
72 Genome Informatics 15(2): 72–81 (2004)

Domain Discovery Method for Topological Profile

Searches in Protein Structures

Juris Viksna1,2∗ David Gilbert2 Gilleain Torrance2

jviksna@cclu.lv drg@dcs.gla.ac.uk maclean@dcs.gla.ac.uk
1 Institute of Mathematics and Computer Science, University of Latvia, Rainis boule-

vard 29, Riga LV-1459, Latvia
2 Bioinformatics Research Centre, Department of Computing Science, A416 Davidson

Building, University of Glasgow, Glasgow G12 8QQ, UK

Abstract

We describe a method for automated domain discovery for topological profile searches in protein
structures. The method is used in a system TOPStructure for fast prediction of CATH classification
for protein structures (given as PDB files). It is important for profile searches in multi-domain
proteins, for which the profile method by itself tends to perform poorly. We also present an
O(C(n)k + nk2) time algorithm for this problem, compared to the O(C(n)k + (nk)2) time used by
a trivial algorithm (where n is the length of the structure, k is the number of profiles and C(n) is the
time needed to check for a presence of a given motif in a structure of length n). This method has
been developed and is currently used for TOPS representations of protein structures and prediction
of CATH classification, but may be applied to other graph-based representations of protein or RNA
structures and/or other prediction problems. A protein structure prediction system incorporating
the domain discovery method is available at http://bioinf.mii.lu.lv/tops/.
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1 Introduction

This is a continuation of the authors’ previous work on protein structure comparison/classification
using high-level topological representations of protein structure (TOPS diagrams). Whilst in princi-
ple such representations inevitably lead to some loss of information, when compared to “complete”
structural data given by atomic coordinates, they have an advantage that structure comparisons can
be done comparatively fast and still can lead to reasonably good results.

The TOPS representations of structures can be successfully used for fast automated prediction of
protein structure classification from given PDB files. In current implementations this means prediction
of CATH homologous superfamilies [7], however the method can be applied also for other classifications
(e.g. SCOP). Basically there are two approaches that have been developed for this task.

The simplest is Best Motif search that uses a similar approach at the structural level to that
used for sequences in the PROSITE database [5]. It is based on a pre-computed database of motifs
for proteins with known structures, i.e. structural patterns which (ideally) are associated with some
protein function. A given structure then is searched for the presence of motifs from the database, and
if some of these are found to be present, the corresponding homologous superfamilies are predicted.

Profile search is a related method which tries to overcome some weaknesses arising from using
single motifs. Instead of a single motif it assigns a pre-computed profile to each group of proteins,
such profile indicating which motifs must be present and which must be absent in this particular
group. When a new structure is compared to these profiles, it is searched for all possible motifs and
the results of these searches are compared to all known profiles.
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In general profile search tends to produce much better results than a simple best motif search,
however it is very sensitive to the way the structure has been split into domains. The reason is that if
the submitted domain is larger than the ones on which the profile is based, it may contain motifs, which
according to the profile should be absent. As a result, if the profiles are based on CATH homologous
superfamilies, then the proteins submitted for analysis need to be split into domains in a very similar
way to how this is done in CATH. Unfortunately CATH claims that for 47% of proteins domain
assignment is still done manually thus making such splitting very difficult. Our current approach is
not to split submitted structures into domains at all, however this means that profile search is likely
to give poor results for all multi domain proteins.

Two “heuristic” approaches to deal with this problem have been proposed in [8]. Here we describe
a more powerful method which effectively searches for all “potential” domains in a given structure
and report the ones which give the highest matching scores. To do this we propose a sweep-line type
algorithm that performs a domain search against a single profile in O(C(n) + nk2) time, which is an
improvement over a straightforward O(C(n)k+(nk)2) algorithm. Here n is the length of the structure
(number of secondary structure elements), k is the number of profiles and C(n) is the (average) time
needed to check for a presence of a given motif in a structure of length n. Besides giving prediction of
structure classification the method also gives the boundaries of potential domains.

