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Abstract

This thesis presents a framework for continuously available persistent

collaborative virtual environments which is fundamentally more flexible than

current approaches. Whereas existing systems allow the artefacts in the

environment and the application behaviours of those artefacts to be changed at

run time, they still need to be shut down if the infrastructure mechanisms of

the system need to be changed. The framework presented by this thesis pushes

run-time extensibility to a lower level allowing previously static infrastructure

mechanisms and application level behaviours to be replaced and extended in a

uniform way. By associating infrastructure mechanisms with artefacts in the

same way that application behaviours are associated, the framework allows

multiple alternative infrastructure mechanisms to coexist within the virtual

environment system. Rather than applying a single infrastructure mechanism

to all artefacts in a virtual environment, mechanisms can be tailored to an

artefact’s role, optimising the operation of each artefact. This allows a wider

range of artefact behaviours and so applications to be supported by a single

virtual environment. Infrastructure level behaviours may implement a single

infrastructure mechanism or multiple mechanisms, allowing the framework to

explicitly present the complex interdependencies which can exist between

infrastructure mechanisms such as persistence and consistency. In addition to

providing greater run-time flexibility for continuously available persistent

virtual environments, the framework allows infrastructure mechanisms to be

easily developed, compared, tested and configured, making it a useful test bed

for the development of future infrastructure mechanisms.

After reviewing existing virtual environment systems and related systems, the

thesis presents an experiment which reveals some of the problems existing

with current approaches to persistence in virtual environments. The thesis then

describes the framework discussed above and the issues involved in its

realisation before evaluating the current prototype. Finally some conclusions

are presented and future work discussed.
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1 Introduction

“When is the virtual environment?”

Something about this question seems strange.

“Where is the virtual environment?”

This seems more reasonable. In our modern networked society people often

wish to know the network address of a web page or other service. Asking for

the network address of a machine which allows access to a virtual

environment seems sensible.

“What is the virtual environment?”

Again, this is a sensible question. A virtual environment might be a training

ground for a simulation or exercise. It might be a fantasy world full of fairy

tale creatures or a science fiction environment of revolving space stations. It

might just be a place for people to meet and talk.

“Who is in the virtual environment?”

Another useful query. Collaborative Virtual Environment systems can now

support arbitrary numbers of users, so asking who is present makes perfect

sense.

But, “When is the virtual environment?”

This question sounds strange as in many cases we assume (virtual)

environments are always there. With current virtual environment systems

however this is often not the case. Most virtual environment systems require

that the environment be designed using off-line tools, started, used and then

shut down. In some cases this model is appropriate. Where applications
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require short tasks to be performed by groups of users together then a time can

be agreed between the participants when they will start a virtual world, meet in

it and then shut the world down.

“When is the virtual environment?”

“3:30pm”

Users may be distributed around the globe in different time zones. Some may

need to work on lengthy tasks. The environment may need to support casual

ad hoc meetings between users who happen to be on-line at the same time. In

these cases the current model is clearly not good enough. The virtual

environment must be constantly available and consequently any changes made

to the environment must be made on-line and should persist in the face of

partial failures.

There are virtual environment systems designed to support these applications

which do provide persistence. They either periodically write the contents of

the virtual environment to disk or log changes made to the environment or do

some combination of these. The environment can then be made constantly

available and changes made can be recovered in the event of failure. The field

of database research provides many approaches to recovery which can be

utilised to make virtual environments persistent.

While these virtual environment systems are able to make the environment

appear constantly available and support the evolution of the content and

behaviour of the virtual environment, they are limited in that the environment

still has to be shut down for system maintenance. If a new application cannot

be supported by the current system or the system needs to be patched, the

users are again left asking, “When is the virtual environment?”

This thesis extends the current state of the art in persistent virtual environment

systems by developing a framework which supports fundamentally more

flexible virtual environments. The work proposes virtual environment systems



3

which allow not only the on-line evolution of the content of an environment,

but also of the applications which the system can support, and of the

infrastructure of the system itself. The ultimate goal is to create systems which

need never be shut down, so that users never need to ask, “When is the virtual

environment?”

1.1 Background and Motivation

Collaborative Virtual Environments (CVEs) are computer-generated

environments which provide spaces in which geographically separated people

can communicate and collaborate. In order for users to communicate with each

other they must normally be present in the virtual environment at the same

time, making CVEs generally a same time, different place (synchronous)

communication technology. The environment contains representations of each

user present in the environment, allowing users to be aware of the other users

with whom they can currently communicate. When a user joins the

environment a representation of their presence is created indicating that they

are able to communicate. When a user leaves, their representation is removed

from the environment indicating that the user can no longer be contacted.

Given this definition, a wide range of applications can be considered to be

collaborative virtual environment systems. Text based communication systems

such as IRC (Oikarinen and Reed, 1993), ICQ (ICQ Inc., 2001), AOL Instant

Messenger (America Online Inc., 2001) and chat room applications (Bradner

et al, 1999) all provide representations of the users present in a virtual space

and so are in some senses CVE systems. Yahoo! on-line services (Yahoo!,

2001) also allow users to see when other users are available on-line for

synchronous communication. Yahoo! mail allows users to see whether the

sender of an e-mail message is on-line when the message arrives – blurring the

line between the synchronous (same time, different place) CVE

communication and asynchronous (different time, different place) e-mail

communication.
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There are also many multi-user, networked systems which cannot be

considered CVEs. Multi-user database systems (Date, 2000) support

concurrent access to a shared corpus of data, but go to great lengths to isolate

the effects of one user from another. Rather than representing users who are

accessing the same data, multi-user databases appear to be single user systems.

Early VRML browsers (Carey et al, 1997) were also not CVE systems as the

initial VRML specification provided no facilities for representing other users

simultaneously accessing the VRML environment or for allowing

communication between those users. Virtual worlds could be downloaded

across a network, but once running in a browser they were single user

experiences. Although the early VRML worlds provided 3D graphical virtual

environments, they were not collaborative virtual environments.

The CVE systems which form the main focus of this work are systems which

provide similar 3D graphical virtual environments to VRML, but which also

support collaboration. Users appear to each other as 3D models, referred to as

avatars or embodiments. Users view the virtual world through their avatar’s

eyes and so can view different parts of the virtual world by moving their

avatar representation. Communication is achieved either by providing text chat

to accompany the 3D view (Vellon et al, 2000) or by recording a user’s speech

and replaying it to other users in the environment (Greenhalgh and Benford,

1995). Visual cues might be used to integrate the 3D graphics with the

communication, for example, by displaying a user’s typed text above their

avatar’s head or by animating an avatar’s mouth to indicate an audio source.

The explicit positions provided by graphical CVE systems promote the

environment from being simply a container for a list of mutually aware users

to a continuous medium, which can drive many aspects of the system.

Positions determine the parts of the environment a user can see and might also

determine which parts of the virtual world are communicated to a user across

the network, or which events in the world are of interest to a particular user.

The distances between users can be used to calculate the volume at which

users overhear each other. Expressive frameworks such as the spatial model

(Benford and Fahlén, 1993) allow the relative positions of users to be
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combined with their levels of projection or attentiveness to determine the

mutual awareness of users. Inattentive users might only notice a user drawing

attention to their actions, while attentive users might be aware of every other

user in close proximity.

In addition to using explicit positions to drive communication, most 3D

graphical CVEs support environments populated with interactive artefacts in

addition to user embodiments. These artefacts might be as simple as terrain

artefacts, which alter an avatar’s height as they are traversed, or walls, which

prevent passage, to complex visualisations of data, which can be

collaboratively modified and discussed by groups of users. Training or

simulation environments might include artefacts simulating real world

equipment which permit users to learn how to use the equipment without risk.

Environments used for learning or therapy help users to tackle problems at

their own pace without distractions present in the real world. Multiplayer

games provide fantastic virtual environments populated with potential enemies

or artefacts which might form puzzles or allow progression through the game.

Interactive environments greatly increase the gamut of applications which

CVE systems can support. Instead of being purely graphical backdrops for

communication these environments support diverse applications in which

communication and collaboration can form a greater or lesser part.

While state of the art CVE systems support high-resolution 3D graphics, real

time audio streaming, arbitrary numbers of users and infinitely large

interactive virtual environments, many do not support persistent changes to

those virtual environments. Users can enter a virtual environment,

communicate with other users and change the virtual environment by

interacting with artefacts, but in many cases those changes are transient. If the

CVE system is closed down, or fails, all of the changes made to the

environment are lost. If the environment is started again it will return to an

initial state as if nothing had happened. As already argued, this is a major

limitation and greatly restricts the applications which many current CVE

systems can support.
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There are a few CVE systems which solve some of these problems by

supporting persistent changes to the virtual environment (Vellon et al, 2000,

Curtis, 1997). Typically these systems use standard database techniques such

as checkpointing or logging to either periodically write the state of the

environment to disk or record each change to the environment as it occurs. In

the event of failure the system can be restarted by either reading the latest

checkpoint or reapplying the changes in the log to an initial state to restore the

changes made before the failure. Technically adding these facilities is

relatively easy and allows the content of a virtual environment to evolve with

use. Rather than stopping the system and making changes to the environment

off-line, the system can keep running, changes can be made and those changes

will be durable in the face of failure.

Some CVE systems go a step further allowing artefact behaviours to be added,

modified and removed while the system is running. These facilities load,

unload and link code into the running system and so allow the applications of

a virtual environment to evolve with use. An environment can be started and

used to support an initial application and then evolve to support new activities

without shutting down. These facilities are particularly useful when virtual

environments are used to support communities and so must be elastic enough

to support the changing needs of the community. Some MUD, Object Oriented

(MOO) systems, such as LambdaMOO (Curtis, 1997), support the run-time

configuration of object oriented inheritance hierarchies, which allow new

artefact behaviours to be loaded which extend existing behaviours. These

extremely flexible code-loading facilities result in many virtual worlds in

which run-time evolution is the primary activity. A large proportion of users’

time is spent building new artefacts and behaviours or exploring parts of the

world built by others.

Even these systems, however, stop short of supporting on-line system

evolution. If a behaviour requires facilities which cannot be provided by the

current system architecture, even systems like LambdaMOO must be shut

down and updated off-line. This work explores the feasibility of building

systems which support a notion of system evolution by allowing every aspect
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of the system architecture to be replaced at run-time. It also examines state of

the art approaches to persistence and run-time extensibility to see if any are

more appropriate for CVE systems than the pragmatic solutions currently used

by commercial persistent CVE systems. The goal is to develop a system which

is truly continuously available and persistent.

1.2 Problem Breakdown

The previous section introduced CVEs, explored the spectrum of CVE

systems, from text based chat systems to interactive audio-graphical

environments, and presented the need for and current lack of facilities for

persistence and extensibility. This section focuses on the implications of

making virtual environments continuously available. By breaking the problem

down into fundamental elements a clearer understanding of the problem can

be gained.

1.2.1 Continuous Availability

Continuous availability may be for pragmatic reasons, such as the need to

support users distributed across time zones and so requiring access to the

environment 24 hours a day or a need to support casual access, which implies

a lack of co-ordinated start up and shut down. Alternatively, continuous

availability may be needed to maintain the illusion of an alternate reality. This

requirement is most likely needed by environments used for gaming or

entertainment. The goal in these applications is to present an immersive

experience of another world. While high quality graphical and audio rendering

and a highly interactive environment contribute to this immersion, without

continuous availability the illusion of a parallel world is broken. Although

conceptually the environment exists as a parallel reality, if a user can only visit

this reality at certain times, or occasionally cannot visit it because it is shut

down for maintenance, then the spell is broken. Once the edges of the reality

are reached, the game is up. Once Truman finds the door at the edge of the

ocean, the Truman Show is over (Paramount Pictures, 1998).

While these applications have the greatest need for continuous availability,

there are few applications which would not be enhanced at all by the facility.
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Continuous availability removes a barrier to the use of CVEs by removing the

need for often complex and time consuming start up procedures to be followed

before an environment can be used. The telephone would be far less widely

used if it required 15 minutes of configuration to be carried out before a 30

second call could be made. By making all virtual environments continuously

available this arbitrary start up time is eliminated. At a time when web sites,

FTP services and a plethora of other web services are available around the

clock, it seems strangely anachronistic that in this increasingly 24/7 society

advanced technologies such as CVE systems are only available when someone

turns them on.

1.2.2 On-Line Evolution

The need for continuous availability combined with the need for interactivity

produces a basic need for persistence. Where virtual environments are not

interactive, continuous availability can be tackled in isolation. The virtual

environment is a backdrop for communication and collaboration which can be

defined in a static manner. The system is started, the world created and used.

In the case of failure the system can be restarted from the same initial

definition. Where environments are interactive, that interactivity can change

the state of the world. If a button is pressed or an artefact moved, the

environment moves to a new state. A persistence service is needed to record

this new state so it can be recovered in the event of failure. This evolution of

content can be viewed as the simplest of 3 kinds of on-line evolution which

would be supported by an ideal CVE system.

1.2.2.1 Content Evolution

The progression of the virtual environment through a series of recorded states

can be viewed as content evolution. Although an initial state may be defined

for the environment, once interaction alters the state and the new state has

been recorded via the persistence mechanism, the content of the virtual world

can be seen to have evolved.

In addition to this view of content evolution as a side effect of interaction,

CVEs designed to support continuously available virtual environments must
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specifically support on-line content evolution wherever a virtual environment

might need to be changed throughout its existence. In practice this is likely to

be every virtual environment. Just as software systems are increasingly

designed to evolve with user requirements, so virtual environments must be

able to do so. It is unlikely that any continuously available virtual environment

will perfectly fulfil its users’ needs either initially, or over time. If the needs of

the users change and the environment cannot change with them then

eventually the environment will not be able to support its users and so stop

being used. If a continuously available virtual environment is to evolve it must

be able to do so on-line.

Content evolution is relatively easy to achieve technically, as it only requires

that facilities exist to update, add and delete artefacts from the virtual world

and for the results of those operations to be persistently stored. A more

challenging requirement is that facilities need to exist to manage the evolution.

Benign changes must be allowed, but virtual vandalism must be impossible or

hard or at least traceable.

1.2.2.2 Application Evolution

Rather than dealing with changes to the artefacts in the virtual world,

application evolution is concerned with allowing the addition, update and

removal of artefact behaviours in the virtual world. It should be possible to

add new artefact behaviours which allow artefacts to be interacted with in new

ways and so support new applications. It should also be possible to remove or

replace old behaviours when they become unsuitable or unneeded. The need

for application evolution is an extension of the need for content evolution. It is

difficult to predict the exact behaviours required for a virtual environment

before it is used and even more difficult to predict the behaviours which might

be needed in the future. In order to avoid the system being shut down to alter

the set of available behaviours, the CVE system must support application

evolution. Technically application evolution is a challenging task. New code

must be able to be introduced and removed from the running system and the

changes stored persistently in case of failure.
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1.2.2.3 System Evolution

A continuously available virtual environment which supports content

evolution and application evolution is able to exhibit a great amount of

flexibility in the face of changing requirements. Artefacts in the virtual world

can be added, changed and deleted along with the application code which

defines their behaviours. However, such a system might still need to be shut

down in order to patch the system itself. Should the infrastructure be found

lacking, for example unable to support new functionality required by the users,

then it must be shut down, patched and restarted with the new infrastructure

capabilities. Ideally, this should not be the case. Any part of the system should

be able to be extended or replaced in the same way that application code can

be changed to provide new artefact behaviours. Aspects of the CVE system

which are traditionally static parts of the platform – such as distribution,

replication or consistency mechanisms – must become as flexible as

application behaviours. In addition CVE systems which support system

evolution must be able to change the mechanisms which are used to support

higher-level evolution mechanisms, such as the access control mechanisms

used to control content and application evolution. Clearly, such systems must

have carefully designed fixed points to control access to the extension

mechanisms without limiting the ability of the system to evolve.

1.3 Challenges and Approach

Only a CVE system which could support content, application and system

evolution could remain constantly available in the face of changing needs.

However, building such a system is clearly a challenging task. If running a

CVE system continuously could be compared to juggling, content evolution

would be the equivalent of changing the number and type of the objects being

juggled. Application evolution could be compared to changing the order in

which the objects are thrown and caught, while system evolution is akin to

changing the laws of gravity and Newtonian physics while attempting to keep

all of the balls in the air.



11

Historically, continuously available CVE systems have been built

pragmatically in the sense that they have applied simple, standard approaches

to persistence and extensibility, either because they have been commercial

systems, or have been most concerned with the sociological aspects of on-line

collaborative worlds. As such they have concentrated on the low hanging fruit

of on-line evolution – content and application evolution. Both can be tackled

with relatively simple approaches which nevertheless result in a highly

flexible system which can support on-line changes to both the content and

behaviour of the virtual world. In addition to looking beyond the simple

approaches taken by existing systems to content and application evolution, this

work maps out the largely unexplored area of system evolution. In both cases

the approach taken is to look outside the field of CVEs, to examine the state of

the art in persistence and run-time extensibility and reconfigurability. Where

mechanisms exist they are evaluated and where appropriate tailored for use

with CVEs. Where mechanisms are not found they are developed. The

ultimate goal of this work is to develop a framework for a next generation of

continuously available persistent CVE systems which can evolve at run time

to support any demand made of them.

1.4 Scope and Organisation of Work

The field of CVE research brings together a wide array of academic

disciplines including computer science, psychology, sociology and

ethnography. This thesis, however, concentrates on the technical computer

science and software engineering issues of continuously available persistent

CVE systems.

As has previously been mentioned there is a body of sociological study of

persistent CVE systems (Morningstar and Farmer, 1990, Churchill and Bly,

1999, Garton et al, 1997). In contrast, while there is a wealth of research

published on other technical aspects of CVE systems, the commercial

persistent CVE systems which make useful tools for studying the sociology of

on-line communities do not expose technical details for business reasons.

Because of this an exploratory study was performed at the beginning of this
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work to identify the technical challenges facing continuously available

persistent CVEs. This experiment is described in Chapter 2.

Chapter 3 is split into two main parts. The first reviews existing CVE systems

from a technical perspective focusing on their support for persistence, content

management and run-time extensibility. The second part reviews systems and

mechanisms from outside the field of CVE research which may be applicable

to future continuously available persistent CVE systems.

Chapter 4 proposes a new approach to CVE design, which treats each item

differently from an infrastructure perspective and argues that this approach is

both more flexible, efficient and increases the gamut of applications which

CVE systems can support. It presents a novel framework to support this per-

item approach which forms the main original contribution of this thesis. The

framework introduces two new concepts. The Distributed Event Filter (DEF)

framework is presented as an extremely flexible approach to low level

extensibility which allows the run-time modification of mechanisms such as

consistency and event distribution, which have historically been part of the

static infrastructure of CVE systems. Deep Behaviours are presented as a

complimentary higher-level concept which allows the orchestrated addition,

configuration and removal of distributed event filters. The chapter presents

several example DEF configurations which illustrate how existing CVE

infrastructure mechanisms can be realised with the framework and presents

novel mechanisms developed as part of this work.

Chapter 5 provides details of the prototype implementation of the DEF/Deep

Behaviour framework presented in chapter 4. It provides a UML illustrated

description of the design of the prototype along with sequence diagrams and

descriptions of the important details of the framework. The implementation of

important mechanisms which support the framework are also discussed, such

as the store implementation which provides flexible persistence facilities used

by many prototype filters.
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Chapter 6 evaluates the framework by comparing existing approaches used by

current CVE systems to the per-item infrastructure approach proposed by this

thesis. Current approaches to both persistence and caching are compared

against per-item approaches enabled by the DEF/Deep Behaviour framework

and in both cases the per-item approach is shown to be more efficient. A final

experiment shows that at least some item roles identified in one application

can be applied to other applications.

Chapter 7 identifies the contributions made by this work to the field of CVE

research specifically and to computer science in general. It presents a number

of areas in which the work can be extended and areas of complementary

research which could be performed. Finally it presents some short conclusions

which attempt to paint a picture of the future of persistent collaborative virtual

environments and the role of this work within it.
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2 Exploratory Experiments

While many systems and mechanisms exist to persistently store data beyond

the lifetime of any application, few graphical virtual environment systems

exist which provide these facilities and no technical analysis has been made of

the particular requirements of persistence in collaborative virtual environments

or studies made of the persistent data generated by existing systems. For this

reason a set of experiments was run early in the course of this work to explore

the characteristics of persistent data in collaborative virtual environments and

the expectations and experiences of users of persistent collaborative virtual

environments. An intentionally simple persistent virtual environment system

was implemented to run these experiments with the results and insights gained

from the experiments fed into the design of the framework detailed later in this

Thesis. In addition to characterising the needs of collaborative virtual

environment systems with regards to persistence, these experiments highlight

a number of facilities which must be provided by persistent virtual

environment systems above and beyond the provision of persistent data.

Section 2.1 identifies activities within persistent virtual environments which

are application independent and have the greatest impact on the provision of

persistence. These foci are used to develop the experimental scenario outlined

in section 2.2. The collaborative virtual environment platform, persistence

implementation and client modifications made for the experiments are

discussed in sections 2.3 to 2.5. The experimental results are shown in sections

2.7 and 2.6 and some conclusions presented in section 2.9.

2.1 Experimental Design Goals

The task of designing an experiment to analyze the use of continuously

persistent virtual environments is a challenging one. Most previous

applications of continuously persistent virtual environments describe worlds

which existed for months or years at a time. They have supported hundreds or

thousands of users who have became familiar with their world or changed it to

better support their community. In some senses continuously persistent virtual
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environments only make sense when used in this way. If a world is only used

for hours at a time, the ability for the world to change while it is used becomes

less critical. The chances of failure are reduced and so the durable storage of

data becomes less essential. The likelihood that some unforeseen and

unsupportable activity will need to take place is similarly reduced, as is the

ability of the environment to become a familiar space which supports a

community. Despite this it is possible to perform worthwhile short-term

experiments to analyse the use of persistent virtual environments by focusing

on the activities which are critical to persistence. In the same way that crash

tests do not involve a great deal of open driving, activities which do not

directly affect persistence can be removed to provide a focused analysis of the

critical moments (when car hits wall). In order to do this, features expected to

be common to the vast majority of continuously persistent virtual environment

applications are identified in sections 2.1.1 to 2.1.4 before an experiment

designed to test these features as intensely as possible is presented in section

2.2.

2.1.1 Communication is Key

Existing and historic uses of continuously persistent virtual environments

focus on the provision of social spaces which are always available and allow

the formation of communities within the space. While other applications of

continuously persistent virtual environments are likely, these applications will

still hope to leverage the facilities for communication which collaborative

virtual environments provide. An application providing a persistent

environment for collaborative design would still place a great deal of

importance on communication between the designers. In some sense the only

reason to use a collaborative virtual environment is to enable communication

between users. As such communication between users should at least form

part of the application.

2.1.2 Online Evolution

One of the biggest challenges in continuously persistent virtual environments

is the evolution of the world while the system is used. Cleaning must go on as

in a 24/7 burger bar (Capps et. al., 1999). Our experiment should thus combine
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the activities of social interaction and world evolution – users should be aware

of changes being made to the world, but be able to continue communicating.

The users changing the world should have to work around others, be aware of

their activities and be able to communicate with other users not contributing to

the changes. Users should be able to give suggestions to those making changes

they can witness, or at least be able to lie in front of the bulldozer (Adams,

1979)

2.1.3 Ad Hoc Modification

Continuously persistent virtual worlds should be able to be changed using

standard user clients with a single human viewpoint and standard manipulation

tools. This allows the world to appear malleable, to evolve and to allow rapid

modification of the environment to suit its use. While large scale changes to an

environment might be performed using a CAD style system with multiple

viewpoints, or programming tools which allow the modification of behaviour,

users with a standard client must be able to perform ad hoc modifications to

the world to facilitate activity. A table should be able to be moved out of the

way to accommodate people. Without ad hoc modification facilities the world

becomes a rigid backdrop to users activity even if they can view changes

performed by others. Not being able to change the world with a standard client

creates a multimodal approach to use where users switch clients to make a

change and then switch back to use a world. This discontinuity is wasteful and

discourages rapid interleaving of modification and use. Instead of the world

evolving with use, users resort to a “design then use” approach, which is

indicative of current virtual environment systems.

2.1.4 Accelerated Aging

While continuously persistent environments should be able to evolve with use,

this evolution is likely to be slow, with the environment staying static while it

is suitable for the needs of the users and only being changed when it becomes

inadequate. However, it is the changes and not the periods of stability which

are of most interest to this study of persistent virtual environment systems. For

this reason an accelerated aging approach was taken in the experiments –

while the interleaving of social interaction and modification was encouraged,
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the modification of the environment was a primary goal of the experiment.

Rather than waiting for a modification to become necessary, modification was

an aim.

Experiments intensely focusing on the issues above are complementary to

large-scale studies in the same way that crash tests are complementary to

statistics on road safety. Laboratory experiments are much easier to control

and to gather microscopic detail on the operation of persistent virtual

environments, while large-scale studies provide a macroscopic view with

larger volumes of statistical information. It will be interesting in future to see

if the insights and results gained in these experiments apply to longer trials.

2.2 Experimental Scenario

Given the focus on the issues identified above, it was decided to make the user

goal of the experiments the on-line creation of an art gallery using a standard

user client with only minor modifications to support the addition and deletion

of items from the virtual world.

Over a period of 3 weeks, 20 volunteers split into groups of 2 to 6 were asked

to create part of the museum in an initial 30-minute session. In this session

they were asked to spend 10 minutes familiarising themselves with the user

client, 10 minutes creating a room or adding to another room in the world and

then 10 minutes to freely create and modify objects as they saw fit. Subjects

were encouraged to talk to each other throughout the task resulting in this

session simulating the critical moments in a persistent virtual environment

where some users are modifying the world as others use it for communication.

The volunteers return to the world for a second 10-minute session in different

groups and are asked to show one other around the museum and to see how

the world has changed. This second session was designed to see if the users

were able to navigate around the world which had changed; understand how

the world had changed in their absence and to see whether the ability to

modify the world was useful even when performing the apparently passive
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task of guiding others around the world. Whereas the first session was

designed to provide an accelerated view of world evolution, the second session

was designed to see if, having learned how to change the world, subjects

found the facility generally useful.

The volunteers were asked to complete questionnaires about the ease of use of

the system and their perceptions of the change in the world after each session.

The activity in the world was logged during each session allowing detailed

analysis of the changes taking place and a comparison between the volunteers’

perceptions and the actual events in the world, which in many cases was very

revealing.

2.3 MASSIVE-3

The collaborative virtual environment platform adapted for use in the

experiments was the MASSIVE-3 system (Greenhalgh et. al, 2000). Sections

2.3.1 and 2.3.2 provide an overview of the system components and section

2.3.3 describes the serialisation mechanisms used as the basis of persistence in

the experiments, before section 2.4 details the persistence facilities developed

specifically for the experiments.

