
Fenton, Andrew Karl (2010) Roles of cytoskeletal 
proteins in the predatory life cycle of Bdellovibrio 
bacteriovorus. PhD thesis, University of Nottingham. 

Access from the University of Nottingham repository: 
http://eprints.nottingham.ac.uk/11537/1/Andrew_Fenton%27s_Thesis.pdf

Copyright and reuse: 

The Nottingham ePrints service makes this work by researchers of the University of 
Nottingham available open access under the following conditions.

· Copyright and all moral rights to the version of the paper presented here belong to 

the individual author(s) and/or other copyright owners.

· To the extent reasonable and practicable the material made available in Nottingham 

ePrints has been checked for eligibility before being made available.

· Copies of full items can be used for personal research or study, educational, or not-

for-profit purposes without prior permission or charge provided that the authors, title 
and full bibliographic details are credited, a hyperlink and/or URL is given for the 
original metadata page and the content is not changed in any way.

· Quotations or similar reproductions must be sufficiently acknowledged.

Please see our full end user licence at: 
http://eprints.nottingham.ac.uk/end_user_agreement.pdf 

A note on versions: 

The version presented here may differ from the published version or from the version of 
record. If you wish to cite this item you are advised to consult the publisher’s version. Please 
see the repository url above for details on accessing the published version and note that 
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

http://eprints.nottingham.ac.uk/Etheses%20end%20user%20agreement.pdf
mailto:eprints@nottingham.ac.uk


'Roles of cytoskeletal proteins

in the predatory life cycle of

Bdellovibrio bacteriovorus'

Andrew Karl Fenton B.Sc. (Hons)

Thesis submitted to the University of

Nottingham for the degree of Doctor of

Philosophy

June 2010



I

Abstract

Bdellovibrio bacteriovorus are small, predatory bacteria that

grow within the periplasmic space of a host bacterium. Bdellovibrio

has a biphasic life-cycle switching from a uni-nucleoid, growth-

senescent ‘attack-phase’ to a novel, multi-nucleoid filamentous

‘growth-phase’, which elongates and divides, growing

saprophytically within the periplasmic space of their prey. Little is

known to date about Bdellovibrio developmental processes and cell

division within this periplasmic niche.

Recent publications have demonstrated that bacterial

cytoplasms house highly organised matrices of protein structures,

called the bacterial cytoskeleton. The Bdellovibrio processes of

prey-cell entry, filamentous cell growth and division coordination

brings cellular morphological changes and challenges that could be

coordinated by cytoskeletal elements. Green Fluorescent protein

(GFP)-tagging and gene knock out approaches were used to gain

insights into the function of these elements including: an

Intermediate filament like protein Ccrp, which has a role in the

maintenance of cell morphology; two actin homologues, which

appear to function at different points in the predatory cycle, MreB1

and MreB2; and a new type of cytoskeletal element designated

‘bactofilin’, which may have a role in cell division control.

Recent advances in GFP technologies have led to the

development of optimised GFP variants, such as mTFP1 and

mCherry. These have been used to reveal previously unseen detail

of Bdellovibrio development within prey. Bdellovibrio do not follow

the familiar pattern of bacterial cell division by binary fission,

instead divide synchronously at multiple sites along their length,

once prey resources are depleted. This yields both odd and even

numbers of progeny Bdellovibrio.
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CHAPTER ONE

Introduction

1.0 The predatory bacterium B. bacteriovorus

Bdellovibrio bacteriovorus are non-pathogenic Gram-negative

bacteria that prey upon a wide range of Gram-negative prey. It is

hoped that with further study Bdellovibrio can be harnessed into a

biological tool to control populations of pathogenic Gram-negative

bacteria e.g. Escherichia coli, Salmonella and Psudomonas

(Jurkevitch et al., 2000, Markelova et al., 2001). The potential

applications of Bdellovibrio therapy could have wide ranging

impacts on plant, animal and human health (Lenz. and Hespell.,

1978, Lambina et al., 1981, Fratamico and Whiting, 1995,

Jurkevitch et al., 2000, Schwudke et al., 2001).

B. bacteriovorus were first described in 1963 by Stolp and

Starr and have become the most extensively studied predatory

bacteria (Stolp and Starr, 1963). Beautiful microscopic analysis of

the B. bacteriovorus strain 109J, carried out between 1960 and

1975, gave initial insights into the basic life-cycle of this organism

(Fig. 1.1). Pioneering biochemical work on B. bacteriovorus

development through the predatory cycle from 1975 to the late

1980s gave mechanistic detail of how these bacteria digest prey

and incorporate that material in order to form new Bdellovibrio
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progeny. A genome-sequenced B. bacteriovorus strain HD100

(originally designated strain Bd100 in: (Stolp and Starr, 1963)) and

modern genetic techniques have led to the re-emergence of the

Bdellovibrio field in the late 1990s to present (Rendulic et al., 2004,

Lambert et al., 2003).

1.1 The B. bacteriovorus HD100 genome

Fully sequenced in 2004, the B. bacteriovorus strain HD100

has a genome approximately 3.8 Mb in size, which is roughly the

same size as that of its prey (Blattner et al., 1997, Rendulic et al.,

2004). All the genes required for metabolism and biosynthesis of

most amino acids, essential lipids and nucleic acids are also

present in the HD100 genome (Rendulic et al., 2004). It has

therefore been suggested that the transition to a predatory life

style has been recent event, therefore the genome reducing effect

that often occurs with parasitic bacteria has not had time to occur.

Alternatively, retaining the genes required for biosynthesis gives B.

bacteriovorus cells the option to grow host-independently (HI) in

the wild, this may provide sufficient selective pressure to maintain

the biosynthetic genes in the genome, and thus maintain its

genome size.
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1.2 The B. bacteriovorus predatory life-cycle

B. bacteriovorus predation was first described in detail by

Starr in 1966 and was historically considered a biphasic growth

cycle (Starr and Baigent, 1966). A highly motile and growth-

senescent B. bacteriovorus ‘attack-phase’ cell attaches to and

enters Gram-negative prey residing within the periplasm (Starr and

Baigent, 1966). Once established within this niche the B.

bacteriovorus cells secrete a series of hydrolytic enzymes to digest

the prey (Rendulic et al., 2004). Perhaps the earliest wave of

hydrolytic enzymes un-crosslink and partially digest the prey cell

wall, this weakens its structure leading to a rounding up the prey

cell forming an arrangement known as the bdelloplast (Thomashow

and Rittenberg, 1978b, Kessel and Varon, 1973). Monomers of the

digested prey are transported into the B. bacteriovorus and used

for growth in the ‘growth-phase’. B. bacteriovorus do not grow and

divide in the usual bacterial pattern of binary fission, but form an

extended vibriod or coiled cell that septates into multiple progeny

(Starr and Baigent, 1966). Newly formed B. bacteriovorus cells

mature by growing new flagella and escape out of the bdelloplast

restarting the cycle (Fig. 1.1).
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Figure 1.1. Schematic host-dependent predatory cycle for B. bacteriovorus on
E. coli prey. Diagram shows the biphasic growth-cycle of the predatory
bacterium B. bacteriovorus. Approximate time-points at which each stage of the
predatory lifcycle are reached are shown in brackets, these are based on
microscopic observations of synchronously infected predatory cultures (see
section 2.13.2 and Fig. 3.7).

1.2.1 Attack-phase B. bacteriovorus cells

Attack-phase HD100 B. bacteriovorus cells are small (1.02m

± 0.15 X 0.3m ± 0.02), highly motile cells that can travel up to

160 body lengths a second using a single sheathed polar flagellum

(Borgnia et al., 2008, Lambert et al., 2006a). The signals used by

B. bacteriovorus to find areas of high prey density are still

unknown, although oxygen and small biological compounds such as

amino acids have been suggested (Straley and Conti, 1974).

Early electron-microscopic (EM) studies provided the initial

insights into the cellular structure of B. bacteriovorus attack-phase

cells (Scherff et al., 1966, Burnham et al., 1968). More recently

cryo-electron-microscopic and tomographic techniques have been
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used to image unstained B. bacteriovorus attack-phase cells in

incredible detail (Borgnia et al., 2008) (Fig. 1.2). These techniques

have revealed previously unseen detail within B. bacteriovorus

attack-phase cells; such as the multiple ribosomal complexes and

the chemotaxis receptor array (Fig. 1.2).

Figure 1.2. Bdellovibrio bacteriovorus attack-phase cellular architecture
examined by Cryo-Electron Microscopy. Example Cryo-Electron Micrograph a B.
bacteriovorus attack-phase cell (Bd1167::Kn) showing all major cellular
architecture (taken at the NIH as a part of this study). The carbon film of the EM
grid (which appear as a darker shadowed area) and the 15 nm gold particles
(black specs) can be seen surrounding the cells. Image taken jointly with C.
Butan under the supervision of S. Subramaniam using methods described in
section 2.9.7. Scale bar = 500nm.
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1.2.2 B. bacteriovorus prey attachment and entry

B. bacteriovorus attack-phase cells reversibly attach to prey

at the non-flagellate pole in a short recognition phase (Rendulic et

al., 2004). Attack-phase cells will not enter dead prey or prey that

have suffered environmental insults; such as plasmolysis (Abram et

al., 1974).

B. bacteriovorus prey-cell entry is achieved by dragging and

squeezing the attack-phase cell through a small pore made in the

prey outer membrane using Type IV pili (Evans et al., 2007). Both

TEM and cryo-EM studies have shown that pili are present at the

non-flagellate pole of B. bacteriovorus attack-phase and HI cells

(Evans et al., 2007, Borgnia et al., 2008) (Fig. 1.2). These

conclusions have been recently confirmed using different

techniques by: (Mahmoud and Koval, 2010). It is still not known

precisely what B. bacteriovorus pili bind to within the prey,

however as a capping structure usually found on Type IV pili

encoded by the pilC1/Y1 gene is absent from the HD100 genome, it

is possible that there is no specific binding target (Lambert et al.,

2009).

Electron micrographs show B. bacteriovorus cells ‘squeeze’

through a pore made in the prey which is narrower than its width

(Fig. 1.3). As the attack-phase cell migrates into the prey the

‘squeezing’ can be observed at different points running the entire
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length of the cell (Fig. 1.3). This technique allows the B.

bacteriovorus cells to enter through as small a pore as possible,

preventing premature prey lysis. The tight seal that this process

would create at the site of entry may prevent leakage of prey-

periplasmic contents, and maintain prey proton motive force, both

of which could be utilised by the invading B. bacteriovorus cell.

Abram et al suggested that attack-phase cells must take on a

‘plastic nature’ in order to accomplish this ‘squeezing’ (Abram et al.,

1974) (Fig. 1.3).
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Figure 1.3 B. bacteriovorus cells ‘squeeze’ through a pore made in the prey
outer-membrane. (A) Electron micrographs showing B. bacteriovorus (strain
109J) cells 10-15 min after E. coli B prey infection at different stages of prey-
entry, running from image 7 to 9. Images show B. bacteriovorus cells squeezing
through an entry pore smaller that their width (arrows marked ‘c’), also B.
bacteriovorus cells ‘flatten out’ at the pole of the cell as they are attached to
prey internal structures (‘cm’ arrows). Samples were prepared by OsO4 fixation,
embedded in Epon 812 and sectioned; this gives rise to the visible membrane
distortions. Taken from (Abram et al., 1974). (B) Transmission electron
micrographs of B. bacteriovorus (strain HD100) cells invading E. coli S17-1 prey,
cells stained using 1% URA pH 4.0. Taken from (Evans et al., 2007). All scale
bars = 0.2 µm.
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1.2.3 The B. bacteriovorus growth-phase; bdelloplast

formation and establishment

Once prey entry has been achieved the B. bacteriovorus cell

synthesises and secretes a battery of degradative enzymes that kill

and digest the prey. Some of the first enzymes released by the B.

bacteriovorus cell un-crosslink and solubilise 10-15% of the prey

cell wall causing the prey cell to change shape from a rod to a

sphere (Thomashow and Rittenberg, 1978b). Digested prey

monomers are taken up into the B. bacteriovorus cell and growth

senescence is relaxed leading to cell elongation. This overall

structure of B. bacteriovorus cell(s) growing within a dead rounded

up prey cell is called a bdelloplast, a name first coined by Kessel

and Varon in 1973 (Kessel and Varon, 1973) (Fig. 1.1).

1.2.4 Growth phase � Bdellovibrio Septation

Using digested prey components B. bacteriovorus elongate

into either extended vibriod or coiled ‘corksrew’ shapes, typically

three to five times the length of an attack-phase cell (Starr and

Baigent, 1966). EM observations suggested that one pole of the B.

bacteriovorus cell is fixed to the prey cell wall (presumably by pilli

and non-flagellate pole), thus the elongating B. bacteriovorus cell

would appear to elongate from one pole only (Scherff et al., 1966).
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The mature B. bacteriovorus growth-phase cell is a single

extended multiploid cell immediately before septation. This

suggests that unlike many other bacterial species, there is no

regulatory coupling between DNA replication and septation in B.

bacteriovorus (Ruby and Rittenberg, 1983). Septation of B.

bacteriovorus growth-phase cells in synchronously infected E. coli

S17-1 predatory cultures takes place between 3 and 4 hours;

however what the signal is that causes the cell to septate, or what

pattern the filament breaks down remains an unknown; although

early EM work suggests that spetation proceeds sequentially along

the filament (Scherff et al., 1966). For a more detailed introduction

to B. bacteriovorus septation see chapter 4 (4.1).

1.2.5 Bdeloplast lysis

Once resources within the bdelloplast are exhausted B.

bacteriovorus cells secrete lytic enzymes that lyse the remaining

prey envelope and allow the newly formed progeny cells to escape

(Thomashow and Rittenberg, 1978b). B. bacteriovorus progeny

swim around within the exhausted bdelloplast prior to lysis; it is

not known to what extent this, if at all, contributes to the lysis of

the bdelloplast (Fig. 1.1 and supplementary Movie 10).
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1.3 Bdellovibrio Host-independent growth

Maintenance of B. bacteriovorus cultures in the lab involves

‘feeding’ them Gram-negative prey; usually E. coli strain S17-1 in

Ca/HEPES buffer (section 2.2.2.2). Under these conditions B.

bacteriovorus can be considered host-dependent (HD). However,

plating many attack-phase cells onto rich media allows the isolation

of a few host-indepentent (HI) strains (section 2.2.3). For example

Stolp in 1963 described how 5X108 B. bacteriovorus attack-phase

cells placed on a plate of rich media would yield only a single host-

independent colony (Stolp and Starr, 1963). The frequency of 1 HI

in approximately 1X106-107 B. bacteriovorus cells suggests that the

generation of HI strains is due to a single mutational event (Cotter

and Thomashow, 1992). In the majority of cases HI strains contain

a mutation in a specific region of the genome named the host

interaction locus, or hit locus (Cotter and Thomashow, 1992). Little

is known about the function of genes at the hit locus; representing

the full Bd108 open reading frame (ORF) and the 3’ end of the

Bd109 ORF, and almost nothing is known of the mechanisms of HI

growth in strains where the hit locus is unmodified (Rendulic et al.,

2004).

Growth rates and cell morphologies of B. bacteriovorus HI

strains are highly variable between isolates. Morphologies vary

from small and ‘attack-phase like’ to very long cells, typically
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between 20-50 m (Shilo and Bruff, 1965) (also see Fig. 5.12C).

Spiral shapes and spheroplasts are also often observed in HI

cultures (Shilo and Bruff, 1965). HI strains can be re-introduced to

prey and effectively ‘turned HD’ (Shilo and Bruff, 1965); however

these strains rarely revert to the wild-type predation rates and

often have much more diverse morphologies than parent host-

dependent strains (Seidler and Starr, 1969).

A key function of HI strains in Bdellovibrio research has been

to rescue deletion strains that are non-predatory. An example of

this is the B. bacteriovorus HD100 pilA deletion strain, a strain that

is unable to penetrate into the periplasm of prey and thus is non-

predatory (Evans et al., 2007). In this case 10 independently

generated HI KO lines were tested to confirm the non-predatory

phenotype of the pilA KO strain was a true phenotype and not the

result of HI strains general predation deficiency (Evans et al.,

2007).
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1.4 The bacterial cytoskeleton

Recent work has shown bacterial cells contain a cellular

cytoskeleton analogous to the eukaryotic cytoskeleton, disproving

the long standing dogma that the cytoskeleton was a defining

feature of the eukaryotic cell (for a detailed review see (Shih and

Rothfield, 2006)). A cytoskeleton is a series of internal cellular

structures that aid co-ordination of cellular processes and

maintenance of proteins at a particular cellular address.

1.4.1 The bacterial actin homologues

Unlike a eukaryotic cell where overall cell morphology is

determined solely by the underlying cytoskeleton, bacterial cell

shape is principally delimited by the peptidoglycan (PG) cell wall or

murein saculus. A detailed review of the biochemistry of the

bacterial cell wall and current thinking on how it is carefully

enlarged and turned-over without compromising stability see

seminal paper by Höltje (Holtje, 1998). The bacterial cell wall can

be thought of as a single continuous molecule consisting of glycan

strands bridged by short peptides providing strength (Holtje, 1998).

The thickness and composition of this structure varies between

bacteria, but for a Gram-negative bacteria it can be thought of as

between one and three molecules thick (Holtje, 1998). The

Penicillin-Binding-Proteins (PBPs) are the enzymes responsible for
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carefully making and destroying peptidoglyan, these proteins are

present in a tightly controlled complex vital for maintaining cell wall

strength as PG is elongated and turned over.

In 2001-03 Jeff Errington’s lab provided the evidence which

suggested that in Bacillus subtillis the positioning of the PBP

complex was due to an internal actin homologue that formed an

internal helical filament under the inner surface of the cytoplasmic

membrane called MreB (Jones et al., 2001, Daniel and Errington,

2003). Inhibiting MreB function using an MreB specific inhibitor A22

results in uncontrolled incorporation of PG into the cell wall

generating spherical cells that are non-viable in the long term (Iwai

et al., 2002, Iwai et al., 2004) (For more information on A22 and

its action see Chapter 5.1.2). Work in other bacteria, such as

Caulobacter crescentus and E. coli, has shown that an MreB

filament controls cell shape for most non-spherical bacteria (Kruse

et al., 2003, Gitai et al., 2005). In this way the bacterial

cytoskeleton indirectly controls cell morphology.

Further work on MreB has shown that it forms a complex with

MreC and MreD that penetrates the cytoplasmic membrane and

contacts the PBPs (Kruse et al., 2005), in addition RodA as well as

the recently discovered RodZ also form part of this ‘elongase’

complex, Fig. 1.4 (Shih and Rothfield, 2006, Gerdes, 2009,
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Bendezu et al., 2009). See chapter 5.1 for a more detailed

introduction into the dynamics of the MreB filament.

Figure 1.4 The bacterial ‘elongase’ complex. Schematic representation of the
protein complex responsible for coordinating bacterial cell wall elongation.
Adapted from (Gerdes, 2009).

Experiments using the MreB specific inhibitor A22 and

fluorescently labelled C. crescentus chromosomes has shown that

the MreB filament plays a role in the initial separation of newly

replicated daughter chromosomes (Gitai et al., 2005). This work

complemented a similar experiment in E. coli where cells were

treated with cephalexin, giving elongated polyploid cells, which

failed to separate their chromosomes in the presence of both A22
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and MreB null mutants (Kruse et al., 2003). Taken together this

shows that MreB has wider roles in chromosome segregation.

MreB is not the only actin homologue to be found in bacteria.

The FtsA and ParM proteins are both well described members of

this protein family (Shaevitz and Gitai, 2010). These proteins have

specialised to carry out very different cellular functions; ParM

(together with ParR) partitions plasmids to the poles of the dividing

bacterial cells ensuring their segregation, whereas FtsA has a role

in septation by aiding FtsZ-ring establishment at mid-cell.

The wider family of bacterial actin homologues continues to

grow and expand; for example AlfA, a protein distantly related to

MreB and ParM, is a recently discovered DNA segregation protein

from Bacillus subtilis (Popp et al., 2010, Shaevitz and Gitai, 2010).

This expansion is due to refined BLAST searches and an

appreciation of how actin proteins fold when examining alignments.

For a very recent review of the whole family of actin homologues in

bacteria see (Shaevitz and Gitai, 2010).
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1.4.2 Bacterial intermediate-filament like proteins

Bacterial genomes do not only contain eukaryotic actin

homologues, they also contain structural homologues to the family

of intermediate filaments, as well as tubulin homologues (discussed

in section 1.4.3).

The most studied bacterial intermediate filament like (IF-like)

element is the Crescentin (CreS) protein discovered in Caulobacter

crescentus (Ausmees et al., 2003). The CreS filament gives the

Caulobacter cell a vibriod shape by physically bending the MreB

cytoskeleton on one side from within, leading to a vibriod cell wall

and thus the defining ‘crescent’ cell shape of these bacteria

(Cabeen et al., 2009).

IF proteins are thought of as stable filaments in eukaryotic

cells providing cell structure, rigidity and adhesion. This is due to

the structure of these filaments as these proteins spontaneously

oligomerise forming very stable coiled-coiled structures, requiring

considerable energy investment to uncoil (Bagchi et al., 2008). A

type of IF-like element in Streptomyces coeilcolor formed by the

FilP protein has been shown to have a similar structural role in

bacteria; with cells appearing ‘softer’ in filP deletion strains when

probed using atomic force microscopy (Bagchi et al., 2008). See

chapter 3.1 for more information on bacterial intermediate-filament

like (IF-like) proteins.
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1.4.3 Bacterial tubulin homologues - FtsZ

The most studied eukaryotic microtubule (tubulin) homologue

in bacteria is the cell division protein FtsZ (Errington et al., 2003).

First discovered by complementation studies of mutant E. coli

strains defective in cell division at non-permissive temperatures,

the Filamentous Temperature Sensitive genes (or fts genes)

control the process of cell division in bacteria (Goehring and

Beckwith, 2005). The first stage in this process is the

establishment of an FtsZ polymer just below the cell membrane at

midcell forming a ring-like structure, through a series of

protein:protein interactions this structure recruits downstream Fts

proteins in an hierarchical manner (Goehring and Beckwith, 2005)

(Fig. 1.5). These proteins have the peptidoglycan-biosynthetic,

DNA translocation/repair and membrane invagination activities

required for accurate septation (Errington et al., 2003, Di Lallo et

al., 2003). See Chapter 4.2 for a more detailed introduction to

bacterial septation machinery.
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Figure 1.5 Hierarchical recruitment of division proteins to the E. coli bacterial
septum. The tubulin homologue FtsZ is anchored to the cell membrane by FtsA
and ZipA, and the other septation proteins are then added to the complex in an
ordered pattern, proceeding from left to right in this figure. This diagram does
not accurately represent the details of the protein:protein interactions in this
complex. OM = outer-membrane, PG = peptidoglycan, IM = inner-membrane.
Adapted from (Shih and Rothfield, 2006).

1.4.4 Bacteria specific cytoskeletal elements � ParA and

�Bactofilin�

In addition to containing homologues of eukaryotic

cytoskeletal elements a series of elements have been described

which, as yet, are exclusive to prokaryotes.

The ParA family of proteins form long filaments which have

been shown to have a role in both plasmid and chromosome

segregation (Hiraga, 2000). On binding to a ParB-DNA complex

ParA forms filaments which seem to pull plasmids to the poles of E.

coli cells, ensuring the inheritance of low copy-number plasmids in

bacterial populations (Ringgaard et al., 2009).
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ParA in Cyanobacteria has a role in maintaining the

carboxysomes at discrete loci within the cytoplasm along the

lengths of the rod-shaped cells. This was demonstrated using a

strain carrying a combination of a parA knock-out strain and a

carboxysome-GFP label, cells of this strain having these carbon-

fixing ‘organelles’ clustered in one large locus (Savage et al., 2010).

The number of cytoskeletal proteins known in bacteria is still

growing, a new class of filamentous bacterial proteins has been

recently described containing the domain designated DUF583 in the

PFAM database (Kuhn et al., 2010). These proteins have been

designated ‘bactofilins’ based on their predicted polymerisation

properties (Kuhn et al., 2010). These filaments form stable

filament bundles which require no cofactors to polymerise very

much like IF elements (Kuhn et al., 2010). Initially discovered in M.

xanthus, these proteins were also found to localise to the stalk pole

in C. crescentus, organising the cell-wall biosynthesis, through the

localisation of Pbp5 in a cell-cycle dependent manner (Kuhn et al.,

2010). In E. coli expressing the DUF583 domain-containing gene

SO1662 from Shewanella oneidensis the filament localised to the

site of cell division (Kuhn et al., 2010). It is still largely unclear

what the many functions of these proteins are. See Chapter 4.5 for

a more detailed introduction to bacterial septation machinery.
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1.5. Challenges to the Bdellovibrio cytoskeleton

The B. bacteriovorus cell has a series of cell morphological

challenges to overcome through its predatory lifestyle that the

cytoskeleton may be involved with or influenced by. See Fig. 1.6

for a brief summary of potential cytoskeletal functions.

Figure 1.6 Schematic host-dependent predatory cycle for B. bacteriovorus on E.
coli prey, showing the different phases of growth and inferred demands on the B.
bacteriovorus cell cytoskeleton. References where the roles of the cytoskeleton
in cell development have been proven for other bacteria are provided in
parentheses. The status of the prey genome is both drawn from an earlier study
(Matin and Rittenberg, 1972) and confirmed by work in this study (Fig. 5.5).

The attack-phase B. bacteriovorus cell is a growth-senescent

cell as it does not significantly change shape or size over extended

periods of time. To explain this, cell wall biosynthesis in the attack-

phase cell must be inhibited. This could indicate a quiescent
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cytoskeleton either delocalised (which is probably not likely) or in

situ but not turning-over (Fig. 1.6).

Electron micrographs have shown the B. bacteriovorus

attack-phase cell ‘squeezing’ through a hole it has made in the

outer-membrane of the prey; see Fig. 1.3. This process could

involve a ‘softening’ of the B. bacteriovorus cell wall allowing easy

deformation; a modification process which would likely be

controlled by the underlying cytoskeleton (Fig. 1.6). Alternatively

polymers of intermediate filament like proteins could exert an

internal pulling of the cell wall to deform the cell at the site of prey

entry, as these proteins have been shown to pull against bacterial

cellular components in C. crescentus and contribute to cell shape

stability in S. coelicolor (Bagchi et al., 2008, Charbon et al., 2009).

It is also not known how the growth-phase filamentous cell

within the bdelloplast is generated and remains resistant to

division, despite having multiple potential sites for septation along

its length while elongating, until division is initiated prior to

bdelloplast lysis (Fig. 1.6). In addition the pattern of filamentous

cell division in predatory Bdellovibrio is also unknown (see section

4.1.5).
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1.6 Aims and objectives of this study

Many of the developmental processes of predatory B.

bacteriovorus within bdelloplasts are poorly understood. The

potential roles of the B. bacteriovorus cytoskeleton in these

processes (section 1.5, Fig. 1.6) make a tempting target. Therefore,

the broad aim of my PhD was:

To identify and investigate the functions of cytoskeletal

proteins found in B. bacteriovorus strain HD100 in order to gain

insight into how Bdellovibrio cells develop within the bdelloplast. To

achieve this, the specific objectives were:

 Identify and clone bacterial cytoskeletal ORFs in the HD100

genome and investigate their potential roles in B.

bacteriovorus prey-cell entry and cell morphology. Crescentin

was the first target (Chapter 3), a novel bactofilin-like protein

Bd3904 became the second (Chapter 4), with MreBs the third

(Chapter 5).

 Understand the septation process in Bdellovibrio, the first

attempt was by trying to GFP-label the tubulin homologue

FtsZ in HD100 to better understand the gross patterns of B.

bacteriovorus cell division (Chapter 4). This was followed by

adapting GFP-prey technologies to visualise wild-type B.

bacteriovorus cells developing within bdelloplasts.
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 As some cytoskeletal protein genes were found to be

essential for viability a final objective was to develop a

technique for GFP tagging specific proteins in B.

bacteriovorus to investigate both their function and cellular

address (methods described in section 2.12, and used in

chapters 3, 4 and 5).
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1.7 Use of Green Fluorescent Protein (GFP) in cellular

biology and challenges when detecting GFP-Protein fusions

in B. bacteriovorus.

1.7.1 Introduction to the GFP molecule

A large proportion of the work presented in this thesis

involves the generation and imaging of both B. bacteriovorus and E.

coli strains carrying the Green Fluorescent Protein(GFP)-like

fluorphore mTFP fused to a protein of interest; in order to study

the function of the target protein and find its cellular address. This

section will provide a brief summary of background information on

GFP work in cellular biology and the challenges faced when using

this technology in B. bacteriovorus.

Recognised for their respective contribution to cellular biology,

the award of a Nobel Prize for Chemistry in 2008 was equally

awarded to: Osamu Shimomura, for the discovery of the GFP

protein from the jelly fish Aequorea victoria, Roger Tsien for the

insights into the structure and nature of the GFP fluorophore, and

to Martin Chalfie for the use of GFP-protein fusions to colour cells

and target proteins. Mutational studies and X-Ray crystal structures

have revealed that GFP has an 11 stranded beta-sheet barrel-like

structure through which is treaded a alpha helix which contains the

fluorophore, shown in Fig. 1.7A (Tsien, 1998). The ability of GFP to

catalyze the formation of its own fluorophore from the amino-acid
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backbone of the central helix (Fig. 1.7B), and show fluorescence

activity without the need for co-factors (although it does require

oxygen), is the defining feature of this protein which makes it

possible to visualise GFP in live unfixed cells. Using this structural

data and directed evolution approaches it has been possible to

engineer optimised GFP proteins to give a desired spectra, maximal

brightness and photostability (Shaner et al., 2004, Ai et al., 2006).

Figure 1.7 The tertiary structure of the GFP molecule (A), and the
intramolecular biosynthesis of the GFP fluorophore (B). Taken from (Tsien,
1998).

1.7.2 Detecting GFP in B. bacteriovorus

Work by a previous PhD student, Katy Evans, had shown that

an enhanced GFP (eGFP) would fold and function within B.

bacteriovorus cells (Evans, 2007) (Fig. 1.8). In this work

transposon mutagenesis of B. bacteriovorus (strain 109J and

HD100) was used to randomly introduce a fusion construct
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containing the egfp ORF into the genome, strains carrying inserts

were selected using kanamycin (Evans, 2007). Whilst only a small

fraction of isolates showed weak fluorescence activity, presumably

as high abundance proteins had been tagged in these case, fewer

still had defined sub-cellular foci (Fig. 1.8) (Evans, 2007). This

work highlighted the need to select a new brighter GFP fluorophore

for use in the tiny B. bacteriovorus cells.

Figure 1.8 Proof-of-principle that GFP can function and be detected in B.

bacteriovorus attack-phase cells. B. bacteriovorus HD100 strain: HDGFP14, and

109J strain: 109GFP26, are shown. All images taken at the same magnification

(100x) but digitally zoomed for clarity and to illustrate possible nuclear exclusion

or polar localisation of the GFP in the 109GFP38 strain. Stains and images shown

here are taken from Katy Evans’s thesis: (Evans, 2007).

Auto-fluorescence is also a major problem in cells of rich

amino acid content and unfixed membrane structures; like

bdelloplasts. Therefore selection of a GFP for use in visualising
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developmental events within minuscule B. bacteriovorus cells (1

µm X 0.3 µm) (Borgnia et al., 2008), which in turn are within an

auto-fluorescent bdelloplast, must produce a strong and clear

signal in order to be discriminated from the background.

The overall signal strength of GFP molecules is a trade off

between quantum-yield and extinction coefficient (Shaner et al.,

2004, Shaner et al., 2005). The extinction coefficient for a given

GFP can be thought of as the amount of light energy absorbed (per

mole) by the GFP fluorophore, the quantum yield is the proportion

of that absorbed energy realised as fluorescence; taken together

these provide a rough measure of GFP ‘brightness’ (Extinction-

coefficent X Quantum yield), Table 1.1.

All GFP molecules bleach i.e. fluorescence activity decreases

under intense stimulation. Thus detection of a GFP molecule in a

live cell is not solely based on its brightness. A GFP fluorophore

with high photostability allows for multiple excitations of the same

GFP molecule without bleaching; of course if you do this you lose

overall image clarity.

Taking all these considerations into account the monomeric

teal-fluoresent-protein (TFP) was chosen for tagging B.

bacteriovorus proteins in this study. The tfp gene was first isolated

from the Clavularia coral and optimised by random mutational

methods for monomerisation and fluorophore optimisation,
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generating the monomeric derivative mTFP1 (hereafter called mTFP)

(Ai et al., 2006). The mTFP molecule has a high brightness and

photostability (Table 1.1) without introducing any experimental

complications which may result from GFP oligomerisation, as may

be the case for the brighter YPet protein (Table 1.1).

Fluorescent

Protein

Max

Excitation
/Emission
(nm)

Extinction

coefficient
(mM-1 cm-1)

Quantum

yield

Brightness

(mM cm)-1

Photo-

stability
(s)

Oligomr

-isation

DsRed-
monomer

558/583 35 0.1 3.5 16 Monomer

mCherry 587/610 78 0.22 16 96 Monomer

YPet 517/530 104 0.77 80 49
Weak
dimer

eGFP 488/507 56 0.6 34 174
Weak
dimer

mTFP1 462/492 64 0.85 54 163 Monomer

Table 1.1 GFP fluorophore data. Adapted from: (Shaner et al., 2004, Shaner et
al., 2005, Ai et al., 2006).

The results of my studies using both fluorescent protein

technologies and directed mutagenesis are shown in chapter 3 for

Crescentin, in chapter 4 for a study on bacterial septation and a

novel bactofilin-like protein Bd3904, and in chapter 5 for MreB

proteins.
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CHAPTER TWO

Materials and Methods

2.1 Strains and Plasmids

Table of bacterial strains used in this study

Strain Description Source or reference

E. coli strains

S17-1

thi, pro, hsdR
�
, hsdM

+
, recA; integrated plasmid RP4-

Tc::Mu-Kn::Tn7; used as donor for conjugation of

plasmids into B. bacteriovorus
(Simon et al., 1983)

DH5ɲ

F
-
endA1 hsdR17 (rk

�
mk

�
) supE44 thi-1 recA1 gyrA (Nal

r
)

relA1 ȴ;lacIZYA-argF) U169 deoR (80dlacȴ;lacZ)M15) ;

used as a cloning strain.
(Hanahan, 1983)

S17-1:pZMR100

S17-1 strain containing pZMR100 plasmid to confer

Kn
r
; Used as Kn

r
prey for B. bacteriovorus predatory

cultures
(Rogers et al., 1986)

S17-1:pCL100

S17-1 strain containing pCL100 plasmid to confer Kn
r

and luminescence. (Lambert et al., 2003)

S17-1:pMAL-

p2_mCherry

S17-1 strain containing the pMAL-p2_mCherry plasmid

which exports a MalE-mCherry fusion protein into the

periplasm.

Dr R. Woods

(unpublished)

DH5:pAKF45
DH5 strain containing pAKF45 plasmid. Strain

expresses the HD100 B. bacteriovorus gene: Bd3904. This study

DH5:pAKF52

DH5 strain containing pAKF52 plasmid. Strain

expresses the modified HD100 B. bacteriovorus gene:

huA-mtfp.
This study

DH5:pAKF53

DH5 strain containing pAKF53 plasmid. Strain

expresses the modified HD100 B. bacteriovorus gene:

Bd3904-mtfp.
This study

Bdellovibrio bacteriovorus strains

HD100 Type strain; genome sequenced

(Stolp and Starr,

1963),

(Rendulic et al.,

2004)

HD100 ccrp::Kn
r

HD100 strain with a kanamycin-interrupted ccrp gene

(Bd2697). This study
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Table 2.1 Table of bacterial strains used in this study

Strain Description Source or reference

HD100

Bd1169::Kn
r

HD100 strain with a kanamycin-interrupted Bd1169

gene. This study

HD100

Bd2345::Kn
r

HD100 strain with a kanamycin-interrupted �ABC� gene

(Bd2345). Kn
r
cassette placed in the equivalent

genome position as the B. bacteriovorus strain109JK;

which has no predatory phenotype. (Lambert et al.,

2003)

Dr L. Hobley

(unpublished)

HD100 ccrp-mtfp

HD100 strain carrying integrated plasmid pAKF42a at

the ccrp (Bd2697) locus This study

HD100 Bd1169-

mtfp

HD100 strain carrying integrated plasmid pAKF43a at

the Bd1169 locus This study

HD100 huA-mtfp

HD100 strain carrying integrated plasmid pAKF54 at

the huA (Bd2104) locus This study

HD100 Bd3904-

mtfp

HD100 strain carrying integrated plasmid pAKF58 at

the (Bd3904) locus This study

HD100mreB1-

mtfp

HD100 strain carrying integrated plasmid pAKF41a at

themreB1 (Bd0211) locus (Fenton et al., 2010)

HD100mreB2-

mtfp

HD100 strain carrying integrated plasmid pAKF40a at

themreB2 (Bd1737) locus (Fenton et al., 2010)

HD100

filC1/filC1::Kn
r

Merodiploid HD100 with both wild-type and

kanamycin-interrupted fliC1 (Evans et al., 2007)

Bdellovibrio bacteriovorus host-independent strains

HID2 Host independent derivative of HD100 (Evans et al., 2007)

HID13 Host independent derivative of HD100 (Fenton et al., 2010)

HD100

mreB1-mtfp

(HI strains 1 � 10)

Ten host independent derivative stains of HD100

mreB1-mtfp
This study

HD100

mreB2-mtfp

(HI strains 1 � 10)

Ten host independent derivative strains of HD100

mreB2-mtfp
This study

HD100

filC1/filC1::Kn
r

(HI strains 1 � 10)

Ten host independent derivative strains of HD100

filC1/filC1::Kn
r This study
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Table of plasmids used in this study

Plasmids Description Source or reference

pUC19
Amp

r
high copy number cloning vector

(Yanisch-Perron et al., 1985)

pGEM7
Amp

r
high copy number cloning vector

(Ebright et al., 1992)

pUC4K
High copy number vector used as source of Kn

r
cassette in B.

bacteriovorus kanamycin-interruption knockouts. (Yanisch-Perron et al., 1985)

pTrc99A
Ptrc based Amp

r
expression vector from Pharmacia

(Amann et al., 1988)

pSET151
Suicide vector used for conjugation and recombination into the B.

bacteriovorus genome (Bierman et al., 1992)

pK18mobsacB
Kn

r
suicide vector used for conjugation and recombination into B.

bacteriovorus genome (Schafer et al., 1994)

pBAD_mtfp1
pBAD/His B vector containing themtfp1 ORF

(Ai et al., 2006)

pAKF04 remake

Derivative of pTrc99A with insertion of a 722 bp fragment

containing themtfp ORF, amplified from the pBAD_mtfp1 vector

using the primers mTFP_F and mTFP_R, and ligated blunt into the

the SmaI site downstream of the Ptrc promoter. KpnI site

immediately upstream of themtfp ORF used for gene-mtfp fusions.

This study

pAKF05

Derivative of pUC19 with insertion of a 2677 bp PCR product

containing the HD100 rodA gene plus 1 kb of 3� and 5� flanking

genomic DNA. PCR amplification of the HD100 genome using the

primers RodA_KO_F and RodA_KO_R introduced KasI and XbaI sites

used to clone into the MCS of pUC19.

This study

pAKF06

Derivative of pAKF05 containing the inactivated HD100 rodA gene

with 1Kb 5' and 3' flanking genomic DNA. A Kn
r
cartridge from the

pUC4K vector was inserted into a unique BamHI site of the rodA

gene to inactivate it.

This study

pAKF07

Derivative of the mobilisable pSET151 vector containing the

kanamycin-interrupted HD100 rodA gene with 1 kb 5' and 3' flanking

genomic DNA cloned into the MCS using KasI and XbaI sites of

pSET151 ligated with a KasI and SpeI fragment of pAKF06

This study

pPW100

Derivative of pUC19 with insertion of a 3009 bp PCR product

containing the HD100mreB1 gene plus 1 kb of 3� and 5� flanking

genomic DNA. PCR amplification of the HD100 genome using the

primers mreB2-1 and mreB2-2, introduced KpnI and XbaI sites used

for the insertion into the MCS of pUC19.

Mr P. C. Wagstaff

pAKF09

Derivative of pPW100 containing the inactivated HD100mreB1 gene

with 1 kb 5' and 3' flanking genomic DNA. A blunt Kn
r
cartridge from

the pUC4K vector digested with HincII was inserted into a unique

SnaB1 site of themreB1 gene to inactivate it.

This study

pAKF10

Derivative of the mobilisable pSET151 vector containing the

kanamycin-interrupted HD100mreB1 gene with 1 kb 5' and 3'

flanking genomic DNA. A SphI pAKF09 fragment was inserted into

the SphI site in the MCS of pSET151.

(Fenton et al., 2010)

pAKF13

Derivative of pGEM7 with insertion of a 3251 bp PCR product

containing the HD100 Bd1167 gene plus 1 kb of 3� and 5� flanking

genomic DNA. PCR amplification of the HD100 genome using the

primers CreS2_KO2_F and CreS2_KO2_R introduced XbaI sites used

to clone into the MCS of pGEM7.

This study



33

Plasmids Description Source or reference

pAKF14

Derivative of pAKF13 containing the inactivated HD100 Bd1167 gene

with 1 kb 5' and 3' flanking genomic DNA. A blunt Kn
r
cartridge from

the pUC4K vector digested with HincII was inserted into a unique

PmlI site of the Bd1167 gene to inactivate it.

This study

pAKF15

Derivative of the mobilisable pSET151 vector containing the

kanamycin-interrupted HD100 Bd1167 gene with 1 kb 5' and 3'

flanking genomic DNA. An XbaI pAKF14 fragment was inserted into

the XbaI site in the MCS of pSET151.

This study

pAKF17

Derivative of pGEM7 with insertion of a 2973 bp PCR product

containing the HD100mreB2 gene plus 1 kb of 3� and 5� flanking

genomic DNA. PCR amplification of the HD100 genome using the

primers MreB1_KO_F and MreB1_KO_R introduced XbaI sites used

to clone into the MCS of pGEM7.

This study

pAKF18

Derivative of pAKF17 containing the inactivated HD100 mreB2 gene

with 1 kb 5' and 3' flanking genomic DNA. A blunt Kn
r
cartridge from

the pUC4K vector digected with BamHI was inserted into a unique

BglII site of themreB2 gene to inactivate it.

This study

pAKF19

Derivative of pGEM7 with insertion of a 3129 bp PCR product

containing the HD100 ccrp gene plus 1 kb of 3� and 5� flanking

genomic DNA. PCR amplification of the HD100 genome using the

primers CreS1_KO2_F and CreS1_KO2_R introduced XbaI sites used

to clone into the MCS of pGEM7.

This study

pAKF20

Derivative of pSET151 containing kanamycin-interrupted HD100

mreB2 ORF with 1 kb 5' and 3' flanking genomic DNA. An XbaI

pAKF18 fragment was inserted into the XbaI site in the MCS of

pSET151.

(Fenton et al., 2010)

pAKF21

Derivative of pAKF19 containing the inactivated HD100 ccrp gene

with 1 kb 5' and 3' flanking genomic DNA. A blunt Kn
r
cartridge from

the pUC4K vector digected with HincII was inserted blunt into a

unique NruI site of the ccrp gene to inactivate it.

This study

pAKF22

Derivative of the mobilisable pSET151 vector containing the

kanamycin-interrupted HD100 ccrp gene with 1 kb 5' and 3' flanking

genomic DNA. An XbaI pAKF21 fragment was inserted into the XbaI

site in the MCS of pSET151.

This study

pAKF25a

Derivative of pAKF53 with insertion of a 510 bp HD100 ftsK ORF

fragment 1-1, fused frame withmtfp. PCR amplification of the

HD100 genome using the primers FtsK_site1_F and FtsK_site1_R,

introduced a 5� EcoRI site and a 3� KpnI site used for in frame

insertion with themtfp ORF on the pAKF53 vector.

This study

pAKF26a

Derivative of pAKF53 with insertion of a 705 bp HD100 ftsK ORF

fragment 1-2, fused frame withmtfp. PCR amplification of the

HD100 genome using the primers FtsK_site1_F and FtsK_site2_R,

introduced a 5� EcoRI site and a 3� KpnI site used for in frame

insertion with themtfp ORF on the pAKF53 vector.

This study

pAKF27a

Derivative of pAKF53 with insertion of an 888 bp HD100 ftsK ORF

fragment 1-3, fused frame withmtfp. PCR amplification of the

HD100 genome using the primers FtsK_site1_F and FtsK_site3_R,

introduced a 5� EcoRI site and a 3� KpnI site used for in frame

insertion with themtfp ORF on the pAKF53 vector.

This study

pAKF28a

Derivative of pAKF53 with insertion of a 1200 bp HD100 ftsK ORF

fragment 1-4, fused frame withmtfp. PCR amplification of the

HD100 genome using the primers FtsK_site1_F and FtsK_site4_R,

introduced a 5� EcoRI site and a 3� KpnI site used for in frame

insertion with themtfp ORF on the pAKF53 vector.

This study
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Plasmids Description Source or reference

pAKF29a

Derivative of pAKF53 with insertion of an 1121 bp HD100 ftsZ ORF

fragment 1-1, fused frame withmtfp. PCR amplification of the

HD100 genome using the primers FtsZ_site1_F and FtsZ_site1_R,

introduced a 5� EcoRI site and a 3� KpnI site used for in frame

insertion with themtfp ORF on the pAKF53 vector.

This study

pAKF30a

Derivative of pAKF53 with insertion of a 1541 bp HD100 ftsZ ORF

fragment 1-2, fused frame withmtfp. PCR amplification of the

HD100 genome using the primers FtsZ_site1_F and FtsZ_site2_R,

introduced a 5� EcoRI site and a 3� KpnI site used for in frame

insertion with themtfp ORF on the pAKF53 vector.

This study

pAKF31a

Derivative of the mobilisable pK18mobsacB vector containing the

ftsK(1-1)mtfp construct. An EcoRI, BamHI fragment of pAKF25a was

inserted into the equivalent sites in the MCS of pK18mobsacB.
This study

pAKF32a

Derivative of the mobilisable pK18mobsacB vector containing the

ftsK(1-3)mtfp construct. An EcoRI, BamHI fragment of pAKF27a was

inserted into the equivalent sites in the MCS of pK18mobsacB.
This study

pAKF33a

Derivative of the mobilisable pK18mobsacB vector containing the

ftsK(1-4)mtfp construct. An EcoRI, BamHI fragment of pAKF28a was

inserted into the equivalent sites in the MCS of pK18mobsacB.
This study

pAKF34a

Derivative of the mobilisable pK18mobsacB vector containing the

ftsZ(1-1)mtfp construct. An EcoRI, BamHI fragment of pAKF29a was

inserted into the equivalent sites in the MCS of pK18mobsacB.
This study

pAKF35a

Derivative of the mobilisable pK18mobsacB vector containing the

ftsK(1-2)mtfp construct. An EcoRI, BamHI fragment of pAKF29a was

inserted into the equivalent sites in the MCS of pK18mobsacB.
This study

pAKF36a

Derivative of pAKF53 with insertion of a HD100mreB2 3� ORF

fragment lacking the stop codon fused withmtfp. PCR amplification

of the HD100 genome using the primers MreB1_site1_F and

MreB1_site1_R introduced a 5� EcoRI site and a 3� KpnI site used for

in frame insertion with themtfp ORF on the pAKF53 vector.

This study

pAKF37a

Derivative of pAKF53 with insertion of a 958 bp HD100mreB1 3�

ORF fragment lacking the stop codon fused withmtfp. PCR

amplification of the HD100 genome using the primers

MreB2_site1_F and MreB2_site1_R introduced a 5� EcoRI site and a

3� KpnI site used for in frame insertion with themtfp ORF on the

pAKF53 vector.

This study

pAKF38a

Derivative of pAKF53 with insertion of a 937 bp HD100 ccrp 3� ORF

fragment lacking the stop codon fused withmtfp. PCR amplification

of the HD100 genome using the primers CreS1_site1_F and

CreS1_site1_R introduced a 5� EcoRI site and a 3� KpnI site used for

in frame insertion with themtfp ORF on the pAKF53 vector.

This study

pAKF40a

Derivative of pK18mobsacB containing a 3' fragment of the HD100

mreB2 ORF lacking the stop codon fused withmtfp. An EcoRI, XbaI

fragment of pAKF36a was inserted into the equivalent sites in the

MCS of pK18mobsacB.

(Fenton et al., 2010)

pAKF41a

Derivative of pK18mobsacB containing a 3' fragment of the HD100

mreB1 ORF lacking the stop codon fused withmtfp. An EcoRI, XbaI

fragment of pAKF37a was inserted into the equivalent sites in the

MCS of pK18mobsacB.

