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Abstract 

The Global Positioning System (GPS) has been an undoubted success and a 

great many applications have benefited from it. It does however have 

limitations, which make its use in certain environments, and for certain tasks, 

difficult or indeed impossible. In recent years a second satellite based 

navigation system, the Global'naya Navigatsionnaya Sputnikov Sistema 

(GLONASS) has become increasingly available. A great deal of interest has 

been expressed in combining both these systems, in the hope that combined 

GPS/GLONASS technology will present significant benefits under conditions 

where GPS alone has struggled. 

The research described in this thesis was undertaken to examine the potential 

benefits and problems of such a combination. This has been primarily achieved 

through the modification of the existing GPS processing software of the 

Institute of Engineering Surveying and Space Geodesy (IESSG) to accept 

GLONASS observations. 

The analysis of data collected under controlled conditions and processed 

through this software has highlighted biases in the pseudorange measurements 

from the GLONASS satellites. This is due to the fact that each GLONASS 

satellite broadcasts on a different frequency, which is then delayed by slightly 

different amounts through the Radio Frequency (R/F) section of the receiver. If 

these R/F sections were identical in each receiver, this error source would 

cancel, but this has not been found to be the case with the receivers used in this 

research. Interestingly, no such biases have found to be present in the 

GLONASS carrier phase observations. 

Various tests have been performed and the data processed through both IESSG 

and commercially available software. These have highlighted that there are 

undoubted potential benefits of using combined GPS/GLONASS receivers in 

environments where visibility is restricted. Under ideal conditions however, 

IV 



the effect of any benefit is reduced, and indeed the biases present in the 

GLONASS pseudoranges may slightly degrade the accuracy of differential 

positioning. 

The software developed has already been used in other research projects within 

the IESSG. Although the future of the GLONASS system is somewhat 

uncertain, any future changes to it should be easily accounted for within the 

code. There is however a real need to further develop and incorporate cycle 

slip detection software, especially for GLONASS observations, and to 

investigate the possibility of solving for the biases in the GLONASS 

pseudoranges. 
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Chapter 1 

Introduction 

The Global Positioning System (GPS) has, since its inception in 1978, been the 

subject of intensive research and development by numerous academic and 

commercial organisations throughout the world. As a result of this work, an 

almost unlimited number of previously unthought of applications have found 

uses for this technology. For example, mariners can use GPS to navigate both 

in the open ocean and confined harbour environments, surveyors can measure 

positions to millimetre accuracies, and farmers can use it to guide their 

machinery. However, in recent years the pace of this development has slowed 

as the potential of the GPS system as it stands is reached. Restrictions on the 

availability, accuracy, and integrity of position solutions limit the sole use of 

GPS, and in scenarios such as aircraft landings, make it an unacceptable 

proposition. 

Interestingly, a second satellite based navigation system called the 

`Global'naya Navigatsionnaya Sputnikova Sistema' (GLONASS) has, since the 
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fiter 1: Introduction 

mid 1990's, become increasing available for commercial use. If used alone, as 

a rival to GPS, then GLONASS would suffer from the same limitations as 

mentioned above, as it shares a number of the characteristics of GPS. However, 

when both systems are combined, a great many of these problems are 

overcome, or at least their effects greatly reduced. 

The first area of potential improvement is that of solution availability. As will 

be explained in Chapter 4, the minimum requirement of simultaneously visible 

satellites, using GPS, to obtain an autonomous three-dimensional position is 

four, and for real-time on-the-fly centimetre accuracy positioning, this rises to 

five. Now, under ideal conditions for satellite positioning i. e. unobstructed 

views of the sky, this is not a problem, as there are usually seven or more GPS 

satellites visible at any one time. However, in a great many environments this 

is not always the case. For example, in open cast mines, urban environments, 

forested areas and valleys, large parts of the sky may be obscured, and thus the 

number of in-view satellites will be reduced. If the number of satellites falls 

below the numbers outlined above, the result will be an inability to compute a 

position. Clearly, the addition of the extra satellites, which the GLONASS 

constellation offers, will significantly increase the availability of the system, 

even though there is the need for an additional satellite in a combined solution 

(Chapter 4). In all environments these extra satellites will also strengthen the 

geometry of the visible constellation, and position accuracy, which is a 

function of geometry, should also be improved. Finally, when considering 

centimetre level positioning, the time taken to reach this level is again 

dependent on the number of visible satellites, so a combined GPS/GLONASS 

system should reach these higher accuracies more quickly than GPS alone. 

Integrity is the term given to the ability of the system to warn the user that the 

derived position is in error. While this is no doubt of benefit, it would be more 

desirable that the system could not only warn the user, but also provides the 

correct solution. With GPS it takes a minimum of five satellites to detect a 

potential problem, and a sixth satellite to be able to isolate and remove a single 

satellite failure. Even with its full design specification of twenty-four satellites, 
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Chapter 1: Introduction 

GPS cannot fulfil this requirement at all points on the Earth's surface, twenty. 

four hours a day. As with the issue of availability, extra GLONASS satellites 

will improve this situation, and in addition will bring an added advantage of 

being a totally independent system, providing a check of the GPS system as a 

whole. 

The final issue is that of the position accuracy achievable using the systems. 

GPS is capable of a stand-alone (autonomous) position accuracy in the region 

of 20 metres, but this is denied to all but a few authorised/military users by a 

processes called Anti-Spoofing (A/S) and Selective Availability (S/A) (Chapter 

2). A civilian user, using authorised codes, can expect to obtain a stand-alone 

position accurate to within 100 metres of the true position 95% of the time. 

Because GLONASS is not subjected to the same restrictions, combining the 

observations of both systems with appropriate weighting returns accuracies to 

the 20 metre level. While this represents a significant improvement, it still 

remains unacceptable for applications such as hydrographic surveying, which 

requires accuracies under 5 metres. Differential GPS and differential 

GPS/GLONASS have been designed to meet this requirement by calculating a 

set of corrections at a receiver located over a known point, and broadcasting 

them to the user. However, as S/A is a rapidly varying error source, these 

corrections need to be updated regularly if this level of positioning is to be 

maintained. Again, this is not the case with GLONASS. 

With potential benefits such as these, and with an ever increasing number of 

GPS/GLONASS receivers becoming available, research ranging from hardware 

design and fabrication, through to algorithm development, has been undertaken 

by numerous research institutions, many of which have a history of work with 

other satellite based positioning systems. 

The IESSG (Institute of Engineering Surveying and Space Geodesy) of the 

University of Nottingham, has been involved in various aspects of satellite 

based positioning and navigation, dating back to the days of the Transit system. 

However, up until the commencement of this project in October 1996, it had 
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Chapter 1: Introduction 

no experience with the GLONASS system. The aim of this research was 

therefore to ascertain the potential advantages, problems and issues affecting 

GLONASS, and more particularly combined GPS/GLONASS positioning. Over 

the previous decade a comprehensive suite of GPS processing software, 

collectively called GPS Analysis Software (GAS), had been developed within 

the University as a result of previous research projects and dedicated 

programming. It was decided that the bulk of the project time available should 

be allocated to the alteration of this processing suite to accept combined GPS 

and GLONASS data. This process would highlight any difficulties in 

combining the systems, enable different and novel processing strategies to be 

investigated and validated, allow peculiarities of the GLONASS system to be 

examined, and create a means by which the potential benefits of the combined 

system could be quantified. Future research projects could also possibly benefit 

from the ability to freely process both GPS and GLONASS observations. The 

objectives of the research can be summarised as: 

" Modify existing software, and where necessary develop new software and 

processing strategies to enable combined GPS/GLONASS data to be 

processed within GAS. 

" Validate the alterations made to the software through controlled tests, and 

quantify the relative performance of the systems for various means of 

positioning. 

9 Evaluate the potential benefits of combining GPS with GLONASS in actual 

applications. 

In addition to this, the data gathered during these experiments has also been 

processed with the latest processing packages developed by the receiver 

manufacturers. This not only serves as a check on the results obtained using the 

modified software, but also quantifies the achievable benefits that can be 
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expected if combined GPS/GLONASS receivers are used in commercial 

environments. 

Throughout the project L1 only data has been used (Chapter 2), as it is all that 

has been available from the two Ashtech GG-24 receivers that the University 

of Nottingham presently owns. However further modifications necessary for 

L1/L2 GPS/GLONASS processing are minimal and thus, should the University 

acquire in the future, dual frequency GPS/GLONASS receivers, data from 

these should still be able to be processed. The achievements and main 

conclusions of the project can be summarised as follows: 

" The GAS software has been successfully altered to process combined 

GPS/GLONASS data to give stand-alone pseudorange, differential 

pseudorange, float carrier phase and fixed carrier phase solutions. 

" Difficulties with the GLONASS pseudorange data were discovered, 

explained, and accounted for in the processing strategies. 

" The potential benefits of combined GPS/GLONASS use, for various 

applications, have been quantified. From this it can be seen that there are 

undoubted benefits with combined solutions for autonomous positioning 

and all forms of positioning in areas of restricted visibility. However, for 

static, geodetic type surveying it appears that the benefits are less apparent. 

Indeed much better results were achieved in these environments using GPS 

LUL2 observations. 

Chapter 2 outlines the concepts and history of both the GPS and GLONASS 

systems, and reference is also made to forthcoming changes. This is followed 

in Chapter 3 by a detailed description of the differences existing between the 

systems that must be accounted for if successful combination is to be achieved. 

A short description of the International GLONASS EXperiment (IGEX-98) 
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campaign, which was implemented to provide some solutions to these 

problems, is also given. Chapter 4 then presents a review of error sources, 

measurements, observables and different positioning techniques, optimised for 

GPS/GLONASS where necessary. The development and validation of a 

combined GPS/GLONASS software suite is discussed in Chapter 5. Trials to 

quantify the potential benefits of GPS/GLONASS in both a Kinematic and 

Static application have been performed and are detailed in Chapter 6, with 

results obtained from both commercially available software, and that 

developed in Nottingham given. Chapter 7 presents the results of a series of 

tests performed specifically to look at potential benefits in Real Time 

Kinematic (RTK) applications. Finally, Chapter 8 summarises the research 

work carried out by the author, with the presentation of conclusions and 

suggestions for future work on the subject. 
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Chapter 2 

The GPS and GEONASS Systems 

2.1 Introduction to Navigation 

Records dating back as far as 1100 BC detail the importance of navigation in the 

exploration of new worlds, as the Phoenicians sailed through the Straits of 

Gibraltar to Cornwall and Madeira by means of the stars [ETG, 1998]. Some 900 

years later Greek mathematicians. approximated the Earth's radius from solar 

readings, and in so doing introduced the concept of latitude. Over the centuries a 

great deal of effort was made to further improve and refine these navigational 

techniques which still held as a basis celestial observations. While perfectly able 

to determine latitude from such measurements, accurate longitude calculation was 

not possible, and so throughout the great ages of exploration it could be said that 

sailors were quite literally lost at sea. With thousands of lives and the increasing 

fortunes of nations dependent on a successful resolution, ̀the Longitude Problem' 

quickly became the scientific Holy Grail [Sobel, 1996]. Finally, in 1761 a 
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successful solution was reached when a clock maker called Harrison invented the 

`Chronometer'. Position could now finally be determined anywhere on the planet 

with some degree of accuracy, some 3000 years after the first crude attempts were 

made. 

Thankfully the pace of advancement since the turn of the century has been 

somewhat more rapid. Opportunities created by scientific breakthroughs have 

been adapted to fulfil various navigational requirements, especially those of 

warfare. The most notable of these is the use of developments made in the fields 

of electronics and electromagnetics, which has opened up a whole new field of 

navigation since 1930, when the first local radio positioning system became 

operational. The concept is simple, with electromagnetic waves being emitted 

from antennas at known positions and then being received and evaluated at the 

unknown location. Successive systems brought improvements in accuracy and 

range. With the launch of the space age and the requirement for global positioning 

the obvious step was to use highly visible artificial satellites as beacons, and hence 

the era of satellite navigation was borm. 

2.2 The History of Satellite Navigation 

Shortly after the launch of the first artificial satellite, the soviet ̀ Sputnik I', in 

1957, scientists at the Applied Physics Laboratory of the Johns Hopkins University 

quickly found that the position of the satellite could be determined by measuring 

the Doppler shift of its signals at ground points with known coordinates. Inverting 

this principle meant that it would also be possible to coordinate a point on the 

ground by receiving satellite signals, provided that the position of the satellite was 

known. 

The first worldwide navigation satellite system was ̀ Transit', which became 

operational in 1964 and was released for civilian use in 1967. Although developed 

by the United States Department of Defense (USDoD) to position its `Polaris' 
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submarines, it quickly became popular amongst surveyors and geodesists for the 

establishment of widely spaced network stations. In 1965 the Soviet equivalent 

called `Tsikada' was put into operation, but unsurprisingly did not gain any 

popularity in the West, as it was never formally released from military control, 

although its message structure was successfully decoded and published. 

Both systems shared a great many similarities and therefore suffered from the 

same drawbacks. Firstly, they were inherently two-dimensional. Secondly, the 

velocity of the user had to be accounted for, and finally, mutual interference 

between satellites restricted their total number, and resulted in the satellite's only 

being visible for limited periods, giving discontinuous operation. 

These systems marked the first generation of this new technology and proved the 

viability of the concept However the problems outlined above placed a great 

many limitations on operational capabilities, especially for real time navigation, 

and heralded the design of new, improved systems. 

2.3 The Global Positioning System 

NAVSTAR GPS is an acronym for NAVigation Satellite Timing And Ranging 

Global Positioning System, and is commonly abbreviated to GPS. It is a space 

based radio navigation system developed by the USDoD to provide instantaneous, 

worldwide, all-weather single point positioning. Two positioning services are 

provided, the Precise and Standard Positioning Services (PPS and SPS 

respectively). The PPS is designated for military and authorised users only, with a 

2drms (twice the distance root mean square) plan accuracy of 17.6 metres, whilst 

the SPS is available to all users with plan accuracies of 100 metres at 2drms 

[DoD/DoT, 1990]. 

Early satellite systems suffered from many limitations (Section 2.2), and it was 

with these in mind that development of the system began in 1972 with the creation 
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of the Joint Program Office (JPO). This brought together ideas from three existing 

satellite systems to match the positioning requirements of the USDoD outlined 

above. These systems were the US Navy's Transit, a Doppler positioning system, 

and two development projects: the Navy Research Laboratory's precise time and 

time transfer project Timation and the US Air Force's 621B project. Properties of 

all three of these systems were incorporated in the design of GPS. 

GPS can conveniently be divided into three parts or segments: the space segment, 

the control segment and the user segment. These categories are used when 

describing the system in the following sections. Its signal structure and navigation 

message, are also examined and the current constellation detailed, as these are 

important areas when comparing GPS with GLONASS. 

2.3.1 The Space Segment 

Position is determined using GPS by a form of intersection, with the user 

measuring ranges to known points, the satellites themselves. In order to calculate a 

three-dimensional position, four unknowns must be solved for (Chapter 4). These 

unknowns are the three coordinate components and the error within the receiver's 

low-cost internal clock with respect to system time. It therefore follows that a 

minimum of four satellites must be observed simultaneously if a position is to be 

derived. The satellite constellation was designed to satisfy this requirement at any 

point on the Earth, at any time. 

e 

Initially the design specification of the system was for a constellation of twenty- 

four satellites plus three active spares orbiting the Earth at a nominal altitude of 

20,200 km with a period of approximately 11 hours 58 minutes (2 orbits =1 

sidereal day). However budgetary restrictions produced a series of changes to this, 

finally leading to the present constellation specification of twenty-one plus three 

active spares. These satellites are placed in six orbital planes (four satellites 
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unevenly spaced in each plane), which are equally spaced around the equator and 

have an inclination of 55 degrees to the equatorial line. 

The first GPS satellite was launched in February 1978 and was labelled to have 

`research and development' status. Over the next seven years a further nine of 

these Block I satellites were successfully launched, and these were used to test and 

further develop the system. The second generation of satellites, called Block II, 

began being launched in February 1989, and unlike the earlier Block I satellites, 

these were deemed to be `operational'. At present there are four different 

classifications of Block II satellites; II, IIA, IIR and IIF. Satellite numbers 13 to 21 

are classified as U. Numbers 22 to 40 are IIA, and have an extended navigation 

capability. Block IIRs are numbered 41 to 60 and use UHF-Crosslinks for ranging 

and communication. This gives them the capability to navigate autonomously for 

up to 180 days after upload from the ground station. The first of these Block IIR 

(Replenishment) satellites was due to be placed into orbit on 176' January 1997, 

but blew up on launch. The first successful launch occurred on 22d July 1997, and 

the satellite became operational on 31'` January 1998. The specification for the 

next generation Block IIF (Follow-on) satellites has only recently been finalised, 

although the contract for the first six (phase 1) satellites has been completed, and 

construction started. These will offer improvements in areas such as life-span and 

integrity monitouring, but it is from satellite 07 in the potential series of thirty- 

three that the greatest benefits will occur. Two new civilian frequencies have been 

defined to be broadcast by these satellites. These are a C/A code signal at 1.2 and a 

new signal at 1176.45 MHz (Section 2.3.4) [The White House, 1999]. These will 

allow ionospheric corrections to be made and the use of wide-laning to directly 

acquire the carrier cycle count. The first launch of a Block IIF satellite is 

scheduled to occur some time in 2003/2004. 

The GPS constellation achieved Initial Operational Capability (IOC) in December 

1993 with twenty-four operational satellites (three Block I and twenty-one Block 

II). The full operational constellation of twenty-four Block II satellites was 

realised in March 1994 and Full Operational Capability (FCC) announced on 270' 

April 1995. The present status of the GPS constellation is detailed in Section 2.3.6. 
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2.3.2 The Ground Control Segment 

The function of the Ground Based Control Segment (GBCS) is to calculate the 

satellite orbits, clock corrections and generally monitor the performance of the 

whole space segment. To do this it must be able to both transmit and receive data 

from each satellite. 

The control segment consists of a Master Control Station (MCS) and four other 

monitoring stations distributed in such a way that each satellite is tracked for over 

90% of its orbit. The MCS is located at ̀ Schriever Air Force Base', near Colorado 

Springs. The monitor stations are located approximately around the equatorial 

plane at Ascension Island, Diego Garcia, Hawaii and Kawajalein (Figure 2.1). 

It is the MCS, which performs all necessary calculations, using the measurements 

made from all the stations. Predicted orbits and satellite clock corrections are then 

uploaded in a navigation message from either Ascension Island, Diego Garcia or 

Kwajalein to each satellite via an S-Band radio link. 

As the coordinates of the monitor stations have been determined very precisely in 

the World Geodetic System 1984 (WGS 84) reference frame, the satellite orbits 

and all observations made using GPS are therefore with respect to this global 

datum. Further reference is made to this in Chapter 3. 
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Figure 2.1 Location of the GPS Control Segment's Tracking Network [ETG, 
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2.3.3 The User Segment 

The user segment consists of the users of the system, and has an ever-expanding 

size as the classes and applications of equipment continually increase. Production 

of GPS user equipment now exceeds one million sets per year and the rate is 

accelerating. This kind of boom is possible as the system has been designed to be 

passive, with each user only receiving signals from the satellites. 

To use the system each user requires at least one GPS receiver, which is basically 

a radio receiver, with an in-built data processor to calculate position. The type and 

cost of receiver is dependent on the accuracy requirement of the application and it 

can measure all or some of the observables available. For example, the most 

accurate geodetic sets used for surveying may measure both code and carrier 

observations on both wavelengths. They can give positioning accuracies of a few 

millimetres, and cost in the region of £10,000 - £15,000. By comparison, simple 

hand held sets used by hill walkers measure only single frequency code 

observations, are accurate to 100 metres, but can cost as little as £150. 

13 
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2.3.4 Signal Structure 

To achieve real time positioning, range measurements from satellite to receiver 

must be calculated instantaneously. As already mentioned, it is also a requirement 

that an unlimited number of users be able to make simultaneous measurements to 

the same satellites. To achieve this, continuous spread spectrum radio signals, 

which are less vulnerable than narrow band signals to jamming, are transmitted by 

the satellites. 

The key to the system accuracy is the fact that all these signal components are 

precisely controlled by atomic clocks. This is reflected in that each Block II 

satellite carries on-board four highly accurate atomic clocks - two rubidium and 

two caesium. It is these that are used to produce the highly accurate frequency 

standard and derive the fundamental frequency of 10.23 MHz. Coherently derived 

from this fundamental frequency are two signals, the LI and L2 carrier waves, are 

generated by multiplying the fundamental frequency by 154 and 120 respectively, 

thus yielding LI = 1575.42 MHz (with a wavelength of 19.05 cm) and L2 = 

1227.60 MHz (with a wavelength of 24.45 cm). This atomic frequency standard is 

however affected by the motion of the satellite and its lower gravitational 

potential. These are collectively referred to as relativistic effects, and are 

compensated for by altering the fundamental frequency of the signal to 

10.2999999454 MHz [Leick, 1995]. 

Two pseudo/random noise (PRN) codes are modulated onto these carrier signals 

and it is these that act as the ranging codes, providing an instantaneous range. 

Figure 2.2 (A) shows a representation of the unmodulated carrier signal, onto 

which the PRN code depicted in Figure 2.2 (B) is imposed. This results in the 

signal depicted in Figure 2.2 (C), and shows how the carrier phase is multiplied by 

-1 for any change in the binary state, corresponding to a 180° change in carrier 

phase. 
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Figure 2.2 GPS Signal Structure 
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The L1 carrier is modulated with both the coarse acquisition (C/A) code and the 

precise (P) code, and the L2 carrier with just the P code. These consist of 

apparently random sequences of binary digits, which are in fact discrete and 

repeatable. In order for the receiver to distinguish between satellites, each satellite 

broadcasts its own unique C/A code sequence, and is referred to as Code Division 

Multiple Access (CDMA). The C/A code consists of a sequence, which is repeated 

every millisecond, equating to approximately 300 kilometres in distance terms. It 

is modulated onto the L1 carrier with a chipping rate of one tenth of the 

fundamental frequency (1.023 MHz) which gives a wavelength of approximately 

300 metres. The P code has a period of 267 days and is modulated onto both LI 

and L2 with a chip rate of 10.23 MHz, resulting in a spacing of approximately 30 

metres. Each satellite transmits a different one-week portion of the P-code, which 

repeats every week. This P code is modulated by a third code, called the W code, 

to form the Y code which is made available to authorised users only. This process 

is known as Anti Spoofing (A/S). 
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The original intended available position accuracy for non-authorised users was to 

be in the region of 300 to 500 metres [Baker, 1986]. However, it quickly became 

apparent that the quality of the system was such that achievable accuracies of 20 

to 30 metres were possible using the C/A code. This proved to be worrying for the 

USDoD and thus it was decided to intentionally degrade the system. The name for 

this degradation is Selective Availability (S/A) and it is implemented to an extent 

which results in autonomous positioning accuracies of 100 metres 2drms (twice 

the radial distance root mean square error) in plan and 156 metres 2drms in height 

[DoD/DoT, 1990]. 

S/A was introduced on Block II satellites only, on 250' March 1990 and has two 

components. The first of these involves altering the satellite's oscillator prior to 

the modulation of the timing codes and is called Dither. The broadcast satellite 

clock correction will not account for this and there will therefore be an error in the 

measured satellite to receiver range. This error changes rapidly and is difficult, if 

not impossible to model. Epsilon is the name given to the second process, and it 

involves introducing errors in the broadcast satellite position. The effect of this is 

to produce an error in the satellite to receiver range, which changes only very 

slowly with time. Although the Dither component has been implemented, Epsilon 

has not. 

The effect of S/A varies in amplitude by up to 70 metres [Leick, 1995], and 

because it is a changing bias with low frequency terms in excess of a few hours, 

position solutions cannot be effectively averaged over periods shorter than a few 

hours. It is however possible to remove the vast majority of these effects by 

differencing the observations (Chapter 4). This fact, along with calls from the 

civilian community, led to a Presidential statement in 1996 that S/A would be 

discontinued within a decade, and that the situation would be reviewed annually 

from the year 2000 [The White House, 1996]. 

r 
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2.3.5 GPS Navigation Message 

Both the L1 and L2 carriers are also modulated at a rate of 50 bits per second (bps) 

with a navigation message. The aim of this is to provide the user with requisite 

data for positioning, timing and the planning of surveys. The full message consists 

of twenty-five 1500 bit long frames, taking 12.5 minutes to be fully transmitted 

The information included in this message consists of satellite ephemerides 

(Section 2.3.5.1), ionospheric modelling coefficients, status information, system 

time, and satellite clock bias and drift information. The navigation message of the 

GA code contains a further piece of information called the Hand-Over-Word 

(HOW), which tells the receiver which portion of the P code is being transmitted 

by each satellite, and hence where to start its search for signal matching. 

2.3.5.1 GPS Broadcast Ephemeris 

The GPS Broadcast Ephemeris is transmitted to the user as part of the data 

message and therefore has a practical limitation on its size. In terms of 

Cartesian coordinates, a GPS orbit varies enormously with time and cannot be 

stored efficiently. On the other hand however, a Keplerian format consisting of 

the six Keplerian elements in combination with correction terms, allows orbital 

information covering a long time-span to be stored. For this reason, the GPS 

Broadcast Ephemeris is described in Keplerian terms, although it is derived in 

a Cartesian framework. A full explanation of Kepler's Laws and Keplerian 

elements can be found in [Leick, 1995]. 

The GPS Broadcast Ephemeris consists of the sixteen elements listed in Table 

2.1 [Whalley, 1990], and is valid for two hours either side of its reference time, 

the Time Of Ephemeris (TOE). It consists of the basic Keplerian elements 

together with correction terms to estimate the difference between the ideal 

Keplerian orbit and the true one, and terms to account for the behaviour of the 

satellite clock. 
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To compute Earth-centred, Earth-fixed Cartesian coordinates, the Cartesian 

coordinates in the orbital plane are first calculated, before two rotations are 

applied. The first rotation is through the inclination angle, resulting in the 

correct direction for the Z-axis, and the second rotation is about the new Z-axis 

so that the X-axis coincides with the Greenwich Meridian. This gives rise to 

the transformation equations (2.1) - (2.3), which are however simplified as they 

do not account for the correction terms also provided in the broadcast 

ephemeris. A full derivation can be found in [Ashkenazi and Moore, 1986]. 

X=rcosucosQ2-rsinucosicost (2.1) 

Y=r cosu sin)2+r sin ucosi sing (2.2) 

Z=r sinusini (2.3) 

where: 

r =the geocentric radius 

Table 2.1 Elements of the GPS Broadcast Ephemeris 

to reference epoch for the ephemeris 

Mo mean anomoly at to 

An correction to the computed mean motion no 

e eccentricity of orbital ellipse 

' 
a2 

square root of the semi-major axis 

CIO right ascension of ascending node at to 

io inclination of orbital plane 

w argument of peregee 

& rate of change of the inclination with time 

M/& rate of change of right ascension with time 

C,, 
, 
C. amplitude of cos and sin correction terms to the argument of latitude (u) 

C", C,., amplitude of cos and sin correction terms to the geocentric radius (r) 

Cam, C,, amplitude of cos and sin correction terms to the inclination of the orbital plane (i) 

afo satellite clock offset 

of satellite clock drift term 

aft satellite clock ageing term 
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2.3.6 Constellation Status 

As already outlined in this chapter, the design specification for the GPS 

constellation is twenty-four satellites. However, as can be seen in Figure 2.3, the 

present constellation exceeds this by three satellites. The reasoning behind this is 

that the U. S. Government has indicated to the civilian community that it will 

maintain a minimum operational constellation of twenty-four satellites. As quite a 

few of the satellites, which presently make up the constellation, are nearing the 

end of their design life, two operational spares are already in orbit. The third spare 

is the first of the Block Ms and has been launched to gain experience of the actual 

performance of the next generation of satellite. 

19 
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2.4 The Global'naya Navigatsionnaya Sputnikova 

Sistema 

In the early 1970's, the former Soviet Ministry of Defence conceived the 

Global'naya Navigatsionnaya Sputnikova Sistema or the Global Navigation 

Satellite System - GLONASS [Langley, 1997]. The parties involved in its design 

were the NPO of Applied Mathematics, the Russian NU of Space Devices and the 

Russian Institute of Radio Navigation and Time. Its development has been less 

well publicised than that of GPS, although information outlining the intentions of 

the system was lodged with the International Frequency Registration Board in 

1982. 

GLONASS is, like GPS a space based radio navigation system. Similarities 

between the two systems continue in that GLONASS also offers two positioning 

services. However achievable positioning accuracies using the civilian SPS are 

somewhat higher than GPS, being quoted as 40 metres at 2drms in plan, and 50 

metres at 2drms in height [Misra et al., 1996]. The reason for this is that 

GLONASS is not subjected to the same intentional signal degradations (S/A), as 

currently implemented in GPS. 

The GLONASS system is described in some detail in the following sections. This 

will follow the same pattern as that used in describing GPS to enable comparisons 

to be drawn. 

2.4.1 The Space Segment 

As with GPS, a minimum of four GLONASS satellites must be simultaneously 

visible to the user if a stand-alone three-dimensional position is to be calculated 

(Chapter 4). To fulfil this requirement a full constellation design of twenty-four 

satellites (twenty-one operational + three active spares) has been specified. These 
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satellites are placed in three orbital planes (eight satellites equally spaced in each 

plane) at an inclination of 64.8 degrees to the equator. The orbital planes are 

numbered 1,2 and 3, with the first orbital plane containing slot numbers 1... 8, the 

second orbital plane - slots 9... 16, and the third orbital plane - slots 17... 24 [CSIC 

1995]. 

Nominally, the satellite orbits are circular and have an altitude of 19100 km, some 

1000 km lower than GPS satellites. This shorter orbital radius yields a shorter 

orbital period of 8/17 of a sidereal day such that, after eight sidereal days the 

GLONASS satellites will have completed seventeen orbital revolutions. This 

design means that, in an eight-day period, all the satellites in the constellation pass 

through the same azimuth and elevation. Therefore, a regional ground segment 

can monitor/control all the satellites in the constellation while maintaining a 

global navigation capability [Basker et al., 1998]. 

The first GLONASS launch occurred on 12th October 1982 when a Proton booster 

vehicle launched from Baikonur, Kazakhstan, placed three satellites in orbit. This 

ability to launch three satellites at a time is a common feature of almost all 

GLONASS launches and gives the potential for a rapid replenishment of the 

constellation. Between 1982 and 1985 the system was designated as `Pre- 

operational', with a total of ten satellites being launched. These Block I 

development satellites were given COSMOS (K) space designator numbers 

between 1651 - 1780. The system was declared operational in 1985, with the 

launch of the first Block II production satellites. As with GPS there are different 

classifications of these satellites: IIA, IIB and IIV (V is the Latin transliteration of 

the Cyrillic alphabet's third letter). A total of six IIAs (K 1651 - 1780) were 

launched between May 1985 and September 1986. From April 1987 to May 1988 

twelve Block IIBs (K 1838 - 1948) were launched. From September 1988 the 

satellite development entered its latest phase, with a total of forty-six IIV satellites 

(K 1970 - 2364) being launched to date. 

Each subsequent satellite generation has contained equipment enhancements and 

also achieved longer lifetimes. It is intended that the next GLONASS launch will 
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contain two Block HV and one of the next generation Block II M (Modernisation) 

satellites. These are said to feature improved frequency and timing accuracies and 

to have expected lifetimes of five to seven years [Langley, 1997]. 

The first decree relating to the development of GLONASS was issued by President 

Yeltsin on 24th September 1993, declaring the system to be operational and gave 

approval for its continued development. A second decree, dealing specifically with 

civil use of GLONASS, was issued by Prime Minister Chemomyrdin on 7th March 

1995 and reaffirmed plans to achieve a full constellation in 1995. This was 

achieved on 18th January 1996 with twenty-four operating satellites and one spare 

in orbit. However, there have been few occasions since when twenty-four satellites 

have been operational. This is discussed in more detail in Section 2.4.5. Finally, 

President Yeltsin issued the latest decree on 18th February 1999. In this, the 

GLONASS system and Russian experience and expertise in the space industry was 

basically offered to the Western Europe as the basis for their planned Satellite 

Navigation System, in return for foreign investment and funding. As yet it appears 

that no final decision as to whether or not to include GLONASS in any future 

European venture has been taken. 

2.4.2 The Ground Control Segment 

The GBCS controls the entire GLONASS system and fundamentally performs the 

same tasks in the same way as the corresponding segment of GPS. It consists of 

the System Control Centre (SCC) located in Moscow and several Command 

Tracking Stations (CTS), which are placed over a wide area of Russia (Figure 2.4). 

The CTSs track the GLONASS satellites in view using two-way radio ranging, and 

telemetry control and navigation message data to the satellite. Again, this 

information is processed at the SCC to determine satellite clock and orbit states 

and to update the navigation message of each satellite. This updated information is 
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transmitted to the satellites via the CTSs, which are also used for transmitting 

control information. 

The CTS's ranging data are periodically calibrated using laser-ranging devices at 

the Quantum Optical Tracking Stations, which are within the GLONASS Control 

Segment. Each satellite carries a laser reflector specifically for this purpose [ETG, 

1998]. 

Figure 2.4 Location of the GLONASS Control Segments Tracking Network 

[ETG, 19981 
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Unlike GPS, GLONASS does not use the WGS 84 reference frame for coordinate 

definition of its network of control stations. Instead these are referenced to the 

Parametry Zemli (PZ-90 or, in English translation, Parameters of the Earth 1990, 

PE-90) geodetic datum. PZ-90 replaced the Soviet Geodetic System SGS 85, used 

by GLONASS until 1993. Further reference to this is made in Chapter 3. 
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2.4.3 The User Segment 

Until recently, the lack of available GLONASS receivers proved to be the major 

limiting factor to the widespread use and thus realisation of the Russian system. 

