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Abstract

A good QSAR model comprises several components. Predictive accuracy

is paramount, but it is not the only important aspect. In addition, one

should apply robust and appropriate statistical tests to the models to assess

their significance or the significance of any apparent improvements. The

real impact of a QSAR, however, perhaps lies in its chemical insight and

interpretation, an aspect which is often overlooked.

This thesis covers three main topics: a comparison of contemporary

classifiers, interpretability of random forests and usage of interpretable de-

scriptors. The selection of data mining technique and descriptors entirely

determine the available interpretation. Using interpretable approaches we

have demonstrated their success on a variety of data sets.

By using robust multiple comparison statistics with eight data sets we

demonstrate that a random forest has comparable predictive accuracies to

the de facto standard, support vector machine. A random forest is inher-

ently more interpretable than support vector machine, due to the underlying

tree construction. We can extract some chemical insight from the random

forest. However, with additional tools further insight would be available.

A decision tree is easier to interpret than a random forest. Therefore, to

obtain useful interpretation from a random forest we have employed a se-

lection of tools. This includes alternative representations of the trees using

SMILES and SMARTS. Using existing methods we can compare and clus-

ter the trees in this representation. Descriptor analysis and importance can
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be measured at the tree and forest level. Pathways in the trees can be

compared and frequently occurring subgraphs identified. These tools have

been built around the Weka machine learning workbench and are designed

to allow further additions of new functionality.

The interpretability of a model is dependent on the model and the de-

scriptors. They must describe something meaningful. To this end we have

used the TMACC descriptors in the Solubility Challenge and literature data

sets. We report how our retrospective analysis confirms existing knowledge

and how we identify novel C-domain inhibition of ACE.

In order to test our hypotheses we extended and developed existing soft-

ware forming two applications. The Nottingham Cheminformatics Work-

bench (NCW) will generate TMACC descriptors and allows the user to

build and analyse models, including visualising the chemical interpretation.

Forest Based Interpretation (FBI) provides various tools for interpretating

a random forest model. Both applications are written in Java with full

documentation and simple installations wizards are available for Windows,

Linux and Mac.
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Chapter 1

Introduction

1.1 Industrial overview

There has been an increasing push within the pharmaceutical industry to

accelerate the output of new drugs, as many of the blockbusters approach

the end of their patents. The so called patent cliff is going to impact all

big pharma at the cost of billions of USD per annum. In addition, there

has been a long term drive to decrease the length of drug discovery. The

time required to bring a drug to market takes up a large proportion of the

patent lifespan. Improvements to efficiency and throughput can be applied

to every step of the drug discovery process. The drug discovery process is

a long chain of research and development. A new drug will take anything

from 12-15 years to reach the market. This thesis covers techniques nor-

mally used in lead generation and lead optimisation, both very early stage.

Once a candidate compound has been validated using in silico methods,

experimental data must support the hypothesis. Many filters and models

exist to check for amongst other properties, bioavailability and toxicology.

It is far better to drop a compound early rather than late. Each month

in development accrues more expense which ultimately must be recouped

by a successful drug, before itself making a profit. Candidate drugs enter

animal and human trials at great cost. Each subsequent phase of testing
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adds more rapidly increasing cost. In vitro studies are carried out first in

test tubes before moving to in vivo studies in animals. The aim of these

studies is to assess the response in living models. The dosage is also mea-

sured. Human trials occur in several phases. Phase I is a small cohort

of healthy volunteers. The candidate drug and placebo are measured to

determine the effectiveness and safety in humans. Further dosage studies

are conducted based on the animal models as they are only a guide. There

can be substantially different responses between both. Phase II continues

to measures safety and efficacy. Patients are included for the first time in

Phase II, along with further volunteers, comprising a larger test population.

Phase III trial employ a larger group to assess a wider variety of patients.

The phase III trials typically continue while regulatory approved is applied

for. A candidate drug can be withdrawn at any stage if the trials highlight

undesirable toxicity, side effects or if the drug simply does not work. Each

country requires a separate license making global distribution complicated,

lengthy and expensive. In addition different clinical studies may be required

to comply with local law. Clinical studies continue after launch to ensure

no unforeseen issues arise as a wider population administer the drug. In

some cases side effects may take years to manifest and hence clinical trials

simply cannot check for these. A recent high profile case of side effects was

Merck’s anti-inflammatory drug Vioxx. It led to an increased likelihood of

heart attack and strokes. Merck voluntarily withdrew Vioxx after subse-

quent studies confirmed the link. During the clinical trials process R&D

will find a suitable synthesis for mass production and formulation for the

chosen delivery method. Only a handful of candidate drugs ever reach the

market. Previously pharmaceuticals thrived on multiple billon dollar drugs.

Most of these reach patent expiry by 2015, leaving a huge gap in revenues.

Few new drugs have reached the same profitability. In recent years it is

now harder to register a drug and more expensive. The funding bodies

2



and insurance companies demand lower prices for patented drugs and when

cheaper generics are an option they are often taken. Pharma has reacted to

the changing marketplace by reshaping R&D and expanding into new ther-

apeutic areas, e.g. personalised medicines. Companies will have more drugs

targeted at smaller patient populations, while less profitable, it removes the

dependence on a few top earners. Biotechnology companies were hailed as

the answer, many of which have now been bought by the pharma giants.

Pharma themselves have continued to merge as well forming even bigger

multinationals, which are now ready for restructuring and streamlining of

costs. All efforts are to produce more successful drugs for a fraction of the

cost.

Patents are harder to obtain and are more frequently being challenged.

The cost to bring a successful drug to market now is 800 million to 1.3 billion

dollars. Late stage attrition is a strong contributor to this high cost. Once a

candidate enters clinical trials the investment costs jump immediately. Even

once off patent there used to be little competition from the generics. Now

it is substantial. In addition, the various agencies across the globe drive

for the cheapest price. The cost and duration of development is becoming

increasingly prohibitive. All aspects of development can and should be

reviewed to improve them. The whole field of cheminformatics is essentially

aimed at aiding the early stages of drug discovery. Unlike other disciplines

in chemistry, cheminformatics is very closed aligned to the pharmaceutical

and agrochemical industries.

1.2 Cheminformatics

While not the most well-known part of chemistry, it plays an important

part in the delivery of in silico techniques. Cheminformatics was originally

defined by Brown in 1998.1 However, the subject has been in existence far

longer. Markush structures were first used in patents from 1924 for describ-
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ing multiple substituents. Wiswesser line notation, the first line notation to

describe complex molecules was created in 1949.2 The American Chemical

Society created the Journal of Chemical Documentation in 1961 which has

now morphed into the Journal of Chemical Information and Modeling. It

is no longer the only journal dedicated to cheminformatics.

Pivotal to cheminformatics’ development has been the growth and ca-

pabilities of the computer, core to any cheminformatics technique. Chemin-

formatics consists of several topics, which will be discussed briefly: chemical

data storage, substructure searching, similarity searching, clustering, dock-

ing and QSAR to name a few. Most techniques are available as both 2D

and 3D methods. 2D methods are primarily concerned with the topology

of molecules. Conformers and stereochemistry are typically ignored un-

like with 3D methods. 3D methods are typically more complex in order

to model the extra data. Studies have found 2D methods can sometimes

outperform 3D counterparts.3 This may sound counterintuitive but simpler

methodologies can yield better results with less computational effort.

1.2.1 Chemical data storage

The electronic storage of chemical data is crucial to computational tech-

niques, yet even today there are many formats with advantages and disad-

vantages for all. While it is simple to store a chemical structure as an image

file, this encodes limited chemical information in a challenging format. Ma-

chine readable files are necessary for tools to have access to the chemical

information. A common storage method for chemical structures is using a

molecular graph. A molecular graph uses graph theory from mathematics.4

A graph is a representation of nodes and edges. In a molecule the nodes

represent atoms and edges the bonds. The atoms and bonds in a molecule

are not homogeneous. There will be several types of both, which must be

captured. A limitation of graph theory is it only details the topology of a
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structure, e.g. what nodes are connected to which edges. There is no spatial

arrangement information. A sample graph is depicted in Figure 1.1.

Figure 1.1: A sample graph depicting 12 nodes and 11 edges, representing
propan-1-ol. The bond order is present on the edges.

Molecular graphs are the blueprints for the construction of SMILES

(Simplified Molecular Input Line Entry Specification).5 SMILES is a com-

mon and popular format, partly due to its concise and human readable

nature. Each molecule is represented by a single line of text corresponding

to the atoms and bonds in the molecular graph. Atoms are represented

by their atomic symbol. Due to the high frequency of hydrogen and sin-

gle bonds they are implicit. Double and triple bonds are encoded as an

equals, =, and hash ,#, symbol, respectively. Aromaticity is encoded by

using lower case, c, for aromatic carbon and upper case, C, for aliphatic.

Rings are denoted by numbering the opening and closing atoms of the ring

with the same number. Multiple rings use sequentially increasing numbers

to identify them. Branching chains are handled by encasing all branched

atoms in parentheses. Table 1.1 depicts several sample SMILES.

A given molecule can have multiple, yet valid, SMILES strings. Start-

ing at different atoms will result in a different path through the molecule.

However, the molecule is identical. This can lead to duplicate SMILES in
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SMILES Name Depiction

c1ccccc1 Benzene

CS(=O)(=O)c1ccc(cc1)C2-
=C(C(=O)OC2)c3ccccc3

Vioxx

CC(C)c1c(C(=O)-
Nc2ccccc2)c(c(c3ccc(F)-
cc3)n1CC[C@@H]-
4C[C@@H](O)CC(=O)-
O4)c5ccccc5

Lipitor

CN1CC[C@]-
23[C@H]4Oc5c3c-
(C[C@@H]1[C@@H]-
2C=C[C@@H]4O)ccc5O

Morphine

Table 1.1: Examples of SMILES
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a database, which is highly undesirable. To provide a unique representa-

tion the SMILES must be canonicalised. All variations of a single molecule

should resolve to the same canonical SMILES.6 There are now various algo-

rithms for canonicalisation. Used consistently they provide unique SMILES.

Although the molecular graph does not contain any spatial data, SMILES

can encode limited stereochemical information, such as chiral centres and

cis-trans isomers. As SMILES do not contain spatial information they are

not suitable storage for 3D methods. In docking the ligand and protein, 3D

information is paramount to the technique. 3D information is stored us-

ing connection tables which contain Cartesian coordinates. Many formats

use this method such as PDB (Protein Data Bank) and SDF (Structure-Data

File). Typically the xyz coordinates of each atom are detailed along with

each bond connections by atom ID.

Competing formats have arisen over time. One such example is the

InChI (IUPAC International Chemical Identifier).7 Designed by IUPAC

with an aim to be freely available, computable by anyone and have a human

readable quality, they encode more information than SMILES and address

some of its weaknesses, e.g. the need for canonicalisation for uniqueness.

The algorithm is a three step process: normalisation, canonicalisation and

serialisation. Redundant information is removed, atoms are uniquely iden-

tified and the output written as a string. Additionally, an InChIKey (or

hash) can be generated, which is not human readable and is a fixed 25

character string. It was introduced for practical reasons around web based

searches as the full InChI can be overly verbose. The main InChI is com-

posed of up to six layers of information comprising the core layer, charge,

stereochemistry, isotopic, fixed hydrogens and reconnected layer. The core

layer comprises three sublayers: chemical formula, connectivity and hydro-

gens. Only the chemical formula sublayer is required for a valid InChI.

Each layer, and sublayer, is delimited by a slash, /. The InChiKey is based
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on a hash algorithm. The first 14 characters determine the connectivity,

while all additional information is encoded in the eight characters after a

hyphen. The final two characters encode the InChI version and a checksum.

The InChI and InChIKey for Lipitor is shown in Figure 1.2. While many

vendors have added InChI support to their applications they have yet to

receive widespread use over SMILES. SMILES have been the dominant 2D

data format for many years. An OpenSMILES specification is being drawn

up to address the original shortcomings.8

InChI=1S/C33H35FN2O5/c1-21(2)31-30(33(41)35-25-11-7-
4-8-12-25)29(22-9-5-3-6-10-22)32(23-13-15-24(34)16-14-23)-
36(31)18-17-26(37)19-27(38)20-28(39)40/h3-16,21,26-27,37-
38H,17-20H2,1-2H3,(H,35,41)(H,39,40)/t26-,27-/m1/s1
OUCSEDFVYPBLLF-KAYWLYCHSA-N

Figure 1.2: InChI and InChIKey for Lipitor.

Complementing SMILES are SMARTS, SMiles ARbitrary Target Speci-

fication,9 a query language to search compound collections. Similar notation

to SMILES is used, such as bond notation. Additional syntax is required to

capture regular expression patterns. Carbon can be matched with its atomic

number, [#6], aliphatic or aromatic carbon, [C,c] or the atom wildcard, *.

Connectivity can be specified using [CX4], where the carbon must have four

bonds. Carboxylic acid is represented as [CX3](=O)[OX2H1], a carbon with

three bonds, connected via a branched double bond to an oxygen and to an-

other oxygen. The second oxygen has two bonds, one of which connects to a

single hydrogen. Logical operators of and, ;, and or,,, are available to form

patterns such as a primary amide: [N;H3;+][C;X4], charge represented

by + or -. SMARTS therefore represent a powerful yet flexible query lan-

guage in which to encode chemical queries. SMARTS are routinely used in

substructure searching, fragment based approaches, scaffold building and

combinational chemistry. SMARTS are more complicated than SMILES,

but encode more information, and hence are typically more verbose. Table

1.2 depicts various SMARTS examples.
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SMARTS Name Depiction

[CX4] Alkyl carbon

[CX3]=[OX1] Carbonyl group

[$([CX3]=[OX1]),-
$([CX3+]-[OX1-])]

Carbonyl group,
either resonance
form

[#6][F,Cl,Br,I] Carbon attached
to a halide

Table 1.2: Examples of SMARTS
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The plethora of chemical formats now available can pose a barrier, es-

pecially as commercial vendors typically introduce their own as well (e.g.

oeb from OpenEye and moe from the Computing Computing Group). Var-

ious conversion tools exist. The best known is open Babel. However, some

formats are less formalised than others leading to incorrect conversions.

1.2.2 Substructure searching

Often a database of compounds needs to be searched. Using either SMILES

or SMARTS, depending how precise the query is, this can be quickly achieved.

Many search methods already exist within graph theory. Substructure

searching is essentially comparing two graphs to see if the query graph is rep-

resented in the other. This is known as subgraph isomorphism. Established

subgraph searching methods perform poorly in large chemical databases, as

they are exhaustive searches. A two step process is now used, in which the

first step removes the majority of query compounds, leaving a minority for

the exhaustive subgraph matching. A binary representation of the molecule

is used, as binary calculations can be performed very efficiently. A chemical

dictionary is used to represent the structural features present in a molecule.

If a given feature is present a 1 is entered to the bitstring, otherwise a 0.

In order for the molecule to pass onto subgraph matching the bitstrings

must match. Therefore, as soon as differences appear in the bitstring the

compound is discarded, as it will not match. Using the reduced database

the subgraph isomorphism search is executed. It belongs to a class of prob-

lems known as NP -complete. NP -complete problems are characterised by

an exponential relationship between the amount of time required and the

size of the problem. This is because they are an exhaustive or brute-force

approach. Therefore, it is prudent to avoid them when possible.
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1.2.3 Similarity searching

Substructure searching is useful but often we do not have a complete query

or want to find an alternative structure. Similarity searching is based on

the similar property principle that states similar structure often leads to

similar properties.10 Therefore, the ability to find similar compounds is of

interest. SMARTS could be constructed to become increasingly fuzzy, but

to capture all possibilities is non-trivial. Sometimes only a small fragment

of interest is known and one needs to find similar compounds. When dealing

with 3D structure, similar compounds are more relevant than substructure

matches, as the conformation becomes increasingly important. 2D similarity

is computed by using the bitstrings used for substructure searching.

Molecular fingerprints are the bitstring representation of molecules us-

ing binary values.11 Two flavours exist, the use of a fragment dictionary

and hashed fingerprints. Fragment dictionaries use a predetermined list of

structural features to represent each bit. Thus, you can map back to the

structural element from the bitstring. This can make interpretation more

accessible. Using hashed methods a predefined dictionary is not required, an

advantage as any fragment present will be encoded. Using a dictionary you

control what fragments are available and therefore can bias the fingerprint.

Hashed fingerprints are unique per dataset and not readily interpretable in

the same manner as a dictionary method. Fingerprints are now a popu-

lar basis for descriptors, even though their conception was never intended

for this. 2D fingerprints were originally developed to accelerate substruc-

ture searching algorithm performance.11 There is no intrinsic reason why

they should perform well as descriptors. The good performance is likely

because the molecule’s properties and biological activity are dependent on

the features encoded by the fingerprint.

A similarity coefficient is required to compare the bitstring representa-

tion of molecules. There are numerous similarity coefficients available. One
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of the most common is the Tanimoto (or Jaccard) coefficient. It can be

expressed as SAB,

SAB =
c

a + b − c
(1.1)

where a are the bits sets in that target structure, b the bits set in the

database structure and c the bits set common in both structures. The result

is a value between zero and one, where zero is no similarity and one an exact

match. Results can then be sorted or restricted based on this measure. In

addition to the other coefficients used in other disciplines similarity can also

be calculated via compression.12

1.2.4 Clustering

Cluster analysis is useful for large data sets. Clustering aims to group sim-

ilar compounds together. The similarity of the group members could be

activity, therapeutic target or mode of action depending on the descriptors

available. Typically clusters are made based on distance measures between

other members of the data set. Most methods are also non-overlapping;

each member belongs to only one cluster. Two types of methods are com-

mon: hierarchical and non-hierarchical. Hierarchical methods compare all

members to each other. They create clusters of decreasing size, with each

smaller cluster being a subset of the larger cluster. They are much like a

decision tree in this respect, especially as a dendrogram is used for visual-

isation. Unlike a decision tree the clusters start as single compounds and

grow as members are reorganised from the bottom up. Ward’s method is

based on distance from one member to all others with the aim of minimising

variance, without a dendrogram.13 The user often needs to pick the number

of required clusters. This can be done manually retrospectively or cluster

level selection methods now exist to determine a balance of cluster num-

ber and tightness of the clusters. The Jaccard statistic is used to compare
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cluster groupings. Non-hierarchical clustering is normally done using the

Jarvis-Patrick method.14 The data set is only read once in this method.

The first compound forms the first cluster. The second joins if a criterion is

met otherwise it forms a new cluster. Hierarchical clustering allows multiple

comparisons of all data points. A drawback of this method is the presence

of singletons, clusters with one member. By altering the rules for joining or

making a new cluster the number of singletons can be reduced.

1.2.5 Docking

Docking is typically used to model how a given set of ligands would interact

with a protein. Many drugs have protein targets and understanding their

interaction is key to designing a potent compound. This is a 3D experiment

where the conformation of the ligand in the protein pocket, or binding site,

is explored to find the most energetically favourable pose. Protein structures

are not fixed. The presence of a ligand will by design alter the conformation

of the protein. This may be key in allowing the ligand to bind. Accurate

protein behaviour is important to modelling realistic binding. The solvent

of the system should also be taken into account as gas-phase simulations are

not representative of a biological system. Ideally an experiment will start

with a known crystal structure to which a theoretical ligand will be bound.

A sample docking of the actual structure and best pose is shown in Figure

1.3. Initial methods assumed rigid-body structures, which is not ideal. More

modern techniques allow flexible docking of both protein and ligand giving a

more accurate representation. Flexible docking is far more computationally

expensive, especially when a large set of ligands is used. Docking is a

challenging technique as there are many hurdles. The crystal structure of

the protein is the interpretation of the original crystallographer. Protein

structures devised from homology modelling are even more subjective. If

the protein structure is incorrect expecting reasonable binding energies is
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unrealistic. The binding energy represents the non-covalent interactions

between the ligand and protein. A force field approach would use van der

Waals and electrostatic interactions between all atoms of both molecules to

predict the binding energy.

Figure 1.3: Docking example. Only the atoms in the box are used for
calculation purposes. The red molecule is the crystal structure and blue the
best docked pose.