(Fenton et al., 2010)

pAKF42a

Derivative of pK18mobsacB containing a 3' fragment of the HD100

ccrp ORF lacking the stop codon fused withmtfp. An EcoRI, BamHI

fragment of pAKF38a was inserted into the equivalent sites in the

MCS of pK18mobsacB.
This study
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Plasmids Description Source or reference

pAKF45

Derivative of pTrc99A capable of expressing HD100 Bd3904 ORF.

PCR amplification of the HD100 genome using primers

Bd3904_pTrc_F and Bd3904_pTrc_R, introduced NcoI and BamHI

sites used for insertion immediately downstream of the Ptrc

promoter in the pTrc99A vector.

This study

pAKF52

Derivative of pAKF04(remake) with a 652 bp insertion containing the

full HD100 huA ORF lacking the stop codon fused with mtfp, and 5�

flanking genomic DNA. PCR amplification of the HD100 genome

using the primers huA_site1_F and huA_site1_R introduced a 5�

EcoRI site and a 3� KpnI site used for in frame insertion with the

mtfp ORF on the pAKF04remake vector.

This study

pAKF53

pAKF04(remake) cut with XhoI. 3� overhanging ends were PCR filled

in and the resulting blunt vector re-ligated. This introduced an

additional 4 bp immediately upstream of the KpnI site used for

gene-mtfp fusions.

This study

pAKF54

Derivative of pK18mobsacB containing the full HD100 huA ORF

lacking the stop codon fused with mtfp, and 5� flanking DNA. An

EcoRI, BamHI fragment of pAKF52 was inserted into the equivalent

sites in the MCS of pK18mobsacB.

This study

pAKF56

Derivative of pTrc99A with insertion of a 916 bp fragment

containing themcherry ORF, amplified using the primers

mCherry_p04_F and mCherry_R, and ligated into the pTrc99A vector

using primer incorporated KpnI and BamHI sites. The KpnI site

immediately upstream of themcherry ORF is equivalent to that of

the pAKF04remake plasmid used for gene-mtfp fusions.

This study

(Shaner et al., 2004)

pAKF57

Derivative of pAKF04remake with a 658 bp insertion containing the

full HD100 Bd3904 ORF lacking the stop codon fused withmtfp, and

5� flanking genomic DNA. PCR amplification of the HD100 genome

using the primers Bd3904_site1_F and Bd3904_site1_R introduced a

5� EcoRI site and a 3� KpnI site used in frame insertion with themtfp

ORF on the pAKF04remake vector.

This study

pAKF58

Derivative of pK18mobsacB containing the full HD100 Bd3904 ORF

lacking the stop codon fused with mtfp, and 5� flanking DNA. An

EcoRI, BamHI fragment of pAKF57 was inserted into the equivalent

sites in the MCS of pK18mobsacB.

This study

pAKF69

Derivative of pAKF56 with insertion of the full HD100 ftsZ ORF

lacking the stop codon fused with mcherry. PCR amplification of the

HD100 genome using the primers FtsZ_site0_F and FtsZ_site3_F

introduced a 5� EcoRI site and a 3� KpnI site used for in frame

insertion with themcherry ORF on the pAKF56 vector.

This study

pAKF80

Derivative of the mobilisable pK18mobsacB vector containing the

ftsZ(1-3)mcherry construct. An EcoRI, BamHI fragment of pAKF69

was inserted into the equivalent sites in the MCS of pK18mobsacB.
This study

Table 2.2 Plasmids used in this study
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2.2 Bacterial growth conditions

All chemicals were purchased from Sigma-Aldrich

(www.sigmaaldrich.com) unless otherwise stated. All media was

prepared in de-ionised-distilled ultrapure water unless specified and

was sterilised by autoclaving.

2.2.1 E. coli media and growth conditions

E. coli strains were routinely cultured on YT (or occasionally

LB) plates and broth. E. coli frozen stocks were typically streaked

to single colonies on YT plates and incubated at 37oC for over 16 h.

Single colonies were picked from YT agar plates, and added to YT

broth containing appropriate concentrations of antibiotics (Table

2.3) in suitable sterile containers, and incubated at 37oC with 200

rpm shaking for 16 h. The resulting cultures of stationary-phase E.

coli cells (typically containing 1X106 - 1X107 cfu/ml) were used as

prey for B. bacteriovorus predation.

E. coli cells were grown in a similar manner to prepare

inocula to produce mid-log-phase cultures for use in conjugative

delivery of plasmids, and in preparation for making competent cells.

Frozen stocks of E. coli were stored at -80oC and were made

by snap freezing a mixture of 700 µl of stationary-phase cultures

with 150 µl of 80% glycerol in liquid nitrogen.
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YT broth (per litre)

5g Yeast extract (Difco)

8g Bacto-tryptone (Difco)

5g NaCl (Fisher scientific)

Adjusted to pH7.5 using 2M NaOH

Agar plates were made to a final concentration of 10 g/l agar.

2.2.2 B. bacteriovorus media and predatory growth

conditions

Host-dependant B. bacteriovorus strains were grown on YPSC

agar overlay plates, consisting of a solid YPSC bottom layer (into

which antibiotics were added as appropriate, for concentrations

used see Table 2.3) with a of semi-solid YPSC top-agar layer

containing both B. bacteriovorus and prey. 5 ml of molten YPSC top

agar (held at 50oC) was added to 150 µl of stationary phase prey

cells, typically E. coli S17-1 or the kanamycin resistant S17-

1:pZMR100, in a sterile test tube, and immediately poured onto a

YPSC bottom plate and left for about 5 min to set. For resurrection

of B. bacteriovorus strains 50-100 µl of frozen stocks were pipetted

onto the pre-poured YPSC overlay plates, resulting in a zone-of-

clearing of prey lawns.

For HD B. bacteriovorus viable enumerations, 100 µl of

predatory cultures were added into the 150 µl of prey immediately

prior to YPSC-top mixing and pouring. YPSC overlay plates were

incubated in a static 29oC incubator. Confluent lawns of prey cells

were visible after 16 h of growth, B. bacteriovorus plaques or
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zones-of-clearing appeared on the prey lawns between 3 and 10

days after incubation.

Ca/Hepes buffer (per litre)

5.94g Hepes (Fisher scientific)

0.294g CaCl2.2H2O (Melford)

Adjusted to pH7.8 using 2M NaOH

YPSC broth (per litre)

1.0g Yeast extract (Difco)

1.0g Peptone (SLS)

0.5g Anhydrous sodium acetate (Fisher scientific)

0.25g MgSO4.7H2O (Fisher scientific)

Adjusted to pH7.6 using 2M NaOH

Following autoclaving, sterile CaCl2 (25 g/ml stock) was added to a final

concentration of 0.25 g/l

Agar plates were made to a final concentration of 10 g/l agar (YPSC bottom) and

6 g/l (YPSC top).

2.2.2.1 Transferral of B. bacteriovorus cells from YPSC

overlay plates to liquid predatory cultures.

B. bacteriovorus cells were transferred from cleared regions

on YPSC overlay plates to liquid culture by the sterile removal of a

small section of the top layer from YPSC overlay plates and

transferral of this material into 2 ml predatory cultures (this was

usually achieved using a sterile 1000 µl pipette tip). Typically these

predatory cultures were set up in 5 ml Bijou tubes containing 2 ml

Ca/HEPES buffer (see section 2.2.2 for recipe) and 150 µl

stationary-phase E. coli prey cells and incubated in a shaking 29oC

incubator, at 200 rpm.
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2.2.2.2 Maintenance of B. bacteriovorus predatory cultures

Visual inspections of the parent B. bacteriovorus predatory

cultures using phase contrast microscopy revealed the presence of

any contaminating Gram-negative bacteria and ensured that the

parent culture contained ‘pure’ attack-phase B. bacteriovorus cells

(although all B. bacteriovorus cultures always contain a small

number of surviving prey cells). Fresh B. bacteriovorus predatory

cultures were set up typically in 250 ml conical flasks containing 50

ml of Ca/HEPES buffer, 3 ml of stationary-phase E. coli prey and 1

ml of the parent B. bacteriovorus culture from a fresh prey lysate.

Scaled down versions of these cultures, containing 10 ml of

Ca/HEPES, 600 µl of stationary-phase E. coli prey and 200 µl of B.

bacteriovorus parent cultures were set up in 50 ml universal

containers to reduce waste and save space. Mixed cultures were

incubated in a 29oC incubator, shaking at 200 rpm, B.

bacteriovorus predatory cultures set up in this way would clear

most of the E. coli prey cells within 16-18 h and liberate typically

1x107 B. bacteriovorus cells per ml.

Ca/Hepes buffer (per litre)

5.94g Hepes (Fisher scientific)

0.294g CaCl2.2H2O (Melford)

Adjusted to pH7.8 using 2M NaOH
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2.2.3 Isolation of host-independent B. bacteriovorus strains

Host-Independent (HI) B. bacteriovorus strains were isolated

by passing 10 ml of predatory cultures (incubated for 16+ h)

sequentially through two 0.45 ǋm filters, to remove the few

remaining E. coli prey, then the B. bacteriovorus attack-phase cells

from the filtrate were harvested in a Sigma 4K15 centrifuge at

5,100 rpm (5,525g) for 20 min. The resultant pellet was re-

suspended in 100 ǋl of PY broth. This enriched cell suspension was

spread onto a fresh PY plate (containing antibiotics if appropriate)

and incubated upside-down at 29oC. HI B. bacteriovorus colonies

typically formed within 7-12 days.

PY broth (per litre)

10g Peptone (SLS)

3g Yeast extract (Difco)

Adjusted to pH6.8 using 2M NaOH

Agar plates were made to a final concentration of 10 g/l agar.
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2.2.3.1 Maintenance of B. bacteriovorus host-independent

strains

HI strains could be maintained by repeat streaking of

colonies onto fresh PY plates. To generate HI cultures, HI colonies

were picked into 500 µl of PY broth (plus antibiotics if appropriate),

this was incubated at 29oC, shaking at 200 rpm. No conventional

quorum sensing system exists in B. bacteriovorus, but there is a

cryptic requirement for sequential incremental sub-culturing

because HI B. bacteriovorus cells will not grow if picked into large

volumes of PY to begin with (for example 50 ml PY), even if

incubated for long periods of time. Visual inspections of resulting HI

liquid cultures were used to determine if the culture was ‘thick

enough’ to add additional PY media. Large volumes of HI cultures

could only be grown by successive additions of PY broth which

double the culture volume each time and further incubation at 29oC,

200 rpm shaking. HI growth rates are highly variable and get faster

the longer the HI culture is maintained in liquid media, thus

inspection of HI cultures on a two day basis was necessary so that

they were not overgrown nor starved of oxygen or nutrients.

PY broth (per litre)

10g Peptone (SLS)

3g Yeast extract (Difco)

Adjusted to pH6.8 using 2M NaOH

Agar plates were made to a final concentration of 10 g/l agar.



42

2.2.3.2 Frozen stocks of B. bacteriovorus strains

Frozen stocks of B. bacteriovorus HD and HI cultures were

stored at -80oC and were made by snap freezing 700 µl of ‘pure’

attack-phase predatory cultures or thick HI cultures with 150 µl of

80% glycerol in liquid nitrogen.

2.2.4 Antibiotics and media additives

All antibiotics and media additives were purchased from

Apollo scientific (www.apolloscientific.co.uk). Concentrations used

in the table below apply for B. bacteriovorus HI and HD culturing as

well as E. coli culturing and cloning.

Antibiotic/Additive
Stock

concentration

Final

concentration
Solvent

Ampicillin
(Amp)

50 mg/ml 50 µg/ml AnalaR water

Kanamycin
(Kn)

50 mg/ml 50 µg/ml AnalaR water

Isopropyl-beta-D-
thiogalactopyranoside

(IPTG)

200 mg/ml variable AnalaR water

5-Bromo-4-chloro-3-
indolyl-beta-D-
galactoside

(XGal)

20 mg/ml 200 µl/mg
Dimethyl-
formamide
(DMF)

Table 2.3 Antibiotics and Media additives used in this study
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2.3 DNA Manipulation Techniques

2.3.1 Small scale plasmid isolations

For routine screening of multiple transformants to determine

the most likely clones for further work, a fast and scaled-down

version of plasmid isolation by alkaline lysis was used (Birnboim

and Doly, 1979). 200 µl of an overnight E. coli culture was lysed in

200 µl of freshly made 1% sodium dodecyl sulphate (SDS), 0.2 M

NaOH solution, inverted to mix, then neutralised with 200 µl of 3M

potassium acetate, at pH5.5. This mix was centrifuged for 15 min

at 16,400 g in a microcentrifuge to pellet cell debris and the

supernatant removed to a new tube. Addition and mixing of 500 µl

100% isopropanol (at -20oC) caused precipitation of plasmid DNA.

Centifugation at 16,400g in a microcentrifuge (held at 4oC) for 15

min generated a crude plasmid pellet, which was further cleaned by

washing in 70% ethanol (at -20oC); removal of the supernatant

and drying the DNA pellet allowed resuspension in 20µl Tris-EDTA

+RNaseA (10mM Tris-HCl, pH8.0, 2 mM EDTA, 10 µg/ml RNase A)

and downstream screening by restriction digestion and

electrophoresis.

Favoured clones were the re-grown from master plates in YT

broth with necessary antibiotics at 37°C for 16 h. Plasmid DNA was

prepared using either QiagenTMMini-prep or Sigma-AldrichTM

GenElute plasmid miniprep kits, both use the same alkaline lysis
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and column purification method of DNA purification. Methods

carried out in accordance with manufacturer’s instructions, DNA

was eluted from the column in the lowest recommended volumes.

2.3.2 Large scale plasmid isolations

For large scale plasmid ‘midi preps’, alkaline lysis and column

DNA purification was carried out using either Sigma-AldrichTM HP

plasmid Midiprep kits according to manufacturer’s instructions.

2.3.3 Isolation of bacterial genomic DNA

Total bacterial genomic DNA was isolated using a Sigma-

Aldrich GenElute Bacterial Genomic DNA kit, according to

manufacturer’s instructions for Gram-negative bacteria. 10 ml of

‘attack-phase only’ predatory B. bacteriovorus cultures and 2 ml of

HI B. bacteriovorus cultures were harvested by centrifugation in a

Sigma 4K15 centrifuge at 5,100 rpm (5,525g) for 20 min.
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2.3.4 Agarose gel electrophoresis

Agarose gel electrophoresis was carried out using 1x TBE

supplemented with 0.1 ǋg/ml ethidium bromide. Agarose

concentrations varied depending on the sizes of DNA fragments

being resolved, from between 0.8 and 2.0% (w/v TBE). Gels were

run at a constant voltage of 100 V and DNA was visualised under

UV light using a BioRadTM gel documentation system and captured

using the BioRadTM Quantity One software (version 4.4.0). 5 µl of

diluted 1Kb New England Biolabs (NEB) DNA ladder or 10 µl of

diluted 100 bp NEB DNA ladder were was used as the molecular

weight DNA marker for all gels. DNA samples were loaded in 3 X

Orange G loading buffer using the Orange G dye (see recipe below

and Appendix 2.1 for a list of marker sizes).

Fragments of DNA required for downstream techniques were

excised from agarose gels using a sterile scalpel whilst being

visualised using a UVP (UV) transilluminator. The DNA from the

agarose gel slice was extracted and purified using either a QIAquick

Gel Extraction Kit (Qiagen) or a GenElute Gel Extraction Kit

(Sigma-Aldrich). Both were performed according to the instructions

provided by the manufacturer and eluted from the columns in the

smallest recommended volumes.
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Solutions used for Agarose gel electrophoresis

10X TBE

108 g Tris-HCl

55 g Boric acid

40 ml 0.5 M EDTA (ethylenediaminetetraacetic acid, pH 8.0)

Made up to 1 l with distilled water

10X loading buffer

25% (w/v) Ficoll 400

0.4% (w/v) Orange G dye

Made to volume with distilled water

3X Loading buffer

333 µl 10X Orange G

150 µl 20% (v/v) Glycerol

517 µl Tris-EDTA (10 mM Tris-HCl, 2 mM EDTA, pH 8.0)

Ready to load DNA markers

20 µl NEB (1 kb or 100 bp) DNA ladder stock (500 ǋg/ml)

10 µl 0.5 M EDTA (pH 8.0)

10 µl AnalaR water

120 µl 10X OrangeG

140 µl Tris-EDTA (10 mM Tris-HCl, 2 mM EDTA, pH 8.0)

100 µl 20% (v/v) Glyerol
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2.3.5 Bacterial DNA cloning

All DNA digestions with restriction endonucleases were

carried out using enzymes purchased from New England Biolabs

(NEB). Restriction digests were incubated at the recommended

temperatures in the recommended buffers for 1-18 hours. Care

was taken to never increase the ‘enzyme’ concentrations of

restriction digestions above 10% v/v to avoid ‘star activity’.

Recommended conditions for digestions containing multiple

restriction endonucleases were found using the online NEB double

digest finder program

(http://www.neb.com/nebecomm/DoubleDigestCalculator.asp).

Dephosphorylation of restriction digested vector DNA

molecules was achieved using calf intestinal phophatase (CIP) from

NEB as per manufacturer’s instructions.

Modification of overhanging 5’ or 3’ DNA ends following

restriction digestion was achieved by incubation of the DNA

preparation with the Phusion DNA polymerase at 72oC for 30 min

(for reaction recipes see Table 2.4).

Ligations of DNA fragments with compatible ends were

carried out in a total volume of 20 µl. Reactions contained T4 DNA

Ligase and 10 x T4 ligase buffer (both from NEB), and an

approximate 1:3 vector to insert ratio following analysis of the

concentration of DNA in each sample by agarose gel
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electrophoresis. This reaction was either incubated at 16ºC for 16 h

or typically incubated at room temperature for 2 hours.

2.3.6 Competence and transformation of E. coli with plasmid

DNA

E. coli S17-1 or E. coli DH5 cells were made competent in

batches which were stored at -80C in 200 µl aliquots by the

following method (Recipes for buffers used se below).

10 ml of YT broth was inoculated with a single colony of the

desired E. coli strain and grown to stationary-phase for use as a

starter culture (section 2.2.1). This was diluted 1/100 in YT broth

and grown at 37C, with shaking at 200 rpm, to an OD600 of 0.4 to

0.6. The cells were harvested by centrifugation at 5,525g in a

Sigma 4K15 centrifuge (pre-cooled to 4oC) for 5 min, then gently

re-suspended in 4C TFB1 (20 ml/50 ml culture). The cells were

incubated in TFB1 on ice for 5 min, and then harvested by

centrifugation at 5,525g in a Sigma 4K15 centrifuge (pre-cooled

4oC) for 10 min. The pellet was re-suspended in TFB2 (stored at

4C) on ice, separated into 200 µl aliquots and snap-frozen in liquid

nitrogen before storage at -80C. Each batch of competent cells

was tested by transformation with a control plasmid (such as

pUC19) and typically >1000 transformants resulted from

transformation with approximately 50 ng of control plasmid DNA.
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Prior to transformation, an aliquot of frozen competent E. coli

cells were thawed on ice and the DNA preparation from a ligation

reaction was added to the cells and mixed by gentle pipetting.

Following 20 min of incubation on ice, the cells were heat shocked

at 42ºC for 2 min before quickly being placed on ice for a further 2

min. 1 ml of YT broth was added to each transformation, and the

cells allowed to recover by incubation in a static 37ºC incubator for

1 h. After recovery, the cells were plated out onto appropriate

selection plates and incubated at 37ºC overnight. In addition to the

DNA from ligations, positive and negative controls using uncut

vector DNA and no DNA respectively were also carried out.

Solutions used for E. coli competent cell production

TFB1

30 mM KAc

10 mM CaCl2

50 mM MnCl2

100 mM RbCl2

15% (w/v) Glycerol

Adjusted to pH 5.8 using 1 M acetic acid. Sterilise by filtration through a 0.22 µm

filter, and store at 4oC.

TFB2

10 mM MOPS (3-(N-morpholino)propanesulfonic acid ) or PIPES

(1,4-Piperazinediethanesulfonic acid)

75 mM CaCl2

10 mM RbCl2

15% (w/v) Glycerol

Adjusted to pH 6.5 using 1 M KOH. Sterilise by filtration through a 0.22 µm filter,

and store at 4oC.
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2.4 Conjugation of B. bacteriovorus with plasmid DNA

1 ml of stationary-phase donor E. coli S17-1 culture

containing the desired construct, for gene inactivation or GFP-

fusion in B. bacteriovorus, was inoculated into 40 ml of fresh YT

broth with appropriate selection and grown at 37C, 200 rpm to an

OD600 of 0.2-0.4. B. bacteriovorus cells were harvested from a 10

ml predatory culture by centrifugation in a Sigma 4K15 centrifuge

at 5,525 g for 30 min, and re-suspended in 100 µl Ca/HEPES (see

section 2.2.2 for recipe). This mixture was pipetted onto a small

piece (approximately 2 cm2) of autoclaved HybondTM-N nylon

membrane (Amersham) placed on a PY (see section 2.2.3 for

recipe). agar plate, to immobilise the B. bacteriovorus cells. The 40

ml of donor E. coli cells were harvested by centrifugation at 5,525

g in a Sigma 4K15 centrifuge for 5 min, re-suspended in 200 µl of

PY and added to the filter. This resulted in approximately 1x108-

1010 B. bacteriovorus and 1x107-108 donor E. coli cells immobilised

on the nylon membrane. The PY conjugation plates were incubated

for 16 h at 29C then the bacterial cells from the Hybond-N filter

were re-suspended in 1 ml PY by repeated pipetting. As

exconjugant numbers tend to be fairly low, selective overlay plates

were then made, to recover the recombinant B. bacteriovorus as

plaques, with inoculums containing 10 µl, 100 µl, 200 µl and 400 µl

of the neat PY broth suspensions, in addition to the 150 µl of E. coli

prey and 5 ml of molten YPSC-top agar in YPSC overlay plates.
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2.5 Amplification of DNA

2.5.1 Polymerase chain reaction (PCR) for specific DNA

amplification

PCR DNA amplifications performed during this study were

carried out using either the Phusion® High-fidelity DNA polymerase

(NEB) or high fidelity Kod HiFi DNA polymerases (Novagen) for

cloning work, and the low fidelity Red hot® Taq DNA polymerase

(ABGene) was used for mutant screening before Southern blotting.

Oligonucleotide primers were specifically designed to amplify

unique DNA fragments from template DNA, and obtained from

Eurofins-MWG-Operon Biotech.

Using a Thermo Hybaid gradient thermal cycler, PCR reaction

mixtures were incubated at different temperatures in cycles to

allow the denaturing, annealing and extension of the DNA template

resulting in the amplification of a specific DNA fragment (Table 2.4).

The temperature and length of time in each stage of the cycle was

dependent on the DNA polymerase used due to the rate at which

elongation of the DNA fragment occurs. Phusion DNA polymerase

has an extension time of 30 sec per 1 kb and the KOD and Taq

DNA polymerases amplify DNA at 1 kb per minute. Incubations and

cycling conditions for each DNA polymerase are summarised in

Table 2.4. Primers used for PCR amplification in this study are

shown in Table 2.5.
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A) PCR reaction mixtures

Phusion KOD Taq

DNA Polymerase 0.25 U (0.25 µl) 0.625 U (0.5 µl) 0.25 U (0.1 µl)
Reaction Buffer
(5/10x stock)

1x 1x 1x

dNTPs 200 µM 200 µM 250 µM
MgCl2 (present in

reaction buffer)
1 mM 2 mM

Primers 100 pmol 100 pmol 100 pmol
PCR Enhancer
System
(Invitrogen)

- 5µl -

Template DNA 20-100 ng as
appropriate

20-100 ng as
appropriate

20-100 ng as
appropriate

AnalaR Water Made up to 25 µl Made up to 25 µl Made up to 25 µl

B) Basic cycling conditions for PCR

Stage Temperature Duration # cycles Comment

1 95oC

98oC

10 min (Taq)
5 min (Kod)
5 min (Phusion)

x1 Initial
Denaturation

95oC
98oC

1 min (Taq/KOD)
10 s (Phusion)

Denaturation

50-70oC 1 min (Taq/KOD)
30 s (Phusion)

Annealing

2

72oC 1 min/kb (Taq)
30 s/kb (KOD/Phsion)

x30

Elongation

3 72oC 10 min x1 Finishing step
4 4oC Hold x1 Hold

Table 2.4 PCR reaction mixtures and cycling conditions for Phusion, KOD and
Taq DNA polymerases. (A) Final concentrations of PCR reaction components for
the three DNA polymerases, (B) cycling conditions for the PCR reactions using
each polymerase.

Table 2.5 Primers used for DNA amplification

Primer Sequence (5�-3�)

Bd3904_pTrc_F AAAGAACCATGGCAGTAAACCTTTCCCCCGCACTCC

Bd3904_pTrc_R GCGGATCCATGATAATGTTCGCTGCCTAAGACTTAGGC

Bd3904_site1_F GAACGAATTCGAAGAAACAGATCGAATTTGCG

Bd3904_site1_R GTAAGGTACCAGACTTAGGCATGTAGGACG

CreS1_KO2_F TGCTCTAGACCTTGAAAGATCACTTCAGG

CreS1_KO2_R GCATCTAGAAGAAACGGTCGACAACATGG

CreS1_site1_F AGGCGAATTCCGAGCGTGAGTCTGC
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Primer Sequence (5�-3�)

CreS1_site1_R GTAAGGTACCTTCTTTTTCTTCGGCTTCAAGC

CreS2_KO2_F TGCTCTAGAAACCATGTTTCAGTATGTCG

CreS2_KO2_R ACGTCTAGATTCCGATTTCCTTGTTCAGG

FtsK_site1_F GAACGAATTCCTTAAAAAGTTTCGACAGGACG

FtsK_site1_R TAAGGTACCTCTGCCAGTTCCTGCAGC

FtsK_site2_R TAAGGTACCTCTTCCTCTTCTTCAGATGC

FtsK_site3_R TAAGGTACCGGCATATCCCAGTTTTCAATACG

FtsK_site4_R TAAGGTACCGTTTCACGCTTTAAGTTCGCGG

FtsZ_site0_F ATGGAATTCGGAGGATCAAATGTTTGAGTTGG

FtsZ_site1_F ATGGAATTCTGATCGAATCCGGCATGAACGG

FtsZ_site1_R GTAAGGTACCGTGATCGGCGGAAGTTCAAC

FtsZ_site2_R GTAAGGTACCAAGGCAGGAACTTCAAGATTC

FtsZ_site3_R GTAAGGTACCCTATTCTTTATTCAGATCGAATCC

huA_site1_F GAACGAATTCACCCTTTTCACTCACAACAACCTTGC

huA_site1_R GTAAGGTACCGTTAAGGGCGTCTTTTAAGTCTTTGC

mCherry_p04_F CTCGGTACCTCGAGCATGGTGAGCAAGGGC

mCherry_R2 CGCGGATCCTCATCCGCCAAAACAGCC

MreB1_KO_F TGCTCTAGACTTTCATACAACTCGGAAGCC

MreB1_KO_R TGCTCTAGACAACTTTTAAAGCGACAATACC

MreB1_site1_F CATTGAATTCGGAACAGCTGCAGATCTATACG

MreB1_site1_R GTAAGGTACCACTTCCAACTGAATTTTATCGAGC

mreB2-2 GCTCTAGAGGACGTTTATGAATCTACCC

mreB2-1 GGGGTACCTTTCATACAACTCGGAAGCC

MreB2_site1_F CATTGAATTCCGGAATCATCCTTGATGAACC

MreB2_site1_R GTAAGGTACCTCGACTGTAAGCTGTCTGAGAAGG

mTFP_F ATGGTGAGCAAGGGCGAGGA

mTFP_R TTACTTGTACAGCTCGTCCATG

RodA_KO_F CTTAAAAGGCGCCCACGGTAACATCACGG

RodA_KO_R CCTCTAGAACAAACACTAGTTCCATGCCG

Table 2.5 primers used for DNA amplification
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2.5.2 Purification of PCR products

Purification of PCR reactions were achieved using a Sigma-

AldrichTM GenElute PCR Clean-Up kit and following manufactures

instructions. DNA was eluted from the column in the minimum

volume of buffer recommended by the manufacturer.

2.6 DNA Sequencing

All DNA sequencing was carried out using the DNA

sequencing service provided by Eurofins-MWG-operon. Typically a

15 µl preparation containing 10 ng/µl of template DNA to be

sequenced was sent with a 2 pmol/ml solution of the desired

primer (see table below). Sequencing results were received by

email and analysed using the Bioedit software (version 7.0.9.0)

(http://www.mbio.ncsu.edu/BioEdit/bioedit.html).

Table of primers used for sequencing.

Primers used for

sequencing plasmids

Sequence (5�-3�)

M13_uni_(-43) AGGGTTTTCCCAGTCACGACGTT

M13_rev_(-49) GAGCGGATAACAATTTCACACAGG

pTrcHis_rev CTTCTGCGTTCTGATTTAATCTG

pK18_For ATGTTCAGCAGGAAGCTCGG

pK18_Rev TTCTCCGGTAAACATTACGG
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Primers used for

sequencing B.

bacteriovorus strains

Sequence (5�-3�)

Kam_1 TGCAATGTAACATCAGAG

Kam_2 CACGAGGCAGACCTCAGC

huA_seq_F GCGGTCAATTTCATAAGAAAGCACATCG

huA_seq_R CAAGCTTGCATGCCTGCAGG

mreB2_seq_F CACGACGTTGTAAAACGACG

Table 2.6 Primers used for sequencing both inserts in plasmid vectors and PCR
amplified genome regions of B. bacteriovorus strains.

2.7 Southern blot hybridisations

Southern blot hybridisations were carried out to verify the

chromosomal insertions for mTFP labelling or gene inactivation in B.

bacteriovorus HD100 using the NEBlot Phototope Kit (New England

Biolabs) according to manufacturer’s instructions. Briefly 300-400

ng of genomic DNA was digested with restriction endonucleases for

at least 16 h. These preparations were resolved by agarose gel

electrophoresis (using both pre-biotinylated markers and 1 kb NEB

ladder (New England Biolabs) Appendix 2.1) and transferred to a

HybondTM-N nylon membrane (Amersham) using the capillary

transfer method (Southern, 1975). The blotted DNA was UV cross-

linked to the dried membrane using a 50 mJ dose from a GS Gene

linker UV chamber (Biorad). Cross-linked membranes were then

pre-hybridised before the addition of a biotinylated DNA probe,

typically for a ‘large’ gel (15 cm x 10 cm) 100 ng of unlabeled DNA

was labelled for 1 h with a Klenow Fragment (3´ĺ5´ exo–)

forming approximately 333 ng of biotin-labelled probe. The
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chemiluminescent signal detection was carried out using the

Phototope-Star Detection Kit (New England Biolabs) according to

manufacturer’s recommendations, the emitted light was captured

by exposing the membrane to X-ray film. For solutions and buffers

see below.

Solutions used for Southern blot hybridisations

20X SSC

3 M NaCl

0.3 M Sodium citrate

Adjusted to pH 7.0 with NaOH, made to volume with distilled water

Denaturation solution

0.5 M NaOH

1.5 M NaCl

Neutralisation solution

1 M Tris-HCl

1.5 M NaCl

Adjusted to pH 7.5 with HCl, made to volume with distilled water

100X Denhardt�s reagent

2% Ficoll 400

2% PVP (Polyvinylpyrrolidone)

2% BSA (Bovine serum albumin)

Prehybridisation solution

6x SSC

5x Denhardt’s reagent

0.5% SDS

100 µg/ml Denatured salmon sperm DNA

Made to volume with distilled water
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Blocking solution

5% SDS

125 mM NaCl

25 mM Sodium phosphate

Adjusted to pH 7.2 with NaOH, made to volume with distilled water

Wash solution I

0.5% SDS

12.5 mM NaCl

2.5 mM Sodium phosphate

Adjusted to pH 7.2

Washing solution II

10 mM Tris-HCl

10 mM NaCl

1 mM MgCl2

Adjusted to pH 9.5
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2.8 Protein analysis techniques

2.8.1 Sodium Dodecyl Sulphate Polyacrylamide gel

electrophoresis (SDS-PAGE)

SDS-PAGE gels (Laemmli, 1970) were hand poured and

prepared using the mini Protean II system (BioRad). Unless

otherwise stated, resolving gels were 12.5% acylamide and

stacking gels were 7.5% acylamide, for recipes see below. Typically

4-5 µg of whole B. bacteriovorus or E. coli cell extract protein was

run on the small SDS-PAGE gels.

2 x sample buffer was added to a final concentration of 1x

and the samples boiled for 5 min (with a brief centrifugation) prior

to loading. The samples were the loaded onto SDS-PAGE gels with

a suitable molecular weight marker (NEB pre-stained protein ladder,

Broad Range (10-230 kDa) (New England Biolabs)) for Coomassie

stained gels, see Appendix 2.1 for marker sizes. 1x running buffer

was prepared from a 10x stock. Gels were run at a constant 120V

until the dye front reached the ottom of the gel.

Staining for non-western blot gels was performed overnight

in 0.1% Coomassie blue stain and destained in 30% (v/v) Methanol,

10% (v/v) glacial acetic acid for several hours. Protein gel images

were captured using a Canon PowerShot A620 digital camera.

Occasionally gels were saved and dried using GelAir Cellophane

Support (Biorad).
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Solutions used for SDS-PAGE protein gels

Resolving gel (12.5%)

3.75 ml 1.5M Tris-HCl, pH 8.8

0.15 ml 10% (w/v) SDS

4.78 ml AnalaR water

6.25 ml 30% acrylamide / bis-acrylamide (Severn Biotech)

7.5 µl TEMED (Tetramethylethylenediamine)

125 µl Ammonium persulphate (Freshly made in water from solid)

Stacking gel (7.5%)

1.75 ml 0.5 M Tris-HCl, pH 6.8

0.10 ml 10% (w/v) SDS

7.38 ml AnalaR water

1.25 ml 30% acrylamide / bis-acrylamide (Severn Biotech)

7.5 µl TEMED (Tetramethylethylenediamine)

75 µl Ammonium persulphate (Freshly made in water from solid)

10 X SDS-PAGE running buffer

30.5 g Tris

144.13 g Glycine

10 g SDS

Made up to 1 l with distilled water

2 X protein sample buffer

630 µl 0.5M Tris-HCl, pH 6.8

2.0 ml 10% (w/v) SDS

0.5 ml 100% Glycerol

1.77 ml AnalaR water

100 µl 1% (w/v) bromophenol blue

500 µl ǃ-mecaptoethanol (add last)

Coomassie blue stain

10% (v/v) Glacial acetic acid

30% (v/v) Methanol

0.1% (w/v) Coomassie brilliant blue (ICI)

Made to volume with distilled water. Destain made using the same recipie above,

only without the Coomassie brilliant blue.
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2.8.2 Lowry assay protocol to determine protein

concentration.

A Lowry assay with Markwell’s modification to include

solubilising membrane proteins (Markwell et al., 1978) was used to

measure protein content of B. bacteriovorus predatory cultures to

use as an indicator of cell number. The Lowry assay measures

protein concentration using Folin’s phenol reagent in the presence

of copper bound proteins, and is measured by colour change at

wavelength 750 nm using a Beckman coulter DU 530

Spectrophotometer (Lowry et al., 1951).

Serial dilutions of protein standard, bovine serum albumin

(BSA), were prepared ranging from 10-100 µg/ml. 500 µl sterile

distilled water served as a blank, the statistical significance of each

standard curve was measured.

500 µl of sample was combined with 1.5 ml solution C

(solution C = 100 solution A: 1 solution B). Samples were mixed

and incubated in the dark for exactly 20 min. 150 µl of fresh Folin’s

reagent was diluted 1:1 with sterile distilled water was added to

each sample and incubated in the dark for exactly 45 min.

Absorption at 750nm wavelength for easy assays were recorded

versus the blank. Protein concentration of the sample was

calculated using the standard curve.
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Solutions used for the Lowry assay

Solution A

2% (w/v) Na2CO3

0.4% (w/v) NaOH

0.16% (w/v) Na4C4H4O6 (Sodium tartrate)

1% (w/v) SDS

Made to volume using distilled water

Solution B

4% (w/v) CuSO4�5H2O

Made to volume using distilled water

2.8.3 Identification of proteins by MALDI-TOF MS analysis

MALDI-TOF MS analysis was carried out to identify protein

from SDS PAGE gel slices by Dr Kevin Bailey of the University of

Nottingham Biopolymer Analysis unit. A typical data output can be

found in Appendix 4.3.
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2.8.4 Matched cell numbers of E. coli using OD600nm.

Stationary-phase E. coli cell cultures (grown in YT broth)

were measured for their optical density at 600 nm in a WPA

Biowave CO8000 miniature spectrophotomer and diluted in fresh

YT media to match the culture with the lowest OD600 reading,

typically OD600 values were in the 1.5-1.8 range. 1 ml of OD600

matched stationary-phase cultures were centrifuged at 16,400 g in

a microcentrifuge for 1 min, re-suspended in 100 µl AnalaR water

and stored at -20oC. 5 µl of this preparation was typically run on an

SDS-PAGE gel.
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2.9 Microscopy

2.9.1 Fluorescence microscopy

Fluorescence microscopy of B. bacteriovorus and E. coli was

carried out using 10-16 µl samples which were spotted onto a

Borosilicate Super Premium glass microscope slide (VMR) and

covered with a 22 X 22 mm glass cover slip, thickness No. 1 (VMR).

Cells were occasionally immobilised to aid visualisation using a 1%

agarose pad made using appropriate media.

Bacterial cells were visualised using a Nikon Eclipse E600

epifluorescence microscope through a plan fluor 100X objective

lens (NA: 1.25) (supplied by Nikon). A mercury USH-102D (USHIO)

light source in combination with an appropriate filter block (see

Table 2.7) was used for fluorescence imaging. Images were

captured using a Hamamatsu Orca ER CCD digital camera (C4742-

80) and analyzed using either the IPLab software (version 3.64

from Nikon) or the SimplePCI software (version 5.3.1.081004 from

Digital Pixel).

For image enhancement using the IPlab software,

fluorescence images were background corrected by using the 3D

filter tool and normalised within IPLab.
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For image enhancement using the SimplePCI software,

images were false coloured (typically green for fluorescence and

red for brightfield) and enhanced using either (or both) the

‘sharpen’ and ‘smooth’ tools.

Filter Name Filter Use Excitation (nm) Emission (nm)

41043
hcRED1
C110624

mCherry/
FM4-64

fluorescence
detection

550-600 610-665

CY GFP
C121885

mTFP
fluorescence
detection

420-454 458-500

DAPI
DM400

Hoechst
fluorescence
detection

340-380 435-485

Table 2.7 Fluorescence filter sets used in this study

2.9.2 Hoechst 33372 DNA straining and detection in B.

bacteriovorus

Hoechst 33372 DNA stain was used to visualise the genome

of both attack-phase B. bacteriovorus cells, and E. coli genomes

present in bdelloplasts. Samples were stained at final Hoechst

concentrations of 1 µg/ml, for 2-5 min, at room temperature

immediately before imaging. Hoechst fluorescence images were

taken using a Nikon E600 epifluorescence microscope, set up as

described in section 2.9.2, typical Hoechst fluorescence exposure

times were 100 ms. Due to the lack of colour options within IPLab

and the Simple PCI software, Hoechst merged images were
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achieved by using the duplicate channels tool in Adobe Photoshop

(version 5.5); 100% opacity was used in all cases.

2.9.3 FM4-64 membrane straining and detection in B.

bacteriovorus

FM4-64 membrane strain (Invitrogen) was used to stain B.

bacteriovorus flagella shealth and cell membranes (Iida et al.,

2009). FM4-64 was used to stain B. bacteriovorus predatory

cultures at a final concentration of 10 µg/ml for 10-15 min on ice.

Incubations were carried out in the dark due to FM4-64 very low

photo stability. FM4-64 fluorescence was imaged using a Nikon

E600 epifluorescence microscope, set up as described in section

2.9.2, typical fluorescence exposure time required to visualise the

flagella sheath was 1 s.

2.9.4 Time-lapse epifluorescence microscopy using the prior

H101a XY-stage and H122 Z-controller.

Synchronous B. bacteriovorus predatory infections were set

up as described in section 2.13.4 and immobilised on a glass

microscope slide coated with a 1% agarose-Ca/HEPES pad into

which two reservoirs had been cut and filled with distilled water; to

replace moisture lost from the pad through dehydration.
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Immobilised bdelloplasts were visualised using a Nikon

Eclipse E600 epifluorescence microscope using a 100X objective

lens (NA:1.25), and the hcRED filter block with a fluorescence

exposure time 0.1 s. Images were acquired using a Hamamatsu

Orca ER CCD camera (C4742-80) and the Simple PCI software

(version 5.3.1.081004 from Digital Pixel). A Prior H101A XY-

motorised stage (Prior Scientific) allowed precise revisiting of

different locations on the slide (minimum step size=0.01 µm), and

a frictional Z-axis controller (minimum step size = 2 nm) in

conjunction with the Simple PCI software allowed fine auto-

focusing on immobilised developing bdelloplasts. Typically 10 fields

of view were imaged sequentially every 2.5 min per experiment, as

this provided a good trade off between temporal-resolution and

mCherry photo-bleaching. Time-stamps embedded in image files

were used for all measurements of time. Fluorescence mCherry

activity in time-lapse movies is false coloured green and enhanced

using either (or both) the ‘sharpen’ and ‘smooth’ tools in the

Simple PCI software to provide additional clarity.
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2.9.6 Transmission electron microscopy (TEM)

Transmission electron microscopy TEM was used for high

magnification imaging of bacteria. A 15 µl sample was pipetted

onto a Formvar/Carbon 200 Mesh Cu EM grid (Agar Scientific) for

up to 5 min before drying by touching the grid with filter paper.

Occasionally the sample was washed by pipetting 15 µl of AnalaR

water and instantly removing by touching the grid with filter paper.

The sample was negatively stained using 15 µl of either 0.5%

uranyl acetate (URA) pH 4.0 for 30-45 s, or 1% phosphotungstic

acid (pH 7.0) for 30-60 s, the stain was removed using filter paper

as before. Grids were examined using a JEOL JEM-100S TEM and

images captured using the iTEM software.

2.9.7 Cryo-electron transmission electron microscopy

(carried out with Dr C. Butan in Dr S Subramaniam�s lab at

the NIH)

Cryo-TEM was used for ultra high magnification imaging of

unstained B. bacteriovorus attack-phase cells. Sample preparations

were carried out using methods described in reference: (Borgnia et

al., 2008). Images were taken on a Technai T12 cryo-transmission-

electron-microscope (TEM). 5 µl droplets of cell cultures were

applied to holey carbon EM grids (QuantifoilMultiA; Micro Tools

GmbH, Germany), previously glow discharged for about 30 seconds



68

and coated with 15 nm protein A–gold conjugates (BB International,

Cardiff, United Kingdom). The grids were manually blotted and

quenched in liquid ethane using a manual gravity plunger. Vitrified

specimens were then transferred into an FEI Tecnai12 transmission

electron microscope (TEM) or a Tecnai Polara TEM (FEI Company,

Hillsboro, OR, USA). The images were recorded on a 2x2 k CCD

camera, under low-dose conditions at 120 KV (Tecnai 12), or 200

KV (Tecnai Polara). Typical magnifications were in the range

6,000–18,000, and 4-6 µm under-focus values. Whole bdelloplasts

cannot yet be examined with this technique as they fail to vitrify in

liquid ethane.

2.10 Bioinformatic analysis of DNA and proteins

B. bacteriovorus genome and protein sequences were

recovered from the xbase server (http://xbase.bham.ac.uk/). The

NCBI database was used for retrieval of other bacterial sequences

as required.

2.10.1 Basic Local Alignment Search Tool (BLAST)

BLAST analysis of proteins was carried out using the BLASTP

server and the blosum62 matrix at NCBI

(www.ncbi.nlm.nih.gov/BLAST/) using the non-redundant protein
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sequences (nr) database. BLAST analysis against the B.

bacteriovorus HD100 genome only was carried out using the Wu-

BLAST2.0 program and the blosum62 matrix on the JVCI-VMR

server (http://blast.jcvi.org/cmr-blast/).

2.10.2 Multiple alignments of DNA and protein sequences

Multiple protein and DNA level alignments and sequence

examination was carried out using the BioEdit Sequence Alignment

Editor, Version 7.0.1© Isis Pharmaceuticals Inc. Reference: (Hall,

1999). Multiple alignments were created using ClustalW within

BioEdit using the standard settings within the program, an 0%

shading threshold for matching bases/amino acids and a Blosum62

alignment matrix (Thompson et al., 1994).
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2.11 Method of gene inactivation by kanamycin cassette

insertion of genes in B. bacteriovorus

Methods of gene interruption in B. bacteriovorus by

kanamycin cassette insertion are described elsewhere, (Lambert et

al., 2003). Briefly, a deletion construct containing a kanamycin-

interrupted version of the gene targeted for deletion plus 1 kb of

flanking 3’ and 5’ genomic DNA, is conjugated into B. bacteriovorus

on a mobilisable suicide plasmid pSET151. Kanamycin resistant

exconjugants (containing the genome integrated construct) were

screened by Taq PCR for a secondary homologus recombination

event that removed the wild-type gene and pSET151 plasmid

backbone from the genome, leaving only the kanamycin-

interrupted copy. Exconjugant strains with only kanamycin

interruptions present in the genome were confirmed by diagnostic

Southern Blot.
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2.12 Method of C-terminal GFP tagging of proteins in B.

bacteriovorus

For C-terminal GFP tagging of specific B. bacteriovorus

proteins, an ORF-gfp construct was conjugated into B.

bacteriovorus cells using the suicide plasmid pK18mobsacB (section

2.4) and expressed in cis from its native promoter.

In each case PCR primers amplified a minimum of a 500 bp

region of the targeted ORF, removed the stop codon and added a 3’

KpnI site which was used for the C-terminal insertion, in frame with

the bright, monomeric GFP ORF (from allelebiotech.com) named

mtfp1, hereafter called mtfp, in the pAKF04 plasmid (Ai et al.,

2006).

Insertion of each ORF fragment generated short linker

coding regions between the last codon of the ORF fragment and the

ATG start codon of the mtfp gene; this linker codes for the amino

acids VQRSS. ORF-mtfp fusion constructs were removed intact

typically using EcoRI and BamHI sites and inserted into the suicide

plasmid pK18mobsacB and conjugated into B. bacteriovorus where

they recombined as single crossovers restoring the function to the

context of the whole gene and its native promoter (Fig. 2.1, section

2.4). Exconjugants were selected by kanamycin resistance due to

the vector and confirmed by amplification using primers that bound

to the genomic DNA both upstream of cloned ORF fragments and
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pK18mobsacB, and subsequent DNA sequencing of those PCR

products (see Fig. 2.1). That a single insertion of the plasmid in

each genome had occurred was verified by Southern blot.

Homologous recombinations between these mTFP-constructs

and the B. bacteriovorus genome could produce one of two

outcomes depending on the designed content of the construct,

either a merodiploid strain with both a mtfp-tagged and fully

functional copy of the gene of interest (Fig. 2.1B) or a strain

expressing only the mtfp-tagged gene as the original genomic copy

is inactivated (Fig. 2.1A).
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Figure 2.1 Methods of C-terminal mTFP tagging genes of interest in B.
bacteriovorus. Figure shows the results of homologus recombinations of different
constructs into the HD100 genome. (A) A construct containing a fragment of the
gene of interest ORF in frame with the mtfp gene, results in a kanamycin
resistant exconjugant strain only capable of expressing the mTFP tagged protein
product from the its native promoter. (B) A construct containing flanking
genomic sequence and the full gene of interest ligated in frame with mtfp,
results in a kanamycin resistant merodiploid exconjugant strain capable of
expressing both wild-type and mTFP tagged protein products each from native
promoters. In each case the stop codon of the gene of interest has been
removed and ligation in frame with mtfp results in a short linker region, that
when translated will form a protein linker with the sequence: VPRSS. Kn =
kanamycin.
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2.13 Methods to ensure synchronous predatory infection of

B. bacteriovorus on E. coli prey

Synchronous B. bacteriovorus infections of prey are required

to study the developmental processes of this predatory bacterium

within bdelloplasts. It has been described previously that for

synchronous B. bacteriovorus prey infection a predator:prey ratio

(or multiplicity of infection (MOI)) must be in excess of 3:1 (Abram

et al., 1974, Matin and Rittenberg, 1972). A series of methods

described below have been used throughout this study to achieve

an MOI of above 3 on different scales for predatory culture. These

are derived from the work of Dr Carey Lambert: (Lambert et al.,

2006a, Evans et al., 2007, Lambert et al., 2010).

2.13.1 Ultra-large scale synchronous infections for RNA

time-course preparation.