Outside Russia the manufacture of GLONASS receivers was for a great many 

years restricted to development units designed and built by research groups such as 

the University of Leeds, Institute of Satellite Navigation (ISN), in an attempt to 

gain experience with GLONASS. 

However, in 1996 Ashtech launched its twenty-four channel Ll GPS/GLONASS 

receiver, and with a number of recognised manufacturers, such as 3S and MAN 

Technology producing similar equipment now, this is no longer the case. 

Interestingly all such receivers now offer GLONASS in addition to a GPS 

capability. No commercial GLONASS-only receivers are available, implying that 

the potential civilian benefits of GLONASS lie as an augmentation to GPS and not 

as a rival. Despite this dual capability approach, the number of GLONASS- 

capable units in existence is still, by some orders of magnitude, fewer than GPS 

only units. 

2.4.4 Signal Structure 

As both GPS and GLONASS basically provide the same capability, namely one- 

way passive ranging, it is unsurprising that GLONASS shares a very similar signal 

structure to that outlined previously for GPS, with each satellite broadcasting radio 

signals on two frequencies. 

However the main difference between the two systems lies in the fact that each 

GLONASS satellite broadcasts the same modulated codes, and thus the GPS 

receiver technique of using individual codes to track each satellite is not possible. 

To overcome this, all visible GLONASS satellites transmit carrier signals at 

different L-band frequencies, allowing the receiver to separate the incoming 
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signals by assigning different frequencies to its tracking channels. This process is 

called Frequency Division Multiple Access (FDMA). 

Initial specification for the ranges of these frequency bands were between 1602.0 

MHz and 1615.5 MHz for Ll and 1246.0 MHz and 1256.5 MHz for L2, with the 

actual frequency of each satellite being governed by Equations (2.4) and (2.5) 

[CSIC, 1995]. 

For the LI frequency 

f= (1602 +n*0.5625 ) MHz (2.4) 

For the L2 frequency 

f= (1246 +n*0.4375 ) MHz (2.5) 

where n is an integer number between 1 and 24, referred to as the frequency 

channel. 

This specification provided twenty-five channels, so that each satellite in the full 

twenty-four satellite constellation could be assigned a unique frequency, with the 

remaining channel being reserved for testing. However some of these GLONASS 

signals were found to be interfering with radio astronomy observations which 

occupy frequency bands close to those of GLONASS. As the International 

Telecommunications Union (ITU) has granted primary user status to these 

astronomers and, in addition, allocated the 1610 - 1626.5 MHz band to low-earth- 

orbiting communication satellites, the GLONASS authorities were forced to 

reduce the number of frequencies used by the satellites and shift the bands to 

slightly lower frequencies. Following discussions in 1993, these authorities agreed 

to the following programme of changes. Since 1994, frequency channels 15 - 20 

have not been used, whilst others have been used by satellite pairs. This sharing is 

possible by selecting antipodal satellites (diametrically opposite) which cannot be 

viewed simultaneously from the same point on the Earth's surface. Between 1998 

and 2005 it is proposed to further downshift this range to channels -7 to +12, 

which equates to 1598.1 MHz to 1608.8 MHz. Finally, after 2005, channels -7 to + 

6 will be used, further reducing the upper frequency limit to 1605.4 MHz To 
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accomplish this it is proposed to use diametrically opposite satellites broadcasting 

on the same frequency. 

In a similar fashion to GPS, GLONASS satellites transmit two PRN timing codes 

on the carrier frequencies. The C/A code is present on the Ll frequency only, 

whereas the P code is present on both the Ll and L2 frequencies, although it 

appears that GLONASS-M satellites will have the C/A code on the L2 frequency 

[Lowe and Daly, 1996]. The clock rates are 5.11 MHz, and 0.51 MHz for the P 

and C/A codes, respectively. This is approximately half of the corresponding 

values used for GPS and results in GLONASS observations having a slightly lower 

resolution and being more susceptible to multipath (Chapter 4). 

The satellites in the constellation are referenced both by their slot number and by 

their frequency channel, which has been outlined already. The slot number refers 

to the position of the satellite in orbit, with slots 1-8 in plane I, slots 9-16 in plane 

II and slots 17-24 in plane III. Thus if a satellite is quoted as 20/01, it is in slot III 

and transmitting on frequency channel 01. 

Finally, it is worth noting that GLONASS signals are subjected to neither the 

intentional restrictions, nor degradations (A/S and S/A), as experienced by GPS. 

This presents potential significant benefits for GLONASS, especially in terms of 

absolute positioning, and is examined in more detail in Chapter 5. 

2.4.5 GLONASS Navigation Message 

The navigation message is broadcast from GLONASS satellites at a rate of 50 

bps, and serves the same purposes as outlined in Section 2.3.5. It includes 

satellite clock epoch and rate offsets from GLONASS time, the satellite 

ephemeris, satellite health information, data age, the offset of GLONASS time 

from Universal Coordinated Time (UTC) and almanacs (approximate 
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ephemerides) for all other GLONASS satellites. The full message lasts 2.5 

minutes, but the ephemeris and clock information is repeated every 30 seconds. 

2.4.5.1 GLONASS Broadcast Ephemeris 

Like GPS, the GLONASS system also transmits its Broadcast Ephemeris as 

part of the data message. It has however adopted the policy of directly using 

Cartesian coordinates to describe satellite position. It overcomes the problems 

of variation with respect to time, and storage efficiency, as mentioned in 

Section 2.3.5.1, by limiting the period for which these values are valid to 

fifteen minutes either side of the Time Of Ephemeris (TOE). 

The parameters of the satellite ephemeris are listed in Table 2.2 and show that 

the satellite position is described by its position in X, Y and Z at the TOE, and 

its velocities and accelerations in these three directions. To calculate an 

instantaneous position within +/- 15 minutes of this TOE, a quadruple Runge- 

Kutta integration of equations (2.6) - (2.8) [CSIC, 1995], is performed. 

Table 2.2 Elements of the GLONASS Broadcast Ephemeris 

to Reference epoch for the ephemeris 

X Coordinate of satellite in X at reference epoch 

Y Coordinate of satellite in Y at reference epoch 

Z Coordinate of satellite in Z at reference epoch 

VX X velocity vector componentat reference epoch 

VY Y velocity vector component at reference epoch 

VZ Z velocity vector component at reference epoch 

AX Acceleration in X at reference epoch caused by effect of Sun and Moon 

AY Acceleration in Y at reference epoch caused by effect of Sun and Moon 

AZ Acceleration in Z at reference epoch caused by effect of Sun and Moon 

afo satellite clock offset 

of satellite clock drift term 
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where: 

r= 4x2+y2+z2 

u= 398600.44 km3s'1 -Earth's universal 

gravitational parameter; 

as = 6378.136 km 

CZO = -1082.63*10-6 

coefficient of spherical harmonic expansion; 

w3 = 0.7292115 * 10'4c"l 

The values u, aQ, C20, w3 are given as in PZ-90. 

2.4.6 Constellation Status 

-equatorial radius of Earth; 

-zonal geopotential 

-Earth's rotation rate. 

The current Russian economic situation has certainly been seen to have had an 

adverse effect on the GLONASS system in recent years. Its impact has hit all 

essential elements of the system, especially the space segment. Despite the fact 

that there are enough spare GLONASS satellites on the ground, and launch 

vehicles to put them into orbit, budgetary restrictions have seriously slowed 

down the support of the constellation. Indeed, until the most recent launch of 

three satellites into Plane I on 30`h December 1998, there had not been a launch 

since 14t' December 1995, some three years earlier. As a result, the 

constellation has, since briefly reaching its full design specification of twenty- 

four satellites in January 1996, experienced a steady decline. 
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Even with this most recent launch there still remains an urgent need for more 

satellites to be placed into orbit as at least six of the current operational satellites 

are reaching or have exceeded their design life. Figure 2.5 shows the constellation 

as it stood on 22' February 1999 with 15 useable satellites. This still provides a 

useful augmentation to GPS, but the benefits and faith in the GLONASS system 

will be dramatically reduced if the present situation is allowed to further 

deteriorate. 

2.5 Summary 

The major features of both GPS & GLONASS, which have been described above, 

are tabulated in Table 2.3. From this it is quite clear that both systems are 

conceptually very similar, but in their realisation have developed subtle but 

important differences. 
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Table 23 Comparison of GPS and GLONASS Nominal Characteristics 

[Langley, 19971 

Satellites 

Number of satelitcs 21 +3 spare 21 +- ? slum 

Number of orbital planes 6 3 

Orbital plane inclination (degrees) 55 64.8 

Orbital radius(kilometres) 26,560 25,510 

Signals 

Fundament l clock Gequencv 10 23 MI Ii 5U MI I/ 

Signal separation technique CDMA FDMA 

Carrier frequencies (Ml lz) L1 1575.42 1602.0 - 1615.5 

L2 1227.60 1246.0 - 1256.5 

Code clock rate (MHz) C/A 1.023 0.511 

p 10.23 5.11 

Code length (chips) C/A 1023 511 

P 6197104+1012 511*1(X, 

C/A-code navigation message 

Superframe duration (minutes) 12.5 2.5 

Superframe capacity (bits) 37,500 7,500 

Superframe reserve capacity (bits) 2,750 620 

Word duration (seconds) 0.6 2.0 

Wont capacity (bits) 30 100 

Number of words within a frame 50 15 

Techniques for specifying satellite ephemeris Keplerian orbital elements and 

perturbation factors 

geocentric Cartesian coordinates 

and their derivatives 

Time reference UTC (USNO) UTC(SU) 

Position reference (geodetic datum) WGS-84 PZ-90 
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Chapter 3 

Significant Differences between 

the Systems 

3.1 Introduction 

As outlined in Chapter 2, there exist a number of differences between the GPS and 

GLONASS systems. Some of these, such as the orbital radius of the satellite and 

the number of orbital planes in each constellation, have absolutely no effect on the 

resultant position if both systems are combined. However, in the case of reference 

frames, time scales, and signal structure, this is not so. Therefore, if the receivers 

are to maximise the potential of both systems for hybrid positioning, the effect of 

these differences must be understood and some account made where possible. 

This Chapter examines each of these differences in turn, looking at their potential 

effect on the accuracy of a position solution, and methods that are available to 

overcome or at least reduce their impact. 
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3.2 Reference Frames 

Before going into the details of the difference that exist between the GPS and 

GLONASS coordinate reference frames, it is felt appropriate at this stage to 

briefly describe them and the role they serve in satellite positioning. 

As both GPS and GLONASS are global navigation systems, there is a fundamental 

requirement that every point on the surface of the Earth can be uniquely defined. 

This requirement, along with advances in computer technology, which enable easy 

processing of large numbers, have made the adoption of a three-dimensional 

Cartesian coordinate system the ideal choice [Methley, 1991]. The principle of 

giving a point P coordinate values in such a way is illustrated in Figure 3.1. 

Figure 3.1 Three Dimensional Cartesian Coordinates 

z 
(CIO/BIH) 

p 
Greenwich 

Solid Earth 

----------------------- ------- 

x 

From examining Figure 3.1 it is clear that if such a system is to be adopted, then 

the location of an origin, a scale, and the direction of the axis need be defined. 

Being a global system, the obvious choice of origin is the centre of the Earth. As 

the Earth is spining, the system needs also to be Earth fixed to ensure that point 
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coordinates remain the same. The normal convention is to have the z axis parallel 

to the Earth's axis of rotation, and the x and y axis rotating with the Earth, the x- 

axis being parallel to the Grenwich meridian [Bomford, 1980]. In addition to these 

parameters, a reference ellipsoid, geoid and gravity model will also often be 

included in the reference system. 

The definition of such systems is very easy, but much harder to realise e. g. it is 

simple to say that a coordinate system will have its centre at the centre of mass of 

the Earth, but how does one actually determine coordinates on such a system 

[Cross, 1990]. Realisation is achieved by assigning Cartesian coordinates to a 

number of points over the Earth's surface. In theory, three such points would be 

sufficient, but in practice many more are used. A consistent set of such coordinates 

defines implicitly the coordinate fame (i. e. an origin, a set of directions for the 

Cartesian axes, and a scale factor). Once a reference system is realised, it becomes 

a reference frame. 

3.2.1 The GPS and GLONASS Reference 

Frames 

Both GPS and GLONASS use different geocentric Cartesian coordinate reference 

frames to express the positions of their satellites and therefore, of their users. GPS 

has adopted the World Geodetic System 1984 (WGS 84), while GLONASS has 

adopted Parametry Zemili 1990 (PZ-90). The definition of these frames differ 

slightly, in that, while each locates the origin at the centre of mass of the Earth, 

WGS 84 defines the z-axis as passing through the instantaneous pole of 1984, 

while PZ-90 has instead adopted the average position of the pole between the 

years 1900 and 1905. Further information on the definition of each frame can be 

found for GPS in [DMA, 1997], and for GLONASS in [CSIC, 1997]. 

Even if their formal definitions were identical, it would not necessarily ensure that 

the coordinates of the same point in the two systems would be identical. This is 
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because, as detailed in Section 3.2, the coordinate fame of each system is realised 

by the adoption of coordinates of a set of reference stations. Thus, even if GPS and 

GLONASS had adopted the same definition, the autonomous implementation by 

each system would have kept the two from being coincident. 

Therefore, if measurements from the two systems are to be combined, then 

transformation parameters are required between the two coordinate frames. 

Alternatively, if differential positioning is being used, and the application of a 

transformation is ignored, any resultant errors will appear as orbital errors, and so 

between satellites in common view, will cancel or be significantly reduced. The 

effectiveness of this technique does however decrease as the separation between 

receivers increases. 

3.2.2 Transformation 

Over the past few years, various studies (Hartmann 1991, Misra 1994, Misra 1996, 

Rossbach 1996, Bazlov 1999) have attempted to quantify and account for the 

differences between WGS 84 and PZ-90 as interest in combining the systems has 

grown. In the following sections the basic principle of defining a transformation is 

outlined. There are two principal techniques that can be adopted for defining 

coordinate values, which serve as the input to the transformation, and these along 

with their results will then be detailed. Before doing this however, it is perhaps 

useful at this stage to quantify the potential extent of this coordinate difference. 

Misra et. al. [1996] indicates it to be less than 15 metres for any point on the Earth, 

and on average is approximately 5 metres. 
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3.2.2.1 Transformation Model 

The coordinates of a point in one Cartesian coordinate system may be linked to 

another by a seven parameter shift called a `Helmert' transformation. This 

performs, where necessary, a translation of the origin, a rotation of the three axes 

and a scale change. Equation 3.1 describes the relationship of these parameters to 

coordinate values in each system, while Figure 3.2 gives a graphical representation 

of this transformation process. 

X dXo 1 

Y= dYo +(1+dm -BZ 
Z dZo By 

BZ - Bp U 

1 BX V 

- BX 1W 

(3.1) 

where: 

X, Y, Z= coordinates of point in one system 

U, V, W = coordinates of same point in second system 

dX0, dY0, dZ0 = the offset of the origins 

BX, Br 
, 
BZ = differences in coordinate axes orientation 

dm = scale difference 

To determine all seven transformation parameters between two coordinate 

systems requires at least three points with known coordinates in each system. This 

is because, to solve for all seven, at least seven equations are needed. Now, two 

points provide only six equations - three coordinates in each system, but three 

points provide nine equations, thus surpassing the minimum requirement. 

However, as these three points can never be perfectly determined in either frame, 

more points need to be included and their optimal geographical location, as well 

as their accuracy in each system, considered. A least-squares estimation method 

can then be employed to derive a set of values that meet the condition of minimal 

difference in coordinates after conversion. It should be noted, that if some of the 

parameters are highly correlated or insignificant, fewer than seven parameters may 

be estimated, and for the transformation to apply globally, the distribution of 

points used to derive the values should also be global [Bazlov et. al., 1999]. 
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Figure 3.2 The Relationship between Two Reference Frames 

3.2.2.2 Satellite Orbits 

One of the major problems to date with estimating a transformation between PZ- 

90 and WGS 84 has been the determination of precise position estimates of a 

common set of points in both coordinate frames. However, until very recently, 

there has not been a global network of precisely defined coordinates in the PZ-90 

coordinate frame. Consequently, cumulative single point positioning has had to be 

used in a great many instances to define coordinates in PZ-90 and this is much less 

accurate than the relative positioning that can be employed when using WGS 84 

coordinates. Furthermore, until the launch of Ashtech's GG-24 receiver in 1996, 

GLONASS receivers were scarce, and so it proved difficult to take observations at 

a great many points. 

One way to overcome this lack of ground points coordinated in PZ-90 is to adopt 

the policy of using the GLONASS satellites themselves, which broadcast their 

positions in PZ-90. All that is now needed with this approach is to obtain their 

corresponding coordinates in WGS 84. This technique was adopted by [Misra et. 
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al., 1996] and used laser ranging and deep space radar tracking data from sites, 

who's coordinates were precisely known in WGS 84, for two GLONASS satellites 

to estimate their orbits in WGS 84. The data was recorded between September 

1995 and March 1996 and split into ten data sets of nine days for each satellite. 

From each of these nine day sessions approximately 150 data points were derived 

in WGS 84 corresponding to the broadcast orbits in PZ-90. These were then used 

in a least squares estimation process to define the following transformation 

parameters between PZ-90 and WGS 84, which have been substituted into 

Equation 3.1. 

X01 -1.9x10 0u 

Y=2.5m +(i+0) 1.9x106 10V (3.2) 

Z0001W 

where: 

X, Y, Z = coordinates in WGS 84 

U, V, W = coordinates in PZ-90 

As can be seen from Equation 3.2, there are two non-zero elements in the seven 

parameter transformation. A small clockwise rotation (0.4") of the z-axis of PZ- 

90 brings the two frames substantially into coincidence, and the residuals are 

further, though only slightly reduced, by a 2.5 metre displacement of the origin 

along the y-axis [Misra et. al., 1996]. 

Undoubtedly the biggest error source with this experiment came from the fact that 

the broadcast ephemeris was used to define the PZ-90 coordinate values. The 

GLONASS Interface Control Document (ICD) [CSIC, 1997] lists the rms. error in 

position from the ephemeris to be approximately 23 metres. However, as these 

errors are referenced to a point some four Earth radii from the origin, the effect 

manifest on the transformation calculation is the same as that experienced by an 

error one quarter the size on the Earth's surface: rms. <6 metres. Ideally precise 

ephemeris values would have been used, but in 1995/96 they were not available. 

It is these transformation parameters that have been adopted by Ashtech as the 
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defaults in the combined GPS/GLONASS receivers. For further information see 

Ashtech [ 1997]. 

3.2.2.3 Ground Point Coordination 

The difficulties of using a set of points on the ground, as outlined in Section 

3.2.2.2, have diminished somewhat since 1996 with the launch of a number of 

GPS/GLONASS receivers from a number of manufacturers e. g. Ashtech, 3S and 

MAN. This has enabled a densification of the number of ground points 

coordinated in both systems, and perhaps explains why recent experiments to 

define transformation parameters between PZ-90 and WGS 84 have adopted the 

approach of using ground coordinated points. Indeed, this approach will be ideally 

suited for the analysis of the data collected from the recent International 

GLONASS EXperiment (IGEX-98), further details of which are given in Section 

3.5. 

An example of one such experiment, which adopted this technique of using 

ground coordinated points to calculate transformation parameters, is that described 

by Bazlov et al. [1999]. Here a transformation between PZ-90 and WGS 84 was 

determined by directly comparing the coordinates of eight co-located sites, the 

locations of which are shown in Figure 3.3. 
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Figure 3.3 Location of Sites Used to Determine Transformation Parameters 

/Bazlov et at, 19991 
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Each of these eight locations had previously been precisely coordinated in the PZ- 

90 reference frame using Geodetic-Intercosmos (Geo-IK) satellites that were 

instrumental in establishing the PZ-90 reference system [Bazlov et. al., 1999]. 

Theses satellites are equipped with Doppler transmitters, laser ranging reflectors, a 

radio ranging system, light beacons and radio altimeters. All that was then needed 

was to coordinate these same points in WGS 84, and this was achieved by 

collecting data from geodetic quality dual-frequency GPS receivers. Data was 

logged at a thirty second sample rate over a period of approximately one month, 

with each site contributing data spans from one to seven days. 

The quoted accuracy of the relative WGS 84 coordinates is at the decimeter level, 

and these have been linked to the PZ-90 system with an accuracy of 0.1 metres 

[Bazlov et. al., 1999]. Using the computed coordinate differences, in accordance 

with a least-squares estimation technique, the following transformation parameters 

were consequently derived. 
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X -1.1 1 -0.82x10-6 0U 

Y= -0.3 +(1-0.12x10 0.82x10-6 10V (3.3) 

Z 
--0.9.0 

01W 

where: 

X, Y, Z = coordinates in WGS 84 

U, V, W= coordinates in PZ-90 

From Equation 3.3, it can be seen that there is some discrepancy from the 

parameter values quoted in Equation 3.2, although both sets suggest that the major 

factor in the transformation is a small clockwise rotation about the z-axis. [Bazlov 

et al., 1999] states that, because the network of points used was regional, these 

parameters can only be considered to be valid for Russia and its surrounding areas. 

This perhaps is a major contributing factor in the differences between the two sets 

of results. 

3.3 Time Scales 

Accurate timing is fundamental to both the GPS and GLONASS systems. This is 

considered in some detail in Chapter 4. However, to briefly summarise, in each 

system a minimum of four pseudoranges must be observed to define an 

instantaneous 3-Dimensional position, i. e. three position unknowns plus a clock 

parameter needed to determine the clock offset between the highly accurate 

system time and the non-precise time within the receiver. However, as has been 

stated in Chapter 2, GPS and GLONASS each use a different time scale. As it is 

the time measurements that are multiplied by the speed of light to derive range, a 

proper account of this difference, regardless of how small it may be, must be made 

when combining observations from both systems. 
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3.3.1 THE GPS and GLONASS Time Scales 

GPS uses its own continuous system time called ̀ GPS time', which was created 

on 6t' January 1980. At this time it was synchronised with Universal Coordinated 

Time (UTC) which ties atomic time to earth rotation [Leick, 1995]. GPS time is 

still linked to UTC with the stipulation that, apart from leap seconds (which are 

applied periodically to the more stable atomic time to keep it coincident with earth 

rotation), the difference between the two should not exceed 1 microsecond. 

However there are various such atomic scales and GPS time is referenced to UTC 

as maintained by the U. S. Naval Observatory - UTC (USNO). This is not the 

recognised time standard, which is called UTC as maintained by the Bureau 

International des Poids et Mesures - UTC (BIPM) or just UTC. As the atomic 

clocks of the USNO make up approximately 20 % of the input for the calculation 

of UTC (BIPM) though, UTC (USNO) has always shown agreement with the 

international standard to the order of 20 nanoseconds. At the time of writing 

(March 1999), GPS time is 13 seconds ahead of UTC, as there have been 13 

integer second adjustments to the atomic time standard since 1980. 

Unlike GPS, ̀GLONASS time' takes account of these integer adjustments, which 

occur when necessary at midnight on either 31' December or 30th June, and thus is 

a discontinuous time scale. Again, it is now linked to within 1 microsecond of 

UTC, but that as defined by the former Soviet Union's estimation - UTC (SU). 

Until recently however that was not the case and as can be seen from Figure 3.4, 

both UTC (SU) and GLONASS time varied widely from UTC. Following 

recommendations made in September 1996 by the 85th meeting of the Comit6 

International des Poids et Mesures, to synchronise all global satellite systems, the 

following changes were made. On 27th November 1996, a time step of 9,000 

nanoseconds was applied to UTC (SU), thus making it approach UTC. On 1& 

January 1997, GLONASS time received a frequency step to adjust its frequency 

closer to that of UTC (SU), which was followed by a 35,300 nanosecond time step 

[Lewandowski and Azoubib, 1998]. As a result of this the Russian time scales now 

differ from UTC by a few hundred nanoseconds only. 
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Figure 3.4 Representation of the Relationship between the Different Time 

Scales [Lewandowski and Azoubib, 19981 

3.3.2 Accounting For the Time Difference 

When using a combined GPS/GLONASS solution for positioning, the problem of 

the two system's using different time scales can simply be overcome by using an 

extra observation to solve for this extra receiver clock unknown. Thus to 

determine an instantaneous single point 3-Dimensional position, a minimum of 

five satellites are required, since there are five unknowns: latitude, longitude, 

altitude, GPS time, GLONASS time [Blighton, 1999]. By sacrificing an extra 

observation however, the levels of redundancy and integrity, which are two of the 

major advantages of the combined system, are reduced. Since the offset of the 

time-scales is consistent it is however possible, once this offset has been 

determined, to hold it fixed or model it with the apparent drift between them, and 
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revert to using four observations if need be. Plans have also been put forward to 

include the offset of GLONASS time from GPS time in the GLONASS navigation 

message. Further reference to this problem in application to different positioning 

techniques is made in Chapter 4. 

3.4 Frequency Differences 

An account of the signal structures of both GPS and GLONASS was given in 

Chapter 2. It was detailed that while each GPS signal broadcasts different codes 

on the same frequency, GLONASS adopts the opposite policy, broadcasting the 

same code on different frequencies for each satellite. The effect of this cannot be 

ignored as the signals from each satellite may experience different delays through 

the antenna, cables and filter sections of the receiver. These effects are collectively 

known as Interchannel Hardware Biases and are caused because the signals of the 

different GLONASS satellites travel through different frequency subbands (unlike 

GPS). The resultant effect of this inconsistent delay on GLONASS code and 

carrier observations emitted at the same instant from different satellites is that they 

are in fact measured by the receiver at slightly different times with respect to each 

other. 

Receiver calibration and consistent manufacturing of receiver components can 

substantially reduce the effects of this hardware delay. [Hall et. al., 1997] indicate 

the extent of this delay on Ashtech GG24 receivers, to be at the metre level for 

GLONASS pseudorange observables, and to be sub decimetre on GLONASS 

carrier phase observables. There is however the potential that these effects may 

change with time, and that any change may not be consistent across the frequency 

range; for example, phase delays are known to change with temperature [Walsh & 

Daly, 1998]. [Dodson et. al., 1999] has quantified the extent of thermal effects on 

an Ashtech GG24 carrier phase solution to be in the region of 10 millimetres with 

a temperature differential of 25 degrees centigrade. 
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When dealing with carrier phase data, the fact that GLONASS broadcast on 

different frequencies, presents an additional problem. In a double difference 

solution (Chapter 4), each receiver clock correction is scaled by the frequency to 

change the units to cycles, but as each satellite's frequency is different, the 

resulting wavelength of each cycle will be different, and thus the observations 

cannot be cancelled. This is not the case for GPS observations and hence, by using 

this technique, receiver clock errors can be removed. 

3.5 IGEX-98 

It was partly with the aim of addressing the differences outlined above that IGEX- 

98 was initiated. It was an international campaign sponsored by the International 

Association of Geodesy (IAG) Commission VIII, International Coordination of 

Space Techniques for Geodesy and Geodynamics, the International GPS Service 

(IGS), the Institute of Navigation (ION), and the International Earth Rotation 

Service (IERS) [ION-1,1998]. 

In many ways IGEX-98 can be compared to the IGS GPS test campaign of 1992. 

At that time only the broadcast GPS orbits were available and these were 

referenced to WGS 84 but not to the International Terrestrial Reference Frame 

(ITRF). The situation with GLONASS before IGEX was also that broadcast orbits 

only were available and these were referenced only to PZ-90. 

The main purpose of IGEX-98 was to conduct the first Global GLONASS 

Observation Campaign for geodetic and geodynamics applications, some of the 

quoted objectives for which were: 

- set up a global GLONASS observation network, 

- determine GLONASS orbits of metre-quality or better in a 

well-defined Earth-fixed reference frame (namely, TIRF), 

- determine transformation parameters between PZ-90 and TTRF 

and WGS 84, 
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- connect the GPS and GLONASS time systems [ION-1,1999]. 

Initially observations were due to commence on 20th September 1998, and last 

until 20th December of the same year. However logistical difficulties delayed the 

start of the observing campaign until 19th October 1998. A three month observing 

period would have brought the campaign to an end in January 1999, but the launch 

of three new GLONASS satellites on 30th December prompted the experiment to 

be extended until 19th April 1999. Some products of IGEX, such as precise 

ephemerides are currently available, but information regarding other aspects, such 

as transformation parameters, are not due for publication until the meeting of the 

IGEX-98 workshop on 13'h -14th September 1999. 

Figure 3.5 shows the global distribution of participating IGEX stations on 10th 

September 1998, and shows some sixty-three stations distributed over twenty- 

three countries. With each station continuously recording both GPS and 

GLONASS data simultaneously at a 30 second interval, there is no doubt that the 

results derived from this experiment will present a significant improvement on 

earlier findings. This can therefore only go to improve the potential of combined 

GPS/GLONASS systems. 
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Chapter 4 

Satellite Observables, Positioning 

Principles and Techniques 

4.1 Introduction 

Satellite positioning can conveniently be considered to divide into two 

fundamental techniques. In the first of these an absolute point position is 

calculated using a single receiver, and is generally called Stand Alone 

Positioning. The second determines relative positions between two or more 

receivers and is typically referred to as Differential Positioning. 

These stand alone and differential positioning concepts can be further divided 

by examining the receiver's motion. If the receiver is continually located over 

the same point, then this type of positioning is known as Static Positioning. If 

however, the receiver experiences some motion, then it is referred to as 
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Kinematic Positioning. The technique of positioning adopted is dependant on 

the category into which it falls, but is also a function of the accuracy level 

required and the observables available. 

The principles and computational methods required for GPS, GLONASS and 

GPS/GLONASS stand alone and differential positioning are described in this 

chapter. Before doing this however, it is necessary to describe the error sources 

to which satellite navigation systems are susceptible, as some of these error 

terms appear in the descriptions of the various positioning techniques. 

4.2 Factors Affecting Accuracy 

Regardless of the positioning technique adopted, the achievable accuracy of 

satellite based positioning systems is governed by two main factors. These are 

the number of satellites in view and their distribution relative to the user, and 

secondly, the quality of the measurements. 

4.2.1 Satellite Constellation Geometry 

This first factor is referred to as Satellite Constellation Geometry and can be 

quantified by a series of parameters called Dilution of Precision (DOP). DOP 

can be thought of as being inversely proportional to the volume of a 

polyhedron with the user/receiver position at the apex, and the satellite 

positions defining the base. Basically, the more widely distributed the 

satellites, the lower the DOP, and the better the position estimate [Misra, 

1995]. This DOP factor can be tailored, to describe the constellation in 

different terms, which are relevant for the required parameters of the position 

solution. Positional (PDOP) expresses the influence of the geometry on a 

Cartesian (X, Y, Z) position, and similarly Horizontal (HDOP) for horizontal 
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position, Geometrical (GDOP) solves Cartesian position and time, and Vertical 

(VDOP) for height. 

4.2.2 Measurement Accuracy 

The accuracy of the measurement is a function of the effect of a number of 

error sources. These can be grouped into three main areas, namely satellite 

related, atmosphere related and receiver related error sources. 

4.2.2.1 Satellite Related Errors 

Satellite related errors are due to either errors in the satellite clocks, or errors 

in their broadcast positions. The clock error is due to the fact that each 

satellite's clock is not precisely synchronised with the system time. However, 

as both GPS and GLONASS satellites each carry onboard four highly accurate 

and stable atomic clocks, it is possible to determine and model the clock offset 

for each satellite. In the case of GPS, these values are calculated at the MCS 

and uploaded to the satellites as part of the navigation message. They are then 

broadcast in the form of three polynomial terms within the navigation message 

representing it's offset, drift and ageing behaviour [Teunissen & Kleusberg, 

1998]. The GLONASS corrections are calculated at the SCC and uploaded to 

the satellites where they are again relayed to the receiver as part of the 

navigation message, but this time take the form of two polynomial terms, 

representing offset and drift [CSIC, 1997]. 

The position of the satellite at a particular instant may be computed from 

information given in the broadcast ephemeris. Due to perturbations in each 

satellite's orbit, the accuracy of these calculated positions is limited to 

approximately 20 metres along track and 10 metres across track [CSIC, 1997]. 

This error translates directly into an error in position. This is one of the major 

52 



Chapter 4: Satellite Observables. Positioning Principles and Techniques 

error sources in stand-alone positioning. More precise orbits with an accuracy 

of about 0.5 metres have been available for some time for GPS, from post- 

processed ephemerides determined by the International GPS Service (IGS). A 

similar service is now available for GLONASS as a product of the IGEX-98 

campaign (Chapter 3). 

In order to intentionally degrade the accuracy achievable through using GPS, 

the USDoD has implemented S/A, which further degrades both the quality of 

the orbits and satellite clock predictions. Further details of this are given in 

Chapter 2. 

4.2.2.2 Atmosphere Related Errors 

The effect of the atmosphere on satellite signals can be conveniently split into 

two components, the ionosphere and troposphere. The ionosphere lies between 

50 and 1000 kilometres above the Earth's surface, and has the effect of 

delaying the pseudorange, but advancing the carrier phase. The cause of this 

error is due to the signal passing through the non-vacuous material of the 

ionosphere that consists of molecules and free electrons ionised by the ultra- 

violet and X-ray radiation of the Sun. It is the number of these free electrons 

that determine the level of this effect, the magnitude of which may reach as 

much as 10 metres in the day, falling to 1 to 2 metres at night [Dodson et al., 

1993]. With GPS observations, its navigation message contains a set of 

parameters which are used in the Klobuchar model to calculate the extent of 

this correction, further details of which can be found in ICD-GPS [1993]. The 

situation for GLONASS is somewhat different, as no such information is 

included and thus fixed model parameters must be assumed [Lewandowski et. 

al., 1997]. However, if observations from both systems are being combined, 

there is no reason why the GPS broadcast model parameters cannot be used for 

GLONASS also. Alternatively, if dual frequency observations are available, it 

is possible to directly remove the first order effects of the ionospheric delay, as 
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it is inversely proportional to the frequency of the signal squared. Further 

details on this effect can be found in Leick, [1995]. 

