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Abstract

The inherent quantum-mechanical nature of the proton transfer process in

hydrogen bonds has been investigated through its effects on the nuclear spin-

lattice relaxation rate. The fast magnetic field-cycling techniques employed

allowed a direct measure of the rate characterising this dynamic process, which

is closely related to the potential energy environment experienced by the mobile

proton.

Various heteronuclear effects from magnetic and non-magnetic nuclei outside

the hydrogen bond were characterised. The contribution to proton tunnelling

from the displacement of heavy atoms in the molecule is an important consid-

eration within a complete description of the process. This interdependence

was accurately measured for the carboxyl-group oxygen atoms in benzoic acid

dimers through the isotope effect. Careful comparison of 16O and 18O-enriched

benzoic acid relaxation allowed this relationship to be measured from the

difference in low-temperature tunnelling rates.

Fluctuating dipolar interactions caused by proton transfer motion couples

the Zeeman states of different nuclear species. The cross-relaxation occurring

through this natural coupling was explored as a function of field in 2,4,6-

trifluorobenzoic acid and 13C-enriched pure benzoic acid. Characterising the

strength of this interaction endeavoured to broaden the comprehension of

heteronuclear coupling and served as confirmation of the model used.

Beyond the carboxylic acid dimer, this investigation also showed dy-

namic disorder in intermolecular short, strong hydrogen bonds of pyridine-3,5-

dicarboxylic acid. This proton transfer mechanism was found to be strongly

dependent on the molecular vibrational modes creating a pathway between

two potential minima. A finite change in entropy between the proton sites

ensured that greatest proton mobility occurred at intermediate temperature,

between relatively stable configurations at the extremes of temperature.

A study of different sources of molecular dynamics within one compound

showed the efficiency of field-cycling NMR at separating their contributions to

relaxation. Dynamic rates from the proton transfer and methyl group rotation

in 4-methylbenzoic acid were reliably extracted to the extent of identifying

separate contributions from a small percentage of molecules around impurity

centres.
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Chapter 1

Introduction

1.1 Proton Transfer in the Hydrogen Bond

Hydrogen bonds were first proposed in the early 20th century to describe

the discrepancies in bonding energies of certain compounds; most notably,

the stability of water is entirely due to this source of intramolecular bonding.

Subsequently, hydrogen bonding was found to be ubiquitous in nature and an

essential component for life as we know it. For example, many large organic

molecules and structures, such as proteins, are shaped by their intra and

intermolecular hydrogen bonds. Although the work presented in this thesis

focuses mainly on O–H· · ·O hydrogen bonds, N–H· · ·O bonds - which are more

prevalent in biological molecules - are also explored in chapter 6.

Proton transfer is a mechanism via which a hydrogen nucleus (proton)

undergoes translational motion from one stable site to another, usually breaking

a covalent bond with the donor atom and forming a new one with the receptor

in the process. Some hydrogen bonds, such as those found in carboxylic dimers,

are conducive to proton transfer, but this process is not restricted to them.

All reactions at the atomic level are fundamentally governed by quantum-

mechanical principles. However, in most cases such systems can be considered

to be in the high-mass and high-temperature regime, and are described equally

well in terms of classical mechanics, in accordance with the Correspondence

Principle. Proton transfer in the hydrogen bond is chosen here to expose and

study this underlying quantised nature because it satisfies certain conditions

that would otherwise obscure it. Namely, the small proton mass compared to

other nuclei allows it to have a proportionately large de Broglie wavelength. If

the two stable sites between proton transfer configurations, typically 0.6 Å, are

1



CHAPTER 1. INTRODUCTION

of a comparable separation to this wavelength then significant overlap between

the proton wavefunctions in each pocket state will occur. This process must

then be considered in terms of the quantum tunnelling phenomenon through

the interceding potential barrier, with the extent of wavefunction overlap being

represented by the tunnelling matrix element. Although this manifestation of

quantum principles can be observed at room-temperature, as a proton transfer

rate well in excess of what should be classically possible, it is most pronounced

at low temperature.

1.1.1 The Benzoic Acid Dimer

Carboxylic acid dimers formed between molecules of benzoic acid (C6H5COOH)

readily exhibit proton transfer in both bridging hydrogen bonds, and are the

principal subject of the investigations presented in this thesis. This compound

forms a good basis for exploring quantum-mechanical and nuclear spin phenom-

ena in unison because in its pure form it is uncomplicated by other magnetic

nuclear species apart from protons, and exhibits fast proton transfer rates

even at temperatures approaching absolute zero. However, the system can be

readily elaborated to explore more complex phenomena by isotopic enrichment

and substitution of the aromatic-group hydrogens.

Even in a simple compound such as benzoic acid, the tunnelling dynamics

are non-trivial. As explained in chapter 2, accurate modelling of proton

transfer across the hydrogen bonds involves motion of the heavier atoms in

the molecule. These specific molecular vibrational modes combine to create a

multi-dimensional potential energy surface experienced by the mobile proton.

The crystal field, experienced by pure benzoic acid dimers in the condensed

phase, induces a slight preference for one particular arrangement of the mobile

protons over the other. In pure benzoic acid and the majority of its derivatives,

this energy asymmetry (& 50 K) is much larger than the tunnelling matrix

element (0.4 K [1]). As a result, incoherent tunnelling occurs between the two

configurations, supported by crystal lattice phonon contributions, leading to

the proton wavefunctions being relatively localised in their respective sites.

At low temperature, the constant transition probability from the high-energy

ground state to the low-energy one gives rise to a constant proton transfer rate,

independent of temperature. However, the amplitude of these transitions is

reduced somewhat by the Boltzmann population in the high-energy state.

2



CHAPTER 1. INTRODUCTION

1.2 NMR Relaxometry

A precise way of measuring the quantised environment in hydrogen bonds is to

detect it indirectly through the phenomenon of spin-lattice relaxation. At the

low temperatures of interest in this investigation, the samples studied were in

the solid state, and the dominant source of relaxation was dynamic disorder in

the hydrogen bond. Proton transfer provides an efficient mechanism for spin-

lattice relaxation to occur by generating a local fluctuating dipolar field, that

affects other magnetic species in their vicinity. The efficiency of this process,

observed as a function of magnetic field field using a field-cycling spectrometer,

then gives a direct measure of the proton motion. From this information,

the potential energy environment of the hydrogen bond, fundamental to its

quantised motion, can then be inferred.

The lack of motional averaging of the intramolecular dipolar field in solid

samples leads to significant broadening of the NMR absorption peak. A good

degree of averaging can be re-instated to solids through magic-angle spinning,

but is not necessary in the context of this investigation, since the spin-lattice

relaxation can be measured from a broad lineshape regardless.

For a static solid sample, the strength of the dipolar interaction, and

hence of the observed relaxation, is also dependent on the molecule orientation

relative to the magnetic field. This orientation dependence can be negated by

preparing the sample as an isotropic powder; the microscopic crystals in this

case would be randomly aligned resulting in some average dipolar interaction

strength. Alternatively, the molecular orientation can be restricted to a specific

value by using a single crystal sample. If the compound crystallises readily,

this approach can offer significant advantages in signal to noise ratio over a

powder sample due to a higher density of spins, and a well-defined value of the

relaxation rate rather than an average.

1.2.1 Heteronuclear Effects

The coupling between Zeeman reservoirs of different magnetic species has been

of topical interest in the field of NMR since 1953, when the Overhauser effect

was first reported as a method of transferring the inherently large electron spin

polarisation to a weakly polarised nuclear spin reservoir [2]. This dramatic feat

was achieved by irradiating the sample at a frequency matching the resonance

between the electron and nuclear Zeeman levels, and effectively coupling the

3



CHAPTER 1. INTRODUCTION

two.

Instead of electron-nuclear spin coupling, several of the experiments pre-

sented here are concerned with inter-nuclear coupling through a fundamentally

similar process. The dipolar field, created by stochastic hydrogen bond mo-

tion, includes components at appropriate coupling frequencies to facilitate

cross-relaxation between different Zeeman reservoirs. Measurement of these

cross-relaxation phenomena is relevant for understanding relaxation and the

transfer of polarisation in complex molecules, where several magnetic species

are naturally present.

Beyond the coupling of nearby magnetic species within a molecule, even

magnetically neutral (spin-0) nuclei can have an observable effect on the NMR of

proton transfer through the isotope effect. Proton tunnelling is complemented

by vibrational modes of the molecule, to the extent that the other atoms in

the molecule also possess tunnelling matrix elements. Changing the mass of

these heavier nuclei affects their tunnelling matrix element accordingly, thereby

distorting the resulting proton tunnelling behaviour.

1.3 Thesis Layout

Some theoretical background concerning the general aspects of low-resolution

solid-state NMR and modelling of quantum molecular dynamics in a double-

minimum potential are explored in chapter 2. The experimental techniques

used to measure spin-lattice relaxation rates of the variety of samples studied

during this investigation are covered in chapter 3. Also discussed in chapter

3 is the field-cycling spectrometer used to study relaxation across a range of

temperatures and fields.

Utilising the isotope effect, the results in chapter 4 present a clear demon-

stration of how the carboxylic-group oxygen atoms in benzoic acid contribute

to proton tunnelling. This chapter also serves as an introduction to the low-

temperature dynamics observed in the model system of pure benzoic acid.

Chapter 5 examines in detail the cross-relaxation behaviour in 13C-enriched

benzoic acid, and fluorobenzoic acid. The proton transfer motion in short,

strong hydrogen bonds, which interlink pyridine dicarboxylic acid molecules, is

the subject of chapter 6. It is demonstrated that the robust double-minimum

potential model is applicable even in this very different proton environment.

Chapter 7 presents a study of the effectiveness of the field-cycling technique

4



CHAPTER 1. INTRODUCTION

at separating and identifying relaxation components from multiple sources of

molecular motion. Finally, a summary of conclusions from the experiments

presented here can be found in chapter 8.

5



Chapter 2

Theory

This section will be used to review the theoretical understanding of nuclear

magnetic resonance, concentrating on the spin-lattice relaxation mechanisms in

solids; the relaxation due to proton transfer in carboxylic acid dimers being of

greatest relevance to my investigation. More general descriptions of the topic

can be found in textbooks [3, 4, 5].

2.1 Fundamentals of NMR

The origins of nuclear magnetic resonance lie in the intrinsic property of ‘spin’

possessed by all nuclei, inherited from their subatomic constituents. In that

sense it is akin to mass and charge, but instead relates to the particle’s magnetic

moment. The quantum mechanical representation of angular momentum and

its allowed operations is found to be applicable to spin, hence the quantity is

sometimes called spin angular momentum. Despite the name ‘spin angular

momentum’ implying some sort of physical rotation in space, as was initially

theorised to be its origin, the source of spin actually lies in relativistic quantum

mechanics of the nucleus, but the nomenclature has remained.

The eigenstates of the spin angular momentum vector along an arbitrary

direction, chosen to be the z-axis in cartesian coordinates, can be represented

by two quantum numbers I and mI , which can be thought of as the vector

magnitude and its orientation relative to the chosen direction. The functions

|I, mI〉 are orthonormal and form a good basis set for matrix operations, called

the ‘Zeeman eigenbasis’. The operator for spin angular momentum along the

z-axis is Îz, such that

Îz|I, mI〉 = mI |I, mI〉, (2.1)

6



CHAPTER 2. THEORY

where mI can take any of 2I + 1 eigenvalues in the range mI = I, I − 1, . . .− I.

If all the coordinates are taken into account by applying the total square

angular momentum operator Î2 = Î2
x + Î2

y + Î2
z , then

Î2|I, mI〉 = I(I + 1)|I, mI〉. (2.2)

The spin quantum number I is commonly referred to as the ‘spin’ of a particle,

and can take integer or half-integer values including zero. In terms of the

protons and neutrons comprising the nucleus, both of which are spin-1/2

(I = 1/2), the nuclear spin I represents the total combined spin of these

components depending on whether they are arranged parallel or antiparallel

relative to each other. For example, a deuteron may have nuclear spin quantum

numbers I = 0, 1 given by the two possible configurations (↑↓) and (↑↑).

However, due to the large energy gaps between nuclear spin states, well in

excess of those available at room temperature, in general only the ground state

is populated. Thus in the context of NMR only the ground state spin will be

relevant.

To quantify a particle’s spin in terms of SI units, the total spin angular

momentum, S, is related to the spin quantum number, I, via Plancks constant,

Ŝ = ~Î . (2.3)

By considering equations (2.2) and (2.3), we can say that the magnitude of

the total spin angular momentum is

|S| = ~

√

I(I + 1). (2.4)

It has been shown from quantum mechanical theory that the magnetic moment,

µ, is proportional and parallel to the spin angular momentum according to

µ̂ = γŜ, (2.5)

where the ‘gyromagnetic ratio’, γ, is unique for each particle species. Table

2.1 is provided as a reference for the spin and gyromagnetic ratios of nuclear

isotopes pertinent to this thesis.

7



CHAPTER 2. THEORY

Nuclear Spin quantum Magnetogyric ratio,
isotope number, I γ/ rad s−1T−1

1H 1/2 26.7522 × 107

12C 0
13C 1/2 6.7283 × 107

14N 1 1.9338 × 107

16O 0
17O 5/2 −3.6281 × 107

18O 0
19F 1/2 25.1815 × 107

Table 2.1: Nuclear isotopes relevant to this thesis and their spin properties.

Combining equations (2.3) and (2.5) we can now define the magnetic moment

operator along the arbitrary z-direction as

µ̂ = γ~Îz. (2.6)

Applying a constant magnetic field B produces an interaction with the magnetic

moment for which the Hamiltonian is

Ĥ = −µ̂ · B̂. (2.7)

If the applied field is then taken to be along the z-direction, B0, then the

Hamiltonian can be simplified to

Ĥ = −γ~ÎzB0. (2.8)

Hence according to equation (2.1), the energy of the interaction is quantised

according to the quantum number mI

E = −γ~mIB0 where mI = I, I − 1, . . . − I. (2.9)

This energy multiplet structure is called the ‘Zeeman splitting’, containing in

total (2I + 1) energy levels separated by

∆E = γ~B0, (2.10)

as shown in figure 2.1 for a spin-1/2 (I = 1/2) nucleus.

Spin-1/2 nuclei such as hydrogen nuclei are the most studied in NMR, in

this work and in the wider field. For convenience, the two Zeeman eigenstates

8



CHAPTER 2. THEORY

of such nuclei |1/2, 1/2〉 and |1/2,−1/2〉 are given the symbols |α〉 and |β〉

respectively. Due to the negative sign in equation (2.7), the spins with positive

gyromagnetic ratios tend to align parallel with the applied field, representing

the lowest Zeeman state, and those with negative γ align antiparallel. The

materials studied during this investigation were diamagnetic, indicating that

their magnetic moments are induced by the applied field, B0, and are not

permanent. In the absence of an external magnetic field, for such a nucleon,

the the Zeeman eigenstates are degenerate.

Figure 2.1: The Zeeman splitting of a spin-1/2 particle in a static magnetic field B0. The |β〉
eigenstate is a higher energy state relative to |α〉.

Given this set of energy levels, it is possible to detect transitions between

them using spectroscopic techniques. This is usually achieved by creating

an alternating magnetic field perpendicular to B0, supplied by photons at

frequency, ωL, such that

~ωL = ∆E = γ~B0. (2.11)

This frequency, ωL, is called the angular ‘resonance frequency’ or ‘Larmor

frequency’ of the system, which for most nuclei at reasonable static fields

(around 1 Tesla) is a few tens of Megahertz, in the radio frequency part of the

spectrum.

Because of this energy difference, if the B0 field is maintained, then the

relative spin populations of the two levels over a large number of spins will

eventually be determined by the Boltzmann distribution. This would give rise

to a finite bulk magnetisation parallel to the applied field, Mz = M0, since

the |α〉 eigenstate is more energetically favourable than |β〉. Such a stable

state is then referred to as having come to ‘thermal equilibrium’ with the

‘lattice’, the lattice being a combination of all the molecular degrees of freedom

- representing the sample temperature. The mechanism via which the Zeeman

populations come to thermal equilibrium with their environment following a

disturbance is hence called ‘spin-lattice relaxation’, characterised by the T1

9
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relaxation time.

If Nα and Nβ are the number of spins in the |α〉 and |β〉 states respectively

then the polarisation of an ensemble of spins can be defined as

〈Îz〉 =
Nα − Nβ

Nα + Nβ

. (2.12)

This ensemble average expectation value will then be proportional to the in-

duced magnetisation along B0 for the both the equilibrium and non-equilibrium

cases, 〈Îz〉 ∝ Mz and I0 ∝ M0, so the two can be equated on relative terms.

10
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2.2 Asymmetric Double-Minimum Potential Model

The work presented in this thesis will concentrate on the motion of hydrogen

nuclei (protons) in an asymmetric double-minimum potential (DMP), via a

process called ‘proton transfer’. This potential energy surface is created by

the rest of the molecule’s atoms, which in relative terms can be considered

stationary compared with the hydrogen nucleus, forming a ‘molecular lattice’.

As will be discussed in subsections 2.2.1 and 2.2.2 the proton motion causes

relaxation of the molecule’s nuclear spins through variation in the dipole-dipole

interaction.

For the purposes of constructing a working model of relaxation, the potential

energy surface (PES) can be simplified to a one-dimensional representation as

shown in figure 2.2. In reality the PES is multi-dimensional with the motion

of the proton coupled to various vibrational modes of the molecular lattice,

which can aid or hinder proton transfer. Distortions of the molecule thus occur

as part of the proton transfer process, as will be discussed in chapter 4. Figure

2.2 represents the potential energy measured along the reaction coordinate

for proton transfer, which other investigations [6, 7] show cannot always be

assumed to be the most direct path.

Figure 2.2: A diagrammatic representation of the double-minimum potential experienced by
a hydrogen nucleus. The two potential energy wells are arbitrarily labelled L and R, in this
figure corresponding to low and high energy respectively. ∆Eact is the effective interceding
barrier height, ∆Eexc is the energy of the first excited state, and ∆G is the difference in the
Gibbs energy of the two DMP minima.
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The classical mechanism for proton transfer is one of thermally activated

‘barrier hopping’ whereby the proton acquires enough energy to overcome the

potential barrier and is free to occupy either site. In the high-temperature

regime it has been shown [8] that these dynamics can very adequately be

described by an Arrhenius law with an activation energy ∆Eact. This effective

activation energy from the phenomenological description is much smaller than

the actual barrier height because the high-temperature dynamics include

contributions from both barrier hopping and through-barrier tunnelling. At

lower temperatures however, the transfer mechanism becomes increasingly

dominated by quantum tunnelling through the potential barrier, observed

experimentally [8, 9] as a much faster transfer rate than would be allowed by

the classical mechanism.

In most cases the energy asymmetry, ∆G, between the two potential wells is

much larger than the tunnelling matrix element. As a result of this, tunnelling

can only occur through incoherent pathways via interactions with a ‘heat

bath’, containing phonons with energy comparable to ∆G [10]. For a given

temperature the Gibbs energy can be expressed as two terms,

∆G = ∆H − T∆S. (2.13)

The enthalpy change, ∆H, is the energy released or gained during proton

transfer, and ∆S is the change in entropy associated with molecular lattice

vibrations involved in proton transfer. Both of these quantities should be

constant for a given molecular structure.

As mentioned earlier, the relaxation measured in the experiments presented

here was due to modulation of the dipole-dipole coupling between nuclei. It

is convenient now to define the geometry of such interactions in the context

of proton transfer in a DMP. Consider hydrogen nucleus i in the molecular

lattice experiencing a dipolar interaction with the mobile proton labelled j,

moving between sites L and R in the DMP. The spatial components of the

dipolar Hamiltonian depend on the relative positions of the two mobile proton

sites relative to proton i at the origin, with B0 along the z-axis, as shown in

figure 2.3 in terms of spherical polar coordinates (r, θ, φ). When considering

an isotropic powder average, it is useful to define an angle α subtended by the

two internuclear vectors.
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Figure 2.3: Application of the DMP proton transfer geometry with respect to the dipolar
Hamiltonian. The spherical polar coordinates of the two mobile proton sites, L (blue) and R
(red), are measured from proton i (green) at the origin.