To establish synchronicity of large B. bacteriovorus infections

used for RNA time-course preparations, 50 ml predatory cultures

were sub-cultured for 3 days at 24 hour intervals before the

resultant B. bacteriovorus attack-phase cell culture was used to

inoculate a larger 1 l predatory culture, containing 60 ml

stationary-phase E. coli prey, 50 ml of B. bacteriovorus predatory

culture and 1 l of Ca/HEPES and incubated for a further 24 h. After

microscopic inspection the 1 l B. bacteriovorus predatory culture
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was centrifuged for at 10K (17,000 g) in a (Sorvall RC-5B PLUS)

centrifuge for 30 min, the resulting B. bacteriovorus cell pellet was

re-suspended 100 ml in fresh Ca/HEPES (pre-incubated to 29oC)

and the cells allowed to recover for 3 h in a shaking (200 rpm)

29oC incubator. Simultaneously a 50 ml stationary-phase E. coli

stationary-phase culture was centrifuged for 10 min at 5,525g in a

Sigma 4K15 centrifuge pre-warmed to 29oC, re-suspended in 50 ml

Ca/HEPES (pre-incubated to 29oC), back diluted in more Ca/HEPES

to an OD600 of 1.0, and again allowed to recover for 3 h in a

shaking (200 rpm) 29oC incubator.

Synchronous infections were initiated by mixing 50 ml

of B. bacteriovorus cell preparation, 40 ml of E. coli cell preparation

to 30 ml of Ca/HEPES (pre-incubated to 29oC). ‘E. coli prey only’

and ‘attack-phase B. bacteriovorus only’ controls were set up by

diluting the respective preparations to match the final volume of

the synchronous predatory-culture. Both B. bacteriovorus and E.

coli were enumerated (see separate methods at 2.2.1 and 2.2.2)

and the synchronicity of infection monitored by phase contrast

microscopy. RNA preparations of HI B. bacteriovorus were made by

diluting a starter culture to an OD600 of 0.6. For each preparation

and time-point 4 ml of culture was removed and added to 1 ml of

5% (v/v) Phenol/ethanol to kill the cells, incubated on ice for a

minimum of 45 min, and centrifuged for 10 min at 5,525g in a
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Sigma 4K15 centrifuge pre-cooled to 4oC, the supernatant was

removed and the pellets stored, for later RNA extraction, at -80oC.

2.13.2 Large scale synchronous B. bacteriovorus infections

for bdelloplast persistence assays.

To establish synchronicity of large B. bacteriovorus infections

for bdelloplast persistence assays, 50 ml predatory cultures were

sub-cultured for 3 days at 24 hour intervals before the resultant B.

bacteriovorus cells were used to inoculate a larger 100 ml

predatory culture and B. bacteriovorus attack-phase cells

harvested after 24 h by centrifugation at 5,525g in a Sigma 4K15

centrifuge at 25oC for 20 min, the resulting pellet was re-

suspended in 10 ml of fresh Ca/HEPES and B. bacteriovorus cells

were allowed to recover for 3 h in a shaking (2000 rpm) 29oC

incubator. 50 ml of stationary-phase E. coli prey culture was

centrifuged at 5,525g in a Sigma 4K15 at 25oC for 10 min and the

pellet diluted in Ca/HEPES to an OD600 of 1.5. The synchronous

predatory culture was set up using 4 ml of B. bacteriovorus

preparation, 3 ml of E. coli preparation and 5 ml of fresh Ca/HEPES

(pre incubated at 29oC). Typically enumerations revealed that

these synchronous cultures contained a B. bacteriovorus:E. coli

MOI in excess 3. This was sufficiently high so that the predatory

culture was near synchronous with greater than 95% of E. coli prey
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cells becoming bdelloplasts at 30 min post B. bacteriovorus

infection (Abram et al., 1974, Matin and Rittenberg, 1972).

2.13.4 Small scale synchronous B. bacteriovorus infections

for time-lapse fluorescence microscopy.

Synchronous predatory infections, for time-lapse microscopy,

were set-up using methods ‘scaled-down’ from those described in

section 2.13.2. Briefly, 50 ml of fresh predatory B. bacteriovorus

cultures (sub-cultured at 24 h intervals for three days) were

filtered through two 0.45 µm pore-size filters (to remove residual

prey and gave pure attack-phase B. bacteriovorus typically at 2x

107 cells/ml), centrifuged at 5,525g for 20 min in a Sigma 4k15

centrifuge, re-suspended in 10 ml Ca/HEPES, allowed to recover for

30 minutes. Then 500 µl of that resulting B. bacteriovorus

suspension were added to 500 µl of the fluorescently tagged E. coli

S17-1:pMAL-p2_mCherry prey and 500 µl Ca/HEPES buffer

containing IPTG to give a final concentration of 200 µg/ml.

Subsequently infections were incubated in a shaking 29oC incubator

for 2-2.5 h. Typically this method led to a predator:prey ratio in

excess of 3:1, shown previously to be sufficient for synchronous

prey infection (Abram et al., 1974, Matin and Rittenberg, 1972),

synchronicity was monitored by light microscopy after 30 min
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incubation ensuring that >95% of prey cells had been infected and

converted into bdelloplasts.

2.14 Preparation RNA across a B. bacteriovorus predatory

time-course

Pellets form synchronous RNA time-course predatory cultures,

stored at -80oC (see section 2.13.1) were defrosted on ice and the

RNA extracted using a Promega SV Total RNA Isolation System,

according to manufacturers instructions. 50 µl of RNase free water

was used to elute extracted RNA from the column instead of the

recommended 100 µl to concentrate preparations. RNA

preparations were further DNase treated using an Ambion DNA-

freeTM kit to remove residual DNA left after RNA extraction using

the Promega kit. Complete removal of genomic DNA from RNA

samples was assayed by the lack of DNA amplification in Taq PCR

reactions to amplify small regions of bacterial genomic DNA

(typically 100bp).
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2.14.1 RNA quality control

RNA quality and concentration was assessed using an Agilent

2100 bioanalyser. In brief this method separates labeled RNA

through a capillary gel matrix and is fluorescently detected as it

exits the gel. Typically the graphical output shows three major

peaks representing the rRNA bands, as these represent the

majority of the RNA content of an organism. The width and shape

of these bands provides an indication of RNA quality as a degraded

sample will typically have broader bands tapered towards the small

molecular weight fractions and have an abnormal ratio of the rRNA

components. When extracting RNA from early time-points of B.

bacteriovorus predatory time-courses a certain amount of tolerance

was given to assessing sample degradation, as remaining partly-

degraded E. coli RNA is known to be still present within bdelloplasts

at these time-points.
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2.14.2 Semi-quantative RTPCR for measuring expression of

B. bacteriovorus genes through a predatory time-course.

Semi-quantative RNA reactions were carried out using the QIAGEN

OneStep RT-PCR kit, according to manufacturer’s instructions.

Primers used for B. bacteriovorus RNA detection
Primers used B.

bacteriovorus gene

expression analysis
Sequence (5�-3�)

Bd0042F AAAGGCTCCATGATCACGTC

Bd0042R GGATCGATCAGCATTTCCAT

Bd0043_F CCCAGCAGCTCTATGAAACC

Bd0043_R CGATCGGAAAGTTGTCAGGT

Bd2460_RTPCR_F CACCGAAGGGAAAGTCGTAA

Bd2460_RTPCR_R TCTGTTGCAGATCACGAACC

Bd3904_RTPCR_F CGGGTTGAGGGAAATCTCTT

Bd3904 _RTPCR_ R CCTTCGTCGATACGCAGACT

Bd3905_RTPCR_F GGATCCGAAGAAACAGATCG

Bd3905_RTPCR_R GCCTCTTCAACTTCCTCGTG

Bd3906_RTPCR_F TGCGAATAGCTACCATGTGC

Bd3906_RTPCR_R CCACCAGATCAGGATTAGCC

creS1_RTPCR_F AACAATCTTCGTAAAGAGC

creS1_RTPCR_R CAGTTCACTTTCGGATCTA

DapF_F CCGCTTTATCCAGGAACTGA

DapF_R TGGATCTTTTGCACCAAGTG

dnaA4F TTGGATACCTGGCTTGATCC

dnaA4R AGTACTGGTGAAGGGCGTTG

FtsKF GTGTGGGAAAACCAACTCGT

FtsKR ATCGCCAGTGGATCGTATTC

ftsZ_RTPCR_F TTACCAAGCCGTTCCTGTTC

ftsZ_RTPCR_R ATTCGGGATCACGATCAGAG

huA_RTPCR_F CAATCCGAACTGATTCTC

huA_RTPCR_R GAGCTTCTGGAGAAAGTG

huB_RTPCR_F GCAGAAGCAATCCTTGAT

huB_RTPCR_R TAGCTTTAGTGAAAGTACCG
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Primers used B.

bacteriovorus gene

expression analysis

Sequence (5�-3�)

mreB13F CATGTTGGGACGTACACCTG

mreB13R AGCATGGACTGGGTGACTTC

mreB23F AATGTGAAGTCCGCAGAAGG

mreB23R TCGCAGTAAACGATGTCAGC

mreC_RTPCR_F TGGATGGTATCGTGCAAAGA

mreC_RTPCR_R TCCTGAACGTCTTCGGTTCT

mreD_RTPCR_F TCTTTACCTTGGTCTATGC

mreD_RTPCR_R AATAGATCAGGTGATAGGC

SSBF CCAAAGGCCGTCAGGTTTAC

SSBR GTGGAAGCCACGATTTCAGT

Table 2.8 Primers used for B. bacteriovorus RNA detection

2.15 Measuring the rate of B. bacteriovorus predatory

attachment and entry using a luminescent E. coli prey strain.

The luminescence prey assay was used to identify the

predatory efficiency of mutant B. bacteriovorus strains. Using a 96

well Optiplate (Porvair Sciences Ltd.) and a FLUOstar Optima

spectro-photo luminometer supplied by BMG Biotech.

The efficiency of B. bacteriovorus predation was tested using

E. coli prey containing the pCL100 plasmid based upon the assay

designed by Lambert and colleagues (Lambert et al., 2003). The

pCL100 plasmid contains a full set of lux genes (luxCDABE) from

Photohabadus luminescens and due to the expression of these

genes the E. coli prey is luminescent. At the outset of the assay,

each prey cell emits light, however as B. bacteriovorus cells enter

and kill the E. coli light is no longer emitted from the prey cell.
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Dilutions of the B. bacteriovorus lysates were added to each

well of the plate, the typical dilution series used was 64, 32, 16, 8,

4, 2, 1 and 0 µl. The volume in each well was made up to 64 µl

using B. bacteriovorus predatory cultures which had been boiled for

5 min and allowed to cool to room temperature. Finally 200 µl of a

master-mix containing 25 ml PY broth, 25 ml Ca/HEPES,

kanamycin 50 µg/ml and 2 ml of luminescent stationary-phase E.

coli culture, was added to each well. As soon as the mixture

totalling 264 µl was in each well, the completed plate was placed in

a BMG FLUOstar machine which was pre-incubated at 29ºC for the

first readings to be taken.

Following the completion of the plate, both B. bacteriovorus

and E. coli cultures were enumerated (see separate methods at

2.2.1 and 2.2.2), these counts were required as part of the data

analysis.

A complete set of luminescence measurements and optical

density at the 600 nm wavelength were taken every 30 min for

each well, and the plate was incubated with shaking at 29ºC until

the next time point. 49 sets of readings were taken in total

corresponding to a 24 h time period. After the last sets of readings

were taken, the data was transferred to an Excel spreadsheet for

analysis. For each dilution of every B. bacteriovorus strain, the

time taken for the luminescence of E. coli to fall by half of its
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highest value was measured using a graph, and the time recorded.

Following the appearance of colonies and plaques of the E.

coli and B. bacteriovorus cells respectively, the number of viable

cells in each culture was determined. A second Excel spreadsheet

was utilised, where the viable cell counts and the time it took the

luminescence to fall by half when in the presence of B.

bacteriovorus were plotted producing a graph identifying the

predatory efficiency of the B. bacteriovorus strains.
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2.16 Measuring the rate of B. bacteriovorus HD development

using predatory kill curves.

Rate of B. bacteriovorus development within the bdelloplast

was measured by a fall in OD600 values of a non-synchronous

predatory culture over multiple rounds of B. bacteriovorus infection.

B. bacteriovorus attack-phase cells do not give an appreciable

absorbance at 600 nm due to their small size, thus OD600 values

fall over successive rounds of prey lysis.

50 ml of B. bacteriovorus predatory culture were filtered

through two 0.45 µm filters, to remove any residual prey cells, B.

bacteriovorus were harvested by centrifugation at 5.1 K (5,525g)

for 20 min in an Sigma 4K15 centrifuge and re-suspended in 10 ml

Ca/HEPES buffer. Protein concentration of each B. bacteriovorus

preparation was measured using a Lowry assay (section 2.8.2). B.

bacteriovorus inocula with matched concentrations of protein were

used to inoculate 50 ml predatory cultures containing E. coli prey,

at matched OD600 values of 0.8, plus antibiotics if appropriate.

These predatory cultures were incubated at 29oC in a shaking

incubator and changes in OD600 values were recorded using a

Biowave CO8000 miniature spectrophotomer.
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2.17 Measuring the rate of B. bacteriovorus HI growth.

HI growth rates were recorded as increases in mOD600 values

of HI cultures over a 72 h period in a 96 well Optiplate (Porvair

Sciences Ltd.) incubated and read in a FLUOstar Optima spectro

photo luminometer supplied by BMG Biotech. Due to the diverse

nature of HI growth patterns and their increase in growth rate with

successive PY sub-culturing, care was taken to ensure each HI

culture was of equivalent ‘age’ (section 2.2.3.1).

Duplicate HI cultures were back diluted in fresh PY to a

starting OD600 of 0.1 using a Biowave CO8000 miniature

spectrophotomer. 260 µl of matched OD600 HI cultures were loaded

into each well of the Optiplate in duplicate, and mOD600 recorded

every 30 min at 29oC with shaking for 72 h using a FLUOstar

Optima spectro photo luminometer. The Optiplate was covered in a

Breathe-Easy™membrane (Sigma-Aldrich) to prevent excessive

evaporation.
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CHAPTER THREE

The Role of Intermediate Filament-like protein

�Ccrp� in B. bacteriovorus.

Structural homologues of Intermediate filaments form a

newly discovered family of cytoskeletal proteins in bacteria (Bagchi

et al., 2008). This chapter introduces methods, also used in

subsequent chapters, to study growth and development of a B.

bacteriovorus cytoskeletal mutant within prey, and represents the

first study of bacterial cytoskeletal elements in a predatory context.

It also outlines the cloning techniques used to fluorescently tag

specific B. bacteriovorus proteins.

3.1 Introduction

3.1.1 Intermediate-filament-like proteins in bacteria

Unlike the actin and tubulin components of the eukaryote cell

cytoskeleton, intermediate filaments (IF) such as: nuclear lamins

and keratins with oligomerise spontaneously requiring no enzymes

or cofactors, forming rigid yet elastic structures when assembled

into long fibres (Herrmann and Aebi, 2004). These features of

eukaryotic IF are crucial for their role in: cell focal-adhesion

attachments and maintaining cell and organelle morphology, by
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acting like an internal supporting structure underneath plasma

membranes (Herrmann and Aebi, 2004). Work carried out over the

last decade has shown that structural homologues of IF in bacteria

also contribute to cell architecture; Crescentin (CreS) in

Caulobacter crescentus establishes and maintains vibroid/coiled cell

shape; FilP in Streptomyces coelicolor has a role in cell integrity;

finally, in Helicobacter pylori two IF-like proteins (Ccrp59 and

Ccrp1143) have roles in maintaining cell morphology (Ausmees et

al., 2003, Bagchi et al., 2008, Waidner et al., 2009). Regulatory

proteins that modify, or turnover, IF-like elements in bacteria have

not yet been described.

3.1.2 Roles of Intermediate-Filament-like proteins in B.

bacteriovorus

Intermediate filament-like proteins in bacteria have roles in

cell morphology and integrity. The predatory life-cycle of B.

bacteriovorus places a series of physical and morphological

challenges to the cell cytoskeleton, summarised in Fig. 1.6.

Electron micrographs show B. bacteriovorus attack-phase cells

deforming as they enter prey, reducing the pore size required to a

minimum (Fig. 1.3). Modifications or Assembly-Disassembly

equilibrium changes of IF-like proteins in B. bacteriovorus are likely

to facilitate the observed ‘squeezing’ as they are the only
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cytoskeletal-element shown to physically fold both bacterial

membranes and the cell wall in C. crescentus, in addition IF fibres

do not shear when forces are applied to them, favouring bending

(Cabeen et al., 2009, Herrmann and Aebi, 2004). Taken together

these two features show IF-like elements are good candidates for

attack-phase cell ‘squeezing’, and thus could have a role in B.

bacteriovorus prey cell entry.

The IF-like element CreS in C. cresentus has been shown to

maintain vibroid cell shape (Ausmees et al., 2003). It has been

hypothesised that the hydro-dynamic effects of having a curved

cell morphology could be advantageous in cell swarming (Ausmees

et al., 2003). In a predatory context, B. bacteriovorus cells are also

vibroid and this could aid attack-phase cells locate areas of high

prey-cell density. However, it may not be possible to measure a

predatory advantage of a vibroid cell over a rod-shaped cell over

short distances in uniform viscosities, within in a lab setting.

Alternatively, IF-like elements could have a role in the coiling of the

growth-phase within bdelloplasts (Fig. 1.6), reducing potential

developmental complications of growing within this space-limited

niche.

In S. coelicolor work on the FilP protein has shown that this

IF-like protein functions as underlying cell scaffold that contribute

directly to cell integrity, until recently thought to be solely a
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function of osmotic turgor pressure of the cytoplasmic membrane

against the cell-wall (Bagchi et al., 2008). IF-like proteins of B.

bacteriovorus behaving in this way could be implicated in cell

squeezing during prey entry but may also have a wider long-term

function in B. bacteriovorus attack-phase cell survival in the

environment.

3.1.3 Identification of bacterial Intermediate-Filaments

The first IF-like element described in bacteria was the CreS

protein discovered in 2003 (Ausmees et al., 2003). Intermediate-

filaments have been widely studied in eukaryotic systems

(Herrmann and Aebi, 2004), so why did it take so long to discover

these proteins in bacteria? The typical structure of eukaryotic IF

protein consists of a central structural rod domain which has the

potential to form a coiled-coil structure with adjacent monomers,

flanked by N-terminal ‘head’ and C-terminal ‘tail’ globular domains

(Herrmann and Aebi, 2004). The majority of sequence conservation

within eukaryotic IF protein lies in the two globular domains

allowing identification of homologous proteins by BLAST analysis;

whereas the central rod domain has relaxed primary sequence

constraints (Herrmann and Aebi, 2004). All bacterial IF-like

proteins identified so far share structural homology, but not protein

sequence homology, with the central coiled-coil domain of
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eukaryotic IF proteins only, and thus were not easily identified until

the automation of coiled-coil prediction by software such as COILS

in 1991 (Lupas, 1996, Lupas et al., 1991). Fig. 3.1 shows an

output file from the COILS program for the CreS protein of C.

crescentus, as well as a summarised output typically shown in the

literature (Ausmees et al., 2003). A multiple protein alignment is

shown in Appendix 3.1 to demonstrate the very low protein

homology Ccrp elements have with each other (Appendix 3.1).

Figure 3.1 Example of a COILS raw output file against a summarised diagram.
(A) Raw coiled-coil predictions of the CreS protein from C. crescentus using the
COILS program. (B) Summarised ‘box’ diagram of CreS coiled-coil prediction
adapted from (Ausmees et al., 2003). Scale bar represents amino acid positions.

Coiled-coils are amphipathic alpha-helical protein interaction

structures. These proteins typically dimerise and form very stable
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interactions. The source of this tight interaction is two fold. Firstly

the interaction between the hydrophobic surfaces of the

amphipathic helixes masking the hydrophobic amino-acid side-

chains from the aqueous solution creates a tight bond. Secondly,

this oligermisation shifts the register of the two interacting alpha-

helixes from the regular 3.6 amino-acid residues per helical turn to

3.5 (Lupas, 1996). The change in register creates an even stronger

interaction structure in which individual hydrophobic amino acid

side chains, such that found on the Leucine residue, are located

within a hydrophobic pocket from the adjacent monomer. The shift

in register generates a heptad periodicity in amino acid sequence

which can be used for coiled-coil prediction (Lupas, 1996). The

COILS protein prediction tool exploits the heptad periodicity using a

sliding query window of: 14, 21 or 28 residues, and compares it

against a matrix of amino-acid frequencies at each position in the

heptad (Fig. 3.1A). The matrix (MTK) was first generated from

16,968 aligned eukaryotic coiled-coil domain protein sequences

(Lupas, 1996, Lupas et al., 1991). Since the discovery of the CreS

protein in C. crescentus multiple bacterial structural IF-like proteins

have been identified using the COILS program (Bagchi et al., 2008).
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3.2 Bioinformatic identification of Intermediate-Filament-

like (Ccrp) proteins in B. bacteriovorus

We consulted Christine Jacobs-Wagner, discoverer of

crescentin (Ausmees et al., 2003), for advice on finding

intermediate-filament-like proteins in B. bacteriovorus which were

first identified using the coiled-coil prediction program: COILS

(http://www.ch.embnet.org/software/COILS_form.html) (Lupas,

1996, Lupas et al., 1991). This search indentified two proteins

which were predicted to form coiled-coil containing dimerisation

domains in the B. bacteriovorus HD100 genome; Bd2697 and

Bd1167. Based on the published nomenclature and predicted

function of IF-like proteins in bacteria at the time; these genes

were named creS1 (Bd2697) and creS2 (Bd1167) (Ausmees et al.,

2003). Further analysis of these proteins by COILS predicts that

creS1 has an unusual feature of being devoid of short regions

where coiled-coil prediction breaks down so called ‘stutter regions’

found in IF and IF-like proteins (Herrmann and Aebi, 2004)

(Fig.3.2).
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Figure 3.2 Summarised Coiled-coil predictions of B. bacteriovorus HD100
proteins compared to known Ccrp proteins using the COILS program. Scale bar
represents the amino acid positions along the CreS protein. Subsequent proteins
are drawn to scale and aligned to CreS with respect to the first region of coiled-
coil prediction. Protein sequences for H. pylori strain 26695 used to represent
ccrp59 and ccrp1143 COILS predictions. A protein multiple alignment of the
same protein sequences shown here can be found in Appendix 3.1.

Prediction of bacterial IF-like proteins cannot be based on

COILS prediction alone as other bacterial proteins are known to

contain regions which form coiled-coiled structures on dimerisation,

such as: SMC and FliC (Melby et al., 1998, Lupas et al., 1991).

Recent advances in our understanding of IF-like proteins in bacteria

has led to the establishment of the following criteria for their

identification: 1, bacterial IF-proteins must have coiled-coil

prediction of at least 80 amino-acids in length (this includes short

stutter regions); 2, have no other predicted domains; and 3, be

located within the cytoplasm (Bagchi et al., 2008, Graumann,

2009). Bacterial proteins fulfilling these criteria are named Ccrps

(Coiled Coil Rich Proteins) and not ‘IF-like’ to better distinguish
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them from eukaryotic IF proteins, as these may not be true

homologues (Graumann, 2009).

At the time of initial identification both CreS1 and ‘CreS2’

proteins of B. bacteriovorus satisfied these criteria, however

advances in secondary structure prediction software has shown the

presence of a predicted an OMP-A domain at the C-terminus of the

‘CreS2’ protein. C-terminally tagged CreS2-mTFP protein expressed

in E. coli also showed that this protein was also located within the

periplasmic space, rather than the cytoplasm of Ccrps (data not

shown). Thus Bd1167 (creS2) is not a true Ccrp.

Following the loss of the Bd1167 ccrp candidate, a recent

exhaustive search for ccrp genes in B. bacteriovorus was carried

out using the latest versions of protein domain prediction software,

see Appendix 3.2. This analysis revealed that the Bd2967

(previously: CreS1) is the only protein present in the B.

bacteriovorus genome that is predicted to oligemerize forming

colied-coils and thus may be a structural cytoskeletal element,

therefore this gene was renamed ccrp to better reflect current

nomenclature (Graumann, 2009). The Full details of this analysis

can be found in Appendix 3.2. In brief candidate genes were

initially identified from protein BLAST analysis using the CreS

sequence from C. crescentus and the two known proteins predicted

to form coiled-coils: Bd2697 and Bd1167 as queries against the B.
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bacteriovorus HD100 genome. As protein BLAST is of limited value

when using coiled-coil queries, all hits were analysed regardless of

E-value. Coiled-coil prediction using the COILS program and

identification of predicted functional domains were carried out

using both the ncbi conserved domains database: CCD-37014 and

Pfam v24.0 (Marchler-Bauer et al., 2009, Finn et al., 2010). Only

two proteins were identified by both Bd2697 and Bd1167 BLAST

analyses: Bd1169 and Bd1158, these were also used as queries to

further widen the search for Ccrp proteins within the HD100

genome, also shown in Appendix 3.2.

3.3 The role of the ccrp gene in B. bacteriovorus

3.3.1 The ccrp gene of B. bacteriovorus is not essential for

vibroid cell morphology

In order to study the role of the ccrp gene in the B.

bacteriovorus life cycle, a strain carrying a deletion of ccrp by

kanamycin cassette insertion and grown host-dependently on

kanamycin resistant prey was constructed using methods described

previously in Materials and Methods section 2.11. Deletion strains

were confirmed by PCR and Southern blotting (see Fig. 3.4), and

examined by cryo-electron microscopy to determine whether their

vibroid morphology had been altered by the mutation. A

Kanamycin control strain Bd2345::Kn was selected as a

morphological control; this strain has a Kn resistance cassette
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placed in the same location as B. bacteriovorus 109JK, a strain

which has been shown to have no predatorily defective phenotype

(Lambert et al., 2003). Surprisingly all cells of the ccrp::Kn strain

were vibroid in shape, as was the kanamycin resistant Bd2345::Kn

control (Fig. 3.3).

Figure 3.3 Vitrified frozen cells of B. bacteriovorus ccrp::Kn and Bd2345::Kn
visulised by cryo-elecron microscopy. Images show representative examples of
cells of both strains showing most of the details described in Fig. 1.2. The carbon
film of the EM grid (which appear as a darker shadowed area) and the 15 nm
gold particles (black specs) can be seen surrounding the cells. Images taken
jointly with C. Butan under the supervision of S. Subramaniam using methods
described in section 2.9.7. scale bars = 500nm.
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Figure 3.4 Southern blot confirmation of the ccrp::Kn deletion strain. Three
identical DNA gels with HincII digested of genomic DNA isolated from pAKF22
exconjugant strains (A) were run in triplicate and used for three Southern Blots
using probes that bind to: the ccrp ORF, kanamycin cassette (Kn) and pSET151
vector backbone (see section 2.7 for methods). Lane order for gel and all blots:
1 = 1Kb NEB ladder, 2 = biotinylated 2-log NEB ladder 3-11 = ccrp KO
candidates, 12 = gap, 13 = S17-1 control, 14 = ccrp::Kn merodiploid control, 15
= wt HD100, 16 = unlabeled ccrp probe, 17 = unlabeled Kn probe, 18 =
unlabeled pSET151 probe, 19 = biotinylated 2-log NEB ladder. The 0.9 kb bands
in the candidate lanes (3-11) on the ccrp blot are the result of unspecific probe
binding (data not shown). DNA in all but the ladder lanes was digested for 16h
with HincII. All candidates (lanes 3-11) show the expected gel shift from 1.0 kb
to 2.2 Kb on the ccrp blot (B), a single 2.2 kb band on the Kn blot (C), and no
pSET151 bands (D). Highlighted (*) candidates were used for phenotyping, lane
highlighted with an ‘M’ contains a known merodiploid control strain.
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3.3.2 B. bacteriovorus cells of the ccrp::Kn strain were

physically less robust when visualised under conditions of

negative-staining for electron microscopy

A large number of attack-phase cells were visualised for

morphological differences by negative staining of whole cells with

0.5% uranyl acetate (URA) pH4.0 for transmission electron

microscopy. Interestingly this revealed that in contrast to the usual

wild-type smooth vibroid appearance of all the Bd2345::Kn control

cells, all cells of the ccrp::Kn strain had a dented and creased

appearance, not seen previously (Fig. 3.5). Negative-staining of B.

bacteriovorus cells with URA does not cause membrane damage

observed with other stains used for electron microscopy (such as

PTA), and positively stains the cell wall causing slight cell folding in

wild-type and Bd2345::Kn control cells (Fig. 3.5), (Abram and

Davis, 1970). In contrast to control strains the surfaces of the

ccrp::Kn strain were severely creased and turned inwards creating

deep indentations at both poles in 29% of cells (n=191); a feature

not previously observed in B. bacteriovorus strains (Fig. 3.5).
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Figure 3.5 B. bacteriovorus ccrp::Kn strain shows cellular deformations under
the negative-straining conditions for transmission electron microscopy.
Representative electron micrographs of B. bacteriovorus ccrp::Kn attack-phase
cells, showng flagella-proximal dents (F-P), flagella-distal dents (F-D) and
‘creased’cell phenotypes; compared to the Bd2345::Kn control. Percentages
represent the distribution of cells between the three categories; n=191. Cells
stained with 0.5%URA pH4.0, scale bars = 500nm.

3.3.3 The predation efficiency of ccrp::Kn strain.

The ccrp::Kn strain cell deformations visualised under

negative-staining conditions appeared to be similar to the squeezed

prey-entry forms shown in Fig. 1.3, which suggested that there

may be a role of the Ccrp protein in prey entry. Efficiency of prey

entry for the ccrp::Kn strain was assayed using a prey

luminescence assay first used by C. Lambert and co-workers
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(Lambert et al., 2003). This assay (described in section 2.15)

involves predation of B. bacteriovorus on a luminescent E. coli prey

strain (S17-1:pCL100), and if members of the prey population are

killed the luminous signal intensity decreases (Fig. 3.6A). B.

bacteriovorus cells kill prey rapidly after prey-cell entry, destroying

luminescence activity. Thus this assay is a reflection of prey-

attachment and entry efficiency for a given strain. Incubation of

prey cells with increasing volumes of synchronously grown B.

bacteriovorus predatory lysates results in a faster decline in

luminescence activity after an initial peak; the peak representing

the stabilisation of expression in the uninfected prey cells after the

initial oxygenic and temperature shock (Lambert et al., 2003) (Fig.

3.6A). Using enumeration data to measure the initial number of B.

bacteriovorus and E. coli per infection, and plotting this as a ratio

against the time taken to reduce the luminescence activity to half

of its maximum, allows for a comparison of predatory efficiencies

between strains; the gradient of the line being a reflection of

predatory efficiency (Lambert et al., 2003). Data collected from

multiple biologically repeated predation assays against a

kanamycin resistant strain control with a wild-type predatory rate

(the filC1/fliC1::Kn merodiploid strain), showed that the ccrp::Kn

strain did not have a predatory defect (Fig. 3.6B). The

filC1/filC1::Kn merodiploid control strain was selected as a

kanamycin resistant wild-type predatory control in this experiment
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over the Bd2345::Kn control, as preliminary experiments on the

ccrp::Kn phenotype and work by others in the lab had shown, by

this point, that this strain had a slightly reduced predatory rate (C.

Lambert and L. Hobley personal communication).

Figure 3.6 The ccrp::Kn strain of B. bacteriovorus has a wild-type predatory
rate. (A) Typical E. coli S17-1:pCL100 luminescence plot (Log10) with increasing
starting concentrations of B. bacteriovorus ccrp::Kn cells against time. (B) Plot
showing Log10 of time taken for infections to reach half luminescence against
starting ratios of E. coli:B. bacteriovorus for the ccrp::Kn and fliC1 merodiploid
predatory control strains. Each dataset represents 4 biological repeats in the
case of the ccrp::Kn strain and 2 biological repeats (each with 5 replicates) for
the fliC1 merodiploid strain.
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3.3.4 The ccrp::Kn strain has no defect in developmental

rate or cell morphology within the bdelloplast.

Ccrp proteins have a variety of roles beyond bacterial cell

morphological modifiers; both Ccrp59 and Ccrp1143 of H. pylori

have shown Ccrp proteins can act as MreB-like elements, co-

ordinating peptidoglycan biosynthesis (Waidner et al., 2009). To

examine the potential role of Ccrp protein in the developmental

rate of B. bacteriovorus within bdelloplasts, both a bdelloplast-

persistence and Prey-killing assays were performed, unlike the

luminescent prey assay in section 3.3.3 where infected prey

luminescence activity is lost within 20 min of B. bacteriovorus entry,

these two assays measure prey final lysis of the bdelloplast which

occurs after B. bacteriovorus cells have matured (see section 2.16).

Taken together these assays provide two different results; either

altered prey entry and killing rate as measured by the prey-

luminesence assay, or altered incubation time of B. bacteriovorus

within bdelloplasts, measured both directly over a single infection

in the case of bdelloplast-persistence assays and indirectly over

multiple rounds of infection in prey-killing assays.

A bdelloplast persistence assay involves direct observation of

a predatory lysate by light microscopy with a predator:prey ratio or

MOI (multiplicity of infection) above 2; sufficient for B.

bacteriovorus infections to proceed synchronously on E. coli prey
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(Matin and Rittenberg, 1972, Abram et al., 1974). Under these

conditions greater than 95% of prey are infected synchronously

and will enter and lyse prey within 4 h. Thus resulting in a return to

an almost pure attack-phase B. bacteriovorus predatory lysate at

between 4.5-5 h, if predation proceeds at a wild-type rate.

Representative images captured across the infection cycle are

displayed in Fig. 3.7. In addition images of ccrp::Kn bdelloplasts

show the developing B. bacteriovorus cells are vibroid in shape,

thus Ccrp is not responsible for vibroid growth-phase cell shape

within the bdelloplast (Fig. 3.7, see orange arrows).

Prey-killing assay measuring drops in OD600 of a 50 ml

predatory lysates over time creates predatory killing curves shown

in Fig. 3.8, these differ from luminescent-prey assays as they

monitor lysis of bdelloplasts not initial invasion of prey, first

published in: (Fenton et al., 2010). Starting OD600 values were

matched to 0.8 with kanamysin resistant E. coli S17-1:pZMR100

prey. Matched protein concentrations of fully-lysed and filtered B.

bacteriovorus lysates were used to start the infection. Values fall as

prey are lysed given that the B. bacteriovorus attack-phase cells

are too small to register at an OD of 600 nm. The predatory killing

curves shown in Fig. 3.8 for B. bacteriovorus ccrp::Kn, Bd1167

‘creS2’::Kn and Bd2345::Kn strains represent two biological

repeats (Bd1167::Kn KO Southern blot confirmation shown in

Appendix 3.3). In conclusion this data showed the ccrp::Kn strain
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lysed prey at the same rate as the Bd1167::Kn strain, suggesting a

wild-type predatory development (Fig. 3.8). In addition the Bd2345

‘control’ strain, known by this point to have a slightly reduced

predatory rate, shows a shallower curve suggesting a slower rate

of predatory development than both the ccrp::Kn and Bd1167::Kn

strains (Fig. 3.8).

Figure 3.7 The B. bacteriovorus ccrp::Kn strain has a wild-type cell morphology
and developmental rate within the bdelloplast, measured using a bdelloplast
persistence assay. Representative brightfield images representing key time-
points of a synchronous ccrp::Kn infection. Arrows used to highlight specific cell
types; Red: vibroid ccrp::Kn attack-phase cells, Black: Uninfected E. coli S17-
1:pZMR prey, White: Attack-phase cell attachment, Orange: bdelloplsasts
containing vibriod growth-phase cells, Blue: Fully septated mature bdelloplasts.
Comparison of 15 and 30 min post infection images demonstrate synchronous
infection, at 15 min all prey cells show B. bacteriovorus attachment, whereas at
30 min all prey are infected. Images of HD100 control infection carried out under
the same conditions are not shown. Scale bar=5 m.
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Figure 3.8 The B. bacteriovorus ccrp::Kn strain has a wild-type cell morphology
and development rate within the bdelloplast, measured using a prey-killing assay.
Predatory kill curve of HD100 ccrp::Kn, Bd1167::Kn and Bd2345::Kn strains.
Matched OD600 values of S17-1:pZMR prey were infected with corrected amounts
of B. bacteriovorus strains, matched by protein concentration. Data represents
two biological repeats, each set up in duplicate. Error bars show standard
deviation around the mean.

3.4 Challenges to the B. bacteriovorus ccrp deletion strain.

Deformation of ccrp::Kn attack-phase cells under conditions

of negative staining, shown in Fig. 3.5, raised the possibility of the

Ccrp protein contributing directly to cell integrity. To investigate

this further, attack-phase ccrp::Kn cells were osmotically

challenged using 0.1% glycerol in predatory lysates, and motility in

conditions of increased resistance was measured using prey-

overlay plates in which the concentration of agar in the upper-layer
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had been altered. The 0.1% glycerol osmotic challenge, reported

previously to cause osmotic shock and shrinking of E. coli cells

(Alemohammad and Knowles, 1974), showed no appreciable

difference in glycerol tolerance between the ccrp::Kn and fliC1

merodiploid control strain. In both cases tolerance was scored as

the ability to fully lyse prey cultures observed by microscopy, in

addition complications arising from osmotic effects on the prey

could not be discounted (data not shown). Motility in assays on

ccrp::Kn strain on prey overlay plates at differing top-agar

concentration again showed no appreciable difference compared to

the fliC1 merodiploid control strain (data not shown).

3.5 A C-terminal Ccrp-mTFP shows location bias in B.

bacteriovorus attack-phase cells

3.5.1 Construction of a fully functional Ccrp-mTFP fusion

protein in B. bacteriovorus

In order to study specific protein localisation in B.

bacteriovorus, a method of targeted mTFP tagging was devised:

see Materials and Methods section 2.12. To study Ccrp localisation

in B. bacteriovorus a fusion construct using a 5’ fragment of the

ccrp ORF was cloned in frame with mtfp in the plasmid pAKF04,

generating pAKF38a; the ORF fragment if translated would

represent 76% of the Ccrp protein. The ccrp-mtfp fusion construct
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was transferred to the mobilisable pK18mobsacB suicide vector

(giving pAKF42a) and conjugated into B. bacteriovorus (Materials

and Method 2.4). Kanamycin resistant exconjugant strains,

containing the pAKF42a plasmid recombined into the genome, are

only capable of expressing the mTFP tagged fusion protein; as the

original copy of ccrp on the genome is inactivated by promoter

removal and 5’ deletion of the 23% of the ccrp ORF absent from

the pAKF42a construct, shown in Fig. 2.1A. Amplification of the

recombined genomic copy of the pAKF42 construct with the

surrounding genome, direct sequencing and diagnostic Southern

blot of exconjugants confirmed the full ccrp-mtfp ORF was free of

any point mutations, multiple recombination events had not

occurred, and incorporation of the construct was in the expected

location (Appendix 3.4 and 3.5).

The HD100 ccrp-mtfp strain was visualised by electron

microscopy (Fig. 3.9) and did not show the cell deformations

observed for the ccrp mutant (Fig. 3.5) when exposed to negative

staining. This suggests that the Ccrp-mTFP fusion protein was

functional, Fig. 3.9.
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Figure 3.9 Attack-phase B. bacteriovorus ccrp-mtfp cells show wild-type cellular
morphology under negative staining for transmission electron microscopy. All
cells shown here were stained at the same time with 0.5% URA pH4.0, Scale
bars = 500 nm.

3.5.2 Ccrp-mTFP fluorescent signal shows bias towards both

cell poles of attack-phase B. bacteriovorus

The fluorescent Ccrp-mTFP signal in attack-phase B.

bacteriovorus cells was very faint and generally evenly distributed

but showed a bias towards the cell poles (Fig. 3.10). Fluorescent

images of attack-phase cells of the non-fluorescent Bd2345::Kn

strain were captured as auto-fluorescence controls. The faint

nature of the Ccrp-mTFP fluorescent signal suggests that this

protein is not high in abundance and precluded signal distributions

being examined in growth-phase cells; due to the high background

fluorescence of bdelloplast structures.

A total of 180 attack-phase cells were scored for Ccrp-mTFP

signal distribution, 25% of these had a polar bias (Fig. 3.10). More

generally, partitioning of the signal could be observed in cells

where a bias to one pole was present (Fig. 3.10c). Using the FM4-

64 membrane stain to visualise the sheathed flagellum, and thus
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determine cell polarity, showed that single foci could be located to

either pole of the attack-phase cell (Fig. 3.10a,b).

Figure 3.10 Ccrp-mTFP signal shows a distribution bias towards both cell poles
of attack-phase B. bacteriovorus cells. Ccrp-mTFP fluorescence images provided
in raw and corrected formats to better visualise signal distributions, background
corrections carried out using the IP-lab software (version 3.64). The fluorescent
FM4-64 membrane stain was used to determine cell polarity by its incorporation
into the flagella sheath. Summary diagrams are provided for clarity. Ccrp-mTFP
signal distributions: single, double and no foci are shown by percentage; n=180.
Scale bar = 2 m.
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3.5.3 Ccrp-mTFP fluorescent signal bias is independent of

the MreB cytoskeleton

The helical filament of the actin-like protein MreB spatially

organises many proteins within the cytoplasm of bacterial cells and

helps anchor CreS fibres to the cell poles in C. crescentus

(Graumann, 2009, Charbon et al., 2009). The location bias of the

Ccrp-mTFP protein in B. bacteriovorus attack-phase cells in the

presence of the MreB specific inhibitor A22 at a final concentration

of 10 g/ml did not significantly alter the Ccrp-mTFP distribution

patterns (Fig. 3.11). Work on MreB in B. bacteriovorus show A22

concentrations of 10 g/ml modifies MreB activities in B.

bacteriovorus without affecting long term viability (Fig. 5.11), in

contrast to work carried out on CreS this shows Ccrp-mTFP

localisation in B. bacteriovorus is independent of the MreB

cytoskeleton (Charbon et al., 2009).
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Figure 3.11 The MreB cytoskeletal inhibitor A22 does not significantly affect
Ccrp-mTFP signal distribution patterns. Signal distribution patterns of non
treated ccrp-mTFP cells, error bars represent standard deviation around the
mean (n=180) compared to an A22 treated data set (n=77), attack-phase cells
were treated for 16h with A22 at a final concentration of 10 g/ml. Chi square
analysis (2=4.03, d=2, Q=0.133) confirms that variation in A22 dataset is due
to chance: p=0.86.
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3.6 Discussion

This chapter showed for the first time that it is possible to C-

terminally GFP tag and detect the fluorescence activity of a specific

protein in B. bacteriovorus (Fig. 3.9 and 3.10). Although the Ccrp-

mTFP fluorescent signal was weak, sub-cellular localisation within

attack-phase B. bacteriovorus cells only 1 m long was possible;

this re-enforces the decision to use the mTFP fluorophore, as a less

fluorescent GFP tag would have generated a signal

indistinguishable from auto-fluorescence. Although the signal in

this case was not strong enough to visualise within the bdelloplast,

a protein of higher abundance in the cell may make this possible.

Further analysis of Ccrp-mTFP polar bias was possible using the

FM4-64 membrane stain that under conditions of long exposure

and relatively high image gain can be used to visualise the flagellar

sheath (Fig. 3.10).

This chapter also introduced methods of measuring specific

events in the B. bacteriovorus predatory life-cycle which are

applied later in the thesis. Attachment and entry rates can be

measured using a prey luminescence assay, and growth-phase cell

developmental rates are measured either directly by microscopy or

indirectly over multiple rounds of infection through OD600 predatory

kill curves (Fig. 3.6, 3.7 and 3.8).
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Understanding of bacterial Intermediate-filament-like

proteins (now called Ccrps) and protein prediction software has

advanced during the course of this study, leading to the

reclassification of the Bd1167 ‘creS2’ gene and the renaming of the

Bd2697 ‘creS1’ gene ccrp; to better reflect current nomenclature

and function (Graumann, 2009). An exhaustive search using a

combination of the latest software and the latest published criteria

for ccrp identification showed B. bacteriovorus has only one ccrp

gene in its genome, Bd2697 (Appendix 3.2) (Bagchi et al., 2008).

Both cryo-electron micrographs and brightfield microscope

images (Fig. 3.3 and Fig. 3.5) show vibroid B. bacteriovorus attack-

phase and growth-phase cells within bdelloplasts, suggesting that

Ccrp does not maintain vibroid cell shape in B. Bacteriovorus. This

is in contrast to work on the CreS protein in C. crescentus

(Ausmees et al., 2003).

A combination of prey-luminescence assays, prey-killing

OD600 assays, and bdelloplast presistance assays, each designed to

examine a different aspect of B. bacteriovorus predatory growth all

suggested that the ccrp::Kn strain possesses a wild-type prey

entry and predatory developmental rate (Fig. 3.6, 3.7 and 3.8).

Osmotic challenges to mutant B. bacteriovorus cells using 0.1%

glycerol and indirect motility measurements through media of
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differing viscosities showed no appreciable difference of the

ccrp::Kn strain over a wild-type control (section 3.4.5).

The Ccrp-mTFP fusion protein in attack-phase B.

bacteriovorus showed a location bias towards both cell poles, at

frequencies similar to the cell denting bias observed for the ccrp

deletion strain under negative-staining for electron microscopy (Fig.

3.5 and 3.10), also cryo-EM studies showed no morphological

differences between mutant and control strains (Fig. 3.3), this

suggests that the absence of the Ccrp in mutant strains makes

them more susceptible to the insults of negative-staining at the cell

poles.

It was surprising that a protein which could localise to

discrete foci in B. bacteriovorus cells, and the absence of which

produced large scale denting of the cell surface when visualised by

negative staining, did not affect the entry of B. bacteriovorus into

prey cells (Fig. 3.6). As B. bacteriovorus entry to prey was

previously shown to be dependent on type IV pili, it is clear that

the structures which anchor the pilus retraction machinery at the

cell pole do not require this Ccrp protein to be firmly positioned in

the cell (Evans, 2007, Mahmoud and Koval, 2010). The question as

to whether cytoskeletal proteins or peptidoglycan interactions are

key to allowing B. bacteriovorus cells to be dragged into prey by

pilus retraction remains open.
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In conclusion this work suggests that whilst Ccrp in B.

bacteriovorus does not contribute to the vibroid cell shape, it

significantly contributes to cell shape stability by acting as an

internal protein scaffold, similar to the FilP protein in S. coelicolor

(Bagchi et al., 2008), and without it cells are still predatory but

may be more prone to osmotic insults from the environment.
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CHAPTER FOUR

Investigating the growth and development of B.

bacteriovorus within bdelloplasts.

4.1 Introduction

Although from microscopic snapshots it was clear that B.

bacteriovorus enter and round up prey forming bdelloplasts. Early

EM studies tended to focus on the initial attachment and prey

invasion events. Thus we have not known how exactly a single

predatory B. bacteriovorus makes use of the finite resources within

the bdelloplast to grow, and then manages to coordinate departure

of mature progeny at the point at which prey resources are

depleted (Scherff et al., 1966, Burnham et al., 1968).

The relatively few early studies that did focus on B.

bacteriovorus growth were hampered by staining and fixing

techniques used for TEM which kill bacterial cells (Abram and Davis,

1970). In the previous chapter (Chapter 3) I used the mTFP

fluorescent protein to C-terminally tag and visualise the cellular

address of a target protein (Ccrp) within B. bacteriovorus attack-

phase cells (section 3.5.2, Fig. 3.10). This chapter employs two

fluorescent proteins: mTFP and mCherry to investigate B.
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bacteriovorus developmental processes using direct protein-tagging;

and later more indirectly using a fluorescently-labelled prey strain,

leading to fluorescent bdelloplasts.

4.1.1 Growth and development of B. bacteriovorus within

bdelloplasts

Predatory B. bacteriovorus elongate into a filamentous

growth-phase cell within bdelloplasts using the resources acquired

by digestion of the prey (Fig. 1.6) (Lambert et al., 2009). This

growth-phase filament divides into multiple progeny contrary to

‘normal’ bacterial cell division by binary fission (Scherff et al., 1966,

Kessel and Shilo, 1976). B. bacteriovorus growth-phase cells are

multiploid and thus have an increased risk of genome instability by

multiple homologous recombination events; therefore there must

be significant benefits to this method of growth to increase the

overall fitness of B. bacteriovorus (discussed further in section 6.1).