2.3.1 Environments and Agents

Each MASSIVE-3 application is represented by an “agent”, which normally

corresponds to a thread of execution. “Environments” in MASSIVE-3 are

databases which contain part or all of a virtual world as a hierarchical scene

graph. Environments provide an API which applications use to create, destroy

or update the world state, or be notified when another agent has updated the

state. The two main types of MASSIVE-3 applications are clients and servers.

Servers create an agent and an environment and then publish the existence of

the environment with a Trader service. Clients create an agent, locate a server

by querying the Trader service and then ask the server for a replica of its

Environment. Having received the replica the client can query and update its

local replica which will generate events which are first sent to the server and

from there multicast to other clients.
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2.3.2 Items

A MASSIVE-3 environment contains a scene graph made up of “items” of

different types. Each artefact or “thing” in the virtual world is represented as a

sub-tree in the scene graph. An “entity” item at the root of the sub-tree

describes the artefact’s position, orientation, scale and extent. The remainder

of the sub-tree comprises “geometry” items which reference 3D geometry

describing the appearance of the artefact; “attribute” items containing <name,

value> tuples which annotate the artefact; further sub-trees which describe

sub-parts of the artefact which should be positioned relative to the artefact and

“switch” items which can be used to change an item’s appearance. The

hierarchical nature of the scene graph allows complex composite artefacts to

be moved around the environment just by updating the entity at the root of the

artefact’s sub-tree. In addition to the basic item types, custom behaviours can

be given to artefacts by annotating them with “behaviour” attributes.

Whenever a behaviour item is replicated it causes the method implementing

the custom behaviour to be called by the replicating agent.

2.3.3 Serialisation

In order to replicate MASSIVE-3 environments across network connections

and the communication of updates, nearly all MASSIVE-3 classes support

serialisation and deserialisation using a similar mechanism to Java 1.0

(Gosling et. al., 1996). A MASSIVE-3 object can be given an

ObjectOutputStream and asked to write itself to that stream or an

ObjectInputStream and asked to read its state from the stream. The object uses

methods implemented by the stream to put or get its primitive members such

as floats or strings and passes the stream to its object member’s own

readObject or writeObject methods. The stream classes are abstract interfaces

implemented by a number of concrete implementations in MASSIVE-3 to

allow the serialisation of objects to and from files or network streams in

ASCII or binary formats.
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2.4 Persistence Facilities

The implementation of persistence used in these experiments was based on

periodically checkpointing Environments. To support reading and writing

checkpoints, a PersistentApplication server was developed which either

deserialises an environment from a checkpoint or creates a new locale of a

given name. The application then runs the environment as a standard

MASSIVE-3 server and periodically serialises the state of the environment to

a new checkpoint and registers the command line needed to restore the

environment with the Trader. If the environment run by the

PersistentApplication is unused for a given period of time, the application

terminates. If a client wants to replicate a locale which is not currently being

run by a PersistentApplication, the Trader transparently starts a new

PersistentApplication using the command line registered by the last

application to serialise that environment, before returning the network address

of the new application to the client. The termination and on demand creation

of application processes allows a server to support a much larger number of

environments than if applications had to run all of the environments

continuously. If users only use a subset of the environments only those

environments are run by server processes. As activity moves around the world,

new environments are run and unused applications terminate. This model

could be easily extended to support load balancing across multiple servers by

the Trader choosing a server to start each new process on from a pool, or by

clients connecting a random Trader from a cluster of servers which all have

access to the pool of Environment checkpoints.

2.5 Client

The client used in these experiments was based on the standard MASSIVE-3

user client with additions to allow the creation, deletion and modification of

objects in the world. Movement in the client is achieved using the left mouse

button – dragging up the screen moves forward, down the screen moves

backwards, dragging to the left or right turns the avatar. To simplify

navigation for novice users, only 2D movement was possible in the

experiment. The right mouse button is used to manipulate objects. Right



21

dragging objects moves them in a sphere around the avatar - as if the object

was on the end of an arm. Double right clicking on an object picks it up. Once

picked up, objects were moved with the avatar and can be rotated, scaled,

dropped or deleted from the world using icons in the visor or keys. To make

aligning objects easier a grid snap mode could be used to snap manipulated

object positions, orientations and sizes to course units. Objects could be added

to the world by scrolling through a palette displayed on the visor and the right

clicking on iconised representations of available objects, which were then

added to the world just in front of the avatar. A screen shot of the interface is

shown in Figure 2-1 and a demonstration of the client is shown in Video

Figure 1.

Figure 2-1 Interface to the on-line editor

An early version of the editor used widgets embedded in the world in addition

to those in the visor. Resizing walls and boundaries was achieved using

handles which appeared on the corners when an avatar approached, however

this multi-modal interface, using proximity and widgets in the world and visor,

proved too complex. The original version also allowed users to create their

Scaling icon

Drop icon Object Palette Scroll Bar

Iconised Objects

Rotation icon
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own locales and manipulate boundaries between them, but this required users

to understand the concepts behind locales and, as locales could overlap, it

allowed users to stand in apparently the same location, but be in different

locales and so be unable to communicate. A further problem was caused when

users ignored the original locale creation facilities performing all of their

editing in a single locale, which ultimately became overcrowded and

overwhelmed the client machines rendering capabilities.

To address these issues, the locale manipulation facilities were removed from

the editor and a torroidal universe made up from a grid of linked locales was

used in the experiments. By moving away from cluttered areas users move

into new locales and so spread the world content amongst the available locales

making the world more scalable. By defining boundaries in advance to ensure

locales do not overlap users are always able to communicate with neighbours

and manipulate objects that they are close to.

The goals in developing the client were to keep it close to the standard

MASSIVE-3 user client, so changes represented the ad hoc modification

described above, while making it as easy to use as possible so it coloured the

experimental results as little as possible. For this reason several versions of the

editor were developed and evaluated even though it was persistence and not on

line editing which was the subject of the experiment.

2.6 Quantitative Results

In the detailed analysis of logged activity the goal was to characterise how

objects changed in the persistent virtual environment. By knowing how

objects change the persistence facilities might be tailored to the specific

requirements of CVEs. By finding how much differentiation there was

between artefacts the goal was to discover whether a single mechanism for

persistence could be applied to all artefacts in the virtual world or whether a

range of mechanisms were needed, which, given the wide range of data in a

typical CVE, seemed more likely.
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There are a number of dimensions along which patterns of activity and

differentiation can be examined, including an item’s semantic function (added

items or embodiment items), its type within the scene graph (3D transforms,

geometry, text attributes etc.), its appearance (wall, cube etc.). There are also

several variables which can be measured along these dimensions; updates over

time, number of items, lifespan, number of updates.

Comparing updates to added (authored) objects with updates to embodiment

objects reveals a major differentiation, with 372765 updates made to 38

embodiments compared to 39665 updates to 596 added objects, i.e. there were

10 times as many embodiment updates to 6% of the items.

Furthermore, making embodiments persistent does not make sense as an

embodiment represents a running application and so should not exist beyond

the application’s lifespan. In these experiments not making users’ positions

persistent would reduce by an order of magnitude the amount of data that

needed writing to disk.

As previous research has been carried out on patterns of embodiment

behaviour in CVEs (Greenhalgh, 1997), most of the following analysis focuses

on the persistent, mutable objects added to the world.
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Figure 2-2 Update times from experiment start

Figure 2-2 plots the update times of added objects measured from the

experiment start and clearly shows staircasing caused by short sessions

interleaved with lengthy idle times. While such pronounced staircasing would

be unlikely in a continuously available world accessed from around the globe,

there are likely to be idle periods for some locales in large worlds when the

server can be stopped to save resources. While fewer updates occur in later

sessions, when users where asked to explore rather than create, but the

decrease is not pronounced – users updated added items frequently, even

though they were “visiting”.
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Figure 2-3 Update times from item creation

Figure 2-3 plots the elapsed time from an added item’s creation to when an

update occurs. 85% of updates occur between 10 seconds and 1800 seconds

after creation, with the vast majority occurring within the first 2 minutes. This

shows a pattern typical of behaviour in the experiment – items were created,

manipulated it into an initial state, then either left, deleted or modified before

logging off. The staircasing at the right hand side of the graph shows updates

occurring in sessions after the session in which an object was created. These

updates account for around 10% of the total, showing that items were returned

to but that inter session updating was far less common than initial

manipulation after object creation.
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Figure 2-4 Life spans of added items

Figure 2-4 shows the life spans of added items, sorted from short to long. The

life spans grow exponentially to between 600 and 1800 seconds, the length of

a session, and then a few items are deleted in following sessions. 66% of

added items remained at end of experiment, although it was clear that many

were discarded while others provided important landmarks. The analysis of

updates from item creation and lifespan both show a significant difference

between activity during the session in which an object is created and

subsequent sessions. This suggests that the moment when a user logs off after

creating an item might mark a useful point in the management of the item’s

persistence.



27

0

10000

20000

30000

0.001 0.01 0.1 1 10 100 1000 10000 100000 1e+06 1e+07

U
p

d
a

te

Time (s)

Update Times

Intervals between consecutive updates

Figure 2-5 Intervals between consecutive updates on added items

Figure 2-5 shows the intervals between consecutive updates made to added

items. The shape of this graph is governed mainly by the continuous stream of

updates generated by waving artefacts around. In a centralised high latency

system it would be unendurable for users to see the durable state of items

when modifying them in this way.

Breaking the analysis of added items down by geometry reveals the different

ways in which different artefacts were manipulated in the experiments. It is

interesting to see that there were differences as only the solid wall was any

different in any technical way. The other artefacts differed only in appearance

and yet show differentiation in the ways in which they were manipulated.
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Figure 2-6 Intervals between consecutive updates by geometry

Looking at the intervals between updates by geometry in Figure 2-6 shows

little differentiation as, once again, the shape of the graph is governed by the

continuous nature of the updates generated as artefacts were moved around.
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Figure 2-7 Item lifespan by geometry
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However, significant differentiation is seen in Figure 2-7, which shows item

lifespan by geometry. The popular Lichtenstein picture clings to the bottom of

the graph and 70% of these pictures remained at the end of the experiment

compared to the less popular Miro picture which tended to be added, evaluated

and deleted within a few seconds, with only 25% remaining at the end of the

experiment. Although walls were important landmarks which provided

structure in the world, the graph shows that around 35% were deleted in the

session in which they were created, with many people repeatedly adding,

manipulating and deleting walls before they ended up with the desired

configuration.
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Figure 2-8 Update times from item creation by geometry

A similar pattern is shown in Figure 2-8, which shows item updates from

creation by geometry. The Miro pictures were hardly updated at all after the

session in which they were created, as most were deleted, while the cone

geometries which were left in the world after the session in which they were

added continued to be edited in subsequent sessions – with 45% of their

updates occurring in later sessions.

As the experiment focused on manipulating items and embodiments, it is

unsurprising that 100% of updates were to entities. Other item types were
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created, deleted and accessed on a read only basis, but only entities were

changed during their lifetime. It is easy to imagine other applications may

have different, mixed characteristics for example attributes representing

virtual bank accounts changing infrequently, but entities representing positions

changing often.

2.7 Observations and Qualitative Results

While the detailed analysis of the recorded experiments aimed to reveal the

details of change in persistent virtual environments, the questionnaires were

designed to reveal the user issues facing persistent virtual environments. In

particular user responses to the on-line editing interface are examined in

section 2.7.1, the issues involved in providing content management facilities

are discussed in section 2.7.2. and the ability of a persistent, plastic

environment to increase the user’s sense of immersion is examined in section

2.7.3. Example footage of the experiments is shown in Video Figure 2.

2.7.1 Usability

The questionnaire usability results, summarised in Table 2-1, showed that the

experiments proved very challenging. Although most users rated the overall

ease of use as average, nearly half of the subjects found resizing an artefact

hard and a significant proportion also found moving and rotating artefacts

hard. Only the addition, selection and deletion of artefacts were easy for the

majority of subjects. This is not overly surprising, as working with artefacts in

CVEs has been shown to be difficult in the past (Hindmarsh et. al. 2000). This

difficulty was increased by the short time the subjects had to learn the system -

an unfortunate consequence of the time available and meant that the subjects

were still learning to use the system as they carried out the task. Several

features were requested by subjects, such as the ability to move objects along

the Z-axis by moving the mouse forward and backward and the ability to

zoom and pan the viewpoint. While some of these features could have

improved a human viewpoint client, many were CAD like features which

would have required a client application radically different to a standard CVE

user client. The combination of the difficulty experienced by users and the

desire for CAD like features suggests that large scale on-line development
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should probably be carried out using a specialised client. However, by asking

our subjects to undertake such a challenging task using standard user clients, a

great deal of experience with ad hoc, human perspective manipulation of a

persistent virtual world in a short period of time was gained.

Question Very

Easy

Easy Average Hard Very

Hard

How easy was it to add an

artefact?

37% 63%

How easy was it to select an

artefact?

16% 37% 37% 10%

How easy was it to move an

artefact?

5% 26% 37% 21% 19%

How easy was it to delete an

artefact?

37% 53% 10%

How easy was it to resize an

artefact?

5% 16% 27% 47%

How easy was it to rotate an

artefact?

10% 31% 26% 21%

How easy was it to see what

other users were doing?

10% 42% 47%

Generally how easy to use was

the application?

35% 55% 10%

Table 2-1 Summary of questionnaire usability responses

2.7.2 Content Management

A number of interesting content management issues were highlighted in the

experiment as a result of the intentional exclusion of content management

facilities from the experimental platform. Because both space and objects were

in infinite supply the world tended to get cluttered with objects, which a user

had tried to position, but had failed. Several users described the world “getting
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more cluttered and messy”, containing “a lot of random objects which didn’t

contribute much to the world” and “lots of unfinished projects”.

In many cases it was easier to create a new object, which would appear in its

normal orientation at ground level, than to move and rotate an existing object

on the ground. This was especially noticeable in the case of objects which had

been rotated and which many users had trouble rotating back. The discarded

objects would simply be left in the world and the users would move on to a

new empty space to create new objects. One user commented on this,

suggesting that limiting the number of objects a user could add, or the number

of operations which could be performed would result in a more ordered world.

This problem highlights the importance of mechanisms to manage world

evolution rather than just providing facilities for change and persistent storage

of changes. Processes should exist which can identify and garbage collect

discarded objects.

2.7.3 Immersion

Despite the lack of content management facilities and the difficulty

experienced creating the world, some subjects were very enthusiastic about the

world progressing from its initial barren state to a highly populated world with

pockets of emerging order. The world was described as “evolving slowly”,

“growing and developing”, “beginning to take shape” and “moving from a

more disordered state at the beginning to a state where sections were

becoming ordered”.

Users seemed to be influenced by the state of the world when they entered it.

When initially bare, users tried to create an ordered world; when they failed,

subsequent users were presented with chaos on entering the world and so

made less effort to order the world. After a group of very able users created an

ordered network of rooms, subsequent users made much more effort to create

something recognizable. The example provided by the rooms showed

subsequent users what was possible and provided motivation, whereas users

entering a totally chaotic world seemed to think that chaos was all that was

possible. One subject picked up on this, saying, “It appears that successive
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visitors have learnt from previous visitors, by copying or adding to what they

constructed.”

As there was only a small palette of objects to build the world from, towards

the end of the experiments, users seemed to be more inventive with the objects

to create something that stood out in the increasingly populated space. The

“donut” sculpture shown in Figure 2-9 was created in the final week of the

experiments, whereas in the proceeding weeks the creation of recognizable

rooms and exhibits was the major challenge. One subject commented on this,

noticing “people getting more imaginative and creative with the objects”.

Figure 2-9 The “donut” sculpture created towards the end of the

experiments

The existing state of the world provided both an example to subsequent users

and a challenge to be bettered. The entire spectrum of collaboration was

experienced. Some groups actively disrupted each other by deleting objects

the others had created. Some groups ignored each other and worked entirely
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independently. Some users gave each other tips while working separately,

while in other cases one user would help another place objects by watching

from a different perspective and giving directions. This was especially useful

in the placement of walls where the wall being held could take up most of the

view and make it difficult to see where the object was positioned. Spoken

directions also helped judge depth, which is normally difficult without stereo

displays due to the lack of parallax.

2.7.4 Questionnaire Results

Question Yes No

Did you get lost? 33% 66%

Were you aware of other users? 100%

Did you talk to other users? 90% 10%

Did you work together with other users? 37% 63%

Did you try to finish modifying one object before moving on

to another?

83% 17%

Did you try to complete one area before moving on to

another?

70% 30%

Did you leave any objects and plan to return to modify them

again later?

41% 59%

When you returned to the world was it as you expected? 56% 44%

Was the scenario sufficiently clear? 94% 6%

Table 2-2 Summary of closed questions

Useful Average Useless

How useful was sharing the world with

other users?

31% 53% 16%

None Very Little Little Some A Lot

Previous experience had

you had with VR or 1
st

person games?

7% 7% 47% 39%
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2.8 User Perceptions

The use of both logging and questionnaires to gather results from the

experiments allowed the two sets of results to be compared with each other,

effectively allowing a comparison between the actual events which took place

in the virtual world and the users’ perceptions or interpretations of them. In

initial pilot trials of the experiments many users thought that others had

updated their objects between their two visits when in fact they had simply

become lost and could not find their own objects, so in the final experiments

users were asked whether they thought they had changed objects they did not

create and whether they thought others had changed their objects. The

questionnaire responses are compared to analysis of the logs in Table 2-3.

33% of the users contradicted the analysis, with most of the errors perceiving

more change than took place. This discrepancy suggests that a mechanism for

viewing the changes to the world which have occurred since a user’s last visit

might be useful.
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Actual updates

to others

Perceived updates

to others

Actual updates by

others

Perceived

updates by

others

0 No 0 No

612 Yes 343 Yes

0 Yes 0 Yes

0 Yes 0 Yes

0 No 0 Yes

272 Yes 2 No

1175 No 20 Yes

0 Yes 0 No

49 Yes 1506 Yes

64 Yes 0 Yes

20 No 106 Yes

31 Yes 39 Yes

688 Yes 132 Yes

4 No 0 No

31 Yes 0 No

Table 2-3 Comparison of actual and perceived updates

2.9 Conclusions

The experiments revealed a number of important technical issues relevant to

the provision of continuously persistent virtual environments outlined in

chapter 1. These are presented below:

2.9.1 Content Evolution

The experiments highlighted two main challenges facing content evolution.

Section 2.9.1.1 discusses the first, user interfaces for on-line editing, while the

technical provision of persistence is tackled in section 2.9.1.2.
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2.9.1.1 On-Line Editing Interfaces

The difficulty reported by many of the experimental subjects suggests that the

development of interfaces for on-line world modification presents a major

challenge. It was hypothesised that ad hoc, human scale manipulation was

identified as important for rapidly reconfiguring the world for new activities.

However, the difficulties experienced by the experimental subjects suggest

that using a human scale interface for the complete development of a

persistent virtual world is over-ambitious and that specialist tools should be

used for the macro engineering of the environment. In the case of specialist

tools the provision for communication between designer and other inhabitants

of the world and allowing the designer to be aware of events in the virtual

world are challenging user interface issues.

2.9.1.2 Persistence

While the provision of persistence itself is relatively easy, the experiments

show that the requirements for persistence by different items in the virtual

world vary widely. Although it is possible to use a single mechanism such as

the checkpointing used in the experiments for all items in the virtual world a

single solution is less than ideal. If checkpoints are made frequently enough

that updates to important items are not lost, the checkpointing mechanism will

waste a lot of time and space making the state of transient objects such as

embodiments and manipulated items persistent. Similarly, if a single logging

strategy is used to achieve persistence a great deal of transient updates will be

logged along with important changes to items. Dealing with these differing

requirements for persistence presents a significant technological challenge.

2.9.2 Application Evolution

The experiments did not focus on application evolution directly because of

their limited time scale. However, they did highlight the importance of run-

time application evolution through the significant modifications made to the

virtual world during the “tour guide” sessions. If a standard user client had

been used for the second sessions the updates would have been impossible. In

addition, many subjects suggested features they would have liked to have seen

in the system. In a virtual world used for an extended period of time these
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features would have to be provided to avoid users becoming frustrated with

the system. The experimental system could support system updates by writing

the contents of the virtual world to a checkpoint and terminating. The client

and server could then be updated off-line and the new system could restore the

previous world state by reading the checkpoint when it starts. While this

would allow application evolution it would require downtime while the system

is updated and so could not be used where constant availability is required.

2.9.3 Constant Availability

The mechanism for automated application termination and spawning used in

the experiments provided a simple and elegant technical solution to providing

constant availability, but this was largely due to the absence of facilities to

provide application evolution. If application evolution is required alongside

constant availability the virtual environment system requires facilities for the

loading and unloading of code modules at runtime, protocols defining entry

points in the loaded code and mechanisms for dealing with different versions

of code modules and determining when modules are no longer needed.

2.9.4 Content Management

As well as subjects commenting on the chaos and clutter in some parts of the

world during the experiments, an important observation gained from the

questionnaire results is that users expect artefacts to behave in different ways.

Specifically users thought that a wall should be more difficult to move than a

picture on it and that a large landmark should be more difficult to change than

a piece of furniture. The first observation suggests that there are different roles

for each artefact. As well as the need for a mechanism for content

management there should be a way of treating artefacts differently with regard

to content management. A wall should be able to be changed in different ways

to a picture. The second observation suggests that the roles of artefacts change

dynamically so that the different content management policies should be able

to change dynamically. An artefact which was initially unimportant should be

able to be treated differently once it has become a landmark.
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2.9.5 Summary

The conclusions above are summarised in Table 2-4. With the exception of the

interfaces for on-line world editing all of the technical issues raised by the

experiments relate to the infrastructure of the virtual environment platform –

the provision of multiple, dynamic mechanisms for persistence and content

management and the provision of mechanisms for dynamic code loading for

application evolution in a constantly available environment. Chapter 3

explores the provision of these mechanisms both inside and outside the

domain of virtual environment systems. Chapter 4 then presents a novel

framework for persistent virtual environment systems which tackles all of the

issues presented here.

Goals Technical Issues

Content Evolution Editing tool interfaces, Differing requirements

for item persistence

Application Evolution Dynamic code loading

Constant Availability Dynamic code loading

Content Management Different requirements for item management

Table 2-4 Summary of conclusions
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3 Literature Review

The goal of this chapter is to review existing work and systems relevant to the

infrastructure technical issues identified in section 2.9. This includes both

virtual environment systems which provide any combination of persistence,

content management or extensibility facilities, systems which provide these

facilities for other applications and mechanisms which provide the facilities

themselves. To examine these areas this review is split in to two main

sections: systems and mechanisms. The first examines existing collaborative

virtual environment platforms, using their support for persistence, world

management and extensibility as criteria for evaluation. The second section

then looks at mechanisms for persistence, content management and

extensibility in turn with each section examining systems which employ these

mechanisms.

3.1 Virtual Environment Systems

In the review of virtual environment systems the features identified as

important in the introduction are examined. These are:

• Persistence. Does the virtual environment system write its state to

stable storage to provide durability and fault tolerance? In some cases

these facilities are also used to record activity or allow large

environments to be supported.

• Content Management. Does the virtual environment system provide

facilities to manage its content? (e.g. to prevent unauthorised

tampering with its content)

• Extensibility. Does the virtual environment support run-time

extensions both in the form of artefact behaviours or low-level/system

extensions?
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A system designed to support continuously persistent virtual environments

must support all of these features.

3.1.1 LambdaMOO

Multi-User Dungeons or Multi-User Dimensions (MUDs) were the first

networked virtual environment systems and also the first continuously

persistent virtual environment systems. As they were used around the clock

and were freely accessible across the internet, MUDs needed to provide all the

facilities required by continuously available virtual environment systems;

persistence, world management and runtime extensibility mechanisms. The

system examined in particular is the MUD, Object Oriented or MOO system

developed at Xerox PARC by Pavel Curtis (Curtis, 1997) simply because it is

better documented than most other MUD systems. MUDs use a simple client

server architecture. Text clients like Telnet send strings to the server which are

parsed and converted into operations carried out on a database, with the

textual results returned to the client. By returning descriptions as the results of

operations modelled on physical activities and by maintaining a symbolic

representation of space in the database, a text based virtual environment is

created. The LambdaMOO database contains the objects which make up the

virtual reality and the programs which operate on that data (termed verbs).

Objects are made up of named properties which may be objects or primitive

types and verbs which are associated with an object and implement the

operations on an object. Objects also reference parent and children objects

which are used to define a generalisation/specification hierarchy similar to a

class hierarchy in an object oriented language.

3.1.1.1 Extensibility

The key to LambdaMOOs extensibility mechanism is that properties, verbs,

parents and children can be added, removed or changed at run time. The

alteration of the parent and children relationship is equivalent to run-time

modification of a class hierarchy, which can be achieved in object oriented

languages using delegation. This allows new types to be introduced at run-

time. A new type of room may be added to the virtual reality which specialises

a generic room already existing in the virtual environment. The ability to add
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and remove verbs and properties at run-time is a facility not normally present

in object oriented languages. It allows the behaviour of objects and all their

children to be changed while they are being used. If an object in the virtual

world is not operating satisfactorily, its behaviour can be changed without the

system being stopped. This extensibility allows a LambdaMOO server to be

started with minimal contents and new objects and behaviours to be created

while the system is running (the reason that world building applications are

one of the most popular uses of LambdaMOO compared to earlier MUD

systems)

3.1.1.2 Content Management

LambdaMOO uses a permissions system for world management which is

similar to the UNIX file permission system (Garfinkel and Spafford, 1996).

LamdaMOO defines a number of standard properties on objects which include

the owner (who has privileged access to the object) and a set of standard non

owner permission properties, which include bits specifying whether the object

is publicly readable, writable or “fertile”. Publicly fertile objects can be

specified as parent objects by users other than the object’s owner. Properties

of objects have a similar set of non-owner permissions, but have a “change

ownership in descendants” bit in place of the fertile bit. This flag specifies

whether the owner of a child object becomes the owner of inherited properties

in that object. This flag is used to ensure the correct operation of verbs which

run with the permissions of their author, so if a property and a verb to operate

it are added to an object, the author must remain the owner of the property in

child objects to ensure the verb works on the child object. Verbs also have a

set of UNIX like permissions for non-owners allowing them to be publicly

readable (which permits the verb’s code to be viewed) writable (which allows

the verb’s code to be changed) and executable (which allows the verb to be

run). In addition to this management model based on object ownership with

varying degrees of public access, LambdaMOO defines a number of

administration roles such as programmers and wizards who have privileged

access to objects and facilities in the server. With these mechanisms users of

the virtual environment can be given the ability to change and extend parts of

the environment, but not others. The objects in an environment and the types
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of objects can evolve, but important landmarks can be protected from virtual

vandalism.

