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Abstract

The process of protein structure prediction is a crucial part of understanding the function

of the building blocks of life. It is based on the approximation of a protein free energy that

is used to guide the search through the space of protein structures towards the thermody-

namic equilibrium of the native state. A function that gives a good approximation of the

protein free energy should be able to estimate the structural distance of the evaluated

candidate structure to the protein native state. This correlation between the energy and

the similarity to the native is the key to high quality predictions.

State-of-the-art protein structure prediction methods use very simple techniques to design

such energy functions. The individual components of the energy functions are created by

human experts with the use of statistical analysis of common structural patterns that

occurs in the known native structures. The energy function itself is then defined as a

simple weighted sum of these components. Exact values of the weights are set in the

process of maximisation of the correlation between the energy and the similarity to the

native measured by a root mean square deviation between coordinates of the protein

backbone.

In this dissertation I argue that this process is oversimplified and could be improved on at

least two levels. Firstly, a more complex functional combination of the energy components

might be able to reflect the similarity more accurately and thus improve the prediction

quality. Secondly, a more robust similarity measure that combines different notions of the

protein structural similarity might provide a much more realistic baseline for the energy

function optimisation.

To test these two hypotheses I have proposed a novel approach to the design of energy

functions for protein structure prediction using a genetic programming algorithm to evolve

the energy functions and a structural similarity consensus to provide a reference similarity

measure. The best evolved energy functions were found to reflect the similarity to the

native better than the optimised weighted sum of terms, and therefore opening a new

interesting area of research for the machine learning techniques.
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Chapter 1

Introduction

1.1 Background and Motivation

Proteins are the building blocks of life. There is almost no cell activity in which proteins

do not take part. The function of an individual protein depends on its three dimensional

structure, or more simply, its shape. The knowledge of a protein structure is therefore

crucial in protein research, both in experiment planning and in results interpretation.

For example, the catalysis function of an enzyme is carried out by a small part of the

protein chain, called the active site, exposed on the surface of a protein. Interactions with

other proteins, nucleic acids or molecules being inhibitors or activators are also restricted

to specific protein surface areas. As a result, designing drugs that would interact with

a protein surface and modify its undesirable behaviour or localising protein structural

mutations responsible for diseases is only possible if the protein structure is known.

Yet, there are 30 000 000 known protein sequences but the structure is known only for

60 000 of them, just 0.2% (as of January 2010 [URL10b]). This disproportion is caused

by the expensive and lengthy process of protein structure physical examination by X-ray

crystallography or nuclear magnetic resonance (NMR) spectroscopy, as well as by the

advances in sequencing techniques which are now much more efficient than what was used

in the past (for example to complete the Human Genome Project in 2003) [BDM+08].

As even a rough estimation of a protein structure is usually more useful than no structure

at all, a number of protein structure prediction (PSP) methods have been developed in

the last two decades. Recent advances are a result of the application of machine learning

and pattern matching algorithms, which has led to an increase in prediction accuracy

for comparative modelling and fold recognition. New prediction methods are able to

determine which kind of fold is most likely to be adopted by a given sequence fragment

using relevant homologous structures (similar on a sequence level) from a protein data

bank of known structures [Bou03].

However, modelling the structure of a protein with a sequence not similar to any of the

proteins with a determined structure, known as ab initio or de novo structure prediction,

still remains very challenging. It requires a different approach based on the physical

principles of folding (the protein inter-atomic interactions) and the structural model has

to be built from “scratch”.

12



Chapter 1. Introduction

1.2 Overview of the Problem

The most widely accepted hypothesis explaining the process of protein folding was

formulated by Christian Anfinsen. In a Nobel prize winning experiment he found that

a refolded protein always forms the same native structure [Anf73]. He concluded that

a “folding algorithm” has to exist that doesn’t use any information, aside from what is

already contained in a protein sequence. To explain this phenomena Anfinsen formulated

a Thermodynamic Hypothesis that described the native configuration as being in a

thermodynamic equilibrium and explained the process of folding as a minimisation of the

protein’s free energy.

De novo protein structure prediction methods define this energy as a function of structure

and use it to distinguish between good and bad candidate structures. In state-of-the-art

PSP methods the energy function is expressed as a weighted sum of several energy terms

designed by human experts. The weights are optimised so that the energy of a candidate

protein structure reflects its structural similarity to the protein’s real native state. As

a result, the lower the energy of a model, the more accurate it is, i.e. more similar to

the native structure. However, in practice the correlation between the energy function

and the similarity to the native structure is not significant enough to ensure high quality

predictions.

1.3 Aims and Scope

The goal of this dissertation is to examine the computational models of energy functions

used in the state-of-the-art de novo protein structure prediction methods and discuss

and experimentally verify some of the possible improvements. Firstly, this work argues

that simple measures of the protein structural similarity are not robust enough and

hypothesizes that replacing them with a consensus measure in the process of energy

function optimisation may lead to higher accuracy of the predictions made using this

energy function (hypothesis H1). Secondly, it describes a novel approach to the design of

the energy functions that is based on the use of a genetic programming (GP) algorithm to

evolve the protein structure energy function and hypothesizes that evolved energy functions

may outperform the previously used linear combination of energy terms leading to better

energy–similarity correlation and thus improving the prediction quality (hypothesis H2).

1.4 Methodological Aspects

To accomplish these goals this dissertation includes four different types of analysis. In

Chapter 2 a deep analysis of the literature focused on the internal design of the most

successful protein structure predictors is used to identify their weak points and possible

improvements in that field. The complexity analysis is used in Chapter 3 to determine the

theoretical computational gain of the proposed tabu search based heuristic. In Chapters 4–

5 a statistical analysis is used to measure dependency between comparison measures and

the energy/similarity correlations. Finally, experimental approaches are used through

Chapters 3–6 to investigate the validity of the two proposed hypotheses: applicability of

the similarity consensus (H1) and the evolvability of the energy functions with GP (H2).

13



Chapter 1. Introduction

1.5 Structure of the Dissertation

The dissertation is organised as follows. The next chapter explains a chemical model of a

protein structure and the principles that drive the process of protein folding. The problems

of protein structure comparison and prediction are introduced. Computational methods

for both are summarised and a critical analysis of the related work is done. A detailed

description of relevant structural comparison methods used in Chapter 4 and the energy

terms used in Chapter 5 is given. Also an overview of the metaheuristic optimisation and

in particular the algorithms used in Chapter 3 (tabu search) and Chapters 5–6 (genetic

programming) is provided.

Chapter 3 describes the Max-CMO problem as a robust measure of protein structure

similarity and contains a proposition of an efficient tabu search based heuristic algorithm

using a novel representation of the problem solution. This measure is later used in

constructing the similarity consensus in Chapter 4.

Chapter 4 investigates the relation between a number of structural similarity measures

and defines a consensus measure based on them. The structural consensus is later used in

the final GP experiments (in Chapter 6) to verify if more robust measure of similarity will

lead to an increased prediction quality (hypothesis H1). Additionally, a prototype cloud

computing application using an alternative (decoy specific) set of similarity measures is

presented.

Chapter 5 contains the analysis of energy/similarity correlations for the state-of-the-art

protein structure prediction methods. Furthermore, it describes the design of a genetic

programming algorithm and the experimental setup used to evolve the protein energy

functions. The best results are compared to a baseline random walk experiment.

Chapter 6 provides extended analysis of the evolution process through the population

diversity statistic. In addition it contains a comparison of the best evolved functions to a

linear combination of terms optimised with a Nelder-Mead downhill simplex method to

verify whether the GP algorithm is able to improve over it (hypothesis H2). Furthermore

it reports the result of the GP based on the consensus similarity, discusses the limitation

of the method and suggests possible improvements to the evolvability of energy functions.

Chapter 7 contains concluding remarks and discussion on validity of the proposed hy-

potheses and possible future work.

1.6 Typographic Conventions

To make reading easier a few typographic conventions are used throughout this thesis. A

bold face is used to mark the occurrence of a new term at the place of its definition. The

index of all keywords is included at the end of the document. The bold face is also used

to place emphasis on names of the methods or algorithm variants.

Vertical bars on the margin (as the one on the left) are used in the next chapter to mark

key facts and observations particularly important for understanding the motivation for

the presented work and the main principles of the proposed solution. In following chapters

it is used to highlight the main contribution and the major findings of a chapter.
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Chapter 1. Introduction

1.7 Main Contributions

The main contribution of this dissertation is the introduction of a novel approach to the

automated design of energy functions for protein structure prediction. This approach is a

result of the critical analysis of the state-of-the-art protein structure predictors and the

structural comparison methods and is directly addressing two issues: (1) simplicity of the

optimisation methods used to construct the energy functions from the expert designed

energy terms and (2) robustness of the structural similarity measure used as a reference

in the optimisation.

The proposed solution is composed of three main elements, each described in a separate

chapter:

• fast tabu search heuristic for protein structure comparison solving the Max-CMO

problem using a novel representation of the problem solution based on line graphs,

that led to O(n) performance improvement in the computational cost of the solution

evaluation and feasibility check,

• consensus measure of a structural similarity representing a fusion of different

similarity aspects contributed by the individual structure comparison methods,

which has many uses including design of energy functions, evaluation of protein

models or discovery of the structural relations proteins,

• genetic programming algorithm to evolve novel forms of energy function for protein

structure prediction that outperform the optimised weighted sum of terms used in

state-of-the-art protein structure predictors.

Although the evolutionary algorithms have been used in a number of occasions for protein

structure prediction, protein structure comparison and related problems, to the best of

the author’s knowledge, this is the first time that a machine learning technique based

on genetic programming has been used to design the energy functions for the de novo

protein structure prediction. Similarly, the use of the consensus measure in place of the

root mean square deviation in a process of the energy design is an original contribution.

Moreover, to the best of the author’s knowledge, the use of cloud computing environment

to implement a scalable web service for protein structure comparison is also a pioneering

work.

Furthermore, the problem of automated design of the energy functions used in protein

structure prediction represents a unique opportunity and a challenge for the GP/machine

learning community, therefore a special attention has been put to make all the data used

in this dissertation publicly available to facilitate a community-wide challenge.
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Chapter 2

Background and Related Work

2.1 Proteins

Proteins are polymers, linear chains made of series of 20 different amino acids encoded in

the genetic material (DNA or RNA sequence). Each amino acid includes an α− carbon

(Cα) with bonds to amino (NH) and carboxyl (COOH) groups and a variable side chain

(different for each type of amino acid). The amino acids in the protein chain are connected

with peptide bonds (CO-NH) formed between the amino and carboxyl groups, as shown at

the top of Figure 2.1. These bonds are formed in the process of polymerization. Because

in this reaction a molecule of water is lost, amino acids in the protein chain are also called

residues. The linked carbon, oxygen and nitrogen atoms form a protein backbone.

This backbone forms several repeating local structures such as alpha helices, beta sheets

or loops, known as secondary structure elements (see Figure 2.1). These elements

and their spatial interrelations define the tertiary structure of a protein (a fold). An

independent part of a protein chain that folds into a distinct structural region is called a

protein domain. Average length of a domain is around 100 amino acids [WMBB00].

A protein, under physiological conditions, spontaneously folds into a specific shape known

as its native state. The geometric pattern of the native state determines protein

biological activity: macroscopic properties, behaviour and function.

2.1.1 Protein Folding

Anfinsen, in his Nobel price winning experiment, proved that protein ribonuclease can

be reversibly denatured/renatured in a test tube [Anf73]. A direct conclusion from this

experiment was that if a protein always folds into the same native structure, an algorithm

of protein folding has to exist that drives the folding towards the native state of minimal

or near to minimal free energy. Moreover, this algorithm doesn’t use any information,

aside from what is already contained in the protein sequence.

Folding Funnel

The energy landscape of protein folding under the solution condition in a cell may be

rough with several local minima traps. Despite of this, the native state of a protein
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Chapter 2. Background and Related Work

Figure 2.1: The atomic structure of a single amino acid and the chain of amino acids is
shown on top of a protein sequence. An all-atom representation of the protein colored
by atom type, cartoon representation of secondary structure elements and a simplified
representation illustrating the protein backbone colored by secondary structure is shown
below.

corresponds to the landscape energetic minimum and the folding process is a roll down

a free energy hill to the bottom [DC97]. Figure 2.2 presents a variant of the protein

energy landscape known as a folding funnel, where the well-defined single native state

(N) corresponds to the energy minimum surrounded by steep slopes [DSS+00].

Levinthal’s Paradox

The process of a protein spontaneous self-assembly into the native state is surprisingly

efficient when the number of possible fold configurations is taken into account. This

divergence between expected and current folding speed was first shown by Levinthal

[Lev69] and is known as Levinthal’s paradox.

Let’s assume we have a sequence of 101 amino acids and that each bond connecting two

of them can have 3 possible states. The number of possible configurations is then equal to

3100 = 5 × 1047. If we assume a protein sampling rate of 1013 configurations per second

(0.1ps per configuration) it would be possible to search 3 × 1020 configurations per year.
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Figure 2.2: Folding funnel [DC97].

Consequently, to try them all, 1027 years would be needed, which is much greater than the

age of the universe (13.7 × 109). Yet proteins fold in seconds, thus they do not perform

an exhaustive search of this space.

The common explanations to this paradox refer either to protein as evolutionary specialised

to fold rapidly (other amino acid sequences simply did not survive) or to the lack of

stability of some proteins [Hay98]. It has been observed, that the native configuration

may not be in a state of the lowest free energy. Moreover, some folds may be erroneous

and the faulty proteins are removed from the cell in a process of proteolysis. The absolute

stability is apparently not required, a protein has to last only long enough to perform its

function.

Molecular Dynamics

There are two groups of forces affecting protein molecules in a folding process: bonded

and non-bonded forces. Bonded forces arise from existence of covalent bond between

two atoms sharing an electron or ionic bond if the electron is transferred between the

atoms. Non-bonded forces arise from distance interactions between atoms. A function

which is a sum of forces for all atoms and describes a potential energy of a whole system

of particles is called a force field.

Bonded forces are relevant to stretching, bending and rotating. Stretching (see Equa-

tion 2.1) and bending potentials (see Equation 2.2) are based on the elastic spring model.

They are parametrised with the equilibrium values (l0 and θ0) and bond/angle stiffness

(kl and kθ where kθ ≪ kl).

V (l) =
1

2
kl(l − l0)

2 (2.1)

V (θ) =
1

2
kθ(θ − θ0)

2 (2.2)
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Bond rotation potential is modeled as cosinusoid function of parametrized amplitude

(Vω), periodicity (n) and phase shift (φ):

V (ω) =
1

2
Vω[1 + cos(nω − φ)] (2.3)

Non-bonded forces are relevant to steric effects, van der Waals’ interactions and electro-

static charge. Steric interactions are caused by Pauli short range repulsion (there is an

energetic cost of the overlap of electron clouds). Van der Waals’ forces are long range

attractive forces that arise from polarisation of molecules. They are modelled together

with Lennard-Jones potential:

V (r) = ǫ

[

(rmin

r

)12

− 2
(rmin

r

)6
]

(2.4)

where rmin is a distance at the minimum of potential. Electrostatic charge is expressed

by Coulomb’s law:

V (r) =
1

4πε0

q1q2
r

(2.5)

The full force field that can reproduce the basic features of protein energy landscapes at

an atomic level of detail is then represented by the following potential energy function:

bonds
∑

i

V (li) +

angles
∑

i

V (θi) +
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i
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[

(
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rij

)12

− 2

(

rminij

rij

)6
]

+
qiqj

4πε0rij

} (2.6)

Since early ’80 several families of force fields has been developed. According to [PC03]

the top three families are: AMBER (Assisted Model Building and Energy Refinement),

CHARMM (Chemistry at HARvard Macromolecular Mechanics), OPLS (Optimized

Potential for Liquid Simulations). The functional forms of these force fields are very

similar to the one shown in Equation 2.6. Each family contains several sets of parameters

representing a single force field designed for certain type of molecules. In protein folding

simulation AMBER99, CHARMM22 and OPLS-AA are commonly used [Mac04].

Although the molecular dynamics simulation software implementing both AMBER

[CCD+05] and CHARMM [BBO+83] is proprietary, there are also several free alternatives:

CHARMM based NAMD (NAnoscale Molecular Dynamics) [PBW+05], TINKER [URLb]

or GROMACS (Groningen Machine for Chemical Simulations) [VDSLH+05]. The latter

two are used by the Folding@home project [SP00].

Since the computational cost of these all-atom energy functions is very high, their

practical applicability is limited to the molecular dynamic simulations of short protein

chains. For example, massively distributed projects such as Folding@home [PBC+03] or

Rosetta@home [DQR+07]. Even though Folding@home is currently the most powerful

computing system on Earth (it operates at the 4.5 native peta FLOPS performance level

[URL10a]), a simulation of 10µs of protein folding uses 10 000 CPU days while proteins

usually fold in a millisecond timescale [Jac98].
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2.2 Protein Structure Prediction

As an exhaustive search for the best fold is not feasible (see Section 2.1.1) and due to a

heavy computational cost of all-atom models, in practice some approximation is necessary.

One of the earliest such approximations was a hydrophobic-polar (H-P) model proposed

by Dill [Dil90].

2.2.1 HP Model

The hydrophobic-polar (HP) model reduces the 20 element amino acid alphabet to 2

letters (H and P). Each amino acid is classified as hydropphobic or polar by its affinity

to water. Other properties such as size, shape, electric charge etc. are ignored. The

forces acting between amino acids are simplified to a single rule of attraction between H

elements (P elements are neutral). The quality of a fold is then measured as a number of

H-H contacts. Justification for this model is a hydrophobic collapse hypothesis, based on

the observation that native states often contain a hydrophobic core and a hydrophilic

(polar) exterior [BKR06].

Despite the reduction of the folding problem complexity, even 2D lattice based H-P

folding is proven to be NP-complete by reduction to the Hamiltonian cycle [CGP+98].

Nevertheless several algorithms solving it as has been proposed [KHSP99, LP00, New02,

KBHB02], where the problem is stated as a folding of the binary string to a self-avoiding

walk on the lattice for which number of adjacent pairs of 1’s is maximised.

2.2.2 Residue-level Models

Since the H-P model has been shown too oversimplified to predict the real folds, re-

duced alphabets of size greater than 2 have also been investigated [BSH+07, BSH+09].

Furthermore, more complex residue-level models has been proposed such as SICHO

[KS98], UNRES [LOC+04], CABS [Kol04] or CAS [ZS04c]. Instead of an exact atomic

representation these models use a reduced representation, where coordinates of groups of

atoms are replaced with a single high level entity (pseudo-atom), e.g. the group center of

mass.

The simplified models also use the notion of protein energy differently to compensate for

the loss of detail. In these models, the energy function incorporates knowledge-based

potentials derived from a statistical analysis of the regularities seen in protein structures.

Such energy function does not capture the physical free energy explicitly. Instead, it

represents the probability that a given structure is native-like.

2.2.3 CASP

CASP (Critical Assessment of Structure Prediction) is a bi-annual experiment, where for

a given set of the target protein sequences structural predictions (3D models of proteins)

are submitted by the partcipants. The accuracy of a model is then assessed by the

comparison to a real native structure, but the prediction itself is made in a blind manner

— the native structure is not known at the moment of submission. The models in CASP

are usually created by a mixture of computations and the expert knowledge.
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The CASP experiment was initiated by John Moult of the Center for Advanced Research

in Biotechnology in 1994 [SF01]. Up till now, eight editions has been run. In each edition

a few dozen targets are used. They are classified by the level of difficulty into three

categories: comparative modeling, fold recognition/threading and new fold/ab initio

prediction. In comparative modeling category the target protein sequence is similar to

the sequence of proteins which 3D structure has been already experimentally determined.

Fold recognition category contains proteins which have folds that have been already seen

in other proteins. In the ab initio or de novo prediction there is no relationship between

proteins and already known complete structures[MF05].

The models are compared to the target structures using several distance based methods

like Global Distance Test (GDT), Z-Score or TM-Score as well as using a human expert

visual evaluation [ZVMF99, ZS05].

The younger brother of CASP is CAFASP (Critical Assessment of Fully Automated

Structure Prediction), which focuses on evaluation of the fully automated prediction

techniques. The models are collected from prediction servers within a limited amount of

time (48h) [FB99]. After CAFASP5 it was integrated into the CASP experiment which

since then maintains a separate server-only ranking.

Progress in CASP

The progress in prediction quality has been observed in first two CASP experiments and

has continued steadily thereafter in more modest manner. Still, the prediction scores for

comparative modeling and fold recognition has doubled from CASP1 to CASP6. The ab

initio category had a rapid progress period from CASP1 to CASP4, and visible progress

for small targets in CASP5/6, though the quality of models for large targets remained

very poor[KVFM05].

As the progress for the new fold (NF) targets is slow, it remains the most challenging

of the CASP experiment categories. Figure 2.3 presents new fold targets successfully

predicted by the individual groups participating in CASP5/6 compared with the success

ratio expected by chance. Left-hand graphs show how many groups tried to predict how

many targets. Right-hand graphs show how many groups predicted how many targets

ranked in the top six. In CASP5 three groups did significantly better than chance, what

improved to six groups in CASP6.

With the advance of prediction methods a borderline between CASP categories, especially

the distinction between the comparative modeling and fold recognition has been blurred.

This change has been reflected in CASP7, where this two categories have been joined

under a new name of template-based modeling.

Template-free Prediction

In an attempt to perform successful de novo prediction several knowledge-based tech-

niques have been applied including secondary structure prediction, fragments and motifs

identification, contact prediction and assembly of folds from fragments. These methods

usually are combined with the search methods based on the molecular dynamics, Monte

Carlo optimisation or genetic algorithms. A few methods use pure ab initio simulations

together with empirical potentials[MF05].
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Figure 2.3: Distribution of success in prediction of CASP new fold (NF) targets [KVFM05].