For satellite positioning work, the troposphere is considered to lie between the 

surface of the Earth and the ionosphere. It has the effect of delaying both 

pseudorange and carrier phase observations but, unlike ionospheric delay, it is 

not dependent on frequency, as it is a non-dispersive medium, and so cannot be 

accounted for by using dual frequency observations. The tropospheric delay 

can be thought of in two parts, the Wet and Dry delay, the combined effects of 

which can range from 2-2.5 metres at the zenith, to 20 - 28 metres at a5 

degree angle [Leick, 1995]. Approximately 90% of the total effect is caused by 

the dry delay, which is a function of pressure. It can be accurately accounted 

for using one of a number of models. The wet component is much more 

difficult to quantify, as water vapour cannot be accurately predicted and 

modelled, but fortunately only makes up 10% of the tropospheric delay. This 

equates to a delay of between 5- 30 centimetres in continental midlatitudes 

and can be modelled to about 2-5 centimetres. For the most accurate 

modelling of the wet delay, direct measurements of the atmosphere's water 

vapour content must be made using a water vapour radiometer. Further 

information about the troposphere can be found in Dodson et. al. [1993]. 

A third source of error is introduced when, during transit from the satellite to 

the receiver, the signal experiences interference from local reflectors. This is 

known as Multipath, and means that the reflected signal received at the 

antenna will have a different path length to that of the direct signal. This 

difference in path length causes interference in the signal and can result in bias 

measurements. The extent of this bias depends on the location and type of 

antenna used, and the satellite elevation i. e. antennas without some kind of 

ground plane surrounded with reflectors (typically buildings or flat surfaces), 

and signals received from low elevation satellites will be particularly 

susceptible to multipath effects. The extent of this error depends on the 

frequency of the signal, as multipath can be detected over a certain fraction of 

a wavelength. Not only does this mean that code multipath is much larger than 
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carrier, but also that GLONASS code measurements are more susceptible to its 

effects than GPS. This is because the chipping rate for GLONASS is half that 

of GPS and thus, code wavelengths are double the size. Further information 

can be found on general multipath in Teunissen & Kleusberg [1998], and more 

specifically for GPS/GLONASS in Brodin [1997]. 

4.2.2.3 Receiver Related Errors 

As is the case with satellite clocks, receiver clocks do not correspond exactly 

to system time. However, unlike satellites, most receivers do not have atomic 

clocks due to the expense involved (each Caesium clock onboard a GPS 

satellite costs approximately $1 million US dollars), and instead use cheap, but 

lower accuracy, quartz crystal oscillators. This means that the offset is, in most 

cases, large and variable, and for this reason cannot be accounted for in the 

same way as satellite clock error. Any receiver clock error manifests it effects 

in two ways. Firstly, there is an error in the measured time of flight of the 

signal, and secondly there is a time-tag error, which results from an incorrectly 

calculated satellite position at the time of the signal emission. Of the two, the 

first is by far the most serious as this error is scaled by the speed of light, 

instead of the speed of the satellite. To determine a position this receiver clock 

error must be removed or calculated. 

Measurement noise within the receiver is another source of error. This kind of 

error is random with a magnitude which is determined by the precision by 

which the receiver can make measurements on the incoming signals. Better 

receivers make more precise measurements as they cross-correlate the PRN 

codes more effectively and this results in less noisy observables. As both the 

code and carrier loops are able to align with the incoming signals to a fraction 

of a percent of their chip lengths and wavelengths respectively, the level of 

noise experienced is much less for carrier than code. Also, as the GLONASS 

code wavelength is twice that of GPS, it is reasonable to expect GLONASS 
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code observations to experience twice the noise of the corresponding GPS 

observations [Brodin, 1997]. Since the nature of the error is random, its effect 

on position determination can be removed by averaging the measurements over 

time. 

With GLONASS there is a further receiver associated error due to the different 

frequencies of the satellite signals taking different times to travel through the 

receiver components. This is discussed in more detail in Section 3.4 of Chapter 

3. 

4.2.3 Position Error 

The collective effect of the errors described in Section 4.2.2 is referred to as 

the User Range Error (URE); its rms. value is denoted by 0u. The position 

error can be calculated in terms of this and DOP using equation 4.1. 

rms. position error = DOP X eure (4.1) 

Hall et. al. [1997] have quantified the pseudorange rms. URE for GLONASS to 

be in the range of 7 to 10 metres. This compares to values of 25 metres for 

GPS with S/A enabled and 6 metres with it switched off. 

4.3 Pseudorange Measurements 

This is the fundamental measurement of both the GPS and GLONASS and is 

conceptionally very simple, which was one of the initial design criteria for both 

systems. 
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On switching on the receiver, it locks onto the signals of all in-view satellites 

by generating its own equivalent of the ranging code transmitted by the 

satellite. These two codes are then compared and the receiver's replica code 

shifted until the two are coincident. This process is called cross correlation 

and is achieved by delaying the receiver-generated code in a delay lock loop. 

This delay equates to the time between the emission of the signal from the 

satellite and its detection at the receiver. This positioning measurement 

principle is illustrated in Figure 4.1. 

Figure 4.1 Pseudorange Measurement Process 

..,.... Transmitted code 
from satellite 

"" r 

Replica of 
satellite code 
generated in the 
receiver 

This time delay consists, in part, of the signal travel time and thus the range. 

However, this signal travel time measurement is contaminated by a series of 

errors, as outlined in Section 4.2. Thus, the measured value is known as a 

pseudorange, and can be expressed in the following way: 

T, -ti (4.2) 

where: dA = pseudorange from satellite i to receiver A 

(seconds) 

I_, = time of signal reception at receiver A, in the 

receiver time frame (seconds) 

t' = time of transmission from satellite i, in the 

satellite time frame (seconds) 
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Introducing the clock errors gives: 

jdA°(rA+bTA)_U 
+61) (4.3) 

where: FA = time of reception in the system time frame 

(seconds) 

= time of transmission in the system time frame 

(seconds) 

aA = receiver clock offset to system time (seconds) 

at = satellite clock offset to system time (seconds) 

In addition, it is known that in a vacuum: 

R' 
= TA 

where: RÄ = geometric range between the receiver and 

satellite (metres) 

c= speed of light (metres/second) 

Therefore, after adding the remaining error sources: 

P4 (4.5) 

where: d= ionospheric delay (seconds) 

SO-a 
= tropospheric delay (seconds) 

eA 
= receiver delay (seconds) 

EA = noise term containing measurement noise and 

multipath (seconds) 

Equation 4.5 is the basic ranging equation and is equally valid for both GPS 

and GLONASS. 
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4.4 Absolute Positioning by Pseudorange 

The primary aim of both GPS and GLONASS is to provide instantaneous and 

unambiguous stand alone positioning anywhere on the Earth at any time. This 

is achieved by absolute positioning using pseudorange observations. 

To determine position, three coordinate components (X, Y and Z) must be 

solved for. Theoretically, all that is needed to achieve this are three range 

measurements, but as has been outlined in Section 4.2, the measurements 

available are subject to various errors. However, Section 4.2 also details 

methods of overcoming atmospheric and satellite clock errors, and thus, it 

follows, that when operating with satellites from a single system, an 

unambiguous position can be calculated from making simultaneous 

observations to a minimum of four satellites. The fourth observation is used to 

determine the receiver clock's offset from system time. When observations 

from both systems are included it is necessary to determine the receiver clock 

offset from both system times, and therefore a minimum of five simultaneous 

range measurements are needed. This principle is outlined in Figure 4.2. 

Figure 4.2 Principle of Absolute GPS/GLONASS Positioning 
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4.4.1 Solution Accuracy 

The horizontal position accuracy that may be expected using this positioning 

technique is, for the GPS system, specified as better than 100 metres (95% of 

the time) with C/A code measurements, and between 30 to 40 metres for 

GLONASS. The reason for the comparatively poor performance of the GPS 

C/A measurements is due to the intentional degradation of the satellite signal 

using S/A (Chapter 2). However, the achievable accuracy in the field is very 

much a function of the DOP. This is especially true when dealing with 

GLONASS, as the current incomplete nature of the constellation results in a 

highly variable geometry, and thus highly variable achievable position 

accuracy. Indeed, there are periods during the day when a position solution, 

using the GLONASS system only, is not possible, due to there not being the 

minimum of four visible satellites. This is illustrated in Figure 4.3(A), which 

shows the PDOP values over a 24 hour period at the University of Nottingham 

on 7th April 1999 for the current GLONASS constellation of fifteen satellites. 

Figure 4.3(B) depicts the situation for the present GPS constellation of twenty- 

seven satellites, and finally Figure 4.3(C) gives the same information for the 

combined constellation of fourty-two useable satellites. It can be seen from this 

that the lowest (and most consistent) DOP values are achieved when using the 

combined system, and this is reflected in achievable position accuracy in the 

region of 20 metres. In all cases the elevation mask used in predicting these 

satellite visibilities was zero degrees. 
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Figure 4.3 Satellite Visibility and PDOP Values at the University of 

Nottingham 
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4.5 Pseudorange Relative Positioning 

The accuracies quoted in Section 4.4.1 are, for applications such as vessel 

navigation in the open ocean, perfectly acceptable. However, for a great many 

tasks, including almost all offshore surveying tasks, accuracy levels in the 

region of 5 metres are required, and it was because of such requirements, that 

differential techniques were developed. A second benefit of differential 

positioning is in the area of integrity. 

The basic principle behind differential positioning involves using two 

receivers, one of which is located over a point with known coordinates. Since a 

great many of the error sources of satellite navigation are spatially correlated, 

by combining measurements from both receivers, they should cancel or their 

effects significantly reduced. It is assumed that over the area of interest, the 

errors will be the same, or at least very similar. This principle is illustrated in 

Figure 4.4. 

Figure 4.4 Principle of Relative Positioning [ETG, 19981 

Differential correction terms reference 
transmitter .4 ------------- - receiver 

62 



Chapter 4: Satellite Observables. Positioning Principles and Techniques 

4.5.1 Pseudorange Differencing Techniques 

Figure 4.5 gives a representation of a mixed satellite constellation of four 

satellites [two GPS (i and j), and two GLONASS (k and 1)], broadcasting 

signals to two receivers (A and B). These observations can be differenced 

(subtracted) in two ways. Single differencing by receiver uses the signal 

emitted from the same satellite, and received at different receivers, whilst 

double differencing uses signals from two satellites received at two receivers. 

Each technique has a different effect on the error sources outlined in Section 

4.2 

Figure 4.5 Observations Available for Differencing 
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4.5.1.1 Single Differencing by Receiver 

If the observations 1 and 2 from Figure 4.5 are differenced, the satellite related 

errors will be removed, or their effects reduced. However, the satellite clock 

error, and for GPS satellites, the effects of S/A, will only be completely 

removed if the signals received at each receiver were transmitted at the same 

time. If a large distance separates the receivers, then this results in a time 

mismatch, and some residuals will remain. The majority of this residual will be 

as a result of the rapid time varying nature of S/A. Any error in the broadcast 

satellite position should be almost completely removed as any time mismatch 

results in only a small change in position. Single differencing between 

receivers will also reduce the atmospheric errors, although the extent of this 

reduction is a function of the receiver separation, due to the fact that the 

atmosphere decorrelates with distance. 

This process can be expressed mathematically as: 

p" -Pa = R, '4 -RB +cx(ö7' -HB )+e'. 4 -e'' +c (4.6) 
WS an 

where: 
dA 

= pseudorange from satellite i to receiver A 

PB 
= pseudorange from satellite i to receiver B 

3TAGPS = receiver A clock offset 

6Tacps = receiver B clock offset 

RÄ = geometric range from satellite i to receiver A 

RB = geometric range from satellite i to receiver B 

c= speed of light 

receiver A delay for satellite i 

eB = receiver B delay for satellite i 

CA = single difference noise term 

This equation is valid for both GPS and GLONASS satellites (for GLONASS 

the receiver clock is referenced to GLONASS time), and it shows how the 
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satellite clock error has been removed. If satellites from one system only are 

used, then, assuming that the coordinates of A are known, a minimum of four 

equations are needed to solve for the position of B and the difference between 

the receiver clocks in the time scale of that system. Indeed, in theory, a 

receiver clock correction calculated in one system, should be valid at the same 

epoch for the other. This is because both receiver clock values within each 

receiver come from the same oscillator, and thus the difference between the 

GPS time scales of receivers A and B should be identical to the corresponding 

offset between GLONASS time scales. 

4.5.1.2 Double Differencing 

If the single difference observable between satellite i and receivers A and B is 

differenced with the single difference observable between satellite j and 

receivers A and B (observations 3 and 4), then a double difference observable 

is formed. The equation for this is written as: 

=, 
4 

-PAB 

IB-AB)-91 
Pv; B = [RR - RB +cx (b'T - STB) + eA - eB +s' 

, ýa 
]- 

[RÄ -RB +cx(iff -Sf2 )+eA -eB +e ] 

pý =RR-RB-RAJ+RB+eL (4.7) 

where: 

Cya = double difference noise term 

Equation 4.7 shows that, in the case of GPS, this processing technique removes 

both the satellite and receiver clock unknowns, leaving only the three 

coordinate unknowns. Because all GPS satellites broadcast on the same 

frequency the receiver hardware delay, which is a function of frequency, will 

cancel fully and so no residual error will be present. Thus, to solve for the three 
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coordinate unknowns, a minimum of three double difference observations need 

to be used, which are calculated from observations to four satellites. 

When observations from both systems are mixed together the following 

situation arises: 

PR- PÄa - PAR 
k 

/' AB = (lýA 
- lýB) - 

(pA 
-YB 

p =IRA -RB +cx(b? ', -a7'B )+eÄ -eB +Eß]- 

[RA-RB+cx(5f -67'ß )+eÄ-eB+AB 

(4.8) p1,, kB = RÄ - RB - RA+ RB + e, B +4k 

where: 

e= double difference receiver delay 

Unlike in Equation 4.7, one cannot say with the same degree of certainty that 

the receiver delays in Equation 4.8 will automatically cancel, as one is 

referenced to GPS time and the other to GLONASS time. However, despite this 

fact, it is reasonable to assume that both are the same due to the reasons as 

detailed in Section 4.5.1.1. 

4.5.2 Differential GPS/GLONASS 

Differential GPS (DGPS) and Differential GLONASS (DGLONASS) are the 

names given to real time relative pseudorange positioning tasks. It is 

conceptually a very simple process whereby a receiver is located at a point 

with known coordinates, from whose observations range and range rate 

corrections to each satellite are calculated. Computing a range value between 

the known receiver and satellite locations and, then subtracting the observed 

value from this, derives these corrections. Each correction contains aspects of 

ephemeris, satellite and receiver clock, atmospheric and, in the case of GPS, 
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S/A errors. They are then time-tagged with the time the satellite signal was 

received, and transmitted to the user via a terrestrial radio link or 

communications satellite. 

Depending on the range between the reference and remote receiver and the 

method of transmission used, there will be some offset from when the 

corrections were calculated and when they are used. This is called Age of 

Correction, and it is a very important factor in determining the achievable 

accuracy of the system. As this value increases, the size of any errors which 

decorrelate with time also increases. S/A is a rapidly varying error source, and 

so DGPS accuracy is affected to a much greater extent than DGLONASS by 

Age of Corection. Ashtech have quantified the effect of Age of Correction on 

both DGPS and DGLONASS, and these results are duplicated in Figure 4.6. 

Figure 4.6 DGPS and DGLONASS Position Accuracy[Ashtech, 19971 

Figure 4.6 clearly shows how S/A dramatically degrades the accuracy of DGPS 

in comparison to DGLONASS once the Age of Correction exceeds 20 seconds. 

In a combined differential solution, increasing the weighting of the GLONASS 

observations as the Age of Correction increases can control the effect of S/A 

on GPS. This property has led to interest being shown from major differential 

service providers e. g. Racal and Fugro in offering GLONASS corrections. 
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Details of offshore field trials carried out by Fugro using DGLONASS in 

comparison to DGPS can be found in Orpen and Hinsch [1997]. 

4.6 Carrier Phase Measurement 

If both the ranging and navigation codes are removed from the incoming 

satellite signals, what is left is the raw carrier. The wavelength of the carrier is, 

for LI GPS, 19 cm and, for LI GLONASS between 18.63 - 18.75 cm. As this 

value is much smaller than the corresponding pseudorange wavelengths it can 

be measured much more precisely; to the order of a few millimetres. As with 

pseudorange measurements, these carrier phase measurements are obtained by 

comparing the signal generated by the satellite with one replicated in the 

receiver. The resultant observable is the phase difference between the two and 

is illustrated in Figure 4.7. 

Figure 4.7 The Carrier Phase Observable 

OA Carrier phase measurement 

Phase (cycles) 

Receiver generated Received, satellite 
carrier wave generated carrier wave 

The problem with the measurement depicted in Figure 4.7 is that it is 

ambiguous, as only the fractional part of the wavelength is measured. It 
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therefore cannot be used directly to determine a satellite to receiver range, as 

there is an addition unknown with each observation. These unknowns are 

integer numbers of whole wavelengths and are referred to as the initial integer 

ambiguities. From the instant the initial fractional wavelength is measured, the 

receiver starts to count the number of full cycles it receives from each satellite. 

This enables the change in range to be determined and, more importantly, 

when the initial integer ambiguity is solved for, it can be used with this value 

to determine an unambiguous range. This remains the case until there is a 

break in the carrier count when, at which point, the count starts again and a 

new ambiguity value has to be determined. Such an occurrence is referred to as 

a cycle slip and is normally caused by the satellite signal being temporarily 

obstructed from the antenna by objects such as trees and buildings. 

The basic carrier phase observable can be expressed in the same way as the 

pseudorange e. g. as in equation 4.5: 

O' 
ft 

R' + f'(bTA&')-NA' -d! un +dtrop +eA +sA (4.9) 
A- -CA 

where: measured difference in phase between satellite i 

and receiver A 

N. 
+ = integer ambiguity between satellite i and receiver 

A 

ft= frequency of the carrier 

Equation 4.9 takes the same form as equation 4.5, with the exception that the 

carrier phase measurement and integer ambiguity substitute for the 

pseudorange value. The geometric range and clock offsets are multiplied in 

equation 4.5 by the carrier frequency to convert the units of each expression to 

cycles. The unknown parameters are the three receiver coordinates expressed 

through the geometric range, the receiver clock offset and the initial integer 

ambiguity. 
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If dual frequency observations are available, they can be combined linearly to 

form different observables. An example of one such technique is the widelane 

combination, whereby the L2 measurement is subtracted from the L1 

measurement. In the case of GPS, the resultant observable has an equivalent 

frequency of 347.82 MHz and a wavelength of 86.2 cm. This increased 

wavelength has potential benefits in ambiguity search and cycle slip detection 

procedures. However, as the only combined system receivers available 

throughout the project were Ll only units, these processes were not examined. 

Further information on them can be found in Ffoulkes-Jones [1990], and a full 

derivation of the carrier phase equation, in Leick [1995]. 

4.7 Carrier Phase Relative Positioning 

From equation 4.9 it can be seen that the basic carrier phase observable suffers 

from the same sources of error as the pseudorange observation. Thus, as with 

pseudoranges, carrier phase observations can be differenced in various ways to 

remove some of these errors. There is however an additional unknown that 

needs to be accounted for when dealing with carrier phase observations: the 

integer ambiguity of each observation needs to be resolved if centimetre level 

positioning accuracy is to be achieved. 

4.7.1 Single Differencing by Receiver 

Referring to Figure 4.5, if observations 1 and 2 are differenced, then the 

following equations can be derived: 
OAR 

`WA - 
OB 

ý, 
ýs =[ RA+ f'(bT, 

4,. -&t)-NÄ-S, o�+5,,,, p+eÄ+sÄ] 

-[ 
ýt 

RB+. f+ib`1'B,,, -t)-NB-a, ý+8,, e+e'a+eaý 
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i 
#äa = (RÄ -Rä)+f'(orA -8TB) 

-NN +NB +eA -eB +s' 

a 
OýB RAD +N B+ f'5TAB., +e, l +e (4.10) 

C 

where: 

= single difference carrier phase, between 

satellite i and receivers A and B 

N. 
+B = single difference integer ambiguity between 

satellite i and receivers A and B 

Rý = single difference range between satellite i and 

receivers A and B 

6TaaGPS 
= single difference receiver clock offset 

Equation 4.10 is valid for both GPS and GLONASS observations (for 

GLONASS the receiver clock is referenced to GLONASS time), and it has the 

same effect on the error sources as outlined in Section 4.5.1.2 for single 

difference pseudorange observations. A minimum of four satellites giving four, 

single difference observations are needed to resolve the integer ambiguities. 

Again this is the case for GPS, GLONASS or GPS/GLONASS for the reasons 

detailed in Section 4.5.1.1. 

4.7.2 Double Differencing 

As with pseudoranges, it is possible to further difference equation 4.10 with a 

second single difference between the same receivers and another satellite, to 

form a double difference. If, as shown in Figure 4.5, satellite j (observations 3 

and 4) is used, then equation 4.11 can be derived: 

AB - 
4B 

AB 

71 



fiter 4: Satellite Observables, Positioning Principles and Techniques 

t 
Oý = If R; 

B +NB+ f'6TABcps + e;, a + e; a 
] 

c 

- RAß +N, ', B +f ibT,. +ej +C 3] 

01 =f RAIIB+ NAB + EA'B 
C (4.11) 

where: 

O"A 
= double difference carrier phase observable 

NAD 
= double difference integer ambiguity 

Ry = double difference range between satellites i and j 

and receivers A and B 

Equation 4.11 is valid for any pair of GPS satellites used in the double 

difference process. As all GPS satellites transmit on the same frequency, then 

.f: 
=P, and the receiver clock terms, which are scaled by frequency, cancel 

[Ashkenazi et. al., 1998]. The same is true for the receiver hardware delays. 

The unknowns remaining after double differencing are the receiver coordinates 

and the double difference integer ambiguity. As with GPS single differencing, 

a minimum of four satellites is required for a double difference solution. 

However, only three double difference ambiguities are solved for, instead of 

four, as the double difference algorithm contains a difference between 

satellites. 

When dealing with double difference observables formed from a GPS and 

GLONASS satellite, or indeed two GLONASS satellites, the situation becomes 

much more complicated because each satellite broadcasts on a different 

frequency. This means that in addition to the possibility of a residual receiver 

delay, the receiver clock correction terms no longer cancel, as each is scaled by 

a different frequency. Referring again to Figure 4.5, if satellites i and k are 

used (observations 1,2,5 and 6), the equation for this scenario can be written 

as: 

WAR - IV - WAR 
'AB 
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01 =[ 
ýI 

Räa + N, sa +f `ý'aacPS + e, ýa +c 4a 1- 

[k Rý+Nt +fk3TAacLo+eý+sßj 

`k 
'RJ- CkR 

+Ný+f`b? 'A8OM 

-f 
kb'T, 

BCW + e,, + sý (4.12) 

A further observable, which removes the ambiguity term if no cycle slips 

occur, can be created if the double difference equation is differenced with 

respect to time. This is called a triple difference, but after successive 

differencing the Signal to Noise Ratio (SNR) degrades considerably, and thus 

is particularly susceptible to cycle slips (Section 4.7.3). Triple differencing has 

not been implemented in any software routines described in this thesis, and 

thus will not be described further. A full description can however be found in 

Leick [1995]. 

4.7.3 Cycle Slips 

As mentioned in Section 4.6, the computed integer ambiguity value for a 

satellite only remains valid whilst lock is maintained on that satellite signal. 

When this lock is lost and then reacquired, the receiver will assign a new 

integer ambiguity value to the satellite, and thus a new integer ambiguity value 

will have to be determined before unambiguous ranges to that satellite can 

again be determined. These cycle slips can be as a result of incorrect signal 

processing within the receiver, high receiver accelerations, interference from 

other radio sources, high ionospheric activity and most commonly from the 

obstruction of the satellite signal by objects such as trees and buildings. As the 

carrier phase characteristics of GPS and GLONASS are very similar, both are 

affected to a similar degree by this process. 
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In order to use carrier phase measurements for precise and reliable positioning 

some means of detecting and repairing cycle slips must be implemented, and 

thus has been the subject of a great deal of research, resulting in a variety of 

techniques being developed. If the receiver is static, then the rate of change of 

the carrier phase should be smooth, and coincide with the change in the 

satellite orbit. The triple difference carrier phase observable can be used to 

detect a cycle slip in these circumstances, as the result will be an obvious spike 

in the solution residual. If however the receiver is moving it will be impossible 

to distinguish between the effect of receiver motion and the presence of a cycle 

slip. 

When dealing with Kinematic data, some other means of detecting cycle slips 

must therefore be utilised. This topic has been the subject of recent research at 

the University of Nottingham [Roberts, 1997], with a summary of the 

techniques investigated presented below. 

1. As both the pseudorange and carrier phase data is measured 

simultaneously, it is therefore possible to directly compare the 

epoch by epoch change in pseudorange with the change in 

carrier phase. If the difference between these exceeds a pre-set 

tolerance it is then reasonable to assume that a cycle slip has 

occurred. 

2. If Ll/L2 data is available it is possible to use the 4 Observable 

Equation (4.13), which was originally formulated by Melborne 

[1985]. 

Niw =(ýii-ýiz)(fLI+. fiz)x 

(4, 
LL 

11 
+A (4.13) 

where: 

NLW = Wide Lane Ambiguity (cycles) 

p= LI or L2 Pseudorange (metres) 

A= L1 or L2 Carrier Phase Wavelength 

74 



Chapter 4: Satellite Observables. Positioning Principles and Techniques 

(metres) 

f= L1 or L2 Frequency (Hz) 

= Ll or L2 Carrier Phase (cycles) 

Generally NLW varies smoothly from epoch to epoch, and thus 

any large jump in its value can be attributed to a wide lane cycle 

slip. 

3. In addition to the carrier phase and pseudorange data, most 

receivers also output Doppler readings at each epoch. These 

values can be used to forward predict the carrier phase value to 

the next epoch. Again, if the difference between the computed 

and observed values exceed a pre-set tolerance, then a cycle slip 

can be flagged. 

4. Ionospheric residual is a measure of the difference between the 

L1 and L2 carrier phase measurements caused by the different 

effect of the ionosphere on the observations. It changes slowly 

with time unless a cycle slip occurs which will cause a sudden 

jump in its value, indicating the presence of the cycle slip. As 

with the 4 Observable Equation, LI/L2 data must be available if 

this technique is to be used. 

4.7.4 Phase Smoothing of Pseudoranges 

It has already been stated that it is only possible to measure a satellite to 

receiver range directly using a pseudorange. It is however possible to measure 

the changes in these ranges over time using both carrier phase and pseudorange 

observations. As these changes should be identical between the two 

observations, the only difference being the opposite effect of the ionosphere on 

the measurements (Section 4.2.2.2), it is therefore possible to use the better 
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precision of the carrier phase observations to improve or smooth the 

pseudorange measurement. However, the use of carrier phase data carries with 

it the associated risks of cycle slips which, if undetected, will contaminate the 

accuracy of the phase smoothed pseudorange. The results of all pseudorange 

tests presented in this thesis are derived from GPS and GLONASS phase 

smoothed pseudoranges, as recommended by Ashtech. Within both the 

Ashtech and Bemese RINEX converters (Chapter 5), this process of phase 

smoothing is identical, as both apply the smoothing corrections found in the 

Raw Binary files. There is no mention of how this smoothing function is 

generated in any Ashtech manuals read by the author, but after personal 

correspondences with Ashtech California, the following information was 

obtained. 

The smoothing function is calculated in the receiver by averaging the (slowly 

varying) difference between carrier phase and raw range, both first being 

converted to metres. This correction is calculated as: 

Correction = (average range-phase) - (instantaneous range-phase) 

The time constant used in deriving the average value was also quoted as being 

somewhere in the region of 30 seconds, but no specific value was given. 

_ý 

4.7.5 Adapted Double Difference Carrier 

Phase Processing Strategies 

The difficulty, as outlined in Section 4.7.2, of receiver clock corrections not 

cancelling in the double difference GPS/GLONASS or GLONASS phase 

observable, making it impossible to successfully resolve integer ambiguities, 

has led to the development of a variety of approaches to processing GLONASS 

and GPS/GLONASS carrier, phase data. The principles of some of these 

processing strategies and the techniques adopted within the GAS software are 

described below. 
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Work at the University of Leeds [Walsh and Daly, 1996] has looked at the 

possibility of initially using Gk oily observations in a conventional ambiguity 

search procedure. Once these GPS ambiguities are correctly resolved, a 

position, accurate to centimetre level, is then available and this is then used to 

determine the errors in the GLONASS carrier phase measurements (including 

receiver clock error) outlined in Section 4.7.2. Whilst lock is kept on at least 

four GPS measurements, it is possible to monitor and update the GLONASS 

related errors and the GLONASS measurements may also be included in the 

final position solution, especially if the GPS PDOP is high i. e. to improve the 

poor GPS position. If however, the number of visible GPS satellites falls below 

the minimum number (four) for a continued position solution, the GLONASS 

measurements can be included in the positioning computation using the last 

calculated calibration values. This is where the major benefit of such a 

technique lies, and it was developed with the aim of being used on engineering 

sites for static positioning where, after successful initialisation, the antenna 

would be moved into areas with a great many obstructions, and thus not 

enough visible GPS satellites. 

Rossbach and Hein [1996] have adopted a somewhat different policy to 

processing double difference GPS/GLONASS and GLONASS/GLONASS 

carrier phase observables. They adopt a technique whereby the frequencies of 

the two satellites making up the double difference, are scaled to a common 

frequency, of which both are integer multiples. By doing this, the modified 

double difference ambiguities remain as integers, although their values will be 

very high, due to the small auxiliary wavelength which occurs as a result of the 

common frequency. For GLONASS/GLONASS double differencing on LI, the 

resultant wavelength is approximately 65 micro metres and for 

GPS/GLONASS it is even smaller, being in the range 880 to 890 nano metres, 

which corresponds to the wavelength of infra-red light. It is clearly impossible 

to fix such small values to the nearest integer due to receiver noise and other 

error sources. However, as they are so small, it is perfectly acceptable to fix to 

the nearest thousands for GLONASS/GLONASS or even hundreds of 
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thousands for GPS/GLONASS, and so effectively form a float solution. Results 

of tests using this technique have proven its feasibility, returning results 

accurate at the centimetre level for static solutions and at the decimetre level 

for kinematic solutions. 

Another approach when dealing with combined double difference observables, 

is to simply to make no attempt to fix the GLONASS ambiguities, but instead 

to leave them as real numbers. These extra observations achieved through 

using GLONASS can still be used in the GPS ambiguity search process and is 

the technique which has been documented by Landau and Vollath [1996]. They 

found that over a 10 metre baseline, such a procedure resulted in improved 

ambiguity resolution time and accuracy. 

After examination of the existing double difference software (PANIC), it was 

decided that, to avoid major changes at all levels of the processing strategy, for 

reasons detailed in Chapter 5, it would be necessary to scale the value of each 

GLONASS frequency to GPS. By doing this however, the integer nature of the 

GLONASS carrier would be destroyed and thus it would be impossible to fix 

the integer ambiguities. However, as with Landau and Vollath, these 

observations are still successfully included in the search process of the GPS 

ambiguities, and results obtained from this technique are presented in Chapter 

5. 

A fourth processing technique is that proposed by [Pratt et. al., 19971 where, by 

using code-based estimations of the receiver clock terms, the integer nature of 

the double difference ambiguity term is maintained. In their tests, double 

difference observables were formed between GPS-GPS and GLONASS- 

GLONASS combinations only. This is because any residual clock error is 

scaled by the frequency difference between the satellites making up the 

observable. Choosing a GLONASS reference satellite from the middle of the 

GLONASS frequency range gives a clock term coefficient of approximately 7 

MHz. If a GPS-GLONASS double difference is formed, however, the clock 

term coefficient grows to approximately 30 MHz. Because this coefficient is 
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multiplied by any residual clock error, all processing has been limited to GPS- 

GPS or GLONASS-GLONASS double differencing. The success of this 

technique is directly related to the accuracy with which the clock unknown can 

be calculated, and this is in turn is a function of the accuracy with which the 

pseudoranges can be measured. Clearly error sources within the receiver and 

the effect of multipath will therefore have a marked effect on the potential of 

such a technique. 

Finally, Leick et. al. [1995] have developed a processing strategy to deal with 

the double difference observable, when dual frequency data is available. 

Initially, the GLONASS carrier phase observations are scaled to a mean 

frequency, in order to eliminate receiver clock error. However the coefficients 

of the single difference ambiguities still depend on the satellite frequencies. In 

order to obtain an explicit double difference formulation, a single difference 

ambiguity approximation is introduced by solving for a wide-lane single 

difference ambiguity using dual-frequency carrier phase and pseudoranges. If 

this estimation is sufficiently close to the correct value of the ambiguity, it then 

becomes theoretically possible to estimate the double difference ambiguity and 

constrain it to an integer. A full derivation of the equations involved in this 

process can be found in Leick et. al. [1995] or Leick [1998]. 
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Chapter 5 

Software Development and 

Validation 

5.1 Introduction 

As mentioned in Chapter 1, it was decided that a great deal of the available 

project time should be spent modifying the existing GPS Analysis Software 

(GAS) to process combined GPS/GLONASS observations, as this could then 

act as a tool to quantify the potential benefits or problems of combined use. 