2 TOPS Representation of Protein Structure

TOPS diagrams are high-level topology-based representations of protein structures, containing in-
formation about secondary structure elements (SSEs) and relations between them (see [2, 10, 11]).
They can be regarded as formalizations of so called TOPS cartoons, which have been used by biolo-
gists for some time. Technically a TOPS diagram can be considered as a vertex-ordered graph with
several types of vertices (currently there are four of them - up- or down- oriented strands and up-
or down- oriented helices) and several types of edges (currently parallel or antiparallel H-bonds and
left or right oriented chiralities), for more information see [2]. The database of TOPS diagrams is
currently available at http://www.tops.leeds.ac.uk/ and contains TOPS diagrams for all protein
domains classified in CATH. It also includes software for diagram generation from PDB files as well
as comparison service that allows comparing submitted structure with structures in database.

Figure 1: Rasmol picture, TOPS cartoon and TOPS diagram for 1ak5 protein.

In most cases TOPS diagrams are not sensitive to the way how the protein is split into parts, i.e.
a diagram for a part of the protein will be a subgraph of the diagram for the whole protein. There are
a few exceptions and in some proteins orientation of some SSEs will be different in TOPS diagram for
the whole protein and in the diagram for a particular domain. This can have negative implications
for the prediction of classification (see Section 7); however the number of such cases is comparatively
small.
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Structure comparisons at the TOPS level are done by looking for a maximal common substructure
for two diagrams (i.e. we have to solve the maximal common subgraph problem for vertex-ordered
graphs), allowing us to compare two structures one to another or to pre-compute a motif for given
group of structures. To check whether a given motif is present in a particular structure one has to solve
the subgraph isomorphism problem for vertex-ordered graphs. The subgraph isomorphism algorithm
is also used as a sub-routine in the computation of maximal sub-structures. For more details see [8].

3 Searching for the Best Motifs

This is an approach similar to that used for sequences in PROSITE database [4] (http://ca.expasy.
org/prosite/). Submitted structures are compared against a database of already pre-computed
TOPS motifs. The motif database contains common motifs (technically these are the largest common
subgraphs) for all CATH homologous superfamilies (proteins sharing CATH numbers up to the H-
level). Motifs defined in this way may not be unique (in which case we can choose either an arbitrary
one, or, ideally, find all of them and select the one with the largest quality value), however non-
unique motifs are rare for real data. Then the quality q of a motif is estimated as the ratio size of
the homologous superfamily/number of positive matches for the common motif (sometimes this is also
called ‘Positive Predictive Value’). If the value of q is large (close to 1), the motif can be reliably used
to predict that a given structure belongs to a particular homologous superfamily.

On a test set containing 28053 protein domains divided into 1225 homologous superfamilies; “per-
fect” predictions (with q = 1) were obtained for 25% of all groups with the best results for CATH
classes 2 (mainly β) and 3 (α-β), having q = 1 for correspondingly 33% and 36% of homologous
superfamilies (see [8]). The percentage of correct predictions for some other q values is shown in Table
1. Since the motifs are largely based on hydrogen bounds between SSEs, better performance for β
and α-β classes could be expected. One can also notice that by allowing lower quality the percentage
of correct predictions does not increase too much (e.g. for all classes there are 25% correct predictions
with q = 1 and 32% correct predictions with q = 0.2). The current version of TOPStructure database
includes motifs with q ≥ 0.05, allowing the prediction of 434 homologous superfamilies.