3.1.1.3 Persistence

While the extensibility and management facilities provided by LambdaMOO

are highly developed, its persistence mechanism is relatively simple. The

contents of the LamdaMOO database are kept in the server’s memory while

the system runs and are periodically checkpointed to a file on disk while the

server is running and when it is shut down. In addition there are standard

system calls which can generate checkpoints from anywhere in a verb. The

persistence is transparent to users and developers of the system who can

simply assume that everything in the database is made persistent. Because of

the periodic checkpointing behaviour of the system it is possible for

information to be lost if the system fails between checkpoints. While this is

sufficient for the mainly recreational uses of LambdaMOO, it may be

insufficient for commercial uses of a continuously persistent virtual world.

3.1.2 Habitat

The Habitat system developed by Lucasfilm (Morningstar and Farmer, 1990)

was an ambitious attempt to create an open ended, large-scale multi-user

virtual environment. The system provided real time animated 2D graphical

world made up of 20,000 regions in which a population of 15,000 users could

communicate, get married, start businesses, found religions and wage wars.

Like many uses of the LambdaMOO system the goal was not to provide a

game with fixed objectives, but an evolving community driven by the desires

of its members. Architecturally, Habitat resembled LambdaMOO, consisting

of a central server containing the persistent world state which was accessed via

clients across a network. Unlike LambdaMOO, in Habitat a sub-set of the

objects which make up the world are cached at the client which generates

frames of animation using the position and appearance they contain. Whereas

MUDs generate textual descriptions of the world at the server and send them

to the client where they are presented, it is clearly not feasible for the server to

generate graphical representations several times a second for every client and

transmit them across the network. In addition to saving bandwidth this
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architecture ameliorates network round trip latency from many interactions. In

most cases the client can interact with the local proxy objects and immediately

see the results, rather than waiting for the request to propagate to the server

and have the results returned – a wait which is acceptable in relatively slow

paced text based virtual environment, but not in interactive graphical systems.

3.1.2.1 Extensibility

Although Habitat has a strongly object oriented architecture it does not

possess the run-time extensibility features present in LambdaMOO. While

world development in Habitat was driven by user desires it was implemented

by world designers. This limitation is identified by Morningstar and Farmer

who note that “The ability to add new classes of objects over time is crucial if

the system is to be able to evolve”.

3.1.2.2 Content Management

Because Habitat does not allow potentially malevolent unknown code to be

run within the system, its infrastructure requirements for security and world

management are lower than LambdaMOOs – if an important object must not

be moved its behaviour can be hard coded to disallow movement. Morningstar

and Farmer describe situations where users managed to do something they

should not due to unforeseen circumstances or bugs in the system. On these

occasions they advocate resolving the situation within the bounds of the reality

the system is portraying – when a bug resulted in users becoming extremely

rich their money was used to subsidise treasure hunts and when a user

managed to get an item they should not it was ransomed back to the system

administrators. Both examples display an approach of negotiating world

management rather than trying to enforce it at a system level. Habitat’s

infrastructure does make sure that it assumes nothing about the user client,

however. It validates all communication to ensure that players could not cheat

by altering their client application, something that Morningstar and Farmer

report was attempted frequently.
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3.1.2.3 Persistence

Like LambdaMOO, Habitat implements persistence on its central server both

to provide durability in the face of failure and to allow the world to grow

beyond the limits of the server’s memory. Unused areas of the world are kept

on disk until they are required by a user.

3.1.3 VWorlds

VWorlds (Vellon et. al., 2000) is another graphical virtual environment system

which can be seen as a direct descendent of MUD systems like LambdaMOO.

VWorlds aims to provide a distributed, persistent, secure platform in which

end users can develop graphical virtual environments. Like LambdaMOO,

VWorlds uses a dynamic object model architecture to enable users to extend

and evolve the virtual environment without shutting it down or users needing

to use compilers to develop the system. The graphical nature of VWorlds

demands a slightly different architecture to LambdaMOO. While it is based on

the same single central server and multiple clients, VWorlds clients cache

copies of the objects in the world. These proxy objects allow users to interact

with objects and change their viewpoint without experiencing high network

latencies. While network round trip latencies are acceptable for the low speed

interaction of text based virtual environments, they are unacceptable in

interactive graphical virtual environments.

3.1.3.1 Extensibility

VWorlds achieves run-time extensibility using the same object inheritance

mechanism as LambdaMOO. Basic Thing, Room, Artefact, Avatar and Portal

objects are defined from which the contents of the virtual world are derived.

When a method or property of an object is referred to, it is first looked for at

the object and if not found it is looked for on the object’s “exemplar” and then

exemplar’s exemplar and so on. Adding a property or method to the object is

achieved by adding an entry to the objects property or method map which is

searched when a property or method is needed. In addition to the inheritance

hierarchy, all Vworlds Things have a container object and any number of

contained objects which specify the aggregation hierarchy of the world.
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3.1.3.2 Content Management

Vworlds’ management facilities are also based on LambdaMOO’s

mechanisms. Methods and objects have owners and public permission settings

and methods are run with the permissions of their authors to ensure that

methods can only change the objects and properties to which the author has

access. Methods on exemplars are able to access any property they create to

solve the problem of inherited methods needing to access inherited properties

owned by the derived object.

3.1.3.3 Persistence

VWorlds achieves persistence via a combination of logging and object

serialisation at the server. While the server is running, all changes to object

properties and object structure are written to a sequential file. When this file

gets too big VWorlds can checkpoint its state by serialising all of its objects to

disk and starting a new log file. While this mechanism provides more

durability than the LambdaMOO periodic checkpoint approach to persistence,

only server objects are made persistent. This allows users to interact with a

proxy object and immediately see the results, but for an error to occur before

the update has propagated to the server and then to the server log. When the

system is restarted the change which appeared to the user to have taken place

would be lost. Some customisation of persistence is provided by the ability to

mark properties as transient – an indicator to the system that changes to the

object should not be logged.

3.1.4 CAVERNSoft

CAVERNSoft (Leigh et. al. 1996) is a Collaborative Virtual Environment

platform designed to enable rapid development of applications on the CAVE

Research Network (CAVERN), a network of academic institutions equipped

with CAVEs (Cruz-Neira et. al., 1993), ImmersaDesks (Czernuszenko et. al.,

1997) and high-performance computing resources. As such CAVERNSoft

comes from a 3D scientific visualisation background which assumes high

bandwidth and high performance systems rather than the commodity hardware

assumptions which MUDs and Habitat make. The architecture of the

CAVERNSoft platform is based on a Distributed Shared Memory model. Each
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client or server using CAVERNSoft creates an Information Request Broker

(IRB) which manages network access and a database of storage locations

identified by keys. To share data in the system a local key is linked to a remote

key. Depending on the properties of the link the two keys are synchronised in

some way (the local key becoming a cache of the remote copy) and then

updates are propagated between the linked keys to keep the copies

synchronised. Because a client may share data with multiple servers, the

CAVERNSoft platform is potentially more scalable than MUDs, Habitat or

VWorlds which rely on a single server architecture.

3.1.4.1 Extensibility

While CAVERNSoft incorporates no explicit facilities for run-time extension

or reconfiguration, the architecture is flexible enough to support a number of

network configurations. IRB clients with replicated databases can share

updates via a multicast group, connect to a shared central server, support a

shared distributed database with peer to peer updates or connect to a collection

of servers as required. This flexibility could potentially be used to support

different distribution mechanisms for different types of data, while the

properties between links provide flexibility in update propagation. By

dynamically altering the distribution and link configuration the system could

be seen to provide some support for infrastructure evolution and

reconfiguration, but only within the set of options hard coded in the platform.

3.1.4.2 Content Management

CAVERNSoft provides no documented infrastructure facilities for security or

world management. As a platform developed for use on a network between

trusted institutions and a platform with no facilities for run-time extensibility,

it is unlikely that such facilities exist.

3.1.4.3 Persistence

Keys in CAVERNSoft may be transient or persistent. Keys are transient by

default and their data is discarded when the IRB containing the key is

destroyed. A key can be made persistent by performing a commit operation on

the data. When the client or server relaunches the data will still be retrievable
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using the same key identifier. In addition to the ability to make data persistent,

CAVERNSoft can make recordings of activity in the virtual world by clients

declaring keys which hold recordings of groups of keys. The recording client

writes each change seen to the recording key (time stamped with the time the

change arrived at the client) along with checkpoints of all the recorded key’s

state at periodic intervals. The use of the client’s time stamp means that the

recording is seen from the recording client’s point of view, while the periodic

checkpoints in the recording allow the recordings to be quickly fast forward or

rewound.

3.1.5 DEVA

DEVA (Pettifer et al 2000) is a framework for providing distribution and

execution facilities for collaborative virtual environment applications designed

to complement the graphics and spatial management facilities provided by the

MAVERIK VR kernel (Hubbold et al, forthcoming) to enable the

development of complete applications. Logically DEVA uses a client server

architecture, although in reality the server is made up of a number of separate

server nodes which share the work normally performed by a single server,

allowing DEVA to scale further than a traditional client server system. The

virtual world in DEVA is made up of a number of environments each

containing a number of entities. The scalability and flexibility of DEVA is

further enhanced by its architectural support for the distinction between the

objective reality of a world and a subjective perception of the world. This is

achieved by splitting an entity’s processing between an “object” on a server

node and a “subject” on each client observing the entity. The object performs

processing which must be visible to all observers, such as updating the

position of an entity, while subjects perform processing which can be kept

locally, such as animating the wings of a moving bird. All observers will see

the animation produced by their local subject, but the server does not need to

send updates for each frame of animation across the network.

3.1.5.1 Extensibility

DEVA provides rich support for extensibility via the subject-object

framework, the ability to develop custom environments and the ability to
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compose the behaviour of an entity from its own behaviour, inherited

behaviour and behaviour enforced and imbued by the environment. This

composition of behaviour is achieved using a concept of “components”, a

collection of subject and object methods which can be attached or detached

from an entity at run-time. Facilities for setting an entity’s position or handling

collisions might be provided by an environment component, while the ability

to change an entity’s colour might be provided by a component specific to a

type of entity. When a method is called on an entity, enforced environment

methods are searched first (those which cannot be overridden by the entity),

then the entities innate methods and finally the environments “imbued”

methods. These facilities allow new environments to be created, potentially

inheriting some behaviour from an existing environment, or new entities to be

developed, potentially related to other entities, by implementing a single new

component. The subject-object framework allows different entities to manage

communication between the client and server in different ways allowing per-

item infrastructure management.

3.1.5.2 Content Management

DEVA does not provide any specific support for world management or

security: however, these facilities could be implemented as components

allowing management on the environment or entity scale. An environment

component could enforce access control on its contents, or a specific entity

could provide authorisation. The subject-object split allows authorisation

decisions to take place on the client in trusted networks or on the server in

situations where client applications cannot be trusted.

3.1.5.3 Persistence

DEVA supports persistence only in the sense that the server continues to

process entities in the absence of clients, but it does not write entity state to

stable storage and so is not durable in the face of failures or persistent in the

sense that it contains data which outlives any single application.



50

3.2 Summary

The review of existing virtual environment systems, summarised in Table 3-1,

reveals nearly every combination of support for extensibility, persistence and

reconfigurability. While this seems initially surprising, it is because only

Habitat, LambdaMOO and VWorlds are designed to support continuously

persistent virtual environments and so support all the features needed for that

application. Other systems focus on one or more of the facilities and so tend to

be more developed in those areas. For example, although DEVA does not

support persistence or content management its sophisticated extensibility

mechanisms might well prove useful in a future system supporting

continuously persistent virtual environments.
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System Extensibility /

Reconfigurability

Content

Management

Persistence

CAVERNSoft None None Persistent arenas

of distributed

shared memory

and recording of

changes

Habitat None Hard coded object

behaviours

Checkpointing

and paging of

content

LambdaMOO Run-time addition

of objects,

properties and verbs

Permissions on

property and verb

access

Checkpointing

VWorlds Run-time addition

of objects,

properties and verbs

Permissions on

property and verb

access

Checkpointing

and logging

DEVA Entity behaviour

composed from

parent, environment

and subject object

components

None None

Table 3-1 Comparison of extensibility, content management and

persistence facilities of collaborative virtual environment systems

3.3 Persistence

As the work of persistence is the storage and retrieval of data it is unsurprising

that the majority of research and development into persistence has taken place

in the field of databases. Sections 3.3.1 and 3.3.2 examine the two main

approaches to databases; relational and object databases. Section 3.3.3 then

looks at serialisation as an alternative approach to persistence, before section

3.3.4 discusses orthogonally persistent object systems which seamlessly
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provide object database like persistence within standard programming

languages.

3.3.1 Relational Databases

The goal of databases is to move data from one consistent state to another in

the face of concurrent access and failure. Databases use the concept of

transactions to describe a sequence of actions which move the database from

one consistent state to another. The database cannot allow a transaction to

perform some of its actions, but not all. This is avoided by “rolling back”

transactions which have not “committed” in the event of failure. There are a

number of mechanisms which can be used to achieve these semantics. The

database may log all changes made by a transaction but not update the

database until the transaction commits. This deferred update approach requires

a no-undo/redo recovery strategy - no intermediate results are written to the

database and so need to be undone, but a failure between a commit being

written to the log and the updates being written to the database requires

transactions being redone. If the database uses an immediate update approach -

writing to the database during the transaction it must first flush updates to the

log allowing the updates to be undone in the event of failure. If all updates are

written immediately, an undo/no-redo recovery strategy can be used,

otherwise immediate update requires undo/redo recovery.

Durability is not the only consideration for recovery mechanisms as those

which do not allow data to be written to disk before a transaction completes

(“no-steal” approaches) or demand that data is flushed to disk (“force”

approaches) restrict the operation of a database’s page cache. Because of this

“steal/no-force” approaches are used by most databases as they impose no

restrictions on page cache operation (more information on the interaction

between database recovery and caching can be found in Date, 2000).

DBMSs which use logging periodically checkpoint their state either every s

seconds or every t committed transactions to allow logs to be emptied. To

avoid delays while a checkpoint is written, most databases use fuzzy
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checkpointing-continuing processing while the checkpoint is written to disk,

but relying on the previous checkpoint for recovery until the write completes.

3.3.2 Object Oriented Databases

Object Oriented DataBases (OODB) attempt to combine the persistence,

secondary storage management, concurrency, recovery and ad hoc query

facilities of database management systems with object oriented facilities such

as support for complex objects, object identity, encapsulation, extensibility

and computational completeness (Atkinson et. al. 1989). They avoid the

‘impedance mismatch’ encountered when developing applications using

relational databases where data must be continually mapped between

relational and object oriented models. Rather than designing an application

and a database to contain the application data and then implementing the

application to move data to and from the database, an object oriented database

automatically generates database schema from application data types, manages

the storage of objects promoted to persistence and garbage collects objects no

longer needed.

The storage of types and methods within OODB systems allows a single

database to support application development and provide application

persistence. O2’s OOPE development environment (Borras et. al. 1989)

supports this approach. Similarly the support for classes as objects in

Smalltalk (Goldberg, and Robson, 1983) allows its distributions to be seen as

pre-populated OODBs.

The support for ad hoc queries, which are allowed to break the rules of

encapsulation, initially appears to undermine the object oriented nature of

OODBs. However, without it there would be no way of accessing the data in

an OODB without writing a program. This would be a severe weakness

compared to the rich interactive querying possible with relational approaches.

As ad hoc querying only relies on the object’s structure for the lifetime of the

query, the breach of encapsulation is much less serious than if applications

were to rely on an object’s structure.
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Object oriented databases use many of the same mechanisms for storage as

relational databases, relying on transactions and strategies to recover from

failures during transactions. In most cases OODBs use a layered architecture

(Keller, 1998) with upper layers dealing with complex objects which are

converted into operations on tuples handled by the lower layers. In some cases

the lower layer is implemented by a relational database as in the case of POET

(Thelen and Beckert, 1997), or disk management system as with O2 (Deux et.

al. 1990). Static analysis of the application methods in the OODB can allow

increased concurrency and reduced locking of objects involved in transactions.

3.3.3 Serialisation

Object serialisation is the process of taking a reference to an object and

producing a series of bytes which represent the object and all objects reachable

from it. The sequence of bytes can then be transmitted across a network to

another machine or written to a file or database Binary Large Object (BLOb).

When the serialisation is received across the network, or subsequently read

from storage, new objects for each object serialised are constructed. The new

objects have the same type and state as the original objects, but a different

identity. If an application serialises an object to disk and then reads the object

back it ends up with two identical objects. In some cases this can be useful, for

example the same mechanism can be used for serialisation and object cloning,

but in the case of using serialisation for persistence, the side effects are

generally unwanted. If two objects which both reference a third object are

serialised and subsequently read, the third object will be included in both

serialisations and so a new object equal to the third object will be created

when each serialisation is read. Rather than sharing a reference to an object the

objects created from the serialisation each have their own copy of the third

object which can diverge. The semantics of the system created from the

serialisation are different to the semantics of the system which was serialised.

Systems using serialisation can also suffer from the “big inhale” problem: if

the graph of references between objects is highly connected then a large

number of objects are included in any serialisation. An application wishing to

load on a small subset of data has to wait until the whole serialisation has been

read before any data can be accessed. Despite these problems, serialisation is
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an attractive mechanism to use for persistence as it is easy to use, can be

automatically driven from class definitions in languages like Java (Gosling et.

al., 1996) and is also useful for moving objects between nodes, as shown by its

use as the foundation of Java RMI.

3.3.4 Orthogonally Persistent Object Systems

Orthogonally Persistent Object Systems (Atkinson and Morrison, 1995) allow

the creation and manipulation of data of any type in a way that is independent

of its lifetime. Data used as an intermediate result which is discarded as soon

as a calculation is complete and data which persists for years in a company

database are created in identical ways and manipulated using the same

standard programming language constructs. In addition to the principles of

persistence independence and data type orthogonality described above,

orthogonally persistent systems aim to separate the identification of persistent

objects from the type system. This is achieved by following references from

persistent roots, objects which are explicitly named and promoted to

persistence. All objects which can be reached by following references from

these persistent roots, and in some cases the executable code needed to

interpret the objects, are promoted to persistence. Conversely, objects which

become unreachable from a root are removed from the persistent store via

garbage collection. Orthogonal persistence is usually provided by heavily

modifying the run-time environment of a standard programming language.

The modified run-time is responsible for obtaining the type information from

programs and accumulating it as a schema to allow the storage of objects, the

storage of any values which future programs may use, identifying which

values should be made persistent and which persistent values can be garbage

collected and arranging to incrementally load persistent data as needed.

Orthogonal persistence greatly simplifies the development of Persistent

Application Systems (PASs) compared to the use of relational databases and

programming languages. Instead of attempting to maintain consistent database

and programming models of a system a single programming model is used

with data made persistent as required. Compared to serialisation, orthogonal

persistence does not suffer the “big inhale” problem or the loss of object

identity. The main problems with orthogonal persistence are its limited
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commercial availability and the performance overheads imposed by the

modified runtime.

3.3.5 Summary

The database field provides many mechanisms for durability which have been

used in persistent virtual environment systems or could be used in future

systems. However, the central role that transactions play in these mechanisms

can make the techniques difficult to use for virtual environment systems.

Waiting until updates are committed to stable storage before presenting them

to users in a virtual environment system increases latency and greatly impacts

interactivity, while rolling back updates makes little sense in a real time

system where updates have already been experienced. In general, these

techniques are useful in virtual environments when used more optimistically

(for example if logs and checkpoints are used for recovery, but the system

does not promise to restore all updates experienced by the user).

The dual use of serialisation as a object migration and persistence mechanism

makes it a very attractive mechanism for use in virtual environment systems,

which can either reuse existing serialisation mechanisms to add persistence, or

be designed from the outset with this dual use in mind.

The transparent persistence provided by orthogonally persistent languages is

less attractive for collaborative virtual environment systems where the

transparency of other infrastructure issues tends to be rare.

3.4 Extensibility/Reconfigurability

Extensibility is often found in systems through the support of plugins which

provide alternative implementations for a well defined interface (e.g. web

browser plugins providing alternative rendering methods, or graphical editor

plugins providing different filter effects). Middleware frameworks go further

by providing facilities for applications to define their own interfaces and to

discover the interfaces implemented by other components at run-time.

Reconfigurable systems also provide facilities for replacing and removing

implementations at run-time allowing the system to be effectively upgraded at
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run-time. This section examines a number of systems which provide

mechanisms for extensibility and reconfigurability at both the application and

infrastructure level.

3.4.1 Review Criteria

In the review of systems supporting extensibility and/or reconfigurability the

important criteria to examine are:

• The level at which the extensibility and/or reconfigurability operates.

In particular, does the system support application level run-time

extensibility, or infrastructure level extensibility? (for example

allowing the introduction of new networking protocols or consistency

mechanisms).

• The support for distribution of extensions, for example can the system

support extensions which span multiple nodes in the network and

cooperate via network communication?

• The generality of extensions, for example does the system only allow

tightly defined extensions, such as the replacement of a particular

service or mechanism, or is the extension mechanism more general?

The reason these criteria are applied is that a continuously persistent

collaborative virtual environment system needs to support all three; general,

distributed and infrastructure level extensibility.

3.4.2 Components

Components (Orfali et. al. 1996) are reusable pieces of compiled software

which can be combined with other components to produce complete

applications. As such, components provide a great deal of reconfigurability – a

good component must be able to be used in one application and then

reconfigured and combined with different components to produce a different

application. Component reconfigurability is supported by visual builder tools

and high-level scripting languages designed to make combining and
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reconfiguring components easy. These tools are in turn supported by standard

component functionality such as support for introspection (which allows

builder tools to analyse how components work) and support for events (which

provide component communication and properties which allow component

customisation). Typical reusable components might provide customisable

Graphical User Interface (GUI) controls such as sliders or database viewers

which can be visually dragged on to an application dialog and their events

visually connected to application methods. In addition to supporting rapid

application development, components can allow run-time customisation of

applications using the same graphical development tools. This thesis document

is a component which can embed other components, be viewed in a graphical

editor as a component with properties such as a DefaultTabStep size and can

be manipulated using scripts. Distributed components are components which

communicate with other components across networks using a component

infrastructure. The component infrastructure provides an object bus which

allows components to call methods on remote components, exchange

metadata, discover each other and provides services such as persistence and

transaction management. The facilities provided by the infrastructure allow

applications to be written as enterprise components which contain just the

business logic required for an application and rely on the component

infrastructure for implementation services. While components may prove

useful to extend or reconfigure virtual environment applications, the overheads

imposed by request brokering generally make component architectures

unsuitable for real-time communication between nodes in a collaborative

virtual environment system.

3.4.2.1 CORBA

The Common Object Request Broker Architecture (CORBA) is an open

component infrastructure defined by the Object Management Group (OMG).

CORBA components are white box objects in that they support the classical

object concepts of inheritance, identity and encapsulation. The components are

described using the language independent CORBA interface definition

language (IDL) allowing components to be implemented in any language.

CORBA Object Request Brokers allow static method invocations which use
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stubs (similar to those used by Remote Procedure Calls (RPCs)) like or

dynamic method invocations which use automatically generated meta-

information to allow objects to discover each other at run time. CORBA

provides many services including Life Cycle, Naming, Persistence, Versioning

and Concurrency Control services and provides mechanisms for different

Object Request Brokers (ORBs) to communicate over the internet.

3.4.2.2 TAO

TAO is a CORBA ORB implementation designed for real-time high

performance applications (O’Ryan 2000). It supports infrastructure level

extensibility and reconfigurability through its support for pluggable protocols

for inter-ORB communication. These allow networking protocols more suited

to real-time operation than to be used instead of or alongside the Transport

Control Protocol (TCP) used by the General Inter-ORB Protocol. In addition

to presenting the TAO ORB and the advantages of pluggable protocols

O’Ryan presents the problems inherent in allowing pluggable protocols and

suggested solutions.

3.4.2.3 COM/DCOM

The Component Object Model (COM) (Horstmann and Kirtland, 1997) is the

component architecture at the centre of Microsoft’s Windows operating

system. Beginning as an evolution of the Windows Object Linking and

Embedding mechanisms, COM initially provided an architecture for binary

interoperability between components written in different languages and then

was extended with facilities for distribution to become Distributed COM

(DCOM). Like CORBA, COM is based on components implementing

interfaces. Unlike CORBA, COM components are black box components not

supporting inheritance. Reuse in COM is achieved by aggregating components

within components which support the encapsulated components. Calls to the

interfaces are then delegated to the encapsulated components. This mechanism

avoids some problems of multiple inheritance, which can be simulated by

encapsulating multiple components and potentially provides more flexibility

through the run-time configuration of delegates. COM supports run-time

discovery of component behaviours through a standard IUnknown interface
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which can be queried to find other interfaces supported by the component. The

same interface provides reference-counting facilities to support garbage

collection.

3.4.2.4 JavaBeans/Enterprise JavaBeans

Rather than allowing the binary interworking of components written in

different programming languages, JavaBeans are Java components which can

be used on any system that can run a Java Virtual Machine (Hamilton, 1997).

JavaBeans separate run-time and design-time code such as customisation

wizards allowing fast run-time downloading. Enterprise JavaBeans support

middleware application components by providing transaction, security and

networking services through Enterprise JavaBean servers which provide the

component infrastructure.

3.4.3 Bamboo

Bamboo is a component framework that manages the dynamic loading and

unloading of language specific plugins (Watsen, 1998). Although originally

developed to enable continuously persistent virtual environments, Bamboo is

general enough to support any application which needs dynamic code loading

facilities. Each plugin is part of a module which contains the plugin and any

resources the plugin requires, such as graphics or audio. Bamboo manages

dependencies between modules by making sure that dependent modules are

loaded before the modules that use them. Once a plugin is loaded an initFunc

entry point is called in which the plugin can initialise and a corresponding

exitFunc is called before the plugin is unloaded allowing it to free resources.

Once initialised the plugin can either create a thread to perform processing,

extend objects or classes, extend the process’s execution loop by registering

callbacks. Each callback incorporates callback handlers before and after the

function call allowing further callbacks to be registered with the callback’s

callback handlers. This recursive behaviour means that a function can always

be inserted before or after an existing function. Bamboo uses runtime linking

and function calls in a single process to provide maximum efficiency, however

this means that a more heavyweight framework like CORBA, DCOM or
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Enterprise JavaBeans must be used with Bamboo if remote method calls are

required.

3.4.4 Bayou

Bayou is a system which supports applications requiring replicated data in

widely distributed or imperfectly connected networks (Terry et. al. 1998).