The software, its development, and the tests used to validate any modifications 

are detailed in this Chapter. In addition to this, some of these tests provide the 

first indication of the relative performances of the systems for static 

positioning. 

83 



fiter S: Software Development and Validation 

The GAS software package has been developed over the past decade within the 

IESSG and has been exclusively coded in Fortran 77. It was written and 

initially run on the University's ICL VME mainframe, which provided very 

good diagnostic capabilities, but suffered from a limited storage capacity and 

became slow when many users attempted to access it at the same time. With a 

new Silicon Graphics UNIX workstation becoming available for use within the 

IESSG, the solution to these problems was to run GAS on this platform. All 

software development and data processing has been produced on this Silicon 

Graphics workstation. An additional advantage of using this method is the 

excellent debugging software which is on offer. This proved invaluable in both 

the development of new, and the alteration of existing, code. 

5.1.1 GAS 

GAS has a modular design, consisting of several independent programs, each 

designed to perform a separate part of the total processing procedure. This is 

illustrated in Figure 5.1. It takes, as its initial input, data in the Receiver 

Independent Exchange (RINEX) format, which was developed at the 

Astronomical Institute, University of Bern, of which Gurtner [1995] gives more 

detail. This RINEX data is then converted into specific formats for processing 

in subsequent routines. These formats are, for the observational data, 

Nottingham specific NOT files, and for the ephemeris files, the . 
SP3 standard 

which was conceived by the US National Geodetic Survey for the distribution 

of precise GPS ephemeris. Further information on the SP3 standard can be 

found in Remondi [1989]. Examples of all of these formats are presented in 

Appendix A. The routines which perform these tasks are Filter and Con2SP3 

(CONvert to SP3) respectively. In addition to re-formatting, Filter can also be 

used to perform a number of additional tasks, one of which is to derive 

autonomous position using pseudorange data. Further reference is made to 

Con2SP3 in Section 5.2 and to Filter in Section 5.3. 
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Figure 5.1 Schematic of the Relationship between the GAS Modules 
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With the data in a suitable format, the main processing routine PANIC 

(Program for the Analysis of Networks using Interferometric Carrier phase or 

Code) can be operated. PANIC has been used with great success to process 

GPS data from a number of projects within the IESSG e. g. monitoring of land 

movement within the U. K. [Penna, 1997]. It can process either code or carrier 

observations, from anything between two and thirty stations, using double 

differencing techniques. Another function of PANIC is to further re-format the 

observational and ephemeris data into a combined data file called a GASFILE, 

which serves as the input to the NOTF (New On-The-Fly) program [Hansen, 

1996]. 

NOTF is the latest processing utility and, although it too can handle both static 

and kinematic pseudorange and carrier phase data, it was designed specifically 

to resolve carrier phase ambiguities in a kinematic environment. Unlike 

PANIC it uses single differencing to form its observables. 

The output coordinates from Filter, PANIC and NOTF are in the form of 

Cartesian coordinates (Chapter 3), which while useful for defining satellite 

orbits, are not particularly conducive to visualising position. They can 

therefore be converted to latitude, longitude and height, and if required, be 

projected onto one of a number of datums using the WinCODA package. 

WinCODA is a Windows version of the DATUM package, which was written 

within the IESSG for the task of transforming points throughout the European 

Union from local datum's to WGS 84 [Eurocontrol, 1993]. All positioning 

results described in this thesis have been transformed from WGS 84 to the 

Ordnance Survey of Great Britain 1936 (OSGB 36) datum, and projected onto 

Ordnance Survey of Great Britain National Grid (OSGB NG) using this piece 

of software. This additional step has been taken to make the representation and 

analysis of the resultant positions somewhat easier. 
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5.2 Con2SP3 

Con2SP3 is the name given to the routine which converts GPS broadcast 

ephemeris to a. SP3 format for use in all other routines. The obvious start point 

for software alteration was, therefore, with this routine. There are however 

fundamental differences between the approaches to ephemeris calculations 

adopted by the GPS and GLONASS systems. These differences are detailed in 

Sections 2.3.5.1 and 2.4.5.1 respectively, and resulted in the need for the 

creation of an almost entirely new processing package. 

Initially, it appeared that, due to the fact that a satellite position in Cartesian 

coordinates was given directly in the GLONASS RINEX file, the coding of a 

new routine would consist of little more than re-formatting the data to the SP3 

format. However, as the update rate for these point positions is every 30 

minutes, a typical. SP3 file might have as few as one or two data points for a 

particular satellite. This presented a problem in the positioning routines of 

Filter and PANIC, which use an 8th order interpolation routine to produce an 

interpolated orbit at any epoch of interest. Further information on the Everett 

interpolator used in these routines can be found in Moore [ 1986]. 

Because of this requirement for eight satellite positions (four each side of the 

epoch of interest), there were, in most cases, insufficient satellite coordinates 

in the ephemeris to allow the GLONASS satellites to be included in the 

position solution. It therefore became necessary to increase the number of data 

points in each satellite's ephemeris, and this was achieved by adopting the 

policy of using a 4t' order Runge-Kutta integration of the differential equations 

presented in Section 2.4.5.1. The period of this integration has been set to 1 

second, giving 1800 discrete positions for each ephemeris update, and thus, 

more than fulfils the requirement of the interpolation routine. 

All coordinates within this . 
SP3 file were at this stage still described in terms 

of PZ-90 (Chapter 3). While this is not a problem when differencing 
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GPS/GLONASS observations as the datum differences will appear simply as 

orbital errors and thus will largely cancel depending on baseline length, the 

same cannot be said for single point positioning. Some sort of transformation 

therefore had to be implemented and it was decided to include this process as 

an option at this stage. The parameters adopted for this transformation were 

those calculated by Misra [1996]. A description of the estimation technique 

and the parameters themselves are quoted in Section 3.2.2.2. These parameters 

were felt to be most appropriate, as they are the ones used within the Ashtech 

GG-24 receivers, from which all of the test data was gathered. 

Another point to consider in the generation of this . 
SP3 ephemeris, was that of 

the time scales to which it was referenced. GLONASS RINEX ephemeris is 

referenced to UTC, but GPS RINEX ephemeris is referenced to GPS time, so 

some account of this clearly had to be made. As almost all RINEX 

observational data is referenced to GPS time, it was decided to shift the 

GLONASS time-tags to those of GPS. GPS time is equal to UTC time + the 

number of leap seconds added since 1980. This leap second value is thus added 

to the GLONASS time-tag, to bring it into coincidence with GPS time. 

An ASCII Control File defines the variables for each program within the GAS 

processing package. This allows not only various data files to be selected for 

processing but also specifies the processing options to be used. To maintain 

this flexibility, it was decided to include both the transformation and time-tag 

shift processes as options within this file. The alterations to the standard 

Con2SP3 control file, as described in Stewart et. al. [1995], are detailed below. 

OPTIONS 

REFERENCE'GLONASS' or'GPS' 

DIFF X13' 

CONVERSION 6 YES' or 'NO' 
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The `REFERENCE' terms relates to the time frame of the output . 
SP3 

ephemeris, and if GPS is selected then the integer number of seconds specified 

in `DIFF' is added to the time-tags before writing to the SP3 file. 

`CONVERSION' relates to the datum of the SP3 output, and if YES is 

selected then a transformation between PZ-90 and WGS 84 will be performed. 

5.2.1 Validation of the Ephemeris Routine 

The result of the changes described previously can be seen in an example 

GLONASS 
. 
SP3 file presented in Appendix A. However, some check of the 

validity of the approaches adopted had to be undertaken before moving on. 

The first test performed involved slightly modifying the code to perform a 

forward integration using the data given at one data point in the broadcast 

ephemeris, for a period of 30 minutes, and comparing the results with the next 

broadcast ephemeris value. This not only proved that the Runge-Kutta 

integration was working correctly, but also provided a check as to the method 

for calculating the satellite clock correction. Results using this process, for a 

single epoch with ephemeris information available for five GLONASS 

satellites are presented in Figure 5.2. 

Figure 5.2(A) shows the difference in position, in terms of X, Y, Z and also as 

a vector. These values have been derived by subtracting broadcast ephemeris 

position values for time 10: 45: 00 (GMT) on 10th July 1997, from those 

computed for the same epoch by performing a forward integration of the 

broadcast ephemeris parameters given for 10: 15: 00 (GMT). Even though this 

30 minute time-span is twice the valid period for the broadcast ephemeris used 

in the integration, it still gives a resultant position which agrees to 

approximately the 2 metre level with the next set of broadcast ephemeris 

parameters. This level of agreement proved that the orbital integration routine 

was working, as it should. 
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Figure 5.2(B) shows the difference between the computed and broadcast 

satellite clocks for the same satellites at the same epoch. The difference can be 

seen to be in the order of 0.5 * 10"9 seconds, which again is small enough to 

indicate that the routine used to calculate the receiver clock correction values 

was correct. 

Figure 5.2 Difference Between Integrated and Broadcast GLONASS Orbits 
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5.3 Filter 

Filter is the name given to the GAS module, the main function of which is to 

convert the standard RINEX format observational files to NOT format, for 

processing within PANIC. It therefore became the subject of modification after 

the successful completion of the GLONASS ephemeris reformatting and 

interpolation routine. Unlike ephemeris information however, observational 

data from GPS/GLONASS receivers are very similar, and are thus combined in 

a single RINEX file. Because of this it was not necessary to write new routines, 

but instead alter existing routines to accept GLONASS observations. The 

existing version of Filter also had the ability to perform the following 

processes: 

1. Discard epochs, which contain less than a pre-defined 

number of satellites. 

2. Choose a new data interval (e. g. thin data collected 

every 15 seconds down to 1 minute intervals). 

3. Remove data from unhealthy satellites. 

4. Detect and correct large cycle slips in carrier phase data. 

5. Specify a time-span for the required NOT observation 

files. 

6. Compute single point pseudorange solutions, which can 

be used to improve on the coordinates given in the 

RINEX files. 

In making alterations to Filter to accept GLONASS, it was decided to maintain 

the ability of the software to perform the operations listed above, on both GPS 

and GLONASS data. Indeed, three more processing options were developed in 

addition to these: 

7. When dealing with a combined RINEX file the output 

file and position computed can be specified to be GPS 

only, GLONASS only, or GPS and GLONASS 

combined. 
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8. Scale the GLONASS carrier frequencies to that of GPS. 

9. Accept RINEX files produced from either Ashtech or 
Bernese software. 

The first problem which immediately became apparent, was that of 

maintaining a unique means of identifying satellites, as in a combined RINEX 

observation file, GPS and GLONASS satellites share the same number, being 

distinguishable by a 'G' (GPS) or 'R' (GLONASS) pre-fix. Maintaining this 

notation within Filter was not possible, because the satellite identification 

numbers (SVID) are used in the software to allocate unique positions in a 

number of arrays. Also a letter/number combination would not follow the 

existing NOT format, and could lead to further problems in subsequent 

operations. Therefore a process by which an individual number is allocated to 

each satellite had to be devised. 

As all GPS satellites are numbered in the range 1- 32, it was decided to read 

in the letter pre-fix for each satellite, and if it is a `G', to leave the ID number 

as it stands. If however, the satellite is identified as being GLONASS, then the 

number 32 is added to this slot number, which can range between 1- 24. This 

procedure gives the following set of unique SVID numbers: 

1-32 GPS 

33-56 GLONASS 

The next alterations to be made lay with the cycle slip detection software 

within Filter. This routine works by noting the change in pseudorange between 

consecutive epochs, and then comparing this distance with the change in 

carrier phase count multiplied by the signal wavelength, to bring it into units of 

metres. If the difference between the two values lies outside a pre-set 

tolerance, it is reasonable to expect a cycle slip to have occurred. As detailed in 

Chapter 2, the wavelength of a GPS L1 signal is 19.03 cm, but varies from 

18.56 centimetres to 18.71 cm for GLONASS. If these specific GLONASS 

wavelengths were not accounted for, each GLONASS satellite would be 
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flagged as suffering from a cycle slip at each epoch, and an attempt made to fix 

the carrier phase count, thus introducing a cycle slip. 

The methodology of the routine introduced to determine the wavelength of 

signals from individual GLONASS satellites is outlined as follows: 

1. Detect if the satellite is GLONASS. 

2. Find its true SVID number. 

3. Relate this number to its frequency number In'. 

4. Calculate the actual frequency by substituting n into equation 

2.4. 

5. Calculate the wavelength using this frequency value. 

In order to keep the values of the integer ambiguities as small as possible in 

any subsequent search routines, Filter, on detecting a new satellite, calculates 

the approximate number of integer cycles between satellite and receiver by 

multiplying the pseudorange by the wavelength of the signal. This value is then 

subtracted from the arbitrary carrier phase count to give an integer correction 

that is applied at all subsequent epochs to the carrier phase value for that 

satellite. Clearly, the same problem of calculating the appropriate wavelength 

for GLONASS satellites existed but, by duplicating the process adopted within 

the cycle slip detection software, this was easily overcome. 

As discussed in Chapter 4, the processing of GLONASS carrier phase double 

difference observables presents specific problems due to each satellite's 

broadcasting on a different frequency. One way to overcome this problem is to 

scale each of these carrier frequencies to that of GPS, and the option to 

perform this task has also been included within Filter. Stages 1 to 4, as outlined 

above, are again used to calculate the specific satellite frequency, before the Ll 

carrier phase count is scaled by the following expression: 

cart = car x 
ILI (5.1) 
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where: 

carl = carrier phase count in terms of L1 GPS. 

car = original GLONASS carrier phase count. 

AL, = Frequency of Ll GPS. 

f= Frequency of the GLONASS satellite. 

The next coding operation performed on Filter was to enable it to process a 

combined observational file in terms of GPS only, GLONASS only, or 

GPS/GLONASS. This ability was believed to be advantageous as, by being 

able to have any one of the three potential combinations from the same data 

file, conclusions as to the potential advantages to be gained from augmenting 

GPS with GLONASS could easily be drawn. 

These extra functions are specified as additional options to those already 

detailed within the Filter ̀ Control File' [Stewart et. al., 1995], and are outlined 

as follows: 

OPTIONS 

COMBO 'MIXED' or'GPS' or'GLONASS' 

SCALE `YES' or'NO' 

Both these options require very little explanation, with the type of system 

output to the NOT file being controlled by the COMBO option, and the choice 

of scaling the GLONASS carrier phase count to that of GPS by SCALE. 

The final alteration made to Filter was to enable it to handle R1NEX data 

produced from either Ashtech's own software, or that developed by Werner 

Gurtner at The Astronomical Institute of Berne. As RINEX is supposed to be 

present the data in a uniform format, it was not initially anticipated that there 

would be differences in the RINEX files produced from each set of software. 

However, as can be seen from comparing Figure 5.3 (A) and (B), which show 
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the RINEX outputs obtained using the same data file from WinPrism (Ashtech) 

and ASRINEXO (Bernese) respectively, there are certain differences in the 

amount of information in the file header, and the format of the satellite 

identifications at the epoch header. It is however worth noting that the actual 

data values are identical, indicating that the same phase smoothing routine 

(Chapter 4) is used in each program. 

To cope with these differences, a final option was included in the control file. 

This is detailed below and again requires no explanation: 

FILES 

INPUT 

SOURCE 'ASHTECH' or 'BERN' 

The initial design of Filter was such that only data from one ephemeris was 

used to compute position. However, as has been outlined in Section 5.2, it 

became necessary to produce individual ephemerides for GPS and GLONASS. 

Therefore it was necessary to duplicate the ephemeris read and computation 

routines to accept data from both files when necessary. 

In solving for a single point position for GPS, there are four unknown terms 

(X, Y, Z and receiver clock correction). However, in solving for a combined 

GPS/GLONASS solution, this number rises to five, with the extra unknown 

being the second receiver clock offset, this time for GLONASS (Chapter 4). 

Therefore, the positioning routines themselves also had to be altered, with an 

extra unknown being incorporated in the solution computation, and 

correspondingly, an extra observation being required as the minimum to solve 

for this position. 
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Figure 5.3 RINEX Files Produced from nPrism and ASRINEXO 

A 

2 OBSERVATION DATA M (MIXED) RINEX VERSION / TYPE 
ASHTORIN 16 - AUG - 99 09: 56 PGM / RUN BY / DATE 

COMMENT 
R212 MARKER NAME 

MARKER NUMBER 
OBSERVER / AGENCY 

G-XXIV GGOO N/A REC #/ TYPE / VERS 
ANT I/ TYPE 

3851190.3379 -80146.6524 5066665.5434 APPROX POSITION XYZ 
0.0000 0.0000 0.0000 ANTENNA: DELTA 

H/E/N 
1 0 WAVELENGTH FACT 

L1/2 
3 L1 C1 */ TYPES OF OBSERV 

1.0000 INTERVAL 
12 LEAP SECONDS 

1998 8 10 11 0 20.000000 GPS TIME OF FIRST OBS 
1998 8 10 12 29 58.993000 GPS TIME OF LAST OBS 

END OF HEADER 

98 8 10 11 0 20.0000000 0 16GO1G31G29GO8G14GO2G1SGO7G16R18R17RO3 0.0001111 
R20RO4R11R12 

19893309.752 6 23114637.645 
38913049.249 6 23760175.724 
13928975.834 6 21915634.931 
25365471.320 5 24779211.910 

4062703.659 6 21156988.666 
21768758.118 6 23867776.109 
15450198.640 7 19909974.615 
25100601.018 5 23055609.985 
23474001.430 5 24133602.567 
15433679.275 5 20124316.238 
43546447.393 2 23647339.635 

7817956.977 5 19283389.883 
34150002.197 5 24143935.833 
19373875.720 5 22123681.328 
13129113.278 5 22812523.780 

30486572.726 5 22364822.064 

B 

2 OBSERVATION DATA M (MIXED) RINEX VERSION / TYPE 
ASRINEXO V2.9.6 LH IESSG 16-AUG-99 09: 52 PGM / RUN BY / DATE 

COMMENT 
BIT 2 OF LLI (+4) FLAGS DATA COLLECTED UNDER "AS" CONDITION COMMENT 
R212 MARKER NAME 

OBSERVER / AGENCY 
ASHTECH G-XXIV GGOO REC #/ TYPE / VERS 
GEODETIC L1 ANT #/ TYPE 

3851190.3379 -80146.6524 5066665.5434 APPROX POSITION XYZ 
0.0000 0.0000 0.0000 ANTENNA: DELTA 

H/E/N 
10 WAVELENGTH FACT 

L1/2 
2 Cl L1 #/ TYPES OF OBSERV 

1998 8 10 11 0 20.000000 GPS TIME OF FIRST OBS 
END OF HEADER 

98 8 10 11 0 20.0000000 0 16G01G31G29G08G14G02G15G07G16R18R17R03 
R20RO4RllRl2 

23114637.645 19893309.752 2 
23760175.724 38913049.249 2 
21915634.931 13928975.834 3 
24779211.910 25365471.320 2 
21156988.666 4062703.659 3 
23867776.109 21768758.118 2 
19909974.615 15450198.640 3 
23055609.985 25100601.018 2 
24133602.567 23474001.430 2 
20124316.238 15433679.275 2 
23647339.635 43546447.393 1 
19283389.883 7817956.977 2 
24143935.833 34150002.197 1 
22123681.328 19373875.720 2 
22812523.780 13129113.278 1 
22364822.064 30486572.726 1 
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Because S/A does not affect GLONASS pseudorange observations, the quality 

of these measurements can be assumed to be of a higher standard to those of 

GPS. To take some account of this, it was decided to weight the observation 

equations by means of the relative standard errors of the two systems. 

Equations 5.2 and 5.3 were derived for this procedure. 

For GPS Ax =1 (5.2) 

For GLONASS SOS Ax =1 
sVS (5.3) 

where: 

A= the design matrix relating the observations to the 

parameters. 

x= the vector of the parameters. 

s9p° = standard error of GPS pseudorange observations (25 

metres). 

S9l- s' = standard error of GLONASS pseudorange observations 

(7 metres). 

If a Kalman version of this Least Squares routine had been implemented it 

would have been possible to add process noise. This way the measurements 

could have been weighted correctly, rather than factorising one with respect to 

the other. However, the existing positioning routines within Filter were 

relatively simple, being used primarily to provide approximate coordinates for 

poorly defined points. 

5.3.1 Validation of Filter 

As with Con2SP3, on completion of the coding modifications outlined above, 

it was necessary to test the validity of the changes. Checks had to be performed 
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on each of the reformatting, cycle slip and positioning routines. The results of 

these are detailed below. 

5.3.1.1 Reformatting the Data 

As this is the primary task of Filter, it is imperative that the data is reformatted 

correctly. This is particularly true for the carrier phase data, which is set to 

approximately the same value as the pseudorange when converted to metres, 

and in the case of GLONASS, may also be scaled to the wavelength of L1 GPS. 

In order to test the correctness of these routines, a single epoch's worth of 

combined observational data was chosen at random. Figure 5.4(A) shows the 

data in RINEX form, Figure 5.4(B) shows the NOT format of this, with no 

scaling of the carrier to GPS, and finally 5.4(C) shows the data in NOT format 

again, but this time with scaling of the GLONASS carrier count. 

Figure 5.4 Random Epoch of Combined GPS/GLONASS Observational 

Data in RINEX and. NOT Format 

(A) 

98 8 10 8 57 40.0000000 0 5G15R18R09R10R17 

21512070.923 -6523558.945 3 

21104388.307 -6969805.218 2 

23409388.634 -6492610.93912 
23244416.444 -6733286.33412 
19119943.533 -6466362.778 1 

(B) 
970 118660.0000000 0 -0.99999000 5 15 41 42 49 50 

21512070.923 0 113046696.055 

23409388.634 0 125356214.061 

23244416.444 0 124603634.666 

19119943.533 0 103032174.222 

21104388.307 0 113171433.782 
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(C) 
970 118660.0000000 

21512070.923 0 

23409388.634 0 

23244416.444 0 

19119943.533 0 

21104388.307 0 

o -0.99999000 
113046696.055 

123017168.934 

122150232.725 

100475981.461 

110904309.498 

5 15 41 42 49 50 

From examining these three files, it is clear that the pseudorange data has been 

re-written to the . 
NOT files with no error. The same cannot however be 

immediately said of the carrier phase data, as it has been significantly altered. 

However, as the epoch selected for analysis is only 40 seconds after the start of 

the processing run of Filter, the carrier phase count, when multiplied by the 

wavelength of the signal, should still almost be in coincidence with the 

pseudorange, assuming that there have been no cycle slips. If the carrier phase 

count for satellite 41 in Figure 5.4(B) is multiplied by the wavelength of this 

satellites signal (18.6742946 cm) then a range of 23,409,388.83 metres is 

produced. As this is only 20 centimetres different from the Ll pseudorange 

value, it was concluded that the routine to determine wavelength of the 

GLONASS satellites, and in turn to shift the initial integer part of the carrier 

phase count to the pseudorange, was working correctly. Figure 5.4(C) has its 

GLONASS carrier phase counts further scaled to those of GPS, and again the 

validity of this can be checked by multiplying the count by the wavelength of 

an Ll GPS signal (19.0293672 cm). This gives for satellite 41, a range of 

23,409,388.89 metres, which is again very close to the broadcast pseudorange, 

thus proving the validity of the technique. The small difference in the 

pseudoranges computed from the carrier phase counts in Figure 5.4(B) and (C) 

is due to the fact that the count is shifted only by an integer amount in (B), but 

in (C) it is shifted by a real number. 
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5.3.1.2 Cycle Slip Detection 

The cycle slip detection routine within Filter is designed to serve as a means of 

detecting large cycle slips only. To check the validity of the system for 

GLONASS a test was performed, whereby an hour of combined 

GPS/GLONASS data, collected at aI second interval, was processed three 

times through Filter with tolerance levels of 500,100 and 10 cycles 

respectively, for the cycle slip detection. The number of satellites visible at 

each epoch within this data set range between 10 and 7 for GPS, and between 8 

and 6 for GLONASS. The result of this test is presented in Table 5.1. 

Table 5.1 Cycle Slip Detection within Filter 

A 

1 500 1 43 1 22,142,707 1 

R 

C 

IU 43 _-'"l 

10 43 22,142,707 

10 2 -194 

10 4 25 

10 4 -13 

A large Slip was detected on Satellite 43 which, on examining the data file, 

occurred as a result of the receiver losing lock on that particular satellite for 

ten consecutive epochs. On examination of the Signal to Noise Ratio (SNR) of 

the satellites, the value for Satellite 43 was found to be very low, 10 decibels 
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(dB), and this may explain why this gross cycle slip occurred. However, for all 

other epochs it appears that the Slip routine was finding no more Slips on the 

GLONASS satellites than on GPS. Indeed as the Slip tolerance is reduced, it is 

GPS satellites that are flagged as suffering from small cycle slips. This not only 

proved that the routine was functioning correctly for GLONASS satellites, but 

that, in the case of this data set at least, that GLONASS observations are no 

more likely to suffer from cycle slips than GPS. 

5.3.1.3 Position Computation 

In order to test the validity of the results obtained from the positioning routines 

within not only Filter, but PANIC, and NOTF also, it was necessary to process 

data collected at a point, the coordinates of which were already precisely 

known. The coordinates derived from each GAS package could then be 

compared against the known or Truth coordinates, and any potential error 

highlighted. Where possible commercial software has also been used to 

process the same data and thus provide a further check/comparison of the new 

positioning routines employed within GAS. 

On 10th August 1998, data from both the IESSG's Ashtech GG-24 

GPS/GLONASS receivers was recorded on a point with known coordinates, for 

a period of 90 minutes between 11: 00 and 12: 30 (BST). It is this data set that 

has been used to validate the positioning routines within all three software 

routines, as it provides a consistently high number of good quality GPS and 

GLONASS observations, which allow for reasonable comparisons of the 

positioning accuracies achievable using GPS and GLONASS. Also, with a1 

second recording interval, the 90 minute time-span gives some 5400 epochs of 

data, which should be enough to highlight any potential errors in the coding. 

This data was logged on a Zero Base-Line (ZBL), the principle of which is 

illustrated in Figure 5.5. Satellite visibility plots for the GPS, GLONASS, and 

GPS/GLONASS constellations at this time, are given in Appendix Cl. 
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The Antenna Splitter used not only allows two receivers to access the signals 

received from a single antenna, but also suppresses the power output from one 

of the receivers which is used to power the antenna. This is necessary, as 

doubling the power input to the antenna could have introduced interference 

into the observations. 

Although using a ZBL is not necessary for the autonomous single point 

positioning performed within Filter, it is necessary to simultaneously record 

data on more than one receiver for both PANIC and NOTF, which are 

differential processing packages. The main advantage of collecting data on a 

ZBL when testing differential positioning routines, is that the location of the 

antenna, the antenna its self, and the cabling connecting the antenna to the 

receivers are all identical. The resultant positions derived from each receiver at 

the same epoch should therefore be identical, and thus the difference between 

them should be zero. Any errors or biases will be easily identifiable, as they 

will appear as vector difference between the positions. The results obtained 

through PANIC and NOTF will be discussed in Sections 5.4.1 and 5.5.1 

respectively. 

There are two positioning routines within Filter, and both have been modified 

to accept GLONASS data. The first of these assumes that the receiver is 

moving and thus calculates a new solution each epoch, while the second 

performs an accumulated solution, as it assumes the receiver to be statically 

located over the same point. 
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Figure 5.5 Zero Base-Line Operation 
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The known WGS 84 coordinates of the antenna are: 

52° 56' 26.47439" North 3851174.654 X 

010 11' 32.28300" West -80152.879 Y 

98.682 m Height 5066647.153 Z 

when transformed to OSGB 36 and projected onto OSGB NG using WinCODA 

this gives: 

454377.039 Easting 

338451.379 Northing 

51.271 Height 

The quality of the coordinates quoted above needs to be quantified, as they 

have assumed to be the Truth values in all, subsequent tests. There are four 

coordinated points located on the roof of the IESSG. The first of these, Turret 

1, used as a basis for its coordinate definition, 18 months of Continuously 
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Operating Geodetic Receiver (COGR) observations. The absolute accuracy of 

its coordinates can therefore be assumed to be well below the centimetre level. 

The coordinates of the three remaining points, one of which has been used in 

the trials subsequently detailed, have all been defined with respect to this on 

four separate occasions using a Differential Carrier Phase Solution. The 

repeatability of the results obtained has been sub-millimetre in plan and at the 

millimetre level in height. Thus, the absolute accuracy of the WGS 84 

coordinates quoted above can still be assumed to be at the level of a few 

millimetres. These coordinates have then been transformed to the OSGB 36 

datum and projected onto OSNG to make their analysis and representation 

clearer, using the WinCODA package. As OSGB 36 is not a homogeneous 

datum, the accuracy of this transformation is a function of point position and 

can reach a maximum of +/- 10 metres using WinCODA. However, as both the 

computed and observed points share the same location, any error introduced 

during this procedure are identical, and thus comparisons of these relative 

coordinates should still be accurate to the levels quoted for WGS 84. 

The first test performed was on the epoch by epoch routine with GPS only, 

GLONASS only, and finally combined GPS/GLONASS data, being processed 

for the full 90 minutes for one of the receivers only (Receiver 12). In an 

attempt to account for the different reference systems used by GPS and 

GLONASS, the GLONASS ephemeris used in these computations was first 

transformed from PZ 90 to WGS 84, as detailed in Section 5.2. The results of 

these tests, in terms of plan and height components, are presented in Figures 

5.6 and 5.7 respectively. In each, the difference between the known and 

derived coordinates at each epoch is shown. This has been calculated by 

subtracting the derived value from the truth, and this is the convention that has 

been used in all subsequent difference calculations. 

Figure 5.6 (A), and in particular Figure 5.7 (A), show quite clearly the effect 

that S/A has on a GPS solution, with the position varying by some 60 metres in 

Easting, 120 metres in Northing, and 150 metres in height. The advantage 
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Figure 5.6 Difference in Filter Pseudorange Plan Coordinates 
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Figure 5.7 Difference in Filter Pseudorange Height Values 
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which GLONASS has for single point positioning can be equally easily seen in 

Figures 5.6 (B) and 5.7 (B), where the position varies by approximately 10 

metres in Easting, 5 metres in Northing, and 20 metres in height. This is clearly 

a marked improvement over the GPS only solution, and is a result of the 

GLONASS observations not being subject to S/A. Finally, Figures 5.6 (C) and 

5.7 (C) show how, by appropriately downweighting the GPS observations, the 

effect of S/A is much reduced in the combined solution. 

A statistical quantification of these sets of results is presented in Table 5.2. 

Here the root mean square (rms. ) of the coordinate differences, calculated by 

subtracting the computed values from the known values, in terms of Easting, 

Northing, and Height is given for each of the three system combinations. It can 

be seen again that the GLONASS only system yields the most accurate results, 

closely followed by the GPS/GLONASS combination. 

Table 5.2 RMS Value of Filter Coordinate D fferences 

The data was then processed again in the same combinations, this time using 

the cumulative solution routine. The coordinate difference in each direction is 

given in Table 5.3. This shows that, in the case of GPS, the effect of S/A is 

markedly reduced when the solution is accumulated with time, and the 

accuracy achieved approaches that of GLONASS. 
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Table 5.3 Difference in Filter Accumulated Coordinate Solution 

The same process was then performed on coordinate values obtained from the 

same data set, which was this time processed through Ashtech Office Suite 

(AOS), which was the first commercially available GPS/GLONASS processing 

package released by Ashtech. Further details of AOS can be found in Ashtech 

[1997]. The results from this test are presented in Table 5.4. 

Table 5.4 Difference in AOS Accumulated Coordinate Solution 

It is obvious from examining the results presented in Table 5.4 that the GPS 

only solution obtained from AOS is grossly in error. The same data set was 

processed numerous times through this processing package, with the same 

results being obtained on each occasion, before Ashtech were contacted. No 

satisfactory explanation was however received. The results for GLONASS only 

and mixed GPS/GLONASS are however reasonable, but not of the same level 

of accuracy as returned from Filter. 

In summary, both the epoch by epoch and accumulated positioning routines 

have been successfully altered to process both GPS and GLONASS 

observations. In the case of epoch by epoch positioning especially, the 
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potential benefits of the GLONASS system have been demonstrated. Also, the 

accuracies of the GLONASS solutions detailed above, act as further proof as to 

the validity of the ephemeris computation software detailed in Section 5.2. 

5.4 PANIC 

PANIC is the name given to the main GAS processing module. It takes the 

. 
SP3 and NOT format files produced by Con2SP3 and Filter respectively, and 

produces either code or carrier double difference position solutions. Another 

function of PANIC is to further reformat and combine the observational and 

ephemeris data into single file called a GASFILE, which serves as the input to 

NOTF. With the successful completion of the modifications necessary to both 

Con2SP3 and Filter, this was the next routine to be modified. 

As both the GLONASS ephemeris and observational data had been already 

altered to the specified format, the number of changes required within PANIC 

were not as far ranging as those in the earlier routines. After altering, where 

necessary, the arrays to accept SVIDs up to 56, and specifying an additional 

read routine to enable both GPS and GLONASS ephemerides to be read in 

simultaneously, combined GPS/GLONASS pseudorange data was processed 

for the first time. Initially, it was intended to single difference the GLONASS 

carrier phase observations, while continuing to double difference the GPS 

carrier phase observations. However, after extensive attempts at modifying the 

code to achieve this, it was decided to abandon this approach. This was 

because, while PANIC was originally written to be flexible for future 

modifications, the extent of the modifications necessary for GPS/GLONASS 

integration were never considered by the original authors. For example, issues 

such as choosing GPS/GLONASS base satellites and changes necessary to the 

storage arrays, would have necessitated major structural changes in all aspects 

of the program. Therefore a second approach was devised and adopted where, 

by simply scaling the GLONASS carrier frequencies to that of GPS (Chapter 
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4), one base satellite only need be specified, and the standard double difference 

carrier phase solution remains valid. The one drawback of this technique is that 

the resultant GLONASS ambiguities are non-integer. 