4 Searching Profiles

For mainly α domains, or for ones with few SSEs, a search for best motifs does not produce particularly
good results. If there are very few SSEs then there is very little that can be done. For larger structures
one of the noticeable problems is that the largest common subgraph approach does not differentiate
between two homologous superfamilies if the motif of one of them is a subgraph of another (which
often turns out to be the case). While in principle it could be possible to consider more general motifs
that capture this aspect by having “negative” edges – i.e. those that necessarily must be absent to
match this motif – such an approach is computationally unrealistic. The difficulty here is that the
complexity is exponential with the number of edges in a motif. Although the current motifs have
comparatively few edges (usually slightly more than vertices, being constrained by limited number of
possible spatial contacts in 3d space), “negative” edges will lead to complete graphs with a number
of edges quadratic to the number of vertices. In practice the computation of such motifs will be
unfeasible. In this respect the situation with graph-based motifs turns out to be different than it is
for sequence motifs; inclusion of sequence elements that “must be absent” in sequence motifs does not
make finding such motifs computationally more difficult.

Instead of modifying the notion of motifs, our profile search uses “negative” motifs (i.e. those that
necessarily must be absent in a particular homologous superfamily) to capture some of the informa-
tion about missing edges. First common motifs for all homologous superfamilies are automatically
discovered. Then, for each group a profile comprising two sets of motifs is computed. One of these
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sets contains all motifs that are present in all domains in this group (positive motifs), and the other
contains all motifs that are absent in all domains in this group (negative motifs). A protein domain
has a given profile P if it contains as subgraphs all positive motifs from P and does not contain as a
subgraph any negative motif from P .

The method at first may appear not to be particularly efficient, since the number of motifs you
need to check for is the same as the number of homologous superfamilies. However, to compare a
domain to a profile we only need to perform checking for subgraph isomorphisms for all profile motifs,
and for real motifs this still can be done reasonably fast (actually the time required is similar to what
is needed for a Best Motif search, except that the number of motifs is about 3 times larger). At
the same time, while comparison of a domain with one generalized motif (which also contains some
information about missing edges) probably can be done faster, there is no known reasonably efficient
way in which such a super-motif could be constructed.

The profile method was tested against the CATH protein classification, similarly as was done in
the case of single motifs. Initially, single motifs were constructed for all homologous superfamilies.
Then a profile, containing all these motifs (either positive or negative) for each group was computed.
Finally the quality q of profile was computed as the ratio size of the homologous superfamily /number
of domains having group’s profile. In comparison to single motif approach, the profile method led to
a considerable increase to the number of groups with q = 1. Overall it gave “perfect” profiles for 53%
of CATH homologous superfamilies. This ratio increases to 74% for groups in class 3 and to 63%
for groups in class 2. This permits reliable predictions for about 70% of structures with a significant
amount of β strands. The percentage of correct predictions for other quality values is given in Table
1. Checking which profiles (currently there are 1225 of them) are matched by a given structure is fast
- the overhead comparing to Best Motif search is 10-20 milliseconds on 2.7 GHz workstation (the total
time of search including the generation of TOPS diagram from PDB file is about 100-200 milliseconds;
see [9]).

Table 1: The results of best motif search and profile methods when tested against CATH. The per-
centage of groups having prediction qualities of 1, 0.8, 0.5, 0.2 are shown.

Best motif search Profile search
Prediction quality 1.0 0.8 0.5 0.2 1.0 0.8 0.5 0.2
Class 1 7 7 9 11 24 28 32 40
Class 2 33 35 38 42 63 68 74 79
Class 3 36 39 42 49 74 77 83 91
Class 4 0 0 0 0 8 10 13 22
All classes 25 27 29 32 53 57 63 68

It is interesting that a similar fast prediction of CATH classification very recently has been re-
ported by CATH group itself ([4]). Their GRATH program also works with graph-based structure
representations and are claimed to have even higher prediction accuracy than our profile method (90%
versus 74%). At the same time it is somewhat slower and uses manually selected representatives for
homologous superfamilies, which is likely to give a noticeable advantage in comparison to our fully
automatic approach.