Whereas strongly consistent replicated systems make generally make

replication transparent, weakly consistent systems must deal with varying

degrees of consistency and conflicting updates which cannot be made

transparent. In order to cope with this situation and to acknowledge that

different applications have different requirements, Bayou provides flexibility

and reconfigurability by giving applications control over replication choices

and conflict detection and resolution. To allow conflict resolution, a Bayou

write operation consists of a nominal update, a dependency check and

expected results and application code. The nominal update is the changes to be

made if there are no conflicts. The dependency check is an application

defined query which should return the expected results when there are no

conflicts. The application code travels with the write and is executed to

resolve detected conflicts. For example the dependency check for a calendar

application might check that no appointments in the database being updated

overlap a meeting being added and the conflict resolution code might move

the new meeting to avoid the overlap. Bayou uses an anti-entropy algorithm

for update propagation (Petersen et al. 1997). The sending replica obtains a list

of updates known by the receiver, then sends any updates that it knows, but

the receiver does not. To avoid replicas keeping all updates, a primary replica

assigns a sequence to writes which propagates back to other replicas which

can then commit and discard these globally ordered writes. This may result in

state needing to be transferred if a replica does not have writes, but a sender

has committed and discarded them. Bayou allows application policies to

decide when to reconcile, with whom, when to truncate the write-log and

which server to create a replica from. Reconciliation can be periodic, user

triggered or system triggered, when network or CPU bandwidth is available or

when logs need to be shortened. In general, frequent updates keep replicas

consistent, but use more bandwidth. Partner choices can be made based on
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reachability, network state, database state, primary status and truncation state.

Truncation policies can be co-operative, with some keeping writes allowing

others to commit.

3.4.5 Summary

There are a number of trade-offs apparent in the review of systems supporting

extensibility, summarised in Table 3-2. The most obvious is that of generality

versus level. All component technologies support very general models for

extensibility which allow arbitrary new interfaces to be introduced and other

components to discover and use those interfaces. However they provide this at

an application level. At the infrastructure level extensibility is generally much

more limited – systems like Bayou and TAO allow a certain level of

customisation or extension of infrastructure mechanisms such as networking

protocols or replication strategies, but there are large parts of their

infrastructure that must remain static. In some senses, the discussion of

infrastructure level extensibility is misleading. If the infrastructure is the

framework on which applications rely, it must be static: different applications

use the infrastructure in different ways, but the infrastructure is what is

leveraged to allow reconfigurability. However, the low level mechanisms

which systems like Bayou and TAO make dynamic have historically been part

of the infrastructure. In order to make these mechanisms extensible, they must

be stripped from the infrastructure, to create micro-infrastructures which

contain the minimum of hard-coded bootstrapping knowledge and which load

all other mechanisms dynamically. Bamboo is an example of this kind of

micro-infrastructure, only containing enough logic to load modules which

provide all other services. A potential problem with pushing extensibility so

low is that frameworks can become so small and general as to become useless

– one of the major attractions of CORBA is that it provides services, discovery

and communication facilities to its components. Applications built with

Bamboo must implement these services themselves. Virtual environment

systems aiming to provide low level extensibility mechanisms must weigh up

this trade off carefully. If the framework provides too much as standard, it

risks being unable to replace mechanisms at run-time; if it provides too little
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as standard it risks pushing too much of the burden on to application

developers.

System Extensibility

Level

Distributed Extensibility Generality

CORBA Application Yes (ORB

Communication)

High (Arbitrary

component interfaces)

COM/DCOM Application Yes (ORB) High (Component

interfaces)

JavaBeans Application Yes High (Compontent

interfaces)

TAO Infrastructure

(Network

Protocol)

Yes

(Symmetrical

protocols)

Low (Network protocols

only)

Bayou Infrastructure

(Replication

mechanism)

Yes (Mobile

reconciliation

code)

Medium (Arbitrary

reconciliation code, but

limited replication

choices and only

replication/reconcillation

decisions extensible)

Bamboo Infrastructure

(All but plugin

loading)

No (In process

components)

High (All but plugin

loading)

Table 3-2 Comparison of extensible systems

3.5 Content Management

Content management is the work of ensuring that only authorised users can

view and change information in a system and so is found in nearly every

shared or distributed system. In some cases content management is performed

by a single, global administrator, while more powerful content management

systems allow privileges to be delegated to users in order to spread the work of

managing system content. In this review of content management mechanisms,
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two very different approaches are examined. Section 3.5.1 discusses access

control, a conservative approach favoured by databases, while section 3.5.2

looks at a more optimistic approach – update reconciliation – which may be

more appropriate to collaborative virtual environments.

3.5.1 Access Control

Access control aims to restrict access to system content to authorised users.

Users may be able to perform different actions on different parts of the system

content, but the approach is to make all access control decisions in advance of

any operations being performed.

3.5.1.1 Relational Databases

Database content management is based on the concept of user accounts which

have permission to perform operations and consists of discretionary and

mandatory mechanisms (Date, 2000). Discretionary mechanisms are used to

grant privileges to users allowing them to perform certain operations on

certain data. Mandatory security mechanisms which classify data and users

into security classes as a basis for security, for example only allowing users to

see information classified at their level of classification or lower. User

accounts are created by the database administrator with a password which is

kept in an encrypted table in the database and a users identity is proven by

providing the password whenever database access is needed. The granting and

revoking of privileges follows an access matrix model where subjects, which

may be users or programs, make up the rows and objects such as relations or

records make up the columns. Each position (i,j) in the matrix contains the

read, write or update privileges which the subject i holds on the object j. A

relations owner is responsible for granting privileges to other users and can

optionally allow those users to grant the same privileges – allowing privileges

to propagate without requiring the owner to grant every privilege. The system

log is annotated with the account responsible for operations allowing the log to

be used as an audit trail in the event of tampering.
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3.5.1.2 UNIX Permissions

The UNIX operating system (Garfinkel and Spafford, 1996) makes pervasive

use of the file metaphor to represent devices, network connections, processes,

directories as well as executable and data files. This makes the file system

central to the UNIX operating system and the permissions which control

access to files central to UNIX content management and security. Permissions

on a file consist of 3 groups of 3 bits which indicate whether read, write and

execute permissions have been given to the file’s owner, group or other users.

Read permissions allow users to read the contents of a file, write permission

allows the file to be overwritten or its contents modified and execute

permissions allow users to run a program or view the contents of a directory.

The hierarchical nature of most file systems allows coarse grained or fine

grained access control – access to large portions of the file system can be

controlled by changing the permissions of directories near the root of the

hierarchy, while individual file permissions allow fine grained control.

3.5.1.3 Access Control Lists

Some versions of UNIX also provide access control lists to augment the basic

file permission mechanism. The list contains entries which can completely

specify the permissions for certain users or groups, deny actions for certain

users which they could otherwise perform, or permit certain users to perform

actions which the standard permissions would not allow. Using access control

lists, access for files can be specified as completely as with relational

databases, with each entry in the list specifying the contents of an access

matrix cell.

3.5.1.4 SPACE

SPACE is a spatial access control model for virtual environments (Bullock

and Benford, 1999). Rather than associating access rights with users or

resources, SPACE associates access rights with spatial boundaries within a

virtual world. The process of restricting access to an object or information in

the model corresponds to moving the object to a space which allows the

restricted access. Users wishing to cross a boundary into a restricted area must
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meet some criteria such as a clearance classification value, match a name or

status value or be in possession of a token such as a key or password. SPACE

also presents several mechanisms for group access to regions. The

combination of group access and the regioning approach allows the

collaborative modification of the restricted information, unlike database or

UNIX access control where multiple privileged users must make updates

sequentially. The configuration of an environment can be represented as an

access graph in which regions are the nodes and boundaries the arcs. These

access graphs allow the application of standard mathematical techniques to

reason about access rights across the entire space, for example the calculation

of the minimum clearance needed to move between nodes, or the relative

classification of a particular route between two nodes. While the SPACE

model provides a very natural metaphor for access control – exploiting users’

spatial reasoning – it becomes impractical for fine-grained access control

which requires many very small regions and for very large environments in

which complete access graphs cannot be constructed.

3.5.1.5 Summary

Table 3-3 compares the approached to access control. While they vary in the

granularity in which collections of data or groups of users can be specified, all

of the approaches bar SPACE restrict collaboration by serialising access to

data. While the problems of waiting for access to locked data can be reduced

in a collaborative virtual environment by allowing very fine data granularity,

an approach which allowed truly simultaneous access to data is more

desirable. This affordance is one of the benefits of update reconciliation,

discussed in section 3.5.2.
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System Data Granularity User

Granularity

Collaborative

Relational

Databases

Medium to Fine

(Relations to

Fields)

Fine (Individual

Users)

No (Locking

and

Transactions)

UNIX

Permissions

Coarse to Medium

(Root directories to

Files)

Medium (Owner,

Single Group and

Other)

No (Sequential

Access)

Access Control

Lists

Coarse to Medium

(Root directories to

Files)

Fine (Arbitrary

users or groups)

No (Sequential

Access)

SPACE Medium (Regions) Course

(Clearance)

Yes (Group

access to a

region then

collaborative

updates)

Table 3-3 Comparison of access control systems

3.5.2 Update Reconciliation

Update reconciliation differs from access control in that it defers the

management of changes to content until after the updates have been

performed. Users are able to make updates to system content freely and the

updates are stored in the system as variants. Updates can subsequently be

merged, accepted or discarded in a subsequent reconciliation stage. As update

reconciliation deals solely with the creation and merging of variants, it cannot

be used to control users’ viewing content, only changing it. As such it is only

usable where all users can view all content, but only a subset can change the

world. Update reconciliation provides a more optimistic approach to managing

content in that updates by unknown users can be judged on their merit rather

than restricting updates to known users.
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3.5.2.1 Versioning

Software versioning systems use the idea of variants to allow multiple

inconsistent versions of data to co-exist and later be reconciled. Versions of a

file are either revisions, intended to supersede a previous version, or variants

intended to co-exist with other versions. Branches resulting from variants in

version spaces can be merged by analysing the differences between the

versions. Where changes are disjoint, versions can be merged automatically,

but user intervention is required where changes overlap. Revision Control

System (RCS) (Tichy, 1985) generates a marked up version of the merged

data, presenting alternatives in areas where changes overlap. Variants can also

be used to manage divergence between views of data manipulated

simultaneously by multiple users. Rather than disallowing inconsistency the

inconsistent copies can be allowed to become variants.

3.5.2.2 Prospero

The prospero system uses this model of multiple users causing divergence

which can later be reconciled (Dourish, 1996). Dourish views data

management as the continual divergence and synchronisation of views.

Frequent synchronisation results in synchronous style interaction, infrequent

synchronisation results in asynchronous applications. Prospero uses an

optimistic divergence/synchronisation strategy based on a guarantee/promise

model. The system guarantees a certain type of consistency if the client

promises to limit actions in some way. For example if a client promises to

only add data during updates the system can allow read access during updates

and guarantee consistency. The client can break promise, but then the system

may not be able to guarantee consistency. When promises are broken the

system falls back to syntactic consistency, maintaining both inconsistent views

of the world as variants which must be manually reconciled at a later date.

Prospero provides both an optimistic approach to content management and a

mechanism for infrastructure customisation through different applications

making different promises and accepting different guarantees from the system.
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3.5.2.3 Summary

Where changes to the content of a virtual world can be made by all users, but

must be checked for acceptability, update reconciliation is an attractive option.

Rather than ensuring that valid users update items sequentially, update

reconciliation allows all users to potentially modify an item concurrently and

for the updates to be reconciled later to produce a new shared state. This

model fits naturally with the architecture of most virtual environment systems,

which maintain a local replica of world state, which is operated on by users

becoming momentarily inconsistent with other replicas before being

synchronised by sharing updates. By using update reconciliation incompatible

updates are allowed, which cause replicas to diverge further to become

variants before being eventually merged. Update reconciliation provides an

optimistic model for updates which promotes interactivity by reducing the

need to wait for locks. This model of content management allows a merit

driven approach to world updates in that all users are allowed to modify a

world with good updates being accepted regardless of user. By combining

update reconciliation with access control, bad updates could result in update

privileges being revoked. In this way an optimistic, interactive approach to

world evolution can be provided which is nevertheless policed to avoid

vandalism. In an application where many users will be unknown, such as in a

freely accessible continuously persistent virtual environment this is an

important advantage.

3.6 Conclusion

The examination of the persistence, management and extensibility

mechanisms provided by collaborative virtual environment systems alongside

systems which specialise in such mechanisms show virtual environment

systems to be underdeveloped by comparison. Most virtual environment

systems have historically been developed with audio-graphical facilities,

interactivity or scalability as a focus with support for continuously persistent

applications a secondary consideration at most. Those systems which have

focused on supporting persistent environments have been mainly commercial
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systems which have pragmatically developed persistence, management and

extensibility facilities as needed to support a particular application.

Against this background there is clearly room for research which looks at

providing more general and powerful facilities for persistence in collaborative

virtual environments which borrows concepts and techniques from the fields

of databases, components, orthogonal persistence and other fields included in

this review.

Looking beyond general and powerful facilities for persistent virtual

environments towards the vision of a virtual environment system which

provides dynamic infrastructure mechanisms shows even more scope for

original research. The Bamboo system falls closest to this vision, being

developed originally with the idea of continuously persistent virtual

environments in mind. However, Bamboo concentrates on extensibility and

reconfigurability at the expense of all other considerations. The framework is

general and minimal to the point of having no concept of virtual environments,

persistence, consistency or anything else other than plugins and loading.

An ideal framework supporting dynamic infrastructure mechanisms alongside

traditional virtual environment platform support seems to fall between

Bamboo’s determined minimalism and the heavyweight infrastructures of

component frameworks. As such it could potentially be constructed by

building on top of a system like Bamboo, or stripping down a heavyweight

framework. The next chapter presents a model which occupies this middle

ground – supporting low-level extensibility while providing application

developers a metaphor which includes concepts of communication and items

which are frequently found in more static virtual environment platforms.
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4 Model

This chapter presents the distributed event filter framework which is the main

contribution of this thesis. The goals of this framework are to provide

customisable, per-item infrastructure mechanisms, which the previous

chapters have shown as being desirable in complex virtual environments

containing many heterogeneous types of information. The framework also

provides facilities for low-level extensibility and reconfigurability of

infrastructure mechanisms like consistency and persistence which are needed

in environments which must be continually available and so upgraded and

extended at runtime. The framework provides a mechanism for managing the

content, the per-item processing and the extendible infrastructure in a uniform

way, so that the same techniques which are used to define the users allowed to

modify or view an object in the virtual world are used to define the persistence

and consistency mechanisms which operate on that object.

After outlining the goals of the framework in section 4.1 the chapter goes on

to describe the two main components of the framework; “distributed event

filters” in section 4.2 and “deep behaviours” in section 4.3. The frameworks

potential for optimising the performance of a virtual environment system is

discussed in section 4.4 and its scalability is considered in section 4.5.

Examples which demonstrate the flexibility of the framework are presented in

4.6 before some conclusions are presented in 4.7.

4.1 Goals

There are a number of desirable characteristics which the framework should

exhibit if it is to provide a useful basis for continuously persistent virtual

environment systems which support dynamic per-item infrastructure

mechanisms.

• Minimal: The framework must be minimal. That is, the static portions

of the framework which the dynamic portions rely on must be kept as

small as possible.
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• Simple: The framework must be conceptually simple. The distributed

nature of the infrastructure mechanisms the framework must support

are inherently complex, and the dynamism the framework allows

increases the complexity. The framework must attempt to reduce this

complexity by providing facilities to automate as much as possible and

provide a simple conceptual model which is easily understandable.

• General: The framework must be as generally applicable as possible to

maximise its usefulness and avoid prohibiting changes which were

initially unforeseen. In the case of the thesis, the framework should be

able to support at least existing virtual environment architectures and

infrastructure mechanisms.

• Scalable: The framework should not reduce the scalability of any

system employing it.

• Efficient: The framework should impose as little processing overhead

as possible.

While these goals are all desirable, there are clearly several trade-offs present

in this cluster of goals. For example presenting users of the framework a

conceptually simple model which automates many of the details might prevent

optimisations possible if users were presented with the details. Similarly a

simple framework which hides details might not be a minimal framework.

Where these trade-offs exist a decision must be made on the relative

importance of the goals.

While the framework is designed to tackle the issues of extensibility, content

management and persistence identified in chapter 1, the most fundamental of

these is extensibility. Only a highly extensible and reconfigurable system

allows the mechanisms for persistence and content management to be varied

dynamically on a per-item basis. It is this per-item reconfigurability which
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allows the system to support the varied item roles identified in chapter 2. As a

result, the majority of this chapter focuses on the provision of extensibility,

content management discussed in section 4.3 and persistence in 4.6.

4.2 Distributed Event Filters

The conceptual model chosen for the framework is that of a network of pipes

and filters which exist conceptually between and inside the applications which

make up the distributed virtual environment system. The events communicated

between applications and processed inside applications are explicitly

represented as objects which are generated in the methods which make up the

Application Programming Interface (API) of the system and are added to

event pipes. Each event has a type describing the function of the event and can

specify one or more items in the virtual environment system on which they

will operate. The event pipe uses these parameters to decide which filters

should process the event and then passes the event to each filter in turn. By

selecting filters based on their target items the Distributed Event Filter (DEF)

framework enables customisable, per-object infrastructure mechanisms. Figure

4-1 shows the main components in the model.

Figure 4-1 Main components of the model

The framework provides simplicity through its simple metaphor and powerful

facilities to support the distributed processing of events, and generality and

minimalism through assuming only that events must be communicated around

the system and processed at specific points.

While many system architectures use a model of pipes and filters (for example

UNIX pipes (Ritchie, 1984) or Composition Filters (L. Bergmans and M.

Aksit, 2001)), within the field of collaborative virtual environment platforms,
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the use of a pipes and filters metaphor is novel. There are also a number of

important innovations brought to the pipes and filters architecture, which

make up the original contribution of this thesis and are discussed in sections

4.2.1 to 4.2.9.

4.2.1 Distributed Infrastructure

The model of events propagating through a network of pipes being processed

by a sequence of filters a very natural model for the infrastructure processing

which occurs in virtual environment systems. One characteristic of this

infrastructure processing is that it crosscuts individual applications and is

distributed between applications in the network. The infrastructure is the

platform which supports individual virtual environment applications,

facilitating communication, persistence, state replication and consistency

between replicas. While processes are of their nature centralised, the

infrastructure is of its nature distributed. Some processing must be carried out

at a client, more at a node in the network and more still at a server, yet the

distributed processing units can logically be seen to provide a service through

their orchestrated operation.

A network of pipes and filters supports this paradigm very naturally. The

implementation of an infrastructure mechanism consists of the implementation

of each distributed processing unit as a filter and the insertion of those

processing units at appropriate points in the network, within several

applications. The mechanism is both part of many applications and part of

none, existing separately to the application as a set of filters which can be

added to a running system, removed or replaced with a new implementation as

required.

While some infrastructure processing does not benefit from being in a

sequence of filters and could equally well be implemented via call backs,

positioning this processing in an event pipe allows other filters to be placed in

specific positions relative to the processing.
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4.2.2 Dynamic Routing

It is in its support for dynamic routing that the DEF framework achieves

greater flexibility than many other extensible virtual environment systems.

Although some MUDs provide verbs on the server (Curtis, 1997), there is no

run-time mechanism for extending or changing the way messages reach the

server or propagate through it. These previous systems follow the Factory

Method pattern (Gamma et al, 1995), providing points at which processing can

take place before routing events to the next stage. The object oriented

mechanism of delegation using agents (Muller, 1997) provides a way to decide

on message flow at runtime using standard object oriented languages.

However, this mechanism requires every client to rely on an agent to decide

on message flow – the client calls a method on the agent, which chooses

which server to forward the message to. Figure 4-2 shows the general model

for dynamic routing in object oriented systems.

Figure 4-2 Object oriented dynamic routing

In situations where dynamic routing may be required in the future, the agent

must still be present to allow for the future variability. In a continuously

available virtual environment where few assumptions can be made about

future requirements, agents would need to be employed at many locations to

proof the system against future changes. However, this would lead to hugely

increased complexity and degraded performance as each message call passes

through layers of currently wasted indirection as agents just forward messages.

Event pipes avoid this overuse of agents. The initial system is developed using

the message flow which is initially required – clients specify servers and

messages are passed to them. If, at a later stage, a different message routing is

required, a filter is added in the event pipe which routes the message to a new

destination. Figure 4-3 shows how dynamic routing is achieved using event
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pipes. Events normally flow directly to Server 1, but by inserting a routing

filter they can be routed to Server 2 without changing the client.

Figure 4-3 Dynamic routing with the DEF framework

In this way a client-server system can evolve to become a 3-tier or n-tier

system naturally, rather than agents and indirection being specified initially to

provide future proofing. If the system ultimately does not need additional

routing it remains simple.

The event pipe metaphor also provides a natural way to introduce multiple

changes to message passing at once – multiple filters are added or removed to

or from event pipes. It is clear by inspecting the event pipes before and after

what has changed, however if multiple agents are reconfigured, the changes

are difficult to see – the agents which existed before still exist, but now

perform different processing. The multiple event filters encapsulate the

processing needed for a distributed mechanism more naturally than an agent

approach where the mechanism is implicitly expressed through the settings of

multiple agents.

4.2.3 Reusable Filters

Implementing infrastructure mechanisms as a network of filters promotes

reuse. In particular many consistency mechanisms differ primarily in the order

in which updates are distributed among the many application nodes in the

system and the order in which updates are carried out. By implementing a

generic routing filter and a generic state update filter, we can provide many

consistency mechanisms just by configuring the order of these generic filters.

Similarly, we can finely control a persistence mechanism by changing the

point at which an update is made persistent by being written to stable storage.

By changing its relation to update and routing filters, we change the
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persistence mechanisms semantics by altering whether or not a user is able to

see an update before it is made durable.

4.2.4 Reusable Mechanisms

The previous example demonstrates the interdependencies which may exist

between conceptually different and independent infrastructure mechanisms.

The consistency mechanism may exist without the persistence mechanism and

vice versa, but if they operate together the order of the interleaved filters

makes a big difference to the semantics of the composite mechanisms. Again

this is another opportunity for reuse – two infrastructure mechanisms, which

may themselves be composed of reusable filters, may be configured to co-

operate in different ways to achieve different system semantics.

4.2.5 Abstraction

While the distributed event filter model achieves much of its flexibility by

operating at the low level of events propagating around a distributed network

of applications, rather than at the object level used by previous systems (Pavel,

1997, Vellon et. al., 2000) it provides a certain level of abstraction by allowing

developers to view the system as an interconnected network of pipes and

filters rather than a collection of applications. Event pipes may route events

inside a single process or route events across a network link, but appear

identical to developers. While the network is clearly not transparent to the

infrastructure developer, the uniform abstraction is simpler to work with than

the use of an in-process middleware such as Bamboo (Watsen and Zyda,

1998) alongside a network middleware such as CORBA.

4.2.6 Position

As discussed above, the relative positions of filters in an event pipe are very

important, often dramatically changing the infrastructure semantics and

sometimes being the only difference between two infrastructure mechanisms.

For this reason, rich support for specifying positions and dependencies

between filters must be provided by the framework. The framework permits

filters to specify constraints. These specify which filters, if they exist in the

event pipe, must come before or after the filter. Similarly, filters can specify
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requirements. These specify which filters must exist in the event pipe before or

after the filter. Specifications of filters which must come before a filter are

termed prefix constraints or prefix requirements, while specifications of filters

which must come after a filter are termed suffix constraints or suffix

requirements. This system of constraints and requirements provides a simple

yet powerful way of determining the relative positions of filters and the

dependencies between them. To set up an event pipe in a certain configuration

the required filters are created, prefix and suffix constraints and requirements

are added to the filters and then they are added to the event pipe. The event

pipe implementation then attempts to satisfy the constraints and requirements

for each filter. If the problem can be solved, the filter is added to the pipe,

otherwise the failure is indicated and appropriate action can be taken, either

changing the requirements, aborting the initiation of the infrastructure

mechanism, or halting system execution as appropriate.

Filter requirements are also used to ensure that the removal of filters from an

event pipe does not break any dependencies. The event pipe attempts to satisfy

the requirements of all filters without the existence of the filter or filters being

removed. If all requirements can be satisfied the filter can be removed,

otherwise failure is returned. These semantics for addition and removal of

filters ensure that the event pipe remains in a valid state at all times and

disallows any operation which compromises its correct functioning. The filters

in an event pipe may perform extremely complex processing and involve

many dependencies for correct operation. However, this complexity is hidden

from the user of the event pipe.

4.2.7 Identification

In order to specify constraints and requirements filters must be able to

reference other filters. In order for the framework to allow the replacement of

filters and the extension and evolution of the infrastructure these references

must be as general as possible, but for the expression of specific dependencies

between particular versions of filters the references must also be able to

pinpoint a specific instance of a filter. To allow for this the framework

supports a hierarchical naming scheme which allows the general and specific
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identity of a filter to be discovered. The name is made up of the form

<Function>.<Version>.<Identity> where function is a sequence of strings

describing the filter’s function in increasingly specific terms and version is a

sequence of strings describing the filter’s version in increasingly specific

terms. Identity is a single integer which is assigned sequentially to the filters

created in an application allowing the precise specification of an individual

filter. Using this scheme a filter may specify that it must be positioned before

or after a general class of filters, before or after a specific filter of a certain

version, or before or after a particular filter. Requirements should be made as

general as possible, but no more, to allow the reconfiguration of the event

pipe, but to maintain critical dependencies between filters. The model uses the

Java definition of versioning (Gosling et. al., 1996) where 1.2 maintains

backwards compatibility with 1.1 whereas 2.1 breaks this backwards

compatibility, so that sub-string version requirements or constraints will match

all compatible versions. Version 2 of a function filter which supports the

interface of version 1 should be named function.1.1 so that a filter with a

prefix or suffix requirement function.1 will remain satisfied, whereas if the

new version behaves differently it should be named function.2 to signal to the

event pipe that any existing requirements can no longer be satisfied.

4.2.8 Execution

Having configured the event pipe with a collection of filters, the work of the

event pipe is to pump each event through the correct set of filters in order to

process the event by the appropriate infrastructure mechanisms. When an

event is added to an event pipe it must build a list of all of the filters which are

applicable to the event and then pass the event to each filter’s event processing

method in turn.

In fact this description is over-simplified as in order to allow the filters to be

as general as possible no assumptions can be made across event processing

calls. The simplified description assumes that the initial list of filters which

apply to an event, will continue to apply to the event until its processing is

complete. If all filters were passive, performing some processing based on the

information in an event, but not changing the event then this assumption
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would be valid. However, filters which modify, delete or create events should

also be allowed along with filters which add, remove or replace filters inside

their processing methods.

4.2.8.1 List Processing

In order to allow filters to easily delete or synthesise events, a list is passed to

the filters processing method containing the single event to be processed. If

the filter wants to stop the event being processed further, it removes the event

from the list and returns the empty list. If a filter wants to create new events,

they can be added to the returned list, while filters needing to change events

can either rewrite the event in the list or remove it and replace it with a new

event. The events returned to the event pipe are marked as having been

processed by the filter and are then processed by the next applicable filter, thus

this mechanism is suitable for filters such as interpolators – generating new

intermediate events which must not be interpolated themselves (to avoid

infinite loops of events being generated). However, there are other filters

which generate events directly or indirectly through API calls (rather than in

the returned event list): these should be fully processed by the event pipe.