The most influential participants in the template free category of the last few CASPs

were David Baker with the Robetta server[CKM+05] using the Rosetta protocol[RSMB04,

BSR+02], Yang Zhang and Jeffrey Skolnick with I-TASSER server[ZS04a, ZAS05] and

Touchstone[ZKS03], Kevin Karplus with SAM-T0x family[KK05, KK03] and David Jones

with FRAGFOLD fragment assembly method[JBC+05].

Even though de novo methods demand for computational resources is very large, they

have been proven successful on targets where traditional fold recognition fails. Despite of

the low quality of models and difficulties in identification of correctly predicted parts, ab

initio methods are expected to have biggest impact on structural biology in the future

[GGGR05].

Predictor Pipeline

The de novo prediction methods are designed to find the native structure without

doing the computationally expensive simulation of folding with the molecular dynamics.

Therefore, they usually use heuristic algorithms to quickly search the conformational

space, instead of exhaustive sampling of the energy landscape. The search is performed

by iterative conformational changes and is guided into to the low energy states. The

search space is usually additionally limited by either simplification of the protein model

to the lattice-based structures [SZA+03] [ZKS03] or by construction of initial candidate

structures (also known as decoys) through the assembly of fragments of known proteins

[BMQ+05, BCM+03, BTR+01].

The progress in the field of de novo prediction is attributed to the arise of refinement

methods based on clustering of large number of candidate structures obtained by en-

ergy optimization. The final models are chosen from the largest clusters what shifts

the emphasis from energy values to most common pathways in the energy landscape

[GGGR05].
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The schema of a de novo predictor has been shown in Figure 2.4. Conformations are

generated by assembling fragments of protein chains, then conformational search is

performed to obtain a set of decoys which is then refined and clustered to select the best

model.

Set of protein structures

Discrete conformations space

Set of decoys

Clusters

assembly

sampling

filtering refinement

Figure 2.4: General de novo predictor schema.

This statistical approach to improve the accuracy of predictions has been borrowed from

meta predictors where diversification of information sources proved to be more successful

than relying on a single prediction method [GEFR03, KB03].

A simple meta predictor compares models fetched from various prediction servers and

selects the consensus model (most similar to other models). Advanced meta predictor

modifies collected models or creates hybrid ones. Servers such as Robetta [CKM+05] or

ProtInfo [HNLS05] perform de novo prediction guided by structures obtained from other

simple meta predictors and because of that are sometimes called meta–meta predictors.

2.3 State-of-the-art De Novo Prediction

The two most successful prediction methods in the “template free” category of the CASP7

experiment [Chi06, Zha06a, BKB+07] are Robetta [RSMB04] and I-TASSER [WSZ07].

Both methods build the initial protein models from short fragments of known structures

similar on a sequence level. Small random changes are applied to these models and the

Monte Carlo method [ED05] is used to find a structure with the minimal energy. In both

methods the energy is formulated as a weighted sum of knowledge-based potentials.

To determine the optimal set of weights both methods generate a set of candidate

structures, so called decoys, by applying small random changes to the known native

structure. The optimisation objective is to maximise the correlation between the value

of energy function and the similarity of decoys to the native structure. Therefore, the

energy function is expected to have the lowest value for the decoys that are most similar

to the native structure. Similarity is measured as the root mean square deviation

(RMSD) of euclidean distance between Cα atoms of a decoy and the native structure.

In the weight optimisation process, Robetta used a training set of 21 proteins. For each

protein 30 000 decoys were generated and the linear regression against RMSD was used
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as an objective function [SRK+99]. I-TASSER used 30 proteins, with 60 000 decoys

each, and maximised a complex objective function with correlation to RMSD as its main

element [ZKS03]. Both prediction methods are able to distinguish between native-like

(RMSD value < 0.4nm) and non-native decoys (RMSD value > 0.8nm). However, the

actual correlation coefficient between the energy and similarity is not too high, eg. Zhang

et al. [ZKS03] report it to be 0.54 for naive combination of terms and 0.65 for the

optimised weighted sum.

A critical analysis of the approach described above reveals two drawbacks. Firstly, the

set of decoys created by randomisation of the native structure is biased towards that

structure, resulting in a potential overfitting of the energy function. The process itself is

also the exact opposite of what predictors do in practice. In the prediction process the

native structure is unknown and the decoys have to be built from scratch.

Secondly, the linear combination of energy terms is a very simple but also potentially very

restrictive approach to construct the energy function. It assumes that all energy terms

can equally well discriminate between good and bad candidate structures. In practice,

however, these terms works well for some proteins and bad for the others. If so why not

to learn these cases and apply the energy terms more selectively?

Now, even if the energy terms can distinguish between good and bad candidate structures

it is not enough to do it in a discrete manner. There is a need of a certain graduation

of values of each energy term across all possible protein structures starting from the

dissimilar ones and ending at the native structure itself. Otherwise the energy function

being a linear combination of such terms would be unable to provide an effective smooth

fitness landscape that could be navigated by a search method. This is why in this

dissertation I hypothesise (hypothesis H2) that going beyond the weighted sum and

towards more complex functional combinations of energy terms will result in improved

prediction quality.

2.3.1 Predictor Building Blocks

As the protein structure prediction is a complex multi-step process it takes a long time to

build a predictor from scratch. However, apart from complete de novo predictors such as

(PROTINFO-AB, Robetta or I-TASSER) there are many programs supporting different

stages of the prediction. For example 3D Jury and LOMETS are meta-servers for template

based modelling incorporating several different methods for fold recognition and threading.

FRankenstein and 3D-SHOTGUN performs fragment assembly. Pcons/Pmodeller assesses

protein models quality. A novel prediction method could be constructed by combining

these existing building blocks.

A serious limitation, though, is the accessibility of these tools. Most of them are provided

only as online servers. For the popular high traffic services the waiting times (from data

submission to obtaining the results) is counted in months.

Due to that, it is in fact easier to combine the full predictors. The idea of such a novel

combination is shown in Figure 2.5. The fragment assembly and de novo prediction of

initial models could be done with Rosetta software (used by the Robetta predictor) that is

free for the academic use. These initial models could become a starting point for further

refinement with the use of the I-TASSER energy formulation. Refined models could be
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clustered with the use of different similarity measures provided by the ProCKSI server

(see Section 2.4.1) with final models selected from the clusters centroids.

Target sequence

Secondary
structure
prediction

Fold
recognition

and
threading

Initial ab initio prediction

Optimisation

Clustering

Final models

PSIPRED

SAM-T02

JUFO

PSI-BLAST

Rosetta

Figure 2.5: An idea of de novo predictor that combines initial models generated by
Rosetta with I-TASSER energy optimisation and ProCKSI structural clustering

The use of two different energy formulations, one from Rosetta (to generate initial models)

and the other from I-TASSER (for further refinement of decoys), together with our own

clustering strategy based on the similarity consensus (see Section 2.4.3) should provide

substantial novelty and diversity of the final models.

Although the creation of a protein structure predictor is out of the scope of this dissertation

I wanted to demonstrate here a broader vision behind this work and show that extension

of the proposed methods into a full working predictor would not be very difficult.

For a better overview of how the components of such a solution could work together,

the next sections provide an overall description of the prediction algorithm and energy

function used by Rosetta and detailed description of the energy terms used by I-TASSER

that are later used in the genetic programming experiments (see Chapter5).

2.3.2 Rosetta Ab Initio Algorithm

The first step of the prediction process is generation of fragments. They are made with

the use of PSI-BLAST alignments and up to three secondary structure predictions from

PSIPRED, SAM-T02, JUFO or PhD. Similarity between the target sequence and a

fragment is a sum of similarity scores for the sequence and secondary structure. This

fragment library is used in the next step — the fragment insertion.

The algorithm starts from completely extended chain and incrementally changes fragments

of the backbone. Each change starts with random selection of the position in the chain.
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One of the fragments starting in that position is selected from the library and backbone

torsion angles (φ, ψ, ω) from the fragment are applied in that position. Both bond angles

and bond lengths are fixed to ideal values, and the side chains are approximated with the

centre of their mass.

Fragment insertion is performed in two stages. First 9-residue fragments are used to

construct a rough model. Then the skeleton of all the generated decoys is refined with

3-residue fragments.

For each insertion, the choice is made from the top 25 fragments (out of 200 in the

library) [RSMB04]. The energy of a structure is evaluated using Rosetta knowledge based

potential and the fragment insertion is accepted/rejected according to a Monte Carlo

criterion. The number of used potential terms increases gradually with the progress of

simulated annealing, starting from steric overlap and finishing with complete potential

for the last 25% of iterations of 9-residue stage and for the whole 3-residue one.

The best decoy structures are selected either as a 5% lowest energy subset or cluster

analysis is performed to select the representative structures. This becomes a starting point

for the full-atom refinement. It is done with several different moves like torsion angles

perturbation, non-perturbating fragment insertion (only fragments from library similar

to existing fragment in the model), local fragment gradient descent optimisation and

optimisation of side chains using a backbone-dependent rotamer library [BCD97, CSD03].

2.3.3 Energy Functions

Although the energy functions used in two most successful CASP7 predictors are based

on first principles and try to approximate the value of full-atom force field, the term

“energy” is used here in an indicative way only. That is, the components of this functions

are knowledge/statistical based terms and do not express the free energy explicitly but

rather the probability of “nativeness” of given structure, based on analysis of features of

known native structures.

Rosetta Energy Function

Rosetta free energy is based on a Bayesian model of the likelihood of the structure being

a native one, given the sequence of amino acids. The components of this model are based

on the statistical analysis of common features of the native structures and describe either

the energy of structure independent of sequence (P (structure)) or energy of sequence

given particular structure (P (sequence|structure)) [SRK+99].

The all-atom Rosetta energy function (used in models refinement) is a linear combination

of Ramachadran torsion preferences, Lennard–Jones potential, solvation and electrostatic

effects, hydrogen bonding and backbone dependent rotamer self-energy. In the Lennard-

Jones potential, van der Waals radii and well depths from the CHARMM19 are used and

repulsion is attenuated to a linear function to compensate for fixed rotamer set. Solvation

energy is computed using Lazaridis and Karplus [LK99] complete model. Electrostatic

interactions are approximated based on PDB statistics. Hydrogen bonds are included

using potentials dependent on secondary structure and orientation.

Simplified, low resolution energy function is used in fragments insertion. In that function

the Van der Waals potential is represented by steric repulsion of backbone atoms and
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side-chain centroids and rewarding of globally compact structures. Solvation potential is

based on statistical data. Hydrogen bonding is not defined explicitly but probabilistic

descriptions of geometry of β-strand pairing and β-sheet patterns are given [RSMB04].

I-TASSER Energy Function

The original energy formulation now used in I-TASSER was introduced in TOUCHSTONE-

II [ZKS03]. It was based on the simplified on-lattice CABS model (see also [Kol04])

describing the protein as a set of Cα, Cβ and the center of mass of the remaining side

chain. The bonds between Cα atoms are represented by vectors with integer, lattice

based coordinates, with average length of 3.8Å and angles in 65–165◦ range seen in real

proteins.

In I-TASSER, the CABS model has been replaced with CAS, where position of Cβ atoms

is no longer set separately but is taken into account as the side chain centroid SG [ZS04c].

The target Cα atoms aligned to a template in threading process are positioned off-lattice,

whereas the unaligned fragments are set on simple cubic lattice as in TOUCHSTONE-II

algorithm.

In the optimisation process the best on-lattice position of the Cα atoms is looked for. The

position of SG is relative to Cα position and is chosen from a set of fixed configurations

for each residue type (rotamer library).

TOUCHSTONE-II energy function is a weighted sum of short-range correlations, local

protein-like stiffness, hydrogen bonds, long-range pairwise interactions, solvent exposure

effect, electrostatic interactions, contact environment and a bias towards predicted local

distance, contact number and contact order (average sequence separation of residues in

contact).

E = Eshort +Estiff +EHB +Epair +Esolv +Eelectro +Eenv +Edist +ECOCN +Econtact

(2.7)

Short-range Cα-Cα and SG-SG interactions are described by statistical potential where

correlation of local structure is defined as negative logarithm of the corresponding frequency

histogram:

Eshort =
∑

i

(w1E13 + w2E14 + w3E15 + w4E
′
12 + w5E

′
13 + w6E

′
14 + w7E

′
15) (2.8)

The Ei,i+n energy terms represent short-range Cα − Cα interactions of the i-th residue

with its n-th next neighbour. Each term measures the correlation of the local structure

with the distribution of structural features extracted from the known structures (i.e. the

negative logarithm of the frequency histogram derived from PDB database [Ber08]). It

depends on the amino acid type, predicted secondary structure and the distance between

Cα atoms. Similarly E′
i,i+n represents interaction between two side chains in range n.

Side chain interactions, however, were used only in TOUCHSTONE-II and dropped out

later in I-TASSER.
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Stiffness knowlede based potential Estiff represents structural tendency towards a forma-

tion of the predicted secondary structure:

Estiff = w8

∑

i

(

−λv̂i · v̂i+4 − λ
∣

∣

∣b̂i · b̂i+2

∣

∣

∣ − λΘ1(i) + Θ2(i) + Θ3(i)
)

(2.9)

v̂i is a normalized (unit) vector between two consecutive carbon atoms Cα,i and Cα,i+1.

b̂i is a unit bisector of the angle between v̂i−1 and v̂i (see Figure 2.6). λ is a stiffness

factor that differs for residues inside or outside of the protein radius of gyration (i.e.

mean square distance from the center of mass). Three Θ functions represent structural

bias in favour of predicted secondary structures and penalise irregularities.

i− 1

i

i+ 1

n̂i

b̂i v̂i

Figure 2.6: Backbone vectors orientation: Cα − Cα vector (v̂i), angle bisector (b̂i),
backbone surface normal n̂i.

Due to lack of exact position of bond atoms in the CAS model (it uses only position of

Cα atom and the side chain geometrical center of mass), hydrogen bonds are represented

as a Cα packing preference supplemented with statistical parameters derived from known

structures:

EHB = w9

∑

j>i

λ′
(

b̂i · b̂j

)

|n̂i · n̂j |Θ4(i, j) (2.10)

n̂i is a unit normal vector perpendicular to the plane containing v̂i and b̂i (~ni = b̂i × v̂i).

The dot product of vectors specifies a bias towards regular H-bonds. λ′ is a stiffness

factor depending on predicted secondary structure and Θ3 represents a knowledge based

binary condition whether H-bond between ith and jth residue exists or not.

Long-range interactions are calculated between the side chain centers of mass. The

potential is represented here by a hard-core sphere of excluded volume interactions and a

soft-core 1/r type potential outside the sphere:

Epair = w10

∑

j>i

Eij(sij) (2.11)

Eij is set to 0 outside the soft-core (sij > Rmaxij
), to 4 inside the hard-core (sij < Rminij

)

or to statistical pairwise potential eij if between.

Solvent accessibility effects are described by sum of Cα burial/exposure potential and SG

hydrophilicity scales:

Esolv = w11

∑

i

(ECα,i + µESG,i) (2.12)

ECα
is a statistical potential depending on the distance of Cα atom from the protein

center in relation to the radius of gyration (for N residues r0 ≈ 2.2N0.38). µ is a burial

factor representing position of SG in relation to hydrophobic core (center of mass) and

ESG is a combination of Kyte-Doolittle and Hopp-Woods hydrophilicity scales.
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Electrostatic effects are included using a form of Debye-Hückel equation:

Eelectro = w12

∑

j>i

exp(−ksij)

sij
(2.13)

k is the inverse Deybe length, where 1
k ∼ 15Å was experimentally chosen by Zhang et al.

Potential describing the contact environment is based on bonds geometry and is derived

from the set of PDB structures:

Eenv = w13

∑

i

Vi (2.14)

Vi represents amino acid specific potential and depends on number of residues that

are in contact with the ith residue for which their bisectors are parallel (b̂i · b̂j > 0.5),

anti-parallel (b̂i · b̂j < −0.5) or perpendicular (dot product in [−0.5, 0.5] range). Residues

are considered to be in contact if sij < Rminij
.

Distance map, contact order, contact number and contacts restraint are based on predic-

tions collected from templates found by threading program PROSPECTOR:

Edist = wr1

∑

j>i

Θ5 (|rij − dij | − δij) + wr2Θ6





∑

j>i

|rij − dij |

δij
−Ndp



 (2.15)

Econtact = wr3

∑

j>i∈Scp

Θ5

(

sij − 6Å
)

+ wr4Θ6





∑

j>i∈Scp

Θ6

(

sij − 6Å
)

−Ncp



 (2.16)

ECOCN = w14

(

NCO −N0
CO

)

+ w15

(

NCN −N0
CN

)

(2.17)

Θ5(x) is simplified sign function which returns 0 for negative x and 1 otherwise. Θ6(x)

is similar but it returns x instead of 1. The first term of Equation 2.15 is a penalty for

deviation from predicted distance dij greater than mean square deviation of prediction δij .

The second term is a penalty for accumulated normalized deviation greater than number

of predictions Ndp. The first term of Equation 2.16 is a penalty applied if side chains

predicted to be in contact are in distance greater than 6Å. The second term is similar

penalty for total violation above the threshold Ncp. The last Equation 2.17 penalise

deviation from expected contact order N0
CO and contact number N0

CN .

Equation 2.7 has a total of 19 energy terms. The number is so high since short-range

interaction and threading prediction based terms are combinations of separately weighted

potentials. In overall, the force field uses 13 statistical potentials: E13, E14, E15, E
′
12, E

′
13,

E′
14 and E′

15 for short-range interactions, Rmin, Rmax and e for long-range interactions,

ECα
and ESG for solvation effects, finally V for contact environment.

The TOUCHSTONE-II energy function has been later improved by using more detailed

geometry of the hydrogen bond, where the position of Cα is extended by backbone N and

CO groups [ZS04c]. Two variants of this hydrogen potential has been described by Zhang

et al. in supplementary materials to [ZHA+06b]. One is using detailed atomic off-lattice

model which includes heavy atoms (N,C,O) along with the Cα, the other is a reduced

on-lattice CAS model. New potential supplements previous geometrical definition with
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statistical parameters derived from known structures:

EHBij
=







λα
(1−|b̂i·b̂j−bα0|)(1−|n̂i·n̂j−nα0|)

(1+||ǫn̂i−~r|−nrα0|)(1+||ǫn̂j−~r|−nrα0|)
if i, j in α-helix,

λβ
|n̂i·n̂j |(b̂i·b̂j)

(1+ 1
2
|ǫn̂i−~r|)(1+ 1

2
|ǫn̂j−~r|)

if i, j in β-sheet.
(2.18)

The location of hydrogen bonds in a specific secondary structure region is determined

based on the contact order and relative orientation of v̂i, v̂i−1 and v̂j , v̂j−1 backbone

vectors. n̂i is a unit normal vector perpendicular to the plane containing v̂i and b̂i

(~ni = b̂i × v̂i). λα/β is set to 1 if secondary structure prediction for residues i and j is

the same (both α-helix or both β-sheet) and to 0.5 otherwise. epsilon is equal to 5Å for

α-helix and to 4.6Å for β-sheet. Parameters bα0, nα0, nrα0 are based on statistics derived

from a set of 50 α-proteins and 50 β-proteins.

I-TASSER uses a new hydrophobic potential, where accessible surface area (ASA) is

predicted by the neural network [CZ05], of almost twice as good accuracy as for Hoop-

Woods and Kyte-Doolittle potentials [WSZ07]. In the training process 12 different ASA

cutoffs (0.05,0.1,...,0.6) are used to determine if the residue is exposed or buried:

EASA = −
∑

i

(

x2
i

x2
0

+
y2

i

y2
0

+
z2
i

z2
0

− 2.5

)

× P (i) (2.19)

First term corresponds to µ burial factor from Equation 2.12. Vector (xi, yi, zi) represents

ith residue in the center of mass (hydrophobic core) coordinate system and (x0, y0, z0)

represents lengths of principal axes of the protein ellipsoid. P (i) is the sum of two state

(1=exposure, -1=burial) predictions for all cutoffs.

In both TOUCHSTONE an I-TASSER algorithms the structure energy is optimised using

the parallel hyperbolic sampling (PHS), which is extension of the replica exchange Monte

Carlo sampling. To flatten the energy landscape it applies inverse hyperbolic sine function

to the energy difference [ZKS02].

2.4 Protein Structure Comparison

Structure comparison plays a fundamental role in understanding of the protein function as

it is a protein structure, not its sequence that conserves the function. Under the assumption

of evolutionary continuity of structure, it is possible to deduce the function of newly

discovered proteins by searching for homologous structural fragments and identification of

common ancestors. To do that, structures are aligned in way that maximises a similarity

score of a common region. Longer alignment usually correspond to a better match [HH09].

Structure comparison is also used in protein structure prediction to evaluate the quality

of protein models. In this case the alignment is fixed, as both target native structure

and the model represent the same amino acid sequence and differs only in shape. As

different superpositions of the compared structures lead to different similarity scores,

usually the best score with respect to the rotation is used. In case of the RMSD it could

be determined in polynomial time, but in general case it is NP-hard problem and heuristic

are employed to solve it.

The comparison in sense of alignment of two different proteins allows to build taxonomies

of proteins with hierarchical classes for different protein domains, folds or families.
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Currently two large human made classification systems are actively maintained: SCOP

[HAB+99, AHC+08] and CATH [PBB+03, GLA+07]. They are used as a “gold standard”

and comparison methods are trained and tested against them [KKL05, BHBK07]. In

contrast, the comparison in sense of optimal superposition of two structures with the

same sequence, as used in prediction, is deficient in such a “standard” reference. In CASP

experiment a visual assessment by a human expert is used for selected models [OSO02],

however, for obvious reasons this approach does not scale to the case of thousands of

decoys as in energy function optimisation and is very error prone.