5.4.1 Validation of PANIC 

As with Filter, it was necessary to quantify the validity of the changes made to 

PANIC, and quantify the potential effect of combining GPS and GLONASS in 

double difference code and carrier phase solutions. The results of the tests 

performed on the same data set, as detailed in Section 5.3.1.3, are described 

below. 

5.4.1.1 Reformatting the Data 

During the development of the kinematic GPS processing software (NOTF), 

that would use as its basis the single difference observable, it was decided to 

use the tried and tested routines within PANIC to perform the initial data 

management. Extensive tests of PANIC had validated its ability to produce 

accurate and reliable GPS satellite positions, tropospheric delay values, 

elevation angles, and pre-organised single difference observables. The output 

from PANIC was therefore combined in a single output file, the GASFILE, 

which served as the initial input to NOTF. The first test performed on the new 

version of PANIC was to ensure that the contents of this GASFJLE remained 

valid for combined GPS/GLONASS observations. 

An example of a GASFILE is included in Appendix A. By comparing the code, 

carrier and ephemeris information within this file, with the same information 

in the corresponding NOT, and. SP3 files, this information was validated, as it 

remained the same. It is worth noting that, if the only reason for using PANIC 

is to obtain the GASFILE then, the GLONASS carrier phase information 
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present in the NOT input files, should not be scaled to the GPS frequency. 

This is because NOTF uses single differencing by satellite observables, and 

therefore the problem of differencing between satellites is not experienced. 

A full description of the format of the GASFILE can be found in Hansen 

[1996]. However in summary, the information included at each epoch contains 

the observations outlined above and in addition elevation and tropospheric 

delay values calculated for each satellite at each epoch. However, as neither of 

the routines used to calculate these values uses as an input the carrier phase 

value, it was not necessary to alter these in any way, and the results obtained 

from them are equally valid for both GPS and GLONASS. 

5.4.1.2 Position Computation 

As already mentioned, PANIC can calculate double difference position 

solutions, from either code or carrier phase data. The results derived are 

therefore divided into two further sub-sections. All coordinates have been 

converted from their original Cartesian format, to Eastings, Northings and 

Heights by the process detailed in Section 5.1.1. 

5.4.1.2.1 Pseudorange ZBL Double Difference 

Solution 

The results obtained by processing the 90 minute data set for GPS only, 

GLONASS only, and finally GPS/GLONASS are detailed in the following 

tables. As can be seen from these results, quite a marked difference between 

the GPS and GLONASS solutions was observed. One possible explanation for 

this is the greater number of GPS observations used in the position 

calculations. In an attempt to quantify the effects of this, results of a fourth 
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test, whereby the number of GPS only observations used in the solution were 

reduced below the level of GLONASS only, have also been included. This was 

achieved by flagging random GPS satellites as being unhealthy within Filter, 

and was performed to make a direct comparison of GPS and GLONASS more 

valid. Clearly for such a comparison to be fully valid, the constellations of the 

satellites in both systems would need to be identical, but by reducing the 

number of observations used in the solution, it was hoped to see if there was 

any noticeable effect on the results. 

As with the single point positioning experiment detailed in Section 5.3.1.3, it 

would have also proved beneficial to compare the results presented below, 

with those obtained through commercial packages. However, WinPrism does 

not have the facility to process pseudorange data, and AOS experienced 

difficulties in processing the data set successfully. 

Table S. 5 PANIC Pseudorange Residuals 

Table 5.5 lists the rms. residuals associated with each of the solutions. The 

partial nature of the GLONASS constellation is reflected in the fact that there 

are approximately only two thirds the number of observations used in the 

GLONASS only solution, as in the GPS only solution. As expected, the mixed 

solution delivers the most observables, with a total which exceeds the sum of 

the number of observations for GPS and GLONASS only, as these specified a 

different base satellite for each solution while the combined solution uses only 

one such satellite. Looking at the rms. double difference residuals, it is 

immediately obvious that the most precise results have been achieved through 

using GPS alone. This is a complete reversal from the results obtained through 
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using the stand-alone positioning routines within Filter, and demonstrates how 

the effects of S/A can be removed through differencing the observations. Even 

when the number of observations used in the GPS solution are reduced to a 

lower level than those in the GLONASS solution, there is no major change in 

the precision achieved, which still remains some ten times that of GLONASS. 

In an attempt to explain the comparatively poor precision of the GLONASS 

observations, PANIC was run again, this time with the coordinates of both 

stations fixed to the truth value. The resulting residuals of each satellite pair 

would highlight any errors in the data, as the expected result on a ZBL should 

be zero. 

The associated residuals between each satellite pair have been reproduced in 

Figure 5.8 for each of the three satellite combinations. Figure 5.8 (A) shows 

how the double difference residuals between satellite 15, the base satellite in 

this case, and all other GPS satellites, appear to be random in nature, with a 

mean oscillation of +/- 0.2m, and have no bias. The GLONASS double 

difference residuals, this time with satellite 35 acting as the base satellite, are 

presented in Figure 5.8 (B). It is immediately obvious from this, that the 

residuals of all the satellite combinations are biased. The extent of this bias 

ranges from 0.5 metres for satellite pair 35-50, upto 1.5 metres for satellite pair 

35-36, and appears to be quite consistent throughout the entire processing 

period. This finding agrees with published results from other research projects, 

for example, Hall et. al., [1997] quote observed pseudorange biases in the 

region of 1-3 metres on their GG-24 receivers. Indeed, Ashtech themselves 

experienced pseudorange biases of 1.5 metres in various ZBL tests used in the 

evaluation and development of their receivers [Gourevitch et. al. 1996]. 

These inter-channel biases, as they are more commonly known, are caused as a 

result of the same GLONASS signals taking different times to travel through 

the Radio Frequency (R/F) section of each receiver. This is due to the fact that 

each GLONASS satellite broadcasts on a different frequency, and so it is not a 

problem for GPS satellites, which all broadcast on the same frequency. This 

partly explains why the precision of the GPS observables is much better. 
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Figure 5.8 Panic Pseudorange Residuals between Satellite Pairs 
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Finally, Figure 5.8 (C) shows the pseudorange delay between satellite 15 and 

all other satellites. Again all GLONASS satellites exhibit some inter-channel 

bias, the extent of which is this time marginally greater, as the frequency 

difference between GPS satellite 15 and all GLONASS satellites, is greater 

than the difference between them and GLONASS satellite 35. This also 

explains why the rms. errors quoted in Table 5.5 for the mixed solution are 

larger than those for the GLONASS only solution. 

Table 5.6 Difference in PANIC Pseudorange Coordinate Solution 

Table 5.6 presents the values of the final baseline vectors for the various 

combinations on the ZBL. Bearing in mind that the residuals should be zero, 

the results show the GPS only combination to be, by some considerable 

margin, the most accurate. By reducing the number of observables to the level 

used in the GLONASS computation, some degradation in the results can be 

seen to have taken place, but accuracies still remain at the centimetre level. By 

far the worst set of values, are obtained by using only GLONASS satellites in 

the position computation. This is as a direct result of the inter-channel biases 

detailed above, and represents a major shortcoming of the FDMA system used 

in GLONASS. By combining both systems, accuracies at the decimetre level 

are achieved. 

To summarise, this experiment not only proved the validity of the alterations 

made to the software in terms of pseudorange processing, but also highlighted 

a major weakness of the GLONASS system. Under good conditions for 
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satellite surveying i. e. unobstructed skies, the best position accuracies using 
differenced Pseudorange observations is achieved using GPS alone. 

5.4.1.2.1.1 Pseudorange Bias Repeatability 

From Figure 5.8 it appeared that there was the possibility that the pseudorange 

biases experienced could be consistent for each satellite. To investigate this 

further, two additional sets of ZBL data were each collected from the same 

location with an 8 day separation between them. This separation was chosen as 

the GLONASS satellite constellation has a repeat rate of 8 days (Chapter 2). 

Figure 5.9 (A) shows the recorded residuals for three GLONASS satellites over 

a 30 minute period on 20th August 1998, whilst Figure 5.9 (B) shows the 

residuals for the same satellites over the same period on 28th August 1998. 

From this it can be seen that the biases appear in the same order between the 

two sets. However, as neither the magnitudes or their relationships remain the 

same it cannot be concluded that the bias is an interfrequency bias caused by 

oscillation errors within the GLONASS satellites themselves. It was therefore 

decided that the magnitude of the bias could not be directly predicted from the 

signal frequency. It is worth noting that, while the residuals obtained for all 

GLONASS satellites on 20th August 1998 were consistent, this was not the 

case, with the exception of the residuals used in Figure 5.9 (B), for all the 

GLONASS residuals obtained on 28th August 1998. This was symptomatic of 

some data sets obtained from the Ashtech GG-24 receivers used throughout the 

-project (Section 5.6). 
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Figure 5.9 Panic GLONASS Pseudorange Residuals over 8 Day Cycle 
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5.4.1.2.2 Carrier Phase ZBL Double Difference 

Solution 

The same Zero Base-line data set was processed through PANIC, using the 

carrier phase data. However, a reduced GPS solution, as used in Section 

5.4.1.2.1 was not calculated, as the previous test using the pseudorange data 

had found the effect on position to be minimal. In addition, the data was also 

processed with commercially available AOS software to obtain some kind of 

comparison as to the performance of the IESSG software. 

Table 5.7 PANIC Carrier Phase Residuals 

The residuals associated with each of the PANIC solutions are presented in 

Table 5.7, and as expected, each shows a much greater precision than the 

associated pseudorange solutions described in Table 5.5. Again, the most 

precise results are obtained using the GPS satellites alone, but this time the 

differences between the various solutions are much less pronounced. The 

GLONASS solution does not show the same high residual values, as was the 

case with the GLONASS pseudorange solution, suggesting that the receiver 

bias is much less pronounced when dealing with carrier phase data. The reason 

for this could be the different paths the code and carrier phase data take 

through the various R/F and signal processing parts of the receiver. This has 

not been investigated further as it lies outwith the area of expertise within the 

IESSG and bounds of the research project. 
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Figure 5.10 illustrates this lack of bias by showing a double difference satellite 

residual in cycles for each combination. Only one such difference between 

GPS-GPS and GPS-GLONASS satellites has been shown, to maintain clarity, 

but all have been examined and found to give similar results. They show the 

GLONASS residuals to be in the region of 1 centimetre, approximately three 

times the level of those of GPS, but with a mean value of zero. Again this 

agrees with Ashtech's own quoted accuracies, as Gourevitch et. at. [1996] 

found typical double difference RMS residuals of 4 millimetres for GPS and 12 

millimetres for GLONASS. 

Table 5.8 Difference in PANIC Carrier Phase Float Coordinate Solution 

There are within PANIC two forms of carrier phase positioning. The first of 

these is a float solution, where-by no attempt is made to fix the integer 

ambiguities. The resultant misclosures on the ZBL for this type of solution are 

presented in Table 5.8. As can be seen, the values obtained from each of the 

solutions are accurate to the millimetre level in plan, and centimetre level in 

height. From this set of results it is clear that the changes implemented within 

not only the Float positioning routine within PANIC, but also the scaling of the 

GLONASS carrier frequencies to that of GPS within Filter, were implemented 

correctly. It is also worth noting that, unlike the double difference pseudorange 

solution detailed in the previous section, achievable accuracies using double 

difference carrier phase observations are not reduced by combining GPS with 

GLONASS. 

The second method of carrier phase positioning within PANIC is to attempt to 

resolve the unknown integer ambiguities. However, as already described, the 

119 



Chapter 5: Software Development and Validation 

Figure 5.10 PANIC Carrier Phase Residuals between Satellite pairs 
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process of scaling the GLONASS frequencies to GPS has the effect of 

destroying the integer nature of the GLONASS ambiguities. It is however still 

possible, in a combined solution, to include all observations in the search for 

GPS integer ambiguities only, while floating the GLONASS ambiguities. It 

was this approach that was implemented within PANIC. 

The results of the ambiguity search process for both the GPS only and mixed 

solutions did, on both occasions, give the same set of integer ambiguities. 

However, when the GLONASS observations were included in the calculation, 

only one ambiguity combination passed the initial cut-off test in comparison to 

three passing with GPS. This is a potential advantage of the mixed solution, as 

all incorrect ambiguity solutions were, in this case, immediately dismissed, 

making it impossible for the search to adopt incorrect values. 

Table 5.9 Difference in PANIC Carrier Phase Fixed Coordinate Solution 

Table 5.9 shows a slight improvement in coordinate accuracy for both the GPS 

only and mixed solution, demonstrating the advantage of fixing integer 

ambiguities correctly. These represent the highest position accuracies 

achievable by processing the static data set through the IESSG's software, and 

prove mixed double difference carrier phase data to be potentially very useful. 

Table 5.10 Difference in A OS Carrier Phase Coordinate Solution 
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Both float and fixed results for the mixed constellation, as calculated by AOS, 

are listed in Table 5.10. When these results are compared with the 

corresponding results obtained using PANIC in Tables 5.8 and 5.9, it can be 

seen that, in both cases, the values obtained are very similar, with errors at the 

millimetre level for the float solution, and sub-millimetre level for the fixed 

solution. 

5.5 NOTF 

The NOTF program is the most recent addition to the suite of IESSG 

processing software. It was designed as an ambiguity resolution on-the-fly 

program, to be used with both static and kinematic data, and uses as the basis 

for its ambiguity search, the method proposed by Euler and Landau [1992]. A 

full description of NOTF can be found in Hansen [1996], but the basic 

principles behind it can be outlined as follows. A simple Kalman Filter, 

formulated in a UD factorised manner [Bierman, 1977] with a Random Walk 

update, is used to add observations to the equation system and also to produce 

the covariance matrix and initial residual values which are used in the search 

itself. Observations are added sequentially, and it is possible to process a 

number of code and carrier combinations. However, as the receiver used to 

gather the GPS/GLONASS data was single frequency, all results obtained 

through NOTF are based on only L1 code and carrier observations only. As the 

observables formed within NOTF are single difference (Chapter 4) the problem 

created for carrier phase positioning, by different GLONASS satellites 

broadcasting on different frequencies, is not encountered. This means that the 

GLONASS carrier phase counts need not be scaled to the frequency of GPS, 

and thus the integer nature of their ambiguities is maintained. Therefore, 

integer ambiguity resolution of GLONASS observables is possible using NOTF 

(Chapter 4). The ambiguities are said to have been successfully resolved when, 

the lowest sum of the squared residuals for a particular ambiguity combination 

is significantly better than that of the next best combination. The level of this 
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difference is dependent on the confidence level and the statistical technique 

employed. This is discussed in some detail in Hansen [1996], and throughout 

all tests performed by the author, the recommended combination of a Fischer 

test ( F-test) at the 99 % confidence level, using a search range of +/- five 

cycles, has been used. 

With the successful alteration of PANIC to produce the required input of 

combined GPS/GLONASS data for NOTF, the changes required within NOTF 

were not as far reaching as in the modification of the earlier programmes. As 

with the positioning routines within Filter, two clock unknowns have to be 

solved for when single differencing combined GPS/GLONASS data, as each is 

referenced to a different time scale (Chapter 3). In doing this however, an extra 

observation is needed to solve for this extra unknown and thus, one of the 

major benefits of combining the systems, that of extra satellite visibility, is 

somewhat reduced. However, as both these system times are highly stable it is 

possible, once each clock correction has been determined, to simply continue 

solving for one clock, and apply the update to the second. This reduces the 

number of position unknowns back to four, so reducing the minimum number 

of observations required for a position to be derived to the same level. A 

position solution can therefore still be derived with, for example, two GPS and 

two GLONASS satellites. This procedure has been implemented within NOTF. 

As illustrated in Figures 5.8 and 5.10, there are considerable differences, not 

only between the associated errors of the code and carrier measurements, but 

also between the GPS and GLONASS systems. The existing version of NOTF 

had already taken this into consideration for GPS observations, with the carrier 

phase observations receiving much higher weighting than the pseudoranges in 

the Kalman Filter. Clearly some sort of weighting would also have to be 

applied to the GLONASS measurements if the best possible results were to be 

achieved. To determine the levels of this weighting, the single difference 

residuals for both Code and Carrier Phase data produced, with both station 

coordinates fixed, were examined. These results are presented in Figure 5.11 

and Figure 5.12 respectively. 
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Figure 5.11 (A) shows the GPS pseudo-range residuals to each satellite, as 

having a mean of approximately zero, and to oscillate about this value with an 

amplitude approaching +/- 0.1 metres. The situation for the GLONASS code 

residuals, depicted in Figure 5.11 (B), shows each satellites residual, with the 

exception of SV 44, having a consistent bias, which ranges between 

approximately +0.75 metres and -1.00 metre. When the observations from 

both systems were combined, the results shown in Figure 5.11 (C) were 

obtained. From this it was decided that the GLONASS code observations 

should be down weighted, with respect to those of GPS, by a factor of three in 

the Kalman Filter. 

The GPS Carrier Phase residual is examined in Figure 5.12 (A) and shows a 

mean of approximately zero in all cases, with an amplitude of +/- 0.015 cycles. 

Unlike its pseudorange data, the GLONASS carrier phase residuals shown in 

Figure 5.12 (B) have no obvious bias and oscillate around zero by 

approximately +/- 0.3 cycles. These results are again combined in Figure 5.12 

(C), and from these it was decided to down weight GLONASS carrier phase 

data by a factor of two in relation to GPS carrier phase observations. 

It is acknowledged by the author that accommodating a bias by downweighting 

the biased observations with respect to the unbiased ones is not correct, as this 

degrades the GLONASS pseudoranges more than is statistically necessary. A 

better way to approach the problem would be include these biases as a state in 

the Kalman filter and to determine it over a period of time. Due to time 

restrictions on the research, this has not been investigated, but certainly should 

be examined if further research into this area is undertaken. To minimise the 

effect of these biases on the resultant position accuracy, it was decided to adopt 

the weighting policy detailed above. 

All subsequent results obtained through NOTF, and presented in this thesis 

have used these levels of relative weighting between the GPS and GLONASS 

observations. Further details of the weighting values decided upon for GPS 

code and carrier observations can be found in Hansen [1996]. 
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Figure 5.11 NOTF Pseudorange Residuals for Each Satellite 
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Figure 5.12 NOTF Carrier Phase Residuals for Each Satellite 
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5.5.1 Validation of NOTF 

Unlike all previous software packages described, NOTF does not reformat and 

output the data in another form. Instead, the only output is a position and an 

associated set of statistics, at each epoch. As with PANIC however, NOTF can 

produce differenced solutions from both code and carrier phase observations. 

These results have therefore again been split into two parts, and been 

transformed and projected onto OSGB NG. 

5.5.1.1 NOTF ZBL Pseudorange Solution 

The error in the GPS single difference pseudorange solution, in terms of plan 

and height, are presented in Figures 5.13 (A) and 5.14 (A) respectively. These 

show the error to range between approximately 0.3 metres in Easting, 0.5 

metres in Northing, and 0.7 metres in Height, and have no apparent bias. The 

corresponding values for GLONASS are presented in Figure 5.13 (B) and 

Figure 5.14(B). These show a magnitude of error somewhat larger; 0.4 metres 

in Easting, 1 metre in Northing, and almost 3 metres in Height. Of more 

importance however, is the obvious positional bias of the solution, especially 

in plan, where the mean of the error values is offset by approximately -1 metre 

in Easting, and -0.2 metres in Northing. This reflects the results obtained when 

the same data was processed through PANIC, and is again as a result of the 

difference in inter-channel biases between the receivers. Finally, Figures 5.13 

(C) and 5.14 (C) demonstrate how, by downweighting the GLONASS 

pseudorange observations in the Kalman Filter, the effect of the mismatch 

between the receivers can be greatly reduced, and accuracies similar to those 

using GPS only achieved. These results are quantified in Table 5.11, which 

shows the rms. values of the errors in each axis, for each combination. From 

these, it can again be quite clearly seen that there is a bias in the GLONASS 

solution in all three axis of measurement. 
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Figure 5.13 Difference in NOTF Pseudorange Plan Coordinates 
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Figure 5.14 Difference in NOTF Pseudorange Height Values 
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Table 5.11 RMS Values of NOTFPseudorange Coordinate D fferences 

5.5.1.2 NOTF ZBL Carrier Phase Solution 

Carrier phase observations were then included in the Kalman Filter and the 

data set processed twice. In the first run, a float carrier phase solution was 

produced, while on the second attempt, an ambiguity search was performed 

and a resolution of the ambiguities attempted. As a comparison, the same 

techniques were adopted when processing the data through WinPrism, which is 

another commercially available software package. The results of all these tests 

are detailed in this section. 

The error in coordinates derived from the NOTF float carrier phase solution is 

presented in Figures 5.15 and 5.16. Figure 5.15 is perhaps not wholly 

representative of the errors as, in all cases, the computed coordinates quite 

quickly converge to the truth values and therefore the scatter of errors on the 

plots predominantly represents this convergence time. This is well illustrated in 

Figure 5.16, which shows how the errors rapidly converge with time. The most 

rapid convergence can be seen to occur with the combined system, with a 

negligible height error after approximately 600 epochs. This compares to 800 

epochs for GLONASS only, and 1200 epochs for GPS only to reach the same 

level. Again these results are statistically quantified in terms of . rms values in 

Table 5.12. These show how, by weighting of the observations in the Kalman 

Filter, the greatest accuracies have been achieved with the combined system. 

This has been achieved for carrier phase data, but not pseudorange, as the 

GLONASS carrier phase data does not exhibit the same bias as is evident in the 

GLONASS pseudoranges. 
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Figure 5.15 Difference in NOTF Float Carrier Phase Plan Coordinates 
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Figure 5.16 Difference in NOTF Float Carrier Phase Height Values 
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Table 5.12 RMS Values of NOTF Float Carrier Phase Coordinate 

Differences 

The same data set was then processed again, but this time resolution of the 

integer ambiguities was attempted. In altering the code, which performs the 

search, to accept combined observations, it became necessary to make the 

search routine work only with combined data only, due to the complexity of 

the code. Search values are therefore only included for the combined solution 

only and, in comparison, the GPS only solution, which has been obtained from 

the original NOTF program. A full description of the technique can be found in 

Hansen [1996], but in summary the test employed to determine if the 

ambiguities had been successfully resolved was the Fisher Test at the 99 % 

confidence level, using a search range of +/- 5 cycles 

Table 5.13 presents the rms values of the coordinate errors, and shows the 

benefits of fixing the integer ambiguities to their correct values in a carrier 

phase solution. Again, it can be seen that the inclusion of the GLONASS 

observations has resulted in slightly more accurate position values. 

Table 5.13 RMS Values of NOTF Fixed Carrier Phase Coordinate 

Differences 
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Accuracies at a level of those presented above can only be achieved when the 

integer ambiguities have been correctly resolved. The output from the 

ambiguity search process is reproduced in Figure 5.17 (A) for the GPS only 

solution, and in Figure 5.17 (B) for the combined solution. It can be seen from 

this that the ambiguity values solved for the GPS satellites is, in both cases, 

identical, and agrees with the values calculated in PANIC (Chapter 5). 

However, the times taken to arrive at these values differ slightly, with the GPS 

only solution successfully resolving the ambiguities after 3 seconds (epoch 

126023), while the combined solution takes 17 seconds (epoch 126037). The 

relevant ambiguity search details for each of these epochs is reproduced in 

Appendix B. This shows that this delay is caused by the ratio between the 

residuals of the best and second best ambiguity combination not being 

significantly different enough to allow the F-test ratio to be passed. As the 

receiver clock correction is calculated using the pseudoranges, any error in 

these will translate to this correction. Now, as the GLONASS pseudoranges 

experience differing inter-channel biases, this will contaminate the GLONASS 

clock correction and an accumulation of data will be required before the 

correct value can be reached. This is the most probable explanation for the 

delay in the ambiguity resolution and highlights yet again the problems caused 

by differing inter-channel biases within the GLONASS pseudoranges. 

Table 5.14 shows the rms errors derived from WinPrism for both float and 

fixed mixed solutions. WinPrism is the latest GPS/GLONASS commercial 

processing software available within the IESSG, and further details of it can be 

found in Ashtech [1998]. Again these results agree closely with those obtained 

through NOTF, with the Fixed solution again giving the highest accuracy 

results. WinPrism employs a technique of forwards and backwards processing, 

i. e. once the ambiguities have been successfully resolved earlier epochs are re- 

processed with these integer values, and thus it is impossible to determine 

when the ambiguities were successfully resolved. 
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Figure 5.17 Integer Ambiguity Output From NOTF 
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Table S. 14 RMS Values of WinPrlsm Carrier Phase Coordinate Differences 

To conclude, the results presented in this section, not only prove the validity of 

the alterations made to NOTF, but also show how, by appropriate weighting of 

the observations from each system, the quality of both the single difference 

code and carrier phase position can be improved. 

5.6 Abortive Strategies 

Whilst the modifications detailed in this chapter suggest a smooth progress of 

work throughout, this was not always the case. As mentioned in Section 5.4, a 

great deal of time was spent attempting to modify PANIC to process 

GLONASS observations in a `Single Difference' manner, whilst maintaining 

the existing `Double Difference' approach with the GPS observations. 

Increasingly it became obvious that whilst conceptually possible, it was in 

practical terms impossible due to the existing structure of the code. Thus all 

research in this area had to be abandoned. 

A second problem experienced related to the standard of some of the data sets 

obtained from the Ashtech GG-24 receivers. The quality of the solutions 

obtained were for some of the data sets markedly worse than others, causing 

the author to question the processing rational. However, from comparing a set 

of results obtained using the modified version of GAS with results obtained 

from an outside source, Mike Stewart at Curtin University, using the same data 

set, it was concluded that the data set was in fact in error. Again a great deal of 

time was spent checking and re-checking the code modifications in an attempt 
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to account for these apparent errors which resulted from the poor quality input 

data. 

5.7 Summary 

It has been proven from the various experiments detailed above that all aspects 

of the GAS software that were altered for combined GPS/GLONASS 

processing are performing correctly. Indeed, it was from these results that the 

potential problems of inter-channel biases on the GLONASS pseudorange 

measurements were highlighted and quantified. The results clearly demonstrate 

the benefits of using GLONASS in single point positioning, but in differential 

code and carrier positioning, the advantages are less obvious. It is however 

worth noting that the data used in these tests was gathered under ideal 

conditions, with a clear unobstructed sky, allowing the signals from ample GPS 

satellites to be received. This is very rarely the case in the Real World, and is 

demonstrated in Chapters 6 and 7, where the various applications under which 

the GPS/GLONASS receivers have been tested are described and detailed. 
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Chapter 6 

Applications of GPS/GLONASS 

Positioning 

6.1 Introduction 

Whilst the tests carried out in the previous Chapter were useful in determining 

the validity of the changes made to the software, the conditions under which 

the data was gathered were quite favourable for satellite positioning i. e. clear 

unobstructed skies. In order to make some attempt at quantifying the benefit of 

combined GPS/GLONASS observations over GPS only observations during 

potential applications, two very different tests were performed. The data 

gathered was then subsequently processed through both the IESSG software 

and commercial software packages. Both the tests and their results are detailed 

and discussed in this Chapter. 
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6.2 Kinematic Mini-Bus Trials 

One of the largest growth areas for satellite positioning over the past few years 

has been in vehicular positioning. At the base level it can be used as the sole 

means of positioning individual cars, with the driver navigating from an 

electronic chart or following voice commands to a pre-specified destination. At 

the opposite end of the spectrum, it can also be used as a tool in integrated 

transport networks, which an increasing number of cities are developing. An 

example of one such system, called the Central Area Transit (CAT) system, 

can be found in Perth, Australia, where GPS has been successfully used since 

1996 as the primary means to position its fleet of buses. This CAT system has 

an on-bus electronic display and audio announcement upon arrival at each 

transit stop, giving passengers the location of the current stop and the 

destination of the next stop. In addition, electronic displays and audio 

announcements at transit stops inform waiting passengers of future bus arrival 

times. The whole system is controlled by a central computer, which monitors 

the location of each CAT city-bus in service (Tsakiri et. al., 1998). 

All such systems, regardless of their level of complexity, suffer from the same 

problems, namely the continuity and accuracy of position determination in 

areas of restricted visibility (urban canyons). Tall buildings, trees, high sided 

vehicles and subways all serve to block satellite signals, affecting the DOP 

values, and in a great many cases, making a position solution impossible to 

obtain. The most obvious way to reduce this effect is to increase the number of 

satellites in view, which in most cases should also improve the geometry of the 

satellite coverage. Clearly, one way of immediately achieving this is to 

combine the signals from the GPS and GLONASS systems, and thus an interest 

in the potential benefits presented through combined GPS/GLONASS 

operation has been particularly noticeable in this field. 

In order to attempt to quantify the extent of any potential benefit of 

GPS/GLONASS operation under such conditions, and to test the performance 
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of the IESSG software with data from a moving receiver, a trial was conducted 

around Nottingham. 

6.2.1 System Set-Up 

One GG-24, and one Z-12 (L1/L2 GPS) antenna were mounted on a University 

owned Mini-Bus using a roof rack specifically fabricated for an earlier project 

within the IESSG. The Ashtech Z-12 receiver was included to serve as a 

comparison as to the performance achievable using the most advanced GPS 

LI IL2 receiver technology, and to provide a similar L1/L2 dynamic data set, 

should future work require one. This set-up is depicted in Plate 6.1, which 

shows the antenna cables running through the window to the receivers, which 

were secured to the floor of the Mini-Bus. At the IESSG another GG-24 and Z- 

12 receiver were set-up to record data over previously coordinated points, and 

these would act as the base stations for post processed differential positioning. 

Plate 6.1 Roof Rack, Antenna and Cabling Set-Up 
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6.2.2 Mini-Bus Route 

Commencing at approximately 14: 40 (BST) on 18`x' August 1998, the Mini-Bus 

was driven along a pre-determined route from the University through 

increasingly built-up residential areas, and through the centre of Nottingham, 

to a point approximately 1.5 km from the town centre. At this point the Mini- 

Bus was stopped for a period of approximately 60 seconds to check the 

securness of the antennas and roof rack. The mini-bus was then driven back 

along the same road towards the centre of the city before following a different, 

but similarly demanding route back to the University Campus. Plate 6.2 shows 

the situation on leaving the Campus area, and as can be seen, the visibility is 

reasonably unobstructed. This however is not the case in Plate 6.3, which 

shows the conditions in the centre of Nottingham. Finally, Plate 6.4 gives an 

impression of the conditions encountered on the return route to the University 

of Nottingham, and is typical of more suburban tree lined environments. With 

the Mini-Bus remaining stationary for 60 seconds prior to driving off and on 

returning, the total duration of the trial was 35 minutes. With a logging interval 

of 1 second, this equates to 2100 epochs of data. 

Plate 6.2 Conditions on Leaving the University Campus 

ý, 
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Plate 6.3 Conditions in the Centre of Nottingham 

Plate 6.4 Conditions on the Return Journey to the University Campus 
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6.2.3 Mini-Bus Trial Results 

Figure 6.1 shows the number of GPS and combined GPS/GLONASS satellites 

visible to the receivers mounted on the mini-bus throughout the trial. The 

benefits of combining the systems is quite clearly seen, especially around 

epochs 300 and 1640, when the Mini-Bus was travelling through increasingly 

built-up areas, resulting in there being less than the minimum requirement of 

four satellites simultaneously visible to solve for a 3-D position, on a number 

of occasions. However, with both GPS and GLONASS combined, this was the 

case much less often. The maximum satellite availability in Nottingham, for 

the GPS and GPS/GLONASS constellations, at this time is presented in 

Appendix C2, and these figures show that throughout the trial period, a 

minimum of five extra satellites were present in the GPS/GLONASS 

constellation. 

Figure 6t 1 Satellite risibility throughout Mini-Bus Trial 

VISIBILITY PLOT 

14 - 
12 

10 
g  GPS/GEONASS 

ö6  GPS ONLY 

E2 
20 
z 

1 501 1001 1501 2001 

EPOCH 

The data collected was first processed through Filter to derive a Stand Alone 

position at each epoch. Figures 6.2 (A) shows the plan solutions obtained for 

the GG-24 GPS only solutions. A position solution was derived on 1816 of the 

2100 epochs, which equates to 86% of the total. This Figure also shows the 

location where Plates 6.2 - 6.4 were taken (points 1-3 respectively). Figure 6.2 
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Figure 6.2 Filter Stand Alone Code Positioning 
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(B) shows the combined GPS/GLONASS solution, and in this case a position 

was successfully computed on 1935 epochs (92% of the total). It is worth 

noting that a minimum of five simultaneously visible satellites are needed for 

an autonomous GPS/GLONASS position (Chapter 3). The effects of S/A, 

which can be seen in parts of Figures 6.2 (A), have also been reduced, although 

the error in a number of the GPS/GLONASS positions is quite apparent. A 

potential cause of this could be high multi-path effects experienced in 

particularly built-up environments. 

Differential pseudorange solutions were then derived using NOTF for the same 

two combinations, the results of which are shown in Figure 6.3. Figure 6.3 (A) 

shows the results obtained using only GPS satellites, and as expected the 

quality of the position solutions is greatly improved in comparison to stand 

alone positioning. When GLONASS is included in the differential solution 

(Figure 6.3 (B)), the number of epochs for which a solution is achieved is 1984 

epochs (94% of the total). This slight increase in the number of fixes over 

GPS/GLONASS stand alone positioning results from code alterations within 

NOTF which allow for a single clock correction to be solved for when there 

are only four GPS/GLONASS satellites in view (Chapter 5). As with the 

GPS/GLONASS pseudorange solution there is significantly more scatter in 

some of the positions. 