2.2.1 Autocorrelation and Spectral Density Functions

Because the quantum tunnelling process in the asymmetric DMP is incoherent,

requiring contributions from a phonon heat-bath, the proton transfer motion

can be considered stochastic at low temperature. Similarly, it will be stochastic

at high temperature during thermally activated transitions. Considering a

classical interpretation of this proton transfer motion, where a particle moves

between two well-defined states at random, we can write down the probability

the proton will be in its starting position after a time τ as an autocorrelation

function

G(τ) = p(t) · p(t + τ), (2.14)

where p(t) and p(t + τ) are the particle positions at those respective times,

and the over-bar represents an ensemble average over many such systems.

Numerical simulation can be used to show that the functional form of G(τ) is
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that of a decaying exponential,

G(τ) = const. × exp

(

−|τ |

τc

)

, (2.15)

which will be large for small τ and decrease with increasing τ as the likelihood

of the proton staying in its original position diminishes. The time constant,

τc, is called the ‘correlation time’ and is an average measure of how quickly

proton transfer is occurring. Large correlation times indicate that the system

changes slowly while small τc is characteristic of more frequent motion. Taking

a Fourier transform of the autocorrelation function we can resolve the frequency

spectrum of the stochastic proton transfer motion,

J(ω) =

∫

∞

−∞

G(τ) exp(−iωτ) dτ = const. ×
τc

1 + ω2τ2
c

. (2.16)

This function is called the ‘spectral density’ and has the form of a Lorentzian

with half-width at half-maximum equal to τ−1
c .

2.2.2 Dipole-Dipole Spin-Lattice Relaxation

To make this analysis relevant to NMR we have to consider how the proton

transfer motion would be observed macroscopically in terms of transitions

between Zeeman energy levels. This can be achieved by inspecting the dipole-

dipole interaction between a stationary nucleus i and proton j undergoing

proton transfer. The magnetic field associated with the mobile proton will

have some finite value experienced by nucleus i, and this value will change

as proton transfer occurs. If this modulating magnetic field has a spectral

density component perpendicular to B0 and at the resonance frequency ωL it

will cause transitions between the Zeeman eigenstates. Through this dipolar

coupling spins i and j can come to thermal equilibrium over time assuming

they started in non-equilibrium.

To investigate this interaction in more detail the dipolar Hamiltonian, which

has the following standard form, needs to be considered,

ĤDD = γiγj~
2
(µ0

4π

)

2
∑

m=−2

ÂmFm, (2.17)

where m represents the total number of Zeeman state transitions between the

two coupled nucleons. Am and Fm represent the spin and spatial components
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of the Hamiltonian respectively:

Â0 = Îi
z Î

j
z −

(

1

4

)

[Îi
+Îj

− + Îi
−Îj

+] (2.18a)

Â∓1 = −

(

3

2

)

[Îi
∓Îj

z + Îi
z Î

j
∓] (2.18b)

Â∓2 = −

(

3

4

)

Îi
∓Îj

∓ (2.18c)

F 0 = r−3
ij (1 − 3 cos2 θ) (2.18d)

F∓1 = r−3
ij sin θ cos θ exp(±iφ) (2.18e)

F∓2 = r−3
ij sin2 θ exp(±2iφ) (2.18f)

The operators Î+ and Î− are raising and lowering operators respectively. If

both nucleons are spin-1/2, then their coupled Zeeman eigenstates have the

form |αβ〉, forming a four-level system. The dipolar Hamiltonian components

can cause transitions between these energy levels as shown in figure 2.4.

Figure 2.4: Zeeman energy levels of two coupled spins-1/2. The number of energy quanta
required to make each transition is represented by m.

The autocorrelation function as expressed in equation (2.14) no longer applies

in this case; instead of measuring the position change of one particle, it is

the varying dipolar interaction between a mobile nucleus and another that is

probed. Therefore, the autocorrelation function is expressed as an ensemble

average in terms of the dipolar interaction spatial components, Fm,

Gm(τ) = 〈Fm∗(t)Fm(t + τ)〉, (2.19)
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where Fm∗(t) represents the complex conjugate of Fm(t). Consequently, the

spectral density function can be defined as

Jm(ω) =

∫

∞

−∞

〈Fm∗(t)Fm(t + τ)〉 exp(−iωτ) dτ. (2.20)

Since there are only two possible positions for the mobile proton, L and R,

the ensemble average can be separated into components such as 〈Fm∗

L Fm
R 〉,

representing the proton making a transition from L to R during time τ , with

which there is an associated probability depending on the system temperature.

Then, assuming the functional form of equation (2.19) is the same as (2.15),

the spectral density can be resolved further

Jm(ω) =
1

2

4a

(1 + a)2
τc

1 + ω2τ2
c

[〈Fm∗

L Fm
L 〉 − 〈Fm∗

L Fm
R 〉 − 〈Fm∗

R Fm
L 〉 + 〈Fm∗

R Fm
R 〉].

(2.21)

The factor 4a/(1 + a)2, where a = exp(∆G/kBT ), is associated with the

transition probability as a function of temperature [11]. These spectral density

functions can be calculated precisely if the coordinates of the nuclei i and j are

known from the molecular crystal structure. If the mobile proton j is coupled

to numerous nucleons i, all the interactions need to be summed. However,

it can be seen from equations (2.18) that the terms 〈Fm∗

L Fm
R 〉 have an r−6

dependence and only the nearest interactions will give significant contributions.

Section 2.3 shows the spectral density functions Jm(ω) evaluated fully in terms

of the dipolar contributions (2.18d - 2.18f) for both the single crystal and

isotropic powder average cases.

Taking the energy levels of two coupled spins-1/2, figure 2.4, a set of

coupled differential equations can be written to show how the population of

each eigenstate depends on the transition probabilities between the levels.

Further assuming that both spins are of the same nuclear species, γi = γj , the

polarisation for an ensemble of such systems will be governed by

d

dt
〈Îz〉 = −

1

T1
[〈Îz〉 − I0], (2.22)

where 〈Îz〉 = 〈Îi
z〉 + 〈Îj

z 〉 and I0 = Ii
0 + Ij

0 [3]. The spin-lattice relaxation

time, T1, characterises the rate at which the coupled spins come to thermal
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equilibrium. Equation (2.22) has a general solution of the form

〈Îz〉 = I0

(

1 − exp

(

−t

T1

))

. (2.23)

Since the macroscopic magnetisation Mz is proportional to the total polarisa-

tion 〈Îz〉, this equation describes the exponential recovery of the longitudinal

magnetisation following a disturbance away from equilibrium.

It is possible to express the T1 time in terms of spectral density components

Jm(ω) that drive energy level transitions and contribute to spin-lattice relax-

ation, as will be seen in the following section. Analysis of these components by

exploring the frequency domain, utilising a variable B0 field, can yield greater

insight into the system dynamics than simply the temperature dependance.

2.2.3 Heteronuclear Effects

Consider now the case where the mobile hydrogen nucleus j experiences a

dipolar interaction with a nearby spin-1/2 nucleus k of a different species

(a ‘heteronucleus’). Similar to the homonuclear case in the previous section,

consideration of the transition probabilities between the resulting four Zeeman

eigenstates can lead to differential equations similar to (2.22) for the polarisation

recovery [3]. This however is more complicated for the heteronuclear case

because the equilibrium Boltzamnn population distributions are different for

the two species, since γk 6= γj . It is convenient at this point to introduce the

symbol S to represent the operators and polarisations of heteronucleus k, and

reserve the use of I for homonuclei i and j, which in most cases are hydrogen

nuclei. The coupled spin-lattice relaxation of an ensemble of homonuclear and

heteronuclear spins is given by





d
dt
〈Îz〉

d
dt
〈Ŝz〉



 = −





ρI σI

σS ρS









〈Îz〉 − I0

〈Ŝz〉 − S0



 , (2.24)

where the relaxation matrix is composed of the heteronuclear and homonuclear

parts as follows





ρI σI

σS ρS



 =





ρIS
II σIS

IS

σIS
SI ρIS

SS



 +





ρII
II 0

0 0



 . (2.25)
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The terms ρ and σ are equivalent to spin-lattice relaxation rates. It can be

seen that in the absence of a heteronuclear interaction, equation (2.24) can

be simplified to that for the homonuclear case (2.22), where ρII
II = 1/T1. The

terms σIS are cross-relaxation rates at which the non-equilibrium polarisations

of spins I and S equilibrate, in addition to equilibrating with the lattice.

To explain this further, the concept of a spin ‘reservoir’ needs to be intro-

duced. When a set of spins I are placed in an excited state away from thermal

equilibrium, the energy of those spins is said to be contained within the Zeeman

spin reservoir I, which has a finite heat capacity. In this interpretation the

lattice is considered to be a much larger reservoir at thermal equilibrium; such

that if there is a flow of energy between the two, say through dipolar coupling

due to proton transfer, then the I spin reservoir will tend towards the thermal

equilibrium energy of the lattice reservoir. This can equivalently be considered

in terms of equilibration of temperatures between a ‘hot’ reservoir I and a large

lattice reservoir at the thermal equilibrium temperature. In a heteronuclear

system, the S spin reservoir may also be coupled to the lattice, as well as to

the I spin reservoir, through the dipolar interaction as shown in figure 2.5.

Figure 2.5: Relaxation pathways of the homonuclear (I) and heteronuclear (S) spin reservoirs
between each other and the lattice.

General solutions of the coupled differential equations (2.24) following

a disturbance away from equilibrium are weighted sums of two exponential
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recoveries

〈Îz〉 = I0(1 + cI
1 exp(−R1t) + cI

2 exp(−R2t)), (2.26a)

〈Ŝz〉 = S0(1 + cS
1 exp(−R1t) + cS

2 exp(−R2t)), (2.26b)

where the weighting coefficients, c, are functions of the relaxation matrix ele-

ments and determined by the initial reservoir polarisation boundary conditions.

For this reason, the preparation of the spin reservoirs prior to the recovery part

of a pulse sequence is important in a heteronuclear sample, as will be discussed

in chapter 3. Equations (2.26) indicate that the magnetisation recovery of

a spin reservoir in a heteronuclear system will in general be bi-exponential.

The relaxation rates R1 and R2 are the eigenvalue solutions of the relaxation

matrix, given by

R1,2 =
1

2

(

(ρI + ρS) ±
√

(ρI − ρS)2 + 4σIσS

)

, (2.27)

where the usual convention is that R1 > R2. The weighting coefficients c can

be evaluated analytically by solving equations (2.26) with certain idealised

initial reservoir polarisation boundary conditions.

For 〈Îz〉t=0 = I0 〈Ŝz〉t=0 = 0:

cI
1 =

γS

γI

σS

R2 − R1
and cI

2 = −cI
1, (2.28)

cS
1 =

ρS − R2

R2 − R1
and cS

2 = −(1 + cS
1 ). (2.29)

For 〈Îz〉t=0 = 0 〈Ŝz〉t=0 = S0:

cI
1 =

ρI − R2

R2 − R1
and cI

2 = −(1 + cI
1), (2.30)

cS
1 =

γI

γS

σI

R2 − R1
and cS

2 = −cS
1 . (2.31)

For 〈Îz〉t=0 = 0 〈Ŝz〉t=0 = 0:

cI
1 =

σSγS

γI
+ ρI − R2

R2 − R1
and cI

2 = −(1 + cI
1), (2.32)

cS
1 =

σIγI

γS
+ ρS − R2

R2 − R1
and cS

2 = −(1 + cS
1 ). (2.33)

Combining equations (2.26 - 2.33) it can be shown that if there is no
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coupling between the homonuclear and heteronuclear reservoirs, σI = σS = 0,

then equations (2.26) reduce to the same form as the homonuclear single

exponential relaxation (2.23). There are three conditions under which the

intrinsically bi-exponential recoveries of a heteronuclear spin system with

a non-zero off-diagonal relaxation matrix element, σ, would appear to be

single-exponential.

1. When there is less than an order of magnitude difference between the two

spin-lattice relaxation rates, log10(R1) ≈ log10(R2), and the weighting

coefficients of the measured species are non-zero, |c1|, |c2| > 0.

2. When the relaxation rates R1 and R2 are sufficiently different, but one of

the weighting coefficients for the observed species is approximately zero,

|c1| ≈ 0 or |c2| ≈ 0.

3. A combination of both of the above conditions, where log10(R1) ≈

log10(R2), and |c1| ≈ 0 or |c2| ≈ 0. In this case, any change in the minor

relaxation rate, that associated with the weighting coefficient closest to

zero, would be insignificant compared with the changes in the dominant

relaxation rate. Hence, until the system changes to become either case 1

or case 2, the magnetisation recovery can be adequately described by the

dominant component.

For cases 1 and 2, where the apparent single-exponential recovery cannot be

well described by R1 or R2, the observed magnetisation recovery follows some

average effective relaxation time, T eff
1 . The exact value of this apparent relax-

ation time is difficult to model since it involves some degree of approximation

and can also depend on the data fitting algorithm used. The following weighted

sums of the relaxation rates show good correlation to the measured T eff
1 of

test data sets:

T eff
1 ≈

c1 + c2

c1R1 + c2R2
for c1R1 6≈ −c2R2, (2.34)

T eff
1 ≈

c1/R1 + c2/R2

c1 + c2
for c1R1 ≈ −c2R2. (2.35)

With a field-cycling spectrometer it is possible to explore the frequency

distribution of the spin-lattice relaxation rates. Each relaxation matrix element

is composed of spectral density functions at a frequency appropriate to a
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coupled Zeeman eigenstate transition contributing to that particular relaxation

mechanism. The following equations can be derived by considering the dipolar

Hamiltonian as a time-dependent perturbation of the Zeeman Hamiltonian [3].

ρIS
II =

γ2
I γ2

S~
2S(S + 1)

12NI

(µ0

4π

)2
[

J0(ωI − ωS) + 18J1(ωI) + 9J2(ωI + ωS)
]

(2.36)

σIS
IS =

γ2
I γ2

S~
2I(I + 1)

12

(µ0

4π

)2
[

−J0(ωI − ωS) + 9J2(ωI + ωS)
]

(2.37)

σIS
SI =

γ2
I γ2

S~
2S(S + 1)

12

(µ0

4π

)2
[

−J0(ωS − ωI) + 9J2(ωS + ωI)
]

(2.38)

ρIS
SS =

γ2
I γ2

S~
2I(I + 1)

12NS

(µ0

4π

)2
[

J0(ωS − ωI) + 18J1(ωS) + 9J2(ωS + ωI)
]

(2.39)

ρII
II =

3γ4
I ~

2I(I + 1)

NI

(µ0

4π

)2
[

J1(ωI) + J2(2ωI)
]

(2.40)

Here, NI and NS are the numbers of nucleons I and nucleons S per mobile

proton in the sample, including the mobile proton. These dilution factors result

from efficient spin-diffusion within the homonuclear and heteronuclear spin

reservoirs. The spectral densities Jm(ω) are given by equation (2.21), and a

full evaluation of the spatial dipolar components 〈Fm∗Fm〉 for each relaxation

matrix element can be found in section 2.3. Also, the Lorentzian spectral

density function is symmetric about ω = 0, such that J(ω) = J(−ω).

Note that in equations (2.36 - 2.39) there is a zero-quantum transition

contribution. These are present because in the heteronuclear system the

coupled Zeeman eigenstates |αβ〉 and |βα〉 have different relative energies,

and transitions between them allow thermal equilibration of the populations,

whereas for the homonuclear case they do not. In other words, the dipolar

Hamiltonian components Â0 are secular for the homonuclear case, and non-

secular for the heteronuclear one. The matrix elements σ are not strictly

spin-lattice relaxation rates, since they only represent the polarisation transfer

rate between the two reservoirs I and S, as shown in figure 2.5.

Although Jm(ω) is the spectral density function, it is not a measurable

quantity, hence any relaxation rates measured as a function of frequency may

later be referred to as ‘spectral density distributions’ or ‘spectral densities’.
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2.3 Heteronuclear Relaxation Matrix

In this section the heteronuclear relaxation matrix elements will be derived

for the single-crystal and isotropic powder average cases. In the case of a

single crystal, every unit cell is aligned identically with the static field, B0, the

orientation of which will vary the strength of the dipolar coupling between

nuclei. For a powder sample the microscopic grains are aligned randomly,

creating some average dipolar interaction strength independent of the direction

relative to B0. The relaxation matrix is given by





ρI σI

σS ρS



 =





ρIS
II σIS

IS

σIS
SI ρIS

SS



 +





ρII
II 0

0 0



 .

This consists of the heteronuclear and homonuclear contributions respectively,

which can be expressed in terms of spectral density functions according to

equations (2.36 - 2.40).

The spectral density functions Jm(ω) are derived from the Fourier transform

of the autocorrelation function. In this case the autocorrelation function is an

ensemble average of products between the spatial components of the dipolar

hamiltonian F , measured at two different times t and t + τ . The Lorentzian

function will be defined here as L(ω) = τc

1+ω2τ2
c
.

Jm(ω) =

∫

∞

−∞

〈Fm∗(t)Fm(t + τ)〉 exp(−iωτ) dτ

=
1

2

4a

(1 + a)2
τc

1 + ω2τ2
c

[〈Fm∗

L Fm
L 〉 − 〈Fm∗

L Fm
R 〉 − 〈Fm∗

R Fm
L 〉 + 〈Fm∗

R Fm
R 〉]

=
1

2

4a

(1 + a)2
L(ω)[〈Fm∗

L Fm
L 〉 − 〈Fm∗

L Fm
R 〉 − 〈Fm∗

R Fm
L 〉 + 〈Fm∗

R Fm
R 〉]

(2.41)

22



CHAPTER 2. THEORY

2.3.1 Single-Crystal

Utilising equations (2.18d - 2.18f) it is possible to explicitly define the ensemble

averages 〈Fm∗

A Fm
B 〉, for the zero-quantum, single-quantum and double-quantum

transitions. These terms will depend on the crystal orientation relative to B0.

Refer to figure 2.3 for an illustration of the spherical polar coordinates used

here.