2.4.1 ProCKSI Meta-server

As there are many biologically meaningful definitions of the protein similarity, there is

also a variety of comparison methods, each with its own concept of what “similar” means.

Such similarity could depend only on the structure or also rely on the sequence, it could

take into account only local best fitting sub-regions or be measured globally for the whole

structure, it could focus on the chemical role any physio-chemical properties or rather on

the expressed biological function.

This variety causes confusion. It is not clear which method should be applied in which

specific case. And the number of methods is growing. In recent years it doubled two

times in each decade [HH09].

To address this problem a project to build specialised meta-server for Protein (Structure)

Comparison, Knowledge, Similarity, and Information (ProCKSI) was started by N.

Krasnogor and D. Barthel. The idea behind ProCKSI was to turn around the comparison

paradigm from choosing a single “best” method (and excluding the others) to an integrative

approach suggested by Camoglu et al. [CCS06] with many different methods included at

the same time.

To achieve that, ProCKSI treats the problem of structural comparison as a set of many

related, but different structural similarity problems solved with different methods. As the

methods measure different aspects of similarity, they complement each other and together

create more accurate representation of the protein space.

2.4.2 ProCKSI Comparison Methods

The goal of the ProCKSI meta-server is not only to be able to compare multiple protein

structures using multiple similarity measures, but also to provide methods that complement

each other. For that reason the core ProCKSI comparison methods where chosen to be

able to deal with comparison of both similar and dissimilar structures.

Such a universality is very difficult to achieve with a single measure and ProCKSI includes

a different measure for each case: USM for dissimilar structures, and Max-CMO for the

similar ones. Both these measures where proposed to address the weak point of popular

comparison methods based on heuristic structural superpositions where optimality of the

score cannot be guaranteed [LCWI01, KP04].
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Contact Maps

The contact map is a representation of the protein 3D structure based on proximity

relation between residues. The map is a square binary matrix C of size n equal to the

number of protein residues. For each pair of residues i and j, Cij is equal to 1 if i and j

are in contact, and 0 otherwise. Two residues are in contact if the Euclidean distance

between them is less than a given threshold α. An example of protein tertiary structure

and its contact map is shown in Figure 2.7.

Figure 2.7: Protein and its contact map [BHBK07].

USM

The Universal Similarity Metric (USM) is a very general similarity measure that com-

pares the information content of protein contact maps C1 and C2 by approximation

of the Kolmogorov complexity K using a compression algorithm [KP04]. Kolmogorov

complexity K(C1) of a contact map C1 is approximated by the length of compressed map

|zip(C1)|. Conditional complexity K(C1|C2) of contact map C1 when K(C2) is known is

approximated by compression of the sum of objects |zip(C1 + C2)|.

Based on that the similarity between two structures is defined as universal, problem

domain independent Normalised Compression Distance (see Equation 2.20). According to

Krasnogor and Pelta [KP04] NCD is particularly effective with distantly related structures.

NCD(C1, C2) =
max[K(C1|C2),K(C2|C1)]

max[K(C1),K(C2)]
(2.20)

Max-CMO

As the USM is a very general metric, for fine grained comparison the Contact Map

Overlap (CMO) measure [GSK93] was implemented in ProCKSI as a part of this work

(see Chapter 3 for details). The CMO measure compares two contact maps in a form

of graphs and the value of CMO corresponds to the number of overlapping (matching)

edges of these graphs.

Let’s define the contact map of a protein in terms of relation R between two residues ri

and rj . Let riRrj be true if and only if the Euclidean distance between residues δ(ri, rj)
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is less or equal to the given threshold α. Now, relation R could be depicted as a graph

(see Figure 2.8), where each residue is represented by a node and two nodes ri and rj are

connected with an edge if riRrj is true (i.e. corresponding residues are in contact).

Figure 2.8: Construction of a contact map graph. Residues are mapped to nodes of the
graph and the ones being in contact, i.e. in distance less than a threshold α (here marked
with color), are connected with an edge.

As for the CMO measure exact upper and lower bounds can be computed and compared,

many authors consider it as one of the most reliable and robust measures of protein

structure similarity [CL02, KP04].

Other Methods

In addition to the two contact map based methods described above, ProCKSI includes

other comparison methods:

1. Combinatorial Extension of the optimal path (CE)[SB98],

2. Distance Matrix Alignment (Dali) [HP00],

3. FAST (FAST Alignment and Search Tool)[ZW05],

4. TM-align [ZS05],

5. Vorolign (aligning Voronoi contacts) [BGCZ07],

6. hybrid URMS-RMS (Unit-vector Root Mean Squared) [YK05].

2.4.3 ProCKSI Consensus

The ultimate goal of ProCKSI is to move the integration of comparison methods beyond

the multi-comparison towards intelligent merging of similarity aspects contained in each

of the individual methods. The limitations of this approach are not known so far as only

two very simple consensus methods are currently implemented in ProCKSI: average and
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median of all the similarity values (see Section 4.2.1 for detailed description of consensus

construction).

However, the first application of the ProCKSI consensus measure to the problem of

protein classification revealed very promising results. The simple mean of the similarity

values classified the proteins on the SCOP fold level as accurately as the best of them. A

hand picked subset of the methods worked even better revealing the synergy effect and

higher classification accuracy than the best method included in the consensus[BHBK07].

2.4.4 Decoy Comparison Measures

It is not very clear how well the protein structure comparison methods included in the

ProCKSI server will perform when used to compare decoys. There is evidence that for

specific targets the Max-CMO measure and the USM/Max-CMO consensus reflected the

CASP6 assessments quite accurately and even was able to detect better models[BHBK07].

However, this might not be a common behaviour across all methods.

Although in this dissertation the comparison is limited to the ProCKSI methods, I

am aware that using decoy specific measures to construct a similarity consensus is an

interesting alternative approach. For that reason I discuss the most popular decoy

comparison measures below. Additionally, later in Section 4.2.3 I describe a prototype of

a ProCKSI-like cloud computing application using decoy comparison measures. In the

future this might be extended with a consensus construction method.

Root Mean Square Deviation

The oldest and de facto standard measure of similarity between a target native struc-

ture and a predicted decoy structure is the RMSD. It is calculated as a root mean

square deviation of the distance between corresponding Cα atoms of two structures (see

Equation 2.21). The optimal rotation that minimises the RMSD between two sets of

coordinates is found by the Kabsch algorithm [Kab78, CSD04]. Despite its popularity

it is known to have a number of deficiencies [CZF+01, WFB03, Zem03]. First, due to

the quadratic nature of the RMSD, a small local perturbation is penalised with a large

deviation indicating incorrectly that two structures are different. Second, the absolute

value of RMSD is meaningless as it depends on the length of the compared structures (it

tends to increase with protein size). Finally, as it is sensitive to outliers it typically reports

how distant are the most incorrect parts of a model instead of what is usually much more

interesting, namely, which regions of a model are closest to the native structure.

RMSD =

√

√

√

√

1

N

i=N
∑

i=1

δ2i (2.21)

Global Distance Test

To address the first issue a global distance test total score (GDT TS) was proposed

[Zem03]. It takes into account both local and global superpositions by using 4 different

distance cutoffs. At each cutoff a largest superimposable set of residues is found. The

value of GDTi is the size of such a set for the cutoff distance i (see Equation 2.22).
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Effectively GDT TS express an average coverage of the target structure. In addition to

being size depended similarly to the RMSD, it is also more crude as it focuses only on

the size of the substructures within a given distance threshold ignoring the exact total

distance. It is currently a baseline measure in the CASP experiment [BDNBP+09].

GDT TS =

∑

i∈{1,2,4,8} GDT i

4
(2.22)

Relative RMSD

To avoid the size dependency a normalised variant of RMSD was proposed called the

relative RMSD (see Equation 2.23). The denominator is the average RMSD of two random

proteins of equivalent radius of gyration.

rRMSD(A,B) =
RMSD(A,B)

avgRMSD(RgA,RgB , pairs)
(2.23)

TM-score

The same concept is used a bit differently in TM-score [ZS04b]. An average distance d0

between corresponding residue pairs of two randomly related proteins is calculated based

on the power-law dependency between the radius of gyration and the length of a protein

and used to normalize the match difference to [0;1] range (see Equation 2.4.4).

d0(Ln) = 1.24 3
√

Ln − 15 − 1.8

TM-score = max





1

Ln

La
∑

i

1

1 +
(

di

d0(Ln)

)



 (2.24)

2.5 Metaheuristic optimisation

This section provides a brief overview of the key concepts used in metaheuristic opti-

misation and describes two metaheuristics used in this work: tabu search algorithm

(see Chapter 3) and genetic programming (see Chapter 5). The explanation on why

these specific algorithms were chosen and the discussion of alternatives are given in the

introductions to the aforementioned chapters.

2.5.1 Heuristics

The word heuristic comes from the Greek root “heuriskein” which means “to find” (from

the same root comes the word “eureka”). A heuristic for a given problem is a method of

finding a solution. Although heuristics do not always achieve the best possible solution

(the so called global optimum), they can dramatically reduce the time required to

solve a problem, by eliminating the need to consider unlikely possibilities or irrelevant

states. In general heuristics could be divided in two classes: constructive algorithms,

which build the solution from parts and local search algorithms based on a concept

of traversing the solutions in some neighbourhood [GP05]. The neighbourhood of a
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solution is a subset of all possible solutions (which are known as a search space) that

are possible to reach in a “single step” from some fixed point [BR03].

2.5.2 Metaheuristics

A metaheuristic is a set of strategies which could be used to define a heuristic method

applicable to a wide range of different problems. A metaheuristic is a high level algorithmic

framework which is general enough to be used to solve different optimization problems

without a time-consuming adaptation to the specific problem requirements.

A variety of different metaheuristics have been proposed so far [GK03, BK05, Luk09]

including: simulated annealing, tabu search, greedy randomized adaptive search procedure

(GRASP), scatter search, variable neighbourhood search (VNS), evolutionary algorithms

(e.g. genetic algorithms, genetic programming, memetic algorithms), swarm intelligence

(e.g. ant colony optimization, particle swarm optimization, honey bees algorithm).

Interestingly, inspiration for most of these algorithms was drawn from nature: behaviour

of ant or bee colonies, the process of evolution, process of steal annealing or operation of

a human memory.

The most important elements of all metaheuristics are concepts of diversification and

intensification. The idea behind the diversification is to allow a move resulting in worse

than current solution quality (so called uphill move) in order to escape from a local

minimum. The intensification does the reverse to assure the search convergence. It

decreases the probability of selecting an uphill move shifting the bias from exploration

of the search space towards solution improvement. The core of every metaheuristic is a

strategy to manage the intensification/diversification balance [BR03].

2.5.3 Tabu Search

The tabu search (TS) method was formalised by Fred Glover in [Glo89] and [Glo90]. It

applies the idea of iterative improvement combined with a concept of memory and the

observation how humans use it in problem solving. In each step the algorithm moves

from a current solution xi to a solution xi+1 in the neighbourhood of xi. After each move

the new solution xi+1 is stored in the long-term memory, usually implemented as a

hash table. By keeping a track of all visited states the TS algorithm can avoid revisiting

them and explore new regions of search space instead.

Additionally selected attributes of xx+1 related to a recent move xi → xi+1 are remembered

using a short-term memory mechanism called tabu list. The size of a tabu list, also

known as tabu tenure, is limited to a few recent solutions and can either be fixed from

the start (static tabu list) or it can vary during the search (dynamic tabu list).

Whenever a move xi → xi+1 alters the tabu-active attributes, that is the ones stored in

the tabu list, it might be considered tabu. A tabu status of a move is decided using tabu

activation rules. For example, after a move that drops element a from the solution, a

becomes a tabu-active attribute and activation rule will make a move that adds a again

tabu in the next tabu tenure iterations.

The purpose of the tabu list is to prohibit the moves which affect recently altered attributes

of the current solution. Effectively that restricts the neighbourhood but prevents move

reversal and cycling.
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However, under specific conditions called the aspiration criteria, a tabu move might

be allowed. For example when all moves are tabu or when the resulting solution is better

than an aspiration threshold related to the value of the current best solution.

cur rent = i n i t i a l s o l u t i o n ( )
for i in range (1 , max i t e r a t i on s ) :

N = neighbourhood ( cur rent )
while 0 < N. s i z e ( ) :

move = N. pop best move ( )
tabu = t a b u l i s t . i s t abu (move)
i f not tabu or ( tabu and a s p i r a t i o n (move ) ) :

candidate = current . apply (move)
i f candidate not in v i s i t e d :

cur r ent = candidate
break

t a b u l i s t . add (move)
v i s i t e d . add ( cur rent )
bes t = min ( best , cur rent )

Listing 2.1: Tabu Search metaheuristic pseudocode

2.5.4 Genetic Programming

The concept of genetic programming (GP) was popularised by John Koza with his

book on the “programming of computers by means of natural selection” [Koz92]. It draw

its inspiration from the biological evolution and is a specialisation of genetic algorithms to

the case of computer programs. Essentially, the genetic programming breeds a population

of computer programs to solve a problem. It starts with randomly generated programs

and iteratively evolves them using mechanisms modeled upon Darwinian principle of

survival of the fittest and genetic recombination in order to obtain better programs.

In the classic GP algorithm a computer program is represented as a syntax tree. Internal

nodes of a tree correspond to operator functions, terminal nodes correspond to operands.

This allows the use of a prefix notation to efficiently evaluate a tree. For example the

tree P1 from Figure 2.9 can be written as +A(*BC).

Initial population of trees is usually generated using the full method, which results in

a full tree of given depth with terminals selected only at the lowest level, or the grow

method where at all levels of a tree nodes are selected from both operators and terminals.

A combination of these methods where each is applied with 0.5 probability in known as

half-and-half initialization.

The initial population is then improved in the iterative cycle of selection, breeding and

replacement of individuals. One or two individual programs are selected from the current

population with probability based on their fitness. Selected individuals are next used

to create new individuals by applying the genetic operations: reproduction, crossover

or mutation, each with a specific probability given as a parameter of the GP algorithm.

Generated offspring is then used to form a new population (see Listing 2.2).
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populat ion = i n i t ( i n i t o p )
populat ion . eva luate ( )
for i in range (1 , max generat ions ) :

bes t = populat ion . s e l e c t ( s e l e c t i o n o p )
o f f s p r i n g = best . breed ( c ro s sover op , mutation op )
o f f s p r i n g . eva luate ( )
populat ion . r ep l a c e ( o f f s p r i n g )

Listing 2.2: Genetic Programming metaheuristic pseudocode

Two most popular selection methods are roulette wheel selection, where probability of

selection is proportional to the fitness of an individual and tournament selection, where

a winner (the one with best fitness) of tournament between randomly chosen k individuals

is selected. The bigger the k, the smaller is the chance that a weak individual will be

selected.

+

P1

A ∗

B C

∗

P2

+

C B

−

A B

+

O1

A −

A B

∗

O2

+

C B

∗

B C

Figure 2.9: Crossover operation generates offspring trees O1 and O2 from parents P1 and
P2.

Most of the new individuals are created using a crossover operator that recombines

randomly chosen parts of two parent trees to generate the offspring (see an example

in Figure 2.9). A small fraction of the offspring is created by the mutation operator

which introduces a random change to a randomly chosen part of a parent tree. The most

common way is to replace a sub-tree with a random tree, but other variants are possible

such as sub-tree swap or tree shrink where a node is replaced by one of its child nodes (see

an example in Figure 2.10). Finally, the reproduction operator copies a few individuals

without any changes.

The generated offspring could be included in the new population using different replacement

strategies. The simplest one is the generational replacement where individuals bred in

a current generation simply replace the old population. In the alternative steady-state

replacement strategy old individuals are replaced by offspring “in place”, that is least

fit individuals from the previous generation are deleted one by one and newly created

individuals take their place in the population. Both these strategies are often extended
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Figure 2.10: Three different mutation operators. Trees in the top row are mutated to
generate the trees in the bottom row.

with the elitism mechanism, where a small fixed-size elite set of best individuals is never

replaced by the offspring.

Genetic programming was shown to be able to generate human competitive results in a

number of different areas such as electronic design or game playing. There are several

examples of GP based innovations that duplicate functionality of patented solutions or

even are novel enough to be patentable themselves [Koz].

2.6 Conclusions

Protein structure prediction is a complex multi-step process that incorporates a range

of different methods from sequence and structure comparison, through geometrical

features prediction (secondary structures, contact maps, solvent accessibility), to the

structure optimisation and clustering. This dissertation touches two aspects of this

process: structure optimisation and selection of most common models through clustering

(which needs a measure of similarity). However, this work is not about optimisation of

the protein structures per se, but about the design of the objective functions (here called

energy functions as they tend to represent the potential energy of a protein structure)

used in that optimisation process.

The analysis of the state-of-the-art prediction methods has revealed several weak points.

First, the decoys used as a training sets in design of the energy functions where biased

against the native structure and very different in their nature from what the predictors

have to deal with in practice. Second, the RMSD was used as a reference similarity

measure despite its many inaccuracies such as a large score penalty for local errors,

meaningless absolute value (dependency on the protein length) and sensitivity to outliers

that results in emphasis on dissimilar regions. Finally, a very simple, yet restrictive linear

combination of energy terms was used to find the best energy function.
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In the following chapters this issues will be addressed one by one. First, a tabu search

based heuristic solving the Max-CMO problem will be proposed and then added to the

ProCKSI server to complement the USM method already implemented there. Then, the

ProCKSI server would be modified to enable a large scale comparison of N decoys against

a single native structure needed to compute the consensus similarity. After that the

information content of the consensus will be compared against the individual measures to

verify if there is evidence that it contains the sum of knowledge of individual measures

(supporting the H1 hypothesis). Finally, a genetic programming algorithm will be used

to design the energy functions as complex free-form functional combinations of the energy

terms (validating the H2 hypothesis) and the influence of the similarity consensus on the

evolvability of the energy functions will be tested (validating the H1 hypothesis).

40



Chapter 3

Metaheuristic for Max-CMO

3.1 Introduction

To have a balance set of the comparison methods integrated into the ProCKSI meta-server,

and thereby into the similarity consensus, a robust structure comparison method good in

discriminating between closely related structures was needed, to complement the already

implemented USM method, which is known for its effectiveness in comparing distantly

related structures. For these purpose a tabu search based metaheuristic algorithm solving

the Max-CMO problem was developed.

As an implementation of this algorithm was not the main objective of the dissertation

but an intermediate step to obtain the similarity consensus, the choice of the method was

motivated mainly by the implementation convenience. I have already used tabu search in

my MSc thesis and thus I was able to develop the algorithm much faster. However, the

key elements of the algorithm that contribute to the performance improvement, that is

the representation of a solution and the definition of a neighbourhood, are very general

and could be applied with the same result in any metaheuristic framework based on the

neighbourhood search.

3.1.1 Max-CMO Problem Definition

Maximum contact map overlap is an alignment of two proteins that maximises the

structural similarity. This similarity is measured as number of edges that could be

matched between two contact map graphs. Figure 3.1) presents an example alignment

with optimal CMO value equal to 3. The overlapping (matched) edges are shown in bold.

However, not every edge to edge matching is allowed. The overlap can be formed only if

the order of nodes in graph G1 is also preserved for assigned nodes of graph G2 (consistent

ordering constraint). In other words, for assignments nG1
x → nG2

x and nG1
y → nG2

y either

nG1
x < nG1

y and nG2
x < nG2

y or nG1
x > nG1

y and nG2
x > nG2

y must hold. This constraint is

also called non-crossing property of an overlap [XS06].

The Max-CMO problem has been proven to be NP-hard [GPI99] and because of the size

of the search space exact algorithms trying to solve it are exponential in the worst case.
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Figure 3.1: Optimal solution of the Max-CMO problem example. Overlapping (matched)
edges are in bold.

3.1.2 Search Space

The size of a search space (upper bound) for given two contact maps graphs G1 and

G2, each of n nodes for simplicity, corresponds to the number of possible k element

node assignments between G1 and G2, where k ∈ {1 . . . n}. Since assignment source

nodes (from graph G1) as well as assignment destination nodes (from graph G2) could be

selected in number of ways equal to:

n
∑

k=0

(

n

k

)

= 2n (3.1)

the number of all possible assignments is equal to:

n
∑

k=0

(

n

k

)2

=

(

2n

n

)

(3.2)

As typical size of a protein is 100 to 500 residues, in most practical cases it is not possible,

as expected, to solve Max-CMO problem to optimality by exhaustive search. This become

even more relevant in case of protein structure prediction where usually at least several

hundreds if not thousands of structures are being compared.

3.1.3 Related Work

To solve the Max-CMO problem many different methods have been applied. Foundations

for exact methods was led by Lancia et al. with reduction to maximum independent set

problem (non-crossing map) and the integer programming (IP) formulation [LCWI01].

This IP problem was solved by branch and cut algorithm using an upper bound found

by linear programming (LP) relaxation and the lower bound found by a local search

and a simple genetic algorithm. A year later this method was improved by the use of

lagrangian relaxation [CL02]. Also a reduction to the maximum clique problem and a

pruning algorithm was proposed in [SBS05].

Another technique of pruning pairs of nodes during search (called reduction by domination)

has been recently described in [XS06]. Although it solves to optimality many previously

unsolved instances and seems to be the best of exact methods proposed so far, it still
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does not cope well with dissimilar proteins and with proteins larger than 60 residues, let

alone with the simultaneous comparison of potentially thousands of decoys.