To compare the results depicted in Figure 6.3 with those obtainable with 

commercially available software, AOS was used to process the pseudorange 

data, differentially. With only the GPS observations included in the 

computations, a position solution was derived on 1532 epochs (73% of the 

total), and when GLONASS was included this figure rose to 1746 epochs (83% 

of the total). These results are depicted in Figure 6.4 and can be seen to agree 

well with the positions shown in Figure 6.3. A position solution is obtained less 

frequently using AOS than NOTF, with both GPS only and combined 

GPS/GLONASS solutions. This could be due to AOS rejecting data when 

either the PDOP or Signal to Noise Ratio (SNR) rise above predefined levels, 
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Figure 6.3 NOTF Differential Code Positioning 
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Figure 6.4 A OS Differential Code Positioning 
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although the author can find no information directly relating to this in the 

reference manual [Ashtech, 1997]. 

NOTF was then used to process the carrier phase data for both the GG-24 GPS 

only and combined GPS/GLONASS data sets. These results are depicted in 

Figure 6.5 (A) and (B) respectively, and show the quite marked effect of cycle 

slips (Chapter 4) on the carrier phase position solution. This highlights an area 

within the NOTF software that requires specific attention, as no attempt is at 

present made within the software to detect and repair cycle slips. Indeed, the 

situation is worsened when the GLONASS observations are included, as 

solutions are still derived using the most discontinuous data. 

As a comparison to the NOTF carrier phase results, WinPrism was used to 

process the GG-24 carrier phase data using both the GPS only and 

GPS/GLONASS combinations. WinPrism includes cycle slip detection and 

repair routines, and processes the data iteratively to obtain the highest accuracy 

position results, further details of which can be found in Ashtech [1998]. 

Figure 6.6 (A) shows the results obtained for GPS only data, with 1610 epochs 

out of a possible 2100 epochs being processed (77% of the total). When 

GLONASS is included (Figure 6.6 (B)), the number of epochs for which a 

solution is obtained rises to 2008 epochs (96% of the total). It can be clearly 

seen that the problem of cycle slips has been overcome and highlights the 

potential benefits of combined GPS/GLONASS operation when processed 

through the latest commercial software. It should be noted however, that unlike 

NOTF, WinPrism is optimised for post-processing with data being iteratively 

processed backwards and forwards a number of times to produce the best 

possible results. This is clearly impossible for systems designed or optimised 

for real-time operation (as is the case with NOTF). 

Finally, the L1/L2 GPS carrier phase data gathered by the Z-12 was processed 

through NOTF. Figure 6.7 shows the results obtained through NOTF. These 

clearly represent a major improvement in position accuracy over the L1 only 
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Figure 6.5 NOTF Carrier Phase Positioning 
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Figure 6.6 WinPrism Carrier Phase Positioning 
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Figure 6 
.7 

NOTF Z-12 Carrier Phase Positioning 
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solutions of either GPS or GPS/GLONASS from the same program, with a 

solution being derived on 1470 epochs (70% of the total). The improvement in 

accuracy is as a result of the utilisation of the Widelane technique (Chapter 4) 

to define approximate coordinates, from which a more accurate L1 carrier 

phase position can then be defined. The decrease in the number of epochs for 

which a position is derived, from that using GPS only observations from the 

GG-24, appears to be as a result of the Z-12 taking slightly longer to acquire 

the satellite signals. This is confirmed when the RTNEX observational files of 

both receivers are compared, and is perhaps as a result of the Z-12 searching 

for both the L1 and L2 signals instead of only the L1 signal, as is the case with 

the GG-24. 

It was initially hoped to quantify the accuracies of the various combinations by 

overlaying the track plots onto OS 1: 1250 digital map data of Nottingham. 

However, this data only became available to the author towards the end of the 

research project and came as NTF (National Transfer Format) files. This 

format proved to be particularly difficult to manipulate, and while each sheet 

could be readily viewed using OSView [Ordnance Survey, 1999], the data 

could not be exported to a more suitable file format i. e. DXF (Drawing 

Interchange Format). It has therefore been assumed that the track plots are 

correct if they describe a continuous smooth line, as this was the case with the 

actual vehicle motion. Sudden deviations from this can thus be assumed to be 

grossly in error. 

6.2.4 Conclusions 

The results detailed above confirm that there are undoubted benefits to be 

gained from combined GPS/GLONASS code phase positioning in vehicle 

navigation. In the case of autonomous positioning there was a 6% increase in 

the fix density produced throughout the trial, and when differential 

pseudoranging was used, this rose to 8%. Processing the carrier phase data has 
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highlighted the present problem caused by cycle slips within the NOTF 

software. Hansen [1996] and Roberts [1997] have examined this, but much of 

this research concentrated on using L1/L2 data, which in the case of 

GPS/GLONASS has not been available to the author. An investigation into and 

the implementation of Cycle Slip detection and repair on single frequency 

GPS/GLONASS data are therefore recommended. The benefits of using dual 

frequency carrier phase data in areas where cycle slips are likely to occur is 

also proven. Processing the data through NOTF results in a 16% reduction in 

the fix density in comparison to the L1 GPS solution, but the accuracy of the 

position solution is greatly enhanced. 

6.3 Bridge Deflection Monitoring 

A second very different application to vehicular positioning, for which the 

possibility of using satellite positioning is receiving interest, is that of 

monitoring the movement of large structures. This area of research is of 

particular interest within the IESSG who, in partnership with Brunell 

University have proposed the use of GPS in producing a health monitoring 

system for large scale structures. As part of this investigation various trials 

have been performed on The Humber Bridge since 1995. All these tests 

primarily used the more advanced L1/L2 GPS receivers, but on more recent 

occasions both IESSG GG-24 receivers were also used. 

The Humber Bridge was opened to traffic in 1981, and at that time it was the 

longest suspension bridge in the world with a main span of 1,410m. The bridge 

runs in a virtually North-South direction over the Humber Estuary from Hessle 

to Barton upon Humber. Including the sidespans, the total length of the Bridge 

deck is 2,220m, and is supported by two reinforced concrete towers, which 

stand at a height of 155.5m above the estuary. 
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As is the case with all suspension bridges, the Humber Bridge is designed to 

allow for some movement, which is quantified in Ashkenazi and Roberts 

[1997] at a maximum of +/- 4m. The major controlling factor in this movement 

is not, as one would expect, loading from traffic, but wind loading. As the 

predominant wind direction in this area is West-East, perpendicular to the 

deck, it has been designed to act like an inverted aerofoil, exerting more 

negative lift as wind strength increases [Brown et. al., 1999]. 

To investigate the possibility of GPS being used to detect this movement, trials 

have been carried out with receivers mounted on both the bridge deck and 

support towers. It is these trials that are described in the following sections. 

6.3.1 Deflection of the Bridge Deck 

To investigate the deflection of the actual bridge deck under extreme traffic 

loading, a test was devised whereby five heavily loaded lorries, with a 

combined weight of approximately 160 tons were manoeuvred over the bridge 

in tight formation several times. In order to isolate the effect of this loading the 

bridge was closed to all other traffic. The test took place between 1: 30 AM and 

2: 20 AM (GMT) on 16t' February 1998 [to minimise disruption to the general 

public]. 

6.3.1.1 System Set-Up 

The full distribution of the receivers used on the bridge deck and on the 

support tower is detailed in Figure 6.8 and an example of how they were 

attached, depicted in Plate 6.5 A and B respectively. Three receivers were 

placed at the middle of the midspan (MIDE, 0010 and GG24), a fourth a 

quarter of the way along the midspan of the bridge (HUM 6) and a fifth at the 

middle of the southern span (0069). All of these receivers were Ashtech Z-12s, 
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apart from `GG24', which was an Ashtech GG-24 single frequency 

GPS/GLONASS receiver. Not shown on Figure 6.8 and located some 1.5km 

from the centre of the bridge is the bridge control tower, where a Z-12 and GG- 

24 receiver were positioned to act as base stations for the trial. As this control 

tower is not part of the bridge structure, it has been deemed to be stable. The 

Z-12 antenna was located over a point coordinated previously using GPS, 

while the GG-24 was positioned at an arbitrary point and coordinated with 

respect to the Z-12. 

Figure 6.8 Location of Receivers on the Bridge 
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6.3.1.2 Trial Description and Results 

The first stage in the trial commenced at approximately 01: 33, with all five 

lorries travelling southbound across the bridge at approximately 45 km/h. Due 

to a problem with the GG-24 base receiver, data was not successfully logged 

until 01: 36 and thus the effects of this pass were missed. A second pass then 

occurred at 01: 50, with the same five lorries this time travelling south to north 

across the bridge. After this, two of the lorries transited to the south side of the 
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bridge, in preparation for the final part of the trial. This consisted of two pairs 

of lorries driving simultaneously towards the centre of the bridge from opposite 

ends. When they reached the centre of the bridge at approximately 02: 08 they 

stopped and remained stationary for approximately 5 minutes before driving 

off. 

Plate 6.5 GG-24 Antenna Fastened to Bridge Deck and Support Tower 

A B 

For the purpose of this project it was felt necessary to examine the data 

gathered from only one dual frequency GPS receiver (MIDE), and the single 

frequency GPS/GLONASS receiver (GG24), as this would enable the 

evaluation of the relative results obtained through each system. For further 

information on the results obtained using all the available data, the reader is 

referred to Ashkenazi et. al., [1998]. 

Figures 6.9 (A) and (B) show the results obtained from points MIDE and GG24 

respectively, when the carrier phase data was processed through WinPrism at 

an interval of 5Hz and 2Hz respectively [the frequency with which the data was 

logged]. Both these quite clearly show the effect of the pass at 01: 51 as being a 

downward deflection of 0.5 metres. With the GG-24 data there is however 
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Figure 6.9 inPrism Bridge Deck Height Values 
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quite an obvious cycle slip at 01: 56 resulting in the height of the bridge deck 

falling by 0.6 metres. The subsequent loading of the two trucks at 02: 00, and 

all five trucks remaining stationary in the middle of the bridge between 02: 08 

and 02: 13 can also be readily detected, although the GG-24 readings for these 

events continue to be off-set by 0.6 metres. 

Figures 6.10 (A) and (B) represent the results obtained by processing the GG- 

24 carrier phase data through NOTF at a rate of 1Hz. It was necessary to 

process all data through NOTF at a maximum recording interval of 1Hz, as 

PANIC can only work to the integer second, and therefore the resultant 

GASFILE, which serves as the input to NOTF, was only updated at 1Hz. Figure 

6.10 (A) shows the results obtained using all the available satellites, and after 

the initial convergence of the Kalman Filter which takes approximately 3 

minutes 20 seconds, the results closely agree with those obtained through 

WinPrism until 02: 02, where a cycle slip deflects the height to 84 metres. 

Unlike WinPrism, which after experiencing a single cycle slip, returned good 

relative heights, this is not the case with NOTF, again demonstrating its 

susceptibility to cycle slips. Figure 6.10 (B) again represents the carrier phase 

solution output from NOTF for the GG-24 data. The data has however been 

manually inspected for cycle slips and satellites 24,25 and 28 removed from 

the solution altogether. The effects of all three events can now be seen and the 

deflections agree with those recorded in WinPrism. It is worth noting that the 

WinPrism solution does not appear to take any time to converge. This is 

because WinPrism iteratively forward and backward processes the data a 

number of times. NOTF does not do this, as it is optimised for real time 

applications where such post-processing would not be possible. 
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Figure 6.10 NOTF Bridge Deck Height Values 

A 

GG-24 Measured Height Value 

93 

.. 
92.5 

92 
91.5 

= 
91 

90.5 
90 

ýp ýp co ýp cc co cý co 
to .-r C) tl) e- C 

(D M 
2 CC) 

T- 
.. 

't It q* LO 0 

rrrrrr 
CV 

9 

(V 
0 T- 

NN 

TIME 

B 

GG-24 Measured Height Values 

93 
92.5 

92 
91.5 

"ý 91 -- , 
= 90.5 

90 
CD 
C) 

cD ro cD CO cC c0 co ca cD CO co 
(r) U) -M 1i) -M IL) 

c0 
N) 

a) CV) O) M (G C) C) 6 O) M6 
M d' `3 LO LL) U[) O Co O 

rr e- 
''NNNN 

TIME 

161 



fiter 6: Applications of GPS/GLONASS Positioning 

6.3.2 Deflection of the Support Tower 

On 12th January 1999, the Humber Bridge was visited again, and another 

deflection trial performed. Unlike the previous trial however, it was not the 

actual deflection of the bridge deck that was measured, but instead the 

deflection of the support towers. During this trial no excessive loading was 

used and so the results obtained reflect the movement experienced day to day 

by the towers. 

6.3.2.1 System Set-Up 

During this trial three receivers were located on the bridge, two Z-12s (HUM! 

& H[JM2) and one GG-24 (TOWR). Referring back to Figure 6.8, the relative 

locations of these receivers on the Hessel Tower is shown. As in the 

monitoring of the bridge deck, the Z-12 base station was located over a 

previously coordinated point on the roof of the bridge control tower and the 

GG-24 base station coordinated relative to this. 

6.3.2.2 Trial Description and Results 

The data analysed consists of that collected from the GG-24 and one of the Z- 

12's only, the second Z-12 only being included to act as a back-up to the first 

should it have experienced difficulties. As mentioned above, no specific 

loading of the bridge occurred during this trial, which instead simply consisted 

of logging data for a period of approximately 1 hour. It was hoped that in this 

time any cyclic movement of the tower could be detected, if indeed it existed 

at all. 
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Figure 6.11 shows the Easting, Northing and Height values obtained using the 

Z-12 data recorded at 5Hz, and processed using WinPrism between 12: 22: 00 

and 13: 13: 00 (GMT) on 120' January 1999. All three coordinate values show a 

consistency at the cm level, although the effects of a cycle slip at 

approximately 12: 32 can be quite clearly seen. From the coordinate values 

subsequent to this slip it can however be seen that it was immediately detected 

and corrected. 

Figure 6.12 shows the same values obtained through WinPrism, this time using 

the GG-24 data, which was also recorded at 5Hz. These results quite clearly 

demonstrate one of the major limitations of using Ll data, as the effects of 

numerous cycle slips can quite clearly be seen. In comparison to Figure 6.11, 

significantly more cycle slips can be seen to have occurred, and they have not 

been corrected, as subsequent positions experience a sudden jump due to the 

incorrect integer ambiguity being assigned. The reason for the Support Tower 

data being particularly prone to cycle slips can perhaps be explained when the 

location of the receiver antennas is examined (Plate 6.5 B). Unlike the earlier 

Bridge Deck trial, which offered a relatively unobstructed environment, the 

antennas on the Support Tower were surrounded by the superstructure of the 

bridge, and in particular a CCTV camera. 

Finally, Figure 6.13 shows the results obtained using the same GG-24 data, this 

time thinned to a recording interval of 1Hz, and processed through NOTF. As 

with Figure 6.12 the effects of cycle slips can quite clearly be seen, with their 

effects on the resultant coordinate values being much greater than was the case 

with WinPrism. Again this is as a result of a lack of adequate cycle slip 

detection and correction software being implemented within the IESSG suite 

of software. However, during periods where no cycle slips occur, the precision 

of the coordinates is comparable to those obtained through WinPrism. 
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Figure 6.11 1nPrism Z-12 Support Tower Coordinates 
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Figure 6.12 fnPrism GG-24 Support Tower Coordinates 
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Figure 6.13 NOTF GG-24 Support Tower Coordinates 
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6.3.3 Conclusions 

Clearly, from the results obtained from the bridge deflection trials, not only 

can it be deduced that satellite positioning can act as a valuable aid to the 

deformation monitoring of large structures, but also that the use of single 

frequency GPS/GLONASS can be used as an alternative to the more expensive 

dual frequency GPS equipment. However, as with the Kinematic Mini-Bus 

Trials, single frequency data is much more susceptible to cycle slips. This is 

confirmed from the second set of trials on the support tower, where the effect 

of the cycle slips on the Ll data can be quite dramatically seen with both the 

NOTF and WinPrism solutions, rendering the detection of any long term 

movement of the support towers impossible. Relative coordinate precision 

does however remain at the centimetre level, and so the detection of short-term 

movement of the bridge structure should still be possible. Unlike the bridge 

loading, the suitability of GPS and GPS/GLONASS to monitor the movement 

of the bridge support towers proved inconclusive as no discernible pattern in 

the movement could be detected from any of the results. 

6.4 Summary 

The trials detailed in this chapter cover the opposite ends of the spectrum of 

potential applications of satellite positioning. In both cases, the viability of 

using single frequency GPS/GLONASS has been proven using both 

commercially available and IESSG software. In the case of vehicular 

positioning, a very real advantage of combined GPS/GLONASS operation over 

that of GPS alone has been proven. The benefits in deformation monitoring are 

not so apparent, and indeed when compared to dual frequency GPS operation, 

single frequency GPS/GLONASS produces noticeably poorer results as cycle 

slip detection and correction is appreciably more difficult. This is especially 

L 
the case with NOTF, and therefore should be the subject of future 

investigation. However, with the recent introduction of dual frequency 
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GPS/GLONASS receivers, it is anticipated that these deficiencies would be 

dramatically reduced and GPS/GLONASS carrier phase accuracies mirroring 

those of dual frequency GPS achieved. 
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Chapter 7 

Real Time Kinematic Positioning 

for Setting Out 

7.1 Introduction 

Without a doubt, Real Time Kinematic (RTK) positioning offers the greatest 

flexibility and therefore has the greatest number of potential applications of 

any of the satellite positioning techniques. 

For example, a research project currently under way at the IESSG is focusing 

on the use of kinematic GPS/GLONASS to monitor river levels. To achieve 

this it is proposed to mount a satellite receiver on a river buoy together with tilt 

sensors and pressure transducers for attitude determination of the buoy. 

Communication satellites will then be used for the data-link between the buoys 

and reference stations. The ultimate goal is to automatically feed this river 
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height information into a Geographic Information System (GIS) package, 

enabling remote, real-time, high precision river level monitoring in a cost- 

effective manner. Preliminary results indicate that millimetric precision is 

achievable [Ashkenazi et. al., 1998]. 

An illustration of an application presently using and benefiting from such 

technology, is the navigation and docking system employed by Stena Sealink 

on their HSS 1500 `Super Ferry'. These ships use GPS as their sole means of 

positioning. To provide the varying levels of accuracy necessary for these 

applications, two separate systems have been installed. This set-up also 

provides some form of back-up should one of the systems fail. Figure 7.1 

illustrates this navigation set-up and in addition shows `snap-shots' of the 

Integrated Bridge Control System (IBCS). The centre bottom picture in 

particular depicts the confined areas in which the ship sometimes has to 

operate. 

Figure 7.1 Schematic of the Navigation System the HSS Ferries Rely on to 

Navigate and Dock [Garner, 19981 
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The primary RTK `GPS1' system uses, where possible, observations received 

from a reference receiver located in each port and transmitted to the ship via 

UIHF signals, where they are used to produce phase corrections. The achievable 

range of the system is approximately 8 kilometres and enables positioning to a 

quoted accuracy of 0.2 metres within narrow channels and confined docking 

areas. This level of accuracy is an absolute necessity, as unlike conventional 

ferries, the ship does not dock as such with ropes, but instead couples with a 

static'linkspan'. Various techniques such as ̀ laser ranging' were examined and 

evaluated before it was decided that RTK GPS provided the most reliable, 

accurate, quickest and therefore cheapest option. When in open water and out 

of range of the port beacon, the system then automatically switches to a DGPS 

system using MF transmitted pseudorange corrections, giving meter level 

accuracy, until reacquiring an UHF signal from the destination port once more 

[Garner, 1998]. 

As RTK systems provide instantaneous positioning and associated quality 

control values such as HRMS error values (Chapter 4), it is possible for the 

user to check in the field that the survey being performed is meeting the 

necessary accuracy requirements. In contrast, where data is post processed, the 

survey may need to be performed again, resulting in both financial and time 

penalties. 

To investigate the potential benefits of using combined GPS/GLONASS 

receivers over GPS only units, a set of tests designed to mimic a potential 

engineering survey, were carried out around the University of Nottingham 

campus. It is these tests, the results obtained, and the system that was used that 

are described in this chapter. It was decided to use a new chapter for this 

application, as both the equipment and the processing strategy used are largely 

specific to RTK positioning 
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7.2 RTK System Description 

The RTK system used throughout the trials described in this chapter is the 

Ashtech FieldMate, which is a real-time satellite positioning system designed 

specifically for land survey environments. It was necessary to exclusively use 

this system for RTK testing because, although optimised for RTK operation, 

NOTF cannot at present be used in this capacity, as the necessary data 

encoding/transmission/decoding software has not been written. Fieldmate 

consists of a base station with known coordinates transmitting its observations 

to the remote unit. The remote receiver then processes these internally, through 

a series of algorithms with its own observations, to derive a corrected position 

for the remote antenna, and if possible to fix ambiguities. Figure 7.2 outlines 

the system set-up and shows the base station to be made up of satellite 

receiver/antenna and a radio/modem system, while the remote unit consists of 

a satellite receiver/antenna, a radio/modem, and a handheld computer. 

Figure 7.2 Base and Rover Configuration /Ashtech, 19981 
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7.2.1 Satellite Receiver/Antenna 

RTK systems transmit all available code and carrier phase observables, 

received at the base station, to one or more remote receivers. Therefore it was 

thought appropriate to use both GPS Ll only and GPS L1/L2 data to gain 

maximum comparison with the GPS/GLONASS Ll observations. This meant 

that two receiver types had to be used. Two Ashtech GG-24 24-channel, single 

frequency receivers were utilised for all L1 only observations, and two Ashtech 

Z-12 24-channel (12 Ll and 12 L2), dual frequency receivers were used for the 

GPS L1/L2 observations. The appropriate antenna types, with the correct 

bandwidths (Chapter 2), were used in combination with the receivers. 

7.2.2 Radio/Modem 

The Radio/Modem component at the base station receives observations from 

the receiver, encodes and transmits these to the rover. The reverse process 

happens at the rover, with the signals from the base station being received and 

decoded into a format recognisable to the receiver. The antennas used are 

simple whip types, with the rover antenna being tuned to the frequency of the 

base station broadcast. 

The telemetry link used is the Racal Deltalink II UHF radio link. These can 

either be receiver/transmitter units or transceivers, which can be set up as 

either receivers or transmitters. The units operate within the 400-500 MHz 

frequency band and have seven available channels. The power output of each 

unit is 500mW, which is the maximum permitted within the UK without the 

need for a broadcasting licence. Although the range specification for these 

units, operating at the required baud rate (9600) for RTK positioning, is in the 

region of -20 km [Racal, 1995], it was found that when line of sight was no 

longer available this value was substantially reduced. Indeed any off-campus 

tests, with the base station remaining at the IESSG building, were found to be 
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impossible because of this, and thus the experiment was restricted to the 

localised area used. Roberts, [ 1997] showed that by using a relay station, which 

is basically a pair of transceiver telemetry links which receive transmitted data 

from the reference station and re-transmit it to the rover, it is possible to 

increase the operational range by a factor of two. It was however decided not 

to pursue this option, as this would not greatly increase the potential of the 

survey. 

Plate 7.1 depicts the roving receiver set-up. Shown, from left to right are a 

receiving data link, a Z-12 GPS receiver and the Husky handheld computer. 

The mount into which the receiver and data link are fitted is placed into the 

rucsack at the bottom of the picture, allowing ease of mobility between points. 

The receiving antenna is attached to the top right hand corner of this rucsack. 

Plate 7.1 The Roving Receiver Set-Up 
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7.2.3 Handheld Computer 

The handheld controller used is a Husky Field System 2 (FS/2) computer and is 

a rugged, all weather unit capable of data storage, data display and 

communication with the remote receiver. 

Running the FieldMate software from this platform, it is possible to initially 

configure in turn both the base and remote receiver via a serial cable link 

between controller and receiver. Once the system has been properly 

configured, operation and performance can be monitored. Position is 

transferred from the remote receiver to the controller by the same means and is 

displayed in the input format or, if specified, converted into local coordinates 

using transformation parameters specified by the user. 

Within the unit there are numerous additional functions available. A full 

description of these can be found in the Ashtech GPS FieldMate Operation and 

Reference Manual [Ashtech, 1998], but the main ones used in the survey are 

outlined below. 

Audible alarms within the Husky Hunter can be set to warn the operator when 

the survey is no longer reaching the specified accuracy. This specification of 

accuracy is achieved by defining the worst acceptable limit for the roving 

receiver's HRMS and VRMS values. This function proved particularly useful 

when approaching areas which had particular problems with restricted 

visibility. The FieldMate software also allows individual points to be 

simultaneously logged to both the receiver's internal memory and the internal 

memory of the Husky. Each individual point coordinate can then be simply 

viewed on the Husky display screen and easily downloaded to a P. C. for further 

analysis, without the need for any post-processing. This has particular benefits 

for applications such as setting-out, where a series of pre-defined points can be 

located and marked in real-time. The quality of these positions can then be 

checked very quickly, allowing minimum delay before building work 
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commences. All results presented in Section 7.4 have been gathered using the 

Husky internal logging function. 

It is also worth noting how the display functions that the unit offers are 

particularly beneficial when using the GG-24 receivers. As seems to be the 

current trend, the GG-24 comes simply as an OEM Board, mounted in a 

protective housing. Unlike the Z-12, which includes display screens for 

analysis and function setting, all programming of the GG-24 occurs through a 

serial connector and no provision is made for data analysis. Thus, without the 

handheld device, it would be impossible to have any indication of survey 

quality in the field. 

7.2.4 Processing Within The Roving Receiver 

The system described above makes use of the roving receiver's ability to not 

only track and record its own satellites, but also to receive, decode and process 

the base station's data, in order to perform ambiguity resolution and position 

computations in real time. This position and its associated statistics are then 

output via a serial connector to the Husky Hunter, where it can be seen by the 

surveyor/operator. 

As one would expect from the number of steps outlined above, this process has 

some latency associated with it. This has been quantified as being up to 2 

seconds, depending on baseline length [Ashtech, 1995], and therefore has to be 

accounted for. Within the FieldMate processing package, an option called Fast 

Carrier Phase Differential (Fast CPD) has been included to deal with this. 

With Fast CPD switched off the computation and subsequent display of 

position is delayed by this latency value. The coordinates displayed on the 

screen are therefore in the order of 2 seconds old, but the coordinate quality 
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should be higher as the true data from each receiver is processed from each 

receiver in a true differenced manner. 

When Fast CPD is enabled however, the situation is somewhat different, with a 

Kalman filter being used to forward predict from the actual data to allow near 

real time output, with a quoted latency of less than 50 milliseconds. This 

prediction is usually carried out on the reference receiver's observables, as 

these should change with a definite trend over time due to the static nature of 

the receiver. The same cannot be said of the rover's data, which may be subject 

to sudden and unpredictable changes in velocity. In addition, when dealing 

with the GPS observables, there will be some additional error since this 

technique does not correctly account for the effects of S/A [Roberts 1997]. 

The choice of CPD option to use is very much dependant on both the dynamics 

of the survey and the accuracy levels required. For instance, if the rover 

receiver is located on a car travelling at 70 km/h, then a2 second latency 

equates to an offset in position of 38.9 metres, and quite clearly the Fast CPD 

option should be enabled. If however, the dynamics of the rover are slower and 

it remains static at specific points of interest, as is the case with surveying, then 

it should be disabled, as this will give the greatest achievable accuracies. 

7.3 RTK Field Trials 

In order to investigate the potential benefits of a combined RTK 

GPS/GLONASS solution over GPS alone for a typical engineering Setting Out 

type application, the following trial was devised. A series of nine points were 

chosen at locations of varying difficulty for satellite observations i. e. close to 

buildings, under trees etc. Plate 7.2 shows the area in which these points were 

located, while Plates 7.3 and 7.4 specifically show observations being taken at 

points 07 and 08. It is worth noting how Plate 7.4 shows the sky-view of point 

07 to be extensively disrupted by buildings and vegetation. Indeed, as can be 
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seen from the results presented in Section 7.4, point 7 proved to be particularly 

difficult to survey. 

Starting and ending at a point with known location (Init. ), the coordinates of 

these nine points were then determined by traditional surveying techniques, 

further details of which can be found in Section 7.3.1. These coordinates were 

then assumed to be the truth for the rest of the survey. Starting and ending 

again at point Init. these points were then surveyed in a loop using a Fast 

Kinematic technique three times, with different receiver/option combinations. 

The results of these trials are detailed in the Section 7.3.2. 

Plate 7.2 The General Survey Area 

Plate 7.3 RTK observations being taken at point RTK 7 
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Plate 7.4 RTK observations being taken at point RTK-8 

7.3.1 Traditional Survey 

Traditional surveying techniques split position into two parts - height and plan. 

The height component was introduced by running three levelling loops from 

the nearest OS bench mark, which is located in the IESSG survey store. A 

single traverse was then run around the area to introduce plan, and where 

possible directly occupied the chosen points. However, as points 1,2,3,4,6 and 

7 had deliberately been selected to be tight against walls, it was not possible to 

include them directly as part of the traverse, since a tripod could not be set up 

over them. Instead, a prism was mounted on a surveyor's detail pole and held 

manually over the points whilst a distance and bearing were measured from the 

nearest point on the traverse. At the first point in the traverse, Init., which had 

known WGS 84 coordinates, observations to a second point, some 200 metres 

away, with known WGS 84 coordinates were taken. These coordinates were 

then transformed to OSGB 36 and projected onto OSGB NG using WinCODA 

(Chapter 5), to allow the bearing between them to be calculated and it was this 

that was used to orientate each traverse leg in turn. Although derived OSGB 
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NG plan coordinates obtained through this package are only accurate to 

approximately +/- 10 metres (Chapter 5), the localised extent of the survey area 

meant that the offset between the points was consistent. Thus, even though the 

absolute coordinate values would be in error, an accurate relative comparison 

could be drawn, which was the aim. 

All observations and computations for both the levelling and traverse 

operations are reproduced in Appendix D. Table 7.1 presents the final adjusted 

values for each surveyed point in OSGB NG. The height values are with 

respect to Mean Sea Level (MSL). 

Table 7.1 Coordinate Values of Each Point Derived from the Traverse and 

Levelling Loops 

INIT 454387.360m 338472.651m 38.686m 

1 454381.872m 338457.504m 39.175m 

2 454353.708m 338431.192m 39.168m 

3 454358.728m 338422.190m 39.167m 

4 454396.770m 338441.394m 36.140m 

5 454220.814m 338505.548m 53.540m 

6 454235.045m 338545.744m 52.304m 

7 454240.769m 338555.852m 52.271m 

8 454223.958m 338698.898m 50.023m 

9 454355.837m 338664.575m 43.631m 

As was the case with the known coordinate values used in the ZBL tests 

described in Chapter 5, some quantification of the accuracy of the coordinates 

quoted above must be made if they are to be considered as truth values. 

Examining the plan coordinates first, points Init and Tower, which are used to 

define the start coordinates and orientation of the traverse, were computed 
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from 2 hour carrier phase solutions using Ashtech Z-12 GPS data, the RMS 

values of which were, for both solutions, at the 2mm level. The traverse 

running from point Init., around all other points, closed back on its self to a 

vector distance 32mm and this error was distributed around the traverse by 

means of a Least Squares adjustment. It is therefore reasonable to expect the 

plan coordinates to be accurate to somewhere in the region of l0mm. 

Height was introduced to these traverse points directly, by levelling from the 

nearest OS benchmark, which is located within the IESSG building. It was 

installed by precision levelling from a second order benchmark in Nottingham. 

Now the quoted accuracy of fundamental benchmarks is 0.10m relative to 

absolute MSL. Primary levelling accuracy is +/- 5mm relative to this, and 

secondary accuracy +/- 5mm relative to primary. It would therefore be 

reasonable to assume the height component to be accurate only at the 

decimetre level. However, a constant height shift between the OS value and 

WGS 84 was defined by subtracting the WGS 84 height value calculated from 

another 2 hour carrier phase Ashtech Z-12 data set. The RMS value for the 

height component of this solution was 4mm. It is reasonable to adopt this value 

as the initial height accuracy, as this process will have accounted for the 

potentially larger error in the OS value. Three levelling loops were then run 

from the benchmark to the various points, and the misclosures of 4,2 and 

11mm evenly distributed around the levelling legs. As with the plan 

component, the accuracy of the height components of each point can thus be 

regarded as being at the centimetre level. 

7.3.2 Satellite Survey 

Unlike the traditional surveying techniques outlined above, when satellite 

positioning is used, the plan and height components are solved for 

simultaneously. This is because these systems solve for position in Earth 

Centred Earth Fixed (ECEF) Cartesian coordinates, of which plan and height 
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are both components (Chapter 3). Because of the way the constellation appears 

to receivers on the ground to be predominantly spaced around the horizon, in 

ideal conditions i. e. open space away from buildings and with an uninterrupted 

view, the height component is normally found to be the least reliable of the 

two. It could therefore have been thought to be reasonable to evaluate the 

worst achievable accuracies by examining the discrepancies in the height 

values only. However, as already mentioned, a great many of the points 

observed were close to building, and thus large portions of the sky were 

blocked from view. Depending on the nature of this obstruction, it could be 

possible that the plan component may in some of these cases be worse than 

height, and because of this both have been examined. Also, from examining 

both components, it has been possible to quantify absolute achievable position 

accuracies. 

