consequence of the failure of cut elimination is that inductive proofs will sometimes re-

quire lemmas that are not already available and cannot be proved without a nested application

of induction. Moreover, when used backwards, the cut-rule potentially introduces an infinite

branching point in the search space, as the ‘lemma’A can be any formula. The problem cannot

be avoided by using the cut rule in a forward direction: one will then be forced to use other rules

in a forward direction as well, and these may have formulae in the conclusion that do not occur

in the premise which may cause infinite branching.

Heuristic Guidance

To manage these problems, much work has focused on the development of heuristics to steer

inductive provers clear of possible infinite branching points.

1.1.1 Proof Planning

Proof planning [20, 26], for instance, exploits the fact that families of proofs may have a similar

structure. One such family is inductive proofs. To prove a conjecture, proof-planning first

constructs a high-level plan specification, which is then used to guide the construction of the

proof itself. This high level representation is usually more readable than a proof in terms of the

low level inference steps. An example of a proof-plan is given in Figure 1.1 showing how one

may go about trying to find a proof by induction, using the rippling heuristic (see below) for

Introduction 4

the step-case. The plan specification is usually implemented as general-purpose tactics. A tactic

1. Symbolic Evaluation ORELSE

2. Induction THEN

base case → Symbolic Evaluation

step case → (Rippling THEN Fertilisation)

FIGURE 1.1: A tactic-style presentation of a proof-plan for an inductive proof, using the rip-

pling heuristic (see below) to allow the inductive hypothesis to be applied to the step-case goal

(known as fertilisation.)

is a function that combines several lower level inference rules in a theorem prover to perform

some common task. Proof-planners reason about higher-level declarative descriptions of tactics,

which, for example, specify when the tactics are applicable. Following the structure of a high-

level proof-plan, such as the one for induction in Figure 1.1, the proof-planner assembles a tree

of tactics that can be executed by a theorem prover to give a fully formal proof.

Proof planning was first implemented in the CLAM system [27] and subsequently in λ -Clam

[90], which is a higher order version of CLAM.2 In addition to inductive proofs, λ -Clam has

also been applied to proof-planning in non-standard analysis [72]3, and combined with an object

level prover for first-order temporal logic to plan proofs in this domain [30]. Proof planning has

also been implemented in INKA [49], Ωmega [78] and IsaPlanner [36, 38].

1.1.2 Rippling

Proof planning is often combined with a difference reduction heuristic, termed rippling [22],

which is used to guide the step cases in inductive proofs. Typically, the inductive hypothesis

(termed the given) shares syntactic similarities with the conclusion, but may also differ in certain

ways. A rippling proof aims to reduce syntactic differences between the conclusion and the

given so that it can then be utilised to prove the goal. The process is guided by means of

annotations which are put into rewrite rules and in the induction conclusion. These are termed

wave-rules. Before a rewrite rule can be applied, rippling requires that the annotations must

match. The idea is to preserve a reflection of the induction hypothesis, called the skeleton. For

example, the lemma

∀xy. rev(x++ y) = rev(y)++ rev(x), (1.2)

can be annotated by letting the sub-term rev(x) be the skeleton, which yields the following wave

rule:

rev(x ++y
↑
)⇒ rev(y)++rev(x)

↑
. (1.3)

2Proof-planners in the CLAM-family (i.e. CLAM and λ -Clam) are no longer actively developed.
3Non-standard analysis differs from ε-δ analysis in containing infinitesimal numbers (i.e. ∃x such that ∀n,0 <

x < 1/n) and (non-equal) infinite numbers. See [40] for further details.

Introduction 5

⊢ rev(rev(t) ++[h]
↑
) = h :: t

⇓ LHS rewritten by (1.3)

⊢ rev([h])++rev(rev(t))
↑

= h :: t
↑

⇓ definition of rev

⊢ rev(nil)++([h])++rev(rev(t))
↑

= h :: t
↑

⇓ definition of rev

⊢ nil ++([h])++rev(rev(t))
↑

= h :: t
↑

⇓ definition of ++

⊢ ([h])++rev(rev(t))
↑

= h :: t
↑

⇓ definition of ++

⊢ h :: (nil++ rev(rev(t)))
↑

= h :: t
↑

⇓ definition of ++

⊢ h :: rev(rev(t))
↑

= h :: t
↑

FIGURE 1.2: A rippling proofs of (1.4). Fertilisation can now be applied to complete the proof.

The functions ++ and rev are defined as:

[]++ ys 7→ ys

(x :: xs)++ ys 7→ x :: (xs++ ys)

rev([]) 7→ []

rev(x :: xs) 7→ rev(xs)++[x].

Consider proving the following theorem, stating that the reverse function for lists is an invo-

lution:

∀x. rev(revx) = x (1.4)

by induction on x using the standard inductive scheme for lists. The step case goal of this proof

has the following form:

H : ∀x. rev(revx) = revx ⊢ rev(revxs++[x]) = x :: xs

The given here is taken as the inductive hypothesis H. The given is syntactically similar to

conclusion in that, if we remove certain terms from the latter, the given will match against the

conclusion. This leads to the following annotation:

rev(rev(t) ++[h]
↑
) = h :: t .

A proof of this step case goal using rippling is shown in Figure 1.2.

Introduction 6

Implementations

As mentioned before, rippling is often combined with proof planning, as was the case in CLAM

[27], λClam [90], INKA [49] and IsaPlanner [36, 38], but can also be implemented as a stand

alone tactic, as was done in NuPRL [56]. Dynamic rippling — an alternative approach to

rippling required for rippling in higher-order domains [35, 96] — was initially implemented

in the λ -Clam. A considerably faster version was subsequently implemented in IsaPlanner

[36, 38]. An automated rippling-based inductive prover has recently been developed for Coq,

which deals with proof obligations arising from programming with dependent types [105, 106].

Proof-planning and rippling have also been successfully combined for automating proofs in both

hardware [28] and software verification [53], as well as in the synthesis of higher-order programs

[67].

1.1.3 Progressing from Failure

Experiments with inductive theorem provers have shown that failed proofs can provide useful

information about failure, and hence can suggest ways to correct the proof [14]. In the event of

failure, a failed proof-plan, for instance, may contain useful information about how the proof

could be patched. Critics make use of this information productively and try a suitable patch that

will allow the proof to continue [51]. Critics are typically attached to a proof-planning method

and are fired when that method fails.

Ireland first presented a technique based on planning critics that tries to make “productive use

of failure” in [51]. He introduced four critics: induction scheme revision, lemma discovery, gen-

eralisation and case-splitting, each triggered by different ways the rippling method might fail.

Using these critics, CLAM [27] was able to produce automatic proofs for a range of conjectures

that would otherwise fail or require user-intervention. A similar form of lemma speculation and

case-splitting was implemented in Ωmega [78]. The first version of the IsaPlanner system only

supported one critic for lemma calculation. Moa Johannsen subsequently extended IsaPlanner’s

capabilities by adding critics for lemma speculation and case splitting [62].

Proof critics have been used to detect divergence in inductive proofs [102] and to detect

generalisations when searching for bi-simulations in co-inductive proofs [34]; proof planning

with critics have also been applied to program verification [52]. There has recently been a

proposal for ‘reasoned modelling critics’ [54], which seek to combine proof-failure analysis

with modelling heuristics, to give high-level guidance to design writers in the event of proof

failure.

1.1.4 Middle-Out Reasoning

Middle-out reasoning was first suggested by Bundy et al. as a technique for handling so-called

Eureka steps in program synthesis [25]. The central idea is to postpone difficult decisions in a

proof; instead starting from the middle, using the simpler steps in the proof to suggest solutions

Introduction 7

for more difficult ones. Middle-out reasoning is also often combined with proof planning, and

has been successfully applied to logic program synthesis and the selection of induction schemes

[65]; as well as synthesis of tail-recursive programs [48]. More recently, there has been work in

incorporating middle-out reasoning with the rippling-based theorem prover, IsaPlanner [63].

Informal Reasoning

Human experts have the ability to rapidly assess the truthfulness or falsity of conjectures with a

high degree of accuracy, and evidence suggest that they do not use induction [41, 58]. The aim

of formalisations of informal reasoning, therefore, is primarily to study the relation between

formal algebraic proofs and human “informal” proofs. Traditionally, theorems are formally

proved using inference steps which often do not convey an intuitive notion of truthfulness to

humans. The inference steps of a formal symbolic proof are statements that follow the rules of

some logic. The reason we trust that these steps are correct is that the logic has been previously

proved to be sound. Following and applying the rules of such a logic guarantees that there is

no mistake in the proof. Such guarantees are desired for informal proofs. The hope is that,

ultimately, the entire process of formalising and proving theorems informally will illuminate the

issues of formality, rigour, truthfulness and power of informal proofs.

1.1.5 Schematic Proofs

One approach, believed by some to offer a possible cognitive model for human constructions

of proofs in mathematics [23, 58], is via schematic proofs [9, 10]. Schematic proofs formalise

the notion of general proofs derived from specific instances. The ω-rule for natural numbers is

given by:
P(0),P(1),P(2), . . .

∀n.P(n)
, (1.5)

i.e. we can infer P(n) for all natural numbers n provided we can prove P(n) for n = 0,1,2,

Indeed, this is not a practical rule of inference. However, formalisation becomes possible via

a refinement to the ω-rule, namely that each premise P(n) is proved uniformly from n. The

criterion for uniformity is taken to be the provision of a general schematic proof, namely the

proof of P(n) in terms of n, where some rule(s) R is applied some function of n (i.e., fR(n))

times (a rule can also be applied a constant number of times). Suppose the proof of P(n) is

captured using a recursive function proof (n); proof (n) is now schematic in n since some rule(s)

R is applied a function of n (or a constant) number of times. This constructive ω-rule forms

the basis of practical applications of schematic proofs. The following procedure summarises the

essence of using the constructive ω-rule in schematic proofs:

1. Start with some proofs of specific examples (e.g. P(2), P(5), P(10), . . .).

Introduction 8

2. Generalise these proofs of examples to obtain a recursive program proof (e.g. from

proof (2), proof (16), . . .).

3. Verify, by meta-induction, that this program constructs a proof for each n, i.e. proof (n)

proves P(n).

The general pattern is extracted (guessed) from the individual proof instances by (learning type)

inductive inference. By meta mathematical induction it means that system Meta is introduced,

such that for all n:

⊢Meta proof (n) : P(n)

where “:” denotes “is a proof of”. In [10] PAω (i.e. Peano arithmetic with ω-rule) is used for the

system Meta. The Meta induction rule is defined as

⊢Meta proof (0) : P(0) proof (r) : P(r) ⊢Meta proof (s(r)) : P(s(r))

⊢Meta ∀n. proof (n) : P(n)

Schematic proofs were first implemented in the CORE system by Siani Baker [9, 10], and

subsequently in Jamnik’s DIAMOND system for diagrammatic reasoning [57]. A current project

aims to apply techniques in [57] to reasoning in separation logic [91].

The CORE System

Baker used schematic proofs in order to prove theorems of arithmetic, especially ones which

could not be proved automatically without generalisation. Use of schematic proofs avoided the

need for the cut rule or generalisation, and made the proofs much easier to automate. One of

Baker’s example theorems is a special case of the associativity of addition. Baker’s special

version of the theorem can be stated as:

(x+ x)+ x = x+(x+ x)

Baker’s CORE system proves this system automatically, using a method identical to that shown

in Illustration 1.1 below. If this theorem is proved by induction, one finds that P(s(n)) cannot

be given in terms of P(n), hence it becomes necessary to generalise it to (1.6).

Illustration 1.1 (Associativity of Addition). Consider a theorem about the associativity of ad-

dition, stated as

(x+ y)+ z = x+(y+ z), (1.6)

where + is defined as:

0+ y = y (1.7)

s(x)+ y = s(x+ y) (1.8)

Introduction 9

The constructive ω-rule is used on x in (1.6), and any instance of x is written as sn(0). By sn(0)

is meant the nth numeral, i.e. the term formed by applying the successor function to 0 n times.

Next, the axioms are used as rewrite rules from left to right, and a substitution is carried on the

ω-proof, under the appropriate instantiation of variables, resulting in the following encoding:

∀n. (sn(0)+ y)+ z = sn(0)+(y+ z)

∀x. (x+ y)+ x = x+(y+ z)

were n is the parameter, and represents any instance of the constructive ω-rule:

(0+ y)+ z = 0+(y+ z), (s(0)+ y)+ z = s(0)+(y+ z),

(s(s(0))+ y+ z = s(s(0))+(y+ z), . . .

∀x. (x+ y)+ x = x+(y+ z)

A schematic proof is constructed in terms of this parameter, where n in the antecedent captures

the infinity of premisses actually present, one for each value of n. This removes the need to

present an infinite number of proofs. The aim is to reduce both sides of the equation to the same

term. The schematic proof of this theorem is the following program:

proof (n) = Apply rule (1.8) n times on each side of the equality,

= Apply rule (1.7) once on each side of the equality,

= Apply rule (1.8) n times on the left side of the equality,

= Apply reflexivity

Running this program on (1.6) returns a proof. For example, see Figure 1.3.

(sn(0)+ y)+ z = sn(0)+(y+ z)
⇓ Apply rule (1.8) n times on each side
...

sn(0+ y)+ z = sn(0+(y+ z))
⇓ Apply rule (1.7) once on each side
...

sn(y)+ z = sn(y+ z)
⇓ Apply rule (1.8) n times on the left
...

sn(y+ z) = sn(y+ z)
⇓ Apply reflexivity

True

FIGURE 1.3: A schematic proof of associativity of append. Notice that the number of proof

steps depend on n, which is the instance of x being considered. The proof is therefore schematic

on n — certain steps are carried out n number of times.

Introduction 10

The DIAMOND System

In [57] Jamnik studied the application of schematic proofs to diagrammatic reasoning. A dia-

grammatic proof is captured by a schematic proof that is constructed from examples of graphical

manipulations of instances of a theorem. This diagrammatic schematic proof has to be checked

for correctness. A diagrammatic proof consists of diagrammatic inference steps, rather than

logical inference rules. Diagrammatic inference steps are the geometric operations applied to

a diagram (also known as “redraw rules” [107]), which produce new diagrams. Chains of dia-

grammatic inference rules, specified by the schematic proof, form the diagrammatic proof of a

theorem. In Jamnik’s formalisation of diagrammatic reasoning, diagrams are used as an abstract

representation of natural numbers, and are represented as collections of dots. Some examples

of diagrams are a square, a triangle, an ell (two adjacent sides of a square). Some examples of

geometric operations are lcut (split an ell from a square), remove row, remove column (see [57]

for more details).

Illustration 1.2 (Sum of odd natural numbers). We consider here a diagrammatic proof of the

theorem about the sum of odd natural numbers taken from [57]. The theorem is stated as

n2 = 1+3+5+ · · ·+(2n−1)

In [57] n2 is represented by a square of magnitude n, (2n− 1) is represented as an ell whose

two sides are both n long. i.e., odd numbers are represented by ell, and 1 is represented as a

dot. The diagrammatic schematic proof of this theorem can be listed as a sequence of steps that

need to be performed on the diagram:

1. Cut a square into n ells, where an ell consists of 2 adjacent sides of a square.

2. For each ell, continue splitting from an ell pairs of dots at the end of two adjacent sides of

the ell until only 1 dot is left (for each ell of magnitude n, there will be n−1 pairs of dots

plus another dot which is a vertex of two adjacent sides (i.e., 2(n−1)+1).

Figure 1.4 illustrates these steps for n = 4. Note that the number of steps (i.e. diagrammatic

w w w w

w w w w

w w w w

w w w w

-

4 x lcut

w

w

w

w

w w w w w

w

w

w w w w

w

w w w

FIGURE 1.4: Diagrammatic schematic proof of sum of odd natural numbers for n = 4.

inference steps) depends on n — for a square of size n, the proof consists of n lcuts. Hence the

Introduction 11

proof is schematic in n, and the schematic can be defined as:

proof (n+1) = apply lcut, then proof (n)

proof (0) = empty

1.1.6 Diagrammatic Reasoning

As indicated by Jamnik’s work [57], a related area is diagrammatic reasoning. Diagrams are

commonly used in virtually all areas of representation and reasoning, often to give intuitive

renderings of sentential theorems or proofs. It is therefore not surprising that geometry (and ge-

ometric reasoning) was the original form of mathematics. For instance, the first known proof of

Pythagoras’ Theorem, shown in Figure 1.5, is attributed to an unknown Chinese mathematician

writing circa 200BC.

FIGURE 1.5: The geometric proof of Pythagoras’ Theorem is a classic example of diagram-

matic reasoning.

By comparison, algebra is a recent invention, usually attributed to al-Khwarizmi in 830AD.4

More so, the modern algebraic formalism by Hilbert, Frege and Russell et al, is largely a twenti-

eth century invention.5 Owing to the success of their formalisms, the exclusive use of diagrams

to construct what is generally accepted as a proof, became, for some time, somewhat inadmis-

sible. However, the continued increase of computing power has engendered graphic tools that

give fast and accurate drawings. This has created the possibility of producing automated dia-

grammatic reasoning systems that can deal with both dynamic as well as static diagrams. It also

raised the issue of providing theoretical underpinnings for the necessary manipulations entailed

in automated diagrammatic reasoning.

Winterstein extended Jamnik’s work to deal with theorems in a continuous domain (real num-

bers) [107] with his Dynamic Diagram Logic for Analysis (DDLA) and “Dr. Doodle” system

(Dr. Doodle is an implementation of DDLA). Other systems include Hammer [45, 46], which

combined sentential reasoning with Venn diagrams, and Wang’s Geometry Machine [103] which

finds proofs of Euclidian geometry theorems using diagrams as a model to prune the search

4Or Diophantus circa 250AD.
5 However, axiomatic reasoning can be also be traced to Euclid.

Introduction 12

space. There is also “&”/Grover [11], which is a combination of a diagram based proof plan-

ner (Grover) and a standard theorem prover (the sequent calculus system “&”) which applied

diagrammatic reasoning to set theory. Recently, there has been some interest in integrating

diagrammatic reasoning with sentential theorem provers [101].

1.1.7 Proving Theorems with Ellipsis

An alternative approach (to schematic proofs) argues for the capability to represent and reason

with abstraction devices like ellipsis. The idea in [24] was to use a notation, 2 (similar to ∑ and

∏), as an internal representation of ellipses and to utilise a portrayal mechanism to associate

2 formalisations with an elliptic sequence. 2 was defined as a second-order, polymorphic

function:

2 : N→ (N→ τ)→ List τ

2(0, f) 7→ []

2(Sn, f) 7→ f 1 :: 2(n, f ◦S).

So in 2(n, f), n corresponds to the length of the sequence and f (i) to the element at the ith

position, i.e. 2(n, f) = [f (1), . . . , f (n)]. Notice on the right of the equation we have an informal

representation of a list using ellipsis, while on the left we have a formal representation of it. We

shall sometimes refer to this as the ellipis technique or ellipsis mechanism.

Success with the ellipsis technique was realised in that many functions which normally re-

quire recursive definitions can be given explicit ones. For instance, instead of the usual recursive

definitions, the functions len, rev and ++ can be formalised, in this setting, as follows:

len2(n, f) 7→ n

rev2(n, f) 7→ 2(n, λ i.n− i−1)

2(n, f) ++ 2(m, g) 7→ 2

(

n+m,λ i.

{

f i i f i≤ m

g(i−m) otherwise

)

.

(1.9)

Alternatively, these definitions can also be thought of informally as:

len [f 1, . . . , f n] 7→ n

rev [f 1, . . . , f n] 7→ [f n, . . . , f 1]

[f 1, . . . , f n] ++ [g1, . . . ,gm] 7→ [f 1, . . . , f n, g1, . . . ,gm]

(1.10)

In this way, induction and generalisation can be eliminated from proofs, and the resulting proofs

become much closer to informal proofs than would otherwise be the case.

In [24] Bundy and Richardson used representations like (1.9) to prove a number theorems

about lists. While the system performed sequences of 2 operations to arrive at each proof state,

a schematic interpretation for each state was portrayed to the user using ellipsis. Hence the user

was excluded from the meta–level 2 operations.

Introduction 13

Illustration 1.3 (rotate-length). Consider the rotate-length theorem on lists:

∀l ∈ list(τ). rot(len(l), l) = l. (1.11)

Informally, rot(n, l) returns a list with the same length as l, but with the first n elements removed

from the front and appended to the end. Proving (1.11) by induction requires generalising

the initial conjecture and proofs of intermediate conjectures. Using the ellipsis technique, this

theorem is stated in [24] as:

m 6 n =⇒ rot(m,2(n, f)) = 2(n−m,λ i. f (m+ i))++2(m, f)), (1.12)

and the 2 proof the system produced is:6

rot(len(2(n, f)),2(n, f)) = rot(n,2(n, f)) (1.13)

= 2(n−n,λ i. f (n+ i))++2(n, f)

= 2(0,λ i. f (n+ i))++2(n, f)

= 2(0+n,comb(0,λ i. f (n+ i), f))

= 2(n, f)

The elliptic definition of (1.11) is:

rot(m, [f (1), . . . , f (n)]) = [f (m+1), . . . , f (b)]++[f (1), . . . , f (m)],

and corresponding elliptic proofs is shown in Figure 1.6.

rot(len([(f 1), . . . ,(f n)]), [f (1), . . . ,(f n)]) = [(f 1), . . . ,(f n)]

⇓ definition of len

rot(n, [f (1), . . . , f (n)]) = [(f 1), . . . ,(f n)]

⇓ definition on rot + arithmetic

[]++[a1, . . . ,an] = [(f 1), . . . ,(f n)]

⇓ definition on ++ + arithmetic

[(f 1), . . . ,(f n)] = [(f 1), . . . ,(f n)]

⇓ reflexivity

True

FIGURE 1.6: Elliptic proof the rotate-length theorem.

6 Note comb is defined by: comb(n, f , g)(i) =

{
f i if i≤ m

g(i−m) if i > m

Introduction 14

Note that proof steps were only displayed using ellipsis, but the actual proofs were done

using the 2 representation. The ellipsis portrayal served as an intuitive demonstration of these

steps. There was not necessarily a one-to-one correspondence between the 2 steps and the

schematic steps displayed. For instance, many steps involving arithmetic simplification were

hidden and a portrayal was usually only attached to their simplified form.

Limitations of the Ellipsis Technique

Despite its success, the ellipsis mechanism has some noticeable flaws.

• Lists cannot be uniquely represented via the ellipsis mechanism: the domain of the func-

tion f in (n, f : N→ τ) is too large and, consequently, 2 is not injective.

• There were also uncertainties about other data structures and functions. For example,

regarding the function flatten : List(List(τ))→ List(τ), where

flatten ([]) 7→ [] (1.14)

flatten (x :: xs) 7→ x++flatten(xs),

the authors in [24] were unclear about whether such functions are amenable to their for-

malism, writing:

Some functions do not easily lend themselves to representation in the 2 formu-

lation, for example flatten over arbitrarily nested lists. There may be a corre-

spondence between such difficult examples and recursive definitions which are

difficult to understand.

• The ellipsis technique is not based on any formal theory; hence there is no explanation

as to which programs can be represented in this way and which cannot. For instance,

although 2 is defined as a polymophic function, in [24] experiments were done with

functions which are not polymorphic. For instance, the function mem : τ×List (τ)→Bool

was considered as:

mem(x, 2(n, f))↔∃i≤ n. x = (f i).

Reporting on their inability to prove examples involving mem, the authors wrote:

The tested version of λClam7 was unable to prove the mem examples because

of a problem using the definition of mem which is suitable for elliptic proofs

. . .

Subsequent work on enhancing the ellipsis mechanism [88] also failed to address these lim-

itations, even though they managed to extend its scope.

7λClam [90] is the system in which these experiments were done.

Introduction 15

1.2 Containers

The possibility of using containers to address the aforementioned limitations of the ellipsis tech-

nique was first recognised in [88]. Containers were developed as a semantic interpretation of

functional data structures, the intuition being that concrete data structures can be characterised

by specifying the shape values take, and for every possible shape, explaining where positions

within that shape are stored. For example, an element of the type List(τ) can be uniquely writ-

ten as a pair (n, f), where the shape n corresponds to its length and f : Nn→ τ identifies each

position in the list with some datum (where Nn is the set {0,1, . . . ,n− 1}). Notice the corre-

spondence with the 2 formalisation, but in this case f is a total function, guaranteeing a unique

representation. Initial presentations of containers relied heavily on category theory — its impli-

cations for programming and reasoning were elucidated in [4]. Containers’ potential for generic

programming has since been fruitfully explored in [81] but apart from our work, we are not

aware of any investigations of their reasoning potential.

Our interest in containers comes from the perspective of automated reasoning, where the aim

is to apply containers to the formalisation of informal reasoning. The fundament for the sequel

comes from a representation theorem for polymorphic functions as container morphisms. A

polymorphic function F : List(τ)→ List(τ) can be thought of as a rewrite rule in an informal

setting, e.g. in [24]. Within the theory of containers, this function is represented in terms of a

pair of functions (u, f), where u : N→ N maps shapes in the input to same in the output and

fn : N(u n) → Nn, is a reindexing function mapping positions in the output to positions in the

input (see Chapter 3).

1.3 Aims of the Project

The overall aim of this project was to develop a general framework for ellipsis reasoning, in the

style of [24], which is based on a sound mathematical theory. As was shown in Illustration 1.3,

the key to the ellipsis mechanism was the internal representation provided by 2, so our focus was

primarily on addressing the limitations mentioned in §1.1.7. The ensuing investigations led us

to concentrate on the development of a reasoning system based on containers, which addresses

these limitations. In so doing, we sought to affirm the theory of containers as providing the

mathematical underpinning for elliptic reasoning.

One of achievements of the ellipsis mechanism [24] was the ability to represent elliptic con-

jectures as statements involving arithmetic. As was acknowledged in [24], this created the po-

tential for developing decision procedures for lists and other finite sequences. We subsequently

aimed to utilise our container reasoning system to develop new decision procedures for lists.

Introduction 16

1.4 Contributions

We here summarise the main contributions and results of our research.

• A formalisation of core theory of containers: We formalise the connection between the

theory of containers and elliptic representations and proofs. In the process, we formalise

the core theory of containers in Coq. Our formalisation differs from previous formalisa-

tions of containers [5, 81, 82] done in Epigram [77] and Agda [84] in that:

1. we do not formalise the connection between strictly positive types (and families)

and containers, which appeared in [5, 81, 82].

2. we formalise the representation theorem for containers [1–3] which provides the

connection between container morphisms and polymorphic functions, and subse-

quently elliptic proofs. This formalisation does not appear in [5, 81, 82].

• A container-based reasoning system: We define a notion of equality between container

morphisms, which justifies a new reasoning system that addresses all of the limitations of

the ellipsis mechanism. We introduce our system as one which proves theorem about lists,

but also demonstrate that our reasoning technique can be applied to other data structures

besides lists. To our knowledge, ours is the first attempt at developing a container-based

reasoning system.

• A tactic for reasoning with finite types: We have implemented a rewrite based tactic

and libraries for reasoning with the finite types in Coq, which include heuristics for case

splitting during rewriting and simplification. Our tactic therefore differs from other Coq

tactics, which deal with inductive proofs in the presence of dependent types [105, 106].

• A decision procedure for lists: The container-based reasoning system we develop en-

dorses representations of polymorphic rewrite rules using arithmetic. We exploit this

representation to present what we believe to be a novel8 approach to proving properties of

lists using arithmetic decision procedures:

– By restricting the shapes maps of container morphisms to functions with decidable

equality, we define a large, decidable class of properties of lists. The functions we

consider are piecewise-linear, of type N
n→ N. We formally define such functions

and show that they: (i) determine the definition and, subsequently, decidability of

reindexing maps; and (ii) encapsulate a large set of polymorphic functions between

lists, which frequently arise in program verification tasks.