For zero-quantum transitions, (m = 0):

〈F 0∗
L F 0

L〉 = r−6
L (1 − 3 cos2 θL)(1 − 3 cos2 θL)

〈F 0∗
L F 0

R〉 = 〈F 0∗
R F 0

L〉 = r−3
L r−3

R (1 − 3 cos2 θL)(1 − 3 cos2 θR)

〈F 0∗
R F 0

R〉 = r−6
R (1 − 3 cos2 θR)(1 − 3 cos2 θR)

For single-quantum transitions, (m = 1):

〈F 1∗
L F 1

L〉 = r−6
L sin θL cos θL exp(−iφL) sin θL cos θL exp(+iφL)

= r−6
L sin2 θL cos2 θL

〈F 1∗
L F 1

R〉 = r−3
L r−3

R sin θL cos θL exp(−iφL) sin θR cos θR exp(+iφR)

= r−3
L r−3

R sin θL cos θL sin θR cos θR exp(i(φR − φL))

〈F 1∗
R F 1

L〉 = r−3
R r−3

L sin θR cos θR exp(−iφR) sin θL cos θL exp(+iφL)

= r−3
L r−3

R sin θL cos θL sin θR cos θR exp(−i(φR − φL))

〈F 1∗
R F 1

R〉 = r−6
R sin θR cos θR exp(−iφR) sin θR cos θR exp(+iφR)

= r−6
R sin2 θR cos2 θR

For double-quantum transitions, (m = 2):

〈F 2∗
L F 2

L〉 = r−6
L sin2 θL exp(−2iφL) sin2 θL exp(+2iφL)

= r−6
L sin4 θL

〈F 2∗
L F 2

R〉 = r−3
L r−3

R sin2 θL exp(−2iφL) sin2 θR exp(+2iφR)

= r−3
L r−3

R sin2 θL sin2 θR exp(2i(φR − φL))

〈F 2∗
R F 2

L〉 = r−3
R r−3

L sin2 θR exp(−2iφR) sin2 θL exp(+2iφL)

= r−3
L r−3

R sin2 θL sin2 θR exp(−2i(φR − φL))

〈F 2∗
R F 2

R〉 = r−6
R sin2 θR exp(−2iφR) sin2 θR exp(+2iφR)

= r−6
R sin4 θR
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If the angle between the two internuclear vectors is α, as seen in figure

2.3, considering their dot product we may write sin θL sin θR cos(φL − φR) =

cos α − cos θL cos θR. Using the above equations and this identity, the spectral

density functions (2.41) can be fully expressed as follows:

J0(ω) =
1

2

4a

(1 + a)2
L(ω)







r−6
L (1 − 3 cos2 θL)(1 − 3 cos2 θL)

−2r−3
L r−3

R (1 − 3 cos2 θL)(1 − 3 cos2 θR)

+r−6
R (1 − 3 cos2 θR)(1 − 3 cos2 θR)







=
1

2

4a

(1 + a)2
L(ω)

[

r−3
L (1 − 3 cos2 θL) + r−3

R (1 − 3 cos2 θR)
]2

J1(ω) =
1

2

4a

(1 + a)2
L(ω)













r−6
L sin2 θL cos2 θL

−r−3
L r−3

R sin θL cos θL sin θR cos θR exp(i(φR − φL))

−r−3
L r−3

R sin θL cos θL sin θR cos θR exp(−i(φR − φL))

+r−6
R sin2 θR cos2 θR













=
1

2

4a

(1 + a)2
L(ω)

[

r−6
L sin2 θL cos2 θL + r−6

R sin2 θR cos2 θR

−2r−3
L r−3

R sin θL cos θL sin θR cos θR cos(φR − φL)

]

=
1

2

4a

(1 + a)2
L(ω)

[

r−6
L sin2 θL cos2 θL + r−6

R sin2 θR cos2 θR

−2r−3
L r−3

R cos θL cos θR(cos α − cos θL cos θR)

]

J2(ω) =
1

2

4a

(1 + a)2
L(ω)













r−6
L sin4 θL

−r−3
L r−3

R sin2 θL sin2 θR exp(2i(φR − φL))

−r−3
L r−3

R sin2 θL sin2 θR exp(−2i(φR − φL))

+r−6
R sin4 θR













=
1

2

4a

(1 + a)2
L(ω)

[

r−6
L sin4 θL + r−6

R sin4 θR

−2r−3
L r−3

R sin2 θL sin2 θR cos(2(φR − φL))

]

=
1

2

4a

(1 + a)2
L(ω)

[

r−6
L sin4 θL + r−6

R sin4 θR

−2r−3
L r−3

R sin2 θL sin2 θR(2 cos2(φR − φL) − 1)

]

=
1

2

4a

(1 + a)2
L(ω)







r−6
L sin4 θL + r−6

R sin4 θR

−4r−3
L r−3

R sin2 θL sin2 θR cos2(φR − φL)

+2r−3
L r−3

R sin2 θL sin2 θR







=
1

2

4a

(1 + a)2
L(ω)







r−6
L sin4 θL + r−6

R sin4 θR

−4r−3
L r−3

R (cos α − cos θL cos θR)2

+2r−3
L r−3

R sin2 θL sin2 θR






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These spectral density functions can now be substituted in the relaxation

matrix elements:

ρIS
II =

γ2
I γ2

S~
2S(S + 1)

24NI

(µ0

4π

)2 4a

(1 + a)2

×























L(ωI − ωS)
[

r−3
L (1 − 3 cos2 θL) + r−3

R (1 − 3 cos2 θR)
]2

+18L(ωI)

[

r−6
L sin2 θL cos2 θL + r−6

R sin2 θR cos2 θR

−2r−3
L r−3

R cos θL cos θR(cos α − cos θL cos θR)

]

+9L(ωI + ωS)







r−6
L sin4 θL + r−6

R sin4 θR

−4r−3
L r−3

R (cos α − cos θL cos θR)2

+2r−3
L r−3

R sin2 θL sin2 θR





























σIS
IS =

γ2
I γ2

S~
2I(I + 1)

24

(µ0

4π

)2 4a

(1 + a)2

×













−L(ωI − ωS)
[

r−3
L (1 − 3 cos2 θL) + r−3

R (1 − 3 cos2 θR)
]2

+9L(ωI + ωS)







r−6
L sin4 θL + r−6

R sin4 θR

−4r−3
L r−3

R (cos α − cos θL cos θR)2

+2r−3
L r−3

R sin2 θL sin2 θR



















σIS
SI =

γ2
I γ2

S~
2S(S + 1)

24

(µ0

4π

)2 4a

(1 + a)2

×













−L(ωS − ωI)
[

r−3
L (1 − 3 cos2 θL) + r−3

R (1 − 3 cos2 θR)
]2

+9L(ωS + ωI)







r−6
L sin4 θL + r−6

R sin4 θR

−4r−3
L r−3

R (cos α − cos θL cos θR)2

+2r−3
L r−3

R sin2 θL sin2 θR



















ρIS
SS =

γ2
I γ2

S~
2I(I + 1)

24NS

(µ0

4π

)2 4a

(1 + a)2

×























L(ωS − ωI)
[

r−3
L (1 − 3 cos2 θL) + r−3

R (1 − 3 cos2 θR)
]2

+18L(ωS)

[

r−6
L sin2 θL cos2 θL + r−6

R sin2 θR cos2 θR

−2r−3
L r−3

R cos θL cos θR(cos α − cos θL cos θR)

]

+9L(ωS + ωI)







r−6
L sin4 θL + r−6

R sin4 θR

−4r−3
L r−3

R (cos α − cos θL cos θR)2

+2r−3
L r−3

R sin2 θL sin2 θR




























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ρII
II =

3γ4
I ~

2I(I + 1)

2NI

(µ0

4π

)2 4a

(1 + a)2

×

















L(ωI)

[

r−6
L sin2 θL cos2 θL + r−6

R sin2 θR cos2 θR

−2r−3
L r−3

R cos θL cos θR(cos α − cos θL cos θR)

]

+L(2ωI)







r−6
L sin4 θL + r−6

R sin4 θR

−4r−3
L r−3

R (cos α − cos θL cos θR)2

+2r−3
L r−3

R sin2 θL sin2 θR























These relaxation matrix elements can be generalised for any number of pro-

tons j in motion between sites L and R, interacting with stationary homonuclei

i, and heteronuclei k.

ρIS
II =

γ2
I γ2

S~
2S(S + 1)

24NI

(µ0

4π

)2 4a

(1 + a)2

×



























L(ωI − ωS)
∑

k,j

[

r−3
kjL(1 − 3 cos2 θkjL) + r−3

kjR(1 − 3 cos2 θkjR)
]2

+18L(ωI)
∑

k,j

[

r−6
kjL sin2 θkjL cos2 θkjL + r−6

kjR sin2 θkjR cos2 θkjR

−2r−3
kjLr−3

kjR cos θkjL cos θkjR(cos α − cos θkjL cos θkjR)

]

+9L(ωI + ωS)
∑

k,j







r−6
kjL sin4 θkjL + r−6

kjR sin4 θkjR

−4r−3
kjLr−3

kjR(cos α − cos θkjL cos θkjR)2

+2r−3
kjLr−3

kjR sin2 θkjL sin2 θkjR

































σIS
IS =

γ2
I γ2

S~
2I(I + 1)

24

(µ0

4π

)2 4a

(1 + a)2

×

















−L(ωI − ωS)
∑

k,j

[

r−3
kjL(1 − 3 cos2 θkjL) + r−3

kjR(1 − 3 cos2 θkjR)
]2

+9L(ωI + ωS)
∑

k,j







r−6
kjL sin4 θkjL + r−6

kjR sin4 θkjR

−4r−3
kjLr−3

kjR(cos α − cos θkjL cos θkjR)2

+2r−3
kjLr−3

kjR sin2 θkjL sin2 θkjR























σIS
SI =

γ2
I γ2

S~
2S(S + 1)

24

(µ0

4π

)2 4a

(1 + a)2

×

















−L(ωS − ωI)
∑

k,j

[

r−3
kjL(1 − 3 cos2 θkjL) + r−3

kjR(1 − 3 cos2 θkjR)
]2

+9L(ωS + ωI)
∑

k,j







r−6
kjL sin4 θkjL + r−6

kjR sin4 θkjR

−4r−3
kjLr−3

kjR(cos α − cos θkjL cos θkjR)2

+2r−3
kjLr−3

kjR sin2 θkjL sin2 θkjR























26



CHAPTER 2. THEORY

ρIS
SS =

γ2
I γ2

S~
2I(I + 1)

24NS

(µ0

4π

)2 4a

(1 + a)2

×



























L(ωS − ωI)
∑

k,j

[

r−3
kjL(1 − 3 cos2 θkjL) + r−3

kjR(1 − 3 cos2 θkjR)
]2

+18L(ωS)
∑

k,j

[

r−6
kjL sin2 θkjL cos2 θkjL + r−6

kjR sin2 θkjR cos2 θkjR

−2r−3
kjLr−3

kjR cos θkjL cos θkjR(cos α − cos θkjL cos θkjR)

]

+9L(ωS + ωI)
∑

k,j







r−6
kjL sin4 θkjL + r−6

kjR sin4 θkjR

−4r−3
kjLr−3

kjR(cos α − cos θkjL cos θkjR)2

+2r−3
kjLr−3

kjR sin2 θkjL sin2 θkjR

































ρII
II =

3γ4
I ~

2I(I + 1)

2NI

(µ0

4π

)2 4a

(1 + a)2

×



















L(ωI)
∑

i,j

[

r−6
ijL sin2 θijL cos2 θijL + r−6

ijR sin2 θijR cos2 θijR

−2r−3
ijLr−3

ijR cos θijL cos θijR(cos α − cos θijL cos θijR)

]

+L(2ωI)
∑

i,j







r−6
ijL sin4 θijL + r−6

ijR sin4 θijR

−4r−3
ijLr−3

ijR(cos α − cos θijL cos θijR)2

+2r−3
ijLr−3

ijR sin2 θijL sin2 θijR

























Identifying the common factors, these relaxation matrix equations can be

simplified further:

ρIS
II =

γ2
I γ2

S~
2S(S + 1)

24NI

(µ0

4π

)2 4a

(1 + a)2
(2.42)

×
[

L(ωI − ωS)G0
Het + 18L(ωI)G

1
Het + 9L(ωI + ωS)G2

Het

]

σIS
IS =

γ2
I γ2

S~
2I(I + 1)

24

(µ0

4π

)2 4a

(1 + a)2
(2.43)

×
[

−L(ωI − ωS)G0
Het + 9L(ωI + ωS)G2

Het

]

σIS
SI =

γ2
I γ2

S~
2S(S + 1)

24

(µ0

4π

)2 4a

(1 + a)2
(2.44)

×
[

−L(ωS − ωI)G
0
Het + 9L(ωS + ωI)G

2
Het

]

ρIS
SS =

γ2
I γ2

S~
2I(I + 1)

24NS

(µ0

4π

)2 4a

(1 + a)2
(2.45)

×
[

L(ωS − ωI)G
0
Het + 18L(ωS)G1

Het + 9L(ωS + ωI)G
2
Het

]

ρII
II =

3γ4
I ~

2I(I + 1)

2NI

(µ0

4π

)2 4a

(1 + a)2
[

L(ωI)G
1
Homo + L(2ωI)G

2
Homo

]

(2.46)
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The homonuclear and heteronuclear dipolar coupling strengths G are then

given by the following:

G0
Het =

∑

k,j

[

r−3
kjL(1 − 3 cos2 θkjL) + r−3

kjR(1 − 3 cos2 θkjR)
]2

(2.47)

G1
Het =

∑

k,j

[

r−6
kjL sin2 θkjL cos2 θkjL + r−6

kjR sin2 θkjR cos2 θkjR

−2r−3
kjLr−3

kjR cos θkjL cos θkjR(cos α − cos θkjL cos θkjR)

]

(2.48)

G2
Het =

∑

k,j

[

r−6
kjL sin4 θkjL + r−6

kjR sin4 θkjR + 2r−3
kjLr−3

kjR sin2 θkjL sin2 θkjR

−4r−3
kjLr−3

kjR(cos α − cos θkjL cos θkjR)2

]

(2.49)

G1
Homo =

∑

i,j

[

r−6
ijL sin2 θijL cos2 θijL + r−6

ijR sin2 θijR cos2 θijR

−2r−3
ijLr−3

ijR cos θijL cos θijR(cos α − cos θijL cos θijR)

]

(2.50)

G2
Homo =

∑

i,j

[

r−6
ijL sin4 θijL + r−6

ijR sin4 θijR + 2r−3
ijLr−3

ijR sin2 θijL sin2 θijR

−4r−3
ijLr−3

ijR(cos α − cos θijL cos θijR)2

]

(2.51)
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2.3.2 Isotropic Powder

A similar analysis can now be performed for the isotropic powder case, for

which the ensemble average dipolar spatial components have no orientation

dependence, and are given by [12]:

For zero-quantum transitions, (m = 0):

〈F 0∗
L F 0

L〉 =
4

5
r−6
L

〈F 0∗
L F 0

R〉 = 〈F 0∗
R F 0

L〉 =
4

10
r−3
L r−3

R (3 cos2 α − 1)

〈F 0∗
R F 0

R〉 =
4

5
r−6
R

For single-quantum transitions, (m = 1):

〈F 1∗
L F 1

L〉 =
2

15
r−6
L

〈F 1∗
L F 1

R〉 = 〈F 1∗
R F 1

L〉 =
2

30
r−3
L r−3

R (3 cos2 α − 1)

〈F 1∗
R F 1

R〉 =
2

15
r−6
R

For double-quantum transitions, (m = 2):

〈F 2∗
L F 2

L〉 =
8

15
r−6
L

〈F 2∗
L F 2

R〉 = 〈F 2∗
R F 2

L〉 =
8

30
r−3
L r−3

R (3 cos2 α − 1)

〈F 2∗
R F 2

R〉 =
8

15
r−6
R

The powder average spectral density functions can then be expressed as follows:

J0(ω) =
4

10

4a

(1 + a)2
L(ω)[r−6

L − r−3
L r−3

R (3 cos2 α − 1) + r−6
R ]

J1(ω) =
2

30

4a

(1 + a)2
L(ω)[r−6

L − r−3
L r−3

R (3 cos2 α − 1) + r−6
R ]

J2(ω) =
8

30

4a

(1 + a)2
L(ω)[r−6

L − r−3
L r−3

R (3 cos2 α − 1) + r−6
R ]
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The relaxation matrix elements can now be expressed in terms of these

spectral density functions. As in the previous subsection, they can also be

generalised for numerous mobile protons j, coupled to stationary homonuclei i

and heteronuclei k.

ρIS
II =

γ2
I γ2

S~
2S(S + 1)

30NI

(µ0

4π

)2 4a

(1 + a)2

∑

k,j

[

r−6
kjL − r−3

kjLr−3
kjR(3 cos2 α − 1) + r−6

kjR

]

× [L(ωI − ωS) + 3L(ωI) + 6L(ωI + ωS)]

σIS
IS =

γ2
I γ2

S~
2I(I + 1)

30

(µ0

4π

)2 4a

(1 + a)2

∑

k,j

[

r−6
kjL − r−3

kjLr−3
kjR(3 cos2 α − 1) + r−6

kjR

]

× [−L(ωI − ωS) + 6L(ωI + ωS)]

σIS
SI =

γ2
I γ2

S~
2S(S + 1)

30

(µ0

4π

)2 4a

(1 + a)2

∑

k,j

[

r−6
kjL − r−3

kjLr−3
kjR(3 cos2 α − 1) + r−6

kjR

]

× [−L(ωS − ωI) + 6L(ωS + ωI)]

ρIS
SS =

γ2
I γ2

S~
2I(I + 1)

30NS

(µ0

4π

)2 4a

(1 + a)2

∑

k,j

[

r−6
kjL − r−3

kjLr−3
kjR(3 cos2 α − 1) + r−6

kjR

]

× [L(ωS − ωI) + 3L(ωS) + 6L(ωS + ωI)]

ρII
II =

γ4
I ~

2I(I + 1)

5NI

(µ0

4π

)2 4a

(1 + a)2

∑

i,j

[

r−6
ijL − r−3

ijLr−3
ijR(3 cos2 α − 1) + r−6

ijR

]

× [L(ωI) + 4L(2ωI)]
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The dipolar interaction strength sums are common factors, and the above

equations can be reduced to the following commonly recognised form:

ρIS
II =

γ2
I γ2

S~
2S(S + 1)

30NI

(µ0

4π

)2 4a

(1 + a)2
GPow

Het [L(ωI − ωS) + 3L(ωI) + 6L(ωI + ωS)]

(2.52)

σIS
IS =

γ2
I γ2

S~
2I(I + 1)

30

(µ0

4π

)2 4a

(1 + a)2
GPow

Het [−L(ωI − ωS) + 6L(ωI + ωS)]

(2.53)

σIS
SI =

γ2
I γ2

S~
2S(S + 1)

30

(µ0

4π

)2 4a

(1 + a)2
GPow

Het [−L(ωS − ωI) + 6L(ωS + ωI)]

(2.54)

ρIS
SS =

γ2
I γ2

S~
2I(I + 1)

30NS

(µ0

4π

)2 4a

(1 + a)2
GPow

Het [L(ωS − ωI) + 3L(ωS) + 6L(ωS + ωI)]

(2.55)

ρII
II =

γ4
I ~

2I(I + 1)

5NI

(µ0

4π

)2 4a

(1 + a)2
GPow

Homo [L(ωI) + 4L(2ωI)] (2.56)

The dipolar interaction lattice sums G are then given by:

GPow
Het =

∑

k,j

[

r−6
kjL − r−3

kjLr−3
kjR(3 cos2 α − 1) + r−6

kjR

]

(2.57)

GPow
Homo =

∑

i,j

[

r−6
ijL − r−3

ijLr−3
ijR(3 cos2 α − 1) + r−6

ijR

]

(2.58)

When working with purely homonuclear spin systems, equations (2.56) and

(2.58) are usually combined

1

T1
= CII

4a

(1 + a)2
[L(ωI) + 4L(2ωI)] , (2.59)

where the dipolar coupling constant CII is given by

CII =
γ4

I ~
2I(I + 1)

5NI

(µ0

4π

)2 ∑

k,j

[

r−6
kjL − r−3

kjLr−3
kjR(3 cos2 α − 1) + r−6

kjR

]

(2.60)

To demonstrate graphically the general behaviour of spin-lattice relaxation

as a function of frequency, equation (2.59) will be taken here as an example. For
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a constant temperature, figure 2.6 shows how the different-width Lorentzians

L(ω) and L(2ω) combine to give the overall form of equation (2.59).

Figure 2.6: Combination of Lorentzian functions L(ω) and L(2ω) as in equation (2.59).

Increasing the temperature generally has the effect of also increasing the

proton transfer rate, τ −1
c . This change tends to broaden the Lorentzian

lineshape, as demonstrated in figure 2.7. For simplicity, the temperature-

dependent amplitude factor 4a
(1+a)2

has been kept constant in this illustration.

Figure 2.7: Dependence of the Lorentzian function L(ω) on the correlation rate τ−1

c .
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2.4 Carboxylic Acid Dimers

Carboxylic acid molecules often form dimers when in the solid state, which

provides a good environment for proton transfer to occur across the connecting

hydrogen bonds. This thesis focuses on the study of benzoic acid and its

derivatives as described in chapter 1. A wider overview of hydrogen bond

tunnelling can be found elsewhere [13], with the majority of discussions therein

being applicable to carboxylic acid dimers.

Hydrogen bonds can form when a hydrogen atom shares a covalent bond

with a strongly electronegative atom such as oxygen, nitrogen, or fluorine. This

induces a partial positive charge on the hydrogen, which then can form a weak

dipolar attraction to a lone pair of electrons on a heteroatom, creating the

hydrogen bond. In benzoic acid, two bridging hydrogen bonds form between

two carboxyl groups of neighbouring benzoic acid molecules to form the dimer.

The protons involved in the hydrogen bond can undergo motion from the

nearest electronegative oxygen to the other it shares the bond with. This

interchange produces the two tautomeric forms of benzoic acid as shown in

figure 2.8. From measurement of the dipolar interactions in a similar system

[14] the proton transfer is known to occur simultaneously across both hydrogen

bonds in the dimer rather than a stepwise process, hence it is referred to as

‘concerted proton transfer’.

Figure 2.8: The two tautomeric configurations of a benzoic acid dimer labelled L and R.

For an isolated benzoic acid dimer the two tautomers have equivalent

energy. However, in the solid state the crystal unit cell is monoclinic [15],

which introduces an asymmetry to the electrostatic environments of the two

tautomers. For this reason the asymmetric double-minimum potential model
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is applicable to benzoic acid, with the two tautomers being labelled L and R

to represent the low and high energy configurations.