To start to understand how B. bacteriovorus cells coordinate

the processes of DNA replication, chromosome segregation and

septation within growth-phase filamentous cells, over arching

patterns of growth in live cells must first be identified. To achieve

this C-terminal mTFP tags were designed to B. bacteriovorus to try

and label and observe target proteins involved in the processes of

bacterial septation.
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4.1.2 The bacterial septation machinery

Septation is the process by which bacteria divide, typically

into two. For a Gram-negative bacterium like B. bacteriovorus this

involves the processes of inner and outer membrane biosynthesis

and invagination, combined with peptidoglycan biosynthesis. The

first stage in this process involves the bacterial tubulin homologue

FtsZ; this protein polymerises specifically at the mid-cell address

due to the action of specific control mechanisms (discussed in

section 4.1.3). As with eukaryotic tubulins that require microtubule

binding protein to function, FtsZ-ring establishment requires the

action of multiple stabilising factors in vivo including: FtsA, ZipA

and ZapA; together these proteins recruit all downstream septal

machinery required for cell division in an established hierarchy or

pattern: FtsZĺ FtsA/ZipAĺ FtsKĺ FtsQĺ FtsL/FtsBĺ FtsWĺ FtsIĺ

FtsN, shown in Fig. 1.5 (Goehring and Beckwith, 2005). Many other

Fts septal proteins (such as FtsY) with non-essential roles in

septation have not been shown in Fig. 1.5. Septal proteins either

act to recruit further downstream proteins (such as FtsQ) or have

specific enzyme functions required for division such as the FtsK

protein, required for chromosome cell segregation, and the

penicillin-binding-protein FtsI, which aids in lateral cell wall

biosynthesis (Goehring and Beckwith, 2005). Together the

essential ‘Fts’ proteins provide a stable protein-protein binding

platform and localised enzyme activities to divide the bacterial cell.
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4.1.3 Regulation of conventional bacterial septation through

FtsZ

Regulation of septation principally hinges on the

establishment and stabilisation of the FtsZ-ring at mid-cell

(Errington et al., 2003). The MinCDE system is a well studied

mechanism for Z-ring control in E. coli and works using the FtsZ

ring inhibitory complex MinC-MinD; this inhibition is itself inhibited

in the presence of MinE specifically at mid-cell (Goehring and

Beckwith, 2005). The Gram-positive bacterium B. subtilis uses a

homologus MinC-MinD system controlled by the DivIVa protein

which works by anchoring MinCD to the cell poles leading to the

relaxation of FtsZ inhibition at mid-cell (Marston et al., 1998). The

often overlooked additional control proteins such as: EzrA and SulA

act singularly and bind directly to FtsZ to inhibit Z-ring formation

(Goehring and Beckwith, 2005).

The SulA protein is involved in the E. coli SOS response and

inhibits septation in cells containing condensed genomes at mid-

cell, this prevents the genome being guillotined by the closing

septa resulting in the loss of viability (Goehring and Beckwith,

2005). As the ratio of B. bacteriovorus genome size to cell volume

is so high, proteins which inhibit septation by ‘nuclear occlusion’

may have increased importance in dividing B. bacteriovorus

growth-phase cells compared to other bacterial species.
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4.1.4 Bioinformatic identification of B. bacteriovorus

septation machinery

Little is known about B. bacteriovorus cell division, thus

bioinformatic analysis was used to identify the septal genes

responsible for this process. This analysis revealed that in general

B. bacteriovorus HD100 genome has the usual complement of cell

septation machinery but is lacking strong homologues of any

recognisable control mechanisms, discussed further in section 6.1

(Table 4.1).
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Table 4.1

Gene
Product
Name

Brief description/Notes
B. bacteriovorus

HD100
Homologue

Proteins known to be important in bacterial septation

FtsZ

Eukaryotic Tubulin homologue which forms a
ring-like structure below the cytoplasmic
membrane at the mid-cell point in bacteria. FtsZ-
ring formation at mid-cell is the first process in
septal protein recruitment and septation. Has a
secondary potential role in inner-membrane
invagination.

Bd3189

FtsA Required for FtsZ-ring localization at mid-cell. Bd3190

ZipA

Required for FtsZ-ring localization at mid-cell.
Amino acid sequence too short and diverse for
accurate BLAST analysis.

X

ZapA
FtsZ-ring assosiated protein. Amino acid
sequence too short and diverse for accurate
BLAST analysis.

X

FtsE

Tighly complexed with FtsX and is essential for
division in media containing high salt
concentrations in E. coli.

Bd0165

FtsX

Tighly complexed with FtsE and is essential for
division in media containing high salt
concentrations in E. coli.

Bd0166

FtsK

Required for physical maintenance of the septum
and downstream septal protein recruitment.
Responsible for active chromosome partitioning
using a RecA like DNA pump. Recognition of DNA
'KOPS' sequences by the C-terminal -domain
enables genome segregation. Aids recruitment of
the XerCD recombination system to the dif site.

Bd0041

FtsQ

Required for physical maintenance of the septum
and downstream Fts protein recruitment. Forms a
sub-complex with FtsB/L

Bd3191

FtsB

Required for physical maintenance of the septum
and downstream Fts protein recruitment. Forms a
sub-complex with FtsQ/L.

Bd0800

FtsL

Required for physical maintenance of the septum
and downstream Fts protein recruitment. Forms a
sub-complex with FtsQ/B.

X

FtsW

Septal trasmembrane protein. Is a RodA
homologue and interacts tightly with FtsI(PBP3)
in a similar way to RodA-PBP2.

Bd3198

FtsI
Also named PBP3, is the only specific septal
peptidoglycan transpeptidase. Bd3213

FtsN
Essential Fts gene in E. coli, found only among
gamma-proteobacteria.

X
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Gene
Product
Name

Brief of roles in conventional bacteria

/Notes

B. bacteriovorus

HD100
Homologue

AmiC Cell wall hydrolase essential for final partitioning. Bd2699

EnvC
A peptidoglycan amidase required for cell wall
remodelling and separation. Bd0168

Septal machinery control mechanisms

MinC
Inhibits FtsZ-ring formation in a complex with
MinD.

X

MinD

Inhibits FtsZ-ring formation in a complex with
MinC, forms oscillating helical filamentous
structures in E. coli.

X

MinE

Mid-cell specific membrane binding protein,
inhibits MinCD activity and thus allows FtsZ-ring
formation at the mid-cell only, forms mid-cell
rings independently of septal machinery.

X

DivIVA

Carries out the equivalent function of MinE in
B.subtilis, sequesters MinC-MinD to cell poles
thus lowering mid-cell concentration and allowing
FtsZ-ring establishment.

Bd0464

MipZ

Controls FtsZ ring localisation in C. crescentus.
BLAST shows a small amount of homology with
the Bd3906-ParA protein in the HD100 genome.

X

SulA

Inhibits FtsZ-ring formation if condensed
chromosomes are present at mid-cell in E. coli,
also induced by the SOS response.

X

EzrA Inhibits FtsZ-ring formation by direct binding. X

Table 4.1 Identification of genes involved with septation and FtsZ-ring location
control in B. bacteriovorus HD100. Table shows BLASTp hits using E. coli and B.
subtilis protein sequences as queries against the translated HD100 genome using
Wu-BLAST software v2.0 (http://blast.jcvi.org/cmr-blast/). Initial HD100 hits
confirmed using them as queries in an ncbi BLASTp search
(http://www.ncbi.nlm.nih.gov/) against the non-redundant protein sequence (nr)
database, predicted function of the top hits of these BLAST results were
examined. This search was limited to essential (BOLD) and non-essential but
well studied proteins septation proteins, genes are arranged in order of
recruitment to the septum (Goehring and Beckwith, 2005). Proteins marked with
an ‘X’ showed no significant BLAST hits, with no alignment having an e-value
less than 1.
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4.1.5 Models of B. bacteriovorus growth-phase cell septation

In addition to bioinformatic inventory, this study aimed to

understand the basic patterns of B. bacteriovorus growth within

bdelloplasts in order to understand the underlying mechanisms. EM

observations by Burnham et al and described the B. bacteriovorus

growth-phase filament dividing at multiple sites sequentially from

one pole to the other (Fig. 4.1), consistent with the predicted

division pattern of HI B. bacteriovorus strains (Burnham et al.,

1970, Scherff et al., 1966). However other patterns of sequential

converging and diverging cell-division cannot be ruled out.

Conventional logic would argue against the possibility of

synchronous septation at multiple sites along the growth-phase cell

due to the massive organisational issues and potential DNA

damage that such a division pattern may cause.

Figure 4.1 Possible models of B. bacteriovorus growth-phase cell septation.
Figure shows diagrammatic representations of an uncoiled growth-phase B.
bacteriovorus with multiple potential septation sites (dotted lines), numbers
represent the order of septation events along the elongated cell.
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4.1.6 Semi-quantitative RT-PCR study of gene expression in
B. bacteriovorus of genes involved in cell division across a

predatory infection cycle.

Multiple RT-PCR analyses of genes involved in cell division

and development of B. bacteriovorus in synchronously infected

prey cells were carried out over the course of this study (Materials

and Methods section 2.1.4). Fig. 4.2 shows the expression of key

replication and cell division genes over a single predatory time-

course. In general expression of these genes show an hierarchical

pattern proceeding from DNA initiation (dnaA), replication (ssb),

chromosome condensation(huA/huB), septation initiation (ftsZ),

finally late stage sepation propagation (ftsK). This data helped to

inform time-points at which fluorescent visualisation of both septal

and chromosome condensation mTFP protein tags in order to

visualise cells at the highest point of expression. This was

necessary as currently there are no inducible promoters available

for use in B. bacteriovorus.
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Figure 4.2 Semi-quantitative RT-PCR analysis of genes involved in cell division
of B. bacteriovorus across the predatory cycle. Lanes are highlighted with red
boxes at the point(s) of highest expression. RT-PCR reactions were carried out
on RNA extracted at the time points across a synchronous lysate of B.
bacteriovorus on the E. coli strain S17-1. Time points at which the RNA samples
were taken are labelled on the figure. The HID13 or HID2 strains were used to
assay HI gene expression. E. coli S17-1 RNA and no-template reactions provide
negative controls, and HD100 genomic DNA was used as a template for a
positive control. All lanes are in the same loading with the exception of dnaA
panel which has had the lanes relabelled where appropriate. Primers for gene
detection were designed to amplify an internal region of each gene. The 100 bp
marker from the NEB 100 bp ladder is visible in each flanking marker lane. Time-
points from the B. bacteriovorus predatory life-cycle in illustrated above,
adapted from (Lambert et al., 2006b).
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4.2 Investigating B. bacteriovorus cell division by targeted

mTFP protein tagging.

In an attempt to determine growth-phase B. bacteriovorus

cell division patterns, by visualising septation events within

bdelloplasts, two target genes were chosen for C-terminal mTFP

tagging; the bacterial tubulin homologue FtsZ and the later stage

septal protein FtsK. These were chosen as both proteins contain

significant cytoplasmic domains (Fig. 4.4B) and previous work had

shown that C-terminal GFP fusions to FtsZ and FtsK are, at least in

part, functional in E. coli (Osawa and Erickson, 2005, Draper et al.,

1998).

The FtsZ protein has been tagged in many bacteria and

represents the first logical choice for a septal mTFP tag. However,

it was feared that as Z-ring establishment is the first process in

septation visulisation of this tag may not have enough temporal

resolution to determine the fine filament division patterns.
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4.2.1 The FtsZ C-terminal mTFP tag in B. bacteriovorus

FtsZ is a well studied protein with four well described

domains and a solved crystal structure, reviewed in (Vaughan et al.,

2004). FtsZ has two N-terminal globular domains providing the GTP

binding and polymerisation activities. Following this a C-terminal

domain of variable length with poor homology between species and

no fixed structure or function, at the extreme C-terminus is a short

conserved peptide sequence which binds FtsA and ZipA (Vaughan

et al., 2004), boxed and highlighted in Fig. 4.3.

Work using transposon mutagenesis to insert GFP tags onto

the N-terminus of FtsZ in E. coli, led to FtsZ truncated proteins

which were capable of mid-cell localisation and complementation of

FtsZ null strains (Osawa and Erickson, 2005). Taking this data into

account three sites were chosen for FtsZ-mTFP insertion in B.

Bacteriovorus (see numbered positions in Fig. 4.3): 1) before the

FtsA/ZipA binding sites after the alanine residue at position 539, 2)

within the FtsA/ZipA C-terminal binding site after the Isoleucine

residue at amino acid position 399 (the tag best tolerated in E. coli)

and 3) after the C-terminal Glutamic acid residue.
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E.coli ---MFEPMELTN-DAVIKVIGVGGGGGNAVEHMVRERIEGVEFFAVNTDAQALRKTAVGQ
B.subtilis ---MLEFETNIDGLASIKVIGVGGGGNNAVNRMIENEVQGVEYIAVNTDAQALNLSKAEV
C.crescentus MAISLSAPRTTELKPRIVVFGVGGAGGNAVNNMIEAGLEGVEFVVANTDAQQLQFAKTDR
B.bacteriovorus ---MFELEENINIGANIKVVGVGGGGSNAVATMIESGMNGVEFIVANTDIQALNASKSPN
Clustal Consensus :. : . * *.****.*.*** *:. ::***:...*** * *. :

E.coli TIQIGSGITKGLGAGANPEVGRNAADEDRDALRAALEGADMVFIAAGMGGGTGTGAAPVV
B.subtilis KMQIGAKLTRGLGAGANPEVGKKAAEESKEQIEEALKGADMVFVTAGMGGGTGTGAAPVI
C.crescentus RIQLGVQITQGLGAGAHPEVGMSAAEESFPEIGEHLDGAHMVFITAGMGGGTGTGAAPII
B.bacteriovorus KIQLGLDLTKGLGAGANPDVGRRAAIESYNEIVEKLEGADMVFVTAGMGGGTGTGGAPIV
Clustal Consensus :*:* :*:******:*:** ** *. : *.**.***::**********.**::

E.coli AEVAKDLGILTVAVVTKPFNFEGKKRMAFAEQGITELSKHVDSLITIPNDKLLKVLGRGI
B.subtilis AQIAKDLGALTVGVVTRPFTFEGRKRQLQAAGGISAMKEAVDTLIVIPNDRILEIVDKNT
C.crescentus AKCARERGILTVGVVTKPFHFEGRHRMRLADSGIQELQRYVDTLIVIPNQNLFRVANERT
B.bacteriovorus AKIARELGALTIGVVTKPFLFEGKKRGKHAEGGLADLKENVDTLIVIPNQKLLSIAAERT
Clustal Consensus *: *:: * **:.***:** ***::* * *: :.. **:**.***:.:: : .

E.coli SLLDAFGAANDVLKGAVQGIAELITRPGLMNVDFADVRTVMSEMGYAMMGSGVASGEDRA
B.subtilis PMLEAFREADNVLRQGVQGISDLIATPGLINLDFADVKTIMSNKGSALMGIGIATGENRA
C.crescentus TFAEAFGMADQVLHSGVRSITDLMVLPGLINLDFADVRTVMTEMGKAMMGTGEGTGEDRA
B.bacteriovorus PLLETFKKADEVLLQAVKGISDLINIRGLINLDFADIRTVMSSKGIAIMGTGAAKGDNRA
Clustal Consensus .: ::* *::** .*:.*::*: **:*:****::*:*:. * *:** * ..*::**

E.coli EEAAEMAISSPLLEDIDLSGARGVLVNITAGFDLRLDEFETVGNTIRAFASDNATVVIGT
B.subtilis AEAAKKAISSPLLE-AAIDGAQGVLMNITGGTNLSLYEVQEAADIVASASDQDVNMIFGS
C.crescentus LMAAQNAIANPLLDEVSLKGAKAVLVNVTGGMDMTLLEVDEAANAISDQVDPEANIIFGA
B.bacteriovorus VEAATAAISSPLLENVKIDGATGIIINVTGGSDLSLYEVNEASTLITEAAHEDAEIIFGA
Clustal Consensus ** **:.***: :.** .:::*:*.* :: * *.: .. : :. :::*:

E.coli SLDPDMNDELRVTVVATGIGMDK-------------------------------------
B.subtilis VINENLKDEIVVTVIATGFIEQ--------------------------------------
C.crescentus AFDPSLEGVIRVSVVATGMDGASIAQIEPKPVSRN-------------------------
B.bacteriovorus VIDESMGDEVRVTVIATGFDSHEVKLVNDMAQVNQMQNFLNQNAAHFGGMNMQMPQMPQQ
Clustal Consensus :: .: . : *:*:***:

E.coli ------------------------------------------------------------
B.subtilis ------------------------------------------------------------
C.crescentus --------------------ISAAPLIAETSRPAPQPEPARPTARYEAARPAERPVAFAP
B.bacteriovorus MAQMPQMTQMPQMPQFPQMPVMPTMPQMPVMPQMPAVELPPITAVQTQVQSFTHQPQQTE
Clustal Consensus

E.coli ------------------------------------------RPEITLVTNKQVQQPVMD
B.subtilis ------------------------------------------EKDVTKPQRPSLNQSIKT
C.crescentus EPAPEPEIVMSAPQPEPEAELYYDEPTVAEEPRVSAAPARSVNRIVDPLVDDVAEEPLFP
B.bacteriovorus AAPQVTETVVVPPVAAVTPQMAQQAAQNMMPQMPVQAQQVPVQQEVATPIQPQVESSLSP
Clustal Consensus . : :..:

E.coli RYQQHGMAPLTQE------------QKPVAKVVNDNAPQTAKEP---------------D
B.subtilis HNQSVPKRDAKRE------------EPQQQNTVSRHTSQPADDT----------------
C.crescentus ENNYYEERRPQKQGGFFSMFGGGRQRYEQQASAPQAQARSAQSARPQLQPIETPQADDAE
B.bacteriovorus RDMLLAKARAFKES---QDLKSKHANPEQLSMNVDHEQQSLEEARRMAREVLS-SPFSSQ
Clustal Consensus . :: . :. ...

E.coli YLDIPAFLRKQAD-------
B.subtilis -LDIPTFLRNR-----NKRG
C.crescentus DLEIPSFLRRLAN-------
B.bacteriovorus NLEVPAFIRKKQGFDLNKE-
Clustal Consensus *::*:*:*.

Figure 4.3 Multiple alignment of FtsZ proteins from model bacteria and B.
bacteriovorus HD100 showing planned mTFP insertion sites. Multiple alignment
generated using the online ClustalW2 tool
(http://www.ebi.ac.uk/Tools/clustalw2/index.html). Boxed regions highlight
regions of protein interaction with FtsA and ZapA. White arrows show location of
eGFP and Venus-YFP insertions into E. coli FtsZ, where fusions were still capable
of mid-cell localisation and complementation of FtsZ null strains (Osawa and
Erickson, 2005). Black arrows indicate the three mTFP insertion sites used in B.
bacteriovorus.

1

32
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All FtsZ-mTFP tags were cloned in the pAKF04 backbone in

frame with mTFP using the method described in section 2.12 and

shown in Fig. 2.1. All constructs contained a 5’ deletion of the FtsZ

ORF therefore ex-conjugant strains would only express the fusion

construct from the native promoter (Fig. 2.1A).

Initial observations of B. bacteriovorus FtsZ-mTFP tagged

exconjugants (tagged at all sites shown in Fig. 4.3) revealed

little/no mTFP fluorescence (data not shown). RT-PCR analysis of

FtsZ in wild-type B. bacteriovorus HD100 synchronous infections

(See Materials and Methods section 2.14.2) revealed expression of

ftsZ peaks at the three hour time-point (Fig. 4.2). Thus

exconjugant strains were screened for fluorescence in synchronous

infections at the three hours post infection time-point, however

mTFP activity within bdelloplasts still could not be detected (data

not shown). Direct genome sequencing and Southern blot analysis

showed that the FtsZ-mTFP tagged constructs within exconjugant

strains were present (as they could be amplified for sequencing)

but were not found in the expected region of the HD100 genome

(see Appendix 3.4).

To explore the possibility that the nature of the mTFP protein

moiety attached to the FtsZ was causing aberrant protein folding

leading to a loss of function, further C-terminal tag constructs at

the same three sites shown in Fig. 4.3 were cloned using a
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mCherry tag. These again showed no fluorescence activity at any

stage in the B. bacteriovorus life-cycle (data not shown).

Constructs were created that included the ftsZ promoter

leading to exconjugant strains capable of expressing both wild-type

and tagged FtsZ, see Fig. 2.1B. These strains again showed no

fluorescence activity. Expression of FtsZ-mCherry fusion proteins in

E. coli showed localised fluorescence activity suggesting that this

protein was at least partially functional (data not shown).

The approach taken to C-terminally GFP-tag FtsZ in order to

visualise patterns of septation events in growth-phase cell

filaments failed to produce any stable mTFP or mCherry protein

fusions at any of the three sites selected (Fig. 4.3). As stable GFP

tags are possible in B. bacteriovorus, demonstrated by the Ccrp-

mTFP protein in sections 3.5.1-2 and later work in sections 4.3.2

and 5.2.3, this suggests that the C-terminus of FtsZ could have

increased importance in cell division. This case is supported by the

somewhat longer C-terminal proximal domain of FtsZ in HD100

compared to model organisms (Fig. 4.3).
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4.2.2 Cloning FtsK C-terminal mTFP tags in B. bacteriovorus

Another choice for septal tagging in B. bacteriovorus was

FtsK, one of the few septation proteins with a significant

cytoplasmic domain (Fig. 4.4B). FtsK has a series of different roles

in septation including: downstream septation protein recruitment,

chromosome segregation and homologous recombination

summarised in Fig. 4.4.

Figure 4.4 The multiple roles of FtsK protein septation. Figure shows domain
structure of the trams-membrane (TM), linker, RecA-like motor ( and ) and
DNA recognition  domains in E. coli and summarises their three main functions
(Massey et al., 2006). (A) Yeast 2-hybrid data summary diagram of bacterial
septation components, highlighting the role played by the TM domain of FtsK in
downstream protein recruitment (Di Lallo et al., 2003). (B) Diagram showing the
relative size and sub-cellular positions of the septal proteins showing that FtsK
has the largest cytoplasmic domain (kDa) (Nanninga, 2001). (C) X-ray crystal
structure of FtsK RecA-like motor domain, this domain froms a hexamer around
a central DNA helix (orange) (Massey et al., 2006). (D) using the DNA
recognition sequences (KOPS) for orientation the RecA-like motor domain of FtsK
actively transports replicated chromosomes to each side of the division septum,
KOPS elements point toward the dif site (Sivanathan et al., 2006). X-ray crystal
structure of FtsK -domain showing DNA recognition helixes (Sivanathan et al.,
2006). (E-F) FtsK -domain recruits the site specific recombination proteins
XerC-XerD to the dif site causing recombination removing dimeric chromosomes
before division, brought about by homologus recombination during replication
(Yates et al., 2006).
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Protein function assays and X-ray crystal studies have largely

focused on FtsK from Pseudomonas aeruginosa as the linker region

of FtsK in E. coli (amino acid positions 200-818, Fig. 4.4) is

atypically extended making it hard to purify as it tends to

aggregate (Massey et al., 2006). The pair-wise alignment in Fig.

4.5 shows the functional domains of FtsK between P. aeruginosa

and B. bacteriovorus are well conserved between these organisms

despite the reality large evolutionary distance separating these

species (Fig. 4.5). As only the trans-membrane domain at the N-

terminus of FtsK is essential for downstream septation in E. coli

(Draper et al., 1998) C-terminal mTFP tags were designed and

constructed using the method described in section 2.12 (Fig. 2.1),

the exact location of mTFP insertions are shown by the black

arrows on Fig. 4.5.

In the case of FtsK-mTFP fusions at sites: 1, 3 and 4

exconjugant strains all had slow predatory rates taking 3-5 days to

fully clear predatory cultures compared to the normal 16 h and

contained persisting bdelloplasts. Significant difficulties were

encountered when cloning the FtsK-mTFP fusion construct at site 2

therefore this was discontinued. RT-PCR analysis of ftsK in a

predatory life cycle showed a peak in expression at three hours (Fig.

4.2). Synchronous predatory cultures were used to try and detect

mTFP fluorescence at the three hour time point for any

exconjugant strain (see Materials and Methods section 2.13).
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Diagnostic Southern blot of FtsK-mTFP strains showed unexpected

banding patterns indicating incorrect recombination and in one

case complete loss of the mtfp ORF (Appendix 3.4).
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A)

B)

P. aeruginosa 1 MKKSTPAPSAVPLWRQQLHYRLKEGALIAFGALCLYLMMALLTYDQSDPGWSHTSSNAGQ 60
B. bacteriovorus 1 -------------MNQFLKKFRQDVISIGFLGLGLFLALALVSYNPMDPSLNSMG-QGLR 46

P. aeruginosa 61 VQNAAGWAGAFCADILFMILGYFAYIFPLLLAIKTWQVFRHRHEPWQWSGWLFSWRLIGL 120
B. bacteriovorus 47 STNYCGIVGSFLADMLYQAMGLAAWVVVACFGKIAYASFKG------ESLNLKNIRFVWA 100

P. aeruginosa 121 VFLILAGAALAHIHFHFSAGFPG--SAGGVLGEVLGDLAKRALNIQGSTLLFIALFLFGL 178
B. bacteriovorus 101 LLLIVNVAALFSLYLPNTKIFQGQIYLGGLLGLGVSQALMQAFNSVGVQVILWSLMAVLV 160

P. aeruginosa 179 TVFTDLSWFKVMDVTGKITLDLFELFQGAANRWWTARAERKQMVAQLREVDMRVNDVVAP 238
B. bacteriovorus 161 VFYSERTLQELAEIPQGLFADMKKKKFTDKIAAFFSGMFVKEEKTKKSKKDEKAKAAIFP 220

P. aeruginosa 239 VAP----DRREQAKARERIIEREVSLSKHMTEREKHVPAVIAPAPSKPAEPSKRVLKEKQ 294
B. bacteriovorus 221 LSDKKFVEKASEEEEEDEELEELLAAAEEEDEEEVEEDEEESDDDEEEEVPAVRLAQKRK 280

P. aeruginosa 295 APLFVDS---AVEGTLPPISILDPAEKKQLNYSPESLAAVGHLLEIKLKEFGVEVSVDSI 351
B. bacteriovorus 281 VVMKAKPPRRIENWDMPKLALLEDPPASRIKIDKAEIQRKADSLVEKLKNFSIEGSIQDA 340

P. aeruginosa 352 HPGPVITRYEIQPAAGVKVSRISNLAKDLARSLAVTSVRVVEVIPGKTTVGIEIPNEDRQ 411
B. bacteriovorus 341 KPGPLVTMYEFKPNADVKISKISELEDDLSLALSSESVRVVGHIPGTDVVGIETANLKRE 400

P. aeruginosa 412 IVRFSEVLSTPEYDNAKSPVTLALGHDIGGKPVITDLAKMPHLLVAGTTGSGKSVGVNAM 471
B. bacteriovorus 401 TVYYKDLIAEDTFWSEDLALPMAVGRAVDGEPKVVDLRKMPHLLIAGTTGSGKSVFVGSI 460

P. aeruginosa 472 ILSILFKSGPEDAKLIMIDPKMLELSIYEGIPHLLCPVVTDMKDAANALRWSVAEMERRY 531
B. bacteriovorus 461 ITGLLFRHSPKTLRLVLIDPKMVDLAPFSTVPHLVLPHVTEPKKAATALKWAVREMEKRY 520

P. aeruginosa 532 KLMAKMGVRNLSGFNQKVKEAQDAGEPLADPLYKRES---IHDEAPLLTKLPTIVVVVDE 588
B. bacteriovorus 521 KSLSKFGVGKIEAFNEKTGNLSKADVEEHEKINQDLEEGKAKLDQYYYQPLPYIVIVVDE 580

P. aeruginosa 589 FADMMMIVGKKVEELIARIAQKARAAGIHLILATQRPSVDVITGLIKANIPTRMAFQVSS 648
B. bacteriovorus 581 LADLMIVEKQNIEEPIQRLTQKARACGIHLILATQSPRKDVVTGLIKTNIPGRVALKVAS 640

P. aeruginosa 649 KIDSRTIIDQGGAEQLLGHGDMLYMPPGTSLPIRVHGAFVSDEEVHRVVEAWKLRGSPDY 708
B. bacteriovorus 641 KMDSRIIIDDSGAERLLPNGDMLFQAPGVGKPTRHHGPYLSDAEIGNVVKHWASQAEPEY 700

P. aeruginosa 709 NDDILAGVE--EPGSGFDGGSSEGG--EDSESDALYDEAVKFVLESRRASISAVQRKLKI 764
B. bacteriovorus 701 DPLAMKALDGFAGGDGGEAGGGDGGGFGEEEYDERYDEILSWASEQKEISASLIQRKFRL 760

P. aeruginosa 765 GYNRAARMIEAMEMAGVVTSMNTNGSREVLAPGPVRD 801
B. bacteriovorus 761 GYPRAARMIEIFEKEGVVGPANGSKPRQVLVSSYREQ 797

Figure 4.5 Pair wise alignment of FtsK carried out using the ClustalW program
(B). E. coli FtsK sequence used to plot the location of the domain boundaries,
though omitted from the alignment due to its long linker region (Massey et al.,
2006). Colours of the domains match those on ftsK in part (A), adapted from
(Massey et al., 2006). Black arrows represent mTFP insertion sites chosen for
this study.

1

2

3

4
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4.3 Investigating B. bacteriovorus cell division using indirect

staining and mTFP tagging methods.

Direct septal protein tags in B. bacteriovorus had not yielded

stable genome inserted constructs therefore this approach could

not be used. Two indirect methodologies were therefore devised to

try and visualise dividing B. bacteriovorus within bdelloplasts:

Chromosome segregation in bacteria occurs largely due to

the action of histone-like, DNA condensation proteins. Using a DNA

label it should be possible to visualise dividing condensed

chromosomes within B. bacteriovorus growth-phase cells and thus

determine the pattern of septation.

GFP-labelled bdelloplasts arising from wild-type B.

bacteriovorus invading prey expressing GFP have been used

previously to visualise growth-phase cells within bdelloplasts

(Lambert et al., 2006a, Evans et al., 2007). Using GFP-labelled

prey strains combined with time-lapse microscopy could be

facilitate study of growth-phase cell development, however keeping

the bdelloplasts in focus over long periods and methods for keeping

bdelloplasts viable on microscope slides remained difficult

challenges with this approach.
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4.3.1 Investigating B. bacteriovorus cell division using

chromosomal DNA staining.

Fluorescent microscopy using the Hoechst 33372 DNA stain

of bdelloplasts gave the first insight into B. bacteriovorus

developmental processes (see Materials and Methods section

2.9.2). Hoechst staining early in infections gives rise to two

fluorescent signals against a dark background: the genome of the

growing B. bacteriovorus and the genome/plasmids of the prey

(Fig. 4.6a, and in much more detail in Fig. 5.5). In later stage

bdelloplasts the prey signal is lost presumably due to the action of

B. bacteriovorus nucleases with the prey cytoplasm (Fig. 4.6b).

Examination of Hoechst stained bdelloplasts in synchronous

predatory cultures failed to give enough resolution to see separated

chromosomes, however occasionally a lobed signal was observed

(Fig. 4.6a). This could suggest that the majority of DNA within

growth-phase cells is actively transported by a protein, such as

FtsK, just before septation. Hoechst staining also provided the first

technique for counting progeny B. bacteriovorus cells within

bdelloplasts by fluorescence microscopy (Fig. 4.6c).
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Figure 4.6 Hoechst stained bdelloplasts at all stages of B. bacteriovorus
development within bdelloplasts. (a) ‘early’ stage bdelloplasts containing an
elongated growth-phase cell and a second prey-cytoplasmic signal; an elongated
‘lobed’ structure can be seen within the growth-phase B. bacteriovorus, perhaps
indicating chromosome segregation. (b) ‘late’ stage unusually large bdelloplast
containing a coiled growth-phase B. bacteriovorus cell. (c) three septated
progeny cells within a bdelloplast. Scale bar = 2 m.

4.3.2 Investigating B. bacteriovorus cell division using a

histone-like protein HuA.

Hoechst staining of B. bacteriovorus within bdelloplasts did

not give enough resolution to visualise separate condensed

chromosomes, however GFP tagging of histone-like chromosome

binding proteins may provide sharper signals along growth-phase

cells. To test this mTFP fusion constructs were generated for the B.

bacteriovorus histone-like proteins HuA and HuB.
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The heterodimeric HU histone-like binding proteins form a single

tight focus at the E. coli nucleoid within exponentially growing

bacterial cells (Fig. 4.7) (Wery et al., 2001). B. bacteriovorus

homologues were found by BLAST analysis and expression of the

two genes that from the HU complex: huA (Bd2104) and huB

(Bd3382) was measured through a predatory life-cycle (Fig. 4.2).

This showed both genes peak in expression at the 3-4h post

infection time-point making them a good choice for chromosome

visualisation at the point of septation.

C-terminal mTFP tags of the full length HuA and HuB proteins

have been shown to be functional in E. coli (Wery et al., 2001). B.

bacteriovorus proteins were tagged in the same way at C-terminal

residue 90 for HuA and C-terminal residue 90 for HuB, using the

method described in section 2.12 (Fig. 2.1), giving exconjugant

strains capable of expressing both wild-type and mTFP-tagged Hu

proteins. The HuB-mTFP did not form fusion constructs despite

several attempts, which could suggest that this fusion formed

heterologous a dominant-negative HU complex in the E. coli DH5

strain used for cloning. The huA-mtfp construct expressed in E. coli

showed that this tagged B. bacteriovorus protein retained the

ability to localise with the E. coli nucleoid (Fig. 4.7A). This

construct was conjugated into B. bacteriovorus and exconjugants
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strains were confirmed by direct sequencing and Southern blotting

(Appendix 3.4 and 4.1).

Figure 4.7 The HuA-mTFP fusion protein co-localises with the bacterial nucleoid
in both E. coli and B. bacteriovorus. (A) B. bacteriovorus huA-mtfp expressed
from the pAKF52 plasmid using 200 M IPTG in exponentially growing E. coli
DH5. (B) Two merged images of the same attack-phase B. bacteriovorus huA
mtfp cells, (a) Brightfield- mTFP fluorescence merged image, (b) Brightfield
Hoechst DNA stain fluorescence. (C) mTFP fluorescent images of HD100 huA
mtfp strain attack-phase cells (red arrows) and cells within bdelloplasts (yellow
arrows). Highlighted bdelloplast in (C) has been enlarged for clarity.
All scale bars = 2 m.
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The huA-mftp B. bacteriovorus strain attack-phase cells have

a centrally located mTFP signal as expected from the location of the

genome in attack-phase cells (see cryo-EM, Fig. 1.2). This signal

co-localises with the Hoechst-DNA signal in these cells as expected

from a histone-like protein. Due to the relative weakness of the

mTFP fluorescent signal longer exposure times are needed for

image acquisition, leading to the loss of clarity seen in Fig. 4.7B.

Fluorescence activity of the huA-mtfp strain within bdelloplasts in a

synchronous predatory culture showed the expected pattern of

increased brightness at the 3-4h time-point (Fig. 4.2) allowing

visualisation of growing growth-phase cells within bdelloplasts (Fig.

4.7C). However, the mTFP signal was not strong enough to show

the dividing growth-phase cell in any detail by overcoming the

background fluorescence of the bdelloplast (Fig 4.7C, enlarged

bdelloplast).
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4.4 Investigating B. bacteriovorus cell division using indirect

prey cell GFP labelling methods.

As predator-fluorescent approaches had failed to yield any

usable images for looking at B. bacteriovorus development, I

turned to prey-labelling. Previous work carried out by Dr Richard

Woods on B. bacteriovorus growing within prey had shown that

growth-phase cells can be visualised in bdelloplasts as a dark-

negative against a fluorescent background (unpublished data) Fig.

4.8. As both direct and indirect methods of growth-phase cell

labelling had not given strong enough signals to follow B.

bacteriovorus growth patterns within bdelloplasts, time-lapse

microscopic methods were explored.

Using a periplasmically fluorescently-labelled prey strain: E.

coli S17-1:pMAL-p2_mCherry (R. Woods unpublished), the latest

Prior H101A motorised-XY stage and ultra-fine Z-control apparatus,

in conjunction with our fluorescent microscope, allowed accurate

revisiting and refocusing on bdelloplasts immobilised on Ca/HEPES

1% agarose pads over several hours (see Materials and Methods

section 2.9.4). Multiple image captures of bdelloplasts derived from

synchronous prey infections generated time-lapse movies used to

study B. bacteriovorus predatory development (See supplementary

Movies 1-10, and stills from those movies in Appendix 4.2A-J). The

following sections show the results of these studies of B.
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bacteriovorus predatory growth and show supporting work carried

out by Machi Kanna under the supervision of Shin-Ishi Aizawa at

the Prefectural University of Hiroshima, Japan (Fig. 4.9).

4.4.1 B. bacteriovorus growth-phase cells divide

synchronously forming both odd and even numbers of

progeny within bdelloplasts.

Analysis of 146 late-stage fluorescent bdelloplasts containing

septated progeny revealed that B. bacteriovorus growth-phase cells

divide into both odd and even numbers of progeny (Fig. 4.8Aa and

examples shown in Fig. 4.8Ab); this observation was also

confirmed using EM studies on 77 bdelloplasts which had been

formed by non-fluorescent prey (being infected in liquid predatory

cultures by B. bacteriovorus (Fig. 4.9)). A graph showing the

frequency of progeny numbers within bdelloplasts showed no

disinclination towards odd numbers of progeny, as these data were

normally distributed (Fig. 4.8Aa and Fig. 4.9Aa). The reduced

maximal progeny yield in Fig. 4.9 versus Fig. 4.8, correlates with

the smaller volume of the prey E .coli used (see figure legends for

exact sizes); but it must be remembered that in the fluorescent

larger prey cells in Fig. 4.9 an unknown, but possibly significant

amount of cellular protein was being diverted into mCherry protein

synthesis and so was unavailable for B. bacteriovorus growth.
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In contrast to previous reports based on electron microscopy,

and contrary to “normal” bacterial cell division dogma, B.

bacteriovorus growth-phase cells initiate and complete septation

synchronously within prey, even when as many as 8 or 9 progeny

are produced (Fig. 4.8B, Appendix 4.2A-C and supplementary

Movies 1-3) (Scherff et al., 1966, Burnham et al., 1970). Septation

only occurs when the B. bacteriovorus has reached its maximal

length and initiates synchronously even when high numbers of

progeny are formed (Appendix 4.2D, Movie 4). In the time-lapse

movies B. bacteriovorus appear to be braced against prey internal

structures and dramatic shifts in progeny cell orientations are seen

at septation, possibly caused as stored tension within the braced

growth-phase cell is released during synchronous filament division

(subsequent positions in Fig. 4.8B and Movie 5, Appendix 4.2E).

These shifts allowed us to accurately measure average septation

time (from initiation to division) as 41 min (+/- 4 min 95%CL, n=

47); interestingly this was independent of the number of progeny

produced (Fig. 4.11).
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Figure 4.8 B. bacteriovorus filamentous growth-phase cells septate
synchronously within the bdelloplast forming both odd and even numbers of
progeny. (Aa) Frequency measurement of numbers of mature B. bacteriovorus
within 146 E. coli S17-1:pMAL-p2_mCherry fluorescent bdelloplasts. Average
prey cell length 4.67 µm+/- 1.37 and width 0.97µm +/-0.09, n=167. (Ab)
Examples of septated and mature growth-phase B. bacteriovorus cells within
fluorescently labelled bdelloplasts, images used to illustrate frequency plot above.
(Ba) Sketch showing key points in B. bacteriovorus cell development within a
bdelloplast. (Bb-c) Selected frames from time-lapse movies showing
synchronously dividing growth-phase cells in fluorescent bdelloplasts (Bd)
Selected frames from time-lapse movies showing two synchronously dividing
growth-phase cells forming different numbers of progeny (3 and 4) within a
fluorescent bdelloplast. Fluorescence mCherry activity is false coloured green for
clarity, scale bars = 1µm. Full time-lapse movies are provided in supplementary
Movies 1 ,2 and 3 and displayed as a spread in Appendix 4.2A-C.
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Figure 4.9 B. bacteriovorus produce both odd and even numbers of progeny
within the bdelloplast, visualised by electron microscopy. (Aa) Distribution of
progeny number within E. coli DFB225 bdelloplasts at 3 hours post infection
(n=77). (Ab) Examples of septated B. bacteriovorus progeny within bdelloplasts
at three hours post infection, showing: (left to right) 3, 4 and 5 progeny cells.
Cells stained with 2% PTA (pH7.0), scale bars = 500 nm. Average E. coli DFB225
average prey cell length in this experiment was 2 µm. This work was carried out
by Machi Kanna and shown as supporting data for Fig. 4.9A.



146

4.4.2 Synchronicity of B. bacteriovorus growth-phase cells

division is maintained in multiply infected bdelloplasts.

High numbers of B. bacteriovorus in predatory cultures can

sometimes lead to multiple infections of prey; in these cases

invasion of the B. bacteriovorus has had to be near simultaneous

as the forming of the prey bdelloplast precludes other B.

bacteriovorus from entry (Thomashow and Rittenberg, 1978a). In

double infected bdelloplasts the two growing B. bacteriovorus

compete for resources, and as I chose to use an E. coli prey with

diverse cell volumes (Fig. 4.8 legend), double infections sometimes

resulted in differing numbers of progeny, derived from two co-

infecting B. bacteriovorus in a single prey bdelloplast; for example

Fig. 4.8Bd shows two co-infecting B. bacteriovorus forming three

and four progeny in a single bdelloplast. Conventional logic would

suggest that the growth-phase cell forming 3 progeny should finish

cell division first and lyse the bdelloplast, however synchronicity of

septation is maintained between the two different growing B.

bacteriovorus (Fig. 4.8Bd, Appendix 4.2C and Movie 3). This

suggests that there is either a diffusible signal between the two B.

bacteriovorus, or that they are both reacting simultaneously to the

final depletion of (a) key bdelloplast resource(s), beyond the

critical level at which another whole progeny B. bacteriovorus could

have been produced.
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4.4.3 B. bacteriovorus growth-phase cells appear to

elongate from both ends of the growth-phase filamentous

cell within bdelloplasts.

Early EM studies had suggested that the pili used for entry

were still seen inside prey bdelloplasts; it was proposed that B.

bacteriovorus cells continued to cling onto the prey cytoplasm (at

the site of entry) and thus were predicted to grow unilaterally from

the free pole (Scherff et al., 1966). Time-lapse image data shows

no evidence of this and both poles of the elongating B.

bacteriovorus move freely within bdelloplasts (Fig. 4.8Bb-d,

Appendix 4.2A-E and Movies 1-5). However, the possibility of free

rotation of the unanchored prey cytoplasm within bdelloplasts may

also have led to similar observations.

4.4.4 B. bacteriovorus cells within bdelloplasts do not

always grow and produce another progeny cell.

An unexpected finding of this study (shown in Fig. 4.8) was

that a few B. bacteriovorus cells entered prey and formed

bdelloplasts yet did not elongate or divide (Appendix 4.2F-G and

Movie 6-7). The small sizes of these prey bdelloplasts suggest that

they may have contained insufficient resources to produce any B.

bacteriovorus progeny, yet surprisingly these bdelloplasts lysed at

wild-type time-points (4-5h), releasing the single original B.
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bacteriovorus. This suggests that those single B. bacteriovorus cells

may have gone through the hydrolytic host digestion program, but

simply had received insufficient nutrition to allow production of a

whole B. bacteriovorus genome and thus did not initiate elongation

(Appendix 4.2F-G and Movie 6-7).

4.4.5 B. bacteriovorus developmental time-points and

method of progeny cell bdelloplast escape.

Immature divided B. bacteriovorus progeny must develop

polar structures such as flagella as B. bacteriovorus are seen to be

motile as they lyse the bdelloplast (Movie 10); lysis resulting in a

loss of prey-derived fluorescence activity (Fig. 4.8B). This specific

and rapid loss of bdelloplast fluorescence allowed us to measure

the average time taken for B. bacteriovorus cells to mature and

lyse bdelloplasts, after septation; this mean time to lysis was 26

min (+/- 3 min 95%CL, n=81). In contrast to the similarity in

septation times for B. bacteriovorus which were independent of

filament length and thus progeny number; the ‘time to lysis’ was

inversely proportional to the number of progeny, indicating that the

lysing power of multiple progeny in larger bdelloplasts was in some

way higher (Fig. 4.10). This also showed that progeny departed

bdelloplasts through one (88%) or occasionally two small holes

(12%); rather than by catastrophic bdelloplast breakdown
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(percentages from n=67 bdelloplasts, Appendix 4.2F-G and Movies

6 and 7).

Figure 4.10 (A) Rate of septation of the growth-phase B. bacteriovorus cell is
independent of progeny number (n=47), (B) whereas B. bacteriovorus
maturation and bdelloplast lysis-time decreases as the number of progeny
increases (n=79). Time-points were calculated from time-lapse movies using
image time-stamp data within the SimplePCI software.
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4.5 The role of the Bd3904 protein in B. bacteriovorus

development within bdelloplasts.

The protein encoded by the Bd3904 gene in the B.

bacteriovorus HD100 genome belongs to the recently described

‘bactofilin’ family of proteins (Kuhn et al., 2010). This gene was

initially identified in B. bacteriovorus by its high homology to the

MXAN_7475 protein of Myxococcus xanhus, thought at the time to

have a role in cell division and cell morphology (M. Koch, personal

communication). Both the genomic context of this gene, being

downstream of a DNA partitioning ParAB operon, and preliminary

RTPCR data suggested that this protein may have a role in B.

bacteriovorus synchronous cell division (Fig 4.11). As initial

investigations into the function of this protein had yielded a

division-inhibitory phenotype in E. coli an expedient investigation

was carried out to further investigate the function of Bd3904.

The number of cytoskeletal proteins known in bacteria is still

growing, a new class of filamentous bacterial proteins has been

recently described containing the domain designated DUF583 in the

PFAM database (Kuhn et al., 2010). These proteins have been

designated ‘bactofilins’ based on their predicted polymerisation

properties (Kuhn et al., 2010). These filament form stable filament

bundles which require no cofactors to polymerise very much like IF
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elements (Kuhn et al., 2010). Initially discovered in M. xanthus,

these proteins were also found to localise to the stalk pole in C.

crescentus, organising the cell-wall biosynthesis, through the

localisation of Pbp5 in a cell-cycle dependent manner (Kuhn et al.,

2010). In E. coli expressing the DUF583 domain-containing gene

SO1662 from Shewanella oneidensis, localised to the site of cell

division (Kuhn et al., 2010).

The relative position of the B. bacteriovorus gene Bd3904

within the genome, downstream of a parAB operon, mirrors the

genomic context of the MXAN_7475 gene in M. Xanthus (Fig.

4.11A). RT-PCR analyses of Bd3904 gene expression across a

predatory time-course suggested that the gene product had a role

in filamentous growth (Fig. 4.11B). Using primers which bound to

the Bd3904, parB and parA ORFs in RT-PCR reactions on purified B.

bacteriovorus RNA templates confirmed that Bd3904 forms a co-

transcribed operon with the adjacent upstream genes (data not

shown) (Fig. 4.11A).
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Figure 4.11 Expression profile and genomic context of the ‘bactofilin’ Bd3904 in
B. bacteriovorus. (A) Genomic context of the ‘bactofilin’ Bd3904 and
MAXAN_7475 in B. bacteriovorus and M. Xanthus genomes respectively.
Graphical displays of the genomes shown here were taken from the online Xbase
database (http://xbase.bham.ac.uk/). (B) Semi-quantitative RT-PCR analysis of
the Bd3904 gene across the B. bacteriovorus predatory cycle, duplicated here
from Fig. 4.2 for clarity.
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4.5.1 Expression of Bd3904 in E. coli DH5.

In trans expression of B. bacteriovorus Bd3904 from plasmid

pAKF45 in wild-type E. coli DH5, using the Ptrc promoter of the

expression plasmid pTrc99A (of pAKF45), gave an elongated cell

phenotype with multiple constrictions along their lengths, where

multiple constrictions had occurred these were found clustered

together forming a ‘beads on a string’ pattern (Fig. 4.12Bbii).

These constrictions appear to be multiple E. coli septation events

that have failed to complete the last stages to divide fully. The

constrictions in the E. coli expressing Bd3904 were 0.38 µm in

width (measured using EM data n=11); curiously this is a similar

width as that of B. bacteriovorus cells (0.3 ± 0.02 ǋm (n=50)

(Borgnia et al., 2008), see Fig. 4.12C.

The severity of the E. coli:pAKF45 cell elongation was

proportional the concentration of IPTG used to initiate transcription

form the Ptrc promoter (data not shown). To confirm that this

effect was a direct result of the Bd3904 protein, multiple cultures

containing fresh media with containing increasing concentrations of

IPTG were inoculated with E. coli:pAKF45 and incubated at 37oC for

16 h. 10 ml of crude cellular extracts (matched by OD600) were run

on a SDS-PAGE gel, Fig. 4.12A (see Materials and Methods section

2.8). A band of increasing intensity on the protein gels at the

expected 12.7 kDa molecular weight (Fig. 4.12A) was analysed by
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MALDI-TOF MS by Dr Kevin Bailey of the University of Nottingham

Biopolymer Analysis unit, and confirmed to be the Bd3904 protein

(Appendix 4.3).