– This result was put into practise by means of the implementation of a new decision

procedure for lists in Coq in a quasi-container setting.

8 As far as we are aware, this is a new decidability result.

Introduction 17

• Preliminary ideas for extension: We also discuss some preliminary ideas for extending

the results in this thesis to: (i) extend the scope of our decision procedure to deal with

more properties of lists, as well as other data structures; (ii) develop new approaches for

representing and reasoning with diagrams containing ellipsis, using Jamnik’s approach to

diagrammatic reasoning [57], and (iii) develop new techniques for combining/augmenting

decision procedures for various data structures.

1.5 Structure of the Thesis

The remainder of this thesis is organised as follows:

Chapter 2: Theorem Proving with Dependent Types. The work described in this thesis was

done in the Coq proof assistant. A judicious implementation of a container-based system

requires a dependently typed language. The ability to program using dependent types,

combined with the possibility to automate proof search and code decision procedures in

normal Coq code, influenced our preference. We also describe some useful techniques

borrowed from programming in Epigram [77], in particular the use of views, which were

crucial to our development.

Chapter 3: The Theory of Containers. We introduce the theory of containers and show how

the limitations of the ellipsis mechanism can be addressed within it. We also comment on

other features we do not utilise, and discuss their applications.

Chapter 4: Reasoning with Containers. We describe a system for ellipsis–style reasoning based

on containers. We also describe tactics and libraries used to reason about finite types,

which were crucial to our reasoning system.

Chapter 5: Piecewise-Linear Analysis. This chapter presents a decision procedure for piecewise-

linear functions. Piecewise-linear functions subsume linear functions. Deciding equality

of piecewise functions, in general, is nontrivial in comparison to continuous functions

in the following sense. In contrast with continuous functions, even if two piecewise de-

fined functions are equal in a dense set in a given interval, they may differ at a single

point. We shall deal with piecewise–linear functions with finitely many intervals and

jump-discontinuties. Our decision procedure utilises the fact that such piecewise-linear

functions can be put in a canonical form [33].

Chapter 6: A Decision Procedure for Lists. We present a different, non-dependent view of

the container reasoning system implemented in Chapter 4, which, combined with the de-

cision procedure in Chapter 5, enabled us to implement a decision procedure for lists. The

key feature was to capture the behaviour of reindexing functions for container morphisms

as function on the natural numbers instead of functions defined using dependent types.

Introduction 18

This, combined with a restriction of shape maps to piecewise-linear functions, allowed us

to deal with a large class of functions.

Chapter 7: Conclusion and Further Work. We draw conclusions from our results and dis-

cuss the extent to which the stated aims of this project were met, and whether our hy-

potheses were confirmed. We also discuss some preliminary ideas for extending our sys-

tem, citing applications in automated reasoning as well as programming. In particular, we

discuss an alternative presentation of our work using techniques presented in [81].

1.6 Summary

Representing and reasoning with ellipsis presents an interesting challenge for automated rea-

soning, and is important for models of informal reasoning. Successful techniques are either

too restrictive or lack a formal semantics. The main goals of this work are to develop a formal

semantics for ellipsis representation and to develop new techniques for reasoning with ellipsis.

We hypothesise that theory of containers provides a formal underpinning for ellipsis, and test

this hypothesis by implementing a system for ellipsis-style reasoning using containers which

subsumes previous approaches. We also develop a new way of analysing elliptic conjectures via

arithmetic decision procedures.

Chapter 2

Theorem Proving with Dependent

Types

A crucial requirement for the success of our work was the ability to define, and prove properties

of, functions using dependent types. For instance, a judicious implementation of a reasoning

system based on containers requires a dependently typed setting (see §4.2). We also use depen-

dent types to get concise representations for multivariable functions in §6.2.

The main work presented in this thesis was done using the Coq proof assistant. Coq is

based on the Calculus of Inductive Constructions [13] (CIC), which is both a constructive logic

and a dependently typed functional programming language. In this chapter, we shall explore

dependently typed programming in Coq. We shall not give an introduction to Coq here, as other

people have done so elsewhere: see [13] for an excellent introduction and [31] for an equally

good discussion, with an emphasis on the use of dependent types. There is also the Coq reference

manual [50]. We shall, however, give an overview of an alternative style of programming with

dependent types usually emphasised in systems like Epigram [77] and Agda [84].

2.1 Dependently Typed Programming

From a programming point of view, the key difference between functional programming lan-

guages, such as Haskell or ML, and dependently typed functional languages is the generalisation

of function spaces S→ T to dependent function spaces ∏x : S→ T (x), where the type of the

output can depend on the value of the input. The connection between the inputs to a program and

its output is therefore made explicit in the type. This allows programmers to capture program

properties directly in the type, leading to better type safety and to the type system’s ability to

better express control flow of programs. Universal quantification is often used at the type level

in functional programming to encode polymorphism, i.e. one can only quantify over types. In

the presence of dependent types, this notion is extended to values of any type and thus lambda

abstraction can bind both values as well as types.

19

Theorem Proving with Dependent Types 20

Not only can dependent types encode more type safety in functions using dependencies, but

the data structures of a dependently typed language may also depend on the values of other

data. These so-called inductive families [39] can encode invariants by allowing constructors to

depend on the values of their indices. Usually dependently typed programming languages like

Coq, Epigram [77] and Agda [84] allow programmers to define their own inductive families.

Once a dependent data type is defined, the type former, constructors and standard eliminators are

added to the core theory according to Luo’s schemes [71]. A number of other gadgets [76, 77]

— usually more complex eliminators which encode structural recursion, pattern matching and

other useful programming paradigms — can then be implemented on top of these to simplify

the task of programming and reasoning with these families.

2.1.1 Dependent Pairs

Besides the dependent function space, another dependent type that features in the sequel is the

type of dependent pairs: ∑a : A. P, where P may depend on A — i.e. P : A→ Set. Notice that

one can easily recover a non-dependent pair from a general dependent pair by restricting the

behaviour of the dependent function:

Pair A B = ∑a : A. (λ . B).

Such dependent pairs (or Sigma types) arise quite naturally. For instance, given a natural

number n, we may be interested in all the natural numbers less than n. One way to represent the

set of such numbers, in a dependently typed setting, is as a dependent pair given by a number m

along with a proof that m is less than n:

∑m : N. m < n. (2.1)

Rather than a pair of two values, the inhabitants of this type consist of a value m and a proof that

m satisfies some property P — in this case, m < n. A notation reminiscent of set comprehensions

is often used here, and (2.1) is written as {m : N |m < n}. When P is a propositional term, the

latter is sometimes said to denote a subset type. A subset type combines a computational term

s : Set with the propositional term P : S→ Prop, where P is a certificate that property P holds

for s.

Sigma types will play a central role in the Chapter 3 when we formalise the notion of a

container, as well as in Chapter 6 when we derive an arithmetic representation for polymorphic

functions between lists.

2.2 Dependent Types in Coq

A classic example of dependently typed programming is the family of vectors indexed by length:

Theorem Proving with Dependent Types 21

Inductive Vec X : nat -> Type :=

| vnil : Vec X 0

| vcons : forall n< X -> Vec X n -> Vec X (S n).

Here Vec X n is the type of vectors, length n, of items of type X . We can now implement safe

versions of the functions head and tail, where their types make it clear that they can only be

applied to non-empty lists:

Inductive VCons n : Vec X (S n) -> Type :=

isvcons : forall (a :X) (i : Vec n), VCons (vcons a i) .

Definition vCons n (i : Vec X (S n)) : VCons i :=

match i in Vec X t return match t return Vec t -> Type with

| S => @VCons

| => fun => unit

end i with

| vcons x j => isvcons x j

| => tt

end.

Definition vhead n (i : Vec X (S n)) : X :=

match vCons i with

| isvcons a => a

end.

Definition vtail n (i : Vec X (S n)) : Vec n :=

match vCons i with

| isvcons a => a

end.

We first define a data type family indexed by a VecA(Sn) structure, then the function vCons

which says that this family is exhaustive. We then use vCons in our definitions of vhead and

vtail to match a VecA(Sn) structure, which subsequently deliver the very vcons x xs we

require.

2.2.1 Finite Types

More generally, we can implement a function which safely accesses any element of a vector. To

achieve this, we first define the family of finite types with the intention that Finn corresponds to

a finite type with n distinct values — i.e. the set {0,1, . . . ,n−1}:

Inductive Fin : nat -> Set :=

| fz : forall n, Fin (S n)

| fs : forall n, Fin n -> Fin (S n).

Theorem Proving with Dependent Types 22

For every n, the fs constructor embeds i : Finn into Fin(Sn), while the fz constructor adds a

single new element to Fin(Sn) that was not in Finn. Table 2.1 enumerates the elements up

to Fin4. As can be seen, each non-empty column contains a copy of the previous column,

Fin 0 Fin1 Fin2 Fin3 Fin4 . . .

fz0 fz1 fz2 fz3 . . .

fs1 fz0 fs2 fz1 fs3 fz2

. . .

fs2 (fs1 f z0) fs3 (fs2 fz1)
. . .

fs3 (fs2 (fs1 f z0))
. . .

TABLE 2.1: Elements of Finn up to Fin4.

embedded by fs, together with a ‘new’ fz at the start.

It is also useful to have an eliminator for Fin(Sn). Such an eliminator is shown in Listing 1.

Again, we first define a family indexed by Fin(Sn), then a function which shows that this new

Listing 1 Eliminator for Fin(Sn) .

Inductive FinSN n : Fin (S n) -> Set :=

| isfz : FinSN (fz n)

| isfs : forall i, FinSN (fs i).

Definition finSN n (i : Fin (S n)) : FinSN i :=

match i in (Fin k) return match k return Fin k -> Set with

| O => fun _ => unit

| S n’ => @FinSN _

end i with

| fz _ => isfz _

| fs _ j => isfs j

end.

family is exhaustive. Armed with finSN, we can proceed to define the pro j function, which

takes a vector of length n and an element of Finn as its arguments and safely accesses the

element of the vector at index Finn:

Fixpoint proj n (i : Vec X n) : Fin n -> X :=

match i in (Vec e) return (Fin e -> X) with

| vnil => fun i => nofin A i

| vcons a i => fun j => match finSN j with

| isfz => a

| isfs j’ => proj i j’

end

end.

Theorem Proving with Dependent Types 23

We analysed the index given as an element of Finn and since both constructors of Finn produce

elements in Fin(Sn), the subsequent analysis of the vector needs only a vcons case. The function

nofin : Fin0→ X corresponds to ⊥→ X .

Finite Types and Dependent Pairs

It is very straightforward to translate between Finn and the set {0,1, . . . ,n−1} which it repre-

sents. The latter is just an alternative presentation of the dependent pair {m : N |m < n}. This

translation plays a crucial role in §6.1 where we move from a container-based representation to

one defined using natural numbers. The translation is achieved via the following functions:

1. fnat : ∀n. Finn→N, which computes the natural number represented by Finn, for n > 0;

2. nfin : ∀nm. m < n→ Fin n, which computes the value of m as an element of Fin n:

fnat fzn 7→ 0

fnat (fs i) 7→ S (fnat i)

nfin 0 m !

nfin (Sn) 0 7→ fzn

nfin (Sn) (Sm) l 7→ fs(nfin(lt S n l));

(2.2)

3. and finally finnat : ∀ni. (fnat i) < n, which proves that values represented by Finn are

always less than n:

finnat fzm 7→ lt O Snm

finnat (fs i) 7→ lt n S (fnat i) (finnat j).

We can also exploit this translation to calculate arithmetic representatives for polymorphic

functions (see §7.2.3).

2.2.2 Views

Let us take a closer look at the eliminator finSN defined in Listing 1. The elimination rule gen-

erated for Finn would have been insufficient for the decompositions required for the definition

of pro j. We specified a new way of analysing elements of type Fin(Sn) by indexing a data type

family with it, then defined a covering function which showed that the constructors of this new

family are exhaustive. We did the same for vCons previously.

Data type families such as these are called view relations [76, 77]. Views are central to the

design of Epigram [77] and, to some extent, Agda [84], but they seem yet to become part of the

Coq folklore. Indeed there are other ways of specifying these decomposition, which frequently

occur in specifications using Coq, for instance see [31]. For us, views provide an important

tool for analysing data on which types depend. Moreover, views enable us to analyse data types

in more ways than just their constructors. In the remainder of this section, we shall present

examples of views that play important roles at various points in the sequel.

Theorem Proving with Dependent Types 24

As a first example, we observe that the type Fin(Sn) can be also given either as the maximum

element topn or for some i : Finn, or as the embedding embi, where topn and embi have the

following definions:

top : ∀n.Fin(Sn)

topO 7→ f z

top(S n) 7→ f s (topn)

emb : ∀n.Finn→ Fin(Sn)

emb f zn 7→ f z(Sn)

emb (f s i) 7→ f s (emb i)

(2.3)

It follows that we can define a view on Fin(S n) in terms of these constructions. This view is

given in Listing 2. We analyse n; if it is 0, we decompose i : Fin1 using the finSN view defined

Listing 2 View on Fin(Sn) using top and emb.

Inductive FinEmtp n : Fin (S n) -> Set :=

| isTp : FinEmtp (tp n)

| isEmb : forall (i : Fin n), FinEmtp (emb i).

Fixpoint finEmtp n : forall i : Fin (S n) , FinEmtp i :=

match n as e return (forall i : Fin (S e), FinEmtp i) with

| O => fun i => let f := finSN i in

match f in (FinSN f0) return FinEmtp f0 with

| isfz => isTp 0

| isfs j => match (fin_0_empty j) with end

end

| S n’ => fun f => let f’ := finSN f in

match f’ in (FinSN f0) return FinEmtp f0 with

| isfz => isEmb (fz (n := n’))

| isfs i => let k := finEmtp i in

match k in (FinEmtp f1) return (FinEmtp (fs f1)) with

| isTp => isTp (S n’)

| isEmb i => isEmb (fs i)

end

end

end.

earlier. Observe that fz0 = top0 hence, in this case, the isTp component is just fz. For the Sn

case, we again decompose i : Fin(Sn) using the finSN view, this time returning the components

of the isEmb branch of FinEmtp. Note, at this point, the finEmtp view is employed within its

own definition. This is allowed since the view is only used on a structurally smaller object than

that which is being defined, so it is wellfounded. In this way, we not only see how views can

be created, but also how they can be used, since the view being defined is employed in its own

definition.

Theorem Proving with Dependent Types 25

Coproducts

Consider the coproduct of two finite types. Coproducts come with injections and an eliminator

which give case analysis. The injections finl and finr are implemented below.

Fixpoint finl n m (i : Fin n) : Fin (n + m):=

match i in Fin n return Fin (n + m) with

| fz => fz

| fs x k => fs (finl x m k)

end.

Fixpoint finr n m (i : Fin m) : Fin (n + m):=

match n return Fin (n + m) with

| O => i

| S n’ => fs (finr n’ m i)

end.

Intuitively, finl will map elements of Finn to the first n elements of Fin(n+m) and finr will

map the elements of Finm to the subsequent m elements of Fin(n + m). Note for finr, we

analyse the n : N to apply m successor operations fs to lift Finm into Fin(n+m). It is also worth

noting that the above implementations of finl and finr will only apply when the implemen-

tation of + recurs over the first argument. As before, we shall implement the eliminator using a

view, which is shown in Listing 3.

Listing 3 The view for coproducts of finite types.

Inductive FinSum n m : Fin (n + m) -> Type :=

| is_inl : forall i: Fin n, FinSum n m (finl m i)

| is_inr : forall j: Fin m, FinSum n m (finr n j).

Fixpoint finsplit n m : forall (i : Fin (n + m)), FinSum n m i :=

match n as e return (forall (i : Fin (e + m)), FinSum e m i) with

| O => fun i => is_inr _ i

| S n’ => fun i =>

match finSN i in (FinSN f0) return (FinSum (S n’) m f0) with

| isfz => is_inl m (fz (n := n’))

| isfs j => let h := finsplit n’ m j in

match h in (FinSum _ _ f1) return (FinSum (S n’) m (fs f1)) with

| is_inl x => is_inl m (fs x)

| is_inr y => is_inr (S n’) y

end

end

end.

While the finsplit view above decomposes coproducts of two finite types, it sometimes

becomes necessary to have an eliminator for coproducts of an arbitrary number of finite types.

That is, given a N
n, we first sum the natural numbers in the tuple.

Theorem Proving with Dependent Types 26

Fixpoint sumn n : (Fin n -> nat) -> nat :=

match n as e return (Fin e -> nat) -> nat with

| O => fun => 0

| S n’ => fun f => f (fz n’) + sumn (fun i => f (fs i))

end.

That is sumnm f = ∑i:Finm f i. Next we need to be able to decompose Fin(sumnm f) in such a

way that we can determine exactly where in the tuple each element comes from — i.e. we need

a function

Fin(sumnm f)→ Fin(f (fzm))+Fin(f (fs(fzm)))+ . . .+Fin(f (fs(. . .(fs(fzm))))).

Once again, this is achieved by first possessing a function that maps the other way:

f in j : ∀n(i : Finn). ∀ f : Finn→ N. Fin(f i)→ Fin(sumn f).

The view can now be defined in terms a family indexed by Fin(sumnm f), along with a covering

function (see Listing 4 on p.27).

Vector Concatenation

We conclude this discussion with a final example of a view which is required in the sequel. It is

often useful to be able to concatenate vectors as we do lists via append (++). The corresponding

function for vectors, vPlus, can be implemented as shown below:

Fixpoint vPlus n m (i : Vec X n) (j : Vec X m): Vec X (n + m) :=

match i in (Vec n) return (Vec X (n + m)) with

| vnil => j

| vcons x i’ => vcons x (vPlus i’ j)

end.

The constructors of Vec are usually not sufficient when it comes to using elements of VecX (n+

m), since the objects we may require are in VecX n and VecX m, and not vnil and vcons. Views

again provide the elimination we require. Once again we analyse n and return components of the

vPlusView data type (see Listing 5 on p.28). Decomposing i : VecX (n+m) using vplusView

will now deliver object in VecX n and VecX m instead of what would be achieved using the

generated elimination rule for Vec.

2.2.3 Heterogeneous Equality

Let us reconsider the injections defined in §2.2.2. Given i : Finm, we observe that (f inr n(x +

m)(f inr xmi)) and (f inr (n + x)mi) denote essentially the same element of Fin(n + m + k).

Theorem Proving with Dependent Types 27

Listing 4 View on Fin(sumn f).

Fixpoint finj n i : forall f : Fin n -> nat, Fin (f i) -> Fin (sumn f):=

match i in Fin e return

forall f : Fin e -> nat, Fin (f i) -> Fin (sumn f) with

| fz m => fun f k => finl (sumn (fun j => f (fs j))) k

| fs m x =>

fun f k => finr (f (fz m)) (finj x (fun j => f (fs j)) k)

end.

Inductive FinSumm n (f : Fin n -> nat) : Fin (sumn f) -> Set :=

finPair : forall (i : Fin n) (k : Fin (f i)), FinSumm f (finj i f k).

Fixpoint finSumm n :

forall (f: Fin n -> nat) (x : Fin (sum_n f)), FinSumm f x :=

match n as e return

(forall (f: Fin e -> nat) (x : Fin (sum_n f)), FinSumm f x) with

| O => fun f x => nofin (FinSumm f x) x

| S n0 => fun f0 (x0 : Fin (sum_n f0)) => let f1 :=

finsplit (f0 (fz n0)) (sum_n (fun i : Fin n0 => f0 (fs i))) x0 in

match f1 in (FinSum _ _ f2) return (FinSumm f0 f2) with

| is_inl i => finPair f0 (fz n0) i

| is_inr j => let f2 := finSumm (fun a : Fin n0 => f0 (fs a)) j in

match f2 in (FinSumm _ f3) return

(FinSumm f0 (finr (f0 (fz n0)) f3)) with

| finPair x1 fx => finPair f0 (fs x1) fx

end

end

end.

However, the conventional Martin-Löf definition of equality within a given type prevents us

from stating

∀nxm(i : Finm), f inr n(x+m)(f inr xmi) = f inr (n+ x)mi,

because the types Fin(n + x + m) and Fin(n + (x + m)) are considered to be distinct. Such

heterogeneous equations occur naturally whenever not only our propositions but even our data

structures are expressed as dependent types. In [75, 76], McBride proposed a convenient way

to treat them: the ‘John Major’ equality predicate, written as
jm
==, admits comparison of objects

of any type, but they can be only treated as equal (i.e. substituted) if they are of the same

type. If we can identify n + x + m with n + (x + m) by substitution, say, then the types of

(f inr n(x+m)(f inr xmi)) and f inr (n+x)mi become the same and the resulting homogeneous

equation can be exploited. The formation, introduction and elimination rules for
jm
== are as

follows:

Theorem Proving with Dependent Types 28

a : A b : B

a
jm
== b : Prop

a : A

refl : a
jm
== a

a : A

Φ : ∀a′ : A.a
jm
== a′→ Type

φ : Φ a (refl a)

∀a′ : A.∀q : a
jm
== a′.Φ a′ q

Thus
jm
== can compare anything to a, even if its type is different from A. However, the introduc-

tion and elimination rules follow the conventional homogeneous definition: only objects of the

same type can really be equal or treated as such. In the presence of
jm
==, we can now state:

Lemma finr inr inr : ∀nxm(i : Finm), f inr n(x+m)(f inr xmi)
jm
== f inr (n+ x)mi. (2.4)

Listing 5 View on VecX (n+m).

Inductive vPlusView n m : Vec X (n + m) -> Type :=

| vplus : forall (i : Vec X n) (j : Vec X m), vPlusView n m (vPlus i j).

Fixpoint vplusView n m : forall i : Vec X (n + m), vPlusView n m i :=

match n as e return (forall i : Vec _ (e + m), vPlusView e m i) with

| O => fun i => vplus vnil i

| S n’ => fun i =>

match (vCons i) in (VCons k) return (vPlusView (S n’) m k) with

| isvcons a i0 => let v0 := vplusView _ m i0 in

match v0 in (vPlusView _ _ v1)

return (vPlusView (S n’) m (vcons a v1)) with

| vplus i1 j => vplus (vcons a i1) j

end

end

end.

Simultaneous Rewriting

Completing the proof of (2.4) requires another piece of machinery. Often in our proofs, it

becomes necessary to substitute objects of a dependent type that are (heterogeneously) equal,

given that we have a proof about the (homogeneous) equality of the objects on which they

depend. To do this, we may derive an additional substitution rule for
jm
==:

a a′ : A

B : A→ Type

ba : B a ba′ : B a′

H : a = a′ H jm : ba
jm
== ba′

Φ : ∀(x : A) (bx : B x).Type

Φ a ba

Φ a′ ba′
(2.5)

Theorem Proving with Dependent Types 29

For example, assuming + is defined by recursion on its first argument, in the case of (2.4)

we can proceed by induction on n but get stuck at:1

finr n (x+m) (finr m x i)
jm
== finr (n+ x)m i

f s(finr n (x+m) (finr x m i))
jm
== f s(finr (n+ x)m i)

.

But this can be unstuck by (2.5) and a proof of the associativity of +, and the proof completed.

2.3 Program and the Russell Language

We conclude this chapter by commenting briefly on an alternative technique for dependently

typed programming in Coq using the Program extension and the Russell Language [97, 98].

With Program, the computational parts of dependently typed programs are written in the Russell

language and the construction of the required proof terms is postponed for a later time.

Russell programs are usually written with specifications given in terms of subset types. For

instance, the following Russell program reverses the input list i and returns a certificate that the

length of the reversed list is the same as the original list:

Program Fixpoint revs (a:list A) struct a:

{i : list A | length i = length a} :=

match a with

| [] => []

| h::t => (revs t)++[h]

end.

Notice the body of the program looks like a typical functional implementation of list reverse,

but the program appears to return a simply typed list when a subset type is required. When a

term in a Russell program is expected to be of type {x:A | P}, Russell allows the use of a term

t of type A, if a proof of P[t/x] is supplied later in the typing context of t. In such case, the

programmer is required to solve the associated proof obligation(s) before a definition or program

can be competed. For instance, the function above generates the following proof obligation for

the base case proof:

[] = a -> length [] = length a,

which, along with the obligation(s) for the step case, need to be solved before the definition of

revs can be completed. For further details on this style of programming, see [97, 98].

As mentioned before, we preferred to simulate pattern matching techniques designed for

Epigram [77]. This was primarily due to our prior experience working with Epigram, rather

than on any disapproval of Program. Other people have successfully utilised Program to develop

1The elimination rule for
jm
== resolves the base case.

Theorem Proving with Dependent Types 30

automated techniques for dependently typed programming in Coq [105]. Whether one uses our

technique, which is closely related to that championed by Chilipala [31], or techniques like

Program, is purely a matter of taste.

2.4 Summary

We have given an overview of dependently programming in Coq, in the context of what follows

in sequel. In the process, we have demonstrated how eliminators for inductive families can be

defined. We also introduced a few functions we will require in sequel. Our approach relates to

the pattern matching style of dependently typed languages like Epigram [77] and Agda [84].

Chapter 3

The Theory of Containers

We saw in Chapter 1 that the ellipsis technique was hampered by certain limitations, stemming

mainly from the lack of a sound mathematical underpinning. This subsequently led to uncer-

tainties about its scope and applications. In this chapter, we shall tackle these limitations using

the theory of containers [1–3]. We shall show how constructions using containers enable us

to address all the limitations of the ellipsis technique mentioned in §1.1.7. In particular, we

shall show how containers provide a formal underpinning for the ellipsis technique, just as the

constructive ω-rule provides the mathematical underpinning for schematic proofs. Our interest

in containers therefore comes from the perspective of automated reasoning and we shall stress

those aspects of the theory we need, often accompany definitions with Coq formalisations. The

interested reader may consult [1–3] for further details on containers.

We begin by revisiting the ellipsis technique. We show that by moving to a dependently typed

setting, we are rewarded with a new pair representation, similar to that of the ellipsis technique,

but which does not suffer from its limitations. Next we introduce the theory of containers and

show that the aforementioned pair representation is the exact encoding provided via theory of

containers. We then comment on other related results and applications of containers.

3.1 The Ellipsis Technique Revisited

Let us first revisit the ellipsis technique. One of the problems we identified with the ellipsis

technique was that in 2(n, f) representing list(X), the function f : N→ X is not total. The

natural way to address this is to make the domain of f dependent on n, the length of the list. To

this end, we can introduce a functor:

PList : Set→ Set

PList X = ∑n. (Fin n→ X),
(3.1)

31

The Theory of Containers 32

which admits a pair representation similar to 2.1 An element of PList X is thus a pair (n, f). We

can now define a function which maps PList X to list X , which we denote with ⊡:

⊡ : PList(X)→ list(X)

⊡ (0, f) 7→ []

⊡ (Sn, f) 7→ f (fzn) :: ⊡ (n, f ◦ fs).

(3.2)

As was the case with the ellipsis technique, n in ⊡(n, f) corresponds to the length of the list,

while f : Finn→ X assigns an element X for each i : Finn. Representing lists using ⊡ therefore

guarantees a unique representation, as the domain of f is now correct. Moreover, we can define

the function ψ : list(X)→ PList X which recovers the PList representation for a given l : list(X):

ψ l = (len l, labl l), (3.3)

where len denotes the standard functional definition of the length function for lists and labl is a

labelling function which assigns an element for every position in the list:

labl : ∀ l : list(X). Fin(len l)→ X

labl [] !

labl (x :: xs) fz 7→ x

labl (x :: xs) (fs i) 7→ labl xs i.

It is not difficult to see that ∀p.ψ(⊡ p) = p and ∀l. ⊡ (ψl) = l; hence we see that elements of

PList X are in bijection with those of list X .