A polynomial time algorithm for crossing contact maps (simplified version of a problem)

was proposed by Gramm[Gra04]. This method was not intended to work with graphs

with nested edges (edges can only precede each other or cross). Additionally the cross

was defined as disjoint (two edges can’t share a common node). The author claimed that

a single pattern matching could be performed in O(n6m2), where n is a size of CM and

m is a size of a pattern. However, there are at most 3m possible patterns to check, so the

algorithm is in fact O(3mn6m2). Later on Li et al. show a flaw in this algorithm and

proved the simplified problem to be also NP-hard [LL06].

A metaheuristic approach using memetic evolutionary algorithm was proposed by Krasno-

gor et al. in [Kra04] and [CHK+02]. Additionally, a comparison of this approach with

the lagrangian relaxation was described in [KLZ+03]. Although the quality of results

for small and similar proteins was not as good as for the exact method, the memetic

algorithm proved to be quite robust method of comparing proteins of different families.

Interesting fuzzy generalisation of the contact map concept and the variable neighbourhood

search (VNS) heuristic for solving the generalised fuzzy CMO problem has been proposed

in [PKBC+05].

3.2 Tabu Search for Max-CMO

3.2.1 Representation

Heuristic methods described in literature represents the solution of Max-CMO problem

as an alignment of two proteins [LCWI01, PKBC+05, Kra04]. Such alignment is con-

structed by node to node assignments between two contact map graphs and reflects the

biological interpretation of the solution. However, it is possible to propose an alternative

representation based on the graph isomorphism problem.

To do that, I used a line graph of the original contact maps graph. Now, when a node to

node assignment between two line graphs is made, it corresponds to the assignment of

edges between original contact map graphs (see Figure 3.2). The problem can be then

restated as order restricted maximum common subgraph isomorphism.

Let’s assume two contact map graphs G1 and G2. In ideal case, nodes of graph G1 would

be assigned to nodes of G2 and whenever there is an edge between two assigned nodes of

G1, there would be also an edge between corresponding nodes of G2. This would then

mean that a subgraph of G1 is isomorphic to a subgraph of G2.

Not any common subgraph, however, satisfy the consistent ordering constraint. Moreover,

it is not straightforward to detect a violation of this constraint while operating on the

line graphs instead of the original contact map graphs (see page 45 in next section). The

advantage of operating on subgraphs is the ability to restate the problem in terms of

isomorphism of vertex-induced subgraphs.

A vertex-induced subgraph Gs(Vs, Es) consists of subset Vs of the nodes of the original

graph G and all the edges Es connecting nodes from Vs in G. This means that whenever

nG1
x → nG2

y node to node assignment is made, all assigned nodes adjacent to nG1
x needs

to have their G2 correspondents also adjacent to nG2
y to make the assignment feasible.
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1 2 3 4

A B C

L(G )1

L(G )2

1
2

3 4

A
B

C

G1

G2

Figure 3.2: Original Max-CMO problem (top) and the corresponding line graph represen-
tation (bottom).

The maximum common subgraph problem has been proven to be NP-hard [GJ79] and as

its order restricted version is not easier it is also NP-hard.

3.2.2 Search Efficiency Improvements

All metaheuristic search methods are based on common framework of iterative exploration

of the neighbourhood of current solution. The neighbourhood is in general a set of moves —

operations on attributes of a solution that moves the search process from current solution

to the neighbouring one.

for i in range (1 , max i t e r a t i on s ) :
. . .
N = neighbourhood ( cur rent )
best move = N. get best move ( )
. . .
cu r r ent . apply move ( best move )
. . .

Listing 3.1: Main loop

The most computationally expensive part of the method is the generation of the neigh-

bourhood, as for each candidate move that belongs there its feasibility and the cost/gain

value needs to be evaluated.
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for move in moves set :
i f move i s f e a s i b l e :

va lue = eva luate ( current , move)
N. add (move , va lue )

Listing 3.2: Inner loop

To evaluate a Max-CMO problem solution the number of matching edges needs to be

found. In alignment based representation for each node of graph G1 all adjacent nodes

and their G2 counterparts needs to be check, which gives computational complexity of

O(n ∗ d(V )). If we assume an iterative change, then the same check needs to be applied

only to nodes being a part of a new assignment, which lowers the complexity to O(d(V )).

In line graph representation each node to node assignment corresponds directly to a

match between two edges. This not only make each assignment meaningful (in alignment

based representation not every assignment changes the solution value), but also lowers

the complexity to O(m) in general case and O(1) if we assume an iterative change.

To decide if a move is valid the ordering constraint violation needs to be examine. In

alignment based representation the new assignment nG1
x → nG2

y needs to be compared

against all existing G1 → G2 assignments in the solution and dismissed as infeasible

whenever (nG1
x − nG1

i ) ∗ (nG2
y − nG2

j ) < 0 for any i, j ∈ {1 . . . n} for which nG1

i → nG2

j

assignment exists. This process needs O(n) operations. In line graph representation

similar examination is not possible as the information about residues order is lost as shown

in Figure 3.3). It is not possible to distinguish between 1 → B and 2 → B assignments

and decide that the latter is infeasible.

1 2 3

A B C

L(G )1

L(G )2

21

CBA

3

G1

G2

Figure 3.3: Move feasibility. Existing assignments are marked with black thin dotted line,
feasible moves are marked with thick dotted green lines and the infeasible moves with
thick red dash dotted lines.

As a result, to decide if a move is feasible, a reference to the alignment based representation

is needed. However, it is possible to decide feasibility in O(1) time at the cost of updating

an extra memory structure with assignments constraints. Since the move is infeasible as

soon as a single ordering constraint is violated, it is enough to compare it against the

neighbouring assignment. If ordering condition is not violated there, it is also not violated
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for further neighbouring assignments. An example of a new move and it’s neighbouring

assignments is presented in Figure 3.4. The dashed red lines are marking infeasible

assignments.

L R L R1 21 2

Figure 3.4: Move feasibility constraints.

For each node of the graph G1 information about its neighbouring assignments is stored.

This structure is updated once per iteration when new current solution is chosen (see

Listing 3.1) which takes O(n) time.

Summing up the proposed improvements, the total efficiency gain per iteration is:

• evaluation of solution: O(m2 ∗O(1)) vs. O(n2 ∗O(d(V )))

• examination of feasibility: O(m2 ∗O(1) +O(n)) vs. O(n2 ∗ n))

Knowing that the total sum of vertex degrees in a graph is equal to twice number of

edges, we can state the relation between m and n as below:

d(V ) =

∑n
i=1 di(V )

n
=

2m

n

n ∗ d(V ) = n ∗
2m

n
= 2m

(3.3)

If we take into account that for line graph representation a larger neighbourhood is

searched (O(m2) = 1
4n

2 ∗ d(V )2 ≥ n2 for d(V ) ≥ 2), the overall efficiency gain is equal to

O(n+ d(V ) − 1) or simply O(n).

3.2.3 Tabu Search Implementation

I have implemented improvements described in previous section using the tabu search

[Glo89, Glo90, HTdW95] metaheuristic framework. As a neighbourhood operator I used

simple 1-opt node to node assignment. To disallow state revisiting in the process of search

I have implemented a hash based long term memory (LTM). For efficiency reasons short

term memory (tabu list) was constructed with two separate data structures: a hash set

(for O(1) search) and a priority queue (for O(1) update).

To examine the new method of testing the move feasibility an empirical approach was

used. For each iteration the feasibility of all moves in the neighbourhood was decided

with both methods: naive (O(n)) and the new constraint based O(1). Then the decision

was compared to make sure that new approach yields exactly the same results as the old

one.
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The experiment was run on reference protein data sets used before by Lancia [LCWI01],

Skolnick [LCWI01], Sokol [URLa], Chew and Kedem [CK02] and Leluk, Konieczny and

Roterman [LKR03]. Each pairwise comparison was repeated 5 times with different random

seed, since the search process was starting from a randomly constructed solution.

3.3 Results

The tabu search based algorithm solving the Max-CMO problem was tested on 5 test sets

(see Section 3.2.3). A statistical summary of proteins in each test set is given in Table 3.1.

The length of protein (number of nodes in the contact map graph) is denoted by n and

number of contacts in the protein (number of edges in the contact map graph) is denoted

by m.

min max mean

test set size n m n m n m

Sokol 9 21 45 62 168 52 139
Leluk-Konieczny-Roterman 6 337 990 421 1307 383 1155

Chew-Kedem 35 90 230 497 1508 179 526
Skolnick 40 66 181 255 815 155 460
Lancia 269 64 139 72 243 68 179

Table 3.1: Statistics of the test sets. n is the number of nodes, and m is the number of
edges in the contact map graphs from the set.

3.3.1 Algorithm Performance

To measure the improvement in the algorithm performance introduced by the constraint

based feasibility check (see Section 3.2.2), new version of the algorithm has been compared

to the naive O(n) check. For each pairwise comparison from single test set the execution

time is a mean of 5 single runs of the algorithm. For each run different random seed

was used (Mersenne’s primes (2n − 1) for n ∈ {7, 13, 17, 19, 31}). The initial solution

was chosen randomly. Two stop conditions were used: empty list of moves (all tabu) or

100 iterations without any improvement. Tabu tenure factor has been set to 10% of the

number of contacts in the shorter protein.

Blue and red dots in Figure 3.5 represent respectively naive and constraint based check.

Numbers along the X axis correspond to the size of instance (i.e. the product of number

of contacts of proteins being compared), where Y axis shows the execution time.

For test sets where the range of protein sizes is limited (e.g. Sokol set), it is hard to

observe how the difference in performance changes with the instance size. It is clear,

however, if we analyze the plot for Skolnick set (enlarged). For the smallest instances

(48k) the new algorithm is about 100 times faster. For 10 times greater instances (560k)

the ratio increases to about 1000 indicating linear dependency on the instance size. This

confirms theoretical performance gain derived from complexity analysis.
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3.3.2 Quality of Solutions

Choosing the Best Move

The line graph representation introduces a new shape of solution space, where a small

change in current state results in a small change in the value of objective function

(low ruggedness) and improvements in part of the solution do not compromise past

achievements. Although these are the features of a good landscape [WA96], still searching

it is not easy.

Main difficulty in the search process guidance, as described in Section 3.2.3, was the

choice of the best move in a current state, when many moves with the same value of

objective function exist. This feature of the landscape is shown in Figure 3.6. All green

states improve the value of the current orange state by the same amount. Analogously all

red states equally decrease the value of solution.

Figure 3.6: For a current state marked with orange there is a number of uphill (green) and
downhill (red) moves with the same value of objective function (+1 and -1 respectively)
and the choice of the best move is not obvious.

To solve this problem an additional preference has been applied to the group of moves

with equal value of objective function. Since the preference is simply a secondary sorting

criterion, it does not change the value of the original objective function, so the definition

of similarity measure also does not change.

The goal of each additional preference is to bias the choice towards more promising moves

using problem specific knowledge. Several different methods of preferring one solution to

the other has been proposed and tested:

• length - similarity of edge lengths

• degree - similarity of degrees of edge nodes

• position - similarity of relative position of edge nodes in the graph

• min distance - distance to a closest assigned edge

The idea behind the first three methods is to compare local features of the graphs and

choose the move that adds assignment of most similar edges or removes assignment

between most dissimilar ones. The last method increases local density of assignments.

Figures 3.7–3.11 show the comparison of different preference methods for all 5 test sets.

The top scatter plot on each figure show the value of solution (overlap) for each pairwise
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comparison, sorted by instance size. The bottom bar plot present the same data as a

percentage histogram of ranks obtained by each methods across all pairwise comparisons.

As in performance comparison each overlap value on the plot is the mean of 5 runs. The

stop condition was 100 000 iterations without an improvement. When list of moves was

empty, the search was restarted from a new random solution. Tabu tenure factor has

been set to 30% of the number of contacts in the shorter protein.

The use of restarts increased the quality of best solution about 2-3 times compared to the

single run. Increased number of iterations only slightly improved the quality of solution

and no influence was observed if set above 100k. Method denoted on plots as restart is

a reference implementation where no preference is used. The choice of move though, is

not random but deterministic and depends on the sorting algorithm.

An important observation here is that the instance difficulty is not strictly related to

the instance size but also to the protein similarity. The clusters of similar proteins with

higher values of the overlap are most clearly visible for the Chew-Kedem and Skolnick

test sets. It is also worth to notice that for some comparisons the use of a preference did

not improve the quality (none of the methods was strictly better than restart).

Clearly degree was the worst method. In fact it introduces a negative bias, since for 80%

of comparisons quality is lower than for restart. The best method was length dominating

the first two ranks with min distance following it closely, except the Leluk-Konieczny-

Roterman set where it was ranked 4th. This together with part of the Chew-Kedem plot

for big instances shows that min distance strategy of dense assignments does not lead

to good solutions for long proteins.

The behaviour of position method was very interesting. It was frequently ranked last

as well as first. There were several comparisons in each test set where overlap value for

position was significantly higher than those obtained by all the other methods. This

happened for proteins of similar length and could be observed on the Lancia plot. The

cluster of high overlap values emerges there around the mean instance size.

Changing the Tabu Attributes

To further improve the quality of solutions several variants of tabu search algorithm were

tested. First modification was a change in definition of the tabu list. The coarse grained

list from previous experiments uses the source edge of an assignment as the tabu attribute.

This way the source edge with previously removed assignment could not be reassigned

to any target as long as it is tabu. New fine grained list is using both source and target

edge as a tabu attribute. This way the source edge with removed assignment cannot be

reassigned only to the previously assigned target edge (not to any as before).

The fine grained approach increases the number of possible moves and let the search

process explore more solutions in a single run. However, it becomes more difficult to

choose the size of the list (tabu tenure factor) that would guide the search effectively for

all instances.

On Figures 3.12–3.16 the modified tabu list method is denoted as tabu. Two methods

tabu length1 and tabu length2 combine tabu method with length based preference.

First one uses the additional preference only for new assignments (add moves) and the

other, as in all previous experiments, uses it for both add and remove moves. The
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Figure 3.7: Comparison of preference methods on the Leluk-Konieczny-Roterman
set. The overlap values for different instance sizes are shown on top. Histogram of ranks
across all comparison instances for each method is shown on the bottom.

51



Chapter 3. Metaheuristic for Max-CMO

 20

 40

 60

 80

 100

 120

 140

 160

 180

1C
P

H
A

/1
V

II 
(4

.0
k)

1C
P

H
A

/1
K

N
T

 (
6.

8k
)

1C
P

H
A

/3
E

B
X

 (
7.

6k
)

1V
II/

1K
N

T
 (

13
.5

k)

1V
II/

1E
R

A
 (

14
.8

k)

1K
N

T
/5

P
T

I (
23

.4
k)

1B
P

I/5
P

T
I (

24
.3

k)

1K
N

T
/3

E
B

X
 (

25
.5

k)

1B
P

I/3
E

B
X

 (
26

.5
k)

1E
R

A
/3

E
B

X
 (

27
.9

k)

ov
er

la
p

sokol best

ts-restart
ts-degree

ts-min-distance
ts-length

ts-position

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 3 4 5

%
 o

f c
om

pa
ris

on
s

rank

sokol ranking

ts-restart ts-degree ts-min-distance ts-length ts-position

Figure 3.8: Comparison of preference methods on the Sokol set. The overlap values
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Figure 3.9: Comparison of preference methods on the Chew-Kedem set. The overlap
values for different instance sizes are shown on top. Histogram of ranks across all
comparison instances for each method is shown on the bottom.
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Figure 3.10: Comparison of preference methods on the Skolnick set. The overlap values
for different instance sizes are shown on top. Histogram of ranks across all comparison
instances for each method is shown on the bottom.
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experiment set up was the same as in previous experiment except of the tabu tenure

factor, which was set to 50% of the number of contacts, and the tabu list being now

cleared after each restart.

Beside the comparisons in the Leluk-Konieczny-Roterman set involving long proteins,

the tabu modification alone was able to improve the quality of solutions and was as

good or even better than the length method. For some instances, however, the quality

decreased significantly below restart method level. Clear clusters of such instances are

visible on Sokol (1BPI/5PTI or 1ERA/3EBX) and Skolnick plots (1TRI/1YDVA or

1BTMA/1TMHA). These groups of proteins have equal or similar length and very similar

contacts. It seems that the arbitrary chosen tabu tenure is not selected well for these

instances.

Inclusion of the length based preference further improved the quality. For all test sets

except again Leluk-Konieczny-Roterman, tabu length1 and tabu length2 methods

were clearly much better than length and tabu, with tabu length1 slightly ahead of

tabu length2.

Using 2-opt Operators

Further modification were made to neighbourhood operators. Standard add and remove

moves were extended with 2-opt look ahead and change operators.

The look ahead operator checks how many new feasible assignments (add moves) exist

after making a particular move. Although every new assignment increases the value

of solution, it also introduces new restrictions to solution feasibility. As a result, the

most beneficial assignment would be the one least limiting the possibility of further

improvements. Furthermore, when no improvement is possible the removal of most

restrictive assignment would maximise the probability of improvement in next move.

The change operator is used when no add moves are possible and is simply a reassignment

of an existing source edge to a different target. It may be seen as effective version of

combined 2-opt remove-then-add operator. It should allow to move across the solution

space without the solution improvement in an attempt to drift away from the local

optimum.

Figures 3.17–3.20 present results of four new methods based on the tabu method from

previous experiments. The look ahead operator was used in tabu lookahead1 and

tabu lookahead2 methods. In the first method, the operator is applied only to the

removal of assignments. In the second method it is applied to both add and remove

moves. As the neighbourhood searched by the look ahead operator is large (square of

1-opt neighbourhood size ≈ O(m4)), the tabu lookahead2 method is computationally

expensive. The method denoted as tabu length lookahead is a combination of the

tabu lookahead1 and tabu length1 from previous experiment. Change operator was

used in tabu change method.

Surprisingly, the use of the change operator did not improve the quality of solutions.

For all sets the tabu change method was clearly the worst in the group. The look

ahead operator was not very successful either. The tabu lookahead1 method was not

significantly better than tabu. Except Sokol set, it got higher ranks more often but still

its most frequent rank was lower. The difference for Sokol plot appears here because of
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Figure 3.12: Comparison of modified tabu attributes on the Leluk-Konieczny-
Roterman set. The overlap values for different instance sizes are shown on top. Histogram
of ranks across all comparison instances for each method is shown on the bottom.
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Figure 3.13: Comparison of modified tabu attributes on the Sokol set. The overlap values
for different instance sizes are shown on top. Histogram of ranks across all comparison
instances for each method is shown on the bottom.
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Figure 3.14: Comparison of modified tabu attributes on the Chew-Kedem set. The
overlap values for different instance sizes are shown on top. Histogram of ranks across all
comparison instances for each method is shown on the bottom.

59



Chapter 3. Metaheuristic for Max-CMO

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

1B
7I

A
/1

R
N

1A
 (

48
.0

k)

1B
7I

A
/2

P
LT

 (
53

.8
k)

1B
7I

A
/1

B
00

A
 (

62
.3

k)

1R
N

1A
/1

R
N

1C
 (

71
.0

k)

1B
Y

O
A

/2
P

C
Y

 (
80

.4
k)

1R
N

1B
/1

N
T

R
 (

91
.7

k)

1B
Y

O
A

/4
T

M
Y

B
 (

10
4.

3k
)

1N
A

T
/1

B
00

A
 (

11
8.

7k
)

4T
M

Y
A

/4
T

M
Y

B
 (

13
5.

1k
)

1B
Y

O
B

/1
IE

R
 (

15
3.

6k
)

3C
H

Y
/1

D
P

S
A

 (
17

5.
0k

)

1R
N

1C
/1

H
T

IA
 (

19
9.

1k
)

1B
A

W
A

/1
T

R
I (

22
7.

2k
)

1Q
M

P
B

/1
H

T
IA

 (
25

7.
8k

)

1Q
M

P
A

/1
B

T
M

A
 (

29
2.

6k
)

1D
P

S
A

/1
T

R
I (

33
6.

1k
)

1I
E

R
/1

Y
D

V
A

 (
37

9.
8k

)

1F
H

A
/1

B
T

M
A

 (
42

9.
5k

)

1T
R

I/1
Y

D
V

A
 (

50
9.

7k
)

1T
R

I/1
A

W
2A

 (
56

0.
5k

)

1B
T

M
A

/1
T

M
H

A
 (

63
8.

1k
)

ov
er

la
p

skolnick best

ts-restart
ts-length

ts-tabu
ts-tabu-length1
ts-tabu-length2

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 3 4 5

%
 o

f c
om

pa
ris

on
s

rank

skolnick ranking

ts-restart ts-length ts-tabu ts-tabu-length1 ts-tabu-length2

Figure 3.15: Comparison of modified tabu attributes on the Skolnick set. The overlap
values for different instance sizes are shown on top. Histogram of ranks across all
comparison instances for each method is shown on the bottom.
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Figure 3.16: Comparison of modified tabu attributes on the Lancia set. The overlap
values for different instance sizes are shown on top. Histogram of ranks across all
comparison instances for each method is shown on the bottom.
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Figure 3.17: Comparison of 2-opt operators on the Leluk-Konieczny-Roterman set.
The overlap values for different instance sizes are shown on top. Histogram of ranks
across all comparison instances for each method is shown on the bottom.
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Figure 3.18: Comparison of 2-opt operators on the Sokol set. The overlap values for
different instance sizes are shown on top. Histogram of ranks across all comparison
instances for each method is shown on the bottom.
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Figure 3.19: Comparison of 2-opt operators on the Chew-Kedem set. The overlap values
for different instance sizes are shown on top. Histogram of ranks across all comparison
instances for each method is shown on the bottom.
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Figure 3.20: Comparison of 2-opt operators on the Skolnick set. The overlap values
for different instance sizes are shown on top. Histogram of ranks across all comparison
instances for each method is shown on the bottom.
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very tight clusters for smallest proteins. Several methods were sharing the same rank

there and the separation is not so clear as for other tests. The tabu lookahead2 method

was tested only for the two smallest sets, because of the long computations. It was ranked

higher than tabu but still lower than the best methods.