Figure 4.12 Morphological effects of Bd3904 expression in E. coli DH5. (A)
SDS-PAGE gel showing the effect of increasing IPTG inducer concentrations on
the protein profile of E. coli DH5 containing the pAKF45 plasmid expressing the
B. bacteriovorus Bd3904 against a vector only control. 10 µl of NEB pre-stained
protein ladder, Broad Range (10-230 kDa) was used in each marker lane.
Appropriate size markers have been highlighted. (B) E. coli DH5:pAKF45 cells
in the absence of inducer (Ba) and in the presence of 40 m/ml IPTG (Bbi, the
boxed region enlarged in Bbii), all scale bars = 5 µm. (C) Electron micrograph of
a E. coli DH5:pAKF45 cells expressing Bd3904, the boxed region in Cai (scale
bar = 2 µm) is enlarged in the second panel Caii (scale bar = 500 nm).
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In order to investigate the localisation of Bd3904 in the E.

coli cells a C-terminal mTFP tagged form of Bd3904 was cloned and

expressed (using the pAKF53 plasmid) using a final concentration

of 40 µg/ml ITPG. The morphological phenotype of this strain was

the same as that observed for the untagged Bd3904 suggesting

that protein function was not impaired by the mTFP tag.

Fluorescence microscopy of this strain revealed that the Bd3904-

mTFP fusion protein co-localised with the sites of the cell

constriction observed in Fig. 4.12, see Fig. 4.13A.

Induced DH5 Bd3940-mtfp-expressing E. coli cells show a

number of fluorescent signal patterns which seem to form a logical

hierarchy. First, shorter cells usually contained a single short focus

(Fig. 4.13Aa, blue arrows), although two short foci were observed

(Fig. 4.13Aa, purple arrow). Where a single focus had formed in

the E. coli these were present at either mid-cell or the cell pole (Fig.

4.13Aa, blue arrows). In longer E. coli cells where septation is

taking place the Bd3904-mTFP protein formed an extended focus

that spanned the potential progeny cells (Fig. 4.13Aa, orange

arrows). Presumably as these initial septation events fail to

complete other septation events occur further along the length of

the E. coli, leading to the elongated ‘beads on a string’

morphologies (Fig. 4.13 B).
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4.5.2 Investigating the localisation of Bd3904 in dividing HD

B. bacteriovorus cells.

As the Bd3904-mTFP fusion protein appeared unattenuated

in phenotype in E. coli by mTFP-tagging; a Bd3904-mtfp HD100

strain was constructed to investigate the localisation of Bd3904 in

B. bacteriovorus (see confirmatory Southern blot and genomic

sequencing in Appendix 3.4 and 4.4). The vast majority of the

Bd3904-mtfp attack-phase cells appeared wild-type in shape and

size and none of these showed any mTFP fluorescence (Fig. 4.13

Bab), consistent with the differential expression profile of this gene

across the predatory life-cycle, i.e. no detectable product in the

attack-phase RT-PCR vs the observed expression at the 45 min-2 h

B. bacteriovorus growth-phase time-points (Fig. 4.11B). In

synchronous predatory infections Bd3904-mTFP fluorescence

signals were observed within approximately 10% of bdelloplasts at

the 1-2 h post infection time-points, but not at the 3-4 h post

infection time-points (Fig. 4.13B); again this was consistent with

the Bd3904 predatory expression profile shown in (Fig. 4.11B).

Fluorescent signals within Bd3904-mtfp bdelloplasts

appeared to form a single linear focus near the bdelloplast

periphery suggesting that this protein forms a filament, or latticed

tube, within the growth-phase cell (Fig. 4.13 Bc-d). This was tested
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further using the periplasmically labeled mCherry E. coli S17-1

prey strain in synchronous Bd3904-mtfp infections. Bdelloplasts

within which both the prey and growing B. bacteriovorus were

fluorescently visualised were rare, but revealed that Bd3904-mTFP

could form a single focus at the pole of the B. bacteriovorus cells

and was only located exclusively within the growth-phase cell (Fig.

4.13Bef). The dark shadows observed within these bdelloplasts are

likely the result of the prey cytoplasm obscuring or reflecting the

mCherry fluorescent signal (Fig. 4.13Bef).

Rare, elongated attack-phase Bd3904-mtfp cells that did

show fluorescence were observed at a frequency of approximately

1 in every 500 attack-phase cells (Fig. 4.13C). These appeared

straighter than wild-type in the region containing the Bd3904-mTFP

signal, which did not run the entire length of the cell (Fig. 4.13Ca-

c). In the case of the single coiled elongated Bd3904-mtfp attack-

phase cell, shown in Fig. 4.13Cd, the fluorescence signal was out of

register with the coil of the cell, suggesting that the Bd3904

filament is associated with the inner membrane, or is suspended at

points from the inner membrane as a filament, but is not present

as fully-soluble protein within the cytoplasm (as that latter

arrangement may have formed a coil in register), Fig. 4.13Cd (this

can also be seen in Fig. 4.13Cc).
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Figure 4.13 Localisation of the Bd3904-mTFP fusion protein in IPTG induced E.
coli cells and in B. bacteriovorus Bd3904-mtfp strain predatory infections. (A)
Representative merged fluorescent image of E. coli DH5:pAKF53 in the
presence of 40 µg/ml IPTG, expressing the Bd3904-mTFP fusion protein. (Aa)
Cells showing differing patterns of Bd3904-mTFP fluorescence signal localisation
are highlighted: E. coli with no fluorescence focus (red arrow), cells with a single
focus (blue arrows), cells undergoing septation (orange arrows) and a cell
containing two foci (purple arrow), scale bar = 5 µm. (Ab) Brightfield (i) and
merged (ii) fluorescence image examples of elongated E. coli showing the ‘beads
on a string’ morphology. (B) Brightfield and merged fluorescence images of
Bd3904-mtfp cells from synchronous prey infections. (Ba) attack-phase cells at t
=0 and at t = 4h (Bb), scale bars = 5 µm. (Bc-f) Images of bdelloplasts taken at
t = 1h (Bc,e) and t = 2h (Bd,f) post infection using both S17-1 (Bcd) and
mCherry labelled S17-1 prey (Bef), scale bars = 1 µm. (C) Rare elongated
Bd3904-mtfp attack-phase cells with mTFP fluorescence activity, scale bars = 1
µm.
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4.6 Discussion

Time-lapse indirect imaging of developing B. bacteriovorus

cells within fluorescent bdelloplasts has shown in unprecedented

detail how this predatory bacterium grows and divides atypically

within another bacterium (summarised in Fig. 4.8Ba). B.

bacteriovorus growth-phase cells within bdelloplasts grow bi-

laterally into elongated cells, and only after reaching maximum

length and receiving an unknown signal, divide synchronously into

both odd and even numbers of progeny (Fig. 4.8, Fig. 4.9 and

Movies 1-5). This contrasts to the classic EM reports suggesting

that B. bacteriovorus divide sequentially (Burnham et al., 1970,

Scherff et al., 1966). Once initiated B. bacteriovorus septation

takes 41 min, independent of progeny number, and maturation of

progeny and final bdelloplast lysis takes on average 26 min

depending on progeny number (Fig. 4.10). Synchronicity of

septation is maintained in long growth-phase cells and between

two B. bacteriovorus competing for resources in a single bdelloplast

(Movies 6 and 7).

mTFP tagging of septal proteins FtsZ and FtsK in B.

bacteriovorus failed to form stable signals which would have

revealed how the growth-phase cell resolves into multiple progeny.

As the method of mTFP tagging of B. bacteriovorus proteins has
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been shown to form stable tags in all chapters of this thesis,

inability of this construct to insert at the expected location in the

genome (Appendix 3.4) must be due to a negative effect that the

mTFP moiety has on the target protein.

The cell division protein FtsZ has been shown previously to

tolerate C-terminal GFP tags (Osawa and Erickson, 2005). B.

bacteriovorus FtsZ has a larger C-terminal domain compared to

other well studied bacterial organisms (Fig. 4.3). Given the unique

challenges placed upon B. bacteriovorus FtsZ to aid the

organisation of synchronous septation along an elongated growth-

phase cell (Fig. 4.8B) I speculate that the C-terminus of B.

bacteriovorus FtsZ may be less able to accommodate GFP tags

than other bacteria.

All methods used to C-terminally tag FtsK abolish the

chromosome segregative activity of the RecA-like motor domain

(Fig. 4.5) which increases the potential for chromosomes to be in

the wrong cellular compartment at the time of septation, this is

tolerated in other bacterial species due to chromosome

condensation at the time of division, making ‘guillotining’ of the

genome by the septa less likely (see Fig. 4.7A for example of

condensed chromosomes in dividing E. coli cells). Hoechst staining



161

of B. bacteriovorus growth-phase cells in bdelloplasts revealed little

evidence of chromosome segregation in advance of cell division

(Fig. 4.6a-b). Therefore, FtsK may play a more active role in

separating the newly replicated chromosomes in B. bacteriovorus

growth-phase cells than in other bacteria such as: E. coli or P.

aeruginosa. In addition polar effects, caused by the mTFP tagging

method, on the expression of downstream genes in the B.

bacteriovorus genome: Bd0042 and Bd0043 (both genes of

unknown function) may also account for this as these genes are

present in a conserved operon (data not shown).

The fluorescent huA-mtfp HD100 strain did not reveal

patterns of B. bacteriovorus genome segregation during growth in

bdelloplasts due to its relative brightness (Fig. 4.7), yet this strain

provided bright mTFP labelled attack-phase cells crucial for

optimising the fluorescence microscopy on B. bacteriovorus. Due to

this strain’s evenly highly-expressed fluorescent brightness

amongst cells within a tagged population, it is possible to

specifically identify huA-tagged cells among other untagged cell

types, this could make this strain very valuable tool for B.

bacteriovorus research in the future.
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The Bd3904 gene lies downstream of a parAB operon and

was hypothesised to have a role in B. bacteriovorus cell division

control (Fig. 4.11). The Bd3904 protein is a member of a family of

proteins called ‘bactofilin’ that form stable filaments without

cofactors that can bundle together forming lattices of cables in vitro

(Kuhn et al., 2010). The expression of Bd3904 is tightly regulated

across the predatory cycle and is only expressed between 45 min-2

h post-infection time-points, which temporally matches B.

bacteriovorus filamentous growth (Fig. 4.2).

Expression of both wild-type Bd3904 and a Bd3904-mtfp

fusion in E. coli appears to block, septation events at mid-cell and

cell poles (Fig. 4.12-4.13). The positioning of the E. coli DH5

septation machinery at the poles of the cell despite this strain

having a functional MinCDE system suggests that the Bd3904

protein is able to either interfere with these control mechanisms or

directly recruit the E. coli septal machinery to begin to form

abortive septa at the poles (Fig. 4.13Acii), this would also explain

why Bd3904-mTFP signals localise to septa in the induced E.

coli:pAKF53 strain (Fig. 4.13Aa, orange arrows).
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Bd3904 filaments appear to inhibit the later stages of E. coli

septation by either inhibitory interaction with the septation

machinery or by physical occlusion of their site of action. Curiously

E. coli cell septation events stall at an average diameter of 0.38 µm

which is similar to the width of a B. bacteriovorus cell.

The Bd3904-mtfp fusion, expressed from its native promoter

in B. bacteriovorus cells showed mTFP fluorescence predominantly

within bdelloplasts, at time-points consistent with B. bacteriovorus

filamentous growth (Fig. 4.13 Bcd). A few abnormally long attack-

phase B. bacteriovorus:Bd3904mTFP cells were seen to have a

fluorescent signal. (These made up 0.2% of the observed attack-

phase population and fluorescence was not seen in normal vibroid

attack-phase cells which were the great majority 99.8%. It is

intriguing to speculate that these might be a rare population of

attack-phase cells that were ‘trying’ to complete septation after

and exit from a prey bdelloplast. Dogma states that predatory B.

bacteriovorus do not divide outside prey, but there are reports that

if bdelloplasts are prematurely lysed, by accidental environmental

insults, that the liberated B. bacteriovorus can complete division

(Scherff et al., 1966, Ruby and Rittenberg, 1983). Thus the cells

observed in Fig. 4.12C may derive from such events and their

septation is blocked by Bd3904.
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It is worth noting that the 10% of bdelloplasts in which

strong B. bacteriovorus-Bd3904mTFP fluorescent signals were

observed in these experiments, are likely an underrepresentation

of the number of B. bacteriovorus expressing Bd3904-mTFP due to

the limitations of GFP detection within bdelloplasts. Predatory

infections using Bd3904-mtfp with the periplasmic mCherry S17-1

prey strain confirmed that the Bd3904-mTFP signal is present

within the B. bacteriovorus growth-phase cells. Proteolytic

degradation of the Bd3904-mTFP protein within B. bacteriovorus

between 2 and 3h post infection would account for the lack of mTFP

fluorescence signal in late stage bdelloplasts, this time-point also

coincides with the initiation of septation as determined by time-

lapse microscopy.

These results suggest that the Bd3904 protein stabilises the

growth-phase filamentous cell within the bdelloplast by forming

division-inhibitory membrane-associated polymers or tubular

lattices. The Bd3904 protein could be controlled temporally by a

combination of gene expression, depolymerisation using additional

factors (a function lacked by the E. coli) and proteolytic breakdown

allowing the synchronous septation of B. bacteriovorus within

bdelloplasts. Future work on the dynamics of the Bd3904 filaments

in vitro and the generation of a HD100 Bd3904 KO stain are

required to fully support these conclusions.
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CHAPTER FIVE

Investigating the roles of two MreB homologues in

B. bacteriovorus growth.

5.1 Introduction

Chapter 4 showed advancements made in B. bacteriovorus

cell imaging to establish the elusive patterns of growth within the

bdelloplast; however it showed very little about actual gene

function. The following chapter focuses on a main bacterial

cytoskeletal component MreB, mTFP tagging and gene knock out

studies of the two MreB homologues found in B. bacteriovorus

reveal the different functions of these gene products in B.

bacteriovorus growth both inside and outside the bdelloplast using

a combination of genetic approaches (introduced in Chapter 3) and

MreB-inhibitor A22 treatment.

5.1.1 Cell elongation in rod shaped bacteria

The processes of cell elongation in rod shaped bacteria are

coordinated by an internal MreB cell cytoskeleton (Jones et al.,

2001, Daniel and Errington, 2003). MreB is a eukaryotic actin

homologue and has been well studied in Escherichia coli, Bacillus

subtilis, and Caulobacter crescentus (Vats et al., 2009b). MreB
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monomers polymerise on ATP-binding, forming helical structures in

vivo that appear to associate with the cytoplasmic side of the

bacterial cytoplasmic membrane (Figge et al., 2004, Shih et al.,

2003, Jones et al., 2001). Bacterial two-hybrid experiments in E.

coli suggest that MreB forms a trans-membrane complex with the

two proteins MreC and MreD each of which have been shown to

form helical structures in vivo (Kruse et al., 2005). A complex of

MreBCD together with RodA and the newly described RodZ protein

influences the shape of the peptidoglycan cell wall, and thus the

shape of the cell, by positioning the peptidoglycan biosynthetic

machinery so that its action is directionally specific (Daniel and

Errington, 2003, Vats et al., 2009a, Kawai et al., 2009). The MreB

filament has also been shown to have roles in chromosome

segregation, septation and cell polarity (Kruse et al., 2003, Vats et

al., 2009a, Gitai et al., 2005, Gitai et al., 2004). Fig. 5.1 shows a

diagram I have constructed representing the current thinking on

how this complex may form in vivo.
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Figure 5.1 The bacterial ‘elongase’ complex. Schematic representation of the
protein complex responsible for coordinating typical Gram-negative bacterial cell
wall elongation. Duplicated here from Fig. 1.4 for clarity, adapted from (Gerdes,
2009).

5.1.2 The MreB specific inhibitor A22 caulses a loss of MreB

activity resulting in loss of rod shape morphology.

Experimental depletion of the MreB protein levels in E. coli

and B. subtilis were reported to cause cells to take on a spherical

morphology with eventual loss of viability as new peptidoglycan

was not synthesised evenly along the cell wall (Daniel and

Errington, 2003, Varma and Young, 2009). Uneven incorporation of

new peptidoglycan in MreB depleted strains is potentially driven by

the tubulin homologue FtsZ (Varma and Young, 2009, Bendezu and

de Boer, 2008).
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A similar phenotype is achieved by addition of the MreB

inhibitor A22 (S-(3,4-Dichlorobenzyl)isothiourea) that causes the

reversible loss of MreB filament localisation in vivo (Gitai et al.,

2005, Iwai et al., 2002). A22 was discovered in a chemical library

being screened for the ability to generate anucleate mini-cells from

E. coli (Iwai et al., 2004, Iwai et al., 2002) and has been used

extensively by others to examine MreB function in bacteria of many

different genera (Gitai Z et al., 2005). Addition of A22 to E. coli

cells at 3.13 µg/ml leads to the breakdown of MreB filaments,

spheroplasting and the generation of minicells (Iwai et al., 2004).

In B. subtilis A22 at concentrations in excess of 100 µg/ml are

required to generate spheroplasts, in C. crescentus 6 h incubations

of 10 µg/ml are needed before any change to the cell shape can be

observed, in this case cells take on a characteristic ‘lemon shape’

(Iwai et al., 2004, Gitai et al., 2005).

After its initial discovery, isolation and sequencing of A22-

resistant mutants of C. crescentus showed that this inhibitor bound

exclusively to the MreB protein (Gitai Z et al., 2005). Further

biochemical evidence from a X-ray crystal structure of purified

MreB from Thermotoga maritima revealed the A22 resistant

mutations identified in C. crescentus mapped to the the nucleotide

binding pocket of MreB (Gitai et al., 2005, Bean et al., 2009). Thus

it was hypothesised that A22 specifically binds the ATP binding

sight of MreB and inhibits its polymerisation. In vitro light-
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scattering assays of Thermotoga maritima MreB filamentation

showed that A22 acted as a competitive inhibitor of ATP-binding

and was able to inhibit the formation of MreB filaments,

presumably by sequestering and inactivating MreB monomers

preventing their recycling (Bean et al., 2009). This work also

demonstrated that, in vitro, A22 can have a role in stabilising ADP-

bound MreB (Bean et al., 2009). In summary A22 inhibits MreB by

acting as a competitive inhibitor of ATP binding preventing MreB

polymerisation, which leads to the reversible loss of MreB filaments

in bacterial cells.
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5.2 Identification of B. bacteriovorus genes involved in cell

elongation.

Blast analysis using E. coli proteins as queries on the B.

bacteriovorus HD100 genome identified the known components of

the cell complex, shown in Table 5.1 below.

Gene

Name
Brief description/Notes on gene product

B. bacteriovorus

HD100
Homologue(s)

mreB

Actin like GTP/ATPase which forms a membrene
assosiated helical cytoskeleton under the bacterial
cytoplasmic membrane. Forms a ring structure at
midcell during cell division in C. crescentus, E. coli
and B. subtilis.

mreB(1)

Bd0211

mreB(2)

Bd1737

mreC

Can polymerise into helical filaments independently
of MreB. May act like as a bridge between the MreB
cytoskeleton and cell wall biosynthetic machinery.

mreC

Bd2457

mreD

Integral membrane protein, may act like a bridge
from the MreB cytoskeleton and cell wall machinery
in conjunction with MreC.

mreD

Bd2459

rodA

Integral membrane protein required for the
coordination of the cell wall biosynthetic protein
PBP2. Similar to FtsW in structure.

rodA

Bd2461

pbpA

PBP2 heavy chain gene. Has the transglycosylase
activity required to elongate the peptidoglycan cell
wall. Similar to FtsI (PBP3) in structure.

Bd2462

rodZ

Bd3830 protein alignment shows weak sequence
conservation, but has a predicted helix-turn-helix
interaction domain known to interact with MreB.

Bd3830

Table 5.1 Identification of genes involved with cell elongation in B.
bacteriovorus HD100. Table shows BLASTp hits using E. coli protein sequences
as queries against the translated HD100 genome using Wu-BLAST software v2.0
(http://blast.jcvi.org/cmr-blast/). Initial HD100 Hits confirmed using them as
queries in an ncbi BLASTp search (http://www.ncbi.nlm.nih.gov/) against the
non-redundant protein sequence (nr) database, predicted function of the top hits
of these BLAST results were examined.
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The B. bacteriovorus genome contains two genes encoding

proteins with high homology to E. coli MreB, Bd0211 encoding

MreB1 (45% identity at the protein level), and Bd1737 encoding

MreB2 (58% identity at the protein level). Both of the mreB genes

in B. bacteriovorus are not located upstream of mreCD, thus lack

an operon organisation that is conserved amongst rod shaped

bacteria (Fig. 5.2). Immediately downstream of the mreCD genes

in the B. bacteriovorus genome are a peptidoglycan biosynthetic

gene pbp2 and rodA the protein products of which are known to

form a complex with MreCD in E. coli , see Fig. 5.1 (Kruse et al.,

2005). B. bacteriovorus belongs to the delta-proteobacteria family

of Gram-negative bacteria, and, although the number of mreB

gene homologues in this family is variable, the gene organisation of

mreC, mreD, pbp2 and rodA is conserved.

Figure 5.2 Organisation of the mreBCD genes. Schematic drawing of the
mreBCD locus in a typical bacterial genome versus that of the B. bacteriovorus
genome strain HD100.
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5.2.1 Inactivation attempts for genes encoding components
of the elongation complex in B. bacteriovorus in host-

dependent and host-independent strains.

Deletion of both mreB genes in B. bacteriovorus was

attempted by kanamycin cartridge insertion by methods described

in section 2.11 using both host-dependently grown as well as host-

independently grown strains. HI strains were used to attempt to

rescue knock-out strains that failed at any point in the HD life cycle

(Evans et al., 2007). Deletions of the mreB genes were also

attempted in B. bacteriovorus PY media supplemented with 25 mM

MgCl2, known to support growth of mreB deletion strains in B.

subtilis (Formstone and Errington, 2005). Despite these provisions

no mreB deletion strains were isolated after screening a total of

328 candidates (62HD and 266HI) were screened for a mreB1

knockout and 572 (136HD and 436HI) for a mreB2 knockout,

which was many fold more than those screened to produce a pilA

knockout strain in the same B. bacteriovorus strain HD100 (Evans

et al., 2007, Lambert et al., 2006a). For comparison inactivation of

the ccrp gene described in section 3.3.1 of this thesis, using the

same gene inactivation methods (section 2.11) required 130 of HD

candidates to be screened yielding 9 gene inactivation candidates,

two of which were confirmed by Southern blot (Fig. 3.4). Similarly

for the Bd1167 gene inactivation 92 HD exconjugants were

screened, generating 6 gene inactivation candidates, all of which

were confirmed by Southern blot (Appendix 3.3).
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Deletion of the rodA gene was also attempted in 168 HD and

300 HI strains, using methods described in section 2.11. This

technique also failed to recover a rodA inactivation strain,

suggesting that the RodA protein is also essential to B.

bacteriovorus cell viability.

5.2.2 B. bacteriovorus mreB1,2,mreCD expression patterns

As the mreB genes could not be directly disrupted for mutant

strains, RT-PCR analyses were carried out on RNA samples taken at

intervals from synchronous B. bacteriovorus infections to follow the

expression of the mreB1,2,CD (see Materials and Methods section

in 2.14). RT-PCR reactions had the number of amplification steps

limited, so as not go to saturation and can therefore be used as a

semi quantitative measure of gene expression across a B.

bacteriovorus infection cycle (Evans et al., 2007, Steyert et al.,

2008). Multiple sets of reactions on two independently prepared

RNA sample sets are summarised in Fig. 5.3. Despite being located

in different regions of the chromosome, expression of both mreB,

and mreC and D genes of B. bacteriovorus showed an increase in

transcription at the 2-3 h post infection stage, with almost

undetectable expression at the 0 min attack-phase time-point (Fig.

5.3A). This is consistent with the expectation that B. bacteriovorus

cell elongation in the growth-phase (Fig. 1.6) involves the MreBCD
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proteins as is the case for cell elongation in non predatory bacteria

(Fig. 5.1). The mreB1 gene showed a reproducible (3 repeats,

shown in Appendix 5.1) additional peak of expression at 15 min

(Fig. 5.3A), around the time of periplasmic invasion, when initial

establishment of the growth-phase filamentous cell is occurring

(Fig. 1.6). RT-PCR analysis on RNA from both the 2 hr synchronous

predatory infection time point and on RNA from HI-grown cells,

showed that the mreCD genes are co-transcribed on the same

mRNA molecule (Fig 5.3B), but that the pbp2 and rodA genes were

transcribed separately to each other and to mreCD (data not

shown).
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Figure 5.3 Semi-quantitative RT-PCR study of B. bacteriovorus
mreBCD expression across a predatory infection cycle, and RT-PCR
reaction showing that mreC and mreD are present within an operon.
(A) RT-PCR reactions were carried out on RNA extracted at the
time points across a synchronous lysate of B. bacteriovorus on the
E. coli strain S17-1 (See Materials and Methods section 2.14).
Time-points the RNA sample was taken are labelled on the figure.
The HID13 strain used to assay HI gene expression. E. coli S17-1
RNA and no template reactions provide negative controls and
HD100 genomic DNA was used as a template for a positive control.
Primers for gene detection were designed to amplify an internal
region of each mreBCD gene. Only the 100bp marker is visible in
each marker lane. (B) RT-PCR reaction using the primers
mreC_RTPCR_F and mreD_RTPCR_R on both HI (HID13) and HD
(prepared at 2h post infection) RNA preparations used as RNA
templates, using the HD100 genomic DNA as a positive control.
Expected product size = 854 bp.
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5.2.3 C-terminal mTFP tagging of each MreB protein in
predatory B. bacteriovorus.

Previous studies in other bacteria showed that C-terminal

GFP tagging altered the turnover dynamics of MreBs, so as I could

not inactive the mreB genes (section 5.2.1), this method was

employed (Jones et al., 2001, Slovak et al., 2005). To determine

the involvement of mreB1 or mreB2 in the predatory cycle of B.

bacteriovorus I constructed two mreB-mtfp tagged strains in which

each MreB protein was individually C-terminally labelled mTFP (see

Materials and Methods section 2.12). A 3’ fragment of each mreB

coding regions lacking the stop codon was PCR amplified and

cloned in frame with the mtfp ORF in pAKF04 and integrated into B.

bacteriovorus the genome and expressed from its own promoter, a

contrast to other studies on MreB in both E. coli and B. subtilis

where GFP-tagged MreB varients are expressed in trans

(Carballido-Lopez and Errington, 2003, Vats and Rothfield, 2007).

These fragments if translated would run from glycine 11 to the C-

terminal glutamic acid residue 347 and represent 97% of the

MreB1 protein and between glycine 48 to the final valine residue

347 and represent 86% of MreB2. These constructs were

transferred to a pK18 backbone generating pAKF41a (mreB1-mtfp)

and pAKF40a (mreB2-mtfp) and integrated into the B.

bacteriovorus genome giving a strain in which each mreB-mtfp

fusion was expressed from its native promoter along with a
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promoter-less corresponding mreB 3’ORF fragment which, if

translated, carry the N-terminal deletion (see Fig. 2.1). Each

exconjugant strain was verified by sequencing directly specific

regions of the genome (Appendix 5.2 and 5.3) and Southern blot

(Appendix 3.4).

5.2.4 Developmental defects in both MreB-mTFP tagged

strains of predatory B. bacteriovorus.

Fluorescence activity within the mreB1-mtfp strain was low

but detectable, with fluorescent signals being constrained to the

growth-phase cell within the bdelloplast, partly consistent with the

higher mreB1 expression at 2-3 h (Fig. 5.3 and 5.6). The mreB1-

mtfp strain showed a phenotype in which the development of the

growth-phase cell, within the bdelloplast, had been compromised

instead of proceeding rapidly through the cycle like wild-type B.

bacteriovorus (Fig 5.5). These mreB1-mtfp B. bacteriovorus failed

to plaque bacterial lawns (data not shown) and in prey killing

experiments in 50 ml cultures the mreB1-mtfp strain took between

5-7 times longer than the wild-type strain (which took 24 hours to

lyse all the prey cells present and clear the culture) to partially, but

never totally clear the prey from the culture, due to the presence of

many stable, though abortive bdelloplasts, seen by phase contrast

microscopy (Fig. 5.5Bg,h,i).
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In contrast the mreB2-mtfp strain showed detectable mTFP

fluorescence and progressed through the predatory cycle showing

no evidence of abortive bdelloplasts, yet had a slightly reduced

predatory rate shown also in terms of prey killing efficiency (Fig.

5.4) (section 2.16). As Fig. 5.4 shows the mreB2-mtfp strain was

effectively predatory but killed E. coli at a slightly slower rate

compared to the fliC1 merodiploid kanamycin resistant control

strain.

Figure 5.4 Predatory kill curves of HD100 mreB2-mTFP versus control. Methods
used are described in section 2.16. Matched protein concentrations of B.
bacteriovorus lysates were used to start 50 ml infections. Values fall as prey are
lysed given that B. bacteriovorus attack-phase cells do not register at OD600.
Points on the graph represent three biological repeats, each experiment set up in
duplicate.
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5.2.5 Analysis of the HD100 mreB1-mtfp strain perturbed

development within the bdelloplast.

For analysis of the bdelloplast-stalling phenotype of the

mreB1-mtfp strain a starting B. bacteriovorus ‘attack-phase only’

inoculum was generated by filtering 5 independent aliquots of 2 ml

replicate prey lysates, raised individually from frozen stocks and

incubated for five days, through a 0.45 ǋm filter, to remove all

previously stalled bdelloplasts, but allow harvesting of pure attack-

phase mreB1-mtfp B. bacteriovorus. These attack-phase cells were

used in infections with fresh prey, so that the approximate age of

bdelloplasts in the resulting prey-lysate could be determined as the

time of infection was known. These infections were surveyed

microscopically at 24 h intervals and a survey of stalled

bdelloplasts taken at day 1 (24 h) are displayed as percentages on

Fig. 5.5. For a comparison, stages in a wild-type B. bacteriovorus

HD100 infection are shown in Fig. 5.5A. As each prey cell was

lysed completely by wild-type HD100 within 4 hours, and as no

stalled bdelloplast stages were ever seen for wild-type HD100, the

images in Fig. 5.5Ac,d,e could not be time-matched to the mreB1-

mtfp culture, but are shown for morphological and staining

comparisons. It was clear that some of the B. bacteriovorus cells in

the stalled bdelloplasts were sphaeroplasting (Fig. 5.5Bg,h,i and Fig.

5.5Cb,c compared to non sphaeroplasting Fig. 5.6Aa) while others

remained as attack-phase sized cells within the bdelloplasts, even
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after the prey cytoplasmic material (including DNA which stains

bright with Hoechst, shown previously in Fig. 4.6, for Method see

section 2.9.2) had been degraded; compare Fig. 5.5Bf to Fig. 5.5Ac

the wild-type B. bacteriovorus is elongating even while prey DNA

remains but in the stalled mreB1-mtfp strain the B. bacteriovorus

is not elongated even though prey DNA is not detected by staining

with Hoechst.

To better understand the morphologies and behaviours of

mreB1-mtfp stalled growth-phase cells in bdelloplasts, Hoechst

staining was used to label the B. bacteriovorus chromosomes and

prey DNA (where still present) within the usually phase-dark,

stalled bdelloplasts, and in the minority of the mreB1-mtfp B.

bacteriovorus that did escape the block and proceed through the

predatory cycle (Fig. 5.5Bc,d,e).

Hoechst staining of B. bacteriovorus gave a higher

fluorescence-intensity than for the E. coli prey in the attachment

images (Fig. 5.5Ab, Bb) due to the relatively high concentration of

DNA, per unit volume within the predator cells, a B. bacteriovorus

being approximately 1/5 the volume of a E. coli yet containing a

genome of comparable size (Rendulic et al., 2004). In early

bdelloplasts Hoechst staining revealed both the B. bacteriovorus

and E. coli prey chromosomes (Fig. 5.5Ac, Bc). In these

bdelloplasts the B. bacteriovorus chromosome appeared diffuse
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throughout the growth-phase cell where the chromosome of the

prey was concentrated within a rounded prey cytoplasm. (Fig.

5.5Ac, Bc). Where the predatory infection continued normally and

the prey chromosome was digested in bdelloplasts, produced by

wild-type B. bacteriovorus, or mutants managing to complete the

predatory cycle; Hoechst staining could be used to observe the

morphology the B. bacteriovorus growth-phase cells within the

bdelloplast (Fig. 5.5 Ad Bd) and also be used to observe the fully

septated B. bacteriovorus progeny within bdelloplasts (Fig. 5.5 Ae,

Be).
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Figure 5.5. Defective bdelloplast development in the HD100 mreB1-mtfp strain
visualised using the Hoechst DNA stain. (A) Merged fluorescent images of a
Hoechst-stained wild-type HD100 B. bacteriovorus infection. Images show
labelled key stages of the B. bacteriovorus life cycle (a-e): a) small vibriod
attack-phase cells (b) B. bacteriovorus prey attachment (c) early stage
bdelloplasts where B. bacteriovorus and prey DNA are both visible (d) late stage
bdelloplasts where the B. bacteriovorus has grown to a long filament and the
prey DNA and other cytoplasmic contents are digested (e) mature bdelloplasts in
which septation of B. bacteriovorus has occurred prior to prey-lysis (B) Merged
fluorescent images of Hoechst-stained HD100 mreB1-mtfp strain infection,
images taken after 24 h of incubation. (a-e) show B. bacteriovorus life cycle
stages in common with the wild-type and (f-i) defective bdelloplasts including: (f)
stalled bdelloplasts where prey DNA has been degraded yet there is still no
growth of B. bacteriovorus to form a filament as is seen in wild-type late
bdelloplasts, (g) elongated but sphaeroplasting B. bacteriovorus that are not
producing intact filamentous growth and (h-i) sphaeroplasting B. bacteriovorus
within bdelloplasts, these are morphologies novel to this mreB1-mtfp strain.
Percentage values indicate the prevalence of the various morphologies within the
24 h prey-lysate for this strain in which synchrony of infection was breaking
down (n= 39).
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Strikingly 42% of mreB1-mtfp bdelloplasts contained B.

bacteriovorus that had not yet formed a filamentous growth-phase

cell at 24 h of infection (Fig. 5.5Bf) and appeared morphologically

similar to wild-type cells in the early stages of development (Fig.

5.5Ac). However the lack of Hoechst stain fluorescence within the

prey cytoplasm in these bdelloplasts, compared to true early-stage

bdelloplasts (Fig. 5.5Bf, as different to Fig. 5.5Ac, Bc) suggests

that prey chromosome digestion had been completed, in those

mreB1-mtfp derived bdelloplasts, due to the action of B.

bacteriovorus nucleases (Matin and Rittenberg, 1972). Thus the

lack of B. bacteriovorus filament-elongation was due to the MreB1-

mTFP-tagging, not a lack of growth resources (in the form of prey

DNA). The drop in the presence of stalled mreB1-mtfp-derived

bdelloplasts over time suggests that a fraction of these mutants

must eventually find escape and give at least some progeny cells

(which could be harvested by filtration after 5 days and used as the

B. bacteriovorus inoculum for this experiment). Only 28% of

mreB1-mtfp bdelloplasts had successfully formed an elongated

growth-phase filament (Fig. 5.5 Bd) after 24 hours; which should

allow attack-phase cells to septate from it and escape the stalled

bdelloplast.

For mreB1-mtfp B. bacteriovorus within bdelloplasts, 12%

(Fig. 5.5Bg,h,i) had failed to develop correctly at 24 hr and the

bdelloplasts had become transparent as the prey contents were
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completely digested. These B. bacteriovorus were either totally

spherical (Fig. 5.5Bh), spherical and septated (Fig. 5.5Bi), or at an

intermediate phase (Fig. 5.5Bg). These morphologies are similar to

those reported for MreB depletion strains in other non-predatory

bacteria (Chiu et al., 2008). Spherical mreB1-mtfp B. bacteriovorus

cells within bdelloplasts persisted in these cultures and fail to lyse

prey suggesting that the expression of genes required for prey lysis

were not fully activate in these abortive structures. Electron

microscopy confirmed that these bdelloplasts contained a spherical

B. bacteriovorus, see Fig. 5.6Ab-c, which shows a spherical B.

bacteriovorus within the periplasmic space of an E. coli prey cell.
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Figure 5.6 Defective bdelloplast development in the HD100 mreB1-mtfp strain
visualised using fluorescence and electron microscopy. (A) Electron micrographs
of mreB1-mtfp bdelloplasts, (a) a wild-type bdelloplast within which the growth-
phase cell has formed correctly (shown in Fig. 5.5 Bd) and an example of the
mreB1-mtfp strain (shown in Fig5.5 Bf) stalled bdelloplast morphotypes (b) with
the spherical B. bacteriovorus cell and prey cytoplasmic membrane outlined with
a white dotted line in (c). Stain = 0.5% uranyl acetate. (B) Merged fluorescence
micrographs showing the very low level of mTFP fluorescence in the mreB1-mtfp
cells and that this is not present in attack-phase cells (a) but is seen in those
cells within a bdelloplast (b,c) Scale bars = 2 µm.

Curiously, all attack-phase cells of the mreB1-mtfp strain

that did complete predation, had wild-type morphology, and all

contained a centrally located copy of the genome, revealed by

Hoechst staining. (Fig. 5.5Aa compared to Ba) Infections with high

prey:B. bacteriovorus ratios, using just attack-phase mreB1-mtfp

cells, filtered out from previous predatory cultures, also containing

stalled bdelloplasts, showing that all attack-phase cells of this

strain were capable of prey attachment and entry, (Fig. 5.5Bb);

but again the same levels of stalled bdelloplasts were produced;

thus the main impact of the MreB1-mTFP tagging appeared to take

place after prey-entry.
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5.2.6 The HD100 mreB2-mtfp strain has unusual attack-

phase morphologies.

In contrast to the mreB1-mtfp strain that had a

developmental defect within the bdelloplast (section 5.2.4), the

mreB2-mtfp strain completed the predatory cycle and lysed prey

cells at almost wild-type rates in synchronous predatory cultures

with high B. bacteriovorus:prey (3:1) ratios (Fig. 5.7). Whereas at

low B. bacteriovorus:prey ratios (1:6) of predation rates seemed

significantly slower than a control strain (Fig. 5.4).
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Figure 5.7 The mreB2-mtfp strain shows a wild-type developmental rate in a
bdelloplast persistence assay. In addition, diverse mreB2-mtfp morphotypes are
still predatory. Representative brightfield images representing key time-points of
a synchronous mreB2-mtfp infection. Arrows used to highlight specific cell types;
Red: mreB2-mtfp attack-phase cells of differing morphotypes (summarised in Fig.
5.8B), Black: Uninfected E. coli S17-1:pZMR prey, White: Attack-phase cell
attachment, Orange: bdelloplsasts containing growth-phase cells, Blue: Fully
septated mature bdelloplasts. Comparison of 15 and 30min post infection images
demonstrate synchronous infection, at 15 min all prey cells show B.
bacteriovorus attachment, whereas at 30 min all prey are infected. Images of
HD100 control infection carried out under the same conditions are not shown.
Scale bar=5 m.
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The mreB2-mtfp strain, probably due to a change in the

dynamics of the MreB2 protein caused by the addition of the mTFP,

gave fluorescent, attack-phase B. bacteriovorus cells with differing

morphologies (Fig. 5.8AB). In contrast to the mreB1-mtfp strain,

which could most readily be visualised by Hoechst staining and

fluorescence microscopy, due to faint mTFP fluorescence in the

bdelloplast (Fig. 5.5B compared to 5.6B); all cells of the mreB2-

mtfp stain showed mTFP-fluorescence from pole to pole. TFP

activity was detected at all points of the B. bacteriovorus cycle

from prey attachment to prey-lysis (Fig. 5.8E). The distribution of

morphotypes in the mreB2-mtfp strain was observed using

fluorescence microscopy (Fig. 5.8Ba-d) and scored in five separate

experiments summarised in the pie chart (Fig. 5.8D) (n= 718).

Observations made using Electron microscopy confirmed this

distribution (Fig. 5.8C).
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Figure 5.8 Analysis of the attack-phase morphologies of HD100 mreB2-mtfp
strain. (A) Merged brightfield and fluoresent images of (a) HD100 Bd2345, non-
fluorescent control strain, (b) HD100 mreB2-mtfp strain attack-phase cells. (B)
Attack-phase cell morphologies of the mreB2-mtfp strain (a) wild-type, (b)
spherical, (c) elongated, (d) branched. (C) Representative electron micrograph
showing mreB2-mtfp attack-phase cells. Cells stained with 0.5% uranyl acetate.
(D) Pie chart representing a survey of 718 HD100 mreB2-mTFP attack-phase cell
morphologies. (E) Merged brightfield and fluorescent images of MreB2-mTFP
strain at the attachment (a), early (b) and late (c) bdelloplast and lysis (d)
stages of the HD predatory life cycle. (F) Hoechst stained fluorescent images of
mreB2-mtfp attack-phase cells. Scale bars = 3 µm.
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Wild-type B. bacteriovorus attack-phase cells are usually very

uniform in size and shape, having a length, measured by cryo-

electron microscopy, of 1.02 ± 0.15 µm and a width of 0.30 ± 0.02

µm (Borgnia et al., 2008). Whilst the majority of mreB2-mtfp

attack-phase cells were wild-type in shape (63% Fig. 5.8D) a

significant number of cells fell into three additional categories;

elongated, spherical and branched (Fig. 5Ba-d). Elongated cells of

the mreB2-mtfp strain showed significant length variation and were

classified as cells that were over double the length of a single wild-

type cell (Fig. 5.8Ab,Bc,C). As these cells varied from 2-10 times

the length of a wild-type cell and were scored as one cell the score

in Fig. 5.8D is an under-representation of the relative biomass of

this category. Branched mreB2-mtfp cells were in all cases also

elongated and only ever branched near one pole (Fig. 5.8 Bd). Cells

of the mreB2-mtfp spherical morphotype were motile and thus

alive; electron microscopy confirmed this and those cells had a

single flagellum (Fig. 5.8C). Hoechst staining revealed that all

mreB2-mtfp cells contained a similar intensity of DNA staining,

removing the possibility that the spherical cells of this strain were

mini-cells (Fig. 5.8Fb). For mreB2-mtfp elongated cells the

chromosomal material was never partitioned along the filament but

appeared as a single elongated focus always located to the

midpoint of the cells (Fig. 5.8Fa-b).
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Predatory cultures set up with a low Bdellovibrio:prey ratio

(1:8) were observed frequently before and after B. bacteriovorus

prey-entry to determine if any mreB2-mtfp cell morphotypes were

defective for prey entry. This showed that only the spherical cells

were no longer able to enter prey, remaining outside prey cells

even after 3 h of incubation. I conclude that, although motile and

alive at 3 hours, these spherical mreB2-mtfp cells are no longer

viable in the longer term, as they cannot enter prey and so

replicate via the predatory growth cycle. Surprisingly the mreB2-

mtfp elongated cells were still able to invade the host periplasm

despite their increased size, see Fig. 5.7 15 min panel.

As shown in Fig 5.7 the rate of development of mreB2-mtfp B.

bacteriovorus within bdelloplasts was found to be wild-type when

assayed under conditions of high B. bacteriovorus: prey ratios (ca

3:1). In non-synchronous low B. bacteriovorus: prey ratios (ca

1:50) the spherical mreB2-mtfp cells, which were liberated as

some fraction of the attack-phase cells after previous predation;

played no part in the infection as they fail to enter the prey (Fig.

5.4). Over successive rounds of infection in non-synchronous

cultures the effective removal of the spherical cells as a source of

prey infection and lysis reduce the overall predatory efficiency of

this culture (Fig. 5.4).
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5.2.7 The effects of the MreB inhibitor A22 on wild-type

attack-phase B. bacteriovorus cells.

The MreB inhibitor A22 (introduced in section 5.1.2) has

revealed detail of protein function previously in other bacteria

(Gitai et al., 2005, Chiu et al., 2008), causing shape deformations

due to loss of directionally-specific peptidoglycan incorporation into

the cell wall (Varma and Young, 2009). The addition of A22 at a

final concentration 100 µg/ml to wild-type B. bacteriovorus attack-

phase cells caused no change in shape after 24 h incubation (Fig.

5.9); or even after 48 h; this was an A22 concentration ten times

that reported to induce spherical/ lemon shaped cells in E. coli, and

C. crescentus within 6 hours (Iwai et al., 2004, Gitai et al., 2005).

Attack-phase B. bacteriovorus cells, incubated at final A22

concentrations of 200 µg/ml for 24 hours, lost motility, formed

inclusion bodies, failed to plaque bacterial lawns, but maintained

their cell shape (Fig. 5.9) when E. coli control cells did show

rounding, with A22 at 5 µg/ml. Thus at 200 µg/ml A22 was toxic to

the B. bacteriovorus but at lower concentrations the wild-type B.

bacteriovorus attack-phase cells did not respond to A22 by cell

shape alteration.
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Figure 5.9 Effect of the MreB inhibitor A22 on wild-type B. bacteriovorus HD100
attack-phase cells. (A) HD100 attack-phase cells after a 24 h incubation of (a) 0
µg/ml A22 (b) 100 µg/ml and (c) 200 µg/ml A22. Scale bar = 3 µm (B)
Representative electron micrographs of HD100 treated with 200 µg/ml A22 (c-d)
versus untreated cells (a-b). Inclusion bodies only ever observed in the A22
treated cells at this concentration. Cells stained with 0.5% uranyl acetate. Scale
bars = 1 µm.
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5.2.8 The effects of the MreB inhibitor A22 on mreB1-mtfp

and mreB2-mtfp attack-phase cells.

The attack-phase cells of the mreB2-mtfp strain gained the

capacity to change shape with the addition of non-toxic levels of

A22 (Fig. 5.10Aa,b). Overnight incubation of mreB2-mtfp attack-

phase B. bacteriovorus with 100 µg/ml A22 caused statistically

significant changes in morphology, compared to control mreB2-

mtfp cultures of the same age, summarised in Fig. 5.10. mTFP

fluorescence of the mreB2-mtfp A22 treated cells was maintained

throughout (Fig. 5.10). Overnight treatments, at 100 µg/ml A22,

reduced ten-fold, but did not abolish, predatory plaque counts on E.

coli prey for the mreB2-mtfp strain compared to when it had no

A22 added. Surveys of morphologies of mreB2-mtfp B.

bacteriovorus, after A22 treatment showed a reduction in the

number of elongated cells an increase in the number of spherical

mreB2-mtfp attack-phase cells (Fig. 5.10C) and a new intermediate

form of B. bacteriovorus that was mushroom shaped (Fig. 5.10Be-f)

and which was not present in controls.
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Figure 5.10 Addition of A22 to the mreB2-mtfp strain alters attack-phase cell
morphology. (A) Untreated attack-phase mreB2-mtfp cells (a); mreB2-mtfp cells
treated with a 24 h incubation with 100 µg/ml A22 (b). (B) Attack-phase
morphologies of the mreB2-mtfp A22 treated cells (a) wild-type, (b-c) spherical
(d) elongated, (e-h) novel mushroom-shaped cells with fluorescently bright
“stalk” shapes indicative of high mreB2-mtfp content. (C) Pie charts
summarising survey of 134 mreB2-mtfp untreated attack-phase cells and 149
cells treated with 100 µg/ml A22, both incubated 24 h. Chi squared analysis of
morphologies shared between both surveys give a chi squared value of 26.75
giving a P value of <0.05 at 2 degrees of freedom. Scale bars = 3 µm.
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Addition of A22 at low concentrations (0.01 µg/ml) seemed

to support the predatory growth of, and reduce bdelloplast

persistence in, the mreB1-mtfp strain, as large numbers of attack-

phase B. bacteriovorus were seen microscopically, after 24 hours,

in predatory infections set up in the presence of that concentration

of A22, but not without (data not shown). In these cultures the

prey E. coli were not morphologically affected by the A22

concentration (data not shown). Additional control prey-killing

experiments by the B. bacteriovorus filC1merodiploid kanamycin

resistant “wild-type” control strain showed that A22 concentrations

of 0.01 µg/ml had no effect on predatory growth rate (Fig. 5.11).

Figure 5.11 Effect of 0.01 ǋg/ml A22 on the fliC1 merodiploid, kanamycin
resistant, control strain predation rate and stationary phase E. coli S17-1 pZMR
prey. Predatory cultures/prey only controls, in the presence or absence of 0.01
µg/ml A22, were set up in duplicate containing either stationary phase E. coli or
a mixture of E. coli prey and the B. bacteriovorus fliC1 merodiploid strain, error
bars show standard deviation around the mean, for method see section 2.16.
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5.3 Host independent cell morphologies of mreB1-mtfp and

mreB2-mtfp HI strains.