3.1.1 Defining Functions

Just as with 2, we can avoid recursion when defining functions using ⊡ and, as many of the

definitions are non-recursive, proofs can also be non-inductive. Also, since elements of PList X

are in bijection with those of list X , it is possible to translate many standard recursive definitions

involving lists to one defined using PList. For example, the length, append and reverse functions,

len, ++ and rev respectively, can be defined as:

len(⊡(n, f)) = n

rev(⊡(n, f)) = ⊡(n, λ i. f (rv i))

⊡(n, f)++⊡(m, g) = ⊡(n+m, fcase f g),

1 Note that PList is really a functor since its action on a function g : X→Y sends the element (n, f) to the element

(n, g◦ f).

The Theory of Containers 33

where fcase is an eliminator for Fin(n+m) in the form of a case function:

fcasenmX : (Finn→ X)→ (Finm→ X)→ Fin(n+m)→ X

fcase f g (finl i) 7→ f (i)

fcase f g (finr j) 7→ g(j),

(3.4)

while rv is the function which reverses elements within the set Finn (i.e. rvn(i) = n− i−1):2

rv : ∀n.Finn→ Finn

rv(S n) f z 7→ topn

rv(S n) (f s i) 7→ emb (rvn i).

(3.5)

3.1.2 Proving Theorems

In order to simplify proofs using ⊡, we shall sometimes separate proofs about the length from

those involving the labelling functions. This is achieved using the following rule:

f : Finn→ X g : Finm→ X

h : n = m h1 : f
jm
== g

⊡(n, f) = ⊡(m, g)
(3.6)

Correspondingly, since the domains of f and g are dependent types, we require a dependent

extensionality in order to compare their labelling functions. Dependent extensionality can be

straightforwardly derived from the non-dependent version, and has the following type:

A C : Set

B : A→ Set aa′ : A H : a = a′

F : Ba→C G : Ba′→C

∀(x : Ba)(y : Ba′), x
jm
== y→ F x = Gy

F
jm
== G

.

Reasoning about Reverse

Consider the theorem that the reverse function for lists is involutive ((1.4) on p.5) in light of this

new representation. Using ⊡, we can state this theorem as

⊢ rev(rev(⊡(n, f))) = ⊡(n, f). (3.7)

2Both n and i has type N, and subtraction is left associative.

The Theory of Containers 34

The proof of (3.7) proceeds as follows:

⊢ rev(rev(⊡(n, f))) = ⊡(n, f)

⇓ definition of rev unfolded on the LHS

⊢ ⊡(n,λ i. f (rv(rv i))) = ⊡(n, f)

⇓ functions

i : Finn ⊢ f (rv(rv i))) = f (i)

⇓ LHS rewritten by ∀i. rv(rv i) = i

i : Finn ⊢ f (i) = f (i)

True

Instead of the typical inductive proof, we have a simple proof which requires unfolding of defi-

nitions and rewriting with a single lemma. As with 2, properties of list manipulators are again

transformed into arithmetic assertions, but this time involving Fin. Ultimately, proofs of these

assertions may require inductive proofs — a proof that rv is also involutive is required above —

but, as shall be seen in the sequel, one can develop tactics and libraries to support arithmetic on

Fin.

By comparison, this theorem could not be proved in [24] due to their use of −̇ (i.e cut-off

subtraction) to define rev. Note that −̇ is a piecewise-linear function (see Chapter 5), and its

definition is as follows:

n−̇m =

{

n−m if m < n

0 otherwise.
(3.8)

Observe that (n−̇(n−̇ i−̇1)−̇1 6= i, for all n, i : N); hence, strictly speaking, the definition of

reverse in [24] was wrong. In [88], Prince defined this function using integers and was therefore

able to prove this theorem. However, as mentioned earlier, his formalisation, like that of [24],

did not address the fundamental issues identified in §1.1.7.

Appending lists

Let us now consider a theorem about the distributivity of reverse over append:

∀l, m : list(X). rev(l)++ rev(m) = rev(m++ l).

Using ⊡ we can state this theorem as:

⊢ rev(⊡(n, f))++ rev(⊡(m, g)) = rev(⊡(m, g)++⊡(n, f)).

The Theory of Containers 35

In order to complete the proof using ⊡, we will require the following lemma about rv and fcase:

f : Finn→ X g : Finm→ X

i : Fin(n+m) j : Fin(m+n)

h : i
jm
== j

fcase(λ i. f (rv i))(λ j. g(rv j))(i) = (fcaseg f)(rv j)
(3.9)

The proof is as follows:

⊢ rev(⊡(n, f))++ rev(⊡(m, g)) = rev(⊡(m, g)++⊡(n, f))

⇓ apply rule (3.6)

⊢ n+m = m+n ∧ fcase(λ i. f (rv i))(λ j. g(rv j))
jm
== (λ i. fcaseg f (rv i))

⇓ commutativity of +

⊢ fcase(λ i. f (rv i))(λ j. g(rv j))
jm
== λ i. (fcaseg f)(rv i)

⇓ dependent extensionality

h : i
jm
== j ⊢ fcase(λ i. f (rv i))(λ j. g(rv j))(i) = (fcaseg f)(rv j)

⇓ RHS rewritten by using Lemma 3.9

True

Again, we have a simple proof which only required an application of (3.6), commutativity of

+ and Lemma 3.9. The proof of Lemma 3.9 itself is also non-inductive, only requiring case

analysis on i and j via the finsplit view and a few congruence results about finl and finr. The

latter results, however, require inductive proofs.

Reasoning with Flatten

Once again, since ⊡ formalisations correspond to actual lists, we are able to represent and

reason about functions like flatten. Recall that such functions were problematic in [24, 88].

Before we define the flatten function, let us look at how list of lists are represented using ⊡.

If we let (n, f) denote PList(PList(X)), we observe that each f (i) represents a PList structure.

Hence f has type Fin n→ (∑m. (Fin m→ X)). So in order to define flatten using ⊡, we must

first add the lengths of all n input lists to get the length of the output using the sumn function

(c.f. listing (4) on p.27). Correspondingly, we need to assign elements in the output for each

i : Fin(sumnn(fst ◦ f)). Hence the ⊡ definition of flatten is given as:

flatten ⊡ (n, f) = ⊡(λ i. fsumm(fst ◦ f) i),

where fsumm is defined as follows:

fsummn : Fin(sumnn (fst ◦ f))→ X

fsummn (i, k) 7→ (snd ◦ f (i)) k.

The Theory of Containers 36

Here we decompose i : Fin(sumnn(fst◦ f)) using the finSumm view, which delivers an i : Finn

along with a k : Fin((fst◦ f) i). Applying (snd◦(gi)) to k subsequently assigns objects of type X

as we require. Proofs involving flatten subsequently follow in a similar manner as seen before.

3.2 Containers

We see form the previous section that the key to addressing the limitations of the ellipsis tech-

nique is to move to a dependently typed setting. The subsequent ⊡ formalisation obtained was

significantly more effective than 2 at systematically capturing the inductions underlying prop-

erties of list-manipulating functions. While this bodes well for representations like ⊡, it does

not give us a theoretical framework underpinning such representations.

It turns out that the representation of lists via ⊡ is precisely the representation for lists we

get within the theory of containers. Containers capture the idea that concrete datatypes can

be characterised by considering the shape values take and for each possible shape, explaining

where corresponding data, or positions for the data, are stored.

Definition 3.1. Container. A container (S⊳P) consists of a type of shape S and, for each shape

s : S, a type of positions P s.

Notice that the type P is a dependent type, mapping shapes to data (or ‘payload’), and the

structure (S ⊳P) is a sigma type. We may equivalently write (S ⊳P) in pointwise notation

(s : S ⊳P(s)), especially if we need to be explicit about the patterns which shapes can match. In

general, one can estimate shapes for a given data type by setting the ‘payload’ type to one that

carries no data; for instance list 1I is isomorphic to N, where 1I represents the unit type. Positions

are generally regarded as paths through the shape to the payload in question: a position in the

list container explains how many holes to skip before reaching the data in question.

One can often gain simplicity or clarity by describing a container (S ⊳ P) with the aid of

a triangle diagram which schematically represents a (S ⊳ P) structure. Figure 3.1 represents

such a triangle diagram for the container (S ⊳ P). A typical shape lie inside the apex, while the

associated positions are along the base. The arrow indicates that P points to data in a structure

of shape S.

Z
Z

Z
Z

Z

�
�

�
�

�

s : S Ps

(S ⊳P)

-

FIGURE 3.1: Typical triangle diagram of a container (S ⊳P).

The Theory of Containers 37

Coq’s record type provides a shorthand notation for an inductive type with one constructor:

every field in a record type can depend on values in the preceding field and field names can act

as projection functions. As such, one can represent sigma types using records. We found the

use of records produces formalisations (and proofs) that are less cumbersome, in comparison to

the sigma types implemented in Coq’s standard library. Hence we formalised containers using

records instead of sigma types:

Record UCont : Type := ucont{S : Set; P : S→ Set}.

Example 3.1. the datatype list (τ) can be uniquely represented by a natural number n denoting

its length, together with a function Fin n→ τ which assigns to each position within the list, an

element of τ:

Definition list := ucont N Fin (3.10)

We often leave the shape set to be inferred and write

Definition list := ucont Fin

instead.

The triangle diagram for the list container is given below:

Z
Z

Z
Z

Z

�
�

�
�

�

n : N Finn

(N⊳Fin)

-

Container Semantics

The datatype represented by a container has as values, a shape and a function assigning data to

each position of that shape. This is called the extension of a container.

Definition 3.2. Extension of a Container. Let (S⊳P) be a container. Its extension is the functor

T(S⊳P) : Set→ Set defined by:

T(S⊳P)X , ∑s : S.P(s)→ X .

It is not difficult to show that T is functorial. An element of T(S⊳P)X is thus a pair (s, f),

where s represents a choice of shape and f , a function assigning an element of X to every

position in a value of that shape. For instance, the extension of the list container T(N⊳Fin)X is

The Theory of Containers 38

given by a choice of a length n and a function from Fin → X :

T(N⊳Fin) X = ∑n. (Fin n→ X).

Observe that T(N⊳Fin)X corresponds exactly to PList X we saw in §3.1. This confirms that the

theory of containers is what justifies the ⊡ representation for lists.

Construction of elements in the extension of a container can also be clarified with recourse

to triangle diagrams: data to which a typical position is mapped is now given beside the position

itself:

Z
Z

Z
Z

Z

�
�

�
�

�

n : N p 7→ x : Xsf

T(S⊳P) X

3.2.1 Container Morphisms

Using the notion of data types as containers, it is possible to represent natural transformations

(also called polymorphic functions in functional programming) between containers in a concise

and intuitive way. For instance, consider reverse on a list (n, f). Assume that rev(n, f) = (n′, f ′).

Since rev does not change the shape of the list, n = n′. For the positions, we observe that the

data stored at the ith position of the output is the data stored at the (n− i−1)th position from the

input. More generally, a polymorphic function between containers consists of a covariant map

between shapes and a contravariant mapping between positions.

Definition 3.3. Container Morphism. Given (S ⊳ P) and (S′ ⊳ P′), the morphism (S ⊳ P)→

(S′ ⊳P′) consists of a pair (u, f), where:

u : S→ S′ and f : ∏s : S.P′ (u s)→ Ps.

Record cmr (C D : Container):Type :=

ucmr {u : s C -> s D; f : forall a : s C, p D (u a) -> p C a}.

We will sometimes refer to u as the shape map, and to f as the position or reindexing map.

The polymorphic function represented by the container morphisms cmr C D is defined via the

function mmap:

Definition mmap (cm : cmr C D) X (cx : Ext C X) : Ext D X :=

match cx with

| uext n g => uext (u cm n) (comp g (f cm n))

end.

(3.11)

The Theory of Containers 39

Z
Z

Z
Z

Z

�
�

�
�

�

Z
Z

Z
Z

Z

�
�

�
�

�

6

s

s

?

pgs 7→ x

fsucmru f

qus

FIGURE 3.2: Typical triangle diagram depicting a container morphism (u, f) : (S⊳P)→ (A⊳B).

Triangle diagrams can also be used to clarify container morphisms. Figure 3.2 represents

the container morphism (u, f) : (S ⊳P)→ (A⊳B). A shape s in the input is mapped to us in the

output, while a position q in the output is mapped to a position p in the input.

Example 3.2. idm : (S⊳P)→ (S⊳P) is the identity morphism which is defined by (λ s.s, λ s.λ p. p).

Definition crev : cmr Lst Lst :=

ucmr (id (s Lst)) (fun n => fun fn: Fin n => fn).

Example 3.3. crev : (n : N ⊳ Finn)→ (n : N ⊳ Finn) is the representation of reverse as a con-

tainer morphism. It is given by the identity on shapes and the map rv on positions.

Definition crev : cmr Lst Lst :=

ucmr (id (s Lst)) (fun n: s Lst => fun fn: Fin n => rv fn).

Note that the map on positions is defined contravariantly. The reason this is necessary can

be intuitively understood by considering that we can define morphisms where data in the input

are copied in the output, or simply disappear. Hence, it is always possible to show where data in

the output come from but not where data from the input go to.

Example 3.4. The tail function is given by the container morphism

(u, f) : (N⊳Fin)→ (1+N⊳{inl(∗) 7→ 0 | inr(n) 7→ Finn})

defined by

u(0) = inl(∗) u(1+n) = inr(n)

and with f0 =! and fn+1 : Finn→ Fin(n+1) defined by fn+1i = 1+ i. This can be visualised as

/.-,()*+x0 /.-,()*+x1 /.-,()*+x2 7→ /.-,()*+x1 /.-,()*+x2,hh �uu

The Theory of Containers 40

Example 3.5. The function double which replicates a list is given by the container morphism

(u, f) : (N⊳Fin)→ (N⊳Fin), where un = n+n and

fn : Fin(n+n)→ Finn

fn (finl i) 7→ i

fn (finr i) 7→ i.

Definition 3.4 (Cartesian Morphism [1–3]). A cartesian morphism is a container morphism

whose action on positions is a family of isomorphisms. That is, given the category of container

morphisms C, we define the category (of cartesian morphisms) C⊸ with objects from C and if

(S ⊳P) and (A⊳B) are objects in C⊸, a morphism (u, f) : (S ⊳P)→ (A⊳B) is given by:

(u, f) : ∑u : S→ A. ∏s : S. B(us)≃ Ps.

Example 3.6. The container morphism crev is cartesian.

Note the container morphisms for the tail and double functions are not cartesian since the

positions sets are not isomorphic — Finn≃/ Fin(Sn)≃/ Fin(n+n).

3.2.2 Constructing Containers

Containers are closed under various type forming operations like sums, products, least fixed

point and greatest fixed point [1–3]. In the following we stress the constructions which are

pertinent to this thesis: products, sums and compositions.

Definition 3.5. Products (S ⊳ P)× (S′ ⊳ P′) is the container (A ⊳ B), where A = S× S′ and for

each s : S and s′ : S′, B : S×S′→ Set is defined as B(s,s′) = Ps + P′ s′.

Definition cont prod (C D: Ucontainer) :=

ucont (fun q : (s C) * (s D) => (p C (fst q)) + (p D (snd q))).

For the sum (S ⊳ P)+ (S′ ⊳ P′), the shapes are given by S +S′. For the positions: if our shape is

of the form inl(s) then it is given by Ps and, alternatively, if it is of the form inr(s′) then it is

given by P′ s′.

Definition 3.6. Sums. (S ⊳P)+(S′ ⊳P′) is the container (A⊳B), where A = S +S′ and for s : S

and s′ : S′, B (inl(s)) = Ps and B (inr(s′)) = P′ s′.

Definition sum f g (H: S1 + S2):=

match H with

| inl a => f a

| inr b => g b

end.

Definition cont sum (C D: Ucontainer) := ucont (sum (p C) (p D)).

The Theory of Containers 41

When it comes to list(list(X)), we will need to represent this datatype as a container. The

principled way to do this is to observe that list(list(X)) is the composite (list ◦ list)X . This

composition of functors can be reflected via composition of containers.

Definition 3.7. Composing Containers. Let (S⊳P) and (S′ ⊳P′) be containers, the composition

(S ⊳P)◦ (S′ ⊳P′) is the container
(
(s, f) : T(S⊳P)S

′ ⊳∑ i : Ps.P′(f i)
)
.

Record CPos (C D : Ucontainer) (a : Ext C (s D)) : Set :=

cpos {cs : p C (u a); cp : p D ((f a) cs)}.

Definition cComp (C D : Ucontainer) : Ucontainer :=

ucont (fun a : Ext C (s D) => CPos D a).

The shape of the composition must determine the outer shape together with the inner shape for

each outer position. We can therefore take it to be a (S ⊳ P) structure holding S′ elements. A

composite position first locates an inner (S′⊳P′) structure at an outer position, then an individual

element within it.

Example 3.7. Nested lists list(list X) can be represented by the composite of the container

(N⊳Fin) with itself. Its shape is given by

list (N) = T(N⊳Fin)N , Σn : N.Fin n→ N,

and it’s positions by P : list (N)→ Set which is defined by

P (n, f) = Σi : Finn.Fin(f i).

3.2.3 Constructing Container Morphisms

In general, all constructions on containers extend to container morphisms. Additionally, we can

construct new morphisms via application and composition.

Definition 3.8. Applying a Container Morphism. Given the container morphism

(u, f) : (S ⊳P)→ (S′ ⊳P′)

and a container (A⊳B), the application 〈(u, f) (A⊳B)〉 is the container morphism

〈(v,g) (A⊳B)〉 : (S ⊳P)◦ (A⊳B)→ (S′ ⊳P′)◦ (A⊳B), where

v : T(S⊳P)A→ T(S′⊳P′)A

v (s,h) 7→ (us,h◦ fs)

g : ∏(s,h) : T(S⊳P)A. ∑ i : P′(u,s). B((h◦ fs)i)→ ∑ j : Ps. B(h j)

g (s,h) (i,ba) 7→ (fs i, ba)

We formalise this construction as:

The Theory of Containers 42

Definition ap mor (cd: cmr C D) E: cmr(cComp C E)(cComp D E) :=

let smap : s (cComp C E)-> s (cComp D E) :=

(fun a: s (cComp C E) =>

uext D (v (cd)(u a))(comp (g (cd) (u a)) (f a))) in

ucmr smap (fun a: s (cComp C E) =>

fun pb : p (cComp D E) (smap a)=>

cpos E a (g (cd) (u a) (cs pb)) (cp pb)).

We can also represent the composition of functions by constructing the composite of con-

tainer morphisms.

Definition 3.9. Composing Container Morphisms. Given container morphisms

(u1, f1) : (S ⊳P)→ (S′ ⊳P′) and (u2, f2) : (S′ ⊳P′)→ (S′′ ⊳P′′),

their composite is the container morphism (u, f) : (S ⊳P)→ (S′′ ⊳P′′) defined by u s = u2 (u1 s)

and f s p = f1 s (f2 (u1 s) p). This is implemented as:

Definition m comp (cd : cmr C D) (de : cmr D E): cmr C E :=

match cd with

| ucmr v0 g0 =>

match de with

| ucmr v1 g1 =>

ucmr (comp v0 v1) (fun (sc : s C) (pe : p E (comp v0 v1 sc)) =>

comp (g1 (v0 sc)) (g0 sc) pe)

end

end.

3.2.3.1 Morphisms Given by Fold

We conclude this section by considering the construction of container morphisms using the

fold operator for lists. In functional programming, the fold operator (also known as foldr) is a

standard recursion operator which encapsulates a common pattern of recursion for processing

datatypes. The fold operator has its origins in recursion theory [64], while the use of fold as a

central concept in a programming language dates back to the reduction operator of APL [55], and

later to the insertion operator of FP [8]. Our construction is based on the categorical treatment

of fold as in [73, 79], which we shall briefly review as a precursor to our construction.

Initial Algebra Semantics

Given a fixed category C and functor f : C→ C on this category, an algebra is a pair (A, f)

comprising of an object A along with an arrow f : F A→ A. A homomorphism h : (A, f)→

The Theory of Containers 43

(B,g) between two algebras is an arrow h : A→ B such that the following diagram commutes

F A
F h //

f

��

F B

g

��
A

h
// B

An initial algebra is an initial object in the category with algebras as objects and homomor-

phisms as arrows.3 We write (µF, in) for an initial algebra and fold f for the unique homomor-

phism h : (µF, in)→ (A, f). That is, fold f is defined as the unique arrow which makes the

following diagram commutes:

F (µ F)
F (f old f)

//

in

��

F A

f

��
µ F

f old f
//____ A

As an example, suppose we have a set X and we define a functor F : Set→ Set by F A =

1I +(X×A). Then the functor F has an initial algebra (µF, in) = (list(X), [[], cons]), where

list(X) is the set of all finite lists with elements drawn from X , while [] : 1I→ list(X) and

cons : X × list(X)→ list(X) are constructors for this set. Given any other set B and functions

i : 1I→ A and j : X ×B→ B, the function fold [i, j] : list(X)→ B in uniquely defined by the

following two equations:

fold [i, j]◦ [] 7→ i

fold [i, j]◦ cons 7→ j ◦ (idX × fold [i, j]).

That is, fold [i, j] processes a list by replacing the [] constructor at the end of the list with the

function i, and each cons constructor within the list by the function j. For instance, the function

len : list(X)→ N, which returns the length of a list, can be defined by len = fold[zero, Sucx],

where zero : 1I→ N and Sucx : X ×N→ N are given by zero () 7→ 0 and Sucx (,n) 7→ 1 + n

respectively.

The container morphisms representing [] and cons can be defined using the constant and

identity containers (1I⊳0) and (1I⊳1I), respectively.

Definition 3.10. Given the containers (S ⊳P) and (A⊳B) and the container morphisms

(u0, f0) : (S ⊳P)→ (N⊳Fin)

(u1, f1) : ((s, (), n) : S×1I×N⊳Ps + 1I + Finn)→ (N⊳Fin)

the container–fold over the lists is the morphism

(u, f) : ∑S×N→ A. ∏(s, n) : S×N. B(u (s, n))→ P s + Fin n,

3Composition and identity are inherited from C.

The Theory of Containers 44

where u is given by

u s 0 7→ u0 s

u s (Sn) 7→ u1 s (u s n)

and f is defined below. The complete Coq formalisation is shown in Listing 6.

f(s,0) h 7→ inl (f0 s h)

f(s,(Sn)) h 7→ case (f1 (s,(u s n))h) o f

inl x 7→ inl x

inr (inl) 7→ inr f zn

inr b 7→ case (f (s,n)b) o f

inl p 7→ inl p

inr q 7→ inr (fs q).

3.3 Containers for other Datatypes

So far, the examples we have given only involve lists. The theory of container allows us to model

a far greater number of types besides lists. In particular, any data type that is strictly positive

can be represented using Containers [1–3]. In this section, we will briefly review other, general

notions of containers and give pointers to literature where further details can be found.

3.3.1 Strictly Positive Types

Strictly positive types are closely related to the algebraic data types used in functional languages

like Coq. For instance, the examples below are all strictly positive.

Inductive nat : Set :=

| O : nat

| S : nat -> nat.

Inductive list A : Type :=

| nil : list

| cons : A -> list -> list.

Inductive tree A : Type :=

| leaf : A -> tree A

| node : tree A -> tree A -> tree A.

Inductive rosetree A : Type :=

| spine : A -> list (rosetree A) -> rosetree A.

The Theory of Containers 45

Listing 6 Original formalisation of fold for list in terms of container morphisms.

Section Folds.

Section foldmaps.

Variables (C A : Type) (u0 : C -> A) (u1 : (C * unit * A) -> A)

(P1 : A -> Type) (P : C -> Type)

(f0 : forall c, P1 (u0 c) -> P c)

(f1 : forall c x a, P1 (u1 (c, x, a)) -> P c + unit + P1 a).

(*The shape map*)

Fixpoint fld s n : A :=

match n with

| O => u0 s

| S n’ => u1 (s , tt, (fld s n’))

end.

(*The position map*)

Fixpoint fldp s n : P1 (fld s n) -> P s + Fin n :=

match n as e return (P1 (fld s e) -> P s + Fin e) with

| 0 => fun i => inl _ (f0 i)

| S m => fun i => match f1 i with

| inl (inl q) => inl _ q

| inl (inr _) => inr _ (fz m)

| inr q =>

match fldp _ _ q with

| inl p0 => inl _ p0

| inr a => inr _ (fs a)

end

end

end.

End foldmaps.

(*Definition of fold*)

Variables (C A : Ucontainer)

(a : cmr C A)

(F : cmr ((cont_prod C Un_cont) <x> A) A).

Definition cfold : cmr (cont_prod C (ucont Fin)) A :=

uCmr (cont_prod C (ucont Fin)) A

(fun (x : s C * nat) => fld (v a) (v F) (fst x) (snd x))

(fun (x : s C * nat) => fldp (v a) (v F) (p A) (p C) (g a)

(fun c x a => g F (c, x ,a)) (fst x) (snd x)).

End Folds.

The Theory of Containers 46

Algebraic data types, however, subsume strictly positive types, since they include both non-

strict positive as well as negative data definitions. For instance, the datatypes T and S below are

negative and non-strict positive, respectively, but are not strictly positive since the type being

defined appear to the left of an arrow in its own definition.

Inductive T : Type := | d : (T -> Bool) -> T.

Inductive S : Type := | c : ((S -> Bool) -> Bool) -> S.

Data type definitions such as these can lead to non-termination, and generally do not have a

sound induction principle.

Strictly positive types (SPTs) can be introduced by way of the generative grammar:

τ := X | O | 1I | τ + τ |τ × τ | K→ τ | µX.τ

where X ranges over type variables, O and 1I represent the empty type and unit types, the opera-

tors + and × stand for disjoint sum and cartesian product, K is a constant type (an SPT with no

free variables) and hence K→ is exponentiation by that constant. Finally, the least fixed point

operator µ creates recursive types by building a type variable. For instance, the examples above

can be encoded using this grammar as follows:

nat = µX .1I + X

list A = µX .1I + (A × X)

tree A = µX .A+(X × X)

rosetree A = µY.A × list Y = µY.A × (µX .1I + (Y × X))

(3.12)

Remark 3.11 (Calculating shapes). We mentioned earlier that we can calculate the shape of an

arbitrary data type by setting the ‘payload’ type to one that contains no data. Such calculations

become clear when we consider the data type encodings given in (3.12). For instance, it is

easy to see that list1I is isomorphic to nat. Similarly, we can calculate the underlying shape

•
��

��
� ??
?

•
��

� ??
? /.-,()*+x3/.-,()*+x1 /.-,()*+x2

∼=

•
��

��
�

??
??

•
��

�� ??
?? ���������������� �������� x1

x2

x3_^]\XYZ[X
� 66�

88
� ;;

FIGURE 3.3: Reassignment of data in binary trees using containers.

of a binary tree by considering tree1I. The resulting shape is a tree with no data, while the

position map corresponds to a function mapping the positions in this shape to the data. These

constructions are given in listing 7, while Figure 3.3 gives a visual interpretation of them.

The Theory of Containers 47

Listing 7 The shape and position map for binary trees.

Inductive cTreeS : Set :=

| sleaf : cTreeS

| snode : cTreeS -> cTreeS -> cTreeS.

Inductive cTreeP : cTreeS -> Set :=

| phere : cTreeP sleaf

| pleft : forall l r, cTreeP l -> cTreeP (snode l r)

| pright : forall l r, cTreeP r -> cTreeP (snode l r).

3.3.2 Beyond Unary Containers

The containers we have seen so far have only one position set. Such containers are termed unary

containers. Unary containers are not closed under formation of fixed points, since there must be

some distinction between those positions that are recursive and those which are not.

n-ary Containers

In order to interpret the strictly positive types as containers, a more general notion of container

is required.

Definition 3.12 (n-ary Containers [1–3]). A n-ary container consists of a type of shape S and n

families of position sets.

Record NCont (n : nat) : Type :=

ncont { s : Type; p : Fin n -> sC -> Type }.