The addition of length based preference made tabu length lookahead method the

best in the group. It was clearly better than tabu lookahead2 and except the Leluk-

Konieczny-Roterman set, better than both tabu length1 and tabu length2 methods.

Distance from Optima

To compare the quality of the algorithm I measured the distance to the optimal solutions

found by Xie at el. [XS07] for Skolnick test set. For each comparison the best solution

(not mean) returned by all the methods is compared to the known optimum. The distance

is measured as the percentage normalised difference o−b
o between optimum o and the

value of best solution found b.

Figure 3.21 shows that only a few optimal solutions were found and for many instances

the best result is 20% lesser than optimum. This is not a satisfactory result and further

algorithm improvements need to be considered.
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Figure 3.21: Distance of the best solutions to the optima.

3.4 Discussion

Although the complexity improvement in evaluation of the solution and the feasibility

check are obvious selling points of the proposed algorithm it is not free from limitations.

Despite increased number of solutions evaluated in the unit of time the algorithm has

difficulties in finding the good quality solutions. While a few more promising variations

of the preference could be test (see below) to possibly further improve the intensification
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phase, the biggest drawback of the algorithm seems to lie in oversimplified diversification

that is not able to determine correctly which assignments should be removed.

As the case of tabu length lookahead method has shown better results for combination

of methods, several additional experiments could be performed. Instead of single preference

method a weighed combination of length and position or even length and degree

could be used. Also tabu change could be combined with preferences or even look ahead

operator. The results for double change operator might be also worth testing.

However, as all the methods are still far from reaching optimal solutions, the biggest

improvement may depend on other factors. It might be a more strict condition for edges

assigning (for example only equal length), more advanced intensification and diversification

with extra learning (reactive tabu search with dynamic tabu tenure factor [SS05, BB05]

or additional long term memory with Elite List [LMC99]) or early abandoning of not

promising solutions based on upper bound estimation.

3.4.1 Algorithm Behaviour Analysis

For selected successful and unsuccessful runs of the algorithm I analysed in more detail

how the search process is carried out and how much does the final solution differ from the

starting one. In many cases the random choice of the initial solution was not a good idea.

Because the number of feasible assignments is decreasing with each move first choices

are very important. When made randomly they often led to solutions that block further

improvement.

Two examples are shown on Figure 3.22. Because of the starting shift or long cross

assignments there is no way to improve that solutions other than removing all the

assignments first and then adding them from the scratch. The search process in most

cases was not able to do that.

Figure 3.22: Two examples of “dead end” starting solutions.
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There are, however, cases where the search process works well. Figure 3.23 shows an

example of a starting and final solution (optimum for this instance). The initial solution

is establishing a framework for further improvements, which allows the search procedure

to overcome the shallow local traps (cross assignments) and find the optimal solution.

Figure 3.23: Starting solution for which the optimum was found.

As for randomly generated starting solutions most of the iterations of the algorithm are

wasted on the search in the unpromising regions of the search space, the next step in

algorithm improvement should be an experiment with more intelligent method of choosing

initial solution.

The easiest way to improve the quality of starting solutions is to construct them heuristi-

cally. One of the ideas is to use the knowledge about frequency of edges length in the

shorter graph and assign most frequent longest edges first. If the estimation of an upper

bound would be known, instead of random selection of feasible moves, exact number of

estimated assignment could be made with the feasibility of solution restored afterwards.
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3.5 Conclusions

In this chapter I have summarised the Max-CMO problem as a robust protein structure

similarity measure. Using a novel representation of the problem based on a line graph I

have demonstrated performance improvements resulting in lower computational cost of

solution evaluation and feasibility check with a overall gain of O(n).

An algorithm using the new representation of the solution was implemented as a tabu

search metaheuristic and several different types of neighbourhoods/moves and tabu list

definitions were tested. Running in a fraction of time (seconds) used by the exact solutions

(days) the algorithm was able to solve a few instances of Skolnick set to optimality and

achieving 76% of the optimum in the worst case.

The main limitation of the presented metaheuristic is its sensitivity to inital solution. This

could be possibly eliminated by replacing the random choice of the initial solution with a

hand-crafted heuristic or by introducing more differentiating destruction/diversification

phase.
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Chapter 4

Consensus Similarity

4.1 Introduction

The protein structure comparison process is an important element of protein structure

prediction. It has many uses including model evaluation (measure of distance between the

model and the target native structure), optimisation of parameters of energy functions

used in prediction (order of decoys by a distance to the native structure) or selection of

best decoys (clustering of a decoy to decoy distance matrix).

As there is no agreement upon which protein similarity measure is the best and because of

so many different comparison methods with more and more new ones appearing each year,

the choice is difficult. Instead of choosing a single best measure a number of individual

measures is combined, with each measure contributing its own notion of similarity, into

a single similarity consensus measure. Through a positive synergy of these individual

similarities the consensus similarity might be more accurate than the best of the individual

measures.

The approach to construct the similarity consensus described in this chapter is based on

the comparison methods provided by the ProCKSI meta-server (see Section 2.4.1. The

server software was modified to allow to perform the consensus computations between a

large number of decoys and the native target structure. In contrast to the previous study

on the consensus with the use of ProCKSI [BHBK07] which compared different proteins,

a focus of the research presented here is on the decoy-native comparison. In particular, on

verification if the consensus similarity computed for decoys indeed contains the knowledge

of individual methods as suggested by the previous study. If the evidence for that is

found, it will support the H1 hypothesis, that the consensus measure is more robust and

better suited as a reference measure in the process of energy function optimisation (this

is verified later in Chapter 6).

However, in case of the protein structure prediction it could be more accurate to construct

the consensus using scoring functions designed for decoys evaluation such as GDT TS or

TM-Score, instead of protein-protein comparison methods used in ProCKSI. Having in

mind the scalability limitations of the infrastructure available for the ProCKSI server,

I decided not to introduce these methods there. Instead, I used a cloud computing

environment to build a prototype of a scalable web application for decoy comparison.

The details of its implementation and the results of the performance test are a parallel

70



Chapter 4. Consensus Similarity

thread of this chapter. Although this new web application was not yet ready to be used to

compute the alternative (decoy specific) consensus, it provided a strong basis for further

work.

4.2 Methods

4.2.1 ProCKSI Consensus

To make this large scale comparison experiment possible the ProCKSI meta-server was

equipped with a new N:1 comparison mode in which all decoy structures are compared

against a single native. This work was done in collaboration with Daniel Barthel who

was the original ProCKSI developer.

For the time of the experiment the ProCKSI server had to be taken offline, so that no

outside interference was possible as this would very likely led to a crash of the system

under such a heavy load. It took 14 days to perform all the experiments reported in the

next section using all 4 nodes of the ProCKSI cluster with a cumulative of 12 CPU cores.

Consensus Construction

To construct the consensus I used 6 out of 8 methods available in ProCKSI, excluding

Vorolign and Dali. Vorolign was found to be the most CPU hungry method and was

excluded to speed up the computations. As Dali needs to detect significant similarities

between the structures to compute the score, it was not well suited for the decoy-target

comparison where most of the decoys are dissimilar to the native structure.

Out of these six methods only the USM measures the distance (being 0 for identical

structures and increasing for dissimilar ones). The other methods measure the similarity

(being 1 for identical structures and decreasing for dissimilar ones). Additionally some

methods also report RMSD of the chosen alignment (see Table 4.1).

name metric type RMSD

CE similarity yes
FAST similarity yes

Max-CMO similarity no
TM-align similarity yes
URMS similarity yes
USM distance no

Table 4.1: Measures used in the consensus construction.

For all the proteins each decoy was compared against the target native structure and

against itself. The similarity values s were converted to distances d with the use of the self-

similarity values s(i, i) and then normalised to the [0;1] range as shown in Equation 4.2.1.

If a similarity value was missing due to an error in a method, it was ignored.

d (i, t) = max [s(i, i), s(t, t)] − s(i, t)

norm [d (i, t)] =
d (i, t) − min [d (i, i) , d (t, t)]

maxj [d (j, t) − min [d (j, j) , d (t, t)]]
(4.1)
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The consensus similarity was calculated in two variants: mean or median of all measures.

Two different methods of aggregation were used: mean/median across all 6 similarity

values (similarity consensus) or mean/median 4 RMSD values (RMSD consensus). As a

result 4 different types of consensus were computed.

4.2.2 Mutual Information

To measure how large is the mutual dependence of different similarity measures and

the 4 variants of the consensus measure a universal metric based on mutual information

was used. Let’s define entropy H(X) as a measure of the uncertainty associated with a

random variable X:

H(X) =
∑

x∈X

pxlog2(px) (4.2)

The joint entropy of two variables X and Y is a measure of uncertainty associated with a

joint system XY:

H(XY ) = H(X ∪ Y ) =
∑

x,y

px,ylog2(px,y) (4.3)

Then the mutual information I(X;Y ) is a measure of reduction in uncertainty of X

knowing Y (the amount of information Y contains about X):

I(X;Y ) = H(X) +H(Y ) −H(XY ) (4.4)

H(X|Y ) H(Y |X)I(X;Y )

H(X) H(Y )

H(XY )

Figure 4.1: Mutual information between random variables X and Y. H(X) is the entropy
of variable X, H(XY) is the joint entropy of X and Y, H(X—Y) is the conditional entropy
of variable X when Y is known.

Estimation of the mutual information for the finite set of data points results in a small

bias related to the size of the set. For that reason it was not used directly but a universal

metric D(X,Y ) was used instead:

D(X,Y ) = 1 −
H(X ∩ Y )

H(X ∪ Y )
= 1 −

I(X;Y )

H(XY )
(4.5)

The metric D(X,Y ) scales with the total information, is normalised to range [0;1] and

is universal. Essentially this means that if X ≈ Y according to any non-trivial distance

measure, then X ≈ Y also according to D [KSAG03].

To further improve the estimation for the mutual information and ensure that individual

distributions of similarity values would not blur the results, the compared data sets
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were normalised to an identical reference distribution using the adaptive partitioning

[SKD+02]. Instead of dividing the range of N similarity values into M bins with fixed

intervals, the width of a bin is determined by the local density of the data and each bin

contains approximately N/M data points.

To test the hypothesis that two sets of similarity values X and Y are independent k

random permutations of the original set Y were created by shuffling the order of its

data points. The probability that the original set Y has the smallest mutual information

distance within the whole ensemble of shuffled sets by chance is then equal to α = 1
k+1 .

The null hypothesis could therefore be rejected with confidence of 1 − α, where α is the

probability of a false rejection [SKD+02].

4.2.3 Protein Decoys Comparator

As the current architecture of ProCKSI is limited to a maximum of 2500 concurrent

comparisons (due to limited local cluster infrastructure) in its current state it can’t provide

a stable base for further development. Because of that I decided to run a prototype

application using the Google App Engine (GAE)1, a recently introduced web application

platform designed for scalability. GEA operates as a cloud computing environment

providing Platform as a Service (PaaS). It removes the need to consider physical resources

as they are automatically scaled up as/when required. It also does not require any setup

or maintenance of the hardware infrastructure.

GAE offers two runtime environments based on Python or Java, both well documented

and frequently updated with new features. A limited amount of GAE resources is provided

for free and is enough to run a small application. There are no set-up costs and all

payments are based on the daily amount of resources (storage, bandwidth, CPU time)

used above the free levels.

The Protein Decoys Comparator functionality is very simple. It allows a user to upload a

number of decoys and run the comparison experiment in one of two modes: comparison

of all structures against a known native structure (N:1) or comparison of all structures

against each other (N:N). The user can currently choose from four comparison measure:

RMSD, LCS, GDT TS[Zem03] and TM-score [ZS04b]. When the experiment is finished,

an e-mail notification is send. For a quick visual assessment, the results are shown as

the frequency histograms of the resulting distance vector/matrix. Also a raw data file is

provided for download and further analysis. The application website is:

http://pd-cmp.appspot.com/.

Architecture

The user interface (UI) and most of the application logic was implemented in Python

using web2py framework2. This makes the application portable as it can also run outside

of the GAE infrastructure without any code changes. The histograms were made using

Google Charts API3, so that they do not use extra CPU time. The comparison engine

was implemented in Groovy using Gaelyk4, a small lightweight web framework designed

1http://code.google.com/appengine/
2http://www.web2py.com/
3http://code.google.com/apis/chart/
4http://gaelyk.appspot.com
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for GAE. It runs in Java Virtual Machine (JVM) environment and interfaces with the

BioShell java library [GK08] that implements all four structure comparison methods.

The comparison experiment is started by an HTTP request to the comparison engine

from the UI module (see Figure 4.2). Then the comparison module splits the experiment

into a number of structure vs. structure comparison tasks and executes them as parallel

background processes. Each task reads the structures written to the datastore by the UI

module and stores back the results. Finally the UI module reads the results and generates

the histograms.

Figure 4.2: Protein Decoys Comparator architecture on GAE.

Distributed Computing Model

The response time to each HTTP request on GAE is limited to 30s. While this seems at

first to be quite restrictive, in combination with a task queue mechanism it is an efficient

distributed computation service. The work could be organised into small tasks and done

in the background, outside of the user request. Each task is put into a queue and later

automatically dispatched according to defined scheduling criteria. The only problem is

the efficiency of Python and Java being interpreted languages. A common practice of

binding these languages with fast modules written in C/C++ is not possible on GAE, as

it cannot run arbitrary native code. For that reason we implemented the computational

engine on JVM using BioShell.

File Size Limitations

There is a hard 1MB limit on the size of stored data structures (entities) and hence

common practice of uploading data in a single compressed file cannot be applied to GAE.

Even small archives can be problematic as GAE lacks direct file system access which

makes decompression more complex. We decided to upload the files one by one as single

structure files are usually much smaller than 1MB. To make the upload process easy
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and capable of handling hundreds of files, we used Uploadify library5 which combines

Javascript and Flash to provide a multi-files upload and progress tracking.

4.3 Results

In experiments reported in this section I have used decoys generated by two different

protein structure predictors: I-TASSER and Rosetta. I-TASSER decoys were generated

during the Monte Carlo based structure optimisation process [ZKS02] and are available

online [WSZ07]. For 55 small non-homologous proteins (i.e. with pairwise sequence

identity < 30%) I took a 10% sample of the generated decoys (one decoy every 10 I-

TASSER iterations). This resulted in set of 1250–2000 decoys per protein. For the same

set of proteins I ran the Rosetta ab initio prediction [RSMB04] (version 2.2.0) to obtain

the same number of decoys as in the I-TASSER case. Table 4.2 shows the average length

of these proteins and a distribution of secondary structure types in the set.

SS type length

α β αβ min max avg

16 14 26 47 118 81.07

Table 4.2: Secondary structure type and length of chains used in the consensus experiments.

4.3.1 Relation to the RMSD

To quickly evaluate the difference between the four variants of the consensus and the

RMSD the respective correlations were calculated (see Table 4.3). The RMSD consensus

was surprisingly less correlated on average to the RMSD than the similarity consensus.

However, if we consider that the protein comparison methods calculate the RMSD only

for the best aligned fragment of the structure and that the value of RMSD depends on the

fragment length, the lower correlation is justified. It is also in line with the observation

made by Barthel et. al [BHBK07] on poor performance of the RMSD consensus in the

protein classification case.

aggregated measure

similarity RMSD

decoys mean stddev mean stddev

I-TASSER 0.625 0.199 0.454 0.319
Rosetta 0.687 0.187 0.354 0.287

Table 4.3: Average correlation between the consensus and RMSD.

5http://www.uploadify.com/
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Chapter 4. Consensus Similarity

4.3.2 Dependency Between Measures

The mutual information distance between the similarity measures was in most of the cases

greater than 0.9. Besides the obvious smaller distance between the mean and median

variants of both similarity and RMSD consensuses, not many similarities were found (see

Tables 4.4 and 4.5). TM-align and URMS and were slightly closer to the mean similarity

consensus than the other three measures.

However, when the statistical independence was tested, the dependency between measures

became clear. For the mean similarity consensus the null hypothesis that measures

are independent was rejected for all measures and in case of all proteins (see Tables 4.6

and 4.7). This is a strong indication that the consensus indeed combines the information

from all the measures. The rejection of the null hypothesis is less frequent in case of the

RMSD consensus. For the Max-CMO and USM measures which were not part of the

RMSD consensus the rejection ratio is the lowest, reaching about 70% of proteins. This

shows that for about 30% of proteins these contact map based measures rank the decoys

different than the other four measures. That means that inclusion of the contact map

based methods in the consensus was a reasonable idea as they add new information to

the consensus.

4.3.3 Consensus Disagreement

Following the observation from the measure independence test, I decided to examine the

level of disagreement amongst the similarity methods used in the consensus with respect

to the consensus average value. The following scatter plots are showing a correlation

between the energy of decoys computed by the predictor and the consensus similarity.

Each panel shows decoys for a single protein. The number on top of each panel is the

correlation coefficient. The disagreement is visualised with color and it is represented by

the standard deviation amongst similarity measures for a given decoy. Saturated red is

the color of the decoys with the lowest disagreement and saturated blue — the highest.

Pale blue/red color shows disagreement in between this two extrema.

In Figures 4.3–4.6 most of the decoys are red. Especially in the Rosetta case only a few

saturated blue decoys with high level of disagreement are visible. They tend to be located

on the right side of the plots, that is where the distance to the native is the largest.

Similarly saturated red color is more often marking decoys similar to the native structure.

The plots are fairly similar for both aggregation methods.

For the similarity consensus the disagreement distribution is very different. In Figures 4.7–

4.9 the decoys with highest level of disagreement are the ones most similar to the native

structure, whereas the lowest level of disagreement is observed for the most distant decoys.

There seems to be a clear correlation between the level of disagreement and the distance

to native structure. Despite a discretisation of a dense regions into bins the median

similarity consensus does not differ from the mean one.

The coefficient of the correlation between the mean similarity consensus and its

standard deviation is equal to −0.76 for Rosetta decoys and −0.46 for I-TASSER. The

more dissimilar to the native the decoys are the smaller is the similarity consensus

deviation. Analogically, the similarity measures disagree the most for the near native

decoys.
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CE FAST Max-CMO TM-align URMS USM mean median rmsd-mean rmsd-median

CE 0.000 ± 0.000 0.946 ± 0.042 0.960 ± 0.026 0.883 ± 0.063 0.904 ± 0.059 0.950 ± 0.037 0.860 ± 0.056 0.891 ± 0.056 0.933 ± 0.055 0.940 ± 0.054

FAST 0.946 ± 0.042 0.000 ± 0.000 0.950 ± 0.024 0.939 ± 0.047 0.944 ± 0.045 0.958 ± 0.030 0.923 ± 0.055 0.935 ± 0.046 0.951 ± 0.042 0.956 ± 0.037

Max-CMO 0.960 ± 0.026 0.950 ± 0.024 0.000 ± 0.000 0.957 ± 0.029 0.959 ± 0.028 0.952 ± 0.035 0.917 ± 0.036 0.931 ± 0.046 0.966 ± 0.024 0.967 ± 0.024

TM-align 0.883 ± 0.063 0.939 ± 0.047 0.957 ± 0.029 0.000 ± 0.000 0.837 ± 0.070 0.943 ± 0.042 0.831 ± 0.072 0.786 ± 0.076 0.898 ± 0.080 0.910 ± 0.076

URMS 0.904 ± 0.059 0.944 ± 0.045 0.959 ± 0.028 0.837 ± 0.070 0.000 ± 0.000 0.948 ± 0.037 0.833 ± 0.070 0.787 ± 0.072 0.912 ± 0.067 0.917 ± 0.073

USM 0.950 ± 0.037 0.958 ± 0.030 0.952 ± 0.035 0.943 ± 0.042 0.948 ± 0.037 0.000 ± 0.000 0.925 ± 0.054 0.926 ± 0.039 0.959 ± 0.032 0.960 ± 0.031

mean 0.860 ± 0.056 0.923 ± 0.055 0.917 ± 0.036 0.831 ± 0.072 0.833 ± 0.070 0.925 ± 0.054 0.000 ± 0.000 0.754 ± 0.090 0.920 ± 0.062 0.928 ± 0.060

median 0.891 ± 0.056 0.935 ± 0.046 0.931 ± 0.046 0.786 ± 0.076 0.787 ± 0.072 0.926 ± 0.039 0.754 ± 0.090 0.000 ± 0.000 0.917 ± 0.057 0.926 ± 0.055

rmsd-mean 0.933 ± 0.055 0.951 ± 0.042 0.966 ± 0.024 0.898 ± 0.080 0.912 ± 0.067 0.959 ± 0.032 0.920 ± 0.062 0.917 ± 0.057 0.000 ± 0.000 0.784 ± 0.105

rmsd-median 0.940 ± 0.054 0.956 ± 0.037 0.967 ± 0.024 0.910 ± 0.076 0.917 ± 0.073 0.960 ± 0.031 0.928 ± 0.060 0.926 ± 0.055 0.784 ± 0.105 0.000 ± 0.000

Table 4.4: Mutual information distance between measures for Rosetta decoys. Average and standard deviation over 55 proteins are shown.