As discussed in section 2.2 the DMP is a one-dimensional representation of

the proton transfer PES, which is formed from a combination of intermolecular

and intramolecular vibrational modes coupled to this process. The temperature-

dependence of these contributions is represented by the entropy term in equation

(2.13). For the case of benzoic acid, the change in entropy, ∆S, is found

experimentally to be approximately zero, such that the DMP asymmetry is

independent of temperature,

∆G ≈ ∆H. (2.61)

The dynamics of proton transfer in benzoic acid as a function of temper-

ature have been studied and observed to undergo a smooth transition from

a thermally-activated high-temperature regime to quantum tunnelling at low

temperatures [8]. The correlation rate, τ−1
c , of the motion can be modelled

as a combination of an Arrhenius type law and two terms derived from the

quantum mechanical description of transitions between the ground states and

the first excited states of the DMP [10, 16]. Despite modelling only a limited

number of transitions of those possible, this formulation appears sufficient at

all temperatures relevant to this study, 4.2K . T . 300K.

τ −1
c = k0 coth

(

∆H

2kBT

)

+ τ −1
exc exp

(

−∆Eexc

kBT

)

+ τ −1
act exp

(

−∆Eact

kBT

)

(2.62)

The constants τ −1
exc and τ −1

act are correlation rates from the relevant modes

at infinite temperature, whereas k0 is the zero-temperature tunnelling rate

limit.
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2.5 The Methyl Rotor Model

Although not being directly relevant to the topic of this thesis, it is important

to quantify here the relaxation behaviour caused by the presence of a methyl

group for interpreting the results presented in chapter 7. Beyond the summary

presented here, a very good overview of methyl group dynamics studied by

NMR can be found elsewhere [17].

At room temperature and below only the ground vibrational eigenstate

is occupied, hence it can be considered as a rigid rotor. The methyl group

as a whole experiences some form of potential energy restriction, created by

inter-molecular and intra-molecular interactions, that hinders its rotation. Due

to the tetrahedral arrangement of the methyl hydrogen nuclei, such rotations

are hindered by a three-fold symmetric sinusoidal PES before regaining the

original orientation. Each PES well then has a series of librational excitation

states which the methyl group can occupy.

At low temperatures the rotation can occur via coherent quantum tunnelling

between the three PES minima, resulting in a tunnelling splitting of each

librational eigenstate into A and E states. The dipole-dipole interaction is

able to induce changes between these tunnelling states of the rotor, as well as

between the Zeeman eigenstates. Consideration of the transition probabilities

involved in this energy manifold leads to the following formulation of the

spin-lattice relaxation rate for a powder sample [18].

1

T1
= CAE

2
∑

n=1

(

n2τc

1 + (ωt + nωL)2τ2
c

+
n2τc

1 + (ωt − nωL)2τ2
c

)

+CEE

2
∑

n=1

n2τ2
c

1 + n2ω2
Lτ2

c

(2.63)

The first term here represents relaxation due to conversion between the two

tunnelling states A and E, hence it depends on the tunnelling frequency ωt.

The tunnelling frequency for each excited librational state is different, and tends

to decrease with energy. Hence, as higher energy states become populated,

the observed tunnelling frequency becomes a temperature-dependent average

of those frequencies [19]. The second term in this equation is very similar to

equation (2.59), the homonuclear relaxation of two hydrogen nuclei, resulting

from the allowed Zeeman transitions in the energy manifold. The quantities

CAE and CEE are dipolar relaxation strength constants, similar to those derived
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in section 2.3, that depend strongly on the proximity of other protons and

can be determined experimentally. For ease of identification, the two terms

terms of equation (2.63) will be referred to as the ‘Haupt’ and ‘BPP’ terms

respectively.

The temperature dependence of the methyl rotor correlation rate can be

described phenomenologically in terms of Arrhenius type laws for low, high,

and intermediate temperature ranges [20].

τ−1
c = τ−1

L exp

(

−EL

kBT

)

+ τ−1
I exp

(

−EI

kBT

)

+ τ−1
H exp

(

−EH

kBT

)

(2.64)

This formulation works well at all temperatures relevant to the work in this

thesis, with the parameters being determined experimentally. Apart from

the activation energy EL, which is usually found to be equivalent to the first

librational excitation energy of the potential well, these parameters have no

explicit physical counterparts but represent the averages of such quantities.

It is worth noting here that due to the presence of coherent tunnelling, there

is no zero-temperature minimum correlation rate equivalent to k0 for the

asymmetric DMP. This will become important when considering the relaxation

contributions from both types of motion in chapter 7.

36



Chapter 3

Experimental Details

In this chapter the experimental apparatus, data acquisition and processing

methods used will be described in detail. All of the work presented in this

thesis was conducted on the superconducting field-cycling spectrometer at

the University of Nottingham quantum molecular dynamics laboratory. In

terms of its specifications, this spectrometer was designed to study the NMR

of solid samples, with no magic-angle spinning. As explained in chapter 1, such

conditions resulted in a broad Lorentzian lineshape due to dipolar interactions,

and the time-dependent measurement of its amplitude was used to extract the

spin-lattice relaxation rate.

3.1 Field-Cycling NMR

A field-cycling spectrometer is characterised by the ability to periodically and

significantly vary its longitudinal magnetic field strength, B0, on a timescale

short compared to the spin-lattice relaxation times studied [21, 22]. This

is usually achieved by either rapidly moving the sample between regions of

different field strength via mechanical methods, or keeping the sample stationary

and changing the external field by varying the current through the solenoid.

The main benefits of field-cycling over fixed-field spectrometers is their

ability to affect spins with different magnetogyric ratios without the need for

multi-channel spectrometers with electronics tuned to multiple frequencies.

Also, the preparation, recovery and detection of the spins can occur at different

fields, allowing the frequency dependence of the relaxation rates to be studied,

a feature that was used extensively during this investigation.
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3.1.1 Field-Cycling Magnet

Once a superconducting magnet is cooled below its critical temperature, a

current is established in the solenoid to induce the magnetic field. For a normal

persistent-mode magnet the driving power supply is then isolated from the

solenoid to avoid Ohmic loss along the power supply leads, after which the field

should remain constant indefinitely. The University of Nottingham field-cycling

spectrometer was designed with a Niobium-Tin superconducting solenoid that

is connected to the magnet power supply at all times. This allows the field to

be constantly varied, such that the instantaneous current supplied by the power

supply is proportional to the induced field. While the current and temperature

are maintained the magnet has an infinite duty cycle, allowing it to be used

for studying both short and long recovery times.

As mentioned earlier, one of the requirements of a field-cycling system

is to be able to change the field on a short timescale. Following the laws of

electromagnetic induction, a compromise had to be made between the maximum

field strength and field ramp rate. This resulted in a solenoid capable of 10 Ts−1

ramping rate, with a peak operating field of 2.5 T at a current of 150 A. During

operation, a voltage of up to ±15 V is applied across the power leads to ramp

the current through the solenoid. Once the desired current is achieved the

ramp voltage is switched off, apart from a few millivolts to account for the

resistance in the supply leads.

Due to physical limitations of power supply, it was impossible to produce

perfect field switching profiles. The resulting overshoot amplitude and duration

depended on the circuit parameters, and required a settle period as the field

stabilised at the set value. Generally speaking, the settle period duration

increased with the difference between switching fields and ramp rate as shown

in figure 3.1. Following extensive testing [23], it was found that the best balance

between field switch time and settle period was at 5 Ts−1 for switching to

the resonance field prior to acquisition, and 8 Ts−1 for all others. Further

calibration of the resonance field prior to acquisition is discussed in section 3.3.
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Figure 3.1: Longitudinal field switching profiles for different switching rates. Data adapted
from [23].

3.1.2 Cryostat and Variable Temperature Insert

The superconducting solenoid is fixed at the bottom of the variable temperature

insert (VTI), which in turn is located inside the cryostat. The cryostat functions

as an insulating barrier between the VTI and the environment, and as a supply

of liquid helium-4 (LHe). From the outside-in, it consists of an evacuated area,

followed by a liquid nitrogen-14 (LN2) reservoir connected to a copper heat

shield. Within the heat shield, but separated by another vacuum space, is the

LHe reservoir in which the VTI sits, as shown in figure 3.2.

The VTI is a housing for the superconducting solenoid and probe. The lower

half of the VTI, with the solenoid, is immersed in the cryostat LHe reservoir,

whilst the probe bore within is protected from cryogenic temperatures with

another vacuum. A capillary tube, with an externally-operated needle valve,

provides a supply of LHe to the probe bore, via a heat exchanger. Varying

the helium flow through the capillary and a probe-mounted heater allowed

the sample temperature to be controlled in the range 4.2 K − 300 K, and

maintained to within ±1% once stable. The cryostat, VTI, superconducting

solenoid and power supply were made by CRYOGENIC Ltd.
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Figure 3.2: A schematic diagram of the field-cycling spectrometer cryostat and VTI assembly.
Vacuum spaces are shaded in grey.

3.1.3 Probes

Three home-built probes were used to collect the results presented in this

thesis, each one tuned to different resonant frequency and suited for studying

a particular nuclear species. The probes tuned to be resonant at 36.8 MHz

and 38.64 MHz were used for studying hydrogen, whilst the 21.9 MHz probe

was used for carbon-13 measurements.

The probe head structure consisted of a radio frequency (RF) coil made

from copper wire wound around a Kel-F former, mounted in a solid brass block.

The LC circuit tuning capacitor and Cernox calibrated resistance thermometer

were also mounted nearby, as shown in figure 3.3. A resistive heating element

made from copper-nickel wire was wound around the base of the brass block

to control the temperature of the sample. Both the thermometer and heater

were connected to a Lake Shore 311 temperature controller.
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Figure 3.3: A schematic diagram of the probe head structure.

For these probes the NMR LC circuit design consisted of a solenoid, which

was used for both excitation and detection of the sample spins, mounted in

series with a tuning capacitor to establish a resonant circuit. Since pulsed NMR

is an inherently narrowband technique, the quality factor of the probe LC circuit

was an important consideration in their design. A high quality factor indicates

that the LC circuit Lorentzian frequency response has an increased sensitivity

at the resonant frequency with a narrow bandwidth, whereas a smaller quality

factor indicates increased bandwidth at the expense of sensitivity.

For optimal power transfer from the LC circuit at the probe head, along

the metre-long solid triaxial transmission line, to the duplexer at the probe tail

both ends should be matched to the same impedance, in this case 50 Ω. To

achieve this matching condition at the probe head a variable tuning capacitor

can be connected in parallel with the LC circuit. Although this design increased

the quality factor of the circuit [24], placing the tuning capacitor at the probe

head, where it would be subject to large temperature changes, made it difficult

to tune due to the temperature-dependence of the components. Alternatively,

the impedance matching can be done at room temperature just prior to the

duplexer at the probe tail, reducing the quality factor and increasing its stability.

The first approach was adopted for the 21.9 MHz probe, where the weak 13C

signal benefited from a high quality factor, whilst not suffering much field

fluctuation at the resonance field, 2.042 T. Resonant field stability was more

important for the 36.8 MHz and 38.64 MHz probes, which employed the latter

design, with the lower quality factor producing a wider frequency response

curve with less variation near resonance, whilst relying on the abundance of

hydrogen in most samples to offset the signal loss.
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3.1.4 Spectrometer

A heterodyne spectrometer design is necessary to work with probes tuned to

different frequencies. For optimal efficiency, all the spectrometer components

should be tuned to a particular carrier (intermediate) frequency, νI . The

heterodyning technique converts the Larmor frequency, νL, signal of the probe

to νI through a series of mixing steps as shown in figure 3.4. The particular

spectrometer used in this case was a Tecmag Apollo console.

Figure 3.4: The heterodyne spectrometer design with a carrier frequency νI .
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3.2 Data Processing

The acquired FID data were processed using a combination of the spectrometer

software and in-house Visual Basic code. After an exponential apodization

function was applied to the FID, with the exponent determined by T2, it was

Fourier transformed and phased to separate the real part of the signal into

the absorbtion component. An integral of the real signal was then taken as a

measure of the recovered longitudinal polarisation. This reduced the measured

noise compared with an integral of the magnitude signal because the absorption

peak has a larger central intensity with noise from only one channel.

Due to physical limitations of the magnet power supply, the field during FID

acquisition was offset from resonance by a few gauss, the exact value depending

on the particularities of each experiment. To account for the signal drop

when slightly off-resonance, the integral amplitude was adjusted according to a

calibration curve. This calibration curve was the normalised frequency response

of the probe, which is a product of the Lorentzian probe quality factor and

the sinc function frequency profile of the measurement pulse. The calibration

curve was determined empirically by measuring the recovered polarisation for

a fixed time after saturation as a function of measurement field.

The majority of data analysis, such as curve fitting of the magnetisation

recovery curves to extract relaxation rates, was performed using the EasyPlot

software. MATLAB was then utilised for more complex analysis and modelling

of the data.

3.2.1 Fitting Equations

The particular function used to interpret the magnetisation recovery data

and extract meaningful parameters such as the spin-lattice relaxation time

depended on the sample studied and on the pulse sequence used. The data

from any of the pulse sequences employed during this investigation could be

interpreted by one of the following equations.

Consider first a homonuclear sample where the magnetisation recovery

and relaxation occur at the same B0 field, similar to a static-field saturation

recovery experiment (subsection 3.3.1). Some relaxation will occur between

saturation and measurement during the necessary settle times, in addition to

that happening during the recovery time τR. Letting the sum of such additional

relaxation times be D, the magnetisation recovery can be described by adapting
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equation (2.23) as follows:

Mz = M0

(

1 − exp

(

−(D + t)

T1

))

(3.1)

= M0

(

1 − exp

(

−D

T1

)

exp

(

−t

T1

))

= M0

(

1 − exp

(

−D

T1

)

+ exp

(

−D

T1

)

− exp

(

−D

T1

)

exp

(

−t

T1

))

= M0

(

1 − exp

(

−D

T1

))

+ M0 exp

(

−D

T1

) (

1 − exp

(

−t

T1

))

= M0

(

1 − exp

(

−D

T1

))

+ M0

(

1 − 1 + exp

(

−D

T1

)) (

1 − exp

(

−t

T1

))

= M0

(

1 − exp

(

−D

T1

))

+

[

M0 − M0

(

1 − exp

(

−D

T1

))] (

1 − exp

(

−t

T1

))

At a fixed B0 field the time D will be equivalent between repetitions of a pulse

sequence, meaning the relaxation occurring during that time can be considered

constant for an experiment. Equation (3.1) can then be expressed as

Mz = [M0 − b]

(

1 − exp

(

−t

T1

))

+ b, (3.2)

where the additional relaxation b = M0(1 − exp(−D/T1)) is observed as a

constant baseline offset. If the constant-field constraint is now lifted, then the

additional relaxation will include field-switching times at a variety of relaxation

rates. This will result in a different offset b depending on the recovery field,

but it will remain constant for each set of pulse sequences at a given recovery

field, maintaining the validity of equation (3.2).

Results from homonuclear saturation recovery experiments can be inter-

preted using equation (3.2). Occasionally the magnetisation recovery of a

heteronuclear sample will appear single-exponential, under the conditions de-

scribed in subsection 2.2.3, in which case this equation will also be applicable.

In other cases, where multiple relaxation components can be clearly identified,

the following equation would be used. Applying the same arguments as above

regarding additional relaxation to equations (2.26) we get

Mz = [M0 − b](1 + c1 exp(−R1t) + c2 exp(−R2t)) + b. (3.3)
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The homonuclear polarisation recovery experiment (subsection 3.3.3) data

can be modelled by an equation similar to (2.23),

Mz = [Mpol − M0] exp

(

−t

T1

)

+ M0, (3.4)

where the magnetisation begins at a large polarised value Mpol and relaxes

towards thermal equilibrium. Since an accurate measurement of Mpol is not

necessary as long as Mpol ≫ M0, the offset from additional relaxation is usually

incorporated in the polarised magnetisation value Mpol = Mactual
pol − b.

Through trial and error it was found that the EasyPlot nonlinear least

squares curve fitting algorithm tended to systematically underestimate the

spin-lattice relaxation rate by c.a. 10% when the magnetisation dynamic range

was small. This error could be mitigated by acquiring more data for that

experiment, or employing the polarisation recovery pulse sequence (subsection

3.3.3) for homonuclear samples.
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3.3 Pulse Sequences

The individual pulse sequences and field-switching profiles as shown by the

figures in this section were written in the spectrometer software. The in-house

Visual Basic code was then used to interface with the spectrometer software and

automate measurements by supplying the parameters for each repetition of the

pulse sequence and storing the data afterwards. To clarify further discussions,

each instance of a pulse sequence, with a particular recovery time, will be

called a ‘run’. A series of implemented pulse sequences, with logarithmically

increasing recovery times, will then be referred to as an ‘experiment’. The

recovery times were incremented logarithmically as opposed to linearly in

time to provide better data sampling distribution for an exponential recovery.

Also, for a multi-exponential magnetisation recovery curve, a linear increment

distribution would be biased towards components with longer relaxation times.

In most cases the range of τR went from T1/1000 to 20T1 to provide a good

measure of the relaxation rate.

The aforementioned fluctuation of the B0 field immediately after a field

gradient required a few hundred milliseconds to fully stabilise to within ±3 G.

This delay was unacceptable prior to the measurement pulse because the NMR

signal would decay in that time. The greatest deviation could be avoided by

reducing the delay to 40 ms, but this then required a measurement field offset

to account for the remaining difference. This offset depended predictably on

the field prior to the switch and the time spent at that field, which in all the

experiments below was the recovery field and recovery time. A systematic study

was performed to measure the required offset across the full range of recovery

fields and recovery times, and coded into the Visual Basic script. These

measurement field offsets together with the frequency response calibration

curve discussed in section 3.2 were sufficient to make reliable and reproducible

measurements of the magnetisation.

All the different pulse sequences used in the course of this investigation,

and their application are described in the subsections below.
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3.3.1 Static-Field Homonuclear Saturation Recovery Pulse Se-

quence

This pulse sequence was used for samples with a single non-spin-zero species,

or for heteronuclear samples with zero cross-relaxation rate, σ, to measure the

spin-lattice relaxation time, T1, at the probe resonance field. This approach

negated inaccuracies due to field fluctuations of the field-cycling method.

(a) The longitudinal magnetic field, B0, is pre-set to match the primary

species’, I, resonance of the probe. The primary spins are saturated with

a train of 12 π/2 radio frequency (RF) pulses so as to recreate identical

polarisation conditions, 〈Iz〉t=0 = 0.

(b) The sample magnetisation is allowed to recover for a time τR. The

recovery time, τR, is incremented logarithmically after each run. For

convenience, the beginning of this section is set to be at time t = 0.

(c) The primary species’ magnetisation is then measured with a single π/2

RF pulse.

Figure 3.5: The static-field homonuclear saturation recovery pulse sequence. Schematic: the
axes are not to scale.

47



CHAPTER 3. EXPERIMENTAL DETAILS

0

0.2

0.4

0.6

0.8

1.0

1.2

0.001 0.01 0.1 1 10 100

Recovery Time τ
R
 /s

N
o
rm

a
lis

e
d
 L

o
n
g
it
u
d
in

a
l 
P

o
la

ri
s
a
ti
o
n
 〈

M
Z
〉/
〈M

0
〉

Figure 3.6: Sample saturation recovery experiment data.

Figure 3.6 shows a typical example of data from a saturation recovery

experiment. The polarisation is observed to increase from near-zero towards

thermal equilibrium with increasing recovery time, τR, the experimental variable

during each experiment. The non-zero starting polarisation, due to relaxation

occurring during necessary delays, is accounted for by a constant parameter

during fitting as described in subsection 3.2.1.
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3.3.2 Homonuclear Saturation Recovery Pulse Sequence

This pulse sequence was used for samples with a single non-spin-zero species,

or for heteronuclear samples with zero cross-relaxation rate, σ, to measure the

spin-lattice relaxation time, T1, as a function of field.

(a) The longitudinal magnetic field, B0, is raised to match the primary

species’, I, resonance of the probe at a rate of ∆1 = 8 Ts−1. The primary

spins are saturated with a train of 12 π/2 radio frequency (RF) pulses so

as to recreate identical polarisation conditions, 〈Iz〉t=0 = 0.

(b) The sample magnetisation is allowed to recover at a field BR, for a time

τR. The recovery time, τR, is incremented logarithmically after each run.

For convenience, the beginning of this section is set to be at time t = 0.

(c) The field is then switched back to BI , at a rate of ∆2 = 5 Ts−1 for

increased field stability, and the magnetisation is measured with a single

π/2 RF pulse.