Observe that a unary container is a n-ary container with n = 1. Morris et. al. [5, 81] used

this notion of container to provide a semantic view of strictly positive types and to define certain

generic programs over them. Among the generic programs they were interested in were equality

and map. However, when it came to equality, it was necessary to restrict the the strictly positive

types by removing the→ constructor, due to the possibility of infinite branching. The resulting

class of types is called context-free types (CFTs), in allusion to their relation to context-free

grammars used to define formal computer languages. Subsequently, containers corresponding

to CFTs are called small containers.

Definition 3.13 (Small Container [5, 81]). A small container is a (n-ary) container augmented

with a decidable equality on its set of shapes, and for which each set of positions is finite.

Record SCont n : Type :=

scont { s : Set; sEq : forall (x y : sC), {x = y}+{x <> y};

p : Fin n -> sC -> nat }.

Owing to the presence of the decision procedure for shapes, small containers are sometimes

termed decidable containers.

The Theory of Containers 48

Indexed Containers

In [5, 81] generic programs we also written for families (or inductive families [39]) of strictly

positive (and context-free) types. Families allow types to be indexed by data, and constructors

can target specific instances on the indices.4 In order to interpret strictly positive families as

containers, an even more general notion of container was required, namely that of an indexed

container [81, 82], defined as ICont below.

Record ICont (F : Fin n -> Type) (O : Type) :=

{iS : Type; iP : Fin n -> iS -> Type;

si : forall (i : Fin n) (s : iS), iP i s -> F i}.

The same intuition as unary containers is followed with indexed containers, but the container

is now indexed by some set O which influences the set of shapes. It is also required that data

stored in an indexed container are elements of a family of types indexed by some type F, so each

position set is associated with some type F which indexes the data stored at those positions (see

[81, 82] for more details).

3.4 Summary

Re-implementing the ellipsis technique in a dependently typed setting gives rise to a representa-

tion which is isomorphic to lists. This new formalisation turns out to be exactly what is derived

from representing lists using containers. This, therefore, endorses containers as a candidate the-

ory in which to justify the ellipsis formalism. Moreover, representing data types as containers

enables us to represent polymorphic functions as container morphisms, which, in the case of

lists, endorses explicit arithmetic manipulation.

4 An example of a family is the finite types defined in §2.2.1.

Chapter 4

Reasoning with Containers

We saw in the previous chapter that the theory of containers admits a pair representation which

addresses the limitations of the ellipsis technique mentioned in §1.1.7. We also saw that we can

represent polymorphic functions between container types intuitively and concisely as container

morphisms, via the interpretation function mmap. This representation is important to us as it sug-

gests a new way to represent and reason about data types. For instance, it enables us to capture

carefully crafted inductions, necessary for proofs about recursively defined functions on lists,

systematically and schematically, reducing them to unremarkable arithmetic facts. Moreover, as

shall be seen in the sequel, it also gives us far more flexibility when working with the under-

lying arithmetic of these inductions than was afforded Bundy and Richardson with the ellipsis

technique [24].

In this chapter, we shall exploit this representation provided by container morphisms to de-

velop a reasoning system for polymorphic functions. In so doing, we move from a traditional

setting, like in [24] where data types are primitive and function definitions between them are

regarded as rewrite rules, to a more generalised setting where the functions themselves are prim-

itive. Note, however, that the interpretation function mmap alone is not sufficient for making this

step, as it does not provide any guarantee that the polymorphic function T(S⊳P)X → T(S′⊳P′)X is

uniquely defined by the container morphism (u, f) : (S⊳P)→ (S′ ⊳P′). The key to our approach

comes from the representation theorem for containers, which provides this guarantee. We shall

discuss this in §4.1. In §4.2 we introduce our container-based reasoning system by way of a se-

ries of examples. The container proofs we present can all be automated, and we discuss tactics

for this in §4.3. We then discuss our work in relation to others in §4.4.

4.1 Representation Theorem

Just as the representation for lists in the theory of containers corresponds to inductively defined

lists, it turns out that container morphisms are similarly representative of polymorphic func-

tions. The key theorem is the following which ensures that the syntax for defining polymorphic

49

Reasoning with Containers 50

functions as container morphisms is flexible enough to cover all polymorphic functions.

Theorem 4.1 (Representation [1–3]). Container morphisms (S ⊳ P)→ (S ⊳ P) are in bijection

with natural transformations T(S⊳P)→ T(S′⊳P′).

This ensures that by reasoning about container morphisms, we reason about polymorphic

functions. Hence, we can prove two polymorphic functions are equal (i.e. have the same com-

putational result) by proving that their representations as container morphisms are equal — i.e.

both their maps on shapes and positions have the same computational result.

4.1.1 Formalisation

Categorically, Theorem 4.1 corresponds to the Yoneda Lemma for containers and implies that

the functor T : Cont→ [Set;Set] defines a full and faithful embedding of the category of con-

tainers into the category of endofunctors over Set. For a categorical proof see [1–3]. We now

discuss our formalisation of Theorem 4.1, which corresponds to the proof in [1–3].

Given a natural transformation nt : ∀X . T(S⊳P)X→ T(A⊳B)X , we lift nt to a container morphism

(S ⊳P)→ (A⊳B) via the function nt2mor below:

Definition nt2mor C D (nt: forall X:Set, Ext C X -> Ext D X) :=

let m (b:s C): Ext D (p C b) :=

nt (p C b) (uext b (fun q: p C b => q)) in

let v’ := fun z: s C => u (m z) in

uCmr v’ (fun w: s C => fun a: p D (v’ w) => f (m w) a).

(4.1)

That is, given (S ⊳ P) and (A ⊳ B) we define m : ∀(b : S). T(A⊳B)(Bb) as λ b. nt (Pb) (b, id(Pb)).

This then enables us to construct the morphism(S⊳P)→ (A⊳B), whose shape and position maps

are given by v′ and g below:

v′ : S→ A

v′ a 7→ u(ma)

h : ∀a : S. B(v′ a)→ Pa

h a pa 7→ f (ma) pa.

The next step is to show that this construction is inverse to the function mmap — i.e. given (S⊳P)

and (A⊳B), we need to show:

(i)
(u, f) : (S ⊳P)→ (A⊳B)

nt2mor(mmap(u, f))) = (u, f)
and (ii)

h : ∀X . T(S⊳P)X → T(A⊳B)X

mmap(nt2morh) = h
(4.2)

For (i) we require a notion of equality between container morphisms.

Reasoning with Containers 51

Equality of Container Morphisms

Recall that container morphisms (S ⊳P)→ (S′ ⊳P′) are dependent pairs: they inhabit the type

∑α : S→ S′. ∏s : S.P′(α s)→ P s.

To state their equality, we need to cope with two issues: heterogeneity and extensionality. The

first of these arises when we try to consider the components of container morphisms separately.

Their types are as follows:

u,u′ : S→ S′

f : ∏s : S. P′ (u s)→ Ps

f ′ : ∏s : S. P′ (u′ s)→ Ps

Note that the conventional Martin-Löf definition of equality within a given type prevents us

from asserting that f = f ′ because their types are considered distinct. The second issue is that

types such as u = u′ are only inhabited if u and u′ have the same implementation, but we need

to consider functions extensionally. We therefore define equality for container morphisms such

that each component takes equal inputs to equal outputs. Since the position components are

dependent functions,
jm
== provides the flexibility required:

Definition 4.2. Equality of Container Morphisms. Let (u, f), (u′, f ′) : (S ⊳P)→ (S′ ⊳P′).

∀s : S.us = u′ s

∀s : S.∀p : P(us).∀p′ : P(u′ s). p
jm
== p′→ f s p

jm
== f ′ s p′

(u, f) =mor (u′, f ′)

Inductive Eqmor (i j : cmr C D) : Prop :=

morq : (forall a : s C, u i a = u j a) ->

(forall (a : s C)(p0 : p D (u i a))(p1 : p D (u j a)),

JMeq p0 p1 -> f i a p0 = f j a p1) -> Eqmor i j.

For (ii), we also need to consider functions extensionally. Combining the Definition 4.2 with

(4.2), along with some trivial simplifications, leads to a simple proof that Theorem 4.1 actually

holds (see Listing 8).

Remark 4.3 (Calculating container representations). Note, it follows from Definition 4.1 that

given a polymorphic function, we can calculate its representation as a container morphism. For

instance, given h : ∀X . list X → list X we can calculate its container representative as follows:

Definition lfun2mor (h : forall X, list X -> list X) :=

ext mor (fun l => list to ext (h (ext to list l))),

where list to ext and ext to list correspond to (3.2) and (3.3) on p.32, respectively. Given

l : Ext Lst X, we apply h to (ext to list l), then list to ext to this result. Applying

Reasoning with Containers 52

Listing 8 Verification that the lifting function (4.1) is inverse to mmap.

Lemma ext_mor_mmap C D (cm : cmr C D) : Eqmor cm (ext_mor (mmap cm)).

Proof.

intros. destruct cm. unfold mmap; unfold ext_mor;

unfold comp; apply morq; simpl; trivial.

intros a p0 p1 H; rewrite (JMeq_eq H); trivial.

Qed.

Lemma mmap_ext_mor C D:

forall (nt: forall X:Set, Ext C X -> Ext D X),

forall (X : Set) (u0 : s C) (f0 : p C u0 -> X),

mmap (ext_mor nt) (X := p C u0) (uext u0 (fun q : p C u0 => q)) =

nt (p C u0) (uext u0 (fun q : p C u0 => q)).

Proof.

unfold ext_mor; unfold mmap; simpl; unfold comp.

intros. destruct (nt (p C u0) (uext u0 (fun q : p C u0 => q))); simpl.

replace (fun a : p D u1 => f1 a) with f1; trivial.

exact (extensionality f1 (fun a => f1 a) (fun a => refl_equal (f1 a))).

Qed.

ext mor to the output now returns a container morphism (N ⊳ Fin)→ (N ⊳ Fin) which corre-

sponds to h.

4.2 A Container-based Reasoning System

Equipped with Theorem 4.1 and the elimination rule given by Definition 4.2, we can safely

proceed to give container based proofs of list-theoretic results. For instance, we can formalise

the theorem about rev being an involution in our container system as:1

Theorem crev crev sm : Eqmor (m comp crev crev) (idm Lst). (4.3)

Unpacking the definitions, our proofs obligations are to show:

1. ∀n : N.n = n for shapes and,

2. ∀n : N.∀i : Finn. rv(rv i) = i for positions.

We shall sometimes refer to proofs of theorems formalised like (4.3) as container proof.2 In

this way, formalising list theoretic functions as container morphisms reduces properties of list

manipulators into arithmetic assertions. Often, these assertions correspond to well-known arith-

metic facts, which we can then regard as rewrite rules. For instance, if we already have the

1 For brevity, we write Lst as a shorthand for (ucont Fin).
2Observe that the proof obligations in 1 and 2 correspond to what we get by applying rule (3.6) to (3.7) using the

⊡ formalisation in §3.1.2.

Reasoning with Containers 53

proof

eq rv : ∀i : Finn. rv(rv i) = i,

the container proof of (4.3) coincides with a simple equational proof, involving a single rewrite

using eq rv and reflexivity.

Since list theoretic functions are now stated using arithmetic, it also paves the way for ap-

plications of arithmetic decision procedures to resolve proof obligations like 1 and 2 above.

However, such methods are not immediately amenable to obligations like 2, since these are

generally given in terms of families of functions, and are stated using dependent types.

We shall explore this potential for applications of arithmetic decision procedures to container

proofs in more detail in in Chapter 6. In the rest of this section, we shall investigate the current

container representation in more detail, exploring how it can be applied to other polymorphic

functions, as well to other data types besides lists.

4.2.1 Proving Theorems about lists

Appending lists

Let us define ++ as a container morphism:

cappend : ((n,m) : N×N⊳Finn+Finm)→ (N⊳Fin).

The length of the output should be the sum of the lengths of the inputs, so it is clear what to do

for shapes:

u : N×N→ N

ucappend (n,m) 7→ n+m.

Now we need to map output positions in Fin(n+m) to input positions in Finn+Finm, reflecting

the sum structure of finite types. This is achieved via the function fcappend below:

fcappend : ∀(n,m) : N.Fin(n+m)→ Finn+Finm

fcappend ((n,m),finlnmi) 7→ inl i

fcappend ((n,m),finr nm j) 7→ inr j.

The definition of fcappend is straightforward: case analysis on i : Fin(n+m) using the finsplit

view will deliver the components required to give fcappend as specified above. The very same

view is exactly what we need in order to reason about cappend.

Example 4.1. Consider proving the lemma about the distributivity of reverse over append (see

(1.2) on p.4) using containers. This lemma is stated as:

Eqmor (m comp cappend (m comp (mor prod crev crev) (prod swap Lst Lst)))

(m comp crev cappend).

(4.4)

Reasoning with Containers 54

Here (m comp cappend (m comp (mor prod crev crev) (prod swap Lst Lst))) is the

container morphism corresponding to the LHS of (1.2), while (m comp crev cappend) cor-

responds to that for the RHS; mor prod and prod swap denote the product of container mor-

phisms
F : (S ⊳P)→ (A⊳B) G : (P⊳Q)→ (C ⊳D)

mor prod F G : (S ⊳P)× (P⊳Q)→ (A⊳B)× (C ⊳D)
(4.5)

and the isomorphism (S ⊳ P)× (A ⊳ B)→ (A ⊳ B)× (S ⊳ P), respectively.3 The implementations

for mor prod and prod swap are given in Listing 9.

Listing 9 Definitions of mor prod and prod swap.

Definition mor_prod (ab : cmr A B) (cd: cmr C D):

cmr (cont_prod A C) (cont_prod B D):=

let smap: s (cont_prod A C) -> s (cont_prod B D) :=

(fun a : s (cont_prod A C) => (v ab (fst a), v cd (snd a))) in

let pmap := (fun aa : s (cont_prod A C) =>

fun ps : p (cont_prod B D) (smap aa) =>

match ps with

| inl p0 => inl (p C (snd aa)) (g ab (fst aa) p0)

| inr p0 => inr (p A (fst aa)) (g cd (snd aa) p0)

end) in uCmr smap pmap.

Definition prod_swap C D :=

let smap := (fun cd : s C * s D => (snd cd, fst cd)) in

let pmap := (fun cd : s C * s D =>

fun ps : p (cont_prod D C) (smap cd) =>

match ps with

| inl d => inr (p C (fst cd)) d

| inr c => inl (p D (snd cd)) c

end) in uCmr smap pmap.

The proof of (4.4) is now trivial; it requires two equational lemmas:

1. One to prove the shape maps are equal — in this case rewriting with a lemma about the

commutativity of addition.

2. Another about equality between the reindexing maps, which is stated as

cdist apprev pos lemma in Listing 10.

The proof of cdist apprev pos lemma, in turn, requires two lemmas: fincase simpl and

finsum rev eq. The former is a denesting lemma equating nestings of the function

FinCase : ∀n m. Fin(n+m)→ Finn + Finm

3Note we require prod swap in order to reflect the action swapping after the application in the LHS of (1.2).

Without it (4.4) is not a theorem.

Reasoning with Containers 55

to a single definition involving FinCase, while the latter is an equality result about compositions

of rv and finsplit. The steps in the proofs of (4.4) and cdist apprev pos lemma are shown

in Listing 10. The container proof of (4.4) is also shown in Listing 10.

Listing 10 list of steps expressing the proof of (1.2) on p.4 using container morphisms, along

with the steps in the proof of the reindexing map cdist apprev pos lemma.

Theorem cdist_aprev :

Eqmor (m_comp cappend (m_comp (mor_prod crev crev) (prod_swap Lst Lst)))

(m_comp crev cappend).

Proof.

(*initialise, simplify prove the shape maps *)

simpl; unfold comp; unfold id.

apply morq; simpl; auto with arith.

(*prove the position maps *)

apply cdist_apprev_pos_lemma.

Qed.

Lemma cdist_apprev_pos_lemma:

forall (a : nat * nat) (p0 : Fin (snd a + fst a))

(p1 : Fin (fst a + snd a)), JMeq p0 p1 ->

match

match FinCase (snd a) (fst a) p0 with

| inl p2 => inl (Fin (fst a)) (rv p2)

| inr p2 => inr (Fin (snd a)) (rv p2)

end

with

| inl d => inr (Fin (fst a)) d

| inr c => inl (Fin (snd a)) c

end = FinCase (fst a) (snd a) (rv p1).

Proof.

intros a p0 p1 jm; destruct a.

unfold FinCase; simpl in * |- *.

rewrite (fincase_simpl n0 n p0).

rewrite (finsum_rev_eq (refl_equal (rv p1))

(finsplit n0 n p0) (finsplit n n0 (rv p1)) jm);

reflexivity.

Qed.

Flattening lists of lists

Where ++ concatenates two lists, flatten (see (1.14) on p.14) takes a list of lists, represented by

a container composition

cflatt : (((n, l) : T(N⊳Fin)N)⊳Σi : Finn.Fin (l i))→ (N⊳Fin).

Reasoning with Containers 56

For shapes, we must add the lengths of all n input lists, each given by the l function:

ucflatt : T(N⊳Fin)N→ N

ucflatt (0, l) 7→ 0

ucflatt (S n, l) 7→ l f z + ucflatt (n, l ◦ f s).

Correspondingly, we need a map on positions which reflects the summation structure of finite

types:

fcflatt : ∀(n, l) : T(N⊳Fin)N.Fin(∑
i:Finn

l i)→ Σi : Finn.Fin (l i).

Note that ucflatt is just the sumn function used in Listing 4 on p.27, while fcflatt is the generalised

version of fcappend above. Hence we define fcflatt using the finSumm view. Indeed, we require

the finSumm view in order to reason about flatten.

Example 4.2. Consider the following well-known theorem about flatten and ++:

∀l m. flatten(l ++m) = flatten l ++flattenm. (4.6)

Before we state this theorem in our container setting, we first observe the following:

1. We can state l ++ r for l r : list(list(τ)) as 〈cappend (N⊳Fin)〉 which has type

((N⊳Fin)× (N⊳Fin))◦ (N⊳Fin)→ (N⊳Fin)◦ (N⊳Fin).

2. The domains of (m comp cappend (mor prod cflatt cflatt)) and

m comp cflatt 〈cappend (N⊳Fin)〉 have types

((N⊳Fin)◦ (N⊳Fin))× ((N⊳Fin)◦ (N⊳Fin)) and ((N⊳Fin)× (N⊳Fin))◦ (N⊳Fin)

respectively; hence we cannot state their equality directly using Eqmor. But since the

above types are isomorphic, we can state the equality using the isomorphism:

((N⊳Fin)◦ (N⊳Fin))× ((N⊳Fin)◦ (N⊳Fin))→ (N⊳Fin)◦ (N⊳Fin)

((N⊳Fin)× (N⊳Fin))◦ (N⊳Fin)→ (N⊳Fin)◦ (N⊳Fin)

which we formalise as cComp prd iso.

We now represent (4.6) in our container system as:

Eqmor (m comp cappend (mor prod cflatt cflatt))

(m comp cflatt (cComp prd iso (ap mor cappend Lst))).
(4.7)

As before, the proof of (4.7) requires proofs about the shape and position maps. For the shapes,

we need to prove that
F : Finn→ N G : Finm→ N

sumn F +sumn G = sumn (fcase F G)
(4.8)

Reasoning with Containers 57

and, accordingly, we are required to show that the respective reindexing of positions over these

shapes is equal. The latter proof is nontrivial, requiring case analysis using both the finsplit

and finSumm views, along with rewriting methods and reasoning about inequalities involving

Fin. In this case, as shown in Listing 11, we combine these methods as a standalone tactic (see

§4.3).

Listing 11 Container proof of (4.6). The lemma sumn eq proves the equality (4.8), while the

proof about the reindexing maps is given by the tactic slvPositionmap.

Theorem cdist_apflatt:

Eqmor (m_comp cappend (mor_prod cflatt cflatt))

(m_comp cflatt (cComp_prd_iso (ap_mor cappend Lst))).

Proof.

apply morq; intros; simpl; unfold comp; simpl in *.

rewrite sumn_eq.

slvPositionmap.

Qed.

Remark 4.4. We note from the examples above that since fcappend and fcflatt are defined using

finsplit and finSumm views, respectively, proofs of theorems involving cappend and cflatt

uaually require these views. Correspondingly, theorems involving the container definition of rev

may require the finEmtp view in their proofs. Views, therefore, are central to container proofs,

even when proofs do not involve lists.

4.2.2 Reasoning about Binary Trees

We now give an example using binary trees in order to show that our container technique is

amenable to other data types besides lists. Consider defining the function

mirror : treeA→ treeA,

which reflects all the nodes in a binary trees about the leaves, as a container morphism. Since

the shape of the binary tree container is a tree with no data (see Listing 7 on p.47), the functional

definition of mirror will be reflected in the shape map:

Fixpoint mirrorS (x : cTreeS) :=

match x with

| sleaf => sleaf

| snode l r => snode (mirrorS r) (mirrorS l)

end.

Next we need a family of maps, sending output positions in cTreeP (mirrorS a) to input

positions in cTreeP a, for all a. This family is defined via the function cmirrP below:

Reasoning with Containers 58

Fixpoint cmirrP a : cTreeP (mirrorS a) -> cTreeP a :=

match a as c return (cTreeP (mirrorS c) -> cTreeP c) with

| sleaf => fun H : cTreeP sleaf => H

| snode a1 a2 => fun x : cTreeP (mirrorS (snode a1 a2)) =>

match snodeElim x with

| isl z => pright a1 (cmirrP z)

| isr z => pleft a2 (cmirrP z)

end

end.

If a : cTreeS is a sleaf, (cmirrP a) is just the identity function. If it is built from snode, we ob-

serve that cTreeP (mirrorS (snode a b)) has two inhabitants (c.f. Listing 7 on p.47). We

therefore require an eliminator to access these inhabitants so we can recursively apply cmirrP a

and get the required mappings. This eliminator is given by snodeElim; and its implementation

is shown in Listing 12. Finally, we combine mirrorS and cmirrP to define the container mor-

phism for mirror.

Definition cmirror := uCmr mirrorS cmirrP.

This should be an involution; hence we conjecture:

Lemma cmir inv : Eqmor (m comp cmirror cmirror) (idm ctree).

The proof subsequently follows in the manner we have seen before: we require proofs about

the equality of the shape and reindexing maps, respectively. In this case, the former requires

a straightforward inductive proof while the latter itself does not require induction, although a

required, intermediate result does. The high level proof is also shown in Listing 12.

4.3 Automation for Container Proofs

Since container proofs are generally equational programs, it is natural to augment a container

reasoning system with support for equational reasoning. In Coq, for instance, some machinery

for this is already built-in via tactics such as auto, eauto, and autorewrite, whose databases one

can extend with his own lemmas and theorems. But if we are to rely entirely on Coq’s built-in

tactics, we may not be able to do much more than rewrite using already proven lemmas.

We have seen in the prequel that container morphisms are usually specified in terms of op-

erations on inductive families, which often require non-standard eliminators. We have also seen

that the presence of these eliminators often indicates a need to perform case analysis on them

during proofs. So, if we are to automate container proofs, the ability to perform case analysis

using such eliminators automatically would be crucial. Once we decompose inductive families,

Reasoning with Containers 59

Listing 12 The definitions of an eliminator for cTreeP (snode x y) snodeElim, along with

a proof that mirror in an involution using containers.

Inductive SnodeElim x y : cTreeP (snode x y) -> Set :=

| isl : forall z : cTreeP x, SnodeElim (pleft y z)

| isr : forall z : cTreeP y, SnodeElim (pright x z).

Definition snodeElim x y (i : cTreeP (snode x y)) : SnodeElim i :=

match i in cTreeP t return match t return cTreeP t -> Set with

| sleaf => fun _ => unit

| _ => @SnodeElim _ _

end i with

| pleft _ _ t => isl _ t

| pright _ _ t => isr _ t

| _ => tt

end.

Theorem cmir_inv : Eqmor (m_comp cmirror1 cmirror1) (idm ctree).

Proof.

apply morq; simpl.

exact mirror1_inv .

apply mirPos_ok.

Qed.

there is usually a subsequent need for reasoning about contradictions and dependent inequalities;

hence such capabilities should also be among the features of an automated container prover.

4.3.1 The FSimpl tactic

As much of our work involves arithmetic on Fin, we have implemented a tactic FSimpl (Fin

Simplify), which solves a large number of arithmetic theorems involving Fin. We shall here give

a high level description of this tactic. A top-level tactic combines FSimpl with other simpler

methods to provide automatic container proofs. The FSimpl tactic applies the following steps

in sequence and repeats until no further progress is made:

Case splitting: To simplify statements built from dependent types, we identify terms to which

we can apply eliminators such as those described in §2.2.2. For example, if i : Fin(n+m),

appears among the assumptions, we decompose i using the finsplit view. In cases

where (i : Fin(S)) appear in the context, we generally decompose using finSN, except

for when the goal contains a term built from finEmtp (i.e. when there is a function

defined using it).

Contradictions: Case splitting sometimes results in assumptions which are inconsistent. In

such cases, these assumptions need to be discharged. For instance, if there are i j :

Fin(n + m) and H : i
jm
== j in the context, and we split both i and j using finsplit,

Reasoning with Containers 60

we may result with the following H : finlmi
jm
== finr n j, which is a contradiction. Some-

times the contradictions do not appear directly in the context, but may be provable from

the assumptions. In this case, the tactic will try to instantiate an available inconsistency

result and discharge the assumptions.

Use equational assumptions: Equational assumptions occur either via = or
jm
==, and are some-

times required as preconditions for certain lemmas or rewrite rules. Generally, if H : a
jm
==

b occur among the assumptions, and a and b share the same type, we attempt to rewrite

the goal by H, using the elimination rule for
jm
==, from left to right and, if no matches are

found, from right to left. If H is used to rewrite the goal, we discard H. Similarly for

H : a = b. If both H : a = b and H j : pb
jm
== pb, such that pa and pb do not share the

same type (a, b : N, pa : Fina and pb : Finb), we attempt rewriting using instantiations of

(2.5). Otherwise, no attempt is made to rewrite exclusively with H or H j.

Rewriting: As was seen earlier, some proof steps will require a straightforward rewriting using

some proven results. Such results will be used to rewrite the goal exhaustively.

Injectivity: Equational assumptions are simplified using knowledge that certain functions are

injective. For example, given H : embi = emb j, there is a proof

emb inj : ∀i j. embi = emb j→ i = j.

In this instance, we with instantiate emb inj with H, add i = j to the context and dis-

card H. The tactic then uses this new assumption as seen before. Note, in cases like

these, Coq’s injection tactic will not suffice since emb is a defined function and not the

constructor of a data type.

The FSimpl tactic is sufficient to solve the reindexing maps of all the container proofs for lists

discussed above, among others. For instance, the tactic slvPositionmap in the proof of (4.7)

is really a sub-tactic of FSimpl . Note, however, that it is not a decision procedure: it can only

apply known lemmas and eliminators (i.e. those which have been incorporated into the tactic).

4.4 Discussion

To our knowledge, we are the first to attempt a container-based reasoning system. The closest

work to ours, we are aware of, are the works in [24, 88] mentioned before. We indicated in

§1.1.7 that attempts were made in [24, 88] to prove properties of functions like

member : τ× list (τ)→ Bool.

Our approach was to utilise Theorem 4.1 and so deal with polymorphic functions; hence such

functions were considered. There were also some issues in [24] regarding proofs of properties

Reasoning with Containers 61

flatten(a++b) = flatten(a)++flatten(b)

rev(rev a) = a

rev(a++b) = rev(b)++ rev(a)

rev(flatten(a)) = flatten(map(rev,rev(a)))

(a++b)++ c = a++(b++ c).

tail(rev a) = rev(but last a)
head(rev a) = last a

FIGURE 4.1: Examples of properties of polymorphic functions

++, mainly to do with reasoning about inequalities and performing conditional rewriting. Some

of these were addressed in [88], but, as was mentioned earlier, this extended ellipsis technique

did not address the more fundamental issues identified in §1.1.7.