CE FAST Max-CMO TM-align URMS USM mean median rmsd-mean rmsd-median

CE 0.000 ± 0.000 0.940 ± 0.040 0.973 ± 0.015 0.867 ± 0.058 0.947 ± 0.035 0.970 ± 0.026 0.916 ± 0.039 0.904 ± 0.059 0.947 ± 0.035 0.950 ± 0.032

FAST 0.940 ± 0.040 0.000 ± 0.000 0.964 ± 0.018 0.920 ± 0.048 0.944 ± 0.042 0.967 ± 0.027 0.907 ± 0.053 0.923 ± 0.052 0.941 ± 0.044 0.945 ± 0.040

Max-CMO 0.973 ± 0.015 0.964 ± 0.018 -0.000 ± 0.000 0.972 ± 0.015 0.979 ± 0.012 0.972 ± 0.018 0.928 ± 0.025 0.929 ± 0.054 0.978 ± 0.013 0.979 ± 0.012

TM-align 0.867 ± 0.058 0.920 ± 0.048 0.972 ± 0.015 -0.000 ± 0.000 0.903 ± 0.054 0.966 ± 0.027 0.897 ± 0.055 0.820 ± 0.112 0.876 ± 0.074 0.885 ± 0.070

URMS 0.947 ± 0.035 0.944 ± 0.042 0.979 ± 0.012 0.903 ± 0.054 -0.000 ± 0.000 0.974 ± 0.022 0.899 ± 0.049 0.884 ± 0.068 0.910 ± 0.079 0.913 ± 0.079

USM 0.970 ± 0.026 0.967 ± 0.027 0.972 ± 0.018 0.966 ± 0.027 0.974 ± 0.022 0.000 ± 0.000 0.951 ± 0.033 0.949 ± 0.039 0.972 ± 0.025 0.973 ± 0.023

mean 0.916 ± 0.039 0.907 ± 0.053 0.928 ± 0.025 0.897 ± 0.055 0.899 ± 0.049 0.951 ± 0.033 0.000 ± 0.000 0.827 ± 0.062 0.935 ± 0.045 0.940 ± 0.041

median 0.904 ± 0.059 0.923 ± 0.052 0.929 ± 0.054 0.820 ± 0.112 0.884 ± 0.068 0.949 ± 0.039 0.827 ± 0.062 -0.000 ± 0.000 0.923 ± 0.055 0.931 ± 0.050

rmsd-mean 0.947 ± 0.035 0.941 ± 0.044 0.978 ± 0.013 0.876 ± 0.074 0.910 ± 0.079 0.972 ± 0.025 0.935 ± 0.045 0.923 ± 0.055 0.000 ± 0.000 0.728 ± 0.121

rmsd-median 0.950 ± 0.032 0.945 ± 0.040 0.979 ± 0.012 0.885 ± 0.070 0.913 ± 0.079 0.973 ± 0.023 0.940 ± 0.041 0.931 ± 0.050 0.728 ± 0.121 0.000 ± 0.000

Table 4.5: Mutual information distance between measures for I-TASSER decoys. Average and standard deviation over 55 proteins are shown.
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single measures consensus measures

CE FAST Max-CMO TM-align URMS USM mean median rmsd-mean rmsd-median

CE 55 51 50 55 55 51 55 55 51 48
FAST 46 55 55 48 47 48 55 51 45 44
Max-CMO 49 55 55 51 47 53 55 55 41 39
TM-align 55 49 51 55 55 50 55 55 55 53
URMS 55 45 49 55 55 50 55 55 55 54
USM 51 49 52 50 49 55 55 55 46 43

mean 55 55 55 55 55 55 55 55 52 51
median 55 51 55 55 55 55 55 55 54 54
rmsd-mean 51 44 42 55 55 44 55 55 55 55
rmsd-median 47 43 40 52 54 42 50 53 55 55

Table 4.6: Measures independence test for Rosetta decoys. For each pair of measures and each protein the hypothesis that measures are independent was tested.
The table shows for how many proteins (out of 55) this hypothesis was rejected at significance level α = 0.05.

single measures consensus measures

CE FAST Max-CMO TM-align URMS USM mean median rmsd-mean rmsd-median

CE 55 55 45 55 53 49 55 55 55 53
FAST 55 55 53 55 54 51 55 55 54 55
Max-CMO 41 53 55 50 40 46 55 54 40 38
TM-align 55 55 50 55 54 53 55 55 55 55
URMS 54 54 36 54 55 41 55 54 54 53
USM 44 52 46 53 42 55 55 53 44 47

mean 55 55 55 55 54 55 55 55 55 55
median 55 55 53 55 54 53 55 55 53 55
rmsd-mean 54 53 37 55 54 44 55 54 55 55
rmsd-median 53 54 35 55 53 45 55 54 55 55

Table 4.7: Measures independence test for I-TASSER decoys. For each pair of measures and each protein the hypothesis that measures are independent was
tested. The table shows for how many proteins (out of 55) this hypothesis was rejected at significance level α = 0.05.
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Figure 4.3: Correlation of Rosetta generated decoys original energy and RMSD mean consensus. Standard deviation for each consensus value is marked with
color on a scale from saturated red (lowest standard deviation) to saturated blue (highest standard deviation).

79



C
h
a
p
t
e
r

4
.

C
o
n
se

n
su

s
S
im

il
a
r
it

y

Figure 4.4: Correlation of Rosetta generated decoys original energy and RMSD median consensus. Standard deviation for each consensus value is marked
with color on a scale from saturated red (lowest standard deviation) to saturated blue (highest standard deviation).
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Figure 4.5: Correlation of I-TASSER generated decoys original energy and RMSD mean consensus. Standard deviation for each consensus value is marked
with color on a scale from saturated red (lowest standard deviation) to saturated blue (highest standard deviation).
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Figure 4.6: Correlation of I-TASSER generated decoys original energy and RMSD median consensus. Standard deviation for each consensus value is marked
with color on a scale from saturated red (lowest standard deviation) to saturated blue (highest standard deviation).
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Figure 4.7: Correlation of Rosetta generated decoys original energy and similarity mean consensus. Standard deviation for each consensus value is marked
with color on a scale from saturated red (lowest standard deviation) to saturated blue (highest standard deviation).
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Figure 4.8: Correlation of Rosetta generated decoys original energy and similarity median consensus. Standard deviation for each consensus value is marked
with color on a scale from saturated red (lowest standard deviation) to saturated blue (highest standard deviation).
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Figure 4.9: Correlation of I-TASSER generated decoys original energy and similarity mean consensus. Standard deviation for each consensus value is marked
with color on a scale from saturated red (lowest standard deviation) to saturated blue (highest standard deviation).
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Figure 4.10: Correlation of I-TASSER generated decoys original energy and similarity median consensus. Standard deviation for each consensus value is
marked with color on a scale from saturated red (lowest standard deviation) to saturated blue (highest standard deviation).

86



Chapter 4. Consensus Similarity

4.3.4 Google App Engine Benchmark

To test the performance of the proposed architecture I run a 48h test in which a group of

beta testers run multiple experiments in parallel at different times of a day. I observed a

very consistent behaviour of the service, with a relative absolute median deviation smaller

than 10%. The values reported in Table 4.8 show the statistics for 15 runs per each of

the 4 decoy sets.

processing time[s]

protein decoys length median mad min max

1b72A 350 49 178 17 108 272
1egxA 300 115 195 17 125 274

1kviaA 500 68 236 16 203 406
1fo5A 800 85 369 33 307 459

Table 4.8: Performance of the Protein Decoy Comparator. mad (median absolute
deviation) = mediani(|xi −median(X)|).

4.4 Discussion

A high variance of the similarity consensus for decoys similar to the native indicates the

difficulty of assessing the similarity of such structures. The closer the decoys are the less

is the relative error margin for the similarity score. Dissimilar decoys are easier to assess

as the same absolute error is much smaller in relation to the distance.

As the negative correlation between the variance and the mean value of the consensus

was relatively high it would be possible to even use the consensus disagreement itself as a

measure of structural similarity or identification of the near native structures.

Such a good agreement of the RMSD consensus for the majority of decoys indicates that

the alignments constructed by different similarity measures were similar. It seems to be

more straightforward to align the best fragments correctly than to find a superposition

that would be optimal for the whole structure. And this in particular makes the decoy to

native comparison more challenging than comparison of two different proteins.

Judging by the result of the statistical independence test the similarity consensus seems to

be exactly what it was expected to be, a combination of knowledge contained in individual

similarity measures. However, the aggregations used to construct the consensus were very

simple. Maybe a different approach based on rank aggregation or majority voting would

be more interesting way of combining this knowledge.

It shouldn’t be also difficult to introduce a model of user preferences. Either as a simple

weighted sum of similarity measures or as a reference ranking given for selected decoys by

an expert.

4.5 Conclusions

The amount of information shared between the mean similarity consensus and the

individual similarity measures was found to be higher than the one possible by chance
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(at significance level of 5%). This confirms the expected inclusive character of the

consensus measure and is strong indication that it contains the sum of knowledge of all

the individual comparison methods (what supports the H1 hypothesis that the consensus

might positively influence the evolvability of energy functions).

In addition, it was shown that for the mean RMSD consensus exclusion of the Max-

CMO and USM measures resulted in no shared information between them and the

consensus for almost 30% of the proteins. This means that the notion of similarity used

by this measures adds a new information, not contained in the other measures in the

30% cases. Therefore, it was a reasonable idea to include these method in the mean

similarity consensus. It would be interesting to test if the same could be said about

the other methods. For that further experiments would be required with n-1 consensuses

(single method excluded) compared against the individual methods.

Another interesting aspect of the performed analysis is a discovery of the negative

correlation between the consensus disagreement and the consensus value. This seems to

suggest that decoys more similar to the native structure are more difficult to asses by

the protein comparison methods, as they were not designed for the decoys comparison.

An interesting future work would be a test of disagreement between the decoy-specific

measures and all measures, decoy and protein-specific, together.

Finally, a fully functional prototype of a cloud computing application for protein decoys

comparison has been proposed and tested for performance. In the future this application

could be extended with a consensus construction methods and become an alternative

service to the current ProCSKI meta-server.

88



Chapter 5

Genetic Programming

Experiment

5.1 Introduction

The application of evolutionary algorithms (EA) to protein structure prediction is not

new. Many methods have been studied in the past [Ung04] using a variety of protein

structure and energy models, ranging from a very simple H–P lattice model [Dil90] in

works of Krasnogor et al. [KHSP99, KBHB02] and Santana et al. [SLL08] to all-atom

force fields such as CHARMM used by Day et al. [DLP03] and Cutello et al. [CNN06]

or AMBER used by Djurdjevic et al. [DB06]. All these methods, however, use the EA

framework to optimise the model of protein structure with respect to a fixed, i.e. given,

energy function.

In this work, I focus instead on the improvement of the energy function itself. I do this,

because even the optimal model would be as good as the energy functions (i.e. objective

functions) used to optimise it. The analysis of the most successful prediction methods,

namely I-TASSER and Robetta, suggests, that the energy functions are far from perfect

(see Section 2.3), as it is not highly correlated with similarity to the native, and thus it

could be improved. I hypothesise that a more general functional combination of energy

terms will result in higher correlation between the energy function and the similarity of

the candidate protein structures to the true native structure (hypothesis H2).

To test my hypothesis I conducted a large number of experiments applying genetic

programming (GP) to evolve the energy function used to evaluate protein structures.

As a test set I used real decoys generated by I-TASSER predictor during the structure

optimisation process [WSZ07]. I believe that this is more accurate than using decoys

generated by randomisation of the native structure (as in the original work of Zhang et al.

[ZKS03]), because in practise, predictors have no a priori knowledge of the native structure.

I have selected a subset of eight energy terms used by I-TASSER and pre-calculated

their values for all decoys. Experiments were then carried out to evolve non-linear energy

functions featuring a range of basic algebraic operators and transcendental functions.

Using several different fitness measures I tried to determine how difficult it is to evolve an

energy function that is highly correlated with structural similarity to the native state. As
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a baseline control experiment, I compared the best evolved energy functions with results

of a random walk.

I decided to use GP as it has been proved successful in solving symbolic regression

problems and being able to produce human-competitive results [PLM08]. The standard

tree-based GP was chosen to provide a solid comparison baseline for further research,

as this is a really pioneering work and very little is known about the structure of the

problem, but there are many possible alternative approaches including graph-based GP,

linear GP, grammatical evolution or estimated distribution algorithms (see Chapter 7 for

discussion of possible directions for future research).

The results reported in this chapter are further analysed in Chapter 6, providing control

experiment with linear combination of terms and discussion of the method limitations

including the influence of the consensus similarity.

5.2 Methods

5.2.1 Energy Terms

I have implemented eight I-TASSER energy terms. These include: three short-range

potentials between Cα atoms E13, E14 and E15, long-range pairwise potential between side

chain centres of mass Epair, environment profile potential Eenv, local stiffness potential

Estiff and electrostatic interactions potential Eelectro as described in [ZKS03, ZS04c] and

the hydrogen bonds potential EHB as defined in supplementary materials to [ZHA+06b].

See Section 2.3.3 for detailed description of these terms.

I left out potentials using data from the threading process (e.g. distance map or contact

order) and the hydrophobic potential introduced in [WSZ07] using neural network [CZ05]

as they depend on external feature predictors which were not available for local use at

the time of writing this chapter and would have made pre-calculation much slower (see

Section 6.3).

5.2.2 Construction of the Ranking

In my optimisation experiments I have used 54 small non-homologues protein chains used

by Zhang et. al [WSZ07]. From the set of decoys generated by I-TASSER during the

Monte Carlo based structure optimisation process [ZKS02] (available online [WSZ07]) I

have taken a 10% sample (one decoy every 10 I-TASSER iterations) to eliminate highly

similar decoys. This resulted in a training set of 1250–2000 decoys per protein. For each

decoy I have pre-calculated the values of energy terms listed in the previous section.

For each protein I have measured the similarity between the generated decoys and the

known native structure. As a measure I used the root mean square deviation (RMSD)

between 3D coordinates of Cα atoms of two structures minimised with respect to the

rotation using Kabsch algorithm [Kab78, CSD04]. Despite the limitation of the RMSD

discussed in Section 2.4.4 I use it here to make a fair comparison to the previous work

[ZKS03, WSZ07].

To compensate for the inaccuracies of the RMSD as a similarity measure, we decided not

to rely on the absolute value of the similarity directly, but rather on the relative rank order.
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For given decoys A and B I decide only if RMSD(A,native) < RMSD(B,native) and

ignore the scale of absolute difference in the distance to a native δ = RMSD(A,native)−

RMSD(B,native). By doing this, I also simplify the optimisation objective, as linear

hierarchy is easier to reflect in energy function than exact distances between all pairs of

decoys.

For each protein I sorted all decoys in increasing order of the original I-TASSER energy

to obtain the initial ranking R0 (see Figure 5.1). That is, decoys with low ranks (near

the beginning of the ranking) have lower energy, while those with high ranks have higher

energy. Based on R0 I created two variants of the final ranking R1 and R2. Ranking R1

was constructed by sorting R0 by RMSD (in ascending order). In case of a tie, the rank

from R0 was used as a second sorting criterion. Effectively R1 is a permutation of R0.

R2 in contrast, is a list of ranks assigned to each element of R0 according to its position

in R1. The ranks in R2 were averaged in case of a RMSD tie. A tie between decoys was

called when RMSD values were the same up to the first two decimal places. This gave us

a precision of a 1 picometer (for reference, the radius of hydrogen atom is 25 pm).

R0

RMSD

0

3.2

1

2.1

2

5.2

3

1.2

4

3.5

5

2.1

6

4.8

7

3.5

R1 3 1 5 0 4 7 6 2

R2 3.0 1.5 7.0 0.0 4.5 1.5 6.0 4.5

Figure 5.1: The figure shows the two approaches used to construct the ranking. R0 is the
initial ranking where decoys are sorted by the original I-TASSER energy (leftmost decoy
has the lowest energy). R1 is a permutation of R0 where decoys are sorted by RMSD
(leftmost decoy is most similar to a native structure) and a decoy index from R0 is used
to break ties (e.g. decoys 1 and 5 share the same RMSD value but as 1 < 5, decoy 1
precedes 5 in R1). R2 is a list of ranks based on the order of decoys in R1 (e.g. decoy 0
is in position 3 in R1, so R2[0] = 3). In case of RMSD ties the ranks in R2 are averaged
(e.g. decoys 1 and 5 have the same RMSD values, therefore they share the average rank
of 1+2

2 = 1.5).

For the same set of protein chains I ran the Rosetta ab initio prediction [RSMB04] and

obtained the same number of decoys as in I-TASSER case. These decoys were only used

for visual assessment of correlation between Rosetta energy and RMSD (see Section 5.4).

5.2.3 Experiment Plan

I used a set of 16 terminals and 8 operators. Half of the terminals were the energy terms

T1–T8 described in Section 5.3.2 (see Table 5.2 for the mapping to I-TASSER terms),

half were ephemeral random constants in range [-1,1]. Half of the operators were binary

(addition, subtraction, multiplication, division), half were unary (sine, cosine, exponential

function, natural logarithm). I did not impose any selection bias towards any of the

primitives.

The key element of my evolutionary mechanism is the objective function used to calculate

the fitness of the candidate energy functions in the population. For each protein the
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objective function was used to rank the decoys using the evolved energy function. Then

this ranking was compared to the reference ranking (obtained in the preprocessing stage)

and the normalised distance between the two was averaged for all proteins in the training

set, producing the total fitness.

I used several different methods to calculate the distance between rankings:

• Levenshtein edit distance[Lev66], a popular string metric where distance is given

by the minimum number of operations (insertion, deletion or substitution of a

character) needed to transform one string into the other,

L(a, b) = dn,n

di,0 = d0,i = i for i = 0 . . . n

di,j = min{di−1,j + 1, di,j−1 + 1, di−1,j−1 + c(i, j)}

c(i, j) =







0 if a(i) = b(i)

1 if a(i) 6= b(i)

• Kendall tau distance[Kni66], the number of inversions between two permutations

also known as the bubble-sort distance,

K(a, b) = |{(i, j) : i < j ∧ a(i) < a(j) ∧ b(i) > b(j)}|

• Spearman footrule distance[DKNS01], the sum of differences between the ranks of

elements.

S(a, b) =
n

∑

i

|a(i) − b(i)|

Notice that the measures differ in the computational cost. For the Levenshtein distance a

dynamic programming algorithm has to be used with a complexity of O(n2). Kendall

distance can be computed in O(nlogn) time by counting inversions during the merge

sort procedure. Spearman distance is the simplest measure of these three and can be

calculated in a linear time.

Both Kendall and Spearman distances are bounded by O(n2), having the maximum

possible distance equal to respectively n(n−1)
2 and 1

2n
2 for the reversed ranking. Leven-

shtein distance, similar to many other editing distance metrics on permutations such as

Hamming metric, Cayley distance or Ulam metric, is bounded by O(n).

For the Spearman distance I have applied an additional weighting mechanism to promote

correct order at the beginning of the ranking (more native-like) and to be more forgiving

for differences in the order at the end (less native-like). I used two weighting functions:

• linear function decreasing from 1 to 0 along the position in the ranking,

wLIN (i) = 1 − i/N , for 0 ≤ i < N (5.1)

• sigmoid function with inflection point (weight 0.5) at 25% of the ranking length.

wSIG(i) =
1

1 + exp( i−0.25N
scale∗N )

, where scale =







0.25N
width if i < 0.25N

0.75N
width if i ≥ 0.25N

(5.2)
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Additional experiments were performed with the reduced data sets. Instead of using all

decoys for each protein, I used a small sample of decoys. To generate them I have applied

two sampling methods: simple selection of k decoys and noise filtering. The first method

was used with k = 100 in three variants: random selection, uniform selection (every n/kth

decoy), decoys with the lowest original I-TASSER energy. The goal of the noise filtering

method was to obtain a uniformly sampled set of decoys for which the original I-TASSER

energy is correlated with similarity. Starting from the decoys most similar to the native,

the set of all decoys was divided into bins. Two variants of bins were used: equal size

bins (same number of decoys) and equal distance bins (same RMSD range). From each

bin a single most similar decoy was selected such that its original I-TASSER energy value

was greater than for the decoy selected from the previous bin. If none such decoy existed

no sample was selected from the bin. Along arbitrary selected number of bins b = 100 I

also used b for which the average number of samples obtained for all proteins was the

largest. I found it to be 42 for equal size bins and 58 for equal distance bins.

I have implemented the genetic programming algorithm using the Open BEAGLE frame-

work [GP06]. Base GP configuration used in all my experiments included two replacement

strategies: generational and steady-state [Sys90], the tournament selection [GD91] and

the population size set to 100. Mutation was done using three different operators: sub-tree

replacement with a random tree, sub-tree swap or tree shrink where a tree node is replaced

by one of its child nodes. Table 5.1 shows the probabilities of all evolutionary operators

used in my experiments.

operation operator probability

crossover non-leaf crossover point 0.70
leaf crossover point 0.10

mutation sub-tree replacement 0.05
tree shrink 0.05
sub-tree swap 0.05

reproduction copy without modification 0.05

Table 5.1: List of the evolutionary probabilities used in all experiments.

This configuration is derived from an initial exploratory trial performed on a set of first

two proteins (1abv and 1af7 ). As for the more complex configurations the evolutionary

progress was similar or even smaller than in case of the basic ones (see Figures A.5–A.7 in

the Appendix), I decided to keep the experiments simple and not to use the more advanced

features of the Open BEAGLE framework such as constrained operators [Mon95], multi-

deme populations, evolutionary module acquisition (EMA) [AP93] or hierarchical fair

competition (HFC) replacement [HGS+05]. I used the traditional low rate for mutation to

have a majority of the offspring created by the crossover [PLM08]. I kept the population

size low due to complexity of the fitness evaluation both in terms of CPU time and the

memory requirements, however, it would be an interesting future work to investigate the

behaviour of the algorithm with much larger populations.

I have run my experiments in three rounds changing the factors of the next round based

on the results of the previous one. As a result, the first two rounds are of an exploratory

nature, while the third round is more aggressive towards increasing the correlation.

