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Abstract 

This thesis considers the interplay between the continuous and discrete properties of 

random stochastic processes. It is shown that the special cases of the one-sided Lévy-

stable distributions can be connected to the class of discrete-stable distributions 

through a doubly-stochastic Poisson transform. This facilitates the creation of a one-

sided stable process for which the N-fold statistics can be factorised explicitly. The 

evolution of the probability density functions is found through a Fokker-Planck style 

equation which is of the integro-differential type and contains non-local effects which 

are different for those postulated for a symmetric-stable process, or indeed the 

Gaussian process. Using the same Poisson transform interrelationship, an exact 

method for generating discrete-stable variates is found. It has already been shown that 

discrete-stable distributions occur in the crossing statistics of continuous processes 

whose autocorrelation exhibits fractal properties. The statistical properties of a 

nonlinear filter analogue of a phase-screen model are calculated, and the level 

crossings of the intensity analysed. It is found that rather than being Poisson, the 

distribution of the number of crossings over a long integration time is either binomial 

or negative binomial, depending solely on the Fano factor. The asymptotic properties 

of the inter-event density of the process are found to be accurately approximated by a 

function of the Fano factor and the mean of the crossings alone. 
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1. Introduction 

1.1 Background 

Power-law phenomena and  noise are ubiquitous [e.g. f/1 1] in physical systems, and 

are characterised by distributions which have power-law tails. These systems are 

often little understood, with distributions which have undefined moments and exhibit 

self-similarity. Following the discovery of power-law tails in physical systems, 

interest in �stable distributions� has increased. The stable distributions arise when 

considering the limiting sums of N  independent, identically distributed (i.i.d.) 

variables as N  tends to infinity, and can be used as models of power-law 

distributions. Commonly encountered continuous-stable distributions include the 

Gaussian and Cauchy distributions. A class of discrete-stable distributions exists and 

share many of the properties of their continuous counterparts � the Poisson being one 

such distribution. It is logical to question the connection between the two classes of 

distribution � for instance, is there some deeper connection between them, or are they 

entirely separate mathematical entities? 

 

A mathematical approach to gain an understanding of a process is to create a model 

which fits the available information � investigation of the model will ultimately aid 

understanding of the process. For instance, population processes governed by very 

simple laws have been used [e.g. 2, 3, 4] to analyse complex physical systems. 

Discrete-stable processes have been found and analysed [e.g. 2, 5, 6], however a non-
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CHAPTER 1. INTRODUCTION 

Gaussian continuous-stable process has never been found, despite the burgeoning 

evidence of continuous-stable distributions in nature. It would be enormously 

advantageous to find such a process. Conversely, algorithms which permit the 

generation of uncorrelated continuous-stable variates exist, but there are no such 

algorithms for discrete-stable variates. The discovery of such an algorithm would aid, 

for instance, Monte Carlo simulation of processes which have discrete-stable 

distributions. 

 

Power-law tails also arise when considering the zero and level crossings of 

continuous processes for which the correlation function has fractal properties. It has 

been shown that over asymptotically long integration times, the distribution of zero 

crossings of Gaussian processes falls into either the class of binomial, negative 

binomial or, exceptionally, Poisson distributions. It would be informative to examine 

the level crossing distributions of non-Gaussian processes and to investigate the 

distribution of intervals between crossings, as they are the properties which are often 

of the most interest in physical systems. 

1.2 Literature Review 

The research literature which has an effect on this thesis has evolved from two 

disparate paths � whilst there has obviously been some interplay between the two, 

results have tended to be incremental, eliciting a two-part literature review. Figure 1.1 

gives an outline of the branches of research which will be followed, and shows the 
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CHAPTER 1. INTRODUCTION 

connections between the avenues of research. Note that this diagram is a very brief 

sketch rather than being an exhaustive illustration of the research. 

 

The first section details the work of Lévy and Mandelbrot with their importance to 

power-law distributed phenomena. The importance and versatility of stable 

distributions and population models will then be illustrated, largely from an analytical 

perspective. The second section starts from the studies of Brown and Einstein, which 

will be followed along a random walk and signal processing perspective, eventually 

leading to level crossing statistics of Gaussian processes, and the significance of the 

K  distributions. 

1.2.1 Power-Law distributions 

In 1963, Benoît Mandelbrot [7] studied the fluctuations of cotton prices and noticed 

that the fluctuations in price viewed over a certain time scale (e.g. one month) looked 

statistically similar to those viewed at another time-scale (e.g. one year). He found 

that the distribution of the fluctuations in prices was governed by a power-law such 

that  for large values of the fluctuation in price , and γffP /1~)( f γ  the power-law 

index. Such behaviour is often termed  noise or flicker noise [f/1 8], and the 

associated distributions are termed �scale free� due to their self-similarity. Mandelbrot 

called systems with self-similarity and power-law behaviour �fractal� from the Latin 

�fractus�. Fractal behaviour has subsequently been found in countless other situations, 

and brought the studies of such systems out of the realms of pathologies. 
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Figure 1.1 

Showing the avenues of research outlined below. The arrows show the development of one theory by 

the named author(s), a reference to, and the date of their first publication on the development.  
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After Mandelbrot�s initial work, self-similarity and fractals were studied mostly by 

condensed-matter physicists, as they noted power-law behaviour occurring at critical 

points of phase transitions. This changed in 1987 when, in an attempt to explain the 

ubiquity of  noise, Bak et al. [f/1 12, 21] introduced the notion of the sandpile. A 

sandpile is a system where grains of sand are modelled as falling onto a �pile�. Once 

the steepness of the pile becomes too great, the pile will collapse in an avalanche until 

the pile is again stable; the addition of further grains of sand may disturb this stability, 

causing more avalanches. Bak et al. found that various measures gauging the size and 

frequency of avalanches followed power-law distributions, and they subsequently 

introduced the concept of Self-Organised Criticality (SOC), where systems evolve 

naturally to their critical points. Deviations from the critical state exhibit scale-free 

behaviour, which are characterised by power-law tails in the distributions of the 

associated measurable quantities. 

 

Since then, there has been significant interest in fractals; they have been found in and 

applied to art [22, 23], image compression [24], fracture mechanics [25], river 

networks and ecology [26], and economics [27]. Similarly, there has been a great deal 

of study into fractals and SOC, as they can be used to model many physical systems 

[28, 29, 30, 31]. It is for this reason that interest in continuous-stable distributions 

received a revival in the late 1980s. 

 

Continuous power-law behaviour has been observed in a diverse range of places [1, 

32], from the population sizes of cities, diameters of craters on the moon, the net 
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economic worth of individuals [33], duration of wake-periods during the night [34] to 

the distribution of sizes of earthquakes [35, 36]. Even rainfall exhibits power-law 

behaviour [37] � with periods of flooding caused by exceptionally high levels of rain 

being inevitable, and indeed necessary if governed by SOC. 

 

Whilst the processes which drive  noise and scale-free behaviour have been 

studied extensively, the full range of their behaviour is not understood. For instance, 

despite many efforts, there is still no analytical result [e.g. 

f/1

38] for the power-law 

index of a given system with set conditions, even for the sandpile, for which the 

governing rules are remarkably simple. With numerous new examples of power-law 

behaviour being found, gaining a better understanding of such processes is becoming 

increasingly important in order to infer properties of the underlying governing 

physical processes themselves. 

 

Paul Lévy, a major influence on the young Mandelbrot, discovered the continuous-

stable distributions [9, 39] in the 1930s when he investigated a class of distributions 

which were invariant under convolution, such that if two (or more) independent 

variables drawn from a stable distribution are added, the distribution of the resultant 

is also stable. Until then, the only known continuous-stable distributions were the 

Gaussian (whose mean and all higher moments exist) and the Cauchy distributions. 

The continuous-stable distributions (with the exception of the Gaussian distribution, 

which is a special case) all have infinite variance and power-law tails such that 

1
~)(

−−v
xxP  for large x  with . Furthermore, they are defined through their 20 << v
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characteristic function since there is no general closed-form expression for the entire 

class of distributions. A subset of the continuous-stable distributions are one-sided 

[40], where again 
1

~)(
−−v

xxP  for large x , and (depending on the choice of 

parameters)  for , with the range of the power-law index 

reduced to . 

0)( =xP

1<< v

N

1)sgn( ±=x

→N

0

N

 

The central limit theorem of probability theory (e.g. [9, 10]) states that the sum of  

i.i.d. variables with finite variance tends to the Gaussian distribution as the number of 

variables  tends to infinity. Gnedenko and Kolmogorov [

N

10] generalised this in 

1954 to: the sums of  i.i.d. variables with any variance (finite or otherwise) tend to 

the class of stable distributions as . Hence, systems which exhibit fluctuations 

with power-law tails and infinite variance will have distributions which will tend to 

stable distributions. A student under Kolmogorov, Vladimir Zolotarev studied the 

continuous-stable distributions, and his results were summarised in 1986 as a 

monograph [

∞

40] which continues to be a core text on stable distributions to this day. 

 

The concept of infinite divisibility [9, 10, 41, 42, 43, 44] of probability distributions 

states that: if a distribution D  is infinitely divisible, then for any positive integer 

and any random variable n X  with distribution , there are always n  i.i.d. random 

variables  whose sum is equal in distribution to 

D

nX,iX ,,, X 1 X . For example, 

the gamma distributions [e.g. 41] can be constructed from sums of exponentially 

distributed variables, which themselves are a member of the gamma class of 
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distributions. By definition, all the continuous-stable distributions are infinitely 

divisible � indeed this is a defining characteristic of the stable distributions. 

 

Examples of discrete, infinitely divisible distributions are the Negative Binomial and 

Poisson distributions [e.g. 41]. When attempting to find self-decomposable discrete 

distributions, Steutel and Van Harn [11] discovered the discrete-stable distributions, 

which were all expressible by their simple moment-generating function 

. As with the continuous-stable distributions, there are no known 

closed-form expressions for the entire class of distributions � only a handful are 

known. With the exception of the Poisson, all the discrete-stable distributions have 

power-law tails such that , where 

)exp()( νassQ −=

1~)( −−νNNP 10 <<ν  (note that the range of ν  is 

equal to that of the one-sided continuous-stable distributions). The Poisson 

distribution can be thought of as the discrete analogue of the continuous Gaussian 

distribution, as they are both the limiting distributions for sums of i.i.d. variables 

without power-law tails, and they are the only stable distributions for which all 

moments exist. 

 

The Central Limit Theorem for discrete variables states that the limiting distribution 

of the sums of i.i.d. discrete variables with finite mean is Poisson. However, if the 

mean of the distribution does not exist, the limiting sum belongs to the class of 

discrete-stable distributions. Building upon Steutel and Van Harn�s work, Hopcraft et 

al. formulated a series of limit theorems [45] for discrete scale-free distributions. It 

was found that for distributions with power-law tails, the rate of convergence to the 
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discrete-stable attractor slows considerably when the index ν  tends to unity, when 

the distribution approaches the boundary between scale-free behaviours and Poisson. 

 

More recently, researchers have been looking into discrete power-law distributions in 

networks, where the term network may refer to any interconnected system of objects, 

such as the internet, social networks, or even semantics [46]. To borrow a term from 

graph theory, the order distribution of a network gives the discrete distribution of the 

number of links that each node has to other nodes. Power-law behaviour has been 

noted in an extraordinarily varied range of order distributions in physical systems. 

Examples range from the distribution of links between actors [47] (where co-starring 

in a production together signifies a link), the number of citations to a given paper 

catalogued by the Institute for Scientific Information [48], to the distribution of 

connections between sites in the human brain [49]. A fuller review of instances of 

discrete power-law distributions in nature can be found in (for example) [13 or 50]. 

 

An understanding of power-law behaviour in networks can be used, for instance, to 

control the spread of viruses or to prevent disease [51] by preferentially inoculating 

nodes with a large degree of connectivity which would otherwise spread the disease 

to a large number of nodes. Conversely, this knowledge may be used for malicious 

purposes � one example of this is the attacks [52] in 2002 against the thirteen major 

Domain Name Servers of the internet which are relied on by every connected 

computer. 
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The broadening evidence of discrete power-law behaviour prompted the development 

of stochastic models which would produce power-law distributions as their stationary 

state. One such model is the Death-Multiple Immigration (DMI) process [53], which 

describes a population for which deaths occur in proportion to its size N . Multiple 

immigrants enter the population, with immigrants entering the population 

independent of its instantaneous size, with single immigrants and groups of two, three 

� m  entering the population at rates mα . The distribution of immigrants mα  and the 

rate of death µ  jointly determine the �stationary state� that the population reaches in 

the limit as time tends to infinity once the deaths and the multiple-immigrations 

equilibrate. Hopcraft et al. [5] were able to formulate a discrete-stable DMI process 

which produces a discrete-stable stationary state. The addition of births to the DMI 

process, while altering the dynamics of the process, also permits a discrete-stable 

distributed stationary state. 

 

It is often impossible to study a system directly without disrupting it. It is instead 

preferable to use an indirect method of monitoring which retains the characteristics of 

the system. A suitable method, applied to the DMI model, takes a proportion of the 

deaths in the population and counts them over a specified monitoring time; once a 

death has occurred, the individual does not affect the dynamics of the system. The 

deaths, or �emigrants� of the internal population form a point process [54], which 

itself generates a train of events in time that may be analysed. The distribution of the 

number of emigrants, together with the time-series characteristics (such as inter-event 

times, correlations, etc.) reveal information about the dynamics of the system being 
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monitored without disrupting the system itself. This technique was used by Hopcraft 

et al. to distinguish between a population being driven by the DMI process [53], and 

another by the BDMI process, which both had the same stationary state through 

examination of the correlation functions of the counting statistics. 

 

The Poisson process [55, 56, 57] is a memoryless stochastic process which is 

completely characterised by a rate λ , which denotes the expected number of 

occurrences of an event in a unit time. The doubly stochastic Poisson process (or the 

Cox process) is a Poisson process where the mean itself is a (continuous) stochastic 

variable. The Poisson transform was originally developed by Cox [58], who modelled 

the number of breakdowns of looms in a textile mill as being dependent on a 

continuous parameter: the quality of the material used. Applications of the doubly 

stochastic Poisson process since have been diverse, for instance, Mandel and Wolf 

[59] describe a photon counting process from a quantum-mechanical standpoint, 

using the Poisson transform as the core of their result. In the broadest and most 

general sense, the Poisson transform is of great importance in that it provides a direct 

link between continuous and discrete distributions without resorting to mean-field 

approximations (which do not necessarily always work for discrete phenomena). 

 

A useful statistic when considering discrete distributions is the Fano factor [60], 

which is given by , and can be used as a measure of 

how Poissonian a distribution is. For , the distribution is Poisson, whereas for 

 and  the distribution is closer to being Binomial (i.e. narrower) and 

( ) ><><−><= NNNF /22

1=F

1<F 1>F
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Negative Binomial (i.e. broader), respectively. The Binomial distribution arises when 

considering the number of successes from a given number of independent Bernoulli 

trials (e.g. coin tosses). Negative binomial distributions arise when considering the 

number of failures before a given number of successes in an independent Bernoulli 

trial. The distribution of a binomial is narrower than a Poisson of the same mean, 

whereas a negative binomial is broader than a Poisson distribution of the same mean. 

Jakeman et al. state [61] that the entire class of discrete distributions with Fano factor 

, and many for which , cannot be generated through a doubly stochastic 

Poisson process. They considered a model whereby the immigrations into a DMI 

process enter only in pairs, and found that under certain circumstances, only even 

numbers of individuals will be observed in the population. 

1<F 1>F

1.2.2 The Brownian path 

In 1828 Robert Brown [14] studied pollen particles suspended in water, and found 

that the particles executed �jittery� motions instead of following a smooth path, but 

was unable to provide an explanation for this movement. It was nearly eighty years 

before an explanation was found by Einstein in 1905. Einstein found [15] that the 

particles� displacements in each �jitter� followed a Gaussian distribution, and that the 

mean squared displacement of the particles from their initial position scales linearly 

with the monitoring time, such that . Einstein called such behaviour 

�Brownian Motion�, and his paper silenced those sceptical about the existence of 

atoms [e.g. 

cttx ~)(2 ><

62]. 
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The linearity in the mean squared displacement is characteristic of Brownian motion, 

and of �normal� diffusion. Further to those processes which can be described as 

following Brownian motion, processes exist for which the mean squared 

displacement is nonlinear in time, following a power-law instead: . In 

processes for which 

αcttx ~)(2 ><

1<α , the diffusion is slower than that of �normal� diffusion, and 

they are �sub-diffusive�. Similarly, those for which 1>α  are �super-diffusive� (the 

special case 2=α  is termed �ballistic diffusion�), as they are faster than normal 

diffusion [63]. These are all part of a wider class of diffusion called anomalous 

diffusion [e.g. 64, 65]. 

 

Brownian motion can be simulated through a process called a �random walk�. In the 

simplest, one-dimensional case, this refers to a particle on a line, which at each time 

step can either travel one step to the left or one step to the right with equal probability. 

The root mean square of the displacement can be shown [e.g. 66] to scale with the 

square root of the number of steps N . Taking the limit , where N  is fixed, 

and with appropriate rescaling of the distances, the distribution of the displacement is 

Gaussian, by the central limit theorem. However, if the number of steps is itself a 

random variable, then the rescaled distribution of the displacement is not necessarily 

Gaussian. In fact, Gaussian distributed displacements are the exception rather than the 

rule. 

∞→N

 

There are many cases when making the Gaussian assumption for processes is simply 

wrong, for instance when the recorded data makes strong departures from Gaussian, 

 - 13 - 



CHAPTER 1. INTRODUCTION 

or when the central limit theorem does not apply. Often, if the underlying physical 

processes are not well understood or are too complex to analyse mathematically, 

measurements of the processes can be made and properties inferred from them. This 

empirical approach will only lead to an understanding of the particular system at hand, 

so the study of non-Gaussian processes is equally as important as the study of 

Gaussian processes. 

 

Allowing the displacement of each individual step in a random walk to alter also 

changes the asymptotic behaviour of a random walk process. A Lévy flight is an 

example of a super-diffusive process [67]; occurring when the displacement in each 

step has a power-law tail. According to the generalised Central Limit Theorem [10], 

as the number of steps  the resultant rescaled displacement itself is also a 

continuous-stable distribution. In this case, the trace of the particle in space exhibits 

extreme clustering, staying within small regions for extended periods of time, rarely 

undertaking large steps, and staying within the new region until the next large step. 