Figure 3.7: The homonuclear saturation recovery pulse sequence. Schematic: the axes are
not to scale.
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3.3.3 Homonuclear Polarisation Recovery Pulse Sequence

When the dynamic range of the NMR signal recorded with the homonuclear

saturation recovery pulse sequence was insufficient, due to low BR or high

temperature, this pulse sequence was used to measure the field-dependent T1

in samples with a single non-spin-zero species.

(a) The longitudinal magnetic field, B0, is raised to match the primary

species’, I, resonance of the probe at a rate of ∆1 = 8 Ts−1. To recreate

identical polarisation conditions at the beginning of each run the primary

spins are first saturated with a train of 12 π/2 radio frequency pulses.

(b) The spins are polarised at a field Bpol for a time τpol. In all cases

Bpol > BR so that there is sufficient dynamic range between the polarised

magnetisation measurement and thermal equilibrium magnetisation at

BR. The polarisation time τpol is set to achieve 65%-85% polarisation at

Bpol, and is kept constant throughout an ‘experiment’.

(c) The sample magnetisation is allowed to recover at a field BR, for a time

τR. The recovery time, τR, is incremented logarithmically after each run.

For convenience, the beginning of this section is set to be at time t = 0.

(d) The field is then switched back to BI , at a rate of ∆2 = 5 Ts−1 for

increased field stability, and the magnetisation is measured with a single

π/2 RF pulse.

Figure 3.8: The homonuclear polarisation recovery pulse sequence. Schematic: the axes are
not to scale.
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Figure 3.9: Sample polarisation recovery data (open squares) in comparison with saturation
recovery data (filled circles) at the same recovery field and temperature.

Figure 3.9 shows how the data from a polarisation recovery experiment has a

greater dynamic range compared to that from a saturation recovery experiment,

allowing a the relaxation rate to be measured more accurately. The polarisation

recovers at the same rate and towards the same thermal equilibrium for both

types of experiment, differing only in their initial polarisation conditions. This

pulse sequence was not used for heteronuclear samples because the initial

polarisation conditions of the secondary spin species are not well known.
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3.3.4 Heteronuclear Saturation Recovery Pulse Sequence

This pulse sequence was used for samples with two non-spin-zero species and

non-zero cross-relaxation rate, σ, to measure the spin-lattice relaxation rates

R1 and R2 as a function of field.

(a) The B0 field is raised to match the secondary species’, S, resonance of the

probe at a rate of ∆1 = 8 Ts−1, where the secondary spins are saturated

with a train of 12 π/2 RF pulses.

(b) Then the primary species’, I, spins are saturated, at their probe resonance

field, with 12 π/2 RF pulses. This stage is shortened as much as possible

to minimise the recovery of secondary spin magnetisation during this time,

and preserve the initial polarisation conditions, 〈Iz〉t=0 = 0 〈Sz〉t=0 = 0.

(c) The sample magnetisation is allowed to recover at a field BR, for a time

τR. The recovery time, τR, is incremented logarithmically after each run.

For convenience, the beginning of this section is set to be at time t = 0.

(d) The field is then switched back to BI , at a rate of ∆2 = 5 Ts−1 for

increased field stability, and the magnetisation is measured with a single

π/2 RF pulse.

Figure 3.10: The heteronuclear saturation recovery pulse sequence. Schematic: the axes are
not to scale.
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3.3.5 Zero-Field Heteronuclear Saturation Recovery Pulse Se-

quence

For samples with two non-spin-zero species, non-zero cross-relaxation rate, σ,

and a secondary species’ resonance field, BS , beyond that achievable by the

hardware, this pulse sequence was used to measure the field-dependence of the

spin-lattice relaxation rates R1 and R2.

(a) The sample is allowed to rest at zero field for a time, τprep, which is

sufficiently long for the secondary species’ spins to come to thermal

equilibrium, losing all polarisation and effectively becoming saturated.

(b) Then the longitudinal magnetic field, B0, is raised to match the primary

species’, I, resonance of the probe at a rate of ∆1 = 8 Ts−1. The primary

spins are saturated with a train of 12 π/2 radio frequency (RF) pulses so

as to ensure identical polarisation conditions, 〈Iz〉t=0 = 0 〈Sz〉t=0 = 0.

(c) The sample magnetisation is allowed to recover at a field BR, for a time

τR. The recovery time, τR, is incremented logarithmically after each run.

For convenience, the beginning of this section is set to be at time t = 0.

(d) The field is then switched back to BI , at a rate of ∆2 = 5 Ts−1 for

increased field stability, and the magnetisation is measured with a single

π/2 RF pulse.

Figure 3.11: The zero-field heteronuclear saturation recovery pulse sequence. Schematic: the
axes are not to scale.
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3.3.6 Cross-Relaxation Pulse Sequence

This pulse sequence was used to measure the cross-relaxation rate, σ, as a

function of field in samples with two non-spin-zero species.

(a) The B0 field is raised to match the secondary species’, S, resonance of

the probe at a rate of ∆1 = 8 Ts−1. To recreate identical polarisation

conditions at the beginning of each run the secondary spins are saturated

with a train of 12 π/2 radio frequency (RF) pulses.

(b) The system is polarised at a field Bpol = BR for a time τpol, allowing the

secondary species’ magnetisation to reach thermal equilibrium.

(c) Then the primary species’, I, spins are saturated, at their probe resonance

field, with 12 π/2 RF pulses. This stage is shortened as much as possible

to minimise the recovery of secondary spin magnetisation during this time,

and preserve the initial polarisation conditions, 〈Iz〉t=0 = 0 〈Sz〉t=0 = S0.

(d) The sample magnetisation is allowed to recover at a field BR, for a time

τR. The recovery time, τR, is incremented logarithmically after each run.

For convenience, the beginning of this section is set to be at time t = 0.

(e) The field is then switched back to BS , at a rate of ∆2 = 5 Ts−1 for

increased field stability, and the magnetisation is measured with a single

π/2 RF pulse.

Figure 3.12: The cross-relaxation pulse sequence. Schematic: the axes are not to scale.
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Figure 3.13: Sample cross-relaxation experiment data.

Figure 3.13 shows a typical cross-relaxation experiment data set, with

the measured species’ polarisation being initially disturbed from thermal

equilibrium by the saturated species until the polarisations of both equilibrate.

A negative value of the cross-relaxation rate, σ, results in a polarisation ‘dip’

as shown by this figure. Correspondingly, a positive cross-relaxation rate would

be exemplified by an initially increasing polarisation - forming a ‘peak’ in the

magnetisation recovery.
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Chapter 4

The Isotope Effect

4.1 Introduction

This set of experiments was designed to observe experimentally and quantify

the isotope effect of the carboxyl group oxygen atoms on the proton transfer

dynamics of the hydrogen bonds in benzoic acid (BA). The isotope effect of

the nucleon undergoing transfer, due to a change in its mass, on the tunnelling

dynamics has been observed [13], with a greatly reduced correlation rate

for deuterons undergoing transfer than for hydrogen nuclei. Although the

importance of the particle mass undergoing transfer can be easily seen in terms

of quantum mechanics, the effect on this process of a nearby atom, which is

relatively stationary, is far less tangible.

In terms of the basic model of proton transfer, the molecular lattice is

assumed to be stationary. In reality however, proton transfer is accompanied

by distortions of the molecular lattice, such as the C–O bond length in the

carboxyl group as it changes from a single to a double bond [25]. From the

quantum-mechanical perspective, the motion experienced by these heavy lattice

atoms during proton transfer would have a finite tunnelling matrix element

[7], and a complete description of proton transfer would therefore have to

take such lattice vibrations into account. However, instead of treating the

entire molecular lattice as one quantum object involved in the the tunnelling

phenomenon, the model can be simplified to a single particle experiencing a

modified PES. This then becomes an elaboration of the basic system, of a proton

within a static DMP, with the modified proton mass and PES accounting for

contributions from specific molecular vibrational modes, which may augment

or hinder proton transfer.
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It is known that for the DMP model, the ground-state tunnelling correlation

rate, τ −1
c , is proportional to the square of the tunnelling matrix element [10],

and the tunnelling matrix element is known to be proportional to the exponent

of the square root of the proton mass. Therefore the tunnelling matrix elements

of the heavy lattice atoms will be strongly influenced by their mass, which

will in turn affect the observed proton tunnelling. Following on from the

discussion above, this can be applied to the modified single particle motion

model; if the carboxyl oxygen motion contributes positively to proton transfer,

then an increase in its mass would be accounted for by an increase in the

effective proton mass. This would then manifest itself as a decrease in the

low-temperature proton transfer rate, measured by spin-lattice relaxation.

This effect should then diminish at high temperature as the emphasis for the

proton transfer mechanism moves away from ground-state tunnelling transitions

towards thermally activated barrier hopping and becoming less dependent on

the particle mass.

Previous experiments using optical spectroscopy combined with preliminary

calculations of the molecular lattice tunnelling matrix elements have estimated

that in 18O-BA the reduction of the proton transfer rate in the low-temperature

limit, k0, is of the order of (15± 7)% compared with 16O-BA [26]. Experiments

on carbon-13 enriched benzoic acid [27] attempted to show this effect, however

with the added complication of heteronuclear relaxation effects, it was found

too small to resolve.

The purpose of this investigation was to measure the effect on the proton

transfer rate more accurately, and to show a convergence at higher temperatures

away from the incoherent tunnelling regime.
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4.2 Experimental Procedure

As explained in chapter 2, the ensemble average proton transfer rate can be

directly probed using the correlation time, τc, associated with the motion.

Spectral density profiles were acquired by measuring the spin-lattice relaxation

rate at a range of recovery fields and fixed temperature. Each spectral density

was then analysed with an equation of the form (2.59) to extract a correlation

time at that temperature. This procedure was then repeated for a range of

temperatures for both samples to analyse their relative temperature-dependent

dynamics.

Both the homonuclear saturation recovery (subsection 3.3.2) and homonu-

clear polarisation recovery (subsection 3.3.3) pulse sequences were used for this

set of experiments. Generally speaking, for recovery fields below ca. 0.5 T the

magnetisation at thermal equilibrium was too low to measure the spin-lattice re-

laxation time reliably using the saturation recovery sequence. In these instances

the polarisation recovery sequence was used instead to increase the dynamic

range of the measured magnetisation. In the high-field and low-temperature

regime the spin-lattice relaxation time was very long and a reduced form of

saturation recovery experiment was performed to save time. In this instance

the magnetisation recovery was measured in the range T1/1000 < τR < 2T1 in

addition to a single measurement of the equilibrium magnetisation at τR = 10T1.

The increased signal to noise ratio at low-temperature and high-field compen-

sated for the decreased accuracy of the T1 measurement from this experiment.

Due to the fact that the isotope effect produced by this substitution was

expected to be very small, special precautions had to be taken to ensure

accuracy. For both samples ultra-pure zone-refined powdered crystals of

benzoic acid were used to reduce contributions from impurities and negate

any sample orientation dependence from the results. The 16O-BA sample

had 99.76% natural abundance of the oxygen-16 isotope, and 18O-BA was

specifically prepared to have >98% abundance of the oxygen-18 isotope in the

carboxyl group as shown in figure 4.1. Both 16O and 18O nuclei have spin-0, so

there were no heteronuclear contributions to the relaxation time due to them.

Furthermore, a systematic comparative study had to be performed on both

samples in order to reliably measure the small differences in dynamics between

the two. The spectral density profiles were sampled at the same set of recovery

fields for a given temperature and at the same temperatures for both samples.

This avoided biasing the data for one of the samples towards a particular
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Figure 4.1: Dimerised benzoic acid molecules showing the carboxyl oxygen isotopic substitu-
tion sites.

feature of the dynamics, and not the other. To reduce inconsistency due to

equipment, all measurements were performed using the 38.64 MHz probe, using

the same calibration procedures for both.

Although the temperature-dependence of the benzoic acid proton transfer

correlation time has already been studied across a large range of temperatures

[8], this was done with a different set of equipment. For this comparative

study the measurements of 16O-BA were repeated with improved thermometry.

However, the same sample was used here as for those experiments, so that

some measure of the reliability of the previous experiments could be made.
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4.3 Results

The results from the saturation recovery and polarisation recovery experiments

were analysed with unconstrained fits to equations (3.2) and (3.4) respectively,

to measure the spin-lattice relaxation time.

The spectral density profile for a given temperature should be modelled by

equations (2.59, 2.60), where it is known that the dipolar coupling constant,

CII , and enthalpy change, ∆H, are independent of field and temperature. To

preserve this equality between the spectral densities of one sample and allow a

more reliable measure of τc, a two-stage fitting process was used. Firstly, the

spectral densities were individually fitted to

1

T1
= D [L(ωI , τc) + 4L(2ωI , τc)] + b, (4.1)

with a single combined amplitude parameter D. The constant offset, b, was

added to account for small impurities in the sample, such as water adsorbed

onto the crystal surface. The spectral density data and lines of best fit from

this equation are shown in figures 4.3 and 4.4 for both samples. It is possible

to observe the isotope effect gain prominence as the sample is cooled and

the relaxation becomes dominated by ground-state tunnelling simply from

a qualitative analysis of these spectral densities. At the highest measured

temperature of 80 K the spectral densities appear parallel, indicating that the

their width, characterised by τ−1
c , is approximately equal. With decreasing

temperature however, the spectral densities of the two samples begin to cross

over as their correlation rates diverge due to the isotope effect. From this casual

examination it is also possible to see that the spectral density amplitudes are

consistently different for the two samples across the full range of temperatures,

as will be analysed in more detail in subsection 4.3.1.

After measuring the spectral density amplitudes of a given sample for all

temperatures, apart from 80 K, they were fitted to the following equation

D = CII
4a

(1 + a)2
, (4.2)

to extract the two constants CII and ∆H for that particular sample. The max-

imum spectral width of the field-cycling spectrometer (2.5 T) was insufficient

to reliably measure both the amplitude, D, and width, τ−1
c , of the spectral

densities at 80 K. For this case it was decided to constrain the amplitude in
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the spectral density equation (4.1) based on an extrapolation of equation (4.2)

from the amplitudes at the other temperatures.

An added complication was discovered during the analysis of the spectral

densities in the form of relaxation due to oxygen-17. It was possible to observe

this relaxation contribution as ‘quadrupolar peaks’ at low field despite the low

abundance of the isotope due to the inherent strength of quadrupole coupling

[13]. This contribution was strongest for 18O-BA at the lowest temperature,

13.333 K, and could be isolated at fields below 0.175 T. The difference

in contributions from the two samples could be explained by an increased

proportion of 17O in 18O-BA due particularities of the isotopic substitution

process. As a result of this inconsistency it was necessary to ensure that the
17O spectrum was completely omitted from all spectral density fits, otherwise

the inequivalent small contributions would introduce a discrepancy in the

comparison of the two samples. To this end, no measurements of the T1 below

0.175 T were used in the fitting to equation (4.1).

The small spectral density constant offsets, b, were analysed and were found

to be equivalent for both samples, within error. Translated into an effective

relaxation time, the inverse offsets are on average an order of magnitude larger

than the longest T1 measured at the same temperature, but have a similar

temperature-dependence. These features indicate that the impurity present in

both samples has very low abundance but with dynamics similar to benzoic

acid.

4.3.1 Spectral Density Amplitudes

Figure 4.5 shows the final data analysis of the spectral density amplitudes

for the two samples. The consistent difference in spectral density amplitudes

noted earlier can now be seen clearly in figure 4.5. This difference manifests

itself as an offset between the two parallel lines, due to a lower dipolar coupling

strength, CII , for 16O-BA than for 18O-BA. A check was performed to ensure

that this inequality was real and not an artifact of the fitting algorithm; by

constraining ∆H during fits to equation (4.2) to its maximum or minimum

values within the measured error for that variable, the values for CII shown in

figure 4.5 and table 4.1 were confirmed.

This phenomenon can be explained by isotopic substitution when we con-

sider what effect the change in atomic mass would have on the molecular

structure. A heavier nucleus would have a lower energy ground state, and due
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to the anharmonicity of the covalent bond potential this results in the bond

lengths with 18O-BA being shorter than those with 16O-BA, see figure 4.2.

Figure 4.2: A schematic diagram of intramolecular bond lengths shortened by the nuclear
isotope effect (axes not to scale).

By utilising the low-temperature crystal structure of 16O-BA [15] and applying

equation (2.60) an estimate of the isotope effect necessary to account for the

observed difference in CII was made. Due to the r−6 dependence of CII it

was decided to limit the calculation to just the leading term in the dipolar

sum from the nearest carboxyl protons. Also, for simplicity, it was assumed

that the only structural change due to the heavier isotope was a shift of the

carboxyl proton position closer to its neighbouring oxygen. These preliminary

calculations showed that a displacement of just 0.038 Å was sufficient increase

the 16O-BA CII by 10.5% in accordance with the results, which equates to

roughly 4% of the O–H bond length. Although the carboxylic proton separation

increased with this structural change, the slight increase in the subtended angle

α was sufficient to counteract this, showing that the dipolar constant is highly

sensitive to such small changes.

In reality however, a shortening of the oxygen atom covalent bonds will

result in greater changes to the carboxylic group geometry than modelled here,

as well as a compression of the entire unit cell. Therefore a more rigourous

analysis of the isotope effect on the dipolar coupling strength cannot be

performed until the low-temperature crystal structure of 18O-BA is measured.

4.3.2 Proton Transfer Correlation Rates

The correlation rates measured directly from the spectral densities for both

samples are shown in figure 4.6. To quantify the temperature-dependence of

the proton transfer dynamics, determined by the inverse correlation time, a
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least-squares fit of the data was performed to equation (2.62). Because the

high-temperature dynamics were not explored in this investigation, it was

necessary to constrain the fit by using a previously-established parameter for

the high-temperature correlation rate, τexc [16]. The change in enthalpy, ∆H,

measured from a fit of the spectral density amplitudes to equation (4.2), was

more accurate than could be achieved by fitting to the correlation rates. Hence,

∆H for both samples was constrained in equation (2.62) to the values shown

in figure 4.5 and table 4.1.

As can be seen from figure 4.6, this set of experiments has successfully shown

that the isotope effect on the proton transfer dynamics becomes diminished at

high temperature as the system moves away from the incoherent tunnelling

regime. The low-temperature proton transfer rate constant, k0, has been

measured for both samples to a high degree of accuracy, and a careful systematic

study was performed to ensure that any observed difference was due to the

isotope effect. This isotope effect, due to carboxyl-oxygen substitution, can be

measured as a comparison of the low-temperature rate constants,

1 −
k

(18)
0

k
(16)
0

= (15.2 ± 0.5)%, (4.3)

which is in agreement with the previous estimate of (15 ± 7)%, [26].

A summary of the thermodynamic model parameters measured for each

sample is shown for comparison in the table below.

18O-BA 16O-BA

CII (7.76 ± 0.03) × 107 s−2 (7.02 ± 0.02) × 107 s−2

k0 (1.181 ± 0.005) × 108 s−1 (1.393 ± 0.006) × 108 s−1

∆H/kB 84.23 ± 0.08 K 84.67 ± 0.07 K
τ−1
exc (2.4 ± 0.2) × 109 s−1 (2.7 ± 0.2) × 109 s−1

∆Eexc/kB 117 ± 3 K 125 ± 3 K

τ−1
act 1.14 × 1012 s−1 [16] 1.14 × 1012 s−1 [16]

∆Eact/kB 560 ± 2 K 564 ± 2 K

Table 4.1: Best-fit parameters used to describe the relaxation observed in 18O-BA and
16O-BA.
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4.4 Summary

This successful study has made an important advancement to further the

understanding of molecular dynamics on a quantum level, whereby the en-

tire molecule undergoes tunnelling together with the proton, allowing future

theoretical descriptions to be made with more confidence based on these re-

sults. In addition, convergence of the high-temperature correlation rates clearly

demonstrated that the quantum mechanical effects diminished with increasing

temperature, as the de Broglie wavelength of the protons decreased.