When the work in [24] was completed, the theory of containers was not yet developed, nor

had most of the the techniques we use to represent and reason about container morphisms (e.g.

views). It therefore seems that the limitations of the ellipsis technique were primarily due to

the existing state of the art. We believe that containers represent a fundamental improvement of

the elipsis technique, where the use of dependent types ensures that the representation of lists is

unique and, hence, many probems encountered with the latter did not arise: for instance, the use

of views makes reasoning about functions like ++ much easier than was the case even in [88].

Our container approach has proved significantly more effective than the ellipsis technique

at systematically capturing the inductions underlying properties of list-manipulating functions:

Figure 4.1 shows a selection of well-known theorems amenable to the former but not the latter.

4.5 Summary

We exploited the representation theorem for containers to develop a new approach to reasoning

about data types. While much of our work was concentrated on proofs about lists, we have also

demonstrated that our technique is amenable to other data types besides lists. Proving properties

of polymorphic functions via the container approach, however, is not necessarily trivial, and can

often entail use of sometimes nontrivial eliminators for inductive families in both definitions

and proofs. However, in the case of lists, this inductive family is that of finite types, hence all

of the proofs essentially involved arithmetic on this type. We have implemented a tactic which

simplifies such arithmetic reasoning and, subsequently, simplifies our container proofs.

Chapter 5

Piecewise-Linear Analysis

A consequence of the container representation presented in the previous chapter, is the possi-

bility it creates for reasoning about classes of polymorphic functions. One way to define such

a class is via the shape maps of their container morphisms. For instance, functions like rev and

Id have shape maps given by the identity, while ++ is given by addition — i.e. shape maps

which are linear. Consequently, one can consider developing decision procedures for classes of

polymorphic functions by studying properties of reindexing functions in relation to shape maps.

The latter is the subject of Chapter 6. In this chapter, we shall study functions which can char-

acterise shape maps of container morphisms. For reasons which will become clear later on (if

not already), we shall be primarily concerned with piecewise-linear functions.

Piecewise defined functions are ubiquitous in mathematics, starting from the Kronecker

Delta function, through characteristic functions for sets, on to functions such as signum and

floor. Such functions have been studied extensively in areas such as circuit theory and network

analysis [32, 33, 69]. An influential work in these fields is the canonical representation for

piecewise-linear functions presented by Chua and Kang [33]. Subsequent refinements to this

representation [32] have influenced corresponding, closed-form representations for piecewise-

smooth functions [69].

While much of these results were intended to aid computing with piecewise-linear functions,

the question of deciding equality between such functions has been relatively neglected. Deciding

equality of piecewise functions, in general, is nontrivial in relation to continuous functions in the

following sense. In contrast with continuous functions, even if two piecewise defined functions

are equal in a dense set in a given interval, they may differ at a single point. However, this has

not prevented some people from defining decision procedures for piecewise functions. Notable

work include that of von Mohresnchildt [80] and Carette [29]. In the former, a normal form was

defined for a large class of piecewise-defined expressions through the use of a very simple set

of primitive elements. This normal form, however, is restricted to univariate functions and does

not easily generalise to multivariate functions. In [29] the primitive elements are much more

complex. Substantial arithmetic complexity improvements were also obtained, and a wider

62

Piecewise-Linear Analysis 63

domain of definitions could be handled. Carrete’s approach, however, was based on a nontrivial

‘denesting’ procedure taken from [80], which requires a strict ordering of polynomial roots.

Hence that too is not easily extendable to multivariate functions.

Apart from [80] and [29], both of which dealt with more general piecewise functions, there

seems to be no reference to a formalisation of the concept of a piecewise-linear function — even

the presentation in [33] assumed that the reader is familiar with the concept, and the authors

made no attempt at a formal definition. This is probably because piecewise-linear functions are

so ubiquitous, and the usual notation so suggestive, that a formal definition of the concept is not

usually seen to be necessary.

In the presentation that follows, we first give a formal definition of piecewise-linear func-

tions, then present a decision procedure for them. We shall pay special attention to functions

defined over a linearly ordered domain (like RA, the real algebraic numbers — polynomials with

integer coefficients) and with a finite number of pieces (unlike floor, say).

5.1 Definition of Piecewise

We begin by clarifying what we mean by a piecewise-linear function.

Definition 5.1. A set S is said to be linearly ordered if there exists a relation < on S such that

for all a,b ∈ S, a 6= b either a < b or b < a holds.

From now on, let Λ be a linearly ordered set and assume that = and < are decidable in Λ.

We will also need the concept of a range partition of such a set.

Definition 5.2. A range partition R of a linearly ordered set Λ is a finite set B of points λ1 <

λ2 < .. . < λn, along with the natural decomposition of Λ into disjoint subsets Λ1, . . . ,Λn+1,

where

Λ0 := {x ∈ Λ | x≤ λ1}

Λi := {x ∈ Λ | λi−1 < x≤ λi}, i = 1, . . . ,n

Λn := {x ∈ Λ | λn−1 < x}.

Note that

Λ =

(
n+1⋃

i=1

Λi

)

, (5.1)

and that it is the ordered version of this complete decomposition of Λ which is the range par-

tition. For a given Λ, we will often just give the set of points λi that generate a range partition.

We will sometimes refer to the generating set B of a range partition as the set of breakpoints,

and a decomposition set Λi as an interval.

Definition 5.3. A piecewise expression is a total function from a range partition to a set S.

Piecewise-Linear Analysis 64

Example 5.1. Taking Λ = R, B = {0} and S = {−x,x}, then f : R→ S defined by

f (z) =

{

−x z = Λ1

x z = Λ2,

is a piecewise expression.

Proposition 5.4. Let Λ be a linearly ordered set and R a range partition. There exists a function

χ : Λ→R which associates to each λ ∈ Λ the unique element r of R such that λ ∈ r.

Proof. Since Λ is linearly ordered, we can store R in a sorted list and look up the elements to

find χ(λ).

Using χ , we get a much more familiar expression for fB = f ◦χ : Λ→ S where we explicitly

indicate the range partition generator B. For the previous example, this unravels to:

f{0}(z) =

{

−x z≤ 0

x z > 0.

This, however, does not allow us to get the evaluation bindings we want. For example, we want

f (−2) = 2 and not−x, but there is currently no relationship between the elements of Λ and those

of S. To fix this, we shall define a more general concept than a piecewise-linear function which

enables us to address this problem, and which specialises easily and correctly to the intuitive

notions of piecewise-linear functions we seek.

Definition 5.5. Let S be a set of linear functions, then a piecewise-linear operator is a piecewise

expression f : R→ S.

We can thus rewrite our example using S̃ = {y 7→ −y,y 7→ y}, the curried, relabelled version

of S to get:

f̃ (x) =

{

y 7→ −y x≤ 0

y 7→ y x > 0.

We will sometimes refer to the set S as the set of segments.

Now we have f̃ (−2)(4) =−4. What we really want is f̃ (−2)(−2) = 2. This last ingredient

is exactly what we require in order to define piecewise functions that behave in the expected

way.

Definition 5.6. Given a piecewise-linear operator f : R→ S, where S is the set of linear func-

tions s : Λ→V , we shall call f : Λ→V , defined by

f (λ) := f (χ(λ))(λ) = fB(λ)(λ)

a piecewise-linear function.

Piecewise-Linear Analysis 65

If we let Λ, V = RA, where RA is the real algebraic numbers, note that each s ∈ S is an affine

function f (x) = αx + β . If such a piecewise-linear function f is discontinuous at a breakpoint

point λ ∈ RA, we say f has a jump-discontinuity at λ . Such a curve is depicted in Figure 5.1.

5.1.1 Related Work

A formalisation closely related to ours appeared in Carette’s paper [29]. A key difference be-

tween ours and that in [29] is that we include breakpoints in the range partition set R. The

opposite was the case in [29], and this “separation of concerns” plays a key role in the derivation

of the canonical form therein.

Piecewise-linear functions are certainly instances of the more general notions of piecewise

functions which appeared in [29, 80] — in both cases, functions in the codomain of piecewise

expressions formed a ring. Hence we could have simply reused either of these formalisations.

However, pursuing this route would have made our later analysis of multivariate piecewise-

linear functions (see §5.4) unnecessarily complicated. This is due mainly to the important role

‘denesting’ of piecewise functions plays in both of these works, and the corresponding bur-

den placed on keeping track of of orderings of polynomial roots (see [80]). More importantly,

piecewise-linear functions are sufficient for our purpose (see in Chapter 6), and our restriction

to piecewise-linear functions enables us to employ well-known techniques for normalising such

functions along with a straight forward, analytic method for representing multivariate functions

[33].

5.2 Canonical Form

- x

6

f (x)

- x| | | |
x1 x2 xn−1 xn

�
�

�
�

�
��

@
@

@
@

@@

�����

HHHHH

�
+∞

−∞

r

b

r
r

b

r

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

](. . .
︸ ︷︷ ︸

Λ0

](
︸ ︷︷ ︸

Λ1

](
︸ ︷︷ ︸

Λ2

](
︸ ︷︷ ︸

Λn−1

. . .
︸ ︷︷ ︸

Λn

slope = α0
HHj

α1
?

α2
? α3

���
slope = α4��)

FIGURE 5.1: A typical piecewise–linear curve with finite jump discontinuities, and intervals

λ j = (x j, x j+1] where the function is linear. The slopes of the respective linear segment are

given by αi

Given a univariate piecewise-linear function, we can compute its canonical form.

Piecewise-Linear Analysis 66

Theorem 5.7 (Piecewise-Linear canonical form [33]). Any univariate piecewise–linear function

with at most n breakpoints λ1 < λ2 < .. . < λn can be represented uniquely by:

f (x) = a0 +a1(x)+
n

∑
j=1

{

b j|x−λ j|+ c j sgn (x−λ j)

}

, (5.2)

where the coefficients a0, a1, b j and c j are given by (c.f. Figure 5.1):

a1 = 1
2
(α0 +αn) b j = 1

2
(α j−α j−1), for j = 1,2, . . . ,n

c j =

0, if f (x) is continuous at the breakpoint x = λ j

1
2
[f (λ+

j) − f (λ−j)], otherwise

a0 = f (0) − ∑
n
j=1 (b j|λ j| − c j sgn(λ j)).

(5.3)

The proof of this theorem is crucial to our decision procedure. We shall give a detailed sketch

of it here. For further details, see [33].

Proof. If f is a piecewise-linear function, let f |λk denote the segment identified by f (λ) for

λ ∈ Λk and let f |λk be given by the affine equation Ψ(x) = αx+β for x ∈ Λk. Now define the

following extension operator:

−−→
f |λk =

{

0, x≤ λk

αkx+βk, x > λk.
(5.4)

Note
−−→
f |λk is just a two-segment piecewise-linear function where the left segment corresponds

to the x-axis and the right is obtained by extending the segment αkx + βk over x > xk. Using

these definitions, the evaluation algorithm shown in Algorithm 1 gives the value of f (x) over

each interval Λi, where
−−−−→
f i−1|λk denotes the extension operator applied to the function f i−1(.).

After n iterations, Algorithm 1 generates a unique set of n+1 functions f 0(x), f 1(x), . . . , f n(x).

If follows that

f i = f (x), x≤ λi+1, k ≤ n−1

f n(x) = f (x), for all x.
(5.5)

Observe also, by using Algorithm 1 and (5.5),
−−−→
∆ fi(x) can be expressed concisely in terms of the

absolute value and signum (sgn) functions:

−−−→
∆ fi(x) =

1

2
δi(|x−λi|+(x−λi)) + θi(1+ sgn (x−λi)), (5.6)

Piecewise-Linear Analysis 67

Step 1. Set

f 0(x) = α0x+β0, x ∈ RA

f 0|λ0 = f 0(x), x ∈ Λ0.
k = 1

Step 2. Compute f i(x) as follows:

for i := 1 to n−1
−−−→
∆ fi(x) =

−−→
f |λi −

−−−−→
f i−1|λi

f i(x) = f i−1 +
−−−→
∆ fi(x)

end.

ALGORITHM 1: Piecewise–linear evaluation algorithm [33].

where δi denotes the slope of
−−−→
∆ fi(x) when x > λi, θi = f (λ+

i)− f (λ−i) denotes the jump in f (x)

at x = λi, and

sgn(x) =

{

1, x > 0

−1, x≤ 0.

Subsequently for all x, we get that:

f (x) = f n(x)

= f n−1(x)+
−−−−→
∆ fn(x)

= [f n−2(x)+
−−−−−→
∆ fn−1(x)]+

−−−−→
∆ fn(x)

...

= f 0(x)+
n

∑
j=1

−−−−→
∆ f j(x).

(5.7)

Substituting (5.6) in (5.7) and simplifying, reduces it to the canonical form in (5.2).

Coefficients

We shall now derive the coefficients (5.3). For all x 6= λi, it follows from (5.2) that

f ′(x) = a1 +
n

∑
j=1

b j sgn(x−λ j).

Piecewise-Linear Analysis 68

We can now evaluate the slope α j of segment j directly as:

α0 = a0−
n

∑
j=1

b j (5.8)

α1 = a1 +b1−
n

∑
j=2

b j (5.9)

...

αk = a1 +
k

∑
j=1

b j−
n

∑
j=k+1

b j (5.10)

...

αn = a1 +∑ j = 1nb j (5.11)

From (5.9) and (5.11) we get a1 = 1
2
α0 +αn. Similarly, by letting k = j and j−1, respectively,

in (5.10) and simplifying, we obtain b j. Finally, c j follows from the definition of θ j and a0 from

(5.2).

5.3 Deciding Equality

It is now possible to define a decision procedure for univariate piecewise-linear functions. First

we require a decision procedure for linear functions. In the presentation that follows, we write

f ≃ g to denote that the functions f and g have the same computational result over all inputs.

We also denote the canonical form for a function f as can f .

Lemma 5.8. Let f and g be linear functions. The equality f ≃ g is decidable.

Proof. Since f and g are linear, both can be denoted by the affine functions f (x) = αT x+β and

g(x) = α1
T x+β1, where k is a column vector of ks. For the univariate case, we simply evaluate

them at 0 and 1 and result with, e.g.:

f (0) = β g(1) = α1 +β1.

So f ≃ g↔ f (0) = g(0)∧ f (1) = g(1). More generally, if both f and g are multivariate functions

of arity n, we evaluate f and g at each respective column in the identity matrix of size n to extract

the individual slopes αi, i≤ n and at the n×n zero matrix to derive their corresponding βi.

Theorem 5.9. The univariate piecewise–linear canonical form decides extensional equality:

f ≃ g↔ can f = can g.

Proof. The proof follows from the derivation of the canonical form.

Piecewise-Linear Analysis 69

← : This direction is easy and follows from the uniqueness of the canonical form: if f and g

have equal canonical forms, they must represent the same function.

→ : Suppose ∀x, f (x) = g(x), it follows from Theorem 5.7 that ∀k. f (x)|λk = g(x)|λk. In

particular,

∀k. f (0)|λk = g(0)|λk and f (1)|λk− f (0)|λk = g(1)|λk−g(0)|λk,

since each segment is linear. Hence we have that, fa1
(x) = ga1

(x), ∀ j. fb j
(x) = gb j

(x)

and ∀ j. fc j
(x) = gc j

(x), where hp(x) denotes the coefficient p in the canonical form of

h, and consequently, fa0
(x) = ga0

(x). This means that the coefficients from the canonical

forms of both f and g are equal; hence their canonical forms are equal.

5.4 Multivariate Piecewise–Linear Functions.

If our functions are univariate polynomials, the natural way to step from a closed–form univari-

ate formula to a multivariate representation is via the canonical isomorphism:

C[X1, . . . ,Xn] ≃ C[X1, . . . ,Xn−1][Xn].

We have previously mentioned the difficulties this poses, for representation like [80] and Carette

[29].

In the case of piecewise-linear functions, however, an analogous approach can be taken to

derive an analytic, closed form representation for multivariate functions [33]. To illustrate, let’s

consider first bivariate piecewise–linear functions. Let F denote the family of single-valued

piecewise–linear functions with finite jump discontinuities { f (x,z) | z = z1,z2, . . . ,zN ,N ∈ N}.

Without loss of generality, we can assume that each piecewise–linear function f (x,zi) has n

breakpoints z1(xi) < z2(xi), . . . ,zn(xi) and n+1 segments with slopes α1(xi), α2(xi), . . . , αn(xi),

respectively. Such a curve can then be represented using Theorem 5.7. Assuming x ranges over

the N values assigned to the curves in F, each curve in F can be represented canonically by the

following:

f (x,z) = a0(x)z+a1(x)+
n

∑
j=1

b j(x)|z−λ j(x)| + c j(x)sgn(z−λ j(x)), (5.12)

Piecewise-Linear Analysis 70

and the corresponding coefficients given by:

a1(x) =
1

2
[α0(x)+αn(x)]

b j(x) =
1

2
[α j(x)−α j−1(x)]

c j(x) =

{

0, if f (x,z) is continuous at the breakpoint z = z j(x)
1
2
[f (x,z+

j (x))− f (x,z−j (x))], otherwise
(5.13)

a0(x) =
1

2
[f (x,0)+ f (x,zn)−m(x)zn(x)].

Before we consider the general case y = f (x1,x2, . . . ,xn), it is also useful to look at the case

when n = 3. By assumption, the function f (x1,x2,x3) with the first two coordinates fixed is a

piecewise–linear function of one variable x3 and can therefore be represented by Theorem 5.7:

f (x1,x2,x3) = a0(x1,x2)x+a1(x1,x2) (5.14)

+
N−2

∑
j=1

b j(x1,x2) |x3−λi(x1,x2)|+ c j(x1,x2)sgn(x3−λ j(x1,x2)),

where the coefficients a0, a1, bi and c j are now piecewise–linear functions of two variables and

can be represented in turn by 5.12.1 The generalization to continuous piecewise–linear functions

of any number n variables in now obvious: the first n− 1 coordinates x1,x2, . . . ,xn−1 are fixed

and we write

f (x1,x2, . . . ,xn) = a0 (x1,x2, . . . ,xn−1)xn + a1 (x1,x2, . . . ,xn−1)

+
N−2

∑
j=1

b j(x1,x2, . . . ,xn−1) |x1−λ j(x1,x2, . . . ,xn−1)|,

+ c j(x1,x2, . . . ,xn−1)sgn(xn−λ j(x1,x2, . . . ,xn−1)),

where a0(x1,x2, . . . ,xn−1), a1(x1,x2, . . . ,xn−1), b j(x1,x2, . . . ,xn−1) and c j(x1,x2, . . . ,xn−1) are

functions of n− 1 variables. The same algorithm can be applied repeatedly to these model

functions, where the number of variables is reduced by one after each iteration. The algorithm

must clearly terminate when all model functions have been reduced to functions of a single

variable, which in turn can be given by Theorem 5.7.

Remark 5.10. The canonical piecewise–linear representation given in Theorem 5.7 corresponds

to that which appeared in Chua and Kang’s original paper [33]. However, our later extensions to

multivariate functions RAn → RA in equations (5.12), (5.14) and (5.15) include discontinuous

functions (i.e. those with c j 6= 0), while the closed-form, analytic representation for multidi-

mensional piecewise-linear functions R
n→ R

m in [33] only represented continuous functions.

It is also important to note that while the canonical representation in Theorem 5.7 is correct for

1Note that the index of the summation is now N−2, rather than N because only N−2 data points are available

as breakpoints since both the leftmost and rightmost data points are need to compute the slope.

Piecewise-Linear Analysis 71

univariate functions, multivariate piecewise-linear representations like equations (5.12), (5.14)

and (5.15), as well as that which appeared in [33], are not piecewise–linear representation when

n > 1: for n≥ 2 they are at least quadratic in the sense that they contain all product term combi-

nations such as x j,x jxk,x jxkxl, . . . ,x jxk, . . . ,xn [33]. It was later shown in [32] that three region

boundaries in R
2, which intersect at a single point, cause a breakdown in the closed-form rep-

resentation presented in [33]. The n-dimensional piecewise-linear functions we consider in this

thesis are univariate functions for any fixed set of n−1 variables, and hence not susceptible to

this limitation.

Deciding Equality

We can now extend the decision procedure in Theorem 5.9 to multivariate functions.

Theorem 5.11. Let f and g be two n-dimensional, section-wise piecewise–linear functions. The

extensional equality f ≃ g is decidable.

Proof. For any fixed set of n− 1 variables, the piecewise-linear functions f ,g : RAn → RA

are given by univariate piecewise linear functions, which are decidable by Theorem 5.9. The

corresponding coefficients can be decided, in turn, by a similar procedure.

5.5 Summary

In this chapter, we studied functions that can characterise shape maps of container morphisms

representing polymorphic functions between lists. We focused on piecewise-linear functions

since, as shall be seen in the following chapter, they enable to capture a large class of poly-

morphic functions. We formally defined piecewise-linear functions and showed that they are

generally decidable.

These results shall now be used as a basis for our subsequent presentation of a new decidable

result for lists in Chapter 6. This result is based on an explicit representation of polymorphic

functions as quasi-container morphism: shape maps are given as piecewise-linear functions,

while a new representation is derived for reindexing functions, which obviates the need for

arithmetic on Fin, and dependent types in general. We also observe that reindexing functions

are given by piecewise-linear functions, whenever shape maps are piecewise-linear. However,

since reindexing functions are definable over a restricted domain, a more sophisticated approach

than Theorem 5.11 is required for deciding equality between them. Our decision procedure relies

on the formal definition of piecewise-linear functions along with the fact that piecewise-linear

functions of type N
n → N fall within a decidable fragment of arithmetic, namely Presburger

arithmetic. Our subsequent implementation of this decision procedure, therefore, is not explic-

itly based on Theorem 5.11, but appeals extensively to results about Presburger arithmetic.

Chapter 6

A Decision Procedure for lists

In many program verification tasks, one often has to reason about lists of a given nature. A popu-

lar way to implement decision procedures for lists is to combine or augment decision procedures

for a theory modeling lists with a decision procedure for a theory modeling the elements. Many

influential approaches currently exist for achieving this, most of which can be categorised under

two general schemes: (i) those concerning combining decision procedures and (ii) those con-

cerning augmenting decision procedures. Combination schemes typically rely on some local,

specific data structures [12, 83, 93] and are typically aimed at decidable combination of theo-

ries. Augmentation schemes use different functionalities of heuristic theorem provers, such as

rewriting techniques, lemma-invoking mechanisms, or a variety of simplifications [7, 15, 60],

and are primarily intended for use in (often undecidable) extensions of decidable theories. From

time to time, people amalgamate these schemes to derive more general settings (e.g. see [59]).

This chapter describes a new way of deciding properties of lists based on a fusion of ideas

derived from the ellipsis representation [24] and the container reasoning system described in

§4.2.1. Instead of considering function as rewrite rules, as in [24], we generalise them based on

their representation as container morphism. The key idea is to capture the behaviour of the rein-

dexing map for functions’ underlying container morphisms as functions on the natural numbers,

instead of as a families ∀n. Fin(un)→ Finn, say. For example, given the container morphism

(u, f) : (N⊳Fin)→ (N⊳Fin) representing a function F : list(τ)→ list(τ), we translate the rein-

dexing map f : ∀n Fin(un)→ Finn, to an equivalent function f p : N×N→ N. Subsequently,

we interpret (u, f) as a function F ′ : list(τ)→ list(τ), where

F ′(⊟(n,g)) = ⊟(un,λ i. g(f p (un) i)),

and where ⊟(n,g) can be thought of as representing the list [g(0), . . . ,g(n−1)]. Note elements

of lists are understood to be indexed from 0 and not 1. Also, we do not provide an explicit

elliptic interpretation of these functions.

We also exploit the possibility of stating equality between containers in an equivalent, non-

dependent way. This allows us to employ decision procedures for arithmetic when proving

72

A Decision Procedure for lists 73

properties of lists. Consequently, we shall pay particular attention to Presburger arithmetic.

Presburger Arithmetic

Presburger integer arithmetic (PIA) is the first-order theory of the structure

〈Z, 0,≤, +〉,

where Z is the set of integers. The restriction of PIA to Peano numbers is usually called Pres-

burger natural arithmetic (PNA), and there is also Presburger arithmetic over the rationals (Pres-

burger Rational Arithmetic (PRA)). It was Presburger who first showed that PIA is decidable

[87]. The decidability of PNA can be proved analogously. It was later shown that PRA is also

decidable [66].

Since Presburger arithmetic is decidable, many decision procedures exists for it. Most of

these decision procedures focus on quantifier-free Presburger (QFP) arithmetic, as many verifi-

cation problems do not require quantification. In software verification applications, QFP deci-

sion procedures are often combined with decision procedures for various theories. Zang et al.

[108] developed a combination scheme for recursive data structures with Presburger arithmetic:

data structures were equipped with a size function that maps a data object to its size. In this

way, they reduced many structures to expressions in QFP, linear in the size of the term. Ghilardi

et al. [43] considered extensions of the theory of arrays where array indexes are definable in

Presburger arithmetic. The theory was subsequently augmented with methods for integrating

available decision procedures for the theory of arrays and Presburger arithmetic, which allowed

the reduction of the satisfiability problem for the extension of the theory of arrays to a decision

problem within Presburger arithmetic. Bradley et al. [16] subsequently presented a decision

procedure for satisfiability in an expressive fragment of a theory of arrays, parameterised by

the theories of the array elements. Their decision procedure reduces satisfiability of a formula

of the fragment to satisfiability of an equisatisfiable quantifier-free formula in the combined

theory of equality with uninterpreted functions, Presburger arithmetic, and the element theo-

ries. Habermehl, et al. [44] later extended [16] to deal with infinite arrays of integers, using

automata-theoretic approaches [19].

Applications of QFP in hardware verification include work by Amon et al [6] where tools

developed using the Omega library [89] were used for symbolic timing verification of timing

diagrams. Many current RTL-datapath verification approaches also employ QFP decision pro-

cedures, for example [17, 61].

Overview

In the exposition that follows, we first motivate our development by considering a different view

of equality between container morphisms presented in the §4.1. In §6.2 we use this view of

A Decision Procedure for lists 74

equality to define decidable classes container morphisms. We then discuss the implementation

of our decision procedure in §6.3. We will sometimes use the terms container morphism and

polymorphic function interchangeably whenever we find either to be more appropriate for the

discussion.

6.1 Non-Dependent Container Morphisms

We here revisit the container representation in Chapters 3 and 4, and make a few observations.

Since Finn can be equivalently written as {i | i < n}, we can express the container for lists as

(n : N⊳{i | i < n}) instead of (N⊳Fin). This representation allows us to “see” how dependent

types can be avoided in definitions and proofs about lists, thereby making the presentation more

intuitive. For example, the univariate morphism

(u, f) : (n : N⊳{i | i < n})→ (m : N⊳{i | i < m})

can be expressed as:

∑ u : N→ N. ∏n.{i | i < un}→ { j | j < n}.

Similarly, given morphisms (u, f),(v,g) : (n : N ⊳ {i | i < n})→ (m : N ⊳ {i | i < m}), we can

state their equality (c.f. §4.1) as:

∀n. un = vn

∀n (a : {i | i < un})(b : {i | i < vn}). a
jm
== b→ f na = gnb

(u, f) = (v,g)
(6.1)

We can now decompose a and b, and the second premise becomes:

∀niP j Q , (i, P)
jm
== (j, Q)→ f n(i, P) = gn(j, Q), (6.2)

where i, j : N, and P and Q are the proofs i < un and j < vn, respectively.