1.3 Quantitative Structure-Activity Relation-

ships

QSAR (Quantitative Structure-Activity Relationship) is the focus of this

thesis. It was first used in the seminal work by Hansch15,16. Hansch devised

an equation relating descriptors of electronic properties and hydrophobicity

to biological activity.
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log

(

1

C

)

= k1 log P + k2σ + k3 (1.2)

where C is the concentration of compound needed to produce a standard

response in a given time. log P is the octanol-water partition coefficient

and σ is the Hammett substitution parameter. Hansch also proposed that

activity was parabolically dependent on log P :

log

(

1

C

)

= −k1 (log P )2 + k2 (log P ) + k3σ + k4 (1.3)

The reasoning for parabolic dependence on log P was the compound

hydrophobicity should not be so low as not to cross the cell membrane, or

so high that once in the membrane it remains in situ. Electronic parameters

are important in determining activity. The Hammett parameters come from

Equations 1.4 and 1.5. The equations quantify related compound reaction

rates and positions of equilibrium.

log

(

k

k0

)

= ρσ (1.4)

log

(

K

K0

)

= ρσ (1.5)

where k is the rate and K is the equilibrium constant for a particular sub-

stituent relative to a reference compound (typically hydrogen, corresponds

to k0 and K0). Hammett used the hydrolysis of benzoate esters to measure

reaction rates and ionisation constants of substituted benzoic acids for equi-

libriums. The parameter σ is determined by the nature of the substituent

and whether is is meta or para to a group on the aromatic ring. The reac-

tion constant ρ is fixed for a particular process. Since Hammett’s original

work17 there have been various advances.18

Modern QSAR is more ambitious in the number and variety of descrip-
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tors considered. There are three components to a QSAR model: the data,

how one represents the data and the statistical technique chosen to find a

relationship between them. All three affect the overall model produced. All

models should be thoroughly validated to ensure they are predictive. While

the classic QSAR dataset is small (about 30 compounds) it is now widely

acknowledged that this can be too small.19 One cannot expect to find a

relationship from so few datapoints. 60 compounds has been suggested as

the minimum size for a dataset.20

Tens of thousands of descriptors can be readily generated in silico. On

first inspection one may think more descriptors means an improved model.

However, in reality the noise and cross-correlation of the descriptors can

confuse the learning algorithm. Better performance can be achieved with a

smaller number of descriptors. Indeed techniques exist to perform attribute

selection before building the primary model as increased descriptors can im-

pact the model generation significantly. Some machine learning techniques

inherently perform this step.

Popular algorithms for QSAR are decision trees, neural networks, genetic

algorithms, support vector machine (SVM), partial least squares (PLS) and

ensemble methods, e.g. random forests. Further details of these algorithms

is detailed in Chapter 2. The literature is full of examples of all these

algorithms on various targets and various comparisons. Although no modi-

fication to the algorithm is required, many algorithms have had some mod-

ification, for example making neural networks more interpretable21,22, con-

structing chemical kernels23,24 for SVM and multiple variations on PLS25,26.

Recently, several articles have questioned the usefulness of QSAR, for

example, when excellent models in terms of q2 (defined in Chapter 2) can

be found between number of brooding storks and newborn babies (Figure.

1.4).27 How can we expect QSAR to find meaningful chemical relationships

when, it seems, anything can correlate? The key is not changing the tools,
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but ensuring they are used correctly. Larger data sets and interpretable de-

scriptors, are just two areas for improvement. The use of multiple statistics

to measure the model, not just q2 is important, as a single statistic can be

misleading. Rigorous statistics should be used to compare techniques. The

community must push best practices to enable further advances in the field.

Figure 1.4: A plot of the numbers of pairs of brooding storks and new-
born babies in West Germany from 1960 to 1985. Representation of
the data as a correlation plot (Inset). With permission from Springer
Science+Business Media: Journal of Computer-Aided Molecular Design,
QSAR: dead or alive?, 22, 2008, 82, Arthur M. Doweyko, Figure 1,
c©Springer Science+Business Media.

QSAR is analogous to QSPR (Quantitative structure-property predic-

tion). We show a QSPR example later when we predict solubility as part of

the solubility challenge organised by the Journal of Chemical Information

and Modeling. Solubility is an important property of a drug, but hard to

estimate both experimentally and computationally. It is the ability of a sub-

stance to dissolve in a solvent. Drugs need to be water soluble in order to be

orally bioavailable, which is the preferred method of administration. Drugs

which are not water soluble cannot be tested in biological assays, have poor

pharmacological profiles and tend to precipitate in storage.28 Solubility is

one of the contributing factors to the high attrition rates in drug discovery,
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which must be reduced. Current computational models for solubility can

have an error of an order of magnitude. This is compounded by a lack of

reliable and reproducible experiment data.

Drug discovery is a multi-variate problem. For example, while one can

create a model for activity, it is useless if the compounds do not have a

suitable solubility. Even once these are overcome, other obstacles will likely

challenge the path to successful registration. Many factors contribute to sol-

ubility, making prediction challenging. These include lipophilicity, number

of hydrogen bonds formed in solvent, the ability to form intramolecular hy-

drogen bonds, the ionisation states of functional groups and the properties

in crystal form.29

The field, in general, has seen numerous advances over the last few

decades especially in QSAR, mainly from 2D all the way to 6D. Admittedly

2D and 3D are the most commonly used. 2D QSAR uses descriptors based

on the 2D topology of the molecule. This can include 3D values such as vol-

ume or surface area. However, these values are typically calculated without

multiple conformers and possibly without 3D coordinates if SMILES are the

input data format. 2D QSAR uses machine learning algorithms to find a re-

lationship between the descriptors and activity. 3D QSAR has two popular

flavours, Comparative Molecular Similarity Indices Analysis30 (CoMSIA)

and Comparative Molecular Field Analysis (CoMFA).31 CoMFA attempts

to find a correlation between activity and 3D shape, electrostatics and hy-

drogen bonding. The biologically active conformation for each molecule is

required. Each conformation has molecular fields generated. The fields are

calculated with the molecule in a lattice, thus allowing comparison to all

other molecules. Typically electrostatic and steric probes are used at each

defined point within the lattice. PLS is used to analyse the data generated

from the lattice. The coefficients obtained from PLS allow 3D contour plots

to be generated on the lattice. The contours indicate regions where charged
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groups or steric bulk can affect activity (both in a positive and negative

fashion). CoMSIA was developed after CoMFA and addresses some of its

drawbacks.

The fourth “dimension” in the paradigm is sampling and includes the

sampling of conformation, alignment, pharmacophore sites and entropy.32

The composite information coming from each of these sampled property

sets is embedded in the resulting QSAR model. Most of the other nD-

QSAR methods consider each of these properties, which are sampled as

individual dimensions in their QSAR studies. Hence one would get a 5D

QSAR33 method if conformational sampling is included, and a 6D QSAR34

approach if both conformational and alignment samplings are considered.

1.4 Pragmatic programming

Computational tools have advanced both commercially and from open source

projects. A range of programs are now available to assist from various com-

mercial suppliers. One of the most useful features is access to an application

programming interface (API), as invariably one always wants to do some-

thing slightly outside the scope of a program. Weka20 is a machine learning

workbench; Marvin35 allows for the sketching and visualisation of molecules.

Both programs are written in Java enabling them to work cross-platform.

NCW and FBI, the two packages which result from this thesis were possible

through the availability of the API for Weka and Marvin. Without the API

a huge amount of additional coding would of been required. In addition,

these tools have already been validated by the community. NCW and FBI

are discussed in Chapters 5 and 4 in more detail.

Weka is an open source application that allows us to modify the source

if necessary or extend the API. Marvin is not open source but the API

is mature and was capable of accomplishing our tasks. The modern day

computational chemist or cheminformatician requires a strong grounding in
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computer science to benefit from all the tools available. Indeed, chemin-

formatics has seen a explosion of software packages and web services. This

is only set to rise as Research Councils encourage open source publication

of work they have funded. Some programs have gone on to form commer-

cial spin outs from universities. Some programs funded over the long term

have become very successful, Weka is an example, first introduced in 1993.

From the cheminformatics world KNIME36 is becoming increasingly popu-

lar as an open source alternative to Pipeline Pilot.37 It optionally runs Weka

and use commercial plug-ins from Schrödinger38 who part fund its ongoing

development.

Producing programs as a result of a research projects can be problem-

atic, as once complete they often are left unmaintained. Many such projects

were seen during this research. This was one reason for the introduction

of NCW to encapsulate the in-house code built up over the years into a

single maintainable package. The pragmatic programming approach also

aids this.39 There are three principles to follow: version control, testing

and continuous integration. First, a collection of source files is no good to

anyone; documentation, compilation instructions and any dependencies are

required. Version control is a repository of source code (or any file) which

keeps a record of all the changes to a project. The repository’s ability to

compare and revert to older revisions is very useful, as well as the simple

fact that all the required files are in one place. Popular version control

programs are subversion40,41 and git42; both follow a different methodology.

Second, how can one know what code is supposed to do? Documentation

is normally thin, rarely extensive. Unit tests provide the programmer with

some confidence in the code, but third parties can view unit tests as sam-

ple code usage. Unit tests enable code verification and validation. In Java

the unit test is written in a separate source file and tests public methods

within the class. Tests in Java are known as JUnit tests. Third, contin-
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uous integration allows repetitive deployment tasks to be automated and

performed by a schedule and on demand. CruiseControl is a popular open

source choice.43 Once configured it detects any change to one’s source con-

trol repository then checks out the latest code, builds it, running any tests

as well. Not only does this save the developer time performing extra steps

(which often would not be carried out), it can highlight errors very quickly;

from test failures to missing dependencies on the build machine. Compila-

tion is always simple on the developer’s machine. The clean build machine

is used to highlight hidden dependences. Both NCW and FBI follow these

three pillars of software development. In addition, CruiseControl can auto-

mate packaged installers using IzPack. IzPack is a Java based GUI wizard

installer.44 Once CruiseControl has compiled the basic source IzPack creates

an installer. CruiseControl also packages it ready for easy deployment on

Windows, Mac and Linux. After each source change everything is deleted

and built from scratch, ideally ending with one’s deployment files ready to

go, or an email highlighting the error and modification to the source since

the last successful build. This is far quicker than a developer could do,

saving time and allowing others to access the compiled code easily.

1.5 High Performance Computing

To generate large numbers of QSAR models more than a single workstation

is required. For a combination of reasons including data set sizes and al-

gorithm complexity, model generation time is increasing. The use of High

Performance Computing (HPC) is prevalent within science already. Within

Chemistry, molecular dynamics and ab initio calculations are common tasks

for HPC. HPC clusters can readily generate large numbers of QSAR mod-

els. To take advantage of computational advances algorithms are being

written with parallel coding. The use of parallel programming standards

can reduce computation on multi-cores computers which are the de facto
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standard now. Previously, HPC has utilised parallel computation across

physical computers. This requires rewriting your software and having a

cluster with suitable parallel connectivity. The latest parallel advances re-

late to the same hardware, not clusters. However, merging both forms of

parallelism is possible and advantageous. Universities and industry alike

both have HPC facilities available for researchers. HPC is dominated by

the Linux operating system. Most HPC codes were never written for Win-

dows. Scientific computing is firmly a task for Linux. Queuing systems

are available for HPC as many users will want access to the compute re-

source. Sun Grid Engine is a well known example. It enables users to

submit jobs to the queue and it will process them according to priority,

hardware requirements and resources available. Traditional HPC is carried

out on large, purpose built, homogeneous clusters. This typically represents

a large investment from the institution, but has defined outcomes (in terms

of compute ability). More recently a different model, Grid computing, has

become popular. Grid computing varies from HPC as it does not rely on

dedicated resources. The key concept of Grid computing is a dynamic pool

of resource that is constantly changing for various reasons. With this set

up queues are handled differently and rules are in place for when non dedi-

cated resource is being used. The appeal of Grid computing is the ease at

which the pool size can grow by utilising existing hardware. The standard

workstation today is more powerful than dedicated HPC cluster nodes only

a few years ago. However, after 5pm these workstations sit idle, wasting

electricity and CPU cycles. Grid computing enables you to tap into this

resource. From a cost perspective this is an attractive route to increase

total compute resources. Condor is a popular program to manage a grid

clusters. Grids are not bound by geographic location, unlike HPC which

tend to represent a physical set of hardware. BOINC, another grid sched-

uler, runs many public research projects on volunteer computers across the
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world. Using Condor one can achieve similar global pools.

Computational hardware and software develop at astonishing rates, and

continue to do so. In order to exploit these advances our scientific software

must make use of these developments. There is a cost with parallel or sim-

ilarly advanced coding paradigms - they are increasingly complex to write.

One requires a firm understanding of the base language before attempting

to parallelise code. In this respect one needs to be a more accomplished

programmer to fully leverage the resources available. Although challenging,

the return is impressive. GPUs (Graphical Processing Units), another form

of parallelism on GPUs opposed to CPUs can achieve speed improvements

of one hundred fold.

1.6 Summary

QSAR needs to remain in favour with cheminformaticians. This can be

achieved by using appropriate statistics that correctly represent the data

and exploiting the chemical insight within the model. Suitable statistics is

a matter of good practice and not using any one measure to determine how

useful a model is. The presence of readily available interpretation would be

desired by any modeller. Robust statistics and reliable interpretation will

lead to greater confidence in models. This is not to say models are perfect

predictions, they are not. However, if the one has chemical insight available

and a measure of confidence then an informed decision can be made based

on the data.

In the following chapters we will test various hypotheses. We will assess,

by means of multiple comparison statistics, if random forests offer competi-

tive predictive ability to support vector machine using multiple data sets. In

order to assess multiple classifiers, data sets and parameters in a timely fash-

ion high performance computing schedulers will be employed. It is already

known that random forests are interpretable. However, the practicality of
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accessing this interpretation has received less attention. The volume of 100

trees makes manual interpretation unattractive. We will investigate tools

to assist in dealing with this number of trees. The TMACC descriptors

have demonstrated predictive ability. They are interpretable but this has

not been validated in detail. We will retrospectively test data sets to see if

the TMACC interpretation matches that reported in the literature.
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Chapter 2

Methods

2.1 Learning classifiers

While QSAR has a relatively long history for a computational method, mod-

ern QSAR borrows directly from the machine learning techniques of data

mining. Neural networks and SVM are two such examples. The goals of

QSAR and data mining do not overlap entirely. While both are concerned

with generating a model to explain an unknown relationship, only QSAR

has the secondary goal of model interpretation. The inner workings of a

model based on chemical insight are invaluable, more so than mining credit

card spending habits, for example. The ability to interpret is specific to

the model. Some are straightforward; others are not. This would not be

a primary concern when a new technique is designed. However, for use in

drug discovery it is tremendously useful. There has been lots of work inter-

preting learning classifiers, e.g. neural networks, that were not interpretable

originally.21 It is arguable that interpretation is more important than im-

provements in prediction accuracy. Next, the various learning classifiers

used in this thesis will be discussed.

25



2.1.1 Decision tree

The decision tree,45 also known as recursive partitioning, is essentially a

collection of decision stumps. Each stump is a split of the instances available

according to the attribute with the greatest purity. The purity for a given

attribute is the fraction of correctly classified instances. In the full tree each

split results in two subsets of instances. Both of these are now split again on

the purest attribute. This continues recursively, until a stopping criterion

is met, typically a minimum number of instances. The splits are known as

branches, while the collection of classified instances is a leaf. The tree is a

collection of both. Afterwards a pruning algorithm is applied, which reduces

the tree to the core components. The result is typically smaller than the

original tree, which helps to reduce overfitting. Duplicate branches and/or

leaves can be removed during this process and the tree can have a more

lop-sided appearance. A decision tree modelling Lipinski-like rules46 can be

seen in Figure 2.1.

Figure 2.1: An example decision tree modelling Lipinski-like rules. Molecu-
lar weight (MW) should not exceed 350. The octanol-water partition coef-
ficient (logP) should be below four. Hydrogen bond donors (HBD) should
not exceed five. Hydrogen bond acceptors (HBA) should not exceed eight.
Note the classifications of active or inactive refer to meeting Lipinski rules,
not molecular activity.
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Once a tree is built it can be used on external data to produce a classifi-

cation and a set of rules determined by the path travelled through the tree.

More than two splits per branch is possible. In Weka20 only two splits per

branch are allowed. However, multi-classification problems can be solved.

Due to the construction of the tree, the time to generate it can be predicted

in advance.

2.1.2 Ensemble methods

To improve the performance of single classifiers, ensemble or meta ap-

proaches have been developed. Of note are bagging, see section 2.1.3, boost-

ing, see section 2.1.4 and stacking, see section 2.1.5. The premise behind

the technique is that 100 experts will, on average, provide a better answer

than a single expert. If there are disagreements the majority and other

methods can be used to determine the overall ensemble answer. There has

been much research into how these techniques work.47–49 Some results have

proved difficult to explain, for example adding random variance to bagging

will improve the performance. Boosting has been the subject of extensive

analysis and not until its close relation to additive learning became appar-

ent was it understood.50 Bagging and boosting are concerned with using

the same classifiers for the whole ensemble, whereas stacking can mix any

number of different classifiers together. Both approaches work well, as one

would expect by repeating the same technique multiple times or combining

multiple results together. It should be noted that each replica is unique in

some fashion. In bagging different data is used for each classifier. Stacking

is also appealing, as there is no single silver bullet for the optimal classifier.

It is widely accepted that one must try a selection of classifiers. However, as

a rule of thumb certain techniques such as SVM and random forest generally

perform well. There is always the exception, as demonstrated in Chapter 3,

where a single decision tree outperforms several more advanced techniques,
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including SVM and random forest.

The prediction error of an ensemble is related to the error of the indi-

vidual classifiers:

MSEEnsemble =
1

N
MSE (2.1)

where MSE is the average mean squared error, MSE of individual mem-

bers and N is the number of members in the ensemble. As the number

of members increases the theoretical error is smaller than that of a single

member.51 Increasing N indefinitely will not yield constantly improving ac-

curacy; the improvement may become very small. In addition increasing

the ensemble size will increase compute time, which may be undesirable.

The error of an individual member can be expressed in bias and variance:

MSE = V ariance(θ̂) + Bias2(θ̂) (2.2)

where θ̂ is a estimator of the quantity θ. Model bias decreases as model

variance increases. This would seem reasonable. As the model becomes

more complex, the bias towards any single instance will decrease. There

is a trade-off between these two functions. Ideally, both should be low.

However, as one adds data to reduce the bias, the variance will increase. The

ideal model will balance both functions, but still maintain good predictive

power and avoid overfitting. Ensembles achieve predictive improvement by

reducing the variance in their members and leaving the bias unaltered. By

taking advantage of the bias and variance trade-off the ensemble can obtain

a lower prediction error than any single member.

2.1.3 Bagging

While trees offer relative straightforward interpretation, they are less ac-

curate than state-of-the-art techniques, such as SVM. Ensemble techniques
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such as bagging offer improvements over a single classifier. Bagging is a

simple, yet effective approach. One creates n bags of the original data set

by sampling with replacement, thus allowing the same instance into the

same bag. With each of the n unique bags, one builds a model using any

chosen classifier, e.g. a decision tree. For each instance, there are n predic-

tions and a majority vote decides the overall classification. One drawback

of meta techniques is the increase in model generation time. This exam-

ple takes n times longer than a single tree, but will build a more predictive

model. This is an example of Occam’s razor,52 where one must balance per-

formance with accuracy. Bagging lends itself to parallelism via the many

methods now available in computer science, such as threading and grid

computing. Bagging is depicted in Figure 2.2.

Figure 2.2: Overview of bagging. The training data set is used to generate
ten re-sampled data sets known as bags. Each will be unique. A classifier
is built for each bag. Different data ensures different models. A majority
vote across all classifiers determines the ensemble prediction. Ten bags are
for depiction purposes. Breiman used 50 in his original study, but found a
lower number, could be optimal.53

2.1.4 Boosting

Boosting is a technique developed after bagging. It is widely reported to

outperform bagging.54 It works differently to bagging. A model is built

using a chosen classifier. Each instance is assigned a weight depending on
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how hard it was to classify correctly. Subsequent iterations involve improv-

ing the existing model by focussing on the instances poorly predicted in

the previous iteration. With each iteration the model improves across the

data set. There are various flavours of boosting, but all follow this general

premise. Freund and Schapire were the authors of the original work known

as AdaBoost.55–57. Weak learners are used in boosting.58 Weak learners are

simple learning methods. The simplest decision tree is a decision stump,

just one split. Boosting is very effective at improving the performance of

decision stumps. Boosting does not work when the base learning is already

successful at predicting the data as there is little or no error to optimise.