As asymptotic behaviour of the (non-Gaussian) continuous-stable distributions 

follows a power-law, large steps are far more likely in Lévy flights than in Brownian 

motion; in fact it is the large steps which characterise Lévy flights. This can be seen 

in Figure 

∞→N

1.2, which compares a normal one-dimensional random walk with a Lévy 

flight. Note that for a Lévy flight, the mean squared displacement is infinite. It is 

apparent that large jumps dominate the behaviour of the Lévy flight, but do not occur 

in Brownian motion. 
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A Lévy random walk [68] is essentially a generalised Lévy flight, but instead of the 

particle essentially jumping from point to point with a fixed jump interval, the length 

of the interval is permitted to vary; having its own (continuous) probability density 

function. This can, for instance, be used to give a process a finite mean squared 

displacement, i.e. . Lévy walks have been used to model numerous 

diffusive processes [

αcttx ~)(2 ><

69], memory retrieval [70], and even the foraging patterns of 

animals [71]. 

 

t

xt

t

xt

 

Figure 1.2 

Showing the difference between Brownian motion and Lévy flights in one 

dimension. The Brownian motion is simulated by adding a Gaussian variable at each 

step in time; the Lévy flight adds a Cauchy variable at each time step. Note that 

since the motions are self-similar, the addition of scales on the axes is unnecessary. 
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In the context of radars and remote sensing, clutter, or �sea echo�, is the term given to 

unwanted returns from the sea surface which are not targets but which are detected. 

When designing a radar system, it is imperative to minimise the number of �false 

alarms� which need to be appraised manually. This problem is made harder when 

considering radars for which the so-called �grazing angle� (i.e. the angle between the 

sea surface and the area being investigated) is very small. In the 1970s, when trying 

to model sea echo, Jakeman and Pusey [20] proposed a model advocating the so-

called K distributions, which fitted with much of the existing data on sea clutter. The 

proposed model regarded the surface of the sea illuminated by the radar as being a 

finite ensemble of individual scatterers, each returning the radar signal with random 

phase and fluctuating amplitude [72]. One interpretation of this is that the scattered 

field is an N  step random walk where the value of N  fluctuates, therefore the 

classical central limit theorem does not apply. The K  distributed noise model has 

been widely regarded as an excellent model for non-Gaussian scattering; this has 

been justified both by empirical data and the comparison with analytically tractable 

scattering models. 

 

The Fokker-Planck equation [3, 73] was developed in the 1910s by Fokker and 

Planck [16] when they attempted to establish a theory for the fluctuations in 

Brownian motion in a radiation field. The Fokker-Planck equation describes the time 

evolution of the Probability Density Function (PDF) of a process, and is a 

generalisation of the diffusion equation [15]. The Fokker-Planck equation and its 
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subsequent generalisations have themselves since been used for a myriad of 

applications [65, 66, 72, 74, 75]. 

 

It is frequently the case that real-world continuous stochastic processes [55] are too 

complex to measure and analyse in full. This may be because instrumentation with 

sufficiently high resolution does not exist, or because analysis of the resultant data 

would be prohibitive. Instead, it is often instructive simply to examine crossings of a 

process. This effectively reduces the continuous process under scrutiny to a point 

process [56], which is comprised entirely of a series of points in time. A basic 

example of crossing analysis is the deduction of the frequency of a sinusoidal signal 

as its amplitude passes through zero (i.e. the zero crossings). Likewise, studying share 

prices over a given time interval, one could predict the frequency that a given share 

will exceed some value, and thus make better-informed trading decisions. This is then 

studying the level crossings (see Figure 1.3) of the share�s price. Results from 

analysis of zero and level crossings have countless applications, from studying 

rainfall levels to predict the next major flood, to monitoring the value of equities to 

estimate a suitable point in time to trade. 
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Figure 1.3 

Illustrating the concept of zero (filled circles) and level (unfilled circles) crossings of 

a process over a time [t, t + T]. A clipped version of the zero crossing process is 

shown also (dotted boxes), where the value of the process is either +1 or -1, 

depending on the sign of the original. The first passage time (dashed line) and one 

inter-event time for the clipped process is shown. 

 

A random process with a large number of i.i.d. increments of finite variance, will tend, 

by the central limit theorem, to have a Gaussian (or �Normal�) distribution. In the 

case of a Gaussian process, the increments themselves are always Gaussian, so the 

distribution of the process is always Gaussian. Many systems have been modelled 

(correctly or not) as Gaussian processes based on the assumption of a large number of 

increments, and due to their analytical tractability. For that reason, the largest 

proportion of studies on crossings pertains to Gaussian processes [e.g. 55, 76]. Also, 

through understanding the crossing statistics of Gaussian processes, it is possible to 

estimate the crossing statistics (and indeed other properties) of processes for which 

0 

L 

Level crossings 

An inter-
event time

t t + T t + t1 

First passage 
time

1 

-1 Zero crossings
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Gaussian models are suitable. By studying the statistical properties of the level 

crossings, an understanding of the underlying processes which drive the fluctuations 

can be inferred. 

 

Stephen Rice published his seminal papers �Mathematical Analysis of Random 

Noise� in the 1940s [17]. A groundbreaking result in these papers expanded on a 

result [18] of Kac�s to derive the mean number N  of zero crossings over a time T  of 

a Gaussian process with autocorrelation function >+=< )()()( ττρ txtx . Rice 

showed that πρρ /))0(/)0(''( 2/1−= TN , indicating that the autocorrelation must be 

twice differentiable at the origin for the mean to exist. Conversely, if )0(''ρ  is 

undefined, then this implies that the mean number of zero crossings is infinite. 

 

Rice�s work was used by a team led by J. H. Van Vleck to explore the use of 

electronic noise as a radar countermeasure [77]. One source of electronic noise is 

clipping [78], which is when the amplitude of a signal is limited to a maximum value. 

In one form of clipping, the signal is replaced with a telegraph wave, which assumes 

the values ±1 depending on the sign of the original signal (see Figure 1.3), the 

motivation being to �spread the spectrum� [77] and thereby severely limit the 

information contained within the signal. This technique is called radar jamming [78]. 

A major discovery [19] of Van Vleck�s was that even in this extreme case of 

nonlinear processing, if the original signal was a Gaussian process, then the 

correlation function of the original signal can still be recovered. 
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Further research was then conducted which found the variance [79] and higher-order 

moments [80] of zero crossings, all of which depend on the autocorrelation function 

being differentiable. The level crossings of Gaussian processes were also 

investigated; Rice showed that the mean number of crossings decayed exponentially 

with the square of the level L . The first-passage time provides the time taken 

between the initiation of a process and the first crossing (whether zero or level), and 

again has many applications [e.g. 81]. A statistic of note with regard to continuous 

processes is the inter-crossing time distribution, as it describes (for instance) how 

long the process will exceed a certain level, i.e. its persistence. Results regarding zero 

crossings and the information they convey from them are reviewed in [82]; a review 

of crossings of Gaussian processes in particular is given by Smith et al. in [83]. 

 

The current scope of research into zero and level crossings is demonstrated 

schematically in Figure 1.4; the remainder of this review will map out a path on the 

figure, illustrating the route from continuous, discrete and back to continuous 

phenomena. 

 

Recently, Hopcraft et al. [84] were able to identify that if the zero crossings of a 

process had a discrete-stable (or asymptotically stable) distribution, the process itself 

has fractal characteristics. Such characteristics include �extreme clustering�, where 

cascades of crossings occur in clusters, each cluster comprised of infinitely many 

crossings. This cascade of crossings is analogous to fractal cascades of emigrations 

which occur in the discrete-stable DMI processes [84, 85]. 
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Figure 1.4 

Showing the connection between the branches of research in crossing statistics. The hexagons 

represent the mechanism for transferring between continuous and discrete properties. 
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�Sub-fractal� processes are continuous everywhere, but have derivatives which show 

fractal properties. In this case of sub-fractal Gaussian processes, it was shown by 

Smith et al. [83] that the zero crossings are either bunched (attracted to each other) or 

anti-bunched (repelled by each other) depending on the structure of the correlation 

function. Additionally, the crossing distributions are shown to belong to the class of 

Poisson (exceptionally), or more generally, binomial or negative-binomial 

distributions. 

1.3 Outline of thesis 

A background of the key mathematical concepts used in this thesis is given in 

Chapter 2, which introduces the stable distributions and their parameterisation, as 

well as the multiple immigration models which can be used to form discrete-stable 

processes. 

 

The concept of the Gaussian, Poisson and stable transforms are introduced in Chapter 

3. It is shown that the symmetric-stable distributions can be linked by a hierarchy of 

transforms which reduce their power-law index by modifying the scale parameter. A 

Poisson transform interrelationship is found for the discrete-stable and one-sided 

stable distributions. The necessary scaling which occurs when undertaking this 

Poisson transform is found, and the limit as the power-law index 1→ν  

(corresponding to the Poisson distribution) is examined. 
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Chapter 4 applies the Poisson transform to define a one-sided continuous-stable 

process, for which properties such as a Fokker-Planck style equation and the transient 

solution are found. Multiple-interval statistics are also examined; an n -fold 

generating function for a discrete-stable process is explicitly stated and used to find 

the -fold generating function of a one-sided continuous-stable process. n

 

In Chapter 5 the Poisson transform relationship is utilised to generate discrete variates 

from their continuous counterparts. The accuracy and speed of these simulations will 

be considered, both for known results (e.g. generating negative binomial variates 

from gamma-distributed variates), and later, for discrete-stable variates. 

 

Chapter 6 considers a signal processing analogue of a phase screen model and finds 

properties such as the level crossing distribution and the inter-crossing times. In 

particular, the distribution of the number of level crossings over very long integration 

times are compared to the binomial, negative binomial and Poisson results of Smith et 

al [83]. Furthermore, a heuristic approximation is found for the asymptotic properties 

of the inter-event times. 

 

Conclusions are drawn in Chapter 7, and suggestions are given for possible further 

avenues for research which could be undertaken. 

 



 

2. Mathematical background 

2.1 Introduction 

The continuous-stable distributions, which were discovered by Paul Lévy in the 

1930s, arise in the generalised central limit theorem which states that the sum of  

independent, identically distributed (i.i.d.) variables will always tend to a continuous-

stable distribution as N  tends to infinity, subject to an appropriate change of scale 

and shift. If the distribution of the variables has a finite variance, the limiting 

distribution is Gaussian (or Normal). If the distribution has a power-law tail such that 

N

ν+1
/1~)( xxp  (and 20 <<ν ), the variance is infinite and the limiting distribution is 

a non-Gaussian stable distribution. This has a wider currency as it means that the 

sums of all processes which have power-law tails have the potential to have 

asymptotically stable marginal distributions. For this reason alone, the continuous-

stable distributions are worthy of further study. The abundance of examples where 

they occur in nature exemplifies this point [e.g. 1, 12, 13, 28, 30, 50]. Any stable 

distribution is invariant under convolution with itself; it is from this property that the 

epithet stable is derived. In this thesis, an understanding of these stable distributions 

will be necessary. 

 

This chapter will firstly define the continuous-stable distributions and review some of 

their properties. Secondly, the discrete-stable distributions are introduced � their 

properties and behaviour are outlined. Known closed-form expressions for the 
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continuous and discrete-stable distributions are given. Finally, a Death-Multiple-

Immigration (DMI) population process, which can be used to form a discrete-stable 

process is introduced.  

2.2 The Continuous-stable distributions 

2.2.1 Definition 

The continuous-stable distributions are defined through their characteristic function � 

the Fourier transform of their probability density function [40]: 

( ) ( ) ( )

( )( )( )νβ

βν

,)sgn(1exp

exp,,,

uuiua

dxiuxxpauC

v
Φ−−=

= 
∞

∞−  (2.1) 
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1log
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v
v

u

π

π

ν  (2.2) 

where  is a scale factor. The symmetry of the distribution is described by 0>a

1≤1≤− β . In the case when 1=β  or 1−=β  and 10 <<ν , the distributions are 

defined only when x  is positive or negative, respectively � these distributions are 

termed �one-sided�. When 0=β , the distribution is symmetric, and defined for all 

real values of x . The parameter 0 2≤<ν  describes the power-law behaviour for 

1>>x , such that: 
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All the distributions for which closed-form expressions for the probability density 

functions (PDFs) exist are given in §2.4. In general, however, the densities are 

recovered upon inverse Fourier transforming the characteristic function (2.1): 

.),,,()exp(
2

1
),,,( 

∞

∞−

−= duauCixuaxp βν
π

βν  (2.3) 

Continuous-stable distributions for which 10 ≤<ν  have an infinite mean (all higher 

moments are also infinite), whereas when 2<1<ν  the mean is finite, but the 

variance is infinite. When 2=ν , the symmetry parameter is arbitrary and immaterial 

(c.f. (2.2)), and the distribution is the familiar Gaussian (Normal) distribution of 

variance  a2









−=

a

x

a
axp

4
exp

2

1
),,2,(

2

π
β . 

Therefore, the only continuous-stable distribution whose variance is finite is the 

Gaussian. 

 

The effect of the symmetry parameter is best demonstrated through a relation derived 

from the form of the characteristic function: 

( ) ( axpaxp ,,,,,, )βνβν −=− . (2.4) 

This elicits the fact that the range of behaviour given by varying β  need only be 

investigated for 10 ≤≤ β ; negative values of β  can be transformed accordingly. 
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Figure 2.1 plots the continuous-stable distributions for ν  = 0.9 and ν  = 1.1, and  = 

1. Note that for 

a

1>ν , β  shifts the mode in the opposite direction to when 1<ν . 
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Figure 2.1 

Illustrating the effect of varying ȕ on the shape of the continuous-stable 

distributions, for (a) ち = 0.9, a = 1, and (b) ち = 1.1, a = 1. 
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It is instructive to examine the behaviour of the scale parameter on the distributions, 

since some authors simply give the densities with . From the characteristic 

function (

1=a

2.1), it is easy to see the effect of a linear scale factor in a  on a distribution 

with unit scale factor: 

( ) 







= 1,,,
1

,,,
/1/1

βνβν
νν a

x
p

a
axp . (2.5) 

 

There is a great deal of confusion in the literature regarding the parameterisation of 

the stable distributions � for instance, some authors note that when 1=β  and 

 the distributions are one-sided, but do not state that when  the 

distributions are always two-sided. Other authors incorrectly change the sign of the 

imaginary term in  when 

10 << v 21 ≤≤ v

( )uC 1=ν , though the densities of this distribution are 

seldom actually calculated (except for the Cauchy case, when  is real). Many 

more have quoted the closed-form expressions of stable distributions from incorrect 

results. This confusion is compounded by the fact that there are at least five [

( )uC

86] 

different parameterisations for the distributions, each created for its own purpose. The 

characteristic function given above is the most commonly used, and will be the one 

used throughout this thesis. 

 

Many properties of the distributions are not known, for instance, it was not until 1978 

that it was shown by Yamazato [87] that the continuous-stable distributions were 

unimodal � the location of the mode of the continuous-stable distributions was found 

by Nolan [86] via yet another parameterisation. Only the properties which are 
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pertinent to this thesis are stated here � for a fuller review of stable distributions, key 

works include that of Lévy [9], Zolotarev [40], and Samorodnitsky and Taqqu [39]. 

2.2.2 Probability Density Functions 

General closed-form expansions of the PDFs in terms of well-understood functions 

do not exist [e.g. 88]. For instance, Metzler and Klafter [64] transform the parameters 

and provide the stable densities in terms of Fox�s H  functions [89], whereas 

Hoffmann�Jørgensen [90] defines them (again through a different parameterisation) 

using incomplete hypergeometric functions. Bergström [91] proved that there is an 

infinite series representation for all the continuous-stable distributions in terms of 

elementary functions. Generally, the symmetric-stable distributions have received the 

most attention, as the form of their characteristic function is simpler than that of their 

asymmetric counterparts. 

 

The case 1== βv  is rather peculiar in that as the index v  tends to unity from below, 

the distribution is one-sided with diverging mode. As the index tends to unity from 

above, the mode tends diverges to negative infinity � this behaviour clearly 

exemplifies the fact that the case 1=ν  is a singular value with special properties. 

This effect is illustrated in Figure 2.2. Continuity in the modes of the distributions as 

 varies is allowed through a different parameterisation [v 86] in which a term is added 

to shift the distributions, such that ( tan( ))2/)( vxpxp πβ+→

10 << v

. This, however, 

destroys the one-sidedness in the PDF when . 
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Figure 2.2 

Showing the effect of altering the power-law index Ȟ on the location of the mode of 

the distribution. a = ȕ = 1 for these plots. 

 

The behaviour of the one-sided distributions in the limit as  will be considered 

in more detail later in this thesis (Section 

1→v

3.3.4). 

 

The tail behaviour of the continuous-stable distributions can either be found through 

the use of a central-limit theorem type argument [41], or by stationary phase type 

methods [e.g. 92] to be: 
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It can then be inferred from (2.6) that when 1±=β , (even in the regime 21 <<ν  

when the stable distributions are two-sided), the tail for the 0<βx  end of the 

distribution decays faster than a power-law. 
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2.3 The Discrete-stable distributions 

When attempting to create discrete analogues for the continuous-stable distributions, 

Steutel and Harn [11] discovered a class of distributions which also exhibited stability 

and therefore infinite divisibility. As with the continuous-stable distributions, they are 

defined through a transform � in this case, their moment generating function: 


∞

=

−=
0

),,()1(),,(
N

N ANPsAsQ νν  (2.7) 

)exp(                νAs−=  (2.8) 

where  is a positive scale factor, and  characterises the power-law 

behaviour: for , the distributions follow 

A 10 ≤< v

10 << v

1

1
~),,(lim

+∞→ ν
ν

N
ANP

N
 

(see Figure 2.3) and for , the distribution is Poisson with mean : 1=v A

( A
N

A
ANP

N

−= exp
!

),,( ν ). (2.9) 

 

It is especially interesting to note that the range of the power-law index for the 

discrete-stable distributions is exactly that of the one-sided continuous-stable 

distributions. Also note that the form of the generating function is the same as the 

characteristic function of the symmetric-stable distributions, found by setting 0=β  

in (2.1). This is due to the fact that convolutions of both generating functions and 

characteristic functions with themselves are manifested as products; the exponential 

form is the only one which permits both classes of distributions to be stable. 
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Figure 2.3 

Showing the power-law behaviour of the discrete-stable distributions as the index Ȟ 

varies. For all the distributions shown, A = 10, whereas the values of Ȟ chosen are: 

0.1 (unfilled triangles, red), 0.3 (filled squares, green), 0.5 (crosses, purple), 0.7 

(filled triangles, blue), 0.9 (diamonds, yellow), and 1 (points, black). P(1) increases 

with the index Ȟ. 

 

The probabilities and moments of any discrete distribution can always be recovered 

through repeated differentiation of the generating function: 
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To date, there are only a few discrete-stable distributions for which there are closed-

form expressions for the probabilities � these are given in §2.4. The probabilities for 
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any  and A 10 ≤<ν  can always be found by substituting ),,( AsQ ν  into (2.10), 

however for anything other than small values of  this becomes rather cumbersome. 

For instance, the first few probabilities of the discrete-stable distributions are: 

N
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)exp(
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hence closed-form expressions are much more suitable for obtaining distributions. A 

more suitable method for obtaining the distributions is discussed in Section 5.7. 