4.2.8.2 Prioritisation

Allowing filters to generate events which must be fully processed by the event

pipe requires a choice to be made about the semantics of the event pipe: either

the addition of a new event to the pipe causes recursive processing of the new

event to completion, or the event pipe could prioritise events which are further

along the pipe, so that if a filter called generated an event, the new event

would only be processed when the original event had moved completely

through the pipe. The latter semantics are more appropriate for a number of

reasons. Firstly they minimise the latency caused by event processing as the

pipe will always attempt to process the event which needs the least processing

to move completely through the pipe. Where event pipes are connected to

buffers which may be inspected the latter semantics also ensure that as many

events as possible are available to filters for inspection. If a filter generates an

event as a result of processing an initial event, prioritising the initial event

ensures that it is available for inspection in the buffer before the newly
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generated event is processed. Finally, the latter semantics are more efficient as

fewer events remain partially processed at any one time, consuming memory

rather than being completely processed and then deleted. To implement these

semantics the event pipe must maintain a buffer of events being processed,

must always pick the event furthest down the event pipe for further processing

and must continue processing until no events remain in the buffer. Because

adding an event to an event pipe causes it to process events until no events

remain in its buffer, if an event is added to the event pipe when the buffer is

not empty the event pipe must already be processing events. In these cases the

event can simply be added to the buffer and left to be processed along with the

other events in the buffer.

4.2.8.3 Filter List Caching

In order to accommodate potential changes to its buffer of events to process,

and to the filters available to process those events, in principle the event pipe

must re-evaluate the list of applicable filters after any filter performs

processing. While this allows complete flexibility in the processing which a

filter can perform (as the event pipe makes no assumptions about that

processing) it makes the event pipe execution very inefficient. A list of

applicable filters must be constructed and sorted and the next applicable filter

found after each filter performs its processing. If most filters perform little

processing themselves then the majority of processing is performed by the

framework rather than the mechanisms it supports. In order to maintain

flexible filtering with more optimised performance, the event pipe can cache

the last used filter list, the next filter to be applied in the list and the event

parameters used to construct the list. If the next event to be processed has

matching parameters then the cached filter list can be used. If most filters are

passive and do not change events, this cache will normally avoid the re-

evaluation of applicable filters during the course of a single event’s

processing. Simple event processing can be performed with a minimum

overhead, while the flexibility of arbitrary processing is available at a cost.

The cached filters can also be used between events, so that if consecutive

events share parameters, as is often the case in collaborative virtual



82

environments where streams of updates to an object are often generated, event

processing becomes more efficient still. Depending on the relative costs of

evaluating cached filter sets, generating filter sets and the likelihood of small

clusters of event parameters being processed, the cache of filter sets can be

expanded arbitrarily to further optimise performance. This may be especially

useful where an event pipe in a client application is processing updates to the

user’s avatar – a large proportion of the events being processed may be

updates to various parts of the avatar. By maintaining a cache as large as the

number of avatar items the event pipe would vary rarely need to generate a

filter set.

4.2.9 Routing

No support for routing is provided by event pipes; this is left to individual

filters, allowing events applicable to different items to be routed to different

locations, routed out of the pipe at different locations or copied to other pipes

while continuing to be further processed in the current pipe. To route an event

out of the pipe a filter simply removes the event from the list passed to its

event processing method. The event can then be added to another event pipe

or buffer, communicated across the network. The ability for routing to take

place at any point in the event pipe provides some interesting opportunities –

filters may be added which route an event out of a pipe to avoid some standard

processing performed by a later filter, or which route an event to another event

pipe which performs some additional processing before the event rejoins the

standard route through the infrastructure. If during processing there are no

further filters which can be applied to an event and the event has not been

fully processed and deleted, or routed to another location by a routing filter,

the event pipe deletes the event and signals that an error has occurred. This

behaviour ensures that if an event pipe is configured incorrectly and events are

not routed correctly or disposed of then the virtual environment system will

not crash or consume ever increasing resources as events build up in the

system. The unprocessed events are lost, but the system will continue

functioning for those events which are processed correctly. If different failure

semantics are required then a custom filter which processes all events can be
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added to the end of the pipe to handle unprocessed events differently – writing

them to disk for example.

4.3 Deep Behaviours

The Distributed Event Filter framework provides an elegant, natural and

flexible framework for virtual environments requiring low-level extensibility,

reconfigurability and per-item infrastructure mechanisms. One of the strengths

of the model is that multiple filters can be added to event pipes in different

applications in order to achieve a fundamentally distributed mechanism

through their orchestrated operation. However, in terms of the configuration of

the virtual world and the management of its content, it is the mechanism

implemented by the multiple filters which is important and not the operation

of each individual filter. In order to allow users and virtual world

administrators to think on this more abstract level we introduce the concept of

the “deep behaviour”, another key innovation presented in this thesis.

Deep behaviours are so called because they operate in a similar way to the

behaviour mechanisms used in virtual environment systems, but at a lower

level. Rather than providing an item in the virtual world with functionality

which is directly experienced by the users (e.g. terrain following or collision

detection in WorldUp (Sense8 Corp)) a deep behaviour provides the item with

infrastructure functionality (for example making the item persistent or subject

to transactions). Rather than manipulating the artefact’s position to make it

follow terrain, a deep behaviour manipulates the filters that process the events

describing the artefact’s position, for example controlling the way that the

position is propagated through the network. The terminology is also consistent

with Ivan Vaghi’s work on visualising a virtual environments infrastructure

using deeper metaphors (Vaghi, 2001). Deeper metaphors show users of the

virtual world the infrastructure of the system, while deep behaviours provide a

mechanism for controlling that infrastructure.

A deep behaviour is loosely analogous to a macro in that it automates the

addition, removal and configuration of a group of filters and to a semantic
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annotation in that it instructs the system how to treat the item and informs the

system of how the item is likely to behave.

Deep behaviours provide an interface to infrastructure configuration which

allows application developers to think in terms of mechanisms applied to

objects, rather than filters processing events. A single behaviour must be

created and then manipulated, rather than many filters distributed around the

network.

4.3.1 Annotation

As a deep behaviour conceptually applies to a single item in the virtual world

in a similar way to traditional behaviours, a deep behaviour implementation

requires a way to associate deep behaviours with items in the virtual world.

When the association is created the deep behaviour creates appropriate filters

to implement the desired low level behaviour, configuring the filters so they

apply only to the associated item. If the deep behaviour is changed these

changes are translated into reconfiguration of the event filters. Finally, when

the mechanism is no longer required the association between deep behaviour

and virtual world item is destroyed and the deep behaviour removes the filters

from the various event pipes.

In the prototype implementation discussed in chapter 5 deep behaviours are

implemented as annotations in the scene graph; this allows deep behaviours to

be distributed around the system using the normal data distribution and

awareness management mechanisms and for application developers to use the

same APIs to manipulate deep behaviours as they use to manipulate the virtual

world.

4.3.2 Meta-annotations

Deep behaviours can become an even more powerful tool if they can be

associated with other deep behaviours, so that the deep behaviours of deep

behaviours themselves can be specified. These associations allow a potentially

infinite number of levels of meta-meta-information and a rich syntax for
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composing complex, parameterised deep behaviours from combinations of

simple behaviours.

For example if changes to a deep behaviour might have potentially hazardous

effects on the continued running of a virtual environment system, an access

control deep behaviour might be used to annotate it. The access control

behaviour could restrict access to the deep behaviour item in exactly the same

way as it would restrict access to any other item. Without changing either deep

behaviour, the combination of behaviours provides new and useful

functionality. If the access control mechanism was later replaced with another

mechanism, the meta-annotation could be replaced and the original behaviour

could take advantage of the new access control facilities without any change.

This potentially powerful form of reuse is the main reason that the prototype

implementation discussed in chapter 5 represents deep behaviours as first class

items in the scene graph. By doing so the annotation of deep behaviours is

automatic – a deep behaviour appears just like any other item to a deep

behaviour annotating it.

4.3.3 Fix Points

There are situations where the annotation of deep behaviours can lead to

infinite regressions and so some deep behaviours are required as fix points. In

the example above there initially seems to be no problem in annotating the

access control deep behaviour with another access control deep behaviour –

the second access control behaviour specifies the users able to change the

users able to change the root behaviour. However, in this model a further

access control behaviour would be required to specify access to the leaf

behaviour. In these situations carefully limited deep behaviours are required.

While the access control behaviour which can be annotated with access

control behaviours is potentially useful, an access control behaviour which can

only ever be changed by its creator and not annotated with access control

behaviours is also required to be the leaf behaviour. If the creator of the leaf

behaviour wanted to delegate the responsibility of changing access control
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they would then add the original access control behaviour between the leaf

behaviour and the item whose access is being specified.

4.4 Optimisation

In addition to providing a simple and flexible way to specify infrastructure

mechanisms in a virtual environment system, deep behaviours can also be

used to optimise the operation of the virtual system. Deep behaviours specify

that certain mechanisms must operate on an item, but can also be more

generally exploited as meta-information which allows the system to

distinguish between items and so optimise other infrastructure mechanisms.

Many of the deep behaviours used to manage the mutability of the

environment enforce limits on the mutability, for example requiring co-

operation or authorisation to change an artefact which is a well known

landmark in the virtual world suggests that the landmark is less likely to

change than an artefact which is free of annotation and so able to be freely

modified. Similarly an object which is annotated as being persistent and

subject to total-ordering through the server providing persistence is likely to

be an important object in the world compared to a transient un-annotated

object. The system can use these hints to optimise the performance of

infrastructure mechanisms which are not specified by the deep behaviour, for

example caching items which are unlikely to change due to deep behaviour

restrictions. In this way deep behaviours become contracts between the users

and the system – the users annotate objects in order to manage the virtual

world and the system must provide the mechanisms corresponding to the

annotations, but is also free to utilise the semantics of the annotations to

optimise its performance. Without the explicit specification of an item’s deep

behaviour the system cannot distinguish between items to perform this

optimisation.

Deep behaviours which prohibit access to items for a period of time are

particularly useful for the purpose of optimising performance as clients

caching such items do not need to check the validity of the cached copy for the
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duration of the period. In addition the client can present a partial view of the

world which it knows is correct during periods of disconnection or at start up

while waiting for potentially changed parts of the world to be spooled across

the network.

The bottom up desire for the system to be able to exploit deep behaviours for

optimisation and the top down desire for deep behaviours which manage the

world, can be traded off dependent on the application. A virtual environment

accessed across a wide area network might make all items subject to 3 month

rolling leases by default to ensure that a large amount of the virtual world’s

content can be cached and used during periods of disconnection. Another

virtual world used in a high bandwidth local area network might default to

having no constraints on the mutability of objects and only limit changes to a

few important landmark objects. These examples fall at either end of a

continuum of trade-offs between the optimisation and management driven use

of deep behaviours along which virtual environments can move. If the local

area network virtual environment needed to be opened up to visitors accessing

it across a wide area connection the deep behaviours on the items in the

environment could be changed to allow the Wide Area Network (WAN)

visitor to cache more of the content of the environment.

4.5 Scalability

For simplicity’s sake the above discussion deep behaviours have been

described as annotating a single item in the virtual world and as creating

multiple filters in the application’s event pipe network. Clearly, this requires a

great deal of meta-information. In cases where deep behaviours annotate

simple artefacts there could be more meta-information needed to annotate the

item than information contained in the annotated artefact. Where deep

behaviours must annotate many items which employ the same mechanisms a

great deal of redundant meta-information is also introduced. In cases where

deep behaviours annotate other behaviours to create the composite behaviours

described above, or where behaviours create multiple filters the system

becomes unscalable – many filters and annotating behaviour items must be
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created for each item in the virtual world. The large number of filters requires

more processing to find the correct filters to apply to an event while the many

annotations consume memory. As these overheads grow faster than the

information they annotate, more resources are required for system

management rather than the actual operation of the system. However, this does

not mean that the model is unworkable, just that items in the virtual world

should share deep behaviours and filters where possible. New behaviours

should only be introduced where genuinely new behaviour is required. A

number of ways to group items in the virtual world so that they can share deep

behaviours and filters are discussed in sections 4.5.1 to 4.5.4.

4.5.1 Sharing Meta-information Using Aggregation

It is tempting to use the “part-of” hierarchy present in most virtual

environments for deep behaviour grouping, so that child items in the hierarchy

share the infrastructure specification of their parent unless they have their own

overriding deep behaviour annotation. The part-of hierarchy groups items

which are part of the same virtual artefact and so intuitively require similar

infrastructure processing. A football artefact might be interactive, a complex

building site containing many items might be persistent.

This part-of grouping makes sense, but meta-information can only be shared

between parents and children. There will still be much duplication of meta-

information when items have exactly the same infrastructure requirements, but

do not share parents in the hierarchy or are in different environments or

locales.

4.5.2 Sharing Meta-information Via References

An alternative is to add references to shared meta-information, rather than

annotate items with the meta-information, so an item or event might point to

semantic mutability information which can be shared.
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Figure 4-4 Wasteful sharing via references

In Figure 4-4, different items of the part-of hierarchy point to different meta-

information graphs. In the example no data is saved as item 1 could be

annotated with information 2, item 3 could inherit the information and item 2

could be annotated with information 1. In this case memory and processing is

wasted by the references to separate meta-information, which could be more

efficiently added to the part-of hierarchy.

Figure 4-5 Efficient sharing via references

In Figure 4-5, keeping the meta-information separate saves information. If the

part-of hierarchy was annotated, items 2 and 3 would have to duplicate

information 1, but instead they can reference it. If the meta-information is

large this is a considerable saving. In this case inheriting meta-information

from the parent in the part-of hierarchy is no help – the part-of hierarchy

relationship and meta-information relationship are orthogonal.

4.5.3 Trade-offs

If the meta-information graph is close to the part-of hierarchy – if items often

have the same meta-information as their parents – then annotating the part-of

hierarchy and moving up the part-of hierarchy to find meta-information where

no annotations exist on the current item makes sense and could save memory.

If a child in the part-of hierarchy often requires different meta-information

than its parent, then references save duplicating meta-information between

siblings as in Figure 4-5. Also, if a chunk of meta-information is large and
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there are relatively few possible combinations of meta-information, then

references are better as many references can be redundant (i.e. point to the

same information as their parent in the part-of hierarchy) yet still be better

overall if they stop a few duplicate meta-information chunks.

4.5.4 Summary

In practice there are likely to be relatively few deep behaviour combinations

compared to the number of items in the virtual environment. As the deep

behaviour meta-information is relatively big, items reference a shared deep

behaviour. The shared deep behaviour just creates one set of filters and those

filters process all events to an item which points to that behaviour. The deep

behaviour reference is embedded in events to make identification of filters

easier.

In a system without deep behaviour sharing, containing n items and o

behaviours each needing p filters, n×p filters are created. These filters must be

searched and sorted to process each event. In a reference sharing

implementation o×p filters are needed. These filters can be organised into only

o filter groups which must be searched to find the correct filters to apply to an

event. In practice there will be orders of magnitude more items than behaviour

types, so reference sharing cuts down on the number of filters dramatically

saving memory and search time and if behaviours often require more than one

filter, filter grouping reduces search time further still.

Items can only share deep behaviours, filters and filter groups if they share the

parameters for the behaviour between them, so o in the example above is

actually q×r where q is the number of behaviours and r is the number of

configurations, or parameter sets needed for each behaviour. This implies that

if the reference sharing mechanism is used, the number of used configurations

of behaviours should be kept to a minimum, but in practice this will probably

be the case – by quantising parameters so that meta-information can be shared

and the number of filters can be kept low. Behaviours can be designed to

promote sharing, for example a behaviour applying updates intended for one
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item to another could use a systematic transform to find the destination item’s

identity from the source item’s identity. This avoids parameterising the

behaviour with a target ID, which would require a different configuration of

the behaviour for each item which exhibits it.

4.6 Examples

The examples in sections 4.6.1 to 4.6.5 demonstrate the use of the DEF and

Deep Behaviour framework. All of the examples have been realised in the

prototype implementation and are either novel mechanisms (examples 4.6.4

and 4.6.5) or mechanisms which have previously not been used by

collaborative virtual environment systems (examples 4.6.1 to 4.6.3). As such

they not only demonstrate the flexibility of the framework, but highlight its

potential as a rapid development platform for virtual environment

infrastructure mechanisms. The examples are demonstrated in Video Figure 3.

The examples assume an architecture which partially replicates the virtual

world in client applications (as is the case with the vast majority of current

collaborative virtual environment platforms). The default behaviour of the

world is to carry out all updates locally before passing them on to the server

where they are carried out on the master environment and then propagated to

all other client applications where they are applied to the client replicas. The

system has a default event pipe network shown in Figure 4-6.

Figure 4-6 Default event pipe network
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4.6.1 Trusted Persistence

This mechanism is one of the most important examples of the framework as it

demonstrates the interdependence of infrastructure mechanisms. The

mechanism is made up of a total ordering consistency mechanism and server

based persistence. The motivation is to provide server-side persistence for

important items in the virtual world. This could be achieved simply enough by

inserting a filter which writes every event processed by it to storage. However,

users would be unaware when the important items were persistent – the user

would make an update and immediately see its results. Only at some arbitrary

time later would their update become durable, and the user would have no idea

when that was. As Dourish identifies, users trust immediate events the most,

delayed events less and predicted events least (Dourish, 1996). The simple

persistence mechanism effectively provides the user with a view of the

predicted persistent state of the item through the immediate update of the local

replica. If a failure occurs before the update is written to the server store then

the update will be lost, the prediction false, and the user’s distrust of it

justified. In cases where the knowledge of the durable state of the world is

more important than local interaction times, for example when updating a

virtual bank account, the system must route updates to the server, make them

persistent and then return the update to the client where it is applied to the

local replica. This mechanism ensures consistency between the persistent state

and the client’s view of the world. The client can then trust the local state of

the item as it is no longer a prediction of durability. These semantics are closer

to those of a database than the traditionally optimistic mechanisms of virtual

environment systems, but they would be useful for some items in some virtual

worlds – by providing per-item semantics the gamut of applications which can

be implemented by virtual environment systems is increased.

In order to implement these semantics, the TrustedPersistence deep behaviour

adds a routing filter to the client application’s API pipe before the standard

routing event filter. Instead of copying the event to the pending and sending

pipes, the filter just adds it to the sending pipe. The deep behaviour also adds a

filter to the server’s pending pipe which makes the update persistent just
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before applying it to the server replica and a second filter just after it which

sends the event back to the client. This configuration is shown in Figure 4-7.

Figure 4-7 Configuration for trusted persistence behaviour
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behaviour first creates a subjective proxy item and then inserts a rewrite filter

in the client’s API pipe which processes updates to the original item by

rewriting the target of the update to be the variant item. The filter

configuration is shown in Figure 4-8.

Figure 4-8 Configuration for variant behaviour
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This is useful for defining parts of a virtual world as static for the foreseeable

future, where the foreseeable future is the length of the lease. If at the end of

the lease period the item should remain static, the lease can be renewed and

clients can continue caching and using the item for disconnected operation. If

during the lease period it is decided that the item should be changed then the

lease can be allowed to expire and then the item changed. These “never say

never” semantics provide a useful middle ground between declaring an item

permanently static as in VRML (Carey et al, 1997) or always transient as in

MASSIVE (Greenhalgh et al, 2000).

These semantics are implemented by a simple NullFilter which removes all

updates to an item which is inserted by the Lease deep behaviour on creation

and removed on expiry. For most efficiency, the NullFilter is inserted as close

to the source of updates as possible – at the front of the API pipe.

4.6.4 Triggers

Where leases guarantee the immutability of an item for a certain period of

time, trigger behaviours indicate a scheduled change to the item they annotate

and provide a mechanism for that change. Like leases, triggers have an expiry

time and can be renewed. When the trigger expires it carries out an action by

injecting arbitrary events into arbitrary event pipes. This mechanism allows

triggers to be as general as possible as they rely only on the existence of event

pipes and events, yet can perform any action the system API can perform by

the arbitrary sequencing of events. The motivation for triggers are the results

of the experiments described in section 3 – many items were created, heavily

modified and then discarded in a short period of time, while items which

survived this initial period tended to exist for a much longer period of time. By

annotating new items with a trigger expiring after this initial “hot” period of

manipulation and setting the trigger to add a persistence behaviour to the item,

the system can be significantly optimised – of the many updates made to items

after their creation, only one state need be written to storage for each item

which survives its turbulent youth. More generally triggers provide a

mechanism for managing the lifetime of objects by updating, adding or

removing other deep behaviours applying to an item based on time or events
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applied to an item. In this sense triggers are mainly used as a meta-deep

behaviour which co-ordinates changes to other behaviours allowing the

behaviour of objects to vary dynamically through its life.

4.6.5 Batch Updates

The batch updates behaviour is an example of a bottom up deep behaviour

motivated by the desire to optimise the operation of the virtual environment

system by restricting the way the environment can change. When a batch

update behaviour applies to an item, any update to that item is delayed to the

next batch period. Effectively, the batch update behaviour quantises the times

at which an item can change. If the deep behaviour framework makes the

batch times available in the virtual world (as in the prototype implementation)

the limits on when changes can occur can be used to drive caching and

disconnected operation. As the system knows that the item cannot change until

the next batch period its state can be cached without checking for cache

consistency and can be presented to the user as valid during periods of

disconnection. In addition, early updates to items buffered until the next

update point can be discarded completely if new updates to the item are

delivered before the batch point. Given a batch period of n seconds, a stream

of updates is effectively rate limited to 1 update per n seconds. Where many

items share a batch update deep behaviour as described in the discussion on

scalability the effect of the update behaviour is to created large batches of

updates which are applied to large numbers of items in the environment

simultaneously. Given sufficient behaviour sharing and sufficiently long batch

periods the batch update behaviour can be used to facilitate applications which

physically mail out periodic updates on CD – the behaviour ensures that the

environment will remain static and so need only be downloaded once, then

when the CD arrives updates can be applied en masse without the need to

download them. This model is very attractive to applications presenting large,

rich environments accessed over low bandwidth connections. An obvious

potential problem with the batch updates behaviour is that the new state is not

immediately seen by the user performing the update, but this can be solved

using the proxy item techniques mentioned in the discussion on the variant

behaviour above.
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4.7 Conclusion

This chapter has presented the DEF framework for flexible extensible

infrastructure processing in distributed systems in general and virtual

environment systems in particular. It has compared the framework to the

facilities for extensibility provided by existing virtual environment systems

and shown that the dynamic routing possible with the DEF framework is not

possible with existing systems and is useful for virtual environment systems

especially for the reconfiguration of consistency mechanisms. The dynamic

routing is then compared against traditional object oriented mechanisms and is

shown to be a more general case of the n-tier model. Having established that

the model is an appropriate solution for the problem of building continuously

persistent virtual environments the chapter presented the novel innovations of

the model explaining their operation and why they are needed. The chapter

then presented the deep behaviour framework for managing event pipes and

filters, explaining the advantages of making the behaviours first class items in

the virtual environment in terms of providing a unified interface for

application programmers, allowing behaviours to annotate other behaviours

and allowing the system to reason about behaviours to optimise performance.

Finally, a number of example behaviours are presented which illustrate the

spectrum of potential uses of the framework and explain their operation in

terms of the filters used and their configuration. This chapter has explained the

framework in an implementation independent manner in order to present it to

readers not familiar with virtual environment systems and to make it possible

for developers of existing and future systems to implement the framework in

as wide a range of situations as possible. The next chapter presents the

prototype implementation of the framework at a lower level which provides

examples of how the features described here can be implemented.
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5 Implementation

This chapter details the prototype implementation of the framework presented

in chapter 4. In particular it describes how the innovative additions to the

pipes’ and filters’ architecture such as constraint satisfaction can be realised

and how the framework can be realised by modifying an existing collaborative

virtual environment platform such as MASSIVE-3.

Section 5.1 provides background information on the original MASSIVE-3

platform before sections 5.2 to 5.4 describe the workings of the core event

pipe implementation. The deep behaviour implementation is described in

section 5.5 and the persistent store which was developed is discussed in

section 5.6. Finally some conclusions regarding the implementation are

presented in section 5.7.

5.1 MASSIVE-3

The starting point for the prototype implementation was the MASSIVE-3

collaborative virtual environment system (Greenhalgh et. al., 2000) which was

developed from an initial implementation to a mature system over the course

of this research. An overview of the MASSIVE-3 system is given in chapter 2,

so this section only describes the details of the system’s architecture which are

important to the realisation of the DEF/Deep Behaviour framework.

5.1.1 Events

The explicit representation of events in MASSIVE-3 was designed to allow

future mechanisms to adapt the system by using reflection to introspect it –

tailoring system performance based on the events being generated or

processed. In fact the infrastructure of MASSIVE-3 can be viewed as a single,

hard coded event pipe configuration – events are generated at the API, and

processed through a sequence of methods. The DEF framework takes this

architecture and allows the sequence of methods to be changed, the route of

events through methods to be changed and for different methods to be

configured to process different events at run-time.
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5.1.2 Serialisation

The prototype implementation of persistence uses MASSIVE-3’s support for

serialisation in a similar way as the initial implementation of persistence

described in Chapter 2, but it is complicated by the need to write parts of

objects to a persistent store at different times. Whereas MASSIVE-3 assumes

that an entire composite object is written to a single location at once, a

persistent data store needs to split the serialisation into separate records

connected by references. This allows a child object to be subsequently written

without the parent being serialised again. For example an entire environment

should not be serialised each time an item in that environment needs to be

made persistent. This problem is overcome by implementing a more intelligent

stream class which is aware of when aggregate objects are being written and

can write them to new records. This process can be made transparent to the

object serialising itself, so that the original MASSIVE-3 serialisation

mechanism can still be leveraged. The details of this mechanism can be found

in section 5.6.2.

5.1.3 Summary

Many features of MASSIVE-3 provided inspiration for the DEF framework,

such as the explicit representation of events and the use of event filters for rate

limiting and interpolation. However, other features obstructed the prototype, in

particular the reliance on single transferable ownership for consistency. Many

of the more exotic prototype deep behaviours, such as the variant behaviour,

allow looser consistency with only syntactic consistency being maintained

between variants which are later merged. In these cases MASSIVE-3

sometimes had to be fooled, or its processing bypassed, to allow these

mechanisms. It is conceivable that similar problems would have been

encountered whatever virtual environment system had been used as a basis for

the implementation. The process of shoehorning a new infrastructure

framework into an existing system is always likely to meet some resistance.

The alternative would have been to construct a minimal virtual environment

system from scratch to demonstrate the framework. This would have been

easier and resulted in a pure implementation, but would have required a lot of
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subsequent development of supporting facilities to enable the experimental use

of the framework. In fact, the prototype implementation of the framework is

the best of both worlds as it is a modified MASSIVE-3 and so can draw on

many of the facilities provided by MASSIVE-3, but the core framework

classes are independent of MASSIVE-3 and so could be used as the basis of a

future pure implementation.

5.2 Event Pipes

The implementation of the DEF framework in MASSIVE-3 was largely as

described in the Model chapter. The Event class is the only MASSIVE-3 class

which the EventPipe and EventFilter classes rely on. Figure 5-1 shows the

main classes which implement the DEF framework and their relationships.