Many comparison studies have focussed on bagging and boosting. Work by

Dietterich shows that with little classification noise boosting outperforms

bagging. However, when substantial noise is present bagging is superior.47

Any classifier can be boosted, but it is not always feasible, as is the case

with SVM. Diao et al. used only important instances, as determined by

active learning, to be included in the training data.59

2.1.5 Stacking

Stacking is another ensemble method.60,61 Unlike bagging and boosting it

is not restricted to using only one classifier for model building. Instead

a selection of classifiers can be used in order to benefit from the different

learning schemes. The overall classification reflects the combined predictions

of classifiers. This often leads to better performance than a single classifier.

2.1.6 Random forest

Random forest combines bagging and the random subspace method for de-

cision forests.62 The trees in a random forest differ to those previously de-

scribed. First, only a random subset of attributes is available at each split

point to determine purity, unlike all attributes in a typical tree. This can
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be viewed as built-in feature selection, even though attributes available are

randomly selected. Second, no pruning takes place. Third, in Weka’s im-

plementation there is no stopping criterion, leading to large, overgrown and

overfitted trees. In later versions of Weka a maximum tree depth option

was introduced allowing some degree of control over tree size. The result

of these changes leads to a tree that is substantially larger than using the

regular decision tree algorithm, even on the same data set. The tree is ar-

guably overfit as the terminal leaves contain only a single instance. The lack

of pruning leads to a very bushy structure. The size reduces the usefulness

of the tree, as it is more complex to interpret.

Random forest is essentially bagging using decision trees with the mod-

ified trees. A random forest does outperform bagging with decision trees,

see Chapter 3. The increased size of the trees in combination with the ran-

dom availability of attributes is behind its improved predictive power. A

forest construction is depicted in Figure 2.3. Multiple implementations of

random forest are now available.63–66 All are based on an ensemble of trees.

Brieman’s forest67 is perhaps the most well known and used.

Figure 2.3: Overview of a random forest. Bootstrap samples are modelled
using individual trees. The overall classification is based on a majority vote
by the trees. The tree construction varies from standard decision trees and
hence this is not bagging with decision trees.
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2.1.7 Support Vector Machine

SVMs are not bioinspired, in contrast to trees or neural networks. While

SVMs achieve excellent predictive power, they are not simple to interpret,

and little work has been done in this area.68 They are popular in a variety of

disciplines as they perform well on various data sets. The drawback of this

method is the model build time, due to the quadratic programming step of

the algorithm for building a SVM. By nature they avoid local minima, thus

aiding predictive power. Like most classifiers, researchers have modified

SVMs to improve them. Most of this work has been focussed on the kernel,

either creating new or modifying the common radial basis function (RBF)

or Polynomial kernels.

Vapnik is credited with the original work on SVMs.69 SVMs work effec-

tively on both linear and non-linear problems. The SVM creates a hyper-

plane to split the data as accurately as possible, as shown in Figure 2.4.

This is not a simple linear separation as by use of a kernel-trick the SVM

transforms the feature space of descriptors. The linear hyperplane actually

represents a nonlinear relationship of the data. This transformation is one

of the problems of interpreting the model. Each kernel produces a different

transformed feature space and thus several should be applied to find the op-

timal kernel. In addition to selecting the most appropriate kernel there are

various other parameters that should be optimised. Some parameters affect

the kernel; others do not. Non kernel specific parameters of importance are

the complexity constant and ǫ. The complexity constant controls the toler-

ation of misclassified instances, the higher the value the fewer misclassified

instances are permitted. ǫ controls the round off value. Both these param-

eters can greatly affect the model generated. The SVM implementation in

Weka uses sequential minimal optimization variant of SVM to reduce the

time consuming quadratic programming step.70,71
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Figure 2.4: Separating hyperplane of the Support Vector Machine that max-
imizes the margin between two sets of perfectly separable objects, repre-
sented as circles and squares. (A) Optimal hyperplane that perfectly sepa-
rates the two classes of objects. (B) Optimal soft margin hyperplane which
tolerates some points (unfilled square and circle) on the wrong side of the
appropriate margin plane. Reproduced with permission from Jorissen, R.
N.; Gilson, M. K. Virtual Screening of Molecular Databases Using a Sup-
port Vector Machine. J. Chem. Inf. Model. 2005, 45, 549-561 Copyright
2005 American Chemical Society

2.1.8 Partial Least Squares

PLS72 is the more advanced version of Principal Component Regression

(PCR). PCR is concerned with explaining the variation in the dependent

variable. PLS improves PCR by taking both the dependent and independent

variables into account to explain the variation. PLS is a popular technique

in both cheminformatics and chemometrics. PLS produces an equation

which explains the dependent variable in terms of latent variables. These

latent variables are the combination of the independent variables with a

weighting coefficient. The dependent variable, y, can be written as:

y = a1t1 + a2t2 + a3t3 + ...antn (2.3)

where an are coefficients of the latent variables, tn. tn is defined as

tn = bi1x1 + bi2x2 + ...bipxp (2.4)

where xp are the independent variables.
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Each latent variable is orthogonal to each other, providing maximum

variation from the previous. The maximum number of latent variables is

the lower of the number of variables or instances. Typically, one will only

use a handful of the total latent variables. The coefficients, an, are of

interest as they effectively weight or select the important features for the

model. NCW uses these coefficients to help identify what partial activity

each atom provides when using the TMACC descriptors.

2.2 Model statistics

There are various statistics to assess the predictive performance of a model.

Classification and regression tasks require different statistics. As we deal

with both, both are presented here. The general paradigm for creating a

model is to select a training set to build the model upon. That model

is then used to predict unseen data from a test set. For techniques which

require parameter optimisation, one may tune the model on a third, unseen,

validation set, therefore giving the model new data at each stage. The

abundance of data can be a luxury not afforded to all. Cross-validation can

be used to assess the model by splitting the data in multiple training and

test sets. Even if sufficient data are available, the statistics produced from

cross validation are commonly used to compare models.

2.2.1 Classification

The initial statistics from a classification experiment are the accuracy of the

classifications. This leads to four numbers per class: true positive (TP ),

false positive (FP ), true negative (TP ) and false negative (FN). These four

values are found in a confusion matrix. The number of classes determines

the size of the matrix. A general confusion matrix is shown in Table 2.1.

Knowing the incorrect predictions is perhaps more important than knowing
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Actual
Active Inactive

Predicted
Active TP FP
Inactive FN TN

Table 2.1: A general confusion matrix

what was correct. It is useful to see what instances proved a challenge for

the model to classify. A single statistic of use is the percentage of correctly

classified instances. However, this only reports the correct and incorrect

percentages, it does not take into account the four possible results (TP ,

FP , TP , FN). This limitation does not apply to the Matthews correlation

coefficient,73 which takes all four into account, see Equation 2.5. Arguably

the percentage of classified instances is an inferior statistic compared to the

Matthews correlation coefficient.

MCC =
TP × TN − FP × FN

√

(TP + FP ) (TP + FN) (TN + FP ) (TN + FN)
(2.5)

The value represents a perfect prediction for +1, average random for 0

and an inverse prediction for -1. A limitation of the MCC is that it only

applies to binary classification. For a greater number of classes one can use

the Kappa coefficient. Fleiss’ Kappa74 not Cohen’s Kappa75 is used, as the

latter is for two classes only.

κ =
P̄ − P̄e

1 − P̄e

(2.6)

where 1−P̄e is the degree of agreement attainable above chance. P̄−P̄e is the

degree of agreement actually achieved above chance. Complete agreement

gives κ of one. When there is no agreement κ is below zero. P̄ is the mean

of Pi and P̄e requires Pj. Pj, the proportion of all assignments which were

to the j -th category, is defined as:

35



pj =
1

Nn

N
∑

i=1

nij, 1 =
1

n

k
∑

j=1

nij (2.7)

where N is the total subjects, n the number of ratings per subjects and k be

the number of categories. nij represents the number of raters who assigned

the i -th subject to the j -th category. Pi, is the extent to which raters agree

for the i -th subject:

Pi =
1

n(n − 1)

k
∑

j=1

nij(nij − 1) (2.8)

=
1

n(n − 1)

k
∑

j=1

(n2
ij − nij) (2.9)

=
1

n(n − 1)
[(

k
∑

j=1

n2
ij) − (n)] (2.10)

We calculate P̄ and P̄e to complete the formula for κ:

P̄ =
1

N

N
∑

i=1

Pi (2.11)

=
1

Nn(n − 1)
(

N
∑

i=1

k
∑

j=1

n2
ij − Nn) (2.12)

P̄e =
k

∑

j=1

p2
j (2.13)

2.2.2 Regression

The correlation coefficient, r2, represents the proportion of the variation

within the model of the predicted values against the observed. It is a useful

single value representation of the quality of the model. Several quantities

can be calculated which lead to r2:
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Total Sum of Squares: TSS =
N

∑

n=i

(yn − ŷ)2 (2.14)

Explained Sum of Squares: ESS =
N

∑

n=i

(ycalc,n − ŷ)2 (2.15)

Residual Sum of Squares: RSS =
N

∑

n=i

(yn − ycalc,n)2 (2.16)

where N is the total number of molecules in the data set, n is the current

molecule, yn is the observed value and ycalc,n is the predicted value for

molecule n. These three quantities are related as follows:

TSS = ESS + RSS (2.17)

Therefore, there are several ways to calculate r2:

r2 =
ESS

TSS
≡ TSS − RSS

TSS
≡ 1 − RSS

TSS
(2.18)

The r2 applies to the original model. Cross-validated data (see the

next section) produce q2, the cross-validated r2. q2 is more interesting,

as it measures predictive ability, opposed to how well all the data were

modelled. q2 is calculated using PRESS, which is analogous to RSS, except

the predicted, not observed value is used:

Predictive Residual Sum of Squares: PRESS =
N

∑

n=i

(yi − ypred,i)
2 (2.19)

q2 = 1 − PRESS
N

∑

n=1

(yi − ȳ)2

(2.20)

Note that ŷ becomes the mean ȳ for q2, as the mean for the appropriate

37



cross-validation group should be used, as opposed to the mean for the whole

data set (which is not an accurate representation when cross-validating).

However, both r2 and q2 can be misleading. While a value of 0.75

may sound good, the actual data could reflect several large outliers, rather

than good overall correlation. Therefore, any one single statistic should

not be used to judge a model, but several in conjunction to avoid potential

overconfidence in a model. In addition, even a seasoned modeller should

visualise his/her predicted and observed data.

Measuring error for numeric predictions is more involved than simply

a count or percentage of incorrectly classified instances. Two common er-

ror statistics are mean absolute error (MAE) and root mean-squared error

(RMSE). Using the same notation as earlier, MAE is given as:

MAE =
| ycalc,1 − y1 | +...+ | ycalc,n − yn |

N
(2.21)

RMSE is defined as:

RMSE =

√

(ycalc,1 − y1)
2 + ... + (ycalc,n − yn)2

N
(2.22)

2.2.3 Cross-validation

Cross-validation allows one to measure the predictive ability of a model.

This can be done for extra statistics or when insufficient data are available

to populate a test set. The training data are split into n folds; five or ten

are commonly used. Each fold should be stratified, that is they contain a

representative sample of the data set.76 Nine folds are combined to form

the training data on which the model is built; the remaining fold is used to

test upon. This is repeated so each fold is the test set only once. All results

are averaged to give the final predictive measure.

It could be argued that leave-one-out (LOO) cross-validation is the op-

timal method as it gives the most available data for training. The model is
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only as good as the training data provided to it. So one should maximise

the amount of data where possible. The downside of LOO is N models are

required. For large data sets and/or slow learning techniques, this can lead

to an unacceptable compute time. Experiments in Chapter 3 did run for a

week using ten-fold cross-validation, which would not be practical for most

purposes.

2.3 Nonparametric Multiple-Comparison Sta-

tistical Tests

Traditional pairwise statistics (such as the t-test) are inappropriate when

making multiple comparisons. Here, we present a two-stage, nonparamet-

ric approach. The first test that should be applied is to determine if any

significant differences between the classifiers can be detected. For this, the

Friedman test is used.77,78 The null hypothesis for the Friedman test is that

there is no difference between any of the classifiers. If the null hypothesis is

rejected, it does not determine which groups are different from each other;

for this, a separate test is required. However, the Friedman test should be

applied first, to determine if further analysis is justified. In the following, we

shall assume that there are k classifiers and N data sets, and that all clas-

sifiers have been applied to all data sets, in each case yielding a real-valued

measure of the performance of the classifier. In the work discussed in this

thesis, we have used percentage accuracy, but other measures, such as the

area under the receiver operating characteristic curve, are also possible.79

The Friedman test proceeds as follows. For each data set, the performances

of the classifiers are ranked, in ascending order; that is, the best performing

classifier has rank k, the next best rank k − 1, and so on. Then, for each

classifier j, the mean average rank across all data sets, R̄j, is calculated.

The individual rank of a given classifier, j, and data set, i, is denoted by
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rij.

R̄j =

∑

i

rij

k
(2.23)

The Friedman statistic, χ2
F , is then calculated as

χ2
F =

12N

k(k + 1)

[

∑

j

R̄2
j −

k(k + 1)2

4

]

(2.24)

For sufficiently large k and N (Demšar80 suggests k > 5 and N > 10),

the Friedman statistic is distributed according to the χ-squared statistic,

χ2, with k − 1 degrees of freedom. Critical values of χ2
F for smaller values

of k and N are provided in ref81. In the event of tied ranks (i.e., two or

more classifiers giving identical performances on a data set), a correction

factor may be applied to χ2
F . One such correction (used, for example, in

the statistical package R82) where the sum of the ranks across all data sets,

Rj, is

Rj =
∑

i

rij (2.25)

and the correction statistic is

χ2
C =

12
∑

j

{

[

Rj −
n (k + 1)

2

]2
}

nk (k + 1) − C
(2.26)

where C, the correction factor, is

C =

m
∑

i=1

(

t3i − ti
)

m
(2.27)

m is the number of groups of tied ranks for a classifier, and ti is the number

of ties in the ith tied group. Equation 2.26 without the correction factor, C,

gives the same result as equation 2.24. Iman and Davenport83 demonstrated
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that the Friedman statistic was too conservative and suggested the following

improvement:

FF =
(N − 1) χ2

F

N (k − 1) − χ2
F

(2.28)

This is distributed according to the F distribution with k − 1 and

(k − 1)(N − 1) degrees of freedom. If the null hypothesis is rejected, then

statistically significant differences between the classifiers are present. The

Nemenyi test84 can be applied to determine these differences in a pair-

wise fashion. To compare classifiers a and b, the difference in mean ranks,

R̄a − R̄b, is calculated. This value is compared to the critical difference,

CD:

CD = q′α

√

k (k + 1)

6N
(2.29)

where the corrected q statistic, q′α, is given by

q′α =
qα√
2

(2.30)

qα is the critical value of the “Studentized range” statistic at a given level

of significance, α. Tables of the critical values of the q distribution can be

found in statistical packages such as R and elsewhere.81 If the difference

between the average ranks is larger than CD, then the difference between

the classifiers is significantly different at the specified value of α. Demšar

has discussed multiple classifier comparisons in greater detail.80

2.4 Topological maximum cross correlation

descriptors

James Melville is the author of the TMACC descriptors

Topological maximum cross correlation (TMACC) descriptors85 are 2D
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descriptors for use in interpretive QSAR. They were inspired by the grid-

independent descriptors (GRIND).86 The GRIND descriptors, unlike TMACC,

are 3D descriptors. TMACC descriptors vary in two ways. We replace force

field interactions measured from a grid with atomic physicochemical values

and the 3D distance between points is replaced with the 2D topological

bond distance. TMACC descriptors were validated against HQSAR,87 as

this 2D method is seen as comparable to the 3D QSAR techniques CoMFA

and CoMSIA.88 In addition, a large corporate study found HQSAR per-

formed best over 1000 data sets.89 TMACC perform competitively against

HQSAR, yielding higher cross-validated q2 in five out of eight data sets.85

Therefore, we are confident these descriptors can produce predictive mod-

els. However, we now wish to validate their interpretative ability. This is

only briefly examined in the original work. We perform a more extensive

validation and have built further tools to enable this.

The TMACC descriptors encode four atomic properties. Electrostatics

are provided by Gasteiger partial charges.90 Steric and polarisability are

provided by Crippen-Wildman molar refractivity.91 Hydrophobicity is from

Crippen-Wildman logP.91 Finally solubility and solvation phenomena are

calculated from Xu et al. logS.92 Solubility can be both a descriptor and

prediction target. For example, the TMACC descriptors are used with

the solubility challenge data set in Chapter 5. The TMACC descriptors

individually only calculate predicted solubility for a given pair of atoms, a

contribution of solubility, not the whole compound. It is not solubility but

Xu parameters representing solubility and hence solvation phenomena. We

are not assigning a solubility value to a pair of atoms independent of the

rest of the molecule. For the solubility challenge in particular we wanted to

test how accurate TMACC descriptors are, given they include this solubility

property. The method developed by Xu uses atom typing rules, determined

by 76 SMARTS rules and two correction factors, hydrophobic carbon and
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squared molecular weight. Multiple linear regression was used to determine

the contribution of each atom type.

The values of each property are rescaled between -1 and +1, except logS,

which only has positive values. The absolute negative and positive values

were used to rescale to -1 and +1 respectively. For the partial charges the

absolute values were determined from the fragmentlike subset of the ZINC

database,93 consisting of 49134 molecules. The calculations were carried out

with Open Babel 2.0.0.94,95 By having a negative and positive range they

can be treated separately. This gives seven total atomic properties: positive

charge, negative charge, positive logP, negative logP, positive molar refrac-

tivity, negative molar refractivity and logS . From these seven, 28 possible

combinations of pairs are possible, and they are the base descriptors. For

each pair of atoms in the molecule, all 28 descriptors values are calculated.

The descriptor is additionally encoded with the topological bond distance.

Therefore, the total number of descriptors for the dataset is 28 multiplied by

the maximum topological bond distance. For QSAR datasets, this value is

typically under a thousand. For a molecule with topological bond distance

of ten, e.g. aspirin (Figure 2.5) one block of descriptors would be:

Maximum:ScaledAtomPartialPositiveCharge:ScaledAtomPartialPositiveLogP:0

Maximum:ScaledAtomPartialPositiveCharge:ScaledAtomPartialPositiveLogP:1

Maximum:ScaledAtomPartialPositiveCharge:ScaledAtomPartialPositiveLogP:2

Maximum:ScaledAtomPartialPositiveCharge:ScaledAtomPartialPositiveLogP:3

Maximum:ScaledAtomPartialPositiveCharge:ScaledAtomPartialPositiveLogP:4

Maximum:ScaledAtomPartialPositiveCharge:ScaledAtomPartialPositiveLogP:5

Maximum:ScaledAtomPartialPositiveCharge:ScaledAtomPartialPositiveLogP:6

Maximum:ScaledAtomPartialPositiveCharge:ScaledAtomPartialPositiveLogP:7

Maximum:ScaledAtomPartialPositiveCharge:ScaledAtomPartialPositiveLogP:8

Maximum:ScaledAtomPartialPositiveCharge:ScaledAtomPartialPositiveLogP:9

43



Maximum:ScaledAtomPartialPositiveCharge:ScaledAtomPartialPositiveLogP:10

Figure 2.5: Aspirin. TMACC descriptors are based on topological distances.
The maximum distance here is 11 between the two carbonyl oxygens. There
is more than one route to reach 11. The topological distance includes a zero
term.