 

From (2.11) we can demonstrate that the mean, and hence all higher moments of the 

discrete-stable distributions are infinite. The mean of a discrete-stable distribution is: 

( )
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which is undefined unless 1=ν , in which case , corresponding to the mean 

of the Poisson. 

AN >=<

 

In the limit , a discrete-stable distribution of scale parameter A  and a Poisson 

distribution with mean 

1→v

A  are almost indistinguishable for small values of N ; the 

power-law behaviour is initiated for . This behaviour is illustrated in Figure 1>>N

2.4. As such, the discrete-stable distributions in this regime can be thought of as a 

heuristic model for Poisson distributed variables with outliers. Judicious choosing of 
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the index would then allow tailoring of the frequency of the outliers to correspond to 

the data at hand [e.g. 85]. 
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Figure 2.4 

Illustrating the behaviour of the discrete-stable distributions for which the scale 

parameter A is unity and the index Ȟ tends to unity. The values of the power-law 

index Ȟ plotted are: 0.9 (unfilled triangles, red), 0.999 (squares, green), 0.99999 

(crosses, purple), 1-10-7 (filled triangles, blue), 1-10-9 (diamonds, yellow), and Ȟ = 1 

(the Poisson; dots, black). 

 

The tail when 1=ν , corresponding to the Poisson, which does not have a power-law 

tail can be calculated by applying Stirling�s formula [e.g. 93] to the Poisson 

probability distribution (2.9): 
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which clearly decays at a faster-than power-law rate. 

2.4 Closed-form expressions for stable distributions 

The most general characteristic functions of the continuous-stable distributions are 

defined in a four-parameter space: the power-law index ν , the symmetry parameter 

β , a scale parameter a , and a location parameter δ . The location parameter can be 

removed entirely, as its only effect is a shift of the PDF; the scale parameter can be 

removed also, as (2.5) shows that any scale parameter can be catered for by an 

appropriate scaling of the PDF. The symmetry parameter β  has its own symmetry 

relation (2.4), so we need only consider the range 0 1≤≤ β . The only parameter 

whose range cannot be reduced (or removed) is ν , so the continuous-stable 

distributions can be defined in 20 ≤≤ν , 0 1≤≤ β . The closed-form expressions for 

the PDFs of the continuous-stable distributions are given for  and 1=a 0=δ . The 

discrete-stable distributions, however, have no such scaling relation for different 

values of  due to their discrete nature, so are given with the value of N A  left free. 

 

It is certainly not necessary to have closed-form expressions for continuous-stable 

distributions to obtain the densities � there are alternative parameterisations which 

 - 35 -  



CHAPTER 2. MATHEMATICAL BACKGROUND 

lend themselves to numerical integration of the inverse Fourier transform (2.3) of the 

characteristic function (2.1) [e.g. 40, 94]. Indeed there are packages which will 

evaluate densities for any values of βν , , and a  [e.g. 95]. As it is often the case that 

a numerical result lends itself to other problems, not least numerical errors, closed-

form expressions continue to be sought. The parameters for the eleven known closed-

form expressions for the continuous-stable distributions and the three expressions for 

the discrete-stable distributions can be shown in ),( βν  phase-space for clarity: 

 

Figure 2.5 

A phase space diagram representing the continuous-stable distributions (represented 

by dots) for which closed-form expansions are known. The full line at Ȟ = 2 

represents the invariance of the Gaussian with respect to the ȕ. The dotted line at 0 < 

Ȟ < 1, ȕ = 1 represents one-sided distributions. Circles on the dotted line represent 

discrete-stable distributions whose probabilities have closed-form expressions 

(references above). 

 

Note that the scarcity of expressions for the continuous-stable distributions in the 

literature has led to some inconsistencies in the expressions given. This is partly due 

ȕ 

0 1/3 1/2 2/3 1 3/2 2 
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1 

(2.12) 

(2.14)(2.17) 
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4/3 5/3 

(2.19) (2.20)(2.25) 
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to the fact that some expressions are given in terms of little-known special functions 

for which many numerical software packages cannot readily evaluate. In some cases, 

the results given have even been found to be entirely incorrect (e.g. see [96]). Those 

stated below have been verified by numerical methods. For the sake of simplicity, the 

distributions are categorised by the functions which appear in them.  

2.4.1 In terms of elementary functions 

The two most well-known continuous-stable distributions are the Gaussian ( 2=ν , β  

arbitrary, though usually considered to be zero): 
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and the Cauchy ( 1=ν , 0=β ): 
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A third stable distribution also often found in the literature is the so-called �Lévy-

Smirnov� distribution ( 2/1=ν , 1=β ) [e.g. 40] , which is one-sided: 
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The only discrete-stable distribution whose closed form is given in terms of 

elementary functions is the Poisson, for which 1=ν : 
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2.4.2 In terms of Fresnel integrals 

The symmetric-stable distribution for which 2/1=ν  is [97]: 
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where  and  are Fresnel integrals [)(zC )(zZ 93]: 
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2.4.3 In terms of modified Bessel functions 

For 3/1=ν  the one-sided continuous distribution is [97]: 
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where  is a modified Bessel function of the second kind [)(xKα 93]. 

 

The discrete-stable distribution with 2/1=ν  is [6]: 
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2.4.4 In terms of hypergeometric functions 

An expression for the symmetric distribution with index 3/4=ν  is given by Garoni 

and Frankel [96]: 
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The Holtsmark [40] distribution, which arises in astrophysics and is symmetric-stable 

with index 2/3=ν , is [96]: 
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The discrete-stable distribution with index 3/1=ν  is: 
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A derivation of this new result is given in §3.3.3. 
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2.4.5 In terms of Whittaker functions 

The Whittaker functions [93, 98] which feature in the following expressions are 

defined as: 
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The only known symmetric-stable distribution involving Whittaker functions is [99]: 
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A one-sided stable distribution for 3/2=ν  is given in [100]: 
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A closed-form expression for the continuous-stable distribution exists for 1=β  and 

2/3=ν , but is not one-sided [101] since 1>ν : 
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This is the only continuous-stable distribution which is neither one-sided nor 

symmetric, and for which a closed-form expression for the density is available. 
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2.4.6 In terms of Lommel functions 

Garoni and Frankel [96] provide the expression for the symmetric continuous-stable 

distribution of index 3/1=ν  in terms of Lommel functions [102, 103]: 
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Having now introduced the continuous and discrete-stable distributions, we shall now 

examine a process which can produce discrete-stable distributions as its stationary 

state. 

2.5 The Death-Multiple-Immigration (DMI) process 

2.5.1 Definition 

The size of a population of individuals whose members die at a rate proportional to its 

size will decay exponentially, eventually reaching extinction. By allowing immigrants 

to enter in groups of  from elsewhere at a rate which is independent to the 

size of the population, the population will equilibrate to a nonzero size.  

m3,2,1

 

In a slight alteration to the original work of Hopcraft et al. [5, 6], we denote the 

probability that there are exactly m  immigrants entering the population as  such 

that  defines a valid discrete probability distribution function. Defining to 

be the probability that the population has size  at time , a simple model which has 

mF

P NmF )(t

N t
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only a death term (at a rate Nµ ) and multiple immigrations (with rate ε  and 

distribution ) has the transition diagram shown in Figure mF 2.6. 

 

 

Figure 2.6 

A transition diagram for the death-multiple immigration model. 

 

The corresponding rate equation is: 
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the second line resulting from the fact that  is itself a valid probability distribution 

and hence has unit sum. 
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Defining a generating function  of , the above set of equations may be 

transformed into a single Partial Differential Equation (PDE) dependant on , 

the generating function corresponding to the forcing terms :  
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Through the use of Laplace transforms, the solution subject to the initial condition 
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Here  is the stationary state of the distribution � the limiting distribution to 

which the population will equilibrate in the large t  limit. 
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The probability distribution of the stationary state is found using (2.10), i.e. 
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Jakeman et al. [104] show that if the forcing distribution has the generating function: 

νssQ f −= 1)( ; 10 ≤<ν  (2.32) 

then the distribution of the immigrants is [2, 6] 
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It then follows that the DMI process with forcing distribution (2.32) is a discrete-

stable process, for which the PDE governing the generating function is: 
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Finally, the �transient� generating function for the state of the discrete-stable process 

prior to it reaching equilibrium is: 
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Setting  is equivalent to setting the initial size of the population to . 

The corresponding transient solution is then: 
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Figure 2.7 plots the probability distribution of the size of a population subject to 

deaths and multiple immigrations as obtained from (2.34), and shows that the power-

law tail on the distribution is established instantaneously. 
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Figure 2.7 

Illustrating the initialisation of the power-law even for very small values of time. 

The probability distribution of a Death, Multiple Immigration process with an initial 

condition of exactly ten individuals in the population, and for which A = 5, Ȟ = 0.5 is 

plotted. The values of ȝt are 0.001, 0.1, 1 (red triangles, green points and blue 

crosses respectively), and ȝt = ∞ (corresponding to the stationary solution, in black 

points). 

2.5.2 Multiple-interval statistics 

One may consider the question: what is the probability that a population has sizes  

and  following a separation time t ? Given the Markovian nature of the DMI 

process, this result can be derived from the transient generating function (

N

'N

2.35) 

subject to the condition , i.e. setting the initial size of the population N)ssQ 1()(0 −=
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to . We then denote the joint generating function corresponding to this joint 

probability: 

N
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The joint generating function for the discrete-stable process is [6]: 
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From a joint generating function, the correlation functions [e.g. 41] of a process can 

in principle be formed. However, as all the moments of the discrete-stable process are 

infinite, correlation functions are undefined. It will be shown in Chapter 4 that despite 

this, the joint generating function has a wider currency since it enables the generation 

of continuous-stable processes. 

 

The use of the higher-order statistics of a process can be used to distinguish between 

population processes, even those for which the stationary states are identical. One 

such example of this is when two population processes with identical stationary states 

are distinguished by their third-order statistics in [53]. 
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2.5.3 Monitoring and other population processes 

Often it is difficult, if not impossible to measure a population directly without 

changing its dynamics. In such cases, one may monitor the emigrants of a population: 

if they are not to re-enter the population, then their being counted does not affect the 

dynamics. A method of monitoring emigrants of a population, which is also 

analytically tractable, is to model the emigrants as an additional death rate, and 

consider the joint distribution  of the population and the count of its 

emigrants. Now the variable n  refers to the number of individuals which have 

emigrated and been counted, and 

)(, TP nN

T  is the integration time over which the emigrants 

are counted. For the distribution of counts to have any sensible meaning, the internal 

population must already be at equilibrium before monitoring begins. 

 

We then define the generating function of the population and its emigrants: 
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where the variable  corresponds to the transform of the count variable . By setting 

 we obtain the generating function of the counts alone  from which 

the distribution can be recovered using (

z n

)0=s ;,0( TzQc

2.10). Altering the rate equation (2.26) 

suitably, including a counting process, and using the generating function (2.38), the 

counting statistics of any discrete Markov population process can be deduced. Note, 

however, that if the stationary solution of the population has an infinite mean, then 

the distribution of the counts will have an infinite mean for any nonzero monitoring 

time T . In particular, the distribution of counts from monitoring the discrete-stable 
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process (2.34) with 10 ≤<ν  is also discrete stable [e.g. 5], the case 1=ν  

corresponding to a Poisson process, for which the distribution of the counts is also 

Poisson. 

 

The Birth-Death-Immigration (BDI) process [e.g. 41] is a first-order Markov process 

in which deaths occur as in the DMI process, but immigrants enter singly and births 

occur at a rate proportional to the number of individuals present. When the death rate 

is greater than the birth rate, the stationary state of the population is negative binomial. 

When the births and deaths occur at the same rate, the stationary solution has a Bose-

Einstein or geometric distribution � this particular process has been used for a model 

for thermal light, and characterises the photon statistics of lasers below threshold 

[105]. 

 

The Death, Multiple Immigration [e.g. 5] process is a generalisation of the death, 

double immigration process in which immigrants only ever enter in pairs. This �pairs� 

process [61] was used to model the production of photon pairs in a non-linear crystal 

[106] � one of the first methods found to produce so-called �non-classical� light. 

Through tailoring the rate of immigration in the process, it is possible to create strong 

odd-even effects which clearly cannot be represented through mean-field 

approximations. 
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2.6 Summary 

This chapter has introduced the continuous and discrete stable distributions, and 

stated some of their properties and peculiarities. Despite the lack of general closed-

form expressions for the distributions and the profusion of incorrect results, the stable 

distributions are ubiquitous in nature, and progress is still being made on 

understanding them. 

 

A discrete-stable process was introduced as a special case of the Death, Multiple-

Immigration (DMI) process, and properties such as a transient solution and joint 

generating function were given. The concept of monitoring population processes was 

established, and related population processes were also discussed. 

 

In this introductory chapter, the continuous and discrete stable distributions are 

treated as separate entities. This apparent dichotomy is addressed in Chapter 3, which 

connects the discrete-stable distributions with the one-sided continuous-stable 

distributions through a Poisson transform interrelationship. 

  



 

3. The Gaussian and Poisson transforms 

3.1 Introduction 

So far we have only examined the case of continuous stable distributions for which 

the scale parameter a  is fixed. The term �doubly stochastic� when applied to 

probability distributions refers to one parameter of a distribution being �smeared� by 

another. An example of this, stated by Teich and Diament [107], is the well known 

result that when the mean of a Poisson distribution is modulated by a gamma 

distribution, the result is negative binomial. It would be instructive to allow the scale 

parameter of stable distributions to vary according to other stable distributions and 

examine the results. 

 

This chapter will begin by giving an alternative proof to a result in the literature [41] 

which uses the one-sided continuous-stable distributions to modulate the variance of 

the Gaussian distribution, forming a �Gaussian transform�. It will be shown that in 

this case, the resultant distribution is another symmetric-stable distribution. 

 

The concept of the �Gaussian transform� is then extended to the �Poisson transform�, 

whereby the mean of a Poisson distribution is modulated by a one-sided stable 

distribution. The mathematics of the Poisson transform are given from a photon 

counting perspective. The intrinsic connection between the discrete and continuous 

distributions through the Poisson transform is found, and the limit as the power-law 
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index 1→ν  (which was shown in Chapter 2 to have singular behaviour) is examined 

to elucidate the scaling that occurs between the two distributions. 

3.2 The Gaussian transform 

3.2.1 Definition 

The support of the one-sided continuous stable distributions covers all allowable 

values of the variance of a Gaussian distribution, so it is logical to consider a 

�Gaussian transform� where the variance of a Gaussian is modulated by a one-sided 

continuous distribution. To do this, we first start by defining the Gaussian transform, 

which takes a (one-sided) continuous distribution and outputs a symmetric 

distribution. Recall that a Gaussian distribution of variance  has 

characteristic function  and density given by 
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If the value of a  is itself a random variable whose PDF is )(ap  then the �Gaussian 

transformed� probability density function is: 
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It is clear that in the case when )(ap  is a delta function,  is again a Gaussian 

distribution as expected.  

)(xp
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Given that  is an even function, its odd moments are zero � evaluation of the 

even moments of the new distribution can be obtained through direct integration of 

the PDF: 
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Hence the moments of the Gaussian transformed distribution are proportional to that 

of the one-sided continuous distribution, except that the order of each moment is 

doubled. 

 

The characteristic function can be evaluated easily using the form of the Gaussian 

transform (3.1): 
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and is effectively the Laplace transform of )(ap . This shows that the Gaussian 

transform can be thought of as a weighed average of Gaussian distributions with 

different variances. 

 

Having now laid the foundations for the Gaussian transform, we may proceed to 

apply it to the one-sided stable distributions. 

3.2.2 Gaussian transforms of one-sided stable distributions 

To evaluate the Gaussian transform of the one-sided continuous-stable distributions, 

we need to first obtain their PDFs ),1,,( bap ν . This is done by setting 1=β  in the 

characteristic function (2.1) and using the inverse Fourier transform (2.3) when 

10 <<ν , using  as the Fourier variable, and b  as the scale factor: w
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We then use this PDF as the one-sided distribution )(ap  in (3.3). Upon noting that 
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This integral does not readily yield to direct evaluation, however as there is a term in 

, an alternative method using contour integration is possible. To that end, 

we remove the modulus and sign functions by splitting the integral into two parts and 

transform  in the integral over negative . This then gives: 

12 )( −+ iwu

w w−→ w

dw
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ibw
iwu

v
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uC

v

v
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 (3.5) 

 

Since this is the sum of a complex term and its complex conjugate, it follows that an 

alternative expression for  which highlights the fact that it is real is: )(uC

dw
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2 2
tan1exp
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11
Re)(

π
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 (3.6) 

 

For the contour integration of (3.5), we define Γ  to be the contour along the real line 

from  to , anticlockwise along an arc from  to 0 A A )exp( θiA , then returning along 

a line from )exp( θiA  to 0 . These curves are shown on the Argand diagram in Figure 

3.1 below. 

 

The simple closed contour Γ  is then comprised of the three curves 321 ,, ΓΓΓ  in the 

complex plane. Residue theorem then states that the integral along the contour Γ  is 

the sum of the residues of the integrand of (3.5) inside Γ . The only singularity is at 

, the residue of which we shall denote as 2iuw = R . In order that the contour encloses 
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the singularity, we require that 2/πθ >  � for the sake of simplicity, we shall work in 

the limit . If we take another limit as , the integral along ( )+→ 2/πθ ∞→A 1Γ  is 

equal to that of the characteristic function , given by ()(uC 3.5). 

)exp( θiA

 

Figure 3.1 

The path of the contour d on an Argand diagram 

 

Hence by denoting the integrals over the curves 3,2,1Γ  in the limits to be , we 

write: 

3,2,1I
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 (3.7) 

or, alternatively, 

3IC  
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)Re(w  
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where the ellipsis refers to the integrand in (3.5), or equivalently, (3.6). The first term 

is easily evaluated: 
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The above may be further simplified by noting that the imaginary term and the term 

within the braces may be written in exponential forms, revealing their arguments and 

moduli: 
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Having now found the residue of the pole, the next step is to evaluate the integral 

over the contour 2Γ . Here it is most logical to use polar coordinates in the real 

integral form (3.6), and integrate over the angular variable ϑ , which runs from 0  to 

θ : 

)exp(        );exp( ϑϑϑ iiAddwiAw ⋅==  
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The integral can then be written in the following form: 
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Given that we are interested in the limit as , the first terms in the integrand 

are: 
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Upon substituting )sin()cos()exp( ϑνϑνϑν ii +=  and splitting the exponential term 

into a product of real and imaginary exponentials, we have: 
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The real exponential must tend to zero if  and  since  and 

when 

∞→A ( )+→ 2/πθ 0>b

πϑ ≤≤0  and 10 <<ν , 

0
2

tan)sin()cos( >







+
πν

ϑνϑν . 

Therefore the integrand must be zero, i.e. 