One of the largest problems with the profile method is dealing with multiple domain chains. The
results are dependent on how the chain is split into domains. For example, consider two profiles
P = {{A}, {B}} and Q = {{B}, {A}}, meaning that structures corresponding to profile P must
contain motif A and must not contain motif B, similarly structures corresponding to profile Q must
contain motif B and must not contain motif A, each of them characterizing a group of domains. An
un-split domain, which contains a component from each of these groups will match both motifs A and
B, thus it will not correspond to profiles P or Q (since each profile requires that one of these motifs
must not be matched).
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If the method is used for the prediction of CATH numbers, this implies that proteins submitted
for analysis need to be split into domains very similarly to how this is done in CATH. Unfortunately
CATH claims that for 47% of proteins domain assignment still is done manually thus making such
splitting difficult. The current version of TOPStructure does not attempt any domain splitting at all,
however this means that one has to expect quite poor prediction results for multi-domain proteins.

5 Some Definitions

We will define more formally some notions discussed above. Whilst in principle the objects we are
dealing with are graphs and basically we are interested in subgraph isomorphisms, for the aims of this
paper we will assume a more simplistic approach. Namely that we are given a set of motifs (without
specifying what they are) and that each structure (TOPS diagram) is defined by specifying the regions
where these motifs are present.

Let M be a fixed finite set of motifs. A structure S is characterized by its length l(S) (a positive
integer). If S is a structure then Sa,b, where 1 ≤ a ≤ b ≤ l(S), is also a structure with l(Sa,b) = b−a+1.
An incidence function I(S,m) for a given structure S and a motif m produces a set T of substructures
Sx,y and satisfies the following properties:

• if Sx,y ∈ T then there is no y′ > y and x′ < x such that Sx′,y′ ∈ T ,

• if Sx,y ∈ T then Sx,y ∈ I(Sa,b,m) for all a ≤ x and b ≥ y.

Basically this means that we characterize each structure by the number of SSEs and that we can
obtain substructures by taking substrings of SSEs. The incidence function I describes for each motif
m in which sub-structures the motif can be found in S. The first of the requirements above means
that if a motif is found in two sub-structures, one of which is completely contained in another, we
are interested only in the smallest sub-structure. The second requirement means that if S′ is a sub-
structure of S and a motif is present in some sub-structure of S′, then it must be present also in some
sub-structure of S.

A profile for a set of structures {S1, . . . , Sk} is a pair of sets M+ and M− of motifs, such that
m ∈ M+ iff I(Si,m) �= ∅ for all i = 1, . . . , k and m ∈ M− iff I(Si,m) = ∅ for all i = 1, . . . , k.
(Informally M+ contains all motifs that are present in at least on sub-structure for each of Si -s; M−
contains all motifs that are absent in all sub-structures of Si -s.)

A structure S corresponds to profile (M+,M−) if I(S,m) �= ∅ for all m ∈M+ and I(S,m) = ∅ for
all m ∈M−.

Additionally a score sc(m) is assigned to each motif m (we can assume that it is a positive integer).
Similarly to each profile (M+,M−) there is assigned a score sc(M+,M−). In practice these scores are
taken to be equal correspondingly to the quality of motifs and profiles.

In this setting the best motif search can be defined as follows:
Best Motif Search. For a given structure S, set of motifs M and a given threshold t ∈ Z+:

compute I(S,m) for all m ∈M and output all motifs x with I(S, x) �= ∅ and sc(x) ≥ t.
Similarly the profile search can be defined as follows.
Profile Search. For a given structure S, set of motifs M , set of profiles P and a given threshold

t ∈ Z+: compute I(S,m) for all m ∈ M , then for each profile (M+,M−) ∈ P check whether S
corresponds to (M+,M−) and output all profiles X, such that S corresponds to X and sc(X) ≥ t.

For a given structure S and a motif m the incidence function I(S,m) can be computed by using
a slightly modified version of subgraph isomorphism algorithm (described in [8]). Of course the
complexity of checking for subgraph isomorphism in principle is exponential from the size of S; however
when the algorithm is applied to TOPS diagrams it is sufficiently fast and in practice roughly in time
roughly linear on the size of S. Let denote by C(n).the (average) time needed for computing of I(S,m)
for the structure S of length n.
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If n is the length of the structure S and k is the number of motifs or profiles (in practice the number
of motifs and number of profiles is almost the same) then the best motif search can be performed in
O(C(n)k + k) time and profile search in time O(C(n)k + k2). The running time of the profile method
can also be further improved (by a linear factor) by using decision trees for checking to which profiles
the structure corresponds (see [9]).