Here the descriptor positive charge-positive logP is shown, with 11 po-

tential bond distances (we include a distance term of zero, the value with

itself). The total number of descriptors for aspirin would be 308; that is

28 TMACC descriptors multiplied by 11 maximum topological bond dis-

tances. There are multiple pairs of atoms which are five bonds apart. The

TMACC only records the maximum value reported across the molecule.

However, other pairs that register a value are recorded for the purpose of

interpretation, and used later.

The equation for calculating an autocorelation descriptor, xac, is

xac(p, d) =
∑

pipj (2.31)

where p is a property, e.g. negative partial charge and d is the topologi-

cal bond distance between atoms i and j. The sum is over all atom pairs

separated by distance d. The TMACC descriptors alter this equation in

three ways. First, each atomic property that has a negative and positive

value is treated as two separate properties. Second, we calculate cross-

correlation in addition to the autocorrelation. We allow the property of

atom i to vary from atom j, allowing positive charge-positive charge; nega-
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tive charge-negative charge and positive charge-negative charge. Third, like

the GRIND descriptors, we only keep the maximum value calculated for

any given distance. The TMACC equation is, therefore

xtmacc(p, d, q) = max(piqj, qipj) (2.32)

where q is the property of the second atom. There are two terms to consider

for each atom pair, because when p 6= q, qjpi 6= pjqi.

While the TMACC descriptors are interpretable in nature, used with

PLS they become more powerful than a simple frequency of fragments.

FGRAM details the atoms which contribute to each descriptor. For example

the descriptor positive charge-positive charge with a bond distance of two

has a value of 0.3. Together with the PLS coefficients, the FGRAM allows

an activity contribution level to be assigned to each atom.

TMACC and FGRAM generated were originally available only as a

Java command-line application. To assess the interpretative abilities of

the method more fully, it would be useful and obviate time consuming

atom labelling if this could be automated. NCW - Nottingham Chemin-

formatics Workbench was created for this purpose. It is a GUI designed

to accommodate in-house code, primarily TMACC. It offers little benefit

over the command-line for generating the original descriptors, but it has

ChemAxon’s Marvin96 embedded, giving the user the ability to draw and

edit molecules. NCW can generate models, interpret the descriptors using

the PLS model, generated through Weka, analyse the results and display

the dataset with a colour coding scheme in Marvin.

The PLS regression produces a model in the format

(desc1C × desc1SE) + (desc2C × desc2SE) + (descxC × descxSE) (2.33)
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where descxC is the coefficient for descx and descxSE is the standard error

for descx. Not all descriptors present in the dataset will be in the model.

For each descriptor present, one calculates the activity contribution, AC

AC = TMACC × PLSC (2.34)

where TMACC is the TMACC value for this descriptor and PLSC is the co-

efficient from the PLS for this descriptor. From the corresponding FGRAM

one extracts the all atom pairs for descriptor i. All pair weights must be

normalised to sum to 1.0. For each pair the pair activity contribution, PAC

is

PAC = wpair × AC (2.35)

where wpair is the normalised pair weight. This enables one to calculate the

contribution from each atom

atomcontribx =
PAC

2
(2.36)

and

atomcontriby =
PAC

2
(2.37)

It is assumed that each atom contributes equally to the overall contri-

bution. This method is repeated for all descriptors present in the model

and on each molecule in the dataset. For each molecule, one sums the indi-

vidual atom contributions to give an overall contribution. One can take all

atom contributions over the whole dataset, sort into ascending order and

split into five equally sized groups. The first group represents very negative

activity contribution, the last very positive activity contribution.

NCW has the machinery to generate the TMACC and FGRAM, using
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Impact on activity Colour
Very negative Red

Negative Orange
Neutral Yellow
Positive Green

Very positive Blue

Table 2.2: Colour codes used in TMACC interpretation

Melville’s code.85 The code released with the original publication is taken

directly, as obtainable on our website, http://comp.chem.nottingham.ac.

uk/download/tmacc, and modified to enable NCW to access to the output

programmatically. All further analysis is performed by new code in NCW.

PLS is applied and the model used to determine the partial activity con-

tribution from each atom. This value is converted to the one of five labels,

represented by colour, then drawn and coloured by Marvin. Table 2.2 de-

tails the colour scheme implemented. Figure 2.6 depicts a sample ACE

compound after complete processing through NCW.

Figure 2.6: A molecule from the ACE dataset in NCW, after the each atom
has been assigned an activity contribution by colour
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This chapter has highlighted the numerous methods which will be used

throughout the following chapters. Many concepts are central to Computer

Science, specifically the fields of Data Mining and Machine Learning. This

emphasis demonstrates the cross-disciplinary nature of this research, which

is paramount in producing new novel approaches. Cheminformatics, like

Computational Chemistry, is entwined with Computer Science. The next

chapter compares a number of classifiers. Relative performance of multiple

classifiers over multiple data sets is demonstrated using appropriate statis-

tical tests.
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Chapter 3

Contemporary QSAR

classifiers compared

This chapter is a reproduction of the peer-reviewed article.97

3.1 Abstract

We present a comparative assessment of several state-of-the-art machine

learning tools for mining drug data, including support vector machines

(SVMs) and the ensemble decision tree methods boosting, bagging, and

random forest, using eight data sets and two sets of descriptors. We demon-

strate, by rigorous multiple comparison statistical tests, that these tech-

niques can provide consistent improvements in predictive performance over

single decision trees. However, within these methods, there is no clearly

best-performing algorithm. This motivates a more in-depth investigation

into the properties of random forests. We identify a set of parameters for

the random forest that provide optimal performance across all the studied

data sets. Additionally, the tree ensemble structure of the forest may pro-

vide an interpretable model, a considerable advantage over SVMs. We test

this possibility and compare it with standard decision tree models.
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3.2 Introduction

The pharmaceutical industry needs to address the increasing cost and time

for drug development,98,99 and in silico lead discovery and lead optimization

are becoming increasingly important means to achieve this. Lead optimiza-

tion often involves quantitative structure-activity relationships (QSARs),15,100

which focus on predicting the biological activity of a compound from a vec-

torial representation of molecular structure. In the past few years, the

computer science community has developed new machine learning algo-

rithms20 suitable for QSAR development. One success story is the support

vector machine (SVM),101 which has featured regularly in the bioinformat-

ics102–104 and cheminformatics literature.105–108 Some studies have suggested

that SVMs show improvement over neural networks for classification and

QSAR.109–111 The advantages offered by SVMs are robust predictions even

with sparse and noisy data, because the formulation of the SVM solution

ensures that there is only one minimum, thus avoiding the problems of

premature convergence found with neural networks.

Another popular machine learning method is the decision tree, also

known as recursive partitioning.45,112 By partitioning the data into disjoint

groups, decision trees produce nonlinear models that are interpretable, a

valuable property of any statistical machine learning method when applied

to QSAR studies.113,114 A further improvement in the accuracy of decision

tree predictions was achieved with the introduction of ensemble methods,

where multiple trees are constructed and the outputs combined to produce

a final prediction.48,115 The most popular of the ensemble techniques are

boosting56 and bagging;53 other variants are known as decision forests62,64

and random forests.67 We note that ensembles are not restricted to consist

only of decision trees; other algorithms used for base learners include linear

discriminant analysis,116 neural networks,117,118 and partial least-squares

regression.119,120
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Given the increasingly widespread adoption of these advanced machine

learning techniques in chemometric121–123 and cheminformatics fields,54,117,124

it is timely to carry out rigorous assessment of these algorithms. Recently,

Plewczynski et al. presented a comparison of some machine learning meth-

ods for virtual screening.125 The focus of our study differs in several as-

pects. First, we seek to apply rigorous statistical tests to our results. It

is still rare when evaluating classifiers in cheminformatics to make use of

tests of statistical significance. However, there is a further caveat: in wide-

scale comparisons of learning algorithms, it is not sufficient to use pair-wise

statistical comparison tests, such as the paired t-test. Therefore, we make

use of nonparametric statistical tests that are suitable for multiple compar-

isons. Second, apart from predictive ability, there are other requirements

that make such tools valuable for mining chemical data. First, it is desirable

to avoid having to manipulate multiple parameters to find the optimal per-

formance for an algorithm. The requirement to tweak such parameters can

lead to overfitting,126 giving a false picture of predictivity, as well as being

potentially time-consuming. Therefore, techniques with few parameters, or

for which a widely applicable set of parameters can be obtained, are de-

sirable. Second, an interpretable model is extremely valuable in extracting

structure-activity relationships and relating the predictions of algorithms

to physicochemical principles. SVMs are difficult to interpret; ensemble

methods using decision trees may therefore have an advantage in this area.

The translation of individual tree-based methods into classification rules is

already widely documented,11,127–130 but there have been only limited at-

tempts to extend the interpretation to ensembles.54,131 We investigate and

highlight some challenges in this endeavour, compared to a single decision

tree.
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3.3 Methods

Learning Algorithms. For generating classifiers, we used the Java ma-

chine learning workbench Weka version 3.4.7.20 Details of the algorithms we

use in this study have been described in detail previously.20 However, we

provide a brief introduction. SVMs are considered to provide state-of-the-

art classification performance, and we therefore use them as a benchmark

to compare the performance of the ensemble methods, which make use of

decision trees. SVMs create a separating hyperplane in the descriptor space

of the training data, and molecules are classified on the basis of what side

of the hyperplane they are located.101 The advantage of the SVM is that,

by use of the so-called kernel trick, the distance between a molecule and the

hyperplane can be calculated in a transformed (nonlinear) feature space,

but without requiring the explicit transformation of the original descrip-

tors. A variety of kernels have been suggested, such as the polynomial

and radial basis function (RBF). A polynomial kernel with an exponent of

one reduces to the case of the linear SVM. Finding the optimal separating

hyperplane requires the use of quadratic programming. As this can be time-

consuming, we make use of the sequential minimal optimization71 (SMO)

variant of SVMs, which provides an approximation to the quadratic pro-

gramming step. SVMs come with a range of parameters: those that affect

the overall SVM and those specific to the kernel. Even with the speedup

associated with SMO, a full search of the entire parameter space would be

prohibitively time-consuming, and it is necessary to focus on the parame-

ters that are most crucial to the performance of the algorithm, such as the

choice of kernel.132 We tune one kernel-independent parameter, two different

kernels, and one kernel-specific parameter. The two kernels we investigate

are the polynomial and RBF. In addition, the complexity constant is varied

from the default 1 to 0.05 and 50. For each kernel, one kernel-specific pa-

rameter is altered, the exponent for the polynomial (default 1, altered to 2

52



and 3) and γ, the RBF width (default 0.01, altered to 0.001 and 0.1). The

complexity constant controls the tolerance of misclassified molecules: the

higher the value, the greater the importance of reducing misclassifications

in the training model.

Decision trees recursively partition molecules into a series of disjoint sets

or nodes, starting from a pool of all training data (called the root node).

The node into which a molecule is placed is dependent on a threshold value

of a particular descriptor (a branching rule). When a node is reached for

which no branching rule is defined (a terminal node, or “leaf”), the molecule

is classified, on the basis of the properties of the molecules with which it

shares the node. This is normally achieved via majority vote. Each path

through the tree from the root to a leaf can be extracted and represented as

a classification rule, enabling interpretations to be made, which accounts for

the popularity of this technique.11,127–130 The tree-building algorithm used

in this study is J48, a Java implementation of the C4.5 algorithm due to

Quinlan.112 A feature of the J48 algorithm is that it “prunes” leaves that do

not contribute greatly to the predictive accuracy of the tree. This creates

smaller trees, which may be more resistant to overfitting.

While decision trees have the advantage of being interpretable, their

predictive abilities are normally inferior to that of more advanced tech-

niques. Ensemble techniques attempt to compensate for the weakness of an

individual tree by combining the predictions of multiple trees. The key to

ensemble methods is therefore producing diverse selections of trees. This is

normally achieved by training each tree on a different subset of the data.

This can involve subsampling both molecules and descriptors. A commonly

used technique is the bootstrap,133 which samples the molecules with re-

placement. The resulting bootstrap sample is likely to contain duplicate

molecules, while some of the original training data may not appear at all.

The simplest ensemble method we study is bagging.53 Here, the ensemble
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is formed by simply repeatedly training trees on bootstrap samples of the

original data. Classification of new molecules is by majority voting across

all trees. Boosting57 also uses bootstrap samples. However, the accuracy

of the previous tree is used to bias the selection of molecules for the next

sample, with poorly predicted molecules being given a greater chance of

selection (or a larger weight) so that the next tree will focus on these more

difficult cases. Again, voting is used to classify new molecules, but the vote

is weighted to give more influence to trees with greater accuracy. Boosting

is widely considered to be more accurate than bagging.134 In our experi-

ments we use the AdaBoostM1 algorithm.56 A random forest67 is similar

to bagging, except that, as well as sampling training molecules randomly,

only small subsets of descriptors are used to build each tree. Like bagging,

classification is by majority vote. For bagging and boosting, we use the J48

algorithm to build the base decision tree classifiers. For random forest, we

use random trees as a base classifier rather than trees built with J48. The

main difference between J48 trees and random trees is that no pruning is

carried out for random trees.

Data Sets. Eight data sets (Table 3.1) have been taken from the study

of Sutherland et el.:88 (1) a set of angiotensin-converting enzyme (ACE)

inhibitors originally used for comparative molecular field analysis (CoMFA)

modelling;135 (2) a set of acetyl-cholinesterase (AchE) inhibitors, a subset

of which was used in CoMFA studies;136 (3) a set of ligands for the benzodi-

azepine receptor (BZR) also used for validating several QSAR methods;137

(4) a set of cyclooxygenase-2 (COX2) inhibitors - a subset was used in

CoMFA studies;138 (5) a set of dihydrofolate reductase (DHFR) inhibitors,

which were also used for comparative molecular similarity indices and analy-

sis modeling;139 (6) a set of glycogen phosphorylase b (GPB) inhibitors;140

(7) a set of thermolysin (THER) inhibitors;30 and (8) a set of thrombin

(THR) inhibitors.141
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Our study focuses on classification of activity, either active or inac-

tive. The original data sets provide continuous numerical values for activity

(pIC50 for the first five data sets and pKi for the last three); each data set

shows a uniform distribution of activity values. Therefore, the median ac-

tivity value was used as a threshold between active or inactive compounds

to create a 50/50 split of active/inactive observations. Balancing the data

set in this way simplifies the validation of the classifiers and allows the use

of percentage classification accuracy as a measure of classifier performance.

However, the arbitrary split between active and inactive classes will actually

make the problem harder for the classifiers. The compounds which fall near

the median should be excluded from the model to the create a real split

between classes.

To create QSARs, descriptors of the molecules are required. We use

the 2.5D descriptors generated by Sutherland et al.88 using Cerius2.142 In

addition, linear fragment descriptors for these data sets were computed.

For each data set, descriptors containing data on the atomic number, bond

types, connectivity, chirality, and number of hydrogen atoms associated

with each atom were generated for all non-branched molecular fragments of

four to seven atoms in size.85 The number of occurrences of each fragment in

each molecule is recorded, producing an integer string as a descriptor of each

molecule. The fragment data sets are of much larger dimensionality than

the 2.5D descriptors. The original eight data sets are henceforth referred

to as 2.5D data sets, while the new data sets are referred to as the linear

fragment data sets.

To validate the performance of each classifier, we have used the percent-

age of correctly classified molecules from 10-fold cross-validation as the mea-

sure for the model, averaged over 10 entire repeats of the cross-validation,

using different random seeds. In cross-validation, the data set is split into

n folds; one fold is used for testing, the rest for training. This is repeated
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no. descriptors
data set compound type no. 2.5D fragments

compounds.
ACE angiotensin converting enzyme 114 56 1024
AchE acetyl-cholinesterase inhibitors 111 63 774
BZR benzodiazepine receptor 163 75 832
COX2 cyclooxygenase-2 inhibitors 322 74 660
DHFR dihydrofolate reductase inhibitors 397 70 952
GPB glycogen phosphorylase b 66 70 692
THER thermolysin inhibitors 76 64 575
THR thrombin inhibitors 88 66 527

Table 3.1: Summary of QSAR Data Sets

n times, so all the data have been used as test data once. The n errors

are averaged, giving the error rate for the data set. Ten is a commonly

used value for n.76 We stress that the reported cross-validated results are

for genuine predictions and distinct from the internal validation used by

some resampling techniques, which make use of the fact that approximately

one-third of the original training data is unused after bootstrap sampling.

Predictions on this unused data are known as out-of-bag (OOB) data. In

addition to the classification accuracy, we assessed the robustness of the

models using the standard deviation of the accuracy across the 10 repeats

of the entire 10-fold cross-validation results, averaged for all data sets.

3.4 Results and discussion

Classifier Accuracy. We first consider the results of the 2.5D data set.

The percentage of correctly classified molecules is given in the first five

columns of Table 3.2. In general all classifiers perform reasonably, with

classifications between 67 and 90%. The strongest trends are clearly dataset-

dependent, with classification being most successful on the ACE and DHFR

data sets, and least successful on the THER and THR data sets. As antic-

ipated, the decision tree classifier is the least effective of all the classifiers

studied, being the least accurate of the five methods studied in six of the
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data set tree
bagged

tree
boosted

tree
random
forest

SVM
tuned
forestb

tuned
SVMc

ACE 86.9 86.5 86.6 85.4 90.3 89.3 89.9
AchE 70.6 71.6 72.7 72.6 72.0 79.5 74.3
BZR 71.7 75.5 75.4 74.0 77.4 79.5 81.6

COX2 75.6 75.7 76.1 73.4 75.4 75.7 75.2
DHFR 78.8 83.2 83.4 83.1 79.6 84.9 82.2
GPB 70.6 74.5 76.2 74.1 73.9 76.7 75.3
THER 67.2 69.2 67.8 69.7 69.5 74.6 74.6

THR 66.5 69.1 68.0 69.1 67.2 72.5 69.0

Table 3.2: Percentage of Correctly Classified Molecules for Different Clas-
sifiers on 2.5D Descriptor Data Setsa

aValues in bold denote the highest accuracy for that data set. b100 trees.
cPolynomial kernel, exponent = 2, complexity constant = 0.05.

eight data sets. However, it still performs creditably, as the difference be-

tween the best and worst and classifier is no more than 6% on any data set.

Additionally, it should be borne in mind that the average standard devia-

tion of the cross-validation accuracies was 2.5%, with the smaller data sets

(GPB, THER, and THR) showing larger standard deviations in the results

than the larger data sets. Contrary to our expectations, SVM was the best

classifier on only two data sets. However, the Weka default is to use a linear

SVM; we assess the performance of a nonlinear SVM below.

The ensemble classifiers (bagging, boosting, and random forest) im-

proved classification accuracy over the decision tree for all of the data sets

except ACE. Within the ensemble techniques, there was little difference in

performance. Boosting had a slight edge over bagging and random forest,

outperforming both on five data sets. Having established the default be-

haviour of the algorithms as implemented in Weka, an obvious avenue of

exploration for improving the performance of the ensemble classifiers is to

increase the number of trees in the ensembles. Additionally, random forests

have an extra parameter, the number of descriptors available to the tree-

building algorithm when creating branching rules, which we investigated
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separately. First, we increased the number of trees in the aggregates from

10 to 200 in steps of 10. Similar results were observed for bagging, boost-

ing, and random forest. We concentrate on random forest in the following

discussion, because it improved the most upon adding more trees, but the

comments below apply equally to boosting and bagging. Accuracy increased

upon adding more trees, reaching a maximum for all data sets between 30

and 50 trees. Little improvement in accuracy was observed beyond this

point. The robustness of the accuracies was also improved with an increas-

ing number of trees, although the improvement is not monotonic, as can be

observed in Figure 3.1. Robustness is the average standard deviation of the

accuracy across all 10 repeats of the 10-fold cross-validation results.