02 =I . 
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The final integral to close the contour Γ  is over the curve 3Γ . For this, it is most 

convenient to transform to a new coordinate z  which runs along the curve and use 

the parameterisation (3.6): 
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As we are examining the contour in the limit , the above may be 

simplified greatly since: 
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Thus, the integral is entirely imaginary and so the contribution from the contour 3Γ  is 

zero: 
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Given that , it follows that: 032 == II
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 (3.8) 

 















=
2

sec,0,2,
v

buC
π

ν  (3.9) 

which is the characteristic function of a symmetric-stable distribution (2.1) with 

power-law index ν2 , symmetry parameter 0=β  and scale parameter given by 

)2/sec(πνba = . 

 

This shows that the �Gaussian transform� of a one-sided stable distribution of index ν  

is a continuous-stable distribution whose index is ν2 . The scaling of the scale factor 

must occur since in the limit as 1→ν , the mode of the one-sided stable distributions 

tends to infinity (see Figure 2.2). Consequently, when taking the Gaussian transform 

of a one-sided stable distribution with 1→ν , the scale parameter of the resulting 

symmetric-stable distribution must also diverge. 

 

Having now found the relationship between the one-sided and symmetric-stable 

distributions via the �Gaussian transform�, we shall now consider the case of a 

�Poisson transform� which transforms continuous distributions into discrete 

distributions through modulating the mean of a Poisson distribution. 
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3.3 The Poisson transform 

3.3.1 Definition 

The Poisson transform was introduced by Cox [58] when he studied the breakdown of 

cotton looms. If the quality of the cotton was constant, the breakdown could be 

modelled simply as a Poisson process with a constant rate. Cox found, however, that 

the number of breakdowns over a certain time period varied, and described a Poisson 

process whose mean was a stochastic variable which depended on the quality of the 

cotton. Hence this loom breakdown process is known as a Cox process, or more 

commonly, a Doubly Stochastic Poisson Process. 

 

Another physically occurring example of the Doubly Stochastic Poisson Process 

arises in photon counting and was first described by Mandel et al. [108] as follows. 

The photoelectric effect [e.g. 59] describes the release of electrons from metals when 

hit by light of certain frequencies. A positively charged �photocathode� attracts the 

electrons emitted by the metal � if the metal undergoing the photoelectric effect is the 

anode, then a current is induced between the two. Since single electrons are hard to 

detect individually, a photomultiplier is placed between the anode and the cathode to 

amplify the current. An electron counter is then able to register the resultant pulse of 

electrons from the anode. This is illustrated schematically in Figure 3.2: 
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Photomultiplier

 
Counter 

Figure 3.2 

Illustrating the photon counting mechanism. The electrons given off through the 

photoelectric effect from the anode are amplified by the photomultiplier and reach 

the cathode. The corresponding electric current is measured by an electronic counter. 

For a full treatment of this, see [59, §9.1]. 

 

Defining  to be the probability density function of the light intensity w , the 

distribution of the number of counts over the interval is then [

( )wp

59]: 

( ) ( ) ( )

∞

−
=

0 !

exp
dw

N

ww
wpNP

N

. (3.10) 

 

This result is termed the �Poisson transform� and is general in that it can be used to 

model counting statistics of a field that fluctuates over time. In the case that the 

intensity is time-independent, the integrated light intensity is constant, and hence 

 describes a delta function, and the distribution of the number of counts is 

Poisson. 

( )wp

 

Calculating the generating function  from the Poisson transformed distribution 

(

)(sQ

3.10), we have: 
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which is simply the Laplace transform of the intensity . It must follow then, that 

the intensity  can be recovered through the inverse Laplace transform of : 

( )wp

( )wp )(sQ

( )()( 1 sQLwp −= ) . (3.12) 

 

The Poisson transform is not only valuable as it relates discrete distributions to 

continuous ones through a physical process � it also has the property (which can be 

verified by differentiation of ) that the integer moments of the intensity  is 

equal to the factorial moments of the distribution , so 

)(sQ ( )xp

( )NP

)1()1()()(
00

+−⋅⋅⋅−⋅=
∞

=

∞

rNNNNPdwwwp
N

r . 

 

Having established the necessary tools to convert from discrete to continuous (and 

vice-versa) one-sided distributions, we shall apply them to the one-sided stable 

distributions. 
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3.3.2 Poisson transforms of one-sided stable distributions 

Recall that the one-sided stable distributions are defined by setting 1=β  in (2.1) so 

that  is defined only for . Upon application of (( )xp 0≥x 3.11) to (2.3), we obtain the 

generating function of a Poisson transformed stable distribution: 

10)()exp(
2
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<<
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Noting that the integrations over x  and u  are independent, we exchange the order of 

integration and evaluate the integral over x  first: 
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Splitting the integral over positive and negative u  and transforming  in the 

latter, this becomes: 
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This integral is of the same form as that which gives the characteristic function of the 

Gaussian transform of the one-sided stable distributions (3.5), so 
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which is exactly the generating function of a discrete-stable distribution (2.8) with 

power-law index ν . Therefore, the Poisson transforms of the one-sided Levy 

distributions are the discrete-stable distributions; the two scale parameters being 

linked through: 

( 2/cos π )νAa = . (3.16) 

 

It must then follow that the Laplace transform of the one-sided continuous-stable 

distributions is: 

( ) 















−=−
∞

νπν
ν sadxsxaxp

2
secexp)exp(,1,,

0

. (3.17) 

 

This result, which is disseminated in Lee, Hopcraft and Jakeman [109] is significant 

since it links the one-sided continuous-stable distributions (2.1 with 1=β ) to the 

discrete-stable distributions (2.8) via a Poisson transform, despite the fact that both 

distributions have infinite means, and hence all other moment-based measures are 

undefined. 
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A corollary of the Laplace transform result (3.17) is that the one-sided continuous-

stable distributions can also be defined as the inverse-Laplace transform of 

. In this case, we write, for convenience, the group of distributions )exp()( νssQ −=

( ) ( )( )

.
2

cos,1,,

exp-1
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 (3.18) 

3.3.3 A new discrete-stable distribution 

The above Poisson transform interrelationship between one-sided continuous-stable 

distributions and discrete-stable distributions can be used to find the expression of a 

previously unknown discrete-stable distribution. 

 

Recall that in §2.4 the one-sided continuous-stable distribution of index 3/1=ν  is 

given in terms of modified Bessel functions of the second kind by (2.17): 
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If we use (2.5) to permit the scale parameter  to vary using (a 2.5), we obtain: 
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Poisson transforming the resulting distribution using (3.10) obtains: 
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Using (3.16) to relate the scale parameters a  and , we obtain A 2/3Aa = . An 

evaluation of the above integral in Mathematica then gives: 
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which is a new result for the discrete-stable distribution of index 3/1=ν . The form 

of the one-sided continuous-stable distribution for which 3/2=ν  does not lend itself 

easily to evaluation of the Poisson transform. 

3.3.4 In the Poisson limit 

Recall that as the power-law index ν  approaches unity, the mode of the one-sided 

continuous-stable distributions diverges (c.f. Figure 2.2). The effect of this 

divergence of the mode can be seen in the Poisson transform of the same continuous-

stable distributions. Figure 3.3 shows the discrete and stable-continuous distributions 

with  and 1=a 99.0=ν ; the mode of both being approximately 64)2/99.0tan( ≈π . 
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Figure 3.3 

Comparison of the discrete (dots) and continuous-stable (line) distributions, with Ȟ = 

0.99 and scale parameter a = 1. 

 

We can use the scaling relation (3.16) to resolve the issue of the diverging modes. 

Recall (e.g. Figure 2.4) that for the discrete-stable distributions, as 1→ν  the 

changeover between Poissonian to power-law behaviour occurs at larger values of , 

but the mode remains the same. It then stands to reason that by keeping the value of 

 fixed, and setting the scale parameter of the continuous-stable distribution to be 

N

A

)2/cos(πνAa = , the continuous-stable distributions must then tend to a Dirac delta 

function centred at . This rescaling is demonstrated in Figure A 3.4, which shows the 

continuous-stable distributions for 1=A  and ν  = 0.7, 0.8, and 0.9. For comparison, 

the distribution , which marks the boundary between one-sidedness and two-

sidedness is also plotted. 

( 1,1,x )1,p
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Figure 3.4 

Showing the one-sided continuous-stable distributions with scale parameter a = 

cos(ヾȞ/2) as Ȟ tends to 1. The limiting case Ȟ = 1, which does not scale and is two-

sided is also shown. The dotted line represents the delta function limit as Ȟs1. 

 

Using the scaling relation (2.5), it is clear that this scaling is equivalent to setting: 
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It can be readily shown using trigonometric identities that the effective scale 

parameter 'r  satisfies: 
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which gives an intuitive interpretation of the rate of divergence of the mode of the 

one-sided continuous-stable distributions ( )axp ,1,,ν  as 1→ν . 
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Setting 1=ν  in (2.8) or (3.15) describes a Poisson distribution. Recall that according 

to the Poisson transform (3.10), to have Poisson distributed counts, the continuous 

distribution to be Poisson transformed must be a delta function. Setting 1== βν  in 

(2.1) gives the two-sided distribution shown in Figure 3.4 which is clearly not a delta 

function. According to the scaling relation (3.16), for the continuous-stable 

distribution to have a Poisson distributed Poisson transform, its scale parameter a  

must be zero. This degenerate case is not permitted, however, since it would then not 

have a power-law tail; the restriction that  for all the continuous-stable 

distributions means that all but the Gaussian have power-law tails. 

0>a

 

An auxiliary advantage of knowing the form of the Poisson transform of one-sided 

stable distributions is that the generating function of the transform is identical to its 

Laplace transform (e.g. 3.11). For 21 ≤≤ν  and 1±=β , the continuous-stable 

distributions are not one-sided, and so the traditional Laplace transform is undefined. 

One may instead consider a bilateral Laplace transform for which the limits of 

integration range from  to . Samorodnitsky and Taqqu [∞− ∞ 39] provide without 

proof the bilateral Laplace transforms for the continuous-stable distributions with 

1=β , 21 ≤≤ν , i.e.: 
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The form of the bilateral Laplace transform for 21 ≤<ν  is identical to that of the 

earlier result (3.8) for 10 <<ν . Since the PDF of the one-sided continuous-stable 

distributions are zero for negative x , the expression for 2<<1 ν  given above may 

be extended to 0 1<<ν . 

3.4 �Stable� transforms 

Having found the Gaussian and Poisson transform of the one-sided continuous-stable 

distributions, for which the power-law index is in the range of 10 <<ν , one may ask 

the question � can these transform methods be applied to other stable distributions? 

Recall that the characteristic function of the Gaussian transform of a one-sided 

distribution ( )ap  is (3.3) a Laplace transform: 

( )
∞

−=
0

2exp)()( daauapuC  

and that the generating function of the Poisson transform of a one-sided distribution is 

another Laplace transform (3.11), i.e. 

( )
∞

−=
0

exp)()( daasapsQ . 

 

Either of these results could be derived from noting that they are weighted averages 

of either characteristic or generating functions, and thus do not require the form of 

 or  to be known. The form of the symmetric continuous-stable 

distributions� characteristic function is  

)(xp )(NP
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0a  2,0        );exp(),0,,( >≤<−= νν
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and the discrete-stable distributions� generating function can also be written: 
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We can therefore state without loss of generality that the transforms (3.3) and (3.11) 

can be extended to the symmetric-stable transform 
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or a discrete-stable transform of ( )ap : 
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Equations (3.21) and (3.22) describe allowing the scale parameters of symmetric-

stable and discrete-stable distributions to be modulated by the distribution )(ap , 

supposing that )(ap  is one-sided. The integrals are identical in form, save for the fact 

that the ranges of ν  differ. The effect of setting )(ap  to be a one-sided stable 

distribution of index η  can then be found for both transforms upon using their 

probability density functions (3.4): 
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Substitution of the PDF into (3.21) gives 
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which is of the same form as (3.5), hence 

















−= ηνπη
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2
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= ην
πη
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The same applies for the generating function of the discrete-stable transform, i.e. 

















−= ηνπη
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2
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= ην
πη
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The corresponding identities for the stable probability density function and generating 

functions are then: 

( ) ( ) dabapaxpbxp 















⋅= 
∞

2
cos,1,,,0,,,0,,

0

πη
ηνην  (3.23) 

( ) ( ) dABApANPBNP 















⋅= 
∞

2
cos,1,,,,,,

0

πη
ηνην . (3.24) 
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Equations (3.23) and (3.24) are therefore able to generate closed-form expressions (or 

at least formulae for) symmetric or discrete-stable distributions. Successive 

applications of (3.24) or (3.23) can therefore be used (in principle) to provide integral 

relations for symmetric or discrete-stable distributions for which the index ν  are 

products of existing distributions. 

 

Recall that in the Poisson limit, the inverse Poisson transform of the discrete-stable 

distributions tends to, but never becomes a delta function. The generating function of 

the form of the discrete-stable transform is given by (3.22), so taking the inverse 

Laplace transform, this corresponds to a one-sided continuous-stable distribution 

modulating the scale parameter of another one-sided continuous-stable distribution. 

This then gives 

( ) ( ) dabapaxpbxp 















⋅= 
∞

2
cos,1,,,1,,,1,,

0

πη
ηνην  

which, provided that 1<ν  and 1<η , show that the one-sided continuous-stable 

distributions are a closed-set under transformations with themselves. 

 

The results within this chapter are substantial since they show a deeper connection 

between the different classes of stable distributions, in particular that the discrete-

stable distributions and one-sided continuous-stable distributions are linked through 

the Poisson transform. 
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3.5 Summary 

The Gaussian transform can be thought of as the �smearing� of a continuous 

distribution upon the variance of a Gaussian. It was seen that the Gaussian transforms 

of the class of one-sided stable distributions of power-law index 10 <<ν  are 

symmetric-stable distributions of index ν2  and a different scale parameter. This 

result implies that when the variance of Gaussian distributed processes are modulated 

according to one-sided continuous-stable distributions, the resultant processes are still 

symmetric and continuous-stable, but no-longer Gaussian. 

 

Similarly, the Poisson transform can be thought of as a �smearing� of one distribution 

on the mean of a Poisson variable. Teich and Diament [107] describe a wider class of 

distribution transforms, whereby the variable whose mean is �smeared� can be any 

distribution, though they consider the cases when the variance is finite. Through this 

formulation, they show how many classes of distribution can be constructed through 

transforms of two or more other distributions. Their interpretation of this is a 

scattering medium, which imposes a modulation on the mean irradiance W  of a light 

source that passes through it. This modulation can either be measured in terms of the 

integrated irradiance of the resultant light, or through the photon count mechanism 

described previously. 

 

It has been shown that the discrete and one-sided continuous-stable distributions are 

connected through the Poisson transform, the scaling for which elucidates the 

behaviour of the one-sided stable distributions in the delta function limit. 
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The results found in this chapter are best summarised in schematic form in Figure 3.5, 

which shows the effect of the modulation of the scale parameters of symmetric-stable 

(or discrete-stable) distributions by one-sided continuous-stable distributions. For 

instance, the Poisson transform is shown by an arrow from a Poisson distribution to 

another discrete-stable distribution. 

 

Figure 3.5 

Illustrating the stable-transform results. Arrows represent the effect of the 

modulation of the scale parameter of one distribution by a one-sided continuous-

stable distribution. 

 

Having made these connections between stable distributions, a method of generating 

discrete-stable variables can be inferred � this will be investigated in §5. We shall 

now use the Poisson transform interrelationship to generate a continuous-stable 

process, finding its multiple-interval statistics via the (discrete) DMI population 

process upon which this work is partly based. 
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4. Continuous-stable processes and multiple-interval 

statistics 

4.1 Introduction 

The key to understanding physical processes is creating, studying and refining 

suitable models. The ubiquity of stable distributions found in nature [1] means that a 

mathematical model for a Markovian, continuous-stable process is a powerful one 

indeed. 

 

Through the Poisson transform interrelationship developed in Section 3.3.2, this 

chapter will create a one-sided continuous-stable process. Its transient solution and 

Fokker-Planck style equation is found. Finally, the -fold generating function for the 

continuous-stable process is given, expanding on the Markovian nature of the 

processes. These results use the formulation for the discrete-stable process (outlined 

in §

n

2.5) as a basis. 

4.2 A transient solution 

The transient solution of the discrete-stable DMI process is given as a generating 

function by (2.35): 

( ) ( ))())(1(exp),( 0 tsQstAtsQ θθ νν−−=  

  (4.1) ( ) ( )()(exp 0 tsQst θω νν−= )
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where µνε /=A ,  and [ ] ννθω
/1

))(1()( tAt −= )exp()( tt µθ −=  define the time scale 

of the process and  is the generating function corresponding to the initial 

condition of the system. Following the Poisson transform result, it is possible to 

inverse Laplace transform (

( )sQ0

4.1) to obtain the transient solution of a one-sided 

continuous-stable process. The result is a convolution of the initial condition and the 

stable distribution: 

),( txp

 






 −








=

x

dx
t

xx
p

t

x
p

tt
txp

0

0 '
)(

'

)(

'

)(

1

)(

1
),(

θωθω ν  (4.2) 

where  is the initial condition of the process and has Laplace transform , 

and  is the inverse Laplace transform of , as defined by (

)(0 xp

)(xν

)(0

( )sQ0

p )exp( νs−

0>t

3.18). Note 

that the transient solution gives  for all , except for the degenerate 

case 

0),0( =tp

)0(δ=xp , which will not be considered. 

 

A simple case to consider is when the initial condition  is uniform on . In 

this case, the initial distribution and transient solution are: 

)(0 xp ]1,0[

( ) ( ) ( )10 −−= xHxHxp  

( )
( )

−









=

x

tx

dx
t

x
p

tt
txp

0),(max

'
)(

'

)(

1

)(

1
,

θ

ν ωθω
 (4.3) 

 

It can be seen from the form of (4.3) that for  and , the power-law is 

established immediately. In the case 

0>t 0>>x

2/1=ν , the integral for the transient solution 

can be evaluated exactly since [110]: 
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( )









−=









=  −

x

dx
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where  is the error function [)erf(x 93, 110]. This gives: 
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The dynamics of this transient solution to the continuous-stable process can be seen 

in Figure 4.1, which shows the rapid convergence to the stationary solution. 
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Figure 4.1 

Illustrating the evolution of p(x,t) when the initial distribution (dotted lines) is 

uniform on [0,1]. The parameters are A = ȝ = 1, and ȝt = 0.1, 1, and 3 (red, green 

and blue lines respectively). The stationary state is also plotted (solid black line). 
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The behaviour when the initial condition is a delta function is particularly interesting. 