Figure 5-1 Class diagram of the main classes in the DEF framework
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5.2.1 Constraint Satisfaction

One of the main tasks of EventPipe objects is the correct ordering of the filters

they contain based on the constraints which the EventFilter objects specify.

Whenever a filter is added to an EventPipe the EventPipe must find a total

ordering from the partial ordering defined by all the constraints and

requirements specified by the filters in the pipe and the new filter. Whenever a

filter is removed the EventPipe must make sure the requirements of all filters

are still met. If a total ordering cannot be produced, the filter cannot be added

or removed. In order to find a valid ordering, the EventPipe maintains a filter

graph which is a hierarchy of known filter names. Each filter has a name of the

form <substring>.<substring>.<substring> as described in Chapter 4. A filter

name may contain an arbitrary number of substrings, each substring specifying

the operation of the filter more precisely until the final substring, which is a

unique identifier for the filter. Each node in the filter graph represents one of

the substrings in the name of one or more filters. A path from the root of the

graph to a leaf node corresponds to the name of a filter. Constraints are

represented by directed arcs between any two nodes in the tree – producing a

constraint graph over the name tree. A reference to a node near the root of the

tree corresponds to a general constraint which refers to a class of filters, while

a reference to a leaf node corresponds to a specific constraint on a single filter.

Figure 5-2 shows an example filter graph corresponding to a event pipe

containing 3 filters named “Routing.LocalNow.1”, “Routing.TotalOrder.2”

and “Filter.Null.3”. “Routing.TotalOrder.2” has a suffix constraint specifying

it must come before “Routing.LocalNow” filters and “Filter.Null.3” has two

suffix constraints specifying that it must come before “Routing” filters and

“Constraint” filters. Note that although filters can specify both suffix

constraints (filters which must come after the filter) and prefix constraints

(filters which must come before the filter), these are all converted into prefix

constraints in the filter graph to drive the process of ordering the graph.

Although no “Constraint” filters exist in the event pipe, a “Constraint” node

exists in the filter graph as it is referenced by a constraint. If a filter with a

name beginning with “Constraint” is subsequently added to the event pipe, it
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will be positioned under the “Constraint” node in the graph, causing the null

filter’s constraint to apply to the filter without further change.

Figure 5-2 An example filter graph

Having produced the filter graph, the EventPipe finds a total ordering. A path

from a root node to a leaf node is found such that no nodes in the path have

prefix constraints. In the example shown in Figure 5-2 only the path “Filter”,

“Null”, “3” satisfies this requirement. The leaf node at the end of the path is

removed from the graph and nominated as the first node. This satisfies any

prefix constraints which target the removed leaf node and so these constraints

are removed from the graph. In the example this removes the prefix

constraints from the “Constraint” and “Routing” nodes. The process of finding

paths with no prefix constraints, removing the leaf node and appending it to

the total order and removing the prefix constraints which reference the

removed node continues until no nodes remain in the graph or until no nodes

can be removed. If nodes remain, conflicting constraints exist and the process

fails. If an order is found, the filters referenced by the nodes are sequentially

numbered to allow fast sorting during event processing.

The classes collaborating during constraint satisfaction are shown in the class

diagram below. Note that the FilterGraphNode does not explicitly reference

the targets of its constraints, but rather maintains a count of how many prefix

constraints remain unsatisfied and references to the nodes, which have a prefix

constraint which target the node. This optimises the process of ordering the
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graph as finding a node to remove just requires testing the nPrefixNodes

member of each FilterGraphNode and removing constraints just requires

decrementing the nPrefixNodes member of the nodes referenced by the

suffixNodes list of the removed node.

Figure 5-3 Classes used in constraint satisfaction

The process of adding a filter, showing the construction of the filter graph and

creation of a total order is illustrated in Figure 5-4. An EventFilter, filter, is

named “routing.type1” and has one prefix constraint which specifies it must be

after all “persistence” filters. The filter is added to an initially empty

EventPipe, pipe, by calling pipe.addFilter() with the filter as the argument.

The EventPipe gets the filter’s name by calling filter.getName() and then

finding the corresponding FilterGraphNode by calling

findAddNode(“routing.type1”). As the EventPipe was initially empty this call

creates a root “routing” node and adds a leaf “type1” node to it as a child,

which it returns as filterNode. The EventPipe calls filterNode.setFilter(filter)

to associate the node with the filter before getting the filter’s prefix constraints

and looking for the node which corresponds to the constraint by calling

findAddNode(“persistence”). Once again a node does not exist in the filter

graph, so findAddNode() creates a “persistence” root node and returns it as

targetNode. pipe then increments filterNode’s nPrefixNodes member and adds

filterNode as a suffixNode to targetNode. With the filter graph constructed

pipe then attempts to create a total order from the filters. It calls

findFirstNode() which performs a depth first traversal of the filter name tree

looking for paths from root to leaf with no prefix constraints. It finds the only

path, which leads to the “persistence” node and returns it. The EventPipe

removes this node from the filter graph, appends it to the total order and gets
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its list of prefix nodes. This list contains only filterNode, which has its

nPrefixNodes count decremented. With all of its prefix constraints satisfied

the next call to findFirstNode returns filterNode, which is appended to the

total order. A final findFirstNode call returns the “routing” node, which like

the filterNode has no suffixNodes. With a valid total ordering found, the

EventPipe sequences all the filters. As filterNode is the only node which

references a filter, it is positioned first in the total order, although if any filters

with names beginning with “persistence” were subsequently added, they

would be positioned before the routing filter.

Figure 5-4 The process of adding a filter to an event pipe
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5.3 EventFilters

While the core classes were kept largely independent of MASSIVE-3 a large

portion of MASSIVE-3 had to be refactored into a number of EventFilter

classes. MASSIVE-3 effectively became a standard configuration of

EventPipes and EventFilters into which new filters could be introduced to

customise Event processing at any point.

Prior to this refactoring API methods generated explicit Event objects which

were passed through a number of method calls. In many cases each method

could be moved to a separate filter, or where multiple flows of control existed

in a method, each flow could be implemented as a filter. This reduced the time

required to process an event as, instead of testing which flow to take each time

the method was called, the test could be made once when the environment was

created and then the appropriate filter inserted in the event pipe, which did not

need to perform the test per event. Examples of this were the sets of filters

constructed for total order or local now operation. In MASSIVE-3 a total order

consistency mechanism can be specified when an item is created. If this option

is specified, a flag is set which is tested when processing the constraints and

routing for each Event. By moving the constraints processing to

TotalOrderConstraints and LocalNowConstraints and using configurable

generic EventQueueRouting filters these tests could be avoided. Instead of

setting a flag and then repeatedly testing it, the Environment’s event pipes

could be populated with appropriate filters when the Environment is created.

Figure 5-5 shows some of the filters implemented in the prototype.
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Figure 5-5 The EventFilter class hierarchy

The EventFilter class itself defines the abstract processEvent factory method

(Gamma et. al., 1995) and implements mechanisms for naming and

constraints. The setName() method takes a filter name incorporating a

hierarchical description of the filter’s function and optionally a version

number and appends a unique identifier to the name allowing the specification

of a particular filter. The add and remove constraint functions annotate a filter

with the names of filters which must come before (prefix constraints) or after

(suffix constraints) if they exist in the same EventPipe. The constraints

mechanism allows a large number of consistency and persistence mechanisms

to be constructed just using the EventFilters shown above. Using constraints to

position an UpdatePersistenceFilter relative to filters updating the local scene

graph or routing events can provide a number of persistence semantics. These

range from all updates seen by the user being durable, to all updates being

seen by the user before they are written to stable storage. The bottom row of

filters show some of the filters which make up the refactored MASSIVE-3

implementation. The LocalNowRoutingFilter implements optimistic

consistency by processing locally generated events before sending them to the

server running the environment. The more conservative total order consistency

can be built using standard EventPipeRoutingFilters. By moving constraints

processing into a filter, other filters which remove events from the EventPipe

can be positioned before it to avoid wasted processing.
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5.4 Legacy Filters

Prior to the prototype implementation, MASSIVE-3 supported a primitive type

of event filter which was used to implement rate limiting and interpolation of

Events. The Event was passed to a C++ callback function which could modify

or reject the Event. The synthesis and addition of new Events, which was

needed for the interpolation filter was provided for by event injection methods

which effectively broke the encapsulation of the Environment API. To

accommodate these legacy filters and allow new EventFilters to be positioned

around the rate limiters or interpolators the CallbackEventFilter, shown in the

diagram above, was developed which wrapped the legacy event filters. Its

implementation calls the callback method of the legacy event filter and then

checks to see if the legacy event filter used the event injection methods to add

Events to the pending EventQueue. If so, they are removed from the pending

queue and added to the list returned by the CallbackEventFilter. The

CallbackEventFilter wrapper makes the new EventPipe framework look like

the legacy MASSIVE-3 implementation to the legacy filter, but makes the

legacy filter look like a standard list manipulating EventFilter to the EventPipe

framework.

5.5 Behaviours

The behaviour mechanism used to annotate the contents of the virtual

environment in the prototype implementation is an extended version of the

existing MASSIVE-3 behaviour mechanism. BehaviourData items in a

MASSIVE-3 scene graph have a name, a configuration string and a context in

which they will run. When an Environment replica creates a BehaviourData

item, it compares its role with the context in which the behaviour should run to

decide whether to instantiate a Behaviour sub-class corresponding to the name

in the BehaviourData item. If the Behaviour should be run it is created and

given its position and the configuration string as parameters. The Behaviour

constructor acts as an entry point in which the Behaviour can create callbacks

in which to do the work of the behaviour.
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This model could have been used without extension to provide an entry point

in which to instantiate and configure filters. However, the mechanism was

really too primitive to support complex deep behaviours. In particular, the

configuration string made reading and updating parameters of behaviours very

difficult. For a single parameter to be read the string had to be parsed in an

undefined way and the desired parameter extracted. The configuration string

could be arbitrarily updated with data which could not be understood by the

target behaviour. Where behaviours contained arbitrary child objects they

would have to be serialised to the configuration string.

To address these problems, the behaviour mechanism was extended to become

a lightweight object model. The goal was for a deep behaviour to appear to

applications using the Environment API as a normal sub-tree in the scene

graph and to appear to the Behaviour as a composite object. This meant that

instead of having a configuration string, the behaviours had named members

which could be read and updated. The members were implemented in the

scene graph using an AttributeData object for strings and numeric values and a

new StateData scene graph item for arbitrary scene graph objects. These

appeared in the scene graph as children of the BehaviourData item. The

Environment API was extended with new updateBehaviourState methods and

the Behaviour class was extended with new getState and setState methods.

These extensions allowed behaviours to publish their state in the scene graph

where it could be read and updated by applications and written to Stores to

make behaviours and deep behaviours persistent. The introduction of the

StateData item solved the problem of behaviours with parameters of arbitrary

types. Splitting the members up into individual ItemData objects solved the

problem of extracting parameters from a single string. The problem of

applications being able to write invalid data to a parameter was solved by

using MASSIVE-3’s control lock mode of updating (Greenhalgh et al, 2000).

When behaviours are instantiated, they publish default values for each of their

members to the scene graph as control locked items. When an application

wants to change a parameter it calls the updateBehaviourState Environment

API methods which annotate the control locked member with an update

request. This triggers a callback in the Behaviour class which passes the
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member name and requested value for the member to a virtual updateRequest

member. Concrete behaviour sub-classes can examine the new value and if it

is a valid type and value, can return a value to the Behaviour callback

indicating the member can be updated. While this subverts the scene graph

into providing an object model as well as a frame of reference hierarchy, the

extended system provides much richer support for the complex behaviours

required for the framework than the initial configuration string

implementation.

Figure 5-6 Behaviour classes

Figure 5-6 shows part of the Behaviour hierarchy which implements the deep

behaviours available in the prototype. Environments create Behaviour sub-

classes in response to BehaviourData items being added to the scene graph,

and the Behaviour object creates and configures EventFilters for that

Environment dependent on the node in which it is instantiated. If a behaviour

item is added to the scene graph specifying a ServerPreMulticastPersistence

deep behaviour, the ServerPreMulticastPersistence object instantiated on the

server creates an UpdatePersistenceFilter. This is positioned in the server’s

event pipes so that all updates made to the behaviour item’s parent are written

to stable storage before they are multicast to clients. The TimerBehaviour and

OwnerBehaviour classes add facilities to the Behaviour class which are used

by several concrete Behaviour sub-classes. OwnerBehaviour monitors the

ownership of the item the behaviour is annotating. It calls virtual

startBehaviour and stopBehaviour methods when the ownership is gained or

lost by the node in which the OwnerBehaviour is instantiated. This allows,

processing to be carried out on the node in which events are generated to avoid
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transmitting Events across the network which will be subsequently discarded.

A TimerBehaviour maintains an expires property and provides a TimerCB()

virtual method which is overridden by its sub-classes to perform processing

when the timer expires. The Lease deep behaviour makes the item it annotates

immutable for the duration of the lease. The expiry time of the Lease is visible

as a child of the BehaviourData item in the scene graph allowing applications

or users to extend the lease by updating the scene graph. The system can

reason about the correctness of the annotated item in order to optimise caching

and disconnected operation. When a Lease behaviour is asked to validate an

update to its expiry time it only allows updates which increase the expiry time.

5.6 Persistence

As the prototype implementation was intended to explore the possibilities

provided by the framework, the goal in the implementation of persistence was

to make it as general and flexible as possible, so it could be used by many

deep behaviours to provide persistence in different ways. This general service

for persistence was provided by an abstract store interface which provided a

mechanism for filters to store arbitrary objects and then retrieve them by

name. The design of the persistence subsystem closely resembles the “two

layer persistency subsystem” pattern described by Keller (Keller 1998). This is

used by most object-oriented databases and object/relational access layers. In

terms of the pattern language Keller describes, the subsystem uses the

“multilayer class” pattern (Coldeway and Keller, 1996) to move data between

an object layer and storage layer via the Store class. The system uses the

“foreign key aggregation” pattern (Keller, 1998) to enable incremental reading

and writing of composite objects, using the unique identifiers defined by

MASSIVE-3 as the foreign keys. The system uses the “objects in BLObs”

pattern (Keller, 1997) to map objects to the relational database. While this

means that objects in the database cannot be queried on their attributes, it

allows objects to be stored without the generation of schema from the type

system. As long as objects implement serialisation, which is required for

replication anyway, current and future types will be able to be stored and

recovered. The “objects in BLObs” approach means that the system is not
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limited to using relational databases for storage – any storage mechanism

capable of associating arbitrary data with a name, such as file systems, can be

used. The classes which make up the persistence implementation and their

relationships are shown in Figure 5-7.

Figure 5-7 Persistent store classes

5.6.1 Store

As noted above, the Store class corresponds to the “multilayer class pattern”

(Coldeway and Keller, 1996). The clients of the Store (that is the EventFilters

and applications which write or read persistent data) use the high level API

which consists of the deepWrite, flatWrite, shallowWrite, deepRead and

flatRead methods. These methods take an object and either read or write its

state to or from storage. The concrete implementations of the Store interface
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implement the remaining methods: read(), write() and remove(). These

methods just require that the Store implementation is able to store data and

associate that data with a key which can later be used to recover the data. This

allows Stores to be implemented using file stores, relational databases, object

bases or other storage mechanisms. Although not shown on the diagram

above, ODBCStore and FileStore implementations of the Store interface have

been developed for the prototype. The small interface which must be

implemented by concrete subclasses makes the development of future higher

performance stores easy.

5.6.1.1 FileStore

The FileStore implementation of the Store interface stores each record in a

separate file, using the record name as the file name. When a record must be

read, the file whose name matches the requested record name is read and its

contents returned. There are a number of problems with this implementation of

the store – it is not high performance as no database style indexing is used to

find files when they are requested. There are also limitations on allowable file

names in most file stores, both in terms of legal characters and maximum

length. The FileStore implementation substitutes illegal characters in record

names to produce a file name when a record is created and then repeats this

translation when the file is read. The advantages of the FileStore

implementation are that it is platform independent, and was quick to develop,

allowing the Store architecture to be quickly prototyped.

5.6.1.2 ODBCStore

The ODBCStore implementation of the Store interface uses Microsoft’s Open

Data Base Connectivity API to store records in relational databases. The open

nature of the API means that once an ODBC data source has been set up on a

computer, the API can find, connect and use it. The ODBC data source can be

any DBMS which provides an ODBC driver, such as Microsoft Access or

SQLServer or Oracle. Although ODBC is a Microsoft technology, ODBC has

been implemented by third party vendors to operate on many operating

systems and hardware platforms like Linux and other flavours of UNIX. The

ODBCStore implementation does not take full advantage of the relation
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mechanisms provided by ODBC, as it just stores records in named fields

within a single table. However, the optimised indexing provided by relational

databases makes the implementation much higher performance than the

FileStore implementation. The access control mechanisms provided by ODBC

provide limited security for the data stored in an ODBCStore.

5.6.2 Structured Streams

The main work performed by the Store class is the mapping of objects passed

to the Store for storage to flat records which can be written by the concrete

Store implementations to stable storage. The simplest way to perform this

mapping would have been to extend the existing ObjectOutputStream and

ObjectInputStream classes to serialise objects to, or read objects from,

memory buffers which could be written or read from a store record. The

problem with this approach is that it would have resulted in composite objects

being stored in a single record which would have to be read to recover the

state of member objects. An ObjectOutputStream was developed which

identified when a composite object was writing a member object to a new

buffer. This allowed allow member objects to be written to their own records

and so be read or updated independently of their parent. The stream then

identifies when the member object had finished serialising itself and writes the

member buffer to the Store and writes a reference to the store record in the

parent buffer, before continuing to serialise the parent to its buffer. A

complementary ObjectInputStream was developed which can read a record

from a Store and transparently read further records when a reference to

another record is found. To an object serialising or deserialising itself to or

from a stream, the structured stream appears to be simply a source or sink for

integers, floating point values or strings. Transparently, the stream may be

creating, updating or reading dozens of records in a Store.

5.6.2.1 StructuredObjectOutputStream

In order for the Structured Stream classed to identify when a new object is

being written, the StructuredObjectOutputStream must keep track of the calls

being made to it by the object serialising itself. Fortunately, the stream of calls

is not without structure. Before an object is written its class name is written to
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the stream and then an object start marker is written. The state of the object is

written and finally a object end marker is written. Any member objects follow

the same pattern, so an ASCII stream using curly braces for the object start

and object end markers for an object of class A containing an object of class B

where both classes contain an integer, looks like this:

A { B { 1 } 1 }

The sequence of calls the method made to the StructuredOutputStream is:

putString(“A”);

putObjectStart();

putString(“B”);

putObjectStart();

putInteger(1);

putObjectEnd();

putInteger(1);

putObjectEnd();

Note that the StructuredOutputStream is unaware that these calls come from 2

different objects, but it is easy to identify the nested object from the nested

putObjectStart() and putObjectEnd() calls. One problem is the class name “B”

should also be part of the nested record, but it can only be identified as the

class name once the following object start marker has been written. To solve

this problem the serialisation mechanism was changed to call a special

putObjectHeader() method to write the class name. This was possible as the

Serialisable bass class wrote the class names, rather than every MASSIVE-3

class. The first four calls now looked like this:

putObjectHeader(“A”);

putObjectStart();

putObjectHeader(“B”);

putObjectStart();
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It was then easy for the StructuredOutputStream to identify the start and end

of objects which could be written to separate records, which would currently

look like: “A { 1 }” and “B { 1 }”. Note that there is no reference between the

two records, so no way of finding the record for B when A’s record is read. To

solve this, the putObjectHeader() method was extended to provide both class

name and object name information. The object name information was used to

name the record containing the object, so that when

StructuredOutputStream::putObjectHeader() is called it creates a new record

named by the object name and embeds a reference to the record in the parent

record. If the objects were called A1 and B1, record A1 in the store would

contain the data “A { B1 1 }” and record B1 would contain the same data as

before.

The biggest problem encountered in the parsing of these serialisation calls was

that objects derived from other Serialisable classes called their parents

writeObject() method and then wrote their data between object start and end

markers, so an ASCII serialised object of class C, which derives from B and

contains a floating point, looks like this: “C { 1 }{ 1.0 }”. The problem is that

the StructuredObjectOutputStream does not know anything about the class

hierarchy, so that whenever the end of an object comes, it does not know if a

new object start marker will be written and a derived class’s data serialised.

This is really a problem with MASSIVE-3s serialisation mechanism, but it is

not a problem which can be fixed without changing every class’s serialisation

code, so instead the problem was worked around. When an object could have

ended – its object end marker is written to the stream – only an object start

marker will continue that object. Any other token indicates that the object is

finished and the parent object is writing itself to the stream again. The

StructuredOutputStream uses this information to identify the ends of objects.

When object start and end markers are written to the stream the

StructuredOutputStream keeps track of the depth of nested markers. When

something other than an object start marker is written to a record at depth 0 the

stream knows the object has finished. The record is written to the Store and

the token written to the parent record. For root records the stream just keeps
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the record open until a new root object is written to the stream, or the stream is

closed at which point the record can be safely written to the Store.

5.6.2.2 StructuredObjectInputStream

Having broken complex objects down into separate records for each of their

member objects, the process of reading them back in is relatively simple.

Given an initial object name, the StructuredObjectInputStream reads the first

record in and starts returning tokens from the record in response to the objects

get*() calls. When the object requests that an object header be read, the stream

reads a class name and object name. The class name is returned to the object

being deserialised and the object name is compared with a null string. If it

matches the StructuredObjectInputStream continues reading from the current

record, if it is non-null, the stream reads the record from the database

matching that object name and starts returning tokens from that record. The

process is transparent to the object deserialising itself.

5.6.3 Store Format Independence

When designing the Store and stream implementation, it was desirable to

make the Store implementation independent from the data format written in

each record. MASSIVE-3 supports both binary and ASCII serialisation and

due to the wide range of projects it is used for, there is always the potential

need for other formats such as XML. The move to another data format in the

future should not require any changes to code dealing with storing and

retrieving records from an ODBC source, conversely the addition of a new

Store implementation should not require developing classes to store all legacy

data formats in that Store. If each store-format combination required the

development of a new class, the combinatorial explosion would soon become

unmanageable. Ideally, adding a new Store would require developing a class

to deal with reading and writing from the store and adding a new data format

should require only the development of a class to read and write that format.

To achieve this, the Structured Stream classes support the ObjectInputStream

and ObjectOutputStream interface and manage the breaking up and

reconstitution of composite objects, but defer the work of reading and writing
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to and from a buffer to BufferedObjectInputStream and

BufferedObjectOutputStream classes, which themselves defer reading and

writing tokens to an ObjectInputStream or ObjectOutputStream, which could

be an ASCII, binary, XML or other format reader or writer.

To specify the combination of Store and data format which should be used, a

StreamFactory (see the Abstract Factory pattern in Gamma et. al. 1995) is

passed to a Store. When the Store and the Structured Streams it creates need to

read and write records they use the StreamFactory to create format specific

streams to read and write the data. The relationships between the Store,

factories and stream classes are shown the class diagram above.

As a result of this architecture, the implementation of a Store requires only a

Store sub-class to be implemented and the addition of a file format requires

only the implementation of an ObjectOutputStream and ObjectInputStream for

that format and a StreamFactory to create the format specific streams. The

new Store can then read and write any format and the new format can be

written to or read from any Store.

5.6.4 Deep, Flat and Shallow Reads and Writes

The discussion above has described the case when a composite object is

separated into many records or reconstituted from many records. This method

of reading and writing is termed deep reading or writing after deep copying,

however, there are many cases when the record for a parent object must be

updated, but its member objects may have not changed. Deep writing the

parent object would be a waste as the records for its member objects would be

rewritten when they haven’t changed. To avoid this waste, the Store class

supports shallow writes which update the record of the parent object without

rewriting the member object records. To achieve this it uses a sub-class of

StructuredOutputStream – ShallowOutputStream. ShallowOutputStream just

overrides the StructuredOutputStream::writeRecord() method and tests if the

record being written is the root record. If it is the record is written to the store.

If not, the method returns without writing anything to the store. Another

potential problem with deep writing is caused by objects referencing members
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which are different objects, but which return the same object name and so

would be stored in the same record if the two composite objects are deep

written. If the composite objects were written to the store and subsequently

read, both member objects would have the state of the second member object

to be written, which is clearly an error. This problem arises most often in the

event pipe framework when multiple update events are written to a store. Each

update represents a different state of an item, but they all refer to an item

which returns its item id as its object name. If a sequence of update events are

deep written to a store all item states are lost except the last one to be written.

To avoid this problem, the events are flat written to a store, which means

instead of being broken into primitive objects and written to multiple records,

they are written to a single record. Instead of creating a StructuredStream and

writing the object to it, the Store uses its stream factory to create a data format

specific ObjectOutputStream and writes the object to a single record. The

deep, flat and shallow reading and writing options are implemented by the

Store class itself, concrete sub classes need only implement methods for

writing, reading and removing named records.

5.6.4.1 Null Streams

One potential problem with shallow writing objects, is that the member objects

may not exist in the Store when the shallow written object is subsequently

deep read. This problem is encountered in the prototype implementation when

an item becomes persistent. The item’s state must be written to a Store and the

reference to the object in the environment must be written to the Store. To

achieve this, the item is deep written and the environment is shallow written,

to ensure that the environment reference is persistent, but to avoid writing all

the environments items to the Store, some of which should not be persistent.

When the environment is subsequently deep read, some of the referenced

items will not exist in the Store, but this should not be an error – the non

existent items were not persistent. To deal with this, the

StructuredInputStream creates a NullObjectInputStream whenever a record

cannot be read from the Store. The NullObjectInputStream returns default

values for every get*() request the object requests. When an invalid class

name is returned for the object Serialisable notices the error and informs the
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parent object. The parent object can then decide what to do. If the member

object was essential for continued operation it might exit with an error state, if

it can continue without the member it may continue its deserialisation. To

solve the problem with Environments referencing objects for which no

persistent record exists, the List readObject implementation was modified to

discard any list elements which could not be read, but continue reading further

elements. When the environment attempts to read its list of items it will thus

correctly read all persistent objects in, but not restore transient objects which

do not exist in the Store. In addition to solving the problem of transient

objects, the NullStream behaviour of StructuredInputStream makes MASSIVE

generally more resilient to serialisation errors. It gracefully degrades, just

losing the erroneous items rather than failing completely.

5.6.5 Summary

While the Store implementation and particularly the structured streams

implementation may appear complex, they encapsulate that complexity to

provide useful facilities via very simple interfaces. Complexity is moved into

the framework. From the point of view of the event filters and applications,

Stores provide a very easy way to read and write objects to a variety of

locations and to subsequently read or update part or all of composite objects.

From the point of view of future Store implementers, only a very small

associative store interface needs to be implemented, the work of breaking

complex objects into primitive objects is already done. Finally the many

Serialisable classes in MASSIVE-3 are not even aware of Stores. A store

looks just like another ObjectOutputStream or ObjectInputStream. This last

point was very important in my implementation of a prototype system,

although the task of separately storing the members of composite objects using

the existing MASSIVE-3 serialisation mechanism was complex, having to

change or replace the serialisation code of the dozens of MASSIVE-3 classes

would have taken much longer.