Figure 3.1: Robustness with increasing number of trees (on 2.5D descrip-
tors). Legend: ACE (¨); AchE (¥); BZR (N); COX2 (×); DHFR (∗); GPB
(•); THER (¤); THR (♦)

Nonetheless, at 100 trees, the robustness of all trees is increased over

that observed for 10 trees, with all standard deviations below 2%. No

obvious improvement is observed upon increasing the number of trees to

200. Hence, we consider the 100-tree forest as “converged”. The accuracies

for random forest classifiers built with 100 trees are shown in Table 3.2, in
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the random forest column marked “tuned”. The improvement in accuracy

over the 10-tree forest ranges from 2 to 7%. To establish whether the

difference in performance was statistically significant, a two-tailed paired

t-test81 was carried out on 10 versus 100 trees, using 100 repeats (10-fold

cross-validation repeated 100 times with different random seeds). For all

data sets, the improvement in performance is statistically significant at p =

0.001 for 100 trees. Second, we looked at the number of features available

during tree construction, a parameter available only for random forests.

By default, only log2M + 1 descriptors, selected randomly, are available

for selection to construct each branching rule in a tree, where M is the

total number of descriptors in the data set. For the 2.5D descriptors, this

corresponds to six or seven descriptors per branch. We therefore looked at

increasing the descriptor choice to 10, 20, 30, and 40 descriptors. To ensure

our results were not dependent on the choice of random seed, we repeated

the procedure 10 times, for two different forest sizes with 10 and 30 trees.

The results showed that increasing the descriptor choice did not provide a

consistent improvement, and in most cases, the default value was optimal.

Therefore, we retained the default setting.

While increasing the number of trees in ensemble algorithms provides a

clear means for optimizing performance, a principled approach to improving

the SVM is more difficult to achieve, simply because it has a much larger

number of parameters to modify. Our initial experiments suggested that

two parameters had the greatest effect on SVM: the complexity constant

and the type of kernel (polynomial or RBF). Associated with both kernels

was a single parameter: the exponent for the polynomial kernel and the

γ value (RBF width) for the RBF kernel. We therefore chose an optimal

set of these parameters based on the mean accuracy across all eight data

sets. For the polynomial kernel, setting the exponent to 2, with the lower

complexity constant, produces the best predictions (see Table 3.3). Using
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Complexity Constant Polynomial exponent RBF γ

1 2 3 0.001 0.01 0.1
0.05 68.7 77.8 75.5 53.5 51.4 59.0
1 75.7 76.1 74.0 52.5 67.2 75.2
50 74.1 74.0 73.6 71.1 76.5 77.0

Table 3.3: Mean percentage of correctly classified molecules for different
parameters of SVMs on 2.5D descriptor datasets. Values in bold denote the
highest accuracy for that kernel.

the RBF kernel, the SVM’s performance is more sensitive to the complexity

constant. With the default complexity constant, an increased γ value gives

improved results, which are similar to the default γ with a larger complexity

constant. Increasing the γ with the higher complexity constant improves

most datasets further, giving the best result with a RBF kernel.

Only the accuracies for the best SVM results are given in Table 3.2,

under the SVM column“tuned”. The results show that a nonlinear SVM

can improve performance for six out of eight data sets over the default linear

SVM implementation in Weka. However, the performance of the 100-tree

random forest is still superior to the tuned SVM for five of the eight data

sets.

Having established some useful parameters and observed a pattern of

behavior across the eight data sets with the 2.5D descriptors, we investigated

whether similar results could be obtained using the fragment descriptors.

Classification accuracies are given in Table 3.4. The SVM performance,

after tuning the complexity constant and one kernel-specific parameter, is

shown in Table 3.5. Altering the complexity constant on the polynomial

kernel has little effect on performance, no matter which exponent is used.

Using the RBF kernel with the default complexity constant and increasing

the γ has a positive effect. The higher γ setting can give the best results.

Results are comparable to those of the 2.5D descriptors. The difference

between the most and least accurate classifier was slightly increased, ranging

between 2 and 8%, depending on the data set. Again, the ACE and DHFR
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data set tree
bagged

tree
boosted

tree
random
forest

SVM
tuned
forestb

tuned
SVMc

ACE 80.4 82.0 81.0 80.5 78.9 80.0 82.2

AchE 64.1 68.0 68.8 70.5 69.4 70.5 77.1

BZR 74.0 75.0 69.8 67.3 74.0 68.7 75.8

COX2 71.1 71.5 71.0 68.1 72.6 68.7 71.1
DHFR 84.4 85.4 83.1 84.9 83.5 85.5 86.5

GPB 73.8 75.6 76.2 74.5 77.4 75.2 76.7
THER 72.2 75.8 75.5 75.4 75.3 76.7 73.4
THR 71.5 69.2 68.8 66.7 71.1 68.4 69.8

Table 3.4: Percentage of Correctly Classified Molecules for Different Clas-
sifiers on Linear Fragment Descriptor Data Setsa

aValues in bold denote the highest accuracy for that data set. b100 trees.
cRBF kernel, γ = 0.1, complexity constant = 1.

Complexity Constant Polynomial exponent RBF γ

1 2 3 0.001 0.01 0.1
0.05 74.5 73.4 73.1 51.8 53.8 59.5
1 75.3 73.3 73.1 62.0 72.8 76.6

50 73.3 73.3 73.1 75.9 74.7 73.6

Table 3.5: Mean percentage of correctly classified molecules for different
parameters of SVMs on linear fragment descriptor datasets. Values in bold
denote the highest accuracy for that kernel.
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data sets are the easiest to classify. However, a clear difference emerges

when comparing performances based on the number of molecules in the

data set. For the “small” data sets (≤100 molecules), accuracies improve

upon moving to a higher dimensionality of descriptors. Conversely, for

the large data sets (≥100 molecules), the majority of classifiers record a

decrease in accuracy. As the larger data sets are described by a larger

pool of descriptors, this may suggest that the increase in the dimensionality

of the descriptor space outstrips the increase in information provided by

the larger data sets; that is, the “curse of dimensionality”143 is occurring.

The decision tree classifier was not invariably the worst classifier tested,

and for the THR data set, it was the best. However, for all other data

sets, at least one of the ensemble algorithms was able to improve upon the

decision tree performance. Bagging was the best at this, while boosting

and random forest could improve over the standard decision tree in four

and five data sets, respectively. As with the 2.5D descriptors, the SVM was

the best classifier on two data sets. Increasing the number of trees to 100

in the random forest improved the accuracy for six out of eight data sets.

However, there was less improvement in robustness in going to 100 trees,

compared to the 2.5D descriptors, as shown in Figure 3.2.

A two-tailed t-test showed no significant difference for p = 0.001 for

the AchE, COX2, and GPB data sets. It is conceivable that the larger

dimensionality of the fragment data set requires a larger number of trees in

the ensembles; however, increasing the number of trees to 1000 did not result

in any major increase in accuracy or robustness. Again, there was no clear

improvement in the performance of the random forest when the number

of descriptors available to the tree-building algorithm was increased. For

the fragment descriptors, a RBF SVM was found to be optimal and gave

the best performance of any algorithm on the fragment descriptors for four

data sets. However, boosting, bagging, and random forests gave comparable
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Figure 3.2: Robustness with increasing number of trees (on linear fragment
descriptors). Legend: ACE (¨); AchE (¥); BZR (N); COX2 (×); DHFR
(∗); GPB (•); THER (¤); THR (♦)).

accuracies on all of the data sets, except AchE and COX2, where one or

more of the algorithms struggled.

In order to put these observations on a more quantitative footing, we

carried out a multiple-comparison statistical analysis, using the Friedman

statistic, with a correction by Iman and Davenport, to detect the existence

of a statistically significant difference between the classifiers. This test does

not, however, identify which classifiers are different, only that a difference

exists. To identify significantly different classifiers, we perform a post-hoc

test using the Nemenyi test. Details of the procedure to carry out these tests

are given in the Chapter 2. For these tests, we pooled the results for both

sets of descriptors, giving N = 16 data sets. Both the default and tuned

versions of the SVM and random forest classifiers were considered separately,

making k = 7 classifiers. Carrying out the Friedman test with the Iman

and Davenport correction indicated that statistically significant differences

between the classifiers existed at the p = 0.01 significance level. We therefore

carried out the Nemenyi post-hoc analysis to determine which classifiers
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were significantly different from each other. It is a known weakness of the

Nemenyi test that it has a smaller power than the Friedman test. However,

it was still possible to detect statistically significant differences between

classifiers at p = 0.05. Thus, we can deduce that the performance of the

tuned SVM (with the best average rank over all 16 datasets), and tuned

random forest are significantly different from the performance of a single

decision tree (with the lowest average rank over all datasets). However,

it is not possible to detect whether SVM is statistically different from the

ensemble algorithms, or if, in turn, the ensemble algorithms are significantly

different from the use of a single decision tree.

Interpretation of Tree Models. Beyond assessing the predictive ca-

pabilities of the ensemble methods, we also sought to characterize the inter-

pretability of the resulting models. Decision trees are widely used for their

interpretability; therefore, an examination of the ensemble might provide

similar insights. There are two main issues to account for in an interpreta-

tion of an ensemble: the size and shape of each individual tree and dealing

with the large number of trees generated. Figure 3.3 shows two trees, one

generated by the J48 algorithm (a) and one that is part of a random forest

ensemble (b). For clarity, we have not displayed the value of the descriptor

threshold applied at each branch. The trees were used to predict activity

for the ACE data set using the 2.5D descriptors but have been chosen to

represent the typical structure observed across all eight data sets. It is ap-

parent from Figure 3.3 that decision trees generated by J48 are less “bushy”

and less balanced than those used in random forest. This is a consequence

of the pruning that takes place in the J48 algorithm, which is not applied

to the trees grown for use in random forest. Terminal leaf populations are

therefore on average smaller in trees in the random forest ensemble, and

this makes interpretation less reliable for these nodes. Note also that the

random tree contains the IC descriptor (a descriptor related to information

64



theoretic concepts of entropy) twice. An analysis of the descriptors used in

the ensembles and the J48 trees shows a reasonable degree of overlap for

most data sets. One exception to this was with the ACE data set, where

J48 decision trees often contain a descriptor indicating the presence of a

nitrogen atom type; these were rarely chosen in the ensembles.

Figure 3.3: Decision trees classifying activity of the ACE data set generated
by (a) the J48 algorithm with pruning and (b) the random tree algorithm
without pruning. Descriptors definitions are in Table 3.6

We next consider the descriptor analysis of ensembles as a whole in more

detail. We focus here on the frequency with which descriptors are chosen

to appear in the trees. One obvious aid to interpretability would be if a

subset of descriptors was chosen with a frequency much higher than that of

others. To see whether this is the case, we recorded which descriptor was

selected for each branching rule in a 100-tree random forest, for all eight

data sets. We then plotted the number of descriptors as a percentage of the

total number used in the forest against the number of unique descriptors

selected. An example for the DHFR data set is shown in Figure 3.4.

Results for all the other data sets showed the same shape. The diagram

can be interpreted similarly to a receiver operating characteristic curve.

If only a few descriptors were selected by the tree-building algorithm, we
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Abbreviation Definition Reference
CHI-V-2 Valence-modified connectivity index, 2nd or-

der

144

Density Density (spatial descriptor)
IC Multigraph information content index
Jurs-DPSA-1 Difference in charged partial surface ar-

eas: partial positive solvent-accessible sur-
face area minus partial negative solvent- ac-
cessible surface area

145

Jurs-PNSA-3 Atomic charge weighted negative surface
area: sum of the product of solvent-accessible
surface area x partial charge for all negatively
charged atoms

145

Jurs-TPSA Total polar surface area: sum of solvent-
accessible surface areas of atoms with abso-
lute value of partial charges greater or equal
than 0.2

145

JX Balaban index 146

N dssC Number of times that each intrinsic state oc-
curs for a double/single/single bonded car-
bon cluster

147

N sssCH Number of times that each intrinsic state
occurs for a single/single/single bonded
methyne group

147

PMI-mag Principal moment of inertia 148

S aaCH Summed differences between all intrin-
sic state values for an aromatic/aromatic
bonded methyne group

147

S aasC Summed differences between all intrinsic
state value for an aromatic/aromatic-single
bonded carbon cluster

147

Shadow-XZfrac Fraction of area of molecular shadow in the
XZ plane over area of enclosing rectangle

149

Table 3.6: Descriptor definitions from the decision trees in Figure 3.3
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Figure 3.4: Percentage of model explained by unique descriptors for the
DHFR data set.

would expect to see an initially steep vertical line at x = 0, indicating that

most trees consisted of a few descriptors. This pattern is not observed to a

large extent, although it can be seen that 50% of the branching points in

the DHFR ensemble consist of 20 descriptors, which represents only 25% of

the total number of descriptors chosen. Therefore, it seems that no “super

descriptors” emerge from the random forest ensemble. This is perhaps to be

expected, given that only approximately seven descriptors, chosen randomly

from all descriptors, are available for selection at any given branch point

during tree construction. A related issue is whether the same descriptors

are chosen most frequently in ensembles of different sizes. We considered

the top 10 most frequently chosen descriptors for this purpose and examined

the effect of increasing the number of trees in the forest from 100 to 1000 in

steps of 100 trees. Larger data sets show greater consistency: the same top

10 descriptors are present in all forests for the DHFR, the largest data set.

As the data sets grow smaller, there is less overlap between the en-

sembles, with only seven descriptors consistently found in all forests for

ACE, AchE, and BZR. For the small data sets (GPB, THER, and THR),
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at most three descriptors are in common across all forests. Despite this

variability for some data sets, some commonly occurring descriptors can

be identified. Atom type descriptors are commonly found, which describe

hybridization and bonding information associated with an atomic centre;

these are conceptually similar to the fragment descriptors. Additionally,

some frequently occurring whole-molecule descriptors could be identified

for some data sets. For the ACE data set, we identified IC and JX as falling

into this category; they correspond to information entropy and the Balaban

index,146 respectively. The latter topological descriptor accounts for both

cycles and conjugation in a structure, and active compounds in this data

set are well-characterized by the presence of aromatic rings. Conversely, for

the COX2 data set, electronic and partial surface area descriptors (Apol

and Jurs-RPCG) are frequently selected. This would suggest that the over-

all electronegativity of the compounds is important for activity. For the

DHFR data set, topological and partial surface area descriptors appeared

in all forests (Kappa-3, Jurs-FPSA-3, and Jurs-FNSA-3). This shape and

surface information can help distinguish between inactive compounds which

may have longer, positively charged chains, for example, nitrogen cations,

which are less favourable than short, negatively charged chains.

Using the tools developed in Chapter 4 we can extend our original inter-

pretation. Based on a 100 tree forest built on the DHFR data set. Kappa-3,

Jurs-FPSA-3, and Jurs-FNSA-3 were identified as descriptors which ap-

peared frequently when altering the size of the forest. For this forest the

top descriptors are S aaN, S sNH2, S aaCH, Kappa-3, S aaaC, S ssCH2,

Jurs-FNSA-3, AlogP98, S aasC and Jurs-FPSA-3. Those previously high-

lighted are identified again. These top ten descriptors account for 29% of

the branches in the overall forest. A total of 69 descriptors are used in the

forest, the data set contains 70. Analysing the majority vote reveals that

each tree on average incorrectly classifies 26 compounds. All the trees build
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capable models, no single tree stands as out as a poor predictor. Looking

at the performance of individual compounds 46 are correctly predicted by

all trees. 72 out of 100 votes is the lowest majority across the forest. 14

compounds received 80 or fewer correct votes.

3.5 Conclusions

Over the eight data sets, the support vector machine was the best of the

classifiers studied, whether using the 2.5D descriptors or the fragments. We

confirmed this superiority over a single decision tree through a multiple

comparison statistical test. However, statistical significance should not be

confused with practical significance, and the performance of boosting, bag-

ging, and random forest was in most cases comparable with that of SVM,

and in some cases superior. Furthermore, achieving the optimal perfor-

mance for SVM can be a formidable task, because of the large number of

parameters associated with it. We did not succeed in finding a set of param-

eters that was universally applicable. For example, a quadratic polynomial

kernel was optimal for the 2.5D descriptors, while a RBF kernel was best

for the fragment descriptors. Conversely, boosting, bagging, and random

forest have fewer parameters, while performing competitively with the best

SVM results. All of the ensemble algorithms benefited from the use of an

increasing number of trees - these had a generally positive effect on both

classification accuracy and robustness. We were able to identify 100 trees

as being an optimal setting for most cases, and we recommend that users of

the Weka machine-learning workbench use this value for cheminformatics

applications, rather than the smaller number available as a default. Other

packages such as R have a higher default value of 500 trees. However, this

has an impact on training speed. For the larger datasets and high dimen-

sionality descriptors training one forest could take up to a week. We did

run some larger forests of 1000 trees but did not see statistically significant
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improvement in accuracy. When considering interpretation a larger forest

only increases the size of the model. This may be not desirable and could

make interpretation more complex. To generate large forests in a reason-

able time a parallel implementation of random forest were be required. The

algorithm is ideally suited to being run in parallel. However, our recom-

mendation would be to have a forest which is larger enough, for example

100 trees not 10. Adding thousands of more trees may not add any value,

just computational cost. In general, all the algorithms we studied were

marginally less effective for the more numerous linear fragment descriptors.

While the dimensionality of these descriptors was large, even by current

standards (1000 descriptors per data set), data sets are likely to become

larger in the future, rather than smaller. Although ensemble algorithms

like random forest were designed with high dimensional data sets in mind,

cheminformatics data sets tend to be at least an order of magnitude larger,

in terms of the ratio of descriptors to observations, than those commonly

found in machine learning. An additional advantage of decision-tree-based

methodologies is their potential to provide interpretable models. We have

found that there are challenges associated with extending this interpreta-

tion to ensembles. In particular, trees in the ensembles are “bushier” than

standard decision trees. A descriptor-level frequency analysis can provide

some insight, but for the data sets studied here, there was a wide distribu-

tion of descriptors in the ensemble, so attempting to select a small subset of

descriptors from the ensemble is somewhat subjective. Therefore, choosing

a decision-tree-based learning algorithm over the SVM may be less advan-

tageous than hoped. Despite the success of random forest and SVM on our

data sets, a single decision tree was surprisingly competitive, and its inter-

pretability is not in doubt. Clearly, therefore, along with more sophisticated

ensemble-building algorithms, there is substantial scope for concomitantly

advanced procedures for extracting information from decision tree ensem-
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bles, and this will be the focus of Chapter 4.
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Chapter 4

Random forest: an

interpretable classifier

4.1 Introduction

Random forest is a capable and increasingly popular machine learning tech-

nique. Part of its appeal is the availability of interpretation, typically using

a descriptor frequency count. We have previously shown that a random

forest performs well compared to a SVM, widely considered the current

benchmark. In addition, extensive parameter optimisation is not necessary

and even if undertaken is a far quicker task, as fewer parameters are avail-

able. The insight that a model can provide is possibly of more importance

than gaining an extra 5% in predictive accuracy. Insight from the model can

be relayed to medicinal chemists, which can be used in lead optimisation

strategies. Any information that explains the activity of a compound series

is invaluable within drug discovery.

Within the QSAR community there are doubts over the usefulness of

QSAR. Some question if QSAR contributes positively to drug discovery or

reports chance correlations, not novel insight. The field must not stagnate

by focusing purely on predictive performance. Recent work has highlighted
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the concern with QSAR.27,150–152

Specific tools are required to interpret a random forest. While someone

can interpret a single decision tree, it would be a painstaking task to review

100 larger trees from a forest. The construction of random trees in Weka

leads to larger unpruned trees, making even a single tree unwieldy. In

addition, the relationships between the trees could be of importance. We

have explored various avenues to extract information from the forest.

This chapter will first validate the suitability of random forests on larger

and more complex data sets. Here, complexity is in terms of a three class

problem, where the balance of classes is skewed unfavourably. Most ma-

chine learning techniques struggle with skewed data. Therefore commonly

used techniques to compensate skewed data are applied. Second the in-

terpretability of the forest will be probed. Our in-house software, FBI,

will demonstrate various features. Functionality of FBI includes descrip-

tor frequency counts, tree depiction, transforming trees into SMILES and

SMARTS notation, details on the majority vote and individual molecule

performance.

4.2 Methods

The performance of random forests has already been demonstrated in Chap-

ter 3. However, these data sets are smaller than the data sets typically used

in pharma. We demonstrate the application of random forests on a larger

and more challenging data set from GlaxoSmithKline. This data is propri-

etary, but is used here to demonstrate the predictive performance of the

forest. Unlike the Sutherland and Weaver data sets, this has three classifi-

cations, and is thus a harder task. The distribution of the classes is uneven.