Configuration of all rounds is shown in Figure 5.2.
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In the first round I used Levenshtein, Kendall and non-weighted Spearman distances. In

the second round the ineffective Levenshtein distance was rejected and the linear and

sigmoid weighting was added to the Spearman distance. To have more selection pressure

I changed the tournament size from 2 in previous round to 4, 6 and 8. In the third

round I used only sigmoid weighted Spearman’s distance together with the list of ranks

R2 instead of permutational ranking R1 used in both previous rounds. The tournament

size has been set to 8 for generational and 6 for steady-state replacement. Both these

strategies were used alone, with strong 5-elitism or with automatically defined functions

(ADF) operators [Koz94]. The set of all decoys was extended with 5 types of reduced sets

and the number of generations was increased to 2000 from 1000 used in previous rounds.

DECOYS

ROUND I

REPLACEMENT
STRATEGY

DISTANCE
MEASURE

STEADY-STATE

GENERATIONAL

ALL

KENDALL

LEVENSHTEIN

SPEARMAN

ALL

SIGMOID-SPEARMAN

ALL

2TOURNAMENT
SIZE

GENERATIONAL

STEADY-STATE

4 6 8

KENDALL

LINEAR-SPEARMAN

SIGMOID-SPEARMAN

STEADY-STATE

GENERATIONAL

+ELITISM

+ELITISM

+ADF

+ADF

TOP RANDOM UNIFORM

EQUAL SIZE EQUAL DISTANCE

6 8

RANKING R1R1 R2R2R1R1

GENERATIONS 1000 20001000

ROUND II ROUND III
(6) (18) (36)

Figure 5.2: Configuration of the three rounds of experiments. The number in brackets is
the number of experiments run in each round.

In all experimental rounds, a random walk was performed as a baseline for comparison. At

each generation the population was created using the half-and-half initialization operator

[Koz92, LP01].

Each experiment was repeated 5 times with different random seeds. In total I have

conducted 60 different experiments using over 100 CPU days to perform 300 GP runs.

In the next section I report only the results of a best run, as I am not interested in the

average behaviour of the algorithm but rather in the fittest GP-designed energy function.

Experiments from the last round were repeated using the similarity consensus. Instead of

using the RMSD as a similarity measure, the mean similarity consensus (see Chapter 4)

was used to construct the reference list of ranks R2. The ties between decoys were decided

using 4 different precision levels: 2, 3, 4 and all 12 decimal places.
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5.3 Initial Analysis

5.3.1 Energy Correlation

To compare the ability of the original energy functions used by I-TASSER and Rosetta to

distinguish between native-like and non-native structures, I plotted the relation between

the energy and similarity to the native for all decoys.

The average correlation between the original I-TASSER energy and the similarity to the

native structure measured by RMSD is shown in Figure 5.4. Each panel represents a set of

decoys for a single protein and the Pearson correlation coefficient ρ(x, y) = cov(x,y)
σxσy

is given

in brackets. The average correlation coefficient for all proteins was 0.44 ± 0.23 (second

value is a standard deviation). Interestingly, even the highest correlation coefficient e.g.

for 1f05A or 2f3nA (see the close-up in Figure 5.3), is not enough to point to the most

native-like structure as we observe a flat cloud in the lowest energy region stretched over

RMSD range of 0.1–0.2nm. This cloud becomes wider with a decrease of the correlation

coefficient and its center tends to shift towards greater values of RMSD.

Figure 5.3: Scatter plots of I-TASSER energy vs. RMSD. Close-up for two proteins with
high correlation coefficient (given in brackets). Distance is given in nanometers.

This difficulty in selecting the most native-like decoys is even more visible when the energy

is plotted against the rank (see Figure 5.5). Instead of a clear trend with the energy

decreasing along the decreasing rank, the trend line is very flat and thick. Several slightly

slanted vertical stripes are visible in regions were a number of decoys equally distant

from the native differs in energy (2f3nA, 10f9A). Overall, the correlation to the rank was

almost half as low as in the case of RMSD with the total average of 0.25 ± 0.16.

Similar plots for decoys generated by Rosetta are shown in Figures 5.6, 5.7. As the decoys

cover a wider RMSD range and are not concentrated in a single region, the total average

correlation coefficient to the rank, equal to 0.28, is only 0.02 lower than the coefficient

of correlation to RMSD. However, as in case of the I-TASSER energy, pointing out the

native-like decoys using the value of Rosetta energy is in most cases very difficult.

The comparative plots with both I-TASSER and Rosetta decoys marked on a shared

RMSD/rank scale are presented in the Appendix (Figures A.1–A.4).
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5.3.2 I-TASSER Energy Terms

Coefficients for individual energy terms are shown in Table 5.2. The values for the decoys

I used are significantly lower than the one reported by Zhang et al. [ZKS03]. Notice the

negative correlation of selected terms which decreases the average correlation nearly to

zero. The low values of the ρ2 coefficient could, however, be somewhat misleading as they

are hiding the spread amongst different proteins. The relative standard deviation for ρ2

ranged from 82% for T2 to 942% for T6.

The average correlation coefficient for the naive sum of energy terms EN =
∑8

i=1 Ti was

0.12 ± 0.16. Correlation between the naive sum of energy terms and the rank was lower

as in the case of original I-TASSER energy, and the coefficient value was 0.07 ± 0.16.

energy term ρ1 ρ2 σ2 ρE σE

T1 (E13) 0.27 0.03 0.11 0.08 0.15
T2 (E14) 0.56 0.20 0.17 0.38 0.16
T3 (E15) 0.33 0.15 0.15 0.34 0.19
T4 (Estiff ) 0.25 0.24 0.22 0.44 0.24
T5 (EHB) 0.51 -0.16 0.20 -0.36 0.23
T6 (Epair) 0.38 0.01 0.14 0.12 0.13
T7 (Eelectro) 0.27 -0.20 0.23 -0.34 0.26
T8 (Eenv) 0.34 0.04 0.16 0.03 0.15

average 0.36 0.04 0.17 0.09 0.19

Table 5.2: Both ρ1 and ρ2 represent the average correlation between a single energy
term and the similarity to native structure measured by RMSD. ρ1 is the coefficient
originally reported by Zhang et al. [ZKS03] and ρ2 is the coefficient calculated for my
implementation of I-TASSER energy terms on 54 proteins used in my experiments. ρE

is the correlation coefficient between a single energy term and the original I-TASSER
energy. σ2 and σE represent the standard deviation of ρ2 and ρE coefficients. In case of
the hydrogen bonds potential EHB , ρ1 and ρ2 cannot be directly compared, as the latter
apply to the new implementation of this term [ZHA+06b].

5.3.3 Fitness Distance Correlation

The optimisation objective was to minimise the distance d(Rr, Re) between the reference

ranking Rr and the ranking Re produced by the evolved function. The range of distances

was normalised to the [0,1] fitness range, where maximum distance (comparison with

reversed Rr) gives fitness equal to 0 and zero distance corresponds to fitness equal to 1.

To compare the landscape difficulty of different fitness functions I have measured the

fitness distance correlation on the phenotype level. Starting from a random reference

ranking Rr of length 100, for each of t ∈ {1, . . . , 1000} steps 20 new permutations were

generated by applying a random transposition to the permutations from previous step

t− 1. The correlation of the fitness functions to the distance to Rr measured in number

of applied transpositions, as well as the direct correlation between the fitness functions, is

shown in Figure 5.8.

Notice that the minimum number of transpositions needed to transform n-element

permutation a to b, known as Cayley distance, is bounded by O(n− 1) and equal to n− c,

where c is the number of cycles in the disjoint cycle decomposition of ab−1. Because of

that, for n > 100 a fluctuation of the fitness value is observed in plots A–C of Figure 5.8.
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Figure 5.4: Scatter plots of I-TASSER energy (vertical axis) vs. RMSD (horizontal axis). Each plot contains all decoys for a single protein. Correlation for each
plot is given in brackets. Distance between ticks on horizontal axis is 0.1nm.
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Figure 5.5: Scatter plots of I-TASSER energy (vertical axis) vs. rank (horizontal axis). Each plot contains all decoys for a single protein. Correlation for each plot
is given in brackets. Distance between ticks on horizontal axis is 100 ranks.
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Figure 5.6: Scatter plots of Rosetta energy (vertical axis) vs. RMSD (horizontal axis). Each plot contains all decoys for a single protein. Correlation for each plot
is given in brackets. Distance between ticks on horizontal axis is 0.1nm.
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Figure 5.7: Scatter plots of Rosetta energy (vertical axis) vs. rank (horizontal axis). Each plot contains all decoys for a single protein. Correlation for each plot is
given in brackets. Distance between ticks on horizontal axis is 100 ranks.
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Figure 5.8: Correlation between fitness and number of transpositions applied to the
reference ranking (plots A–C) and direct correlation between fitness functions (plots D–F).
The correlation coefficients are given in brackets.
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As the range of values that the fitness function based on the Levenshtein distance can

obtain is a square of the range obtainable for Spearman and Kendall distances, the

fluctuation range is also lower.

This limitation is visible even more clearly in plots D and E of Figure 5.8. The distinct

horizontal stripes appear for groups of permutations equally distant from Rr in the

Levenshtein metric space but easily distinguishable by the other two distances. The gaps

between the stripes are another indicator of sparse space of values of the Levenshtein

distance. The horizontal stripes become longer near the maximum of Levenshtein distance,

showing inablity of this measure to distinguish between many samples slightly above the

middle of other two distances range.

5.4 Results

5.4.1 Round I: initial fitness experiments

As could be seen in Figure 5.9 the average fitness for the Levenshtein distance varies

in a tiny range just above zero (the maximum distance). For the Spearman distance

the average fitness improved quickly in the first 50–100 generations and saturated later

around 40% of the maximum fitness. The initial improvement was more rapid in case of

the Kendall distance but the spread of the fitness was very small, covering only 3% range

of the maximum fitness. The best evolved functions were only slightly (1.3% and 5.5%

for the Kendall and Spearman distances respectively) better than the best function found

by the random walk (see Table 5.4.1).

To check the statistical significance of the results I have performed the Kruskal-Wallis

one-way analysis of variance to test the null hypothesis that medians of two average

fitness distributions shown in Figure 5.9 are equal. The hypothesis was rejected for both

9 vertical (across measures of distance) and 9 horizontal (across configuration) pairwise

comparisons at the 99.9% confidence level (p < 0.001).

steady-state generational

measure max improvement max improvement

Levenshtein 0.004 25.91% 0.003 13.01%
Spearman 0.417 4.72% 0.420 5.49%
Kendall 0.520 0.97% 0.522 1.34%

Table 5.3: Maximum fitness and improvement over the random walk for two run configu-
rations and three fitness functions used in the 1st round of experiments.

5.4.2 Round II: increased selection pressure

The linear weighting mechanism did not change the fitness landscape but the sigmoid

weighting did. As shown in Figure 5.11 the Spearman distance with sigmoid weights

reached over 20% higher average and maximum fitness value than the non-weighted

Spearman distance. The evolutionary progress for the best runs of both linear and

sigmoid weighted Spearman distance continues steadily without the early saturation
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Figure 5.9: Fitness throughout the generations in the first round of experiments. Lines show the average (thick black), minimum (thin grey) and maximum (thin
red) fitness in the population. Filled area around the average represents the standard deviation. Each row corresponds to a single fitness function and each column
corresponds to a single GP configuration.

103



Chapter 5. Genetic Programming Experiment

0 200 400 600 800 1000

generation

0.32

0.34

0.36

0.38

0.40

0.42

0.44

fi
tn
e
ss

spearman-linear-ts8-generational

0 200 400 600 800 1000

generation

0.42

0.44

0.46

0.48

0.50

0.52

0.54

fi
tn
e
ss

spearman-sigmoid-ts8-elitism

0 200 400 600 800 1000

generation

0.500

0.505

0.510

0.515

0.520

0.525

fi
tn
e
ss

kendall-ts4-generational

Figure 5.10: Fitness throughout the generations in the second round of experiments for
the best run for each fitness function. The lines show average (thick black line) and the
maximum (thin red line) fitness in the population.

observed in the first round of experiments (see Figure 5.10). However the spread of fitness

values is again low, covering only about 10% of the fitness range (see Figure 5.11).

I did not observe a significant change in the evolutionary improvement over the random

walk for the Kendall distance. In case of the Spearman distance with linear weights

the improvement seems to be even twice as big (up to 11%) as in the previous round.

However, the maximum fitness values are still in the 0.4–0.5 range, so similarly far away

from the theoretical maximum as in the first round of experiments.

As the increase of the tournament size did not result in increased fitness of the best

solutions, for the next round of experiments I have arbitrarily picked the tournament

size 6 for the steady-state replacement and 8 for the generational one, just by the visual

assessment of the fitness progression throughout generations.

steady-state generational elitism

measure ts max impr max impr max impr

Kendall
4 0.516 0.19% 0.522 1.49% 0.514 -0.08%
6 0.515 0.01% 0.517 0.42% 0.513 -0.25%
8 0.520 1.03% 0.514 -0.12% 0.517 0.45%

Spearman
linear

4 0.416 6.24% 0.429 9.47% 0.418 6.67%
6 0.430 9.79% 0.404 3.10% 0.408 4.18%
8 0.419 6.78% 0.436 11.34% 0.423 7.80%

Spearman
sigmoid

4 0.518 7.49% 0.503 4.38% 0.527 9.47%
6 0.516 7.11% 0.514 6.71% 0.511 6.04%
8 0.515 6.98% 0.508 5.38% 0.530 9.96%

Table 5.4: Maximum fitness and improvement over the random walk for three run
configurations with different tournament size and three fitness functions used in the 2nd
round of experiments.

5.4.3 Round III: shared ranks and reduced data sets

Since in this round I used averaged ranks and in consequence the ranking was not a

permutation any more, I did not use the Kendall distance. The fitness function based on

the sigmoid weighted Spearman distance was used in all experiments. The addition of

ADFs or strong elitism improved the best fitness in several cases but I did not find any

tendency that would be common for all sets of decoys.

For the set of all decoys, the value of the average and maximum fitness was around 40%

higher compared to the permutational ranking. However, as shown in Table 5.5 the
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Figure 5.11: Box plot of the fitness distribution achieved by a random walk for ranking
distances used in first two rounds of experiments. Middle line is the median of the
average fitness in population across all generations. Box size represents the median of the
population fitness standard deviation. Top and bottom whiskers marks maximum and
minimum fitness across all individuals.

evolution process could not improve significantly over the random walk, despite the fact

that the best randomly found energy function was as simple as f = 0.412/T6. Similar

results were obtained for the three sets of 100 selected decoys: random, uniform and top.

For the noise filtered set of decoys, where the GP trees of the best functions were over

two times larger, the improvement over random walk was greater than 7%.

best fitness best tree size best tree depth

decoys set impr max avg max avg max avg

all 0.78% 0.714 0.710 380 186.2 18 16.8
uniform-100 0.96% 0.716 0.710 289 151.5 18 17.3
random-100 1.28% 0.720 0.713 289 151.5 18 17.3
top-100 1.93% 0.709 0.701 266 118.7 18 15.5
f-42 7.76% 0.729 0.713 1110 485.0 18 17.7
f-100 7.64% 0.788 0.772 629 414.7 18 17.5
d-58 8.21% 0.809 0.780 752 388.7 18 17.3
d-100 10.88% 0.835 0.804 793 329.2 18 17.5

Table 5.5: Comparison of the best evolved functions for different sets of decoys. Second
column shows percentage fitness improvement over the random walk. The next columns
show the maximum and the average value of fitness, tree size and tree depth for the best
functions of all six run configurations.

The change in fitness landscape for the noise filtered sets of decoys is shown in Figure 5.12.

The range of fitness values for the random walk increased up to 40% of the maximum

fitness from 15% observed previously for all decoys. Although the average fitness was

lower, the fitness of the best individuals has improved reaching 0.75 for the set of decoys

created using 100 equal distance bins (d-100).
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Figure 5.12: Box plot of the fitness distribution achieved by a random walk with sets
of decoys used in the third round of experiments. Middle line is the median of the
average fitness in population across all generations. Box size represents the median of the
population fitness standard deviation. Top and bottom whiskers marks maximum and
minimum fitness across all individuals.

The overall fittest evolved individual and the greatest evolutionary improvement over the

random walk was observed again for the d-100 set. The best evolved energy function

had almost 11% greater maximum fitness (0.835) than f = 0.3433 ∗ T1 + T3 − T6 found

by chance. However, the GP tree was difficult to analyse because of a bloat. As I did

not introduce any size penalty in the fitness function, the average size of a GP tree was

increasing through generations as shown in Figure 5.13.

The distribution of the terminals and operators used in the best functions evolved for each

set of decoys is summarised in Table 5.6. The most frequently used energy terms were T4

and T5. Interestingly, T4 had the highest correlation to RMSD and T5 the second lowest

one (see Table 5.2). Similarly, the least frequently used energy terms, T1 and T6, were

the ones with the correlation to RMSD closest to zero. Therefore, the GP optimisation

based on the distance between ranks was able to discover an analogous hierarchy of the

energy terms. Across the operators, the most frequent were addition and division with

transcendental functions (sine, cosine and natural logarithm) being the least frequent.

decoys set T1 T2 T3 T4 T5 T6 T7 T8 add sub mul div log exp sin cos total

all 0 0 10 18 19 3 10 1 99 2 0 0 8 104 4 4 323
uniform-100 4 0 0 1 2 1 3 4 0 15 1 0 4 21 0 1 59
random-100 1 4 5 3 1 5 14 6 6 1 27 46 12 24 2 4 203
top-100 0 0 0 0 0 3 9 9 0 0 9 61 4 48 64 3 260
f-42 11 49 76 84 26 3 105 19 310 38 25 174 5 8 1 1 1110
f-100 1 42 45 50 48 14 3 33 158 39 65 22 14 32 13 1 629
d-58 26 8 1 40 69 32 21 3 193 34 26 90 4 28 6 27 752
d-100 6 6 12 60 41 17 19 22 52 102 37 78 0 34 0 17 590

Table 5.6: The distribution of terminals and operators in the best evolved functions for
different sets of decoys. Ephemerals are not shown.
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Figure 5.13: Tree size throughout the generations. Sizes are averaged over all six GP
configurations for a selected set of decoys from the third round of experiments. Lines
show the average (thick black), minimum (thin grey) and maximum (thin red) tree size
in the population. Filled area around the average represents standard deviation.

The best energy function evolved for the d-100 set was correlated to RMSD with the

coefficient of 0.76 ± 0.19 and to the rank with coefficient of 0.74 ± 0.18. When the

best evolved function was applied to the set of all decoys, the corresponding correlation

coefficients dropped to 0.30± 0.18 (shown in Figure 5.14) and 0.20± 0.17. Still, compared

to naive combination of terms the evolutionary optimisation improved the correlation

coefficients 2.5 and 2.85 times respectively.
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Figure 5.14: Scatter plots of the best energy function evolved for d-100 set (vertical axis) vs. RMSD (horizontal axis). Red horizontal line marks the energy of the
native structure. Each plot contains all decoys for a single protein. Correlation for each plot is given in brackets. Distance between ticks on horizontal axis is 0.1nm.
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Chapter 6

Evolvability of Energy

Functions

In this chapter I further analyse the result of the genetic programming experiment

reported in Chapter 5. The best evolved energy functions are compared against a baseline

experiment with a linear combination of energy terms, where weights were optimised

using the Nelder-Mead downhill simplex method. Successful and unsuccessful GP runs

are analysed using a number of population diversity statistics. The evolvability of the

energy functions with rankings based on the similarity consensus are presented and the

limitations of the GP approach are discussed. The chapter is concluded with a summary

of a work done and suggestions of possible directions for future work.

6.1 Final Analysis

6.1.1 Comparison to Linear Combination of Terms

As I demonstrated before, the best energy function found by my GP algorithm provide

significantly better prediction guidance than the naive combination of terms or best func-

tions found by the random walk. Moreover, the GP algorithm was able to automatically

discover the most and the least useful energy terms without having any knowledge how

these terms alone are correlated to RMSD.

To put these results in context, I used the Nelder-Mead downhill simplex method [NM64,

McK99] to find the best weights of the energy function given as a linear combination of

terms EL =
∑8

i=1 wiTi, similar to what have been done in the original work by Zhang

et al. [ZKS03]. I ran the SciPy [JOP+ ] implementation of the algorithm using a vector

of weights ~w = [w1, . . . , w8] as a variable and minimising either the sigmoid weighted

Spearman distance or the correlation coefficient between energy and rank directly. The

method converged in a fraction of time allowed for GP optimisation (minutes vs. hours)

performing on average only about 500 evaluations of the objective function. Table 6.1

shows the maximum objective function values obtained for d-100 and all decoy sets

compared with the results of the best evolved functions. The fitness of GP-evolved

functions was in all cases over 10% higher.
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spearman-sigmoid correlation

method d-100 all d-100 all

simplex 0.734 0.638 0.650 0.166
GP 0.835 0.714 *0.740 *0.200

Table 6.1: The results of the simplex method optimisation of the weighted sum of terms
compared to the best GP-evolved functions. Notice that the correlation coefficient for
GP marked with star was calculated after the evolutionary optimisation, while in case of
the downhill simplex method it was directly used as an objective function.

6.1.2 Population Diversity Analysis

The mapping between the tree representation of a function and its fitness is very complex

as it involves an evaluation of the energy of thousands of decoys and a comparison of the

evolved ordering with a reference ranking for several proteins. It would not be surprising if

this mapping will result in the loss of diversity between the levels as shown on Figure 6.1.

genotype

level

phenotype

level

fitness level

Figure 6.1: Illustration of possible mapping between GP trees, decoys ordering created
by the evolved function and the total fitness.