5.7 Conclusions

In parts the prototype implementation is a clean implementation of the

framework presented in chapter 4 and in parts it is obfuscated by the need to
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build on the existing MASSIVE-3 platform. The implementation of the core

EventPipe and EventFilter class hierarchies present a clear and simple

example of how the complex filter ordering, constraints and processing

optimisations described in Chapter 4 can be implemented. Although the

wrappers for legacy filters are needed solely to provide backward

compatibility with MASSIVE-3 they also present an elegant solution to the

problem of refactoring the existing functionality of a virtual environment

platform to function in a EventPipe architecture.

Most of the unnecessary complexity in the implementation comes from the

desire to reuse MASSIVE-3’s serialisation mechanism to drive persistence. It

was a very attractive implementation decision as the abstract

ObjectInputStream and ObjectOutputStream interfaces invited new

implementations which serialised objects to new places, such as persistent

stores. It was only on closer inspection that although MASSIVE-3’s

serialisation architecture foresaw the desire to serialise data to new

destinations, the need to break serialisations into smaller pieces was not seen.

In some senses this is understandable as a schema mapping is more often used

where objects are stored in a structured way. The prototype implementation

stretched MASSIVE-3’s serialisation architecture almost to breaking point and

this introduced a lot of complexity, but the implementation did allow hundreds

of lines of existing MASSIVE-3 serialisation code to be reused. If the

serialisation code in MASSIVE-3 was automatically generated from class

definitions (as is the case in the MASSIVE-2 (Greenhalgh and Benford, 1997)

and EQUIP platforms) then the generation script could have been easily

changed to accommodate the need for structured storage. Unfortunately, the

manual implementation of serialisation in MASSIVE-3 made such changes

very labour intensive. Nevertheless, the challenge of subverting serialisation

mechanisms to is likely to be encountered if persistence is added to many

collaborative virtual environment platforms and so the lessons learned here

and techniques employed may be an aid to further implementers in the future.

The major advantage of modifying the MASSIVE-3 system to prototype the

framework proposed by this thesis is that the facilities of the original
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MASSIVE-3 platform could be used to evaluate the framework. The next

Chapter uses MASSIVE-3’s record and replay facilities (Greenhalgh et. al.,

2000) to rapidly evaluate many of the infrastructure configurations made

possible by the framework.
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6 Evaluation

This chapter presents several experiments which aim to demonstrate that the

prototype implementation presented in Chapter 5 can be used to realise the

hypothetical optimisations presented in Chapter 2 and Chapter 4. Having

designed a model to support per-item infrastructure management and

implemented a prototype platform which realises the model, the most

important questions are: Can the predicted savings be made? Does the

fundamentally different treatment of items in a virtual world make a difference

and if so how much difference?

Section 6.1 describes the important issues and challenges which must be faced

in the evaluation, and presents the experimental platform developed. Section

6.2 then presents the first experiment which aims to show that deep behaviours

can be used to directly optimise the performance of a CVE system. The

experiment takes the hypothetical optimisations identified in Chapter 2 and

explores the extent to which they can be realised using the prototype

implementation. Section 6.3 presents an experiment which repeats the

approach taken in section 6.2, but applies it to a different application to see if

the optimisations identified in Chapter 2 are more generally applicable.

Section 6.4 describes a third experiment which aims to realise the indirect

optimisations presented in Chapter 4 by using deep behaviours not to directly

drive the infrastructure but as hints to inform a caching process. Finally

section 6.5 draws some conclusions from the evaluation.

6.1 Background

The task of evaluating the deep behaviour framework is challenging for a

number of reasons:

• The different item roles in a virtual environment application must be

identified. In the case of the exploratory experiments described in

Chapter 2 this activity was very time consuming and could only be

done retrospectively once activity had been logged.
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• For each identified role an optimal (or at least good) set of

infrastructure mechanisms must be formulated along with the optimal

parameter settings for those mechanisms. The many configurations

possible with the framework means that combinatorial explosion

makes the problem space in which to search for an optimal

configuration very large.

• A set of criteria must be identified which can provide measurements to

compare the optimised per-item infrastructure mechanisms with a

uniform treatment of all items in the virtual environment.

• In order to make a fair comparison the measurements should be taken

over a long period of use to alleviate the possibility that freak activity

taking place during the measuring could colour the results.

• The infrastructure mechanisms should be the only differences between

the conditions used to measure the performance of each approach.

Over a long period of measurement it might be hoped that the activity

would tend to a common, so over all the test conditions would be

comparable. However, ideally each infrastructure mechanism should

experience exactly the same events at the same intervals.

While these requirements appear challenging when viewed separately, a

number of them are also potentially conflicting: identifying the roles in the

virtual environment and the optimal set of infrastructure mechanisms and

parameters implies an interactive process of experimentation and

modification, whereas the desire for long periods of use implies that an

extended period of testing must take place before any mechanism can be

judged optimal.
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6.1.1 Approaches

In light of these challenging requirements, several approaches for comparison

were considered.

The initial intention was to evaluate the framework by running a persistent

virtual environment for an extended period of time initially using uniform

infrastructure mechanisms, but progressively identifying roles and optimising

infrastructure mechanisms. After reviewing the requirements presented above

it was clear that this approach was impractical. The experiment could take far

too long or result in optimal mechanism configurations not being found. In

addition the activity experienced by different infrastructure configurations

would vary.

A second very attractive approach would be to simulate activity in the virtual

environment and test different infrastructure configurations within the

simulation. This approach has the advantage that the simulation can be run at

high speed, allowing configurations to be quickly tested and then modified.

The disadvantages are that it requires the construction of a simulator and that

the results of the experiment would be largely dependant on the quality of the

simulation. Any doubts as to the realism of the simulation would result in

doubts about the findings of the experiment.

A third approach, and the one used in the experiments, was to leverage

MASSIVE-3s record and replay facilities (Greenhalgh et al, 2000) to combine

the authenticity of real use with the controlled conditions of a simulation

approach. When the MASSIVE-3 system is running a recording mechanism

can be used to record the activity experienced by a particular environment

replica to a history file. The history file contains a checkpoint of the state of

the environment when recording started, and the sequence of time stamped

events which were experienced by the environment during recording. Setting

an environment to the state described by the checkpoint in the history file and

then injecting the sequence of events into the environment at the appropriate

intervals, previous virtual activity can be replayed. By replaying the same
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recordings through virtual environment systems configured in different ways,

each configuration experiences exactly the same events and so allows a fair

comparison of each approach. By replaying the recordings at high speed

further advantages of the simulation approach can be realised allowing the

large problem space created by the different possible mechanisms and

parameter sets to be explored rapidly.

6.1.2 Item Roles

The approach taken to identifying roles in the virtual environment was to rely

on the geometry URL of an artefact as this proved the greatest distinguisher of

item role in the exploratory experiments. Along with an entity a geometry item

is the only item type which can be relied on as existing in an artefact’s sub-

tree within an environment’s scene graph. While some complex interactive

artefacts may include behaviours or entities representing separately

articulating sub-parts, some may not. All artefacts that can be observed and

manipulated by users include at least one geometry item. Sub-trees in the

scene graph which do not include geometry items cannot be manipulated and

so can be ignored. By providing a mapping between one or more geometry

URLs and a deep behaviour configuration the artefacts in the virtual world can

be split up into a number of roles which are treated differently. Replaying the

same recording multiple times using different mappings from URL to

configuration allows different configuration sets to be tested.

6.1.3 Persistence

Although the prototype implementation allows the per-item customisation of

mechanisms for consistency, distribution, persistence and access control, the

measurement of persistence is the easiest optimisation to quantify, for example

by measuring the bandwidth of data written to the persistent store. In addition

the analysis of the exploratory experiments revealed configurations which

should provide significant optimisation. These configurations are both a

promising starting point for the experiments and allow the hypothesise made

after the initial experiments to be tested. Concentrating on the well known

parameters of persistence mechanisms reduces the complexity of the problem

space to be addressed to more manageable proportions.
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6.1.4 Recordings

A potential problem with concentrating on the hypothetical optimisations

discussed in chapter 2 is that the experiments would not be able to claim that

per-item infrastructure mechanisms generally optimised the performance of

collaborative virtual environment platforms, only that potential optimisations

noted through the analysis of a particular application can be realised. In order

to determine whether the hypothetical optimisations applied only to the

exploratory experiments or could generally be realised here in other

applications, the same configurations were tested using multiple sets of

recordings. As the corpus of recordings made in MASSIVE-3 grows the use of

record and replay as the basis of an evaluation methodology becomes more

and more attractive as systems can be tested with greater amounts of realistic

data from an increasing range of applications.

6.1.5 Experimental Platform

The original replay mechanisms were designed to support the concept of

temporal links (Greenhalgh et al, 2000) which allow a recording to be played

back in a replay environment which can be linked to like any other locale. By

linking a live environment to a replay environment, visitors to the live

environment can move around the replay to view it from any angle. Although

temporal links provide a very flexible mechanism for viewing recordings from

inside live virtual environments they do not support the concept of “altering

the past” by interacting with the replaying environment. For this evaluation we

wanted the system to respond to the events reintroduced into the system as if

they were live events. Consequently, in order to perform the experiments, the

MASSIVE-3 record and replay mechanisms had to be modified to allow the

replay Environment’s scene graph to be modified during replay and to allow

very high speed playback.

6.2 Direct Optimisation

The goal of the first experiment performed with the prototype implementation

was to see if it could support the different roles of items in a virtual world

identified in Chapter 2. The analysis of the exploratory experiments showed
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that items in the experiments were treated by users in a variety of different

ways and that treating the items differently at an infrastructure level could

make potentially large savings. Typically users would create an item then

immediately manipulate it. This resulted in a burst of updates at the start of an

item’s life during which time it was far more volatile than normal. The

analysis showed that delaying an item’s time to persistence would save a large

amount of traffic to the persistent store for very little impact on the items

durability. It is this hypothesis which is tested by this experiment. In section

6.2.1 the method is described, before section 6.2.2 presents the results.

6.2.1 Method

The experiment measured the number of bytes written to the persistent store

when a number of different item groups were made persistent. The groups

were: all items in the environment, the non-embodiment items, only the

embodiment items, and each class of item (items having the same non-

embodiment geometry URL). For each of these item groups the time from

being created to being made persistent was varied from 0 to 1000 seconds. The

combination of an item group and a time-to-persistence specified a

configuration. For each configuration the recording of each session from the

exploratory experiments was replayed using the modified replay application, a

total of 250 MB of recordings. The replay application checked the persistent

store’s auditing statistics after each event was replayed. When these statistics

changed, the replay application logged the new byte count and the timestamp

of the replayed event. Each individual persistent write could then be analysed,

or the logs aggregated to provide an overview of the results.

6.2.2 Results

Figure 6-1 shows the total number of bytes written to the persistent store (by

the ServerPreMulticastPersistence deep behaviour) after processing all of the

exploratory experiment recordings. It clearly shows that the savings

hypothesised after analysing the exploratory experiments can be realised.

Excluding embodiment items from the set of items being made persistent

reduces the traffic to the persistent store by nearly 66% from 6×10
7

bytes to

just over 2×10
7

bytes. This large reduction is despite the fact that the 84% of
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the items in the virtual world are still being made persistent. It is because of

the big difference in the activity of items in embodiments compared to added

items that this saving is possible. Entities which represent embodiment

positions are continuously updated while the user is present in the virtual

world and moving around. Entity items representing an embodiment’s head

are updated every time the user moves the mouse in order for the head to

reflect the users “gaze direction” implicit in the position of the mouse cursor.

Entity items representing an embodiment’s hand are updated continuously as

the user manipulates artefacts in the virtual world. It is because of this

extremely volatile behaviour that the removal of so few embodiment items

causes such a large reduction in data traffic. By not making the 114

embodiment entity items persistent (38 embodiments each with an

embodiment entity, head entity and hand entity) a saving of 4×10
7

bytes is

made. By comparison, the 596 added artefacts each with a single entity result

in 2×10
7

bytes of traffic. The cost of making every update to an embodiment

entity item persistent is 3.5×10
5

bytes and the total cost of each embodiment

around 1×10
6

bytes of data, while the cost of making every update to an added

artefact persistent is 3.3×10
4

bytes. Clearly it is worth distinguishing between

the embodiment and added item roles.
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Figure 6-1 Persistent data traffic versus time-to-persistence for the

exploratory experiment data.

The first optimisation does not affect the durability of the virtual environment

as the state of embodiment items cannot be meaningfully restored in the case

of a crash. If the persistent state of an embodiment item is recovered from a

checkpoint after a failure the embodiment remains an empty shell until it is re-

inhabited by a reconnecting user, something which may or may not occur. In

fact the presence of “empty” embodiments caused as users connected to BT’s

Ages of Avatar virtual world (Benford et al, 1998) caused a great deal of

confusion. Allowing embodiments to exist in a world without an associated

user undermines the role of an avatar to represent a user’s presence in the

virtual world. As such embodiments should not be made persistent and the

large savings noted above can be made without impacting reliability.

Figure 6-1 also shows that further large optimisations can be made with

limited impact on the durability of the virtual environment by delaying the

addition of the ServerPreMulticastPersistence deep behaviour, and so the

persistent storage of updates to the item. If added items are made persistent

only after a 120 second delay, then the traffic to the persistent store is reduced
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to less than 1×10
7

bytes – less than 50% of the total written if added items are

made persistent immediately and less than 17% of the total written if all items

are made immediately persistent. The reason for the further reduction in traffic

is because of the turbulent initial period of activity experienced by most of the

added items in the exploratory experiments. Most of the items were added to

the virtual world and were repeatedly updated as they were moved into their

initial positions. After this period most items were updated much less

frequently or were not updated at all. We hypothesised that large savings

could be made by identifying this typical life cycle of an object and using deep

behaviours to tailor infrastructure mechanisms. Figure 6-1 shows that these

savings can be realised. Note that increasing the delay beyond 120 seconds

gives greatly diminishing returns. After the initial burst of updates, most items

are updated very infrequently and so increasing the time to persistence does

not save much persistent store traffic, but does increase the chance of updates

being lost through failure. Ideally, each item should be made persistent

immediately after it has been moved into its stable initial position, but not

before. Although this moment comes at a different point in each item’s

lifetime, 120 seconds is a good approximation for this data set.

Although delaying an item’s time to persistence can reduce the traffic to the

persistent store, it also allows updates to be lost or the very existence of items

to be lost if a failure occurs during the delay period. While this loss is very

limited in terms of the state of the persistent virtual environment as a whole it

could potentially be disorienting for users who have already experienced

updates and see the world return to a previous state after a failure. These

semantics are commonly encountered in failure recovery via backup systems,

where data not yet backed up is lost, however it can lead to confusion in

human in the loop systems, such as collaborative virtual environments, where

changes are experienced and then disappear. In addition, in applications such

as on-line world editing, it is the items which are being manipulated at the

time of the failure which are lost. The framework allows a number of solutions

to this problem, some of which are presented here. The items manipulated by a

user could be made persistent at the client. In the event of a server failure the

state stored at the client could be merged with the world on reconnection.
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Certain important items such as walls could be made persistent immediately,

while other items use delayed persistence. Users could explicitly mark an item

as completed when it had been moved into its initial position, allowing

persistence to be applied from that moment.

6.3 Optimisation Generality

It is extremely encouraging that the hypothetical optimisations identified in

Chapter 2 can be realised, however if these optimisations only apply to the

museum experiments then the usefulness of the deep behaviour framework is

extremely limited. For example an analysis similar to that of Chapter 2 would

have to be performed for each application, to identify the item roles, their

characteristics and appropriate deep behaviours for each set of items. If,

however, the optimisations identified after studying the museum experiments

could be applied to other applications, then the framework is demonstrably

more generally useful. For example, suites of optimisations, heuristics and

deep behaviours could be developed and then generally applied to applications

without detailed analysis of each application being needed. To determine

whether the optimisations developed above apply to different applications the

experiment was repeated using a set of recordings made of the activity in the

Avatar Farm experiment discussed in section 6.3.1.

6.3.1 Avatar Farm

Avatar Farm represents a very different type of application to the exploratory

experiments. The exploratory experiments used a persistent virtual

environment which concentrated on on-line world development; Avatar Farm

focuses on parallel streams of on-line narrative. The activity in Avatar Farm

consists of 7 actors using desktop and immersive VR clients to enact scenes in

4 virtual worlds explored by four members of the public who both watch and

participate in the on-line narrative.

6.3.2 Method

The method used in this experiment was identical to the method discussed in

section 6.2. The only differences were that the Avatar Farm recordings were

used and new geometry to deep behaviour mappings were used. Because
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avatar farm used a far greater number of geometry URLs than the exploratory

experiments, only mappings to all items and non-embodiment items were

defined.

6.3.3 Results

The total bytes written to the persistent store when all items in Avatar Farm

are subject to the ServerPreMulticastPersistence deep behaviour and when

only items with the Non-Embodiment role are made persistent are shown in

Figure 6-2 (note use of log scale necessary for data written axis). It is apparent

that one optimisation has transferred well to the Avatar Farm application and

the other has not. The gulf between embodiment items and the other items is

even greater than before. If all items in the environment are made persistent

immediately then 1×10
8

bytes are written to the persistent store. If only non-

embodiment items are written to the persistent store then only 2×10
5

bytes are

written to the store. By excluding avatars from the set of items which are

written to the store after each update the traffic to the store can be reduced by

three orders of magnitude. Once again this saving is essentially cost free, as

the recovery of avatar positions from the persistent store does not make sense.

In order to make the Avatar Farm application persistent only 2×10
5

bytes need

to be written to the persistent store, but if all items are treated equally 100 MB

of unnecessary data is written to the store. However, the time-to-persistence

optimisation fares less well. Although it was able to further reduce the traffic

to the persistent store by 50% by waiting 2 minutes when replaying the

exploratory experiment data, with the avatar farm data a much smaller

reduction is made. With the exploratory experiment data a slight delay in

persistence avoided a large, early burst of updates for a slight reduction in the

durability of the world. In the case of the Avatar Farm experiment a slight

reduction in persistent data traffic can be realised for a steadily increasing

delay in the time-to-persistence. The explanation for this behaviour is simple:

in the exploratory experiments the nature of the on-line editing application

meant that users generally created items and then edited them, resulting in the

early burst of updates, whereas in Avatar Farm users manipulated existing

items as part of a narrative. The narrative application resulted in fewer updates

to non-embodiment items and caused updates to occur to the items at
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appropriate moments in the narrative, which might be arbitrary points in the

items lifetime, rather than consistently early in the items lifetime. The

experiment is successful in that it shows which optimisations identified in one

application can apply to another, but also highlight that some optimisations

might only apply to a sub-set of applications.
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Figure 6-2 Persistent data traffic versus time-to-persistence for the

Avatar Farm data.

6.4 Indirect Optimisation

The previous sections show that identifying the different roles which items in

the virtual environment perform and treating each role appropriately can

optimise the performance of infrastructure mechanisms in collaborative virtual

environments. In addition it shows that at least some of the roles and

optimisations identified in one application can potentially apply to other

applications, making it possible to at least partially reuse analyses of virtual

environments and identify common patterns of behaviour between

applications. The previous experiments show that deep behaviours can be used

to optimise system performance by specifying mechanisms and parameters

directly. The experiments described in this section show that the presence of
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deep behaviour annotations allow infrastructure mechanisms outside the scope

of a particular deep behaviour to be optimised. The deep behaviour annotation

can be regarded or interpreted as a more general form of meta-information

which allows infrastructure mechanisms to distinguish between items and so

treat them differently. For example while the TrustedPersistence deep

behaviour (described in Chapter 4) directly specifies a consistency and

persistence mechanism, a caching mechanism might use this deep behaviour

annotation to deduce that the item is not going to change often and is an

important item worth caching. By using deep behaviours in this way there

does not need to be a 1-1 mapping between deep behaviours and optimised

infrastructure mechanisms. A complex caching mechanism might assign a

value to each deep behaviour and attempt to cache high value items

preferentially. A simpler caching mechanism might attempt to cache items

annotated with a certain deep behaviours in preference to all other items. It is

this second approach which is evaluated in the experiment described here.

6.4.1 Method

In order to see if the hypothetical improvements to the performance of caching

could be achieved, the test harness application was modified to simulate a

client application. When joining a virtual world the application first looks in

its cache for items before requesting their state. This mechanism both

improves the speed at which a virtual environment can be viewed (analogous

to web browser caching) and potentially allows parts of the virtual world to be

viewed off-line or during periods of disconnection. Like any cache, however,

the number of items which are stored cannot be unbounded, and so a cache

replacement policy must be implemented to decide which items are removed

from the cache when it is full. The experiment compared two approaches to

caching: the Least Recently Used (LRU) caching algorithm (widely used in

operating system page caches) and a novel approach which uses the LRU

mechanism for cache replacement decisions, but only caches items annotated

with certain deep behaviours. This novel approach was dubbed Selective LRU

(SLRU) caching.
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Both caches were implemented by maintaining a linked list of items in the

cache ordered by the sequence of accesses to the items. Accesses were defined

both as item additions and updates. As the environment is initially spooled to

the client the cache sees a sequence of add events and fills the cache with the

contents of the environment. Subsequent additions are prepended to the list

and where they increase the list size over a defined threshold the items at the

end of the list are removed from the cache. When an item in the cache is

updated it is moved to the start of the list so only the least recently updated

items are removed when the cache grows. The LRU cache performs this

processing for any access, the SLRU cache examines the scene graph at each

access; and only performs processing for items annotated with a specified set

of deep behaviours. The cache state is made persistent in a Store allowing the

previous state of the cache to be read when the application starts and before

the environment is spooled. The performance of the caches are measured by

querying each cache when the new environment is spooled to see how many

items in the virtual environment exist in the cache. This method simulates the

behaviour of a user returning to the environment they have previously visited.

If the client cache performed well during the previous visit most of the items

which were cached will still exist in the virtual environment. The recordings

of each session of the exploratory experiments were replayed through the test

application in chronological order and the performance of the two caches

measured at the start of each replay. This process was repeated for maximum

cache sizes ranging from 10 items to 1000 items at which point the

performance of both caches levelled out. The measurements recorded the

current maximum cache size, the total number of items in the virtual

environment, the number of cache hits achieved by each cache, the cache

utilisation of each cache and the activity of each cache.

6.4.2 Results

Figure 6-3 shows the percentage of successful hits achieved by the LRU and

SLRU caches for a range of cache sizes. It is clear that the SLRU cache

provides a significant performance advantage over LRU caching. At the

smallest cache size of 10 elements, SLRU successfully services 1.75% of

cache queries where LRU only manages 0.52%, less than 30% of the
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performance. When the cache size is increased to 200 elements, 15% are

returned by SLRU and 7.2% by LRU. At 500 elements the differentiation

increases with SLRU servicing 25.5% and LRU 7.8% - LRU again achieves

less than 30% of SLRU performance. When the cache size approaches 1000

elements both caches contain the majority of the virtual environment and so

the gap in performance narrows. Increasing the cache size beyond 1000

elements results in no performance gain, with both caches servicing 95% of

queries. When used to cache items in a large-scale virtual environment a client

cache could not possibility contain all of the items. While current virtual

environment systems support arbitrarily large environments, the storage and

processing capabilities of a single client node are fundamentally limited. For

this reason the SLRU cache is a significant improvement over LRU caching

for the situations normally encountered in collaborative virtual environments,

where the total size of the environment is much larger than the maximum

possible client cache size.
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Figure 6-3 Hit rates for LRU and SLRU caches with 10 to 1000 element

caches.

In addition to providing superior cache performance for a given cache size, the

operation of SLRU caching is also more efficient than LRU caching due to its

selective nature. Although SLRU caching must perform more processing on
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an access to determine whether to cache an item or not, that cost provides

great savings both in the storage space utilised by the cache and the work done

serialising items to the cache. Figure 6-4 shows the number of times the LRU

and SLRU approaches replaced items for maximum cache sizes ranging from

10 to 1000 items. The most noticeable difference between the performance of

the two caches is for a cache size of 10 items. The LRU cache performs 66892

writes compared to 10255 writes performed by SLRU. This large discrepancy

is due to the LRU cache being too small to hold all of the rapidly changing

embodiment items in the environment and so thrashing as items are removed

from the cache and then replaced. The SLRU approach does not suffer from

this problem as it does not cache the un-annotated embodiment items. With

cache sizes between 100 and 1000 items both caches replace items less

frequently as the caches grow and so are more likely to contain an accessed

item. During this period the SLRU cache replaces 30% to 60% fewer items as

it is not affected by volatile embodiment items. When the cache size reaches

900 items, the activity of the SLRU cache levels out as it contains all of the

annotated items in the environment and so never replaces items in the cache.
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Figure 6-4 Cache activity for LRU and SLRU caches with maximum

cache sizes from 10 to 1000 items.

Figure 6-5 shows the storage space utilised by the LRU and SLRU caches for

maximum cache sizes of between 10 and 100000 items. For maximum cache
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sizes up to 100 items, both approaches utilise the entire allowed storage space,

with LRU using the maximum space up to a maximum cache size of 300

items. Between 100 and 2000 the space used by both approaches grows,

although the SLRU growth is slower. At 2000 SLRU reaches its maximum

usage of space and contains 842 items compared to LRU which contains 1689

items. SLRU is utilising 42% of the cache and 84%, twice as much storage

space is being used by LRU. Between 2000 and 5000, LRU continues to use

more storage space for no increase in performance before finally plateauing at

2680 items. With the maximum number of items set to 5000, LRU uses 3

times as much storage space as SLRU for a 0.4% advantage in cache hits.
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Figure 6-5 Utilised cache size for LRU and SLRU caches with maximum

cache sizes 10 to 5000 items.

6.5 Conclusion

This chapter has shown that the hypothetical optimisations presented in

Chapter 2 and Chapter 4 can be realised using the prototype implementation.

The experiments have demonstrated that per-item infrastructure management

can significantly improve the efficiency of collaborative virtual environments.

By acknowledging that there are very different roles performed by items in a

virtual environment and by tailoring the treatment of those items to their

requirements the best mechanisms and configurations can be utilised by all
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items. CVEs have historically treated all items equally and ended up searching

for a best compromise solution to infrastructure challenges. In contrast a per-

item approach to infrastructure allows a tailored solution to be used for each

item and allows multiple approaches co-exist in a single CVE.

In addition to fulfilling its primary goal of demonstrating the improvements

which can be realised using the deep behaviour approach, conducting these

experiments has allowed the development and refinement of a promising

methodology for rapidly testing and evaluating infrastructure mechanisms for

CVEs. By combining the highly dynamic and reconfigurable nature of the

deep behaviour framework with the realistic and repeatable test conditions

provided by record and replay novel mechanisms can be quickly prototyped

and tested in realistic situations. Many of the existing event filters can be re-

used to implement novel mechanisms through their orchestrated operation.