This also poses a challenge to a data mining technique. Due to the greater

availability of data at GlaxoSmithKline, three data sub-sets are possible.

A large training set, a small hold or validation set to perform parameter
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Data set size
Train Hold Test

Instances 7999 2217 4000
Class distribution

Low Medium High
Percentage 77 14 9

Table 4.1: Composition of GSK data set and distribution of classes

tuning and a medium-sized test set are used. This has the advantage of the

data being completely independent. The model never sees the same data

twice, as is the case with cross-validation. Each stage of the model has new,

unseen, data. The data set itself comprises in-house data with 122 in silico

descriptors. The descriptors represent common physical chemistry proper-

ties and e-states153, also generated in-house. The electrotopological state,

or e-state descriptors generate a value for each atom of a molecule encod-

ing the topological environment and electronic interactions with all other

atoms. E-state indices can be formed for common functional groups. One

such index denoted as “SssCH2”, represents CH2 groups. “Sss” represent

three single bonds.

The Table 4.1 summarises the data set composition. As one would ex-

pect, less high activity data is available than low or medium. It is the high

activity compounds that are of most interest and the successful prediction

of other high activity compounds. In highly skewed data sets data mining

techniques have a tendency to classify everything as the majority class, in

this case low activity. Statistically this would look like good performance,

e.g. 90% is a excellent score. This underlines the importance of not relying

on a single statistic. On closer inspection, this model is flawed for high ac-

tivity prediction, as it successfully identified all the low activity compounds

and labelled most other compounds low activity as well. Close attention to

the confusion matrix is required for data sets like this. Skewed data sets

are not a new problem and there are techniques to adjust the model. We
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use cost sensitive classification20 and over sampling.154

In this chapter, our data are quite different to those used in Chapter

3. Not only are they larger and thus allow train, hold and test data sets,

but possess three classification classes. Having more data is advantageous

as we can perform both the training and testing of the model with unseen

data. Multiple classes are not a problem as long as the method can handle

them. Modern implementation of these methods are suitable for multiple

classes. SVM as implemented in Weka cannot handle multiple classes. This

is overcome by performing multiple pairwise calculations of the classes to

obtain a prediction for each class. The issue comes with the distribution of

the classes. If they are unbalanced the model may be biased to the major-

ity class, and this may not be the class of interest. Therefore, in addition

to the normal procedure of model building and statistics, there are other

techniques one would use in this situation. In cost sensitive classification,

a cost matrix is used to penalise the learning algorithm when a certain

classification is made. Weka supports this across most classifiers, including

random forest. The cost matrix used is determined by trial and error, but

a default matrix as in Table 4.2 is a reasonable starting point. Depend-

ing on the distribution of the classes one will need to adjust the costs to

avoid a misclassification. The cost matrix can be used with any number of

classes, although fine tuning will become more complicated as the number

of classes increases. Ultimately one will find that one goal must be picked,

e.g. optimise one class.

Another approach to unbalanced data is under and over sampling. These

techniques relate to altering the data set composition. The reason the model

is biased to the majority class is the high frequency of instances. Under

and over sampling offer two approaches to remove the split and return the

data set to equal distributions of the classes. Therefore, when the data is

modelled, all classes have equal representation. Only the training data sets
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Actual/Predicted A B C
A 0 1 1
B 1 0 1
C 1 1 0

Table 4.2: Default cost matrix. No penalty for predictions on the diagonal,
which are correct.

are modified. Subsequent data sets are not altered. Under sampling reduces

the size of the data set so that all classes have the same number of instances

as the minority class. This has the disadvantage that not all available data

is used in the model. Over sampling is the opposite and increases the size

of the dataset. Minority classes are duplicated to match the size of the

majority class. The model will learn the same instances more than once

and this will bias the overall model to recognise that class. To analyse

the model, the confusion matrix is important to check for false negatives,

typically in the minority classes, see Chapter 2. For statistics the Matthews

correlation coefficient is not sufficient as this not a binary class problem.

Instead one can use the Kappa statistic, as described in Chapter 2.

FBI was developed in this thesis to allow interpretation of random forest

models. It is a Java-based GUI suitable for running on any major operating

system. It does not have a batch or command-line version, as interpreting

models is far less computationally demanding than generating them. To

avoid rewriting core machine learning code Weka is included as its existing

framework can be taken advantage of. This is possible thanks to its API,

documentation and open source (Apache155) license. FBI was not devel-

oped for Weka’s random forest implementation. It can read saved models

from other popular applications. However, with the presence of Weka its

implementation is available to allow anyone to generate a forest.

FBI’s development followed the programmatic approach as described in

the Chapter 1. All source code is held in our group subversion repository.

JUnit tests were written and run whenever the code is compiled. For deploy-
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ment IzPack is used to enable a simple wizard-based installation. An Ant

build script (the Java equivalent of a Makefile) can compile, test and package

the code into the IzPack installer. This script is what CruiseControl uses to

independently build everything after a commit to the repository. Program

documentation is available as HTML webpages or in PDF format. Docu-

mentation is written in reStructuredText, a lightweight markup language.

A Python package, Sphinx156, will convert the source into the target format

via a Makefile. The Ant build script also handles the documentation com-

pilation. The installer for FBI along with documentation is available on our

group website: http://comp.chem.nottingham.ac.uk/download/fbi. Iz-

Pack44 provides native installers for users of Windows and Mac OS X, so

users will not notice they are using Java. Using the installer can also, op-

tionally, add Desktop and Start Menu shortcuts for the user. An installer

is only as good as the uninstaller it provides. All IzPack installations are

simple to completely remove. The Java runtime environment is the only

prerequisite, which is commonly installed otherwise, it is readily and freely

available from http://www.java.com. For the same reason that Weka is

included with FBI so are Marvin and JFreeChart. Marvin provides the de-

piction of SMILES5 and SMARTS,9 while JFreeChart provides plots from

some of the analyses. FBI was not written to provide its own API, but this

could be introduced retrospectively.

Arguably the first task to perform when analysing a forest is to view

the trees produced. Weka displays a text version of the trees it generates,

that while technically accurate are not visually useful. Subsequently Weka

introduced a tree visualiser that allows basic viewing and manipulation of a

tree. FBI contains custom code, most of which has been contributed back to

Weka that allows trees from a forest to be extracted and viewable in the tree

visualiser. The tree component in the random forest was not compatible

with the tree visualiser. In addition, instance data is also available by
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clicking the various nodes when using the tree visualiser.

The concept of a tree is common and highly studied in Computer Science.

Graph theory is one implementation of a tree structure, a selection of nodes

and edges (or leaves and branches). Cheminformatics also uses graph theory

to encode chemical structures as atoms (nodes) and bonds (edges). Given we

are interested in chemical insight to our forest it was opportune to convert

our tree structures into chemical entities (although they will not contain

any actual chemical meaning). With the forest in a popular chemical format

there are many pre-existing tools with which they can now be processed.

SMILES5, simplified molecular input line entry specification, is a popular

and de facto 2D chemical format. SMILES are simple and human-readable

where letters represent atoms and bonds are implicit. Benzene is encoded

as c1ccccc1, where the ring opening and closing is signified by the same

number. Lower case letters encode for aromatic atoms, while upper case

represents aliphatic atoms. Therefore, cyclohexane would be C1CCCCC1.

Compounds with branches are handled by parentheses, for example, acetic

acid, CC(=O)O. Bonds are denoted by equals or hash symbols for double

and triple bonds respectively. There are only a handful of simple rules to

enable one to interpret SMILES, which is part of the reason they are so

popular. A valid SMILES representation can start from any point of a

molecule. Therefore, they are many potentially valid and unique SMILES

for the same compound. Canonicalisation is a process to produce a unique

SMILES representation. This is particularly useful in databases or when

comparing SMILES against each other.
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Actual/Predicted L M H
L 3026 13 23
M 516 14 40
H 272 17 79

Table 4.3: Confusion matrix for the default random forest reporting the test
set results.

Actual/Predicted A B C
A 0 2 5
B 20 0 5
C 20 10 0

Table 4.4: Cost matrix for the cost sensitive random forest. No penalty for
the (correct) predictions on the diagonal.

4.3 Results and discussion

4.3.1 Larger and skewed data

Using the training data to build our forest of 100 trees, we report the results

of the training data (4000 instances) and apply techniques to take account of

the skewed class distribution. Using just the random forest, we obtain 78%

correctly classified compounds and Kappa statistic of 0.17. Table 4.3 shows

the confusion matrix. It is clear that the bulk of compounds have been

predicted as low activity. We are more interested in the medium and high

activity classes, of which only 2.5% and 21.5%, respectively, were correctly

predicted. The overall correctly classified percentage is misleading, but the

low Kappa statistic highlights the incorrect classifications. The low activity

class is nearly perfectly predicted at 98.8%.

By applying a cost matrix, we can influence the forest not to classify

Actual/Predicted L M H
L 2758 205 99
M 363 114 93
H 150 81 137

Table 4.5: Confusion matrix for the cost sensitive random forest reporting
the test set results.
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Actual/Predicted L M H
L 2741 214 107
M 356 121 93
H 144 86 138

Table 4.6: Confusion matrix for the oversampled random forest reporting
the test set results.

medium and high activity instances as low activity. Several cost matrices

were used. Table 4.4 is what produces the confusion matrix in Table 4.5.

The correctly classified rate was 75% and the Kappa statistic 0.30. The

use of a cost matrix improves the overall correct classification, as reflected

by a higher Kappa statistic. The total number of correct classifications is

lower, but the improvement to the medium and high activity compounds

is obvious. 20% and 37.2% of the medium and high activity compounds,

respectively, are correctly classified. This represents a two-fold improve-

ment for the high activity compounds and eight-fold for medium activity

compounds. The medium activity compounds are harder to predict, as they

have boundaries with both low and high activity compounds. Further at-

tempts to improve the cost matrix led to either the medium or the high

correct classification falling at the expense of the other. The low activity

compounds are not as well predicted in this model. However, the correct

percentage is still very high and our focus is the more active compounds.

We applied over sampling to the training data set, which increased its

size. The test set remains the same. Using just over sampling achieves

similar results to the cost sensitive classification. The fraction of correctly

classified compounds was 75% and the Kappa statistic was 0.30. The con-

fusion matrix is very similar, as seen in Table 4.6 and demonstrates the

effectiveness of this technique for handling the skewed classes. The percent-

age correct by class is essentially the same. However, we would ideally want

the percentages to increase nearer 50% for all classes.

The techniques complement each other, and combining them improves
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Actual/Predicted A B C
A 0 10 5
B 20 0 5
C 20 15 0

Table 4.7: Cost matrix for the cost sensitive and oversampled random forest.
No penalty for (correct) predictions on the diagonal.

Actual/Predicted L M H
L 2314 600 148
M 215 238 117
H 80 132 156

Table 4.8: Confusion matrix for the cost sensitive and oversampled random
forest reporting the test set results.

the results. A different cost matrix is used, as the composition of the train-

ing data set has now changed, shown in Table 4.7. The overall correctly

classified rate is 68%, while Kappa remains at 0.3. The confusion matrix

is shown in Table 4.8. Clearly, the total number of correct classifications

is lower than previously. However, that is due to the majority class only

being 75% correctly classified. The classes of interest have both risen to

over 40%, especially the middle class which often suffers at the expense of

the terminal classes. Random forest continues to prove its competence at

classification of pharmaceutical data of varying type. The use of additional

machine learning techniques enables it to perform well with skewed data

sets.

4.3.2 Interpretation

When it comes to interpretating a forest, it is clear that visual inspection

alone is insufficient. In fact, by default Weka does not display the trees

from the forest. This highlights the different priorities between the machine

learning and cheminformatics communities. Even with the trees available,

they are far too large and unwieldy to be of any use, especially when pre-

sented as text. A tool was needed to assist with forest interpretation and
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handling the model. A Java application called FBI, Forest Based Interpre-

tation, was written to house all the required tools to create and interpret

models. Java was chosen, due to its platform independence. This became

especially useful as FBI was developed on a Mac, yet deployed on Windows

and Linux. FBI contains a copy of Weka with some slightly modified files to

enable one to obtain the trees produced by the forest. All further analysis

was performed outside Weka, to enable FBI to run newer versions of Weka.

When starting with FBI one can either generate a new random forest

or load a previously saved model. Once the forest is built, all analysis op-

tions become available. Previously, descriptor importance was ascertained

by counting the frequency of a descriptor in the trees as each split undergoes

attribute selection, even though the pool of available descriptors is only a

random subset. For the following examples, the ACE data set from Suther-

land and Weaver88 was used to create a 10 tree forest. Figure 4.1 depicts

the summary of descriptors across the forest. Graphs are produced in FBI

using the open source library JFreeChart157.

It is clear there are no super-descriptors, as Chapter 3 details. However,

it is reasonable to assume that the more commonly picked descriptors are

better at classifying this data set. FBI can drill further down to graph by

each tree in the forest. Tree 10 is shown in Figure 4.2. This is a small data

set and hence there is a lower overall number of descriptors. FBI provides

the numbers behind the graph as well, for the user to save and use elsewhere.

As well as the most common descriptors being of potential interest, the

descriptors at the top of each tree correctly classify a larger number of

instances. Therefore, they are also of interest. FBI can summarise the top

descriptors to a given depth.

One can view the trees in multiple formats. Firstly, Weka includes a

tree visualiser. This has been modified to enable easy viewing of multiple

trees, as shown in Figure 4.3. Secondly, we can produce SMILES5 and
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Figure 4.1: Summary of descriptor frequency across a forest using the ACE
data set
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SMARTS9 trees. Our motivation for converting the trees into a chemical

format is to allow ease of manipulation and enabled the use of existing

tools. The depictions from the chemical trees are instantly more familiar

to chemists and more meaningful than the visualisation that Weka pro-

vides. The SMILES trees are encoded using boron for the branches and

carbon for the leaves. In order to satisfy valency oxygen is used as the

root node. The SMARTS tree gives each descriptor in the tree a unique

number. This is encoded as the atomic number. Using SMARTS al-

lows an extra dimension of information to be encoded, namely identifying

the descriptor. Just like the SMILES tree the topology is also encoded.

Identifying the descriptor is useful for further analysis. The root node is

represented with the wildcard (*) atom. All information encoded in the

SMILES and SMARTS trees hold no chemical meaning; atom types were

picked for convenience. The information encoded in the trees is different.

The SMILES tree details the topology of the tree, but tells one nothing

about the descriptors. The SMARTS tree additionally encodes the de-

scriptor detail with different descriptors represented as ascending atomic

numbers. Samples of both are seen in Figures 4.4 and 4.5. Due to the tree

structure, which is not typically found in compounds, the actual SMILES

and SMARTS representations are parenthesis heavy and not particularly

readable. The original SMILES representation is O(B(B(C)B(C)(C))B(C)-

B(C)B(C)(C))B(B(C)(C))B(C)B(C)B(C)B(C)(C), which is canonicalised to

B(B(B(B(C)C)OB(B(B(B(C)C)C)C)B(B(C)C)C)C)(B(B(C)C)C)C. The SMARTS

is *(-[#1](-[#8](-[#9])-[#9](-[#10])(-[#10]))-[#8](-[#11])-[#11](-[#12])-[#12](-

[#13])(-[#13]))-[#1](-[#2](-[#3])(-[#3]))-[#2](-[#4])-[#4](-[#5])-[#5](-[#6])-

[#6](-[#7])(-[#7]). These trees have no chemical meaning but useful infor-

mation about the subgraphs is encoded in a format for which various tools

are readily available. For example, subgraph fragments can be searched

across all the whole forest to see if the same path repeats, which would
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indicate this particular path encodes some importance of the selected de-

scriptors.

Figure 4.2: Summary of descriptor frequency across tree 10 using the ACE
data set

As FBI contains Weka, which has a fully fledged API, one can take

advantage of this. For example, we can produce a scoring matrix based on

trees or compounds. They contain binary values for whether or not that

tree or compound was successfully classified. Weka also contains clustering

algorithms and a clusterer visualiser. Using the existing tools in Weka, we

can cluster our scoring matrix. It identifies three clusters from this matrix.

Using the GUI interface the user is able to identify the instance number of

the cluster members.

The overall classification is given by the majority vote of the trees. We

can now produce these numbers and plot them, as in Figure 4.6. No single

tree has a disastrous performance. This data set is fairly straightforward to

classify. Likewise, we can plot the performance of each molecule. A so called

molecule performance graph highlights which molecules posed the biggest

challenge to classification. This is shown in Figure 4.7. Most molecules

are unanimously correctly predicted. However, there is a handful that are

misclassified by a few trees. These molecules are of interest to see why

some trees could not successfully classify them. In order to assist with
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Figure 4.3: Weka tree visualiser with added navigation panel to view trees
in a forest
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Figure 4.4: A tree encoded as SMILES. Oxygen (O) is the root node. This
representation has no chemical meaning.

Figure 4.5: A tree encoded as SMARTS. The wildcard atom type (A) is the
root node. This representation has no chemical meaning.
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finding misclassified compounds FBI can produce a list a molecules that

are incorrectly classified by x% of trees.

Figure 4.6: Summary of the majority vote for a forest built using the ACE
data set

4.4 Conclusions

Random forest is a powerful technique. It is competitive with other clas-

sifiers on a variety of data sets, both small and large. While in theory it

is an interpretable method, it is clear that as an ensemble this is no longer

straightforward. The tools in FBI assist one in exploring the contents of

the forest. Simple statistics are the first step to understanding the composi-

tion of the forest and individual trees. With the trees available in multiple

formats, text, SMILES, SMARTS and the tree visualiser, further analysis

is possible. The scoring matrix allow us to assess the performance of indi-

vidual trees and compounds. The overall classification is the outcome of a

majority vote. We can examine the details of the vote and highlight the

border-line classifications. All the features within FBI add extra value and

insight to our model and the data that created it. The use of interpretable

descriptors enhances the benefit of highlighting descriptor importance.
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Figure 4.7: Molecule performance for a forest built using the ACE data set
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The methods in FBI are by no means exhaustive, There are many av-

enues to explore further. However, it is a step forward from simple counts

and is a foundation for further research. Access to the trees in multiple

formats, particularly chemical, is perhaps the most important feature, as

this allows analysis in other applications. We have shown how a forest does

indeed contain useful insight into the model. The challenge is getting it to

a readily understandable form. FBI allows the user to gain a greater under-

standing of the model. Black box methods offer no benefit post prediction,

whereas model interpretation is invaluable in downstream analysis.
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Chapter 5

TMACC: interpretable

descriptors

5.1 Introduction

The descriptors used within a QSAR model are arguably the most important

component. One can only assess and interpret a model based on the inputs

- the chosen descriptors. While thousands are available through software

packages and web services, how does one pick the best descriptors? It

was originally thought the more the better. However, more descriptors

increase the model generation time. Also extra descriptors add noise to

the model and increase chance correlations, both of which detract from the

aim of finding a chemical relationship. The increase in descriptor space

is not proportional to information gain. This is known as the curse of

dimensionality.143 Therefore, a reasonable number of descriptors should be

selected for a model. For interpretation, whole molecule descriptors are

not as useful. For example, Lipinski-like rules46 are useful filters, but not

suitable for structure-based drug design. This is because the rules classify

compounds on the likelihood of absorption. For compounds highlighted

as poor for absorption they do not suggest which part of the molecule is
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responsible. Descriptors that connect specific regions of the molecule with

an impact of a property are better suited for structure-based drug design.

Fragment-based descriptors are an example, as they represent a distinct

chemical entity.