We also observe that there is a partial function ∀ni. i < un→ N which represents the be-

haviour of the function f : ∀n. Fin(un)→ Finn. This function, which we call reduce, can be

defined as follows:

reduce : (∀n. Fin(un)→ Finn) →∀ni. i < un→ N

reduce F n i h 7→ fnat (F n(nfin h)),
(6.3)

where nfin and fnat are defined in (2.2) on p.23. Note, given h : i < un, reduce f h is just a

function of type N×N→N which corresponds exactly to f , but where reduce f h can be thought

of as giving a more intuitive interpretation of f — i.e. one which is not defined using dependent

types. This implies that for any (u, f) : (N⊳Fin)→ (N⊳Fin), there exists g : N×N→ N such

A Decision Procedure for lists 75

that

∀ni(h : i < un). gni = reduce f n ih. (6.4)

For instance, taking g to be the function λni. n− i− 1, it is not difficult to show that g corre-

sponds to the behaviour of the reindexing map rv for reverse — i.e. that the following lemma

holds:

Lemma red rv ok : ∀ni(h : i < n), reducerv n i h = n − i − 1.

We can therefore define reindexing maps as functions N
n→N directly instead of families of

maps, as we did before. Such definitions become even more desirable when it comes to checking

equality between polymorphic funcitons. Suppose the reindexing functions are given in terms

of reduce, and we wish to prove a statement like (6.1). If we can prove u = v, we will be left

with a statement like:

ni j : N

P : i < un Q : j < vn

H : Q(i, P)
jm
== (j, Q)

reduce f Pni = reduce f ′Qn j
(6.5)

We can first replace reduce f P and reduce f ′G with their respective g using (6.4), which leaves

us with a goal like: g
1
ni = g

2
n j, given directly by arithmetic. Since we know u = v, we can

decompose (i, P)
jm
== (j, Q) using the rule:

H : u = v

Pn : i < un Pm : i < vn

(n, Pn)
jm
== (m, Pm)↔ n = m∧Pn

jm
== Pm

.

There is now the vacuous assumption H : Pn
jm
== Pm, which can be discarded, and (6.5) can be

subsequently restated as:

∀ni. i < un→ i < vn→ g
1
n i = g

2
ni

(u, g
1
) = (v,g

2
)

. (6.6)

Moreover, if u, v, g
1

and g
2

are defined within some decidable fragment of arithmetic, we can

use a decision procedure to solve (6.6). It follows that if we represent the reindexing functions

in terms of their behaviour, given by reduce, we can state their equality using following instead

of (6.1).

∀n. un = vn

∀ni. i < un→ i < vn→ g
1
n i = g

2
ni).

(u, g
1
) = (v,g

2
)

(6.7)

We shall call (6.7) a quasi-container equality because it is based on our defined equality for

containers, but does not strictly represent an equality between container morphisms. Unless

A Decision Procedure for lists 76

stated otherwise, we shall henceforth refer to this notion of equality whenever we talk about

equality of polymorphic functions.

6.2 A Decidable Class of Polymorphic Functions

We see from (6.7) that deciding equality between polymorphic functions depends not only on

the decidability of the shape maps, but also on the definition of the shape maps. For instance,

if the shape and position maps are defined within Presburger arithmetic, the expression in (6.7)

becomes decidable. However, if either the shape or position maps are given by polynomial

functions N→N, outside of Presburger arithmetic, the expression in (6.7) also becomes outside

of Presburger arithmetic and is, subsequently, undecidable.

The key to defining decidable classes of polymorphic functions, therefore, is not only to

identify shape maps which are definable within Presburger arithmetic, but also which determine

position maps which are also definable within Presburger arithmetic. It would also be useful to

identify a class which encapsulates a large set of functions.

6.2.1 Linear Morphisms

Definition 6.1. We say a morphism (u, f) : (n : N
m ⊳Finn1 + . . .+Finnm)→ (N⊳Fin) is linear

if its shape map u : N
n→ N is given by addition.1

For example, the morphism crev and cappn are linear morphisms. We know shape maps of

linear morphisms are decidable and that the reindexing map rv corresponds to a linear function.

But are all reindexing functions for linear morphisms linear?

Proposition 6.2. If (u, f) : (n : N
m ⊳ Finn1 + . . .+ Finnm)→ (N ⊳ Fin) is a linear morphism,

then f is given by a piecewise-linear function.

Proof. We prove this proposition by presenting a representation for shape maps of linear mor-

phisms and show that if u is given by this representation, the reindexing function corresponds to

a piecewise-linear function.

Multivariate functions N
n→N, defined by addition, can be represented by lfun shown below:

Inductive lfun (n : nat) : Set :=

| add : lfun n -> lfun n -> lfun n

| var : Fin n -> lfun n

| const : nat -> lfun n.

1 In [1–3] cartesian container morphisms are also called linear morphisms. But with our definition of linearity,

not all linear morphism are cartesian. In order to avoid confusion, we shall use the term ‘linear morphism’ whenever

we refer to our definition, and ‘cartesian morphism’ whenever we talk about container morphisms whose position

sets are isomorphic. For instance, the container morphism representing double, which replicates a list (see example

3.5), is linear but not cartesian.

A Decision Procedure for lists 77

The function evl interprets lfun n functions as we would expect: const n represents constantly

n-valued functions, add represents addition, while VecNn represents a list (or n-tuple) of Ns of

length n; hence proj v i returns the variable at the ith location in v.

Fixpoint evl n (i : lfun n) (v : Vec nat n) : nat :=

match i with

| const n => n

| var j => proj v j

| add l r => evl l v + evl r v end.

For instance, the reindexing function for lfun2 is given by

F : ∀nm. Fin(n+m)→ Finn+Finm.

We can now generalise reduce to deal with multivariate functions. This generalisation is defined

in Listing 13, where leplus or is the proof:

Lemma: leplus or : ∀inm. i < n+m→{i < n}+{i−n < m},

which decomposes inequalities like i < ax + bx and FSum is the n-fold application of fnat in

(2.2). We apply reduce when lfun n is a constant or a variable. If it is given by add there

Listing 13 The general reindexing function for linear morphisms.

Fixpoint reduceN n (v : lfun n) i : forall v1, i < evl v v1 ->

(forall (vv : Vec nat n), Fin (evl v vv) -> FSum vv) -> nat :=

match v in lfun _ return (forall v1, i < evl v v1 ->

(forall vv, Fin (evl v vv) -> FSum vv) -> nat) with

| add l r => fun v0 H H0 =>

match (leplus_or _ _ H) with

| left l1 =>

reduceNl v0 l1

(fun vv fn => H0 vv (finl (evl r vv) fn))

| right r1 =>

reduceN r v0 r1

(fun vv fn => H0 vv (finr (evl l vv) fn))

end

| var a => fun v0 H H0 => fooFS _ (H0 v0 (nat_finite _ H))

| cnst _ => fun v0 H H0 => fooFS _ (H0 v0 (nat_finite _ H))

end.

are two cases: when i < n or when i− n < m. The function is then applied recursively to the

reindexing map corresponding to finl or finr case. Note that for a tuple of length i, leplus or

generates a range partition, with the breakpoints being functions of ni, i ≥ 2. This function

therefore corresponds to a piecewise-linear function.

A Decision Procedure for lists 78

Proposition 6.3. If f : N
n→ N is a piecewise-linear function then f is definable within Pres-

burger arithmetic.

Proof. The proof is immediate from the definition of piecewise-linear functions, Definition 5.6.

Lemma 6.4. Let (u, f) and (v,g) be two linear morphisms. The equality (6.7) between (u, f)

and (v,g) is decidable.

Proof. Since we can represent f and g as piecewise-linear functions, by Proposition 6.3 the

statement:

∀ni. i < un→ i < vn→ f n i = gni,

is a formula within PNA, which is decidable. The equality u = v is also decidable by Lemma 5.8.

6.2.2 Extending Linear Morphisms

We saw in Chapter 3 that there are some useful container morphisms that are not linear, most of

which are non-cartesian. How then can we represent non-cartesian morphisms (u, f) : (T⊳P)→

(N⊳Fin), and those otherwise non-linear morphisms?

Let us first revisit the container morphism for tail, and consider that of head (i.e. the function

the returns the first element is a non-empty list) as well. The container morphism representing

tail was defined in Example 3.4, and we repeat it here as code:

Definition ctail :=

uCmr Lst (cont sum maybe cont Lst) tail s

(fun a (ps : p (cont sum maybe cont Lst) (tail s a)) => tail p a ps).

Here maybe cont is the container defined by:

Inductive So : bool -> Set := oh : So true.

Definition maybe cont : Ucontainer := ucont (fun a:bool => So a),

while the tail s and tail p are defined in Listing 14. Note that maybe cont is isomorphic to

(N⊳ Fin)+ (1I ⊳O) and, as was case in Example 3.4, the above definition of tail corresponds to

a container morphism of type (N⊳Fin)→ (N⊳Fin)+(1I⊳O). I.e. if the input list is empty (i.e.

tail s0), there are no positions in the output; and if the input list in non-empty (tail s(Sn)),

there is one less position in the output than there is in the input. Hence data from the input

disappears in the output.

In the case of lists, one can encode such disappearance of data using subtraction. In partic-

ular, for functions like tail, what we really need is cut-off subtraction −̇ , which is a piecewise-

linear function.2 It therefore becomes possible to re-implement tail as a container morphisms

2See (3.8) on p.34 for a definition of −̇ .

A Decision Procedure for lists 79

Listing 14 Definition of the shape and position maps for tail: tail s and tail p, respectively.

Definition tail s n : bool + nat :=

match n with

| O => inl nat false

| S m => inr bool m

end.

Definition tail p n : p (cont sum maybe cont Lst) (tail s n)) -> Fin n.

march n with

| O => fun q => nofin (Fin n) q

| S => fun q => fs q

Defined.

(N⊳Fin)→ (N⊳Fin): the shape map is given by un = n−̇1, while the reindexing map is given

by tail pos below. Note, the minus for natural numbers is equivalent to −̇ in Coq.

Definition tail pos (n: nat) : Fin (n - 1) -> Fin n :=

match n as e return Fin (e - 1) -> Fin e with

| O => nofin (Fin 0)

| S 0 => fun i => fs i

| S (S n) => fun i => fs i

end.

Notice the definition above is the same as tail p we saw earlier. We can also define other

non-cartesian morphisms for lists in a similar fashion. For instance head, last (which returns

the last element in a non-empty list) and but last (which retains all but the last element of a non-

empty list), can all be defined using piecewise-linear shape maps —- the latter two analogous to

head and tail, respectively. Implementations of the position map for each of these functions are

shown in Listing 15.

Piecewise-Linear Morphisms

It turns out that the piecewise-linear representation is sufficient to encode a large set of container

morphisms between lists.

Definition 6.5. Given TT := 1I | N | TT + TT, let P : TT→ Set denote the TT-indexed family of

sets, where P1I = O, P(n : N) = Finn, P(inl A) = PA, and P(inr B) = PB. We say a morphism

(u, f) : (n : N
m ⊳ Finn1 + . . .+ Finnm)→ (TT ⊳ P) is generally-linear if whenever its codomain

is given by (N⊳Fin), the shape map u : N
n→ N is given by a linear function.

Note generally-linear morphisms can have shape maps given by subtraction, hence they are

indeed more general than our previously defined linear morphisms. For example, the container

morphism representing the tail function is generally-linear.

A Decision Procedure for lists 80

Listing 15 Reindexing functions for head, last and but last using piecewise-linear functions to

define the shape maps.

Definition hd_pos n : Fin (n - (n - 1)) -> Fin n :=

match n as e return Fin (e - (e - 1)) -> Fin e with

| O => nofin (Fin 0)

| S _ => fun _ => fz _

end.

Definition last_pos n : Fin (n - (n - 1)) -> Fin n :=

match n as e return Fin (e - (e - 1)) -> Fin e with

| O => nofin (Fin 0)

| S _ => fun _ => tp _

end.

Definition but_last_pos n : Fin (n - 1) -> Fin n :=

match n as e return (Fin (e - 1) -> Fin e) with

| 0 => nofin (Fin 0)

| S 0 => fun i => emb i

| S (S n) => fun i => emb i

end.

Definition 6.6. A morphism (n : N
m ⊳ Finn1 + . . .+ Finnm)→ (N ⊳ Fin) is piecewise-linear if

its shape map u : N
m→ N is given by piecewise-linear function.

Proposition 6.7. Every generally-linear morphism (u, f) : (N ⊳ Fin)→ (TT ⊳ P) is piecewise

linear.

Proof. Let (u, f) be a generally-linear morphism. Consider the minimal case when u : N→

N+N and observe that either of the following cases holds:

1. u does not partition its domain. Hence given linear functions F, G : N→ N we have that

u n = inl (F n) or

u n = inr (Gn),

in which case u is really a function N→ N, and is given by either F or G.

2. u imposes a partition(s) on its domain. Hence given linear functions F, G : N→ N, there

exists λ : N such that

u n =

{

inl (F n) if n≤ λ

inr (Gn) otherwise;

in which case u is really a piecewise-linear function and we write u as a function N→ N

as:

u n = if n≤ λ then F n else Gn

Note there can be many such F , G, or λ ; u : N→ 1I corresponds to constantly 0-valued

functions, and a similar argument applies when u : N→ 1I+N.

A Decision Procedure for lists 81

Extending this to the general case u : N→ TT is now straightforward: we can define u inductively

and proceed by induction on the structure of u.

The following corollary is now an immediate consequence of Proposition 6.7.

Corollary 6.8. Every generally-linear morphism is piecewise linear.

Representing Piecewise-Linear Functions

In order to represent piecewise-linear functions N
n → N, we first extend lfun above with a

constructor for −̇ , which we denote by sub below, such that evl (sub l r) i = evl l i −̇ evlr i.

Inductive lfun (n : nat) : Set :=

| add : lfun n -> lfun n -> lfun n

| sub : lfun n -> lfun n -> lfun n

| var : Fin n -> lfun n

| const : nat -> lfun n.

But this on its own does not admit the functions we want; e.g. we cannot represent functions

like φ(x) = if a < b then x+1 else 3, for a,b : N. To deal with such functions, we introduce the

conditional operator Piecewise for general piecewise expressions:

Inductive Piecewise (A : Set) : Set :=

| lp : A -> Piecewise

| pf : Piecewise -> Piecewise -> Piecewise -> Piecewise.

The intention here is that (lp l) denotes that l has type A, while, (pf a b c), enables

us to represent conditional expression like φ(x) above. For instance, we write Plfun n for

Piecewise (lfun n), and define the interpretation function the following:3

Fixpoint pevl n (i : Plfun n) v :=

match i with

| lp a => evl a v

| pf l cl cr => if lt le dec 0 (pevl l v) then pevl cl v else pevl cr v

end.

Hence Plfun n is a piecewise-linear function. We can now represent φ(x) by:

pf (sub b a) (lp (add var (const 1))) (lp (const 3)).

Theorem 6.9. Let (u, f) and (v,g) be two piecewise-linear morphisms. The equality (6.7) be-

tween (u, f) and (v,g) is decidable.

3 lt le dec n m = {n≤ m}+{m < n}

A Decision Procedure for lists 82

Proof. Since u and v are piecewise-linear, they are both definable in Presburger arithmetic (by

Proposition 6.3), hence equality between them is decidable.

For the reindexing map we note that reindexing maps of piecewise-linear morphisms are

defined in terms of Piecewise (lfun n), and that reindexing functions for linear morphisms

correspond to piecewise-linear functions. It follows from the structure of Piecewise that rein-

dexing maps for piecewise-linear morphisms are also piecewise-linear functions. Hence, as was

the case in 6.2.1 the statement:

∀ni. i < un→ i < vn→ f n i = gni,

is a formula within Presburger arithmetic, which we know is decidable.

Remark 6.10. The piecewise-linear interpretation of reindexing maps shown in the proof of

Theorem 6.9 above has implications for how we may implement decision procedures for poly-

morphic functions between lists. For instance, if we wish to implement decision procedures for

container morphisms using universes as in [5, 81], we find that this presents an interesting chal-

lenge. This is because, in this setting, one often desires constructions which are extensional in

the sense that any two functions which are extensionally equal have the same code. In §7.2.5, we

describe a universe construction for container morphisms between lists, based on definition by

folds, we investigated. However, we were unable to define a decision procedure with the desired

extensionality, since it was not clear to us how to define codes for piecewise-linear functions

that admit the sort of equality we seek. Since the decision procedure in Theorem 6.9 is defined

in terms of the quasi-container equality (6.7), it seems that what we need is a quasi-container

setting — i.e. one where functions behave like container morphisms, but are not strictly so. This

is the approach we take, and which we shall describe in the rest of this chapter.

6.3 Implementation

We have implemented the ideas presented above as a Coq tactic, which decides equality of

polymorphic functions F : list(τ)n → list(τ). We will describe the tactic in §6.3.2. First we

discuss how functions are represented in our setting.

6.3.1 Representation

A polymorphic function F : list(τ)n→ list(τ) is represented as a pair (u,g), akin to container

morphisms, where

1. u : N
n→ N maps length information in the input list to same in the output list, while

2. g : N
1+n→ N represents the behaviour of the reindexing map of the container morphism

corresponding to F — i.e. gni corresponds to the behaviour of the reindexing map via

reduce. Consequently, g is given as a piecewise-linear function.

A Decision Procedure for lists 83

We shall overload the terms “shape map” and “reindexing map” to refer to 1 and 2 above. Note

shape maps like u are also be given by piecewise–linear functions. This representation (u, f)

therefore generalises polymorphic functions that performed one step of rewriting in [24]. It is

implemented as:

Definition PPCm n := Plfun (S n) * Plfun (S (S n)),

where Plfun n is a shorthand for Piecewise (lfun n). Note we exclude functions without

variables, and that PPCm 0 represents univariate functions list(τ)→ list(τ).

Example 6.1. Following its container representation, the reverse function for lists is given as a

pair (λ i. i, λni. n− i−1) which is represented as

Definition Rev : PPCm 0 :=

(lp (var fz), (lp (sub (sub (var fz) (var top)) (const 1)))).

The shape map is a univariate identity function, hence is given by var fz. The reindexing

map, on the other hand, has type N×N→ N. The first variable is denoted by var fz, while

the top (in this case the second) variable is denoted by var top. Subtraction is left associative,

hence λni. n−̇ i−̇1 is represented as shown above.

Example 6.2. Similarly, the identity function is given as a pair (λ i. i, λni.i), which is repre-

sented as

Definition Id : PPCm 0 := (lp (var fz), lp (var top1))

The reindexing function for the identity function need only return the second variable,so we

simple write represented as (var top1).

Note both examples above have linear reindexing functions. For functions like ++, however,

we need to represent the reindexing function as a piecewise-linear function.

Example 6.3. The function ++ can be represented as the pair

(λnm. n+m,λnmi. if i < n then i else i−n),

which can be represented as:

Definition appn : PPCm 1 :=

(lp (add (var fz) (var (fs fz))),

(pf (lp (sub (var fz) (var top2))) (lp (var top2))

(lp (sub (var fz) (var top2))))).

We represent the condition i < n as n−1 > 0 using the pf constructor of (Piecewise); and

the resulting branches to pursue, if the condition is satisfied or not, occupy each other argument

of pf in turn.

A Decision Procedure for lists 84

6.3.2 Proving Properties of lists

As with container morphisms, in order to prove properties of lists using our current formalisa-

tion, we needed to define composition and equality.

Composing Functions

Composition of functions is defined analogous to composition of container morphisms. How-

ever, since PPCm functions are interpreted as function of type list(τ)n→ list(τ) (see §6.3.4), we

only post compose with univariate functions.

Recall that given morphisms (u1, f1) : (S⊳P)→ (S′ ⊳P′) and (u2, f2) : (S′ ⊳P′)→ (S′′ ⊳P′′),

their composite is the morphism (u, f) : (S ⊳ P)→ (S′′ ⊳ P′′) defined by u s = us ◦ (u1 s) and

f s p = f1 s (f2 (u1 s) p). This informs our definition of composition.

Definition 6.11 (Composition). Given the l : PPCm 0 and r : PPCm n, we define their composite

PPComp l r as follows:

l =

{

u : N→ N

f : N
2→ N

r =

{

v : N
n→ N

g : N
n+1→ N

PPComp l r = (u◦ v, λ (a : Nn)m. ga(f (va)m))

This definition compares with the definition of composition for container morphisms. The

difference here is that the functions f and g above are not families of maps. The composition

function above is implemented follows:

Definition PPComp n (l : PPCm 0) (r : PPCm n) :=

let (v , G) := l in

let (u , F) := r in

(pcmp1 v u , pcmp F (ppl2n G u)).

In the definition above, pcmp1 post composes a function N
n→N with a function N→N. Given

f g : N
n+1→N; pcomp fixes the first n variables in both f and g, then compose them as univariate

functions — i.e. gn ◦ f n. Finally, given f : N
2 → N and g : N

n → N; ppl2n represents the

function h : N
n+1→N defined by λ (a : N

n)m→ f (ga)m. The definitions of ppl2n and pcomp

are shown in Listing 16; pcmp1 is defined analogous to pcomp.

A Decision Procedure for lists 85

Listing 16 Definition of ppl2n and pcmp.

Fixpoint lemb n (i : lfun n) : lfun (S n) :=

match i with

| cnst n => cnst _ n

| vr j => vr (emb j)

| add l r => add (lemb l) (lemb r)

| sub l r => sub (lemb l) (lemb r)

end.

Fixpoint pemb n (i : Plfun n) :=

match i with

| lp l => lp (lemb l)

| pf a b c => pf (pemb a) (pemb b) (pemb c)

end.

Fixpoint ppl2n_aux n (l : lfun 2) (i : Plfun n) :=

match i with

| lp ll => lp (pl2n l ll)

| pf c ll rr => pf (pemb c) (ppl2n_aux l ll) (ppl2n_aux l rr)

end.

Fixpoint ppl2n n (l : Plfun 2) (i : Plfun n) :=

match l with

| lp ll => ppl2n_aux ll i

| pf c ll rr => pf (ppl2n c i) (ppl2n ll i) (ppl2n rr i)

end.

(* composition*)

Fixpoint cmp n (i j : lfun (S n)) : lfun (S n) :=

match i with

| add l r => add (cmp l j) (cmp r j)

| sub l r => sub (cmp l j) (cmp r j)

| vr i => match finEmtp i with

| isTp => j

| isEmb l => vr (emb l)

end

| cnst n => cnst _ n

end.

Fixpoint pcmp_aux n (l : lfun (S n)) (i : Plfun (S n)) : Plfun (S n) :=

match i with

| lp ll => lp (cmp l ll)

| pf c ll rr => pf c (pcmp_aux l ll) (pcmp_aux l rr)

end.

Fixpoint pcmp n (i j : Plfun (S n)) :=

match i with

| lp l => pcmp_aux l j

| pf c l r => pf (pcmp c j) (pcmp l j) (pcmp r j)

end.

A Decision Procedure for lists 86

Equality

We state the equality of functions using the non-dependent expression given in (6.7):

Inductive pcmEQ n (i j : PPCm n) : Prop :=

| isEQ : (forall v, pevl (fst i) v = pevl (fst j) v) ->

(forall v, vlast v < pevl (fst i) (vfirst v) ->

vlast v < pevl (fst j) (vfirst v) ->

pevl (snd i) v = pevl (snd j) v) -> pcmEQ i j.

(6.8)

Here again, we represent n-tuples as vectors. For some type A and i : Vec A (Sn), vfirst i is a

vector Vec N n corresponding to i with its last element removed, while vlast i corresponds to

the last element of i. Their implementations are shown in Listing 17.

Listing 17 Implementations of vfirst and vlast.

Fixpoint vfirst aux n a (v : Vec n) : Vec n :=

match v in Vec e return (Vec e) with

| vnil => vnil

| vcons x xs => vcons a (vfirst aux x xs)

end.

Definition vfirst n (v : Vec (S n)) := vfirst aux (vhead v) (vtail v).

Fixpoint vlast aux n a (v : Vec n) :=

match v with

| vnil => a

| vcons x xs => vlast aux x xs

end.

Definition vlast n (v : Vec (S n)) := vlast aux (vhead v) (vtail v).

Deciding Equality of Functions

We are now ready to apply arithmetic decision procedures to prove properties of lists. A decision

procedure for quantifier free Presburger arithmetic is implemented in Coq in the form of the

tactic omega. The omega tactic in an (partial) implementation of the Omega-test [89], which

is an extension of the Fourier-Motzkin linear programming algorithm to integers [104]. The

omega tactic subsequently forms the principle sub-tactic in our implementation. The current

implementation of omega, however, is very slow; hence our implementation also includes a

few optimisations in order to improve its performance. We stress, however, that none of these

optimisations are necessary. The top level tactic is as follows:

Ltac containers := initialise tac; optimiseOmega; omega.

As seen above, the top-level tactic calls two subs-tactics prior to a call to omega. We describe

them here.

A Decision Procedure for lists 87

initialise tac: This tactic, as its name implies, initialises the goal, translating a pcmEQ

expression into one given in terms of arithmetic. This is generally achieved by:

1. Decomposing all n-tuples (i.e vectors) of variables that may appear either in the goal

or the context, into n distinct variables, along with other simplifications for vectors

(e.g using the eliminator vplusView in Listing 5.).

2. Removing all inequalities in the goal that may occur in definitions of piecewise-

linear functions.

optimiseOmega: After the initialise tac has simplified the goal and the context, there

may be a number of redundant hypothesis in the context. For example, if our goal is to

prove the reverse function is an involution, we may state our conjecture as

Theorem rev rev inv : pcmEQ (PPComp Rev Rev) Id.

After initialisation, our proof obligations are

(i)
n : N

n = n
(ii)

nm : N h : m < n h1 : m < n

n− (n−m−1)−1 = m

Proving (ii) using omega takes some time — with an Intel E5200 CPU and 2Gb RAM

omega takes 6 seconds to prove this theorem. In order to optimise the proofs of such

theorems, the optimiseOmega tactic does the following:

1. Discard redundant hypotheses. For example, one of the inequality assumptions in

(ii) will be discarded.

2. Inequality reasoning. The tactic also attempts to do inequality reasoning, especially

in the presence of function definitions, in order to simplify the assumptions. For

instance if h : 0 < n−m appears among the assumptions, we add m < n to the context

and discard h. This is typically achieved by instantiating proven results (e.g. 0 <

n−m→ m < n).

3. Rewriting. The proof in (ii) can be further optimised if we prove it as separate

lemma, then try to rewrite using this lemma during the proof of the rev rev inv

conjecture. The definition of functions sometimes suggest possible lemmas which

can be proved separately, which can then be incorporated in the optimiseOmega as

rewrite rules.

6.3.3 Taking a Closer Look

Notice the shape map of a function in this setting corresponds exactly to that of the function’s

container morphism, while its reindexing map models the behaviour of its container morphism’s

reindexing map. It follows that the key to modelling functions in the current setting is to state

A Decision Procedure for lists 88

their representations as a container morphism, though it is not always necessary to define the

reindexing mappings. We shall now demonstrate this by studying a few well-known functions a

bit more closely.

take and drop: Consider the functions take, drop : N× list(τ)→ list(τ). Given a number m,

takem retains the first m elements of a list, while dropm removes the first m elements. For

take we observe that if m is less than the length of the input list n, the output list will have

length m; otherwise it will have length n. We therefore have the following mappings for

its container morphism:

λ i. if m < i then m else i λn.

{

Finm→ Finn if m < n

Finn→ Finn otherwise

The actual definitions are shown in Listing 18. Notice that when m < n, where n is the

length of the input list, the position in the input corresponds to the value of m; otherwise it

is the same as that of the input. We therefore give the following, non-dependent represen-

tation of this function, where u and f represent the shape and position maps, respectively:

take m =

{

un = if m < n then m else n

f n i = if i < m then m else i

For drop, the output list is always n−̇m for any input list of of length n. Accordingly, the

reindexing map of its container morphism corresponds to fn : Fin(n−m)→ Finn. We

see here that an output position i comes from the input position at i+m. This leads to the

following, non-dependent representation:

drop m =

{

un = n−m

f ni = i+m

head, last, but last and tail: Let us now reconsider the functions head, last and but last, whose

reindexing mappings appear in Listing 15. The shape maps for head and last are both

given by n−̇(n−̇1), while that of but last is given by n−̇1. For head, we observe that

only one output position exists for non-empty input lists (none exists if the input list is

empty). Recall that lists in the current setting are understood to be indexed from 0 — i.e.