In order to draw the best possible comparison of the potential results 

achievable through the use of satellite positioning, it was decided to occupy the 

same points on three separate occasions. All three of these trials happened in 

quick succession on 86' March 1999. The first of these started at 12: 24 pm 

(GMT), and used two Ashtech Z-12 GPS receivers. Because these units offer 

both Ll and L2 observables they provide theoretically the best accuracies. It 

was thus hoped that by comparing results obtained using this system with the 

subsequent Ll only trials, an indication of potential benefits or limitations with 

respect to dual frequency receivers could be drawn. This trial finished at 13: 06, 

and both Z-12s were then replaced with Ashtech GG-24 L1 receivers with both 

GPS and GLONASS capabilities enabled. This trial commenced at 15: 30 and 

lasted until 16: 01. Immediately after this the GLONASS capability was 

disabled, so in effect the receivers became an Ll only GPS unit. The survey 

was then carried out a final time, and all observations were completed by 

16: 32. A comparison between these last two sets of results would give a direct 

indication of the benefits, if any, of using both systems. 

Ideally, for a true like to like comparison to de drawn, the trials should have 

been performed on three consecutive days, with the trial commencing 4 
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minutes earlier each day. By doing this the GPS constellation would have 

remained the same for each trial. Initially this was the intention, but due to 

numerous problems with both the base and rover equipment, a full set of data 

for each trial could only be collected consecutively on 8t' March 1999. 

However, from Appendix C5, which contains satellite availability plots for 

both GPS only and GPS/GLONASS constellations on that day, it can be seen 

that during each of the three trial periods, the number of visible GPS satellites 

remained relatively consistent with each other. 

Again the results, which were in the form of WGS 84 Latitude, Longitude and 

ellipsoidal height, were transformed into OSGB 36 and projected onto OSGB 

NG Eastings and Northings using the WinCODA package. The height 

component was directly transformed to the OS Datum by applying a shift of - 

48.595 metres. As described previously, this value was derived from 

observations taken at another point on campus with known WGS 84 and OS 

height components and was a necessary step, as the height control for the 

points had been introduced directly from an OS Benchmark during the 

levelling survey. Thus it was not a function of the WinCODA program, and is 

therefore not subject to the same transformation errors. Not only could these 

coordinates now be directly compared to the known truth values, but all results 

could be more easily understood as the units were now in metres instead of 

degrees, minutes and seconds. 

7.4 RTK Results Analysis 

In order to achieve some uniformity between these different survey runs, a 

standard elevation mask of 5 degrees was used throughout. The broadcast 

correction update rate between the base and remote receiver was always 1 Hz, 

and the occupation time at each point to be coordinated was 60 seconds. The 

statistics and coordinates described in this section are thus results of a 

cumulative solution based on 60 epochs worth of data. 
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7.4.1 Real Time Statistics 

The statistical measures used throughout the actual survey to determine the 

accuracies being achieved were HRMS and VRMS. Audible alarms were set to 

go off if and when the values exceeded 0.5 and 1 metres in HRMS and VRMS 

respectively. This proved invaluable in detecting when the solution had 

changed from fixed ambiguity to float and thus required time to re-fix before 

the highest accuracy could again be achieved. In some situations however, it 

was impossible to re-fix and this could again be determined by examining the 

rate at which the HRMS and VRMS values were falling. 

Table 7.2 shows that, at all points, the combined GPS/GLONASS solution 

achieved the best RMS residuals. The extent of this improvement proved to be 

very much a function of the location area, with the greatest improvements 

being experienced at the sites with the most limited visibilities. Of particular 

note is extent of the improvement at points 2 and 7, which by using the GPS 

only system could not be coordinated with a fixed ambiguity solution. 

However, with the inclusion of the extra GLONASS satellites this was no 

longer the case, allowing the best possible accuracies to be achieved. This 

could reasonably be expected, but interestingly there still remained a small 

improvement at point Init., which occupied an almost ideal location for 

satellite observations. Various texts have suggested that, in such environments, 

the use of GLONASS may actually hinder achievable accuracies [Hall et al, 

1997], because of problems caused by inter channel biases and its longer 

chipping rate. Clearly, in this case, this proved not too be the case as the 

benefits experienced from the improved geometry outweighed any such 

effects. 
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Table 7.2 HRMS and VRMS Values of the Roving Receiver at Each Point 

POINT 

Init 

NIIXED 

0.006rn 

1,1 GI's 

0.008m 

1.1/1,2 

1 IM IN 

0.011m 

MIXFD 

0.008m 

1.1 GPS 

0.013m 

1' 1/12 

N'R'%IS 

0.013111 

1 0.007m 0.027m 0.018m O. OIOm 0.030m 0.018m 

2 0.015m 0.114m 0.957m 0.024m 0.089m 1.003m 

3 0.008m 0.186m 0.015m O. OlOm 0.224m 0.015m 

4 0. OlOm 0.125m 0.017m 0.014m 0.226m 0.018m 

5 0.005m 0.008m 0.012m 0.009m 0.015m 0.015m 

6 0.019m 0.020m 0.027m 0.031m 0.043m 0.038m 

7 0.013m 0.036m 0.842m 0.021 m 0.074m 1.124m 

8 0.019m 0.178m 0.321m 0.031m 0.292m 0.341m 

9 0.003m 0.091m 0.013m 0.006m 0.171m 0.023m 

Init. 0.005m 0.008m 0.012m 0.008m 0.013m 0.020m 

Figure 7.3 perhaps illustrates the potential benefits of combining the two 

satellite navigation systems in a more obvious fashion. Here the HDOP and 

VDOP values, which were again available in real-time, are plotted on the same 

graphs for each of the 3 tests. Tests I and 3, which used only the GPS satellite 

constellation have, as one would expect, very similar values. When the 

GLONASS constellation is introduced the effect is quite marked, especially at 

points 2,3,4,6 and 7, where visibility was most impaired. Instead of 

experiencing sudden jumps, the extra GLONASS satellites have the effect of 

maintaining reasonable geometry. Throughout the survey it can also be seen 

that the HDOP value remained lower than the corresponding VDOP value by 

approximately a factor of 2. 
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Figure 7.3 HDOP and VDOP Values of the Roving Receiver at Each Point 
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7.4.2 Coordinate Quality 

From the real time indicators described above, the suggestion is that the 

GPS/GLONASS system performed best. However, these are statistical values, 

and a truer test of success comes from examining the actual achieved 

coordinate quality. 
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Table 7.3 presents the error of the coordinates in Easting, Northing and Height 

in metres, calculated by subtracting the observed satellite positions from those 

computed in the traverse at each point, for each of the three tests already 

outlined. It should be noted that no coordinates were recorded at point 2 during 

either of the GPS only trials. This was not as a result of some sort of system 

failure, but instead was due to the poor satellite availability at the point at that 

time. 

Table 7.3 Coordinate Difference in Easting, Northing and Height 

Wlf 

DE 

0.00 

DE 

iiiýl 

DE 

0012 

DN UN 

Uli 0ol 

D N' 

4003 

1)11 

0.030 

1)11 

0.038 

1)11 

0.044 

0.067 -0.086 -0045 -0.013 -0.09 -0.138 0.024 0,986 0.029 

2 0.012 ***** ***** 0.032 ***** ***** 0.024 ***** ***** 

3 0.035 -0.242 -0.051 -0.012 0.351 0.076 -0.031 -0.604 0.035 

4 -0.131 -0.690 0.007 -0.014 0.622 -0.023 0.081 -1.231 0.088 

5 0.000 0.002 -0.018 -0.076 -0.099 -0.118 0.045 0.330 0.036 

6 

p 

-0.063 0.664 -0.101 0.005 -0.348 0.021 0.015 1.765 0.005 

7 -0.044 0.509 3.193 0.050 -0.248 1.285 0.027 1.652 4.056 

8 -0.062 0.215 0.010 0.051 -0.011 0.398 0.012 -0.215 0.095 

9 0.006 0.249 0.020 0.076 -0.037 0.054 0.025 0.050 0.050 

INIT 0.019 -0.055 0.002 -0.001 0.045 0.052 0.031 0.023 0.049 

Figure 7.4 represents these figures graphically, and perhaps again gives easier 

comparison. To enable the smaller values to be seen, the upper and lower 

limits of the error have been set to +/- 0.5 metres in all three positional 

directions. Thus, if a value is seen to reach this limit, its true extent can be 

determined from Table 7.3. 
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Figure 7.4 Coordinate Error in Easting, Northing and Height 
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The first conclusion that can be drawn from this set of results is that at the 

points with a near uninterrupted view of the sky i. e. INIT, 5 and 9, all three 

systems achieved a similar quality of result. However, once the roving receiver 

moved close to the IESSG building (points 1,2,3 and 4), the potential benefits 

of combining GPS with GLONASS became immediately obvious. At all four 

of these points the mixed solution maintained a positional accuracy in the 

decimetre range. With the GPS Ll only system, accuracies at these points 

varied by anything up to 1 metre, and at point 2 for both GPS only systems, no 

position could be derived. Interestingly though, at points 1,2 and 4, the 

performance of the Z-12 L1/L2 GPS only receiver still remained similar to that 

of the GG-24, perhaps indicating a quicker time to resolution of integer 

ambiguities after a cycle slip occurred with the dual frequency system. 

This trend was again seen to occur at point number 6, but at point number 7 the 

Z-12 solution drifted to over 4 metres from the truth, while the single 

frequency GPS solution was only 1.5 metres in error. One potential reason for 

this could be a change in the geometry of the GPS constellation between 

occupations. However, from examining the DOP values presented in Figure 

7.3, the best values are returned for the Z-12 solution at point 7, indicating that 

the constellation was stronger at that time. 

7.5 Conclusion 

From the results of the trial described in this chapter the following conclusions 

can be drawn. If the survey area is ideally suited to satellite observations, then 

it appears that there is only a minimal benefit to be gained from using both 

systems together. However this is rarely, if ever the case and the results 

detailed above quite clearly demonstrate the advantages of including 

GLONASS, even in its present incomplete state, with GPS in typical setting- 

out operations. 
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Even with centring errors, which are bound to be present from holding a2 

metre pole over a point, the accuracy of the system has been shown to be 

consistently in the order of a few cm in all environments. For almost all 

construction setting-out applications this is adequate. 

Finally, when examining economic factors, the GPS/GLONASS RTK system 

again comes out on top, not only against the alternative GPS L1/L2 system, but 

also traditional surveying techniques. The list price quoted by Rick Blighton of 

Ashtech is, at present, for a GG-24 Surveyor kit is £9,000, and for a Z-surveyor 

(the cheaper/newer version of the Z-12), £11,000. As two receivers are 

required, this represents a saving of £4,000 per system. 

The price of the Traverse and Levelling Sets used for the traditional survey 

come to approximately £10,000. However, the major saving of RTK over this 

form of surveying is in time. The total time for setting up the RTK system, and 

performing each survey, was approximately 2 hours. This compares to 3 hours 

and 5 hours fieldwork respectively for levelling and traversing, followed by a 

further 4 hours of reductions and computation, resulting in a total survey time 

of 12 hours to derive the same coordinates. The need for post processing in the 

office restricts the survey, in that it must be carried out some hours or days 

prior to the engineering application beginning. With RTK surveying however, 

work can commence as soon as the points have been located and marked. 
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Chapter 8 

Conclusions and 

Recommendations for Further 

Work 

8.1 Conclusions 

This research has clearly demonstrated the significant benefits of the combined 

use of GPS and GLONASS for surveying applications in which GPS alone has 

failed to meet the necessary requirements. 

The existing IESSG suite of GPS processing software has been successfully 

modified to accept combined GPS/GLONASS data. This has been 

accomplished at all levels ranging from the initial reformatting of RINEX data 

through to carrier phase processing. 
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Through using both the modified IESSG software and commercially available 

packages, various benefits and difficulties in using combined GPS/GLONASS 

data has been highlighted under various conditions and applications. These can 
be detailed as follows: 

The achievable accuracy of single epoch autonomous code 

positioning is greatly improved when GLONASS observations 

are added to those of GPS. This is because GLONASS signals 

are not degraded, unlike those of GPS, which are subjected to 

intentional errors known as S/A. However, when the antenna 

remains static for an extended period of time and an 

accumulated pseudorange position is produced, the benefits of 

adding GLONASS are much less pronounced, as the effects of 

S/A average out. 

Under ideal conditions the effect of adding GLONASS 

observations in a differential code solution has been proven to 

slightly decrease the positioning accuracy. Investigations into 

the cause of this have highlighted that there exists, between the 

pair of Ashtech GG-24 receivers owned by the IESSG, a bias in 

the differenced GLONASS measurements. This is caused by the 

R/F filters in each receiver being slightly different across the 

frequency spread of the GLONASS signals, and is therefore not 

a problem with GPS, as each satellite broadcasts on the same 

frequency. During kinematic van trials however (Chapter 6), the 

benefits of a differential GPS/GLONASS system in such an 

application was proven, as a position was successfully produced 

much more consistently than with GPS alone. This is due to the 

extra satellites in the combined constellation fulfilling, more 

frequently, the requirements to solve for a position. Similar 

benefits were found when the effect of combined 

GPS/GLONASS operation during RTK trials was examined 

(Chapter 7). This confirms that, as expected, in areas where 
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visibility can be restricted, the benefits of combined 

GPS/GLONASS positioning are greatest. 

As highlighted in the previous conclusion, GLONASS satellites 

not only broadcast their signals on a different frequency from 

GPS, but also on different frequencies from each other. While 

this was proven to have some effect on code observables, the 

effect on carrier observables is much more pronounced as the 

normal method of double differencing no longer remains wholly 

valid, as the receiver clock correction terms do not cancel. To 

overcome this problem, a method by which the GLONASS 

carrier phase counts were scaled to those of GPS was proposed 

and implemented within the IESSG processing software. This 

resulted in the successful processing of combined 

GPS/GLONASS carrier phase data in a double difference form, 

although it was impossible to fix GLONASS integer 

ambiguities, as their integer nature is destroyed in the scaling 

process. As with the differential pseudorange solution, the 

positional accuracy obtained from the combined solutions were 

found to be slightly worse than those from GPS alone. 

Interestingly, when the carrier phase residuals were examined, 

no apparent bias in GLONASS was found to exist, although the 

residuals proved to have a higher level of noise. 

Single differencing of carrier phase observations by the receiver 

will still produce integer ambiguity combinations, even though 

GLONASS satellites broadcast on different frequencies. Thus, 

after making the necessary alterations to NOTF, it became 

possible to fix GLONASS integer ambiguities. The position 

accuracies obtained from the combined GPS/GLONASS 

solution are similar to those of GPS alone. It was initially hoped 

that the time needed to successfully resolve these integer 

ambiguities would be reduced with the combined solution, as 
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the extra satellites would increase the search redundancy. In fact 

the opposite was found to be the case and is thought to be as a 

result of the pseudorange bias, which serves to contaminate the 

clock correction estimation. 

- During the bridge deflection trials (Chapter 7), it was found that 

the results obtained from the single frequency GPS/GLONASS 

receivers were markedly worse than those from dual frequency 

GPS receivers. This highlighted a shortcoming within the 

IESSG software, which is particularly susceptible to cycle slips. 

The initial aims and objectives of the project were presented in Chapter 1. 

These have been repeated below and a commentary to each added: 

- Modify existing software, and where necessary develop new 

software and processing strategies to enable combined 

GPS/GLONASS data to be processed within GAS. 

As detailed in Chapter 5, Con2SP3, Filter, PANIC and NOTF were all 

modified to varying extents to enable GPS/GLONASS data to be successfully 

processed, and thus this aim was fully met. 

- Validate the alterations made to the software through controlled 

tests, and quantify the relative performance of the system for 

various means of positioning. 

To fulfil this requirement, the modified positioning routines were tested on a 

sample data set (Chapter 5). From the results obtained from this, not only was 

the validity of the software proven, but problems with the GLONASS 

pseudorange measurements identified. Apart from autonomous positioning, the 

relative performance of combined GPS/GLONASS operation over GPS alone 

was, under ideal conditions, found to be similar. 

- Evaluate the potential benefits of combining GPS with 

GLONASS in actual applications. 
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Experiments detailed in Chapters 7 and 8 have proved that there are undoubted 

benefits in using combined GPS/GLONASS positioning in areas of restricted 

visibility. However these experiments have highlighted that, when using L1 

GPS/GLONASS data, it is particularly difficult to detect/correct cycle slips, 

using both commercial and particularly IESSG software. 

8.2 Recommendations for Further Work 

From the research detailed in this thesis, and the conclusions summarised 

above, the following are recommendations for possible future work in this 

subject area: 

- As mentioned above, the IESSG software proved to be 

particularly susceptible to cycle slips. This has already been the 

subject of research, but has concentrated on dual frequency 

data. It is therefore recommended that an effective single/dual 

frequency GPS/GLONASS cycle slip detection and correction 

package be developed and implemented within the IESSG 

software. 

Although all research undertaken throughout this project has 

used single frequency GPS/GLONASS data, as that was all that 

was available, there are now on the market dual frequency 

GPS/GLONASS receivers, and their performance should be 

investigated. With this dual frequency data it should be possible 

to directly solve for ionospheric delay and employ existing dual 

frequency GPS processing strategies, such as wide-laning to 

GPS/GLONASS data. Although the program routines within the 

IESSG software which handle the second frequency would 

require modification to process dual frequency data, these 

modifications should be able to be completed quickly, as the 
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necessary changes will mirror those already implemented within 

the routines for the single (L1) frequency. 

- Although the GPS/GLONASS receivers can record data at 
intervals up to 5Hz, the existing IESSG software can only 

process data at a 1Hz processing interval. While this is more 

than adequate for geodetic type applications, it is possible that 

high frequency oscillations or movements, which may have 

occurred in, for instance, the bridge deformation monitoring 

trial, could be missed. It is therefore recommended that 

software be updated to process data at whatever rate it was 

recorded. 

- As a product of the IGEX-98 experiment (Chapter 3) which is 

still ongoing at the time of writing (August 99), precise 

ephemerides for GLONASS satellites have been produced and 

are freely available. These are in a SP3 format, which 

unfortunately does not exactly agree with the SP3 format 

needed by the IESSG software. If the processing software is 

suitably altered it should not only be possible to investigate the 

improvements resulting from the use of precise ephemeris, but 

it should also be possible to process data from the various IGEX 

sites to investigate performance over varying baseline lengths. 

- During the van trial there was an undoubted improvement in the 

performance of the GPS/GLONASS system over GPS alone in 

solving for position. There were however still a number of 

epochs where less than four satellites were simultaneously 

visible, and therefore it was impossible to derive a position. It 

would be preferable, in such situations, to at least solve for plan 

position if possible. If this was also impossible, another option 

would be to interpolate positions by dead reconing from the 

previous position solutions. 
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- In the writing of NOTF it was decided to optimise it for Real 

Time Operation, but at present it can only be executed in a post 

processed format. Some attempt should therefore be made to 

implement it as a real time package. A dual frequency 

GPS/GLONASS real time OTF package would be at the 

forefront of satellite positioning and would be sure to have 

numerous applications. 

- One of the major findings in this research was the apparent bias 

in the GLONASS pseudorange measurements between 

receivers, caused by varying delays in their R/F components. 

This has been accounted for within NOTF by downweighting 

the GLONASS pseudorange measurements with respect to those 

of GPS. After some thought, it has been decided that this 

process is incorrect. Therefore, some further investigation into 

these biases is needed. If they are found to be repeatedly 

consistent with respect to time then there is no reason why they 

cannot be included as extra states in the Kalman Filter, and be 

determined over a period of time. 

Finally, as mentioned in Chapter 2, the immediate future of the GLONASS 

system is of great concern at the moment. The future of GPS appears to be 

much more certain with firm commitments to further modernisation of the 

system well into the next millennium. It is therefore reasonable to expect that 

GPS will act as the backbone to the Global Positioning Industry for the 

foreseeable future. Indeed plans for regional augmentations to GPS over 

Europe (EGNOS), Japan (MSAS) and the USA itself (WAAS), all use 

geostationary satellites broadcasting GPS like LI signals. 

It is also reasonable to expect that at least one other Global Navigation 

Satellite System, such as Galileo [European Commission, 1999a], which is a 

proposal put forward by the European Commission and the European Space 
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Agency (ESA) for a second generation satellite system (GNSS-2), will also be 

realised. As yet it has not been finalised as to whether this system shall be fully 

independent to GPS or act as a further significant augmentation to it. 

Interestingly, one of the proposals contained within the EC Galileo 

Communication is to use the existing GLONASS system as a basis for project 

development. However, from the most recent documentation available at the 

time of writing [European Commission, 1999b], it appears that, even should 

GLONASS be used, it has been decided that Galileo will operate on a basis of 

CDMA i. e. each satellite will broadcast on the same frequencies. The 

Reference Frame proposed is the ITRF, and the Time Frame Galileo Time, 

which like GPS time, will be a continuous time scale (no leap seconds applied) 

close to UTC. The modifications necessary to combine such a system with 

GPS will therefore not be as far ranging as those required for GLONASS. 

However, the experiences gained in the combination of separate navigation 

systems during this research should at least serve as a good basis for any future 

developments, whatever form they should take. 
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Al Example of a Mixed RINEX 
Observation File 

2 OBSERVATION DATA M (MIXED) RINEX VERSION / TYPE 
0 
ASRINEXO V2.8.5 LH IESSG 25-AUG-98 10: 35 PGM / RUN BY / DATE 
0 

SIT 2 OF LLI (+4) FLAGS DATA COLLECTED UNDER "AS" CONDITION 
R213 
2 
JWS IESSG 
13 ASHTECH GG24 GGOO 
1 GEODETIC L1 

3851188.6805 -80146.8883 5066767.6553 
0.0000 0.0000 0.0000 

H/E/N 

L1/2 
2 Cl Li 

1998 8 10 8 57 0.000000 GPS 

98 8 10 8 57 0.0000000 0 3G15R09R10 
21537363.350 -6390646.50112 
23400925.186 -6537933.51812 
23260714.930 -6645917.11112 

98 8 10 8 57 20.0000000 0 5G15R18RO9R1OR17 
21524697.075 -6457207.998 3 
21119376.907 -6889429.467 2 
23405120.090 -6515469.50112 
23252528.204 -6689802.55212 
19119521.995 -6468634.704 1 

98 8 10 8 57 40.0000000 0 5G15R18R09R10R17 
21512070.923 -6523558.945 3 
21104388.307 -6969805.218 2 
23409388.634 -6492610.93912 
23244416.444 -6733286.33412 
19119943.533 -6466362.778 1 

98 8 10 8 58 0.0000000 0 5G15R18R09R10R17 
21499484.364 -6589701.973 3 
21089447.455 -7049925.056 2 
23413730.358 -6469361.28512 
23236378.863 -6776371.50712 
19120442.178 -6463676.071 1 

98 8 10 8 58 20.0000000 0 5G15R18R09R10R17 
21486936.928 -6655638.990 3 
21074554.089 -7129790.456 2 
23418144.549 -6445723.72512 
23228415.259 -6819060.32712 
19121017.388 -6460576.399 1 

98 8 10 8 58 40.0000000 0 5G15R18R09R10R17 
21474428.381 -6721371.705 3 
21059707.879 -7209402.501 2 
23422630.522 -6421701.82012 
23220525.929 -6861352.69112 
19121668.721 -6457066.292 1 

98 8 10 8 59 0.0000000 0 6Gl5Rl8R03RO9RlORl7 
21461958.598 -6786901.489 3 
21044909.026 -7288761.760 2 
22199334.669 -6670611.58811 
23427187.695 -6397298.02012 
23212710.054 -6903250.38612 
19122396.021 -6453147.202 1 

98 8 10 8 59 20.0000000 0 6G15R18R03R09R10R17 
21449526.890 -6852230.511 3 
21030156.728 -7367869.457 2 
22182529.824 -6761073.38011 
23431815.780 -6372515.18212 
23204967.502 -6944755.25612 
19123198.757 -6448821.633 1 

98 8 10 8 59 40.0000000 0 6G15R18RO3RO9R1OR17 
21437133.021 -6917360.904 3 
21015451.161 -7446727.545 2 

COMMENT 
COMMENT 
MARKER NAME 
MARKER NUMBER 
OBSERVER / AGENCY 
REC #/ TYPE / VERS 
ANT I/ TYPE 
APPROX POSITION XYZ 
ANTENNA: DELTA 

WAVELENGTH FACT 

#/ TYPES OF OBSERV 
TIME OF FIRST OBS 
END OF HEADER 
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A2 Example of a GPS RINEX 
Ephemeris File 

NAVIGATION DATA VERSION / TYPE 

ASRINEXN V2.4.1 LH IESSG 19-AUG-98 12: 28 PGM / RUN BY / DATE 
13 
MIRAMAR TEST COMMENT 

END OF HEADER 
15 98 8 10 10 0 0.0 0.586954411119E-03 0.409272615798E-11 0.000000000000E+00 

0.133000000000E+03 0.105843750000E+03 0.411409994020E-08-0.320010363042E+00 
0.562518835068E-05 0.728136533871E-02 0.820867717266E-05 0.515365458107E+04 
0.122400000000E+06-0.987201929092E-07 0.109941057548E+01 0.894069671631E-07 
0.982284438650E+00 0.232187500000E+03 0.158261234977E+01-0.807426489697E-08 
0.313227332890E-09 0.000000000000E+00 0.970000000000E+03 0.000000000000E+00 
0.200000000000E+01 0.000000000000E+00-0.931322574615E-09 0.133000000000E+03 
0.000000000000E+00 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00 

21 98 8 10 10 0 0.0 0.525224022567E-04 0.159161572810E-11 0.000000000000E+00 
0.430000000000E+02-0.271875000000E+02 0.456733310490E-08-0.156648470052E+01 

-0.146217644215E-05 0.144124421058E-01 0.209361314774E-05 0.515368155861E+04 
0.122400000000E+06 0.558793544769E-07 0.209347859251E+01-0.244006514549E-06 
0.966795181986E+00 0.342218750000E+03-0.278973566847E+01-0.832570394184E-08 
0.253581991279E-10 0.000000000000E+00 0.970000000000E+03 0.000000000000E+00 
0.700000000000E+01 0.000000000000E+00-0.931322574615E-09 0.430000000000E+02 
0.000000000000E+00 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00 

23 98 8 10 10 0 0.0 0.263797119260E-05 0.454747350886E-12 0.000000000000E+00 
0.171000000000E+03-0.293125000000E+02 0.452590280773E-08-0.184654773597E+01 

-0.146776437759E-05 0.129379339051E-01 0.185333192348E-05 0.515374645042E+04 
0.122400000000E+06 0.294297933578E-06 0.213229572812E+01-0.651925802231E-07 
0.969919847729E+00 0.348625000000E+03-0.203300431817E+01-0.823605735056E-08 

-0.118219210019E-09 0.000000000000E+00 0.970000000000E+03 0.000000000000E+00 
0.700000000000E+01 0.000000000000E+00-0.465661287308E-09 0.171000000000E+03 
0.000000000000E+00 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00 

29 98 8 10 10 0 0.0 0.496462453157E-03-0.126192389871E-10 0.000000000000E+00 
0.119000000000E+03-0.982812500000E+02 0.424160525131E-08 0.249610727456E+01 

-0.502355396748E-05 0.618418154772E-02 0.103358179331E-04 0.515345688629E+04 
0.122400000000E+06 0.540167093277E-07 0.311549798987E+01-0.912696123123E-07 
0.956187606880E+00 0.177531250000E+03-0.198882213239E+01-0.790354350003E-08 

-0.145363197818E-09 0.000000000000E+00 0.970000000000E+03 0.000000000000E+00 
0.700000000000E+01 0.000000000000E+00 0.232830643654E-08 0.119000000000E+03 
0.000000000000E+00 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00 

31 98 8 10 10 0 0.0 0.570388510823E-05 0.227373675443E-12 0.000000000000E+00 
0.102000000000E+03-0.260937500000E+02 0.460697761340E-08 0.187995841204E+01 

-0.138953328133E-05 0.810640701093E-02 0.116396695375E-04 0.515362696266E+04 
0.122400000000E+06-0.227242708206E-06-0.176007726400E-01 0.223517417908E-07 
0.958101280741E+00 0.156843750000E+03 0.756753361358E+00-0.799283293357E-08 

-0.504663878419E-09 0.000000000000E+00 0.970000000000E+03 0.000000000000E+00 
0.700000000000E+01 0.000000000000E+00 0.139698386192E-08 0.102000000000E+03 
0.000000000000E+00 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00 

3 98 8 10 9 59 44.0 0.371094793081E-04 0.363797880709E-11 0.000000000000E+00 
0.490000000000E+02-0.252500000000E+02 0.475591238856E-08 0.800923154761E+00 

-0.136718153954E-05 0.176645792089E-02 0.108480453491E-04 0.515369256783E+04 
0.122384000000E+06 0.186264514923E-08-0.236647304624E-01 0.260770320892E-07 
0.949252836831E+00 0.164281250000E+03 0.242709128488E+01-0.807962226298E-08 

-0.500735143343E-09 0.000000000000E+00 0.970000000000E+03 0.000000000000E+00 
0.700000000000E+01 0.000000000000E+00 0.139698386192E-08 0.490000000000E+02 
0.000000000000E+00 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00 

14 98 8 10 10 0 0.0 0.203074887395E-05 0.454747350886E-12 0.000000000000E+00 
0.211000000000E+03-0.357812500000E+02 0.463876465174E-08-0.262483243533E+01 

-0.193715095520E-05 0.978215131909E-03 0.207871198654E-05 0.515355139542E+04 
0.122400000000E+06 0.931322574615E-08 0.213284925682E+01-0.316649675369E-07 
0.973010543052E+00 0.344906250000E+03 0.274217995702E+01-0.844642325600E-08 

-0.191079387795E-09 0.000000000000E+00 0.970000000000E+03 0.000000000000E+00 
0.700000000000E+01 0.000000000000E+00-0.232830643654E-08 0.211000000000E+03 
0.000000000000E+00 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00 

1 98 8 10 10 0 0.0 0.555436126888E-04 0.102318153949E-11 0.000000000000E+00 
0.101000000000E+03-0.979062500000E+02 0.420053211188E-08 0.254137419946E+01 

-0.500492751598E-05 0.418056303170E-02 0.107102096081E-04 0.515369767189E+04 
0.122400000000E+06 0.130385160446E-07-0.312308706904E+01 0.204890966415E-07 
0.956627398091E+00 0.170437500000E+03-0.166203027947E+01-0.785997025645E-08 

-0.135005623526E-09 0.000000000000E+00 0.970000000000E+03 0.000000000000E+00 
0.700000000000E+01 0.000000000000E+00 0.465661287308E-09 0.101000000000E+03 
0.000000000000E+00 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00 
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A3 Example of a GLONASS RINEX 
Ephemeris File 

I GLONASS NAV DATA RINEX VERSION / TYPE 
0 
ASRINEXG V1.0.2 LH IESSG 19-AUG-98 12: 29 PGM / RUN BY / DATE 
0 

1998 8 10 -0.350177288055E-06 CORR TO SYSTEM TIME 

END OF HEADER 
10 98 8 10 8 45 0.0 0.124635174870E-03-0.909494701773E-12 0.429900000000E+05 

-0.890328564453E+04-0.655364990234E-02 0.186264514923E-08 0.000000000000E+00 
0.131827343750E+05-0.273383140564E+01 0.279396772385E-08 0.900000000000E+01 
0.199670195313E+05 0.179383277893E+01-0.931322574615E-09 0.000000000000E+00 

17 98 8 10 8 45 0.0-0.104973092675E-03 0.454747350886E-11 0.430200000000E+05 
0.163298457031E+05 0.241644096375E+01 0.000000000000E+00 0.000000000000E+00 

-0.229946289063E+04 0.112297153473E+01 0.186264514923E-08 0.240000000000E+02 
0.194455610352E+05-0.189955902100E+01-0.186264514923E-08 0.000000000000E+00 

18 98 8 10 8 45 0.0 0.118834897876E-03 0.909494701773E-12 0.430500000000E+05 

-0.134800732422E+04 0.269815349579E+01 0.000000000000E+00 0.000000000000E+00 

-0.125823339844E+05 0.138913822174E+01-0.931322574615E-09 0.100000000000E+02 
0.221184326172E+05 0.957643508911E+00-0.279396772385E-08 0.000000000000E+00 

3 98 8 10 8 45 0.0 0.198665075004E-03-0.272848410532E-11 0.431100000000E+05 
0.215547553711E+05-0.763931274414E-01-0.279396772385E-08 0.000000000000E+00 

-0.137658984375E+05-0.218620300293E+00 0.000000000000E+00 0.210000000000E+02 

-0.375233886719E+03 0.358474349976E+01 0.000000000000E+00 0.100000000000E+01 
3 98 8 10 9 15 0.0 0.198670662940E-03-0.272848410532E-11 0.432000000000E+05 

0.207658666992E+05-0.770552635193E+00-0.186264514923E-08 0.000000000000E+00 

-0.136690112305E+05 0.356215476990E+00 0.931322574615E-09 0.210000000000E+02 
0.600899365234E+04 0.346314430237E+01 0.000000000000E+00 0.100000000000E+01 

9 98 8 10 9 15 0.0 0.134703703225E-03-0.909494701773E-12 0.432300000000E+05 

-0.113914291992E+05-0.546720504761E+00 0.000000000000E+00 0.000000000000E+00 

-0.113296083984E+05-0.265840244293E+01-0.186264514923E-08 0.600000000000E+01 
0.198046899414E+05-0.183880043030E+01-0.279396772385E-08 0.000000000000E+00 

10 98 8 10 9 15 0.0 0.124637037516E-03-0.909494701773E-12 0.432300000000E+05 

-0.931904736328E+04-0.465956687927E+00 0.186264514923E-08 0.000000000000E+00 
0.795137207031E+04-0.302939891815E+01 0.931322574615E-09 0.900000000000E+01 
0.223840258789E+05 0.874116897583E+00-0.186264514923E-08 0.000000000000E+00 