The dynamics in this case are shown for when the delta function is centred on , 

though the results are general: 

1=x

)1()(0 −= xxp δ  
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This shows that in this case, the transient solution attains the shape of the stable 

distribution instantaneously, but with a scale change and a shift. This is shown in 

Figure 4.2. 
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Figure 4.2 

Showing the rapid convergence to the stationary solution when the initial 

distribution (dotted line) is a delta function. Plotted is the distribution for ȝt = 1, 2 

and 3, and the stationary solution (red, green blue and black lines, respectively). 
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4.3 A one-sided stable Fokker-Planck style equation 

We have seen previously that the PDE for the stable DMI population model�s 

generating function is given by (2.29) and (2.32): 

),(),(),( tsQstsQ
s

stsQ
t

νεµ −
∂

∂
−=

∂

∂
. (4.4) 

 

Since the above is the PDE which governs a discrete-stable process, it must follow 

from the Poisson transform interrelationship that Laplace inversion of (4.4) will yield 

a Fokker-Planck equation [16] for the continuous-stable process . Direct 

inversion of (

),( txp

4.4) is not possible since the final term cannot then be evaluated. 

However, it is possible to first divide by s  and then evaluate the inverse Laplace 

transform: 

( ) ( )
( )
−−Γ

−=
∂

∂
xx

dx
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,'

)1(
),(','

νν

ε
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Differentiating with respect to x  the above becomes: 
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The final term may be evaluated by transforming : yxx −='
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where the last line results from transforming back to  and recalling that . 

The corresponding Fokker-Planck style equation for the one-sided continuous-stable 

process is then: 

'x 0),0( =tp

( ) ( ) ( )
 








∂

∂

−−Γ
−

∂

∂
=

∂

∂
x

dx
x

txp

xx
txxp

x
txp

t 0

'
'

,'

)'(

1

)1(
),(,

νν

ε
µ  (4.5) 

 

The convolution in the final term highlights the nonlinear dependence between 

different values of x  corresponding to different points in space as time evolves. 

Indeed the non-local effects of the evolution of the process over time allude to some 

more complex behaviour than that seen in �standard� Fokker-Planck equations 

involving only drift and diffusion terms. 

 

The validity of the Fokker-Planck style equation (4.5) can be tested by setting the 

PDF  of the process to be equal to the Lévy-Smirnov distribution (( txp , ) 2.14), which 

is one-sided continuous-stable with index 1/2: 

( )

.
2
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2
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2
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−

x

a
x

a

axptxp

π

 

 

The time derivative in (4.5) should then be zero when setting 2/1=ν  and µνε A=  

(according to (2.33)), and ( ) 22/sec aaA == πν , according to (3.16), so that: 
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Upon transforming  in the integral, the final term is: )/(' 22 zaxax +=
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so , i.e. the Lévy-Smirnov distribution (( ) 0/, =∂∂ ttxp 2.14) is a solution to the 

Fokker-Planck style equation (4.5), as expected. 

 

A Fokker-Planck equation for symmetric-stable processes was developed by West 

[111, 112], but the nonlinear dependence in x  which manifests itself in the integral is 

different, and does not involve a drift term. The form of the Fokker-Planck Equation 

given is: 
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though upon closer examination, this cannot be correct, since the integrand is singular 

when . xx ='

4.4 r-fold generating functions 

4.4.1 The joint generating function 

We have seen that a Fokker-Planck style equation for a continuous-stable process can 

be formed by taking the inverse Laplace transform of the stable Death-Multiple-

Immigration model�s PDE. The joint statistics for the continuous-stable process can 

also be formed from inverse-Laplace transforming the joint generating function (2.37) 

using the Poisson transform relationship. To produce multiple-interval statistics of the 

stable processes, we begin by obtaining the multiple-interval generating function of 

general stochastic, Markovian population processes. All of the results in this section 

pertain to Markovian discrete and continuous processes. 

 

Recall that the joint probability  of a process describes the probability that 

a population has sizes  and  following a separation time t . The joint generating 

function  corresponding to the joint probability is defined by: 

( tNNP ;',

'N

)
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( tssQ ;',

( ) ( ) ( ) ( )
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tNNPPss

tNNPsstssQ

 (4.6) 

where  is the distribution of the stationary state of the process, and NP ( )tNNP ;'  is 

the probability that the population has size  on the condition that a time t  ago, the 'N
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size was N . The joint distribution  of a population process can be 

recovered upon using (

( tNNP ;', )

2.10) twice on (4.6) � once for the  variable and again for the 

 variable. 

s

's

 

The transient generating function gives the distribution of the population size after a 

time t , on the condition that the population had size  at time , and is defined: N 0
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and can be shown to always be of the form 

( ) ( )( ) ( tststQ
N ,,1; ξΨ−= , (4.7) 

where the functions  and ( ts,Ψ ( ts,ξ  depend on the particular process considered. 

Supposing a stationary solution exists, in the infinite time limit, the functions satisfy 
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where . The result of the final summation over N  is ( )( )( stSS −Ψ−−= 1;'11

)

)

( ∞,Sξ  since it is simply the stationary solution of the population, and 

( )SQst ( )∞= ,Sξ . 

 

Note, however that despite its derivation from Markov processes, the result for the 

joint generating function holds true even when the Markov property does not. 

4.4.2 The 3-fold generating function 

We now consider the 3-fold generating function Q  of a Markovian 

process. This describes the probability that there are initially N  members in the 

population, then  following a separation time t , then  following another 

separation time ' . This is shown schematically in Figure 

( ',;'',', ttsss

''N

)

'N

t 4.3: 
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N 'N ''N
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Figure 4.3 

The formulation of a 3-fold generating function. 

 

The 3-fold generating function is defined: 
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The summations over  and  may be evaluated by the same reasoning as in the 

two-fold generating function: 

''N 'N
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where  and . ( ) (( )tSsS ;'111 Ψ−−−= ( ) (( )';''1'11' tssS Ψ−−−=

 

The final summation over N  also follows that of the two-fold result. Thus, if we 

write , we have: '''' sS =

( ) ( ) ( ) ( ','',',',;'',', tStSSttsssQ ξξξ ∞= . 

4.4.3 The r-fold generating function 

It is straightforward to continue the concept of the generating function to 1+r  

different population sizes, separated by r  time intervals. To prevent cumbersome 

notation as r  grows large, we denote 

 - 86 -  



CHAPTER 4. CONTINUOUS-STABLE PROCESSES AND MULTIPLE-INTERVAL STATISTICS 
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and set 

( ) [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]( )1210110 ,,,,;,,; −−−= rrrr ttttNNNNPP tN  

to be the probability of the population having sizes N  following 

separation times ]t . 
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[ ] [ ] [ ] [ 1210 ,,,, −− rr ttt 

 

This can be illustrated in the following diagram: 
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The formulation of an n-fold generating function. 

 

The r -fold generating function for  is then: ( tN;P )
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and  so that the population is initially at equilibrium. From the results ([ ] ∞=−1t 4.8, 

4.9), it is then possible to examine the r �fold interval statistics of any Markovian 

discrete process. 

4.4.4 Application to the DMI model 

For the Death, Multiple Immigration process, the functions  and ( ts,Ψ ) )( ts,ξ  can be 

obtained using (2.36) and (4.7) to be: 

( ) ( )
( ) ( )( )[ ]tAsts
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νν θξ

θ

−−=

⋅=Ψ

1exp,

;
 

where ( ) ( )tt µθ −= exp . 

 

The r -fold generating function for the DMI process is then 
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Having now obtained the form of the r -fold generating function for the DMI process, 

we can consider using the Poisson transform interrelationship to obtain the r -fold 

statistics of the continuous-stable process. However, care must be taken when 

inverse-Laplace transforming the above generating function, due to the terms which 

arise solely from the discrete nature of the process. For instance, when considering 

the Poisson case (i.e. 1=ν ), the continuous analogue must be a product of 
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uncorrelated delta functions, since the Poisson process is memoryless. The terms 

involving products of s  are responsible for these inherently discrete properties, hence 

we require a rescaling of the  terms to suppress them. One such scaling is s

[ ]k s
A

a
s

ν

1









→ [ ]k  (4.11) 

in the limit . ∞→A

 

The r -fold generating function for which the inverse Poisson transform can be 

performed is then: 
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and the linearised  terms are [kS
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The correctly linearised r -fold generating function is then: 
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In this linearised form, the r -fold generating function is of the same form as that of 

the Birth, Death, Multiple-Immigration (BDMI) process. For instance, taking the case 

2=r , the joint generating functions for the DMI and BDMI processes are [6]: 

( ) ( )[ ] ( ) ( )[ ]{ }( )ννν θθ tssstsAtssQ ′−++−′−=′ 11exp,,  

and 
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respectively.  

 

Upon suppressing the product terms using (4.11), the joint generating functions both 

reduce to the form: 

( ) ( )[ ] ( )[ ]{ }( )ννν θθ tsstsatssQ '1exp,, ++−′−=′  (4.14) 

which implies that the intrinsic differences between the processes which arise from 

the inclusion of the birth term do not carry through to the continuous processes. 

4.4.5 r-fold distributions for the one-sided continuous-stable process 

To take the inverse Poisson transform of the r -fold generating function (4.13), we 

use the definition (3.18) for  and note that the only contribution of  occurs 

when . Then, upon using the relation [

)(xpν
[ ]0s

0=k 93] for Laplace inversion: 

( ) ( )[ ] ( ) ( )(exp
1

exp)(1- dxbdxH
cc

dx
Fdsbscf −−⋅−⋅⋅






 −

=−+L )  (4.15) 
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where  is the Heaviside step function [( )xH 93],  is the Laplace transform of 

, and 
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Inversion with respect to  is facilitated by noting that the only  contributions 

occur when  in the first exponential term and  in the second. Substituting 
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into (4.15) one obtains the second-order inversion: 
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Note that the last two exponential terms simplify, thus 
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Successive inversions are then performed with respect to increasing values of k  

using (4.15) with 
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This method may be continued arbitrarily many times as required using the same 

technique and thus, without loss of generality, the r -fold distribution is: 
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upon setting  as before and noting that  terms are always multiplied by 

zero, and therefore ignored. 

[ ] ∞=−1t [ ]1−x

 

This result (4.16) is enormously significant since it gives an explicit factorisation of 

the r -fold probability density function of a one-sided continuous-stable process, from 

which (in principle) suitably defined correlations can be found. Indeed, if the value of 

a one-sided continuous-stable process at n  points in time, separated by  

intervals is known, (

1−n

4.16) can be used to predict the probability density function of 

the process at any given point. 

4.5 Summary 

Having discovered the significance of the Poisson transform in relating continuous- 

and discrete-stable distributions in Chapter 3, the concept of a one-sided continuous-

stable process was introduced. The corresponding Fokker-Planck style equation for 
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the process is given, and compared with a proposed symmetric-stable counterpart 

found in the literature. The r -fold probability density function of the process, which 

gives the probability that the process takes on values x , , � after separation 

times t , � is derived from the corresponding discrete-stable process. Though this 

is an extension of the Markovian properties of the discrete-stable process, a rescaling 

of the variables to remove intrinsically discrete properties was undertaken. 

'x ''x

't

 

Another such discrete property which is destroyed when undertaking the Poisson 

transform is the distribution of the number of emigrants into the DMI process, which 

has generating function , for which the inverse Laplace transform 

cannot be found. This implies that though the one-sided continuous-stable arises from 

a discrete-stable DMI process, the continuous-stable process cannot be thought of as a 

continuous DMI process. The mechanism which drives the increases in the value of 

the process (in the case of the DMI process, this is the multiple immigrations) is 

something which is inherently continuous. 

νssQ f −= 1)(

 



 

5. Simulating discrete-stable variables 

5.1 Introduction 

The simulation of variates to aid the application of processes provides an invaluable 

insight into their behaviours; power-law distributed variates in particular, not least 

because such niceties as the means and higher moments are undefined. Despite the 

propensity of methods to generate continuous variates [e.g. 113], the same cannot be 

said for discrete variates. They can be simulated, however, on the provisions that their 

(discrete) distribution can be formed through a doubly-stochastic Poisson process, 

and that the corresponding variates from the corresponding continuous distribution 

can be simulated. The simulation is exact in the sense that the discrete variates 

generated follow the discrete distribution exactly and are not approximations. In 

particular, following from the results in Chapter 3, discrete-stable random variates 

will be generated using an existing algorithm which generates continuous-stable 

random variates. 

5.2 The algorithm 

We are interested in generating independent, identically distributed (i.i.d.) discrete 

variates from i.i.d. continuous variates using Poisson transform interrelationships. A 

method of doing this can be inferred directly from the Poisson transform (3.10): 

( ) ( ) ( )

∞

−
=

0 !

exp
dw

N

ww
wpNP

N

. 
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Suppose that there is a method of generating a continuous variate  from a 

distribution . The variate  may be thought of as having a delta function as its 

probability density function, i.e. 

1x

)(xpc 1x

)()(~
1xww −=p δ . Since )(~ wp

1x

 is a delta function, its 

Poisson transform  is Poisson distributed with mean . A discrete variate  

(with value N ) drawn from the distribution 

)(
~

NP 1n

)(
~

NP  is doubly stochastic since two 

variates need to be drawn from distributions to generate it � , and , which itself is 

dependent on . The variate  therefore has a distribution given by the Poisson 

transform of : 

1x 1n

1x

)(xpc

1n

( ) ( )

∞

−
=

0

)(
!

exp
)( dx

N

xx
xpNP

N

cT . (5.1) 

 

Repeating this process with new independent variates  drawn from the 

distribution  will then generate new discrete variates , drawn from 

independent Poisson distributions with mean . The variates 

are i.i.d. since each variate is distributed according to (

mxxx ..., 32

nn 32 ,

m

)(xpc mn

xxx 32 , mnnn 31 ,  

5.1). 

 

By dividing the count  of the occurrence of each value of N  by the number of 

variates , the ensemble distribution is . In the limit as m  tends 

to infinity, the distribution  of the ensemble of  will be equal to 

, the Poisson transform of p . It is important to stress that though the 

distribution of the ensemble )  only becomes the theoretical distribution 

NC

m 1
)( )( −⋅= mCNP NE

nn 21 ,

)x

)()( NP E

)(P E

mn3, n

)()( NPT (c

(N
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)()( NPT when , each variate is drawn from the distribution  by virtue 

of the Poisson transform. The algorithm is shown schematically in Figure 

∞→m )()( NPT

5.1 below. 

 

)

 

Figure 5.1 

Illustrating the method of generating discrete variates drawn from the (discrete) 

Poisson transform of a continuous variate. As the number m of discrete variates 

drawn tends to infinity, the distribution of the ensemble of discrete variates tends to 

the Poisson transform of the continuous distribution. 

 

There exist many algorithms for generating Poisson variables of arbitrary mean λ  in 

the literature. One such very simple generator is given by Knuth [114] for which the 

complexity (i.e. the running time) is )(λO . Clearly when the distribution of the mean 

λ  is continuous-stable, and hence has a power-law tail, this method is rather 

inefficient. A more suitable method with a complexity of ))(log(λO  is given by 

Devroye [113]. This is far more appealing when power-law tails (or indeed large 

values of the mean λ ) are involved, and it is the algorithm used by MATLAB. 

 

The ensemble distributions will be compared to theoretical distributions via the  

test statistic: 

2χ

∞→m

(xpc  

mxxxx 321 ,,  
Poisson 
number 

generator 
mnnnn 321 ,,  

Poisson transform )()( NPT  
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It is clear from its form that the smaller the value of , the better the fit between 

theoretical and empirical results.  

2χ

 

The  statistic is sensitive to behaviour in the tail(s) of distributions � this can be 

seen from its form. Supposing we write , (where the values of  

need not be integers, as opposed to the counts , which must be integer), then the 

individual contributions to the  statistic (

2χ

)()( NPmT TN ⋅=
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NT

2χ 5.2) are 
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Clearly for moderately large values of m ,  for all , so the value of  is 

small. Large contributions  arise when  is small, corresponding to small values 

of the theoretical probabilities such as at the tails of distributions. In particular, if 

there are many values of N  for which  (e.g. if the distribution has a 

slowly decaying tail), a large  statistic is to be expected. In the limit  (for 

NN CT ≈

NT

) )( ≈ mNT

N 2
Nχ

0

2
Nχ

χ

1−
(P

2 →NT
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which ), the count  of the occurrences of  will also tend to zero, 

in which case the contribution  is , which is vanishingly small. 

1
)( )( −<< mNPT NC

T

N

2
Nχ mN /

 

Having now outlined the algorithm for numerically simulating discrete distributions 

via the Poisson transform and discussed the  statistic, we shall examine the case of 

generating negative binomial distributions, whose mean and all other higher moments 

exist, in order to test and validate the algorithm. 

2χ

5.3 Simulating negative-binomial distributed variates 

Recall that the Poisson transform of a gamma distribution is negative binomial � a 

special case of this is when an exponential distribution transforms to a Bose-Einstein 

distribution. This result is easily proven by calculating the Laplace transform of a 

gamma-distribution. A gamma-distribution of shape parameter k  and mean  is 

[e.g. 

Ak

93]: 

1−kx)( ),,( =g Akxp

( )

)(

exp(

Γ

−

Ak

x )/
k

A
. 

and has Laplace transform 

k
As

sQ
+

=
1

1
)( . 

According to (3.11), the Laplace transform of a continuous distribution is also the 

generating function of its Poisson transformed distribution, so the Poisson transform 

of a gamma distribution must be a negative binomial distribution [93]: 
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),,(          )( AkNP NB= . 

 

The transformation from a gamma to a negative binomial distribution can be seen in 

Figure 5.2 below, and shows that though the distributions resemble each other, the 

Poisson transform does more than sample the continuous distribution at integer values. 

This is obvious when considering the limit  when  is fixed � the gamma 

distributions become delta functions, and the negative binomial distributions become 

Poisson. 

∞→k Ak
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Figure 5.2 

Plotting gamma and negative binomial distributions with shape parameter k = 10, 

and means Ak = 10, 20 and 30 (red, green and blue lines and points, respectively). 

 

A gamma distributed variable of shape parameter k  (when k  is an integer) and mean 

 can be generated [e.g. Ak 113] by summing  exponentially distributed variables of k
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mean . Non-integer values of k  require additional steps in the generation of the 

gamma variates, and will not be considered since they are not special cases of the 

gamma and negative binomial distributions. Exponentially distributed variates are 

readily generated by many computer packages, provided a method of generating 

uniformly distributed variates U  on [0, 1] exist: 

A

)log(UX λ−=  has an exponential 

distribution of mean λ . 