Radically different approaches to consistency can be implemented simply

through the configuration of event pipes and routing filters and the ordering of

existing filters to update various replicas of an environments state. Composite

mechanisms such as the TrustedPersistence deep behaviour (described in

chapter 4) can be realised by combining existing mechanisms. Alternatively

semantically independent mechanisms can be used in partnership and their

combined effects analysed. The ability to replay activity in virtual

environments at speeds limited only by the performance of the replaying

machine allows mechanisms to be subjected to significant amounts of testing

in relatively short periods of time and for near optimal parameters for

mechanisms to be determined in acceptable time frames. As the corpus of

recordings grows this methodology will become increasingly valuable as it

will allow mechanisms to be tested in a wide range of situations.
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7 Conclusion

This chapter concludes this thesis by detailing the contributions made, the

future directions the work could take, and makes some final remarks which

place this work within current trends in computer science at large. Section 7.1

details the original contributions which this work has made to the field of

collaborative virtual environments and Computer Science. Section 7.2 then

outlines a number of areas in which this work could be extended, both

technically and via complimentary work in the fields of Sociology and Human

Computer Interaction (HCI). Finally section 7.3 attempts to paint a picture of

the future of large-scale persistent virtual environments and the role of this

work in that future.

7.1 Contributions

The original contributions made by this thesis can be viewed from a number of

perspectives. Section 7.1.1 looks at the philosophy of this thesis. It compares

the views, approach and priorities of this work with the accepted views shown

by previous CVE research to identify the new approaches taken by this thesis.

Section 7.1.2 details the contributions made to the theory of CVE research and

the field of Computer Science. These contributions are mainly in the

development of the model described in Chapter 4 and the two concepts of

distributed event filters and deep behaviours which it introduces. Section 7.1.3

looks at the contributions made to the field by the realisation of the concepts

introduced in the thesis. It discusses the large amount of implementation

performed in terms of its use as a proof of concept, but also as an extremely

flexible framework for rapidly prototyping future CVE systems.

7.1.1 Philosophy

This work has proposed a philosophy which is significantly different to the

established approach to Collaborative Virtual Environments. Previously the

critical activity in virtual environments was “doing”. The development of

applications and environments was an off-line necessity which formed a

precursor to doing. Previous work focused on allowing more people to do
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things, different things to be done and for things to be done in higher fidelity.

This work shifts the focus by proposing that the critical activity in

collaborative virtual environments is being. By being constantly available a

virtual environment can be relied on as a place where communication and

collaboration can take place. It can become an alternate place where

community can be built and then all of the activities which were previously

the focus of virtual environment research can take place. The emerging breed

of on-line massively multiplayer games highlight the importance of this

community over content approach. While the games strive to create a virtual

world which is high-fidelity, highly scalable and highly interactive, the most

important goal is that the environment supports community. The environment

needs to be a place people want to be more than a place where people want to

do. Any barriers to that are fatal. A system which shuts down every day to

provide people with more to do at the expense of providing a place for people

to be is likely to fail.

This may sound like an argument to stop working on the technical aspects of

CVEs and concentrate on the sociology of community building; it is not.

While the community building aspect of CVEs is very important, the

environment must be able to grow and change with the community it supports.

While an attractive meeting space with welcome banners might be a perfect

venue for members of the new community to get to know each other, it might

not be perfect a month later when the community decides to get down to work,

or play. In order to avoid the frustration of a world which cannot grow with its

community and the frustration of a world which is not continuously available,

future CVE systems must be extremely flexible. As this thesis has shown,

engineering the flexibility needed by these environments is a major technical

challenge. While CVE systems may be able to support limited evolution by

providing on-line tools for world editing or by allowing new application level

behaviours to be introduced into the system there is still the possibility that the

limits of the system’s flexibility will be reached. For example most of the

current CVE platforms could not cope with an environment which needed to

evolve to support secure transactions for e-commerce. Their infrastructure

assumes the need for optimistic, timely interaction over reliable transactions.
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In most cases, the best that could be done is that a hole could be dug in the

CVE system to allow an e-commerce system to take over at the appropriate

moments. Clearly this is not an ideal solution. The question of how much

flexibility these systems will require is impossible to answer. Rather than

trying to predict the flexibility required in the future, an alternative approach is

to attempt to engineer ultimate flexibility - a platform which will be able to

cope with any future demands and unforeseen changes which are required.

While this initially appears as daunting as predicting where flexibility will be

needed, any Turing complete language can – at least theoretically – provide an

amount of flexibility limited only by what is programmatically possible. It is

clear, though, that a Turing complete language is quite a long way from the

ideal next generation CVE platform. For a start most languages do not support

run-time loading of new modules. Adding this basic requirement results in

frameworks like Bamboo, where nothing is assumed except the need to load

modules. While this framework is sufficient for building continuously

available, flexible CVE platforms, there is clearly a lot which is left to the

application developer. Adding the assumption that all CVE systems rely on

events routed between nodes brings us to the level of the framework discussed

in this thesis. The framework is only a little less flexible than Bamboo, but

provides support for the notion of networking which significantly eases the

burden on the application developer. The approach taken by both of these

frameworks is to develop a set of invariants and then make sure that

everything else is flexible and optional. A first attempt at the set of invariants

for CVEs might be the assumptions that they are networked and support

multiple users. Everything else cannot be assumed: network protocols,

topologies, infrastructure mechanisms and everything else must be dynamic,

reconfigurable and flexible. By building platforms like Bamboo and DEF

which make different assumptions about invariants the best mix of support and

flexibility can be discovered.

Another area in which the approach taken by this work differs from most other

CVE systems is in its support for per-item infrastructure mechanisms. Just as

nothing can be assumed about the requirements of an evolving virtual

environment, neither can anything be assumed about the combination of
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requirements needed at any one time. The ability to load a new consistency or

transaction mechanism to cope with e-commerce requirements in a virtual

environments is useless if that consistency mechanism must apply to every

item in the virtual environment. The per-item approach is a natural

consequence of the flexible, evolving virtual environment platform, but an

approach which distinguishes this work from most previous CVE research.

7.1.2 Theory

This work has developed two concepts – distributed event filters and deep

behaviours – which add significantly to the collection of techniques in the

CVE developer’s armory. In addition the techniques differ from previous

approaches in that they specifically tackle the problems faced in the

development of the emerging breed of flexible, dynamic CVE systems which

are needed to support continuously available persistent virtual environments,

environments which grow with the communities which they support while

remaining constantly available to those communities. In addition to providing

specific approaches to engineering the flexibility needed by this new breed of

system, this work serves as a guide for the development of future techniques

and architectures to support these new flexible CVE platforms. The model

presented in this thesis represents a single point in a problem space which

trades off flexibility for support. While it is unlikely that this point is the

optimal solution for all problems, the process of getting to this point (recorded

in chapters 4 and 5) serves as a guide for CVE developers needing to get to a

different point in the problem space.

Widening the context from the field of CVEs to that of Computer Science in

general reveals different theoretical contributions. Although the pipes and

filters architecture used by the DEF framework is widely used in Computer

Science, there are a number of features which are novel to the DEF framework

(as much as that claim can be made within a field as large as computer science

of which the author cannot possibly be completely aware). The support for

position and constraints and requirements within event pipes is a novel and

extremely useful feature which makes using complex configurations of pipes

and filters extremely simple. Rather than having to be aware of all of the
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filters in a pipe, the application developer needs only to list the constraints

which matter to the filter being added and then add it to the pipe. Then when

the set of filters changes the constraints can automatically be checked to

ensure the validity of the new configuration. The use of a hierarchical naming

scheme for filters is another novel feature which provides filter constraints and

requirements with a certain amount of future proofing. Filters specifying

constraints on classes of filters will behave correctly if new filters in that class

are implemented in the future. Similarly new filters can be given a name

which matches with an appropriately specific existing filter in order to behave

correctly with existing filters.

The caching mechanisms used in the execution of the event pipe are also an

innovation which might be useful in other event pipe architectures where

nothing can be assumed about the data passing through the pipe after each call

to a filter, but where operation should be optimised for the simple case where

data doesn’t often change.

7.1.3 Realisation

The significant amount of implementation which has taken place throughout

the work has produced a working prototype implementation based on

MASSIVE-3. This prototype demonstrates a wide range of deep behaviours

and by implementing deep behaviours as object annotations in the scene graph

allows virtual environments utilising the deep behaviours to be built and used

with standard MASSIVE-3 tools. The prototype implementation allows

continuously available persistent virtual worlds to be developed and evolve

on-line in a way which was not possible with previous CVE platforms. Client

applications developed for the experiments described in chapter 2 allow virtual

environments to be built and changed on-line using near standard user clients

which allow human viewpoint ad hoc modification of the virtual environment.

A client application developed to demonstrate the framework allows the on-

line creation and modification of artefacts which exhibit a wide range of deep

behaviours, allowing the on-line configuration of the virtual environment

infrastructure mechanisms (Video Figure 3 demonstrates these facilities). The
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same tool allows multiple infrastructure mechanisms to co-exist in the virtual

world.

While the flexibility engineered into the prototype implementation was

primarily to allow the fluid evolution of continuously persistent virtual

environments, it also provides a powerful framework for the development of

CVE systems themselves. One of the early indications of the power of the

framework was the realisation that by configuring event pipes and filters in the

extended MASSIVE-3 system it could be made to emulate at least parts of the

architectures of the MASSIVE-1 (Greenhalgh and Benford, 1995) and

MASSIVE-2 (Greenhalgh and Benford, 1997) systems previously developed

in the Communications Research Group. Despite the radical differences

between the peer-to-peer unicast and multicast approaches of the early systems

and the client-server approach of MASSIVE-3, all three architectures could be

realised within the new platform by just reconfiguring event pipes, potentially

at run time. This highlights the usefulness of the DEF framework as a tool for

rapidly prototyping new systems. Rather than developing an entirely new CVE

system to test a new topology or technique, a new configuration of event pipes

can be developed to prototype the new approach. Similarly new infrastructure

mechanisms can be rapidly prototyped by developing new filters and

introducing them into the event pipe network.

The test harness developed for the evaluation described in chapter 6 provides

another set of useful tools for the future development of CVE systems. The

record and replay based test harness provides a simple but realistic approach to

the testing of both techniques and mechanisms. It allows mechanisms to be

quickly tested with an existing corpus of recordings before the lengthy process

of human testing need be undertaken. Conversely any subsequent human

testing can provide further recordings for future tests. By testing entire CVE

systems in the same way some of the problems inherent in prototypal systems

can be avoided, whereas manual testing is a lengthy process which tends to be

avoided in the rapid development of prototype research platforms the test

harness allows new code to be rapidly subjected to large amounts of real world

use without significantly slowing down the development process.
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7.2 Future Work

The scope of this work has been limited to the technical development of a new

model for infrastructure processing in persistent collaborative virtual

environments. The work has looked at the details of the model to ensure that it

scales to support arbitrarily sized virtual environments and numbers of users.

It has attempted to ensure that the model is flexible enough to support the

widest conceivable range of infrastructure mechanisms. A proof of concept

implementation has been developed and then evaluated to assess the

hypothetical benefits imagine during the model’s development. While the

work has produced a working technical solution to many of the challenges

facing continuously available persistent collaborative virtual environments,

there are clearly many other questions which need to be answered.

Section 7.2.1 presents some options for presenting deep behaviours to users

using either real world or deep metaphors. Section 7.2.2 discusses how the

model might work with various alternative programming paradigms. Section

7.2.3 then discusses the need for a deep behaviour language before section

7.2.4 lists some tools which are needed before deep behaviours could easily be

used in a production environment. Section 7.2.5 highlights some

implementation issues which should be resolved if the prototype is used

beyond its current role as a proof of concept and finally section 7.2.6 argues

that a large scale trial is needed to really test the framework.

7.2.1 User Interface

Virtual environments have historically been less intuitive to use than their

emulation of the real world would suggest. Simple tasks such as navigation

around virtual environments or artefact manipulation tasks have proved

extremely difficult for novice users to perform. A CVE system which

complicates matters by making every object in the virtual world behave subtly

differently by applying different infrastructure mechanisms to each seems to

guarantee even more confusion and bewilderment. However, the questionnaire

responses described in chapter 2 suggested that users actually expected

artefacts in the virtual world to behave differently in some circumstances.
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Some users expected large and important landmarks to remain unchanged, so

they could be relied on. Others expected structural artefacts to be more

difficult to manipulate than decorative artefacts. The deep behaviour model

allows these differences to be articulated and respected by the CVE system.

However, the development of an appropriate way to present the differences to

users is an important challenge. The user interface must clearly convey the

differences which users expect without making the virtual environment more

confusing.

The use of metaphors has been proved to be extremely valuable in the design

of user interfaces, allowing users to understand something alien and complex

in terms which are simpler and more familiar. The most common metaphors

being the desktop, files and folders used in modern operating systems.

Collaborative Virtual Environments and Virtual Reality in general have

exploited the use of the real world as a metaphor for communication,

visualisation and navigation of complex data and systems.

One approach to presenting the differences in the deep behaviours of artefacts

in the virtual environment would be to use real world metaphors. In this case

the metaphors should ideally be based on the properties of the object. For

example, otherwise identical artefacts might behave differently because of the

different substances from which the objects are made. The different properties

of the substances such as their density or hardness could be used to explain the

behaviour of the otherwise similar artefacts. Some example metaphors are

listed below.

• Weight. An artefact’s weight and so the speed at which it can be

manipulated could be used to represent the persistence or consistency

of an object. Heavy objects would be slow to manipulate and so easy to

make persistent or keep consistent across multiple replicas. Light

objects could be rapidly manipulated, but use less conservative

persistence or consistency mechanisms.
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• Hardness. Environments which implement the DelayedPersistence

deep behaviour (used in the experiments presented in Chapter 6) could

visually represent the state of the artefact using a hardness metaphor.

Objects could be represented as initially clay like and easy to

manipulate after their creation and then harden once they become

persistent and more difficult to manipulate. Visually this could be

represented using physically based modeling approaches (Baraff and

Witkin, 1998) to make the soft artefacts deform like jelly or soft clay.

• Evaporation. Environments using automatic garbage collection of

added objects to avoid the clutter experienced in the exploratory

experiments might present these mechanisms using an evaporation

metaphor. Objects added to the world would initially appear solid, but

slowly become more and more translucent until they disappeared

completely. Manipulating a translucent object would restore it to its

initial state. Manipulations could slow the evaporation process until it

stopped completely, or a specific manipulation could remove the

garbage collection deep behaviour.

• Locking. Rather than using the physical attributes of an object, real

world access control mechanisms could be used to represent and

manipulate the deep behaviours which apply to artefacts. Artefacts

which can only manipulated by certain users might be visually

annotated with virtual locks or keypads, while virtual keys would

allow the visual delegation of privileges from administrators to other

users.

An alternative approach to explaining the differences between objects using

real world metaphors is to use the deeper metaphors approach proposed by

Ivan Vaghi (Vaghi, 2001). With this approach, rather than explaining the

differences in behaviour as side effects of substance properties, the underlying

infrastructure issues are symbolically presented to users. An artefact might be

visually annotated with icons to represent different persistence mechanisms or

a bar representing the time before an object becomes persistent. This approach

is used in the demonstration client as it makes the mapping of deep behaviour
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to artefact clear and so works well to explain and demonstrate the framework.

However, it forces the user to understand the potentially abstract or complex

infrastructure mechanisms, and so might be inappropriate for use by novice

users. The interface shown in Video Figure 3 is a very simple example of this

deeper metaphors approach.

7.2.2 Programming Paradigms

Although this work has been heavily influenced by the model of virtual world

as shared, distributed scene graph, the model described in chapter 4 has been

deliberately kept independent of this approach. While MASSIVE-3 and the

prototype implementation used a scene graph to annotate items with deep

behaviours, this relationship could also be implemented by a reference, for

example in an object oriented approach such as those used by LambdaMOO

and its descendents (for example VWorlds). When the behaviour sharing

described in chapter 4 is considered the scene graph approach moves even

closer to the object model paradigm. Deep behaviours which annotate multiple

objects to provide common functionality appear much more natural if viewed

as parent objects with multiple children. Treating deep behaviours as abstract

classes in an inheritance hierarchy also makes sense where application level

behaviours are composed using an OO style inheritance hierarchy as is the

case in LambdaMOO style systems. If deep behaviours are independent of the

application behaviour hierarchy then the root of the hierarchy could include

references to the deep behaviours used by the object. However, it is unlikely

that application behaviours could be kept independent of deep behaviours, so

the two hierarchies could be combined into a single run-time inheritance

hierarchy in which deep behaviours exist near the root of the hierarchy and

application behaviours appear as branches and leaves. The DEF framework

could be integrated into the object oriented approach described above by

giving each object an event pipe which is populated by the filters needed to

implement the behaviours operating on the object.

Alternatively the division between scene graph and filter network which exists

in the current prototype implementation makes the architecture look similar to
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the Message Oriented Middleware (MOM) paradigm which separates systems

into application data and communications layer sections.

7.2.3 Deep Behaviour Language

Recent work on object patterns (Gamma et al, 1995) has highlighted the

usefulness of naming even very complex or abstract approaches to problems to

provide a common language for practitioners to discuss these approaches. A

similar approach is likely to be very useful in the development and use of deep

behaviours. It is not a trivial task. In the development of the deep behaviours

presented in this thesis the formulation of an appropriate name was often

difficult. While the TrustedPersistence deep behaviour was easy to name after

the problem of trusting predicted results described by Dourish (Dourish,

1996), others became just a concatenation of the mechanisms which make up

the behaviour, such as ServerPreMulticastPersistence. The latter approach is

less desirable as it highlights the implementation of a behaviour over its

semantic meaning. In order to be most useful as abstractions of individual

mechanisms they should be named semantically. A user or administrator

should annotate artefacts with the semantic role of an item. An item should

exhibit persistence which can be trusted by an observer rather than be subject

to an arbitrary collection of mechanisms. Future work in this area should

establish the correct level of abstraction for deep behaviour names and

heuristics for naming them which make the formulation of a comprehensible

language of deep behaviours possible.

7.2.4 Tools

For deep behaviours to move from being an interesting research topic to a

framework used in the construction and optimisation of production virtual

environments, a suite of tools are needed to make the construction,

configuration and application of deep behaviours simple.

7.2.4.1 On–Line Deep Behaviour Configuration

The most fundamental need is for a tool which allows the run time annotation

of items with deep behaviours. This tool for creating <item, deep behaviour>

relationships could be a command line tool which used identity numbers to
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map items to behaviours, a graphical scene graph which allowed behaviours to

be dragged and dropped onto items, or an alternative 3D user client which

allowed the visualisation and modification of deep behaviours. The final

example could use Ivan Vaghi’s techniques for infrastructure visualisation

(Vaghi, 2001). Making these visualisations an optional mode of the standard

user client would allow users view the deep metaphors when they encountered

a problem in the virtual world, make changes to the infrastructure

configuration which was causing the problem and then turn off the deep

metaphor annotations. When the metaphor of the virtual world was broken by

infrastructure issues, the infrastructure could be made visible, modified and

then the original metaphor returned to.

7.2.4.2 On-Line Infrastructure Analysis

The other important tool required for the successful exploitation of deep

behaviours is an analysis tool to determine exactly how items in the virtual

world are behaving, how they differ from each other and so what roles exist in

the virtual world. The evaluation chapter presented a primitive off-line version

of this tool consisting of the rapid replay test harness and the scripts used to

analyse the behaviour of different items. The ideal tool for administrators of

persistent virtual environments would be one which performed this analysis

on-line, automatically measuring key criteria such as persistent storage

bandwidth and consistency, ranking items by criteria and identifying roles in

the rankings. The gathered information could be viewed periodically by an

administrator and deep behaviour decisions made. The tool could also

generate alert messages when an item moves outside reasonable conditions

allowing the administrator to take action in the event of exceptional

conditions.

7.2.4.3 Automated Analysis and Deep Behaviour Configuration

The development of this tool is clearly a challenging task in itself. However, it

could conceivably be taken a step further towards a system which analysed the

operation of the virtual world and made deep behaviour decisions

automatically. If an item survives a long time without changing it is cached; if

it changes often it is only periodically made persistent; if it changes in bursts it
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is made persistent after a batch of updates and so on. This idea is attractive and

was initially considered as the primary goal of this work, however it is flawed

in that the system knows nothing of the semantics of items. An automated tool

might see that an item has been changed frequently and so guess that it is

important, when it might only be an item which users are playing with, but

that is not particularly important. Similarly an item which has not been

changed for a long time could be assumed to be unimportant and so garbage

collected, when it might in fact be an important land mark which is not

changed because it is relied on by users. By having users or administrators

specifically annotating an item they can take in to consideration both the

semantics and the infrastructure needs of an item. These annotations could

potentially be used to indirectly drive the operation of secondary infrastructure

mechanisms such as the SLRU caching mechanism discussed in chapter 6, but

it is unlikely that the entire system could be automated. The system cannot

guess the semantics of an item, but it can be guided towards that

understanding.

7.2.5 Implementation

The issues discussed above are clearly more important than any technical

improvement to the prototype implementation which is currently perfectly

adequate as a proof of concept. However, there are a number of areas in which

it could be improved or aspects which should perhaps have been implemented

differently.

7.2.5.1 Deep Behaviour Object Model

The current lightweight object model used for deep behaviours is very

awkward and should be changed. Initially, the annotation of deep behaviour

items with their properties seemed attractive for a number of reasons. It made

the modification of properties possible using the standard MASSIVE-3 API

calls and allowed the leveraging of the standard mechanisms for persistence

for deep behaviours and their properties. However, each type which is needed

as a property of a deep behaviour must have a corresponding item type which

can exist in the scene graph. If a deep behaviour needs a list property in the

scene graph then a ListData class needs to be implemented which inherits
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from ItemData, allowing it to exist in the scene graph, contains a list and

implements all of the methods needed for serialisation. This process must be

repeated for each type which could be a member of a deep behaviour, resulting

in parallel class hierarchies (properties and their scene graph representations)

which must be maintained together and are largely redundant. The alternative

approach is to implement a single SerialisableData class which inherits from

ItemData and points to a serialisable class. This approach, used in the

prototype implementation is the equivalent of embedding a void* pointer in

the scene graph for every deep behaviour property. This means the vast

majority of a deep behaviour’s work consists of type checking its properties

after it is deserialised or updated. Another problem caused by this approach is

that it allows annotation to represent multiple relationships. A deep behaviour

might be annotated with a number of properties and a number of deep

behaviours. The property annotations represent an aggregation relationship,

while the deep behaviour annotations specify behaviour. It is awkward to

ensure that the deep behaviour and its child properties are subject to the child

deep behaviour. In the future a deep behaviour and its properties should

appear as a single composite object in the scene graph, not an annotation with

annotations. Alternatively, the system should be re-engineered as a

LambdaMOO style object model in which case complex behaviours would be

objects like everything else.

7.2.5.2 Swizzling

Most persistent store implementations use a process of converting between

memory addresses and unique keys in the persistent store known as Swizzling

(Atkinson and Morrison, 1995). The serialisation approach utilised in the

exploratory experiments did not require this process as all anonymous

members of a named root object were stored in a single serialisation. When

this mechanism was extended to allow for updating of stored member objects,

such as individual items in a stored environment, the existing MASSIVE-3

identifications where used to provide storage keys for these member objects.

While this was sufficient for objects of types which supported identification,

such as items, environments and events, it meant that accessing arbitrary

members of a stored object independently of the parent was not possible. The
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only possible workarounds were to modify each class to support identity, or to

create a sub-class which provided identity and modify the parent class to use

the new sub-class in place of the class with no support for identity. Both

approaches were unsatisfactory as they conflicted the ideal of not modifying

MASSIVE-3 classes just to support persistence. One of the main reasons that

the deep behaviour object model was awkward is that many deep behaviours

had to convert between native MASSIVE-3 classes and new wrappers which

were needed for directly accessing objects in the persistent store. While

MASSIVE-3’s serialisation could be extended to elegantly break down and

reconstitute composite objects to allow each object to be in its own database

record, the problem of identifying arbitrary sub-objects made it difficult to

take advantage of this approach. Modifying the prototype implementation to

support full swizzling between memory locations and database keys would

make the persistence service more general, much easier to use and truly

independent of the other MASSIVE-3 classes.

7.2.6 Large Complex Worlds

As with all application frameworks and platforms, the real test of success or

failure is to use it in anger and see how well the framework supports a real

application. The framework presented in this work is no different. An

extended period of use would test the ability of the framework to support the

evolution of content and use in a virtual environment. Using the framework to

develop a large, heterogeneous world would test the ability of the framework

to support multiple infrastructure mechanisms simultaneously. Most

importantly the development of a complex virtual world would allow the

discovery of many item roles and the deep behaviours to support them. In

many of the current virtual environment applications, users do little more than

move around the environment or move artefacts in the environment. In these

cases often only two item roles can be identified – the items which are parts of

embodiments and the items which make up the rest of the world. In these

applications the use of the deep behaviour framework appears to be overkill.

Indeed a simple flag specifying whether an item is an embodiment would

suffice in place of the apparently baroque use of annotations, event pipes and

filters. It is only when virtual environment applications become significantly
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more complex that the full potential of the deep behaviour framework will

become apparent. It is hoped that the framework will be able to evolve with

the complexity of virtual environment applications just as it allows the virtual

environments themselves to evolve with the communities which use them.

7.3 The Big Picture

Making collaborative virtual environments persistent is relatively easy. All

that is required is that the content of the environment is written to stable

storage so that changes are not lost when the system is shutdown or suffers a

failure. This work has shown that making these persistent environments

dynamic and flexible enough to evolve with use without being shut down is

much more difficult. It is therefore tempting to solve the first problem and

ignore the second. However, when persistent virtual environments are used by

millions of users around the globe and around the clock, the thought of

shutting them down for maintenance will be as unthinkable as closing down a

web site like www.google.com. The next task is to build the large scale

environments which thousands or millions of people want to use.
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Appendix A – Video Contents

• Video Figure 1. A demonstration of the MOLE (MASSIVE On-Line

Editor) used in the experiments described in chapter 2. The video first

introduces the standard MASSIVE-3 user client and then details and

demonstrates the features added to that client to allow on-line editing

of a virtual environment’s content.

• Video Figure 2. A number of video segments showing activity in the

museum experiments described in chapter 2. The activity is shown at

an accelerated rate and the segments present highlights from the

experimental activity.

• Video Figure 3. A demonstration of multiple deep behaviours applied

to different artifacts in a single virtual world. In addition to using

distributed event filters to implement the deep behaviour, an event

filter is used to delay events communicated between processes. This

allows deep behaviours using different consistency mechanisms to be

easily distinguished. The activity was recorded from 2 different users’

perspectives. These video streams were synchronised and are presented

simultaneously in the video figure. This makes the differences in

consistency mechanisms clearer and allows the subjective differences

produced by deep behaviours to be demonstrated.
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