As described previously in section 1.3 HI strains are primarily

used in B. bacteriovorus investigations to rescue strains that fail to

complete any part of the predatory process. That they are studied

in their own right is due in part to the high degree of morphological

diversity within a single HI culture and variable growth rates. In

order to further study mreB-mtfp tagged morphologies, ten

independently isolated HI candidates were generated for each

strain along with ten fliC1 merodiploid controls, following the

precedent set by K. Evans and coworkers (Evans et al., 2007).

Evans and coworkers independently isolated ten HI derivatives of a

B. bacteriovorus mutant to determine common mutational features

against a background of HI diversity. Diagnostic Taq PCR reactions

confirmed the continued presence of the mreB-mtfp constructs

(pAKF40a and pAKF41a) for each HI strain, shown in Appendix 5.4.

Very surprisingly all ten mreB1-mtfp HI strains were all

uniformly small and resembled attack-phase cells. In all cases HI

cultures of the mreB1-mtfp HI strains contained short attack-phase

like cells which never exceeded 3 µm in length (Fig. 5.12), a stark

contrast to the expected mixture of morphologies observed in fliC1

controls (Fig. 5.12). mTFP fluorescence activity remained hard to

detect for all mreB1-mtfp HI strains; however the background
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fluorescence caused by the rich PY media used to support B.

bacteriovorus HI growth makes fluorescence acquisition more

challenging.

All ten mreB2-mtfp HI cultures showed a strong tendency to

form very large elongated cells, which coil back on themselves

forming large networks, only seen in a minority of filC1 controls

(Fig. 5.12). However, unlike the mreB1-mtfp strain, the mreB2-

mtfp HI cultures showed more diverse morphologies, notably the

presence of spheroplasts (Fig. 5.12). Currently a method to

meaningfully score or count the number of HI cells spheroplasts

within HI cultures is unavailable. All mreB2-mtfp HI strains showed

MreB2-mTFP fluorescence activity (data not shown).
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Figure 5.12 Representative images of ten independently
generated HI cultures of the mreB1-mtfp (A), mreB2-mtfp (B) and
fliC1 merodiplod control strains (C). Images taken at the same
time and all strains experienced the same growth conditions. Scale
bars = 5 µm.
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5.3.1 Host independent growth rates of mreB1-mtfp and

mreB2-mtfp HI strains.

As with cellular morphology studies; B. bacteriovorus HI

growth curves have rarely been conducted due to the high degree

of variation of growth rate amongst isolates. A method using OD600

readings in a FLUOstar Optima plate reader allows for the detection

of growth of B. bacteriovorus HI strains over time (Fig. 5.13), see

Materials and Methods section 2.17. HI strains gradually lose the

ability to re-enter the predatory life-cycle and increase in growth

rate as they grow; thus care was taken for each HI culture to

ensure that the same growth conditions had been maintained for

all strains used in the growth curve shown in Fig. 5.13. Despite the

defect in predatory cell growth within bdelloplasts the (smaller) ten

HI mreB1-mtfp cells showed a significantly faster growth rate over

the ten FliC1 merodiploid control strains (Fig. 5.13). The mreB2-

mtfp HI strains showed a uniformly slower growth rate than

controls never reaching high OD600 values, perhaps indicating the

detrimental effects of elongated cell growth (Fig. 5.13).
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Figure 5.13 Average Host independent growth rates of ten independently
isolated mreB1-mtfp and mreB2-mtfp strains against ten fliC1 merodiploid
controls. Methods used are detailed in section 2.17. Each HI culture was diluted
to a starting OD600 of 0.1 (using a bench top spectrophotometer). Growth of
each HI strain was measured in duplicate over 72 h. Error bars represent 95%
confidence levels.

Further growth curves of three independently generated

mreB2-mtfp HI strains in the presence of 0, 1, 10 and 100 µg/ml

A22 were carried out to investigate the A22 growth enhancement

effects observed for the mreB1-mtfp HD strain (section 5.2.7, Fig.

5.14). The graph in Fig. 5.14 does not show a significant difference

in growth rate between the 0 and 1 ǋg/ml A22 final concentrations;

however the average results of HI growth in the presence of 1

µg/ml A22 reached stationary phase faster than the 0 µg/ml

control (Fig. 5.14). Cell viability of the three mreB2-mtfp growing

HI strains was lost in the presence of 100 ǋg/ml A22 (Fig. 5.14).
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Figure 5.14 Average Host independent growth rates of three independently
isolated mreB1-mtfp strains in the presence of A22 at varying concentrations.
See section 2.17 for Methods. Each HI culture was diluted to a starting OD600 of
0.1 (using a bench top spectrophotometer). Growth of each HI strain, under
each condition, was measured in duplicate over 72 h. Error bars represent 95%
confidence levels.
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5.4 Discussion

This work shows that both mreB genes of B. bacteriovorus

were found to be essential for viability and could not be deleted;

this is consistent with data for mreB from both E. coli and B.

subtilis (Jones et al., 2001, Kruse et al., 2005) (section 5.2.1).

Despite their essentiality, the function of the B. bacteriovorus MreB

proteins in the bdelloplast could be examined using C-terminal

mTFP tags (section 5.2.5 and 5.2.6). In each case this fusion gave

an mreB-mtfp strain with a phenotype very different from wild-type,

consistent with work on a B. subtilis MreB homologue, Mbl, where

C-terminal GFP tagging resulted in a MreB protein with altered

dynamics (Jones et al., 2001) (summarised in section 5.2.4).

Wild-type B. bacteriovorus treated with the classical MreB-

modifying agent A22, which produces shape changes in other

bacteria due to MreB filament modifications at concentrations from

3 µg/ml to 100 µg/ml (Iwai et al., 2004), showed that at

concentrations approaching 200 µg/ml A22 was toxic to attack-

phase B. bacteriovorus, as EM studies showed these cells had

formed inclusion bodies, but at lower A22 concentrations (those

active in shape-changing other bacteria) the wild-type B.

bacteriovorus attack-phase cell never altered shape upon
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incubation with A22, although an E. coli control using the same

methods did round up at 5 µg/ml (data not shown).

RT-PCR analysis (Fig. 5.3) suggested that the two mreB gene

products in B. bacteriovorus are expressed during developmental

stages of the B. bacteriovorus growth-phase within the bdelloplast

and at undetectable levels in the attack-phase cells (Fig. 5.3A).

This is consistent with the expectation that B. bacteriovorus cell

elongation in the growth-phase (Fig. 1.6) involves MreB proteins.

The pattern of increasing expression within the bdelloplast up to a

peak at the 2-3 h point is consistent with the increasing size of the

growth-phase filamentous cell (Fig. 1.6).

At 3-4 h the B. bacteriovorus growth-phase cells are

septating, forming progeny and repressing growth giving the slight

reduction in mreB expression. The expression pattern of both mreB

genes was similar to that of the mreCD operon despite being

expressed from different promoters (Fig. 5.3). The mreB1 gene

showed a reproducible additional peak of expression at 15 min (Fig.

5.3A, Appendix 5.1); this could suggest that MreB1 may have a

role in invasion and/or early growth-phase cell development. These

roles were further investigated using the mTFP-fusion strains.

The mreB1-mtfp strain had a major defect in predatory

growth with normal development arresting in the early growth-
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phase B. bacteriovorus inside the bdelloplast (Fig. 5.5Bf).

Fluorescence activity within the mreB1-mtfp strain was low and

detectable fluorescence was constrained to the growth-phase cell,

within the bdelloplast, (Fig. 5.6 B, section 5.3). Suggesting MreB1

is not as abundant as MreB2 (which had detectable fluorescence

Fig. 5.8, Fig. 5.10) and has a role in filamentous growth

establishment.

Growth-phase arrest of the mreB1-mtfp strain in the

bdelloplast seemed not to be caused by a failure in growth

resources, as Hoechst stained stalled bdelloplasts showed no prey-

DNA labelling suggesting that the prey chromosome had been

digested by B. bacteriovorus nucleases. Thus there were at least

nucleic acid resources available for B. bacteriovorus growth, but

the B. bacteriovorus were not elongating for other reasons. B.

bacteriovorus cells, with abortive development within bdelloplasts,

failed to lyse prey and the stalled bdelloplasts accumulated within

the population (Fig. 5.5 Bg-i). The partial rescue of this phenotype

by the addition of low levels of A22, a molecule known to stabilise

ADP-bound MreB filaments at sub-inhibitory concentrations in vitro

using MreB purified from Thermotoga maritima (Bean et al., 2009),

suggests that possibly the mreB1-mtfp strain had a reduced

capacity to form filaments within the early bdelloplast, or that its
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filaments were less stable than wild-type, and that this impaired

early predatory growth. This conclusion is further supported by

work on mreB1-mtfp HI strain morphology which do not form

elongated HI cells (Fig. 5.12). The stabilisation of the mreB1-mtfp

filaments by A22 in bdelloplasts partly aided rescue and produced

more B. bacteriovorus attack-phase cells, by the completion of

predation (section 5.2.7). This observation in part supported by HI

growth assays in the presence of A22, though results were not

statistically significant (Fig. 5.14).

Despite their genetic homogeneity a proportion of the mreB1-

mtfp cells escaped the arrested state, without A22 addition and did

continue to the late bdelloplast, filamentous growth-phase

septating to give attack-phase cells that were wild-type in shape,

contained DNA and were capable of HD growth (Fig. 5.5Ba,Be).

These were seen after 24 h of incubation with prey as 14% of the

bdelloplast population in Fig. 5.5Be containing sepatated B.

bacteriovorus that look indistinguishable from wild-type (Fig.

5.5Ae). What genetic events caused these few mreB1-mtfp cells to

proceed slowly to lyse bdelloplasts at 24 h when so many others

arrested (Fig. 5.5 Bf) or sphaeroplasted and died within

bdelloplasts (Fig. 5.5Bg-I and Fig. 5.6A) are not known. It must be

borne in mind that a wild-type copy of mreB2 was present in the
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mreB1-mtfp strains, but because of the asynchrony of the

predatory process for the mreB1-mtfp strain, due to the stalling

bdelloplasts, it was not possible to meaningfully monitor changes in

mreB2 expression in the mreB1-mtfp strains during predation.

Alteration of mreB2 expression in the mreB1-mtfp strain by

promoter point mutations would be too rare to explain the

percentages of mreB1-mtfp cells which eventually overcome the

developmental stalling in the bdelloplast.

What was very clear was that the low numbers of mreB1-

mtfp attack-phase cells that completed the predatory cycle, were

not revertants to a wild-type (mreB1+) state. When they were

separated by filtration from the stalled bdelloplasts and applied

again to a fresh culture of E. coli prey, the same bdelloplast stalling

effect was produced, with only a few cells making it through to

prey lysis, producing attack-phase B. bacteriovorus again.

The mreB2-mtfp strain gave a phenotypic change that

occurred later in B. bacteriovorus predatory development in the

bdelloplast. This strain had an almost wild-type growth rate within

the bdelloplast (Fig. 5.4 and Fig. 5.7), the slightly lowered

predation rate being due to a sub-population of non-predatory,

spherical cells (Fig. 5.8ABC). However, upon completion of the
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predatory cycle, bdelloplast lysis gave mreB2-mtfp progeny with

altered morphologies, including branched and elongated, in

addition to spherical and wild-type vibriod (Fig. 5.8B). I was not

able to assess how many of each morphotype was produced from

each bdelloplast as the cells are quite constricted within the

bdelloplast before release, and the ability to follow growth-phase

cell development within bdelloplasts by time-lapse microscopy

(described in Chapter 4) was not available at the time. However, it

can be presumed that a spherical cell or branched cell was

produced along with some attack-phase cells from at least some of

the bdelloplasts, rather than pure morphotypes being liberated

from single bdelloplasts.

For mreB2-mtfp elongated cells the chromosomal material

was never partitioned along the filament but appeared as a single

elongated focus always located to the midpoint of the cells. (Fig.

5.8 5Fa-b) this is similar to the chromosomal distribution reported

in E. coli for elongated cells produced by cephalexin treatment

expressing MreB with point changes at aspartic acid 165, although

this was not mutated in the mreB1-mtfp fusion strain (Kruse et al.,

2003). I found that, although the spherical cells contained DNA (Fig.

5.8 Fb) and were motile, with a single flagellum (Fig. 5.8 C) they

were not able to predatorily enter prey. Thus the spherical cells

were a dead end side-product of the predatory cycle of mreB2-mtfp

cells which also produced the other morphotypes. Interestingly the
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elongated morphotypes did enter prey. Thus the generation of

non-predatory spherical cells effectively reduced the predatory B.

bacteriovorus yield per bdelloplast of the mreB2-mtfp strain and

was responsible for the slight reduction in the rate of E. coli prey

killing, shown in Fig. 5.4.

Interestingly the mreB1-mtfp predatory growth inhibition was

not evident in HI growth curves using multiple independently

generated HI strains. mreB1-mtfp strains were all small, with 99%

of cell lengths for these stains falling between 1-1.5 µm (the same

range as HD attack-phase cells), and grew at a significantly faster

rate compared to control strains; whereas the mreB2-mtfp HI

strain grew slower, a complete reverse of the attack-phase growth

defects (Fig. 5.13). The mreB1-mtfp HI strains seem to be unable

to form long elongated cells often seen in HI cultures (Fig. 5.12C);

this inability could be the key to the elevated growth rates of the

mreB1-mtfp HI strains, as they are not hampered by the gene

dosage and genome stability complications arising from having

multiple copies of the chromosome within one cell, in contrast to

the large mreB2-mtfp networks (Fig. 5.12A,B). This was an

unexpected role for the mreB1 gene.
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B. bacteriovorus strains with significantly altered attack-

phase and HI cell morphologies had not been described before this

study. It is worth noting that although cell length and shape were

affected in these strains, no significant defect in the widths of

viable cells were observed, as is also the case for C-terminally GFP

tagged Mbl in B. subtilis (Jones et al., 2001). The division-inhibitory

properties giving rise to an elongated morphology of the mreB2-

mtfp HD and HI strains (Fig. 5.8 and Fig. 5.12), are consistent with

published observations for GFP tagging of the Mbl filament in B.

subtilis, but in that bacterium the block in septation involved the

change in cell width (Jones et al., 2001).

Interestingly, although the cell shape of wild-type, attack-

phase B. bacteriovorus was unaffected by A22 addition, shape

changes were seen in attack-phase cells of the mreB2-mtfp strain,

after the addition of A22 at 100 ǋg/ml; suggesting that possibly

this strain was turning-over its cell wall/cytoskeleton in the attack-

phase; whereas the wild-type did not seem to do so to the same

extent (Fig. 5.9, 5.10).

Incubation with A22 led to loss of elongated cells and a rise

in the number of spherical cells, suggesting that like in other model

organisms B. bacteriovorus mreB2-mtfp cells (but not wild-type)
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became spherical on addition of A22 (Fig. 5.9, 5.10). The novel

mushroom-shaped morphology, present (Fig. 5.10 Be-h) in a

subset of the mreB2-mtfp A22-treated population, could represent

an intermediate in mreB2-mtfp attack-phase cells becoming

spherical. As B. bacteriovorus attack-phase cells rely on a finite

reserve of stored material from the last infection as a nutrition

source (and do not take up organic nutrients), there were few

resources available to turn over cell wall and allow full conversion

of the vibroid-shaped attack-phase cells to spheres. This is likely

why adding A22 gave rise to the mushroom shaped cells which are

a known intermediate in the process of rod shaped bacteria

becoming spherical (Chiu et al., 2008). Fluorescence activity within

these A22-treated, mushroom-shaped, mreB2-mtfp cells was

predominantly in the rod shaped “mushroom stalk” part of the cell

and less strongly in the hemi-spherical “cap” shape, suggesting

that turnover of the MreB2-mTFP protein at this point, was

beginning to cause the shape change from vibroid-shaped to

spherical (Fig. 5.10). The fully spherical mreB2-mtfp cells produced

without A22 did show some fluorescence suggesting that MreB2-

mTFP protein remained within them although it was no longer

functional in shape determination.
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This mushroom-shaped cell production in the mreB2-mtfp

strain with A22, matches that in Vibrio parahaemolyticus cells

entering a crisis, where MreB filament-breakdown at the pole of the

cell caused that pole to round up ultimately spreading over the

whole cell in that case (Chiu et al., 2008). I suggest that the

altered dynamics of the MreB2 caused by the mTFP-addition gave a

distribution of B. bacteriovorus with altered MreB filament states

either stabilising the MreB2 filament directly (suggested by the

15% elongated cells, Fig. 5.8D) or increasing MreB2 filament

turnover (suggested by the 21% spherical, Fig. 5.8D); the

continued presence of MreB2-mTFP giving the cells that capacity to

change shape by interaction with MreCD and cell wall synthetic

machinery. This would suggest that such additional factors required

for MreB2 to direct cell wall biosynthesis were present and active in

the mreB2-mtfp strain.

This work represents the first investigation into the

cytoskeletal activities during predatory B. bacteriovorus

development yet undertaken and was published in the Journal of

Bacteriology (Fenton et al., 2010). This study shows how mreB

gene duplication and specialisation has facilitated a developmental

process that yields septated vibriod attack-phase cells, from an

intermediate elongated, filamentously-growing cell; growing within
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the confines, and finite nutritional resources, of a dead prey

bacterium. It also shows a role for MreB1 cycling in HI growth,

suggesting further study of mreB genes may yield further insights

into the mechanisms which give rise to the diverse HI growth

morphologies between isolates.
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CHAPTER SIX

Concluding Discussion.

The aim of this project was to establish patterns of intra-

periplasmic growth of B. bacteriovorus and to investigate any roles

that cytoskeletal elements had in that predatory life-style.

This study has successfully described the developmental

patterns of B. bacteriovorus growth-phase cells within the

bdelloplasts using a combination of time-lapse imaging and a

fluorescently-labelled prey (section 4.4). I have been able to

describe in previously unseen detail how a predatory bacterium

grows and divides atypically within another bacterium. Taken

together with collaborative work by Machi Kanna and Hoechst DNA

staining of bdelloplasts (Fig. 5.5A), this has advanced our

understanding of B. bacteriovorus predatory development,

summarised in Fig. 6.1 and described fully in section 4.5.

My PhD also focused on the activities of three bacterial

cytoskeletal elements: Ccrp, Bd3904 and MreB (Chapter 3, 4 and 5

respectively). Both genome knock-out methods and the

development of a new technique of mTFP-tagging proteins in B.

bactetriovorus have given the first insights into the function of

these proteins in vivo (section 3.6, 4.6 and 5.4).



217

The B. bacteriovorus Ccrp protein contributes to cell shape

stability by acting as an internal protein scaffold, similar to the FilP

protein in S. coelicolor (Bagchi et al., 2008), and does not

contribute to the vibroid shape of the B. bacteriovorus cells like the

Ccrp CreS in C. crescentus (Ausmees et al., 2003) (discussed in

section 3.6). Further work, beyond the timeline of my project, to

measure the cell rigidity directly using AFM (Atomic Force

Microscopy) techniques would provide more support to this work in

a similar way to that used in (Bagchi et al., 2008). Immuno-

precipitation and MALDI-TOF MS analytical methods using the

HD100 Ccrp-mCherry tagged stain, using the mCherry antigen as a

target, would identify proteins which maintain and modify the

underlying Ccrp structure.

On the basis of E. coli expression data and B. bacteriovorus

protein localisation studies, I propose that the ‘bactofilin’ like

protein Bd3904 inhibits synchronous septation within growth-phase

cells within bdelloplasts (discussed in section 4.6), until the correct

developmental check point is achieved to allow septation. Future

work on the dynamics of the Bd3904 filaments in vitro and the

generation of a HD100 Bd3904 KO strain (if this is viable) are

required to fully support these conclusions.

The two essential mreB gene products in B. bacteriovorus

both function in predatory growth but have major actions in at
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different times; the MreB1 protein functions to establish

filamentous growth, whereas the MreB2 protein acts later to

support filamentous growth and the establishment of growth-

inhibition of the attack-phase cell. The 10 mreB-mTFP derivative HI

strains support these conclusions: the 10 mreB1-mtfp HIs are only

capable of forming short “attack-phase sized” cells, whereas the

mreB2-mtfp HI strains from long extended filamentous cell

networks (Fig. 5.12). Further work studying the growth rates of

mreB-mtfp HI strains in the presence of A22 will reveal more about

the role of these proteins in the establishment and maintenance of

B. bacteriovorus cell morphology. Following mreB-mtfp HD100

strain development through single infections of fluorescent prey

using time-lapse microscopy described in section 4.4 will reveal

further insights into MreB function in B. bacteriovorus development.

A useful product of my PhD has been the huA-mtfp HD100

(and huA-mcherry HD100) initially cloned as a chromosomal

“paint” as part of the study into B. bacteriovorus septation (section

4.3.2). This strain has a strong fluorescent signal which can be

used to specifically identify huA-tagged cells among other untagged

cell-types, this could make this strain a very valuable tool for B.

bacteriovorus predatory competition research in the future.
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6.1 The growth and development of B. bacteriovorus within

bdelloplasts.

After a series of false starts and optimisations, time-lapse

imaging of fluorescent-prey bdelloplasts revealed many previously

unseen details of B. bacteriovorus growing within prey (Fig. 6.1,

section 4.4). I was able to demonstrate the synchronous septation

of B. bacteriovorus from single growing filaments, inside

bdelloplasts.

Additional EM studies by Machi Kanna (personal

communication) revealed that after septation newly formed B.

bacteriovorus progeny go through a further differentiation phase

where cell length increases, yet cell width remains similar, with the

newly released cells slightly elongating into the attack-phase form

outside prey. This developmental strategy could be advantageous

for B. bacteriovorus growth within the confines of a bdelloplast

before prey-cell lysis. It remains unclear what role B. bacteriovorus

attack-phase cell organic-molecule scavenging outside of

bdelloplasts contributes to this observed elongation and whether

cytoskeletal elements play a role.

B. bacteriovorus growth-phase cells must contain multiple

copies of the genome before synchronous septation, and thus they

risk genome stability by multiple homologous recombination events

between newly replicated genomes. Despite these risks to genome
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stability the method of filamentous growth must have advantages

in both co-ordination of prey digestion and maximising division of

prey resources amongst progeny that lead to a net increases in B.

bacteriovorus fitness.
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B. bacteriovorus must also have unprecedented control over

DNA replication to replicate odd numbers of chromosomes from a

single template and to maximise use of the quantised material

available inside a dead prey bacterium to make the maximum

number of progeny. Like other bacteria (such as E. coli) B.

bacteriovorus is predicted to initiate DNA replication using the

DnaA protein (see Fig. 4.3 for expression of dnaA through a

predatory time-course), the concentration of this protein in E. coli

is finely controlled to initiate DNA replication only once form the

origin of replication and then its action is inhibited by a variety of

mechanisms, for example sequestering of the oriC by the SeqA

protein making it unavailable for DnaA binding. B. bacteriovorus

DnaA must initiate replication multiple times in one cell, thus

additional as yet unknown control systems must exist to control

this process (Messer, 2002).

Bioinformatic studies on the B. bacteriovorus HD100 genome

reveal that this bacterium encodes all of the components of regular

bacterial septation machinery but no full complement of

recognisable control systems i.e. MinCDE system, DivIVA or MipZ

(Table 5.1). Although Bd3904 represents a tantalising candidate for

septation control (section 4.5-4.6) identifying the mechanisms that
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govern how the septal machinery is positioned along the B.

bacteriovorus filament remains an exciting challenge.
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6.2 The development and use of C-terminal mTFP tagging to

investigate the function of B. bacteriovorus proteins.

The most important methodological advancement in the

course of this project was the development of a method to stably

C-terminally tag B. bacteriovorus target proteins with a GFP moiety

(section 2.12). This allowed the study of essential mreB gene

function in B. bacteriovorus by the reduction of wild-type MreB-

protein activities (section 5.2 and 5.3) and the sub cellular

localisation of Ccrp within attack-phase cells (section 5.3.2).

In retrospect the selection of the mTFP fluorphore used for

GFP tagging in this study was a good one, for reasoning see section

1.7. This protein has been specifically engineered to make it fully

monomeric; preventing any spurious results introduced by slight

GFP-dimerisation effects (Table 1.1). The relatively high brightness

and photostability of the mTFP fluorophore still remains in a class

of its own amongst the cyan-FPs (Ai et al., 2006). This high

brightness has allowed the detection of painfully weak fluorescent

signals within B. bacteriovorus cells which would have otherwise

remained undetected; for example the Ccrp-mTFP activities shown

in Fig. 3.10, and the MreB1-mTFP activities shown in Fig. 5.8.

However, there is currently no mono- or poly-clonal antibody

available for mTFP1 (Alelle biotech personal communication,

January 2010). This has slowed further research into the protein
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interaction partners of the MreB, Ccrp, HUa and Bd3904 proteins

mTFP tagged in this study as immuno-precipitations and

subsequent MALDI-TOF MS analyses of partner proteins have not

been possible.

The mTFP molecule is however the perfect as a donor

fluorphore for the bright yellow fluorescent protein YPet for future

FRET (Fluorescence Resonance Energy Transfer) analyses of B.

bacteriovorus protein-complexes. YPet would be a good choice for

mTFP FRET due to its high quantum yield and overlapping

emission-absorption septra (see excitation and emission values for

mTFP1 and YPet, shown in Table 1.1). This leads me to more

suggestions for future work that could build upon my thesis.
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6.3 Future work

The Bd3904 protein (section 4.5) could provide part of the

solution to the conundrum of B. bacteriovorus synchronous cell

division, being temporally and spatially positioned to coincide with

filamentous growth in Bdellovibrio, and having septation inhibitory

properties when expressed in E. coli (section 4.5 and Fig. 4.3).

Further work on the behaviour of this protein within bdelloplasts,

monitored by time-lapse microscopy using methods described in

section 4.4, and identification of protein interaction partners in B.

bacteriovorus cells using antibody pull-downs, could provide the

best platform from which to understand how growth-phase cells

coordinate their unique method of cell-division.

An A22 analogue MP265 has recently been described which

has a reduced cyto-toxicity (Takacs et al., 2010). This could be of

use in B. bacteriovorus cytoskeletal research as clearly the MreB

proteins of B. bacteriovorus are not as sensitive to A22 as those of

other bacteria such as C. crescentus and E. coli, as much higher

concentrations of A22 are needed for any type of morphological or

growth-inhibitory effect (section 5.2.8). B. bacteriovorus tolerance

to A22 is potentially a good thing for future B. bacteriovorus

therapies, in combination with conventional antibiotics, as A22

represents both a novel and general primary molecule for the

development of antibiotics against conventional pathogenic bacteria.
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The use of HI strains to probe the function of the mreB gene

products remains an unexpected and exciting prospect. Further

work on the ten HI derivatives of the mreB1-mtfp and mreB2-mtfp

strains against the fliC1 merodiploid controls support growth and

morphological observations of the original HD strains (section 5.2

and 5.3). Measuring the growth-rate of each HI derivative strains

in the presence or absence of A22 (or MP265), as shown in Fig.

5.14, could yield additional insight into their respective roles within

the bdelloplast.

More generally, time-lapse imaging using the XY-motorized

stage and fine Z-controller of growing HI cells on PY Agarose pads

would reveal if growth and division of B. bacteriovorus HI strains

mirrors the synchronous division observed for the HD cells within

bdelloplasts (As may be expected when one looks at Fig 2 and Fig

8 in the classic EM papers (Horowitz et al., 1974) and (Burnham et

al., 1970) respectively). This would provide a deeper insight into B.

bacteriovorus HI growth phenotype.
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6.4 Conclusion

I set out to discover B. bacteriovorus growth-phase cell

developmental patterns within bdelloplasts and investigate the

roles of cytoskeletal elements within these processes. This has

been successful thanks to the advances in GFP-protein and

microscopic-imaging technology. The main developmental

processes of B. bacteriovorus within a bdelloplasts have been

accurately described, resulting in a first author manuscript

submitted for publication. The study of the functions of the two

MreB cytoskeletal proteins at different points in the predatory life-

cycle of B. bacteriovorus led to a well received publication (Fenton

et al., 2010). Work describing the function of the Ccrp cell scaffold

in the maintenance of B. bacteriovorus cell shape has also led to a

small manuscript being submitted for publication. Future work on

the sepation inhibitor Bd3904 and further work on the function of

the MreB proteins using the HI strains remain as exciting projects

for follow-on studies in the immediate future.

There still remains, much more to be done.
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Appendix 2.1

DNA and protein markers used in this study

1Kb NEB ladder 100bp NEB ladder

DNA Ladders visualised by ethidium bromide staining on a 1.3% TAE agarose gel.
Mass values are for 0.5 µg/lane (Taken from www.neb.com).

Biotinylated NEB 2-Log BenchMark Protein Ladder

DNA Ladder (Invitrogen)

1.0 µg of 2-Log DNA Ladder Protein ladder ran on a Invitrogen
visualized by ethidium bromide Novex 10-20% Tris-glycine

staining on a 1.0% TBE agarose gel SDS-PAGE gel.
(Taken from www.neb.com) (Taken from www.neb.com)
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CreS C.crescentus ---MRLLSKNSRETKNGKPTVLGDEARAEAMQHQIESTQAIGQRYETIHGGLDSIGRVME
FilP S.coelicolor ---------MSDTSPYG----------FELVRRGYDRAQVDERISKLVSDRDSALARITA
Ccrp1143 H.pylori ----------MQENQTR----------PFICPKCQEPIDVNEALYKQIE--QENQNKFLA
Ccrp59 H.pylori ---------------MG-----------TFIEKCFGFYQVRKELEARISGLEDENAELFA
Bd1167 B.bacteriovorus MSFNYQKNKEHSSDSFWTSYSDLFLGLSTIFLLLYVTSSLRTGTDALRGQVENQKLSMKV
Ccrp B.bacteriovorus --MNHRRRFSMQVKPLG-----------TLLLAALMTGTMPLAAYAQVDSSQIEAEEATA
Clustal Consensus

CreS C.crescentus HLKAIEPLIAEIRGPVSQEFEARRAEHAELIAVRANLDQAQRQIALIQAEEREVSARLAA
FilP S.coelicolor LEKRIEELHLETQN------------------AQAQVNDAEPSYAGLGARVEKILRLAEE
Ccrp1143 H.pylori QQKEFEKEVNEKRAQYLS--------------YFKNLEQKEETLKEREKEQQAKFDEAVK
Ccrp59 H.pylori ENEKLALGTSELKD-------------------------ANNQLRQKNDKLFTTKENLTQ
Bd1167 B.bacteriovorus EELENQLKMYENVKN--------------EYLASQAPKDEVQEYEELMDKLTLLQEDAKT
Ccrp B.bacteriovorus DAEAAKAEANEAKKR-----------------AEEDRKRRDKIRAESQSAINKARSLEND
Clustal Consensus *

CreS C.crescentus AETALGESDARRQTQDAALEDNALEIDRLRNALLQSDLKVSSLDASLRDATARIEHLVQD
FilP S.coelicolor EAKDLREEARRAAEQHRELAESSAQQVRNDAESYAAERKAKAEDEGVR----IVEKAKGD
Ccrp1143 H.pylori QASALALQDERAKIIEEARKNAFLEQQKGLELLQKELDEKSKQVQELHQKEAEIERLKRE
Ccrp59 H.pylori EKTELTEKNKVLTTEKGNLDNQLNASQKQVQALEQSQQVLENEKVELTNKITDLSKEKEN
Bd1167 B.bacteriovorus EKERLIQEARENGEKVKALNKYQQMVRNVLNANKMAKSKLINRDDLIKEQDVEIETQETE
Ccrp B.bacteriovorus AKKEQADSERESAKLKAETNEHDRAKTAAEKEQASAQARIKAAQEKTQKAIQIRDEAQAK
Clustal Consensus . . . .

CreS C.crescentus VEGLRVQAQDIDARRGDAEAALARANQDNALLGEEAATLKKR----VDQAGLDLARLSRI
FilP S.coelicolor ASQLRSEAQKDAQSKRDEADALFEETR---------------------------AKAAQA
Ccrp1143 H.pylori NNEAESRLKAENEKKLNEKLDLEREKIEKALHEKNELKFKQQ------EEQLEMLRNELK
Ccrp59 H.pylori LTKANTELKTENDKLNHQVIALTKEQD---------------------------------
Bd1167 B.bacteriovorus IADLNKDIQNKKQLIAQGEQKIAVTQAQLQKRLTELRVAYKNNKLSKQLFEQKMAQARAE
Ccrp B.bacteriovorus RKQAESKADELRDQAKDQEKQANSATEAGLAATKEAEAAKNE----TLKAEQNLSKAKLL
Clustal Consensus . . .

CreS C.crescentus ETDLEAQLAAERARVQAVENALAAHQADSGRTIRGLESQVEANRAEISALQ-----TRLE
FilP S.coelicolor AADFETNLAKRRE---QSERDLASRQAKAEKRLAEIEHRAEQLRLEAEKLR-----TDAE
Ccrp1143 H.pylori NAQRKAELSSQQFQGEVQELAIEEFLRQKFPLDCIEEIKKGQRGGDCIQVVHT---REFQ
Ccrp59 H.pylori --------------------SLKQERAQLQDAHGFLEELCANLEKDNQHLT-----DKLK
Bd1167 B.bacteriovorus GNQKVAQLNQVNAQYQMQLNQANVQLGQVQGELSKTQGLLAQKEDEATHLAGALSRTKAE
Ccrp B.bacteriovorus TQKAVAEAKAREAKAKQEIARAEADRARAEAEMSRLKAQDEQAKAMIEKVE-----DELK
Clustal Consensus : : :

CreS C.crescentus TATGRADKLEEMNGQISARLADSSAQQKAVERRA-GDLNVALERALDRIRALEEEADGLR
FilP S.coelicolor RRAR--QTVETAQRQSEDIVADANAKADRIRSES-ERELAALTNRRDSINAQLTNVREML
Ccrp1143 H.pylori NCGKIYYESKRTKEFQKAWVEKLKSDMREIGADVGVIVSEALPKEMERMGLFEGVWVCSF
Ccrp59 H.pylori KLESAQKNLENSNDQLLQAIENIAEEKTELEREI-ARLKSLEATDKSELDLQNCRFKSAI
Bd1167 B.bacteriovorus AGAKIAGLQQGFAEEKAALAAGFGKEKAKLQGAL-SDTQGQLAKARAEIEARKSVAGEIQ
Ccrp B.bacteriovorus AAVDASKKAKEEAESERKKVAETKSQEEKLKQQA-AKARQELEGNRNNLRKEQATANLEI
Clustal Consensus : . : :

CreS C.crescentus QRHAGVDTARATAIER---------------ADQLAKSAVAQEKALKRAEERAQQLRARL
FilP S.coelicolor ASLTGAAVAAAPSVE----------------DESVSRGVPAQQSR---------------
Ccrp1143 H.pylori EEFKGLSAVLREGVIQVS-------------LAKKSQENKGDKVNLLYHYLTSSEFSMQV
Ccrp59 H.pylori EDLKRQNRKLEEENIA---------------LKERAYGLKEQPSKQPKP-----------
Bd1167 B.bacteriovorus KGFAKAGIKADIDMQTGDVVLDFGQAYFDSDSDRLKHEMKGVLEKAMPIYSRSLFGNPKV
Ccrp B.bacteriovorus ARSKKAIAEYESEVAR---------------SESELKRLTEETEKAKKERE---KLESRL
Clustal Consensus

CreS C.crescentus DAMQEAQDQVRRDHEAKIAELQATIERLTSEAALAEGALEAARRDRSRLQMALLGASDGD
FilP S.coelicolor ------------------------------------------------------------
Ccrp1143 H.pylori NVIIEGFEQLRADLESEKRAMARIWKSREKQIDKVFEGTINMYGSIKGIAGNAIGQVKAL
Ccrp59 H.pylori ------------------------------------------------------------
Bd1167 B.bacteriovorus SDKISAVEIIGFASPTYQGRFVDPHSSKPADKAALKYNMDLSYRRANSIFSYMLDEGNMR
Ccrp B.bacteriovorus DSAKNEAEEIRIKVATAKANFEAEESRLEAVKIRLDAGLKPKKKK---------------
Clustal Consensus

CreS C.crescentus VAASA----------------------------------------------------
FilP S.coelicolor ---------------------------------------------------------
Ccrp1143 H.pylori ELGYDGEDLED----------------------------------------------
Ccrp59 H.pylori ---------------------------------------------------------
Bd1167 B.bacteriovorus FEHQRELLALMKVSGRSFLEVMKVQNRNVATAAEFCKQNDCKKAQRVIIRFNMDPKK
Ccrp B.bacteriovorus ---------------------------------------------------------
Clustal Consensus

Appendix 3.1 Multiple protein alignment of B. bacteriovorus Ccrp and
Bd1167against experimentally described Ccrp proteins from other bacterial
species. Sequences were aligned using the online clustalW alignment program.
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Appendix 3.2

A) Query: CreS C. Crescentus
B. bacteriovorus

HD100 gene

number

E-value Predicted domains/Comments

Does this gene

qualify as a

ccrp?

Bd1169 2.6e-08 Predicted FHA domain No

Bd2697 1.5e-07 No predicted domains, good coiled-coil prediction Yes

Bd1158 8.0e-05 smc gene (known to contain coiled-coil regions) No

Bd3341 0.0018 Predicted TarH super family and MA domain No

Bd0121 0.0030 Predicted TarH super family and MA domain No

Bd0544 0.0035 Predicted SMC_prok_B domain No

Bd1340 0.0045 Predicted TarH domain No

Bd2687 0.0047 Coiled-coil prediction less than 80 amino-acids No

Bd0417 0.0058 No predicted coiled-coils No

B) Query: Bd2697 Ccrp ‘creS1’ B. bacteriovorus
B. bacteriovorus

HD100 gene

number

E-value Predicted domains/Comments

Does this gene

qualify as a

ccrp?

Bd3062 0.00019 MAEBL homologue No

Bd1188 0.0022 Predicted ATP- synthase _B super family, KH-I super

family and HDc super family domains

No

Bd3020 0.14 motB gene (known to contain coiled-coil regions) No

Bd1169 0.19 Predicted FHA domain No

Bd1907 0.21 No predicted coiled-coils No

Bd3849 0.30 rplU gene No

Bd1158 0.50 smc gene (known to contain coiled-coil regions) No

Bd3903 0.52 parA gene (known to contain coiled-coil regions) No

Bd3498 0.54 Coiled-coil prediction less than 80 amino-acids No

Bd1646 0.57 No predicted coiled-coils No

C) Query: Bd1167 ‘creS2’ B. bacteriovorus
B. bacteriovorus

HD100 gene

number

E-value Predicted domains/Comments

Does this gene

qualify as a

ccrp?

Bd2697 2.7e-09 No predicted domains, good coiled-coil prediction Yes

Bd3284 8.5e-06 Predicted SMC domain No

Bd1169 1.8e-05 Predicted FHA domain No

Bd2100 0.00038 Predicted PRK00409 recombination and DNA strand

exchange inhibitor protein domain

No

Bd1340 0.00059 Predicted TarH domain No

Bd1473 0.0021 Predicted SMC_prok_B domain No

Bd1158 0.0055 smc gene (known to contain coiled-coil regions) No

Bd2110 0.016 smc gene (known to contain coiled-coil regions) No

Bd1494 0.019 ompH gene No
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D) Query: Bd1169 B. Bacteriovorus

B. bacteriovorus

HD100 gene

number

E-value Predicted domains/Comments

Does this gene

qualify as a

ccrp?

Bd2697 8.6e-12 No predicted domains, good coiled-coil prediction Yes

Bd2616 9.1e-08 Predicted ompA domain No

Bd1268 1.4e-06 Predicted ACD_sHsps-like domain No

Bd3284 3.2e-06 Predicted SMC domain No

Bd0161 4.6e-06 Predicted SMC_prok_A and B domain No

Bd1158 6.6e-06 smc gene (known to contain coiled-coil regions) No

Bd1167 1.8e-05 Predicted OmpA domain No

Bd0544 5.9e-05 Predicted SMC_prok_B domain No

Bd2100 8.9e-05 Predicted PRK00409 recombination and DNA strand

exchange inhibitor protein domain

No

E) Query: Bd1158 B. bacteriovorus
B. bacteriovorus

HD100 gene

number

E-value Predicted domains/Comments

Does this gene

qualify as a

ccrp?

Bd2697 1.2e-06 No predicted domains, good coiled-coil prediction Yes

Bd2946 0.00034 Predicted TIGR03545 and �IF� domains No

Bd2110 0.00059 smc gene (known to contain coiled-coil regions) No

Bd3173 0.0017 recN gene No

Bd3192 0.0032 mcp gene (known to contain coiled-coil regions) No

Bd0739 0.0041 Predicted SMC_prok_B domain No

Bd1169 0.0044 Predicted FHA domain No

Bd1188 0.0089 Predicted ATP-synthase_B super family, KH-I super

family and HDc super family domains

No

Bd3284 0.013 Predicted SMC domain No

Appendix 3.2. Exhaustive search of B. bacteriovorus HD100 genome for genes

encoding Coiled-coil-repeat-proteins (Ccrp). B. bacteriovorus genes qualified as

ccrps if they had a coiled-coil prediction over 80 amino-acids long and did not

contain any predicted functional domains, this criteria was set out by (Bagchi et

al., 2008). Tables display analyses of all non-self BLASTp hits (regardless of e-

value) using query protein sequences against the translated HD100 genome

using Wu-BLAST v2.0 (http://blast.jcvi.org/cmr-blast/). COILS prediction carried

out using the COILS program:

(http://www.ch.embnet.org/software/COILS_form.html). Predicted protein

domains were identified using the ncbi conserved domains database: CCD-37014

(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) and Pfam v24.0

(http://pfam.sanger.ac.uk/).
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Appendix 3.3 Southern blot confirmation of the Bd1167::Kn deletion strain.
Three identical DNA gels with BamHI digested of genomic DNA isolated from
pAKF15 exconjugant strains (A) were run in triplicate and used for three
Southern Blots using probes that bind to: the Bd1167 ORF, kanamycin cassette
(Kn) and pSET151 backbone (see section 2.7 for methods). Lane order for gel
and all blots: 1 = 1kb NEB ladder, 2 = biotinylated 2-log NEB ladder 3-8 =
Bd1167 KO candidates, 9 S17-1 control, 10 = wt HD100, 11 = unlabeled Bd1167
probe, 12 = unlabeled Kn probe, 13 = unlabeled pSET151 probe, 14 =
biotinylated 2-log NEB ladder, 15 = 1kb NEB ladder. Inhibited DNA transfer on
the Bd1167 blot has limited signal intensity in lanes 5-11, the 4.5 kb bands in
the candidate lanes (3-8) on the Kn blot are the result of incomplete genomic
DNA digestion, faint non-specific bands are also visible on the pSET151 blot. All
candidates (lanes 3-8) show the expected gel shift from 2.1 kb to 3.4 kb on the
Bd1167 blot (B), a 3.4 kb band on the Kn blot (C), and no pSET151 bands (D).
The highlighted candidate (*) was used for phenotyping.
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Appendix 3.4 Diagnostic Southern blot showing all mTFP fusion strains used in
this study. (A) Southern blot using a probe that binds to the genome integrated
mtfp ORF, DNA in all but the ladder lanes were digested with BamHI.
Exconjugant strains highlighted with an (*) show the expected mTFP banding
pattern and used for further study. (B)Corresponding DNA gel used for Southern
blot. Lane order and for both gel/blot and mtfp expected band(s) size: 1= 1kb
NEB ladder, 2= biotinylated 2-log NEB ladder, 3= HD100 ftsK1-1mtfp 3.5 kb
band, 4 = HD100 ftsK1-4mtfp 4.2 kb band, 5= HD100 ftsZ1-1mtfp 2.8 kb band,
6= HD100 mreB1-mtfp 1.3 kb band, 7-8= HD100 mreB2-mtfp exconjugants 1
and 2 0.9 kb band, 9= HD100 ccrp-mtfp 3.1 kb band, 10 = HD100 Bd1167-mtfp
0.75 kb band, 11= HD100 huA-mtfp 9.4 kb band, 12 = HD100 Bd3904-mtfp 1.4
kb and 7.8 kb bands, 13= Blank, 14= wtHD100, 15= S17-1 pZMR100, 16=
linear pAKF04 plasmid, 17= biotinylated 2-log NEB ladder, 18 = 1kb NEB ladder.
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Appendix 3.5