17 98 8 10 9 15 0.0-0.104981474578E-03 0.454747350886E-11 0.432300000000E+05 
0.203632280273E+05 0.201863765717E+01 0.000000000000E+00 0.000000000000E+00 

-0.771365722656E+03 0.583773612976E+00 0.279396772385E-08 0.240000000000E+02 
0.153177792969E+05-0.265710735321E+01-0.931322574615E-09 0.000000000000E+00 

18 98 8 10 9 15 0.0 0.118833035231E-03 0.909494701773E-12 0.432300000000E+05 
0.380123779297E+04 0.297817420959E+01 0.000000000000E+00 0.000000000000E+00 

-0.103881997070E+05 0.102406787872E+01 0.000000000000E+00 0.100000000000E+02 
0.229625688477E+05-0.257072448730E-01-0.279396772385E-08 0.000000000000E+00 

11 98 8 10 9 15 0.0 0.151597894728E-03-0.181898940355E-11 0.445200000000E+05 

-0.205064501953E+04-0.121964454651E+00 0.279396772385E-08 0.000000000000E+00 
0.223467329102E+05-0.168075847626E+01 0.372529029846E-08 0.400000000000E+01 
0.122576889648E+05 0.302210044861E+01 0.000000000000E+00 0.000000000000E+00 

3 98 8 10 9 45 0.0 0.198676250875E-03-0.272848410532E-11 0.450000000000E+05 
0.189106953125E+05-0.124942493439E+01-0.931322574615E-09 0.000000000000E+00 

-0.124027514648E+05 0.106477642059E+01 0.186264514923E-08 0.210000000000E+02 
0.119321938477E+05 0.307572841644E+01-0.931322574615E-09 0.100000000000E+01 

11 98 8 10 9 45 0.0 0.151600688696E-03-0.909494701773E-12 0.450000000000E+05 

-0.265360498047E+04-0.570971488953E+00 0.279396772385E-08 0.000000000000E+00 
0.187448740234E+05-0.228185558319E+01 0.279396772385E-08 0.400000000000E+01 
0.171567875977E+05 0.238596057892E+01-0.931322574615E-09 0.000000000000E+00 

10 98 8 10 9 45 0.0 0.124637968838E-03-0.909494701773E-12 0.450000000000E+05 

-0.105861787109E+05-0.934312820435E+00 0.931322574615E-09 0.000000000000E+00 
0.246105371094E+04-0.301961135864E+01 0.000000000000E+00 0.900000000000E+01 
0.230724199219E+05-0.114442825317E+00-0.279396772385E-08 0.000000000000E+00 

17 98 8 10 9 45 0.0-0.104989856482E-03 0.454747350886E-11 0.450000000000E+05 
0.234450092773E+05 0.136897754669E+01 0.000000000000E+00 0.000000000000E+00 

-0.135736816406E+03 0.147413253784E+00 0.372529029846E-08 0.240000000000E+02 
0.100035878906E+05-0.320916748047E+01 0.000000000000E+00 0.000000000000E+00 

18 98 8 10 9 45 0.0 0.118832103908E-03 0.909494701773E-12 0.450000000000E+05 
0.919837500000E+04 0.296794319153E+01 0.000000000000E+00 0.000000000000E+00 

-0.895490576172E+04 0.560797691345E+00 0.931322574615E-09 0.100000000000E+02 
0.220275307617E+05-0.100633144379E+01-0.186264514923E-0B 0.000000000000E+00 

3 98 8 10 10 15 0.0 0.198680907488E-03-0.272848410532E-11 0.468000000000E+05 
0.164278735352E+05-0.146325778961E+01 0.000000000000E+00 0.000000000000E+00 
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A4 Example of a Mixed NOT 
Observation File 

IESSG, University of Nottingham. GPS ANALYSIS SOFTWARE (GAS) GPS Data File 
0 

------------------------------------------------------------------------------ 

2 

-- ----------------------------- --------- 

NOTTM DATA FORMAT 

----------- -- - ----------------- 
R213 

-- - - --- 
STATION NAME 

'R213' STATION ID CHAR*4 
COMMENT 1 

BIT 2 OF LLI (+4) FLAGS DATA COLLECTED UNDER "A3" CONDITION COMMENT 2 
MIXED OBS SAT. TYPE 

ASHTECH GG24 GG00 RECEIVER TYPE 
52 56 26.53305 - 1 11 32.22511 116.841 APX COORDS PLH 

3851184.1705 -80151.9954 5066662.7374 APX COORDS XYZ 
6 FILTER pseudorange solution COORDS QUALITY 

0.0000 Vertical to phase centre ANTENNA HEIGHT 
0 WAVELENGTH FACTOR 
2 OBSERVATION TYPE 

1.00 DATA INTERVAL 
1998 8 10 10 0 0.999000 DATE/TIME 1st OBS 

970 122400.9 99000 WEEK/SEC 1st OBS 
1998 8 10 11 59 59.997000 DATE/TIME LAST OBS 

970 129599.9 97000 WEEK/SEC LAST OBS 
16 123 4 78 14 15 16 21 25 29 31 35 36 42 SATELLITES SEEN 

6 43 44 45 49 50 52 
------- - ------ --------- 

SATELLITES SEEN 
------------- ----------------- 

970 122400.9990 
---- 
000 

-- - ------------ 
0 -0.99999000 13 12 3 14 15 

------ 
21 29 31 35 42 43 

49 
50 

22245506.466 3 116900925.749 
23050373.858 3 121130532.598 
23848554.916 3 125325001.996 
22698319.575 3 119280474.486 
19743351.120 3 103752010.635 
22735385.719 3 119475258.464 
22087169.883 3 116068861.289 
21015550.447 3 110437463.243 
19707470.137 3 106087263.672 
22948399.448 3 123016810.794 
22471007.300 3 120246899.350 
20328845.933 3 109546620.693 
19184809.689 3 102877770.380 

970 122401.9990000 0 -0.99999000 13 12 3 14 15 21 29 31 35 42 43 
49 

50 
22245326.096 0 116899977.853 
23050195.093 0 121129593.146 
23849206.184 0 125328424.381 
22697583.152 0 119276604.603 
19743036.787 0 103750358.784 
22735870.924 0 119477808.230 
22086723.925 0 116066517.732 
21015989.312 0 110439769.475 
19706964.069 0 106084539.503 
22948631.856 0 123018056.643 
22470614.289 0 120244796.316 
20329424.634 0 109549739.260 
19184568.853 0 102876478.791 

970 122402.9990000 0 -0.99999000 13 12 3 14 15 21 29 31 35 42 43 
49 

50 
22245145.835 0 116899030.660 
23050016.448 0 121128654.359 
23849857.497 0 125331846.997 
22696846.808 0 119272735.039 
19742722.554 0 103748707.419 
22736356.192 0 119480358.307 
22086278.076 0 116064174.730 
21016428.261 0 110442076.163 
19706458.145 0 106081816.065 
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A5 Example of a GPS. SP3 
Ephemeris File 

N 1998 8 10 1 44 0.00000000 -99999 SREPH WGS84 FIT BRD 
Nt 970 92684.00000000 900.00000000 222 0.0727314814815 
+ 17 12345789 14 15 16 18 21 23 25 29 31 
+00000000000000000 
+00000000000000000 
+00000000000000000 
+00000000000000000 
++ 00000000000000000 
++ 00000000000000000 
++ 00000000000000000 
++ 00000000000000000 
++ 000 00000 00000 0000 
%C cc cc ccc ccc cccc cccc cccc cccc ccccc ccccc ccccc ccccc 
%c cc cc ccc ccc cccc cccc cccc cccc ccccc ccccc ccccc ccccc 

%f 0.0000000 0.000000000 0.00000000000 0.000000000000000 
%f 0.0000000 0.000000000 0.00000000000 0.000000000000000 
%i 000 00 00 00 
%i 000 00 00 00 
/*CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
/*CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

/*CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
/*CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
* 1998 8 10 1 44 44.00000000 0 
* 1998 8 10 1 59 44.00000000 0 
* 1998 8 10 2 14 44.00000000 0 
* 1998 8 10 2 29 44.00000000 0 
* 1998 8 10 2 44 44.00000000 0 
* 1998 8 10 2 59 44.00000000 0 
* 1998 8 10 3 14 44.00000000 0 
* 1998 8 10 3 29 44.00000000 0 
* 1998 8 10 3 44 44.00000000 0 
* 1998 8 10 3 59 44.00000000 0 
* 1998 8 10 4 14 44.00000000 0 
* 1998 8 10 4 29 44.00000000 0 
* 1998 8 10 4 44 44.00000000 0 
* 1998 8 10 4 59 44.00000000 0 
* 1998 8 10 5 14 44.00000000 2 
P 2 -23360.716961 -9831.533386 -8369.702677 -518.626481 
P 3 13216.071087 -17985.800603 14408.937861 37.051284 
* 1998 8 10 5 29 44.00000000 2 
P 2 -23905.094400 -10541.287821 -5748.756195 -518.628455 
P 3 13201.465171 -16206.122404 16386.741862 37.054589 
* 1998 8 10 5 44 44.00000000 10 
P 1 14484.853609 6679.818405 -21104.977550 55.525033 
P 2 -24229.936170 -11061.498721 -3030.911895 -518.629782 
P 3 13263.688947 -14220.071379 18082.542737 37.057824 
P 9 -8844.994960 18538.452415 -16732.516252 -5.759117 
P 14 -3986.733419 -18345.478827 -18780.956525 2.021568 
P 15 8477.900536 -17369.786668 -18451.194439 586.900914 
P 21 24046.828958 10179.850871 -6314.498441 52.478050 
P 23 19955.630465 17343.407215 4179.270957 2.607285 
P 29 15120.057782 -3730.150235 -21316.550481 496.652042 
P 31 6534.763772 -24135.674616 8337.991189 5.706888 
* 1998 8 10 5 59 44.00000000 10 
P 1 14334.037999 9074.453430 -20305.817719 55.524781 
P 2 -24310.447933 -11417.278435 -262.278221 -518.630507 
P 3 13426.471073 -12064.820393 19466.953619 37.060991 
P 9 -10520.456458 19252.933823 -14806.048291 -5.761351 
P 14 -2066.075554 -17224.942152 -20109.313625 2.021954 
P 15 10288.660741 -18139.306319 -16683.174195 586.906330 
P 21 24444.706385 10631.358478 -3557.820414 52.483048 
P 23 19355.108359 17189.142165 6943.900558 2.610199 
P 29 15182.928364 -1234.967056 -21569.661422 496.638916 
P 31 6799.974054 -23003.912717 10904.324596 5.704741 
* 1998 8 10 6 14 44.00000000 10 
P 1 14302.857065 11361.981398 -19153.281483 55.524599 
P 2 -24128.332881 -11638.613507 2510.764503 -518.630686 
P 3 13707.028263 -9782.471107 20515.917896 37.064090 
P 9 -11967.179377 19920.253890 -12622.138494 -5.763859 
P 14 25.896954 -16145.420230 -21091.577639 2.022378 
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A6 Example of a GLONASS. SP3 
Ephemeris File 

{ 1998 8 10 90 13.00000000 14400 U IER85 FIT BRD 
0 
/t 970 118813.00000000 1.00000000 222 0.3751504629630 
0 
+ 10 35 36 41 42 43 44 45 49 50 52 0000000 
+00000000000000000 
+00000000000000000 
+00000000000000000 
+00000000000000000 
++ 00000000000000000 
++ 00000000000000000 
++ 00000000000000000 

++ 00000000000000000 
++ 00000000000000000 
%C cc cc ccc ccc cccc cccc cccc cccc ccccc ccccc ccccc ccccc 
%c cc cc ccc ccc cccc cccc cccc cccc ccccc ccccc ccccc ccccc 
%f 0.0000000 0.000000000 0.00000000000 0.000000000000000 
%f 0.0000000 0.000000000 0.00000000000 0.000000000000000 
%i 000000000 
%i 000000000 
/*CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
/*CCCCCCCCCCCCCCCCCCCCCCCCCCCccccccccccccCCCCCCCCCCCCCCCCCC 
/*CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
/*CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
* 1998 8 10 90 13.00000000 6 

V 35 21316.491466 -13847.082499 2847.841902 198.668210 
V 41 -10976.453024 -8831.296427 21260.416406 134.702886 
V 42 -9007.553567 10630.786455 21384.139645 124.636220 
V 43 -2017.702843 23690.726250 9431.645555 151.596259 
V 49 18438.477180 -1412.713259 17550.097036 -104.977386 
V 50 1166.243351 -11401.458028 22762.586709 118.833853 
* 1998 8 10 90 14.00000000 6 
V 35 21316.045198 -13847.035695 2851.400028 198.668213 
V 41 -10976.823349 -8834.185057 21259.021623 134.702886 
V 42 -9007.782280 10627.867523 21385.486064 124.636221 
V 43 -2017.662523 23689.424010 9434.900291 151.596261 
V 49 18440.729249 -1411.866987 17547.795742 -104.977391 
V 50 1169.115560 -11400.233175 22763.056350 118.833852 
* 1998 8 10 90 15.00000000 6 
V 35 21315.598543 -13846.988571 2854.958085 198.668215 
V 41 -10977.193890 -8837.073469 21257.626328 134.702887 
V 42 -9008.011251 10624.948427 21386.831971 124.636222 
V 43 -2017.622356 23688.121326 9438.154803 151.596263 
V 49 18442.981096 -1411.021017 17545.494027 -104.977395 
V 50 1171.987926 -11399.008526 22763.525443 118.833851 
* 1998 8 10 90 16.00000000 6 
V 35 21315.151500 -13846.941125 2858.516075 198.668218 
V 41 -10977.564647 -8839.961661 21256.230523 134.702888 
V 42 -9008.240480 10622.029166 21388.177365 124.636223 
V 43 -2017.582341 23686.818197 9441.409089 151.596265 
V 49 18445.232721 -1410.175348 17543.191889 -104.977400 
V 50 1174.860448 -11397.784083 22763.993987 118.833850 
* 1998 8 10 90 17.00000000 6 
V 35 21314.704069 -13846.893357 2862.073996 198.668221 
V 41 -10977.935619 -8842.849633 21254.834207 134.702889 
V 42 -9008.469967 10619.109741 21389.522245 124.636224 
V 43 -2017.542479 23685.514625 9444.663150 151.596267 
V 49 18447.484124 -1409.329982 17540.889329 -104.977405 
V 50 1177.733127 -11396.559845 22764.461984 118.833849 
* 1998 8 10 90 18.00000000 6 
V 35 21314.256251 -13846.845268 2865.631849 198.668224 
V 41 -10978.306808 -8845.737386 21253.437381 134.702890 
V 42 -9008.699711 10616.190151 21390.866614 124.636224 
V 43 -2017.502770 23684.210609 9447.916987 151.596269 
V 49 18449.735304 -1408.484918 17538.586347 -104.977409 
V 50 1180.605963 -11395.335812 22764.929432 118.833848 
* 1998 8 10 90 19.00000000 6 
V 35 21313.808046 -13846.796858 2869.189634 198.668226 
V 41 -10978.678212 -8848.624920 21252.040044 134.702891 
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A7 Example of a. NOT File 

921 38 19 
12478 14 15 16 18 25 29 31 35 36 44 45 49 50 52 

3851174.4740 -80152.8750 5066646.9150 
3851174.4740 -80152.8750 5066646.9150 

'R212' 'R213' 

586782020.0000000 
11011111001111101111101111 
100111110111 

970 126019.991000 970 126019.998000 
20416505.523 21169643.987 0.000 20357477.863 
18458856.544 17211842.493 21435470.445 0.000 
19217502.809 21062043.602 16585257.761 19425549.206 

0.000 20949207.513 17426184.116 21445803.711 
23177036.041 0.000 22364869.796 24088471.724 
19219234.612 23442862.305 0.000 0.000 
23069435.937 18592650.730 21432943.536 21674083.729 
22956601.708 19433578.593 23453196.494 

0.000 0.000 0.000 
0.000 0.000 0.000 
0.000 0.000 0.000 
0.000 0.000 0.000 
0.000 0.000 0.000 
0.000 0.000 0.000 
0.000 0.000 0.000 
0.000 0.000 0.000 

107289460.752 111247229.118 0.000 
97001946.659 90448843.640 112644157.430 

100988658.834 110681785.249 89280085.477 
0.000 112889580.393 93447212.275 

121796145.265 0.000 117528184.821 
100997759.463 123193073.006 0.000 
121230703.093 100086080.336 115013726.454 
123706882.189 104211783.769 125370776.962 

0.000 0.000 0.000 
0.000 0.000 0.000 
0.000 0.000 0.000 
0.000 0.000 0.000 
0.000 0.000 0.000 
0.000 0.000 0.000 
0.000 0.000 0.000 
0.000 0.000 0.000 

378822.9446 15766578.3301 21508653.3546 
7593725.6224 -22456306.5698 11848712.4483 

0.0000 0.0000 0.0000 

-621650.0181 -15725193.8391 21685085.9733 

-12470843.5482 10091482.1277 20879604.9095 
21477566.7492 -8428234.0443 13181871.3732 
15244302.9560 2325590.8941 21392020.0798 
19379547.0333 -18025618.8312 739006.2692 

0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 

10550571.8698 15797851.1639 18791723.4752 
25963003.0565 6274572.0676 -740995.0050 
12578488.4865 -3622696.3156 21923302.1749 
13338348.8057 -19694875.4359 9202626.0684 

5519557.3673 19780421.8606 15134987.8787 
0.0000 0.0000 0.0000 

24849343.3476 -444511.7246 -5660883.8973 
20324585.7476 -8776603.7838 12687671.3683 

-12873942.5851 -8302544.9575 20411655.4569 
378822.1463 15766578.1374 21508653.5103 

7593725.9847 -22456306.8449 11848711.6469 
0.0000 0.0000 0.0000 

-621649.2176 -15725193.6715 21685086.1107 

-12470843.7873 10091481.3351 20879605.1430 
21477566.4263 -8428233.6473 13181872.1512 
15244303.1378 2325591.7152 21392019.8632 
19379547.0688 -18025618.7523 739007.2430 

0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 

10550571.1633 15797851.0573 18791723.9626 
25963003.0177 6274572.1419 -740995.9625 
12578488.0951 -3622695.4912 21923302.5321 
13338348.5955 -19694875.1093 9202627.0717 

5519557.0301 19780421.3261 15134988.6989 
0.0000 0.0000 0.0000 

22081079.788 
0.000 

19666689.942 
22423897.656 
20466248.486 
21224894.883 

0.000 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

106979269.018 
0.000 

104241622.720 
114640111.697 
126585773.900 

0.000 
116714407.455 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

116036857.320 
0.000 

105904641.726 
117838377.954 
107550862.667 
111537575.592 

0.000 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
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24849343.1084 -444511.7365 -5660884.9478 
20324586.2673 -8776603.8883 12687670.4662 

-12873941.7401 -8302545.0405 20411655.9553 
0.48802 0.34229 0.00000 0.48111 0.10693 0.95146 1.43285 

0.25683 
0.00000 0.00000 0.73600 0.37125 1.33044 0.43086 0.40464 

0.00000 
0.17455 0.92852 0.09423 0.48802 0.34229 0.00000 0.48111 

0.10693 
0.95146 1.43285 0.25683 0.00000 0.00000 0.73600 0.37125 

1.33044 
0.43086 0.40464 0.00000 0.17455 0.92852 0.09423 

23097958.5849 23679006.6550 0.0000 23258245.4721 24898194.1410 
21124323.2283 20052650.4149 24122573.9979 0.0000 0.0000 
22031129.4379 23728552.3585 19309646.5647 22177694.6841 22329295.1091 

0.0000 23582531.0504 20126637.8492 24141386.8564 23097958.6836 
23679006.7427 0.0000 23258245.3035 24898194.1222 21124323.1009 
20052650.4404 24122573.7873 0.0000 0.0000 22031129.4499 
23728552.5766 19309646.5483 22177694.4924 22329294.9783 0.0000 
23582531.3154 20126637.9782 24141386.6161 

4.8377 6.7224 0.0000 4.9009 19.6340 2.7970 2.3017 
8.8154 

0.0000 0.0000 3.3891 6.2289 2.3470 5.4229 5.7480 
0.0000 

12.6584 2.8441 21.8461 4.8377 6.7224 0.0000 4.9009 
19.6340 

2.7970 2.3017 8.8154 0.0000 0.0000 3.3891 6.2289 
2.3470 

5.4229 5.7480 0.0000 12.6584 2.8441 21.8461 
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4ppendix B: Search Statistics 

B1 Search Statistics for GPS Only 
Observations at Epoch 3 

EPOCH 3 GPS TIME : 970 126023. 
---------------------------------- 

EPOCH 3 PR L1 3851174.5701 -80152.8567 5066647.0627 
Sigma : 1.6411 1.5923 2.7922 

EPOCH 3 PHI L1 3851174.5725 -80152.8491 5066647.0417 
Sigma : 1.5154 1.4671 2.7100 

INTEGER SEARCH STATISTICS FOR L1 FREQUENCY 
------------------------------------------ 

SATELLITES PRESENT THIS EPOCH 

1278 14 15 16 

BASELINE NUMBER 1 

-------------------- 

Number of Satellites Present on this Baseline is 7 
Redundancy Level Used This Epoch 9 
Ambiguity Combinations Passing Tests : 2889 

Top three ambiguity sets for this epoch 
0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 
2.00 0.00 0.00 -3.00 2.00 1.00 0.00 3.00 

-4.00 -3.00 0.00 -4.00 -3.00 -4.00 -4.00 -4.00 
Integer Ambiguity Sigma Values 

5.8691 5.8969 6.4737 7.0556 7.1839 7.3582 8.0148******** 
Corresponding vTWv 

0.0637322986 1.1921193738 1.2143900491 
Corresponding Estimated a Posteriori Sigma (cycles) 

0.0841508556 0.3639473976 0.3673312234 

F-Test Ratio, Fixed Ratio values required : 
FTest Ratio 5.402 Fixed Ratio : 5.000 
Computed Ratios: F-Test : 18.705 Fixed : 19.338 

Top 3 Ambiguity Combinations 

-------------------------------------- -------- ---------------- - 
Ambiguity Ist 

---------- - - 
2nd 

- 
3rd 

-- - ----- ------------------ 
increase in vTwv, dvTwv 0.0615 

-------- 
1.1899 

------------------ 
1.2122 

new vTWv 0.0637 1.1921 1.2144 
F ratio vTWV / vTWV(lst) 18.71 19.05 

-------------------------------------- 
SV 1 0.0 

-------- 
2.0 

------------------ 
-4.0 

SV 2 1.0 0.0 -3.0 
SV 4 0.0 0.0 0.0 
SV 7 0.0 -3.0 -4.0 
SV 8 1.0 2.0 -3.0 
SV 14 0.0 1.0 -4.0 
SV 15 0.0 0.0 -4.0 
SV 16 0.0 

- 
3.0 -4.0 

------------- ------------------------ 
Redundancy (obs - unknowns) 

-------- ------------------ 
9 

F-Test Ratio Tolerance - 5.40 
Number of Possible Combinations - 19487171. 
Number Passing Cut-Off Test - 2889 
Best Combination F-Test Ratio - 
-------------------------------------- -------- 

18.71 PASS 
------------------ 

AMBIGUITIES FIXED AND APPLIED DURING RUN 

----------------------------------------- 

L1 FREQUENCY, BASELINE No.: 1 
SATELLITE ID No. FIXED INTEGER VALUE INTEGER SD 

14 0.0 0.0010 
2 1.0 0.0010 
1 0.0 0.0010 

15 0.0 0.0010 
8 1.0 0.0010 
7 0.0 0.0010 

16 0.0 0.0010 
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EPOCH 3 FIXED 3851174.6530 -80152.8794 5066647.1537 
Sigma : 0.0083 0.0081 0.0149 
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B2 Search Statistics for Mixed 
Observations at Epoch 17 

EPOCH 17 GPS TIME : 970 126037.0 
------------------------------------- 

EPOCH 17 PR L1 3851174.5343 -80152.8696 5066647.0963 
Sigma : 1.0637 1.0235 1.3493 

EPOCH 17 PHI L1 3851174.5442 -80152.8625 5066647.0851 
Sigma : 0.6143 0.5747 0.9705 

INTEGER SEARCH STATISTICS FOR L1 FREQUENCY 
-------------------------------------------- 

SATELLITES PRESENT THIS EPOCH 

1278 14 15 16 35 36 44 
49 50 52 

BASELINE NUMBER 1 

-------------------- 

Number of Satellites Present on this Baseline is 13 
Redundancy Level Used This Epoch 136 
Ambiguity Combinations Passing Tests 1977 

Top three ambiguity sets for this epoch 
0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 

0.00 5.00 -4.00 0.00 -3.00 5.00 

-1.00 0.00 0.00 -1.00 0.00 -1.00 -1.00 -1.00 0.00 
0.00 5.00 -4.00 0.00 -3.00 5.00 

1.00 2.00 0.00 1.00 2.00 1.00 1.00 1.00 0.00 
0.00 5.00 -4.00 0.00 -3.00 5.00 

Integer Ambiguity Sigma Values 
2.4188 2.4359 2.6709 2.8013 2.8574 2.9433 3.0629 8.1520 8.1925 

8.5084 8.5135 8.6943************************ 

Corresponding vTWv 
0.3381858593 0.5112743171 1.1226855797 

Corresponding Estimated a Posteriori Sigma (cycl es) 
0.0498664289 0.0613137014 0.0908572563 

F-Test Ratio, Fixed Ratio values required : 
FTest Ratio 1.494 Fixed Ratio 5.000 
Computed Ratios: F-Test : 1.512 Fixed 1.546 

Top 3 Ambiguity Combinations 

---------------------------------------------------- 
Ambiquity 1st 2nd 3rd 

increase in vTWv, dvTWV 0.3168 

new vTWv 0.3382 

F ratio vTWV / vTWV(lst) 

----------------------------------- 
SV 1 0.0 
SV 2 1.0 
SV 4 0.0 
SV 7 0.0 
SV 8 1.0 
SV 14 0.0 
3V 15 0.0 
SV 16 0.0 
SV 35 5.0 
SV 36 -4.0 
SV 44 0.0 
SV 49 0.0 
SV 50 -3.0 
SV 52 5.0 

----------------------------------- 
Redundancy (obs - unknowns) - 
F-Test Ratio Tolerance 
Number of Possible Combinations 
Number Passing Cut-Off Test - 
Best Combination F-Test Ratio 
----------------------------------- 

0.4899 
0.5113 

1.51 

-1.0 
0.0 
0.0 

-1.0 
0.0 

-1.0 
-1.0 
-1.0 

5.0 

-4.0 
0.0 
0.0 

-3.0 
5.0 

31384 

1.1013 
1.1227 

3.32 
-------------------- 

1.0 
2.0 
0.0 
1.0 
2.0 
1.0 
1.0 
1.0 
5.0 

-4.0 
0.0 
0.0 

-3.0 
5.0 

------------------- 
136 

1.49 
28376721. 

1977 
1.51 PASS 

------------------- 

AMBIGUITIES FIXED AND APPLIED DURING RUN 
------------------------------------------ 
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Appendix B: Search Statistics 

L1 FREQUENCY, BASELINE No.: 1 

SATELLITE ID No. FIXED INTEGER VALUE INTEGER SD 

14 0.0 0.0010 
2 1.0 0.0010 
1 0.0 0.0010 

15 0.0 0.0010 
7 0.0 0.0010 
8 1.0 0.0010 

16 0.0 0.0010 
50 -3.0 0.0010 
36 -4.0 0.0010 
44 0.0 0.0010 
35 5.0 0.0010 
52 5.0 0.0010 

EPOCH 17 FIXED 3851174.6520 -80152.8778 5066647.1523 
Sigma : 0.0079 0.0073 0.0133 
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Appendix C: Satellite Availabilities 

Cl Satellite Availability during 
Software Validation 
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Appendix C: Satellite Availabilities 

C2 Satellite Availability during 
the Mini-Bus Trial 
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Appendix C: Satellite Availabilities 

C3 Satellite Availability during 
Deck Deflection Monitoring 
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Appendix C: Satellite Availabilities 

C4 Satellite Availability during 
Tower Deflection Monitoring 
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Appendix C: Satellite Availabilities 

C5 Satellite Availability During 
Setting-Out Trial 
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D4 
UNIVERSITY OF NOTTINGHAM 

STATION AT ..... 
JWT............ 

THEODOLITE HEIGHT ............... 
EDM INST. HEIGHT ................ 
EDM INST. TYPE .................. 
GROUP No . ....................... 

Traverse Sheets 
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DEPT OF CIVIL ENGINEERING 

». o.. Rk.... " 
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D14 Least Squares Adjustment 
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D15 Traverse Computations 

What follows are the calculations that were necessary to arrive at the final plan 
coordinate values presented in Table 7.1 

Angular Misclosure 

Summation of internal angles give a misclosure of -94 seconds which has been 
evenly distributed about the angles in Table D. 1 
Table D. 1 Angular Misclosure Distribution 

7 

INIT 118 15' 06" +10" 118 15' 16" 
TRAV 2 107 19' 34" +11" 107 19' 45" 
TRAV 3 166 01' 17" +10" 166 01' 27" 
RTK 5 01143' 10" +11" 011 43' 21" 

TRAV 5 282 31' 03" +10" 282 31' 13" 
TRAV 6 256 57' 15" +11" 256 57' 26" 
RTK 8 014 02' 45" +10" 014 02' 55 
RTK 9 07109' 14" +11" 07109' 259" 

TRAV 7 23159' 02" +10" 231 59' 12" 
S= 1259 58' 26" +94" 1260 00' 00" 

Traverse Orientation 

Coordinates of EEE Tower are: 
52 56 31.99962 N 111 18.99705 W 133.796 Ht WGS-84 
Conversion through WinCoda to OGGBNG gives 
454623.358E 338621.038 N 86.388 Ht 

Coordinates of point `INIT' are: 
52 56 27.28414 N 11131.72793 W 087.288 Ht WGS-84 
Conversion through WinCoda to OSGBNG gives 
454387.360E 338472.651 N 39.877 Ht 

Resultant Bearing from `INTT' to Tower is therefore Inv. Tan. 
Inv. Tan. (454623.358-454387.360) / (338621.038-338472.651) 

= 57 50' 23". 

Thus bearing of V` Traverse leg (`WIT' to ̀ TRAV2') 

= 57 50' 23" + 165 21' 01" 

= 223 11'24" 
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Traverse Adjustment 

The above calculations allow the adjusted bearing of each traverse leg to be 

calculated. With this information, and the horizontal distance between each 

leg, the difference in Eastings and Northings between each subsequent point 

can be calculated (D15). As the traverse closes back onto its-self a vector 

misclosure can also be calculated and this error can be distributed around each 

point by means of a Least Squares Adjustment, to give final coordinate values 
for each point (Table D. 2). 

Table D. 2 Least Squares Adjustments, Delta Eastings/Northings and Final 
Coordinate Values 

POINT ADJ. 
DE 

ADJ. 
DN 

FINAL 
DE 

FINAL 
DN 

E'ING N'ING 

INIT 454387.360 338472.651 
+0.002 +0.002 -44.202 -47.087 

TRAV 2 454343.158 338425.564 

-0.002 +0.004 -63.176 +30.623 
TRAY 3 454279.982 338456.187 

-0.003 +0.003 -59.168 +49.361 
RTK 5 454220.814 338505.548 

TRAY 5 
-0.002 +0.003 +56.121 -29.983 

454276.935 338475.565 
+0.002 +0,001 +47.081 +168.697 

TRAV 6 454324.016 338644.262 
-0.003 +0,006 -100.058 +54.636 

RTK 8 454223.958 338698.898 
-0.002 +0.009 +131.879 -34.323 

RTK 9 454355.837 338664.575 
+0.001 +0.001 -21.811 -33.039 

TRAV 7 454334.026 338631.536 

-0.004 +0.001 +53.334 -158.885 
WIT 454387.360 338472.651 
SUM -0.011 +0.030 0.000 0.000 
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Coordinates of Offset Points 

At Points ̀ INIT', `TRAV2' and ̀ RTK5' additional angular and distance 

measurements were taken to the remainder of the RTK survey points. The 

absolute bearing from the appropriate traverse leg had first to be calculated 
before final coordinates could be derived. 

At point 'NIT' 
Calculated bearing to ̀ TRAV2' = 223 11' 24" 
Circle reading to ̀ TRAV2' = 098 27' 40" 

Thus circle bearing adjustment = 124 43' 44" 

Thus Bearing of `RTK1' from `1NIT' = 199 55' 01" 
Bearing of `RTK4' from `INIT' = 163 14' 46" 

Thus coordinates are 
`RTK1' 454381.872 E 338457.504 N 
`RTK4' 454396.770E 338441.394 N 

At point `TRAV2' 
Calculated bearing to `TRAV3' = 295 51' 39" 
Circle reading to `TRAV3' = 266 04' 50" 
Thus circle bearing adjustment = 029 46' 49" 

Thus bearing of `RTK2' from `TRAV2' = 06242'10" 
Thus bearing of'RTK3' from "TRAV2' = 10206'55" 

Thus coordinates are 
`RTK2' 454353.708E 338431.192 N 
`RTK3' 454358.728E 338422.190 N 

At point ̀ RTK5' 
Calculated bearing to ̀ TRAV5' = 118 06' 51 
Circle reading to `TRAV5' = 052 58' 35" 
Thus circle bearing adjustment = 065 08' 16" 

Thus bearing of `RTK6' from ̀ RTK5' = 019 29' 51" 
Thus bearing of `RTK7' from ̀ RTK5' = 02138' 16" 

Thus coordinates are 
`RTK6' 454235.045 E 338545.744 N 
`RTK7' 454240.769 E- 338555.852 N 
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