The TMACC descriptors (See Chapter 2) were developed in this research

group.85 They are highly predictive topological maximum cross correlation

descriptors for use in QSAR. They are based on the autocorrelation method

and encode several chemical properties. Their generation does not require

3D structures or alignments. The original work demonstrates qualitative

agreement with more time consuming 3D and 4D QSAR methods. Here, we

focus on their interpretive ability by developing tools to test their interpre-

tative power. Used in conjunction with PLS, we explore the interpretation

of an angiotensin converting enzyme (ACE) dataset88 and performance in

the Journal of Chemical Information and Modeling (JCIM) solubility chal-

lenge.28

Activity, lipophilicity and solubility are important properties in pharma-

ceutical compounds and, thus, common targets for SAR studies. Activity

can be measured as IC50 or pKi. IC50 is the half maximal inhibitory con-

centration. This value represents how much drug is required to inhibit the

biological function of interest by half. Ki is the inhibition constant. This

is the equilibrium constant that measures the reaction of the ligand and

protein dissociation. pKi is equal to − log10 Ki. The octanol-water parti-

tion coefficient, logP, is acknowledged to be relatively straightforward to

predict compared to other properties, such as solubility.158 The availability

of experimental data is crucial in predicting properties. Solubility poses a

challenge as producing reliable results is not as simple as other properties

using either experimental or computational methods. This, in part, could

explain why logP is easier to predict than solubility. Models built are sen-

sitive to the error of the data. Greater error yields less reliable predictions.
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This is common for solubility.

Solubility is the ability of a substance (known as a solute) to dissolve

in a solvent. Solubility is a dynamic equilibrium, which is maintained by

a constant rate when no more solute can be added to the solvent as it is

fully saturated. Due to the equilibrium nature of solubility it is pressure

and temperature dependent. In order for substances to dissolve a suitable

amount of energy is required to break the hydrogen bonds, otherwise they

will be insoluble, for example water and oil. If energetically favourable the

solute will form new hydrogen bonds with the solvent. Drugs need to be wa-

ter soluble in order to be orally bioavailable, which is the preferred method

of administration. Poor solubility can lead to late-stage failure, which is

costly. High-throughput technologies have led to increased lipophilicity and

molecular weight of screened compounds, which in turn reduces solubility.159

5.2 Methods

The ACE dataset from Sutherland and Weaver88 is used retrospectively to

validate the TMACC interpretation. The JCIM solubility challenge data set

was also used. Both are regression based tasks. The method follows that

outlined in Chapter 2. The goal of the solubility challenge was predictive

accuracy. Therefore, some modifications were implemented to improve this.

Two alterations to standard TMACC generation were explored. First, given

solubility is the goal and TMACC includes an explicit solubility term, we

altered the standard 28 atomic property pairs. We investigated only using

pairs with either one or both components being solubility, comparing to the

standard TMACC. As detailed in Chapter 2 TMACC descriptors are com-

posed of molecular property pairs based on electrostatics, molar refractivity,

logP and logS. Given the nature of this study we have explored using only

bias pairs to improve our solubility predictions. Second, we reduced the

cutoff for the topological distance; by default it is the maximum possible.
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Both of these alterations enhanced performance.

TMACC interpretation is made possible by using NCW, Nottingham

Cheminformatics Workbench. Melville was responsible for the original TMACC

descriptor code, written in Java. NCW extends this by adding a GUI to

descriptor generation. The original code only generates descriptors. One

would then have to build a model and analyse the interpretation by hand.

Descriptor interpretation is not practical to be done manually. NCW, there-

fore, was written as part of this thesis work to automate it. Using NCW

one can generate descriptors, build a model and analyse the interpretation

in a graphical output, using Marvin.96 NCW is the now the default location

for all in-house cheminformatics code. This includes 3D QSAR and similar-

ity metrics12. A public version is available for download from our website

http://comp.chem.nottingham.ac.uk/download/ncw. NCW works on all

major operating systems and removes the need for extensive command-line

usage. A GUI installer makes installation simple while documentation is

available. In adherence with the open source Apache license,155 full source

is available, allowing others to extend and develop further if desired. The

GUI installer and documentation is provided using the open source projects

IzPack44 and Sphinx156. This work would not have progressed as far with-

out computational tools to enable analysis of the complete datasets, not

just a few molecules.

With solubility being such a challenging property various methods have

tried to predict it in silico. Four classes of descriptor are frequently used:

melting point and logP, atom or group contributions, physicochemical and

quantum chemical descriptors, and topological indices.158 The TMACC de-

scriptors are atomic physicochemical based. Unfortunately the techniques

employed by the 99 entrants of the solubility challenge were not disclosed,

this would be very interesting to see. Palmer et al have used random forests

to predict aqueous solubility.160 They used random forest, PLS, SVM and

94



artificial neural networks for model generation using a variety of descriptors

from the Molecule Operating Environment (MOE). A comparison of the

models concluded that random forest was the most accurate. The random

forest implementation in Weka is limited to categorical data only. Therefore,

we did not used random forest in this exercise. Quantum chemical descrip-

tors have been used as well as the high level of theory accessible could aid

reliable prediction.161 However, the required level of theory is excessively

expensive. In this work the authors combined a lower level of theory with

informatics in order to enable a reasonable compute time. Both of these

studies have used different approaches to how the TMACC operates. They

all have produced reasonable predictions for solubility.

Solubility training data: From the 101 molecules comprising the training

data, we removed the following: aspirin, chloroprothixene, 5-fluorouracil,

levofloxacin, L-proline, orbifloxacin, Pen G, pthalic acid, procainamide,

sulindac, trichlormethiazide and chlorzaxazone. They were removed as they

either had no intrinsic solubility value or were polymorphs. This left 89

training compounds and 32 in the test set. All structures are available in

Appendix A. We converted the intrinsic solubility into log units. The pre-

dicted values are converted back to intrinsic solubility for the purposes of

assessment.

Solubility test data: After the results were published162, it was evi-

dent that several compounds would pose a challenge for our method. 2-

chloromandelic acid, 1R-2S-ephedrine, marbofloxacin and 1R-2R-pseudoephedrine

have no intrinsic solubility. Diflunisal and trazodone are polymorphs. Al-

though we made predictions, our method is not capable of predicting these

types of compounds.
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5.3 Results and discussion

5.3.1 Angiotensin converting enzyme

This work was carried out by Benson Spowage, an undergraduate project

student under my supervision, and it was only made possible by the avail-

ability of the NCW software.163 Figures 5.1, 5.3 and 5.4 were drawn by

Benson Spowage.

Angiotensin converting enzyme, ACE, is part of the body’s system to

regular the volume of blood and arterial vasoconstriction. Specifically it

catalyses the conversion of angiotensin I to angiotensin II by removal of

terminal amino acids which led to vasoconstriction. In addition, it degrades

bradykinin, a vasodilator. The net effect of these two actions is to constrict

arterial vessels. ACE inhibition is therefore a target for pharmaceutical

research as it can treat a variety of conditions such as hypertension and

type II diabetes. ACE has been studied extensively and therefore makes it

very suitable for retrospective analysis.

To validate the interpretive ability of the TMACC descriptors the ACE

data set was used. ACE induces hypertension, which makes it a popular

pharmaceutical target.164 The original TMACC work only briefly covered

interpretation. With NCW it is now possible to assess a whole data set

with greater ease. Melville’s implementation created leave-one-out (LOO)

cross-validation PLS models. Melville wrote a PLS algorithm before it was

added to Weka. The q2 for this model is 0.70, which matches the original

values reported.85 The data set consists of 114 molecules and was originally

constructed for a 3D QSAR study.135 TMACC descriptors do not require

3D coordinates, only the 2D connection tables. Activity is determined by

IC50 values. IC50 is the half maximal inhibitory concentration, the amount

of a compound required to inhibit a given biological response by 50%. Sev-

eral studies determined IC50 using the substrate hippuryl-histidyl-leucine
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(HHL).165,166 One method is to measure the rate of hippuric acid production

from HHL catalysed by ACE.167 However, it was subsequently discovered

that HHL is a C-terminal domain specific substrate of ACE.168,169 This data

set consequently is likely to reflect that of C-terminal domain specific ACE

inhibition, rather than general inhibition.

To demonstrate the TMACC interpretation is highlighting pharmaco-

logically interesting features, a retrospective analysis must be performed.

From the literature several, potentially important features are extracted

and shown in Figure 5.1. This data set contains three commercial com-

pounds which are all licensed ACE inhibitors, captopril, enalaprilat and

lisinopril. Applying these features to the known commercial inhibitors in

Figure 5.2 a corroboration can be seen.

Figure 5.1: ACE inhibitor features investigated. Position of features shown
in 2D relation to one another. Blue circles surround atoms studied for
activity.

An essential feature is the presence of a zinc coordinating group. The

catalytic zinc iron is coordinated by three highly conserved resides present

in both domains. The functional role of the zinc ion in the active site has

led to the development of peptide based inhibitors, such as enalaprilat. The

importance of zinc binding has been shown in the crystal structure170 and

SAR studies.171 Three zinc binding groups present in the data set are inves-
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Figure 5.2: TMACC interpretation of ACE inhibitors. A. Captopril. B.
Enalaprilat. C. Lisinopril.
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tigated: sulfhydryl, carboxylate and phosphinate/phosphate. All sulfhydryl

sulfur atoms were identified as positive contributors towards activity. Anal-

ysis of phosphinate zinc binding groups showed all phosphorus atoms were

labelled as positive for activity. However, phosphinyl oxygen atoms were

mostly shown as negative for activity. In contrast, the interpretation most

frequently identified both carboxylate zinc binding group oxygen atoms to

be positive for activity, although the results do not fully capture the cor-

relation between the type of zinc-ligand and inhibitor activity observed in

structure-activity studies, (phosphinate carboxylate sulfhydryl).90 Perhaps

the negative activity attributed to the phosphinate oxygen atoms reflects its

weak zinc-binding ability in comparison to the other zinc binding groups.

The central carbonyl group is a feature found in most ACE inhibitors.

It forms two hydrogen bonds within both domains of ACE.172,173 Dock-

ing studies suggest this interaction is frequently present in ACE-inhibitor

binding and it has been identified in many ACE-inhibitor crystal structure

complexes (Figure 5.3).174 Mutation of 513His to alanine causes a 120,000-

fold decrease in the binding of lisinopril to the C-domain of somatic ACE

(sACE).175 This suggests the interaction of the conserved histidine residues

with the carbonyl group of an inhibitor is important for ACE inhibition.

The TMACC interpretation identified the central carbonyl as favourably

contributing towards the activity (Table 5.1). The high frequency of posi-

tive activity shown for this feature by the TMACC interpretation is consis-

tent with the aforementioned literature. The features highlighted in Table

5.1 have resonance structures, for example the first three C-terminal fea-

tures. The TMACC descriptors do not have any knowledge of resonance

structures. However, all nonpolar hydrogens are treated implicitly, so the

interpretation diagrams do show a particular contributing structure, which

is what the descriptors values are based on. It is not unusual for cheminfo-

matics techniques to ignore resonance.
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Activity
ACE inhibitor feature Negative Neutral Positive
C-terminal carboxylate carbonyl 5 0 105
C-terminal carboxylate hydroxyl 0 5 105
Central carbonyl 13 3 96
Zinc binding carboxylate - carbonyl 3 3 22
Zinc binding carboxylate - hydroxyl 0 4 24
Zinc binding sulfhydryl sulfur 0 0 33
Zinc binding phosphinate phosphorus 0 0 22
Zinc binding carbonyl 20 0 2
Zinc binding hydroxyl 20 0 2
P1’ methyl 4 2 27
P1’ lysyl nitrogen 0 0 20

Table 5.1: Frequency of activity of ACE inhibitor features as determined
by the TMACC interpretation.

The crystal structures of testicular ACE (tACE) in complex with vari-

ous inhibitors (Figure 5.3) show the intermolecular interactions responsible

for ACE inhibition in tACE and correspondingly the C-terminal domain of

sACE.171,172,174 In contrast to most zinc protease inhibitors, which primar-

ily rely on the strength of their zinc binding groups for activity, domain-

specific ACE inhibitors utilize weak zinc binding groups and exploit both

primed and unprimed sides of the active site in order to mimic peptide sub-

strates, thereby achieving domain selective inhibition.176 Domain-specific

inhibition of ACE is important, as each domain possesses individual func-

tions.177 This discovery has developed the number of applications of ACE

inhibitors, extending from treating hypertension to protecting stem cells

during chemotherapy.178 A recent study has also suggested ACE may be

involved in many physiological processes other than blood pressure regula-

tion.179

The two domains of sACE contain many conserved residues, which are

vital for substrate and inhibitor binding (Table 5.2). The identification of

conserved residues within ACE and their role in inhibitor binding has high-

lighted several important features required for ACE inhibition, providing a
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Figure 5.3: Conserved ACE residues that interact with lisinopril. A) tACE
active site (green).172 B) The N-domain active site of sACE (purple).173

Zinc ion shown in magenta; atoms are coloured as follows: red for oxygen,
blue for nitrogen, cyan for carbon and grey for hydrogen.

rationale for the structure-activity relationship of ACE inhibitors.

A C-terminal carboxylate is found in many ACE inhibitors. This fea-

ture interacts with several conserved residues in both domains of sACE,

hydrogen bonding with tyrosine and glutamine residues, and also forms an

electrostatic interaction with a lysine residue (Figure 5.3). Both C-terminal

carboxylate oxygen atoms were identified as positive by the TMACC inter-

pretation (Table 5.1).

Despite the high level of conserved residues present in both domains of

sACE, variation between the domains confers different substrate and in-

hibitor preferences. The presence of hydrophobic residues 379Val and 380Val

in the S1’ sub-site of the C-domain of sACE provides hydrophobic interac-

tions between the sub-site and the P1’ residue of inhibitor molecules, such

as the P1’ methyl group of captopril and enalaprilat.173 The correspond-

ing residues found in the N-terminal domain, 357Ser and 358Thr, provide

a polar environment and, therefore, do not form similar hydrophobic in-

teractions with the P1’ residue of inhibitors.173,174 In the C-terminal do-

main the lysyl chain of lisinopril extends into the S1’ sub-site and forms an

electrostatic interaction with 162Glu and a water-mediated interaction with

377Asp.172 However, in the N-terminal domain the S1’ sub-site makes fewer

contacts with the lysyl chain of lisinopril (Figure 5.4). For example, 162Glu
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Functional interaction C-domain residue N-domain residue
Zinc-binding 383His 361His
Zinc-binding 387His 365His
Zinc-binding 411Glu 389Glu
Inhibitor carbonyl hydrogen
bonding

513His 491His

Inhibitor carbonyl hydrogen
bonding

353His 331His

Inhibitor carboxy terminal
carboxylic ionic bonding

511Lys 489Lys

Inhibitor carboxy terminal
carboxylic hydrogen bond-
ing

281Gln 259Gln

Inhibitor carboxy terminal
carboxylic hydrogen bond-
ing

520Tyr 498Tyr

Table 5.2: Conserved ACE residues important for inhibitor interactions.
Table formulated using information from refs170,173,180

(C-domain) is replaced by 140Asp (N-domain), and due to the larger dis-

tance between the lysyl chain and this residue, no electrostatic interaction

is observed at this location in the N-domain.173 Additionally, 377Asp (C-

domain) is replaced by 355Gln (N-domain), thereby abolishing the water-

mediated interaction shown between the lysyl residue of lisinopril and the

C-domain.173 This evidence suggests that methyl and lysyl groups located

in the P1’ position of ACE inhibitors can form favourable interactions with

the S1’ sub-site of the C-terminal domain of sACE.

Interestingly, the TMACC interpretation identified all inhibitor P1’ ly-

syl nitrogen atoms as favourably contributing towards activity (Table 5.1).

The interpretation also identified inhibitor P1’ methyl groups as positive for

activity. Thus, the TMACC interpretation identified P1’ groups important

for C-domain specific ACE inhibition, as illustrated in Figure 5.2. This

C-domain specific bias in the data set, reflected by the TMACC interpreta-

tion, has not been shown in previous QSAR investigations using this data

set.88,135
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Figure 5.4: Comparison of the S1’ sub-site residues which bind the lysyl
group of lisinopril. A) tACE (green)172 and B) the N-terminal domain of
sACE (purple).173

5.3.2 Solubility challenge

The measurable component of the solubility challenge relates to predictive

accuracy on an external test set. Therefore, the steps we have taken aim

to optimise this. We used a selection of methods from Weka to analyse our

training set, based on the ten-fold cross-validated correlation coefficient, q2.

From Weka we tried support vector regression (SVM and SMO variants),

PLS and M5P.181,182 M5P is the Weka implementation of the M5 system

which constructs tree-based piecewise linear models. We report on the 89

training data using standard TMACC descriptors, see Table 5.3. We also

reduce the number of descriptors to those that include either one or both

components relating to solubility. At this stage we use the default parame-

ters for all techniques from Weka. By imposing a criterion on the TMACC

atomic pairs, the number of descriptors drops dramatically, see Table 5.4.

M5P does not perform as well as the support vector regression or PLS. In

addition only using descriptors which both contain a solubility component

has a detrimental effect on the overall prediction. Both of these avenues

are not explored further. Both support vector variants have similar per-

formances. However, SVM is dropped in favour of SMO. Now with two
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TMACC options Solubility (µg/mL) q2

SVM SVR PLS M5P
Default S 0.17 0.17 0.13 0.00

logS 0.65 0.65 0.62 0.40
One S S 0.27 0.27 0.09 0.11

logS 0.66 0.66 0.67 0.43
Both S S 0.13 0.13 0.07 0.05

logS 0.44 0.44 0.25 0.23

Table 5.3: Weka classifiers with multiple TMACC variants. SVM: Support
vector regression using SMO, weka package SMOreg. SVR: Support vector
regression using the weka package SVMreg. PLS: Partial Least Squares.
M5P: Tree-based model based on the M5 system.

TMACC variant Number of attributes
Default 617
One logS component 287
Both logS components 67

Table 5.4: Number of attributes in different variants of TMACC. Number
of logS components refers to those included.

Descriptor SVM SMO PLS
MAE RMSE MAE RMSE MAE RMSE

Default 0.81 0.99 0.81 0.99 0.92 1.12
One logS 0.76 0.99 0.76 0.99 0.80 1.05

Table 5.5: Errors for the cross-validation for the three techniques.
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Cutoff SMO PLS
q2 MAE RMSE q2 MAE RMSE

None 0.66 0.76 0.99 0.67 0.80 1.05
19 0.66 0.76 0.99 0.68 0.80 1.05
17 0.66 0.75 0.98 0.67 0.81 1.08
13 0.67 0.75 0.98 0.66 0.83 1.08
11 0.63 0.76 1.02 0.46 1.08 1.43
6 0.30 0.96 1.24 0.12 1.83 2.39

Table 5.6: Final two techniques with cutoff of maximum topological distance

Property Default Minimum Maximum Step
C 1 1 20 1
γ 0.01 1.0×10−5 1.0×10+2 1
ǫ 0.001 1.0×10−5 1.0×10+2 1

Table 5.7: GridSearch for C, γ and ǫ. Step increment applies only to the
exponent, except C.

techniques we look at optimising them and reducing the maximum distance

of the topological bond distance. From this point, we only use the one logS

component TMACC variant, as it outperforms the default TMACC. The

q2 value does not alter. However, the error values decrease before the q2

suddenly drops. PLS has consistently higher errors and similar q2 values.

Therefore, the SMO variant of support vector regression is chosen as the

best technique. Further modification of the TMACC is achieved by apply-

ing a cutoff to the topological distance component. Table 5.6 shows various

cutoff results, from which 13 is reasonable and used from now on.

Finally, further optimisation on support vector regression can be per-

formed. The RBF kernel is known to perform well. Next we tune three

parameters, C, γ and ǫ, which represent the complexity constant, the RBF

width and the round-off error, respectively. A grid search is possible within

Weka for two components, optimising for q2. C and γ are optimised first,

then C and ǫ.

The GridSearch reveals for SMO with an RBF kernel using the 13 cutoff

TMACC that C should be 1, with γ = 0.001 and ǫ = 0.1 (See Table 5.7).
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These are the parameters used in SMO for our predictions, detailed in Table

5.8. Figure 5.5 shows the observed versus predicted data for the training

data. Figure 5.6 shows the cross-validated results for the same data. All

test predictions are within the same range as the training observations.

Figures 5.7, 5.8 and 5.9 display the observed versus predicted solubilities

for the three compound sets 32, 28 and 24 respectively. Test compounds

which were classed as “Too Soluble to Measure” are not included in these

plots. The extra lines on this graph show the 0.5 log unit zone where correct

predictions are counted.