6 Automated Domain Discovery in Multi-Domain Structures

Some heuristic methods to deal with multi-domain proteins in profile search were proposed in [9]. One
of the approaches was to compute the so-called error tolerance for each profile and to allow up to this
number of motifs from M− be present in the structure for it still to correspond to the profile. Here
we propose a more general method which effectively searches for all “potential” domains in a given
structure and report the ones which give the highest matching scores. The problem can be stated as
follows:

Profile Search with domain prediction. For a given structure S, set of motifs M , set of profiles P
and a given threshold t ∈ Z+: compute I(S,m) for all m ∈M , then for each profile (M+,M−) ∈ P find
all sub-structures Sa,b of S that correspond to (M+,M−) and output all profiles X and sub-structures
Sa,b, such that Sa,b corresponds to X and sc(X) ≥ t.

The basic solution of the problem is very straightforward: for a given structure S just run the
profile search for all sub-structures Sa,b. This will give a O(C(n)k + (nk)2) time algorithm (there are
O(n2) sub-structures Sa,b to be searched; note that the incidence function I(S,m) for all motifs m still
needs to be computed just once). In principle such a running time might be acceptable; however the
slowdown compared to the Profile Search method can be as large as n2. In the current implementation
(running on a 2.7 GHz processor) a profile search (not including the computation of incidence function
values) tends to run in time up to 10-20 milliseconds. When n is close to 100 the running times for
domain prediction will increase to 2-3 minutes, i.e. it will be a quite significant increase of workload
for a server. Below we propose a sweep-line type algorithm for the same problem which runs in
O(C(n)k + nk2) time. Assuming that C(n) is roughly linear, this will reduce the running time by a
factor n, i.e. we can expect a search to be performed in less than 1-2 seconds. This estimate is also
confirmed by experiments.

The main idea of algorithm is as follows. Let assume that we are given a structure S with l(S) = n,
a set M of k motifs M and a set of k profiles P . Algorithm uses 4 arrays: Structure1 and Structure2
with length n and Profile and Motifs with length k.

Informally Structure1 contains the information of the places where the motifs are found in a given
structure. The elements of Structure1 are linked lists, which can contain the pairs in the form <m, 1>,
where m is a motif and l is the length of m. The presence of a pair <m, 1> in the list Structure1[i]
indicates that a motif m with the length l starts at the i-th position of the structure S.

Structure2 contains information where motifs found in the current sub-structure terminate (its
elements similarly are linked lists). The presence of a pair <m, s> in the list Structure2[i] indicates
that a motif m starts at the s-th position and terminates at the i-th position of the structure S.

Profile describes the current profile and Motifs holds the endpoints of the motifs found in current
sub-structure.

Additionally there are 2 pointers Start and End to array Structure1 and 2 counters Pos and Neg.
Start and End point correspondingly to the first and the last element of sub-structure that currently
is being considered, counters indicate how many of positive or negative motifs are still missing.

The first array Structure1 is initialized according to the values I(S,m), each element Structure1[i]
is assigned a linked list containing all motifs that appear in sub-structure Si,n and the length of these
motifs. Then the algorithm performs k iterations, in each of them checking for sub-structures of S that
correspond to the i-th profile. Each iteration begins with initialization of array Profile, its values are
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correspondingly set to 1, -1 and 0 for positive, negative and un-used motifs. Array Motifs is initialized
with 0s. Pos is set to the number of “1”s in array Profile and Neg is set to 0. Start and End are
positioned on the first element of array Structure1.