5.4 Results 

The algorithm was used to generate negative binomial distributed variates with 

 and  in ensembles of  and  variates. 100,1=A 10,5,

Ak

100,10,5,1k = 610 1010

 

The results in Table 5.1 suggest an excellent agreement between the simulated 

ensembles� and the theoretical distributions for 106 variates. As expected, when the 

mean  of the distributions increases, the  statistic increases also. 2χ

K  
52 10×χ  

1 5 10 100 

1 4.2391 3.8318 2.6362 16.061 

5 7.9201 12.454 16.641 59.233 

10 17.205 29.711 37.774 210.6 
A  

100 150.83 230.11 343.45 1048.5 

Table 5.1 

The ぬ2 statistics for the ensembles of 106 simulated negative binomial variates. Note 

that the values are scaled by 105 to aid comparison. 
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Table 5.2 shows the effect of the resolution of the distribution on the  statistic, this 

time with 109 variates. It is clear that even when A  and k  are 100 (i.e. the mean is 

10,000), the simulations provide excellent agreement with theoretical results. 

2χ

 

K  
82 10×χ  

1 5 10 100 

1 2.0532 3.4268 6.4461 15.711 

5 14.123 17.015 40.180 65.851 

10 23.529 33.964 42.674 126.94 
A  

100 185.56 314.85 443.08 1281.5 

Table 5.2 

The ぬ2 statistics for the ensembles of 109 simulated negative binomial variates. Note 

that the values are scaled by 108 to aid comparison. 

 

Figure 5.3 shows the excellent agreement between theoretical and simulated results of 

the negative binomial distributions when the ensemble size is 106,  and . 

The difference between theoretical and simulated distributions is barely discernable. 

5=A 10=k

 

Having shown the efficacy of the method of generating discrete distributions via a 

Poisson transform method, we shall now examine the case of stably distributed 

discrete distributions; since the moments are all infinite, it is expected that the heavier 

tails will require much larger ensemble sizes to provide small values of the  

statistics. 

2χ
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Figure 5.3 

Comparing theoretical (joined) and ensemble (crosses) negative binomial 

distributions of 106 variates, with A = 5 and k = 10. In this instance, Ȥ2 ≈ 10-4. 

5.5 Simulating continuous-stable distributed variates 

We have seen that it is possible to use the Poisson transform relationship to generate 

discrete-stable variates, provided that a method for generating one-sided continuous-

stable variates exists. In the literature there are several methods for generating 

continuous-stable variates of specific values of ν  and β . For instance, the famous 

Box-Muller method [115] generates Gaussian distributed variates , from which 

Lévy distributed variates (for which 

gX

2/1=ν , 1=β ) can be simulated though 

. It is also known [e.g. 2/1 gL XX = 40] that Cauchy variates can be generated by 

dividing one Gaussian variate by another independent Gaussian variate. 
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Methods exist to generate continuous-stable distributed variates of any values of the 

parameters ν  and β . The first such method was discovered by Kanter [116] and 

generates one-sided continuous-stable variates (i.e. those for which 10 <<ν  and 

1=β ). It relies on an integral representation of the one-sided continuous-stable 

distributions given (with an error in the proof, corrected below) by Ibragimov and 

Chernin [117]: 
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ν

a  (5.4) 

and  is as defined in (( )xpν 3.18). 

 

Kanter used this representation to deduce a method of simulating the one-sided 

continuous-stable distributions: if U  is a variable uniformly distributed on ],0[ π  and 

 is an independent, exponentially distributed variable of unit mean, then the 

random variable 

W

ν

ν−









=

1

)(

W

Ua
X  

has distribution . The proof of this is as follows: ( )xpν

 

Define a random vector  which has values ),( UW=Y x  and u  with joint probability 

 - 104 -  



CHAPTER 5. SIMULATING DISCRETE-STABLE VARIABLES 
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The joint distribution of X  and  having values Φ x  and ϕ  is, by Theorem 4.2 of 

[113]: 
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and thus the marginal distribution of the variable X  being equal to x  is found by 

integrating over ϕ , which is uniform on [ ]π,0 : 
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which is exactly the form of (5.3) above, thus completing the proof. 

 

The parameterisation (5.3), [117] is defined as giving one-sided continuous-stable 

distributions  with Laplace transform , which, by (( )xpν

/cos(π

)exp( νs− 3.18) corresponds 

to ))2,1,,( ννxp

)a

. In order to obtain variates for which the probability density 

function is ,1,,(xp ν  � i.e. for which the scale parameter may be varied, we use the 

scaling relation (2.5) to obtain 
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for which the distribution is ),1,,( axp ν . 

 

Chambers, Mallows and Stuck [118] extended this result to the entire parameter range 

of ν  and β  using a similar technique, this time relying on a different integral 

representation of the continuous-stable distributions given by Zolotarev [119]. If γ  

and  are random, independent variables drawn from a uniform distribution on W
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]2/,2/[ ππ−  and an exponential distribution of unit mean, respectively, then a slight 

modification of their formula gives [e.g. 120, 121, 122] the random variable 
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where 
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( )( )( )( ) νπνβ
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which has distribution ),,,( axp βν . 

 

The full proof of this result is similar to that for the one-sided variates, and is omitted 

for the sake of brevity. As expected, in the case when 10 <<ν  and 1=β , (5.6) is of 

the same form as (5.5). Setting 0=β  to obtain a simulator for the symmetric-stable 

distributions, (5.6) reduces to: 
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 (5.8) 

 

The method above is one which is most commonly found in the literature for 

generating symmetric-stable distributions [e.g. 39, 120, 122] � in the case when 

2=ν , it simplifies to. 

( )γ2sin2/1WX =  
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which is the Box-Muller method [115] for generating Gaussian distributed variates. 

 

With the foundations for simulating continuous-stable distributed variates laid, we 

may now progress to the simulation of discrete-stable distributed variates. 

5.6 Simulating discrete-stable distributed variates 

Having found a method of generating one-sided continuous-stable random variates 

and discovered the Poisson transform interrelationship between the one-sided 

continuous and discrete-stable distributions, we may proceed to generate discrete-

stable variates. A random Poisson variable with mean governed by a one-sided 

continuous-stable variable has, by the Poisson transform interrelationship, a discrete-

stable distribution. 

 

Since the discrete-stable distributions are defined entirely through their scale 

parameter A  and power-law index ν , it is necessary to use the scaling relation (3.16) 

to define the random variable X  in terms of the scale parameter A  rather than . a

 

Hence setting ( 2/cos π )νAa =  in (5.5) gives: 

( ) ( ) ν
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ν

ν νν
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sin
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U
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U
AX  (5.9) 

 

Note that (5.9) illustrates clearly the role of the discrete scale parameter A  on the 

variable X . The specific dependence on the scale parameter  by the discrete-stable A
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distributions on the shape of the distributions cannot be derived from the generating 

function (2.8), and so this gives a new meaning to the dependence on the scale 

parameter of the discrete-stable distributions. 

 

Note also that upon setting 1=ν , (5.9) reduces to AX = , which alludes to the delta 

function limit of the scaled continuous-stable distributions as 1→ν . This has the 

effect of extending the range of the discrete-stable variate simulator to include the 

Poisson case despite the fact that the corresponding continuous distribution is a delta 

function. 

 

Calculation of a new value of X  is required for each successive discrete-stable 

variable. Whilst this method requires the creation of three independent random 

variables to create one, this method is very flexible in that it generates discrete-stable 

distributions of any valid parameter, and does not require the use of look-up tables or 

other such computationally expensive methods. Nor is it an approximation based 

simply on power-law tails; the variates generated are discrete-stable distributed. 

 

The efficacy of the simulator is of the most interest as 1→ν , as the discrete-stable 

distributions are Poisson-like for small values of  (see Figure N 2.4). In this limit, we 

require that the generator of the one-sided stable distributions produce variables from 

a distribution which is almost a delta function in x  (see Figure 3.4). The algorithm 

outlined above is accurate only if the ensemble distributions of the generated variates 
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as 1→ν  have both the Poisson behaviour for small  and the power-law behaviour 

for large . 

N

N

5.7 Results 

The values of the power-law index chosen to investigate a range of values across the 

parameter space are ν  = 0.1, 0.3, 0.5, 0.7 and 0.9, and to investigate the Poisson limit, 

ν  is of the form  for  = 1, 3, 5, 7, and 9. The scale parameter m−−101 m A  is set to 10 

throughout. 

 

Theoretical results are found by exploiting the form of the generating function of the 

discrete-stable distributions (2.8) in Mathematica. The Expand command can be 

used to produce Taylor-series expansions the generating functions  at the point 

. Since  is defined (

)(sQ

1=

Q

2χ

s )(sQ 2.7): 
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the coefficients of  in the expansion are the  terms. Ns)1( − )

 

The  statistics of the simulations are given in Table 5.3. It is apparent that for a 

fixed values of A  and , as the power-law index m ν  approaches unity, the 

correspondence of the ensemble distributions to the theoretical distributions increases. 

This is due to the fact that as the index approaches unity, the Poissonian portion of the 
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distribution dominates for small , where . Denoting k  to be the value 

of  for which the power-law tail begins, the �weight� of the power-law tail, which 

is given by the partial sum 

N 1)( −>> mNP

N


∞

=kN

T NP )()(  (5.10) 

decreases as 1→ν  � this can be inferred from Figure 2.4. 

 

 2χ  

ν  910=m  1110=m  

0.1 1.0573x10-3 1.0014x10-5 

0.3 9.9912x10-4 1.0042x10-5 

0.5 9.9654x10-4 1.0001x10-5 

0.7 6.1361x10-4 1.0005x10-5 

0.9 9.9081x10-4 1.2048x10-5 

0.999 8.3549x10-4 9.3910x10-6 

0.99999 1.0381x10-4 9.8812x10-6 

0.9999999 9.2061x10-6 4.9494x10-7 

0.999999999 3.0443x10-8 2.8680x10-8 

Table 5.3 

The ぬ2 statistics for generated ensembles of discrete-stable variates. The value of A 

chosen is 10 throughout. 

 

The effect of the index on the  statistic can be seen in Figure 2χ 5.4 below, which 

shows the distribution of ensembles of  variates for  with 610=m 10=A 5.0=ν , 

9.0=ν  and 999.0=ν . The corresponding  statistics are 0.985, 1.02 and 0.010 2χ
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respectively. When 5.0=ν  the tail behaviour begins at  � in this case the 

�weight� of the tail given by (

100≈N

5.10) is approximately 0.52, so there is a far greater 

probability of a variate being in the tail. This can be seen in Figure 5.4; the error in 

the ensemble distribution is noticeably larger here. 

 

 

Figure 5.4 

Illustrating the contributing factors to the lower ぬ2 statistics as Ȟ approaches unity. 

Plotted are the distributions of ensembles of 106 simulated variates for which A = 10 

and Ȟ = 0.5, 0.9 and 0.999 (red crosses, green plus signs and blue points, 

respectively). The power-law tails for each distribution are also plotted (lines). 

5.8 Summary 

The method of generating discrete distributions using Poisson transform 

interrelationships is outlined, and applied firstly to generate negative binomial 

variates, then to discrete-stable variates. For each point in each parameter space, large 
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 - 113 -  

numbers of the variates were collected to form an ensemble, the distribution of which 

was compared to theoretical distributions found via analytical methods. 

 

For a fixed ensemble size , it was shown that as the mean (and hence the variance) 

of the negative binomial distribution decreases, the accuracy of the ensemble 

distribution increases. As the power-law index 

m

ν  of the discrete-stable distribution 

approached unity, the accuracy increased. This is to be expected, since the �weight� of 

the tail and the number of values of  for which  both decrease in this 

limit. 

N 1
)( )( −≈ mNTP

 

It is important to state that despite the fact that the  statistics are non-zero for the 

ensemble distributions, this is a type of sampling error; the variates are independent, 

and identically distributed, and the algorithm is an exact (as opposed to approximate) 

method for generating discrete-stable variates. 

2χ

 

We have now described a novel method to generate discrete-stable distributed 

variates of arbitrary scale parameter A  or power-law index ν  without the use of 

cumbersome lookup tables or approximations. This is significant since the discrete-

stable distributions underpin so many processes in nature � the ability to generate 

discrete-stable variates enables, for instance, Monte Carlo modelling [123] of real-

world discrete-stable processes. For this reason alone, the usefulness of this method 

cannot be exaggerated. 

 



 

6. Crossing statistics 

6.1 Introduction 

In Chapter 5 a method of generating variates from discrete-stable distributions via the 

Poisson transform was described � however this is a mechanism for the simulation of 

random variates. A discrete-stable random process based on a multiple-immigration 

population model, for which the counted emigrants also form a discrete-stable 

process was described in Section 2.5. Yet another method of generating 

(asymptotically) discrete-stable distributions was found by Hopcraft, Ingrey and 

Jakeman [84] when studying continuous processes whose correlation function has 

fractal properties. They found that the level crossing statistics of these processes have 

power laws, and are thus asymptotically stable. The crossing behaviour of such 

processes can be thought of as a model for extremal behaviour in nature, where 

processes which have power-law tails are common. Smith, Hopcraft and Jakeman 

[83] found that for Gaussian processes which have non fractal correlation functions, 

the distribution of the number of zero crossings is either binomial, negative binomial 

or (exceptionally) Poisson. 

 

These results have been based on well-studied processes for which, in general, the 

Probability Density Function (PDF) of the intensity has been known analytically. One 

process whose PDF is not analytically known, but which can be numerically 

simulated with ease is the phase-screen model [124]. This is an optical paradigm in 
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which a plane wave is scattered through a phase perturbing screen which changes the 

phase of the wave according to a given continuous process. This scattering is 

demonstrated schematically in Figure 6.1. As the phase of a plane wave is altered by 

the phase screen, contributions from different points of the phase screen interfere with 

each other on propagating from the screen. As a result, focusing or �bright spots� are 

seen. By examining the intensity of light, in particular the distribution of level 

crossings, (which occur when the intensity exceeds, or falls below a certain level), we 

are examining the discrete properties of a continuous process, a recurrent theme of 

this thesis. 

 

 

focussing 

A
p

er
tu

re
 w

id
th

 

Figure 6.1 

A schematic demonstration of the effect of a random phase screen on a plane wave 

 

It has been seen that negative binomial distributions in number fluctuations of 

processes and the so-called K  distributions [20] are intimately linked. The K  
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distributions have deep roots in the context of scattering, initially proposed as a 

model for sea echo, they also arise as the distribution of the slope of gamma 

processes [125] and a wealth of other areas [e.g. 107, 126]. 

 

This chapter will begin by introducing the K  distributions, then will outline the 

algorithm used to simulate the phase-screen process. The intensity of the process will 

firstly be analysed and its density compared to known distributions. After 

examination of their means and Fano factors, the level crossing distributions will be 

compared to binomial and negative binomial distributions. Finally, the asymptotic 

properties of the inter-event times will be considered and estimated. 

6.2 The K distributions 

In Chapter 1 the K  distributions were introduced as being an excellent model for the 

statistics of �clutter� (unwanted returns from radars), where the surface of the sea was 

modelled as an ensemble of individual �scatterers� of the radar signal. A heuristic 

model [127] of this scattering paradigm arises when considering the number of 

scatterers to have a negative binomial distribution, and the contribution of the signal 

from each scatterer has finite variance. 

 

This is analogous to a random walk model [97, 126] in which the sum of N  

independent -dimensional Gaussian processes is considered. The displacement of 

the process is 

n

K  distributed (after a suitable rescaling of the parameters) if N  is a 

negative binomially distributed statistical variable of mean N , and ∞→N . 
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We have already seen that the concept of �multiply stochastic� processes and 

distributions can produce new distributions from combinations of simpler ones. One 

such multiply stochastic distribution which results in K  distributed statistics occurs 

when considering an exponential distribution whose mean is modulated by an 

independent gamma distribution. Suppose we consider an exponential distribution of 

mean , where  is a gamma distributed random variable with shape parameter A A α  

and mean b/α , then the multiply stochastic distribution is [e.g. 107, 125]: 

( ) 
∞
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where as before,  is a modified Bessel function [( )xKν 93]. The moments of these K  

distributions are easily obtained to be: 
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An alternative parameterisation of the K  distributions arises from their roots in the 

context of scattering. Supposing the variable x  represents the intensity (i.e. the square 

of the amplitude) of a return signal, and  is the amplitude of the signal, then upon 

transforming , the distribution of the amplitude  is: 

y
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and the moments are: 
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It is in this parameterisation that the K
~

 distributions reduce to Rayleigh distributions 

as ∞→α  [72]. In the same limit, the K  distributions reduce to exponential 

distributions. 

 

Both parameterisations ( bxK ,, )α  and ( byK ,, )~
α  occur in a wide variety of 

experimental data [e.g. 20]; the specifics of the mode of measurement determine 

which is appropriate for the situation. 

 

The K  distributions have arisen in a wealth of areas, as diverse as human migration 

[128], and satellite imaging [129]. It would therefore be instructive to examine the 

connection between negative binomial number fluctuations and K  distributions. 

6.3 A nonlinear filter model of a phase screen 

A nonlinear filter model was introduced by Jakeman and Ridley [124] to numerically 

investigate some properties of phase screen scattering such as far-field statistics. The 

filter they describe, which is essentially a band-pass Lorentzian filter of width λ  of a 

signal ( )tφ , is given by the integral 

( ) ( ) ( )[
∞−

−+=
t

dttttitS '''exp λφλ ] . (6.4) 

This integral is analogous to the amplitude of a plane wave when scattered into the far 

field by a corrugated random phase-changing screen, as illustrated in Figure 6.1. 
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Denoting the aperture width of the wave to be W , the filter width can be thought of 

as being  � this can be inferred from the integral for the filter (1~ −Wλ 6.4). 

 

The discrete analogue of this filter can be derived since: 

( ) ( )( ) (tSti
dt

tdS
⋅−= λφλ 'exp ). 

Supposing that ( )tφ  and  are discretised as ( )tS )(nφ  and  for , it then 

follows that 

)(nS Nn ≤≤1

( )( ) ( )
( )( ) ( ) ( .11exp)(

1exp)1()(

−−+=

−⋅−=−−

nStnitnS

nStnitnSnS

λδφλδ

λ

)
δφλδ

 

To maintain accuracy in the discretisation, the quantity tλδ  must be small, or the 

phase ( )tφ  must be slowly changing. For simplicity, tδ  is set to unity, so the 

corresponding recurrence relation is: 
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( ) ( )
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 (6.5) 

 

Note that the lower limit of the integral (6.4) is , and the process  has a 

lower limit of . Due to the exponentially decaying nature of the filter, for  

and 

∞− )(nS

1=n nn >'

λ/1)'( >>−nn

)

,  and  are independent. Hence if the initial values of 

 are discarded (e.g. for 

)(nS )'(nS

(nS λ/3<n ), the filtered signal is statistically stationary. 

 

We are interested in studying the intensity of the filtered signal, which is found by 

setting 
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( ) ( ) 2
nSnI =  

from which the pertinent statistics can be found. 

6.4 Simulating a Gaussian process 

Having discussed a nonlinear filtering model of a phase screen, the next logical step 

is to discuss the generation of the random process which corresponds to the phase 

( )tφ . A suitable process is the Gaussian process, for which generation methods exist. 