Figure 5.5: Predicted versus observed solubility for the training data (r 2 =
0.79).

Using the interpretation from the TMACC some known trends can be

seen. Halogens reduce solubility and increase lipophilicity as seen in 5.11.

The colour scheme is depicted in Figure 5.10. Cyclopropane is reactive and

hence good for solubility as demonstrated by 5.12.29

In terms of the solubility challenge we generally did not score highly

against the other entries. The scoring criteria were as follows, (a) Percent-

age correct of full test set (32 compounds). (b) Percentage correct from

soluble compounds (28 compounds). (c) r 2 of 28 compounds. (d) Per-
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Figure 5.6: Predicted versus observed solubility for the cross-validated data.
For the solubility challenge the predictions must fall with ± 0.5 log units to
be considered correct.

Figure 5.7: Predicted versus observed solubility for the 32 molecule set.
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Figure 5.8: Predicted versus observed solubility for the 28 molecule set.

Figure 5.9: Predicted versus observed solubility for the 24 molecule set.

Figure 5.10: TMACC colour scheme
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Compound Observed solubility Predicted solubility
(µg/mL) (µg/mL)

1 acebutolol 711 177
2 amoxicillin 3900 4416
3 bendroflumethiazide 780 150
4 benzocaine 780 1754
5 benzthiazide 6.4 15
6 2-chloromandelic acid too soluble to measure 869
7 clozapine 189 46
8 dibucaine 14 22
9 diethylstilbestrol 10 204
10 diflunisal 26, 7.6, 0.93, 0.29 12
11 dipyridamole 3.46 29
12 1R-2S-ephedrine too soluble to measure 288
13 folic acid 2.5 14
14 furosemide 19.6 13
15 hydrochlorothiazide 625 195
16 imipramine 22 49
17 indomethacin 410 86
18 ketoprofen 157 69
19 lidocaine 3130 762
20 marboloxacin too soluble to measure 1807
21 meclofenamic acid 0.16 3
22 naphthoic acid 28.96 195
23 1R-2R-psuedophedrine too soluble to measure 32
24 probenecid 3.9 288
25 pyrimethamine 19.4 5
26 salicylic aicd 620 401
27 sulfamerazine 200 475
28 sulfamethizole 450 279
29 terfenadine 0.00856 99
30 thiabendazole 66 676
31 tolbutamide 93 45
32 trazodone 460, 127 0.834

Table 5.8: Test set compounds and their observed and predicted logS values.
Compound 10 has multiple entries to represent the four polymorphs it forms.
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C D

Figure 5.11: A amiodarone, B diazoxide, C hydrochlorothiazide & D

pyrimethamine. The present of a halogen has increased lipophilicity and
therefore reduced solubility.
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A B

C D

Figure 5.12: A ciprofloxacin, B danofloxacin, C enrofloxacin & D

sparfloxacin. Cyclopropane is reactive and good for solubility.
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Molecules 32 28 24
Criteria a (%) b (%) c (r 2) d (%) e (r 2)
S 60 62 3 62 3
logS 57 63 74 63 51

Table 5.9: Results of solubility challenge, ranks against the other 99 en-
trants.

centage correct from soluble compounds minus the four largest outliers (24

compounds). (e) r 2 of 24 compounds. This was done for both S and logS

values. For S to be considered correct it had to be within ± 10% of the

actual value. For logS ± 0.5 logS units of the observed value was required

to be considered correct. Our models were generated using logS values;

using S produced poor r 2 values. The logS values were converted to S for

the purpose of scoring. However, our r 2 values on the 28 and 24 compound

subsets were excellent compared to other entrants. Our excellent r 2 values

are somewhat surprising given zero compounds were correct by the criterion

set. This is an artefact of the arbitrary nature of a clear cut criterion. Our

ranks for all five measures against the other 99 entrants are in Table 5.9.

Our logS r 2 values were not quite as impressive. The r 2 for the 28 molecule

set is worse than the 24 molecule set. This is because the 4 outliers which

were removed were on average 2.3 log units incorrect in their predictions.

The large error associated with these 4 outliers reduced the overall r 2. Our

results are shown in Table 5.10 along with the best and median performance

from all other entrants. The logS criterion of ± 0.5 logS units is unduly

harsh. Assuming a criterion of ± 1.0 logS our results fare better. The

percentage of correct predictions for the 32 molecule set is 71.9% instead

of 37.5%. For the 28 molecule set, it is 75.0% instead of 35.7%. For the

24 molecule set 75.0% instead of 41.7%. These results demonstrate that

for logS our method is relatively successful, against this relaxed but not

unrealistic error range.
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Molecules 32 28 24
Criteria a (%) b (%) c (r 2) d (%) e (r 2)

TMACC S 6.3 0.0 0.625 0.0 0.941
logS 37.5 35.7 0.269 41.7 0.621

Best S 21.9 17.9 0.642 20.8 0.987
logS 62.5 60.7 0.650 70.8 0.835

Median S 9.4 3.6 0.082 4.2 0.494
logS 43.8 42.9 0.360 50.0 0.622

Table 5.10: Results of solubility challenge, against performance markers.
The best and median results are also shown for comparison.

5.4 Conclusions

In previous work, the TMACC descriptors have proved to be competitive

against 2D and 3D methods, but the interpretative ability of these de-

scriptors was only briefly touched upon. In order to make interpretation

readily available, new computational tools were required to carry out addi-

tional calculations on the PLS model and FGRAM output. NCW encom-

passes the original software and provides the extra functionality to build

the PLS model. The PLS model and FGRAM output are then used to

calculate atomic contributions for each atom in the data set. The results

are binned into five colour-coded categories, which are depicted using the

ChemAxon Marvin suite. NCW allows models to be generated and inter-

preted quickly. The results shown here illustrate that the interpretation

produced by TMACC is indeed chemically valid. There is scope for fur-

ther automation of the interpretation, particularly automatic recognition of

features of importance. Currently, the user is required to identify relevant

information.

Analyses of the TMACC QSARs modelled for the ACE data set have

shown that the TMACC interpretation can identify distinctive features of a

structure-activity relationship. The TMACC interpretation provided a clear

and precise representation of the activity of specific groups. Amalgamation

of the atomic activity values determined for such groups within a data
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set, showed strong correlation with experimental evidence, which shows the

TMACC interpretation can produce models which accurately depict the

features of a structure-activity relationship.

Overall, the TMACC interpretation of the ACE inhibitor structure-

activity relationship highlighted important features for C-domain selective

ACE inhibition. The TMACC interpretation provided a consistent rep-

resentation of the structure-activity relationship present in the ACE data

set, albeit limited by the size of the data set. To obtain a more detailed

analysis of components important or detrimental to the ACE inhibitor

structure-activity relationship, it would be necessary to investigate a data

set which represents a comprehensive range of functional groups and struc-

tural components. Investigation of the activity of features important for

C-terminal domain selective inhibition in comparison to features important

for N-terminal domain selective inhibition would provide further insight into

the interpretive ability of the TMACC descriptors.

An inherent weakness, due to the 2D nature of the TMACC descriptors,

is insensitivity to chirality. However, the use of chirality descriptors derived

from topological data may provide a solution to this limitation and may

also improve the predictive ability of the QSAR models.183 Investigation

of alternative or additional atomic properties used in the TMACC descrip-

tors would provide an insight into the properties which contribute towards

activity. The effect of implementing more sophisticated partial charge cal-

culations would be interesting, as a recent study has suggested that the

method used for partial charge calculations can affect QSAR predictive ac-

curacy.184 Investigation of a wider range of data sets would provide further

validation of the utility of the TMACC interpretation.
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Chapter 6

Conclusions

There has never been a more pressing time in drug discovery to reduce

development time and cost. In silico techniques offer inexpensive methods

to assist in early stage development. QSAR is just one of many techniques

available from cheminformatics. This thesis has covered various aspects of

QSAR from model choice and optimisation, to descriptors and appropriate

statistics.

The so called patent cliff affects all major pharmaceutical companies.

Virtually all top ten billion-dollar blockbusters come off patent in the next

five years. There has been a reduction in new blockbusters so there are

none to replace them. When Lipitor185 goes off patent for Pfizer, it will

leave a huge revenue gap. Pharma realises it is no longer the norm to have

a few billion dollar blockbusters. It is not the lack of candidate drugs, but a

lack of successful candidate drugs. The cost of clinical trials is prohibitive,

especially if a compound has borderline pre-clinical results. At the same

time registration has become more rigorous, following high profiles cases of

negative, unknown, side effects, e.g. Vioxx.186 In addition, only new in class

or better than existing in class drugs will get registered. While a company

may improve treatment and efficacy of a patented compound, if it does not

outperform the market leader registration will not be granted. Competition

from generics is now fierce. They do not wait for patents to expire and are
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increasingly challenging existing patents, in some cases successfully. In turn

this makes the original patent even more important, as it is required to be

watertight and withstand challenge for the duration of the patent.

Pharma already employs a variety of methods to extend patents. Clin-

ical trials on children earn an extra six months. Revising the dosage or

combination therapy requires a new application, thus extending the total

time of protection. To combat the competition from generics, once drugs

go off-patent some companies have either bought into or set up their own

generics divisions. Following the global trend of outsourcing some R&D

have moved to Asia: India and China, primarily. The lure is no different

to any other industry, cheaper labour than western counterparts. However,

it has not been smooth. For example Novartis has had trouble securing

intellectual property over their research. Regardless of the approach to en-

sure more compounds reach clinical trials and are successfully registered,

the starting point of lead generation is perhaps the most important step.

This is where cheminformatics comes in.

Throughout this thesis core components of QSAR have been covered.

Every choice made before building the model is important as it affects

the potential outcome and therefore usefulness of it. Data mining offers

a plethora of techniques to build a model upon, each with advantages and

disadvantages. One needs to generate a reasonably sized data set. Data is

not always readily available. If the data set is to be split into train, hold

and test sets, this requires careful handling to ensure the sets are equally

distributed. Having a test set containing the most obscure or outliers is not

sensible. Descriptors will need to be generated. However, there are thou-

sands to pick from again, with advantages and disadvantages. Actually

building the model will likely take less time than the data preparation and

associated decision process. Ideally one will want to extract some insight

from the model - this is dependent on the model and the descriptors picked.
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How do we move this process forward? The machine learning community

produces new techniques and it is not long before cheminformatics and

bioinformatics practitioners try them. Popular methods will get attention

and will be modified to suit the task at hand. Examples include adding

interpretability to neural networks and creating chemical kernels for SVM.

Another avenue becoming increasingly popular is the idea of AutoQSAR.187

Once one has built a model it is a static snapshot. In pharma, particularly,

more data will become available and the model could and arguably should

be updated. AutoQSAR has dynamic models which are constantly refreshed

using new data and even descriptors. Such as system makes QSAR available

to non-experts as they do not need to build the model. However, rigorous

validation is necessary as it is all to easy to generate hundreds of poor

models that are assumed correct by non-experts.

We have attempted to advance QSAR in several ways. Firstly, we have

explored the interpretive abilities of the TMACC descriptors beyond the

original work. Secondly, we have advocated the use of appropriate statis-

tics for comparison of multiple classifiers and data sets. Most methodology

articles include some sort of comparison to highlight reported advances.

Appropriate statistics are vital for assessing a given advance as “statisti-

cally significant”. Thirdly, we have extended the interpretive ability of the

random forest. Random forest is a competitive technique compared to the

benchmark SVM. However, relatively little work has been carried out in-

terpreting the model. We have addressed this by introducing FBI to aid

modellers analyse their forests. The TMACC descriptors offer competitive

and interpretive descriptors for QSAR. Thanks to the development of NCW

their generation, model building and analysis is far more practical than pre-

viously. NCW provides a complete work flow solution and importantly aids

in interpretating one’s results. Throughout our comparison work it became

clear that the ability of learning classifiers is high and competitive. Inter-
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estingly they use completely different approaches to achieve high predictive

accuracies. It transpires comparing multiple classifiers with multiple data

sets is not an appropriate use of the t-test. More relevant techniques are

required and we highlight several more applicable statistic tests.

We had a specific interest in trees due to their familiarity. Our advances

in forest interpretation are numerous over the previous simple counts. The

various approaches mentioned all can aid one in gaining insight to a non

black box method that is no longer simple to understand.

QSAR has developed a lot, since its original conception by Hansch. It

has had numerous advances and successful applications. This work aims to

continue this development further. Throughout, we have shown that our

developments can aid the community at large, especially as we release the

software packages produced with open source licenses.

There are several avenues for this work to continue. Both NCW and

FBI are suitable platforms to further develop without the need to rewrite

the base code. Both programs give access to new interpretations. A core

competency moving forward would be the ability to automatically extract

a summary of the presented interpretation.

The TMACC descriptor construction should be further investigated.

This was touched upon in Chapter 5 where the presence of the logS compo-

nent in the descriptor pairs was set as one or both. This could be extended

to the other descriptors which are deemed as important for a given dataset.

Additionally, new atomic properties could be made available to build the

complete TMACC descriptor. This would increase dimensionality of the de-

scriptor which is not necessarily desirable. One could build the full TMACC

of x atomic properties and perform a feature selection like approach to re-

duce which properties are most important in this model. This would leave

a subset of the atomic properties and a smaller descriptor which would be

targeted for a given data set. NCW has made inspection of the TMACC
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straight forward but it is very labour intensive. Ideally NCW should at-

tempt to present the user with atomic features of interests. For example,

those features which occur frequently throughout the data set. If you know

what structural elements are important you can look for them, but this will

not uncover some novel interpretation that the model may of detected. The

TMACC interpretation are graphs. Reduced graphs are a descriptor that

capture important interactions that may represent several atoms.188 You

do not want to look for atomic interactions, but the trends, often several

atoms contribute to an affect. However, the fine granularity of the TMACC

interpretation forces an atomistic approach. Viewing the interpretation as

reduced graphs would be desirable and could be the output from an auto-

mated feature detection. Although this thesis has focussed on 2D techniques

the TMACC could be implemented as a 3D descriptor for pharmacophore

related work.

Within NCW the ability to interrogate the forest contents is now pos-

sible. Further tools would aid this endeavour. Like the TMACC interpre-

tation there is still a large manual component required currently. It would

be useful for NCW to suggest subgraphs of potential interest between the

trees, perhaps starting with those which occur frequently. A pathway anal-

ysis could weight each pathway (from the root node to terminal leaf node)

through the tree based on the number of molecules at each node. This

weighted pathway could be useful in ranking subgraphs of potential inter-

est. With a well understood data set looking for known chemistry is fairly

straightforward. What is more interesting is if NCW can detect unknown

chemistry, such as a new mode of action. The challenge here is how do

you know one has uncovered some novel information and not noise. Other

enhancements would include the ability to read random forest models from

R and other popular implementations. The tree visualiser provided from

Weka does not handle large trees very well, which is generally what Weka
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produces. An alternative tree visualiser using a hyperbolic view would make

visual inspection more practical.

There is an overriding theme of simplifying the interpretation of the

results from both programs. Although there is no need to rewrite the

base code it could be ported to other Java applications that receive more

widespread usage by cheminformatians, such as KNIME36 and the Chem-

istry Development Kit (CDK).189
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Chapter A

Appendix

A.1 Solubility challenge structures

These are the original structures provided for the solubility challenge.28

Table A.1 lists the training data and solubility data. Table A.2 contains

the test structures, with unknown solubility values.

Table A.1: Solubility training set compounds

Number Compound name Structure

1 1-Naphthol

2 2-amino-5-bromobenzoic acid

Continued on next page
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Table A.1 – continued from previous page

Number Name Structure

3 4-Iodophenol

4 5-bromo-2,4-dihydroxybenzoic acid

5 5-fluorouracil

6 Acetaminophen

7 Acetazolamide

Continued on next page
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Table A.1 – continued from previous page

Number Name Structure

8 Alprenolol

9 Amantadine

10 Amiodarone

11 Amitriptyline

12 Amodiaquine

Continued on next page
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Table A.1 – continued from previous page

Number Name Structure

13 Aspirin

14 Atropine

15 Azathioprine

16 Benzylimidazole

17 Bromogramine

Continued on next page
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Table A.1 – continued from previous page

Number Name Structure

18 Bupivacaine

19 Carprofen

20 Carvedilol

21 Cephalothin

22 Chlorphenamine

Continued on next page
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Table A.1 – continued from previous page

Number Name Structure

23 Chlorpromazine

24 Chlorpropamide

25 Chlorprothixene

26 Chlorzoxazone

27 Cimetidine

Continued on next page
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Table A.1 – continued from previous page

Number Name Structure

28 Ciprofloxacin

29 Danofloxacin

30 Deprenyl

31 Desipramine

32 Diazoxide

Continued on next page
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Table A.1 – continued from previous page

Number Name Structure

33 Diclofenac

34 Difloxacin

35 Diltiazem

36 Diphenhydramine

37 5,5-diphenylhidantoin

Continued on next page
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Table A.1 – continued from previous page

Number Name Structure

38 Enrofloxacin

39 Famotidine

40 Fenoprofen

41 Flufenamic acid

42 Flumequine

Continued on next page

151



Table A.1 – continued from previous page

Number Name Structure

43 Flurbiprofen

44 Glipizide

45 Guanine

46 Hexobarbital

47 Hydroflumethiazide

Continued on next page
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Table A.1 – continued from previous page

Number Name Structure

48 4-Hydroxybenzoic acid

49 Ibuprofen

50 Levofloxacin

51 Lomefloxacin

52 Loperamide

Continued on next page
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Table A.1 – continued from previous page

Number Name Structure

53 L-Proline

54 Maprotiline

55 Meclizine

56 Mefenamic acid

57 Metoclopramide

Continued on next page
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Table A.1 – continued from previous page

Number Name Structure

58 Metronidazole

59 Miconazole

60 Nalidixic Acid

61 Naloxone

62 Naproxen

Continued on next page
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Table A.1 – continued from previous page

Number Name Structure

63 Niflumic acid

64 Nitrofurantoin

65 Norfloxacin

66 Notriptyline

66 Ofloxacin

Continued on next page
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Table A.1 – continued from previous page

Number Name Structure

67 Orbifloxacin

68 Oxytetracycline

69 Papaverine

70 Pen G

71 Phenantroline

Continued on next page
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Table A.1 – continued from previous page

Number Name Structure

72 Phenazopyridine

73 Phenobarbital

74 Phenylbutazone

75 Phthalic acid

76 Pindolol
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Number Name Structure

77 Piroxicam

78 Procainamide

79 Procaine

80 Propanolol

81 Quinine
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Number Name Structure

82 Ranitidine

83 Sarafloxacin

84 Sertraline

85 Sparfloxacin

86 Sulfacetamide
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Number Name Structure

87 Sulfamethazine

88 Sulfasalazine

89 Sulfathiazole

90 Sulindac

91 Tetracaine
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Number Name Structure

92 Tetracycline

93 Thymol

94 Tolmetin

95 Trichlomethiazide

96 Trimethoprim
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Number Name Structure

97 Trimipramine

98 Tryptamine

99 Verapamil

100 Warfarin
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Table A.2: Solubility test set compounds

Number Compound name Structure

1 Acebutolol

2 Amoxicillin

3 Bendroflumethiazide

4 Benzocaine

5 Benzthiazide
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Number Name Structure

6 2-chloromandelic acid

7 Clozapine

8 Dibucaine

9 Diethylstilbestrol

10 Diflunisal
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Number Name Structure

11 Dipyridamole

12 Ephedrine

13 Folic Acid

14 Furosemide

15 Hydrochlorothiazide
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Number Name Structure

16 Imipramine

17 Indomethacin

18 Ketoprofen

19 Lidocaine

20 Marbofloxacin

Continued on next page

167



Table A.2 – continued from previous page

Number Name Structure

21 Meclofenamic acid

22 Naphthoic acid

23 Probenecid

24 Pseudoephedrine

25 Pyrimethamine
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Number Name Structure

26 Salicylic acid

27 Sulfamerazine

28 Sulfamethizole

29 Terfenadine

30 Thiabendazole
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Number Name Structure

31 Tolbutamide

32 Trazodone
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