To gain more insight into the evolutionary process and usefulness of the proposed fitness

functions, I have collected a wide range of population diversity statistics for the best

configurations from the last round of experiments. Burke et al. [BGKK02, BGK04] have

shown that to understand the evolutionary dynamics the diversity should be measured

on several levels. As suggested there, I measured the population diversity on three levels:

• genotype, I measured the number of unique trees using a pseudo-isomorphism

measure [BGK04], where each tree is described by a triple <# terminals, # non-

terminals, tree depth>

• phenotype, for each of n individuals in the population I ranked the decoys and

measured the average root mean square distance between the ranks (using the

Spearman footrule distance), which I then have averaged for all m proteins obtaining

phenotype rmsd:

1

m

m
∑

p=0

2

n(n− 1)

√

√

√

√

n
∑

i=0

n
∑

j>i

d(rpi, rpj)2 (6.1)
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• fitness, I measured the entropy in the population based on the frequency of occurrence

of fitness values (using a precision of three decimal places):

n
∑

i=0

pi ∗ log(pi), where pi =
1

n
duplicatesi (6.2)

For individual runs I have observed a rapid loss of the diversity on both genotype and

phenotype levels after a few initial generations. However, it was not the case for the

diversity on the fitness level, which usually did not decrease even for late generations.

Moreover, for the best individual runs the maximum fitness is not stagnating but slowly

improving throughout 2000 generations (see Figure 6.2). Hence, the early saturation of

the average fitness does not seem to be related to a converged population.

I have analysed the common diversity characteristics of a group of the most successful

runs and I found the best evolutionary progress to be related to a gradual decrease of the

phenotype diversity and high or increasing diversity on the fitness level (see runs A and

C in Figure 6.2). Interestingly, a high diversity on the fitness or phenotype level alone

did not result in good evolutionary progress (see runs D and E in Figure 6.3). A high

diversity on tree level for late generations seems to indicate cases when evolution was

trapped around a low quality local optima.

6.1.3 Similarity Consensus

The I-TASSER energy terms were designed by experts with the RMSD correlation in

mind. Some of the parameters of these terms were tweaked to maximise that correlation

introducing some bias towards RMSD. Because of that, the correlation between the energy

terms and the similarity consensus might be lower than in case of RMSD. This was indeed

observed for the RMSD consensus. However, correlation coefficients for the similarity

consensus were very similar to the coefficients of the correlation to RMSD (see Table 6.2

and compare with Table 5.2).

RMSD consensus similarity consensus

ρsim ρrank ρsim ρrank

T1 0.01 ± 0.10 0.01 ± 0.11 0.04 ± 0.13 0.03 ± 0.13
T2 0.12 ± 0.16 0.10 ± 0.16 0.23 ± 0.15 0.19 ± 0.14
T3 0.06 ± 0.13 0.04 ± 0.12 0.17 ± 0.13 0.13 ± 0.12
T4 0.08 ± 0.18 0.05 ± 0.18 0.21 ± 0.22 0.16 ± 0.20
T5 −0.07 ± 0.17 −0.04 ± 0.17 −0.16 ± 0.21 −0.11 ± 0.19
T6 −0.02 ± 0.11 −0.03 ± 0.12 0.03 ± 0.14 0.01 ± 0.13
T7 −0.07 ± 0.19 −0.06 ± 0.18 −0.05 ± 0.23 −0.02 ± 0.22
T8 0.03 ± 0.14 0.04 ± 0.15 0.02 ± 0.17 0.02 ± 0.17

Table 6.2: Average correlation between I-TASSER energy terms and the consensus
similarity. For each type of consensus two coefficients are given ρsim and ρrank representing
direct correlation to the consensus similarity or correlation to rank.

The average correlation coefficient of the original I-TASSER energy and the mean similarity

consensus was over 20% lower than in the case of RMSD (compare Figure 5.4 and

Figure 4.9). Correlation to rank was also lower but only by 8%.
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Figure 6.2: Maximum fitness throughout generations compared to population diversity on fitness, phenotype and GP tree levels (positive example). Each plot
shows side by side five different runs (A-E) for a selected GP configuration.
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Figure 6.3: Maximum fitness throughout generations compared to population diversity on fitness, phenotype and GP tree levels (negative example). Each plot
shows side by side five different runs (A-E) for a selected GP configuration.
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Chapter 6. Evolvability of Energy Functions

The GP configuration from the round III of experiments (see Section 5.2.3) was used

to test how different similarity measure will change the problem landscape. The best

evolved functions (with the highest fitness) were obtained for ranks based on consensus

using 4 decimal places precision (see the Appendix for all results). The fitness of the

best functions evolved for the reduced sets was almost 4% higher than in case of RMSD

(compare Table 6.3 and Table 5.5). On the other hand the best functions for the set of

all proteins was almost twice as small as for the RMSD.

best fitness best tree size best tree depth

decoys set impr max avg max avg max avg

all 0.47% 0.359 0.359 879 424.5 18 17.0
d-100 8.84% 0.868 0.847 783 454.3 18 17.2
d-58 10.32% 0.853 0.834 720 418.3 18 17.5
f-100 9.95% 0.811 0.795 886 540.5 18 17.5
f-42 9.42% 0.729 0.712 944 604.2 18 17.5

Table 6.3: Comparison of the best evolved functions for different sets of decoys for
reference ranking based on the similarity mean consensus with rounding precision of
0.0001. Second column shows percentage fitness improvement over the random walk. The
next columns show the maximum and the average value of fitness, tree size and tree depth
for the best functions of all six run configurations.

The best energy function evolved for the d-100 set was correlated to mean similarity

consensus with the coefficient of 0.76 ± 0.22 and to the rank with the coefficient of

0.74 ± 0.21. This is almost identical as in the RMSD case, only standard deviation is

about 15% higher. When the best evolved function was applied to the set of all decoys, the

corresponding correlation coefficients dropped to 0.07 ± 0.14 and 0.04 ± 0.10 respectively.

This not only about 5 times lower than in case of RMSD but also 2 times lower than the

naive sum of terms (0.14 ± 0.16 and 0.11 ± 0.15).

The fitness distribution plotted for the random walk (see Figure 6.4) clearly shows that

for the set of all proteins the GP algorithm was trapped in a very narrow fitness range.

This observation is also confirmed by the diversity analysis. For the set of all decoys the

fitness diversity was almost twice as low as in case of reduced set of decoys or ranks based

on RMSD (compare Figure 6.5 and Figure 6.2).

6.2 Discussion

In protein structure prediction a useful energy function is the one which guides the

structural optimisation process towards the region of native-like structures. Therefore, it

seems natural to measure this usefulness with a correlation coefficient between the energy

and similarity to native. However, as I have shown, even a high correlation coefficient

(> 0.7) does not guarantee that distinguishing the native-like structure from the others

would be easy. This is reflected in the lower correlation to rank, since ranking ignores

the scale. The lack of power to differentiate between the decoys is best observed on the

energy vs. rank plots, where for several consecutive rank bins the assigned decoys are

within the same energy range.

The difference between the correlation of single energy terms in my experiments and in the

original work by Zhang et al. shows the difference in difficulty of the decoy sets used. It
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Figure 6.4: Box plot of the fitness distribution achieved by a random walk with sets of
decoys used in the experiments with mean similarity consensus. Middle line is the median
of the average fitness in population across all generations. Box size represents the median
of the population fitness standard deviation. Top and bottom whiskers marks maximum
and minimum fitness across all individuals.

seems to be more difficult to choose a native-like structure from the set of decoys sampled

from the structural optimisation process, than from a set generated by randomisation of

the native used by Zhang. The former starts from fragments of other proteins similar to

the target on a sequence level and has no knowledge of its native structure. The latter is

using the native structure directly resulting in a biased set. Moreover, the decoys used in

my experiments are often very similar to each other, whereas Zhang kept them separated

by large 0.35nm RMSD distance. As my results show, decoys generated by the predictor

are more difficult to assess and thus optimising the energy based on the randomised and

highly separated set of decoys might be inadequate as this is not what predictors have to

deal with in practise.

Although the naive combination of energy terms used in my experiments compared to

the original I-TASSER energy was much less correlated to RMSD, the genetic program-

ming optimisation was able to evolve energy functions significantly decreasing this gap.

Considering the fact that this is the first time this work has been done, notwithstanding

the maturity of the protein structure prediction field (several decades), these results are

extremely encouraging.

One of the two biggest difficulties in this research was deciding how to build the ranking of

decoys in a way that would lead to learning of the energy function. The second difficulty

was a design of the fitness function that would result in an easy to search fitness landscape.

These are discussed next.
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Figure 6.5: Maximum fitness throughout generations compared to population diversity on fitness, phenotype and GP tree levels in consensus experiments. Each
plot shows side by side five different runs (A-E) for a selected GP configuration.
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6.2.1 Decoy Ranking

Since in the structural optimisation process it is important to be able to measure the

energy difference even for small structural changes, I decided to build the ranking with a

picometer RMSD precision. Despite the high precision, I was not able to avoid ties in the

ranking. The initial permutational approach, in which the tie was decided by the original

I-TASSER energy has been shown less efficient in terms of the fitness distribution than

averaging the ranks. It is not really surprising, as the I-TASSER energy itself was not

highly correlated with RMSD.

The use of the ranking has been proven to be a good method to avoid the constraints

of the direct comparison. This linear normalisation frees the evolution process from the

need to reflect the scale of similarity or the direct differences between pairs of decoys.

In experiments with reduced sets of decoys I have shown that a wise selection of the

sample representing the whole set improved the learning. But evolved functions were

not proven useful when applied to the set of all decoys. Another way of pre-selecting the

decoys, that would not depend on the original I-TASSER energy but rather purely on the

decoys similarity might give better results. The similarity itself might be also measured

differently. The RMSD as a non-weighted average of all Cα–Cα distances is sensitive to

local errors and might return high values of distance even if global topology is correct.

The overall conclusion is that the influence of the parametrisation of the evolutionary

process on the final result was not as important as the choice of the method to build

the ranking. This leads to further work on how the decoys are ranked by the evaluation

operator. Introduction of equal rank bins based on the distribution of the evolved energy

values should possibly make the rankings comparison more accurate.

6.2.2 Fitness Function

For all fitness functions used in my experiments the average fitness saturated around the

maximum after initial 50–200 generations. Although experiments with increased number

of generations have shown a continuous improvement even after 2000 generations, the

scale of this improvement was very small.

There are several factors that may cause this early saturation. The major one is a

polynomial bound on the possible values of fitness functions. The maximum distance

between two rankings of length n for Levenshtein distance is n (substitution of all

characters). For Spearman and Kendall distance it is bounded by O(n2) being respectively
1
2n

2 and 1
2n(n− 1) for the reverse ranking. As a result, many different energy functions

have the same value of the fitness function. This is why for the Levenshtein distance all

individuals had the fitness very close to minimum and why for the Kendall distance the

fitness variety amongst the population was so limited.

The analysis of population diversity for the best configurations has revealed that higher

diversity on the fitness and phenotype level leads to a better evolutionary progress. It

might be then useful to design a mechanism similar to the fitness sharing to promote the

population diversity on both these levels.

Another important factor is the use of non-weighted average to calculate the total fitness.

A very low fitness value for a single protein also significantly lowers the total fitness.
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To overcome this a k outliers could be exclude from the total score. It might also be a

good idea to use more complex averaging scheme, for example weighted by the native

structures similarity to each other, so that more frequent but similar structures in the

training set will have lower impact on the total fitness.

6.2.3 Similarity Consensus

It was reasonable to expect that more reliable measure of structural comparison could

have make the problem landscape smoother, by eliminating some noise. The similarity

consensus that is derived from a set of different similarity measures and combines strengths

of the individual methods seemed to be a robust alternative. The results however, indicates

that the use of similarity consensus made the landscape more difficult as the evolution

did not progress at all for the set of all decoys due to low fitness diversity and the best

function evolved for the d-100 set although having higher fitness than in case of the

RMSD, turned out to be less correlated with the similarity than a naive combination

of terms. Still, as the GP parameters were simply copied from the best ones for RMSD

there might be room for improvement with more carefull parametrisation.

6.2.4 GP Challenge

The problem of the design of energy functions that would be useful in protein structure

prediction is a new and truely difficult challenge for the GP. To encourage the reader to

take on this challenge I made the input data publicly available. The following web page:

http://www.infobiotics.org/gpchallenge/ contains clearly annotated files with the

precomputed energy potentials as well as the distances and ranks for all the decoys used

in my experiments.

6.3 Conclusions and Future Work

In the last two chapters I have proposed the use of genetic programming to evolve novel

forms of energy function for protein structure prediction. I have shown that this problem

is very challenging, mainly due to the need of complex mapping between a GP tree and

the total fitness, large amount of data to process and the requirement to generalise over

different proteins, and that evolving a high quality energy functions is not an easy task.

I have demonstrated a GP design generating functions that outperform the optimised

weighted sum of terms used in previous works. I believe that this new GP-based approach

might lead to significant improvements in the quality of protein structure prediction.

However, there is still plenty of scope for improvement and several questions remain

unanswered. The definition of the fitness function needs improvement to better handle

the problem of equal ranks and to relax the polynomial bound on the measure of distance

between rankings (by enumerating the permutations for example). Moreover, additional

objectives could be added to the fitness function (rank of the native structure for example)

to evolve energy functions that are compact and easy to compute.

In the future work, the currently limited set of energy terms could be extended with data

from protein feature predictors such as distance maps, contact order, contact restraints
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or solvent accessibility [BSK+06, SBH+09, SBHK08]. Especially the last one might be

meaningful, since the hydrophobic effect is considered to be one of the main forces in

protein folding.

Finally, it is not yet understood how general the evolved functions are or whether the use

of different decoys (either generated by different prediction methods or for different set of

proteins) will increase their ability to select the near-native structures.
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Chapter 7

Conclusions

The process of de novo structure prediction of proteins is based on the Anfinsen’s

thermodynamic hypothesis and is driven by a minimisation of the structure energy. The

energy functions used in the state-of-the-art predictors to evaluate protein structures are

based on several terms derived from the statistical analysis of known protein structures.

These terms do not represent the real potential energy of a protein molecule, but rather

measure how common are the structural features of the evaluated structure across the

known protein structures.

Even though those terms do not represent explicitly the physical energy or the probability

of a structure being native-like, the best CASP predictors simply adds them together

in their energy functions. The only optimisation applied to these energy functions is a

selection of weights for each of the terms. This optimisation is done using a sparse set

of structures generated by randomisation of a known native structure. The weights are

optimised to maximise a correlation between the energy and the distance to a native

structure, measured using RMSD. It is known however, that the RMSD has several

disadvantages: its sensitive to outliers and its absolute value depends on the structure

length.

In this dissertation I addressed two main issues: the way the energy functions are designed

and the imperfectness of the similarity measure this design is based on. The protein

structure comparison server developed in my research group - ProCKSI, was extended

with a new robust comparison method - Max-CMO (see Chapter 3). Then ProCKSI was

modified to be able to apply the concept of similarity consensus (proven to be robust in

case of protein classification) to measure distance between the native structure and a

set of decoys. Six different comparison methods (including Max-CMO) were aggregated

to obtain a consensus distance for each decoy and an interesting increase in methods

disagreement for more native-like decoys was discovered (Chapter 4). In addition, a fully

functional prototype of a cloud computing application for protein decoys comparison was

presented.

Finally in Chapters 5 and 6 several variants of a genetic programming algorithm were

proposed to design the energy functions as a general functional combination of energy

terms and tested with both RMSD and similarity consensus used as a reference distance

measure. For the RMSD the GP approach was found to be more accurate than a baseline

experiments with random walk and Nelder-Mead simplex method applied to the linear
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combination of terms showing that GP does indeed improve the energy functions what is

in agreement with the hypothesis H2. This effect however, was not fully achieved with

the similarity consensus, even though it had a desirable property of containing the sum of

information from different similarity methods (as was shown in Chapter 4). Therefore the

hypothesis H1 that the use a similarity consensus will improve the prediction quality by

eliminating the noise and smoothing out the landscape was rejected (possible reasons for

this disagreement with experimental results are discussed below). Last but not least, by

using decoys generated by the real predictors I have avoided the bias towards the native

structure and made the reported research practically relevant.

The presented work has three main limitations: (1) evolved functions are complex and

difficult to analyse, (2) operators used in GP algorithm do not contain more sophisticated

programming language concepts such as conditions or loops and (3) the energy terms

used in GP algorithm have been already designed with correlation to RMSD in mind.

Incorporation of one of the bloat control techniques in the GP algorithm, even as simple

as inclusion of the tree size component in the fitness function might lead to smaller trees

and interpretable functions. An alternative approach could be a use of the Cartesian

Genetic Programming (CGP) [Mil99], which uses indexed graphs to represent programs

(instead of trees) and eliminates the problem of a bloat by allowing a selective genotype ↔

phenotype mapping. This means that even though the genotype remains large throughout

the evolution only a part of it may be used to compute the fitness. Moreover, in a

self-modifying variant of the CGP (SM-CGP) the phenotype can evolve together with the

genotype, so that not only a best solution but also a best representation for it would be

found [HMB09]. By applying the SM-CGP in an iterative manner, each time for different

protein, the algorithm could first evolve the graph structure capable of generalising the

solution for all the cases and then evolve with it a best energy function for all the proteins.

One can also imagine that more effective energy functions might be evolvable only if

more sophisticated operators are used, such as conditions and loops. Especially the

conditions as they would allow to variant the energy computations with respect to

different types of proteins. As the energy terms are often representing an aggregation of

features measured across a range of residues, it might be also possible to break them down

to these subcomponents and let the GP algorithm to use the loop operator to construct

its own aggregations. This however, would require a careful selection of such terms as to

many low-level components might introduce too much noise to the system and have a

negative effect on evolvability.

The failure of the GP algorithm to evolve good energy functions that would reflect the

order of decoys ranked by the similarity consensus might have two explanations. The

sensitivity of protein comparison methods used to compute the consensus could be too low

in case of decoys. It have to be remembered that these method were created to compare

proteins and two different native protein structures are usually much more different from

each other than the decoy and the native structure which share the same amino acid

sequence. Stronger disagreement for decoys closer to the native seems to support this

hypothesis. To verify it, the GP algorithm could be applied to a consensus based on the

decoy-specific comparison measures, e.g. the ones used in the Protein Decoy Comparator

cloud application presented in Chapter 4.

However, even an application of more specific measures might not change the evolvability of

the energy function when the consensus is used. As the individual energy terms themselves
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were in most cases already individually parametrised to increase the correlation to RMSD,

they might just not be that useful with any other similarity measure. To overcome this

problem the parameters of these energy terms should be designed from the start with

the similarity consensus as a target distance measure. Or even better, the similarity

consensus could be combined with GP running on low-level energy terms components

and the right combination of them would be evolved automatically without the need to

involve human experts in the process of their design.
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Appendix A

Supplementary materials

best fitness best tree size best tree depth

decoys set impr max avg max avg max avg

all 0.62% 0.360 0.359 569 325.0 18 17.5
dnoise100 8.82% 0.863 0.851 1580 725.7 18 17.5
dnoise58 8.91% 0.852 0.833 1328 569.5 18 17.3
fnoise100 6.64% 0.785 0.777 610 468.2 18 17.3
fnoise42 9.71% 0.745 0.718 1191 658.3 18 17.7

Table A.1: Comparison of the best evolved functions for different sets of decoys for reference
ranking based on the similarity mean consensus. Second column shows percentage fitness
improvement over the random walk. The next columns show the maximum and the
average value of fitness, tree size and tree depth for the best functions of all six run
configurations.

best fitness best tree size best tree depth

decoys set impr max avg max avg max avg

all 0.40% 0.359 0.359 418 265.8 18 17.7
dnoise100 7.36% 0.840 0.828 810 630.2 17 17.0
dnoise58 9.18% 0.849 0.827 872 524.5 18 17.3
fnoise100 7.66% 0.831 0.819 1020 657.5 18 17.3
fnoise42 8.10% 0.793 0.770 651 444.2 18 17.3

Table A.2: Comparison of the best evolved functions for different sets of decoys for
reference ranking based on the similarity mean consensus with rounding precision of 0.01.
Second column shows percentage fitness improvement over the random walk. The next
columns show the maximum and the average value of fitness, tree size and tree depth for
the best functions of all six run configurations.
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best fitness best tree size best tree depth

decoys set impr max avg max avg max avg

all 0.49% 0.359 0.359 769 381.2 18 17.3
dnoise100 8.61% 0.863 0.844 558 342.2 18 17.3
dnoise58 9.34% 0.854 0.838 750 457.8 18 17.7
fnoise100 9.90% 0.815 0.794 1026 513.7 18 17.2
fnoise42 11.27% 0.739 0.713 1159 673.3 18 17.3

Table A.3: Comparison of the best evolved functions for different sets of decoys for
reference ranking based on the similarity mean consensus with rounding precision of 0.001.
Second column shows percentage fitness improvement over the random walk. The next
columns show the maximum and the average value of fitness, tree size and tree depth for
the best functions of all six run configurations.
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Figure A.1: Correlation of Rosetta (top) and I-TASSER (bottom) energy functions vs. similarity (same scale) — part 1
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Figure A.2: Correlation of Rosetta (top) and I-TASSER (bottom) energy functions vs. similarity (same scale) — part 2
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Figure A.3: Correlation of Rosetta (top) and I-TASSER (bottom) energy functions vs. rank (same scale) — part 1
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Figure A.4: Correlation of Rosetta (top) and I-TASSER (bottom) energy functions vs. rank (same scale) — part 2
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Figure A.5: Fitness throught generations in preliminary runs of GP with Levenshtein distance and first two proteins only.
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Figure A.6: Fitness throught generations in preliminary runs of GP with Kendall distance and first two proteins only.
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Figure A.7: Fitness throught generations in preliminary runs of GP with Spearman distance and first two proteins only.
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