One such method which allows the rapid generation a Gaussian process with a 

prescribed autocorrelation was introduced by Liu and Manson [130]. Firstly, a vector 

 of i.i.d. Gaussian variables of unit variance and zero mean is created, then padded 

with zeros.  is then convolved with a filter vector  which contains all the 

information regarding the autocorrelation of the required process. The result,  is 

now a Gaussian process with the specified correlation function. A portion of  is 

removed so that end effects from the convolution are removed. 

1V

1V 2V

3V

3V

6.5 Level crossing detection 

We are now in a position where we are given the intensity as a time series and are 

thus able to find the level crossings. Given a series of values , an efficient way to 

find the level crossings at an arbitrary level u  is demonstrated by Smith [

)(nI

131]. The 

procedure of finding crossings of the level  for a series of eight values is 

illustrated below: 

1=u
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0.1 1.5 1.9 3.0 0.9 0.3 2 0.1 )(nI  

 

Firstly, take the sign of the values of the difference between the values and the level: 

. ( )unII d −= )(sgn

 

-1 1 1 1 -1 -1 1 -1 ( )unInI d −= )(sgn)(

 

Next define , ignoring the terms that do not overlap (in 

grey): 

)1()()(' +×= nInInI ddd

 

-1 1 1 1 -1 -1 1 -1  

×  

 -1 1 1 1 -1 -1 1 -1 

= 

 -1 1 1 -1 1 -1 -1  

)1()()(' +×= nInInI ddd  

 

Finally, subtract one from each point in the series, and divide by minus two. 

 1 0 0 1 0 1 1  ( ) )2/(1)()( ' −−= nInI dc  

 

The corresponding train of zeros and ones gives the locations of the level crossings. 

For instance,  indicates that there is a crossing of the level u between  

and . Thus the number of crossings of the series of the level u  is simply 

the sum over the series . This method of analysis does not in general need to be 

1)( =nI c )(nI

)1( +nI )(nI

)(nI c
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performed in an element-by-element fashion, as many mathematical packages such as 

MATLAB and Mathematica allow operations to be performed on entire vectors 

simultaneously. 

6.6 Results 

For the purposes of the results in this chapter, the correlation function of the Gaussian 

process is itself chosen to be Gaussian � this facilitates the fastest computation of the 

Gaussian process itself. The particular correlation function chosen is of the form: 









−>=<

2

2
2

2
exp)()0(

L

τ
ϕτφφ  

where the value of ϕ  is taken to be 20, and the correlation length scale  is 100 steps 

so that the difference in value between each step in the discretised process is small. 

Values of the filter width 

L

λ  in (6.4) and (6.5) are chosen from the range [0.001, 0.1]. 

  

Each simulation is run over 87,381 steps, with the first 7381 steps discarded so that 

the signal (comprised of 80,000 steps) is statistically stationary. Each realisation of 

the filtered process is therefore run over 800 correlation lengths of the Gaussian 

process. To generate the following results, 100,000 realisations are run for each 

chosen value of λ , totalling 8x109 steps. 

 

For further examination later, nine points have been chosen which depict a range of 

behaviours in the processes, and will be referred to as the test cases. These are when 

the filter width =λ 0.01, 0.025, 0.075, and when the crossing level 0.01, 0.1 and =u
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0.5. These test cases (along the filter widths and crossing levels) are marked on the 

figures as appropriate. 

6.6.1 The intensity and its density 

Having outlined the method to generate the filtered process, it is instructive to 

examine the effect of the filter width λ  on the intensity. For the same discretised 

Gaussian process )(nφ , Figure 6.2 shows the processed signal  for the chosen 

values of 

)(nI

λ . Note that peaks in the intensity, regardless of the value of λ , correspond 

to stationary points in the phase. 

 

For small λ  (corresponding to large apertures in the phase screen), the process has 

more fine-scale structure that is not present as λ  increases. This is because for larger 

apertures, many different points in the field contribute to create interference effects 

which are not seen for smaller apertures (large values of λ ). 

 

In the limit 0→λ , the filtered signal is termed �Gaussian� or �fully developed 

speckle� [e.g. 132], for which the intensity has a negative exponential density. This 

can be seen from the kernel of the integral (6.4) as 0→λ , from which it can be 

inferred that the signal  has a longer memory of the phase )(tI )(tφ , resulting in 

interference from many correlation lengths of the Gaussian process. 
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Figure 6.2 

Individual realisations of the process for Ȝ = 0.002 (top box), 0.025 (second), 0.075 

(third), and the Gaussian phase itself (bottom box). Note the different vertical scales. 

 

The logarithm of the probability density function of  is plotted for the entire 

parameter range in Figure 

)(nI

6.3. The richness of behaviour can be immediately be seen 

in the multiple local maxima and minima in the phase space. As expected, the 

maximum intensity increases as a function of the filter width λ . Figure 6.4 plots the 

logarithm of the intensity for , where there is more structure. 2.00 << u
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Figure 6.3 

A contour plot of the logarithm of the probability density function of the intensity of filtered process 

for 0 < I < 1.1. The dots refer to the case studies. 
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Figure 6.4 

A contour plot of the logarithm of the probability density function of the intensity of 

filtered process for 0 < I < 0.2. 

 

In order to examine the density  of the intensity  in the large aperture limit, 

Figure 

)(IP )(nI

6.5 plots  for )(IP λ  = 0.001, 0.002, 0.003 and 0.004. Recall that the K  

distributions are defined by the two parameters α  and b . To fit them to the densities, 

(6.2) can be manipulated to obtain 

22

2

2

2

><−><

><
=

xx

x
α  (6.6) 

><
=

x
b

α
. (6.7) 

 

This method of finding α  and b  to fit K  distributions is used in Figure 6.5 below � 

it is apparent that as λ  increases, the fit to the K  distribution is less appropriate. 
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Figure 6.5 

Fitting K distributions to the density of the intensity when Ȝ = 0.001 (red), 0.002 

(green), 0.003 (blue) and 0.004 (purple). The fitted K distributions are plotted as 

solid lines. 

 

The parameters of the K  distributed fits and the  statistics of the fit ( ) are 

given in Table 

2χ 2
kχ

6.1. The  statistics from fitting an exponential distribution of the 

same mean are also given ( ). It is clear upon comparison of the  statistics that 

for 

2

χ

χ

2
e

2χ

001.0>λ  that the K  distributions provide far better fits than the exponential 

distributions. When λ  = 0.001, the exponential and K  fits are comparable, which is 

to be expected given that as 0→λ  negative exponential statistics (which K  

distributions attain in the large α  limit) are expected from the phase screen model. 
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λ  0.001 0.002 0.003 0.004 

>< x  0.00597 0.0120 0.0182 0.0260 

α  8.05 5.50 4.72 4.5 

b  1349 459 254 173 

k
2χ  81.3 24.8 14.5 15.25 

e
2χ  95.1 108 140 76.1 

Table 6.1 

Comparing the effectiveness of the fit of the K distribution to an exponential 

distribution of the same mean for the intensity density of the filtered process. 

 

For the values of λ  chosen as test cases, the intensity density is plotted in Figure 6.6.  
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Figure 6.6 

Individual probability density functions for Ȝ = 0.002 (blue), 0.025 (green), and 

0.075 (red). 

 

In conjunction with Figure 6.5 which examines the intensity for small λ , it is 

apparent that there are three distinct regimes of behaviour for . For very small )(IP
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values of λ , the intensity is exponential. When 002.0≈λ ,  is approximated 

well by a 

)(IP

K  distribution. For 075.0=λ ,  resembles a uniform distribution, 

whereas for 

)(IP

025.0=λ ,  is not like any known distributions. )(IP

6.6.2 Level crossing rates 

Having investigated some properties of the process , it is instructive to examine 

its level crossings. Since the number of crossings in each realisation of the process is 

dependent on the number of samples, it is more useful to consider the number of 

crossings per correlation length of the Gaussian process, i.e. the crossing rate, which 

is defined: 

)(nI

nL

N
R

><
=  

where, for the parameters used for these simulations in §6.6,  is the number 

of correlation lengths over which each realisation is run. 

80=nL 0

R  is given as a contour plot 

in Figure 6.7 as a function of the filter of width λ  and the crossing level . u

 

It is noteworthy that for values of λ  above 0.04, there is a large range of u  for which 

1≥R , i.e. where the intensity crosses the level u  more than once per correlation 

length. For a fixed level , the mean decreases as 1<<u λ  increases; this could be 

inferred from the density of the process itself (Figure 6.3), which also decreases very 

quickly as the level decreases. Figure 6.8 plots the mean crossing rate R  for 

, where the largest value of R.0<0 < u  is. 2
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Figure 6.7 

A contour plot of the level crossing rate of the filtered process for 0 < u < 1.1. 
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Figure 6.8 

A contour plot of the level crossing rate of the filtered process 0 < u < 0.2. 

 

The intensity of the process for 02.0=λ ,  where the crossing rate is near its 

maximum is plotted in Figure 

01.0=u

6.9. There is a large degree of fine scale structure 

which occurs at almost all levels. This is due to the phase from many different points 

in time contributing to produce interference effects. 
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Figure 6.9 

Showing the a realisation of the process for which u = 0.01 and そ = 0.02. The region 

within the blue box on the left plot is expanded on the right. 
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6.6.3 Fano factors 

Recall that the Fano factor is a measure of how Poissonian a discrete distribution is, 

and is defined as the ratio of the variance to the mean: 

><

><−><
=

N

NN
F

22

. (6.8) 

It might be expected that since the process is measured over a large (800) number of 

correlation lengths, the fluctuations in the number of level crossings would average 

each other out, resulting in the crossings having a Poisson distribution, and hence unit 

Fano factor. 

 

Figure 6.10 shows the Fano factor for the crossings of the intensity of the filtered 

process for the range 1.00 << λ  and , from which it can be seen that the 

Poisson assumption clearly does not hold, since there are points for which  

and . 

2.10 << u

5.0<F

6>F

 

Again, the range of interest seems to be  � this is plotted in Figure 2.00 << u 6.11. A 

maximum of the Fano factor plot can be seen to be in the region of 065.0≈λ , 

. Another region which has a very large Fano factor is at the origin - this 

can be explained by Figure 

015.0≈u

6.2, which shows a greater degree of bunching of 

crossings when λ  and  are low. The large variance in the crossing distribution 

compared to its mean (c.f. Figures 

u

6.7 and 6.8) then results in a large Fano factor. 
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Figure 6.10 

A contour plot of the Fano factor of the level crossings distribution of the intensity for 0 < u < 1.1. 
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Figure 6.11 

A contour plot of the Fano factor of the level crossings distribution of the intensity 

for 0 < u < 0.2. 

6.6.4 Level crossing distributions 

Instead of examining the global characteristics of the crossings via their mean and 

Fano factors, it is instructive to choose points in phase space and consider the level 

crossing distributions themselves. 

 

Though not apparent from either the crossing rate R  or Fano factor F , there are 

strong odd-even effects in the level crossing distributions. Figure 6.12 plots one such 

crossing distribution when 025.0=λ  and  which exhibits strong odd-even 

behaviour � there is a much greater probability of an even number of crossings 

occurring than an odd number. 

5.0=u
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The reasons for the odd-even behaviour can be intuited from the intensity  of the 

filtered process. Figure 

)(nI

6.13 shows a single realisation of the process when 

025.0=λ , with the level  plotted in red. The crossings tend to occur in pairs, 

with even numbers of crossings being more likely than odd numbers. This is 

reminiscent of a population process [

5.0=u

61] for which immigrants are only permitted to 

enter in pairs, and the distribution of emigrants showed strong odd-even effects. 

 

These odd-even effects can be removed by considering the �envelope� of the 

distribution. Defining  to be the probability that there are exactly N  crossings 

of the level u , the envelope is: 

( )NP

( )

( )

( ) ( )









>
−+

=

=

.0
2

1

0
2

0

N
NPNP

N
P

NPe  

 

The resultant distribution  is then �smoothed� � the envelope of the level 

crossing distribution for 

)(NPe

025.0=λ  and  is plotted as circles in Figure 5.0=u 6.12. It 

is shown in Appendix A that calculating the envelope of a distribution does not affect 

its mean or Fano factor greatly except when the mean of  is very small. ( )NP
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Figure 6.12 

Crossing distribution (black line) and envelope (red circles) for Ȝ = 0.025, u = 0.5. 
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Figure 6.13 

A realisation of the process, showing the intensity when Ȝ = 0.025, and the level u = 

0.5 (red line). 

  

The fact that the binomial, negative binomial and Poisson distributions have Fano 

factors less than, greater than and equal to unity respectively makes them suitable 
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candidate distributions to fit to the envelopes. It is possible [e.g. 83] to parameterise 

the binomial and negative binomial distributions in terms of their Fano factor F  and 

another parameter α , i.e.: 

NN

b FF
NN

NP )1(
)!(!

!
)( −

−
= −α

α

α
;  

F

N

−

><
=

1
α , 1<F  (6.9) 

and 

N

n
F

F
N

N
NP 







−

−

+−
= − 1

1
)!1(!

)!1(
)( α

α

α
; 

1−

><
=

F

N
α ,   (6.10) 1>F

respectively. In the context of scattering of light by discrete particles, the parameter 

α  can be thought of as the number of coherent scattering centres in the scattering 

medium, or as another measure of how Poissonian a distribution is. For instance, as 

∞→α , (6.9) and (6.10) become Poisson. 

 

For each of the nine test cases, the envelope is calculated, then (depending on the 

value of the Fano factor) a negative binomial or binomial distribution fit is taken, and 

the corresponding  statistics are found. A Poisson distribution of the same mean, 

and a Gaussian distribution of the same mean and variance are also compared via 

their  values �  and  respectively. 

2χ

p
2χ2χ G

2χ

 

The envelopes of the level crossing distributions for u  = 0.01, 0.1 and 0.5 are plotted 

in Figures 6.14, 6.15 and 6.16 respectively. Also plotted are the Poisson, Gaussian 

and (depending on the Fano factor) binomial or negative binomial fits. The 

corresponding statistics for u  = 0.01, 0.1 and 0.5 are given in Tables 6.2, 6.3 and 6.4 
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respectively. Note that when λ  = 0.02, there are no crossings of the level u  = 0.5, so 

this case is not considered. 

 

The envelopes (plotted as crosses) of the level crossing distributions are barely 

discernable when plotted alongside the binomial and negative binomial fits (plotted as 

blue lines). This shows that the binomial and negative binomial distributions provide 

excellent fits to the envelopes for all of the test cases � regardless of the Fano factor 

or the mean, and even in the tails of the distribution. The  statistics are therefore 

consistently better for binomial/negative binomial fits than either Gaussian or Poisson 

fits. 

2χ

 

From the values of  it is clear that the Gaussian distribution is bad fit to the 

envelopes when the mean is small. This is to be expected since it is symmetric � the 

binomial and negative binomial distributions are not. For larger values of the mean 

however, the Gaussian distribution provides a better fit, with , since it can 

be thought of as a continuum limit to the binomial and negative binomial distributions. 

Note that irrespective of the value of , the number of level crossings is a discrete 

quantity, and thus can never have a true Gaussian distribution. The Poisson 

distribution has provided poor fits to all the crossing distribution envelopes. This is to 

be expected since none of the test cases have Fano factors which are close to unity, 

and hence have relative variances which differ greatly to that of a Poisson. 

G
2χ

22 χχ ≈G

G
2χ
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Figure 6.14 

Crossing distribution envelopes for Ȝ = 0.002 (left), 0.025 (middle), and 0.075 (right). The crossing 

level  is 0.01 throughout. Also plotted are Poisson, Gaussian and either binomial or negative 

binomial fits (green, red and blue lines respectively). 

u

 

λ  0.002 0.025 0.075 

>< N  708.8 2054 21.20 

F  3.967 2.518 4.130 

Fit Negative binomial Negative binomial Negative binomial 

2χ  0.0052 0.3895 1.002 

G
2χ  0.0055 0.3987 8911 

P
2χ  8.3x107 526 1.04x1020 

Table 6.2 

The mean, Fano factor and Ȥ2 statistics for the three values of Ȝ when u = 0.01. 
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Figure 6.15 

Crossing distribution envelopes for Ȝ = 0.002 (left), 0.025 (middle), and 0.075 (right). The crossing 

level u  is 0.1 throughout. Also plotted are Poisson, Gaussian and either binomial or negative binomial 

fits (green, red and blue lines respectively). 

 

λ  0.002 0.025 0.075 

>< N  5.569 948.3 599.4 

F  3.628 0.5538 1.736 

Fit Negative binomial Binomial Negative binomial 

2χ  0.9594 0.0025 0.1585 

G
2χ  1194 0.0030 0.1595 

P
2χ  2.67x1012 0.120 3.18 

Table 6.3 

The mean, Fano factor and Ȥ2 statistics for the three values of Ȝ when u = 0.1. 
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Figure 6.16 

Crossing distribution envelopes for Ȝ = 0.025 (left) and 0.075 (right). The crossing level u  is 0.5 

throughout. Also plotted are Poisson, Gaussian and either binomial or negative binomial fits (green, 

red and blue lines respectively). 

 

λ  0.025 0.075 

>< N  240.0 810.4 

F  1.842 0.3966 

Fit Negative binomial Binomial 

2χ  0.4838 0.0022 

G
2χ  0.5010 0.0029 

P
2χ  33.1 0.257 

Table 6.4 

The mean, Fano factor and Ȥ2 statistics for the two values of Ȝ when u = 0.5. 
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Given that the parameters for the binomial and negative binomial fits are completely 

parameterised by the mean and the Fano factor, it is instructive to plot the Fano factor 

as a function of the mean; this is shown in Figure 6.17 (note that the Fano factor is 

plotted on a logarithmic scale). 

 

It can then be seen that for  the minimum Fano factor is an exponential 

function of the crossing rate � this is approximately 

15.0 << R

)6.2exp(5 RF −= . (6.11) 

Likewise, the maximum crossing rate as a function of the Fano factor is 

approximately 

( )
6.1

)2/log(
65.2

2
F

R −= . (6.12) 

It therefore follows that the maximum value of the mean crossing rate occurs when 

the Fano factor is two � this can be seen in Figure 6.17, which plots the bounds for F  

and R . Equation (6.13) can be inverted to give a maximum Fano factor of ~16 � it 

can be inferred from Figure 6.11 and its discussion that this corresponds to crossings 

for very small values of λ  and . u

 

Recall that the binomial (6.9) and negative binomial (6.10) distributions become 

Poisson as ∞→α  (e.g. as ), and that  statistics have shown that they are 

excellent fits to the test case envelopes (and presumably to the envelopes of any other 

1→F 2χ

λ ,u  combination also). Figure 6.17 shows that there are envelopes for which , 

so it therefore follows that for a suitable choice of 

1≈F

λ  and , the envelopes are u
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Poisson distributed, though binomial and negative binomial envelopes are far more 

abundant. 