Eliciting the subtle differences in dynamics due to the isotope effect was

aided by the considerable stability of the spectrometer system and routines

over the course of several months of continuous experiments. This, combined

with ultra-pure zone-refined samples and meticulously consistent measurement

techniques allowed great confidence to be placed in the final results being

primarily due to the desired effect.
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Figure 4.3: Spectral densities of 18O-BA (circles) and 16O-BA (squares) measured at a range
of temperatures. The solid and dashed lines are fits to equation (4.1).
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Figure 4.4: Spectral densities of 18O-BA (circles) and 16O-BA (squares) measured at a range
of temperatures. The solid and dashed lines are fits to equation (4.1).
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Figure 4.5: The spectral density amplitudes, D, of 16O-BA and 18O-BA are shown in this figure as a function of inverse temperature. The solid and
dashed lines represent unconstrained least squares fits to equation (4.2).
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Figure 4.6: The measured inverse correlation times, τ−1

c , of both 16O-BA and 18O-BA are shown in this figure as a function of inverse temperature.
The solid and dashed lines represent constrained least squares fits to equation (4.1).
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Chapter 5

Heteronuclear

Cross-Relaxation

5.1 Introduction

The equilibrium polarisation of 13C is naturally lower than that of protons

due to a smaller magnetogyric ratio, see table 2.1, which hinders accurate

measurement of its relaxation. However, standard measures for increasing the

polarisation, by going to high field and low temperature, have the adverse

effect of significantly increasing the relaxation rate and becoming increasingly

expensive. By exploiting the dipolar coupling between different spin species

it is possible to bypass these difficulties and transfer the large polarisation

of one species to another with a low polarisation. This coupling interaction

occurs through double and zero-quantum spin flips, as discussed in subsection

2.2.3, which are rendered time-dependent by the application of an RF at

the matching frequency. Such transitions can either be driven manually by

irradiating the sample (nuclear solid effect) [28], or allowed to happen naturally

by interaction with a local dipolar field from stochastic molecular motion. The

latter of these two modes will be investigated here, with the aim of adding

to the development of techniques for polarisation transfer, and enhancing

the understanding of relaxation in heteronuclear spin systems involving other

common organic species, in this case fluorine.

In order for the local dipolar field to have sufficient bandwidth to drive

these transitions, the stochastic molecular motion should be relatively fast at

low temperature, where the polarisation is largest. Incoherent proton transfer
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in the carboxylic dimer of benzoic acid provides such a system, and therefore

presents a good ‘host molecule’ for studying cross-relaxation effects.

These experiments were conducted as a continuation of earlier work on

compounds that exhibited coupling between the heteronuclear and homonuclear

Zeeman reservoirs. Non-zero off-diagonal relaxation matrix elements, σ, were

detected in carbon-13 substituted benzoic acid (13C-BA), based on initial stud-

ies showing that the 13C spin-lattice relaxation rate depended strongly on the

initial polarisation state of the proton reservoir [27]. In addition, a preliminary

temperature-dependent study of 2,4,6-fluorobenzoic acid (2,4,6-FBA) exhibited

multiple relaxation rates of the proton reservoir at low temperature. This is

strongly indicative of a cross-relaxation process, supported by measurements

of σ in previous work on a similar sample (2,3,5,6-FBA) [29].

Figures 5.1 and 5.2 show the the molecular structure of the benzoic acid

dimers studied. For 2,4,6-FBA, three of the aromatic-group hydrogen atoms

had been replaced with fluorine, in specific positions around the benzene ring.

It is likely that significant changes would occur to the crystal lattice as a result

of this substitution, compared with pure benzoic acid. As discussed in section

2.2, this would in turn affect the DMP characteristics such as the asymmetry,

and has been demonstrated by previous studies on other fluorobenzoic acids

[30, 29].

Figure 5.1: Molecules of 2,4,6-fluorobenzoic acid in a dimer configuration.

The 13C-BA sample was prepared by isotopic substitution of just the

carboxyl group carbons with carbon-13 to 99% purity, as shown in figure 5.2.

In contrast to the fluorobenzoic sample, this substitution would have little

effect on the crystal lattice, and the static DMP is expected to undergo little

change. However, as discussed in chapter 4, if vibrational modes involving

this carbon atom contribute to proton transfer, then an isotope effect could

manifest itself as a small change in the ground-state tunnelling rate k0.
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Figure 5.2: Molecules of carbon-13 substituted benzoic acid in a dimer configuration.

Utilising the field-cycling spectrometer, these experiments attempted to

characterise the frequency-dependence of the off-diagonal relaxation matrix

elements, σ. In the case of 13C-BA the magnetisation recovery of 13C spins were

detected directly, to determine the scope of cross-polarisation. An accurate

measurement of fluorine spins in 2,4,6-FBA was not possible because the the

fluorine signal from the Kel-F NMR coil former provided significant interference.

Although making a coil former from sulphur or ceramic could overcome this

obstacle, it was not feasible for this study due to time constraints. Therefore,

the cross-relaxation rate was measured from the proton magnetisation recoveries

instead.
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5.2 Experimental Procedure

The spin-lattice relaxation of 2,4,6-FBA was first measured as a function of

temperature to establish the temperature range over which cross-relaxation is

observed. To ensure reproducible results, the initial polarisations of both fluo-

rine and proton spin reservoirs were controlled by employing the heteronuclear

saturation recovery pulse sequence for these measurements (subsection 3.3.4).

The recovery field used was 0.61 T.

Following these preliminary experiments, the cross-relaxation pulse sequence

(subsection 3.3.6) was used with both samples, to measure the deviation from

equilibrium of the secondary species magnetisation as the primary species

recovered from saturation. For the 2,4,6-FBA measurements, due to the Kel-F

former, only the proton spins could be observed. Therefore these experiments

measured the proton (primary) magnetisation being disturbed by saturation

of the fluorine (secondary) spins.

Using a range of recovery fields allowed the spectral density profile of

the cross-relaxation matrix element to be measured from the primary and

secondary relaxation rates, R1 and R2. The specific fields used were: 0.3− 2 T

for 13C-BA, and 0.2− 1.3 T for 2,4,6-FBA. The experiments were conducted at

low temperature (20 K for 13C-BA and 18 K for 2,4,6-FBA) as a compromise

between the increased SNR and relaxation times. A measurement of the ground-

state tunnelling frequency, k0, was also desired from the 13C-BA measurements,

to determine if any isotope effect was present in the proton transfer dynamics.

Due to a low abundance of the 13C spins, small magnetogyric ratio, and

narrow lineshape, the 13C-BA NMR signal was much weaker compared to

protons. In order to reliably distinguish the deviations from equilibrium

magnetisation, as a result of cross-relaxation, it was necessary to average the

signal amplitudes over several runs for each recovery time. This was also

required to a lesser degree for 2,4,6-FBA at low recovery fields.

It can be seen form table 2.1 that the magnetogyric ratios of protons and

fluorine are very similar. During cross-relaxation experiments on 2,4,6-FBA,

where it is intended for one spin species to be saturated whilst the other

maintains a constant polarisation, it was found that the fluorine saturation

pulses were also affecting the proton reservoir. For the reasons discussed in

subsection 3.1.1 it is generally advantageous to use short, powerful pulses,

which have a broad frequency-space distribution. In this case however, long

fluorine saturation pulses had to be used, to reduce their perturbation of the
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proton reservoir. It was impossible to completely eliminate these concurrent

affects, and also ensure complete saturation of the fluorine spins; therefore, the

polarisation field, Bpol, was generally set to 0.05 T higher than the recovery

field to compensate.

Both samples used were powdered crystals, with purity levels of 98% for

2,4,6-FBA, and 99% for 13C-BA.
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5.3 Results

In these heteronuclear samples, with non-zero cross-relaxation, it is sometimes

the case that the weighting coefficients and relaxation rates combine in such a

way as to make the magnetisation recovery appear to have a single relaxation

rate, as discussed in subsection 2.2.3. This was the case for the temperature-

dependent 2,4,6-FBA measurements above c.a. 40 K, which were therefore

analysed with equation (3.2) to extract an effective relaxation time. Below

that temperature multiple relaxation rates could be reliably measured, and

the magnetisation recovery data was fitted to equation (3.3). To extract more

accurate measurements of the relaxation rates, no constraints on the weighting

coefficients, c1 and c2, were placed for these fits based on initial polarisation

conditions.

Unless the system is completely decoupled from the lattice it is not possible

to measure the cross-relaxation rate directly; it instead has to be inferred

from the heteronuclear relaxation rates, R1 and R2. The cross-relaxation pulse

sequence is designed to allow clear separation of these relaxation rates, even if

they are of similar magnitude. Therefore the cross-relaxation magnetisation

recovery curves were analysed using equation (3.3) to measure the two rates.

Based on the initial reservoir polarisations, the weighting coefficients were

constrained during these fits to c2 = −c1. This was done for both samples to

ensure that any model derived from the measurements was self-consistent and

could be used to reproduce the data.

Technically, analysis of the 13C-BA cross-relaxation data produces a mea-

surement of σI , whereas for 2,4,6-FBA the other cross-relaxation rate is mea-

sured σS , based on equations (2.31) and (2.28) respectively. However, because

all the magnetic species in these heteronuclear samples have the same spin

quantum number, I = S = 1/2, the two rates are equivalent, σI = σS . Fur-

thermore, under such circumstances it becomes convenient to assign a general

heteronuclear dipolar constant for powdered samples,

CIS =
γ2

I γ2
S~

2S(S + 1)

30NI

(µ0

4π

)2 ∑

k,j

[

r−6
kjL − r−3

kjLr−3
kjR(3 cos2 α − 1) + r−6

kjR

]

,

(5.1)

in contrast to the homonuclear dipolar constant CII given by equation (2.60).
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5.3.1 13C-Benzoic Acid

The cross-relaxation experiment magnetisation recoveries at 20 K and various

recovery fields are shown in figure 5.4. It can be seen clearly from these plots

that the 13C polarisation increases as the saturated proton reservoir cross-

relaxes into the 13C reservoir. This enhancement is most significant at low

recovery fields, decreasing from around 25% at 0.3 T towards approximately

10% at 2 T.

This increase in the 13C polarisation is indicative of a positive off-diagonal

relaxation matrix element, despite a negative Lorentzian contribution shown

in equation (2.53). This is due to the relatively small 13C magnetogyric

ratio compared with protons, meaning that (ωI − ωS) ≈ (ωI + ωS), and the

resulting cross-relaxation rate effectively becoming dependent on 5L(ωI). This

is contrary to fluorobenzoic acids, where the wide −L(ωI − ωS) component

tends to dominate.

It can also be seen from figure 5.4 that despite copious signal amplitude

averaging, the magnetisation recovery curves still show significant experimental

scatter. The resulting signal quality was insufficient to enable a procedure

based solely on constrained fits to this data, so a modelling approach was

adopted instead. Using model parameters derived from the nuclear solid effect

and temperature-dependent experiments [28, 27] as a basis, the magnetisation

recovery curves were simulated using equation (2.26b). This approach showed

a much better agreement and required only a small adjustment of the model

parameters to describe the data presented here within experimental error.

Table 5.1 shows the thermodynamic model parameters that best describe all

available data and are used to calculate the solid lines in figure 5.4. The

cross-relaxation rate, σ, field-dependence at 20 K was then calculated based

on these parameters and is shown in figure 5.3.

The low-temperature proton transfer tunnelling rate limit, k0, measured

from these results is slightly smaller than that of pure benzoic acid ascertained

in previous experiments, presented in chapter 4. This implies that motion of the

carboxyl carbon atoms contributes to proton transfer; similarly to the oxygen

atoms in their vicinity but to a lesser degree. An estimate of the isotope effect

can therefore be made from this difference in rates, 1 − k
(13C)
0 /k

(16O)
0 = 8%.

Unfortunately, this measurement is within systematic experimental uncertain-

ties, but can be improved by by conducting a comparative study, similar to

that presented in chapter 4.
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Generally speaking, determination of a positive cross-relaxation rate, from

direct measurement of the 13C spins, bolsters the avenue of research into

enhancing the polarisation of a naturally weak carbon signal. Similarly to

the nuclear solid effect, the intrinsic dipolar coupling present in such molec-

ular systems provides a cross-polarisation pathway to the 13C reservoir by

manipulating the abundant proton spins.

13C-BA

CII 6.93 × 107 s−2

CIS 1.22 × 107 s−2

k0 (1.28 ± 0.6) × 108 s−1

∆H/kB 80 K
τ−1
exc 1 × 1010 s−1 [16]

∆Eexc/kB 180 K [16]

τ−1
act 1.14 × 1012 s−1 [16]

∆Eact/kB 600 K [16]

Table 5.1: Best-fit parameters used to describe the relaxation observed in 13C-BA.

Figure 5.3: Cross-relaxation rate of 13C-BA as a function of field at 20 K, calculated from
equation (2.53) based on parameters in table 5.1.
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Figure 5.4: Measured magnetisation recovery of 13C spins in 13C-BA during the cross-
relaxation pulse sequence (subsection 3.3.6) at several recovery fields shown as points. Solid
lines calculated from equation (2.26b) based on parameters in table 5.1.
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5.3.2 2,4,6-Trifluorobenzoic Acid

Figure 5.6 shows the results from measuring the 2,4,6-FBA spin-lattice relax-

ation across a wide range of temperatures. The region of interest lies below

c.a. 40 K where clear evidence of a significant cross-relaxation rate is found

in the form of reliably identifiable relaxation rates R1 and R2. Above those

temperatures, the negligible weighting coefficient cI
2 makes separation of these

rates unfeasible. The apparent secondary relaxation peak at around 28 K is

likely due to the L(ωH − ωF ) component of the relaxation, conferring a much

broader spectral density contribution than the others due to ωH ≈ ωF . Such

secondary minima are also observed in similar samples of 2,3,5,6-FBA [29] and

tetrafluoroterephthalic acid (TFTA) [31].

As mentioned earlier in this section, the cross-relaxation experiment data

was analysed by fitting to equation (3.3), under the constraint of c2 = −c1.

The measured relaxation rates and weighting coefficient cI
1 were then combined

using equation (2.28) to extract the off-diagonal relaxation matrix element.

This cross-relaxation rate measured as a function of field at 18 K, is shown in

figure 5.5, and is of the same order of magnitude as measured for 2,3,5,6-FBA

at the same temperature. Also, the broad difference-frequency Lorentzian

component, L(ωH − ωF ), which is expressed in the cross-relaxation rate as a

negative contribution, can be seen to dominate above c.a. 0.1 T. This negative

σ results in the fluorine spin reservoir coming to thermal equilibrium quicker,

since polarisation is also transferred from the proton spins as well as the lattice.

A complete model of the dynamics in this sample was made to describe

the temperature and field-dependent results based on equation (2.24). At low

temperatures, the two relaxation rates can be clearly separated according to

equation (2.27), whereas at high temperature the effective relaxation rate is

calculated from equation (2.34). The solid and dashed lines on figures 5.5

and 5.6 show that that model parameters, as seen in table 5.2, describe the

data reasonably well at low and high temperatures. The secondary minimum

at intermediate temperatures is however poorly modelled. This discrepancy

is indicative of the inadequacy of standard relaxation theory, based on the

high-field approximation, at the low frequencies associated with the L(ωH −ωF )

component.

These results add to earlier work on TFTA [31, 32], and other fluorobenzoic

acid compounds [29], not all of which exhibit cross-relaxation behaviour. Such

studies should lead to an increased understanding of the source of strong
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intra-reservoir coupling in heteronuclear samples, and further its application in

NMR.

2,4,6-FBA

CII 1.2 × 108 s−2

CIS 7.8 × 106 s−2

k0 1.46 × 107 s−1

∆H/kB 69 K
τ−1
exc 1 × 109 s−1

∆Eexc/kB 150 K

τ−1
act 5 × 1011 s−1

∆Eact/kB 750 K

Table 5.2: Best-fit parameters used to describe the relaxation observed in 2,4,6-FBA.

Figure 5.5: Cross-relaxation rate of 2,4,6-FBA measured as a function of field at 18 K shown
as points. Solid line modelled using equation (2.54) based on parameters in table 5.2.
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5.4 Summary

Study of the relaxation processes exhibited by carbon nuclei is significant be-

cause it is ubiquitous in biological systems, which are a popular subject of NMR

analysis due to the non-invasive nature of its techniques. However, because its

magnetic isotope is very dilute in natural abundance and interacts weakly with

magnetic fields it is important that every step is taken to maximise the 13C

signal strength. In some cases the natural abundance can be increased through

isotopic substitution, but this can prove difficult or impossible, especially with

studies done in vivo. Decreasing the temperature becomes problematic for

the stability of biological samples, and strong magnetic fields quickly become

prohibitively expensive. When these considerations are taken into account,

being able to enhance the 13C polarisation by inherent molecular processes,

even by 25%, can bear far-reaching consequences in terms of time and cost

efficiency. The results presented here have demonstrated and measured the

extent to which 13C polarisation can be increased through interaction with

a nearby dynamic process, requiring only the proton spins to be saturated

beforehand.

Although fluorine is not as prevalent in biological molecules, and has an

induced magnetic moment comparable to that of protons, an understanding

of heteronuclear interactions gleaned through such studies is nevertheless

important. For example, observation of the polarisation transfer pathways can

aid the determination molecular structures based on the strength of dipolar

coupling, which depends strongly on the nuclear separation. Additionally,

the negative cross-relaxation rate measured by these experiments allows the

proton spins to recover at an increased rate as polarisation is transferred from

both the lattice than fluorine spins. This can be exploited to expedite the

proton magnetisation recovery after measurement and effectively reduce pulse

sequence recycle delays.
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Chapter 6

Short, Strong Hydrogen Bond

Motion

6.1 Introduction

This study is concerned with compounds that form short, strong hydrogen

bonds (SSHBs), typically found to be 2.5 Å in length. Gradual temperature-

dependent migration between 300 K and 15 K of the hydrogen in such a bond

has been recently measured by neutron diffraction in several compounds [33].

This occurs as the proton moves from the vicinity of one heteroatom to the

other it shares a bond with, undergoing a total displacement of about 0.1 Å.

Meanwhile, the separation of the heteroatoms in the hydrogen bond remains

roughly constant with temperature, and cannot account for this migration.

Molecular dynamics (MD) simulations [33] of such compounds have shown

that the high-temperature structures, in which the proton has migrated, are

stabilised by lattice vibrations present at those temperatures. At intermediate

temperatures during this process, the proton goes through a bistable regime

where it is closest to either one of the heteroatoms, whilst avoiding an unstable

central position. As a time average, the occupancy of these two sites is also

observed to be approximately equal. Based on this information it was decided

to elucidate the proton dynamics in this intermediate stage from spin-lattice

relaxation measurements.

The specific compound studied here was pyridine-3,5-dicarboxylic acid (3,5-

PDA). In the solid state this molecule shares two strong hydrogen bonds with

its neighbours, forming infinite two-dimensional planar sheets that are weakly
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stacked on each other. Of the two strong hydrogen bonds, only the N· · ·H–

O bond exhibits proton migration, whilst the O· · ·H–O bond is relatively

stationary with temperature. A neutron scattering study of this compound [34]

found that the mobile proton tends to be tightly bound to the nitrogen atom

at low temperature, forming a hydrogen bond with the nearby oxygen; whereas

at high temperature it is closest to the oxygen without the nitrogen-oxygen

separation having changed significantly, as shown in figure 6.1.

Figure 6.1: Two molecules of 3,5-PDA showing the temperature-dependent migration of
protons in the N· · ·H–O hydrogen bond [34].
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As part of the molecular dynamics simulation of 3,5-PDA [33], the potential

energy environment of the mobile proton was modelled in three positions along

the transfer coordinate, close to the nitrogen, in the middle, and close to the

oxygen. It can be seen from figure 6.2 that the proton experiences a single-

well potential, which changes significantly with its position along the transfer

coordinate. This is in contrast to the case of benzoic acid, where the PES

is a double-minimum well, and is relatively stable irrespective of the proton

position [7]. The potential well profiles in figure 6.2 were measured relative

to each potential minimum rather than relative to each other, hence they

appear to have equivalent energy minima. Based on the bistable time-average

distribution of the proton position, it can be inferred that at intermediate

temperatures the potential minimum of the central position is much higher

than the other two. This would then imply that the DMP model for proton

transfer could be applied to describe this motion.

Figure 6.2: Simulated potential energy experienced by the mobile hydrogen bond proton in
3,5-PDA. Three positions along the transfer coordinate are modelled: close to the nitrogen
(blue squares), close to the oxygen (red triangles), and a central position (green crosses).
Figure taken from [33].
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The MD computational analysis on 3,5-PDA also revealed specific molecular

vibrational modes that were responsible for stabilising the high-temperature

structure, with the proton nearest the oxygen. As discussed in chapter 2, the

effective DMP includes contributions from vibrational modes of the molecule

that influence proton transfer. Therefore, if the DMP model can be used

for this system, then the PES will likely be temperature-dependent. This

characteristic can be represented by a non-zero entropy term ∆S in the DMP

asymmetry, such that at low temperature the nitrogen-vicinity potential is

lowest, but gradually increases with temperature such that the oxygen-vicinity

potential becomes lowest and more favourable at high temperature.