Algorithm 1. In structure S find a sub-structure corresponding to profile (M+,M−)
Input: Structure S, set of motifs M and a profile (M+,M−),
Size n of structure S and number k of motifs in M .
Output: Substructure Sa,b corresponding to profile (M+,M−)

begin
Compute I(S,m) for all m ∈M and for each Sx,y ∈ I(S,m) found 1

add pair <m, y − x> to linked list Structure1[x]
Initialize Structure2[x] to empty lists for all x
Initialize Profile[x]← 1 for x ∈M+ and Profile[x]← −1 for x ∈M−
Initialize Motifs[x]← 0 for all x
Pos← (number of “1” in Profile); Neg ← 0
Start← 1; End← 1
foreach <m, l> in list Structure1[1] do 2

Add <m, 1> to linked list Structure2[l + 1]
foreach <m, l> in list Structure1[1] do if l = 0 then

if Profile[m] = 1 then
Motifs[m]← 1; Pos← Pos− 1

if Profile[m] = −1 and Motifs[m] = 0 then
Motifs[m]← 1; Neg ← Neg + 1

while Pos > 0 or Neg > 0 do 3
if Start = n then return No substructures found
if End = n and Pos > 0 then return No substructures found
if Pos > 0 or (Neg > 0 and Start = End) then 4

End← End + 1
foreach <m, l> in list Structure1[End] do

Add <m,End> to linked list Structure2[l + End]
foreach <m, s> in list Structure2[End] do if End− s > Start then

if 0 < Motifs[m] < End− s then
Motifs[m]← End− s

if Profile[m] = 1 andMotifs[m] = 0 then
Motifs[m]← End− s; Pos← Pos− 1

if Profile[m] = −1 and Motifs[m] = 0 then
Motifs[m]← End− s; Neg ← Neg + 1

if Neg > 0 then 5
foreach <m, s> in list Structure2[Start] do if Motifs[m] = Start then

Motifs[m]← 0
if Profile[m] = 1 then

Pos← Pos + 1
if Profile[m] = −1 then

Neg ← Neg − 1
Start← Start + 1

End
return Start,End

End

Then, perform the following steps while pointers have not reached the end of the structure:
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– if Pos = 0 and Neg = 0, then Start and End are reported as the first and the last elements of
the domain found and the algorithm terminates;

– if Pos > 0 pointer End is advanced and the information about the current sub-structure is
re-computed;

– if Neg > 0 pointer Start is advanced and the information about the current sub-structure is
re-computed.

If there is no sub-structure found that corresponds to the profile and pointers have reached the end
of the structure then the algorithm terminates with failure.

A formal description of algorithm is given below, for simplicity it is assumed that only one profile
is checked.

In step 1 array initialization is performed in time O(C(n)k + n + k). Since the computation of
I(S,m) has to be done only once for all profiles, then k iterations (one for each profile) of this part of
the algorithm can be performed in time O(C(n)k + nk + k2).

In step 2 it is checked which motifs are present in a (trivial) domain that consists only of the first
structure element. Each of the two foreach loops can be performed no more that k times, thus step
2 will require time O(k).

The while loop 3 is performed up to 2n times. Step 4 advances the pointer End to the end of the
domain; step 5 advances the pointer Start to the beginning of the domain; in both cases the motifs
present in the domain are re-computed. This re-computation could be done in time O(k), since each
of the foreach loops will be performed no more than k times. This gives a total time complexity
O(nk) for steps 3,4 and 5. The total running time of steps 2-5 will be O(k) + O(nk) = O(nk).

The algorithm needs to be performed k times (once for each profile). This requires time O(C(n)k+
nk + k2) for all iterations of step 1 and O(nk2) for all iterations of steps 2-5. Thus we obtain an
O(C(n)k + nk2) algorithm for the domain discovery problem.

7 Results Obtained by Domain Discovery Method

The implementation of the algorithm was sufficiently efficient for a web-server application. The running
times on a (2.7 GHz processor) for profile searches with domain prediction typically were below 500
milliseconds. For comparison, a simple profile search requires 100-200 milliseconds (most of which
is spent on TOPS diagram generation from a PDB file and computations of incidence function for
motifs).