[a0,a1, . . .an−2,an−1] instead of [a1,a2, . . .an−1,an](see(6.3)). So for head, the position in

the input where the output position comes from is given by 0. Correspondingly for tail:

the output position comes from the input position at n−1. Their respective representations

are given by:

head =

{

un = n− (n−1)

f n i = 0
last =

{

un = n− (n−1)

f n i = n−1

A Decision Procedure for lists 89

When is comes to but last, we observe that a position in the output is in the same location

it occupies in the input.4 Hence, the representation of but last is simply:

but last =

{

un = (n−1)

f n i = i.

The representation for tail is defined analogously.

rotate/unrotate once: Consider the function which rotates the first element of a list from the

front to the back — i.e. (1.11) on p.13 with m = 1 — and the function that does the

opposite. Let us call them rot1 and urot1, respectively. For their container morphisms, we

note that the shape maps are both given by Id, since the length of the lists do not change

in either case. For their reindexing maps: rot1 sends the last output position to the front

of the input list, and moves every other position up by 1. On the other hand, urot1 sends

the first output position to the back of the input list and moves every other position down

by one. The (dependent) container representation for these mappings are also shown in

Listing 18.5

In our current non-dependent setting, we can reflect these mappings rather straightfor-

wardly, and intuitively. For the reindexing function of rot1, we add 1 to output positions

less then n−1, thereby sending it one place up in the input, otherwise we return 0 — i.e.

the first position in the input. In the case of urot1 we do the opposite: we decrement a

position in the output by 1 if it is greater than 0, otherwise we return the top position given

by n−1. These mappings are shown below.

rot1 =

u n = n

f n i =

{

i+1 i < n−1

0 otherwise

urot1 =

u n = n

f n i =

{

i−1 i > 0

n−1 otherwise

As these examples have shown, our non-dependent representation has also proven to be more ef-

fective than the ellipsis technique at capturing the underlying arithmetic of inductive definitions.

But now, unlike our judicious container-based system in §4.2, we can define functions directly

using arithmetic, and prove properties of them automatically without having to hard-wire sub-

sidiary proofs into our tactic.

More importantly, we now have a decision procedure for polymorphic functions between

lists, which is not just effective but also intuitive — one simply has to specify shape and position

manipulations as they would on a whiteboard, say. The only difficulty is to understand the nature

of these manipulations. However, this should not be too difficult, especially if one is able to give

a functional definition of the very function he wishes to represent. Figure 6.1 shows a selection

4Note embi preserves the structure of i, hence preserving its value — i.e. fnat i = fnat (embi).
5 Note the use of the different decompositions of Fin(Sn).

A Decision Procedure for lists 90

Listing 18 Container representatives for the functions take, drop, rot1 and urot1.

(* take *)

Definition ts n m := if le_lt_dec n m then n else m.

Definition takep n m : Fin (if le_lt_dec n m then n else m) -> Fin n :=

match le_lt_dec n m as a return Fin (if a then n else m) -> Fin n with

| left _ => fun i => i

| right l => fun i => nfin _ l

end.

Definition ctake m := uCmr (fun n => ts n m) (fun n => takep n m).

(* drop *)

Fixpoint dropP m : forall n, Fin (n - m) -> Fin n :=

match m as e return (forall n, Fin (n - e) -> Fin n) with

| O => fun n => match n with

| O => nofin (Fin 0)

| S _ => fun i => i

end

| S m1 => fun n => match n return (Fin (n - S m1) -> Fin n) with

| O => nofin (Fin (0 - S m1))

| S n1 => fun i => fs (dropP m1 _ i)

end

end.

Definition cdrop m := uCmr (fun n => n - m) (dropP m).

(* rotate 1*)

Definition rot1 pos n : Fin n -> Fin n :=

match n as e return Fin e -> Fin e with

| O => fun i => i

| S m => fun i => match finEmtp i with

| isEmb i => fs i

| isTp => fz m

end

end.

Definition crot1 := uCmr (fun n => n) rot1.

(*unrote 1*)

Definition urot1 pos n (i : Fin n) : Fin n :=

match i in Fin e return Fin e with

| fz x => tp x

| fs j => emb j

end.

Definition curot1 := uCmr (fun n => n) urot1.

A Decision Procedure for lists 91

rev(revxs) = xs

rev(xs++ ys) = revys++ revxs

head (revxs) = last xs

tail (revxs) = rev(but last xs)
drop n(dropmxs) = drop(n+m)xs

drop n(takemxs) = take(n−m)(dropnxs)
take n(dropmxs) = dropm(take(n+m)xs)

drop 1(urot1xs) = but last xs

rot1(urot1xs) = xs

urot1(rot1xs) = xs

head (rev(rot1xs)) = head xs

last (rot1xs) = head xs

head (urot1xs) = last xs

but last (rot1xs) = tail xs

FIGURE 6.1: Examples of properties of lists which can be proven using our non-dependent

container technique. All theorems are proven automatically using the tactic containers.

of properties which are amenable to our new representation, most of which were beyond the

scope of previous techniques [24, 88].

6.3.4 Interpretation

In accordance with container morphisms, functions represented using PPCmn correspond to

polymorphic functions list(τ)n → list(τ), where list(τ) is represented as a pair, akin to the

2 notation. Our representation, however, differs from the 2 notation in that we index lists from

0, as in [f (0), . . . , f (n−1)], as opposed to [f (1), . . . , f (n)] . Note, we do not provide an elliptic

portrayal for our representation.

The function PPCm int, shown in Listing 19, interprets a PPCmn structure to the function it

represents. Given (u, f) : PPCm n and l : (N×N→ X)(n+1), PPCm int transforms l to

l′ : N
n×N→ X then evaluates (n, f) at l′ using PPCm int aux as follows:

PPCm int aux(u, f) (n,g) = [un, λ i. g(f n i)]

The transformation of l to l′ is provided by the function vpair2pv is as follows. For input

[(n1, f1),(n2, f2), . . .(nm, fm)],

A Decision Procedure for lists 92

the function combines the ni to form the m-tuple (n1,n2, . . . ,nm). These are then used as break-

points in the function G : N→ X , where G is defined as:

λ i.

f1i i < n1

f2(i−n1) i−n1 < n2

...

fm((((i−n1)−n2) . . .nm−2)−nm−1) i≥ nm−1

Consequently, PPCm int corresponds to the function mmap (3.11), which interprets container

morphisms as polymorphic functions.

Listing 19 Interpreting Plfunm to a function (N×N→ X)(m+1)→ (N×N→ X).

Definition PPCm int aux :

PPCm n -> Vec nat (S n) * (nat -> X) -> nat * (nat -> X) :=

fun pl vl => let (l,p) := pl in

(pevl l (fst vl), fun v => snd vl (pevl p (vSnoc v (fst vl)))).

Fixpoint vp2pv (v : Vec (nat * (nat -> X)) n) m (F : nat -> X) :=

match v with

| vnil => fun i => F i

| vcons x xs => fun i => if le lt dec m i then

vp2pv xs (fst x) F (i - m)

else (snd x) i end.

Definition vpair2pv (v : Vec (nat * (nat -> X)) (S n)) :=

(vmap fst v, vp2pv (vtail v) (fst (vhead v)) (snd (vhead v))).

Definition PPCm int :

PPCm n -> Vec (nat * (nat -> X)) (S n) -> nat * (nat -> X) :=

fun i vn => PPCm int aux i (vpair2pv vn).

Correctness

The interpretation function PPCm int enables us to show that the equality implemented in (6.8)

is indeed correct for polymorphic functions represented in this setting. Note, however, that given

given (u, f) (v,g) : PPCm n and k : Vec(N×(N→X))(Sn)), pcmEQ defines an equality for values

less than u(map fst k) and v(map fst k). As such, our correctness proof only applies to functions

satisfying this property. The actual proof is straightforward and is shown in Listing 20.

6.4 Summary

Representing the behaviour of the reindexing maps of container morphisms as functions on the

natural numbers has rewarded us mainly in two ways:

A Decision Procedure for lists 93

Listing 20 Correctness of the equality functions (6.8) for piecewise-linear morphisms — vmap

is an implementation of map for vectors.

Lemma pcmEQ_ok (l r : PPCm n):

forall (k : Vec (prod nat (nat -> X)) (S n)), pcmEQ l r ->

(forall a, a < pevl (fst l) (vmap fst k) /\

a < pevl (fst r) (vmap fst k)) -> PPCm_int l k = PPCm_int r k.

Proof.

unfold PPCm_int; unfold vpair2pv; intros n l r X k H H0.

destruct l; destruct r; destruct H as [H1 H2]; simpl in *.

generalize H2; generalize H0. clear H0 ; clear H2.

rewrite (H1 (vmap fst k)). intros H0 H2;

cut (forall (A B :Set) (a a1 : A) (b b1 : B),

a = a1 /\ b = b1 -> (a, b) = (a1 , b1)).

intros. apply H;split; clear H; trivial.

apply extensionality. intros.

generalize (H2 (vSnoc a (vmap fst k))).

clear H2; vecSimpl. rewrite (H1 (vmap fst k)).

intros. destruct (vCons k); unfold vhead; unfold vtail; simpl.

destruct a0; simpl in *.

rewrite (H (proj1 (H0 a)) (proj2 (H0 a))); trivial.

intros. destruct H as [L R]; destruct L; destruct R; trivial.

Qed.

• The ability to represent a large class of functions between lists using intuitive natural

number arithmetic, instead of the less intuitive Fin data type we saw in Chapter 4.

• The ability to implement decision procedures for lists, using this arithmetic representation.

In this way, we have underscored the scope provided by the container representation, especially

when it comes to proofs about lists. More importantly, we have provided a new way of reasoning

about informal conjectures.

A limitation of our representation, however is that we can only deal with polymorphic func-

tions list(τ)n → list(τ). This, therefore, excludes a large number functions and properties.

Nevertheless, we believe we now have a better understanding of elliptic representations, which

certainly bodes well for future applications and investigations.

Chapter 7

Conclusion and Further Work

We now summarise the work in this thesis, highlighting the main contributions and areas of

further work.

7.1 Concluding Remarks

We have performed a novel study into the applications of the theory of containers to informal

reasoning. Our work was motivated by Bundy and Richardson’s original formalisation of ellip-

sis [24], and we believe we have forged new ground for such representations with our container

systems. The primary motivation for this our work was to provide a framework for representing

lists with ellipsis in the style of [24], which is amenable to automatic proofs of their properties,

using containers. However, since the bulk of the work in this setting occurred at a meta-level,

using representations like 2, we concentrated on utilising container theory to address limita-

tions of this technique in lieu of explicit elliptic portrayals as in [24]. We also recognised the

potential to develop new decision procedures for lists. These aims led us to frame the following

hypotheses:

1. Container theory provides the mathematical underpinning for elliptic reasoning, in the

style shown in [24].

2. Owing to the arithmetic representations for lists entailed in the 2 representation of [24],

and it’s corresponding container representative, it is possible to employ arithmetic deci-

sion procedures to develop decision procedures for lists.

We shall now discuss whether these hypotheses were verified.

A framework for ellipsis representation. A fundamental limitation of the ellipsis techniques

in [24, 88] was the inability to provide a unique representation for lists. We addressed this

by implementing a new pair-representation for lists, similar to the 2 representation, in a

dependently typed setting. This enabled us to restrict the domain of the function mapping

94

Further Work 95

to elements of a list — i.e. f in 2(n, f) — to the length of the list. This new represen-

tation turned out to be exactly what is provided within the theory of containers, which

confirmed container theory as the formal system which justifies elliptic representations as

in [24]. We subsequently implemented a container-based system for reasoning about lists

and demonstrated its applicability to other data structures besides lists. This was achieved

as follows:

• A formalisation of the core theory of containers. We formalised the core theory of

containers in Coq and demonstrated how container theory addresses all the limita-

tions of the ellipsis technique.

• A container-based reasoning system. The representation theorem of containers sub-

sequently provided a new, generic way of regarding polymorphic functions as con-

tainer morphisms. In the case of lists, this representation enabled us to reason about

lists using arithmetic, albeit on Fin. We subsequently developed a reasoning system

based on containers which enabled us to represent and reason about all the functions

which eluded [24, 88], among others. We also demonstrated that our container-based

system is amenable to other data types besides lists.

• A tactic for reasoning with finite types. Proofs in our container setting sometimes be-

come tedious and nontrivial, and can require non-standard elimination techniques.

To deal with this, we augmented our container reasoning system with support for

equational reasoning, which included machinery for automated proofs with finite

types. Our tactic performed automatic case analysis using defined eliminators, along

with rewriting and reasoning about contradictions and dependent inequalities. How-

ever, although our tactic was powerful enough to solve many of the theorems we

were interested in, its success depended on the number, and nature, of lemmas and

eliminators defined a priori, and coded into the tactic.

We therefore verified our first hypothesis.

A decision procedure for lists. We exploited the ability to represent and reason about lists us-

ing arithmetic to develop a new decision procedure for lists. Our result was achieved

by adapting our container-based reasoning system so as to represent and reason directly

with natural number arithmetic, as opposed to arithmetic on Fin. We subsequently im-

plemented a non-dependent container based system where we captured the behaviour of

reindexing functions of (dependent) container morphisms. This new setting not only en-

abled us to represent functions using natural numbers, but also rewarded us with the ability

to develop a decision procedure for a large class of polymorphic functions between lists.

The key to defining this class was to restrict the shape maps to piecewise-linear functions.

We gave a formal treatment of piecewise-linear functions and showed that these functions

are generally decidable. We therefore verified our second hypothesis.

Further Work 96

7.2 Further Work

We will here discuss a range of possible directions for future work.

7.2.1 Portrayal Mechanism

Our approach in this thesis has been to exploit the representation provided by containers to

derive a concise representation for polymorphic functions. This ultimately enabled us to derive

decision procedures for polymorphic functions between lists. We saw in §1.1.7 that the key to

realising the elliptic proofs in [24] was the internal representation provided by 2 — the portrayal

mechanism simply give an intuitive interpretation of meat-level 2 operations. Indeed, it was

this representation we sought to fix, not so much the system for providing elliptic portrayals.

As such, in this thesis we did not focus on explicit elliptic interpretations of our representation

system. Nevertheless, there is certainly room for an elliptic portrayal system to coincide with

our container representations. Should this be pursued, we anticipate much of the work going

into portraying the steps in our container-based reasoning system in Chapter 4 instead of those

of the decision procedure (since the latter may be less feasible).

There is, however, much room to manoeuvre when it comes to how such a portrayal system

should work. For instance, there is a choice as to whether functions should be portrayed as

rewrite rules, as in §1.1.7, or as mappings like:

rev = [a0, . . .an−1]→ [an−1→ a0].

Similar options hold for proof steps. There is also a question as to the relative intuitiveness in

indexing functions from 0, as done above and in §6.3.4, or from 1 as in [24].

7.2.2 Dealing with other Datatypes

The Presburger arithmetic, decision procedure for lists we presented in Chapter 6 cannot deal

with functions defined over nested lists. The extent to which our system can be extended to deal

with such functions is indeed worthy of investigation. For instance, we can consider extending

our representation of shape maps in §6.2 to deal with nested lists by changing the type of var to

Vec(Finn)m→ l f unm instead of Finn→ l f unm. Correspondingly, the interpretation function

evl will be given the type evl : Vec(VecNn)m→ N.

Another issue is that our decision procedure only deals with functions between lists. It

will be interesting to investigate the extent to which our decision procedure can be applied to

other data structures, besides lists. A likely starting point is to consider those data structures

for which we can define cartesian morphisms into lists. For instance, it is not difficult to see

that the underlying morphism for the function that flattens a binary tree into a list is cartesian

(see Listing 21). This suggests that one might be able to represent the reindexing maps for

container morphisms between binary trees as functions between lists, since these position sets

Further Work 97

are isomorphic. This could then pave the way for representing such data types using arithmetic

and, subsequently, development of decision procedures for them.

Listing 21 Shape and position maps for the container morphism which flattens a tree into a lists.

Fixpoint Sum (s : cTreeS) : nat :=

match s with

| sleaf => 1

| snode l r => Sum l + Sum r

end.

Fixpoint cflatten_p (s : cTreeS) : Fin (Sum s) -> cTreeP s :=

match s as e return Fin (Sum e) -> cTreeP e with

| sleaf => fun _ => phere

| snode l r => fun i => match (finsplit _ _ i) with

| is_inl i => pleft r (cflatten_p l i)

| is_inr j => pright l (cflatten_p r j)

end

end.

7.2.3 New Combination/Augmention Schemes

In §6.1, we observed that there is a mapping which reduces reindexing functions of container

morphisms between lists to functions on the natural numbers. It is possible to generate such

reductions directly from list-theoretic definitions of functions — i.e. from functions given in

terms of inductively defined lists. Given a polymorphic function H : ∀τ. List (τ)→ List (τ), we

can define the function pfun2nfun which maps H to its arithmetic representative using reduce

and Theorem 4.1 (also see Remark 4.3):

pfun2nfun : (∀τ. List (τ)→ List (τ))→ Σu : N→ N.∀ni. i < un→ N

pfun2nfun f 7→ (fst(nt2mor f), λni l. reduce(snd(nt2mor f))ni l).

Recall (nt2mor f) lifts a natural transformation f to a container morphism

Σu : N→ N.∏n. Fin(un)→ Finn.

We project the arguments of the pair, then use reduce on the second argument to get a repre-

sentation in N. Hence pfun2nfun calculates the arithmetic representative of the polymorphic

function H. It therefore seems possible that if one can augment a system as ours with sufficient

lemmas and lemma-invoking mechanisms, one can arrive at a system which decides equality of

functions (i.e. functions given in terms of inductively defined lists) explicitly, instead of using a

different (albeit, equivalent) representation for them. Success with this approach also paves the

way for the application of similar techniques to other data structures (c.f. §7.2.2).

Further Work 98

7.2.4 Diagrammatic Reasoning

Following on from our discussion in §7.2.2, we believe it possible to extend both our container

reasoning, and decision procedure, to the deal with the sort of diagrammatic reasoning proposed

by Jamnik in [57]. Recall Jamnik used an abstract notion of diagrams built from dots. For

instance, in the proof of the sum of odd numbers theorem a sequence of “lcuts” were used to

reduces the diagram until a single dot remained (see Figure 1.4 on p.10). Each lcut consisted of

an odd number of dots, and a number of “redraw rules” reduced the number of dots in an lcut at

each step.

Just as we generalised rewrite rules in [24] to container morphisms, we believe the same can

be done for redraw rules like lcuts. We can think of an “ell” as a list of odd-numberd elements,

and an lcut as a mapping between such lists. We first need a type denoting odd (resp. even)

numbers and a predicate that says all natural numbers are either odd or even:

Inductive Odd : nat -> Prop :=

| One : Odd 1

| oddSuc : forall n, Odd n -> Odd (S (S n)).

Inductive Even : nat -> Prop :=

| Zero : Even 0

| evenSuc : forall n, Even n -> Even (S (S n)).

Lemma even_or_odd : forall n, Odd n \/ Even n

Using these declarations, we can define an lcut as a container morphism mapping lists to

lists. For the shape map, we decrement by two when the input is odd, or otherwise return 0.

The position map straightforwardly follows, mapping an output position i to the input position

fs(fsi), if it exists. These definitions are shown in Listing 22.

Once we can represent lcuts as container morphisms, it should then be possible to express

these operation in natural number arithmetic. Consequently, we can use decision procedures to

reason about diagrammatic structures as we did for lists. Note, however, that we would need to

extend the system with lemmas (and lemma-invoking mechanisms) in order to use the procedure

on definitions involving Odd and Even, like ellu in Listing 22.

7.2.5 Generic Programming

We mentioned earlier that containers have been successfully used for generic programming.

Generic or polytypic programming is a technique by which functions are specialised on the

structure of the type of their arguments. By using universes (see below) to abstract over the

syntax of a class of data types, one can define functions like equality and map only once, for a

whole range of types. In [5, 81] the authors constructed universe for strictly positive and context

free types. We believe such techniques can be applied to reasoning about polymorphic functions

between lists. In this context, universes can be used to abstract over classes of polymorphic

Further Work 99

Listing 22 Shape and position maps for container morphisms modelling lcuts.

Definition ellu n :=

match even_or_odd n with

| inl a => n - 2

| _ => 0

end.

Definition ellf n : Fin (ellu n) -> Fin n :=

let s := even_or_odd n in

match s as s0 return (Fin match s0 with

| inl _ => n - 2

| inr _ => 0

end -> Fin n) with

| inl o =>

match n as n0 return (Odd n0 -> Fin (n0 - 2) -> Fin n0) with

| 0 => fun (_ : Odd 0) (H : Fin 0) => nofin (Fin 0) H

| S n0 => fun o0 : Odd (S n0) =>

match n0 as n1 return (Odd (S n1) ->

Fin (n1 - 1) -> Fin (S n1)) with

| 0 => fun (_ : Odd 1) (H : Fin 0) => nofin (Fin 1) H

| S n1 =>

fun (_ : Odd (S (S n1))) (H : Fin (n1 - 0)) => fs (fs H)

end o0

end o

| inr _ => fun H : Fin 0 => nofin (Fin n) H

end.

functions. A decision procedure for these functions can then be defined via a decision procedure

over this abstract representation.

In this section, we shall describe a candidate universe for polymorphic functions over lists,

which we investigated. The problem with our universe, however, is that it does not give an

extensional representation of polymorphic functions — i.e. any two functions which are ex-

tensionally equal do not necessarily have the same syntax. We are of the view that it might be

possible to get the desired extensionality. This, and a decision procedure for such a universe, we

believe, present interesting directions for future work, though somewhat tangential to the central

ideas presented in this thesis.

In what follows, we briefly introduce the associated ideas, then present our candidate uni-

verse for polymorphic functions. We then discuss limitations of this universe and the possible

challenges involved in defining equality in this setting. The constructions below are introduced

using the dependently programming Agda [84]. Our primary reason for moving to Agda, for

the purpose of this section, is because of Agda’s powerful mechanism for dependently typed

pattern matching, which is far superior Coq’s. For instance, some of the eliminators we needed

to define in the prequel (e.g snodeElim in Listing 12), will be derived automatically in Agda.

Further Work 100

Universes

The notion of a universe was introduced by Per Martin-Löf [74] as a means to abstract over

specific collections of data types. A universe is given by a type U : Set of codes representing

just the types in the collection, and a function EL : U → Set which interprets each code as

a type. A standard example is the universe of finite types Fin (see §2.2.1), where N acts as

the syntax for the finite types and Fin as the interpretation function EL. We have seen that

operations such as plus can be used to equip the finite universe with structure: Fin(m + n) is

isomorphic to Finm+Finn. In addition to +, the finite types are closed under other ‘arithmetic’

type constructors such as empty (Fin0), unit (Fin1) and product (Fin(n×m)).

Regular Expression Types

If we add list formation, we leave the finite universe and acquire the regular expression types.

These can be coded (with respect to an alphabet of size n) as depicted in Listing 23. From each

regular expression in the syntax, we may then compute a type which represents the actual data

type that matches it using the EL function (see below).

Listing 23 Regular expression types.

data Reg : Nat -> Set where

one : Reg n

Zero : Reg n

plus : Reg n -> Reg n -> Reg n

times : Reg n -> Reg n -> Reg n

vz : Reg (S n)

vs : Reg n -> Reg (S n)

lst : Reg n -> Reg n

The codes reveal the nature of the meta-level operation associated with them: plus is a code

for the meta-level + which is the real disjoint union of types, similarly for times. The variable

case for vz targets the most recently bound variable, while vs gives access to the variables bound

before vz. The lst code introduce lists.

The interpretation EL is a family of types indexed by codes, in a context of length n. The

context is given the type of a de Bruijn telescope [18] — i.e. a vector where the type of elements

varies with their position in the structure:

data Tel (F : Nat -> Set) : Nat -> Set where

e : Tel F 0

:: : F n -> Tel F n -> Tel F (S n)

The context needed to interpret Reg will be Tel Reg — i.e. the first element in the context must

be a closed regular expression type, the second will have access to a single variable, intended to

be interpreted by the first, the third element will have two free variables, and so on (see [5, 81]

for more details).

Further Work 101

data EL : n : Nat -> Reg n -> Tel Reg n -> Set where

void : {t} -> EL one t

, : {I J : Reg}{t} -> EL I t -> EL J t -> EL (times I J) t

Inl : {I J : Reg}{t} -> EL I t -> EL (plus I J) t

Inr : {I J : Reg}{t} -> EL J t -> EL (plus I J) t

top : {I : Reg}{t} -> EL I t -> EL vz (I :: t)

pop : {I J : Reg}{t} -> EL I t -> EL (vs I) (J :: t)

nil : {I : Reg}{t} -> EL (lst i) t

cons : {I : Reg}{t} -> EL I t -> EL (lst I) t -> EL (lst I) t

Note for i : Reg n, EL (lst i) corresponds to lists. Hence we can define list theoretic func-

tions in terms of EL. For example, definitions of ++, rev and flatten are defined in Listing 24.

Listing 24 Examples of list theoretic functions defined using EL.

++ : {t : Tel Reg n} -> EL (lst I) t -> EL (lst I) t -> EL (lst I) t

++ nil a = a

++ (x :: xs) a = x :: (xs ++ a)

rev : {t : Tel Reg n} -> EL (lst I) t -> EL (lst I) t

rev nil = nil

rev (a :: as) = rev as ++ (a :: nil)

flatt : {t : Tel Reg n} -> EL (lst (lst I)) t -> EL (lst I) t

flatt nil = nil

flatt (a :: as) = a ++ (flatt as)

A Candidate Universe for Polymorphic Functions between Lists

Using Reg, we can now define a universe for a class of polymorphic functions, which we term

the Nlist. The class of functions we consider are those that can be defined using fold for

list (c.f. §3.2.3.1). The construction of this universe is given in Listing 25. The construc-

Listing 25 A syntax representing polymorphic functions defined by folds.

data Nlist : Reg 1 -> Reg 1 -> Set where

f2nil : Nlist one (lst J)

fId : (I : Reg 1) -> Nlist I I

fsnoc : (I : Reg 1) -> Nlist (times I (lst I)) (lst I)

fcons : (I : Reg 1) -> Nlist (times I (lst I)) (lst I)

fpj : Nlist (times I J) K -> Nlist (times A (times I J)) K

fcase : Nlist I K -> Nlist J K -> Nlist (plus I J) K

ffld : Nlist I (lst J) -> Nlist (times I (times K (lst J))) (lst J) ->

Nlist (times I (lst K)) (lst J)

Further Work 102

tors again suggest the functions they represent: f2nil and fcons represent the functions []

and cons respectively; fId represents the identity function; fsnoc the function snoc, where

snoc a l = l ++ [a]; fpj projection from a domain of products; fcase represents a case func-

tion; and finally, ffld represents fold for lists. Just as with Reg, we can again encode many list

theoretic functions using Nlist, as shown below:

append : {I : Reg 1} -> Nlist (times (lst I) (lst I)) (lst I)

append {I} = ffld (fId) (fpj (fcons))

reverse : {I : Reg 1} -> Nlist (times one (lst I)) (lst I)

reverse {I} = ffld f2nil (fpj (fsnoc))

flatten : {I : Reg 1} -> Nlist (times one (lst (lst I))) (lst I)

flatten {I} = ffld f2nil (fpj append)

Interpretation

While the interpretation of Reg is a family of types, the interpretation of Nlist is a family

of functions indexed by codes, the intention being that the interpretation at a particular code

is isomorphic to the polymorphic function that code represents. This interpretation is given

by NlistInt in Listing 26. Note it is also possible to interpret Reg codes as containers and,

Listing 26 Interpreting polymorphic functions between lists, which are defined by folds.