Further simulations of proton migration in 3,5-PDA found confirmation

of DMP characteristics by taking into account contributions from vibrational

modes, as shown in figure 6.3. This multi-dimensional PES clearly displays

two potential minima approximately 0.1 Å apart along the proton transfer

coordinate. However, both minima would not be simultaneously revealed if the

transfer coordinate is considered without vibrational mode contributions, as

seen in figure 6.2. In other words, the effective PES experienced by the proton

along a trajectory from one minimum to the other, requires a translation along

the vibrational coordinate as well as the proton transfer coordinate. This

then forms an asymmetric double-minimum potential well that can conceivably

facilitate incoherent tunnelling.
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Figure 6.3: Simulated multi-dimensional PES experienced by the mobile hydrogen bond proton
in 3,5-PDA (below), and the energy profile traced along the path between minima (above).
Figure adapted from personal communication with Mark Johnson, Institut Laue-Langevin.
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6.2 Experimental Procedure

Close proximity of the nitrogen atom to the mobile proton in the hydrogen

bond introduces a heteronuclear reservoir to the relaxation dynamics. In the

context of this investigation, the heteronuclear aspects of this sample were of

little interest, but presented a challenge to the task of accurately determining

the characteristics of proton motion. Preliminary experiments showed it was

important to systematically prepare the nitrogen reservoir polarisation at the

beginning of each run.

The relatively small magnetogyric ratio of nitrogen meant that its resonance

field, BR ≈ 12 T, was beyond that achievable by the spectrometer. Lacking

the ability to directly irradiate the nitrogen spins, the zero-field heteronuclear

saturation recovery pulse sequence (subsection 3.3.5) was therefore used to

measure the spectral densities. For the temperature-dependent measurements,

the static-field homonuclear saturation recovery pulse sequence (subsection

3.3.1) was found to produce results with no appreciable difference to those

done using the zero-field saturation recovery sequence. This can probably

be attributed to a negligible cross-relaxation component, σ, of the relaxation

matrix at that field.

Rapid motion of the protons in the N· · ·H–O hydrogen bonds, occurring

during their gradual migration with temperature, would induce spin-lattice

relaxation in the nearby magnetic nuclei. If such a regime occurs, then the

temperature range over which the proton motion is significant should be

characterised by a peak in the relaxation rate. Therefore, to determine the

extent of the motion, a series of T1 measurements were made in the range

50−200 K, using the static-field saturation recovery pulse sequence (subsection

3.3.1) at 0.864 T.

Several spectral densities were then recorded between 71.43− 125 K, where

the relaxation was most pronounced, and the correlation time measured to

determine the rate of the associated motion. These measurements were made

using the zero-field saturation recovery sequence (subsection 3.3.5) to ensure

the initial polarisations of both Zeeman reservoirs were known for each run.

Quadrupolar dips of 14N were observed to contribute to relaxation at recovery

fields below 0.15 T and were omitted from data analysis in order to isolate the

dipolar interaction.

The 3,5-PDA sample used was a single crystal, which provided a much

larger density of spins than a powder sample, and an increased SNR as a
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result. However, using a single crystal also introduced an added complication

of angular-dependence to the dipolar coupling constants. The sample was

mounted in the probe with the c* crystal axis aligned parallel to B0.
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6.3 Results

Magnetisation recovery curves recorded during the temperature-dependent

relaxation analysis showed some evidence of multiple relaxation components,

which became more pronounced at lower temperature, and were best described

by equation (3.3). However, the relaxation rates measured this way had large

uncertainties associated with them, and the recoveries could be represented

more reliably by some average T eff
1 from fitting to equation (3.2). The results

from both types of fitting procedure are shown in figure 6.5. It is expected

that these multiple relaxation rates are due to the presence of a heteronuclear

spin reservoir.

The temperature-dependence of the T−1
1 , shown in figure 6.5, exhibits a clear

single peak at around 105 K, indicating one dominant relaxation process, which

was assumed to be the bi-stable proton motion at intermediate temperature.

Above 160 K and below 63 K the relaxation rate shows a gradual trend towards

a constant value. Such temperature-independent plateau features are generally

not observed in other systems using the DMP model, such as benzoic acid, and

their source in this sample was not clear.

Due to the length of time necessary to prepare the Zeeman reservoir

polarisations for each run of the zero-field saturation recovery sequence, the

field-dependent relaxation rates could not be measured as accurately as for

the temperature-dependent experiments. As a result, only the average spin-

lattice relaxation time, T eff
1 , could be measured with reasonable accuracy. The

spectral densities from fitting the magnetisation recovery curves to equation

(3.2) are displayed in figure 6.4.

These spectral densities appear to have the standard Lorentzian form that

would be expected from a single dynamic process. To gauge the defining

characteristics of the associated motion, the data were initially fitted to the

following simple equation:

1

T1
= C [αL(ωI , τc) + βL(2ωI , τc)] . (6.1)

This equation is based on the purely homonuclear relaxation of a single crystal

(2.46), with unknown amplitude, C, and unknown dipolar lattice sums α and β.

The results of this initial analysis indicated a temperature-dependent spectral

density amplitude, and a decreasing correlation rate that tended towards a

constant at low temperature. Both of these aspects indicate dynamics that
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could effectively be modelled by a DMP.

To better define the high-temperature correlation rate trend it was decided

to record another spectral density at 142.86 K, also shown in figure 6.4. However,

due to the long relaxation times involved it was necessary to use the more

expedient homonuclear saturation recovery sequence described in subsection

3.3.2. It was known from previous studies [27] that the spectral densities

of samples with small cross-relaxation rates, prepared with different initial

polarisation conditions, tend to have identical correlation rates and only show

a difference in amplitude. This was confirmed experimentally in this sample

from spectral densities measured at 83.33 K. Therefore, only the correlation

rate measured at 142.86 K was used in further analysis, and the amplitude was

disregarded.

6.3.1 Spectral Density Function

To measure the spectral density amplitudes and correlation rates more accu-

rately, the spectral density function should encompass all relevant relaxation

paths in the system, as illustrated in figure 2.5. However, uncertainties in the

data require that some approximations are made to simplify the model.

Simulations of heteronuclear magnetisation recoveries based on equation

(2.24) were compared to recorded data. This analysis revealed that the het-

eronuclear relaxation rate, ρS , and cross-relaxation rates, σ, were about an

order of magnitude smaller than homonuclear relaxation ρI . Therefore, as a

first-order approximation they can be treated as negligible, and the relaxation

equation (2.24) can be reduced to

d

dt
〈Îz〉 = −

(

ρIS
II + ρII

II

)

[

〈Îz〉 − I0

]

. (6.2)

A further approximation can then be made due to the large difference between

the magnetogyric ratios of nitrogen and hydrogen, ωI ± ωS ≈ ωI . Taking

the single crystal relaxation equations (2.42) and (2.46), and noting that for

3,5-PDA I = 1/2, S = 1, and NI = 5, these relaxation rates can be reduced to
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the following forms:

ρIS
II =

γ2
I γ2

S~
2S(S + 1)

24NI

(µ0

4π

)2 4a

(1 + a)2

×
[

L(ωI − ωS)G0
Het + 18L(ωI)G

1
Het + 9L(ωI + ωS)G2

Het

]

=
γ2

I γ2
S~

2

60

(µ0

4π

)2 4a

(1 + a)2

×
[

L(ωI − ωS)G0
Het + 18L(ωI)G

1
Het + 9L(ωI + ωS)G2

Het

]

≈
γ2

I γ2
S~

2

60

(µ0

4π

)2 4a

(1 + a)2
[

L(ωI)G
0
Het + 18L(ωI)G

1
Het + 9L(ωI)G

2
Het

]

(6.3)

ρII
II =

3γ4
I ~

2I(I + 1)

2NI

(µ0

4π

)2 4a

(1 + a)2
[

L(ωI)G
1
Homo + L(2ωI)G

2
Homo

]

=
9γ4

I ~
2

40

(µ0

4π

)2 4a

(1 + a)2
[

L(ωI)G
1
Homo + L(2ωI)G

2
Homo

]

(6.4)

Labelling the heteronuclear and homonuclear constant pre-factors

PHet =
γ2

I γ2
S~

2

60

(µ0

4π

)2
, and PHomo =

9γ4
I ~

2

40

(µ0

4π

)2
,

the total proton relaxation rate can be expressed as a sum of two Lorentzian

components L(ωI) and L(2ωI).

ρIS
II + ρII

II =
4a

(1 + a)2
[

L(ωI)PHetG
0
Het + 18L(ωI)PHetG

1
Het + 9L(ωI)PHetG

2
Het

]

+
4a

(1 + a)2
[

L(ωI)PHomoG
1
Homo + L(2ωI)PHomoG

2
Homo

]

=
4a

(1 + a)2
[

(PHetG
0
Het + 18PHetG

1
Het + 9PHetG

2
Het + PHomoG

1
Homo)L(ωI)

+PHomoG
2
HomoL(2ωI)

]

=
4a

(1 + a)2
[C1L(ωI) + C2L(2ωI)] (6.5)

To express this equation in the usual spectral density function form, the
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constants C1 and C2 should be combined into one dipolar constant CD.

ρIS
II + ρII

II = (C1 + C2)
4a

(1 + a)2

[

C1

C1 + C2
L(ωI) +

C2

C1 + C2
L(2ωI)

]

= CD
4a

(1 + a)2
[cL(ωI) + (1 − c)L(2ωI)] (6.6)

where the dipolar constant is

CD = C1 + C2

= (PHetG
0
Het + 18PHetG

1
Het + 9PHetG

2
Het + PHomoG

1
Homo) + (PHomoG

2
Homo),

(6.7)

and the weighting coefficient is

c =
C1

C1 + C2
. (6.8)

The dipolar coupling strengths G were calculated from the crystal structure

[34], according to equations (2.47 - 2.51); considering only the nearest six

proton and three nitrogen sites in the sums. Using these values the dipolar

constant and weighting coefficient were then calculated to be

CD = 1.6258 × 107 s−2,

c = 0.39176.

6.3.2 Further Data Analysis

The dipolar coupling strength sums are very sensitive to small changes in the

atom coordinates and it is difficult to assign uncertainties to the calculated

values of CD and c. The reduced spectral density function (6.6) was therefore

constrained only in terms of the weighting coefficient c, based on the crystal

structure. Measurement of the dipolar constant CD and quality of the spectral

density fits was then used to gauge the validity of the assumptions made in

subsection 6.3.1. The spectral density data was fitted again to the following

function:
1

T1
= D [0.39176L(ωI , τc) + 0.60824L(2ωI , τc)] . (6.9)

The spectral density amplitudes, D, shown in figure 6.6, have a distinctive

temperature-dependence with a peak at c.a. 106 K. This peak coincides with
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the relaxation rate maximum as a function of temperature, seen in figure 6.5.

These results can be explained well in terms of the DMP model with non-zero

entropy. By performing an unconstrained fit of the amplitudes to

D = CD
4a

(1 + a)2
, (6.10)

where a = exp(∆H−T∆S
kBT

), the relevant parameters were measured to be:

SSHB Proton Transfer

CD (1.18 ± 0.01) × 107 s−2

∆H/kB (611 ± 11) K
∆S/kB (5.8 ± 0.1)

Table 6.1: Best-fit parameters used to describe the peak relaxation observed in 3,5-PDA.

Good agreement of the measured and calculated dipolar constants indicates

that the observed spin-lattice relaxation can be attributed with certainty to the

SSHB proton motion, rather than some other mechanism. Also, the change in

enthalpy ∆H measured from this fit is in agreement with the DMP asymmetry

from MD simulations shown in figure 6.3.

The role of entropy at stabilising the high-temperature structure and giving

rise to maximum proton disorder at c.a. 106 K can be illustrated in terms

of proton populations as a function of temperature. In the bi-stable SSHB

model the protons mostly occupy the two stable sites, nearest the nitrogen and

oxygen atoms, with Boltzmann statistics determining the relative populations,

pN and pO respectively:

pN =
a

1 + a
(6.11a)

pO = 1 −
a

1 + a
=

1

1 + a
(6.11b)

Using the parameters in table 6.1, these populations are shown in figure

6.6. The low and high-temperature regimes are characterised by the proton

populations being predominantly in the vicinity of the nitrogen and oxygen

respectively, as measured by neutron diffraction. In the intermediate region

however, as the DMP asymmetry tends to zero, the protons undergo rapid

motion leading to a peak in relaxation and an equilibration of the populations.

The necessity of a finite entropy term can be demonstrated by attempting

to fit the spectral density amplitudes to equation (6.10), whilst constraining
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the change in entropy, ∆S, to zero. It is clear from the resulting fit, shown in

figure 6.7, that the ensuing dipolar constant (y-axis intercept) is more than an

order of magnitude larger than the value calculated in subsection 6.3.1, and

would give rise to a proportionately higher relaxation peak. In addition, it

is impossible to model the observed peak and decrease in the intermediate

and high-temperature spectral density amplitudes respectively without an

entropy term. Figure 6.7 also shows the resulting oxygen and nitrogen-vicinity

site populations, again assuming ∆S = 0. Such population distributions are

reminiscent of benzoic acid, where equilibration of populations only occurs in

the limit of infinite temperature, which is in disagreement with the neutron

scattering results for 3,5-PDA [34].

The spectral density correlation rates measured by fitting to equation (6.9)

are shown in figure 6.5. Additional correlation rates were also deduced from

the relaxation measured as a function of temperature, by constraining equation

(6.9) according to the parameters in table 6.1. Then, For each measured value of

T eff
1 in the vicinity of the relaxation peak, the equation was solved numerically

to extract a correlation time. As can be seen in figure 6.5, the two sets of

data are in good agreement, and appear to describe an s-shaped curve. Such

a trend in proton transfer motion has not been observed previously, and the

mechanism responsible for it remains an open question. The data were found

to correlate well with the following phenomenological function:

τ−1
c = 8 × 107 +

8 × 108

1 + a2.5
. (6.12)

It is worth noting that both the high and low temperature turning points in

the correlation rate, at 127 K and 83 K respectively, occur at |∆G| ≈ 128 K. The

Debye cut-off frequency for phonon contributions is known to be ωD ≈ 116 K

for benzoic acid [35], and is expected to be of a similar magnitude for 3,5-PDA.

When the asymmetry exceeds the Debye frequency, incoherent tunnelling can

no longer occur between the two ground states of the DMP. In such a regime,

incoherent tunnelling instead happens between the ground state of one potential

well and an excited state of the other, leading to different proton transfer rates

[30]. For a sample with a temperature-dependent asymmetry, ∆G, a transition

from one tunnelling state to the other is expected to occur at ∆G ≈ ±ωD.

However, further theoretical analysis will be necessary to identify the exact

mechanism observed in this sample.
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6.3.3 Data Modelling

To model the relaxation caused by the SSHB proton transfer, the full coupled

heteronuclear relaxation equation (2.24) was used, together with the single

crystal relaxation matrix elements derived in subsection 2.3.1. In order to

account for the slight discrepancy between the calculated and measured dipolar

constants, the calculated dipolar coupling strengths G were multiplied by

an adjustment factor of CMeas
D /CCalc

D . The DMP asymmetry was calculated

based on the measured parameters in table 6.1, and the correlation rates were

described by equation (6.12).

To calculate the heteronuclear relaxation rates R1 and R2, the initial spin

reservoir polarisations needed to be known. The zero-field saturation recovery

pulse sequence ensured that the spectral densities were consistently recorded

with 〈Îz〉t=0 = 0 〈Ŝz〉t=0 = 0. Conversely, for the temperature-dependent

measurements the initial polarisation condition of the nitrogen spin reservoir

was unknown. However, it was assumed that this reservoir was relatively

undisturbed during the static-field experiments, due to a small cross-relaxation

rate, and the initial polarisations were taken to be 〈Îz〉t=0 = 0 〈Ŝz〉t=0 = S0.

From these heteronuclear relaxation rates, the average T eff
1 was then calculated

according to equation (2.34).

It can be seen from figures 6.4 and 6.5 that the average spin-lattice re-

laxation, T eff
1 , agrees well with the spectral density data, and temperature-

dependent data in the region of interest. This justifies the assumptions made

in subsection 6.3.1, and validates the dynamics parameters in subsection 6.3.2

measured using the reduced spectral density function. The disagreement ob-

served between the measured and calculated heteronuclear relaxation rates

could not be reconciled in terms of a slight misalignment of the crystal relative

to the magnetic field. It is however possible that the crystal is twinned into

two domains with slightly different orientations, one of which is larger than

the other and dominates the relaxation, represented by the average T1.

Figure 6.5 shows that the current model does not adequately describe the

trend towards a constant relaxation rate at high and low temperatures. It is

difficult to ascribe a temperature-independent relaxation rate in terms of a

particular dynamic process, and this data is likely due to background relaxation.

Conducting spectral density measurements at lower temperatures could reveal

additional Lorentzian components to characterise this relaxation, but the small

relaxation rates would likely make such experiments unfeasible.
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6.4 Summary

Hydrogen bonds akin to the ones studied here are known to be vital in

bonding and reactions of complex biological molecules such as DNA. When

considering studying such systems in detail it becomes imperative to appreciate

the dynamics they exhibit in order to advance the field.

Proton migration in 3,5-PDA has been found to be temperature-dependent,

caused by different molecular vibrational modes becoming dominant at different

temperatures, and defining the multi-dimensional PES within which the proton

resides. At around 105 K the proton demonstrated greatest mobility between

the two nearby PES minima, when neither site was greatly more energetically

favuorable than the other, with the dynamics described very well in terms

of incoherent tunnelling in a DMP. Furthermore, the non-zero entropy term,

revealed clearly from field-dependent measurements, was found to be crucial in

describing the proton migration with temperature. It seems incredible that

such an inherently complex system, as the subtle competition of two nuclear

position equilibria stabilised by molecular vibrations, could be described so

concisely within the framework of the DMP model.

The experiments presented here posed a significant technical challenge due

to the inherent heteronuclear effects; requiring the lengthy zero-field saturation

recovery pulse sequence to be employed to maintain known initial polarisation

conditions for accurate data modelling and interpretation. Further experiments

on such molecular systems would be made more efficient if the nitrogen spins

could be directly manipulated with RF pulses.

96



CHAPTER 6. SHORT, STRONG HYDROGEN BOND MOTION

Figure 6.4: Spectral densities of 3,5-PDA measured across a range of temperatures, shown as
points. Each solid line is the modelled proton relaxation rate at that temperature according
to equation (2.24). The dynamics parameters in table 6.1 were used, and the correlation
rate described by equation (6.12). The spectral density at 142.86 K was recorded using the
homonuclear saturation recovery pulse sequence.
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Figure 6.5: (a) The temperature-dependent measurements of spin-lattice relaxation rates at
BR = 0.864 T are shown as points. The solid and dashed lines are modelled according to
equation (2.24); using parameters in table 6.1 and the correlation rate given by (6.12). (b)
Measured correlation rates are shown as points, with the solid line being a phenomenological
fit described by equation (6.12).
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Figure 6.6: (a) Measured spectral density amplitudes represented by points, with the solid
line being a fit to equation (6.10), and the resulting parameters shown in table 6.1. (b)
Proton populations in the two stable SSHB configurations modelled according to equations
(6.11) and the parameters in table 6.1.
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Figure 6.7: (a) Measured spectral density amplitudes represented by points, with the
solid line being a fit to equation (6.10) assuming ∆S = 0: CD = (7 ± 2) × 108 s−2 and
∆H/kB = (500 ± 20) K. (b) Proton populations in the two stable SSHB configurations
modelled according to equations (6.11) and the above parameters. Comparison to figure 6.6
highlights necessity for finite ∆S.
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Chapter 7

Multiple Relaxation Sources

7.1 Introduction

A great advantage of the field-cycling NMR technique is its ability to effec-

tively separate and identify the sources of relaxation within a complex system

containing different types of molecular motion [36, 9]. This investigation was

designed to test such capabilities on a sample of 4-methylbenzoic acid (4-MBA),

also known as p-toluic acid, see figure 7.1.

Figure 7.1: Molecules of 4-methylbenzoic acid in a dimer configuration.

Although the relaxation due to proton transfer in carboxylic acid dimers and

methyl group rotation are individually well understood [13, 17], the combined

case of both processes has received little consideration. One motivation for

studying this sample was to determine whether the motion of one group would

have any effect on the other.