A

B
pAKF42a in HD100 GGCTCCTTGAAAGATCACTTCAGGCACAGTTGTGGTTCAACGCTGACTGGTTCAGGCAGG
creS1_KO2_F --------------------------------TGGGTTCACGCTGACTGGTTCAGGCAGG
creS1_RTPCR_R ------------------------------------------------------------
creS1_site1_F ------------------------------------------------------------
huA_seq_R ------------------------------------------------------------

pAKF42a in HD100 GCCGGGATGTCTGCTTCGGTAATTGGAGTGAGCTCGTCAGCATCGGTAAAATCAGTGGCA
creS1_KO2_F GCCGGGATGTCTGCTTCGGTAATTGGAGTGAGCTCGTCAGCATCGGTAAAATCAGTGGCA
creS1_RTPCR_R ------------------------------------------------------------
creS1_site1_F ------------------------------------------------------------
huA_seq_R ------------------------------------------------------------

pAKF42a in HD100 CGAGTCTCCGCCGTAGAACCGTCACCGCCCGCGTTGGCAACGTACAGGGTGTTGTTCTGA
creS1_KO2_F CGAGTCTCCGCCGTAGAACCGTCACCGCCCGCGTTGGCAACGTACAGGGTGTTGTTCTGA
creS1_RTPCR_R ------------------------------------------------------------
creS1_site1_F ------------------------------------------------------------
huA_seq_R ------------------------------------------------------------

pAKF42a in HD100 ATTTTAAAGGTGGAATAGAATTCCGTGCAACTTAGGAAGGACATGAATTCCTGAGTCAGC
creS1_KO2_F ATTTTAAAGGTGGAATAGAATTCCGTGCAACTTAGGAAGGACATGAATTCCTGAGTCAGC
creS1_RTPCR_R ------------------------------------------------------------
creS1_site1_F ------------------------------------------------------------
huA_seq_R ------------------------------------------------------------

pAKF42a in HD100 GGGCTTTCTGTAACTACAGTGCCAAGAGTGAAAGTGCCGTTGGTTGGGCCATTGGCTGAA
creS1_KO2_F GGGCTTTCTGTAACTACAGTGCCAAGAGTGAAAGTGCCGTTGGTTGGGCCATTGGCTGAA
creS1_RTPCR_R ------------------------------------------------------------
creS1_site1_F ------------------------------------------------------------
huA_seq_R ------------------------------------------------------------

pAKF42a in HD100 ATAGGTTCACCAGAGCAGGTGGTGCCATCGAACTTGTAAGTGGTTTTTGTCAGAGTGCCG
creS1_KO2_F ATAGGTTCACCAGAGCAGGTGGTGCCATCGAACTTGTAAGTGGTTTTTGTCAGAGTGCCG
creS1_RTPCR_R ------------------------------------------------------------
creS1_site1_F ------------------------------------------------------------
huA_seq_R ------------------------------------------------------------

pAKF42a in HD100 TCGTCAGCGAAATGCAGGATGGCGTAATCGCTATAACCACTGCGGCCATTGTCGATGATG
creS1_KO2_F TCGTCAGCGAAATGCAGGATGGCGTAATCGCTATAACCACTGCGGCCATTGTCGATGATG
creS1_RTPCR_R ------------------------------------------------------------
creS1_site1_F ------------------------------------------------------------
huA_seq_R ------------------------------------------------------------

pAKF42a in HD100 CATTCACCTTTCCAATATCCCGTCAGTTCAGGCTCGGTGGTGGAGCCGGGATTGGAACTG
creS1_KO2_F CATTCACCTTTCCAATATCCCGTCAGTTCAGGCTCGGTGGTGGAGCCGGGATTGGAACTG
creS1_RTPCR_R ------------------------------------------------------------
creS1_site1_F ------------------------------------------------------------
huA_seq_R ------------------------------------------------------------

pAKF42a in HD100 CTGTTAGAGCACGCCACTGCTGTCAGAAGAGAAGCTGCGATCACGATGTTCAAACTCATT
creS1_KO2_F CTGTTAGAGCACGCCACTGCTGTCAGAAGAGAAGCTGCGATCACGATGTTCAAACTCATT
creS1_RTPCR_R ------------------------------------------------------------
creS1_site1_F ------------------------------------------------------------
huA_seq_R ------------------------------------------------------------

pAKF42a in HD100 TTTAGGTGTTTCACTCTTGTCCTTTCAAACCGTTCTTGGTTTTCTTTGTTTACAGTGGGG
creS1_KO2_F TTTAGGTGTTTCACTCTTGTCCTTTCAAACCGTTCTTGGTTTTCTTTGTTTACAGTGGGG
creS1_RTPCR_R ------------------------------------------------------------
creS1_site1_F ------------------------------------------------------------
huA_seq_R ------------------------------------------------------------
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pAKF42a in HD100 CAACGAACTGGATTTGGGCATCGCTCGAATAAGCGATCCAGCGTGGTTTAAAGACAAATC
creS1_KO2_F CAACGAACTGGATTTGGGCATCGCTCGAATAAGCGATCCAGCGTGGTTTAAAGACAAATC
creS1_RTPCR_R ------------------------------------------------------------
creS1_site1_F ------------------------------------------------------------
huA_seq_R ------------------------------------------------------------

pAKF42a in HD100 CGGACCAGAGTCGACGGAGCTCAGTCTTGTTTTGGGACAGGTAAACTAAAAAAATCTAAG
creS1_KO2_F CGGACCAGAGTCGACGGAGCTCAGTCTTGTTTTGGGACAGGTAAACTAAAAAAATCTAAG
creS1_RTPCR_R ------------------------------------------------------------
creS1_site1_F ------------------------------------------------------------
huA_seq_R ------------------------------------------------------------

pAKF42a in HD100 TCCGTTTGCAGGCTTTGGTCAGAGGGAAATCTCCCACAAAGATGCGTTTATATGACGGAA
creS1_KO2_F TCCGTTTGCAGGCTTTGGTCAGAGGGAAATCTCCCACAAAGATGCGTTTATATGACGGAA
creS1_RTPCR_R ------------------------------------------------------------
creS1_site1_F ------------------------------------------------------------
huA_seq_R ------------------------------------------------------------

pAKF42a in HD100 CCTTCCGCCAATTGTCGTTTTCTGTCAAAAACCTCGACATAGGATCTGGGCTGGCTGCGA
creS1_KO2_F CCTTCCGCCAATTGTCGTTTTCTGTCAAAAACCTCGACATAGGATCTGGGCTGGCTGCGA
creS1_RTPCR_R ------------------------------------------------------------
creS1_site1_F ------------------------------------------------------------
huA_seq_R ------------------------------------------------------------

pAKF42a in HD100 GTTTAATCGGATCTGGCAAACAAGTAGGCATGGCATCTGCGTTGCTTTAGTACAAGGCAA
creS1_KO2_F GTTTAATCGGATCTGGCAAACAAGTAGGCATGGCATCTGCGTTGCTTTAGTACAAGGCAA
creS1_RTPCR_R ------------------------------------------------------------
creS1_site1_F ------------------------------------------------------------
huA_seq_R ------------------------------------------------------------

pAKF42a in HD100 CCCCCCATGGCGGCCAGGACCCTCCCCCCCCAATCCTGGTCGCTTTTTTTTTGCCTAAAA
creS1_KO2_F CCCCCCATGGCGGCCAGGACCCTCCCCCCCCAATCCTGGTCGCTTTTTTTTTGCCTAAAA
creS1_RTPCR_R ----------------------------------TCTGGTCGCTTTTTTTT-GCCTAAAA
creS1_site1_F ------------------------------------------------------------
huA_seq_R ------------------------------------------------------------

pAKF42a in HD100 TCCCTATATCCTAGTTGCTATTGAACATCGATGAATCATCGAA~GGAGATTTTCAATGCA
creS1_KO2_F TCCCTATATCCTAGTTGCTATTGAACATCGATGAATCATCGAAAGGAGATTTTCAATGCA
creS1_RTPCR_R TCCCTATATCCTAGTTGCTATTGAACATCGATGAATCATCGAA~GGAGATTTTCAATGCA
creS1_site1_F ------------------------------------------------------------
huA_seq_R ------------------------------------------------------------

pAKF42a in HD100 GGTAAAACCACTGGGAACACTTCTCTTGGCAGCTCTTATGACCGGCACCATGCCTCTGGC
creS1_KO2_F GGTAAA~CCACTGGGAACACTTCTCTTGGCAGCTCT-ATGACCGGCA-------------
creS1_RTPCR_R GGTAAAACCACTGGGAACACTTCTCTTGGCAGCTCTTATGACCGGCACCATGCCTCTGGC
creS1_site1_F ------------------------------------------------------------
huA_seq_R ------------------------------------------------------------

pAKF42a in HD100 AGCGTACGCACAAGTCGACAGCTCGCAAATTGAAGCCGAAGAGGCCACCGCCGACGCGGA
creS1_KO2_F ------------------------------------------------------------
creS1_RTPCR_R AGCGTACGCACAAGTCGACAGCTCGCAAATTGAAGCCGAAGAGGCCACCGCCGACGCGGA
creS1_site1_F ------------------------------------------------------------
huA_seq_R ------------------------------------------------------------

pAKF42a in HD100 GGCCGCCAAAGCCGAAGCCAACGAAGCGAAAAAACGCGCGGAAGAAGATCGCAAGCGCCG
creS1_KO2_F ------------------------------------------------------------
creS1_RTPCR_R GGCCGCCAAAGCCGAAGCCAACGAAGCGAAAAAACGCGCGGAAGAAGATCGCAAGCGCCG
creS1_site1_F ------------------------------------------------------------
huA_seq_R ------------------------------------------------------------

pAKF42a in HD100 GGATAAAATCCGTGCCGAGTCCCAGTCCGCCATCAACAAGGCCCGCTCTTTGGAAAATGA
creS1_KO2_F ------------------------------------------------------------
creS1_RTPCR_R GGATAAAATCCGTGCCGAGTCCCAGTCCGCCATCAACAAGGCCCGCTCTTTGGAAAATGA
creS1_site1_F ------------------------------------------------------------
huA_seq_R ------------------------------------------------------------

CreS1_site1_F
pAKF42a in HD100 CGCCAAAAAGGAACAGGCGGATTCCGAGCGTGAGTCTGCAAAGCTGAAGGCTGAAACCAA
creS1_KO2_F ------------------------------------------------------------
creS1_RTPCR_R CGCCAAAAAGGAACAGGCGGATTCCGAGCGTGAGTCTGCAAAGCTGAAGGCTGAAACCAA
creS1_site1_F ------------------------------------------------------------
huA_seq_R ------------------------------------------------------------
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pAKF42a in HD100 CGAACATGACAGAGCTAAGACAGCCGCTGAAAAAGAGCAGGCGTCTGCCCAGGCGCGCAT
creS1_KO2_F ------------------------------------------------------------
creS1_RTPCR_R CGAACATGACAGAGCTAAGACAGCCGCTGAAAAAGAGCAGGCGTCTGCCCAGGCGCGCAT
creS1_site1_F CGAACATGACAGAGCTAAGACAGCCGCTGAAAAAGAGCAGGCGTCTGCCCAGGCGCGCAT
huA_seq_R ------------------------------------------------------------

pAKF42a in HD100 CAAGGCCGCTCAGGAGAAAACTCAAAAAGCCATCCAGATTCGCGACGAAGCTCAAGCCAA
creS1_KO2_F ------------------------------------------------------------
creS1_RTPCR_R CAAGGCCGCTCAGGAGAAAACTCAAAAAGCCATCCAGATTCGCGACGAAGCTCAAGCCAA
creS1_site1_F CAAGGCCGCTCAGGAGAAAACTCAAAAAGCCATCCAGATTCGCGACGAAGCTCAAGCCAA
huA_seq_R ------------------------------------------------------------

pAKF42a in HD100 GCGCAAGCAGGCGGAAAGCAAAGCCGATGAACTGCGTGACCAAGCCAAAGATCAGGAAAA
creS1_KO2_F ------------------------------------------------------------
creS1_RTPCR_R GCGCAAGCAGGCGGAAAGCAAAGCCGATGAACTGCGTGACCAAGCCAAAGATCAGGAAAA
creS1_site1_F GCGCAAGCAGGCGGAAAGCAAAGCCGATGAACTGCGTGACCAAGCCAAAGATCAGGAAAA
huA_seq_R ------------------------------------------------------------

pAKF42a in HD100 GCAGGCCAACTCGGCAACTGAAGCGGGCCTAGCGGCGACGAAAGAAGCTGAAGCCGCGAA
creS1_KO2_F ------------------------------------------------------------
creS1_RTPCR_R GCAGGCCAACTCGGCAACTGAAGCGGGCCTAGCGGCGACGAAAGAAGCTGAAGCCGCGAA
creS1_site1_F GCAGGCCAACTCGGCAACTGAAGCGGGCCTAGCGGCGACGAAAGAAGCTGAAGCCGCGAA
huA_seq_R ------------------------------------------------------------

pAKF42a in HD100 GAATGAAACCCTGAAGGCCGAACAGAATCTGTCCAAAGCGAAACTGCTGACACAAAAAGC
creS1_KO2_F ------------------------------------------------------------
creS1_RTPCR_R GAATGAAACCCTGAAGGCCGAACAGAATCTGTCCAAAGCGAAACTGCTGACACAAAAAGC
creS1_site1_F GAATGAAACCCTGAAGGCCGAACAGAATCTGTCCAAAGCGAAACTGCTGACACAAAAAGC
huA_seq_R ------------------------------------------------------------

pAKF42a in HD100 GGTGGCCGAAGCCAAGGCTCGTGAAGCCAAAGCCAAACAAGAGATCGCCCGAGCCGAAGC
creS1_KO2_F ------------------------------------------------------------
creS1_RTPCR_R GGTGGCCGAAGCCAAGGCTCGTGAAGCCAAAGCCAAACAAGAGATCGCCCGAGCCGAAGC
creS1_site1_F GGTGGCCGAAGCCAAGGCTCGTGAAGCCAAAGCCAAACAAGAGATCGCCCGAGCCGAAGC
huA_seq_R ------------------------------------------------------------

pAKF42a in HD100 CGATCGTGCCCGCGCGGAAGCCGAGATGTCCCGCCTGAAGGCGCAGGATGAACAAGCCAA
creS1_KO2_F ------------------------------------------------------------
creS1_RTPCR_R CGATCGTGCCCGCGCGGAAGCCGAGATGTCCCGCCTGAAGGCGCAGGATGAACAAGCCAA
creS1_site1_F CGATCGTGCCCGCGCGGAAGCCGAGATGTCCCGCCTGAAGGCGCAGGATGAACAAGCCAA
huA_seq_R ------------------------------------------------------------

pAKF42a in HD100 GGCGATGATTGAAAAAGTTGAAGACGAGCTGAAGGCGGCCGTTGATGCTTCCAAGAAAGC
creS1_KO2_F ------------------------------------------------------------
creS1_RTPCR_R GGCGATGATTGAAAAAGTTGAAGACGAGCTGAAGGCGGCCGTTGATGCTTCCAAGAAAGC
creS1_site1_F GGCGATGATTGAAAAAGTTGAAGACGAGCTGAAGGCGGCCGTTGATGCTTCCAAGAAAGC
huA_seq_R ------------------------------------------------------------

pAKF42a in HD100 CAAAGAAGAAGCTGAGTCCGAGCGCAAAAAGGTGGCAGAAACCAAGTCGCAGGAAGAAAA
creS1_KO2_F ------------------------------------------------------------
creS1_RTPCR_R CAAAGAAGAAGCTGAGTCCGAGCGCAAAAAGGTGGCAGAAACCAAGTCGCAGGAAGAAAA
creS1_site1_F CAAAGAAGAAGCTGAGTCCGAGCGCAAAAAGGTGGCAGAAACCAAGTCGCAGGAAGAAAA
huA_seq_R ------------------------------------------------------------

pAKF42a in HD100 GCTGAAACAGCAGGCGGCCAAGGCCCGTCAGGAACTGGAAGGCAACCGCAACAATCTTCG
creS1_KO2_F ------------------------------------------------------------
creS1_RTPCR_R GCTGAAACAGCAGGCGGCCAAGGCCCGTCAGGAACTGGAAGGCAACCGCAACAATCTTCG
creS1_site1_F GCTGAAACAGCAGGCGGCCAAGGCCCGTCAGGAACTGGAAGGCAACCGCAACAATCTTCG
huA_seq_R -------------------------------------------------AACAATCTTCG

pAKF42a in HD100 TAAAGAGCAGGCGACAGCGAATCTGGAAATTGCCAGATCCAAAAAAGCCATTGCCGAATA
creS1_KO2_F ------------------------------------------------------------
creS1_RTPCR_R TAAAGAGCAGGCGACAGCGAATCTGGAAATTGCCAGATCCAAAAAAGCCAT-GCCGAAT-
creS1_site1_F TAAAGAGCAGGCGACAGCGAATCTGGAAATTGCCAGATCCAAAAAAGCCATTGCCGAATA
huA_seq_R TAAAGAGCAGGCGACAGCGAATCTGGAAATTGCCAGATCCAAAAAAGCCATTGCCGAATA

pAKF42a in HD100 CGAATCTGAAGTGGCTAGATCCGAAAGTGAACTGAAACGGTTGACGGAAGAAACTGAGAA
creS1_KO2_F ------------------------------------------------------------
creS1_RTPCR_R ------------------------------------------------------------
creS1_site1_F CGAATCTGAAGTGGCTAGATCCGAAAGTGAACTGAAACGGTTGACGGAAGAAACTGAGAA
huA_seq_R CGAATCTGAAGTGGCTAGATCCGAAAGTGAACTGAAACGGTTGACGGAAGAAACTGAGAA

pAKF42a in HD100 GGCCAAAAAAGAGCGTGAAAAGCTGGAAAGCCGTCTGGACTCTGCCAAGAACGAAGCTGA
creS1_KO2_F ------------------------------------------------------------
creS1_RTPCR_R ------------------------------------------------------------
creS1_site1_F GGCCAAAAAAGAGCGTGAAAAGCTGGAAAGCCGTCTGGACTCTGCCAAGAACGAAGCTGA
huA_seq_R GGCCAAAAAAGAGCGTGAAAAGCTGGAAAGCCGTCTGGACTCTGCCAAGAACGAAGCTGA
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pAKF42a in HD100 AGAAATCCGTATCAAGGTGGCCACGGCCAAAGCCAACTTTGAGGCCGAAGAGTCCCGTCT
creS1_KO2_F ------------------------------------------------------------
creS1_RTPCR_R ------------------------------------------------------------
creS1_site1_F AGAAATCCGTATCAAGGTGGCCACGGCCAAAGCCAACTTTGAGGCCGAAGAGTCCCGTCT
huA_seq_R AGAAATCCGTATCAAGGTGGCCACGGCCAAAGCCAACTTTGAGGCCGAAGAGTCCCGTCT

pAKF42a in HD100 GGAAGCGGTTAAAATCCGCCTGGATGCCGGCTTGAAGCCGAAGAAAAAGAAGGTACCTCG
creS1_KO2_F ------------------------------------------------------------
creS1_RTPCR_R ------------------------------------------------------------
creS1_site1_F GGAAGCGGTTAAAATCCGCCTGGATGCCGGCTTGAAGCCGAAGAAAAAGAAGGTACCTCG
huA_seq_R GGAAGCGGTTAAAATCCGCCTGGATGCCGGCTTGAAGCCGAAGAAAAAGAAGGTACCTCG

pAKF42a in HD100 ATCGAGCATGGTGAGCAAGGGCGAGGAGACCACAATGGGCGTAATCAAGCCCGACATGAA
creS1_KO2_F ------------------------------------------------------------
creS1_RTPCR_R ------------------------------------------------------------
creS1_site1_F ------------------------------------------------------------
huA_seq_R ATCGAGCATGGTGAGCAAGGGCGAGGAGACCACAATGGGCGTAATCAAGCCCGACATGAA

pAKF42a in HD100 GATCAAGCTGAAGATGGAGGGCAACGTGAATGGCCACGCCTTCGTGATCGAGGGCGAGGG
creS1_KO2_F ------------------------------------------------------------
creS1_RTPCR_R ------------------------------------------------------------
creS1_site1_F ------------------------------------------------------------
huA_seq_R GATCAAGCTGAAGATGGAGGGCAACGTGAATGGCCACGCCTTCGTGATCGAGGGCGAGGG

pAKF42a in HD100 CGAGGGCAAGCCCTACGACGGCACCAACACCATCAACCTGGAGGTGAAGGAGGGAGCCCC
creS1_KO2_F ------------------------------------------------------------
creS1_RTPCR_R ------------------------------------------------------------
creS1_site1_F ------------------------------------------------------------
huA_seq_R CGAGGGCAAGCCCTACGACGGCACCAACACCATCAACCTGGAGGTGAAGGAGGGAGCCCC

pAKF42a in HD100 CCTGCCCTTCTCCTACGACATTCTGACCACCGCGTTCGCCTACGGCAACAGGGCCTTCAC
creS1_KO2_F ------------------------------------------------------------
creS1_RTPCR_R ------------------------------------------------------------
creS1_site1_F ------------------------------------------------------------
huA_seq_R CCTGCCCTTCTCCTACGACATTCTGACCACCGCGTTCGCCTACGGCAACAGGGCCTTCAC

pAKF42a in HD100 CAAGTACCCCGACGACATCCCCAACTACTTCAAGCAGTCCTTCCCCGAGGGCTACTCTTG
creS1_KO2_F ------------------------------------------------------------
creS1_RTPCR_R ------------------------------------------------------------
creS1_site1_F ------------------------------------------------------------
huA_seq_R CAAGTACCCCGACGACATCCCCAACTACTTCAAGCAGTCCTTCCCCGAGGGCTACTCTTG

pAKF42a in HD100 GGAGCGCACCATGACCTTCGAGGACAAGGGCATCGTGAAGGTGAAGTCCGACATCTCCAT
creS1_KO2_F ------------------------------------------------------------
creS1_RTPCR_R ------------------------------------------------------------
creS1_site1_F ------------------------------------------------------------
huA_seq_R GGAGCGCACCATGACCTTCGAGGACAAGGGCATCGTGAAGGTGAAGTCCGACATCTCCAT

pAKF42a in HD100 GGAGGAGGACTCCTTCATCTACGAGATACACCTCAAGGGCGAGAACTTCCCCCCCAACGG
creS1_KO2_F ------------------------------------------------------------
creS1_RTPCR_R ------------------------------------------------------------
creS1_site1_F ------------------------------------------------------------
huA_seq_R GGAGGAGGACTCCTTCATCTACGAGATACACCTCAAGGGCGAGAACTTCCCCCCCAACGG

pAKF42a in HD100 CCCCGTGATGCAGAAGAAGACCACCGGCTGGGACGCCTCCACCGAGAGGATGTACGTGCG
creS1_KO2_F ------------------------------------------------------------
creS1_RTPCR_R ------------------------------------------------------------
creS1_site1_F ------------------------------------------------------------
huA_seq_R CCCCGTGATGCAGAAGAAGACCACCGGCTGGGACGCCTCCACCGAGAGGATGTACGTGCG

pAKF42a in HD100 CGACGGCGTGCTGAAGGGCGACGTCAAGCACAAGCTGCTGCTGGAGGGCGGCGGCCACCA
creS1_KO2_F ------------------------------------------------------------
creS1_RTPCR_R ------------------------------------------------------------
creS1_site1_F ------------------------------------------------------------
huA_seq_R CGACGGCGTGCTGAAGGGCGACGTCAAGCACAAGCTGCTGCTGGAGGGCGGCGGCCACCA

pAKF42a in HD100 CCGCGTTGACTTCAAGACCATCTACAGGGCCAAGAAGGCGGTGAAGCTGCCCGACTATCA
creS1_KO2_F ------------------------------------------------------------
creS1_RTPCR_R ------------------------------------------------------------
creS1_site1_F ------------------------------------------------------------
huA_seq_R CCGCGTTGACTTCAAGACCATCTACAGGGCCAAGAAGGCGGTGAAGCTGCCCGACTATCA
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pAKF42a in HD100 CTTTGTGGACCACCGCATCGAGATCCTGAACCACGACAAGGACTACAACAAGGTGACCGT
creS1_KO2_F ------------------------------------------------------------
creS1_RTPCR_R ------------------------------------------------------------
creS1_site1_F ------------------------------------------------------------
huA_seq_R CTTTGTGGACCACCGCATCGAGATCCTGAACCACGACAAGGACTACAACAAGGTGACCGT

pAKF42a in HD100 TTACGAGAGCGCCGTGGCCCGCAACTCCACCGACGGCATGGACGAGCTGTACAAGTAAGA
creS1_KO2_F ------------------------------------------------------------
creS1_RTPCR_R ------------------------------------------------------------
creS1_site1_F ------------------------------------------------------------
huA_seq_R TTACGAGAGCGCCGTGGCCCGCAACTCCACCGACGGCATGGACGAGCTGTACAAGTAAGA

pAKF42a in HD100 ATTGGGATCCTCTAGAGTCGACCTGCAGGC
creS1_KO2_F ------------------------------
creS1_RTPCR_R ------------------------------
creS1_site1_F ------------------------------
huA_seq_R ATGT--------------------------

Appendix 3.5 Confirmatory sequencing data for the ccrp-mtfp HD100 strain.
This strain contains the pAKF42a integrated plasmid which has a pK18 backbone
used to confer kanamycin (Kn) resistance to exconjugants (For general
recombination diagram see Fig 2.1A). Direct sequencing confirms the ccrp-mtfp
full ORF sequence and verifies the genomic context of the integrated pAKF42a
plasmid using primers that bind outside of the construct (which begins at the
highlighted CreS1_site1_F primer binding site). All sequencing reactions were
conducted directly on genome amplified PCR products using the primers:
creS1_KO2_F and huA_seq_R. (A) Diagrammatic representation of the expected
pAKF40a HD100 excongugant genome and all primers used for both
amplification and direct sequencing, CreS1_site1_F primer is highlighted in red.
(B) Multiply aligned sequencing data ccrp, linker and mtfp regions are
highlighted in the same colours as (A), primers used for each reaction are shown.
CreS1_site1_F primer binding site is highlighted and underlined.
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Appendix 4.1

A

B
huA_site1_F

pAKF54 in HD100 GCGGTCAATTTCATAAGAAAGCACATCGGCTTCTTTGATCAGACCCTTTTCACTCACAAC
huA_seq_F ---------------------------------------------------CCTCACAAC
huA_seq_R ------------------------------------------------------------

pAKF54 in HD100 AACCTTGCCCTCGGTATCACGGAACTCCGTTAGCGTCTGCAACCCATCGGTCTGGGGGGC
huA_seq_F AACCTTGCCCTCGGTATCACGGAACTCCGTTAGCGTCTGCAACCCATCGGTCTGGGGGGC
huA_seq_R ------------------------------------------------------------

pAKF54 in HD100 AAGATCCACATTCAGAGTAAAAAGAGTTTTTTGGCGATTTGATTTCAAATCATACAGAGT
huA_seq_F AAGATCCACATTCAGAGTAAAAAGAGTTTTTTGGCGATTTGATTTCAAATCATACAGAGT
huA_seq_R ------------------------------------------------------------

pAKF54 in HD100 TGCGGAAGAATACGTTTGCGCAAATCCAAAAACCGGAAACAAAAGTGCAAGAACGAATAC
huA_seq_F TGCGGAAGAATACGTTTGCGCAAATCCAAAAACCGGAAACAAAAGTGCAAGAACGAATAC
huA_seq_R ------------------------------------------------------------

pAKF54 in HD100 CATAAAACCCCCGATCGAAAGTCCATAGTACCCAATAGATAAGAAAATAAAAAGCATGAC
huA_seq_F CATAAAACCCCCGATCGAAAGTCCATAGTACCCAATAGATAAGAAAATAAAAAGCATGAC
huA_seq_R ------------------------------------------------------------

pAKF54 in HD100 ACTTAACAGCCATTATTTTCTGCAATACATCCTGGACCGAAAAATTTCATTTAACTTGAC
huA_seq_F ACTTAACAGCCATTATTTTCTGCAATACATCCTGGACCGAAAAATTTCATTTAACTTGAC
huA_seq_R ------------------------------------------------------------

pAKF54 in HD100 CATCCCGACCATGAAAATTAGGGTAAGTTCCTTCGGGATGAGGATTGAAAAGCTATGAAT
huA_seq_F CATCCCGACCATGAAAATTAGGGTAAGTTCCTTCGGGATGAGGATTGAAAAGCTATGAAT
huA_seq_R -------------------------AGTTCCTTCGGGATGAGGATTGAAAAGCTATGAAT

pAKF54 in HD100 AAAGCCCAATTGGTGGAACTGGTCGCAGAAAAAACAAAGACAACCAAAAGTCAATCCGAA
huA_seq_F AAAGCCCAATTGGTGGAACTGGTCGCAGAAAAAACAAAGACAACCAAAAGTCAATCCGAA
huA_seq_R AAAGCCCAATTGGTGGAACTGGTCGCAGAAAAAACAAAGACAACCAAAAGTCAATCCGAA

pAKF54 in HD100 CTGATTCTCGACGCCACTCTGGAAGCCATTCAGGAAGCTCTCAAAGACGGTGATGAGGTC
huA_seq_F CTGATTCTCGACGCCACTCTGGAAGCCATTCAGGAAGCTCTCAAAGACGGTGATGAGGTC
huA_seq_R CTGATTCTCGACGCCACTCTGGAAGCCATTCAGGAAGCTCTCAAAGACGGTGATGAGGTC

pAKF54 in HD100 AAACTGGTTGGCTTTGGCACTTTCTCCAGAAGCTCCCGCAAAGCCCGCCAGGGACGCAAT
huA_seq_F AAACTGGTTGGCTTTGGCACTTTCTCCAGAAGCTCCCGCAAAGCCCGCCAGGGACGCAAT
huA_seq_R AAACTGGTTGGCTTTGGCACTTTCTCCAGAAGCTCCCGCAAAGCCCGCCAGGGACGCAAT

pAKF54 in HD100 CCCAAAACAGGCGAAACGGTCAAAATTCCCAGCGCCTACATCCCCAAGTTCAAACCGGGC
huA_seq_F CCCAAAACAGGCGAAACGGTCAAAATTCCCAGCGCCTACATCCCCAAGTTCAAACCGGGC
huA_seq_R CCCAAAACAGGCGAAACGGTCAAAATTCCCAGCGCCTACATCCCCAAGTTCAAACCGGGC

pAKF54 in HD100 AAAGACTTAAAAGACGCCCTTAACGGTACCTCGAGCATGGTGAGCAAGGGCGAGGAGACC
huA_seq_F AAAGACTTAAAAGACGCCCTTAACGGTACCTCGAGCATGGTGAGCAAGGGCGAGGAGACC
huA_seq_R AAAGACTTAAAAGACGCCCTTAACGGTACCTCGAGCATGGTGAGCAAGGGCGAGGAGACC

pAKF54 in HD100 ACAATGGGCGTAATCAAGCCCGACATGAAGATCAAGCTGAAGATGGAGGGCAACGTGAAT
huA_seq_F ACAATGGGCGTAATCAAGCCCGACATGAAGATCAAGCTGAAGATGGAGGGCAACGTGAAT
huA_seq_R ACAATGGGCGTAATCAAGCCCGACATGAAGATCAAGCTGAAGATGGAGGGCAACGTGAAT

pAKF54 in HD100 GGCCACGCCTTCGTGATCGAGGGCGAGGGCGAGGGCAAGCCCTACGACGGCACCAACACC
huA_seq_F GGCCACGCCTTCGTGATCGAGGGCGAGGGCGAGGGCAAGCCCTACGACGGCACCAACACC
huA_seq_R GGCCACGCCTTCGTGATCGAGGGCGAGGGCGAGGGCAAGCCCTACGACGGCACCAACACC

pAKF54 in HD100 ATCAACCTGGAGGTGAAGGAGGGAGCCCCCCTGCCCTTCTCCTACGACATTCTGACCACC
huA_seq_F ATCAACCTGGAGGTGAAGGAGGGAGCCCCCCTGCCCTTCTCCTACGACATTCTGACCACC
huA_seq_R ATCAACCTGGAGGTGAAGGAGGGAGCCCCCCTGCCCTTCTCCTACGACATTCTGACCACC
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pAKF54 in HD100 GCGTTCGCCTACGGCAACAGGGCCTTCACCAAGTACCCCGACGACATCCCCAACTACTTC
huA_seq_F GCGTTCGCCTACGGCAACAGGGCCTTCACCAAGTACCCCGACGACATCCCCAACTACTTC
huA_seq_R GCGTTCGCCTACGGCAACAGGGCCTTCACCAAGTACCCCGACGACATCCCCAACTACTTC

pAKF54 in HD100 AAGCAGTCCTTCCCCGAGGGCTACTCTTGGGAGCGCACCATGACCTTCGAGGACAAGGGC
huA_seq_F AAGCAGTCCTTCCCCGAGGGCTACTCTTGGGAGCGCACCATGACCTTCGAGGACAAGGGC
huA_seq_R AAGCAGTCCTTCCCCGAGGGCTACTCTTGGGAGCGCACCATGACCTTCGAGGACAAGGGC

pAKF54 in HD100 ATCGTGAAGGTGAAGTCCGACATCTCCATGGAGGAGGACTCCTTCATCTACGAGATACAC
huA_seq_F ATCGTGAAGGTGAAGT--------------------------------------------
huA_seq_R ATCGTGAAGGTGAAGTCCGACATCTCCATGGAGGAGGACTCCTTCATCTACGAGATACAC

pAKF54 in HD100 CTCAAGGGCGAGAACTTCCCCCCCAACGGCCCCGTGATGCAGAAGAAGACCACCGGCTGG
huA_seq_F ------------------------------------------------------------
huA_seq_R CTCAAGGGCGAGAACTTCCCCCCCAACGGCCCCGTGATGCAGAAGAAGACCACCGGCTGG

pAKF54 in HD100 GACGCCTCCACCGAGAGGATGTACGTGCGCGACGGCGTGCTGAAGGGCGACGTCAAGCAC
huA_seq_F ------------------------------------------------------------
huA_seq_R GACGCCTCCACCGAGAGGATGTACGTGCGCGACGGCGTGCTGAAGGGCGACGTCAAGCAC

pAKF54 in HD100 AAGCTGCTGCTGGAGGGCGGCGGCCACCACCGCGTTGACTTCAAGACCATCTACAGGGCC
huA_seq_F ------------------------------------------------------------
huA_seq_R AAGCTGCTGCTGGAGGGCGGCGGCCACCACCGCGTTGACTTCAAGACCATCTACAGGGCC

pAKF54 in HD100 AAGAAGGCGGTGAAGCTGCCCGACTATCACTTTGTGGACCACCGCATCGAGATCCTGAAC
huA_seq_F ------------------------------------------------------------
huA_seq_R AAGAAGGCGGTGAAGCTGCCCGACTATCACTTTGTGGACCACCGCATCGAGATCCTGAAC

pAKF54 in HD100 CACGACAAGGACTACAACAAGGTGACCGTTTACGAGAGCGCCGTGGCCCGCAACTCCACC
huA_seq_F ------------------------------------------------------------
huA_seq_R CACGACAAGGACTACAACAAGGTGACCGTTTACGAGAGCGCCGTGGCCCGCAACTCCACC

pAKF54 in HD100 GACGGCATGGACGAGCTGTACAAGTAAGAATTGGGGATCCTCTAGAGTCGACCTGCAGGC
huA_seq_F ------------------------------------------------------------
huA_seq_R GACGGCATGGACGAGCT-TACAAGTAAGAATAG---------------------------

pAKF54 in HD100 ATGCAAGCTTG
huA_seq_F -----------
huA_seq_R -----------

Appendix 4.1 Confirmatory sequencing data for the huA-mtfp HD100 strain.
This strain contains the pAKF54 integrated plasmid which has a pK18 backbone
used to confer kanamycin (Kn) resistance to exconjugants (For general
recombination diagram see Fig 2.1B). Direct sequencing confirms the huA-mtfp
full ORF sequence and verifies the genomic context of the integrated pAKF54
plasmid using primers that bind outside of the construct (which begins at the
highlighted huA_site1_F primer binding site). All sequencing reactions were
conducted directly on genome amplified PCR products using the primers:
huA_seq_F and huA_seq_R. (A) Diagrammatic representation of the expected
pAKF54 HD100 excongugant genome and all primers used for both amplification
and direct sequencing, huA_site1_F primer is highlighted in red. (B) Multiply
aligned sequencing data huA, linker and mtfp regions are highlighted in the
same colours as (A), primers used for each reaction are shown. huA_site1_F
primer binding site is highlighted and underlined.
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Appendix 4.2 Montage of Images taken from
supplementary Movies 1 - 10.

Appendix 4.2A B. bacteriovorus growth-phase cells septate synchronously in
bdelloplasts (also shown as supplementary Movie 1). Montage of images
displaying every third frame of time-lapse Movie 1, showing a bdelloplast of an
infected fluorescent prey cell with a dark growing B. bacteriovorus cell within;
this cell elongates from both poles until it reaches its maximum length and
septates synchronously into 5 progeny, which lyse the bdelloplast resulting in
the loss of fluorescence activity. Contrast shifts within the bdelloplast are likely
due to shifts in the prey cytoplasmic membrane. Images were captured every
2.5 min, thus each frame represents 7.5 min, scale bar = 1 µm.

Appendix 4.2B B. bacteriovorus growth-phase cells septate synchronously in
bdelloplasts (also shown as supplementary Movie 2). Montage of images
displaying every third frame of time-lapse Movie 2, showing a bdelloplast of an
infected fluorescent prey cell with a dark growing B. bacteriovorus cell within;
this cell elongates from both poles, until it reaches its maximum length and
septates synchronously into 4 progeny, which lyse the bdelloplast resulting in
the loss of fluorescence activity. The growing B. bacteriovorus cell coils back on
itself resulting in polar growth in the latter stages of elongation. Images were
captured every 2.5 min, thus each frame represents 7.5 min, scale bar = 1 µm.
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Appendix 4.2C Two separate B. bacteriovorus growth-phase cells
synchronously septate in doubly infected bdelloplasts (also shown as
supplementary Movie 3). Montage of images displaying every third frame of
time-lapse Movie 3, showing a bdelloplast of an infected fluorescent prey cell
with two separate dark growing B. bacteriovorus cells within; these cells
elongate from both poles, until they reach their maximum length and septate
synchronously into a total of 7 progeny (4 from the lower and 3 from the upper
cell), which lyse the bdelloplast resulting in the loss of fluorescence activity.
Growing cells seem to favour the bdelloplast periphery, presumably due to an
unseen obstacle (for example the prey cell cytoplasm) in the centre; this
inhibition seems to be released in the final stages of septation. Images were
captured every 2.5 min, thus each frame represents 7.5 min, scale bar = 1 µm.

Appendix 4.2D Long B. bacteriovorus growth-phase cells initiate septation
synchronously in bdelloplasts (also shown as supplementary Movie 4).
Montage of images displaying every third frame of time-lapse Movie 4, showing a
bdelloplast of an infected fluorescent prey cell with a dark growing Bdellovibrio
cell within; this cell elongates from both poles until it reaches its maximum
length and initiates septation synchronously along an extended filament which
will ultimately generate 8 progeny. Right hand pole of the elongating B.
bacteriovorus cell seems to get caught on an unseen obstacle, which is released
in the later stages of growth. Contrast shifts within the bdelloplast are likely due
to shifts in the prey cytoplasmic membrane. Growing cells seem to favour the
bdelloplast periphery, presumably due to an unseen obstacle (for example the
prey cell cytoplasm) in the centre; this inhibition seems to be released in the
final stages of cell elongation. Images were captured every 2.5 min, thus each
frame represents 7.5 min, scale bar = 1 µm.
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Appendix 4.2E Stored tension within a B. bacteriovorus growth-phase filament
leads to dramatic re-orientation of progeny cells after synchronous septation
(also shown as supplementary Movie 5). Montage of images displaying
every third frame of time-lapse Movie 5, showing a bdelloplast of an infected
fluorescent prey cell with a dark elongated and coiled B. bacteriovorus cell within;
this growth-phase cell septates leading to a dramatic shift in orientation of the 5
progeny cells, only possible if septation was synchronous. Progeny cells lyse the
bdelloplast resulting in the loss of fluorescence activity. Images were captured
every 2.5 min, thus each frame represents 7.5 min, scale bar = 1 µm.

Appendix 4.2F B. bacteriovorus enter prey cells and do not always elongate
and divide forming new progeny cells (also shown as supplementary Movie
6). Montage of images displaying every third frame of time-lapse Movie 6, and
shows overlaid brightfield (red) and fluorescence (green) images, revealing a
single dark B. bacteriovorus cell in an atypical unrounded bdelloplast of a
fluorescent prey cell. Fluorescence activity of this bdelloplast is patchy and
bleaches quickly suggesting a lack of resources within the initial prey cell.
Bdellovibrio cell does not elongate and persists in the bdelloplast eventually
lysing and escaping (arrow). Images were captured every 2.5 min, thus each
frame represents 7.5 min, scale bar = 1 µm.
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Appendix 4.2G B. bacteriovorus enter prey cells and do not always elongate
and divide forming new progeny cells (also shown as supplementary Movie
7). Montage of images displaying every frame of time-lapse Movie 7, and shows
overlaid brightfield (red) and fluorescence (green) images, revealing a single
dark B. bacteriovorus cell in a small fluorescent bdelloplast. B. bacteriovorus cell
does not elongate and persists in the bdelloplast eventually lysing (leading to a
loss of fluorescence activity) and the single cell escapes (arrow). Images were
captured every 2.5 min, scale bar = 1 µm.

Appendix 4.2H Mature B. bacteriovorus progeny escape the bdelloplast through
a single hole (also shown as supplementary Movie 8). Montage of images
displaying every third frame of time-lapse Movie 8, and shows overlaid
brightfield (red) and fluorescence (green) images, showing a bdelloplast of an
infected fluorescent prey cell with a dark growing B. bacteriovorus cell within,
and is the same bdelloplast shown in Movie 1. The growing B. bacteriovorus cell
septates synchronously into 5 progeny, which lyse the bdelloplast resulting in
loss of fluorescence activity; progeny cells are then seen leaving the now
exhausted prey cell through a hole in the bottom of the bdelloplast (arrow). This
pattern was seen in 88% of observed bdelloplasts (n=67). Images were
captured every 2.5 min, thus each frame represents 7.5 min, scale bar = 1 µm.
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Appendix 4.2I Occasionally mature B. bacteriovorus progeny escape the
bdelloplast via two holes (also shown as supplementary Movie 9). Montage
of images displaying every third frame of time-lapse Movie 9, overlaid brightfield
(red) and fluorescence (green) images, images show a bdelloplast of an infected
fluorescent prey cell with a dark elongated B. bacteriovorus cell within. The
elongated growth-phase cell septates into 2 progeny, which lyse the bdelloplast
resulting in loss of fluorescence activity; progeny cells are then seen leaving the
now exhausted prey cell through two holes in the left and right hand side of the
bdelloplast (arrows). This pattern was seen in 12% of observed bdelloplasts
(n=67). Images were captured every 2.5 min, thus each frame represents 7.5
min, scale bar = 1 µm.

Appendix 4.2J First frame of a time-lapse brightfield Movie showing motile
Bdellovibrio progeny cells within a bdelloplast, at maturation, after septation
(shown in supplementary Movie 10). Three Bdellovibrio progeny cells appear
to scramble over one another and collide with the inner wall of the bdelloplast
which is immobilised on a glass surface in Ca/HEPES buffer. Internal collisions
occasionally distort the shape of the bdelloplast. Images were captured at 25
frames per second using the IPLab software (version 3.64) and are shown at the
same rate, scale bar = 1 µm.
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Appendix 4.3. MALDI-TOF MS output file of highlighted protein band shown in
Fig. 4.3. MALDI-TOF MS analysis carried out by Dr Kevin Bailey of the University
of Nottingham Biopolymer Analysis unit.
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Appendix 4.4

A

B
pAKF58 in HD100 TGCTGTAGAATCCTCAAACAAGAAAAAAGGTCTGGGCCGCGGCCTGGGCTCCCTGCTCGG
Bd3904_KO_F ------------------------AAAAGGTCTGGGCCGCGGCCTGGGCTCCCTGCTCGG
Bd3904_RTPCR_R ------------------------------------------------------------
huA_seq_R ------------------------------------------------------------
Bd3904_RTPCR_F ------------------------------------------------------------

pAKF58 in HD100 TGGCCCGGCTCCGGAGCAAACTCCGGCGGCTCCCAAGGCTGCTGCTGCTGCCCCATCTAT
Bd3904_KO_F TGGCCCGGCTCCGGAGCAAACTCCGGCGGCTCCCAAGGCTGCTGCTGCTGCCCCATCTAT
Bd3904_RTPCR_R ------------------------------------------------------------
huA_seq_R ------------------------------------------------------------
Bd3904_RTPCR_F ------------------------------------------------------------

pAKF58 in HD100 TAATAATACTGTAGCTTCAACTCCCGCTCCAGCGGCTGCTCCTCAAGTAGCGACACCCGT
Bd3904_KO_F TAATAATACTGTAGCTTCAACTCCCGCTCCAGCGGCTGCTCCTCAAGTAGCGACACCCGT
Bd3904_RTPCR_R ------------------------------------------------------------
huA_seq_R ------------------------------------------------------------
Bd3904_RTPCR_F ------------------------------------------------------------

pAKF58 in HD100 CGCCCCTCCCGTAGATCCTGAGAGCAAAATCTGGAAAGTGGGAATTGACAAGCTTTCACC
Bd3904_KO_F CGCCCCTCCCGTAGATCCTGAGAGCAAAATCTGGAAAGTGGGAATTGACAAGCTTTCACC
Bd3904_RTPCR_R ------------------------------------------------------------
huA_seq_R ------------------------------------------------------------
Bd3904_RTPCR_F ------------------------------------------------------------

pAKF58 in HD100 TGGTCAATACCAGCCTCGTAGAACATTTGAGAAAGAGCCGCTTCAGGAACTTGCTCAGTC
Bd3904_KO_F TGGTCAATACCAGCCTCGTAGAACATTTGAGAAAGAGCCGCTTCAGGAACTTGCTCAGTC
Bd3904_RTPCR_R -------------------------------GAAGAGCCGCTTCAGGAACTTGCTCAGTC
huA_seq_R ------------------------------------------------------------
Bd3904_RTPCR_F ------------------------------------------------------------

pAKF58 in HD100 TATTAAAGAGAACGGTATTCTTCAGCCCATCGTGGCTCGTCGTACGGCTTCCGGGAAACT
Bd3904_KO_F TATTAAAGAGAACGGTATTCTTCAGCCCATCGTGGCTCGTCGTACGGCTTCCGGGAAACT
Bd3904_RTPCR_R TATTAAAGAGAACGGTATTCTTCAGCCCATCGTGGCTCGTCGTACGGCTTCCGGGAAACT
huA_seq_R ------------------------------------------------------------
Bd3904_RTPCR_F ------------------------------------------------------------

pAKF58 in HD100 GGAAATCGTGGCCGGTGAACGCCGCTGGCGTGCATCCCAACTGGCGGGATTGCATGAAGT
Bd3904_KO_F GGAAATCGTGGCCGGTGAACGCCGCTGGCGTGCATCCCAACTGGCGGGATTGCATGAAGT
Bd3904_RTPCR_R GGAAATCGTGGCCGGTGAACGCCGCTGGCGTGCATCCCAACTGGCGGGATTGCATGAAGT
huA_seq_R ------------------------------------------------------------
Bd3904_RTPCR_F ------------------------------------------------------------

pAKF58 in HD100 TCCAGTTATCCTTAAGAATTACGACGACAAACAAGCGCTGGAACTGGCGATTGTTGAGAA
Bd3904_KO_F TCCAGTTATCCTTAAGAATTACGACGACAAACAAGCGCTGGAACTGGCGATTGTTGAGAA
Bd3904_RTPCR_R TCCAGTTATCCTTAAGAATTACGACGACAAACAAGCGCTGGAACTGGCGATTGTTGAGAA
huA_seq_R ------------------------------------------------------------
Bd3904_RTPCR_F ------------------------------------------------------------

pAKF58 in HD100 CATTCAGCGTGAAGATCTGAATCCGATCGAGGAAGCTGAAGGTTATTCCCGTCTGATTTC
Bd3904_KO_F CATTCAGCGTGAAGATCTGAATCCGATCGAGGAAGCTGAAGGTTATTCCCGTCTGATTTC
Bd3904_RTPCR_R CATTCAGCGTGAAGATCTGAATCCGATCGAGGAAGCTGAAGGTTATTCCCGTCTGATTTC
huA_seq_R ------------------------------------------------------------
Bd3904_RTPCR_F ------------------------------------------------------------
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pAKF58 in HD100 TGAGTTCAAATTGTCCCAGCAGCAGGTGGCTGAAAAAGTCGGCCGTGATCGTGCGACGGT
Bd3904_KO_F TGAGTTCAAATTGTCCCAGCAGCAGGTGGCTGAAAAAGTCGGCCGTGATCGTGCGACGGT
Bd3904_RTPCR_R TGAGTTCAAATTGTCCCAGCAGCAGGTGGCTGAAAAAGTCGGCCGTGATCGTGCGACGGT
huA_seq_R ------------------------------------------------------------
Bd3904_RTPCR_F ------------------------------------------------------------

pAKF58 in HD100 GGCCAACGCCGTTCGTTTGTTGTCTTTGCCTGACTCTGTGAAAGAGATGATCTCTGGAAA
Bd3904_KO_F GGCCAACGCCGTTCGTTTGTTGTCTTTGCCTGACTCTGTGAAAGAGATGATCTCTGGAAA
Bd3904_RTPCR_R GGCCAACGCCGTTCGTTTGTTGTCTTTGCCTGACTCTGTGAAAGAGATGATCTCTGGAAA
huA_seq_R ------------------------------------------------------------
Bd3904_RTPCR_F ------------------------------------------------------------