 

Small values of α , which imply strongly non-Poissonian statistics, occur either as a 

result of small values of R , or large values of 1−F . It is apparent from Figure 6.17 

that there is an abundance of negative-binomial envelopes where R  (and α ) is very 

small, but the same is not true for binomially distributed envelopes, since the lower 

bound of R  is given by (6.11). For instance, the binomial test case with the smallest 

value of α  is 075.0=λ , , where  and , and 5.0=u 397.0=F 01.1=R 1300≈α . 
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Figure 6.17 

Plotting the Fano factor (on a logarithmic scale) as a function of the mean level 

crossing rate for all sampled points. The blue dashed lines correspond to empirical 

bounds for the crossing rate and Fano factor. Red lines depicting unit mean rate and 

unit Fano factor are also plotted, and test cases are marked as red dots. The green 

dotted lines F = R and F = R / 2 will be referred to later. 
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Note that the form of (6.9) and (6.10) imply that as the Fano factor passes through 

unity from negative binomial to binomial, the value of α  will diverge � this 

divergence can be seen in Figure 6.18. It is especially interesting that for λ  = 0.025 

and 0.075, the value of α  seems to remain the same for large ranges of u , implying a 

robustness in the level crossings statistics. That is, though the Fano factor in (6.9) and 

(6.10) varies as the level increases, α  does not vary much, indicating that an 

underlying feature of the fluctuations of the intensity control the value of α . 

 

0 0.2 0.4 0.6 0.8 1

-10

-5

0

5

10

15

λ = 0.002

λ = 0.025

λ = 0.075

u

lo
g
( α

(u
))

 

Figure 6.18 

Plotting Į as a function of the crossing level u for Ȝ = 0.002 (red), 0.025 (green), and 

0.075 (blue). Stars represent negative binomial distributed crossings; circles 

represent binomial distributed envelopes. A transition from stars to circles (i.e. 

negative binomial distributed envelopes to binomially distributed envelopes, or vice 

versa) represents a divergence of Į, illustrated by dotted lines. 
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6.6.5 Inter-event times and persistence 

Having considered the distribution of the number of level crossings of the process, it 

is also useful to examine the distribution of the intervals between level crossings. A 

useful measure of the dynamics of a process its �persistence exponent�, which can be 

thought of as a measure of how long it tends to stay above/below a set level. 

 

If we define the variable τ  to be the interval between two consecutive level crossings, 

then it can [e.g. 133] be shown that for a wide class of random processes: 








− θ
τ

τ
L

P exp~)( ; ∞→τ  (6.14) 

where θ  is termed the �persistence exponent� and L  is some scale length of the 

process at hand (in this case, the correlation length of the Gaussian process). Clearly 

for large values of θ , the process is more likely to change signs rapidly, which 

implies that the mean number of crossings will be larger as a result. Likewise, it can 

be inferred that when θ  is large, crossings are more bunched together, which implies 

a small Fano factor. It then follows that the quantity 

F

R
ce ⋅=θ  (6.15) 

where  is some constant, is a heuristic estimate of the persistence exponent. c

 

Figure 6.19 plots the inter-event distribution of the level crossings when 025.0=λ  

and . Also plotted are straight lines corresponding to exponential tails with 

persistence exponent 

01.0=u

θ  = 0.9923 which best fits the data (in red) and the estimated 
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value (with c = 1), eθ  = 1.020 (in blue). It is evident that the two values do not differ 

by much, eθ  over-estimating the persistence coefficient. This implies that eθ  is a 

suitable estimator for the persistence exponent. 
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Figure 6.19 

Plotting the inter-event distribution when Ȝ = 0.025, u = 0.01 as a function of the 

normalised interval length Ĳ / L. Straight lines corresponding to the persistence 

exponent ș (red) and from the estimated persistence șe (blue) are also plotted. 

 

Figure 6.20 plots the persistence index θ , the estimated persistence index eθ , mean 

crossing rate R  and Fano Factor F  for u  = 0.01, 0.1 and 0.5 as a function of the 

filter width λ  for the three chosen crossing levels. For u  = 0.01, the difference 

between eθ  and θ  is being barely discernable. For u  = 0.1 and u  = 0.5, the form of 

eθ  resembles that of the persistence, with the fit being better for small λ . 
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Figure 6.20 

Plotting the persistence ș (black line with crosses), the mean crossing rate R (green line), Fano factor F 

(red line with squares), and the estimator șe (blue line with circles) for the three levels 0.01, 0.1, and 

0.5 (top, middle and bottom boxes respectively). 
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Figure 6.21 plots the rescaled persistence )(/ ucθ  (where  is some unknown 

function of the level u ) as a function of  for the three test case levels. It is 

apparent that when 

)(uc

FR /

FR 2< , FRuc /)(/ ≈θ , so 

( ) ( )








⋅−
LF

Ruc
P

τ
τ exp~  R F2< . (6.16) ∞→τ , 

The line FR 2=  is plotted in Figure 6.17, from which it can be seen that the majority 

of points in the u,λ  phase space satisfy FR 2< , i.e. (6.16) is a good estimate for the 

asymptotic behaviour of the inter-event times. 

 

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

R / F

θ 
/ 

c
(u

)

 

Figure 6.21 

Plotting the rescaled persistence exponents ș / c(u) as a function of the ratio of the 

mean crossing rate to the Fano factor, R / F for the three levels u = 0.01, 0.1 and 0.5 

(red crosses, green points and blue squares respectively), the corresponding scales 

being c(0.01) = 1, c(0.1) = 0.65 and c(0.5) = 0.57. 

 

Analogies to the concept of persistence can be drawn in discrete processes also. For 

instance, Hopcraft considers the counting statistics (see §2.5.3) of different models of 
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population processes in an unpublished memo [134, pertinent results reproduced in 

Appendix B] and defines the persistence exponent dθ  of the process through: 

)exp(~)( τθτ ⋅−P ; ∞→τ  

where )(τP  is the inter-event density of the counting process. Three models in 

particular are of interest, since their count distributions are either binomial, or 

negative binomial. They are a binomial population process [135], a Birth-Death-

Immigration (BDI) process [53] and a Multiple-Immigration (MI) process [53], the 

latter two having negative binomial counting statistics. The corresponding persistence 

exponents are: 

( )121
1

−−
−

= F
F

R
bθ ; 1

2

1
<< F  

( )112
1

−−
−

= F
F

R
BDIθ ; 1>F  

1

2

+
=

F

R
MIθ ;  1≥F

respectively, where R  is the count rate from monitoring the population, i.e. the 

number of emigrants per unit time. Without loss of generality, we set 1=R  in the 

above, since we are considering fitting these population model results to the rescaled 

persistence exponents )(/ ucθ . 

 

The persistence exponents from the population models are plotted with the rescaled 

persistence exponents in Figure 6.22. It is clear that when  (i.e. 

), the value of the rescaled persistence exponent lies between the estimate 

 (dotted line) and 

1/0 << FR

FR <<0

FR / MIθ  (the persistence for the multiple immigration model, blue 
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line). The average value of eθ  and MIθ  is therefore an improved estimate in this 

regime. Similarly, it can be seen that for FRF 2<< , eθ  is a better estimate for the 

rescaled persistence exponent than that of the binomial process (red line). Therefore, 

the persistence exponent θ  for the range  is well approximated by the 

functions: 

FR 20 <<

.2

F

<

<

)(

)

2

F
F

R
uc

c

e

MIe

⋅=≈

+=
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θθ

θθ
θ 0
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R

<
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2
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(uc
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 (6.17) 
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Figure 6.22 

Plotting the ș / c(u) as a function of R / F for u = 0.01, 0.1 and 0.5 (crosses, points 

and squares respectively), the corresponding scales c(u) being the same as in Figure 

6.21. The dotted line is to ș / c(u) = R / F. The persistence exponents corresponding 

to the binomial, negative binomial and multiple immigration population models are 

also plotted (red, green and blue lines respectively). The same plot for 0 < R / F < 1 

and 0 < ș / c(u) < 1 is plotted on the right panel. 
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6.7 Summary 

This chapter uses a non-linear filter analogue of a phase-screen model to generate a 

non-Gaussian process, then proceeds to analyse the level crossings. The probability 

density of the intensity was seen to show a wide range of behaviour, from being 

exponential in the limit 0→λ , K  distributed for 1<<λ , to an intermediate range in 

which it resembles no obvious distribution. For larger values λ , the density 

approaches a uniform distribution. 

 

To analyse the level crossing distributions, nine points in the u,λ  phase space were 

chosen: three crossing levels, and three values of the filter width λ . For all of the 

chosen test cases, the binomial and negative binomial distributions provided 

exemplary fits to the crossing distributions, even for extremes of the mean crossing 

rate or Fano factor. This result is significant as it extends the results of Smith et al. 

[83] (who considered the zero crossings of differentiable Gaussian processes) to level 

crossings of a non-Gaussian process, and implies a universality of the binomial and 

negative binomial distributions to point processes derived from continuous processes. 

 

It was seen that the Fano factor of the crossing distributions has a lower bound which 

is a function of the crossing rate. A consequence of this is that when comparing the 

crossing distributions to binomial distributions � there are no binomially distributed 

crossings for which the crossing rate is very small. 
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The asymptotic behaviour of the distribution of times between level crossings was 

found to be approximated in a simple form (6.14, 6.17) which depends only on the 

Fano factor and the mean crossing rate. This has a wider currency since it permits 

assumptions about the inter-event times of the level crossing process to be made 

knowing only the crossing distributions. 

 



 

7. Conclusion 

In the introduction, the relationship between the classes of the continuous and 

discrete-stable distributions was considered. This thesis addresses this point using the 

Poisson transform, a novel result which is key to this thesis. Indeed, the recurrent 

motif in this thesis is the interplay between the continuous and discrete properties of 

random, stochastic processes. The structure of the thesis is schematically shown in 

Figure 7.1, which highlights the key results of each chapter separately. 

 

The continuous and discrete stable distributions, which in the literature have had a 

very inconsistent system of notation were introduced in Chapter 2. One notation was 

chosen for its simplicity, and given the importance of the stable distributions, the 

known closed-form expressions were presented. The Death, Multiple-Immigration 

(DMI) population model was also introduced as a discrete process for which discrete-

stable distributions can be found both in its stationary solution and counting statistics. 

 

Chapter 3 served to bridge the gap between the discrete and continuous stable 

distributions. The �multiply stochastic� concept of smearing the scale parameter of 

one distribution by another was introduced via the Gaussian and Poisson transforms. 

A new proof is introduced which shows that the one-sided continuous-stable 

distributions are linked to the discrete-stable distributions via a Poisson transform 

interrelationship. This proof also shows that modifying the scale parameter of any 

one-sided or symmetric stable distribution by a one-sided continuous-stable 
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distribution results in another stable distribution of the same type but with reduced 

power-law index. 
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Figure 7.1 

Showing the connection between the key results of the thesis. Hexagons represent the mechanism for 

transferring between continuous and discrete properties. Chapter or reference numbers are also given. 
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The Poisson transform interrelationship is exploited in Chapter 4 to generate a one-

sided continuous-stable process using the (discrete-stable) DMI model as a basis. 

Properties of this continuous process were found, including the transient solution and 

the r -fold statistics, which give the probability that the process has values 

 following separation times . The factorisation of the latter is 

enormously significant, as it shows that the continuous-stable process is a well-

defined Markov process. A integro-differential Fokker-Planck style equation 

governing the time evolution of the probability density function was found, and 

shown to have a non-local kernel, such that  has a dependence on all  

for which . This contrasts to a Fokker-Planck equation suggested in the 

literature for symmetric-stable processes, but which is readily seen to be unphysical. 

The results in Chapter 

rxx ,...,,1

0

x2 121 ,...,, −rttt

),( txp ),'( txp

xx << '

4 therefore permit the analysis and simulation of one-sided 

continuous-stable processes, or more importantly, to fit such processes to empirical 

data. 

 

Chapter 5 considers the Poisson transform interrelationship in the opposite direction, 

firstly using an algorithm to generate negative binomially distributed variates from 

gamma distributed variates, since the two distributions form a Poisson transform pair. 

The algorithm was then applied to generate discrete-stable variates from one-sided 

continuous-stable variates. For each class of distribution, a large number of variates 

were collected to create an ensemble. In every case, the distribution of the ensembles 

were found to be an excellent match to the theoretical distributions upon comparison 

via the  statistic. This novel method of generating discrete-stable variates is 2χ
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significant as it is vastly less computationally expensive than methods such as 

�lookup tables� (which necessarily introduce inaccuracies), or approximations based 

on the power-law tails of the discrete-stable distributions, and is an �exact� method. 

 

Hopcraft, Ingrey and Jakeman [84] discovered a relationship between continuous 

processes which have fractal properties in their correlation functions, and the 

distributions of the number of crossings (which have power-laws and are 

asymptotically stable) of these processes which occur in intervals of arbitrary length. 

Smith, Hopcraft and Jakeman [83] consider Gaussian processes whose correlation 

functions do not have fractal properties. Though it may be expected that for large 

intervals, the central limit theorem would apply and the distribution of level crossings 

would be Poisson, this is not the case; instead the distribution of crossings always 

belong to the class of binomial, negative binomial or (exceptionally) Poisson 

distributions. Chapter 6 considers a signal processing analog of a phase-screen model 

as a non-Gaussian process without fractal properties in the correlation function. Over 

a very long integration time and depending on their Fano factors, it was found that the 

level crossing distributions are either binomial or negative binomial, implying a 

universality of these distributions when considering counting statistics over 

asymptotically long times. The �persistence exponent� of the continuous process 

(which is a measure of the length of time the process stays above or below a 

prescribed level), was found to be very accurately approximated by simple functions 

of the mean and Fano factor of the crossing distribution. This result is noteworthy 

because it connects the crossing distribution (which is discrete and ostensibly has no 
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information about the interval statistics of the process) to its persistence exponent, a 

continuous property. 

 

This thesis has shown that many discrete and continuous properties of stochastic 

processes, which are often dealt with as separate entities, have a deep relationship 

which connects them. For instance, the Poisson transform interrelationship found in 

Chapter 3 implies that if a one-sided continuous-stable process modulated the mean 

of an independent Poisson process, the result is a discrete-stable process � the reverse 

of this relationship being the basis of Chapter 4. 

7.1 Further Work 

This thesis has addressed many questions, for instance, whether or not the discrete-

stable and the one-sided continuous-stable distributions are only superficially similar 

by discovering their Poisson transform interrelationship. Many further avenues of 

possible research have been outlined, however. One such obvious avenue is to 

consider the continuous-stable process developed in Chapter 4 to model real-world 

processes, in order to obtain salient results such as prediction of future events through 

such properties as the inter-event times. 

 

It was shown that symmetric-stable distributions of index ν2  can be formed by 

modulating the scale parameter of a Gaussian distribution by a one-sided continuous-

stable distribution of index ν . Following the discovery of a one-sided continuous-

stable process in Chapter 4, it would be very enlightening to �Gaussian transform� 
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that process to form a symmetric-stable process, and investigate the appropriate 

properties. 

 

When studying the level crossing statistics of the non-Gaussian process in Chapter 6, 

it was necessary to fix most of the parameters (such as the properties of the Gaussian 

phase), and consider only varying the filter width and the crossing level. Smith, 

Hopcraft and Jakeman [83] considered the zero crossing distributions of Gaussian 

processes upon varying the correlation function. It would be extremely enlightening 

to study the level crossing properties of the Gaussian processes with different 

correlation functions, or indeed different processes entirely. 

 

The crossing statistics in Chapter 6 was seen to exhibit very strong odd-even effects, 

much like the �pairs� population model [61]. The Fano factor of the population model, 

however, is limited to 21 << F  which is rather restrictive when considering fitting 

the results to crossing distributions. Finding a process for which analytical results can 

be found and the Fano factor may take any value would therefore be very beneficial. 

 

Deeper connections between discrete and continuous properties may yet be found, 

particularly in the field of zero and level crossings, which would both be enlightening 

and could be of enormous benefit not only to the mathematical community, but to 

those interested in condensed-matter physics, risk analysis, finance and indeed the 

physical and social sciences in general. 

 



 

Appendices 

Appendix A � Effect of envelopes on odd-even distributions 

Recall that the generating function of an arbitrary discrete distribution  is (e.g. ( )NP

2.7) 

( ) ( ) ( )
∞

=

−=
0

1
N

N
NPssQ . 

 

It then follows that 

( ) ( ) ( ) ( )

( ) (

( ) (





∞

=

∞

=

∞

=

+

−−=

−−=

−=−

0

1

0

1

11

11

11

N

N

N

N

N

N

NPs

NPs

NPssQs

)

)

 

since  (this can be verified by setting  in the left hand side). We 

define the envelope  of : 

( ) 01 =−P 0=s

( )NPe ( )NP

( )

( )

( ) ( )









>
−+

=

=

0
2

1

0
2

0

N
NPNP

N
P

NPe  

for which the generating function is: 

( ) ( ) ( ) ( )

( ).
2

2

2

1
1

0

sQ
s

NPNP
ssQ

N

N

e

⋅
−

=





 −+

−=
∞

=  

 - 159 - 



APPENDICES 

The mean, variance and Fano factor can be recovered using (2.11) on  in the 

usual fashion: 
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which shows that the mean, variance and hence the Fano factor remain relatively 

unchanged by taking the envelope. From the form of the Fano factor of the envelope 

distribution, it is expected that the  except when the mean  is very 

small. 

FFe ≈ >< N
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Appendix B � Persistence Exponents 

Recall that the generating function of a population process and its emigrants is given 

in (2.38). If the process to be considered has an exponentially distributed inter-event 

times for 1>>τ , then it simply suffices to extract the asymptotic form of the 

generating function to extract the persistence exponent. The generating function of 

the emigrants alone is then , and the inter-event density is found 

by [e.g. 
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where r  is the rate at which emigrants leave the population. 

Binomial model 

For this model [135], 
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The mean and second factorial moments of the population of emigrants are: 
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Birth-Death-Immigration model 

The Birth-Death-Immigration model [e.g. 53] produces negative binomial 

distributions as its equilibrium state, and the distribution of emigrants satisfies:  
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so, for the negative binomial model, 
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which is identical to that for the binomial model, save for the different range of . F

Multiple-Immigration model 

When the distribution of the number of immigrants entering a population is geometric, 

the multiple-immigration population process reaches a negative binomial equilibrium 

distribution, however the parameterisation of the generating function and the derived 

statistics are different: 
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hence as 1>>τ , 
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so, for the multiple-immigration model, 
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The range of Fano factors and persistence exponents for the three models are then 

summarised in table form as: 

 

Model Fano Factor Persistence Exponent (ș) 

Binomial 1
2

1
<< F  ( )( )2/1

121
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Negative Binomial 1>F  ( )( )112
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Multiple Immigration 1>F  
1

2

+F

r
 

Table B.1 

The Fano factor of the population of emigrants and the persistence exponent of the 

inter-event times for the three population models considered. 
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