The algorithm was tested on a set of all PDB files containing CATH domains with “perfect” Profile
search predictions (i.e. domains that can be predicted by Profile search with q = 1). The set contained
3676 PDB files, about 40% of these corresponding to multiple-domain proteins.

By definition, the domain discovery algorithm was expected to identify correctly all the domains
in all these proteins (but probably giving also some incorrect predictions). In practice the algorithm
failed to find correct predictions in 47 cases (about 1.2% of the total number). The reason for this
is the problem already mentioned in Section 2 that in few cases the program for generating TOPS
diagrams produces incompatible diagrams depending on whether it is run for un-split proteins or for
individual domains. Fortunately the number of such cases is small.

The tests also showed that for some proteins there are a noticeable number of spurious predictions.
In general the correct predictions were among these with the highest scores (as scores are used the
qualities q of profiles defined in Section 4; however, as these are not based on the analysis of multiple
domain proteins, the intuitive meaning that they represent the likelihood that the obtained prediction
will be correct is largely lost - in particular one can also have several different predictions that “are
100% correct”). At the same time, the number of spurious predictions tends to increase when the size
of the predicted domains is smaller. Ideally one might wish that, if several predictions are produced,
the correct ones are ranked as high as possible.

To evaluate the impact of this we tested two ranking schemes:
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• with prediction results sorted simply in decreasing order of the scores (since in this test most
of the correct predictions have the highest possible score, on average the position of the right
prediction will be roughly equal to half of the number of spurious results with the highest possible
score); and

• with prediction results first sorted in decreasing order of the size of domains and then, within
each size group, in decreasing order of scores.

The results of these tests are summarized in Table 2.

Table 2: The results of Profile Search with domain prediction.

Positions Number of correct matches Number of correct matches
in these positions in these positions
(results sorted by scores) (results first sorted by

domain sizes, then by scores)
1 2356 887
2 290 837
3 244 610
4 148 464
5 92 313
6-10 275 413
11-20 124 98
21-50 71 7
larger than 50 29 0
maximal position 152 23

The results generally show that the domain prediction method works reasonably well - for more
than 2/3 of the considered proteins the correct prediction was in the first position in the list of the
results (with results sorted by decreasing scores). Moreover, in most cases sorting just by the scores
guarantees that the correct prediction is closer to the top of the list of the results, thus in most cases
this might be the preferred way to view the results. However, the maximal positions where the correct
predictions can be found in the list of the results are smaller, if the sorting is done by the size of the
domains first. This might be the preferred way to view the results, if the number of highly scored
predictions is large.

A small challenging problem is devising a more advanced result ranking scheme (incorporating
both the currently used quality-based score, the size of the predicted domain, as well as possibly some
other parameters - e.g. an average size on domains on which a particular profile was based) that will
rank the correct predictions as close as possible to the top of the list of the results. A possible approach
that we have tried is to consider predictions as points in N-dimensional space (with N different scores
used as coordinates) and find a hyperplane that in the “best way” separates correct and incorrect
predictions. A distance to this hyperplane (i.e. a linear combination of N initial scores) then can be
used as a new score for the ranking of the results. We tried to construct such weighted score by a
minimum squared-error technique using the initial quality-based score and size of predicted domains
as parameters. However, whilst the obtained weighted score reduced the maximal ranking position
for correct predictions from 152 to 28, in all aspects it performed worse than our second ranking
approach: sorting predictions in decreasing order of the size of predicted domains and then, within
each size group, in decreasing order of scores. This suggests that a good ranking scheme probably
needs to be based on more complicated functions than just linear combinations of initial scores.
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8 Software Availability

An automated domain discovery method (as well as Best Motif search and Profile search methods)
is incorporated in TOPStructure web service providing CATH homologous superfamily prediction for
submitted structure files (in PDB format), and is available at http://bioinf.mii.lu.lv/tops/.
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