Current models of the two types of motion involve some PES, on which

a particle moves via translation or rotation. These potential energy surfaces

are generally assumed to be static and independent of temperature, for both

proton transfer in benzoic acid and for hindered methyl rotors. However, in

the case of a 4-MBA crystal the two groups are situated relatively close to

each other, see figure 7.2, and the PES of one could feasibly be influenced
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by the motion of the other. More specifically, the carboxyl proton positions

change from being nearly equally distributed between L and R states at high

temperature, to being predominantly in the L state at at low temperature.

This change, if experienced by the methyl rotor PES, would manifest itself as

an anomaly in the measured correlation rate, and as a temperature-dependence

of the lattice sum dipolar constants, CAE and CEE .

Figure 7.2: Crystal structure of neighbouring 4-MBA molecules [37]. The highlighted
internuclear distances show the proximity of a methyl group to the nearest carboxylic dimer.

A combination of temperature-dependent and field-dependent measure-

ments of T1 would allow any changes to the dynamics to be effectively identified.

Knowing that the stochastic motion correlation rate is directly dependent on

the PES, measurements of τ−1
c from spectral density distributions over a range

of temperatures should show whether there is a temperature-dependence to the

methyl rotor PES that cannot be described by the static model. Similarly, the

spectral density amplitudes give a measure of the dipolar lattice sums, which

in the static model should remain constant for all measured temperatures.

Strictly speaking, this set of experiments was concerned only with the

relaxation of protons, but for the purposes of keeping within the theme of this

thesis the methyl group hydrogens can be considered heteronuclei, providing

alternative relaxation pathways. From a mathematical point of view however,

efficient spin diffusion is expected within the proton reservoir, which must

then be characterised by a single polarisation. Therefore, if there are multiple

relaxation pathways from this reservoir to the lattice, then they would be

observed as a single-exponential magnetisation recovery characterised by a

combined relaxation rate:

1

T obs
1

=
1

TA
1

+
1

TB
1

+ . . . . (7.1)
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7.2 Experimental Procedure

Determining whether a complex temperature-dependent inter-relation between

the dynamics of the two types of motion is present required the 4-MBA spectral

density profiles to be measured across a wide range of temperatures. Since

the main source of relaxation in this sample was the variation of dipolar

interactions between hydrogen nuclei, the homonuclear saturation recovery

(subsection 3.3.2) and polarisation recovery (subsection 3.3.3) pulse sequences

were employed to measure T1 at high and low recovery fields respectively.

Initially, a measurement of T1 as a function of temperature at an inter-

mediate field, BR = 1 T, was made across a broad range of temperatures,

12.82 − 250 K. These preliminary measurements were used to identify the

main regions of relaxation and the temperature ranges over which they domi-

nated. Based on this information, 25 spectral densities were then systematically

recorded in the temperature range 12.82 − 83.33 K to separate and measure

the relaxation components. The range of recovery fields used for each spectral

density depended on how much resolution seemed necessary to determine the

apparent dynamics at each temperature. Generally speaking, this consisted of

29 spin-lattice relaxation time measurements at recovery fields of 0.08 − 2.3 T.

A powdered sample 4-MBA was used for this set of experiments, which

removed the angular dependence of the dipolar lattice sums, G. The purity of

this sample was 98%.
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7.3 Results

The saturation recovery and polarisation recovery data were analysed using

equations (3.2) and (3.4) to measure the T1. On a few occasions an apparent

discontinuity was revealed in what should be a smooth spectral density profile

for a particular temperature. This anomaly was confined to high temperatures

where the signal to noise ratio is inherently large and can be attributed

to the abrupt change in SNR between polarisation recovery and saturation

recovery experiments, as discussed in subsection 3.2.1. Due to time constraints

those results could not be improved, but instead introduced slightly greater

uncertainty to measurements made during further data analysis of the spectral

densities.

The initial spin-lattice relaxation measurements as a function of temperature

at BR = 1 T are shown in figure 7.3. Brief inspection of this data reveals three

distinct relaxation components, with peaks at 71.5 K, 35.7 K, and 26.3 K. It

is known from previous experiments that for methyl groups the Haupt peak

generally appears close to the BPP peak at approximately this recovery field,

and always at the high-temperature side of the BPP component. In addition,

it is known that a T1 minimum at around 65 K is typical for a benzoic acid

dimer at 1 T. Therefore, these components are most likely due to proton

transfer, Haupt, and BPP mechanisms in order of decreasing temperature.

However, without the frequency-space resolution provided by recording the T1

at multiple recovery fields they cannot be assigned with certainty to specific

sources of relaxation.

The ground-state tunnelling frequency of 4-MBA has been previously

measured by neutron scattering to be ω
(0)
t = 81.7 µeV = 1.98 × 1010 rad s−1

[38]. According to the methyl thermometer model [39], assuming a purely

three-fold potential, this would correspond to a T1 minimum at c.a. 40 K,

in agreement with the previous deduction. Under the same assumption, the

high-temperature activation energy can also be estimated from this frequency

to be EH/kB ≈ 280 K [40].

Since the tunnelling frequency is much greater than the maximum proton

Larmor frequency at 2.5 T, we can make the approximation (ωt ± 2ωL)2 ≈ ω2
t .

In this high tunnelling frequency regime the Haupt component of relaxation
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from equation (2.63) can be simplified to a field-independent form:

1

TAE
1

≈
10τcCAE

1 + ω2
t τ

2
c

. (7.2)

This means that the Haupt contribution can initially be effectively represented

by a constant offset of the spectral density profile that changes with temperature.

However, there are too many unknown parameters in this equation to extract

exact values from such measurements.

The temperature-dependent contributions from each source of relaxation

can be clearly seen in the spectral density profiles in figures 7.4 and 7.5. The

highest temperature spectral density appears to be solely due to proton transfer

motion, the lineshape being characterised by a single correlation time (width).

At lower temperatures, the spectral densities show an increasing constant offset

from the distinctive, flat Haupt relaxation component, which becomes dominant

at around 33 K. Below this temperature, the BPP component quickly rises in

dominance and appears to persist thereafter.

To isolate the parameters governing the dominant features of the observed

spin-lattice relaxation behaviour, the relevant temperature ranges were initially

considered separately. At high temperatures, in the range 38.46− 83.33 K, the

carboxylic dimer proton transfer provided the largest relaxation component,

with some contribution from the Haupt component. Therefore, these spectral

densities were fitted to the following equation:

1

T1
= D

[

L(ωI , τ
PT
c ) + 4L(2ωI , τ

PT
c )

]

+ b, (7.3)

where the constant offset b accounted for the increasing Haupt component

contribution.

If the proton transfer and Haupt components can be effectively separated by

the field-cycling technique, then the correlation rate measured using equation

(7.3) will be that of the carboxylic dimer. These measurements, shown in figure

7.6, agree qualitatively with the expected trend for a dimer, indicating the

validity of this approach.

A measure of the proton transfer rate parameters can then be made by

fitting this data to equation (2.62). Also, the spectral density amplitudes, D,

shown in figure 7.7, can be modelled by

D = CII
4a

(1 + a)2
, (7.4)
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where CII is the dipolar constant for the dimer (2.60), and ∆G is the DMP

asymmetry.

Following this, it was attempted to isolate and analyse the BPP component

of the methyl group rotation, which appeared to be dominant at temperatures

below 25 K. In the high tunnelling frequency approximation, equation (2.63)

can be expressed as:

1

T1
= CEE

[

L(ωI , τ
MR
c ) + 4L(2ωI , τ

MR
c )

]

+ b, (7.5)

where the offset b again represents the Haupt component. Assuming an

effective separation of the relaxation components, then the correlation rate

here, τMR
c , would be that of the methyl rotor, shown in figure 7.6. By fitting

this data to equation (2.64), and using the high-temperature activation energy

derived earlier from the tunnelling frequency, the methyl group correlation rate

parameters were deduced.

In the lowest temperature range, 12.82 − 17.24 K, the observed spectral

densities could not be fully described in terms of methyl group relaxation,

requiring some other source of relaxation that becomes more dominant with

decreasing temperature. This new component had the characteristic shape

of a BPP-type contribution with a much larger correlation rate than the one

observed at higher temperature. To identify the dynamics of this component

the spectral densities were analysed with a combined equation for two BPP

components:

1

T1
= CEE

[

L(ωI , τ
MR
c ) + 4L(2ωI , τ

MR
c )

]

+ CN
[

L(ωI , τ
N
c ) + 4L(2ωI , τ

N
c )

]

. (7.6)

To isolate the dynamics of this new component, the BPP parameters (CEE ,

τMR
c ) known from data at higher temperature were constrained in these fits.

As can be seen from figures 7.6 and 7.7, a decreasing spectral density amplitude

CN and constant correlation rate τN
c were measured, which are characteristic

of a carboxylic dimer rather than a methyl group.

It was considered as a possibility that that the new relaxation component

was due to the methyl group experiencing a change in its PES, thus affecting

its dynamics. However, upon closer analysis of the high-temperature proton

transfer correlation rate in figure 7.6, it can be seen that the greatest changes
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in carboxyl proton distribution occur above c.a. 30 K, and is predominantly

in the L configuration below that. Therefore the spectral density changes

observed below 17.24 K cannot be attributed to this process.

It is far more likely that the unknown component is due to carboxylic

dimers in the vicinity of a crystal lattice defect such as would be created

by an impurity in the sample. It is known from previous experiments on

benzoic acid, intentionally doped with an optical dye to 0.005%, that the

tiny proportion of dimers in their vicinity can be effectively measured due

to the different dynamics they exhibit [41]. More specifically, a reduction of

the DMP asymmetry ∆G and an increase of the ground-state tunnelling rate

were observed for the affected dimers. This is in agreement with the measured

characteristics of the new component shown in figures 7.6 and 7.7. Considering

a 0.005% optical level of impurities had a measurable effect, it is conceivable

that the 2% of impurities in this sample would also produce sufficient defects

to be detected at low temperature.

7.3.1 Data Modelling

In an attempt to fully describe the observed relaxation across all temperatures,

a comprehensive model was built to combine the relaxation from the methyl

rotor and two different carboxylic dimer environments according to equation

(7.1). The parameters measured from preliminary fitting procedures were used

as initial estimates at this stage, but required minor adjustment to better

describe the overall dynamics. Both the carboxylic proton transfer components

were modelled using equation (2.59), with different sets of parameters. The

methyl rotor was also modelled fully using equation (2.63). Assuming a purely

three-fold methyl hindering potential, with an amplitude of V3, the first ten

excitation energies and tunnelling frequencies were calculated by numerical

diagonalisation of the rotational Hamiltonian eigenvalues [17]. These were

then used to calculate the temperature-dependence of the observed tunnelling

frequency according to the generalised Allen model [19, 17].

The results of this modelling procedure are shown as solid and dashed lines

in figures 7.3 - 7.7, and the parameters used to generate them are displayed in

table 7.1. To describe the Haupt component it was found necessary to increase

the hindering potential, such that the ground-state tunnelling frequency was

reduced to ω
(0)
t = 1.06 × 1010 rad s−1, about half of the previously measured

value [38]. Since this frequency is highly-dependent on the hindering potential,
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it is therefore likely that the potential is not purely three-fold, and contains

contributions with six-fold symmetry. However, quantifying such contributions

is beyond the scope of this study. Methyl group coupling effects [42] were also

considered as a source of multiple tunnelling frequencies, but such phenomena

tend to be restricted to dynamics with much lower hindering potentials.

As can be seen from these figures, the current model of non-interacting

methyl rotor and two carboxylic dimer environments describes the data well

across all measured temperatures and recovery fields. It has been shown that

effective separation of relaxation components can be achieved using field-cycling

NMR to measure spectral densities, to the extent of identifying low levels of

impurity within the sample. This would be impossible to do with such accuracy

based only on the relaxation rate as a function of temperature. In addition,

independent measurements of correlation rates can be reliably extracted for each

type of motion from spectral density fits in their dominant temperature range.

This is best illustrated in figure 7.6, where these independent measurements

are in close agreement with those modelled when considering all sources of

relaxation simultaneously.

No dependence of methyl motion on the neighbouring carboxylic dimer

proton distributions was observed due to being obscured by the bulk proton

transfer relaxation component above c.a. 50 K, where these changes are

expected to occur. Such a mechanism could be revealed in this temperature

range by deuterating the carboxyl protons, thereby reducing the correlation

rate and shifting their relaxation component to higher temperature [9].

7.4 Summary

The ability to probe spin-lattice relaxation across the frequency domain, utilis-

ing field-cycling NMR techniques, has been shown in this study to be invaluable

for the accurate measurement and interpretation of dynamics in complex sys-

tems. Temperature-dependent analysis has proven to be complimentary to this

goal, but is not sufficient on its own, especially for the separation of individual

contributing components and their different dynamic rates.

The copious amounts of data, collected across many temperatures and fields

during this investigation, also represent a prolonged effort to ensure that the

theoretical models used were suitable at accurately describing the entirety of

the observed results.

108



CHAPTER 7. MULTIPLE RELAXATION SOURCES

Methyl Rotor

CAE 4.5 × 108 s−2

CEE 1.7 × 108 s−2

V3/kB 386 K

τ−1
0L 8 × 108 s−1

EL/kB 75 K

τ−1
0I 1.8 × 1011 s−1

EI/kB 165 K

τ−1
0H 1.2 × 1013 s−1

EH/kB 320 K

Bulk Proton Transfer

CII 5.59 × 107 s−2

k0 7.4 × 107 s−1

∆H/kB 93.8 K
τ−1
exc 2 × 109 s−1

∆Eexc/kB 211 K

τ−1
act 1.7 × 1011 s−1

∆Eact/kB 530 K

Impurity Proton Transfer

CII 7 × 107 s−2

k0 5 × 108 s−1

∆H/kB 58 K
τ−1
exc 3 × 1010 s−1

∆Eexc/kB 150 K

τ−1
act 2 × 1012 s−1

∆Eact/kB 600 K

Table 7.1: Best-fit parameters used to describe the relaxation observed in 4-MBA.
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Figure 7.3: The spin-lattice relaxation rate of 4-MBA measured at BR = 1 T as a function of temperature, shown as open circles. The dashed lines
are modelled relaxation components based on equations (2.63) and (2.59), using parameters shown in table 7.1. The solid line is the sum of these
components according to equation (7.1).
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Figure 7.4: Spectral densities of 4-MBA measured across a range of temperatures, shown as
points. Each solid line is the modelled relaxation rate at that temperature, and is a sum of
components according to equation (7.1). The relaxation components are based on equations
(2.63) and (2.59), using parameters shown in table 7.1. (a) Bulk proton transfer and Haupt
components are dominant. (b) Haupt and BPP components are dominant.
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Figure 7.5: Spectral densities of 4-MBA measured across a range of temperatures, shown as
points. Each solid line is the modelled relaxation rate at that temperature, and is a sum of
components according to equation (7.1). The relaxation components are based on equations
(2.63) and (2.59), using parameters shown in table 7.1. (a) Methyl rotor BPP component is
dominant. (b) BPP and impurity proton transfer components are dominant.
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Figure 7.6: Correlation rates for the methyl rotor (circles), bulk proton transfer (triangles), and impurity proton transfer (squares); measured by fitting
spectral densities to equations (7.5), (7.3), and (7.6) respectively. Solid lines are modelled based on equations (2.64) and (2.62), using parameters
shown in table 7.1.
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Figure 7.7: Spectral density amplitudes for the bulk proton transfer (triangles) and impurity proton transfer (squares); measured by fitting spectral
densities to equations (7.3) (D), and (7.6) (CN ) respectively. Solid lines are modelled based on equation (7.4) using parameters shown in table 7.1.
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Chapter 8

Summary and Concluding

Remarks

This study, at its core, measured the quantum tunnelling motion of protons in

the hydrogen bond. By employing field-cycling NMR techniques to map the

spectral density functions of spin-lattice relaxation rates, the proton motion

correlation rates were directly measured. In addition, field-cycling facilitated

the manipulation and measurement of different spin species reservoirs within the

same experiment. A combination of these procedures allowed the heteronuclear

effects on quantised proton transfer and coupled nuclear Zeeman reservoirs to

be investigated. Effects from both magnetic and non-magnetic nuclear species

outside the hydrogen bond were considered.

The isotope effect on proton transfer in benzoic acid, due to isotopic

substitution of the carboxyl group oxygen atoms with 18O, was determined.

To ensure all possible differences between the two sets of measurements could

only be attributed to the isotope effect, the investigation constituted a careful

comparative study on ultra-pure samples. A reduction of the low-temperature

correlation rate by (15.2 ± 0.5)% was observed when compared with pure 16O

benzoic acid, indicating that the vibrational modes involving those oxygen

atoms contribute constructively to proton transfer. This accurate measurement

will be applied to further develop the theoretical understanding and accurate

modelling of tunnelling in molecular systems. The isotope effect also induced

an observable difference in the dipolar coupling strengths of the two systems,

attributed to small changes in their crystal structures.

Two samples, 13C-enriched benzoic acid and 2,4,6-fluorobenzoic acid, in
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which strong coupling between the heteronuclear and proton Zeeman reservoirs

has been detected, were the subject of experiments to measure their cross-

relaxation rates as a function of field. The off-diagonal relaxation matrix

element, characterising the cross-relaxation rate, was found to be negative for

2,4,6-FBA above approximately 0.1 T, due to the strong difference-frequency

contribution. Conversely, this spectral density contribution is a lot weaker

in 13C-BA, leading to a positive cross-relaxation rate that enhanced the 13C

polarisation; a 25% increase in the equilibrium magnetisation was observed at

0.3 T. Also, from comparison of 13C-BA with measurements of pure benzoic

acid at low temperature, the isotope effect was estimated to be 8%, but this

could equally be attributed to systematic experimental errors.

Recent molecular dynamics studies on gradual temperature-dependent

proton migration in the intermolecular N–H· · ·O hydrogen bonds of 3,5-PDA,

led to the prediction of a bistable regime at intermediate temperature where

relatively fast proton transfer through incoherent tunnelling is expected. Apart

from being a different molecular environment, this investigation constituted a

deviation from the tunnelling dynamics observed in benzoic acid. The potential

energy path linking the two minima, representing the stable proton sites,

can only resemble the form of a DMP, within which tunnelling can occur, if

vibrational modes of the molecule are considered. Without this translation

along the vibrational coordinate, only single-minimum wells are experienced at

any point along the proton transfer coordinate.

Heteronuclear effects due to the proximity of 14N to the mobile proton

in 3,5-PDA required that the nitrogen reservoir polarisation was consistently

prepared during the experiments, so that the results were reproducible and

could be modelled appropriately. The bistable regime hypothesis was confirmed,

with a peak in the relaxation rate around 105 K attributed to proton tunnelling.

Spectral density measurements also revealed that there was a change in entropy

associated with proton transfer between the two stable sites, which made one

conformation preferable over the other at each extreme in temperature. The

observed correlation rate was akin to no known system and will require further

theoretical analysis to understand in terms of first principles.

Separating multiple relaxation sources in 4-methylbenzoic acid presented

a challenge to the field-cycling technique that could not have been overcome

with only temperature-dependent measurements. The associated dynamic

rates of both the proton transfer and methyl rotor motions, extracted from
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unconstrained fits of the spectral densities, were found to be very accurate with

comparison to modelling of all relaxation sources combined - demonstrating the

potency of field-cycling NMR. Furthermore, analysis of the low-temperature

spectral densities revealed an additional weak proton transfer component,

believed to originate from dimers with distorted PESs around impurity centres.

Another facet of this study probed whether the temperature-dependent proton

distribution in the carboxylic dimer would have an observable effect on the

nearby methyl group potential energy surface. Unfortunately in this case, the

temperature region of interest, where the greatest change in proton distribution

occurred, was obscured by relaxation from proton transfer in the dimer.

Ab initio calculations of cross-relaxation between Zeeman reservoirs belong-

ing to two different spin-1/2 species showed the possible necessity of additional

factors in the off-diagonal relaxation matrix elements. To isolate the cross-

relaxation, this hypothetical scenario considered a system of two reservoirs, I

and S, both decoupled from the lattice. Conservation of energy within this

isolated system required that the cross-relaxation rates be dependent on the

relative reservoir size and magnetogyric ratio dilution factors. More precisely,

it is proposed that σIS is proportional to γSNS

γINI
, and σSI should then be propor-

tional to γINI

γSNS
. There was, however, insufficient time to explore such extensions

to the theory fully, by considering arbitrary spin species and verification by

comparison with results.
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