Bd3904_site1_F
pAKF58 in HD100 TGAACTTTCCGTGGGTCACGCAAAAGTTCTTCTGTCTTTGCAGGATCCGAAGAAACAGAT
Bd3904_KO_F TGAACTTTCCGTGGGTCACGCAAAAGTTCTTCTGTCTTTGCAGGATCCGAAGAAACAGAT
Bd3904_RTPCR_R TGAACTTTCCGTGGGTCACGCAAAAGTTCTTCTGTCTTTGCAGGATCCGAAGAAACAGAT
huA_seq_R ------------------------------------------------------------
Bd3904_RTPCR_F ------------------------------------------------------------

pAKF58 in HD100 CGAATTTGCGAAAAAAGTGGTGAACGAAAAAATCGCGGTTCGTAAGCTTGAAAAAATGGT
Bd3904_KO_F CGAATTTGCGAAAAAAGTGGTGAACGAAAAAATCGCGGTTCGTAAGCTTGAAAAAATGGT
Bd3904_RTPCR_R CGAATTTGCGAAAAAAGTGGTGAACGAAAAAATCGCGGTTCGTAAGCTTGAAAAAATGGT
huA_seq_R ------------------------------------------------------------
Bd3904_RTPCR_F ------------------------------------------------------------

pAKF58 in HD100 GCAAGCCGTCGTGAAAGGTCACGAGGAAGTTGAAGAGGCGCCAACTTTTGATTCTAATGT
Bd3904_KO_F GCAAGCCGTCGTGAAAGGTCACGAGGAAGTTGAAGAGGCGCCAACTTTTGATTCTAATGT
Bd3904_RTPCR_R GCAAGCCGTCGTGAAAGGTCACGAGGAAGTTGAAGAGGCGCCAACTTTTGATTCTAATGT
huA_seq_R ------------------------------------------------------------
Bd3904_RTPCR_F ------------------------------------------------------------

pAKF58 in HD100 AACCCAGCGTTTGATTTCTGGTTTGAGCGATGAGCTTCAGAAAATGCTGGGTACGAAAGT
Bd3904_KO_F AACCCAGCGTTTGATTTCTGGTTTGAGCGATGAGCTTCAGAAAATGCTGGGTACGAAAGT
Bd3904_RTPCR_R AACCCAGCGTTTGATTTCTGGTTTGAGCGATGAGCTTCAGAAAATGCTGGGTACGAAAGT
huA_seq_R ------------------------------------------------------------
Bd3904_RTPCR_F ------------------------------------------------------------

pAKF58 in HD100 GAACATTGATTACGCCAATTCAAAAGGTAAAATCACCATTCACTTCTATTCCGATGATGA
Bd3904_KO_F GAACATTGATTACGCCAATTCAAAAGGTAAAATCACCATTCACTTCTATTCCGATGATGA
Bd3904_RTPCR_R GAACATTGATTACGCCAATTCAAAAGGTAAAATCACCATTCACTTCTATTCCGATGATGA
huA_seq_R ------------------------------------------------------------
Bd3904_RTPCR_F ------------------------------------------------------------

pAKF58 in HD100 ACTGACCAATATGGTAGATAGGCTTAAAGAAGGATGGCAGTAAACCTTTCCCCCGCACTC
Bd3904_KO_F ACTGACCAATATGGTAGATAGGCTTAAAGAAGGATGG-----------------------
Bd3904_RTPCR_R ACTGACCAATATGGTAGATAGGCTTAAAGAAGGATGGCAGTAAACCTTTCCCCCGCACTC
huA_seq_R ------------------------------------------------------------
Bd3904_RTPCR_F ------------------------------------------------------------

pAKF58 in HD100 CAAGAAGATCTTTTGACTGGTCATGTGACGGCAATCCTTGACCAGGGGACCCATTTCGAA
Bd3904_KO_F ------------------------------------------------------------
Bd3904_RTPCR_R CAAGAAGATCTTTTGACTGGTCATGTGACGGCAATCCTTGACCAGGGGACCCATTTCGAA
huA_seq_R ---------------------------------------GACCAGGGGACCCATTTCGAA
Bd3904_RTPCR_F ------------------------------------------------------------

pAKF58 in HD100 GGAAAGCTCAGCTTCGAGGGGACGGTTCAGATTGGTGGCGACTTTAAGGGGGAAATCTTT
Bd3904_KO_F ------------------------------------------------------------
Bd3904_RTPCR_R GGAAAGCTCAGCTTCGAGGGGACGGTTCAGATTGGTGGCGACTTTAAGGGGGAAATCTTT
huA_seq_R GGAAAGCTCAGCTTCGAGGGGACGGTTCAGATTGGTGGCGACTTTAAGGGGGAAATCTTT
Bd3904_RTPCR_F ------------------------------------------------------------

pAKF58 in HD100 ACTAAGGACACCATCGTTATCAACGAAGGGGCCTCTGTCACGGCCCAGATCGAAGCCGAT
Bd3904_KO_F ------------------------------------------------------------
Bd3904_RTPCR_R ACTAAGGACACCATCGTTATCAACGAAGGGGCCTCTGTCACGGCCCAGATCGAAGCCGAT
huA_seq_R ACTAAGGACACCATCGTTATCAACGAAGGGGCCTCTGTCACGGCCCAGATCGAAGCCGAT
Bd3904_RTPCR_F ------------------------------------------------------------
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pAKF58 in HD100 ACTATCGTTATTTCCGGCCGGGTTGAGGGAAATCTCTTTGCCCGTCGCAGGGTTATAATG
Bd3904_KO_F ------------------------------------------------------------
Bd3904_RTPCR_R ACTATCGTTATTTCCGGCCGGGTTGAGGGAAATCTCTTTGCCCGTCGCAGGGTTATAATG
huA_seq_R ACTATCGTTATTTCCGGCCGGGTTGAGGGAAATCTCTTTGCCCGTCGCAGGGTTATAATG
Bd3904_RTPCR_F ------------------------------------------------------------

pAKF58 in HD100 CACCCTCCGGCCATCTTCAAAGGCACCGTAACATCCCCAAGTCTGCGTATCGACGAAGGG
Bd3904_KO_F ------------------------------------------------------------
Bd3904_RTPCR_R CACCCTCCGGCCATCT-CAAAG--------------------------------------
huA_seq_R CACCCTCCGGCCATCTTCAAAGGCACCGTAACATCCCCAAGTCTGCGTATCGACGAAGGG
Bd3904_RTPCR_F -------------TCTTCAA-GGCACCGTAACATCCCCAAGTCTGCGTATCGACGAAGGG

pAKF58 in HD100 GTCGTTTTCGAGGGTGCGTCCTACATGCCTAAGTCTGGTACCTCGAGCATGGTGAGCAAG
Bd3904_KO_F ------------------------------------------------------------
Bd3904_RTPCR_R ------------------------------------------------------------
huA_seq_R GTCGTTTTCGAGGGTGCGTCCTACATGCCTAAGTCTGGTACCTCGAGCATGGTGAGCAAG
Bd3904_RTPCR_F GTCGTTTTCGAGGGTGCGTCCTACATGCCTAAGTCTGGTACCTCGAGCATGGTGAGCAAG

pAKF58 in HD100 GGCGAGGAGACCACAATGGGCGTAATCAAGCCCGACATGAAGATCAAGCTGAAGATGGAG
Bd3904_KO_F ------------------------------------------------------------
Bd3904_RTPCR_R ------------------------------------------------------------
huA_seq_R GGCGAGGAGACCACAATGGGCGTAATCAAGCCCGACATGAAGATCAAGCTGAAGATGGAG
Bd3904_RTPCR_F GGCGAGGAGACCACAATGGGCGTAATCAAGCCCGACATGAAGATCAAGCTGAAGATGGAG

pAKF58 in HD100 GGCAACGTGAATGGCCACGCCTTCGTGATCGAGGGCGAGGGCGAGGGCAAGCCCTACGAC
Bd3904_KO_F ------------------------------------------------------------
Bd3904_RTPCR_R ------------------------------------------------------------
huA_seq_R GGCAACGTGAATGGCCACGCCTTCGTGATCGAGGGCGAGGGCGAGGGCAAGCCCTACGAC
Bd3904_RTPCR_F GGCAACGTGAATGGCCACGCCTTCGTGATCGAGGGCGAGGGCGAGGGCAAGCCCTACGAC

pAKF58 in HD100 GGCACCAACACCATCAACCTGGAGGTGAAGGAGGGAGCCCCCCTGCCCTTCTCCTACGAC
Bd3904_KO_F ------------------------------------------------------------
Bd3904_RTPCR_R ------------------------------------------------------------
huA_seq_R GGCACCAACACCATCAACCTGGAGGTGAAGGAGGGAGCCCCCCTGCCCTTCTCCTACGAC
Bd3904_RTPCR_F GGCACCAACACCATCAACCTGGAGGTGAAGGAGGGAGCCCCCCTGCCCTTCTCCTACGAC

pAKF58 in HD100 ATTCTGACCACCGCGTTCGCCTACGGCAACAGGGCCTTCACCAAGTACCCCGACGACATC
Bd3904_KO_F ------------------------------------------------------------
Bd3904_RTPCR_R ------------------------------------------------------------
huA_seq_R ATTCTGACCACCGCGTTCGCCTACGGCAACAGGGCCTTCACCAAGTACCCCGACGACATC
Bd3904_RTPCR_F ATTCTGACCACCGCGTTCGCCTACGGCAACAGGGCCTTCACCAAGTACCCCGACGACATC

pAKF58 in HD100 CCCAACTACTTCAAGCAGTCCTTCCCCGAGGGCTACTCTTGGGAGCGCACCATGACCTTC
Bd3904_KO_F ------------------------------------------------------------
Bd3904_RTPCR_R ------------------------------------------------------------
huA_seq_R CCCAACTACTTCAAGCAGTCCTTCCCCGAGGGCTACTCTTGGGAGCGCACCATGACCTTC
Bd3904_RTPCR_F CCCAACTACTTCAAGCAGTCCTTCCCCGAGGGCTACTCTTGGGAGCGCACCATGACCTTC

pAKF58 in HD100 GAGGACAAGGGCATCGTGAAGGTGAAGTCCGACATCTCCATGGAGGAGGACTCCTTCATC
Bd3904_KO_F ------------------------------------------------------------
Bd3904_RTPCR_R ------------------------------------------------------------
huA_seq_R GAGGACAAGGGCATCGTGAAGGTGAAGTCCGACATCTCCATGGAGGAGGACTCCTTCATC
Bd3904_RTPCR_F GAGGACAAGGGCATCGTGAAGGTGAAGTCCGACATCTCCATGGAGGAGGACTCCTTCATC

pAKF58 in HD100 TACGAGATACACCTCAAGGGCGAGAACTTCCCCCCCAACGGCCCCGTGATGCAGAAGAAG
Bd3904_KO_F ------------------------------------------------------------
Bd3904_RTPCR_R ------------------------------------------------------------
huA_seq_R TACGAGATACACCTCAAGGGCGAGAACTTCCCCCCCAACGGCCCCGTGATGCAGAAGAAG
Bd3904_RTPCR_F TACGAGATACACCTCAAGGGCGAGAACTTCCCCCCCAACGGCCCCGTGATGCAGAAGAAG

pAKF58 in HD100 ACCACCGGCTGGGACGCCTCCACCGAGAGGATGTACGTGCGCGACGGCGTGCTGAAGGGC
Bd3904_KO_F ------------------------------------------------------------
Bd3904_RTPCR_R ------------------------------------------------------------
huA_seq_R ACCACCGGCTGGGACGCCTCCACCGAGAGGATGTACGTGCGCGACGGCGTGCTGAAGGGC
Bd3904_RTPCR_F ACCACCGGCTGGGACGCCTCCACCGAGAGGATGTACGTGCGCGACGGCGTGCTGAAGGGC
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pAKF58 in HD100 GACGTCAAGCACAAGCTGCTGCTGGAGGGCGGCGGCCACCACCGCGTTGACTTCAAGACC
Bd3904_KO_F ------------------------------------------------------------
Bd3904_RTPCR_R ------------------------------------------------------------
huA_seq_R GACGTCAAGCACAAGCTGCTGCTGGAGGGCGGCGGCCACCACCGCGTTGACTTCAAGACC
Bd3904_RTPCR_F GACGTCAAGCACAAGCTGCTGCTGGAGGGCGGCGGCCACCACCGCGTTGACTTCAAGACC

pAKF58 in HD100 ATCTACAGGGCCAAGAAGGCGGTGAAGCTGCCCGACTATCACTTTGTGGACCACCGCATC
Bd3904_KO_F ------------------------------------------------------------
Bd3904_RTPCR_R ------------------------------------------------------------
huA_seq_R ATCTACAGGGCCAAGAAGGCGGTGAAGCTGCCCGACTATCACTTTGTGGACCACCGCATC
Bd3904_RTPCR_F ATCTACAGGGCCAAGAAGGCGGTGAAGCTGCCCGACTATCACTTTGTGGACCACCGCATC

pAKF58 in HD100 GAGATCCTGAACCACGACAAGGACTACAACAAGGTGACCGTTTACGAGAGCGCCGTGGCC
Bd3904_KO_F ------------------------------------------------------------
Bd3904_RTPCR_R ------------------------------------------------------------
huA_seq_R GAGATCCTGAACCACGACAAGGACTACAACAAGGTGACCGTTTACGAGAGCGCCGTGGCC
Bd3904_RTPCR_F GAGATCCTGAACCACGACAAGGACTACAACAAGGTGACCGTTTACGAGAGCGCCGTGGCC

pAKF58 in HD100 CGCAACTCCACCGACGGCATGGACGAGCTGTACAAGTAAGAATTGGGGATCCTCTAGAGT
Bd3904_KO_F ------------------------------------------------------------
Bd3904_RTPCR_R ------------------------------------------------------------
huA_seq_R CGCAACTCCACCGACGGCATGGACGAGCT-TACAAGTAAGAATGAC--------------
Bd3904_RTPCR_F CGCAACTCCACCGACGGCATGGACGAGCTGTACAAGTAAGAATTGGGGATCCTCTAGAGT

pAKF58 in HD100 CGACCTGCAGGCATGCAAGCTTG
Bd3904_KO_F -----------------------
Bd3904_RTPCR_R -----------------------
huA_seq_R -----------------------
Bd3904_RTPCR_F CGACCTGCAGTT-----------

Appendix 4.4 Confirmatory sequencing data for the bd3904-mtfp HD100 strain.
This strain contains the pAKF58 integrated plasmid which has a pK18 backbone
used to confer kanamycin (Kn) resistance to exconjugants (For general
recombination diagram see Fig. 2.1B). Direct sequencing confirms the bd3904-
mtfp full ORF sequence and verifies the genomic context of the integrated
pAKF58 plasmid using primers that bind outside of the construct (which begins
at the highlighted Bd3904_site1_F primer binding site). All sequencing reactions
were conducted directly on genome amplified PCR products using the primers:
Bd3904_KO_F and huA_seq_R. (A) Diagrammatic representation of the expected
pAKF58 HD100 excongugant genome and all primers used for both amplification
and direct sequencing, Bd3904_site1_F primer is highlighted in red. (B) Multiply
aligned sequencing data bd3904, linker and mtfp regions are highlighted in the
same colours as (A), primers used for each reaction are shown. Bd3904_site1_F
primer binding site is highlighted and underlined.



265

Appendix 5.1 Multiple RT-PCR reactions were carried out on three independent

RNA preparations all show 15min peak in mreB1 expression in a B.

bacteriovorus-E. coli predation time course (See Materials and Methods section

2.14). The number of cycles used for each PCR, the dates of RNA preparation

and the date that the RT-PCR reactions were carried out are shown (left).
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Appendix 5.2

A

B
pAKF41a in HD100 ATTACACTGAAGTGAGATTCAGCATGAGTTTTTTTGACAAAGTTCAAGATTATTTTTCTA
mreB2_seq_F ------------------------------------------------ATTATTTTTCTA
mreB13F ------------------------------------------------------------
mreB13F ------------------------------------------------------------
mTFP_R ------------------------------------------------------------
huA_seq_R ------------------------------------------------------------

pAKF41a in HD100 ACGACATCGCCATTGACCTTGGCACCGCCAACACACTTGTTTACGTAAAAGGCCGCGGAA
mreB2_seq_F ACGACATCGCCATTGACCTTGGCACCGCCAACACACTTGTTTACGTAAAAGGCCGCGGAA
mreB13F ------------------------------------------------------------
mreB13F ------------------------------------------------------------
mTFP_R ------------------------------------------------------------
huA_seq_R ------------------------------------------------------------

mreB2_site1_F
pAKF41a in HD100 TCATCCTTGATGAACCTTCCGTGGTTGCGGTCCAAAAGAATTATCGTGGGATGCAAAACC
mreB2_seq_F TCATCCTTGATGAACCTTCCGTGGTTGCGGTCCAAAAGAATTATCGTGGGATGCAAAACC
mreB13F ------------------------------------------------------------
mreB13F ------------------------------------------------------------
mTFP_R ------------------------------------------------------------
huA_seq_R ------------------------------------------------------------

pAKF41a in HD100 GCGTTCTTGCCGTAGGTAAAGAAGCCAAAGACATGTTGGGACGTACACCTGGCAGCATCG
mreB2_seq_F GCGTTCTTGCCGTAGGTAAAGAAGCCAAAGACATGTTGGGACGTACACCTGGCAGCATCG
mreB13F ------------------------------------------------------------
mreB13F ------------------------------------------------------------
mTFP_R ------------------------------------------------------------
huA_seq_R ------------------------------------------------------------

pAKF41a in HD100 TGGCGATCCGCCCGATCAAAGATGGTGTTATCGCTGACTTCGAAGTCACCCAGTCCATGC
mreB2_seq_F TGGCGATCCGCCCGATCAAAGATGGTGTTATCGCTGACTTCGAAGTCACCCAGTCCATGC
mreB13F ------------CGATCAA-GATGGTGTTATCGCTGACTTCGAAGTCACCCAGTCCATGC
mreB13F -----------------------GGTGTTATCGCTGACTTCGAAGTCACCCAGTCCATGC
mTFP_R ------------------------------------------------------------
huA_seq_R ------------------------------------------------------------

pAKF41a in HD100 TGAAGTACTTCATCGGCAAATCCCTTGGCGAGAAAAAATCCTTCATCCGTCCTCGTATCA
mreB2_seq_F TGACTCTTT---------------------------------------------------
mreB13F TGAAGTACTTCATCGGCAAATCCCTTGGCGAGAAAAAATCCTTCATCCGTCCTCGTATCA
mreB13F TGAAGTACTTCATCGGCAAATCCCTTGGCGAGAAAAAATCCTTCATCCGTCCTCGTATCA
mTFP_R ------------------------------------------------------------
huA_seq_R ------------------------------------------------------------

pAKF41a in HD100 TCATCTGCGTTCCTTACGGAATCACTCAGGTTGAAAAACGTGCGGTGAAAGAGGCGGCTC
mreB2_seq_F ------------------------------------------------------------
mreB13F TCATCTGCGTTCCTTACGGAATCACTCAGGTTGAAAAACGTGCGGTGAAAGAGGCGGCTC
mreB13F TCATCTGCGTTCCTTACGGAATCACTCAGGTTGAAAAACGTGCGGTGAAAGAGGCGGCTC
mTFP_R ------------------------------------------------------------
huA_seq_R ------------------------------------------------------------
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pAKF41a in HD100 AATCCGCAGGGGCTCGTGAGGTTTATCTGATCGAGGAACCAATGGCAGCGGCGATCGGTG
mreB2_seq_F ------------------------------------------------------------
mreB13F AATCCGCAGGGGCTCGTGAGGTTTATCTGATCGAGGAACCAATGGCAGCGGCGATCGGTG
mreB13F AATCCGCAGGGGCTCGTGAGGTTTATCTGATCCAG-------------------------
mTFP_R ------------------------------------------------------------
huA_seq_R ------------------------------------------------------------

pAKF41a in HD100 CCGGCCTTCCGATCACTGAACCATCCGGCAACATGGTTGTCGACATGGGCGGTGGTACTA
mreB2_seq_F ------------------------------------------------------------
mreB13F CCGGCCTTCCGATCACTGAACCATCCGGCAACATGGTTGTCGACATGGGCGGTGGTACTA
mreB13F ------------------------------------------------------------
mTFP_R ------------------------------------------------------------
huA_seq_R ------------------------------------------------------------

pAKF41a in HD100 CGGGTGTGGCGGTGATTTCTTTGGGTGGTATTGTTTACTGCAAATCCATCAAAGTTGCCG
mreB2_seq_F ------------------------------------------------------------
mreB13F CGGGTGTGGCGGTGATTTCTTTGGGTGGTATTGTTTACTGCAAATCCATCAAAGTTGCCG
mreB13F ------------------------------------------------------------
mTFP_R ------------------------------------------------------------
huA_seq_R ------------------------------------------------------------

pAKF41a in HD100 GTGACAAGTTTGACGAGGCGATCGTGAACTATGTTCGTCGTCAGTTCAACCTTCTGATCG
mreB2_seq_F ------------------------------------------------------------
mreB13F GTGACAAGTTTGACGAGGCGATCGTGAACTATGTTCGTCGTCAGTTCAACCTTCTGATCG
mreB13F ------------------------------------------------------------
mTFP_R ------------------------------------------------------------
huA_seq_R ------------------------------------------------------------

pAKF41a in HD100 GTGAAAGAACCGCAGAAAACATCAAAATCCAAATCGGTAACGCTTATCCGTTTGAAGAAG
mreB2_seq_F ------------------------------------------------------------
mreB13F GTGAAAGAACCGCAGAAAACATCAAAATCCAAATCGGTAACGCTTATCCGTTTGAAGAAG
mreB13F ------------------------------------------------------------
mTFP_R ------------------------------------------------------------
huA_seq_R ------------------------------------------------------------

pAKF41a in HD100 AAAAATCCATGGAGATCAAAGGCCGTGACCTTGTGGCCGGTGCTCCAAAAACCATCGAAA
mreB2_seq_F ------------------------------------------------------------
mreB13F AAAAATCCATGGAGATCAAAGGCCGTGACCTTGTGGCCGGTGCTCCAAAAACCATCGAAA
mreB13F ------------------------------------------------------------
mTFP_R -------------------------------------CGGTGCTCCAAAAACCATCGAAA
huA_seq_R ------------------------------------------------------------

pAKF41a in HD100 TCACTTCTTCTCAAGTGAACGATGCTTTGATGGATCCTTTGTCTGAAGTGGTGGATGCAG
mreB2_seq_F ------------------------------------------------------------
mreB13F TCACTTCTTCTCAAGTGAACGATGCTTTGATGGATCCTTTGTCTGAAGTGGTGGATGCAG
mreB13F ------------------------------------------------------------
mTFP_R TCACTTCTTCTCAAGTGAACGATGCTTTGATGGATCCTTTGTCTGAAGTGGTGGATGCAG
huA_seq_R ------------------------------------------------------------

pAKF41a in HD100 TTCGTACCGCTCTGGAAAAAACTCCACCGG~AACTGGCTTCTGATATCGTGGACAACGGG
mreB2_seq_F ------------------------------~-----------------------------
mreB13F TTCGTACCGCTCTGGAAAAAACTCCACCGG~AACTGGCTTCTGATATCGTGGACAACGGG
mreB13F ------------------------------~-----------------------------
mTFP_R TTCGTACCGCTCTGGAAAAAACTCCACCGGGAACTGGCTTCTGATATCGTGGACAACGGG
huA_seq_R ------------------------------~-----------------------------

pAKF41a in HD100 ATCGTTCTGACGGGCGGGGGCGCTTTGCTGGCGAACCTGGACGTGCTTCTGAGAGAAAGA
mreB2_seq_F ------------------------------------------------------------
mreB13F ATCGTTCTGACGGGCGGGGGCGCTTTGCTGGCGAACCTGGACGTGCTTCTGAGAGAAAGA
mreB13F ------------------------------------------------------------
mTFP_R ATCGTTCTGACGGGCGGGGGCGCTTTGCTGGCGAACCTGGACGTGCTTCTGAGAGAAAGA
huA_seq_R ------------------------------------------------------------
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pAKF41a in HD100 ACTGGACTGCCGGTTTCTATCGCGGAAGACCCACTTTCCTGCGTGGTGATGGGTTCCGGT
mreB2_seq_F ------------------------------------------------------------
mreB13F ACTGGACTGCCGGTTTCTATCGCGGAAGACCCACTTTCCTGCGTGGTGATGGGTTCCGGT
mreB13F ------------------------------------------------------------
mTFP_R ACTGGACTGCCGGTTTCTATCGCGGAAGACCCACTTTCCTGCGTGGTGATGGGTTCCGGT
huA_seq_R ------------------------------------------------------------

pAKF41a in HD100 AAAGTTCTCGACCAGCTTGACCTTCTCAGACAGCTTACAGTCGAGGTACCTCGATCGAGC
mreB2_seq_F ------------------------------------------------------------
mreB13F AAAGTTCTCGACCAGCTTGACCTTCTCAGACAGCTTACAGTCGAGGTACCTCGATCGAGC
mreB13F ------------------------------------------------------------
mTFP_R AAAGTTCTCGACCAGCTTGACCTTCTCAGACAGCTTACAGTCGAGGTACCTCGATCGAGC
huA_seq_R ------------------GACCTTCTCAGACAGCTTACAGTCGAGGTACCTCGATCGAGC

pAKF41a in HD100 ATGGTGAGCAAGGGCGAGGAGACCACAATGGGCGTAATCAAGCCCGACATGAAGATCAAG
mreB2_seq_F ------------------------------------------------------------
mreB13F ATGGTGAGCA-GGGCGAGGAGACCACAATGGGCGTAATCAAGCCCGACATGAAGATCAAG
mreB13F ------------------------------------------------------------
mTFP_R ATGGTGAGCAAGGGCGAGGAGACCACAATGGGCGTAATCAAGCCCGACATGAAGATCAAG
huA_seq_R ATGGTGAGCAAGGGCGAGGAGACCACAATGGGCGTAATCAAGCCCGACATGAAGATCAAG

pAKF41a in HD100 CTGAAGATGGAGGGCAACGTGAATGGCCACGCCTTCGTGATCGAGGGCGAGGGCGAGGGC
mreB2_seq_F ------------------------------------------------------------
mreB13F CTGAAGATGGAGGGCAACGTGAATGGCCACGCCTTCGTGATCGAGGGCGAGGGCGA----
mreB13F ------------------------------------------------------------
mTFP_R CTGAAGATGGAGGGCAACGTGAATGGCCACGCCTTCGTGATCGAGGGCGAGGGCGAGGGC
huA_seq_R CTGAAGATGGAGCGCAACGTGAATGGCCACGCCTTCGTGATCGAGGGCGAGGGCGAGGGC

pAKF41a in HD100 AAGCCCTACGACGGCACCAACACCATCAACCTGGAGGTGAAGGAGGGAGCCCCCCTGCCC
mreB2_seq_F ------------------------------------------------------------
mreB13F ------------------------------------------------------------
mreB13F ------------------------------------------------------------
mTFP_R AAGCCCTACGACGGCACCAACACCATCAACCTGGAGGTGAAGGAGGGAGCCCCCCTGCCC
huA_seq_R AAGCCCTACGACGGCACCAACACCATCAACCTGGAGGTGAAGGAGGGAGCCCCCCTGCCC

pAKF41a in HD100 TTCTCCTACGACATTCTGACCACCGCGTTCGCCTACGGCAACAGGGCCTTCACCAAGTAC
mreB2_seq_F ------------------------------------------------------------
mreB13F ------------------------------------------------------------
mreB13F ------------------------------------------------------------
mTFP_R TTCTCCTACGACATTCTGACCACCGCGTTCGCCTACGGCAACAGGGCCTTCACCAAGTAC
huA_seq_R TTCTCCTACGACATTCTGACCACCGCGTTCGCCTACGGCAACAGGGCCTTCACCAAGTAC

pAKF41a in HD100 CCCGACGACATCCCCAACTACTTCAAGCAGTCCTTCCCCGAGGGCTACTCTTGGGAGCGC
mreB2_seq_F ------------------------------------------------------------
mreB13F ------------------------------------------------------------
mreB13F ------------------------------------------------------------
mTFP_R CCCGACGACATCCCCAACTACTTCAAGCAGTCCTTCCCCGAGGGCTACTCTTGGGAGCGC
huA_seq_R CCCGACGACATCCCCAACTACTTCAAGCAGTCCTTCCCCGAGGGCTACTCTTGGGAGCGC

pAKF41a in HD100 ACCATGACCTTCGAGGACAAGGGCATCGTGAAGGTGAAGTCCGACATCTCCATGGAGGAG
mreB2_seq_F ------------------------------------------------------------
mreB13F ------------------------------------------------------------
mreB13F ------------------------------------------------------------
mTFP_R ACCATGACCTTCGAGGACAAGGGCATCGTGAAGGTGAAGTCCGACATCTCCATGGAGGAG
huA_seq_R ACCATGACCTTCGAGGACAAGGGCATCGTGAAGGTGAAGTCCGACATCTCCATGGAGGAG

pAKF41a in HD100 GACTCCTTCATCTACGAGATACACCTCAAGGGCGAGAACTTCCCCCCCAACGGCCCCGTG
mreB2_seq_F ------------------------------------------------------------
mreB13F ------------------------------------------------------------
mreB13F ------------------------------------------------------------
mTFP_R GACTCCTTCATCTACGAGATACACCTCAAGGGCGAGAACTTCCCCCCCAACGGCCCCGTG
huA_seq_R GACTCCTTCATCTACGAGATACACCTCAAGGGCGAGAACTTCCCCCCCAACGGCCCCGTG



269

pAKF41a in HD100 ATGCAGAAGAAGACCACCGGCTGGGACGCCTCCACCGAGAGGATGTACGTGCGCGACGGC
mreB2_seq_F ------------------------------------------------------------
mreB13F ------------------------------------------------------------
mreB13F ------------------------------------------------------------
mTFP_R ATGCAGAAGAAGACCACCGGCTGGGACGCCTCCACCGAGAGGATGTACGTGCGCGACGGC
huA_seq_R ATGCAGAAGAAGACCACCGGCTGGGACGCCTCCACCGAGAGGATGTACGTGCGCGACGGC

pAKF41a in HD100 GTGCTGAAGGGCGACGTCAAGCACAAGCTGCTGCTGGAGGGCGGCGGCCACCACCGCGTT
mreB2_seq_F ------------------------------------------------------------
mreB13F ------------------------------------------------------------
mreB13F ------------------------------------------------------------
mTFP_R GTGCTGAAGGGCGACGTCAAGCACAAGCTGCTGCTGGAGGGCGGCGGCCACCACCGCGTT
huA_seq_R GTGCTGAAGGGCGACGTCAAGCACAAGCTGCTGCTGGAGGGCGGCGGCCACCACCGCGTT

pAKF41a in HD100 GACTTCAAGACCATCTACAGGGCCAAGAAGGCGGTGAAGCTGCCCGACTATCACTTTGTG
mreB2_seq_F ------------------------------------------------------------
mreB13F ------------------------------------------------------------
mreB13F ------------------------------------------------------------
mTFP_R GACTTCAAGACCATCTACAGGGCCAAGAAGGCGGTGAAGCTGCCCGACTATCACTTTGTG
huA_seq_R GACTTCAAGACCATCTACAGGGCCAAGAAGGCGGTGAAGCTGCCCGACTATCACTTTGTG

pAKF41a in HD100 GACCACCGCATCGAGATCCTGAACCACGACAAGGACTACAACAAGGTGACCGTTTACGAG
mreB2_seq_F ------------------------------------------------------------
mreB13F ------------------------------------------------------------
mreB13F ------------------------------------------------------------
mTFP_R GACCACCGCATC------------------------------------------------
huA_seq_R GACCACCGCATCGAGATCCTGAACCACGACAAGGACTACAACAAGGTGACCGTTTACGAG

pAKF41a in HD100 AGCGCCGTGGCCCGCAACTCCACCGACGGCATGGACGAGCTGTACAAGTAAGAATTGGGA
mreB2_seq_F ------------------------------------------------------------
mreB13F ------------------------------------------------------------
mreB13F ------------------------------------------------------------
mTFP_R ------------------------------------------------------------
huA_seq_R AGCGCCGTGGCCCGCAACTCCACCGACGGCATGGACGAGCTGTACAAGTAAGAATTGGGA

pAKF41a in HD100 TCCTCTAGAGTCGACCTGCAGGCAT
mreB2_seq_F -------------------------
mreB13F -------------------------
mreB13F -------------------------
mTFP_R -------------------------
huA_seq_R TCCTCTAGAGTCGACT---------

Appendix 5.2 Confirmatory sequencing data for the mreB1-mtfp HD100 strain.
This strain contains the pAKF41a integrated plasmid which has a pK18 backbone
used to confer kanamycin (Kn) resistance to exconjugants (For general
recombination diagram see Fig. 2.1A). Direct sequencing confirms the bd3904-
mtfp full ORF sequence and verifies the genomic context of the integrated
pAKF58 plasmid using primers that bind outside of the construct (which begins
at the highlighted Bd3904_site1_F primer binding site). All sequencing reactions
were conducted directly on genome amplified PCR products using the primers:
Bd3904_KO_F and huA_seq_R. (A) Diagrammatic representation of the expected
pAKF58 HD100 excongugant genome and all primers used for both amplification
and direct sequencing, Bd3904_site1_F primer is highlighted in red. (B) Multiply
aligned sequencing data bd3904, linker and mtfp regions are highlighted in the
same colours as (A), primers used for each reaction are shown. Bd3904_site1_F
primer binding site is highlighted and underlined.
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Appendix 5.3

A

B
pAKF40a in HD100 TTTTGACCAACAAAGGTAATGGTGCCAACTTCAACGTGTTCTTTGATACGGCCCTGAGCG
primer mreB2_3R ----------------------------------------------TACGGCCCTGAGCG
primer mreB2_3F ~-----------------------------------------------------------
primer huA_seq_R ~~~---------------------------------------------------------

pAKF40a in HD100 ATTCTTCCAGCGCACGCATCAGCATGGGCGCAGGAGCTGTGGATTTTAACACTTTTGCCA
primer mreB2_3R ATTCTTCCAGCGCACGCATCAGCATGGGCGCAGGAGCTGTGGATTTTAACACTTTTGCCA
primer mreB2_3F ------------------------------------------------------------
primer huA_seq_R ------------------------------------------------------------

pAKF40a in HD100 GCGTTAAATGGATCCCGATCCCTGACGTGGACAACCAGCCTGCGATGGGCCTTCGTGCTG
primer mreB2_3R GCGTTAAATGGATCCCGATCCCTGACGTGGACAACCAGC-TGCGATGGGCCTTCGTGCTG
primer mreB2_3F ------------------------------------------------------------
primer huA_seq_R ------------------------------------------------------------

pAKF40a in HD100 GCGCCGGGATTGCCCGCGATGAGGACGAAAACCTGATCCAATTCCAGTTTGCCCCCCTGG
primer mreB2_3R GCGCCGGGATTGCCCGCGATGAGGACGAAAACCTGATCCAATTCCAGTTTGCCCCCCTGG
primer mreB2_3F ------------------------------------------------------------
primer huA_seq_R ------------------------------------------------------------

pAKF40a in HD100 TCAGCAAACGCTTTGACACAGAATACGGATTGACCGTGCCTTACCTGGCGGTGCCGTTTA
primer mreB2_3R TCAGCAAACGCTTTGACACAGAATACGGATTGACCGTGCCTTACCTGGCGGTGCCGTTTA
primer mreB2_3F ------------------------------------------------------------
primer huA_seq_R ------------------------------------------------------------

pAKF40a in HD100 CATTCCTGAACACCAAAGACGAAAACTTCGTTGCTTCCAACCTGGCGTTGGGAAGCGAAT
primer mreB2_3R CATTCCTGAACACCAAAGACGAAAACTTCGTTGCTTCCAACCTGGCGTTGGGAAGCGAAT
primer mreB2_3F ------------------------------------------------------------
primer huA_seq_R ------------------------------------------------------------

pAKF40a in HD100 TCCACTATGTTGACTGGAAAGAAGTAAATATGGGCGCGGAAGTGGGTATTGACTTGAACA
primer mreB2_3R TCCACTATGTTGACTGGAAAGAAGTAAATATGGGCGCGGAAGTGGGTATTGACTTGAACA
primer mreB2_3F ------------------------------------------------------------
primer huA_seq_R ------------------------------------------------------------

pAKF40a in HD100 AGTCTTATTCCTACATCTCCCTTTATCTGACATTCCCATTTGAAAGCCACAAAGGATTCG
primer mreB2_3R AGTCTTATTCCTACATCTCCCTTTATCTGACATTCCCATTTGAAAGCCACAAAGGATTCG
primer mreB2_3F ------------------------------------------------------------
primer huA_seq_R ------------------------------------------------------------

MreB1_site1_F
pAKF40a in HD100 GGAAGTAATATGTTTTCATGGTTCTTTAAGGACGAAACCGGAACAGCTGCAGATCTATAC
primer mreB2_3R GGAAGTAATATGTTTTCATGGTTCTTTAAGGACGAAACCGGAACAGCTGCAGATCTATAC
primer mreB2_3F ------------------------------------------------------------
primer huA_seq_R ------------------------------------------------------------

pAKF40a in HD100 GTAGATTTGGGGACTGCCAATACACTCATCGCAGCTCGTGGCAAAGGGATCATCCTGAAT
primer mreB2_3R GTAGATTTGGGGACTGCCAATACACTCATCGCAGCTCGTGGCAAAGGGATCATCCTGAAT
primer mreB2_3F ------------------------------------------------------------
primer huA_seq_R ------------------------------------------------------------
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pAKF40a in HD100 GAGCCCTCGCTGATTGCTTACCAGCAGACCAGCCCCGGCAAAAAGCGCGTGATCGCCGTG
primer mreB2_3R GAGCCCTCGCTGATTGCTTACCAGCAGACCAGCCCCGGCAAAAAGCGCGTGATCGCCGTG
primer mreB2_3F ------------------------------------------------------------
primer huA_seq_R ------------------------------------------------------------

pAKF40a in HD100 GGAAATGACGCCAAAGAAAAGCTGGCGAACAACCCGGGCAGCATCTTCGCGCAAAAACCA
primer mreB2_3R GGAAATGACGCCAAAGAAAAGCTGGCGAACAACCCGGGCAGCATCTTCGCGCAAAAACCA
primer mreB2_3F ------------------------------------------------------------
primer huA_seq_R ------------------------------------------------------------

pAKF40a in HD100 ATTCGCGATGGCGTGATTGCCGACTTTGAAACCTCTGAAGTGATGCTGAAGCACTTCCTC
primer mreB2_3R ATTCGCGATGGCGTGATTGCCGACTTTGAAACCTCTGAAGTGATGCTGAAGCACTTCCTC
primer mreB2_3F ------------------------------------------------------------
primer huA_seq_R ------------------------------------------------------------

pAKF40a in HD100 AGCCAACCAGGAGTCAAAGGAGCCTTTTCCCGCCCGCGCGTGGTGGTGTCACTTCCCTAC
primer mreB2_3R AGCCAACCAGGAGTCAAAGGAGCCTTTTCCCGCCCGCGCGTGGTGGTGTCACTTCCCTAC
primer mreB2_3F ------------------------------------------------------------
primer huA_seq_R ------------------------------------------------------------

pAKF40a in HD100 GGCGTGACTGAGGTTGAAAAGAAGGCCGTGATTGAATCCTGTAAAGCGGCTGGCGCAAAA
primer mreB2_3R GGCGTGACTGAGGTTGAAAAGAAGGCCGTGATTGAATCCTGTAAAGCGGCTGGCGCAAAA
primer mreB2_3F ------------------------------------------------------------
primer huA_seq_R ------------------------------------------------------------

pAKF40a in HD100 GAAGTTTATCTGATCGACGAACCGATGGCGGCTGCGATTGGATCCGGCCTGAATGTGAAG
primer mreB2_3R GAAGTTTATCTGATCGACGAACCGATGGCGGCTGCGATTGGATCCGGCCTGAATGTGAAG
primer mreB2_3F ------------------------------------------------------------
primer huA_seq_R ------------------------------------------------------------

pAKF40a in HD100 TCCGCAGAAGGCAACATGATCATCGACATCGGCGGCGGAACCACGGAAGTGGCTGTGATC
primer mreB2_3R TCCGCAGAAGGCAACATGATCATCGACATCGGCGGCG-AACCACG---------------
primer mreB2_3F ----------------------------TCGGCGGCGGA-CCACGGAAGTGGCTGTGATC
primer huA_seq_R ------------------------------------------------------------

pAKF40a in HD100 GCTCTGGCTGACATCGTTTACTGCGAAGCGGCCCGCGTGGGTGGTCACCGTCTGGACGAT
primer mreB2_3R ------------------------------------------------------------
primer mreB2_3F GCTCTGGCTGACATCGTTTACTGCGAAGCGGCCCGCGTGGGTGGTCACCGTCTGGACGAT
primer huA_seq_R ------------------------------------------------------------

pAKF40a in HD100 GCGATCATTGATTACTTCAAAAAATACAAAAAACTGATCATCTCTGACACCACGGCCGAA
primer mreB2_3R ------------------------------------------------------------
primer mreB2_3F GCGATCATTGATTACTTCAAAAAATACAAAAAACTGATCATCTCTGACACCACGGCCGAA
primer huA_seq_R ------------------------------------------------------------

pAKF40a in HD100 TACCTGAAGGTCACTATCGGAACAGCTGTTCCGAAAAAAGACATTCGCAGTGTCTCCATT
primer mreB2_3R ------------------------------------------------------------
primer mreB2_3F TACCTGAAGGTCACTATCGGAACAGCTGTTCCGAAAAAAGACATTCGCAGTGTCTCCATT
primer huA_seq_R ------------------------------------------------------------

pAKF40a in HD100 ACGGGTCGCGATGCTGACACCGGCATGAACCGCACAATGGAAGTCAGCTCCGAAGACGTG
primer mreB2_3R ------------------------------------------------------------
primer mreB2_3F ACGGGTCGCGATGCTGACACCGGCATGAACCGCACAATGGAAGTCAGCTCCGAAGACGTG
primer huA_seq_R --------------------------------------------------CGAAGACGTG

pAKF40a in HD100 GGCCTGGCAATGAATGGGTGTATTCAGGAAGTCATCAATGCGATTCACCGCGCGCTGGAA
primer mreB2_3R ------------------------------------------------------------
primer mreB2_3F GGCCTGGCAATGAATGGGTGTATTCAGGAAGTCATCAATGCGATTCACCGCGCGCTGGAA
primer huA_seq_R GGCCTGGCAATGAATGGGTGTATTCAGGAAGTCATCAATGCGATTCACCGCGCGCTGGAA

pAKF40a in HD100 CACACTCCGCCGGAATTGGTGTCTGATATTATCGAAAGAGGTATCACACTTGCTGGCGGT
primer mreB2_3R ------------------------------------------------------------
primer mreB2_3F CACACTCCGCCGGAATTGGTGTCTGATATTATCGAAAGAGGTATCACACTTGCTGGCGGT
primer huA_seq_R CACACTCCGCCGGAATTGGTGTCTGATATTATCGAAAGAGGTATCACACTTGCTGGCGGT
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pAKF40a in HD100 GGCGCTTTGATTCGCGACTTTGACCTGCGCATTCAGAATGAGGTTCGCCTGCAGGTTCGC
primer mreB2_3R ------------------------------------------------------------
primer mreB2_3F GGCGCTTTGATTCGCGACTTTGACCTGCGCATTCAGAATGAGGTTCGCCTGCAGGTTCGC
primer huA_seq_R GGCGCTTTGATTCGCGACTTTGAC-TGCGCATTCAGAATGAGGTTCGCCTGCAGGTTCGC

pAKF40a in HD100 ATCGCGGATGACCCGCTGACGGCGATCGCCAAGGGCGGCGAAGCAGTGCTGAGTGATCCA
primer mreB2_3R ------------------------------------------------------------
primer mreB2_3F ATCGCGGATGACCCGCTGACGGCGATCGCCAAGGGCGGCGAAGCAGTGCTGAGTGATCCA
primer huA_seq_R ATCGCGGATGACCCGCTGACGGCGATCGCCAAGGGCGGCGAAGCAGTGCTGAGTGATCCA

pAKF40a in HD100 GAACTGCTCGATAAAATTCAGTTGGAAGTGGTACCTCGATCGAGCATGGTGAGCAAGGGC
primer mreB2_3R ------------------------------------------------------------
primer mreB2_3F GAACTGCTCGATAAAATTCAGTTGGAAGTGGTACCTCGATCGAGCATGGTGAGCAAGGGC
primer huA_seq_R GAACTGCTCGATAAAATTCAGTTGGAAGTGGTACCTCGATCGAGCATGGTGAGCAAGGGC

pAKF40a in HD100 GAGGAGACCACAATGGGCGTAATCAAGCCCGACATGAAGATCAAGCTGAAGATGGAGGGC
primer mreB2_3R ------------------------------------------------------------
primer mreB2_3F GAGGAGACCACAATGGGCGTAATCAAGCCCGACATGAAGATCAAGCTGAAGATGGAGGGC
primer huA_seq_R GAGGAGACCACAATGGGCGTAATCAAGCCCGACATGAAGATCAAGCTGAAGATGGAGGGC

pAKF40a in HD100 AACGTGAATGGCCACGCCTTCGTGATCGAGGGCGAGGGCGAGGGCAAGCCCTACGACGGC
primer mreB2_3R ------------------------------------------------------------
primer mreB2_3F AACGTGAATGGCCACGCCTTCGTGATCGAGGGCGAGGGCGAGGGCAAGCCCTACGACGGC
primer huA_seq_R AACGTGAATGGCCACGCCTTCGTGATCGAGGGCGAGGGCGAGGGCAAGCCCTACGACGGC

pAKF40a in HD100 ACCAACACCATCAACCTGGAGGTGAAGGAGGGAGCCCCCCTGCCCTTCTCCTACGACATT
primer mreB2_3R ------------------------------------------------------------
primer mreB2_3F ACCAACACCATCAACCTGGAGGTGAAGGAGGGAGCCCCCCTGCCCTTCTCCTACGACATT
primer huA_seq_R ACCAACACCATCAACCTGGAGGTGAAGGAGGGAGCCCCCCTGCCCTTCTCCTACGACATT

pAKF40a in HD100 CTGACCACCGCGTTCGCCTACGGCAACAGGGCCTTCACCAAGTACCCCGACGACATCCCC
primer mreB2_3R ------------------------------------------------------------
primer mreB2_3F CTGACCACCGCGTTCGCCTACGGCAACAGGGCCTTCACCAAGTACCCCGACGACATCCCC
primer huA_seq_R CTGACCACCGCGTTCGCCTACGGCAACAGGGCCTTCACCAAGTACCCCGACGACATCCCC

pAKF40a in HD100 AACTACTTCAAGCAGTCCTTCCCCGAGGGCTACTCTTGGGAGCGCACCATGACCTTCGAG
primer mreB2_3R ------------------------------------------------------------
primer mreB2_3F AACTACTTCAAGCAGTCCTTCCCCGAGGGCTACTCTTGGGAGCGCACCATGACCTTCGAG
primer huA_seq_R AACTACTTCAAGCAGTCCTTCCCCGAGGGCTACTCTTGGGAGCGCACCATGACCTTCGAG

pAKF40a in HD100 GACAAGGGCATCGTGAAGGTGAAGTCCGACATCTCCATGGAGGAGGACTCCTTCATCTAC
primer mreB2_3R ------------------------------------------------------------
primer mreB2_3F GACAAGGGCATCGTGAAGGTGAAGTCCGACATCTCCATGGAGGAGGACTCCTTCATCTAC
primer huA_seq_R GACAAGGGCATCGTGAAGGTGAAGTCCGACATCTCCATGGAGGAGGACTCCTTCATCTAC

pAKF40a in HD100 GAGATACACCTCAAGGGCGAGAACTTCCCCCCCAACGGCCCCGTGATGCAGAAGAAGACC
primer mreB2_3R ------------------------------------------------------------
primer mreB2_3F GAGATACACCTCAAGGGCGAGAACTTCCCCCCCAACGGCT--------------------
primer huA_seq_R GAGATACACCTCAAGGGCGAGAACTTCCCCCCCAACGGCCCCGTGATGCAGAAGAAGACC

pAKF40a in HD100 ACCGGCTGGGACGCCTCCACCGAGAGGATGTACGTGCGCGACGGCGTGCTGAAGGGCGAC
primer mreB2_3R ------------------------------------------------------------
primer mreB2_3F ------------------------------------------------------------
primer huA_seq_R ACCGGCTGGGACGCCTCCACCGAGAGGATGTACGTGCGCGACGGCGTGCTGAAGGGCGAC

pAKF40a in HD100 GTCAAGCACAAGCTGCTGCTGGAGGGCGGCGGCCACCACCGCGTTGACTTCAAGACCATC
primer mreB2_3R ------------------------------------------------------------
primer mreB2_3F ------------------------------------------------------------
primer huA_seq_R GTCAAGCACAAGCTGCTGCTGGAGGGCGGCGGCCACCACCGCGTTGACTTCAAGACCATC
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pAKF40a in HD100 TACAGGGCCAAGAAGGCGGTGAAGCTGCCCGACTATCACTTTGTGGACCACCGCATCGAG
primer mreB2_3R ------------------------------------------------------------
primer mreB2_3F ------------------------------------------------------------
primer huA_seq_R TACAGGGCCAAGAAGGCGGTGAAGCTGCCCGACTATCACTTTGTGGACCACCGCATCGAG

pAKF40a in HD100 ATCCTGAACCACGACAAGGACTACAACAAGGTGACCGTTTACGAGAGCGCCGTGGCCCGC
primer mreB2_3R ------------------------------------------------------------
primer mreB2_3F ------------------------------------------------------------
primer huA_seq_R ATCCTGAACCACGACAAGGACTACAACAAGGTGACCGTTTACGAGAGCGCCGTGGCCCGC

pAKF40a in HD100 AACTCCACCGACGGCATGGACGAGCTGTACAAGTAAGAATTGGGATCCTCTAGAGTCGAC
primer mreB2_3R ------------------------------------------------------------
primer mreB2_3F ------------------------------------------------------------
primer huA_seq_R AACTCCACCGACGGCATGGACGAGCT-TACAAGTAAGAAT----GTCT------------

Appendix 5.3 Confirmatory sequencing data for the mreB2mtfp HD100 strain.
This strain contains the pAKF40a integrated plasmid which has a pK18 backbone
used to confer kanamycin (Kn) resistance to exconjugants (For general
recombination diagram see Fig. 2.1A). Direct sequencing confirms almost the
mreB2-mtfp full ORF sequence and verifies the genomic context of the
integrated pAKF40a plasmid using primers that bind outside of the construct
(which begins at the highlighted MreB1_site1_F primer binding site). All
sequencing reactions were conducted directly on genome amplified PCR products
using the primers: mreB1_KO_F2 and huA_seq_R. (A) Diagrammatic
representation of the expected pAKF40a HD100 excongugant genome and all
primers used for both amplification and direct sequencing, MreB1_site1_F primer
is highlighted in red. (B) Multiply aligned sequencing data mreB, linker and mtfp
regions are highlighted in the same colours as (A), primers used for each
reaction are shown. MreB1_site1_F primer binding site is both highlighted and
underlined.
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Appendix 5.4 Dagnostic Taq PCRs showing the presence of the mreB-mtfp

constructs in ten HI derivative strains. (Aa) Taq PCR reactions using 2 µl of HI

culture as template with primers: mreB2_site1_F and mTFP_F, which specifically

amplify a 1,685 bp region of the genome integrated pAKF41a (mreB1-mtfp)

construct, no template and HD100 genomic DNA were used as a negative

controls, genomic DNA isolated from the mreB1-mtfp HD strain was used as a

positive control. (Ab) As initially the PCR failed for mreB2-mtfp HI candidate 10

this was repeated. (B) Taq PCR reactions using 2 µl of HI culture as template

with primers: mreB1_site1_F and mTFP_F, which specifically amplify a 1,747 bp

region of the genome integrated pAKF40a (mreB2-mtfp) construct, no template

and HD100 genomic DNA were used as a negative controls, genomic DNA

isolated from the mreB2-mtfp HD strain was used as a positive control. 1 kb DNA

ladder was used in each marker lane, appropriate bands have been highlighted.