NlistInt : Nlist I J -> {t : Tel Reg 1} -> EL I t -> EL J t

NlistInt (fId _) a = a

NlistInt (fsnoc _) (a , l) = l ++ (a :: nil)

NlistInt (fcons _) (a , l) = a :: l

NlistInt f2nil _ = nil

NlistInt (fpj f) (_ , r) = NlistInt f r

NlistInt (fcase l r) (Inl a) = NlistInt l a

NlistInt (fcase l r) (Inr b) = NlistInt r b

NlistInt (ffld l r) (a , b) = Fold (NlistInt l) (NlistInt r) a b

Fold : (EL I t -> EL J t) -> (EL (times I (times K J)) t -> EL J t) ->

EL I t -> EL (lst K) t -> EL J t

Fold u0 _ c nil = u0 c

Fold u0 u1 c (b :: bs) = u1 (c , (b , Fold u0 u1 c bs))

subsequently, the Nlist codes as container morphisms. Details are in [5, 81]. The container

interpretation for ffld was shown in §3.2.3.1.

Further Work 103

Limitations of this Representation

Following the decision procedures defined for data types in [5, 81], we can exploit these codes

and attempt to define a decision procedure for polymorphic functions, by means of a decision

procedure on the codes in Listing 25. To this end, we can consider the boolean equality test

shown in Listing 27. The equality, however, is insufficient since the Nlist codes are not exten-

sional — i.e. any two functions that are extensionally equal do not have the same code. This

is not difficult to see: observe that the identity function can be encoded, using this universe, as

fid or as:

fId2 : ∀(I : Reg 1) → Nlist (times one (lst I)) (lst I)

fId2 I = ffld f2nil (fpj (fcons)).

Another issue is that the generic equality we seek is intentional. We saw in §6.2 that rein-

dexing maps of polymorphic functions are usually given in terms of piecewise-linear functions,

and we saw in Chapter 5 that equality between such functions is usually stated extensionally.

It is not clear how to encode these piecewise-linear reindexing functions in this setting. One

may have to extend the Nlist universe or interpret it in some other, semantic universe in which

one can effectively model the breakpoints and conditions entailed in the reindexing functions.

Nevertheless, we believe this is indeed an interesting direction of future work, especially since

other people have utilised folds over algebraic data types to define decision procedures [99].

Listing 27 Attempt at a decision procedure for functions encoded by Nlist.

eq : {I J : Reg 1} -> Nlist I J -> Nlist I J -> Bool

eq f2nil f2nil = true

eq (fId J) (fId ._) = true

eq (fId ._) (fpj _) = false

eq (fId ._) (fcase _ _) = false

eq (fsnoc I) (fsnoc ._) = true

eq (fsnoc I) (fcons ._) = false

eq (fsnoc I) (ffld _ _) = false

eq (fcons I) (fsnoc ._) = false

eq (fcons I) (fcons .I) = true

eq (fcons I) (ffld _ _) = false

eq (fpj _) (fId ._) = false

eq (fpj y) (fpj y’) = eq y y’

eq (fcase _ _) (fId ._) = false

eq (fcase y y’) (fcase y0 y1) = eq y y0 & eq y’ y1

eq (ffld _ _) (fsnoc _) = false

eq (ffld _ _) (fcons _) = false

eq (ffld y y’) (ffld y0 y1) = eq y y0 & eq y’ y1

Bibliography

[1] M. Abbott. Categories of Containers. PhD thesis, University of Leicester, 2003.

[2] M. Abbott, T. Altenkirch, and N. Ghani. Categories of containers. In A. Gordon, editor,

Proceedings of FOSSACS 2003, number 2620 in Lecture Notes in Computer Science,

pages 23–38. Springer-Verlag, 2003.

[3] M. Abott, T. Altenkirch, and N. Ghani. Containers - constructing strictly positive types.

Theoretical Computer Science, 342:3–27, September 2005. Applied Semantics: Selected

Topics.

[4] M. Abott, T. Altenkirch, N. Ghani, and C. McBride. Constructing polymorphic programs

with quotient types. In 7th International Conference on Mathematics of Program Con-

struction (MPC 2004), 2004.

[5] T. Altenkirch, C. McBride, and P. Morris. Generic Programming with Dependent Types.

In R. Backhouse, J. Gibbons, R. Hinze, and J. Jeuring, editors, Datatype-Generic Pro-

gramming, volume 4719 of LNCS, pages 209–257. Springer, 2007.

[6] T. Amon, G. Borriello, T. Hu, and J. Liu. Symbolic timing verification of timing dia-

grams using Presburger formulas. In DAC ’97: Proceedings of the 34th annual Design

Automation Conference, pages 226–231, New York, NY, USA, 1997. ACM.

[7] A. Armando and S. Ranise. Constraint contextual rewriting. Journal of Symbolic Com-

putation, 36(1-2):193 – 216, 2003. First Order Theorem Proving.

[8] J. W. Backus. Can programming be liberated from the von neumann style? a functional

style and its algebra of programs. Commun. ACM, 21(8):613–641, 1978.

[9] S. Baker. Aspects of the Constructive Omega Rule within Automated Deduction. PhD

thesis, University of Edinburgh, 1993.

[10] S. Baker, A. Ireland, and A. Smaill. On the use of the constructive omega-rule within

automated deduction. In LPAR ’92: Proceedings of the International Conference on Logic

Programming and Automated Reasoning, pages 214–225, London, UK, 1992. Springer-

Verlag.

104

Bibliography 105

[11] D. Barker-Plummer, S. C. Bailin, and S. M. T. Ehrlichman. Diagrams and mathemat-

ics. In Proceedings of the 4th International Conference on Artificial Intelligence and

Mathematics, 1996. Machine GRAPHICS & VISION. AAAI Press/The MIT Press, 1995.

[12] C. W. Barrett, D. L. Dill, and A. Stump. A framework for cooperating decision proce-

dures. In CADE-17: Proceedings of the 17th International Conference on Automated

Deduction, pages 79–98, London, UK, 2000. Springer-Verlag.

[13] Y. Bertot and P. Casteran. Interactive Theorem Proving and Program Development. Co-

qArt: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science.

Springer Verlag, 2004.

[14] R. S. Boyer and J. S. Moore. A computational logic handbook. Academic Press Profes-

sional, Inc., San Diego, CA, USA, 1988.

[15] R. S. Boyer and J. S. Moore. Integrating decision procedures into heuristic theorem

provers: a case study of linear arithmetic. In Machine intelligence 11, pages 83–124.

Oxford University Press, Inc., New York, NY, USA, 1988.

[16] A. R. Bradley, Z. Manna, and H. B. Sipma. What’s decidable about arrays? In Ver-

ification, Model Checking, and Abstract Interpretation: 7th International Conference,

(VMCAI), volume 3855 of lncs, pages 427–442, Charleston, SC, January 2006. Springer

Verlag.

[17] R. Brinkmann and R. Drechsler. RTL-datapath verification using integer linear program-

ming. In ASP-DAC ’02: Proceedings of the 2002 Asia and South Pacific Design Automa-

tion Conference, page 741, Washington, DC, USA, 2002. IEEE Computer Society.

[18] N. G. D. Bruijn. Telescopic mappings in typed lambda calculus. Information and Com-

putation, 91:189–204, 1991.

[19] J. R. Büchi. Weak second-order arithmetic and finite automata. Mathematical Logic

Quarterly, pages 66–92, 1960.

[20] A. Bundy. The use of explicit plans to guide inductive proofs. In Proceedings of the 9th

International Conference on Automated Deduction, pages 111–120, London, UK, 1988.

Springer-Verlag.

[21] A. Bundy. The automation of proof by mathematical induction. In A. Robinson and

A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 13, pages

845–911. Elsevier Science, 2001.

[22] A. Bundy, D. Basin, D. Hutter, and A. Ireland. Rippling: Meta-level Guidance for Math-

ematical Reasoning. Number 56 in Cambridge Tracts in Theoretical Computer Science.

Cambridge University Press, 2005.

Bibliography 106

[23] A. Bundy, M. Jamnik, and A. Fugard. What is a proof? Phil. Trans. R. Soc A,

363(1835):2377–2392, Oct 2005.

[24] A. Bundy and J. Richardson. Proofs about lists using ellipsis. In H. Ganzinger,

D. McAllester, and A. Voronkov, editors, Logic for Programming and Automated Rea-

soning, volume 1705 of Lecture Notes in Computer Science, pages 1–12. Springer Berlin

/ Heidelberg, 1999.

[25] A. Bundy, A. Smaill, and J. Hesketh. Turning eureka steps into calculations in automatic

program synthesis. In UK IT 90: Proceedings of UK IT 1990 Conference, page 221226,

1990.

[26] A. Bundy, F. Van Harmelen, J. Hesketh, and A. Smaill. Experiments with proof plans for

induction. J. Autom. Reason., 7(3):303–324, 1991.

[27] A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The oyster-clam system. In CADE-

10: Proceedings of the tenth international conference on Automated deduction, pages

647–648, New York, NY, USA, 1990. Springer-Verlag New York, Inc.

[28] F. J. Cantu, A. Bundy, A. Smaill, and D. A. Basin. Experiments in automating hardware

verification using inductive proof planning. In FMCAD ’96: Proceedings of the First

International Conference on Formal Methods in Computer-Aided Design, pages 94–108,

London, UK, 1996. Springer-Verlag.

[29] J. Carette. A canonical form for piecewise defined functions. In ISSAC ’07: Proceedings

of the 2007 international symposium on Symbolic and algebraic computation, pages 77–

84, New York, NY, USA, 2007. ACM.

[30] C. Castellini and A. Smaill. Proof planning for first-order temporal logic. In R. Nieuwen-

huis, editor, Automated DeductionCADE-20, volume 3632 of Lecture Notes in Computer

Science, pages 235–249. Springer Berlin / Heidelberg, 2005.

[31] A. Chilipala. Certified programming with dependent types. Available online at:

http://adam.chlipala.net/cpdt/cpdt.pdf, 2010.

[32] L. O. Chua and A.-C. Deng. Canonical piecewise-linear representation. In IEEE Trans-

actions on Circuits and Systems, volume 35, pages 101–111, 1988.

[33] L. O. Chua and S. M. Kang. Section-wise piecewise-linear functions: Canonical repre-

sentation, properties and applications. In IEEE Transactions on Circuits and Systems,

volume 65, pages 915–929, 1977.

[34] L. Dennis, A. Bundy, and I. Green. Using a generalisation critic to find bisimulations

for coinductive proofs. In Proceedings of the 14th Conference on Automated Deduction,

volume 1249 of Lecture Notes in Artificial Inteligence, pages 276–290. Springer, 1997.

Bibliography 107

[35] L. Dennis, I. Green, and A. Smaill. Embeddings as a higher-order representation of anno-

tations for rippling. Technical Report NOTTCS-WP-2005-1, University of Nottingham,

2005.

[36] L. Dixon. A Proof Planning Framework for Isabelle. PhD thesis, University of Edinburgh,

2005.

[37] L. Dixon and R. Duncan. Graphical reasoning in compact closed categories for quantum

computation. Annals of Mathematics and Artificial Intelligence, 56:23–42, 2009.

[38] L. Dixon and J. Fleuriot. Isaplanner: A prototype proof planner in Isabelle. In Proceed-

ings of CADE03, LNCS, pages 279–283. Springer, 2003.

[39] P. Dybjer. Inductive families. Formal Aspects of Computing, 6(4):440465, 1994.

[40] J. D. Fleuriot. Theorem proving in infinitesimal geometry. Logic Journal of the IGPL,

9(3), 2001.

[41] A. Fugard. An exploration of the psychology of mathematical intuition. Unpublished

M.Sc. Thesis, School of informatics, Edinburgh University, 2005.

[42] A. Fusaoka and H. Fujita. Lisp programming using ellipsis notation. Journal of informa-

tion processing, 6(2):66–73, 1983.

[43] S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Decision procedures for extensions

of the theory of arrays. Annals of Mathematics and Artificial Intelligence, 50:231–254,

2007.

[44] P. Habermehl, R. Iosif, and T. Vojnar. What else is decidable about integer arrays? In

FOSSACS’08/ETAPS’08: Proceedings of the Theory and practice of software, 11th in-

ternational conference on Foundations of software science and computational structures,

pages 474–489, Berlin, Heidelberg, 2008. Springer-Verlag.

[45] E. Hammer. Reasoning with sentences and diagrams. Notre Dame Journal of Formal

Logic, 35(1):73–87, 1994.

[46] E. Hammer. Logic and Visual Information. CSLI publications, 1995.

[47] C. L. Hedrick. Learning production systems from examples. Artificial Intelligence,

7(1):21–49, 1976.

[48] J. Hesketh, A. Bundy, and A. Smaill. Using middle-out reasoning to control the synthesis

of tail-recursive programs. In D. Kapur, editor, Automated DeductionCADE-11, volume

607 of Lecture Notes in Computer Science, pages 310–324. Springer Berlin / Heidelberg,

1992.

Bibliography 108

[49] D. Hutter and C. Sengler. Inka: The next generation. In M. McRobbie and J. Slaney,

editors, Automated Deduction Cade-13, volume 1104 of Lecture Notes in Computer

Science, pages 288–292. Springer Berlin / Heidelberg, 1996.

[50] INRIA, http://coq.inria.fr/V8.1pl3/refman/index.html. The Coq Proof Asistant Reference

Manual Version 8.1, 2009.

[51] A. Ireland and A. Bundy. Productive use of failure in inductive proof. Journal of Auto-

mated Reasoning, 16:16–1, 1995.

[52] A. Ireland, B. J. Ellis, A. Cook, R. Chapman, and J. Barnes. An integrated approach

to high integrity software verification. Journal of Automated Reasoning, 36(4):379–410,

2006.

[53] A. Ireland, B. J. Ellis, and T. Ingulfsen. Invariant patterns for program reasoning. In

R. Monroy, G. Arroyo-Figueroa, L. E. Sucar, and H. Sossa, editors, MICAI 2004: Ad-

vances in Artificial Intelligence, volume 2972 of Lecture Notes in Computer Science,

pages 190–201. Springer Berlin / Heidelberg, 2004.

[54] A. Ireland, G. Grov, and M. Butler. Reasoned modelling critics: Turning failed proofs

into modelling guidance. In Abstract State Machines (ASM), Alloy, B and Z Conference

2010, 2010.

[55] K. E. Iverson. A programming language. John Wiley & Sons, Inc., New York, NY, USA,

1962.

[56] P. Jackson. Nuprl. In F. Wiedijk, editor, The Seventeen Provers of the World, volume

3600 of Lecture Notes in Computer Science, pages 116–126. Springer, 2006.

[57] M. Jamnik. Mathematical Reasoning with Diagrams: from intuition to automation. CSLI

Press, 2001.

[58] M. Jamnik and A. Bundy. Psychological validity of schematic proofs. In D. Hutter

and W. Stephan, editors, Mechanizing Mathematical Reasoning, Essays in Honor of Jörg

H. Siekmann on the Occasion of His 60th Birthday, volume 2605 of Lecture Notes in

Computer Science, pages 321–341. Springer, 2005.

[59] P. Janičić and A. Bundy. A general setting for flexibly combining and augmenting deci-

sion procedures. J. Autom. Reason., 28(3):257–305, 2002.

[60] P. Janičić, A. Bundy, and I. Green. A framework for the flexible integration of a class

of decision procedures into theorem provers. In CADE-16: Proceedings of the 16th

International Conference on Automated Deduction, pages 127–141, London, UK, 1999.

Springer-Verlag.

Bibliography 109

[61] P. Johannsen and R. Drechsler. Formal verification on the RT level computing one-to-one

design abstractions by signal width reduction. In In IFIP International Conference on

Very Large Scale Integration (VLSI’01), Montpellier, 2001, pages 127–132, 2001.

[62] M. Johansson. Automated Discovery of Inductive Lemmas. PhD thesis, University of

Edinburgh, 2009.

[63] M. Johansson, L. Dixon, and A. Bundy. Dynamic rippling, middle-out reasoning and

lemma discovery. In S. Siegler and N. Wasser, editors, Verification, Induction, Termi-

nation Analysis, volume 6463 of Lecture Notes in Computer Science, pages 102–116.

Springer Berlin / Heidelberg, 2010.

[64] S. C. Kleene. Introduction to metamathematics. Van Nostrand, 1952.

[65] I. Kraan, D. Basin, and A. Bundy. Middle-out reasoning for synthesis and induction.

Journal of Automated Reasoning, 16:113–145, 1996.

[66] G. Kreisel and J. L. Krivine. Elements of Mathematical Logic: Model Theory. Amsterdam

: North Holland, 1967.

[67] D. Lacey, J. Richardson, and A. Smaill. Logic program synthesis in a higher-order setting.

In CL ’00: Proceedings of the First International Conference on Computational Logic,

pages 87–100, London, UK, 2000. Springer-Verlag.

[68] P. Laird, R. Saul, and P. Dunning. A model of sequence extrapolation. In COLT ’93:

Proceedings of the sixth annual conference on Computational learning theory, pages 84–

93, New York, NY, USA, 1993. ACM.

[69] J.-N. Lin and R. Unbehauen. Canonical representation: from piecewise-linear function

to piecewise-smooth functions. Circuits and Systems I: Fundamental Theory and Appli-

cations, IEEE Transactions on, 40(7):461–468, Jul 1993.

[70] L. Lukaszewicz. Triple dots in a formal language. Journal of Automated Reasoning,

22(3):223–239, 1999.

[71] Z. Luo. Computation and reasoning: a type theory for computer science. Oxford Uni-

versity Press, Inc., New York, USA, 1994.

[72] E. Maclean, J. D. Fleuriot, and A. Smaill. Proof planning non-standard analysis. In

Artificial Intelligence and Mathematics, 2002.

[73] G. Malcolm. Algebraic Data Types and Program Transformation. PhD thesis, Depart-

ment of Computing Science, Groningen University, 1990.

[74] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984.

Bibliography 110

[75] C. McBride. Dependently Typed Functional Programs and their Proofs. PhD thesis,

University of Edinburgh, 1999.

[76] C. McBride. Elimination with a motive. In P. Callaghan, Z. Luo, J. McKinna, R. Pollack,

and R. Pollack, editors, Types for Proofs and Programs, volume 2277 of Lecture Notes in

Computer Science, pages 727–727. Springer Berlin / Heidelberg, 2002.

[77] C. McBride and J. McKinna. The view from the left. Journal of Functional Programming,

14(1):69–111, 2004.

[78] A. Meier. Proof-Planning with Multiple Strategies. PhD thesis, Technischen Fakultät,

Universität des Saarlandes, 2004.

[79] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with bananas, lenses,

envelopes and barbed wire. In Proceedings of the 5th ACM conference on Functional pro-

gramming languages and computer architecture, pages 124–144, New York, NY, USA,

1991. Springer-Verlag New York, Inc.

[80] M. V. Mohrenschildt. A normal form for function rings of piecewise functions. Journal

of Symbolic Computation, 26(5):607–619, 1998.

[81] P. Morris. Constructing Universes for Generic Programming. PhD thesis, University of

Nottingham, 2007.

[82] P. Morris and T. Altenkirch. Indexed containers. In Twenty-Fourth IEEE Symposium in

Logic in Computer Science (LICS 2009), pages 277–285, 2009.

[83] G. Nelson and D. C. Oppen. Fast decision procedures based on congruence closure. J.

ACM, 27(2):356–364, 1980.

[84] U. Norell. Towards a practical programming language based on dependent type theory.

PhD thesis, Chalmers University of Technology, 2007.

[85] S. Persson. Some Sequence Extrapolating Programs: A Study of Represeantion and Mod-

elling in Inquiring Systems. PhD thesis, University of California, Berkely, 1966.

[86] M. Pollet, V. Sorge, and M. Kerber. Intuitive and formal representations: The case of

matrices. In A. Asperti, G. Bancerek, and A. Trybulec, editors, Mathematical Knowledge

Management. Third International Conference, MKM, Białowieza, Poland, September 19-

21, 2004. Springer, LNCS 3119.

[87] M. Presburger. Über de vollständigkeit eines gewissen systems der arithmetik ganzer

zahlen, in welchen, die addition als einzige operation hervortritt. Comptes Rendus du

Premier Congrès des Mathématicieus des Pays Slaves, pages 92–101, 1929.

Bibliography 111

[88] R. Prince. An extension of the ellipsis technique. Unpublished M.Sc. Thesis, School of

informatics, Edinburgh University, 2005.

[89] W. Pugh. The Omega test: a fast and practical integer programming algorithm for depen-

dence analysis. In Supercomputing ’91: Proceedings of the 1991 ACM/IEEE conference

on Supercomputing, pages 4–13, New York, NY, USA, 1991. ACM.

[90] J. Richardson, A. Smaill, and I. Green. System description: Proof planning in higher-

order logic with lambda-clam. In Proceedings of the 15th International Conference

on Automated Deduction: Automated Deduction, pages 129–133, London, UK, 1998.

Springer-Verlag.

[91] M. Ridsdale, M. Jamnik, N. Benton, and J. Berdine. Diagrammatic reasoning in separa-

tion logic. In Diagrammatic Representation and Inference, 5th International Conference,

pages 408–411. Springer, 2008.

[92] A. P. Sexton and V. Sorge. Processing textbook-style matrices. In M. Kohlhase, edi-

tor, Mathematical Knowledge Management, Proceedings of the 4th International Confer-

ence, volume 3863 of LNCS, pages 111–125, Bremen, Germany, July 15–17, 2005 2006.

Springer Verlag, Berlin, Germany.

[93] R. E. Shostak. Deciding combinations of theories. J. ACM, 31(1):1–12, 1984.

[94] H. Simon. Complexity and representation of patterened sequences of symbols. Psychol-

ogy Review, 79:369–382, 1972.

[95] H. Simon and K. Kotovsky. Empirical tests of a theory of human acquisition of concepts

of sequential patterns. Cognitive Psychology, 4:399–424, 1973.

[96] A. Smaill and I. Green. Higher-order annotated terms for proof search. In G. Goos,

J. Hartmanis, J. van Leeuwen, J. von Wright, J. Grundy, and J. Harrison, editors, Theorem

Proving in Higher Order Logics, volume 1125 of Lecture Notes in Computer Science,

pages 399–413. Springer Berlin / Heidelberg, 1996.

[97] M. Sozeau. Program-ing finger trees in coq. In ACM SIGPLAN International Conference

on Functional Programming. ACM Press, 2007.

[98] M. Sozeau. Subset coercions in Coq. In T. Altenkirch and C. McBride, editors, Types

for Proofs and Programs, volume 4502 of Lecture Notes in Computer Science, pages

237–252. Springer Berlin / Heidelberg, 2007.

[99] P. Suter, M. Dotta, and V. Kuncak. Decision procedures for algebraic data types with

abstractions. In Proceedings of the 37th annual ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, POPL ’10, pages 199–210, New York, NY, USA,

2010. ACM.

Bibliography 112

[100] L. L. Thurstone and T. G. Thurstone. Factorial studies of intelligence. The University of

Chicago press, 1941.

[101] M. Urbas and M. Jamnik. Heterogeneous reasoning in real arithmetic. In A. Goel,

M. Jamnik, and N. Narayanan, editors, Diagrammatic Representation and Inference,

volume 6170 of Lecture Notes in Computer Science, pages 345–348. Springer Berlin /

Heidelberg, 2010.

[102] T. Walsh. A divergence critic for inductive proof. J. Artif. Int. Res., 4(1):209–235, 1996.

[103] D. Wang. Geometry machines: From AI to SMC. In J. Calmet, J. Campbell, and J. Pfalz-

graf, editors, Artificial Intelligence and Symbolic Mathematical Computation, volume

1138 of Lecture Notes in Computer Science, pages 213–239. Springer Berlin / Heidel-

berg, 1996.

[104] H. P. Williams. Fourier-Motzkin elimination extension to integer programming problems.

Journal of Combinatorial Theory, Series A, 21(1):118 – 123, 1976.

[105] S. Wilson, J. Fleuriot, and A. Smaill. Automation for dependently typed functional pro-

gramming. Fundamenta Informaticae, 102:209–228, April 2010.

[106] S. Wilson, J. Fleuriot, and A. Smaill. Inductive proof automation for Coq. In Proceedings

of the 2nd Coq Workshop, Edinburgh, UK, 2010.

[107] D. Winterstein. Using Diagrammatic Reasoning for Theorem Proving in a Continuous

Domain. PhD thesis, University of Edinburgh, 2004.

[108] T. Zhang, H. B. Sipma, and Z. Manna. Decision procedures for recursive data structures

with integer constraints. In D. Basin and M. Rusinowitch, editors, Automated Reasoning,

volume 3097 of Lecture Notes in Computer Science, pages 152–167. Springer Berlin /

Heidelberg, 2004.

[109] C. W. Zinn. Understanding Informal Mathematical Discourse. PhD thesis, Institut für

Informatik, Universität Erlangen-Nürnberg, 2004.

	Abstract
	Acknowledgements
	1 Introduction
	1.1 Background
	1.1.1 Proof Planning
	1.1.2 Rippling
	1.1.3 Progressing from Failure
	1.1.4 Middle-Out Reasoning
	1.1.5 Schematic Proofs
	1.1.6 Diagrammatic Reasoning
	1.1.7 Proving Theorems with Ellipsis

	1.2 Containers
	1.3 Aims of the Project
	1.4 Contributions
	1.5 Structure of the Thesis
	1.6 Summary

	2 Theorem Proving with Dependent Types
	2.1 Dependently Typed Programming
	2.1.1 Dependent Pairs

	2.2 Dependent Types in Coq
	2.2.1 Finite Types
	2.2.2 Views
	2.2.3 Heterogeneous Equality

	2.3 Program and the Russell Language
	2.4 Summary

	3 The Theory of Containers
	3.1 The Ellipsis Technique Revisited
	3.1.1 Defining Functions
	3.1.2 Proving Theorems

	3.2 Containers
	3.2.1 Container Morphisms
	3.2.2 Constructing Containers
	3.2.3 Constructing Container Morphisms
	3.2.3.1 Morphisms Given by Fold

	3.3 Containers for other Datatypes
	3.3.1 Strictly Positive Types
	3.3.2 Beyond Unary Containers

	3.4 Summary

	4 Reasoning with Containers
	4.1 Representation Theorem
	4.1.1 Formalisation

	4.2 A Container-based Reasoning System
	4.2.1 Proving Theorems about lists
	4.2.2 Reasoning about Binary Trees

	4.3 Automation for Container Proofs
	4.3.1 The FSimpl tactic

	4.4 Discussion
	4.5 Summary

	5 Piecewise-Linear Analysis
	5.1 Definition of Piecewise
	5.1.1 Related Work

	5.2 Canonical Form
	5.3 Deciding Equality
	5.4 Multivariate Piecewise--Linear Functions.
	5.5 Summary

	6 A Decision Procedure for lists
	6.1 Non-Dependent Container Morphisms
	6.2 A Decidable Class of Polymorphic Functions
	6.2.1 Linear Morphisms
	6.2.2 Extending Linear Morphisms

	6.3 Implementation
	6.3.1 Representation
	6.3.2 Proving Properties of lists
	6.3.3 Taking a Closer Look
	6.3.4 Interpretation

	6.4 Summary

	7 Conclusion and Further Work
	7.1 Concluding Remarks
	7.2 Further Work
	7.2.1 Portrayal Mechanism
	7.2.2 Dealing with other Datatypes
	7.2.3 New Combination/Augmention Schemes
	7.2.4 Diagrammatic Reasoning
	7.2.5 Generic Programming

	Bibliography

